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Human language is a system of communication. Communication, in turn, consists primarily of
information transmission. Writing about the interactions between information and natural language,
we cannot fail to mention that information theory has originated with statistical investigations of
English text in the turn of the 1940s and 1950s [1,2]. While initially, there were some common interests
between information theory and linguistics, for instance, understanding distributional properties of
elements in natural language, e.g., [3,4], the following decades brought a growing divide between the
fields. They went down separate research paths until the end of the 20th century. Whereas information
theory embraced probabilities, also in disguise of algorithms [5], the influential Chomskyan formal
theory of syntax deemed the question of probabilities in language as scientifically largely irrelevant [6].
It was only in the 1990s that the gap between information theory and formal language studies started
to be bridged by the rapid progress of computational linguistics [7,8]. For a detailed account of
this development see also [9]. Presently, this progress has resulted in large-scale neural statistical
language models such as the much publicized GPT-2 [10], which is capable of generating surreal but
understandable short stories.

To use an information theoretic metaphor, the communication channel between the divergent
research traditions is reopening. Looking back at independent discoveries of probabilistic and
non-probabilistic accounts of natural language, we deem that the divide might have been necessary to
focus attention on particular areas of scientific investigation. However, the time is ripe to integrate the
established disjoint scholarships, and to cross-fertilize research. We believe that the frameworks of
information theory and linguistics are fully compatible in spite of some historical reservations and
different academic curricula.

This Special Issue consists of twelve contributions that cover various recent research areas at the
interface of information theory and linguistics. They concern in particular:

• applications of information theoretic concepts to the research of natural languages;
• mathematical work in information theory inspired by natural language phenomena;
• empirical and theoretical investigation of quantitative laws of natural language;
• empirical and theoretical investigation of statistical and neural language models.

We believe that the selection of authors and topics in this Special issue reflects the state of the art
of interdisciplinary research. In fact, the formal disciplines of the contributing authors range from
linguistics and cognitive science to computer science, mathematics, and physics. Since the various
research perspectives cannot be easily arranged in an obvious linear order, we have decided to present
the papers in the order of their publication.

Entropy 2020, 22, 435; doi:10.3390/e22040435 www.mdpi.com/journal/entropy1



Entropy 2020, 22, 435

The Contributions

• Koplenig, A., Wolfer, S., and Müller-Spitzer, C., Studying Lexical Dynamics and Language Change via
Generalized Entropies: The Problem of Sample Size [11].

Dependence on sample size is a recurrent problem in quantitative linguistics. This also holds for
accounts harnessing, for instance, the entropy of word frequency distributions. Koplenig, Wolfer, and
Müller-Spitzer systematically investigate this issue based on a corpus compiled from a weekly news
magazine in German, which spans seven decades, and contains more than 200 million word tokens.
In particular, they employ the generalized Tsallis entropies, which allow for weighting parts of the
frequency spectrum more or less heavily in entropy calculations. It turns out that correlations between
the estimated entropies and respective sample sizes are only broken if a heavy bias towards highly
frequent words is introduced. In particular, the standard Shannon entropies display a strong dependence
on sample size. In an application investigating lexical change over several decades, the authors further
propose and illustrate a "litmus test". This entails calculating entropy divergences between parts of
the corpus over historical time, and comparing these with entropy divergences calculated for texts
in random order. Their results suggest that it is the growing sample size over time which leads to
systematic patterns in entropy divergences, potentially independent of genuine lexical change.

• Hahn, M. and Futrell, R., Estimating Predictive Rate–Distortion Curves via Neural Variational
Inference [12].

The predictive rate-distortion curve quantifies the trade-off between compressing information
about the past of a stochastic process and predicting its future accurately. Hence it is a more detailed
characteristic of the process complexity than its excess entropy or statistical complexity. Hahn and
Futrell study estimation of predictive rate-distortion curves for complex stochastic processes, aimed to
be applied for natural language. The authors’ method of estimation consists in upper bounding the
correct curve by means of a neural network approximation of the investigated process. The method is
validated on examples of processes for which the predictive rate-distortion curve is known analytically.
Moreover, the authors provide an estimate of the predictive rate-distortion curve for text corpora in
five natural languages (English, Russian, Arabic, Japanese, and Chinese). The experiments universally
indicate that the excess entropy and statistical complexity for natural language are infinite.

• Hernández-Fernández, A., Torre, I.G., Garrido, J.M., and Lacasa, L., Linguistic Laws in Speech: The
Case of Catalan and Spanish [13].

There is a hypothesis in quantitative linguistics, called the physical hypothesis, that statistical
linguistic laws in written texts are a byproduct of more exact laws present in the acoustic signals of
oral communication. In contrast to earlier works, Hernández-Fernández et al. investigate and verify
the physical hypothesis using a large oral text corpus, the Glissando Corpus of spoken Catalan and
Spanish. The studied quantitative linguistic laws include Zipf’s law, Herdan’s law, the brevity law,
Menzerath–Altmann’s law, the log-normality law, and the size-rank law. By aligning the acoustic signal
with the speech transcripts, they measure and compare the agreement of each of these laws when
measured in both physical and symbolic units. The conclusion of this experiment is that quantitative
linguistic laws are satisfied indeed more accurately for the acoustic signal than for the speech transcript.

• Venhuizen, N.J., Crocker, M.W., and Brouwer, H., Semantic Entropy in Language Comprehension [14].

The link between information and meaning has been a controversial topic ever since Shannon’s
work. The alleged disconnection between the two was posed as a main argument against analyzing
natural language in the light of information theory. Venhuizen, Crocker and Brouwer illustrate that
information theoretic concepts might be fruitfully applied to both linguistic signals, and the points
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they denote in meaning space. In their experiments, they combine formal semantic tools with neural
network technology. Based on a set of training sentences, their neural network learns to map linguistic
signals onto meaning vectors representing propositional truth values. This setup allows the authors to
trace the semantic expectations of the network in word-by-word online processing. In this context,
they tease apart surprisal and entropy reduction, two concepts which were previously often seen as
strongly intertwined. Surprisal is calculated based on word-by-word transitions in meaning space,
whereas entropy is calculated over meaning vectors which identify a unique semantic model of the
world. Given these definitions, suprisal and entropy reduction are not strongly correlated. The authors
explain this by pointing out that surprisal is inherently more sensitive to frequency effects in the
linguistic signal, while entropy reduction is more strongly influenced by knowledge of the model
theoretic world.

• Ren, G., Takahashi, S., and Tanaka-Ishii, K., Entropy Rate Estimation for English via a Large Cognitive
Experiment Using Mechanical Turk [15].

The entropy rate of a sequence reflects the amount of information conveyed per unit, e.g.,
characters or words in natural language. It has been proposed also as a measure of the complexity
of a sequence. However, estimating the entropy rate of natural languages has proven a challenging
endeavor due to the problem of finite sample sizes and long-range dependence. Ren, Takahashi, and
Tanaka-Ishii revive an idea going back to Shannon’s experiments [2], namely, estimating the entropy
rate by using human subjects to predict the next character in a linguistic sequence. They collect more
than 100,000 character predictions for English texts by 683 different subjects. Across all subjects and
trials, they estimate the entropy rate to around 1.4 bits per character. Using trials selected for high
performance (i.e., correctly guessing characters) reduces the estimate to around 1.22 bits per character.
In their discussion, the authors point out that this is lower than Shannon’s original value of 1.3 bits per
character. On the other hand, it is higher than entropy rates estimated with current state-of-the-art
neural language models, which are just above 1 bit per character. This suggests that neural language
models outperform human subjects in character guessing games.

• Gutierrez-Vasques, X. and Mijangos, V., Productivity and Predictability for Measuring Morphological
Complexity [16].

There is a recent rise of interest in measuring the morphological complexity of typologically
diverse languages. The findings of this research have implications for both theoretical and applied
linguistics, especially in the domain of natural language processing. Gutierrez-Vasques and Mijangos
propose to apply the information-theoretic concept of entropy rate to word internal structure. Their
data sets contain parallel texts for 47 and 133 typologically diverse languages respectively. Using
a neural language model they estimate the difficulty of predicting character unigrams and trigrams
within words for different languages and writing systems. These estimates are then contrasted with
more traditional measures of morphological complexity, such as the type-token ratio for words. It turns
out that word internal predictability is only weakly correlated with the type-token ratio, and hence
measures a new and independent dimension of morphological complexity.

• Dębowski, Ł., Approximating Information Measures for Fields [17].

Motivated by some theoretical problems of statistical modeling of natural language, Dębowski
reconsiders the classical problem of generalizing entropy and mutual information from discrete random
variables (finite partitions, in more abstract formulation) to arbitrary random variables (fields and
σ-fields, respectively). Having noticed a mistake in his paper from 2009, he supplies corrected proofs
of the invariance of completion and the chain rule for conditional entropy and mutual information.
In the final section, he also discusses how the generalized calculus of conditional entropy and mutual
information is useful in particular for studying the ergodic decomposition of strongly non-ergodic
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stationary processes and its links with statistical modeling of natural language, which possibly should
be modeled by a strongly non-ergodic process.

• Linke, M. and Ramscar, M., How the Probabilistic Structure of Grammatical Context Shapes Speech [18].

Frequencies of occurrence are a central concept in quantitative linguistics. They are often used
to measure the informativeness of units (i.e., characters, words, etc.) in written language. Linke and
Ramscar point out several caveats with this approach. Firstly, written language is not a direct reflection
of speech. As a remedy, they use a corpus of conversational English of more than 200,000 word
tokens with phonetic labels, and compare their results to studies using written language. Secondly,
frequencies of occurrence abstract away from co-occurrence patterns at different levels of language
structure, e.g., n-grams for words and parts-of-speech, as well as subword structure. The authors argue
that grammatical context often predicts usage patterns in speech better than mere frequencies. Thirdly,
distributions of frequencies are mostly analyzed over entire texts, for instance, when power law like
patterns such as Zipf’s law are assessed. However, the authors illustrate that there are systematic
differences between the distributions of frequencies for words of different parts-of-speech. Namely,
while open class items such as nouns and verbs follow power laws, function words rather follow
geometric distributions. In fact, the authors further argue that power law like behavior in aggregate
distributions might well be the outcome of mixing distributions which are by themselves geometric.

• Gerlach, M. and Font-Clos, F., A Standardized Project Gutenberg Corpus for Statistical Analysis of
Natural Language and Quantitative Linguistics [19].

Studies on information theoretic properties of natural languages—and analyses in quantitative
linguistics more generally—stand and fall with availability of textual data. The universality of linguistic
laws, for instance, can only be ascertained given openly available, cross-linguistic, and transparently
processed data. To this end, Gerlach and Font-Clos contribute a standardized version of the Project
Gutenberg Corpus, which contains more than 50,000 books in over 20 languages. They give a detailed
description of the data acquisition, processing, and metadata annotation procedures. Furthermore,
they illustrate how this corpus can be used to measure the topical variability between texts associated
with different genres via so-called “bookshelf” labels, and how authors are distinguishable by the
Jensen-Shannon divergence applied to their works.

• Seoane, L.F. and Solé, R., Criticality in Pareto Optimal Grammars? [20].

Seoane and Solé propose a computational methodology to inspect corpora of texts in order
to extract salient levels of linguistic description. Their methodology is grounded in the bottleneck
method from information theory, Pareto optimality from multi-objective optimization, and concepts
from statistical physics such as energy, entropy, phase transitions and criticality. Their working
example concerns extracting the Pareto optimal grammars from 49 newspaper articles taken from the
Corpus of Contemporary American English preprocessed by the Natural Language Toolkit (NLTK).
The numerical results indicate a critical point in the description of human language. As the authors
write, the critical point is the worst case in terms of description since there is no relatively small model
which can capture the whole phenomenology at any level of linguistic description.

• Ahmadi, L. and Ward, M.D., Asymptotic Analysis of the kth Subword Complexity [21].

The subword complexity is a function which counts how many distinct substrings of a given length
appear in a given string. It is a simple characteristic of a string that yields an insight whether the string is
periodic, random, or something in between—like a text in natural language. In particular, the subword
complexity divided by the string length equals to the type-token ratio investigated in quantitative
linguistics. Ahmadi and Ward study some properties of subword complexity from a mathematical
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point of view. Namely, they investigate the asymptotic behavior of the subword complexity for
sequences of independent identically distributed random variables. They derive expressions for
the expectation (first moment) and the variance (second moment) of subword complexity. Their
methodology involves complex analysis, analytical poissonization and depoissonization, the Mellin
transform, and saddle point analysis.

• Corral, Á. and Serra, I., The Brevity Law as a Scaling Law, and a Possible Origin of Zipf’s Law for Word
Frequencies [22].

Corral and Serra study the joint distribution of lengths and frequencies of words, whose marginals
are described by the brevity law and Zipf’s law for frequencies of frequencies, called also Lotka’s
law. The investigated corpus is the English subcorpus of the Standardized Project Gutenberg Corpus,
introduced in contribution [19]. The authors observe that the marginal distribution of word length is
better described by the gamma distribution than by the previously proposed log-normal distribution.
Moreover, the conditional frequency distributions at a fixed length exhibit a universal power-law
decay and a scaling law analogous to those found in the thermodynamics of critical phenomena.
In conclusion, the authors present a four-parameter model for the joint distribution of lengths and
frequencies of words.

Acknowledgments: We express our thanks to the authors of the above contributions, the reviewers for their
feedback on the manuscripts, and to the journal Entropy and MDPI for their support during this work.
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Abstract: An important body of quantitative linguistics is constituted by a series of statistical
laws about language usage. Despite the importance of these linguistic laws, some of them are
poorly formulated, and, more importantly, there is no unified framework that encompasses all them.
This paper presents a new perspective to establish a connection between different statistical linguistic
laws. Characterizing each word type by two random variables—length (in number of characters) and
absolute frequency—we show that the corresponding bivariate joint probability distribution shows a
rich and precise phenomenology, with the type-length and the type-frequency distributions as its two
marginals, and the conditional distribution of frequency at fixed length providing a clear formulation
for the brevity-frequency phenomenon. The type-length distribution turns out to be well fitted by a
gamma distribution (much better than with the previously proposed lognormal), and the conditional
frequency distributions at fixed length display power-law-decay behavior with a fixed exponent
α � 1.4 and a characteristic-frequency crossover that scales as an inverse power δ � 2.8 of length,
which implies the fulfillment of a scaling law analogous to those found in the thermodynamics of
critical phenomena. As a by-product, we find a possible model-free explanation for the origin of
Zipf’s law, which should arise as a mixture of conditional frequency distributions governed by the
crossover length-dependent frequency.

Keywords: quantitative linguistics; brevity law; abbreviation law; power laws; scaling; Zipf’s law

1. Introduction

The usage of language, both in its written and oral expressions (texts and speech), follows very
strong statistical regularities. One of the goals of quantitative linguistics is to unveil, analyze, explain,
and exploit those linguistic statistical laws. Perhaps the clearest example of a statistical law in language
usage is Zipf’s law, which quantifies the frequency of occurrence of words in such written and oral
forms [1–6], establishing that there is no unarbitrary way to distinguish between rare and common
words (due to the absence of a characteristic scale in “rarity”). Surprisingly, Zipf’s law is not only a
linguistic law, but seems to be a rather common phenomenon in complex systems where discrete units
self-organize into groups, or types (persons into cities, money into persons, etc. [7]).

Zipf’s law can be considered as the “tip of the iceberg” of text statistics. Another well-known
pattern of this sort is Herdan’s law, also called Heaps’ law [2,8,9], which states that the growth of
vocabulary with text length is sublinear (however, the precise mathematical dependence has been
debated [10]). Herdan’s law has been related to Zipf’s law, sometimes with too simple arguments,

Entropy 2020, 22, 224; doi:10.3390/e22020224 www.mdpi.com/journal/entropy7



Entropy 2020, 22, 224

although rigorous connections have been established as well [8,10]. The authors of [11] provide another
example of relations between linguistic laws, but, in general, no general framework encompassing all
laws exists.

Two other laws—the law of word length and the so-called Zipf’s law of abbreviation or brevity
law— are of particular interest in this work. As far as we know, and in contrast to the Zipf’s law of
word frequency, these two laws do not have non-linguistic counterparts. The law of word length
finds that the length of words (measured in number of letter tokens, for instance) is lognormally
distributed [12,13], whereas the brevity law determines that more frequent words tend to be shorter,
and rarer words tend to be longer. This is usually quantified between a negative correlation between
word frequency and word length [14].

Very recently, Torre et al. [13] parameterized the dependence between mean frequency and length,
obtaining (using a speech corpus) that the frequency averaged for fixed length decays exponentially
with length. This is in contrast with a result suggested by Herdan (to the best of our knowledge not
directly supported by empirical analysis), who proposed a power-law decay, with exponent between 2
and 3 [12]. This result probably arose from an analogy with the word-frequency distribution derived
by Simon [15], with an exponential tail that was neglected.

The purpose of our paper is to put these three important linguistic laws (Zipf’s law of word
frequency, the word-length law, and the brevity law) into a broader context. By means of considering
word frequency and word length as two random variables associated to word types, we will see
how the bivariate distribution of those two variables is the appropriate framework to describe the
brevity-frequency phenomenon. This leads us to several findings: (i) a gamma law for the word-length
distribution, in contrast to the previously proposed lognormal shape; (ii) a well-defined functional
form for the word-frequency distributions conditioned to fixed length, where a power-law decay
with exponent α for the bulk frequencies becomes dominant; (iii) a scaling law for those distributions,
apparent as a collapse of data under rescaling; (iv) an approximate power-law decay of the characteristic
scale of frequency as a function of length, with exponent δ; and (v) a possible explanation for Zipf’s
law of word frequency as arising from the mixture of conditional distributions of frequency at different
lengths, where Zipf’s exponent is determined by the exponents α and δ.

2. Preliminary Considerations

Given a sample of natural language (a text, a fragment of speech, or a corpus, in general), any
word type (i.e., each unique word) has an associated word length, which we measure in number of
characters (as we deal with a written corpus), and an associated word absolute frequency, which is the
number of occurrences of the word type on the corpus under consideration (i.e., the number of tokens
of the type). We denote these two random variables as � and n, respectively.

Zipf’s law of word frequency is written as a power-law relation between f (n) and n [6], i.e.,

f (n) ∝
1

nβ
for n ≥ c,

where f (n) is the empirical probability mass function of the word frequency n, the symbol ∝ denotes
proportionality, β is the power-law exponent, and c is a lower cut-off below which the law losses its
validity (so, Zipf’s law is a high-frequency phenomenon). The exponent β takes values typically close
to 2. When very large corpora are analyzed (made from many different texts an authors) another
(additional) power-law regime appears at smaller frequencies [16,17],

f (n) ∝
1

nα
for a ≤ n ≤ b,

with α a new power law exponent smaller than β, and a and b lower and upper cut-offs, respectively
(with a < b < c). This second power law is not identified with Zipf’s law.
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On the other hand, the law of word lengths [12] proposes a lognormal distribution for the
empirical probability mass function of word lengths, that is,

f (�) ∼ LN(μ, σ2),

where LN denotes a lognormal distribution, whose associated normal distribution has mean μ

and variance σ2 (note that with the lognormal assumption it would seem that one is taking a
continuous approximation for f (�); nevertheless, discreteness of f (�) is still possible just redefining
the normalization constant). The present paper challenges the lognormal law for f (�). Finally, the
brevity law [14] can be summarized as

corr(�, n) < 0,

where corr(�, n) is a correlation measure between � and n, as, for instance, Pearson correlation,
Spearman correlation, or Kendall correlation.

We claim that a more complete approach to the relationship between word length and word
frequency can be obtained from the joint probability distribution f (�, n) of both variables, together with
the associated conditional distributions f (n|�). To be more precise, f (�, n) is the joint probability mass
function of type length and frequency, and f (n|�) is the probability mass function of type frequency
conditioned to fixed length. Naturally, the word-frequency distribution f (n) and the word-length
distribution f (�) are just the two marginal distributions of f (�, n).

The relationships between these quantities are

f (�) =
∞

∑
n=1

f (�, n),

f (n) =
∞

∑
�=1

f (�, n),

f (�, n) = f (n|�) f (�).

Note that we will not use in this paper the equivalent relation f (�, n) = f (�|n) f (n), for sampling
reasons (n takes many more different values than �; so, for fixed values of n one may find there is not
enough statistics to obtain f (�|n)). Obviously, all probability mass functions fulfil normalization,

∞

∑
�=1

∞

∑
n=1

f (�, n) =
∞

∑
n=1

f (n|�) =
∞

∑
�=1

f (�) =
∞

∑
n=1

f (n) = 1.

We stress that, in our framework, each type yields one instance of the bivariate random variable
(�, n), in contrast to another equivalent approach for which it is each token that gives one instance of the
(perhaps-different) random variables, see [7]. The use of each approach has important consequences
for the formulation of Zipf’s law, as it is well known [7], and for the formulation of the word-length law
(as it is not so well known [12]). Moreover, our bivariate framework is certainly different to the that
in [18], where the frequency was understood as a four-variate distribution with the random variables
taking 26 values from a to z, and also to the generalization in [19].

3. Corpus and Statistical Methods

We investigate the joint probability distribution of word-type length and frequency empirically,
using all English books in the recently presented Standardized Project Gutenberg Corpus [20], which
comprises more than 40,000 books in English, with a total number of tokens equal to 2,016,391,406
and a total number of types of 2,268,043. We disregard types with n < 10 (relative frequency below
5× 10−9) and also those not composed exclusively by the 26 usual letters from a to z (previously,
capital letters were transformed to lower-case). This sub-corpus is further reduced by the elimination
of types with length above 20 characters; to avoid typos and “spurious” words (among the eliminated
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types with n ≥ 10 we only find three true English words: incomprehensibilities, crystalloluminescence, and
nitrosodimethylaniline). This reduces the numbers of tokens and types, respectively, to 2,010,440,020 and
391,529. Thus, all we need for our study is the list of all types (a dictionary) including their absolute
frequencies n and their lengths � (measured in terms of number of characters).

Power-law distributions are fitted to the empirical data by using the version for discrete random
variables of the method for continuous distributions outlined in [21] and developed in Refs. [22,23],
which is based on maximum-likelihood estimation and the Kolmogorov–Smirnov goodness-of-fit
test. Acceptable (i.e., non-rejectable) fits require p-values not below 0.20, which are computed with
1000 Monte Carlo simulations. Complete details in the discrete case are available in Refs. [6,24].
This method is similar in spirit to the one by Clauset et al. [25], but avoiding some of the important
problems that the latter presents [26,27]. Histograms are drawn to provide visual intuition for the
shape of the empirical probability mass functions and the adequacy of fits; in the case of f (n|�) and
f (n), we use logarithmic binning [22,28]. Nevertheless, the computation of the fits does not make use
of the graphical representation of the distributions.

On the other side, the theory of scaling analysis, following the authors of [21,29], allows us to
compare the shape of the conditional distributions f (n|�) for different values of �. This theory has
revealed a very powerful tool in quantitative linguistics, allowing in previous research to show that
the shape of the word-frequency distribution does not change as a text increases its length [30,31].

4. Results

First, let us examine the raw data, looking at the scatter plot between frequency and length in
Figure 1, where each point is a word type represented by an associated value of n and an associated
value of � (note that several or many types can overlap at the same point, if they share their values of �
and n, as these are discrete variables). >From the tendency of decreasing maximum n with increasing
�, clearly visible in the plot, one could arrive to an erroneous version of the brevity law. Naturally,
brevity would be apparent if the scatter plot were homogenously populated (i.e., if f (�, n) would be
uniform in the domain occupied by the points). However, of course, this is not the case, as we will
quantify later. On the contrary, if f (�, m) were the product of two independent exponentials, with
m = ln n, the scatter plot would be rather similar to the real one (Figure 1), but the brevity law would
not hold (because of the independence of � and m, that is, of � and n). We will see that exponentials
distributions play an important role here, but not in this way.

Figure 1. Illustration of the dataset by means of the scatter plot between word-type frequency and
length. Frequencies below 30 are not shown.

A more acceptable approach to the brevity-frequency phenomenon is to calculate the correlation
between � and n. For the Pearson correlation, our dataset yields corr(�, n) = −0.023, which, despite
looking very small, is significantly different from zero, with a p-value below 0.01 for 100 reshufflings
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of the frequency (all the values obtained after reshuffling the frequencies keeping the lengths fixed
are between −0.004 and 0.006). If, instead, we calculate the Pearson correlation between � and
the logarithm m of the frequency we get corr(�, m) = −0.083, again with a p-value below 0.01.
Nevertheless, as neither the underlying joint distributions f (�, n) or f (�, m) resemble a Gaussian at all,
nor the correlation seems to be linear (see Figure 1), the meaning of the Pearson correlation is difficult
to interpret. We will see below that the analysis of the conditional distributions f (n|�) provides more
useful information.

4.1. Marginal Distributions

Let us now study the word-length distribution, f (�), shown in Figure 2. The distribution is
clearly unimodal (with its maximum at � = 7), and although it has been previously modeled as a
lognormal [12], we get a nearly perfect fit using a gamma distribution,

f (�) =
λ

Γ(γ)
(λ�)γ−1 e−λ�, (1)

with shape parameter γ = 11.10± 0.02 and inverted scale parameter λ = 1.439± 0.003 (where the
uncertainty corresponds to one standard deviation, and Γ(γ) denotes the gamma function). Notice
then that, for large lengths, we would get an exponential decay (asymptotically, strictly speaking).
However, there is an important difference between the lognormal distribution proposed in [13] and the
gamma distribution found here, which is that the former case refers to the length of tokens, whereas
in our case we deal with the length of types (of course, length of tokens and length of types is the
same length, but the relative number of tokens and types is different, depending on length). This was
already distinguished by Herdan [12], who used the terms occurrence distribution and dictionary
distribution, and proposed that both of them were lognormal. In the caption of Figure 2 we provide
the log-likelihoods of both the gamma and lognormal fits, concluding that the gamma distribution
yields a better fit for the “dictionary distribution” of word lengths. The fit is specially good in the
range � > 2.

Figure 2. Probability mass function f (�) of type length, together with gamma and lognormal fits. Note
that the majority of types are those with lengths between 4 and 13, and that f (�) is roughly constant
between 5 and 10. The superiority of the gamma fit is visually apparent, and this is confirmed by
log-likelihood equal to −872,175.2 in front of the value −876,535.1 for the lognormal (a discrete gamma
distribution slightly improves the fit, but the simple continuous case here is enough for our purposes).
The parameters resulting for the gamma fit are given in the text, and those for the lognormal are
μ = 1.9970± 0.0005 and σ = 0.3081± 0.0003.

Regarding the other marginal distribution, which is the word-frequency distribution f (n)
represented in Figure 3, we get that, as expected, Zipf’s law is fulfilled with β = 1.94 ± 0.03 for
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n ≥ 1.9× 105 (this is almost three orders of magnitude), see Table 1. Another power-law regime in
the bulk, as in [16], is found to hold for one order of magnitude and a half (only), from a � 400 to
b � 14,000, with exponent α = 1.41± 0.005, see Table 2. Note that although the truncated power law
for the bulk part of the distribution is much shorter than the one for the tail (1.5 orders of magnitude
in front of almost 3), the former contains many more data (50,000 in front of ~1000), see Tables 1 and 2
for the precise figures. Note also that the two power-law regimes for the frequency translate into two
exponential regimes for m (the logarithm of n).

Figure 3. Probability mass function f (n) of type frequency (this is a marginal distribution with respect
f (�, n)). The results of the power-law fits are also shown. The fit of a truncated continuous power
law, maximizing number of data, yields α = 1.41; the fit of a untruncated discrete power law yields
β = 1.94.

Table 1. Results of the fitting of an discrete untruncated power law to the conditional distributions
f (n|�), denoted by a fixed �, and to the marginal distribution f (n), denoted by the range 1 ≤ � ≤ 20. N
is total number of types, nmax is the frequency of the most frequent type, c is the lower cuf-off of the fit,
ordermag is log10(nmax/c), Nc is the number of types with n ≥ c, β is the resulting fitting exponent, σβ

is its standard deviation, and p is the p-value of the fit. For the conditional distributions, the possible
fits are restricted to the range n > 〈n2|�〉/〈n|�〉. The fit proceeds by sweeping 50 values of c per order
of magnitude and using 1000 Monte Carlo simulations for the calculation of p. Of all the fits with
p ≥ 0.20 for a given �, the one with smaller c is selected. Outside the range 5 ≤ � ≤ 14, the number of
types in the tail (below 10) is too low to yield a meaningful fit.

� N nmax (×105) c (×105) Ordermag Nc β ± σβ p

5 41,773 101 15.8 0.80 19 2.75 ± 0.46 0.97
6 62,277 29.0 3.80 0.88 60 2.79 ± 0.24 0.31
7 69,653 18.6 2.88 0.81 55 2.51 ± 0.21 0.32
8 63,574 6.55 1.10 0.78 133 2.82 ± 0.17 0.25
9 50,595 9.12 1.10 0.92 79 2.82 ± 0.21 0.25
10 35,679 7.16 0.83 0.93 69 2.90 ± 0.24 0.75
11 21,536 2.73 0.40 0.84 83 3.03 ± 0.23 0.58
12 11,973 3.49 0.46 0.88 34 2.78 ± 0.33 0.65
13 6240 2.28 0.44 0.72 13 2.57 ± 0.52 0.27
14 3035 0.77 0.24 0.51 12 2.67 ± 0.56 0.22

≤20 391,529 1341 1.91 2.85 927 1.94 ± 0.03 0.44
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Table 2. Results of the fitting of a truncated power law to the conditional distributions f (n|�), denoted
by a fixed �, and to the marginal distribution f (n), denoted by the range 1 ≤ � ≤ 20. N is total number
of types; a and b are the lower and upper cut-offs of the fit, respectively; Nab is the number of types
with a ≤ n ≤ b; α is the resulting fitting exponent; σα is its standard deviation; and p is the p-value of
the fit. The fit of a continuous power law is attempted in the range n < 0.1〈n2|�〉/〈n|�〉, sweeping 20
values of a and b per order of magnitude and using 1000 Monte Carlo simulations for the calculation of
p. Of all the fits with p ≥ 0.20, for a given �, the one with larger b/a is selected, except for f (n), where
the largest Nab is used.

� N a (×102) b (×103) Ordermag Nab α ± σα p

1 26 126 2510 2.30 23 1.391 ± 0.155 0.24
2 636 20 2510 3.10 188 1.486 ± 0.045 0.24
3 4282 7.94 4470 3.75 1171 1.428 ± 0.016 0.30
4 17,790 0.40 398 4.00 10,618 1.402 ± 0.005 0.20
5 41,773 5.62 178 2.50 5747 1.426 ± 0.009 0.37
6 62,277 3.98 39.8 2.00 8681 1.421 ± 0.009 0.27
7 69,653 2.00 28.2 2.15 13,392 1.449 ± 0.007 0.25
8 63,574 2.51 11.2 1.65 9849 1.417 ± 0.010 0.41
9 50,595 2.00 10.0 1.70 8850 1.400 ± 0.010 0.25
10 35,679 1.12 8.91 1.90 8454 1.428 ± 0.010 0.21
11 21,536 0.56 1.41 1.40 6227 1.469 ± 0.015 0.22
12 11,973 0.63 5.01 1.90 3866 1.411 ± 0.013 0.51
13 6240 0.56 3.98 1.85 2144 1.396 ± 0.019 0.90
14 3035 0.25 2.24 1.95 1567 1.496 ± 0.022 0.27
15 1384 0.22 2.00 1.95 777 1.488 ± 0.031 0.59
16 612 0.28 0.45 1.20 256 1.569 ± 0.082 0.22
17 296 0.13 0.14 1.05 205 1.784 ± 0.110 0.24
18 107 0.11 0.16 1.15 79 2.008 ± 0.172 0.28

≤20 391,529 3.98 14.1 1.55 51,972 1.413 ± 0.005 0.21

4.2. Power Laws and Scaling Law for the Conditional Distributions

As mentioned, the conditional word-frequency distributions f (n|�) are of substantial relevance.
In Figure 4, we display some of those functions, and it turns out that n is broadly distributed for
each value of � (roughly in the same qualitative way it happens without conditioning to the value
of �). Remarkably, the results of a scaling analysis [21,29], depicted in Figure 5, show that all the
different f (n|�) (for 3 ≤ � ≤ 14) share a common shape, with a scale determined by a scale parameter
in frequency. Indeed, rescaling n as n〈n|�〉/〈n2|�〉 and f (n|�) as f (n|�)〈n2|�〉2/〈n|�〉3, where the first
and second empirical moments, 〈n|�〉 and 〈n2|�〉, are also conditioned to the value of �, we obtain
an impressive data collapse, valid for ~7 orders of magnitude in n, which allows us to write the
scaling law

f (n|�) � 〈n|�〉3
〈n2|�〉2 g

(
n〈n|�〉
〈n2|�〉

)
for 3 ≤ � ≤ 14,

where the key point is that the scaling function g(...) is the same function for any value of �. For � > 14
the statistics is low and the fulfilment of the scaling law becomes uncertain. Defining the scale
parameter θ(�) = 〈n2|�〉/〈n|�〉, we get alternative expressions for the same scaling law,

f (n|�) � 〈n|�〉
θ2(�)

g
(

n
θ(�)

)
∝

1
θα(�)

g
(

n
θ(�)

)
for 3 ≤ � ≤ 14,

where constants of proportionality have been reabsorbed into g, and the scale parameter has to be
understood as proportional to a characteristic scale of the conditional distributions (i.e., θ is the
characteristic scale, up to a constant factor; it is the relative change of θ what will be important for us).
The reason for the fulfillment of these relations is the power-law dependence between the moments
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and the scale parameter when a scaling law holds, this power-law dependence is 〈n|�〉 ∝ θ2−α and
〈n2|�〉 ∝ θ3−α for 1 < α < 2, see [21,29].

Figure 4. Probability mass functions f (n|�) of frequency n conditioned to fixed value of length �, for
several values of �. Distributions are shown twice: all together and individually, displaced in the
vertical axis by diverse factors 10−3, 10−4 up to 10−8, for clarity sake of the power-law fits, represented
by dark continuous lines.

Figure 5. Word frequency probability mass functions f (n|�) conditioned to fixed value of length
rescaled by the ratio of powers of moments, as a function as rescaled frequency, for all values of length
from 3 to 14. The data collapse guarantees the fulfilment of a scaling law.

The data collapse also unveils more clearly the functional form of the scaling function g, allowing
to fit its power-law shape in two different ranges. The scaling function turns out to be compatible with
a double power-law distribution, i.e., a (long) power law for n/θ < 0.1 with exponent α at ~1.4 and
another (short) power law for n/θ > 1 with exponent β at ~2.75; in one formula,

g(y) ∝

{
1/y1.4 for y 	 1,
1/y2.75 for y > 1,

(2)

for y = n/θ. In other words, there is a (smooth) change of exponent (a change of log-log slope) at
a value of n � Cθ(�), with the proportionality constant C taking some value in between 0.1 and 1
(as the transition from one regime to the other is smooth there is not a well defined value of C that
separates both). Fitting power laws to those ranges we get the results shown in Tables 1 and 2. Note
that Cθ(�) can be understood as the characteristic scale of f (n|�) mentioned before, and can be also
called a frequency crossover.
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Nevertheless, although the power-law regime for intermediate frequencies (n < 0.1θ) is very clear,
the validity of the other power law (the one for large frequencies) is questionable, in the sense that
the power law provides an “acceptable” fit but other distributions could do the same good job, due
to the limited range spanned by the tail (less than one order of magnitude). Our main reason to fit a
power law to the large-frequency regime is the comparison with Zipf’s law (β � 2), and, as we see, the
resulting value of β for f (n|�) turns out to be rather large (the results of β for all f (n|�) turn out to
be statistically compatible with β = 2.75). In addition, we will show in the next subsection that the
high-frequency behavior of the conditional distributions (power law or not) has nothing to do with
Zipf’s law.

4.3. Brevity Law and Possible Origin of Zipf’s Law

Coming back to the scaling law, its fulfillment has an important consequence: it is the scale
parameter θ(�) and not the conditional mean 〈n|�〉 what sets the scale of the conditional distributions
f (n|�). Figure 6 represents the brevity law in terms of the scale parameter as a function of � (the
conditional mean value is also shown, for comparison, overimposed to maps of f (n, �) and f (n|�)).
Note that the authors of [13] dealt with the conditional mean, finding an exponential decay 〈n|�〉 ∝
26−0.6�. Using our corpus (which is certainly different), we find that such an exponential decay for the
mean is valid in a range of � between 1 and 5, approximately. In contrast, the scale parameter θ shows
an approximate power-law decay from about � = 6 to 15, with an exponent δ around 3 (or 2.8, to be
more precise), i.e.,

θ(�) ∝
1
�δ

(note that Herdan assumed this exponent to be 2.4, with no clear empirical support [12]). Beyond
� = 15, the decay of θ(�) is much faster. Nevertheless, these results are somewhat qualitative.

With these limitations, we could write a new version of the scaling law as

f (n|�) � �δαg
(
�δn

)
(3)

where the proportionality constant between θ and �δ has been reabsorbed in the scaling function g.
The corresponding data collapse is shown in Figure 7, for 5 ≤ � ≤ 14. Despite the rough approximation
provided by the power-law decay of θ(�), the data collapse in terms of scaling law (3) is nearly excellent
for δ = 2.8. This version of the scaling law provides a clean formulation of the brevity law: the
characteristic scale of the distribution of n conditioned to the value of � decays with increasing � as
1/�δ; i.e., the larger �, the shorter the conditional distribution f (n|�), quantified by the exponent δ.

However, in addition to a new understanding of the brevity law, the scaling law in terms of �
provides, as a by-product, an empirical explanation of the origin of Zipf’s law. In the regime of � in
which the scaling law is approximately valid, i.e., for �1 ≤ � ≤ �2, we can obtain the distribution of
frequency as a mixture of conditional distributions (by the law of total probability),

f (n) =
∫ �2

�1

f (n|�) f (�)d�

(where we take a continuous approximation, replacing sum over � by integration; this is essentially
a mathematical rephrasing). Substituting the scaling law and introducing the change of variables
x = �δn we get

f (n) =
∫ �2

�1

�δαg
(
�δn

)
f (�)d� ∝

∫ �δ
2n

�δ
1n

( x
n

)α
g(x)

x−1+1/δ

n1/δ
dx

=
1

nα+1/δ

∫ �δ
2n

�δ
1n

xα−1+1/δg(x)dx
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where we also have taken advantage of the fact that, in the region of interest, f (�) can be considered
(in a rough approximation) as constant.
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Figure 6. Estimated value of the scale parameter θ of the frequency conditional distributions (θ =

〈n2|�〉/〈n|�〉) as a function of type length �, together with conditional mean value 〈n|�〉. A decaying
power law with exponent 2.8, shown as a guide to the eye, is close to the values of the scale parameter
for 6 ≤ � ≤ 13. The curves are overimposed to the values of the joint distribution f (n, �) in the
(top panel) and to the conditional distribution f (n|�) in the (bottom panel). Notice that in the last case
both axes are logarithmic. The shadower the green color, the higher the value of f (n, �) and f (n|�).

From here, we can see that in the case where the frequency is small (n 	 θ(�2)), the integration
limits are also small, and then the last integral scales with n as n1/δ (because we have that g(x) ∝ 1/xα),
which implies that we recover a power law with exponent α for f (n), i.e., f (n) ∝ 1/nα. However,
for larger frequencies (n above θ(�2) but below θ(�1)), the integral does not scale with n but can be
considered instead as constant and then we get Zipf’s law as

f (n) ∝ n−(α+ 1
δ ).

This means that Zipf’s exponent can be obtained from the values of the intermediate-frequency
power-law conditional exponent α and the brevity exponent δ as
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βz = α +
1
δ

,

where we have introduced a subscript z in β to stress that this is the β exponent appearing in Zipf’s law,
corresponding to the marginal distribution f (n), and to distinguish it from the one of the conditional
distributions, that we may call βc. Note then that βc plays no role in the determination of βz, and,
in fact, the scaling function does not need to have a power-law tail to obtain Zipf’s law. This sort of
argument is similar to the one used in statistical seismology [32], but in that case the scaling law was
elementary (i.e., θ = 〈n|�〉).

Figure 7. Same as Figure 5, from � = 5 to 14, changing the scale factors from combination of powers
of moments (〈n|�〉 and 〈n2|�〉) to powers of length (in concrete, �−δ and �δα). The collapse signals the
fulfilment of a scaling law. Two decreasing power laws with exponents 1.43 and 2.76 are shown as
straight lines, for comparison.

We can check the previous exponent relation using the empirical values of the exponent. We do
not have a unique measure of α, but from Table 2, we see that its value for the different f (n|�) is quite
well defined. Taking the harmonic mean between the values 4 ≤ � ≤ 14 we get ᾱ = 1.43, which
together with δ = 2.8 leads to βz � 1.79, not far from the ideal Zipf’s value βz = 2 and closer to the
empirical value βz = 1.94. The reason to calculate the harmonic mean of the exponents comes from
the fact that it is the maximum-likelihood outcome when untruncated power-law datasets are put
together [33]; when the power laws are truncated, the result is closer to the untruncated case when the
range b/a is large.

5. Conclusions

Using a large corpus of English texts, we have seen how three important laws of quantitative
linguistics, which are the type-length law, Zipf’s law of word frequency, and the brevity law, can be
put into a unified framework just considering the joint distribution of length and frequency.

Straightforwardly, the marginals of the joint distribution provide both the type-length distribution
and the word-frequency distribution. We reformulate the type-length law, finding that the gamma
distribution provides an excellent fit of type lengths for values larger than 2, in contrast to the previously
proposed lognormal distribution [12] (although some previous research was dealing not with type
length but with token length [13]). For the distribution of word frequency, we confirm the well-known
Zipf’s law, with an exponent βz = 1.94; we also confirm the second intermediate power-law regime
that emerges in large corpora [16], with an exponent α = 1.4.

The advantages of the perspective provided by considering the length-frequency joint distribution
become apparent when dealing with the brevity phenomenon. In concrete, this property arises very
clearly when looking at the distributions of frequency conditioned to fixed length. These show a
well-defined shape, characterized by a power-law decay for intermediate frequencies followed by a
faster decay, which is well modeled by a second power law, for larger frequencies. The exponent α for
the intermediate regime turns out to be the same as the one for the usual (marginal) distribution of
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frequency, α � 1.4. However, the exponent for higher frequencies βc turns out to be larger than 2 and
unrelated to Zipf’s law.

At this point, scaling analysis reveals as a very powerful tool to explore and formulate the brevity
law. We observe that the conditional frequency distributions show scaling for different values of length,
i.e., when the distributions are rescaled by a scale parameter (proportional to the characteristic scale of
each distribution), these distributions collapse into a unique curve, showing that they share a common
shape (although at different scales). The characteristic scale of the distributions turns out to be well
described by the scale parameter (given by the ratio of moments 〈n2|�〉/〈n|�〉), instead than by the
mean value (〈n|�〉). This is the usual case when the distributions involved have a power-law shape
(with exponent α > 1) close to the origin [29]. This also highlights the importance of looking at the
whole distribution and not to mean values when one is dealing with complex phenomena.

Going further, we obtain that the characteristic scale of the conditional frequency distributions
decays, approximately, as a power law of the type length, with exponent δ, which allows us to rewrite
the scaling law in a form that is reminiscent to the one used in the theory of phase transitions and
critical phenomena. Despite that the power-law behavior for the characteristic scale of frequency
is rather rough, the derived scaling law shows an excellent agreement with the data. Note that
taking together the marginal length distribution, Equation (1), and the scaling law for the conditional
frequency distribution, Equation (3), we can write for the joint distribution

f (�, n) ∝ λγ�δα+γ−1g(�δn)e−λ�,

with the scaling function g(x) given by Equation (2), up to proportionality factors.
Finally, the fulfilment of a scaling law of this form allows us to obtain a phenomenological (model

free) explanation of Zipf’s law as a mixture of the conditional distributions of frequencies. In contrast
to some accepted explanations of Zipf’s law, which put the origin of the law outside the linguistic realm
(such as Simon’s model [15], where only the reinforced growth of the different types counts; other
explanations are in [19,34]), our approach indicates that the origin of Zipf’s law can be fully linguistic,
as it depends crucially on the length of the words (and the length is a purely linguistic attribute). Thus,
at fixed length, each (conditional) frequency distribution shows a scale-free (power-law) behavior, up
to a characteristic frequency where the power law (with exponent α) breaks down. This breaking-down
frequency depends on length through the exponent δ. The mixture of different power laws, with
exponent α and cut at a scale governed by the exponent δ, yields a Zipf’s exponent βz = α + δ−1.
Strictly speaking, our explanation of Zipf’s law does not fully explain Zipf’s law, but transfers the
explanation to the existence of a power law with a smaller exponent (α � 1.4) as well as to the crossover
frequency that depends on length as �−δ. Clearly, more research is necessary to explain the shape of
the conditional distributions. It is noteworthy that a similar phenomenology for Zipf’s law (in general)
was proposed in [34], using the concept of “underlying unobserved variables”, which in the case of
word frequencies were associated (without quantification) to part of speech (grammatical categories).
From our point of view, the “underlying unobserved variables” in the case of word frequencies would
be instead word (type) lengths.

Although our results are obtained using a unique English corpus, we believe they are fully
representative of this language, at least when large corpora are used. Naturally, further investigations
are needed to confirm the generality of our results. Of course, a necessary extension of our work is the
use of corpora on other languages, to establish the universality of our results, as done, e.g., in [14]. The
length of words is simply measured in number of characters, but nothing precludes the use of number
of phonemes or mean time duration of types (in speech, as in [13]). At the end, the goal of this kind
of research is to pursue a unified theory of linguistic laws, as proposed in [35]. The line of research
shown in this paper seems to be a promising one.
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Abstract: Patterns within strings enable us to extract vital information regarding a string’s
randomness. Understanding whether a string is random (Showing no to little repetition in patterns)
or periodic (showing repetitions in patterns) are described by a value that is called the kth Subword
Complexity of the character string. By definition, the kth Subword Complexity is the number of
distinct substrings of length k that appear in a given string. In this paper, we evaluate the expected
value and the second factorial moment (followed by a corollary on the second moment) of the kth
Subword Complexity for the binary strings over memory-less sources. We first take a combinatorial
approach to derive a probability generating function for the number of occurrences of patterns in
strings of finite length. This enables us to have an exact expression for the two moments in terms of
patterns’ auto-correlation and correlation polynomials. We then investigate the asymptotic behavior
for values of k = Θ(log n). In the proof, we compare the distribution of the kth Subword Complexity
of binary strings to the distribution of distinct prefixes of independent strings stored in a trie. The
methodology that we use involves complex analysis, analytical poissonization and depoissonization,
the Mellin transform, and saddle point analysis.

Keywords: subword complexity; asymptotics; generating functions; saddle point method; probability;
the Mellin transform; moments

1. Introduction

Analyzing and understanding occurrences of patterns in a character string is helpful for extracting
useful information regarding the nature of a string. We classify strings to low-complexity and
high-complexity, according to their level of randomness. For instance, we take the binary string
X = 10101010..., which is constructed by repetitions of the pattern w = 10. This string is periodic, and
therefore has low randomness. Such periodic strings are classified as low-complexity strings, whereas
strings that do not show periodicity are considered to have high complexity. An effective way of
measuring a string’s randomness is to count all distinct patterns that appear as contiguous subwords
in the string. This value is called the Subword Complexity. The name is given by Ehrenfeucht, Lee,
and Rozenberg [1], and initially was introduced by Morse and Hedlund in 1938 [2]. The higher the
Subword Complexity, the more complex the string is considered to be.

Assessing information about the distribution of the Subword Complexity enables us to better
characterize strings, and determine atypically random or periodic strings that have complexities far
from the average complexity [3]. This type of string classification has applications in fields such as
data compression [4], genome analysis (see [5–9]), and plagiarism detection [10]. For example, in data
compression, a data set is considered compressible if it has low complexity, as consists of repeated
subwords. In computational genomics, Subword Complexity (known as k-mers) is used in detection
of repeated sequences and DNA barcoding [11,12]. k-mers are composed of A, T, G, and C nucleotides.
For instance, 7-mers for a DNA sequence GTAGAGCTGT is four, meaning that there are 4-hour distinct

Entropy 2020, 22, 207; doi:10.3390/e22020207 www.mdpi.com/journal/entropy21
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substrings of length 7 in the given DNA sequence. Counting k-mers becomes challenging for longer
DNA sequences. Our results can be easily extended to the alphabet {A, T, G, C} and directly applied
in theoretical analysis of the genomic k-mer distributions under the Bernoulli probabilistic model,
particularly when the length n of the sequence approaches infinity.

There are two variations for the definition of the Subword Complexity: the one that counts all
distinct subwords of a given string (also known as Complexity Index and Sequence Complexity [13]),
and the one that only counts the subwords of the same length, say k, that appear in the string. In our
work, we analyze the latter, and we call it the kth Subword Complexity to avoid any confusion.

Throughout this work, we consider the kth Subword Complexity of a random binary string of
length n over a memory-less source, and we denote it by Xn,k. We analyze the first and second factorial
moments of Xn,k (1) for the range k = Θ(log n), as n → ∞. More precisely, will divide the analysis into
three ranges as follows.

i.
1

log q−1 log n < k <
2

log q−1 + log p−1 log n,

ii.
2

log q−1 + log p−1 log n < k <
1

q log q−1 + p log p−1 log n, and

iii.
1

q log q−1 + p log p−1 log n < k <
1

log p−1 log n.

Our approach involves two major steps. First, we choose a suitable model for the asymptotic
analysis, and afterwards we provide proofs for the derivation of the asymptotic expansion of the first
two factorial moments.

1.1. Part I

This part of the analysis is inspired by the earlier work of Jacquet and Szpankowski [14] on the
analysis of suffix trees by comparing them to independent tries. A trie, first introduced by René de la
Briandais in 1959 (see [15]), is a search tree that stores n strings, according to their prefixes. A suffix
tree, introduced by Weiner in 1973 (see [16]), is a trie where the strings are suffixes of a given string.
An example of these data structures are given in Figure 1.

(a) Suffix Tree (b) Trie

Figure 1. The suffix tree in (a) is built over the first four suffixes of string X = 101110..., and the trie in
(b) is build over strings X1 = 111..., X2 = 101..., X3 = 100, and X4 = 010....

A direct asymptotic analysis of the moments is a difficult task, as patterns in a string are not
independent from each other. However, we note that each pattern in a string can be regarded as a
prefix of a suffix of the string. Therefore, the number of distinct patterns of length k in a string is
actually the number of nodes of the suffix tree at level k and lower. It is shown by I. Gheorghiciuc and
M. D. Ward [17] that the expected value of the k-th Subword Complexity of a Bernoulli string of length
n is asymptotically comparable to the expected value of the number of nodes at level k of a trie built
over n independent strings generated by a memory-less source.

22



Entropy 2020, 22, 207

We extend this analysis to the desired range for k, and we prove that the result holds for when k
grows logarithmically with n. Additionally, we show that asymptotically, the second factorial moment
of the k-th Subword Complexity can also be estimated by admitting the same independent model
generated by a memory-less source. The proof of this theorem heavily relies on the characterization of
the overlaps of the patterns with themselves and with one another. Autocorrelation and correlation
polynomials explicitly describe these overlaps. The analytic properties of these polynomials are key to
understanding repetitions of patterns in large Bernoulli strings. This, in conjunction with Cauchy’s
integral formula (used to compare the generating functions in the two models) and the residue theorem,
provides solid verification that the second factorial moment in the Subword Complexity behaves the
same as in the independent model.

To make this comparison, we derive the generating functions of the first two factorial moments
in both settings. In a paper published by F. Bassino, J. Clément, and P. Nicodème in 2012 [18], the
authors provide a multivariate probability generating function f (z, x) for the number of occurrences of
patterns in a finite Bernoulli string. That is, given a pattern w, the coefficient of the term znxm in f (z, x)
is the probability in the Bernoulli model that a random string of size n has exactly m occurrences of the
pattern w. Following their technique, we derive the exact expression for the generating functions of the
first two factorial moments of the kth Subword Complexity. In the independent model, the generating
functions are obtained by basic probability concepts.

1.2. Part II

This part of the proof is analogous to the analysis of profile of tries [19]. To capture the asymptotic
behavior, the expressions for the first two factorial moments in the independent trie are further
improved by means of a Poisson process. The poissonized version yields generating functions in
the form of harmonic sums for each of the moments. The Mellin transform and the inverse Mellin
transforms of these harmonic sums establish a connection between the asymptotic expansion and
singularities of the transformed function. This methodology is sufficient for when the length k of the
patterns are fixed. However, allowing k to grow with n, makes the analysis more challenging. This is
because for large k, the dominant term of the poissonized generating function may come from the term
involving k, and singularities may not be significant compared to the growth of k. This issue is treated
by combining the singularity analysis with a saddle point method [20]. The outcome of the analysis is
a precise first-order asymptotics of the moments in the poissonized model. Depoissonization theorems
are then applied to obtain the desired result in the Bernoulli model.

2. Results

For a binary string X = X1X2...Xn, where Xi’s ( i = 1, ..., n) are independent and identically
distributed random variables , we assume that P(Xi = 1) = p, P(Xi = 0) = q = 1− p, and p > q.
We define the kth Subword Complexity, Xn,k, to be the number of distinct substrings of length k that
appear in a random string X with the above assumptions. In this work, we obtain the first order
asymptotics for the average and the second factorial moment of Xn,k. The analysis is done in the range
k = Θ(log n). We rewrite this range as k = a log n, and by performing a saddle point analysis, we will
show that

1/ log q−1 < a < 1/ log p−1 (1)

In the first step, we compare the kth Subword Complexity to an independent model constructed
in the following way: We store a set of n independently generated strings by a memory-less source in
a trie. This means that each string is a sequence of independent and identically distributed Bernoulli
random variables from the binary alphabet A = {0, 1}, with P(1) = p, P(0) = q = 1− p . We denote
the number of distinct prefixes of length k in the trie by X̂n,k, and we call it the kth prefix complexity.
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Before proceeding any further, we remind that factorial moments of a random variable are defined as
following.

Definition 1. The jth factorial moment of a random variable X is defined as

E[(X)j] = E[(X)(X− 1)(X− 2)...(X− j + 1)], (2)

where j = 1, 2, ... will show that the first and second factorial moments of Xn,k are asymptotically comparable to
those of X̂n,k, when k = Θ(log n). We have the following theorems.

Theorem 1. For large values of n, and for k = Θ(log n), there exists M > 0 such that

E[Xn,k]− E[X̂n,k] = O(n−M).

We also prove a similar result for the second factorial moments of the kth Subword Complexity
and the kth Prefix Complexity:

Theorem 2. For large values of n, and for k = Θ(log n), there exists ε > 0 such that

E[(Xn,k)2]− E[(X̂n,k)2] = O(n−ε).

In the second part of our analysis, we derive the first order asymptotics of the kth Prefix
Complexity. The methodology used here is analogous to the analysis of profile of tries [19]. The
rate of the asymptotic growth depends on the location of the value a as seen in (1) . For instance, for
the average kth Subword Complexity ,E[Xn,k], we have the following observations.

i. For the range I1 :
1

log q−1 < a <
2

log q−1 + log p−1 , the growth rate is of order O(2k),

ii. in the range I2 :
2

log q−1 + log p−1 < a <
1

q log q−1 + p log p−1 , we observe some oscillations

with n, and

iii. in the range I3 :
1

q log q−1 + p log p−1 < a <
1

log p−1 , the average has a linear growth O(n).

The above observations will be discussed in depth in the proofs of the following theorems.

Theorem 3. The average of the kth Prefix Complexity has the following asymptotic expansion

i. For a ∈ I1,

E[X̂n,k] = 2k −Φ1((1 + log p) logp/q n)
nν√
log n

(
1 + O

(
1√

log n

))
, (3)

where ν = −r0 + a log(p−r0 + q−r0), and

Φ1(x) =
(p/q)−r0/2 + (p/q)r0/2

√
2π log p/q

∑
j∈Z

Γ(r0 + itj)e−2πijx

is a bounded periodic function.
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ii. For a ∈ I2,

E[X̂n,k] = Φ1((1 + log p) logp/q n)
nν√
log n

(
1 + O

(
1√

log n

))
.

iii. For a ∈ I3

E[X̂n,k] = n + O(nν0),

for some ν0 < 1.

Theorem 4. The second factorial moment of the kth Prefix Complexity has the following asymptotic expansion.

i. For a ∈ I1,

E[(X̂n,k)2] =

(
2k −Φ1(logp/q n(1 + log p))

nν√
log n

(
1 + O

(
1√

log n

)))2

.

ii. For a ∈ I2,

E[(X̂n,k)2] = Φ2
1(logp/q n(1 + log p))

n2ν

log n

(
1 + O

(
1

log n

))
.

iii. For a ∈ I3,

E[(X̂n,k)2] = n2 + O(n2ν0).

The periodic function Φ1(x) in Theorems 3 and 4 is shown in Figure 2.

Figure 2. Left: Φ1(x) at p = 0.90, and various levels of r0. The amplitude increases as r0 increases.
Right: Φ1(x) at r0 = 1, and various levels of p. The amplitude tends to zero as p → 1/2+.

The results in Theorem 4 will follow for the second moment of the kth Subword Complexity as
the analysis can be easily extended from the second factorial moment to the second moment. The
variance however, as seen in Figure 3, does not show the same asymptotic behavior as the variance of
kth Subword Complexity.
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Figure 3. Approximated second moments (left), and variances (right) of the kth Subword Complexity
(red), and the kth Prefix Complexity (blue), for n = 4000, at different probability levels, averaged over
10,000 iterations.

3. Proofs and Methods

3.1. Groundwork

We first introduce a few terminologies and lemmas regarding overlaps of patterns and their
number of occurrences in texts. Some of the notations we use in this work are borrowed from [18]
and [21].

Definition 2. For a binary word w = w1...wk of length k, The autocorrelation set Sw of the word w is defined
in the following way.

Sw = {wi+1...wk |w1...wi = wk−i+1...wk}. (4)

The autocorrelation index set is

P(w) = {i |w1...wi = wk−i+1...wk}, (5)

And the autocorrelation polynomial is

Sw(z) = ∑
i∈P(w)

P(wi+1...wk)zk−i. (6)

Definition 3. For the distinct binary words w = w1...wk and w′ = w′1...w′k, the correlation set Sw,w′ of the
words w and w′ is

Sw,w′ = {w′i+1...w′k |w′1...w′i = wk−i+1...wk}. (7)

The correlation index set is

P(w, w′) = {i |w′1...w′i = wk−i+1...wk}, (8)

The correlation polynomial is

Sw,w′(z) = ∑
i∈P(w,w′)

P(w′i+1...w′k)z
k−i. (9)
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The following two lemmas present the probability generating functions for the number of
occurrences of a single pattern and a pair of distinct pattern, respectively, in a random text of length n.
For a detailed dissection on obtaining such generating functions, refer to [18].

Lemma 1. The Occurrence probability generating function for a single pattern w in a binary text over a
memoryless source is given by Fw(z, x− 1), where

Fw(z, t) =
1

1− A(z)− tP(w)zk

1− t(Sw(z)− 1)

, (10)

The coefficient [znxm]Fw(z, x − 1) is the probability that a random binary string of length n has m
occurrences of the pattern w.

Lemma 2. The Occurrence PGF for two distinct Patterns of length k in a Bernoulli random text is given by
Fw,w′(z, x1 − 1, x2 − 1) where,

Fw,w′(z, t1, t2) =
1

1− A(z)−M(z, t1, t2)
, (11)

and

M(z, t1, t2) =
(

P(w)zkt1 P(w′)zkt2

)(
I−

(
(Sw(z)− 1)t1 Sw,w′(z)t2

Sw′ ,w(z)t1 (Sw′(z)− 1)t2

))−1 (
1
1

)
.

The coefficient [znxm1
1 xm2

2 ]Fw,w′(z, x1 − 1, x2 − 1) is the probability that there are m1 occurrences of w
and m2 occurrences of w′ in a random string of length n.

The above results will be used to find the generating functions for the first two factorial moments
of the kth Subword Complexity in the following section.

3.2. Derivation of Generating Functions

Lemma 3. For generating functions Hk(z) = ∑n≥0 E[Xn,k]zn and Gk(z) = ∑n≥0 E[(Xn,k)2]zn, we have

i.

Hk(z) = ∑
w∈Ak

(
1

1− z
− Sw(z)

Dw(z)

)
, (12)

where Dw(z) = P(w)zk + (1− z)Sw(z), and

ii.

Gk(z) = ∑
w,w

′ ∈Ak

w �=w′

(
1

1− z
− Sw(z)

Dw(z)
− Sw′ (z)

Dw′(z)
+

Sw(z)Sw′ (z)− Sw,w′(z)Sw′ ,w(z)

Dw,w′(z)

)
, (13)

where

Dw,w′(z) = (1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z))

+ zk (P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′ ,w(z))
)

. (14)
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Proof.

i. We define

X(w)
n,k =

{
1 if w appears at least once in string X

0 otherwise.

This yields

E[X(w)
n,k ] = P(X(w)

n,k = 1)

= 1− P(X(w)
n,k = 0)

= 1− [znx0]Fw(z, x). (15)

We observe that [znx0]Fw(z, x) = [zn]Fw(z, 0). By defining fw(z) = Fw(z, 0) and from (10), we
obtain

fw(z) =
Sw(z)

P(w)zk + (1− z)Sw(z)
. (16)

Having the above function, we derive the following result.

H(z) = ∑
n≥0

E[Xn,k]zn

= ∑
n≥0

∑
w∈Ak

(1− [zn] fw(z))zn

= ∑
w∈Ak

(
1

1− z
− fw(z)

)

= ∑
w∈Ak

(
1

1− z
− Sw(z)

Dw(z)

)
. (17)

ii. For this part, we first note that

E[(Xn,k)2] = E[X2
n,k]− E[Xn,k]

= E

[
(X(w)

n,k + ... + X(w(r))
n,k )2

]
− E

[
X(w)

n,k + ... + X(w(r))
n,k

]

= ∑
w∈Ak

E
[
(X(w)

n,k )
2
]
+ ∑

w,w′∈Ak

w �=w′

E
[

X(w)
n,k X(w′)

n,k

]
− ∑

w∈Ak

E
[

X(w)
n,k

]

= ∑
w,w′∈Ak

w �=w′

E
[

X(w)
n,k X(w′)

n,k

]
. (18)

Due to properties of indicator random variables, we observe that the expected value of the second
factorial moment has only one term:

E[(Xn,k)2] = ∑
w,w′∈Ak

w �=w′

E
[

X(w)
n,k X(w′)

n,k

]
. (19)

We proceed by defining a second indicator variable as following.

X(w)
n,k X(w′)

n,k =

{
1 if X(w)

n,k = X(w′)
n,k = 1

0 otherwise,
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This gives

E[X(w)
n,k X(w′)

n,k ] = P
(

X(w)
n,k = 1, X(w′)

n,k = 1
)

= 1− P
(

X(w)
n,k = 0∪ X(w′)

n,k = 0
)

= 1− P
(

X(w)
n,k = 0

)
− P

(
X(w′)

n,k = 0
)
+ P

(
X(w)

n,k = 0, X(w′)
n,k = 0

)
.

Finally, we are able to express E[(Xn,k)2] in the following

E[(Xn,k)2] = ∑
w,w′∈Ak

w �=w′

(1− [zn] fw(z)− [zn] fw′(z) + [zn] fww′(z)) , (20)

where fw,w′(z) = Fw,w′(z, 0, 0) and [zn]Fw,w′(z, 0, 0) = [znx0
1x0

2]Fw,w′(z, x1, x2). By (11) we have

fw,w′(z) =
Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)

Dw,w′(z)
(21)

Having the above expression, we finally obtain

Gk(z) = ∑
n≥0

E[(Xn,k)2]zn

= ∑
w,w

′ ∈Ak

w �=w′

∑
n≥0

(
1− [zn] fw(z)− [zn] fw′ (z) + [zn] fw,w′ (z)

)
zn

= ∑
w,w

′ ∈Ak

w �=w′

(
1

1− z
− fw(z)− fw′ (z) + fw,w′ (z)

)

= ∑
w,w

′ ∈Ak

w �=w′

(
1

1− z
− Sw(z)

Dw(z)
− Sw′ (z)

Dw′(z)
+

Sw(z)Sw′ (z)− Sw,w′(z)Sw′ ,w(z)

Dw,w′(z)

)
. (22)

In the following lemma, we present the generating functions for the first two factorial moments
for the kth Prefix Complexity in the independent model.

Lemma 4. For Ĥk(z) = ∑n≥0 E[X̂n,k]zn and Ĝk(z) = ∑n≥0 E[(X̂n,k)2]zn, which are the generating functions
for E[X̂n,k] and E[(X̂n,k)2] respectively, we have

i.

Ĥk(z) = ∑
w∈Ak

(
1

1− z
− 1

1− (1− P(w))z

)
. (23)

ii.

Ĝk(z) = ∑
w,w

′ ∈Ak

w �=w′

(
1

1− z
− 1

1− (1− P(w))z
− 1

1− (1− P(w′))z

)

+ ∑
w,w

′ ∈Ak

w �=w′

1
1− (1− P(w)− P(w′))z . (24)
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Proof.

i. We define the indicator variable X̂(w)
n,k as follows.

X̂(w)
n,k =

{
1 if w is a prefix of at least one string in P

0 otherwise.

For each X̂(w)
n,k , we have

E[X̂(w)
n,k ] = P(X̂(w)

n,k = 1)

= 1− P(X̂(w)
n,k = 0)

= 1− (1− P(w))n . (25)

Summing over all words w of length k, determines the generating function Ĥ(z):

Ĥ(z) = ∑
n≥0

E[X̂n,k]zn

= ∑
w∈Ak

(
1

1− z
− 1

1− (1− P(w))z

)
. (26)

ii. Similar to in (18) and (20), we obtain

E[(X̂n,k)2] = ∑
w,w′∈Ak

w �=w′

E[X̂(w)
n,k X̂(w′)

n,k ]

= ∑
w,w

′ ∈Ak

w �=w′

(
1− (1− P(w))n − (1− P(w′))n + (1− P(w)− P(w′))n) . (27)

Subsequently, we obtain the generating function below.

Ĝ(z) = ∑
n≥0

E[(X̂n,k)2]zn

= ∑
w,w

′ ∈Ak

w �=w′

∑
n≥0

(
1− (1− P(w))n − (1− P(w′))n + (1− P(w)− P(w′))n) zn

= ∑
w,w

′ ∈Ak

w �=w′

(
1

1− z
− 1

1− (1− P(w))z
− 1

1− (1− P(w′))z

)

+ ∑
w,w

′ ∈Ak

w �=w′

1
1− (1− P(w)− P(w′))z . (28)

Our first goal is to compare the coefficients of the generating functions in the two models. The
coefficients are expected to be asymptotically equivalent in the desired range for k. To compare the
coefficients, we need more information on the analytic properties of these generating functions. This
will be discussed in Section 3.3.
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3.3. Analytic Properties of the Generating Functions

Here, we turn our attention to the smallest singularities of the two generating functions given in
Lemma 3. It has been shown by Jacquet and Szpankowski [21] that Dw(z) has exactly one root in the
disk |z| ≤ ρ. Following the notations in [21], we denote the root within the disk |z| ≤ ρ of Dw(z) by
Aw, and by bootstrapping we obtain

Aw = 1 +
1

Sw(1)
P(w) + O

(
P(w)2

)
. (29)

We also denote the derivative of Dw(z) at the root Aw, by Bw, and we obtain

Bw = −Sw(1) +
(

k− 2S′w(1)
Sw(1)

P(w)

)
+ O

(
P(w)2

)
. (30)

In this paper, we will prove a similar result for the polynomial Dw,w′(z) through the following
work.

Lemma 5. If w and w′ are two distinct binary words of length k and δ =
√

p, there exists ρ > 1, such that
ρδ < 1 and

∑
w∈Ak

[[|Sw,w′(ρ)| ≤ (ρδ)kθ]]P(w) ≥ 1− θδk. (31)

Proof. If the minimal degree of Sw,w′(z) is greater than > �k/2�, then

|Sw,w′(ρ)| ≤ (ρδ)kθ. (32)

for θ = (1− p)−1. For a fixed w′, we have

∑
w∈Ak

[[Sw,w′(z) has minimal degree ≤ �k/2� ]] P(w)

=
�k/2�
∑
i=1

∑
w∈Ak

[[Sw,w′(z) has minimal degree = i]] P(w)

=
�k/2�
∑
i=1

∑
w1...wi∈Ai

P(w1...wi)

∑
wi+1...wk∈Ak−i

[[Sw,w′(z) has minimal degree = i]]P(wi+1...wk)

≤
�k/2�
∑
i=1

∑
w1..wi∈Ai

P(wi+1...wk)pk−i

=
�k/2�
∑
i=1

pk−i ∑
w1..wi∈Ai

P(w1...wi)

=
�k/2�
∑
i=1

pk−i ≤ pk−�k/2�

1− p
. (33)
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This leads to the following

∑
w∈Ak

[[ every term of Sw,w′(z) is of degree > �k/2�]]P(w)

= 1− ∑
w∈Ak

[[Sw,w′(z) has a term of degree ≤ �k/2�]]P(w)

≥ 1− p�k/2�

1− p
≥ 1− θδk. (34)

Lemma 6. There exist K′ > 0, and ρ > 1 such that pρ < 1, and such that, for every pair of distinct words w,
and w′ of length k ≥ K′, and for |z| ≤ ρ, we have

|Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)| > 0. (35)

In other words, Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z) does not have any roots in |z| ≤ ρ.

Proof. There are three cases to consider:
Case i. When either Sw(z) = 1 or Sw′(z) = 1, then every term of Sw,w′(z)Sw′ ,w(z) has degree k or larger,
and therefore

|Sw,w′(z)Sw′ ,w(z)| ≤ k
(pρ)k

1− pρ
. (36)

There exists K1 > 0, such that for k > K1, we have limk→∞ k
(pρ)k

1− pρ
= 0. This yields

|Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)| ≥ |Sw(z)Sw′(z)| − |Sw,w′(z)Sw′ ,w(z)|

≥ 1− k
(pρ)k

1− pρ
> 0. (37)

Case ii. If the minimal degree for Sw(z)− 1 or Sw′(z)− 1 is greater than �k/2�, then every term of
Sw,w′(z)Sw′ ,w(z) has degree at least k/2. We also note that, by Lemma 9, |Sw(z)Sw′(z)| > 0. Therefore,
there exists K2 > 0, such that

|Sw(z)Sw′(z)− Sw′ ,w(z)Sw,w′(z)| ≥ |Sw(z)Sw′(z)| − |Sw′ ,w(z)Sw,w′(z)|
> 0 for k > K2. (38)

Case iii. The only remaining case is where the minimal degree for Sw(z)− 1 and Sw′(z)− 1 are both
less than or equal to �k/2�. If w = w1...wk, then w′ = uw1...wk−m, where u is a word of length m ≥ 1.
Then we have

Sw′ ,w(z) = P(wk−m+1...wk)zm
(

Sw(z)−O
(
(pz)k−m

))
. (39)

There exists K3 > 0, such that

|Sw′ ,w(z)| ≤ (pρ)m (|Sw(z) |+ O
(
(pρ)k−m

)
= (pρ)m|Sw(z)|+ O

(
(pρ)k

)
< |Sw(z)| for k > K3 . (40)
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Similarly, we can show that there exists K′3, such that |Sw,w′(z)| < |Sw′(z)|. Therefore, for k > K′3
we have

|Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)| ≥ |Sw(z)||Sw′(z)| − |Sw,w′(z)||Sw′ ,w(z)|
> |Sw(z)||Sw′(z)| − |Sw(z)||Sw′(z)| = 0. (41)

We complete the proof by setting K′ = max{K1, K2, K3, K′3}.

Lemma 7. There exist Kw,w′ > 0 and ρ > 1 such that pρ < 1, and for every word w and w′ of length
k ≥ Kw,w′ , the polynomial

Dw,w′(z) = (1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z))

+ zk (P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′ ,w(z))
)

, (42)

has exactly one root in the disk |z| ≤ ρ.

Proof. First note that

|Sw(z)− Sw′ ,w(z)| ≤ |Sw(z)|+ |Sw′ ,w(z)|
≤ 1

1− pρ
+

pρ

1− pρ
=

1 + pρ

1− pρ
. (43)

This yields
∣∣∣zk (P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′ ,w(z))

)∣∣∣
≤ (pρ)k (|Sw(z)− Sw′ ,w(z)|+ |Sw′(z)− Sw,w′(z)|

)
≤ (pρ)k

(
2(1 + pρ)

1− pρ

)
. (44)

There exist K′, K′′ large enough, such that, for k > K′, we have

|(Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z))| ≥ β > 0,

and for k > K′′,

(pρ)k
(

2(1 + pρ)

1− pρ

)
< (ρ− 1)β.

If we define Kw,w′ = max{K′, K′′}, then we have, for k ≥ Kw,w′ ,

(pρ)k
(

2(1 + pρ)

1− pρ

)
< (ρ− 1)β

< |(1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z))|. (45)

by Rouché’s theorem, as (1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)) has only one root in |z| ≤ ρ, then also
Dw,w′(z) has exactly one root in |z| ≤ ρ.

We denote the root within the disk |z| ≤ ρ of Dw,w′(z) by αw,w′ , and by bootstrapping we obtain

αw,w′ = 1 +
Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w)

+
Sw(1)− Sw′ ,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w′) + O(p2k). (46)
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We also denote the derivative of Dw,w′(z) at the root αw,w′ , by βw,w′ , and we obtain

βw,w′ = Sw,w′(1)Sw′ ,w(1)− Sw(1)Sw′(1) + O(kpk). (47)

We will refer to these expressions in the residue analysis that we present in the next section.

3.4. Asymptotic Difference

We begin this section by the following lemmas on the autocorrelation polynomials.

Lemma 8 (Jacquet and Szpankowski, 1994). For most words w, the autocorrelation polynomial Sw(z) is
very close to 1, with high probably. More precisely, if w is a binary word of length k and δ =

√
p, there exists

ρ > 1, such that ρδ < 1 and

∑
w∈Ak

[[|Sw(ρ)− 1| ≤ (ρδ)kθ]]P(w) ≥ 1− θδk, (48)

where θ = (1− p)−1. We use Iverson notation

[[A]] =

{
1 if A holds

0 otherwise

Lemma 9 (Jacquet and Szpankowski, 1994). There exist K > 0 and ρ > 1, such that pρ < 1, and for every
binary word w with length k ≥ K and |z| ≤ ρ, we have

|Sw(z)| > 0. (49)

In other words, Sw(z) does not have any roots in |z| ≤ ρ.

Lemma 10. With high probability, for most distinct pairs {w, w′}, the correlation polynomial Sw,w′(z) is very
close to 0. More precisely, if w and w′ are two distinct binary words of length k and δ =

√
p, there exists ρ > 1,

such that ρδ < 1 and

∑
w∈Ak

[[|Sw,w′(ρ)| ≤ (ρδ)kθ]]P(w) ≥ 1− θδk (50)

We will use the above results to prove that the expected values in the Bernoulli model and the
model built over a trie are asymptotically equivalent. We now prove Theorem 1 below.

Proof of Theorem 1. From Lemmas 3 and 4, we have

H(z) = ∑
w∈Ak

(
1

1− z
− Sw(z)

Dw(z)

)
,

and

Ĥ(z) = ∑
w∈Ak

(
1

1− z
− 1

1− (1− P(w))z

)
.

subtracting the two generating functions, we obtain

H(z)− Ĥ(z) = ∑
w∈Ak

(
1

1− (1− P(w))z
− Sw(z)

Dw(z)

)
. (51)
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We define

Δw(z) =
1

1− (1− P(w))z
− Sw(z)

Dw(z)
. (52)

Therefore, by Cauchy integral formula (see [20]), we have

[zn]Δw(z) =
1

2πi

∮
Δw(z)

dz
zn+1 = Resz=0 Δw(z)

dz
zn+1 , (53)

where the path of integration is a circle about zero with counterclockwise orientation. We note that the

above integrand has poles at z = 0, z =
1

1− P(w)
, and z = Aw (refer to expression (29)). Therefore,

we define

Iw(ρ) :=
1

2πi

∫
|z|=ρ

Δw(z)
dz

zn+1 , (54)

where the circle of radius ρ contains all of the above poles. By the residue theorem, we have

Iw(ρ) = Resz=0
Δw(z)
zn+1 + Resz=Aw

Δw(z)
zn+1 + Resz=1/1−P(w)

Δw(z)
zn+1

= [zn]Δw(z)− Resz=Aw

Hw(z)
zn+1 + Resz=1/1−P(w)

Ĥw(z)
zn+1 (55)

We observe that

Resz=Aw

Δw(z)
zn+1 =

Sw(Aw)

Bw An+1
w

, where Bw is as in (30)

Resz=1/1−P(w)
Ĥw(z)
zn+1 = −(1− P(w))n+1.

Then we obtain

[zn]Δw = Iw(ρ)− Sw(Aw)

Bw An+1
w

− (1− P(w))n+1, (56)

and finally, we have

[zn](H(z)− Ĥ(z)) = ∑
w∈Ak

[zn]Δw

= ∑
w∈Ak

Iw
n (ρ)− ∑

w∈Ak

(
Sw(Aw)

Bw An+1
w

+ (1− P(w))n+1
)

. (57)

First, we show that, for sufficiently large n, the sum ∑w∈Ak

(
Sw(Aw)

Bw An+1
w

+ (1− P(w))n+1
)

approaches zero.

Lemma 11. For large enough n, and for k = Θ(log n), there exists M > 0 such that

∑
w∈Ak

(
Sw(Aw)

Bw An+1
w

+ (1− P(w))n+1
)
= O(n−M). (58)

Proof. We let

rw(z) = (1− P(w))z +
Sw(Aw)

Bw Az
w

. (59)
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The Mellin transform of the above function is

r∗w(s) = Γ(s) log−s
(

1
1− P(w)

)
− Sw(Aw)

Bw
Γ(s) log−s(Aw). (60)

We define

Cw =
Sw(Aw)

Bw
=

Sw(Aw)

−Sw(1) + O(kP(w))
, (61)

which is negative and uniformly bounded for all w. Also, for a fixed s, we have

ln−s
(

1
1− P(w)

)
= ln−s

(
1 + P(w) + O

(
P(w)2

))

=
(

P(w) + O
(

P(w)2
))−s

= P(w)−s (1 + O (P(w)))−s

= P(w)−s (1 + O (P(w))) , (62)

ln−s(Aw) = ln−s
(

1−
(
− P(w)

Sw(1)
+ O

(
P(w)2

)))

=

(
P(w)

Sw(1)
+ O

(
P(w)2

))−s

=

(
P(w)

Sw(1)

)−s
(1 + O (P(w)))−s

=

(
P(w)

Sw(1)

)−s
(1 + O (P(w))) , (63)

and therefore, we obtain

r∗w(s) = Γ(s)P(w)−s
(

1− 1
Sw(1)−s

)
O(1). (64)

From this expression, and noticing that the function has a removable singularity at s = 0, we can
see that the Mellin transform r∗w(s) exists on the strip where �(s) > −1. We still need to investigate
the Mellin strip for the sum ∑w∈Ak r∗w(s). In other words, we need to examine whether summing r∗w(s)
over all words of length k (where k grows with n) has any effect on the analyticity of the function. We
observe that

∑
w∈Ak

|r∗w(s)| = ∑
w∈Ak

|Γ(s)P(w)−s
(

1− 1
Sw(1)−s

)
O(1)|

≤ |Γ(s)| ∑
w∈Ak

P(w)−�(s)
(

1− 1
Sw(1)−�(s)

)
O(1)

= (qk)−�(s)−1|Γ(s)| ∑
w∈Ak

P(w)(1− Sw(1)�(s))O(1).

Lemma 8 allows us to split the above sum between the words for which Sw(1) ≤ 1 + O(δk) and
words that have Sw(1) > 1 + O(δk).

Such a split yields the following

∑
w∈Ak

|r∗w(s)| = (qk)−�(s)−1|Γ(s)|O(δk). (65)
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This shows that ∑w∈Ak r∗w(s) is bounded above for �(s) > −1 and, therefore, it is analytic. This
argument holds for k = Θ(log n) as well, as (qk)−�(s)−1 would still be bounded above by a constant
Ms,k that depends on s and k.

We would like to approximate ∑w∈Ak r∗w(s) when z → ∞. By the inverse Mellin transform, we
have

∑
w∈Ak

rw(z) =
1

2πi

∫ c+i∞

c−i∞

(
∑

w∈Ak

r∗w(s)
)

z−sds. (66)

We choose c ∈ (−1, M) for a fixed M > 0. Then by the direct mapping theorem [22], we obtain

∑
w∈Ak

rw(z) = O(z−M). (67)

and subsequently, we get

∑
w∈Ak

(
Sw(Aw)

Bw An+1
w

+ (1− P(w))n+1
)
= O(n−M). (68)

We next prove the asymptotic smallness of Iw
n (ρ) in (54).

Lemma 12. Let

Iw
n (ρ) =

1
2πi

∫
|z|=ρ

(
1

1− (1− P(w))z
− Sw(z)

Dw(z)

)
dz

zn+1 . (69)

For large n and k = Θ(log n), we have

∑
w∈Ak

Iw
n (ρ) = O

(
ρ−n(ρδ)k

)
. (70)

Proof. We observe that

|Iw
n (ρ)| ≤

1
2π

∫
|z|=ρ

∣∣∣∣∣∣
P(w)z

(
zk−1 − Sw(z)

)
Dw(z)(1− (1− P(w))z)

1
zn+1

∣∣∣∣∣∣ dz. (71)

For |z| = ρ, we show that the denominator in (71) is bounded away from zero.

|Dw(z)| = |(1− z)Sw(z) + P(w)zk|
≥ |1− z||Sw(z)| − P(w)|zk|
≥ (ρ− 1)α− (pρ)k, where α > 0 by Lemma 9 .

> 0, we assume k to be large enough such that (pρ)k < α(ρ− 1). (72)

To find a lower bound for |1− (1− P(w))z|, we can choose Kw large enough such that

|1− (1− P(w))z| ≥ |1− (1− P(w))|z||
≥ |1− ρ(1− pKw)|
> 0. (73)
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We now move on to finding an upper bound for the numerator in (71), for |z| = ρ.

|zk−1 − Sw(z)| ≤ |Sw(z)− 1|+ |1− zk−1|
≤ (Sw(ρ)− 1) + (1 + ρk−1)

= (Sw(ρ)− 1) + O(ρk). (74)

Therefore, there exists a constant μ > 0 such that

|Iw
n | ≤ μρP(w)

(
(Sw(ρ)− 1) + O(ρk)

) 1
ρn+1

= O(ρ−n)
(

P(w)(Sw(ρ)− 1) + P(w)O(ρk)
)

. (75)

Summing over all patterns w, and applying Lemma 8, we obtain

∑
w∈Ak

|Iw
n (ρ)| = O(ρ−n) ∑

w∈Ak

P(w)(Sw(ρ)− 1) + O(ρ−n+k) ∑
w∈Ak

P(w)

= O(ρ−n)

(
θ(ρδ)k +

pρ

1− pρ
θδk

)
+ O(ρ−n+k)

= O(ρ−n(ρδ)k), (76)

which approaches zero as n → ∞ and k = Θ(log n). This completes the proof of of Theorem 1.

Similar to Theorem 1, we provide a proof to show that the second factorial moments of the kth
Subword Complexity and the kth Prefix Complexity, have the same first order asymptotic behavior.
We are now ready to state the proof of Theorem 2.

Proof of Theorem 2. As discussed in Lemmas 3 and 4, the generating functions representing E[(Xn,k)2]

and E[(X̂n,k)2] respectively, are

G(z) = ∑
w,w′∈Ak

w �=w′

(
1

1− z
− Sw(z)

Dw(z)
− Sw′(z)

Dw′(z)
+

Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)
Dw,w′(z)

)
,

and

Ĝ(z) = ∑
w,w′∈Ak

w �=w′

(
1

1− z
− 1

1− (1− P(w))z
− 1

1− (1− P(w′))z

)

+ ∑
w,w′∈Ak

w �=w′

1
1− (1− P(w)− P(w′))z .

Note that

G(z)− Ĝ(z) = ∑
w′∈Ak

w �=w′

∑
w∈Ak

(
1

1− (1− P(w))z
− Sw(z)

Dw(z)

)
(77)

+ ∑
w∈Ak

w �=w′

∑
w′∈Ak

(
1

1− (1− P(w′))z −
Sw′(z)
Dw′(z)

)
(78)

+ ∑
w,w′∈Ak

w �=w′

(
1

1− (1− P(w)− P(w′))z −
Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)

Dw,w′(z)

)
(79)
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In Theorem 1, we proved that for every M > 0 (which does not depend on n or k), we have

H(z)− Ĥ(z) = ∑
w∈Ak

(
1

1− (1− P(w))z
− Sw(z)

Dw(z)

)
= O(n−M).

Therefore, both (77) and (78) are of order (2k − 1)O(n−M) = O(n−M+a log 2) for k = a log n. Thus,
to show the asymptotic smallness, it is enough to choose M = a log 2 + ε, where ε is a small positive
value. Now, it only remains to show (79) is asymptotically negligible as well. We define

Δw,w′(z) =
1

1− (1− P(w)− P(w′))z −
Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)

Dw,w′(z)
. (80)

Next, we extract the coefficient of zn

[zn]Δw,w′(z) =
1

2πi

∮
Δw,w′(z)

dz
zn+1 , (81)

where the path of integration is a circle about the origin with counterclockwise orientation. We define

Iw,w′
n (ρ) =

1
2πi

∫
|z|=ρ

Δw,w′(z)
dz

zn+1 , (82)

The above integrand has poles at z = 0, z = αw,w′ (as in (46)), and z = 1
1−P(w)−P(w′) . We have chosen ρ

such that the poles are all inside the circle |z| = ρ. It follows that

Iw,w′
n (ρ) = Resz=0

Δw,w′(z)
zn+1 + Resz=αw,w′

Δw,w′(z)
zn+1 + Resz= 1

1−P(w)−P(w′)

Δw(z)
zn+1 , (83)

and the residues give us the following.

Resz= 1
1−P(w)−P(w′)

1
1− (1− P(w)− P(w′))z)zn+1 = −(1− P(w)− P(w′))n+1,

and

Resz=αw,w′
Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)

Dw,w′(z)
=

Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′ ,w(αw,w′)

βw,w′α
n+1
w,w′

,

where βw,w′ is as in (47). Therefore, we get

∑
w,w′∈Ak

w �=w′

[zn]Δw,w′(z) = ∑
w,w′∈Ak

w �=w′

Iw,w′
n (ρ)

− ∑
w,w′∈Ak

w �=w′

(
Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′ ,w(αw,w′)

βw,w′α
n+1
w,w′

+ (1− P(w)− P(w′))n+1

)
. (84)

We now show that the above two terms are asymptotically small.
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Lemma 13. There exists ε > 0 where the sum

∑
w,w′∈Ak

w �=w′

(
Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′ ,w(αw,w′)

βw,w′α
n+1
w,w′

+ (1− P(w)− P(w′))n+1

)

is of order O(n−ε).

Proof. We define

rw,w′(z) =
Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′ ,w(αw,w′)

βw,w′α
z
w,w′

+ (1− P(w)− P(w′))z.

The Mellin transform of the above function is

r∗w,w′(s) = Γ(s) log−s
(

1
1− P(w)− p(w′)

)
+ Cw,w′Γ(s) log−s(αw,w′), (85)

where Cw,w′ =
Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′ ,w(αw,w′)

βw,w′
. We note that Cw,w′ is negative and

uniformly bounded from above for all w, w′ ∈ Ak.For a fixes s, we also have,

ln−s
(

1
1− P(w)− P(w′)

)
= ln−s

(
1 + P(w) + P(w′) + O

(
p2k

))

=
(

P(w) + P(w′) + O
(

p2k
))−s

= (P(w) + P(w′))−s
(

1 + O
(

pk
))−s

= (P(w) + P(w′))−s
(

1 + O
(

pk
))

, (86)

and

ln−s(αw,w′) =
( Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w)

+
Sw(1)− Sw′ ,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w′) + O(p2k)

)−s

=
( Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w)

+
Sw(1)− Sw′ ,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w′)

)−s (
1 + O(pk)

)
. (87)

Therefore, we have

r∗w,w′(s) = Γ(s)
(
P(w) + P(w′)

)−s
(1 + O(pk))

− Γ(s)

(
Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w)

+
Sw(1)− Sw′ ,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w′)

)−s (
1 + O(pk)

)
O(1). (88)
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To find the Mellin strip for the sum ∑w∈Ak r∗w,w′(s), we first note that

(x + y)a ≤ xa + ya, for any real x, y > 0 and a ≤ 1.

Since −�(s) < 1, we have

(
P(w) + P(w′)

)−�(s) ≤ P(w)−�(s) + P(w′)−�(s), (89)

and

(
Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w)ßn +

Sw(1)− Sw′ ,w(1)
Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)

P(w′)
)−�(s)

≤
(

Sw′(1)− Sw,w′(1)
Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)

P(w)

)−�(s)

+

(
Sw(1)− Sw′ ,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
P(w′)

)−�(s)
. (90)

Therefore, we get

∑
w,w′∈Ak

w �=w′

|r∗w,w′(s)| ≤ |Γ(s)|O(1)

(
∑

w,w′∈Ak

w �=w′

P(w)−�(s)
(

1−
(

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
Sw′(1)− Sw,w′(1)

)�(s))

+ ∑
w,w′∈Ak

w �=w′

P(w′)−�(s)
(

1−
(

Sw(1)Sw′(1)− Sw,w′(1)Sw′ ,w(1)
Sw(1)− Sw′ ,w(1)

)�(s)))

≤ (qk)−�(s)−1|Γ(s)|O(1)(
∑

w′∈Ak

w �=w′

∑
w∈Ak

P(w)

(
1− (Sw(1))�(s)

(
1− Sw,w′(1)

Sw′(1)

)−�(s))
(91)

+ ∑
w′∈Ak

w �=w′

∑
w∈Ak

P(w)Sw,w′(1)
�(s)

(
Sw′(1)− Sw,w′(1)

Sw′ ,w(1)

)−�(s)
(92)

+ ∑
w∈Ak

w �=w′

∑
w′∈Ak

P(w′)
(

1− (Sw′(1))
�(s)

(
1− Sw′ ,w(1)

Sw(1)

)−�(s))
(93)

+ ∑
w∈Ak

w �=w′

∑
w′∈Ak

P(w′)Sw′ ,w(1)
�(s)

(
Sw(1)− Sw′ ,w(1)

Sw,w′(1)

)−�(s) )
. (94)

By Lemma 10, with high probability, a randomly selected w has the property Sw,w′(1) = O(δk) , and
thus (

1− Sw,w′(1)
Sw′(1)

)−�(s)
= 1 + O(δk).
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With that and by Lemma 8, for most words w,

1− Sw(1)�(s)(1 + O(δk)) = O(δk).

Therefore, both sums (91) and (93) are of the form (2k − 1)O(δk). The sums (92) and (94) are also of
order (2k − 1)O(δk) by Lemma 10. Combining all these terms we will obtain

∑
w,w′∈Ak

w �=w′

|r∗w,w′(s)| ≤ (2k − 1)(qk)−�(s)−1|Γ(s)|O(δk)O(1). (95)

By the inverse Mellin transform, for k = a log n, M = a log 2 + ε and c ∈ (−1, M), we have

∑
w,w′∈Ak

w �=w′

rw,w′(z) =
1

2πi

∫ c+i∞

c−i∞

(
∑

w,w′∈Ak

w �=w′

r∗w,w′(s)
)

z−sds = O(z−M)O(2k)

= O(z−ε). (96)

In the following lemma we show that the first term in (85) is asymptotically small.

Lemma 14. Recall that

Iw,w′
n (ρ) =

1
2πi

∫
|z|=ρ

Δw,w′(z)
dz

zn+1 .

We have

∑
w,w′∈Ak

w �=w′

Iw,w′
n (ρ) = O

(
ρ−n+2kδk

)
. (97)

Proof. First note that

Δw,w′(z) =
1

1− (1− P(w)− P(w′))z −
Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z)

Dw,w′(z)

=
zP(w)

(
Sw,w′(z)Sw′ ,w(z)− Sw(z)Sw′(z) + zk−1Sw′(z)− zk−1Sw,w′(z)

)
(1− (1− P(w)− P(w′))z) Dw,w′(z)

+
zP(w′)

(
Sw′ ,w(z)Sw,w′(z)− Sw′(z)Sw(z) + zk−1Sw(z)− zk−1Sw′ ,w(z)

)
(1− (1− P(w)− P(w′))z) Dw,w′(z)

. (98)

We saw in (73) that |1− (1− P(w′))z| ≥ c2, and therefore, it follows that

|1− (1− P(w)− P(w′))z| ≥ c1 (99)
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For z = ρ, |Dw,w′(z)| is also bounded below as the following

|Dw,w′(z)| =
∣∣(1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z))

+ zk (P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′ ,w(z))
) ∣∣

≥ |(1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′ ,w(z))|
−
∣∣∣zk

∣∣∣ ∣∣(P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′ ,w(z))
)∣∣

≥ (ρ− 1)β− (pρ)k
(

2(1 + pρ)

1− pρ

)
, (100)

which is bounded away from zero by the assumption of Lemma 7. Additionally, we show that the
numerator in (98) is bounded above, as follows

|Sw,w′(z)Sw′ ,w(z)− Sw(z)Sw′(z) + zk−1Sw′(z)− zk−1Sw,w′(z)| ≤
|Sw′(z)(z

k−1 − Sw(z))|+ |Sw,w′(z)(Sw′ ,w(z)− zk−1)|
≤ Sw′(ρ)

(
(Sw(ρ)− 1) + O(ρk)

)
+ Sw,w′(ρ)

(
Sw′ ,w(ρ) + O(ρk)

)
. (101)

This yields

∑
w,w′∈Ak

w �=w′

|Iw,w′
n | ≤ O(ρ−n) ∑

w′∈Ak

w �=w′

Sw′(ρ) ∑
w∈Ak

P(w)
(
(Sw(ρ)− 1) + O(ρk)

)

+ O(ρ−n) ∑
w′∈Ak

w �=w′

∑
w∈Ak

P(w)Sw,w′(ρ)
(

Sw′ ,w(ρ) + O(ρk)
)

. (102)

By (75), the first term above is of order (2k − 1)O(ρ−n+k) and by Lemma 10 and an analysis similar
to (75), the second term yields (2k − 1)O(ρ−n+k) as well. Finally, we have

∑
w,w′∈Ak

w �=w′

|Iw,w′
n | ≤ O(ρ−n+2kδk).

Which goes to zero asymptotically, for k = Θ(log n).

This lemma completes our proof of Theorem 2.

3.5. Asymptotic Analysis of the kth Prefix Complexity

We finally proceed to analyzing the asymptotic moments of the kth Prefix Complexity. The
results obtained hold true for the moments of the kth Subword Complexity. Our methodology
involves poissonization, saddle point analysis (the complex version of Laplace’s method [23]), and
depoissonization.

Lemma 15 (Jacquet and Szpankowski, 1998). Let G̃(z) be the Poisson transform of a sequence gn. If G̃(z) is
analytic in a linear cone Sθ with θ < π/2, and if the following two conditions hold:
(I) For z ∈ Sθ and real values B, r > 0, ν

|z| > r → |G̃(z)| ≤ B|zν|Ψ(|z|), (103)
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where Ψ(x) is such that, for fixed t, limx→∞
Ψ(tx)
Ψ(x)

= 1;

(II) For z /∈ Sθ and A, α < 1

|z| > r → |G̃(z)ez| ≤ Aeα|z|. (104)

Then, for every non-negative integer n, we have

gn = G̃(n) + O(nν−1Ψ(n)).

On the Expected Value: To transform the sequence of interest, (E[X̂n,k])n≥0, into a Poisson model,
we recall that in (25) we found

E[X̂n,k] = ∑
w∈Ak

(
1− (1− P(w))n) .

Thus, the Poisson transform is

Ẽk(z) =
∞

∑
n=0

E[X̂n,k]
zn

n!
e−z

=
∞

∑
n=0

∑
w∈Ak

(1− (1− P(w))n)
zn

n!
e−z

= ∑
w∈Ak

(
1− e−zP(w)

)
. (105)

To asymptotically evaluate this harmonic sum, we turn our attention to the Mellin Transform once
more. The Mellin transform of Ẽk(z) is

Ẽ∗k (s) = −Γ(s) ∑
w∈Ak

P(w)−s

= −Γ(s)(p−s + q−s)k, (106)

which has the fundamental strip s ∈ 〈−1, 0〉. For c ∈ (−1, 0), the inverse Mellin integral is the
following

Ẽk(z) =
1

2πi

∫ c+i∞

c−i∞
Ẽ∗k (s) · z−sds

=
−1
2πi

∫ c+i∞

c−i∞
z−sΓ(s)(p−s + q−s)kds

=
−1
2πi

∫ c+i∞

c−i∞
Γ(s)e−k(s log z

k −log(p−s+q−s))ds

=
−1
2πi

∫ c+i∞

c−i∞
Γ(s)e−kh(s)ds, (107)

where we define h(s) =
s
a
− log(p−s + q−s) for k = a log z. We emphasize that the above integral

involves k, and k grows with n. We evaluate the integral through the saddle point analysis. Therefore,
we choose the line of integration to cross the saddle point r0. To find the saddle point r0, we let
h′(r0) = 0, and we obtain

(p/q)−r0 =
a log p−1 − 1
1− a log q−1 , (108)
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and therefore,

r0 =
−1

log p/q
log

(
a log q−1 − 1
1− a log p−1

)
, (109)

where
1

log q−1 < a <
1

log p−1 .

By (108) and the fact that (p/q)itj = 1 for tj =
2π j

log p/q
and j ∈ Z, we can see that there are

actually infinitely many saddle points zj of the form r0 + itj on the line of integration.

We remark that the location of r0 depends on the value of a. We have r0 → ∞ as a → 1
log q−1 ,

and r0 → −∞ as a → 1
log p−1 . We divide the analysis into three parts, for the three ranges r0 ∈ (0, ∞),

r0 ∈ (−1, 0), and r0 ∈ (−∞,−1).
In the first range, which corresponds to

1
log q−1 < a <

2
log q−1 + log p−1 , (110)

we perform a residue analysis, taking into account the dominant pole at s = −1. In the second range,
we have

2
log q−1 + log p−1 < a <

1
q log q−1 + p log p−1 , (111)

and we get the asymptotic result through the saddle point method. The last range corresponds to

1
q log q−1 + p log p−1 < a <

1
log p−1 , (112)

and we approach it with a combination of residue analysis at s = 0, and the saddle point method. We
now proceed by stating the proof of theorem 3.

Proof of Theorem 3. We begin with proving part ii which requires a saddle point analysis. We rewrite
the inverse Mellin transform with integration line at �(s) = r0 as

Ẽk(z) =
−1
2π

∫ ∞

−∞
z−(r0+it)Γ(r0 + it)(p−(r0+it) + q−(r0+it))kdt

=
−1
2π

∫ ∞

−∞
Γ(r0 + it)e−k((r0+it) log z

k −log(p−(r0+it)+q−(r0+it)))dt. (113)

Step one: Saddle points’ contribute to the integral estimation

First, we are able to show those saddle points with |tj| >
√

log n do not have a significant
asymptotic contribution to the integral. To show this, we let

Tk(z) =
∫
|t|>
√

log n
z−r0−itΓ(r0 + it)(p−r0−it + q−r0−it)kdt. (114)

Since |Γ(r0 + it)| = O(|t|r0− 1
2 e

−π|t|
2 ) as |t| → ±∞, we observe that
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Tk(z) = O

(
z−r0(p−r0 + q−r0)k

∫ ∞
√

log n
tr0/2−1/2e−πt/2dt

)

= O

(
z−r0(p−r0 + q−r0)k(log n)r0/4−1/4

∫ ∞
√

log n
e−πt/2dt

)

= O
(

z−r0(p−r0 + q−r0)k(log n)r0/4−1/4e−π
√

log n/2
)

= O
(
(log n)r0/4−1/4e−π

√
log n/2

)
, (115)

which is very small for large n. Note that for t ∈ (
√

log n, ∞), tr0/2−1/2 is decreasing, and bounded
above by (log n)r0/4−1/4.

Step two: Partitioning the integral

There are now only finitely many saddle points to work with. We split the integral range into
sub-intervals, each of which contains exactly one saddle point. This way, each integral has a contour
traversing a single saddle point, and we will be able to estimate the dominant contribution in each
integral from a small neighborhood around the saddle point. Assuming that j∗ is the largest j for

which
2π j

log p/q
≤ √

log n, we split the integral Ẽk(z) as following

Ẽk(z) = − 1
2π

⎛
⎝ ∑
|j|<j∗

∫
|t−tj |≤ π

log p/q

z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt

⎞
⎠

− 1
2π

∫
π

log p/q≤|t∗j |<
√

log n
Γ(r + it)z−r0+it(p−r0−it + q−r0−it)kdt. (116)

By the same argument as in (115), the second term in (116) is also asymptotically negligible. Therefore,
we are only left with

Ẽk(z) = ∑
|j|<j∗

Sj(z), (117)

where Sj(z) = − 1
2π

∫
|t−tj |≤ π

log p/q
z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt).

Step three: Splitting the saddle contour

For each integral Sj, we write the expansion of h(t) about tj, as follows

h(t) = h(tj) +
1
2

h
′′
(tj)(t− tj)

2 + O((t− tj)
3). (118)

The main contribution for the integral estimate should come from an small integration path that
reduces kh(t) to its quadratic expansion about tj. In other words, we want the integration path to be
such that

k(t− tj)
2 → ∞, and k(t− tj)

3 → 0. (119)
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The above conditions are true when |t − tj| � k−1/2 and |t − tj| 	 k−1/3. Thus, we choose the
integration path to be |t− tj| ≤ k−2/5. Therefore, we have

Sj(z) = − 1
2π

∫
|t−tj |≤k−2/5

z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt

− 1
2π

∫
k−2/5<|t−tj |< π

log p/q

z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt. (120)

Saddle Tails Pruning.

We show that the integral is small for k−2/5 < |t− tj| < π

log p/q
. We define

S(1)
j (z) = − 1

2π

∫
k−2/5<|t−tj |< π

log p/q

z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt. (121)

Note that for |t− tj| ≤ π

log p/q
, we have

|p−r0−it + q−r0−it| = (p−r0 + q−r0)

√
1− 2p−r0 q−r0

(p−r0 + q−r0)2 (1− cos (t log p/q))

≤ (p−r0 + q−r0)

(
1− p−r0 q−r0

(p−r0 + q−r0)2 (1− cos
(
t− tj) log p/q

))

since
√

1− x ≤ 1− x
2

for x ∈ [0, 1]

≤ (p−r0 + q−r0)

(
1− 2p−r0 q−r0

π2(p−r0 + q−r0)2 ((t− tj) log p/q)2
)

since 1− cos x ≥ 2x2

π2 for |x| ≤ π

≤ (p−r0 + q−r0)e−γ(t−tj)
2
, (122)

where γ =
2p−r0 q−r0 log2 p/q
π2(p−r0 + q−r0)2 . Thus,

S(1)
j (z) = O

(
z−r0 |Γ(r0 + it)|

∫
k−2/5<|t−tj |< π

log p/q

|p−r0−it + q−r0−it|dt

)

= O
(

z−r0(p−r0 + q−r0)k
∫ ∞

k−2/5
e−γku2

du
)

= O
(

z−r0(p−r0 + q−r0)kk−3/5e−γk1/5
)

, since erf(x) = O
(

e−x2
/x

)
. (123)

Central Approximation.

Over the main path, the integrals are of the form

S(0)
j (z) = − 1

2π

∫
|t−tj |≤k−2/5

Γ(r0 + it)z−r0+it(p−r0−it + q−r0−it)kdt

= − 1
2π

∫
|t−tj |≤k−2/5

Γ(r0 + it)e−kh(t)dt.
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We have

h
′′
(tj) =

log2 p/q
((p/q)−r0/2 + (p/q)r0/2)2 , (124)

and

p−r0−itj + q−r0−itj = p−itj(p−r0 + q−r0). (125)

Therefore, by Laplace’s theorem (refer to [22]) we obtain

S(0)
j (z) =

1√
2πkh′′(tj)

Γ(r0 + itj)e
−kh(tj)(1 + O(k−1/2))

=
(p/q)−r0/2 + (p/q)r0/2

√
2π log p/q

× z−r0(p−r0 + q−r0)kΓ(r0 + itj)z
−itj p−iktj k−1/2

(
1 + O

(
1√
k

))
. (126)

We finally sum over all j (|j| < j∗), and we get

Ẽk(z) =
(p/q)−r0/2 + (p/q)r0/2

√
2π log p/q

× ∑
|j|<j∗

z−r0(p−r0 + q−r0)kΓ(r0 + itj)z
−itj p−iktj k−1/2

(
1 + O

(
1√
k

))
. (127)

We can rewrite Ẽk(z) as

Ẽk(z) = Φ1((1 + a log p) logp/q n)
zν√
log n

(
1 + O

(
1√

log n

))
, (128)

where ν = −r0 + a log(p−r0 + q−r0), and

Φ1(x) =
(p/q)−r0/2 + (p/q)r0/2

√
2aπ log p/q

∑
|j|<j∗

Γ(r0 + itj)e−2πijx. (129)

For part ii, we move the line of integration to r0 ∈ (0, ∞). Note that in this range, we must consider
the contribution of the pole at s = 0. We have

Ẽk(z) = Ress=0Ẽ∗k (s)z
−s +

∫ r0+i∞

r0−i∞
Ẽ∗k (z)z

−sds. (130)

Computing the residue at s = 0, and following the same analysis as in part i for the above integral, we
arrive at

Ẽk(z) = 2k −Φ1((1 + a log p) logp/q n)
zν√
log n

(
1 + O

(
1√

log n

))
. (131)
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For part iii. of Theorem 3, we shift the line of integration to c0 ∈ (−2,−1), then we have

Ẽk(z) = Ress=−1Ẽ∗k (s)z
−s +

∫ c+i∞

c−i∞
Ẽ∗k (z)z

−sds

= z + O
(

z−c0(p−c0 + q−c0)k
)

= za log 2 + O(zν0), (132)

where ν0 = −c0 + a log(p−c0 + q−c0) < 1.

Step four: Asymptotic depoissonization

To show that both conditions in (15) hold for Ẽk(z), we extend the real values z to complex values
z = neiθ , where |θ| < π/2. To prove (103), we note that

|e−iθ(r0+it)Γ(r0 + it)| = O(|t|r0−1/2etθ−π|t|/2), (133)

and therefore

Ẽk(neiθ) =
1

2π

∫ ∞

−∞
e−iθ(r0+it)n−r0−itΓ(r0 + it)(p−r0−it + q−r0−it)kdt (134)

is absolutely convergent for |θ| < π/2. The same saddle point analysis applies here and we obtain

|Ẽk(z)| ≤ B
|zν|√
log n

, (135)

where B = |Φ1((1 + a log p) logp/q n)|, and ν is as in (128). Condition (103) is therefore satisfied. To
prove condition (104) We see that for a fixed k,

|Ẽk(z)ez| ≤ ∑
w∈Ak

|ez − ez(1−P(w))|

≤ 2k+1e|z| cos(θ). (136)

Therefore, we have

E[X̂n,k] = Ẽ(n) + O

(
nν−1√
log n

)
. (137)

This completes the proof of Theorem 3.

On the Second Factorial Moment: We poissonize the sequence (E[(X̂n,k)2])n≥0 as well. By the
analysis in (27),

E[(X̂n,k)2] = ∑
w,w′∈Ak

w �=w′

(
1− (1− P(w))n − (1− P(w′))n + (1− P(w)− P(w′))n) ,
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which gives the following poissonized form

G̃(z) = ∑
n≥0

E[(X̂n,k)2]
zn

n!
e−z

= ∑
w,w′∈Ak

w �=w′

1− e−P(w)z − e−P(w′)z + e−(P(w)+P(w′))z

= ∑
w,w′∈Ak

w �=w′

(
1− e−P(w′)z) (1− e−P(w)z

)

=

(
∑

w∈Ak

(
1− e−P(w)z))2

− ∑
w∈Ak

(
1− e−P(w)z)2

= (Ẽk(z))2 − ∑
w∈Ak

(
1− e−P(w)z)2

= (Ẽk(z))2 − ∑
w∈Ak

(
1− 2e−P(w)z + e−2P(w)z

)
. (138)

We show that in all ranges of a the leftover sum in (138) has a lower order contribution to G̃k(z)
compared to (Ẽk(z))2. We define

L̃k(z) = ∑
w∈Ak

(
1− 2e−P(w)z + e−2P(w)z

)
. (139)

In the first range for k, we take the Mellin transform of L̃k(z), which is

L̃∗k (s) = −2Γ(s) ∑
w∈Ak

P(w)−s + Γ(s) ∑
w∈Ak

(2P(w))−s

= −2Γ(s)(p−s + q−s)k + Γ(s)2−s(p−s + q−s)k

= Γ(s)(p−s + q−s)k(2−s−1 − 1), (140)

and we note that the fundamental strip for this Mellin transform of is 〈−2, 0〉 as well. The inverse
Mellin transform for c ∈ (−2, 0) is

L̃k(z) =
1

2πi

∫ c+i∞

c−i∞
L̃∗k (s)z

−sds

=
1

πi

∫ c+i∞

c−i∞
Γ(s)(p−s + q−s)k(2−s−1 − 1)z−sds (141)

We note that this range of r0 corresponds to

2
log q−1 + log p−1 < a <

p2 + q2

q2 log q−1 + p2 log p−1 . (142)

The integrand in (141) is quite similar to the one seen in (107). The only difference is the extra term
2−s−1 − 1. However, we notice that 2−s−1 − 1 is analytic and bounded. Thus, we obtain the same

saddle points with the real part as in (109) and the same imaginary parts in the form of
2πij

log p/q
,

j ∈ Z. Thus, the same saddle point analysis for the integral in (107) applies to L̃k(z) as well. We avoid
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repeating the similar steps, and we skip to the central approximation, where by Laplace’s theorem
(ref. [22]), we get

L̃k(z) =
(p/q)−r0/2 + (p/q)r0/2

√
2π log p/q

× ∑
|j|<j∗

z−r0(p−r0 + q−r0)k(2−r0−1−itj − 1)

× Γ(r0 + itj)z
−itj p−iktj k−1/2

(
1 + O

(
1√
k

))
, (143)

which can be represented as

L̃k(z) = Φ2((1 + a log p) logp/q n)
zν√
log n

(
1 + O

(
1√

log n

))
, (144)

where

Φ2(x) =
(p/q)−r0/2 + (p/q)r0/2

√
2aπ log p/q

∑
|j|<j∗

(2−r0−1−itj − 1)Γ(r0 + itj)e−2πijx. (145)

This shows that L̃k(z) = O

(
zν√
log n

)
, when

2
log q−1 + log p−1 < a <

p2 + q2

q2 log q−1 + p2 log p−1 .

Subsequently, for
1

log q−1 < a <
2

log q−1 + log p−1 , we get

L̃k(z) = 2k −Φ2((1 + a log p) logp/q n)
zν√
log n

(
1 + O

(
1√

log n

))
, (146)

and for
p2 + q2

q2 log q−1 + p2 log p−1 < a <
1

log p−1 , we get

L̃k(z) = O(n2). (147)

It is not difficult to see that for each range of a as stated above, L̃k(z) has a lower order contribution to
the asymptotic expansion of G̃k(z), compared to (Ẽk(z))2. Therefore, this leads us to Theorem 4, which
will be proved bellow.

Proof of Theorem 4. It is only left to show that the two depoissonization conditions hold: For
condition (103) in Theorem 15, from (135) we have

|G̃k(z)| ≤ B2 |z2ν|
log n

, (148)

and for condition (104), we have, for fixed k,

|G̃k(z)ez| ≤ ∑
w,w′∈Ak

w �=w′

∣∣∣ez − e(1−P(w))z − e(1−P(w′))z + e(1−(P(w)+P(w′)))z
∣∣∣

≤ 4ke|z| cos θ . (149)
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Therefore both depoissonization conditions are satisfied and the desired result follows.

Corollary. A Remark on the Second Moment and the Variance

For the second moment we have

E
[
(X̂n,k)

2
]
= ∑

w,w′∈Ak

w �=w′

E
[

X̂(w)
n,k X̂(w′)

n,k

]
+ ∑

w∈Ak

E[X̂(w)
n,k ]

= ∑
w,w′∈Ak

w �=w′

(
1− (1− P(w))n − (1− P(w′))n + (1− P(w)− P(w′))n)

+ ∑
w∈Ak

(
1− (1− P(w))n) . (150)

Therefore, by (105) and (138) the Poisson transform of the second moment, which we denote by G̃(2)
k (z)

is

G̃(2)
k (z) = (Ẽk(z))2 + Ẽk(z)− ∑

w∈Ak

(
1− 2e−P(w)z + e−2P(w)z

)
, (151)

which results in the same first order asymptotic as the second factorial moment. Also, it is not difficult
to extend the proof in Chapter 6 to show that the second moments of the two models are asymptotically
the same. For the variance we have

Var[X̂n,k] = E
[
(X̂n,k)

2
]
− (

E
[
X̂n,k

])2

= ∑
w,w′∈Ak

w �=w′

(
1− (1− P(w))n − (1− P(w′))n + (1− P(w)− P(w′))n)

+ ∑
w∈Ak

(
1− (1− P(w))n)

− ∑
w,w′∈Ak

w �=w′

(
1− (1− P(w))n − (1− P(w′))n + (1− P(w)− P(w′))n)

− ∑
w∈Ak

(
1− (1− P(w))n − (1− P(w))n + (1− P(w))2n

)

= ∑
w∈Ak

(
(1− P(w))n − (1− P(w))2n

)
. (152)

Therefore the Poisson transform, which we denote by G̃var
k (z) is

G̃var
k (z) = ∑

w∈Ak

(
e−P(w)z − e−(2P(w)+(P(w))2)z

)
. (153)

The Mellin transform of the above function has the following form

G̃∗var
k (z) = Γ(s)(p−s + q−s)k(−1 + O(P(w))). (154)

This is quite similar to what we saw in (106), which indicates that the variance has the same asymptotic
growth as the expected value. But the variance of the two models do not behave in the same way (cf.
Figure 2).
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4. Summary and Conclusions

We studied the first-order asymptotic growth of the first two (factorial) moments of the kth
Subword Complexity. We recall that the kth Subword Complexity of a string of length n is denoted
by Xn,k, and is defined as the number of distinct subwords of length k, that appear in the string. We
are interested in the asymptotic analysis for when k grows as a function of the string’s length. More
specifically, we conduct the analysis for k = Θ(log n), and as n → ∞.

The analysis is inspired by the earlier work of Jacquet and Szpankowski on the analysis of suffix
trees, where they are compared to independent tries (cf. [14]). In our work, we compare the first two
moments of the kth Subword Complexity to the kth Prefix Complexity over a random trie built over
n independently generated binary strings. We recall that we define the kth Prefix Complexity as the
number of distinct prefixes that appear in the trie at level k and lower.

We obtain the generating functions representing the expected value and the second factorial
moments as their coefficients, in both settings. We prove that the first two moments have the same
asymptotic growth in both models. For deriving the asymptotic behavior, we split the range for k into
three intervals. We analyze each range using the saddle point method, in combination with residue
analysis. We close our work with some remarks regarding the comparison of the second moment and
the variance to the kth Prefix Complexity.

5. Future Challenges

The intervals’ endpoints for a in Theorems 3 and 4 are not investigated in this work. The
asymptotic analysis of the end points can be studied using van der Waerden saddle point method [24].

The analogous results are not (yet) known in the case where the underlying probability source
has Markovian dependence or in the case of dynamical sources.
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Abstract: What are relevant levels of description when investigating human language? How are
these levels connected to each other? Does one description yield smoothly into the next one such that
different models lie naturally along a hierarchy containing each other? Or, instead, are there sharp
transitions between one description and the next, such that to gain a little bit accuracy it is necessary
to change our framework radically? Do different levels describe the same linguistic aspects with
increasing (or decreasing) accuracy? Historically, answers to these questions were guided by intuition
and resulted in subfields of study, from phonetics to syntax and semantics. Need for research at each
level is acknowledged, but seldom are these different aspects brought together (with notable exceptions).
Here, we propose a methodology to inspect empirical corpora systematically, and to extract from them,
blindly, relevant phenomenological scales and interactions between them. Our methodology is rigorously
grounded in information theory, multi-objective optimization, and statistical physics. Salient levels
of linguistic description are readily interpretable in terms of energies, entropies, phase transitions,
or criticality. Our results suggest a critical point in the description of human language, indicating that
several complementary models are simultaneously necessary (and unavoidable) to describe it.
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1. Introduction

What is the “right” level of description for the faculty of human language? What would allow
us to properly describe how it operates given the multiple scales involved—from letters and words to
whole sentences? This nested character of language organization (Figure 1) pervades the great challenge
of understanding how it originated and how we could generate it artificially. The standard answer to
these and similar questions is given by rules of thumb that have helped us, historically, to navigate the
linguistic complexities. We have identified salient aspects (e.g., phonetics, formal grammars, etc.) to which
whole fields are devoted. In adopting a level of description, we hope to encapsulate a helpful snippet
of knowledge. To guide these choices we must broadly fulfill two goals: (i) the system under research
(human language) must be somehow simplified and (ii) despite that simplification we must still capture as
many relevant, predictive features about our system’s unfolding as possible. Some simplifications work
better than others. In general, opting for a specific level does not mean that another one is not informative.
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Figure 1. Different levels of grammar. Language contains several layers of complexity that can be gauged
using different kinds of measures and are tied to different kinds of problems. The background picture
summarizes the enormous combinatorial potential connecting different levels, from the alphabet (smaller
sphere) to grammatically correct sentences (larger sphere). On top of this, it is possible to describe each
layer by means of a coarse-grained symbolic dynamics approach. One particularly relevant level is the one
associated to the way syntax allows generating grammatically correct strings x(t). As indicated in the left
diagram, symbols succeed each other following some rules φ. A coarse-graining π groups up symbols in
a series of classes such that the names of these classes; xR(t) also generate some symbolic dynamics whose
rules are captured by ψ. How much information can the dynamics induced by ψ recover about the original
dynamics induced by φ? Good choices of π and ψ will preserve as much information as possible despite
being relatively simple.

A successful approach to explore human language is through networks. Nodes of a language web
can be letters, syllables, or words; links can represent co-occurrences, structural similarity, phonology,
or syntactic or semantic relations [1–7]. Are these different levels of description nested parsimoniously
into each other? Or do sharp transitions exist that establish clear phenomenological realms? Most of the
network-level topological analyses suggest potential paths to understand linguistic processing and hint at
deeper features of language organization. However, the connection between different levels are seldom
explored, with few exceptions based on purely topological patterns [8]; or some ambitious attempts to
integrate all linguistic scales from the evolutionary one to the production of phonemes [9,10].

In this paper, we present a methodology to tackle this problem in linguistics: When are different
levels of description pertinent? When can we forgo some details and focus on others? For example,
when do we need to attend to syntactic constraints, and when do we need to pay attention to phonology?
How do the descriptions at different levels come together? This interplay can be far from trivial: note,
e.g., how phonetics dictates the grammatical choice of the determiner form “a” or “an” in English. Similarly,
phonetic choices with no grammatical consequence can evolve into rigid syntactic rules in the long term.
Is the description at a higher level always grounded in all previous stages, or do descriptions exist that do
not depend on details from other scales? Likely, these are not all or nothing question. Therefore, rather,
how many details in a given description do we need to carry on to the next one?
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To exemplify how these questions can be approached, we look at written corpora as symbolic series.
There are many ways in which a written corpus can be considered a symbolic series. For example, we can
study the succession of letters in a text. Then, the available vocabulary consists of all letters in the alphabet
(often including punctuations marks):

χletters ≡ {a, b, . . . , z, !, ?, . . . }. (1)

Alternatively, we can consider words as indivisible. In such cases, our vocabulary (χwords) would
consist of all entries in a dictionary. We can study even simpler symbolic dynamics, e.g., if we group
together all words of each given grammatical class and consider words within a class equal to each other.
From this point of view, we do not gain much by keeping explicit words in our corpora. We can just
substitute each one by its grammatical class, for example,

green colorless ideas sleep furiously −→ adj adj noun verb adv. (2)

After this, we can study the resulting series that have as symbols elements of the coarse-grained vocabulary:

χgrammar ≡ {noun, verb, adj, adv, prep, . . . }. (3)

Further abstractions are possible. For example, we can introduce a mapping that retains the difference
between nouns and verbs, and groups all other words in an abstract third category:

adj adj noun verb adv −→ cat3 cat3 noun verb cat3. (4)

It is fair to ask which of these descriptions are more useful, when to stop our abstractions,
whether different levels define complementary or redundant aspects of language, etc. Each of these
descriptions introduces an operation that maps the most fine-grained vocabulary into less detailed ones,
for example,

π : χwords → χgrammar. (5)

To validate the accuracy of this mapping, we need a second element. At the most fundamental level,
some unknown rules φ exist. They are the ones connecting words to each other in real language and
correspond to the generative mechanisms that we would like to unravel. At the level coarse-grained by
a mapping π, we can propose a description Ψ (Figure 1) that captures how the less-detailed dynamics
advance. How well can we recover the original series depends on our choices of π and Ψ. Particularly good
descriptions at different scales conform the answers to the questions raised above. The φ and Ψ mappings
play roles similar to language grammar, i.e., sets of rules that tell us what words can follow each other.
Some rules show up in actual corpora more often than others. Almost every sentence needs to deal with
the Subject-Verb-Object (SVO) rule, but only seldom do we find all types of adjectives in a same phrase.
If we would infer a grammar empirically by looking at English corpora, we could easily oversee that there
is a rule for adjective order too. However, as it can be so easily missed, this might not be as important as
SVO to understand how English works.

Here, we investigate grammars, or sets of rules, that are empirically derived from written corpora.
We would like to study as many grammars as possible, and to evaluate numerically how well each of
them works. In this approach, a wrong rule (e.g., one proposing that sentence order in English is VSO
instead of SVO) would perform poorly and be readily discarded. It is more difficult to test descriptive
grammars (e.g., a rule that dictates the adjective order), so instead we adopt abstract models that tell
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us the probability that classes of words follow each other. For example, in English, it is likely to find
an adjective or a noun after a determiner, but it is unlikely to find a verb. Our approach is inspired by
the information bottleneck method [11–15], rate distortion theory [16,17], and similar techniques [18–22].
In all these studies, arbitrary symbolic dynamics are divided into the observations up to a certain point,←−x , the dynamics from that point onward, −→x , and some coarse-grained model R (which plays the role
of our π and Ψ combined) that attempts to conceptualize what has happened in←−x to predict what will
happen in −→x . This scheme allows us to quantify mathematically how good is a choice of R ≡ {π, Ψ}.
For example, it is usual to search for models R that maximize the quantity:

I(←−x : R) + αI(←−x : −→x |R) (6)

for some α > 0. The first term captures the information that the model carries about the observed dynamics←−x , the second term captures the information that the past dynamics carry about the future given the filter
imposed by the model R, and the metaparameter α weights the importance of each term towards the
global optimization.

We will evaluate our probabilistic grammars in a similar (yet slightly different) fashion. For our
method of choice, we first acknowledge that we are facing a Pareto, or Multi-Objective Optimization
(MOO) problem [23–25]. In this kind of problem we attempt to minimize or maximize different traits
of the model simultaneously. Such efforts are often in conflict with each other. In our case, we want to
make our models as simple as possible, but in that simplicity we ask that they retain as much of their
predictive power as possible. We will quantify how different grammars perform in both these regards,
and rank them accordingly. MOO problems rarely present global optima, i.e., we will not be able to find
the best grammar. Instead, MOO solutions are usually embodied by Pareto-optimal trade-offs. These are
collections of designs that cannot be improved in both optimization targets simultaneously. In our case
these will be grammars that cannot be made simpler without losing some accuracy in their description of
a text, or that cannot be made more accurate without making them more complicated.

The solutions to MOO problems are connected with statistical mechanics [25–29]. The geometric
representation of the optimal trade-off reveals phase transitions (similar to the phenomena of water
turning into ice or evaporating promptly with slight variations of temperature around 0 or 100 degrees
Celsius) and critical points. In our case, Pareto optimal grammars would give us a collection of linguistic
descriptions that simultaneously optimize how simply language rules can become while retaining as
much of their explanatory power as possible. The different grammars along a trade-off would become
optimal descriptions at different levels, depending on how much detail we wish to track about a corpus.
Positive (second order) phase transitions would indicate salient grammars that are adequate descriptions
of a corpus at several scales. Negative (first order) phase transitions would indicate levels at which the
optimal description of our language changes drastically and very suddenly between extreme sets of
rules. Critical points would indicate the presence of somehow irreducible complexity in which different
descriptions of a language become simultaneously necessary, and aspects included in one description
are not provided by any other. Although critical points seem a worst-case scenario towards describing
language, they are a favorite of statistical physics. Systems at a critical point often display a series of
desirable characteristics, such as versatility, enhanced computational abilities, and optimal handling of
memory [30–38].

In Section 2 we explain how we infer our π and Ψ (i.e., our abstract “grammatical classes” and
associated grammars), and the mathematical methods used to quantify how simple and accurate
they are. In Section 3, we present some preliminary results, always keeping in mind that this paper
is an illustration of the intended methodology. More thorough implementations will follow in the
future. In Section 4, we reflect about the insights that we might win with these methods, how they
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could integrate more linguistic aspects, and how they could be adapted to deal with the complicated,
hierarchical nature of language.

2. Methods

2.1. Corpus Description and Preparation

We took a sample of 49 newspaper articles from the Corpus of Contemporary American English [39].
The articles were selected such that they did not contain foreign (non-English) words or symbols.
We substituted by a period every punctuation mark that indicated the end of a sentence and removed any
other punctuation mark except for the apostrophes indicating a contraction (e.g., “don’t”) or a genitive
(e.g., “someone’s”). Ideally, we would like to use raw texts and see Pareto optimal grammars emerging
from them. These should also include instructions about how alien symbols or words (loosely speaking,
any items that are not proper of English language, e.g., french terms, accent marks, etc.) are treated.
However, these are rather minor details. Effective grammars should specify first how its own words
are articulated.

Our more basic level of analysis will already be a coarse-grained one. Again, ideally, we would
present our methods with texts in which each word is explicitly expelled out. Our blind techniques should
then infer grammatical classes (if any were useful) based on how different words correlate. For example,
we expect that our blind methods would be able, at some point, to group all nouns together based on their
syntactic regularities. While this is possible, it is very time- and resource-consuming for the demonstration
intended here. Therefore, we preprocessed our corpus using Python’s Natural Language Processing
Toolkit [40] to map every word into one of the NG = 34 grammatical classes shown in Table 1. We then
substituted every word in the corpus by its grammatical class. The resulting texts constitute the symbolic
dynamics that we analyze.

Table 1. Grammatical classes present in the most fine-grained level of our corpora.

Conjunction Adverb
Cardinal number Adverb, comparative
Determiner Adverb, superlative
Existential there to
Preposition Interjection
Adjective Verb, base form
Adjective, comparative Verb, past tense
Adjective, superlative Verb, gerund or present participle
Modal Verb, past participle
Noun, singular Verb, non-3rd person singular present
Noun, plural Verb, 3rd person singular present
Proper noun, singular Wh-determiner
Proper noun, plural Wh-pronoun
Predeterminer Possessive wh-pronoun
Possessive ending Wh-adverb
Personal pronoun None of the above
Possessive pronoun ‘.’

2.2. Word Embeddings and Coarse-Graining

We would like to explore the most general grammars possible. However, as advanced above, to make
some headway we restrict ourselves to grammar models that encode a tongue’s rules in a probabilistic
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way, telling us how likely it is that words follow each other in a text. Even in this narrower class there
is an inscrutably large number of possibilities depending, e.g., on how far back we look into a sentence
to determine the next word’s likelihood, on whether we build intermediate phrases to keep track of the
symbolic dynamics in a hierarchical way, etc. Here, we only attempt to predict the next word given the
current one. We will also restrict ourselves to maximum entropy (MaxEnt) models, which are the models
that introduce less further assumptions provided a series of observations [37,41–49]. We explain these
kind of models in the next subsection. First, we need to introduce some notation and a suitable encoding
of our corpus so we can manipulate it mathematically.

We use a one-hot embedding, which substitutes each word in a text by a binary string that consists
of all zeros and exactly one 1. The position of the 1 indicates the class of word that we are dealing with.
Above, we illustrated several levels of coarse-graining. In a very fundamental one, each word represents
a class of its own. Our vocabulary in the simple example sentence “green colorless ideas sleep furiously”
consists of

χwords ≡ {ideas, sleep, green, colorless, f uriously} (7)

which in its binary form becomes

χ̃words = {10000, 01000, 00100, 00010, 00001}. (8)

We also illustrated a level of coarse-graining in which nouns and verbs are retained, but all other
words are grouped together in a third category (Equation (4)). The corresponding vocabulary

χ ≡ {noun, verb, cat3} (9)

becomes, through the one-hot embedding:

χ̃ = {100, 010, 001}. (10)

Throughout this paper, we will note by χλ the vocabulary (set of unique symbols) at a description
level λ, and we will refer by χ̃λ to its one-hot representation. We will name cλ

j ∈ χλ, with j ∈ {1, . . . , Nλ},

to each of the Nλ unique symbols at description level λ. Each of these symbols stands for an abstract class
of words, which might or might not correspond to actual grammatical classes in the standard literature.
The binary representation of each class is correspondingly noted by σλ

j ∈ χ̃λ.
To explore models of different complexity we start with all the grammatical classes outlined in

Table 1 and proceed by lumping categories together. We will elaborate a probabilistic grammar for
each level of coarse-graining. Later, we will compare the performance of all descriptions. In lumping
grammatical classes together there are some choices more effective than others. For example, it seems
wise to group comparative and superlative adverbs earlier than nouns and verbs. We expect the former
to behave more similarly than the later, and therefore to lose less descriptive power when treating both
comparative and superlative adverbs as one class. In future versions of this work, we intend to explore
arbitrary lumping strategies. Here, to produce results within a less demanding computational framework,
we use an informed shortcut. We build the maximum entropy model of the least coarse-grained category
(which, again, in this paper consists of the grammatical classes in Table 1). Through some manipulations
explained below, this model allows us to extract correlations between a current word and the next one
(illustrated in Figure 2). These correlations allow us to build a dendogram (Figure 3a) based on how
similarly different grammatical classes behave.
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Figure 2. Interactions between spins and word classes. (a) A first crude model with spins encloses more
information than we need for the kind of calculations that we wish to do right now. (b) A reduced version of
that model gives us an interaction energy between words or classes of words. These potentials capture some
non-trivial features of English syntax, e.g., the existential “there” in “there is” or modal verbs (marked E
and M respectively) have a lower interaction energy if they are followed by verbs. Interjections present
fairly large interaction energy with any other word, perhaps as a consequence of their independence
within sentences.
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Figure 3. Pareto optimal maximum entropy models of human language. Among all the models that we try
out, we prefer those Pareto optimal in energy minimization and entropy maximization. (a) These reveal
a hierarchy of models in which different word classes group up at different levels. The clustering reveals
a series of grammatical classes that belong together owing to the statistical properties of the symbolic
dynamics, such as possessives and determiners which appear near to adjectives. (b) A first approximation
to the Pareto front of the problem. Future implementations will try out more grammatical classes and
produce better quality Pareto fronts, establishing whether phase transitions or criticality are truly present.

This dendogram suggests an order in which to merge the different classes, which is just a good
guess. There are many reasons why the hierarchy emerging from the dendogram might not be the best
coarse-graining. We will explore more exhaustive possibilities in the future. In any case, this scheme
defines a series of functions πλ (which play the role of π in Figure 1) that map the elements of the most
fine-grained vocabulary χ0 ≡ χgrammar (as defined by the classes in Table 1) into a series of each time more
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coarse-grained and abstract categories χλ, with λ = 1, . . . , NG − 1 indicating how many categories have
been merged at that level.

2.3. Maximum-Entropy Models

To build the MaxEnt model at a given level λ of coarse-graining, we substitute every word in
our corpus by its binary representation. Our text then becomes a binary string. For example, with the
coarse-graining in which nouns and verbs are kept, and all other words are abstracted into cat3, we have

green colorless ideas sleep furiously −→ 001 001 100 010 001. (11)

We indicate the i-th word in a text by w(i). Its grammatical class in the description level λ is noted:

cλ(i) ≡ πλ(w(i)), (12)

and its binary representation:

σλ(i) ≡ π̃λ(w(i)). (13)

Both mappings πλ and π̃λ contain the same information, and both of them play the role of π in
Figure 1. Note that cλ(i) = cλ

j for some j, and that although i ∈ {1, . . . , Nw} indexes words as they

happen in a text (of length Nw), j ∈ {1, . . . , Nλ} indexes unique grammatical classes in χλ. Each binary
representation consists of Nλ bits. When necessary, we will use a subindex k to label σλ

j,k as the k-th bit of
the j-th class’s binary representation at a given coarse-graining level λ.

We next produce binary samples that include each word and the one next to it in a text:〈
σλ(i)|σλ(i + 1)

〉
, where 〈·|·〉 indicates concatenation. Thus, the coarse-grained sentence from Equation (11)

yields the samples:

{001001, 001100, 100010, 010001}. (14)

Each sample has size 2Nλ (when needed, the index k over bits will also label positions from 1 to 2Nλ).
Large corpora will produce huge collections of such samples. We can summarize these collections by giving
the empirical frequency F

(〈
σλ

j |σλ
j′
〉)

with which each of the
(

Nλ
)2 possible bit strings with length 2Nλ

shows up. These collections behave as samples of what is known as spin glasses in statistical mechanics.
We have powerful mathematical tools to infer MaxEnt models for spin glasses – therefore all these efforts.

3. Results

Using the methodology described above, we have coarse-grained the words of a written corpus, first,
into the 34 grammatical classes shown in Table 1. This process is illustrated by Equation (2). The resulting
symbolic series was binarized to create samples akin to spin glasses, a well studied model from statistical
mechanics that allows us to use powerful mathematical tools on our problem. This process was then
repeated at several levels of coarse graining as words were further lumped into abstract grammatical
categories (e.g., as in Equation (4)). At each level of description, the inferred spin glass model plays the role
of a grammar that constrains, in a probabilistic fashion, how word classes can follow each other in a text.
These mathematical tools from spin glass theory allow us to test grammars from different description
levels against each other as will become clear now.

In spin glasses, a collection of little magnets (or spins) is arranged in space. We say that a magnet
is in state σ = 1 if its north pole is pointing upwards and in state σ = −1 if its pointing downwards
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(these are equivalent to the 1s and 0s in our word samples). Two of these little magnets interact through
their magnetic fields. These fields build up a force that tends to align both spins in the same direction,
whichever it is, just as two magnets in your hand try to fall along a specific direction with respect to each
other. On top of this, the spins can interact with an external magnetic field—bringing in a much bigger
magnet which orientation cannot be controlled. This external field tends to align the little spins along its
fixed, preferred direction. Given the spin states σ1 and σ2, the energy of their interaction with the external
magnetic field and with each other can be written as

E(σ1, σ2) = −1
2
(2h1σ1 + σ1 J12σ2 + σ2 J21σ1 + 2h2σ2)

= −1
2
(J11σ1 + σ1 J12σ2 + σ2 J21σ1 + J22σ2) . (15)

J12 and J21 (with J12 = J21) denote the strength of the interaction between the spins, and J11 ≡ 2h1 and
J22 = 2h2 denote the interaction of each spin with the external field. The terms h1 and h2 are also known
as biases. If the spins are aligned with each other and with the external field, the resulting energy is the
lowest possible. Each misalignment increases the energy of the system. In physics, states with less energy
are more probable. Statistical mechanics allows us to write precisely the likelihood of finding this system
in each of its four ({1, 1}, {1,−1}, {−1, 1}, and {−1,−1}) possible states:

P(σ1, σ2) =
e−βE(σ1,σ2)

Z
, (16)

where β = 1/T is the inverse of the temperature. The term

Z = e−βE(1,1) + e−βE(1,−1) + e−βE(−1,1) + e−βE(−1,−1)

= ∑
σ1, σ2=±1

e−βE(σ1,σ2) (17)

is known as the partition function and is a normalizing factor that guarantees that the probability
distribution in Equation (16) is well defined.

Back to our text corpus in its binary representation, we know the empirical frequency F
(〈

σλ
j |σλ

j′
〉)

with which each of the possible spin configurations shows up—we just need to read it from our corpus.
We can treat our collection of 0s and 1s as if they were ±1 samples of a spin glass, and attempt to
infer the βλ and Jλ which (through a formula similar to Equation (16)) more faithfully reproduce the
observed sample frequencies. The superindex in βλ and Jλ indicates that they will change with the level of
coarse-graining. Inferring those βλ and Jλ amounts to finding the MaxEnt model at that coarse-grained
level. As advanced above, MaxEnt models are convenient because they are the models that introduce
less extra hypotheses given some observations. In other words, if we infer the MaxEnt model for some λ,
any other model with the same coarse-graining would be introducing spurious hypotheses that are not
suggested by the data. To infer MaxEnt models, we used Minimum Probability Flow Learning (MPFL [50]),
a fast and reliable method that infers the Jλ given a sufficiently large sample.

Each grammatical class is represented by Nλ spins at the λ-th coarse-graining. This implies, as we
know, that our samples consists of 2Nλ spints. MPFL returns a matrix Jλ of size 2Nλ × 2Nλ. This matrix
embodies our abstract, probabilistic grammar (and plays the role of Ψ in Figure 1). Each entry Jλ

kk′ of this
matrix tells us the interaction energy between the k-th and k′-th bits in a sample (with k, k′ = 1, . . . , 2Nλ).
However, each grammatical class is represented not by one spin, but by a configuration of spins that has
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only one 1. To obtain the interaction energies between grammatical classes (rather than between spins),
we need to compute

Vλ(cλ
j , cλ

j′) =
1
2 ∑

k,k′
σλ

j,k Jλ
kk′σ

λ
j′ ,k′ . (18)

This energy in turn tells us the frequency with which we should observe each pair of words according
to the model:

Pλ
(〈

cλ
j |cλ

j′
〉)

=
1

Zλ
e

βVλ(cλ
j ,cλ

j′ ). (19)

We inferred MaxEnt models for the more fine-grained level of description (χ0 as given by the
grammatical classes in Table 1), as well as for every other intermediate level χλ. Figure 2a shows the
emerging spin-spin interactions for l = 15, which consists of only 19 (versus the original 34) grammatical
classes. This matrix presents a clear box structure:

Jλ =

[
2hλ −→

∂ λ

ine
←−
∂ λ 2h̄λ

]
. (20)

The diagonal blocks (2hλ and 2h̄λ) represent the interactions between all spins that define, separately,
the first and second words in each sample. As our corpus becomes infinitely large, hλ → h̄λ. These terms
do not capture the interaction between grammatical classes. In the spin-glass analogy, they are equivalent
to the interaction of each word with the external magnet that biases the presence of some grammatical
classes over others. Such biases affect the frequencies Pλ(cλ

j ) with which individual classes show up,

but not the frequency with which they are paired up. Therefore, the hλ and h̄λ are not giving us much
syntactic information.

More interesting for us are the interaction terms stored in
−→
∂ λ and

←−
∂ λ. The inference method used

guarantees that
−→
∂ λ = (

←−
∂ λ)T . It is from these terms that we can compute the part of Vλ(cλ

j , cλ
j′) (shown

in Figure 2b) that pertains to pairwise interaction alone (i.e., the energy of the spin system when we
discount the interaction with the external field). Vλ(cλ

j , cλ
j′) encodes the energy of two word classes when

they are put next to each other in a text. The order in which words appear after each other is relevant,
therefore that matrix is not symmetric. These energies reflect some of the rules of English. For example,
the first row (labeled “E, M”) is a class that has lumped together the existential “there” (as in “there is”
and “there are”) with all modal verbs. These tend to be followed by a verb in English, thus the matrix
entry coding for 〈“E, M′′|“verb′′〉 (marked in red) is much lower than most entries for any other 〈“E, M′′|·〉.
The blue square encompasses verbs, nouns, and determiners. Although the differences there are very
subtle, the energies reflect that it is more likely to see a noun after a determiner and not the other way
around, and also that it is less likely to see a verb after a determiner.

It is not straightforward to compare all energies because they are affected by the raw frequency with
which pairs of words show up in a text. In that sense, our corpus size might be sampling some pairings
insufficiently so that their energies do not reflect proper English use. On the other hand, classes such as
nouns, verbs, and determiners happen so often (and so often combined with each other) that they present
very low energies as compared with other possible pairs. This makes the comparison more difficult by
visual inspection.

It is possible to use Vλ(cλ
j , cλ

j′) to generate a synthetic text T̃λ and evaluate its energy E0(T̃λ) using the

most fine-grained model J0. If the coarse-grained model Vλ(cλ
j , cλ

j′) retains a lot of the original structure,
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the generated text will fit gracefully in the rules dictated by J0—just as magnets falling into place.
Such texts would present very low energy when evaluated by J0. If the coarse-grained model has erased
much of the original structure, the synthetic text will present odd pairings. These would feel similar to
magnets that we are forcing into a wrong disposition, therefore resulting in a large energy when J0 is used.
In other words, this energy reflects how accurate each coarse-grained model is.

That accuracy is one of the targets in our MOO problem, in which we attempt to retain as much
information as possible with models as simple as possible. To quantify that second target, simplicity,
we turn to entropy. The simplest model possible generates words that fall in either class of χ0 randomly
and uniformly, thus presenting the largest entropy possible. More complex models, in their attempt
to remain accurate, introduce constraints as to how the words in the coarse-grained model must be
mapped back into the classes available in χ0. That operation would be the reverse of πλ. This reverse
mapping, however, cannot be undone without error because the coarse-graining erases information.
Entropy measures the amount of information that has been erased, and therefore how simple the model
has been made.

Figure 3b shows the energy E0(Tλ) and entropy S0(Tλ) for synthetic texts generated with the whole
range of coarse-grainings explored. In terms of Pareto optimality, we expect our models to have as low an
energy as possible while having the largest entropy compatible with each energy—just as thermodynamic
systems do. Such models would simultaneously optimize their simplicity and accuracy. Within the sample,
some of these models are Pareto dominated (crosses in Figure 3b) by some others. This means that for
each of those models at least some other one exists that is simpler and more accurate at the same time.
These models are suboptimal regarding both optimization targets, so we do not need to bother with
them.The non-dominated ones (marked by circles in Figure 3b) capture better descriptions in both senses
(accuracy and simplicity). They are such that we cannot move from one to another without improving
an optimization target and worsening the other. They embody the optimal trade-off possible (of course,
limited by all the approximations made in this paper), and we cannot choose a model over the others
without introducing some degree of artificial preference either for simplicity or accuracy.

In statistical mechanics the energy and entropy of a system are brought together by the free energy:

F = E− T̂S = E− S/β̂. (21)

Here, T̂ plays a role akin to a temperature and β̂ plays the role of its inverse. We noted β̂ �= β to indicate that
these temperature and inverse temperature are different from the ones in Equation (19). Those temperatures
control how often a word shows up given a model, whereas β̂ controls how appropriate each level of
description is. When β̂ is low (and T̂ is large), a minimum free energy in Equation (21) is attained by
maximizing the entropy rather than minimizing the energy. This is, low β̂ selects for simpler descriptions.
When β̂ is large (and T̂ is small), we prefer models with lower energy, i.e., higher accuracy.

By varying β̂ we visit the range of models available, i.e., we visit the collection of Pareto optimal
grammars (circles in Figure 3b). In statistical mechanics, by varying the temperature of a system we visit
a series of states of matter (this is, we put, e.g., a glass of water at different temperatures and observe
how its volume and pressure change). At some relevant points, called phase transitions, the states of
matter change radically, e.g., water freezes swiftly at 0 degrees Celsius, and evaporates right at 100 degrees
Celsius. The geometry of Pareto optimal states of matter tells us when such transitions occur [25–29].

Similarly, the geometric disposition of Pareto optimal models in Figure 3b tells us when a drastic
change in our best description is needed as we vary β̂. Relevant phase transitions are given by cavities
and salient points along the Pareto optimal solutions. In the first approach, we observe several cavities.
More interestingly, perhaps, is the possibility that our Pareto optimal models might fall along a straight
line; one has been added as a guideline in Figure 3b. Although there are obvious deviations from it,
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such description might be feasible at large. Straight lines in this plot are interesting because they indicate
the existence of special critical points [28,37,46–48]. In the next section, we discuss what criticality might
mean in this context.

4. Discussion

In this paper, we study how different hierarchical levels in the description of human language are
entangled with each other. Our work is currently at a preliminary stage, and this manuscript aims at
presenting overall goals and a possible methodological way to tackle relevant questions. Some interesting
results are presented as an illustration and discussed in this section to exemplify the kind of debate that
this line of research can spark.

Our work puts forward a rigorous and systematic framework to tackle the questions introduced
above, namely, what levels of description are relevant to understand human language and how do these
different descriptions interact with each other. Historically, we have answered these questions guided by
intuition. Some aspects of language are so salient that they demand a sub-field of their own. Although this
complexity and interconnectedness is widely acknowledged, its study is still fairly compartmentalized.
The portray of language as a multilayered network system is a recent exception [8], as it is the notable
and lasting effort by Christiansen et al. [9,10] to link all scales of language production, development,
and evolution in a unified frame.

We generated a collection of models that describe a written English corpus. These models trade
optimally a decreasing level of accuracy by increasing simplicity. By doing so, they gradually lose track of
variables involved in the description at more detailed levels. For example, as we saw above, the existential
“there” is merged with modal verbs. Indeed, these two classes were lumped together before the distinction
between all other verbs was erased. Although those grammatical classes are conceptually different,
our blind methodology found convenient to merge them earlier in order to elaborate more efficient
compact grammars.

Remaining as accurate as possible while becoming as simple as possible is a multi-objective
optimization problem. The conflicting targets are captured by the energy and entropy that artificial texts
generated by a coarse-grained model have when evaluated at the most accurate level of description.
We could have quantified these targets in other ways (e.g., counting the number of grammatical
classes to quantify complexity, and measuring similarity between synthetic and real texts for accuracy).
Those alternative choices should be explored systematically in the future to understand which options are
more informative. Our choices, however, make our results easy to interpret in physical terms. For example,
improbable (unnatural) texts have high energies in any good model.

The grammars that optimally trade between accuracy (low energy) and simplicity (high entropy)
conform the Pareto front (i.e., the solution) of the MOO problem. Its shape in the energy-entropy plane
(Figure 3) is linked to phase transitions [25–29]. According to this framework, we do not find evidence of
a positive (second order) phase transition. What could such a transition imply for our system? The presence
of a positive phase transition in our data would suggest the existence of a salient level of description capable
of capturing a large amount of linguistic structure in relatively simple terms. For example, if a unique
grammatical rule would serve to connect words together disregarding of the grammatical classes in which
we have split our vocabulary. We would expect that to be the case, e.g., if a single master rule such as
merge would serve to generate all the complexity of human language without further constraints arising.
This does not seem to be the case. However, this does not rule out the existence of the relevant merge
operation, nor does it deny its possible fundamental role. Indeed, Chomsky proposes that merge is the
fundamental operation of syntax, but that it leaves the creative process of language underconstrained
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[51–53]. As a result, actual implementations (i.e., real languages) see a plethora of further complexities
arising in a phenomena akin to symmetry breaking.

The presence of a negative (first order) phase transition would acknowledge several salient levels
of description needed to understand human language. These salient descriptions would furthermore
present an important gap separating them. This would indicate that discrete approaches would be possible
to describe language without missing any detail by ignoring the intermediate possibilities. If that were
the case, we would still need to analyze the emerging models and look at similarities between them to
understand whether both models capture a same core phenomenology at two relevant (yet distant) scales;
or whether each model focuses on a specific, complementary aspect that the other description has no
saying about. Some elements in Figure 3b are compatible with this kind of phase transition.

However, the disposition of several Pareto optimal grammars along a seemingly straight line rather
suggests the existence of a special kind of critical phenomenon [28,37,46–48]. Criticality is a worst-case
scenario in terms of description. It implies that there is no trivial model, nor couple of models, nor relatively
small collection that can capture the whole of linguistic phenomenology at any level. A degenerate number
of descriptions is simultaneously necessary, and elements trivial in a level can become cornerstones of
another. Also, potentially, constraints imposed by a linguistic domain (e.g., phonology) can penetrate all the
way and alter the operating rules of other domains (e.g., syntax or semantics). We can list examples of how
this happens in several tongues (such as the case of determiners “a” and ‘an’ in English mentioned above).
The kind of criticality suggested by our results would indicate that such intrusions are the norm rather
than the exception. Note that this opportunistic view of grammar appears compatible with Christiansen’s
thesis that language evolved, as an interface, to make itself useful to our species, necessarily exploiting all
kinds of hacks along its way [9].

Zipf’s law is a notable distribution in linguistics [54,55]. It states that the n-th most abundant word in
a text shows up with a frequency that is inversely proportional to that word’s rank (i.e., n). The presence
of this distribution in linguistic corpora has been linked to an optimal balance between communicative
tensions [54,56,57]. It has also been proved mathematically that Zipf’s law is an unavoidable feature
of open-ended evolving systems [58]. Languages and linguistic creativity are candidates to present
open-ended evolution. Could this open-endedness be reflected also in the diversity of grammatical rules
that form a language? Could we expect to find a power-law in the distribution of word combinations with
a given energy? If that were the case, Bialek et al. [37,47] proved mathematically that the relationship
between energy and entropy of such grammars must be linear and therefore critical. In other words,
our observation of criticality in this work, if confirmed, would be a strong hint (yet not sufficient) that the
relevant Zipf distribution may also be lurking behind grammars derived empirically from written corpora.

Numerous simplifications were introduced to produce the preliminary results in this paper. We started
our analysis with words that have already been coarse-grained into 34 grammatical classes, barring the
emergence of further intermediate categories dictated, e.g., by semantic use. We know that semantic
considerations can condition combinations of words, such as what verbs can be applied to what kinds
of agents [59]. The choice of words as units (instead of letters or syllables) is another limiting factor.
Words are symbols whose meanings do not depend on physical correlates with the objects signified [60].
In that sense, their association to their constituent letters and phonems is arbitrary. Their meaning is truly
emergent and not rooted in their parts. Introducing letters, syllables, and phonetics in our analysis might
reveal and allow us to capture that true emergence.

To do this it might be necessary to work with hierarchical models that allow correlations beyond
the next and previous words considered here. This kind of hierarchy, in general, is a critical aspect of
language [53] that our approach should capture in due time. We have excluded it in this work to attain
preliminary results in a reasonable time. Although hierarchical models are likely to be more demanding
(in computational terms), they can be parsimoniously incorporated in our framework. A possibility is
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to use epsilon machines [61–63], which naturally lump together pieces of symbolic dynamics to find out
causal states. These causal states act as shielding units that advance a symbolic dynamics in a uniquely
determined way—just like phrases or sentences provide a sense of closure at their end, and direct the
future of a text in new directions.
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47. Stephens, G.J.; Mora, T.; Tkačik, G.; Bialek, W. Statistical thermodynamics of natural images. Phys. Rev. Lett. 2013,

110, 018701. [CrossRef]
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Abstract: The use of Project Gutenberg (PG) as a text corpus has been extremely popular in statistical
analysis of language for more than 25 years. However, in contrast to other major linguistic datasets of
similar importance, no consensual full version of PG exists to date. In fact, most PG studies so far
either consider only a small number of manually selected books, leading to potential biased subsets,
or employ vastly different pre-processing strategies (often specified in insufficient details), raising
concerns regarding the reproducibility of published results. In order to address these shortcomings,
here we present the Standardized Project Gutenberg Corpus (SPGC), an open science approach
to a curated version of the complete PG data containing more than 50,000 books and more than
3× 109 word-tokens. Using different sources of annotated metadata, we not only provide a broad
characterization of the content of PG, but also show different examples highlighting the potential
of SPGC for investigating language variability across time, subjects, and authors. We publish our
methodology in detail, the code to download and process the data, as well as the obtained corpus
itself on three different levels of granularity (raw text, timeseries of word tokens, and counts of words).
In this way, we provide a reproducible, pre-processed, full-size version of Project Gutenberg as a new
scientific resource for corpus linguistics, natural language processing, and information retrieval.

Keywords: Project Gutenberg; Jensen–Shannon divergence; reproducibility; quantitative linguistics;
natural language processing

1. Introduction

Analysis of natural language from a complex systems perspective has provided new insights
into statistical properties of language, such as statistical laws [1–9], networks [10–14], language
change [15–20], quantification of information content [21–24], or the role of syntactic structures [25] or
punctuation [26], etc. In particular, the availability of new and large publicly available datasets such
as the google-ngram data [27], the full Wikipedia dataset [28,29], or Twitter [30] opened the door for
new large-scale quantitative approaches. One of the main drawbacks of these datasets, however, is the
lack of “purity” of the samples resulting from the fact that (i) the composition of the dataset is largely
unknown (google-ngram data, see [31,32]); (ii) the texts are a mixture of different authors (Wikipedia);
or (iii) the texts are extremely short (Twitter). One approach to ensure large homogeneous samples of
data is to analyze literary books – the most popular being from Project Gutenberg (PG) [33] due to
their free availability.

Data from PG has been used in numerous cases to quantify statistical properties of natural
language. In fact, the statistical analysis of texts in the framework of complex systems or quantitative
linguistics is not conceivable without the books from PG. Already in the 1990s the seminal works by
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Ebeling et al. [34] and Schurman and Grassberger [35] used up to 100 books from PG in the study of
long-range correlations and Baayen [36] investigated the growth curve of the vocabulary. Subsequently,
PG has become an indispensable resource for the quantitative analysis of language investigating,
e.g., universal properties (such as correlations [37] or scale-free nature of the word-frequency
distribution [38–40]) or aspects related to genres [41] or emotions [42]. While we acknowledge that PG
has so far been of great use to the community, we also find that it has been handled in a careless and
unsystematic way. Our criticisms can be summarized in two points. First, the majority of studies only
consider a small subset (typically not more than 20 books) from the more than 50,000 books available
in PG. More importantly, the subsets often contain the same manually selected books such as the
work “Moby Dick” which can be found in virtually any study using PG data. Thus different works
potentially employ biased and correlated subsets. While in some occasions a small set of well-selected
books can be sufficient to answer particular linguistic questions, we believe that the enduring task
of manually downloading and processing individual PG books has been the major bound to the
number of books used in many PG studies. In the study of linguistic laws and its associated exponents,
for instance, the variability they display [38,43] can be hard to grasp with reduced samples of PG.
Even more clear is the case of double-power laws in Zipfs’ law [44], which is only observed in very
large samples and has been conjectured to be an artefact of text mixing [39]. Second, different studies
use different filtering techniques to mine, parse, select, tokenize, and clean the data or do not describe
the methodological steps in sufficient detail. As a result, two studies using the supposedly same PG
data might end up with somewhat different datasets. Taken together, these limitations raise concerns
about the replicability and generalizability of previous and future studies. In order to ensure the
latter, it is pertinent to make corpora widely available in a standardized format. While this has been
done for many textual datasets in machine learning (e.g., the UCI machine learning repository [45])
and diachronic corpora for studying language change (e.g., The Corpus of Contemporary American
English [46]), such efforts have so far been absent for data from PG.

Here, we address these issues by presenting a standardized version of the complete Project
Gutenberg data—the Standardized Project Gutenberg Corpus (SPGC)—containing more than 50,000
books and more than 3× 109 word-tokens. We provide a framework to automatically download,
filter, and process the raw data on three different levels of granularity: (i) the raw text; (ii) a filtered
timeseries of word-tokens, and (iii) a list of occurrences of words. We further annotate each book
with metadata about language, author (name and year of birth/death), and genre as provided by
Project Gutenberg records as well as through collaborative tagging (so-called bookshelves), and show
that the latter has more desirable properties such as low overlap between categories. We exemplify
the potential of the SPGC by studying its variability in terms of Jensen–Shannon divergence across
authors, time and genres. In contrast to standard corpora such as the British National Corpus [47] or
the Corpus of Contemporary American English [46], the new Standardized Project Gutenberg Corpus
is decentralized, dynamic and multi-lingual. The SPGC is decentralized in the sense that anyone can
recreate it from scratch in their computer executing a simple python script. The SPGC is dynamic in
the sense that, as new books are added to PG, the SPGC incorporates them immediately, and users can
update their local copies with ease. This removes the classic centralized dependency problem, where a
resource is initially generated by an individual or institution and initially maintained for certain period
of time, after which the resource is no longer updated and remains “frozen” in the past. Finally,
the SPGC is multi-lingual because it is not restricted to any language, it simply incorporates all content
available in PG (see Section 2.3 for details). These characteristics are in contrast with some standard
corpus linguistics practices [48,49], where a corpus is seen as a fixed collection of texts, stored in a
way that allows for certain queries to be made, usually in an interactive way. While these corpora are
well-suited –logically– for computational linguists interested in specific linguistic patterns, they are less
useful for researchers of other disciplines such as physicists interested in long-range correlations in texts
or computer scientists willing to train their language models on large corpora. In order to be compatible
with a standard corpus model, and to ensure reproducibility of our results, we also provide a static
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time-stamped version of the corpus, SPGC-2018-07-18 (https://doi.org/10.5281/zenodo.2422560).
In summary, we hope that the SPGC will lead to an increase in the availability and reliability of the PG
data in the statistical and quantitative analysis of language.

2. Results

2.1. Data Acquisition

Project Gutenberg is a digital library founded in 1971 which archives cultural works uploaded
by volunteers. The collection primarily consists of copyright-free literary works (books), currently
more than 50,000, and is intended as a resource for readers to enjoy literary works that have entered
the public domain. Thus the simplest way for a user to interact with PG is through its website, which
provides a search interface, category listings, etc. to facilitate locating particular books of interest.
Users can then read them online for free, or download them as plain text or ebook format. While such
a manual strategy might suffice to download tens or hundreds of books (given the patience), it does
not reasonably scale to the complete size of the PG data with more than 50,000 books.

Our approach consists of downloading the full PG data automatically through a local mirror,
see Project Gutenberg’s Information About Robot Access page for details. We keep most technical
details “under the hood” and instead present a simple, well structured solution to acquire all of PG
with a single command. In addition to the book’s data, our pipeline automatically retrieves two
different datasets containing annotations about PG books. The first set of metadata is provided by
the person who uploads the book, and contains information about the author (name, year of birth,
year of death), language of the text, subject categories, and number of downloads. The second set of
metadata, the so-called bookshelves, provide a categorization of books into collections such as “Art”
or “Fantasy”, in analogy to the process of collaborative tagging [50].

2.2. Data Processing

In this section, we briefly describe all steps we took to obtain the corpus from the raw data
(Figure 1), for details see Section 4. The processing (as of 18 July 2018) yields data for 55,905 books on
four different levels of granularity:

• Raw data: We download all books and save them according to their PG-ID. We eliminate
duplicated entries and entries not in UTF-8 encoding.

• Text data: We remove all headers and boiler plate text, see Methods for details.
• Token data: We tokenize the text data using the tokenizer from NLTK [51]. This yields a time series

of tokens without punctuation, etc.
• Count data: We count the number of occurrences of each word-type. This yields a list of tuples

(w,nw), where w is word-type w and nw is the number of occurrences.
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data

.mirror

raw
PG12345_raw.txt
PG12346_raw.txt

text
PG12345_text.txt
PG12346_text.txt

tokens
PG12345_tokens.txt
PG12346_tokens.txt

counts
PG12345_counts.txt
PG12346_counts.txt

$ rsync aleph.gutenberg.org::gutenberg  

> nltk.tokenize.sent_tokenizer 
> nltk.[…].TreebankWordTokenizer 
> string.isalpha() 
> string.lower()

Header
*** 
A long time ago 
in a galaxy 
far, far away…
*** 
Tail

Header
*** 
A long time ago 
in a galaxy 
far, far away…
*** 
Tail

a
long
time
ago
in
⋮

the 3245
of 1554
⋮
galaxy 123

long 87
far 34

A long time ago 
in a galaxy 
far far away

time
ago

⋮
galaxy 123

A long time ago 
in a galaxy 
far far away

> collections.Counter

> markers = [“*** START OF THIS”,…] 
> string.find()

Figure 1. Sketch of the pre-processing pipeline of the Project Gutenberg (PG) data. The folder structure
(left) organizes each PG book on four different levels of granularity, see example books (middle): raw,
text, tokens, and counts. On the right we show the basic python commands used in the pre-processing.

2.3. Data Description

We provide a broad characterization of the PG books in terms of their length, language and (when
available) inferred date of publication in Figure 2. One of the main reason for the popularity of books
from PG is their long text length, which yields large coherent statistical samples without potentially
introducing confounding factors originating from, e.g., the mixing of different texts [39]. The length
of most PG books exceeds m = 104 word tokens (Figure 2a) which is larger than typical documents
from most web resources. In fact, the distribution shows a heavy-tail for large values of m. Thus we
find a substantial fraction of books having more than 105 word tokens. Many recent applications
in quantitative linguistics aim at tracing diachronic changes. While the metadata does not provide
the year of the first publication of each book, we approximate the number of PG books published
in year t as the number of PG books for which the author’s year of birth is tbirth + 20 < t and the
author’s year of death is t < tdeath (Figure 2b). This reveals that the vast majority of books were first
published around the year 1900, however, with a substantial number of books between 1800 and 2000.
Part of this is known to be a consequence of the Copyright Term Extension Act of 1998 which, sadly,
has prevented books published after 1923 to enter the public domain so far. If no further copyright
extensions laws are passed in the future, then this situation will be gradually alleviated year after year,
as books published in 1923 will enter the public domain on 1 January 2019, and so on.

While most contemporary textual datasets are in English, the SPGC provides a rich resource to
study other languages. Using metadata provided by PG, we find that 81% of the books are tagged
as written in English, followed by French (5%, 2864 books), Finnish (3.3%, 1903 books) and German
(2.8%, 1644 books). In total, we find books written in 56 different languages, with three (13) languages
besides English with more than 1000 (100) books each (Figure 2c). The size of the English corpus is
2.8× 109 tokens, which is more than one order of magnitude larger than the British National Corpus
(108 tokens). The second-largest language corpus is made up of French books with > 108 tokens.
Notably, there are six other languages (Finnish, German, Dutch, Italian, Spanish, and Portuguese) that
contain > 107 tokens and still another eight languages (Greek, Swedish, Hungarian, Esperanto, Latin,
Danish, Tagalog, and Catalan) that contain > 106 tokens.
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Figure 2. Basic summary statistics from the processed PG data. (a) Number of books with a text length
larger than m; (b) Number of books which are compatible with being published in year t, i.e., year
of author’s birth is 20 years prior and year of author’s death is after t; (c) Number of books (left axis)
and number of tokens (right axis) which are assigned to a given language based on the metadata.
en: English, fr: French, fi: Finnish, de: German, nl: Dutch, it: Italian, es: Spanish, pt: Portuguese,
zh: Chinese, el: Greek, sv: Swedish, hu: Hungarian, eo: Esperanto, la: Latin, da: Danish, tl: Tagalog,
ca: Catalan, pl: Polish, ja: Japanese, no: Norwegian, cy: Welsh, cs: Czech.

In addition to the “hard-facts” metadata (such as language, time of publication), the SPGC also
contains manually annotated topical labels for individual books. These labels allow not only the study
of topical variability, but they are also of practical importance for assessing the quality of machine
learning applications in Information Retrieval, such as text classification or topic modeling [52].
We consider two sets of topical labels: labels obtained from PG’s metadata “subject” field, which
we call subject labels; and labels obtained by parsing PG’s website bookshelf pages, which we call
bookshelf labels. Table 1 shows that there is certain overlap in the most common labels between the
two sets (e.g., Science Fiction or Historical Fiction), but a more detailed analysis of how labels are
assigned to books reveals substantial differences (Figure 3). First, subject labels display a very uneven
distribution of the number of books per label. That is, most of the subject labels are assigned to
very few books (less than 10), with only few subject labels assigned to many books. In comparison,
bookshelf labels are more evenly distributed: most of them are assigned to between 10 and 100 books
(Figure 3a,c). More importantly, the overlap in the assignment of labels to individual books is much
smaller for the bookshelf labels (Figure 3b,d): While roughly 50% of the PG books are tagged with two
or more subject labels, up to 85% of books are tagged with a unique bookshelf label. This indicates
that the bookshelf labels are more informative because they constitute broader categories and provide
a unique assignment of labels to books, and are thus better suited for practical applications such as
text classification.
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Table 1. Examples for the names of labels and the number of assigned books from bookshelves (left)
and subjects (right) metadata.

Rank Books Bookshelf Rank Books Subject

1 1341 Science Fiction 1 2006 Fiction
2 509 Children’s Book Series 2 1823 Short stories
3 493 Punch 3 1647 Science fiction
4 426 Bestsellers, American, 1895-1923 3 1647 Science fiction
5 383 Historical Fiction 5 746 Historical fiction
6 374 World War I 6 708 Love stories
7 339 Children’s Fiction 7 690 Poetry
... ... ... ... ... ...
47 94 Slavery 47 190 Short stories, American
48 92 Western 48 188 Science – Periodicals
49 90 Judaism 49 183 American poetry
50 86 Scientific American 50 180 Drama
51 84 Pirates, Buccaneers, Corsairs, etc. 51 165 Paris (France) – Fiction
52 83 Astounding Stories 52 163 Fantasy literature
53 83 Harper’s Young People 53 162 Orphans – Fiction
... ... ... ... ... ...
97 37 Animals-Wild-Reptiles and Amphibians 97 100 Scotland – Periodicals
98 37 Short Stories 98 98 Horror tales
99 36 Continental Monthly 99 97 Canada – Fiction

100 35 Architecture 100 97 France – Court and courtiers
101 35 Bahá’í Faith 101 96 Social classes – Fiction
102 34 Precursors of Science Fiction 102 95 Courtship – Fiction
103 33 Physics 103 95 Seafaring life – Juvenile fiction

... ... ... ... ... ...

a b

c d

Figure 3. Comparison between bookshelf labels (top, green) and subject labels (bottom, red).
(a,c) Number of labels with a given number of books; (b,d) Fraction of books with a given number
of labels.

2.4. Quantifying Variability in the Corpus

In order to highlight the potential of the SPGC for quantitative analysis of language, we quantify
the degree of variability in the statistics of word frequencies across labels, authors, and time. For this,
we measure the distance between books i and j using the well-known Jensen–Shannon divergence [53],
Di,j, with Di,j = 0 if the two books are exactly equal in terms of frequencies, and Di,j = 1 if they are
maximally different, i.e., they do not have a single word in common, see Methods for details.
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2.4.1. Labels

We select the 370 books tagged with one of the following bookshelf labels: Art, Biographies,
Fantasy, Philosophy and Poetry. After calculating distances Di,j between all pairs of books, in Figure 4
we show an approximate 2-dimensional embedding (Uniform Manifold Approximation and Projection
(UMAP), see [54] and Methods for details) in order to visualize which books are more similar
to each other. Indeed, we find that books from the same bookshelf tend to cluster together and
are well-separated from books belonging to other bookshelves. This example demonstrates the
usefulness of the bookshelf labels and that they reflect the topical variability encoded in the statistics
of word frequencies.

Figure 4. 2-dimensional embedding shows clustering of books from the same bookshelf. Approximate
visualization of the pair-wise distances between 370 PG books using Uniform Manifold Approximation
and Projection (UMAP) (for details, see Section 4). Each dot corresponds to one book colored according
to the bookshelf membership.

2.4.2. Authors

We select all books from the 20 most prolific authors ( selected from the authors of the 100 most
downloaded books in order to avoid authors such as “Anonymous”). For each author, we draw
1000 pairs of books (i, j) from the same author and compare the distance Di,j with 1000 pairs (i, j′)
where j′ comes from a different author. We observe that the distance between books from the same
author is consistently smaller than for two books from different authors – not only in terms of the
median, but also in terms of a much smaller spread in the values of Di,j (Figure 5). This consistent
variability across authors suggest the potential applicability in the study of stylistic differences, such
as in problems of authorship attribution [55,56].
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Figure 5. Distance between books from the same author is significantly smaller than distance between
books from different authors. For each author, the boxplots shows the 5, 25, 50, 75, 95-percentile of
the distribution of distances from 1000 pairs of books from the same author (green) and to a different
author (gray).

2.4.3. Time

We compare the distance Di,j between pairs of books i, j taken each from a 20-year time period
ti, tj ∈ {1800− 1820, . . . , 1980− 2000}. In Figure 6, we show the distance between two time windows
Dti ,tj by averaging over each 1000 pairs of books. We observe that the average distance increases
with increasing separation between the time periods. However, we emphasize that we only observe a
substantial increase in Dti ,tj for large separation between ti and tj and later time periods (after 1900).
This could be caused by the rough approximation of the publication year and a potential change in
composition of the SPGC after 1930 due to copyright laws. In fact, the observed effects are likely
a mixture of temporal and topical variability, because the topical composition of PG over time is
certainly not uniform. This suggests the limited applicability of PG books for diachronic studies
without further filtering (such as subject/bookshelf). Other resources such as the COHA corpus might
be more adequate in this case, although potentially a more genre-balanced version of SPGC could be
created using the provided metadata.
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Figure 6. Distance between books increases with their time separation. Average and standard error of
the distance between 1000 pairs of books, where the two books in each pair is drawn from two different
20-year time intervals. We fix the first interval and continuously increase the second time interval.

3. Discussion

We have presented the Standardized Project Gutenberg Corpus (SPGC), a decentralized, dynamic
multilingual corpus containing more than 50,000 books from more than 20 languages. Combining the
textual data with metadata from two different sources we provided not only a characterization of the
content of the full PG data but also showed three examples for resolving language variability across
subject categories, authors, and time. As part of this work, we provide the code for all pre-processing
steps necessary to obtain a full local copy of the PG data. We also provide a static or ‘frozen’ version of
the corpus, SPGC-2018-07-18, which ensures reproducibility of our results and can be downloaded at
https://doi.org/10.5281/zenodo.2422560.

We believe that the SPGC will be a first step towards a more rigorous approach for using
Project Gutenberg as a scientific resource. A detailed account of each step in the pre-processing,
accompanied by the corresponding code, are necessary requirements that will help ensure replicability
in the statistical analysis of language and quantitative linguistics, especially in view of the crisis
in reproducibility and replicability reported in other fields [57–59]. From a practical point of view,
the availability of this resource in terms of the code and the frozen dataset will certainly allow for an
easier access to PG data, in turn facilitating the usage of larger and less biased datasets increasing the
statistical power of future analysis.

We want to highlight the challenges of the SPGC in particular and PG in general, some of which
can hopefully be addressed in the future. First, the PG data only contains copyright-free books. As a
result the number of books published after 1930s is comparably small. However, in the future this
can be expected to change as copyright for many books will run out and the PG data is continuously
growing. This highlights the importance of using a dynamic corpus model that will by default
incorporate all new books when the corpus is generated for the first time. Second, the annotation
about the books is incomplete, and some books might be duplicated. For example, the metadata
lacks the exact date when a book was published, hindering the usage of the PG data for diachronic
studies. Different editions of the same book might have been given a different PG identifier, and so
they are all included in PG and thus in SPGC. Third, the composition of SPGC is heterogeneous, mixing
different genres. However, the availability of document labels from the bookshelf metadata allows for
systematic control of corpus composition. For example, it is easy to restrict to or exclude individual
genres such as “Poetry”.

From a practical perspective, the SPGC has a strong potential to become a complementary resource
in applications ranging from computational linguistics to machine learning. A clear limitation of SPGC

79



Entropy 2020, 22, 126

is that it was designed to fit a wide range use cases, and so the pre-processing and data-selection
choices are sub-optimal in many specific cases. However, the modular design of the code allows for
researches to modify such choices with ease, and data can always be filtered a posteriori, but not the
other way around. Choices are unavoidable, but it is only by providing the full code and data that
these choices can later be tailored to specific needs. Overall, we believe the benefits of a standardized
version of PG out-weight its potential limitations.

We emphasize that the SPGC contains thousands of annotated books in multiple languages even
beyond the Indo-European language family. There is an increasing interest in quantitative linguistics
in studies beyond the English language. In the framework of culturomics, texts could be annotated and
weighted by additional metadata, e.g., in terms of their ‘success’ measure as the number of readers [60]
or number of PG downloads. For example, it could be expected that the impact of Carroll’s “Alice
in Wonderland” is larger than that of the “CIA Factbook 1990”. Furthermore, with an increase in the
quality of the metadata, the identification of the same book in different languages might allow for the
construction of high-quality parallel corpora used in, e.g., translation tasks. Finally, in applications
of Information Retrieval, metadata labels can be used to evaluate machine learning algorithms for
classification and prediction. These and other applications might require additional pre-processing
steps (such as stemming) but which could make use of SPGC as a starting point.

In summary, we believe that the SPGC is a first step towards a better usage of PG in scientific
studies, and hope that its decentralized, dynamic and multi-lingual nature will lead to further
collaborative interdisciplinary approaches to quantitative linguistics.

4. Materials and Methods

4.1. Running the Code

The simplest way to get a local copy of the PG database, with standardized, homogeneous
pre-processing, is to clone the git repository

$ git clone git@github.com:pgcorpus/gutenberg.git

and enter the newly created directory. To get the data, simply run:

$ python get_data.py

This will download all available PG books in a hidden ‘.mirror’ folder and symlink in the more
convenient ‘data/raw’ folder. To actually process the data, that is, to remove boiler-plate text, tokenize
texts, filter and lowercase tokens, and count word type occurrence, it suffices to run

$ python process_data.py

which will fill in the rest of directories inside ‘data’ . We use ‘rsync’ to keep an updated local
mirror of aleph.gutenberg.org::gutenberg. Some PG book identifiers are stored in more than one
location in PG’s server. In these cases, we only keep the latest, most up-to-date version. We do not
remove duplicated entries on the basis of book metadata or content. To eliminate boiler-plate text
that does not pertain to the books themselves, we use a list of known markers (code adapted from
https://github.com/c-w/gutenberg/blob/master/gutenberg/cleanup/strip_headers.py).

4.2. Preprocessing

Texts are tokenized via NLPToolkit [51]. In particular, we set the ‘TreebankWordTokenizer‘ as the
default choice, but this can be changed at will. Tokenization works better when the language of the text
being analyzed is known. Since the metadata contains a language field for every downloaded book,
we pass this information onto the tokenizer. If the language field contains multiple languages (≈ 0.3%
of the books), we use the first entry. We only keep tokens composed entirely of alphabetic characters
(including accented characters), removing those that contain digits or other symbols. Notice that
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this is done after tokenization, which correctly handles apostrophes, hyphens, etc. This constitutes a
conservative approach to avoid artifacts, for example originating from the digitization process. While
one might want to also include tokens with numeric characters in order to keep mentions of, e.g., years,
the downside of this approach would be a substantial number of occurrences of undesirable page and
chapter numbers. However, we note that the modularized filtering can be easily customized (and
extended) to incorporate also other aspects such as stemming as there is no one-size-fits all solution
to each individual application. Furthermore, all tokens are lower-cased. While this has undesired
consequences in some cases (e.g., some proper nouns can be confounded with unrelated common
nouns after being lower-cased), it is a simple and effective way of handling words capitalized after
full stop or in dialogues, which would otherwise be (incorrectly) considered different words from
their lowercase standard form. We acknowledge that our preprocessing choices might not fit well
specific use cases, but they have been designed to favour precision over recall. For instance, we find it
preferable to miss mentions of years while ensuring that no page or chapter numbers are included
in the final dataset. Notice that the alternative, that of building and additional piece of software
that correctly distinguishes these two cases, is in itself complicated, has to handle several edge cases,
and ultimately incurs in additional choices.

4.3. Jensen–Shannon Divergence

We use Jensen–Shannon divergence (JSD, [53,61,62]) as a divergence measure between PG books.
JSD is an information-theory based divergence measure which, given two symbolic sequences with
frequency distributions encoded in vectors p, q can be simply defined as

D(p, q) = H
(

p + q
2

)
− 1

2
H(p)− 1

2
H(q) (1)

where H(p) denotes the standard Shannon entropy, H(p) = −∑i pi log pi. In simple and general terms,
JSD quantifies how similar two symbolic sequences are on the basis of how frequent or infrequent
each symbol is in the two sequences. In our case, this translates to measuring the similarity between
two books via the frequencies of their word types. The logarithmic term in the expression of the
entropy H(p), however, ensures that the measure is not dominated by high-frequency words, as would
happen otherwise, but instead is dependent on differences in frequency along the whole spectrum of
usage, from very common to very uncommon words. Therefore, JSD is specially suitable for symbolic
sequences that display long tails in the distribution of frequencies, as is the case in natural language.
Notice that the distance between one book and a randomly shuffled version of it is exactly 0, from the
JSD point of view. This drawback can be alleviated by using JSD on n-grams counts of higher order,
that is, taking into account the frequency of pairs of words or bigrams, and so on. However, we do not
take this route here since it has the undesirable consequence of exponentially increasing the number of
features. For a more technical discussion about JSD and related measures, see [53].

4.4. 2-Dimensional Embedding

We use Uniform Manifold Approximation and Projection (UMAP, [54]) for visualization purposes
in Figure 4. UMAP is a manifold-learning technique with strong mathematical foundations that
aims to preserve both local and global topological structures, see [54] for details. In simple terms,
UMAP and other manifold-learning algorithms aim at finding a good low-dimensional representation
of a high-dimensional dataset. To do so, UMAP finds the best manifold that preserves topological
structures of the data at different scales, again see [54] for details. We used normalized counts data as
the input data, with word types playing the role of dimensions (features) and books playing the role of
points (samples). Distance between points was computed using the Jensen–Shannon divergence [53].
The end result is the 2-dimensional projection shown in Figure 4. Notice that subject labels were
not passed to UMAP, so the observed clustering demonstrates that the statistics of word frequencies
encode and reflect the manually-assigned labels.
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4.5. Data Availability

The code that we make available as part of this work allows to download and process all available
Project Gutenberg books, facilitating the task of keeping an up-to-date and homogeneously processed
dataset of a continuously growing resource. In fact, new books are added to Project Gutenberg daily.
An unwanted consequence of this feature, however, is that two local versions of the SPGC might differ
if they were last updated on different dates. To facilitate and promote reproducibility of our results
and possible subsequent analysis, we provide a ’frozen’ copy of the SPGC, last updated on 18 July,
2018, containing 55,905 PG books. All statistics and figures reported on this manuscript are based on
this version of the data. This data is available at https://doi.org/10.5281/zenodo.2422560.

4.6. Computational Requirements

The ’frozen’ dataset of all 55,905 books and all levels of granularity has a size of 65 GB. However,
focusing only on the one-gram counts requires only 3.6 GB. Running the pre-processing pipeline of the
’frozen’ data took 8 h (without parallelization) on an CPU running at 3.40 GHz.

4.7. Code Availability

Python 3.6 code to download and pre-process all PG books can be obtained at https://github.
com/pgcorpus/gutenberg, while python-based jupyter notebooks that reproduce the results of this
manuscript can be obtained at https://github.com/pgcorpus/gutenberg-analysis.
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Abstract: Does systematic covariation in the usage patterns of forms shape the sublexical variance
observed in conversational speech? We address this question in terms of a recently proposed
discriminative theory of human communication that argues that the distribution of events in
communicative contexts should maintain mutual predictability between language users, present
evidence that the distributions of words in the empirical contexts in which they are learned and used
are geometric, and thus support this. Here, we extend this analysis to a corpus of conversational
English, showing that the distribution of grammatical regularities and the sub-distributions of tokens
discriminated by them are also geometric. Further analyses reveal a range of structural differences
in the distribution of types in parts of speech categories that further support the suggestion that
linguistic distributions (and codes) are subcategorized by context at multiple levels of abstraction.
Finally, a series of analyses of the variation in spoken language reveals that quantifiable differences
in the structure of lexical subcategories appears in turn to systematically shape sublexical variation in
speech signal.

Keywords: speech variance; communicative efficiency; sampling invariance; power laws;
communicative distributions

1. Introduction

The words produced in conversational speech often differ substantially from the acoustic signals
supposed by canonical dictionary forms [1,2]. The extent to which articulated forms deviate from
dictionary models correlates with average word frequency, such that there is a general tendency for
shorter and faster articulation in more probable words. This property of speech codes is often taken
to suggest that human speech is shaped by the competing requirements of maximizing the success
of message transmission while minimizing production effort in ways similar to those described by
information coding solutions for electronic message transmission. There are, however, some critical
differences between speech and the communication model described by information theory [3]:
whereas information theory is concerned with defining the properties of variable length codes
optimized for efficient communication in discrete, memoryless systems, human communication codes,
at first blush at least, appear neither systematic [3] nor systematically discrete [2,4] or memoryless [5].

In regard to the first point, systematicity, humans learn to communicate by the gradual
discrimination of functional (task-relevant) speech dimensions from the samples to which they are
exposed, yet because lexical diversity in language samples increases nonlinearly over space and time,
the divergence between the samples individuals are exposed to increases as their experience of the
linguistic environment grows [5]. A system defined by a probabilistic structure would appear to
require that events be distributed in a way that allows the relationships between events probabilities to
remain stable independent of the sample size, yet the way that words are distributed across language
samples suggests that human languages do not satisfy this requirement.
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Considering the second point discreteness, although writing conventions lead to some systematic
agreements about what linguistic units are such that words are often thought of as standard discrete
linguistic units, speech appears to be different. Human intuition on boundaries in speech diverge as
exposure increases. When literate adults, nonliterate adults, and children are asked to divide a speech
sequence into units, their intuitions on where any given sequence should be split into multiple units
exhibit a systematic lack of agreement [6]; similar effects have been observed when people are asked to
discriminate phonetic contrasts [7].

As for memorylessness, which supposes a distribution of events such that an event’s probability
is independent of the way it is sampled, it has been shown that increased exposure to language leads
to a decrease in the informativeness of high-frequency tokens relative to words that they co-occur
with such that the informativity relationships between words appear to be unstable across cohorts [5].
For instance, the information that blue provides changes systematically as people successively hear
about blue skies, blue eyes, and blue berries, etc. at different rates, an effect that increases nonlinearly
with the number of blue covariates that speakers encounter.

To summarize these points, it is clear that adult expectations about events and their probabilities
vary with experience. This in turn seems to suggest that the increasing divergence between individual
speakers’ models will lead to an increase in communication problems between speakers. Nevertheless,
sufficiently successful communication between speakers of different experience levels is not only
possible but also relatively common. How?

Recent work by Ramscar [3] addresses these apparent communication problems from the
perspective of discriminative learning and suggests that, unlike the predefined source codes in artificial
communication, human communicative codes are subcategorized by systematic patterns of variation
in the way words and arguments are employed. The empirical distributions discriminated by these
patterns of variation both serve to minimize communicative uncertainty and to make unattested
word forms predictable in context, thereby overcoming some of the problems that arise from the
way that linguistic codes are sampled. In support of this argument, Ramscar presents evidence
that the empirical distributions shaped by communicative contexts are geometric and suggests
that the power laws that commonly characterize word token distributions are not in themselves
functional but rather result from the aggregation of multiple functionally distinct communicative
distributions [8]. Importantly, unlike power laws, the geometric distribution is sampling invariant
and thus directly satisfies many of the constraints defined by information theory [9,10]. Perhaps even
more importantly, geometric distributions also appear to maximize the likelihood that, independent of
exposure, learning will lead to speakers acquiring similar models of distribution of communicative
contrasts in context, thereby enabling a high degree of mutual predictability and helping to explain
why human communicative codes actually work as well as they do.

A notable finding in this regard comes from an analysis of names (a universal feature of
communicative codes that is almost universally ignored by grammatical theories) and in particular the
distributions of English and Sinosphere first names [3,11]. This analysis shows that, historically, prior to
the imposition of name laws that distorted their initial distributions, first names across a range of
cultures had near identical geometric distributions. Names are a unique aspect of language in that their
composition is highly regulated in virtually all modern nation states. Functionally, name sequences
serve to discriminate between individuals, and thus, it follows that fixing distributions of name
tokens by law in turn fixes the discriminatory power of those distributions. The 20th century is
characterized by large global increases in population sizes; that is, the number of individuals that
name distributions must serve to discriminate between has increased. In western cultures, this has
had two consequences: first, the fixing of last names has caused the increase in information in the
distribution of first names in direct proportion to increases in population [3,11]. Second, it has led
to an increase in the diversity of regional first name distributions across very large states such as the
United States. An interesting consequence of this is that, although the first name distribution in the
US as a whole follows a power law, the distribution of names in the individual states still show close
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fits to the geometric, indicating that the shape of the former distribution may reflect the result of the
aggregation of the latter [3,8].

These results suggest that, across space and time, discriminative codes somehow seem to respond
to the various communicative pressures imposed by the environment in ways that sustain the
sampling invariance that seems to be crucial to efficient, systematic communication, a point that
name distributions in particular seem to underline in that individual contributions to the name pool
appear, at least at first blush, to be somewhat random. These findings offer a new perspective on
the apparent similarities and differences between communication in the human and information
theoretical sense and raise some interesting questions in regard to speech. To what extent are speech
codes shaped by the competing pressures of providing sufficient contrast to communicate the required
distinctions while retaining a sufficiently stable structure to allow mutual predictability over the course
of learning? Is the variance in the forms people actually articulate a consequence of the uncertainty
in the structure of the immediate context in which they are learned and used, and does this variance
have a communicative function?

The following sections briefly review the theoretical background to the present analysis. Section 1.1
reviews some key findings about linguistic distributions that appear to support their communicative
function. Section 1.2 describes some of the implications of these findings for speech, and finally,
Section 1.3 lays out a set of explicit predictions derived from this theoretical analysis. These are then
examined in the rest of the article.

1.1. Grammar as Context—Convention Shapes Learning, Learning Shapes Context

It seems clear that human communication codes are not shared in the predefined way
that information theory supposes [3]. Natural languages are learned from exposure to specific,
incomplete samples, and these can diverge considerably across cohorts. This in turn suggests that
any communicative system operating on global word token probabilities will be inefficient and
unsystematic because the bursty/uneven distributions of low-frequency tokens observable in large
language samples indicate that a large portion of types will be either over- or underrepresented across
the communicative contexts any individual speaker is exposed to. At the same time, the fact that
regularities in human languages can be consistently captured and shared through linguistic abstractions
at many different levels of description suggests that speech provides speakers (and learners) with
probabilistic structures that are sufficiently stable to ensure that most important linguistic conventions
will be learnable from samples all speakers are exposed to. For example, Blevins et al. [12] suggest that
the existence of grammatical regularities in the distribution of inflectional forms serves to offset many
of the problems that arise from the highly skewed distribution of communicative codes, since the
neighborhood support provided by morphological distributions makes forms that are otherwise
unlikely to be attested to many speakers inferable from a partial sample of a code.

The fact that pseudowords can be interpreted in context [13] (for example, He drank the dord in one
gulp.) offers another illustration of this point. Here, the lexical context provides sufficient support for
the inference that dord is likely a drink of some sort, regardless of whether it is familiar to the speaker
or correlated to a real life experience. (In the former case, if dord were to occur more regularly and
in correlation to an actual bottled or cupped substance in the world, it would become a part of the
vocabulary, losing its non-word status.) These kinds of context effects appear to rely on the fact that,
in the sequences drink milk, drink water, and drink beer, drink systematically correlates with words that
in turn covary with the consumption of fluids, unlike eat apple, eat banana, and eat chicken.

Given the discriminative nature of learning, it follows that exposure to samples containing this
kind of systematic covariance structure will lead to the extraction of clusters (subcategories) of items
that are less discriminated from any other items that occur in the same covarying contexts than to
unrelated items [3]. Further, there is an abundance of evidence that patterns of systematic covariance
of this kind provide a great deal of information, not only at lexical level (where semantically similar
words typically share covariance patterns) but also at a grammatical level [3]. For example, in English,
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different subcategories of verbs can be discriminated from the extent to which they share argument
structures with other verbs. The way that verbs co-occur with their arguments appears to provide
a level of systematic covariance that nouns appear to lack [14]. For instance, the following sentences
would be considered grammatical:

1. John murdered Mary’s husband.
2. John ate Mary’s husband.
3. John chewed Mary’s husband.

However, the following sentence would not be considered grammatical:

4. John ran Mary’s husband. (*)

One reason for this difference is that chew, eat, and murder share a similar pattern of argument
structures (covary systematically) in a way that run does not. In contrast, the kinds of grammatical
context which predicts a noun (noun phrases) appears to allow any noun—the sentence is
grammatical—irrespective of its likelihood (although, obviously, these will vary widely according to
context).

5. John ate.
6. John ate cheese.
7. John ate cheese slowly with a toothbrush.

In other words, the systematic covariance of verbs in their argument structures appears to
constrain their distribution in context far more than is the case for nouns.

8. Mary loved. (*)
9. Mary loved cheese.
10. Mary loved cheese slowly with a toothbrush. (*)

Accordingly, the distributional patterning of verbs thus appears to reduce uncertainty about
not only the lexical properties of upcoming parts of a message but also its structure. In other words,
because verbs take arguments, there ought to be less variance in their patterns of covariation and
this ought to lead to less overall uncertainty in the context of verb arguments. Consistent with
this, Seifart et al. [15] report that slower articulations and more disfluencies precede nouns than verbs
across languages, raising further questions about the kind of information that is communicated by
variational patterns in speech and, in particular, whether and to what degree, this kind of sublexical
variance actually serves a communicative function.

In the next section, we review some evidence that suggests the interactions observed between
uncertainty and articulatory variation may indeed be functional.

1.2. Sublexical Variation in Context

It is well established that isolated word snippets extracted from connected speech tend to be
suprisingly unintelligible outside of their context. By contrast, when reduced variants are presented
to speakers in context, they are able to identify the word without difficulty and to report hearing the
full form [16]. Consistent with this, the effect of frequency on speech production has been shown
inconsistent across registers, speakers, lexical classes, and utterance positions and there are opaque
interactions between context, lexical class, and frequency range.

At first blush, these inconsistencies would appear to limit the scope of functional accounts of
speech sound variance, and to date, the effects that are stable enough to be taken as evidence for
functional theories are mostly to be found in preselected content words from the mid-frequency range,
such that the effects reported rarely align with effects observed in the remaining (by token count,
significantly larger) parts of the distribution.
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For example, while function words, high frequency discourse markers, and words at utterance
boundaries account for the largest portion of variance in speech, their exclusion from the analysis of
speech sound variance is such a common practice that it might be considered a de facto standard [17].
Against this background, it is noteworthy that Bell et al. [18] report a divergence in the extent to which
the articulation of function and content words across frequency ranges is affected by both frequency
and the conditional probability of the collocates. While duration in content words is well predicted by
the information provided by the following word but not the preceding word, the effect decreases as the
frequency increases and shows a reverse pattern in function words. Similarly, van Son and Pols [19]
report a reversal in the correlation between reduction and segmental information in low-information
segments and segments at utterance boundaries. The effect of information content is reported to be
limited by a hard floor in high-frequency segments; that is, most frequent segments fail to support
the hypothesis. Standardizing the exclusion of misfits is controversial, especially given that they
outnumber the tokens which are typically taken to confirm a hypothesis and account for the largest
part of variance in speech [20,21].

The seemingly random and noisy variance in the speech signal appears systematically correlated
with uncertainty about the upcoming part of the message. As an example, vowel duration in low- and
mid-frequency content words is correlated to the information provided by the upcoming word [18].
Words in less predictable grammatical contexts are on average longer and more disfluent [22].
These fluctuations in duration and sequence structure have been shown to inform listeners’ responses.
For instance, the duration of common segments in word stems differ between singular and plural
forms [23]. Speakers appear to use acoustic differences in word stem as a cue to grammatical context
(plural suffix), and incongruence between segmental and durational cues lead to delayed responses in
both grammatical number and lexical decision tasks [24]. Similar effects occur at many other levels of
description; for example, disfluent instructions (the . . . uhm . . . camel) lead to more fixations to objects
not predicted by the discourse context [25] and facilitate prediction of unfamiliar objects [26].

The occurrence of silent and filled pauses has been shown to contribute to the perception
of fluency [27] and intelligibility [28] as well as improved recall [29]. Importantly however,
neither artificially slowed-down speech samples nor samples modified by insertion of pauses are
then perceived to be more fluent or intelligible, and indeed, in both cases, these manipulations have
been shown to result in impaired performance [30]. Accordingly, the fact that listeners easily interpret
reduced sequences from context and reject speech artificially altered to mimic completeness and
fluency indicates that hearers are highly sensitive to violations of their expectations about how natural
speech should sound and not that they have a preference for completeness and slow and extreme
articulation. However, despite the evidence that sublexical variation shapes speaker expectations
about the upcoming content, its contribution to successful communication as an informative part of
the signal has remained relatively unexplored to date.

However, it is clear that any quantification of the communicative contributions of sublexical
variations in context will depend on a consistent definition of context. That is, in order to address the
extent to which the quality of articulation and the observed variance in the signal interact with the
remaining uncertainty about the message in general terms, it is necessary to first formalize a consistent
subset of higher-level abstractions that systematically covary in the degree to which they contribute to
uncertainty reduction. The contrast between these subsets can then allow these effects to be analyzed
independent of the specific context of any given utterance.

1.3. The Present Study

In comparison to written language, speech often appears to be messy. Instead of the well-formed
word sequences that characterize text, spontaneous speech sequences are typically interrupted by
silent and filled pauses, left unfinished, depart from word-order conventions, frequently miss word
segments or whole words, and rely on clarifying feedback which tends to be short and grammatically
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incomplete. In consequence, the token distributions that underlie the information structure of written
and spoken language differ substantially.

For instance, nouns are less lexically diverse in spoken English then in writing (based on measures
derived from the Corpus of Contemporary American English (COCA)), whereas English adjectives
tend to be more lexically diverse in speech. While reading and writing are self-paced, speech gives both
speakers and hearers less control over timing. This suggests that the moment-to-moment uncertainty
experienced in communication may differ in speech as compared to written language, and it may be
that more effort is invested in uncertainty reduction in spoken than in written language. From this
perspective, the increase in the lexical variety in prenominal adjectives, which in English reduce
uncertainty about upcoming nouns [31], might be functional in that it may help manage the extra
uncertainty in spoken communication. This raises the question of the degree to which these and other
variational changes in spoken English are indeed informative and systematic.

These considerations also suggest that the results of previous analyses of the distributional
structure of lexical variety in communicative contexts conducted on text corpora can only offer
indirect support when it comes to answering questions about the communicative properties of speech.
To address this shortcoming, we conducted a corpus analysis of conversational English [32] to explore
the extent to which the distribution and the underlying structure of the grammatical context in which
words are embedded interacts with speech signal variation observed across lexical categories. The goal
of this analysis was to explore the structural properties of grammatical regularities in speech and their
effect on the distributions of the lexical and sublexical contrasts that they discriminate between.

The analysis was conducted in two stages. Part one, presented in Section 3, addresses the
distribution of grammatical and lexical contrast in speech and aims to answer the following questions:

• Are distributions of grammatical regularities in speech sampling invariant?
• How do recurrence patterns of grammatical categories and speech sequences inform learning?
• Are distributions of subcategorization frames and types they distinguish between geometric?

Part two of our analysis, presented in Section 4, assesses the concrete consequences of the
sublexical variation observed in the speech signal and relates these to the results presented in Section 3,
addressing the following questions:

• Are the inconsistent effects of frequency on speech sound variation across categories correlated
with structural and distributional aspects of the grammatical and lexical contexts they populate?

• Finally and perhaps most importantly, is the resulting sublexical variance systematic?

2. Materials and Methods

2.1. Data

The Buckeye Corpus [32] contains phonetically transcribed speech from informal interviews with
40 speakers from Columbus, Ohio. The 286, 982 words are annotated with a set of 41 standard aligner
phone labels expanded by a set of markers for manner of articulation (nazalization, flaps, glottal stops,
and retroflex vocalization). The corpus version we used was extended by Dilts [33] with measures
of segmental deletion; dictionary form alignment; and deviation rate normalized by word length,
speech rate, and backward and forward conditional probabilities of word ngrams. For the analysis
reported here, we excluded from the corpus 8426 words with missing or incomplete duration variables.
The data set and the code for the analysis can be found at https://osf.io/bqepj/.

In each of the 1-h interviews, the 40 speakers (who are balanced by age and gender) showed
an enormous amount of variability (as assessed by phonetic transcription) in the speech signal. Overall,
only 40% of the words are produced in their citation form. Only 38% of word types tend to appear in
their non-citation variants more often and the propensity of individual speakers to pronounce word
types in their citation form varies widely (between 36% word types and 67% word types). The word
that appears in 313 variants, including d ah tq, m ah t, z eh tq, and ng ah.
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We extracted for each citation form and parts-of-speech combination the number of variants
observed in the corpus by citation form. The relative frequency counts for each form by parts-of-speech
label were taken from the spoken part of COCA, an 80 million token subcorpus of Contemporary
American English from transcripts of unscripted conversation on TV and radio programs.

2.2. Probability Distributions Analysis

Plotting a frequency distribution on a log-log plane, with log frequency on the y axis and log of
rank order on the x axis, is a common method in the analysis of probabilistic structure. A linear plot
indicates that the data conforms to Zipf’s law because Zipf’s law assumes an exponential increase
in the time rate (rank). That is, a linear plot confirms a power law, while distributions we observe
here and other variants of aggregate distributions (e.g., Zipf-Mandelbrot) are reported as an anomaly.
The latter usually entails the introduction of additional parameters to fit the distribution back to
power law.

Because linguists have so far only searched for power laws, the distributions we observe here are,
when found, reported as an exception [34]. Ramscar [3] argues that empirical linguistic distributions
ought not to be expected to follow power laws. Rather, because learning and mutual predictability
require a regular distribution of events over time, human communicative codes ought to be expected
to have distributions that retain their structures over time. Accordingly, following Ramscar [3],
we employed log-linear plots in these analyses. That is, the linear decrease in probability over
discrete time defines a time invariant communicative distribution while the exponential decrease in
probability does not. To asses the extent to which the method captures this property, we apply it to
a set of subsamples drawn from the original data.

Figure 1a,b shows results from a simulation study capturing fits of the analyzed categories to
a geometric distribution and a power-law distribution, respectively, over the first 2500 words from each
of the 40 speaker subsamples. The two bottom row panels show the fits to geometric (Figure 1c) and
power law (Figure 1d) across 40 random subsamples varying in size between 652 and 19, 363 tokens.
As we can see in Figure 1, fits to power law vary with sample size and source across all categories.
In contrast, fits to geometric remain relatively stable in empirical distributions independent of sample
source and size. This is not the case for aggregate distributions. Accordingly, this method appears to
capture the critical property of communicative distributions addressed in this paper.

Figure 1. Cont.

91



Entropy 2020, 22, 90

Figure 1. Boxplots of fits to geometric distribution (a,c) and power law distribution (b,d) for categories
analyzed in Sections 3.1 and 3.2 for the first 2500 words by 40 speakers (a,b) for 40 random samples
ranging in sizes between 652–19,363 (c,d).

2.3. Statistical Analysis

The results presented in Section 4.1 were analyzed with a generalized additive mixed-effects
model (GAMM) [35,36], working with the mgcv package for R. GAMMs are used for the analysis
of complex, often nonlinear patterns involving the interaction of two or more numeric and factorial
predictors. Instead of using polynomial functions, GAMMs introduce smoothing splines. A smoothing
spline with one predictor fits a curve over multiple basis functions. Smoothing splines with multiple
predictors fit multidimensional surfaces. These features allow us to explore interactions between
frequency range, context, and lexical category and to reduce the model complexity by identifying
relevant predictors which eventually result in linear effects.

3. The Structure of Lexical and Grammatical Variety in Speech: A Corpus Analysis

3.1. Part-of-Speech Token Distributions

3.1.1. Why Parts of Speech?

It is clear that many important regularities in human languages are consistently captured by
high-level linguistic abstractions such as, for example, parts-of-speech categories, indicating that
languages may be sufficiently structured to allow the discrimination of various functional parts of
codes at various levels of abstraction. Ramscar [3] suggests that the probabilistic co-occurrence patterns
of words and phrases serve to discriminate subcategories of signals (and hence codes) and that, as well
as serving different communicative purposes, these subcategories form distributions that facilitate
speaker alignment at various levels of analysis. This raises an obvious question: do the distributional
properties of structural regularities in conversational speech actually support this hypothesis?

Parts-of-speech tags are often used to label the various categories that can be extracted from the
abstract structure of languages. Different tag sets are used for languages which differ in structure,
and the extent to which tags capture detail varies with the particular context in which tagging is
employed. These tags are assigned automatically by statistical tools, typically assuming a Markov
process, which employs regularities in word co-occurrence patterns over word sequences of varying
sizes [37,38]. The fact that taggers achieve high levels of accuracy suggests in turn that high levels
of systematicity must be present in distributional patterns. That is, the fact that structural properties
of the training set will translate to novel and larger samples implies that the captured properties
are sampling invariant. Previous work on text corpora implies that, in text at least, the empirical
distributions discriminated by communicative contexts are geometric [3]. This raises a question:
do the patterns that emerge during part-of-speech tagging also discriminate distributions with similar
empirical properties?
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Further, the finding that the probability of types that are subcategorized by these context decreases
at a constant rate [3] suggests in turn that different empirical subcategories might serve similar
communicative purposes at different levels of specificity. In English, message length in words
has been shown to increase as the content of messages increases as a consequence of learning and
specialization [39–41]. The apparent systematicity revealed by analyses of covariance patterns in text
suggests that communicative codes may be adapted to support the transmission of an unbounded
set of messages at multiple levels of description, including length. That is, in speech at least,
the considerations reviewed above would seem to suggest that word sequence length (at least in
English) may be related to the relative probability of the message with respect to all messages all
speakers might want to communicate. This raises a further question: is the distribution of n-grams in
speech geometric?

To answer this, we analyzed the distributions of part-of-speech labels, utterance length,
and utterance position in the Buckeye Corpus of conversational English [32].

3.1.2. Results

Figure 2a–c shows frequency rank distribution plots of log counts for part-of-speech labels, phrase
lengths, and the phrase positions, respectively. The blue line indicates the best fit to log-log scale
(power law), while the red line shows the best fit to geometric (geometric is linear; the probability
decreases at a constant rate). As we can see, the empirical distribution (represented by the grey points)
of part-of-speech labels, utterance length, and utterance position, with R2 of 0.9725, 0.9957, and 0.9981,
respectively, show a close fit to geometric, whereas fits to power law are 0.7798, 0.8109, and 0.8035,
respectively.

These results thus suggest that sampling from the functional distributions that can be
discriminated by context at this level may indeed result in probability estimates that are similar
across speakers, irrespective of discourse context and length.

In addition, they provide some evidence to support the suggestion that hearing a one-word
utterance such as yes, okay, correct, or exactly or a longer utterance such as um sort of let them make
their own decision when they got older what they wanted to do is sufficiently stable irrespective of size,
again indicating that the distribution of communicative types at different levels of description in
conversational speech may be systematic.

Figure 2. The frequency distributions for the part of speech label (a), utterance length (b) and utterance
position (c) categories in the Buckeye Corpus [32]: Grey points show the observed distribution, with fits
to a power law distribution (blue line) and a geometric distribution (red line). All three distributions
show a close fit to a geometric distribution.

3.1.3. Discussion

Our results show that grammatical subcategories captured by part-of-speech tags have
distributions that are likely to lead to an alignment in the probabilistic expectations of speakers
regardless of any differences in their exposure to these distributions. They also provide further
support for the suggestion that, unlike aggregate word token distributions (which have power law
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distributions [42]), the empirical distributions that are discriminated by communicative context are
geometric [3].

The abstract model of communication defined by Shannon [9] is at heart a deductive process of
uncertainty reduction [3]. The model assumes that communicative codes will be distributed so as to
ensure that every sequence produced has the same statistical properties. A consequence of this is that
any mixture of code samples will have the same statistical properties as any other sample. By contrast,
it would appear that, in speech at least, natural languages gradually reduce message uncertainty via
a series of sequential subcategorization frames of increasing degree of specificity. Evidence for this
suggestion is provided by the differences in type/token ratio of part-of-speech categories, which vary
systematically. Further, the shape of the distribution of utterance lengths suggests that the expectations
about the distribution of messages of different lengths that speakers learn will likely align, helping the
overall system to deal flexibly with the ever-growing number of specific messages that humans are
likely to wish to communicate.

In the introduction, we described how constraints on the structure of name sequences have lead to
qualitatively different patterns of distribution in English and Sinosphere first names. Legal constraints
on last names in English have lead to differentiation between (geometric) local first name distributions
which, when aggregated over, fit power laws [3]. Thus, the differences in the extent to which word
categories are subjected to grammatical and lexical constraints (Section 1.1) seem to predict differences
in the productivity of lexical categories over time, leading to more aggregation in verbs. The analysis
presented in the next section aims to explore whether the shape of word frequency distributions of
different lexical categories reflect the differences in the way they are constrained by the grammar.

3.2. Covariance, Systematicity, and Subcategorization

3.2.1. Token Distributions across Lexical Categories

As we noted above, high-level descriptions (e.g., parts-of-speech) clearly capture many abstract
communicative properties such as animacy, agency and number in nouns or tense, and aspect
or argument structure in verbs. However, it seems that the functionality of these categories is
further subcategorized by patterns of co-occurrence which encode more specific distinctions between
agents, objects, actions, and relationships. This implies that verb and noun frequency distributions
are aggregates of functionally distinct subcategories. Consistent with this, Bentz et al. [43] show
that aggregates over verbs and nouns are power law distributed while Ramscar [3] confirmed this
finding and then showed that the subcategorical distributions of verb and nouns discriminated by
communicative context are geometric.

Importantly, previous studies have shown that token distributions in closed class categories
(function words and modal verbs) do not follow power laws [43,44]. These departures from the
trend to power law in other categories are assumed to be related to the communicative function of
high-frequency words. Linguistic theories typically assume that closed class tokens serve a qualitatively
different modifying or grammatical function while open classes are considered to contain and transport
meanings; that is, they provide lexical contrast.

These previous results thus predict that, when context is not used to subcategorize them,
nouns and verbs in English will be distributed differently to function words. To explore these patterns
of distribution, we analyzed the word token distributions of these separate parts of speech across the
speech samples.

3.2.2. Results

There are 44,722 noun and 45,159 verb tokens in the analyzed sample. With 5817 unique
types, nouns are a far more lexically diverse category than verbs with 2574 types. By contrast,
the 116,960 function word tokens are represented by 144 unique types.
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Figure 3 shows the token distribution of the three largest grammatical categories. We can see that
both verbs and nouns have a closer fit to power law compared to geometric distribution: R2

pl = 0.976

and R2
geom = 0.701 for verbs; R2

pl = 0.971 and R2
geom = 0.772 for nouns.

Figure 3. Word frequency distributions of nouns, verbs, and function words in the Buckeye Corpus [32]
show that the substantially smaller (compared to nouns) set of verbs has a closer fit to power law
distribution, indicating more aggregation. The shape of the distribution in function words suggests
that function words form a natural empirical distribution.

By contrast, the 144 unique function words (ntokens = 11, 696) show an almost perfect fit to
geometric R2

pl = 0.796, R2
geom = 0.992. A separate analysis shows a better fit to geometric over

power law in distributions of determiners (n = 16, R2
geom = 0.953, R2

pl = 0.830), pronouns (n = 28,

R2
geom = 0.957, R2

pl = 0.741), and prepositions/subordinating conjunctions (n = 78, R2
geom = 0.983,

R2
pl = 0.863). The aggregated set of function words, however, improves the fit to geometric.

3.2.3. Discussion

When taken in conjunction with earlier findings [3,43,44], the distribution of function words
we observed here supports the suggestion that they form a natural communicative distribution.
This in turn suggests that, despite the fact that prepositions (in contrast to determiners and pronouns)
distinguish between spatial and temporal relations, prepositions, determiners, and pronouns are part
of the same functional subsystem and, at some level, serve the same communicative function.

By contrast, we find that the lexically more diverse categories fit power laws. As previously
discussed, these distributions could be the product of aggregating over multiple communicative
distributions serving distinct communicative functions. This suggestion is further supported by the
observed distributions of verbs and nouns, which suggest that a smaller number of unique verb
types appears across a larger number of distinct communicative contexts than is the case for nouns.
This observation is supported by the fast growing head in the verb distributions, which appears
to result from aggregating over high-frequency verbs, whereas the fast growing tail in the noun
distributions appears to reflect the greater volume of low-frequency nouns.

In other words, the results imply that the differences observed between lexical categories do not
necessarily warrant categorial distinctions. Rather, the observable differences appear to reflect the
extent to which word co-occurrence clusters are shaped by the opposing communicative pressures of
prediction and discrimination over the course of learning.

In other words, these results confirm the idea that lexical categories are not equally distributed
across utterance positions. The next part of our analysis explores these relationships further.
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3.3. Lexical Category, Word Order, and Recurrence Patterns

3.3.1. What Makes a Lexical Category?

The distribution of function words suggests that function words will form the grammatical
subcategory that is first discriminated systematically from the speech signal. As a consequence,
it seems likely that, as both intuition and many linguistic theories would predict, function words
provide a first contextual frame to aid in the learning of other grammatical and contextual categories.
Once these basic contextual frames are learned, they will provide context, assisting in the learning of
other words. The idea that context will provide information that aids learning in turn suggests lexical
diversity will increase with utterance length.

Consistent with this suggestion, Genzel and Charniak [45] have shown that, although caching
local probability estimates of a words’ occurrence in written samples (to account for the variance in
recurrence patterns over time) stabilizes relative entropy over lexical sample size in nouns significantly,
the effect is far smaller in verbs and absent in function words. In the light of the foregoing discussion,
this might be taken to suggest that patterns of co-occurrence in verbs are less variant than those
in nouns and that these patterns are still less variant (and may even be regular) in function words.
These considerations suggest in turn that the different subcategories of words systematically reduce
uncertainty in communication at different levels of abstraction. To explore whether the different
communicative contributions of words from different lexical categories are quantifiable in speech
signal, we analyzed the patterns of occurrence of nouns, verbs, and function words (the three largest
categories by token count) over utterance length.

3.3.2. Results

The probability density of token occurrence over log normalized utterance length was analyzed
by category. As can be seen in the left panel of Figure 4, while the larger parts of tokens in all three
categories follow a normal distribution across utterance position (presumably as a consequence of
utterance length), there is also evidence of distinct bursts of occurrence which align with the word order
typology of English. That is, less specific pronouns are more likely in utterance initial positions, verbs
are more likely in utterance medial positions, and nouns are more likely in utterance final positions.

Figure 4. Distributional properties of the three largest (by token count) categories analyzed by utterance
position and frequency range: We find that the overall probability of occurrence varies with type and
utterance position (a), that frequency distributions of lexical classes are not evenly distributed across
probability space (b), that part-of-speech token probability decreases linearly as a function of utterance
position (c), and that lexical diversity increases nonlinearly as a function of utterance position (d).

The extent to which lexical categories are represented across the probability space (Figure 4b)
is correlated to the average utterance position. We find 85% of all function word types in the top
50 tokens, which makes up 51% of the probability mass, and 93% of function word types in the
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top 100 words, which makes up 64.6% of the probability mass. In other words, function words are
high-frequency words.

Further, we observe that, while token probability across lexical categories decreases linearly
(Figure 4b) over utterance position, the increase in lexical diversity across all three categories is
nonlinear. The right panel of Figure 4 shows smoothness of the normalized type/token ratio as
a function of utterance position. We observe significant differences in the patterns of increase between
the three lexical classes. The increase in the lexical variety of function words is limited to a small
number of tokens in the latter positions of long utterances. The diversity in nouns increases earlier
than in verbs.

Figure 5 shows that when words at utterance boundaries are excluded from the analysis,
the normalized type/token ratio of nouns and verbs show similar increase patterns while the growth
in function words remains unaffected. In contrast, the wide confidence interval in utterance final verbs
indicates that the relationship between lexical diversity and utterance length (which can be taken to
signify context) is less consistent in verbs than it is in nouns (and pronouns).

Figure 5. Increase in local lexical diversity (type/token ratio) across utterance position is not
linear. The increase rates differ substantially between lexical classes. The differences in the increase
rate between verbs and nouns in utterance final position are restricted to utterance initial tokens.
The confidence interval in verbs is larger. The differences in the increase rate between verbs and nouns
are constituted by the extent to which context affects lexical variety in nonfinal tokens.

3.3.3. Discussion

In sum, we observe significant differences in distributional properties between word categories.
Word categories differ with respect to the frequency range they populate, the average utterance
position, and lexical diversity. From the perspective of learning, this implies that the properties which
distinguish word categories interact with the order in which they are learned while the order in
which they are learned appears to be a consequence of the regularity with which they are represented
across samples.

We suggest that the aggregation effects in token distributions across lexical classes is correlated to
the degree in which category types are regularly distributed across language samples, reflecting the
extent to which their communicative function is mediated by the contextual frames they appear within.
Our analysis shows that lexical classes differ both in the average utterance position and in the rate
at which lexical diversity increases as a function of utterance position and that the increase rate is
inversely related to the average utterance position of the class.

In the next part of the analysis, we explore the extent to which the variety of abstract grammatical
constructions in which words are embedded can serve to capture the differences in distributional
structure and recurrence patterns that we observe across lexical categories.
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3.4. Distribution of Grammatical Context

3.4.1. How Do Different Parts of Speech Carry Out Their Communicative Function?

Words often occur in multiple grammatical contexts. The word claim, for instance, appears
5989 times in the spoken section of the Corpus of Contemporary American English [46]: 2719 times
as a verb and 3270 times as a noun, 3016 times as noun singular, 1994 times as base form verb (1),
and 1276 times as an infinitive (2), so that the three instances of claim in the three following examples
serve distinct communicative functions which are not equally probable.

11. The girls claim to have seen the fairies.
12. You may be able to claim compensation.
13. The court found no evidence to support her claim.

The particular uses of claim that speakers intend to communicate will thus be determined by the
lexical and grammatical context in which it is used. If one were to count the word claim as one type
across all the contexts it occurs within without taking into consideration its lexical status, one would
run the risk of aggregating over the multiple communicative functions it serves, and this problem will
clearly increase as a word’s frequency increases.

To explore the extent to which lexical subcategories receive support from these kinds of contextual
frames, we next analyzed the distributional properties of the frames that words are embedded within
by lexical category.

3.4.2. Results

In the first part of this analysis, we explored the distributions of grammatical context (defined as
part-of-speech bigram) that words are embedded in. This was then followed up with an analysis of the
word token distributions that these part-of-speech constructions distinguish between.

The left panel of Figure 6 presents the log frequency rank plots of part-of-speech bigram
distributions over the three analyzed lexical categories. It shows that all three distributions are
geometric and that the slopes differ substantially. The slopes which reflect the extent to which words
are subcategorized by grammatical context are inversely correlated to the rate at which lexical diversity
increases as a function utterance position in Figure 5.

Figure 6. Distribution of contextual distinctions (part of speech bigrams) by lexical class: Nouns appear
in a far smaller number of contextual frames; the size of the contextual frame is on average larger.
The frequency distribution of verbs within the contextual frame is exponential. In the larger set of
nouns, we see effects of aggregation in the low- and high-frequency tails.
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We observe a more diverse set of grammatical distinctions between categories of smaller frame
size in verbs as compared to nouns. The distribution of the parts-of-speech bigram of the preceding
word and the word itself is more diverse, with 124, 223, and 359 parts-of-speech constructions for 5869,
3124, and 144 unique word forms, respectively. The parts-of-speech context on average comprises
37 types of verbs (ranging from 1 to 460) and 119 types of nouns (ranging from 1 to 1862). In contrast,
function word contexts on average host 2 distinct function words.

This suggests that the extent to which words are subcategorized by grammatical context is
correlated with both lexical diversity and the average utterance position of a category. In consequence,
the lexical distributions we find embedded in grammatical frames differ in size and structure.
The center and the right panels of Figure 6 show the frequency distributions of the unique words
found in two of the smaller subcategorization frames. The smaller (by unique type count) frames
show a close fit to geometric irrespective of the word frequency range. In general, we observe more
aggregation in noun frames. That is, the extent to which the subsamples extracted from grammatical
subcategorization frames show the effects of aggregation appears to be independent of the frequency
range of lexical contrast they distinguish between. Instead, aggregation appears correlated to the size
of the subsample and, by implication, the extent to which lexical frames serve further subcategorization
within the more abstract grammatical frames.

3.4.3. Discussion

The distribution of grammatical constructions suggests that nouns which on average appear in
a smaller number of more lexically diverse constructions will receive more support from lexical frames,
resulting in less variance in the conditional probability between nouns and the words on which they are
conditioned. That is, the more high-frequency nouns tend to appear in larger, high frequency contexts
and thus tend to be further subcategorized by smaller lexical subcategorization frames. In contrast,
the extent to which the variety of grammatical contexts serves to reduce uncertainty across a smaller
(by type count) set of verbs will lead to more variance in the conditional probability between verbs
and verb arguments.

In the next section, we explore the effects that the distinct patterns of covariance between
high-frequency verbs and high-frequency nouns and their collocates have on the variety of articulated
variants we find in the speech corpus.

4. From Information Structure to Speech

The results we have described so far suggest that the structure of speech serves to facilitate
efficient message transmission over multiple nested levels of description. The distribution of lexical
and grammatical contrasts indicates that information structure depth increases over message sequences,
supporting gradual increases in the degree to which low-level sublexical contrasts contribute to
resolving uncertainty about a message. Consistent with this, it has been shown experimentally that
speech rates are perceived as being faster and target words as being longer when cognitive load is
increased [47], a response pattern that suggests that speakers adapt their response to the relative
uncertainty resulting from utterance context.

The notion that the timescale variance captured in speaker and listener performances reflects
adaptation to uncertainty is further supported by evidence showing that the sublexical variation in
speech sequences increases with sequence length, a phenomenon characterized by the strengthening of
word initial consonants and the lengthening of final vowels. While both effects increase cumulatively
as a function of utterance length [48], the interaction between lengthening and strengthening is weak,
indicating that hyperarticulation and vowel space expansion are not equally affected by context.
Moreover, while low-probability and word initial segments are more likely to be stressed and while
segment deletion is more likely in high-frequency phonemes and in latter positions, the frequency
effects actually observed in very frequent segments depart from this pattern. Also, the correlation
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between duration and extreme articulation, and duration and frequency declines as a function of
utterance position [49].

The analyses presented in Section 3.4 indicate that average grammatical uncertainty peaks in
words that are more likely to occur in utterance initial positions and that average lexical uncertainty
peaks in categories which are more likely at utterance final positions. It has also been shown
that slow-downs in articulation are associated with uncertainty and that uncertainty leads to an
increase in articulatory variance. These effects have been observed both within [23] and across word
boundaries [18] as a consequence of syntactic irregularities [22] and appear functional in lexical
decision [24] and discourse [26]. Since our analyses show substantial differences across parts of speech
in both the extent to which words are predicted by the previous context and the extent to which they
serve to predict the upcoming part of the message across the frequency range, this seems to imply
that the apparently inconsistent effects of frequency that have been previously observed are both
predictable and systematic with respect to the structure of the grammatical context.

This in turn can be taken to suggest that sublexical variance follows as a consequence of an
increase in lexical and grammatical variety in which words are embedded and that the variants we
observe aim to increase the efficiency in transmission of informative contrast at multiple levels of
description. In the next section, we conduct a statistical analysis of the effects of variation in the
collocations of words on the number of distinct forms found in the speech corpus.

4.1. Effects of Frequency and Collocate Diversity on Variation

4.1.1. The Distinct Effects of Collocate Diversity And Frequency

Wedel and colleagues have shown that the number of competing minimal pairs in lexical context
predict likelihood of vowel merger [50] and voice onset time duration [17], suggesting that what drives
speech contrast loss is the extent to which minimal pair competition is resolved in context. In line
with this, Piantadosi et al. [51] observe that the relative probability of a word in a lexical context
(defined as word sequences ranging between 2–4 words) is a far better predictor of word length than
word frequency.

This raises questions: Does this hold for variance too? Is the diversity of collocate contexts across
which a word appears a better predictor of the extent to which a type will vary across a speech sample
than frequency?

The probability of a known word appearing in a previously unattested context increases with
the average word count so that word frequency and collocate diversity are strongly correlated
(r(9190) = 0.70, p < 0.0001). High-frequency words are more likely to be preceded by a larger
number of different words and thus tend to appear across a larger number of communicative contexts
that vary in size. By implication, there is more variance in the conditional probability between
high-frequency words and their collocates. In contrast, words from the mid-frequency range will
appear in a smaller number of distinct communicative contexts, leading to less variance in the
conditional probability between mid-frequency words and their collocates. In line with this, an analysis
by Arnon and Priva [52] shows that, in contrast to results reported by Bell et al. [18], duration in
content words is affected by both word and multiword frequency as well as the transitional probability
of both the preceding and following collocates when high- and low-frequency trigrams; sequences
interrupted by pauses and word final sequences are excluded from the analysis. Finally, the increase in
lexical diversity over utterance length (Section 3.3) suggests that low-frequency words tend to appear
in a larger number of distinct message contexts, again leading to more variance in the conditional
probabilities of low-frequency words at different positions within the sequence with respect to the
likelihood of the message.

The discriminative nature of learning predicts that this variance will increase within-context
competition over exposure time and that this will minimize the informativeness of contextual cues
which predict a large number of lexical contrasts. This in turn predicts more sublexical variation in
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words that serves as cues to a larger number of collocates, reflecting the uncertainty of the relative
context. Taken together, these factors predict distinct patterns of variance across frequency ranges.

4.1.2. Results

To explore the nonlinear effects of frequency and collocate diversity on observed variance,
we fitted generalized additive mixed models (GAMM) [35] using the mgcv package for R. In baseline
model 1, we model the normalized number of observed corpus variants as a function of the smooth
over log frequency. In baseline model 2, we model the number of variants as a function of a smooth
over collocate diversity, the log normalized number of preceding words we observe in the corpus.

Model 1 counts show a strong, nonlinear effect of frequency (p < 0.0001). It yields an R2 of 0.435
and explains 43.5% of the deviance in the data (ed f = 5.05, AIC = 19852.04). Model 2 shows a strong,
nonlinear effect of diversity of collocates in the preceding position (p < 0.0001), explaining 74.6% of
the variance in the data (ed f = 6.922, R2 = 0.746, AIC = 11777.66).

We assessed the goodness of fit of both models by the Aikake Information Criterion (AIC). Model 2
improved the score by 8074.38. To contrast the contribution of both predictors, we modeled word
variance as a function of smooth over log normalized word frequency and log normalized number
of variants observed in the corpus in a combined model 3. Model 3 (R2 = 0.746, AIC = 11548.74)
reduced the AIC by 228. Both predictors are highly significant (p < 0.0001).

Interestingly, the plots show that the frequency effects predicted by the baseline model 1 and
the combined model diverge substantially across frequency ranges (see Figure 7a,c), suggesting
that the effect of frequency is largely overestimated in the low-frequency and mid-frequency ranges
by the baseline model. It further appears that a large part of the frequency effect is confounded
by the correlation between word frequency and the number of collocate contexts a word appears
within. There remains, however, a strong effect of frequency observable in high-frequency words.
The high-frequency part of the data behind the effect comprises 82 function words, 57 nouns,
and 47 verbs, representing 69%, 1%, and 2% of unique types, respectively.

Word frequency appears to influence the extent to which a word varies in form only in
high-frequency words and thus holds for type variation across lexical categories to the degree with
which the category is represented in the high-frequency tail of the word distribution. We further
observe a stronger correlation between collocate diversity and word frequency in function words
(r(143) = 0.882, p < 0.0001), than in verbs (r(2549) = 0.665, p < 0.0001) and nouns (r(5626) = 0.593,
p < 0.0001).

(a) (b) (c) (d)

Figure 7. Baseline word variance model comparison: (a) the log normalized number of observed
variants as a a function of smooth over log frequency (derived from the spoken part of COCA); (b) the
log normalized number of observed variants as a function of collocate diversity, the log number of
preceding words; and (c,d) Figure 7a,b in a combined model.

Finally, we fitted a set of combined models, adding in the log number of distinct parts of speech
following each word for all words (model 4) and adding in lexical category as a covariate factor
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(model 5). In model 4, we observe a fairly weak effect of frequency (p < 0.006 (see Figure 8a), while the
effects of the context predictors were strong. The AIC score is reduced by 531.

(a) (b) (c) (d)

Figure 8. Log normalized number of observed variants as a function of smooth over log frequency
(row 1) and adjacent token diversity (rows 2 and 3) for all words (a), function words (b), verbs (c),
and nouns (d): when collocate diversity is taken into account, frequency effects on variation only hold
in a minimal proportion of high-frequency nouns and appear to have no effect at all on verbs and
function words.

In model 5, the introduction of lexical category as a covariate further reduces the AIC score by
254 points and explains 76.8% (R2 = 0.766) of deviance observed in the data. The effect of frequency is
not significant in verbs (p < 0.816) and function words (p < 0.062) and is statistically significant but
weak in nouns (p < 0.018). Again, all contextual predictors are highly significant in function words,
nouns, and verbs. The same pattern was observed for all of the other analyzed categories apart from the
following exceptions: filled pauses and numbers show an effect of frequency (p < 0.002); contractions
are unaffected by the collocate diversity (p = 0.21); and there is no interaction between modal verbs
and the upcoming collocate context (p = 0.1). Modals, numbers, and contractions comprise 0.008% of
the analyzed data set. We observe differences in the effect of preceding collocate diversity between
verbs and nouns in that the effect and the confidence interval both increase linearly in nouns while the
effect levels off in high-frequency verbs, showing an increase in variance.

A closer examination of the data reveals that the relationship between word frequency and
collocate diversity differ significantly across frequency ranges for verbs and nouns. Collocate diversity
is much higher in high-frequency verbs and function words than it is in high-frequency nouns. Also,
there is far more variance in the effect in high-frequency nouns.

4.1.3. Discussion

The results of this analysis align with the finding that word counts outside of their communicative
context contribute little when it comes to explaining variation in articulated forms. Rather, we observe
that the largest part of this variance is explained by the diversity of the lexical contexts in which words
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appear. The remaining effects of frequency are limited to a relatively small number of high-frequency
nouns and words from closed categories (numbers, contractions, and filled pauses).

These results are thus consistent with the differences we find in the distributional patterns of
lexical categories in that, unlike high-frequency nouns, it would seem that high-frequency verbs are
far less likely to be encountered outside of their argument frames (supporting the idea that verbs are
encountered as arguments rather than lexical items per se).

Given that our results show that the variance in the observed forms is largely explained by the
covariance in the collocate structure and that patterns of covariance are systematic, this finally leads
us to the question of the systematicity in the sublexical variance: Is the distribution of the observed
contrast geometric?

4.2. Distribution of Word Initial Contrast

4.2.1. Why Word Initial Contrast?

Previous work on sublexical variation shows that the structure of speech sound sequences is such
that the probability of speech segments at segment transitions is not independent [49]. Gating paradigm
studies have shown that the informativeness of word medial contrast is mediated by the extent
to which both the preceding sentence context and word initial phonetic contrasts have minimized
uncertainty about the word [53,54]. Accordingly, the entropy in sublexical contrast peaks at word initial
boundaries [49]. This suggests that word initial speech contrasts may serve a distinct communicative
function in context.

An initial analysis of word initial phonetic label distributions over both observed and citation
forms in the corpus revealed poor fits to both power law and exponential distributions, suggesting that
the aggregated distribution of the phonetic labels observed in our corpus may result from mixing the
underlying communicative distributions. To examine this, we used parts-of-speech classes to provide
a simple, objective method for contextually disaggregating individual communicative distributions
from the mixed distribution of phonetic labels in our corpus.

4.2.2. Results

The frequency distributions of word initial phone labels were analyzed by parts-of-speech category
considering the observed forms as the empirical distribution and the citation form as its model
counterpart. Overall, both empirical and model distributions of phone labels show a better fit to
geometric than to power-law distribution (Figure 9). However, while the fits to geometric in the model
distribution show a larger departure from linearity and large differences in slope between different
parts of speech, the observed phones across categories converge on nearly identical distributions with
close fits to geometric (Table 1).

Figure 9. The distribution of word initial phonetic labels in 6 selected parts-of-speech categories: Row
1 shows the distribution presupposed by the dictionary forms, and row 2 shows the distribution of
phonetic variants which were actually observed.
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Table 1. The distribution of word initial phonetic labels by part-of-speech category (Penn Treebank
classification) from the Buckeye Corpus of conversational speech [32]: The first two columns contain
slopes from the log frequency - rank model for observed and theoretical distributions, followed by the
linear model fit to log frequency - rank (R2, geometric), model fit to log frequency - log rank (R2, power
law) and the total number of assigned phonetic labels (nphon). The model distribution represents the
distribution of labels presupposed by the dictionary forms, while the empirical distribution shows
phonetic contrast produced by the speakers.

Part of Speech Slope R2
geom R2

pl nphon

emp model emp model emp model emp model

determiner −0.16 −0.565 0.969 0.953 0.922 0.891 53 12
preposition −0.157 −0.399 0.993 0.941 0.85 0.697 55 21

personal pronoun −0.176 −0.554 0.984 0.802 0.87 0.593 54 11
noun, sg. or mass −0.152 −0.171 0.975 0.895 0.726 0.621 53 37
proper noun, sg. −0.14 −0.145 0.931 0.889 0.699 0.68 39 31

noun, plural −0.167 −0.175 0.961 0.873 0.72 0.636 44 35
verb, base form −0.168 −0.226 0.989 0.941 0.798 0.698 46 33
verb, past tense −0.172 −0.244 0.972 0.944 0.784 0.768 44 31

verb, gerund/pres.part. −0.168 −0.21 0.969 0.96 0.812 0.735 46 32
verb, past part. −0.147 −0.193 0.991 0.934 0.828 0.716 45 30

verb, non-3rd pers.sg.pres. −0.155 −0.249 0.991 0.977 0.777 0.751 51 31
verb, 3rd pers.sg.pres. −0.157 −0.218 0.975 0.976 0.866 0.847 42 31

proper noun, pl. −0.269 −0.342 0.847 0.908 0.938 0.958 12 10

function word −0.15 −0.229 0.9731 0.8604 0.7317 0.6276 61 26
noun −0.159 −0.199 0.9689 0.8713 0.7112 0.5797 54 40
verb −0.164 −0.225 0.9856 0.9234 0.7406 0.6473 55 33

In both function and content words, the empirical distributions significantly improve the fit to
a geometric. Importantly, despite substantial differences in the type/token ratio of the lexical classes
analyzed, all of the categories have nearly identical empirical distributions with minimal differences
in slopes. The exception is plural proper nouns where the data is extremely sparse (this category
comprises a mere 50 tokens). Further, while we find that initial phones from several small categories
(particles, modals, and filled pauses) have poor fits to either a geometric or a power law, in a similar
vein, it is debatable whether these small sets of items constitute separate categories in terms of the
covariate structures they populate.

Finally, we extracted time bins of initial phone duration centered by phone category to simulate
an artificial set of discrete contrasts such that the simulation assumes a low-level subcategorization of
phonetic contrast by duration. Again, across the parts-of-speech categories, the cumulative probability
distributions of time bins show close fits to the geometric (R2 > 0.9662) and poor fits to power law
(R2 < 0.8333).

4.2.3. Discussion

Our analysis of word initial phonetic labels across different parts-of-speech categories confirms
that they are geometrically distributed. The distribution of duration time bins is also geometric.
These results thus suggest that what might appear to be random variance in the production of speech
sounds may actually reflect a highly systematic distribution of sublexical contrasts.

While word initial variance is observable in all part of speech categories, we find that the extent
to which tokens vary is closely correlated to uncertainty that is modulated by the underlying structure
of the category. Importantly, despite large differences in the extent to which initial tokens deviate from
the citation form, the probability distributions of tokens arising from this variance converge on nearly
identical distributional properties across parts of speech.

Finally, we observe that the distribution of word initial phones assumed by the dictionary
models show poor fits to geometric and power law, illustrating that, unlike the aggregate lexical
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contrasts, mixtures over closed sets of items similar in structure do not result in power laws. Instead,
the distributions we observe are characterized by a fast growth in the mid-frequency range.

5. General Discussion

We analyzed distributions of the grammatical, lexical, and sublexical varieties in spontaneous
conversational speech produced by 40 speakers of American English [32] to assess the effects of the
statistical structure of speech on the sublexical variance observed in the signal. Our results show that
distributions of regularities in co-occurrence patterns, the lexical contrasts they discriminate between,
and the sublexical variety observed in the articulated forms result in distributions which are consistent
with previous, similar analyses of written English that satisfy many of the communicative constraints
described by information theory [3].

Accordingly, these results also provide further evidence that power law distributions seen in
aggregate word frequency distributions are product of mixing functionally relevant distributions that
are in themselves geometric [3,8].

The distributions in the analyzed sample suggest that, unlike the codes in artificial communication
systems, human speech is a highly structured system of nested communicative distributions shaped by
learning. In line with the predictions of learning theory, this suggests that speech variation at positions
of high uncertainty is driven by the interaction of regular structures at multiple levels of description
and that this variance serves to increases the efficiency of communication by increasing the amount of
contrast in signals.

Taken together, our results indicate that the variance in the pronounced forms systematically
structures the uncertainty discriminated by communicative contexts, supporting the suggestion that
empirical distributions of phonetic contrasts in speech are components of a larger, highly structured
communication system.
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1. Introduction

As it was noticed by Dębowski [1–3], a generalized calculus of Shannon information measures for
arbitrary fields—initiated by Gelfand et al. [4] and later developed by Dobrushin [5], Pinsker [6], and
Wyner [7]—is useful in particular for studying the ergodic decomposition of stationary processes and
its links with statistical modeling of natural language. Fulfilling this need, Dębowski [1] has developed
the calculus of Shannon information measures for arbitrary fields, relaxing the requirement of regular
conditional probability, assumed implicitly by Dobrushin [5] and Pinsker [6]. He has done it unaware
of the classical paper by Wyner [7], which pursued exactly the same idea, with some differences due to
an independent interest.

Compared to exposition [7], the added value of the paper [1] was considering continuity and
invariance of Shannon information measures with respect to completion of fields. Unfortunately, the
proof of Theorem 2 in [1] establishing this invariance and the generalized chain rule contains some
mistakes and gaps, which we have discovered recently. For this reason, in this article, we would like to
provide a correction and a few new auxiliary results which may be of an independent interest. In this
way, we will complete the full generalization of Shannon information measures and their properties,
which was developed step-by-step by Gelfand et al. [4], Dobrushin [5], Pinsker [6], Wyner [7], and
Dębowski [1]. By the way, we will also rediscuss the linguistic motivations of our results.

The preliminaries are as follows. Fix a probability space (Ω,J , P). Fields are set algebras closed
under finite Boolean operations, whereas σ-fields are assumed to be closed also under countable
unions and products. A field is called finite if it has finitely many elements. A finite partition is a
finite collection of events

{
Bj
}J

j=1 ⊂ J which are disjoint and whose union equals Ω. The definition
proposed by Wyner [7] and Dębowski [1] independently reads as follows:
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Definition 1. For finite partitions α = {Ai}I
i=1 and β =

{
Bj
}J

j=1 and a probability measure P, the entropy
and mutual information are defined as

HP(α) :=
I

∑
i=1

P(Ai) log
1

P(Ai)
, IP(α; β) :=

I

∑
i=1

J

∑
j=1

P(Ai ∩ Bj) log
P(Ai ∩ Bj)

P(Ai)P(Bj)
. (1)

Subsequently, for an arbitrary field C and finite partitions α and β, we define the pointwise conditional entropy
and mutual information as

HP(α||C) := HP(·|C)(α), IP(α; β||C) := IP(·|C)(α; β), (2)

where P(E|C) is the conditional probability of event E ∈ J with respect to the smallest complete σ-field
containing C. Subsequently, for arbitrary fields A, B, and C, the (average) conditional entropy and mutual
information are defined as

HP(A|C) := sup
α⊂A

E P HP(α||C), IP(A;B|C) := sup
α⊂A,β⊂B

E P I(α; β||C), (3)

where the supremum is taken over all finite subpartitions and E PX :=
∫

XdP is the expectation. Finally,
we define the unconditional entropy HP(A) := HP(A| {∅, Ω}) and mutual information IP(A;B) :=
IP(A;B| {∅, Ω}), as it is generally done in information theory. When the probability measure P is clear
from the context, we omit subscript P from all above notations.

Although the above measures, called Shannon information measures, have usually been discussed
for σ-fields, the defining equations (3) also make sense for fields. We observe a number of identities,
such as H(A) = I(A;A) and H(A|C) = I(A;A|C). It is important to stress that Definition 1, in
contrast to the earlier expositions by Dobrushin [5] and Pinsker [6], is simpler—as it applies one
Radon–Nikodym derivative less—and does not require regular conditional probability, i.e., it does not
demand that conditional distribution (P(E|C))E∈J be a probability measure almost surely. In fact, the
expressions on the right-hand sides of the equations in (3) are defined for all A, B, and C. No problems
arise when conditional probability is not regular since conditional distribution (P(E|C))E∈E restricted
to a finite field E is a probability measure almost surely [8] (Theorem 33.2).

We should admit that in the context of statistical language modeling, the respective probability
space is countably generated so regular conditional probability is guaranteed to exist. Thus, for
linguistic applications, one might think that expositions [5,6] are sufficient, although for a didactic
reason, the approaches proposed by Wyner [7] and Dębowski [1] lead to a simpler and more general
calculus of Shannon information measures. Yet, there is a more important reason for Definition 1.
Namely, to discuss the ergodic decomposition of entropy rate and excess entropy—some highly
relevant results for statistical language modeling, developed in [1] and to be briefly recalled in Section
3—we need the invariance of Shannon information measures with respect to completion of fields. But
within the framework of Dobrushin [5] and Pinsker [6], such invariance of completion does not hold
for strongly nonergodic processes, which seem to arise quite naturally in statistical modeling of natural
language [1–3]. Thus, the approach proposed by Wyner [7] and Dębowski [1] is in fact indispensable.

Thus, let us inspect the problem of invariance of Shannon information measures with respect
to completion of fields. A σ-field is called complete, with respect to a given probability measure
P, if it contains all sets of outer P-measure 0. Let σ(A) denote the intersection of all complete
σ-fields containing class A, i.e., σ(A) is the completion of the generated σ-field. Let A∧ B denote the
intersection of all fields that contain A and B. Assuming Definition 1, the following statement has
been claimed true by Dębowski [1] (Theorem 2):

Theorem 1. Let A, B, C, and D be subfields of J .
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1. I(A;B|C) = I(A; σ(B)|C) = I(A;B|σ(C)) (invariance of completion);
2. I(A;B ∧ C|D) = I(A;B|D) + I(A; C|B ∧ D) (chain rule).

The property stated in Theorem 1. 1 will be referred to as the invariance of completion. It was not
discussed by Wyner [7]. The property stated in Theorem 1. 2 is usually referred to as the chain rule or
the polymatroid identity. It was proved independently by Wyner [7].

As we have mentioned, the invariance of completion is crucial to prove the ergodic decomposition
of the entropy rate and excess entropy of stationary processes. But the proof of the invariance of
completion given by Dębowski [1] contains a mistake in the order of quantifiers, and the respective
proof of the chain rule is too laconic and contains a gap. For this reason, we would like to supplement
the corrected proofs in this article. As we have mentioned, the chain rule was proved by Wyner [7],
using an approximation result by Dobrushin [5] and Pinsker [6]. For completeness, we would like to
provide a different proof of this approximation result—which follows easily from the invariance of
completion—and to supply proofs of both parts of Theorem 1.

The corrected proofs of Theorem 1, to be presented in Section 2, are much longer than the original
proofs by Dębowski [1]. In particular, for the sake of proving Theorem 1, we will discuss a few other
approximation results, which seem to be of an independent interest. To provide more context for
our statements, in Section 3, we will also recall the ergodic decomposition of excess entropy and its
application to statistical language modeling.

2. Proofs

Let us write Bn ↑ B for a sequence (Bn)n∈N of fields such that B1 ⊂ B2 ⊂ · · · ⊂ B =
⋃

n∈N Bn.
(B need not be a σ-field.) Our proof of Theorem 1 will rest on a few approximation results and this
statement by Dębowski [1] (Theorem 1):

Theorem 2. Let A, B, Bn, and C be subfields of J .

1. I(A;B|C) = I(B;A|C);
2. I(A;B|C) ≥ 0 with the equality if and only if P(A ∩ B|C) = P(A|C)P(B|C) almost surely for all

A ∈ A and B ∈ B;
3. I(A;B|C) ≤ min(H(A|C), H(B|C));
4. I(A;B1|C) ≤ I(A;B2|C) if B1 ⊂ B2;
5. I(A;Bn|C) ↑ I(A;B|C) for Bn ↑ B.

Let Ac = Ω \ A. Subsequently, let us denote the symmetric difference

A�B := (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B). (4)

Symmetric difference satisfies the following identities, which will be used:

Ac�Bc = A�B, (5)

A�B ⊂ (A�C) ∪ (C�B), (6)

(A \ C)�B ⊂ (A�B) ∪ (C ∩ B), (7)(⋃
i∈C

Ai

)
�
(⋃

i∈C
Bi

)
⊂ ⋃

i∈C
(Ai�Bi). (8)

Moreover, we will apply the Bonferroni inequalities

0 ≤ ∑
1≤i≤n

P(Ai)− P

( ⋃
1≤i≤n

Ai

)
≤ ∑

1≤i<j≤n
P(Ai ∩ Aj) (9)
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and inequality P(A) ≤ P(B) + P(A�B).
In the following, we will derive the necessary approximation results. Our point of departure is

the following folklore fact.

Theorem 3 (approximation of σ-fields). For any field K and any event G ∈ σ(K), there is a sequence of
events K1, K2, · · · ∈ K such that

lim
n→∞

P(G�Kn) = 0. (10)

Proof. Denote the class of sets G that satisfy (10) as G. It is sufficient to show that G is a complete
σ-field that contains the fieldK. Clearly, all G ∈ K satisfy (10) so G ⊃ K. Now, we verify the conditions
for G to be a σ-field.

1. We have Ω ∈ K. Hence, Ω ∈ G.
2. For A ∈ G, consider K1, K2, · · · ∈ K such that limn→∞ P(A�Kn) = 0. Then, A�Kn = Ac�Kc

n,
where Kc

1, Kc
2, · · · ∈ K. Hence, Ac ∈ G.

3. For A1, A2, · · · ∈ G, consider events Kn
i ∈ K such that P(Ai�Kn

i ) ≤ 2−n. Then,

P

((
n⋂

i=1

Ai

)
�
(

n⋂
i=1

Ki+n
i

))
≤

n

∑
i=1

P(Ai�Ki+n
i ) ≤ 2−n. (11)

Moreover,

P

((
∞⋂

i=1

Ai

)
�
(

n⋂
i=1

Ai

))
= P

(
n⋂

i=1

Ai

)
− P

(
∞⋂

i=1

Ai

)
. (12)

Hence,

P

((
∞⋂

i=1

Ai

)
�
(

n⋂
i=1

Ki+n
i

))

≤ P

((
∞⋂

i=1

Ai

)
�
(

n⋂
i=1

Ai

))
+ P

((
n⋂

i=1

Ai

)
�
(

n⋂
i=1

Ki+n
i

))

≤ P

(
n⋂

i=1

Ai

)
− P

(
∞⋂

i=1

Ai

)
− 2−n, (13)

which tends to 0 for n going to infinity. Since
⋂n

i=1 Ki+n
i ∈ K, we thus obtain that

⋂∞
i=1 Ai ∈ G.

Completeness of σ-field G is straightforward since, for any A ∈ G and P(A�A′) = 0, we obtain
A′ ∈ G using the same sequence of approximating events in field K as for event A.

The second approximation result is the following bound:

Theorem 4 (continuity of entropy). Fix an ε ∈ (0, e−1] and a field C. For finite partitions α = {Ai}I
i=1 and

α′ =
{

A′i
}I

i=1 such that P(Ai�A′i) ≤ ε for all i ∈ {1, . . . , I}, we have

∣∣H(α|C)− H(α′|C)∣∣ ≤ I
√

ε log
I√
ε

. (14)

Proof. We have the expectation
∫

P(Ai�A′i|C)dP = P(Ai�A′i) ≤ ε. Hence, by the Markov inequality
we obtain

P(P(Ai�A′i|C) ≥
√

ε) ≤ √ε. (15)
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Denote

B =
(

P(Ai�A′i|C) <
√

ε) for all i ∈ {1, . . . , I}) . (16)

From the Bonferroni inequality, we obtain P(Bc) ≤ I
√

ε. Subsequently, we observe that
|H(α||C)− H(α′||C)| ≤ log I holds almost surely. Hence,

∣∣H(α|C)− H(α′|C)∣∣ = ∣∣∣∣
∫ [

H(α|C)− H(α′|C)] dP
∣∣∣∣

≤ P(Bc) log I +
∫

B

∣∣H(α||C)− H(α′||C)∣∣ dP

≤ I
√

ε log I +
∫

B

∣∣H(α||C)− H(α′||C)∣∣ dP. (17)

Function −x log x is subadditive and increasing for x ∈ (0, e−1]. In particular, we have
|(x + y) log(x + y)− x log x| ≤ −y log y for x, y ≥ 0. Thus, on the event B we obtain

∣∣H(α||C)− H(α′||C)∣∣ =
∣∣∣∣∣

I

∑
i=1

P(A′i|C) log P(A′i|C)−
I

∑
i=1

P(Ai|C) log P(Ai|C)
∣∣∣∣∣

≤ −
I

∑
i=1

∣∣P(Ai|C)− P(A′i|C)
∣∣ log

∣∣P(Ai|C)− P(A′i|C)
∣∣

≤ −
I

∑
i=1

P(Ai�A′i|C) log P(Ai�A′i|C)

≤ −I
√

ε log
√

ε (18)

Plugging (18) into (17) yields the claim.

Now, we can prove the invariance of completion. Note that

I(α; β|C) = H(α|C) + H(β|C)− H(α ∧ β|C). (19)

Proof of Theorem 1. 1 (invariance of completion): Consider some measurable fields A, B, and C.
We are going to demonstrate

I(A;B|C) = I(A; σ(B)|C) = I(A;B|σ(C)). (20)

Equality I(A;B|C) = I(A;B|σ(C)) is straightforward since P(A|C) = P(A|σ(C)) almost surely for all
A ∈ J . It remains to prove I(A;B|C) = I(A; σ(B)|C). For this goal, it suffices to show that for any
ε > 0 and any finite partitions α ⊂ A and β′ ⊂ σ(B) there exists a finite partition β ⊂ B such that

∣∣I(α; β|C)− I(α; β′|C)∣∣ < ε. (21)

Fix then some ε > 0 and finite partitions α := {Ai}I
i=1 ⊂ A and β′ :=

{
B′j
}J

j=1
⊂ σ(B). Invoking

Theorem 3, we know that for each η > 0 there exists a class of sets
{

Cj
}J

j=1 ⊂ B which need not be a
partition, such that

P(Cj�B′j) ≤ η (22)

for all j ∈ {1, . . . , J}. Let us put B′J+1 := ∅ and let us construct sets D0 := ∅ and Dj :=
⋃j

k=1 Ck for
j ∈ {1, . . . , J}. Subsequently, we put Bj := Cj \ Dj−1 for j ∈ {1, . . . , J} and BJ+1 := Ω \ DJ . In this way,

we obtain a partition β :=
{

Bj
}J+1

j=1 ⊂ B.

112



Entropy 2020, 22, 79

The next step of the proof is showing an analogue of bound (22) for partitions β and β′. To begin,
for j ∈ {1, . . . , J}, we have

P(Bj�B′j) = P((Cj \ Dj−1)�B′j) ≤ P(Cj�B′j) + P(Dj−1 ∩ B′j)

≤ η +
j−1

∑
k=1

P(Ck ∩ B′j)

≤ η +
j−1

∑
k=1

[
P(B′k ∩ B′j) + P((Ck ∩ B′j)�(B′k ∩ B′j))

]

≤ η +
j−1

∑
k=1

[
0 + P(Ck�B′k)

] ≤ jη. (23)

Now, we observe for j, k ∈ {1, . . . , J} and j �= k that

P(Cj) ≥ P(B′j)− P(Cj�B′j) ≥ P(B′j)− η (24)

P(Cj ∩ Ck) ≤ P(B′j ∩ B′k) + P((Cj ∩ Ck)�(B′j ∩ B′k))

≤ 0 + P(Cj�B′j) + P(Ck�B′k) ≤ 2η. (25)

Hence, by the Bonferroni inequality we derive

P(BJ+1�B′J+1) = P((Ω \ DJ)�∅) = P(Ω \ DJ) = 1− P(DJ)

≤ 1− ∑
1≤j≤J

P(Cj) + ∑
1≤j<k≤J

P(Cj ∩ Ck)

≤ 1− ∑
1≤j≤J

P(B′j) + Jη + ∑
1≤j<k≤J

2η = J2η. (26)

Resuming our bounds, we obtain

P((Ai ∩ Bj)�(Ai ∩ B′j)) ≤ P(Bj�B′j) ≤ J2η (27)

for all i ∈ {1, . . . , I} and j ∈ {1, . . . , J + 1}. Then, invoking Theorem 4 yields

∣∣I(α; β|C)− I(α; β′|C)∣∣ ≤ ∣∣H(α ∧ β|C)− H(α ∧ β′|C)∣∣+ ∣∣H(β|C)− H(β′|C)∣∣
≤ I(J + 1)

√
J2η log

I(J + 1)√
J2η

+ (J + 1)
√

J2η log
J + 1√

J2η
. (28)

Taking η sufficiently small, we obtain (21), which is the desired claim. �

Some consequence of the above result is this approximation result proved by Dobrushin [5]
and Pinsker [6] and used by Wyner [7] to demonstrate the chain rule. Applying the invariance of
completion, we supply a different proof than Dobrushin [5] and Pinsker [6].

Theorem 5 (split of join). Let A, B, C, and D be subfields of J . We have

I(A;B ∧ C|D) = sup
α⊂A,β⊂B,γ⊂C

E I(α; β ∧ γ||D), (29)

where the supremum is taken over all finite subpartitions.
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Proof. Define class

E :=
⋃

β⊂B,γ⊂C
σ(β ∧ γ). (30)

It can be easily verified that E is a field such that σ(E) = σ(B ∧ C). Thus, for all finite partitions β ⊂ B
and γ ⊂ C we have β ∧ γ ⊂ E . Moreover, by definition of E , for each finite partition ε ⊂ E there exists
finite partitions β ⊂ B and γ ⊂ C such that partition β ∧ γ is finer than ε. Hence, by Theorem 2.4, we
obtain in this case,

E I(α; ε||D) ≤ E I(α; β ∧ γ||D) ≤ I(α; E|D). (31)

In consequence, by Theorem 1. 1, we obtain the claim

I(A;B ∧ C|D) = I(A; E|D) = sup
α⊂A,ε⊂E

E I(α; ε||D)

= sup
α⊂A,β⊂B,γ⊂C

E I(α; β ∧ γ||D). (32)

The final approximation result which we need to prove the chain rule is as follows:

Theorem 6 (convergence of conditioning). Let α = {Ai}I
i=1 be a finite partition and let C be a field. For

each ε > 0, there exists a finite partition γ′ ⊂ σ(C) such that for any partition γ ⊂ σ(C) finer than γ′ we have

|H(α|C)− H(α|γ)| ≤ ε. (33)

Proof. Fix an ε > 0. For each n ∈ N and A ∈ J , partition

γA := {((k− 1)/n < P(A|C) ≤ k/n) : k ∈ {0, 1, . . . , n}} (34)

is finite and belongs to σ(C). If we consider partition γ′ :=
∧I

i=1 γAi , it remains finite and still satisfies
γ′ ⊂ σ(C). Let a partition γ ⊂ σ(C) be finer than γ′. Then,

|P(Ai|C)− P(Ai|γ)| ≤ 1/n (35)

almost surely for all i ∈ {1, . . . , I}. We also observe

|H(α|C)− H(α|γ)| ≤
∫
|H(α||C)− H(α||γ)| dP. (36)

We recall that function −x log x is subadditive and increasing for x ∈ (0, e−1]. In particular, we have
|(x + y) log(x + y)− x log x| ≤ −y log y for x, y ≥ 0. Hence, for n ≥ e we obtain almost surely

|H(α||C)− H(α||γ)| =
∣∣∣∣∣

I

∑
i=1

P(Ai|C) log P(Ai|C)−
I

∑
i=1

P(Ai|γ) log P(Ai|γ)
∣∣∣∣∣

≤ −
I

∑
i=1
|P(Ai|C)− P(Ai|γ)| log |P(Ai|C)− P(Ai|γ)|

≤ I log n
n

. (37)

Taking n so large that n−1 I log n ≤ ε yields the claim.
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Taking the above into account, we can demonstrate the chain rule. Our proof essentially follows
the ideas of Wyner [7], except for invoking Theorem 6.

Proof of Theorem 1. 2 (chain rule): Let A, B, C, and D be arbitrary fields, and let α, β, γ, and δ be
finite partitions. The point of our departure is the chain rule for finite partitions [9] (Equation 2.60)

I(α; β ∧ γ) = I(α; β) + I(α; γ|β). (38)

By Definition 1 and Theorems 1. 1, 5, and 6, conditional mutual information I(A;B|C) can be
approximated by I(α; β|γ), where we take appropriate limits of refined finite partitions with a certain
care.

In particular, by Theorems 1. 1, 5, and 6, taking sufficiently fine finite partitions of arbitrary fields
B and C, the chain rule (38) for finite partitions implies

I(α;B ∧ C) = I(α;B) + I(α; C|B), (39)

where all expressions are finite. Hence, we also obtain

0 = [I(α;B ∧ C ∧ D)− I(α;D)− I(α;B ∧ C|D)]

− [I(α;B ∧D)− I(α;D)− I(α;B|D)]

− [I(α;B ∧ C ∧D)− I(α;B ∧D)− I(α; C|B ∧ D)]

= I(α;B|D) + I(α; C|B ∧ D)− I(α;B ∧ C|D),

where all expressions are finite. Having established the above claim for a finite partition α, we
generalize it to

I(A;B ∧ C|D) = I(A;B|D) + I(A; C|B ∧ D) (40)

for an arbitrary field A, taking its appropriately fine finite partitions. �

3. Applications

This section borrows its statements largely from Dębowski [1–3] and is provided only to sketch
some context for our research and justify its applicability to statistical language modeling. Let
(Xi)i∈Z be a two-sided infinite stationary process over a countable alphabet X on a probability space
(XZ,X Z, P), where Xk((ωi)i∈Z) := ωk. We denote random blocks Xk

j := (Xi)j≤i≤k and complete

σ-fields Gk
j := σ(Xk

j ) generated by them. By the generalized calculus of Shannon information measures,
i.e., Theorems 1 and 2, we can define the entropy rate hP and the excess entropy EP of process (Xi)i∈Z
as

hP := lim
n→∞

HP(G0|G−1−n) = HP(G0|G−1−∞) if X is finite, (41)

EP := lim
n→∞

IP(G−1−n;Gn−1
0 ) = IP(G−1−∞;G∞

0 ), (42)

see [10] for more background.
Let T((ωi)i∈Z) := (ωi+1)i∈Z be the shift operation and let I :=

{
A ∈ X Z : T−1(A) = A

}
be the

invariant σ-field. By the Birkhoff ergodic theorem [11], we have σ(I) ⊂ σ(G−∞) ∩ σ(G∞) for the
tail σ-fields G−∞ :=

⋂∞
n=1 G−n−∞ and G∞ :=

⋂∞
n=1 G∞

n . Hence, by Theorems 1 and 2 we further obtain
expressions

hP = HP(G0|G−1−∞) = HP(G0|G−1−∞ ∧ I) if X is finite, (43)

EP = IP(G−1−∞;G∞
0 ) = HP(I) + IP(G−1−∞;G∞

0 |I). (44)
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Denoting the conditional probability F(A) := P(A|I), which is a random stationary ergodic
measure by the ergodic decomposition theorem [12], we notice that HP(G0|G−1−∞ ∧I) = E P HF(G0|G−1−∞)

and IP(G−1−∞;G∞
0 |I) = E P IF(G−1−∞;G∞

0 ), and consequently we obtain the ergodic decomposition of the
entropy rate and excess entropy, which reads

hP = E PhF if X is finite, (45)

EP = HP(I) + E PEF. (46)

Formulae (45) and (46) were derived by Gray and Davisson [13] and Dębowski [1] respectively.
The ergodic decomposition of the entropy rate (45) states that a stationary process is asymptotically
deterministic, i.e., hP = 0, if and only if almost all its ergodic components are asymptotically
deterministic, i.e., hF = 0 almost surely. In contrast, the ergodic decomposition of the excess
entropy (46) states that a stationary process is infinitary, i.e., EP = ∞, if some of its ergodic components
are infinitary, i.e., EF = ∞ with a nonzero probability, or if HP(I) = ∞, i.e., if the process is strongly
nonergodic in particular, see [14,15].

The linguistic interpretation of the above results is as follows. There is a hypothesis
by Hilberg [16] that the excess entropy of natural language is infinite. This hypothesis can be
partly confirmed by the original estimates of conditional entropy by Shannon [17], by the power-law
decay of the estimates of the entropy rate given by the PPM compression algorithm [18], by
the approximately power-law growth of vocabulary called Heaps’ or Herdan’s law [2,3,19,20],
and by some other experiments applying neural statistical language models [21,22]. In parallel,
Dębowski [1–3] supposed that the very large excess entropy in natural language may be caused by
the fact that texts in natural language describe some relatively slowly evolving and very complex
reality. Indeed, it can be mathematically proved that if the abstract reality described by random texts
is unchangeable and infinitely complex, then the resulting stochastic process is strongly nonergodic,
i.e., HP(I) = ∞ in particular [1–3]. Consequently, its excess entropy is infinite by formula (46). We
suppose that a similar mechanism may work for natural language, see [23–26] for further examples of
abstract stochastic mechanisms leading to infinitary processes.
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Abstract: We propose a quantitative approach for quantifying morphological complexity of a
language based on text. Several corpus-based methods have focused on measuring the different word
forms that a language can produce. We take into account not only the productivity of morphological
processes but also the predictability of those morphological processes. We use a language model that
predicts the probability of sub-word sequences within a word; we calculate the entropy rate of this
model and use it as a measure of predictability of the internal structure of words. Our results show
that it is important to integrate these two dimensions when measuring morphological complexity,
since languages can be complex under one measure but simpler under another one. We calculated
the complexity measures in two different parallel corpora for a typologically diverse set of languages.
Our approach is corpus-based and it does not require the use of linguistic annotated data.

Keywords: language complexity; morphology; TTR; language model; entropy rate

1. Introduction

Languages of the world differ from each other in unpredictable ways [1,2]. Language complexity
focuses on determine how these variations occurs in terms of complexity (size of grammar elements,
internal structure of the grammar).

Conceptualizing and quantifying linguistic complexity is not an easy task, many quantitative
and qualitative dimensions must be taken into account [3]. In general terms, the complexity of a
system could be related to the number and variety of elements, but also to the elaborateness of their
interrelational structure [4,5].

In recent years, morphological complexity has attracted the attention of the research community [1,6].
Morphology deals with the internal structure of words [7]. Several corpus-based methods are successful
in capturing the number and variety of the morphological elements of a language by measuring the
distribution of words over a corpus. However, they may not capture other complexity dimensions
such as the predictability of the internal structure of words. There can be cases where a language is
considered complex because it has a rich morphological productivity, i.e., great number of morphs
can be encoded into a single word. However, the combinatorial structure of these morphs in the word
formation process can have less uncertainty than other languages, i.e., more predictable.

We would like to quantify the morphological complexity by measuring the type and token
distributions over a corpus, but also by taking into account the predictability of the sub-word sequences
within a word [8].

We assume that the predictability of the internal structure of words reflects the difficulty of
producing novel words given a set of lexical items (stems, suffixes or morphs). We take as our method
the statistical language models used in natural language processing (NLP), which are a useful tool for
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estimating a probability distribution over sequences of words within a language. However, we adapt
this notion to the sub-word level. Information theory-based measures (entropy) can be used to estimate
the predictiveness of these models.

Previous Work

Despite the different approaches and definitions of linguistic complexity, there are some main
distinctions between the absolute and the relative complexity [3]. The former is defined in terms of
the number of parts of a linguistic system; and the latter (more subjective) is related to the cost and
difficulty faced by language users. Another important distinction includes global complexity that
characterizes entire languages, e.g., as easy or difficult to learn. In contrast, particular complexity
focuses only in a specific language level, e.g., phonological, morphological, syntactic.

In the case of morphology, languages of the world have different word production processes.
Therefore, the amount of semantic and grammatical information encoded at the word level, may
vary significantly from language to language. In this sense, it is important to quantify the
morphological richness of languages and how it varies depending on their linguistic typology.
Ackerman and Malouf [9] highlight two different dimensions that must be taken into account: the
enumerative (e-complexity) that focuses on delimiting the inventories of language elements (number
of morphosyntactic categories in a language and how they are encoded in a word); and the integrative
complexity (i-complexity) that focuses on examining the systematic organization underlying the
surface patterns of a language (difficulty of the paradigmatic system).

Coterell et al. [10] investigate a trade-off between the e-complexity and i-complexity of
morphological systems. The authors propose a measure based on the size of a paradigm but also on
how hard is to jointly predict all the word forms in a paradigm from the lemma. They conclude that “a
morphological system can mark a large number of morphosyntactic distinctions [. . . ] or it may have a
high-level of unpredictability (irregularity); or neither. However, it cannot do both”.

Moreover, Bentz et al. [11] distinguishes between paradigm-based approaches that use typological
linguistic databases for quantifying the number of paradigmatic distinctions of languages as an
indicator of complexity; and corpus-based approaches that estimate the morphological complexity
directly from the production of morphological instances over a corpus.

Corpus-based approaches represent a relatively easy and reproducible way to quantify complexity
without the strict need for linguistic annotated data. Several corpus-based methods share the
underlying intuition that morphological complexity depends on the morphological system of a
language, such as its inflectional and derivational processes; therefore, a very productive system will
produce a lot of different word forms. This morphological richness can be captured using information
theory measures [12,13] or type-token relationships [14], just to mention a few.

It is important to mention that enumerative complexity has been approached using a
paradigm-based or a corpus-based perspective. However, the methods that target the integrative
complexity seem to be more paradigm-based oriented (which can restrict the number of languages
covered). With that in mind, the measures that we present in this work are corpus-based and they do
not require access to external linguistic databases.

2. Methodology

In this work, we quantify morphological complexity by combining two different measures over
parallel corpora: (a) the type-token relationship (TTR); and (b) the entropy rate of a sub-word language
model as a measure of predictability. In this sense, our approach could be catalogued as a corpus-based
method for measuring absolute complexity of a specific language level (morphology).
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2.1. The Corpora

Parallel corpora are a valuable resource for many NLP tasks and for linguistics studies. Translation
documents preserve the same meaning and functions, to a certain extent, across languages. This allows
analysis/comparison of the morphological and typological features of languages.

We used two different parallel corpora that are available for a wide set of languages. On one
hand, we used a portion of the Parallel Bible Corpus [15]; in particular, we used a subset of 1150
parallel verses that overlapped across 47 languages (the selection of languages and pre-processing
of this dataset was part of the Interactive Workshop on Measuring Language Complexity (IWMLC
2019) http://www.christianbentz.de/MLC2019_index.html). These languages are part of the WALS
100-language sample, a selection of languages that are typologically diverse [16] (https://wals.info/
languoid/samples/100).

On the other hand, we used the JW300 parallel corpus that compiles magazine articles for many
languages [17] (these articles were originally obtained from the Jehovah’s Witnesses website https:
//www.jw.org). In this case, we extracted a subset of 68 parallel magazine articles that overlapped
across 133 languages. Table 1 summarizes information about the corpora.

Table 1. General information about the parallel corpora.

Corpus Languages Covered Total Tokens Avg. Tokens Per Language

Bibles 47 1.1 M 24.8 K
JW300 133 22.4 M 168.9 K

We ran the experiments in both corpora independently. The intersection of languages covered
by the two parallel corpora is 25. This shared set of languages was useful to compare the complexity
rankings obtained with our measures, i.e., test if our complexity measures are consistent across
different corpora.

It is important to mention that no sentence alignment was applied to the corpora. The Bibles
corpus was already aligned at the verse level while the JW300 corpus was only aligned at the document
level. However, for the aim of our experiments, alignment annotation (at the sentence or verse level)
was not required.

2.2. Type-Token Relationship (TTR)

The type-token relationship (TTR) has proven to be a simple, yet effective, way to quantify the
morphological complexity of a language using relatively small corpora [14]. It has also shown a high
correlation with other types of complexity measures such as paradigm-based approaches that are
based on typological information databases [11].

Morphologically rich languages will produce many different word forms (types) in a text, this
is captured by measures such as TTR. From a linguistic perspective, Joan Bybee [18] affirms that
“the token frequency of certain items in constructions [i.e., words] as well as the range of types [. . . ]
determines representation of the construction as well as its productivity”.

TTR can be influenced by the size of a text (Heaps’ law) or even by the domain of a corpus [19,20].
Some alternatives to make TTR more comparable include normalizing the text size or using logarithm,
however, Covington and McFall [19] argue that these strategies are not fully successful, and they
propose the moving-Average Type-Token Ratio. On the other hand, using parallel corpora has shown
to be a simple way to make TTR more comparable across languages [21,22]. In principle, translations
preserve the same meaning in two languages, therefore, there is no need for the texts to have the exact
same length in tokens.

We calculated the TTR for a corpus by simply using Equation (1). Where #types are the different
word types in the corpus (vocabulary size), and #tokens is the total number of word tokens in the
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corpus. Values closer to 1 would represent greater complexity. This simple way of measuring TTR,
without any normalization, has been used in similar works [11,22,23].

TTR =
#types
#tokens

(1)

We use this measure as an easy way to approach the e-complexity dimension; i.e., different
morphosyntactic distinctions, and their productivity, could be reflected in the type and token
distribution over a corpus.

2.3. Entropy Rate of a Sub-Word Language Model

Entropy as a measure of unpredictability represents a useful tool to quantify different linguistic
phenomena, in particular, the complexity of morphological systems [9,12,24].

Our method aims to reflect the predictability of the internal structure of words in a language.
We conjecture that morphological processes that are irregular/suppletive, unproductive, etc.,
will increase the entropy of a model that predicts the probability of sequences of morphs/sub-word
units within a word.

To do this, we estimate a stochastic matrix P, where each cell contains the transition probability
between two sub-word units in that language (see example Table 2). These probabilities are estimated
using the corpus and a neural language model that we will describe below.

Table 2. Toy example of a stochastic matrix using the trigrams contained in the word ‘cats’. The symbols
#, $ indicate beginning/end of a word.

#ca cat ats ts$

#ca 0.01 0.06 0.07 0.33
cat 0.9 0.04 0.05 0.22
ats 0.06 0.78 0.05 0.23
ts$ 0.03 0.12 0.83 0.22

We calculate the stochastic matrix P as follows (2):

P = pij = p(wj|wi) (2)

where wi and wj are sub-word units. We used a neural probabilistic language model to estimate a
probability function.

2.3.1. Sub-Word Units

Regarding to sub-word units, one initial thought would be to use character sequences that
correspond to the linguistic notion of morphemes/morphs. However, it could be difficult to perform
morphological segmentation to all the languages in the corpora. There are unsupervised morphological
segmentation approaches, e.g., Morfessor [25], BPE encoding [26], but they still require parameter
tuning to control over-segmentation/under-segmentation (making these approaches not completely
language independent).

Instead of this, we focused on fixed-length sequences of characters (n-grams), which is more
easily applicable to all the languages in the corpora. This decision is also driven by the evidence
that trigrams encode morphological properties of the word [27]. Moreover, in some tasks such as
language modeling, the use of character trigrams seems to lead to better word vector representations
than unsupervised morphological segmentations [28].

Therefore, we trained the language models using character trigrams. We also took into account
unigrams (characters) sequences, since there are languages with syllabic writing systems in the datasets
and in these cases a single character can encode a whole syllable.
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2.3.2. Neural Language Model

Our model was estimated using a feedforward neural network; this network gets trained with
pairs of consecutive n-grams that appear in the same word. Once the network is trained we can retrieve
from the output layer the probability pij for any pair of n-grams. This architecture is based on [29];
however, we used character n-grams instead of words. The network comprises the following layers:
(1) an input layer of one-hot vectors representing the n-grams; (2) an embedding layer; (3) a hyperbolic
tangent hidden layer; (4) and finally, an output layer that contains the conditional probabilities obtained
by a SoftMax function defined by Equation (3).

pij =
eaij

∑k eaik
(3)

The factor aij in Equation (3) is the jth output of the network when the n-gram wi is the input.
The architecture of the network is presented in Figure 1.

Figure 1. Neural probabilistic language model architecture, wi, wj are n-grams.

Once the neural network is trained, we can build the stochastic matrix P using the probabilities
obtained for all the pairs of n-grams. We determine the entropy rate of the matrix (P) by using
Equation (4) [30]:

H(P) = −
N

∑
i=1

μi

N

∑
j=1

pijlogN pij (4)

where pij are the entries of the matrix P, N is the size of the n-grams vocabulary, and μ represents
the stationary distribution. This stationary distribution can be obtained using Equation (5), for each
i = 1, . . . , N:

μi =
1
N

N

∑
k=1

pik (5)

This equation defines a uniform distribution (we selected a uniform distribution since we observed
that the stationary distribution, commonly defined by Pμ = μ, was uniform for several small test
corpora. Due to the neural probabilistic function, we can guarantee that the matrix P is irreducible; we
assume that the irreducibility of the matrices is what determines the uniform stationary distribution.
See [31]). To normalize the entropy, we use the logarithm base N. Thus, H(P) can take values from
0 to 1. A value close to 1 would represent higher uncertainty in the sequence of n-grams within the
words in a certain language, i.e., less predictability in the word formation processes.

The overall procedure can be summarized in the following steps: (the code is available at
http://github.com/elotlmx/complexity-model)

1. For a given corpus, divide every word into its character n-grams. A vocabulary of size N
(the number of n-grams) is obtained.
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2. Calculate the probability of transitions between n-grams, pij = p(wj|wi). This is done using the
neural network described before.

3. A stochastic matrix P = pij is obtained.
4. Calculate the entropy rate of the stochastic matrix H(P).

3. Results

We applied the measures to each language contained in the JW300 and Bibles corpora. We use the
notations H1, H3 for the entropy rate calculated with unigrams and trigrams respectively; TTR is the
type-token relationship.

To combine the different complexity dimensions, we ranked the languages according to each
measure, then we averaged the obtained ranks for each language (since we ranked the languages from
the most complex to the less complex, we used the inverse of the average in order to be consistent
with the complexity measures (0 for least complex, 1 for the most complex)). The notation for these
combined rankings are the following: TTR+H1 (TTR rank averaged with H1 rank); TTR+H2 (TTR rank
averaged with H2 rank); TTR+H1+H3 (TTR rank averaged with H1 and H3 ranks). In all the cases the
scales go from 0 to 1 (0 for the least complex and 1 for the most complex).

Tables 3 and 4 contain the measures described above for each corpus. These tables only show
the set of 25 languages that are shared between the two corpora. In Figures 2 and 3 we plot these
different complexities, and their combinations. The complete list of languages and results are included
in Appendices A and B.

Table 3. Complexity measures on the Bibles corpus (H1: unigrams entropy; H3: trigrams entropy; TTR:
Type-token relationship); bold numbers indicate the highest and the lowest values for each measure,
the rank is in brackets.

Language H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Arabic 0.726 (3) 0.748 (4) 0.31 (3) 0.333 (2) 0.333 (3) 0.333 (2)
Burmese 0.74 (2) 0.823 (2) 0.791 (1) 0.667 (1) 0.667 (1) 0.6 (1)

Eastern Oromo 0.652 (10) 0.573 (22) 0.196 (9) 0.105 (7) 0.065 (18) 0.073 (12)
English 0.703 (5) 0.667 (10) 0.082 (19) 0.083 (11) 0.069 (16) 0.088 (10)
Fijian 0.569 (19) 0.519 (24) 0.048 (24) 0.047 (21) 0.042 (24) 0.045 (24)

Finnish 0.696 (6) 0.59 (20) 0.266 (5) 0.182 (5) 0.08 (9) 0.097 (8)
French 0.607 (17) 0.609 (18) 0.139 (12) 0.069 (16) 0.067 (17) 0.064 (18)

Georgian 0.632 (12) 0.67 (9) 0.238 (6) 0.105 (7) 0.133 (5) 0.107 (5)
German 0.588 (18) 0.664 (12) 0.136 (13) 0.065 (17) 0.08 (9) 0.07 (13)
Hausa 0.61 (16) 0.614 (17) 0.098 (18) 0.059 (19) 0.057 (21) 0.059 (21)
Hindi 0.54 (22) 0.729 (6) 0.057 (22) 0.045 (23) 0.071 (13) 0.06 (20)

Indonesian 0.662 (9) 0.599 (19) 0.115 (17) 0.077 (12) 0.056 (22) 0.067 (16)
Korean 0.394 (25) 0.861 (1) 0.348 (2) 0.074 (14) 0.667 (1) 0.107 (5)

Modern Greek 0.683 (7) 0.655 (14) 0.181 (10) 0.118 (6) 0.083 (8) 0.097 (8)
Malagasy (Plateau) 0.568 (20) 0.519 (24) 0.14 (11) 0.065 (17) 0.056 (22) 0.054 (23)

Russian 0.751 (1) 0.732 (5) 0.225 (8) 0.222 (4) 0.154 (4) 0.214 (3)
Sango 0.538 (23) 0.56 (23) 0.025 (25) 0.042 (25) 0.042 (24) 0.042 (25)

Spanish 0.647 (11) 0.656 (13) 0.133 (15) 0.077 (12) 0.071 (13) 0.077 (11)
Swahili 0.613 (14) 0.576 (21) 0.233 (7) 0.091 (9) 0.071 (13) 0.07 (13)
Tagalog 0.632 (12) 0.629 (16) 0.121 (16) 0.071 (15) 0.063 (19) 0.068 (15)

Thai 0.554 (21) 0.752 (3) 0.055 (23) 0.045 (23) 0.074 (11) 0.063 (19)
Turkish 0.705 (4) 0.63 (15) 0.297 (4) 0.25 (3) 0.105 (6) 0.13 (4)

Vietnamese 0.406 (24) 0.684 (8) 0.066 (20) 0.045 (23) 0.071 (13) 0.058 (22)
Western Farsi 0.67 (8) 0.705 (7) 0.135 (14) 0.091 (9) 0.095 (7) 0.103 (7)

Yoruba 0.613 (14) 0.666 (11) 0.064 (21) 0.057 (20) 0.062 (20) 0.065 (17)
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Table 4. Complexity measures on the JW300 corpus (H1: unigrams entropy; H3: trigrams entropy; TTR:
Type-token relationship); bold numbers indicate the highest and the lowest values for each measure,
the rank is in brackets.

Language H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Arabic 0.586 (8) 0.826 (2) 0.171 (4) 0.166 (4) 0.333 (1) 0.214 (1)
Burmese 0.514 (19) 0.75 (5) 0.016 (22) 0.048 (23) 0.074 (12) 0.065 (17)

Eastern Oromo 0.552 (14) 0.568 (23) 0.111 (6) 0.1 (10) 0.068 (16) 0.069 (15)
English 0.682 (2) 0.712 (12) 0.053 (16) 0.111 (9) 0.071 (14) 0.1 (7)
Fijian 0.517 (18) 0.66 (17) 0.022 (21) 0.051 (21) 0.052 (23) 0.053 (21)

Finnish 0.563 (10) 0.628 (20) 0.184 (1) 0.181 (2) 0.095 (6) 0.096 (9)
French 0.522 (17) 0.673 (16) 0.072 (11) 0.071 (14) 0.074 (12) 0.068 (16)

Georgian 0.563 (10) 0.728 (9) 0.175 (2) 0.153 (6) 0.181 (2) 0.136 (3)
German 0.636 (3) 0.686 (14) 0.084 (9) 0.166 (4) 0.086 (9) 0.115 (5)
Hausa 0.527 (16) 0.619 (22) 0.035 (18) 0.058 (17) 0.05 (25) 0.053 (21)
Hindi 0.591 (6) 0.783 (3) 0.023 (19) 0.076 (12) 0.086 (9) 0.103 (6)

Indonesian 0.556 (12) 0.624 (21) 0.051 (17) 0.068 (15) 0.052 (23) 0.06 (19)
Korean 0.349 (24) 0.907 (1) 0.057 (14) 0.052 (20) 0.133 (4) 0.076 (14)

Modern Greek 0.594 (5) 0.753 (4) 0.09 (8) 0.153 (6) 0.166 (3) 0.176 (2)
Malagasy (Plateau) 0.499 (22) 0.537 (25) 0.062 (12) 0.058 (17) 0.054 (22) 0.05 (24)

Russian 0.5 (21) 0.722 (11) 0.137 (5) 0.076 (12) 0.125 (5) 0.081 (12)
Sango 0.385 (23) 0.724 (10) 0.01 (25) 0.041 (24) 0.057 (20) 0.051 (23)

Spanish 0.59 (7) 0.65 (18) 0.079 (10) 0.117 (8) 0.071 (14) 0.085 (10)
Swahili 0.598 (4) 0.565 (24) 0.098 (7) 0.181 (2) 0.064 (18) 0.085 (10)
Tagalog 0.514 (19) 0.676 (15) 0.054 (15) 0.057 (19) 0.066 (17) 0.06 (19)

Thai 0.552 (14) 0.74 (7) 0.013 (24) 0.051 (21) 0.064 (18) 0.065 (17)
Turkish 0.684 (1) 0.65 (18) 0.175 (2) 0.5 (1) 0.09 (8) 0.13 (4)

Vietnamese 0.344 (25) 0.692 (13) 0.014 (23) 0.041 (24) 0.055 (21) 0.049 (25)
Western Farsi 0.569 (9) 0.738 (8) 0.061 (13) 0.09 (11) 0.095 (6) 0.1 (7)

Yoruba 0.553 (13) 0.748 (6) 0.023 (19) 0.062 (16) 0.08 (11) 0.078 (13)

Figure 2. Different complexity measures (above) and their combinations (below) from Bibles corpus.
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Figure 3. Different complexity measures (above) and their combinations (below) from JW300 corpus.

We can see that languages can be complex under one measure but simpler under another one.
For instance, in Figures 2 and 3, we can easily notice that Korean is the most complex language if
we only take into account the entropy rate using trigrams (H3). However, this entropy dramatically
drops using unigrams (H1); therefore, when we combine the different measures, Korean is not the
most complex language anymore.

There are cases such as English where its TTR is one of the lowest. This is expected since English
is a language with poor inflectional morphology. However, its entropy is high. This suggests that a
language such as English, usually not considered morphologically complex, may have many irregular
forms that are not so easy to predict for our model.

We can also find the opposite case, where a language has a high TTR but low entropy, suggesting
that it may produce many different word forms, but the inner structure of the words was “easy” to
predict. This trend can be observed in languages such as Finnish (high TTR, low H3), Korean (high TTR,
low H1) or Swahili (high TTR, low H3).

The fact that a language has a low value of TTR does not necessarily imply that its entropy rate
should be high (or vice versa). For instance, languages such as Vietnamese or Malagasy (Plateau),
have some of the lowest values of entropy (H1, H3); however, their TTR values are not among
the highest in the shared subset. In this sense, these languages seem to have low complexity in
both dimensions.

Burmese language constitutes a peculiar case, it behaves differently among the two corpora.
Burmese complexity seems very high in all dimensions (TTR and entropies) just in the Bibles corpora.
We conjecture that TTR is oddly high due to tokenization issues [32]: this is a language without explicit
word boundary delimiters, if the words are not well segmented then the text will have many different
long words without repetitions (high TTR). The tokenization pre-processing of the Bibles was based
only on whitespaces and punctuation marks, while the JW300 had a more sophisticated tokenization.
In the latter, Burmese obtained a very low TTR and H1 entropy.

Cases with high complexity in both dimensions were less common. Arabic was perhaps the
language that tends to be highly complex under both criteria (TTR and entropy) and this behavior
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remained the same for the two corpora. We conjecture that this is related to the root-and-pattern
morphology of the language, i.e., these types of patterns were difficult to predict for our sequential
character n-grams language model. We will discuss more about this in Section 4.

3.1. Correlation across Corpora

Since our set of measures was applied to two different parallel corpora, we wanted to check if the
complexities measures were, more or less, independent from the type of corpora used, i.e., languages
should get similar complexity ranks in the two corpora.

We used Spearman’s correlation [33] for the subset of shared languages across corpora. Table 5
shows the correlation coefficient for each complexity measure between the two corpora. Burmese
language was excluded from the correlations due to the tokenization problems.

Table 5. Correlation of complexities between the JW300 and Bibles corpora (H1: unigrams entropy;
H3: trigrams entropy; TTR: Type-token relationship).

H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Correlation 0.520 0.782 0.890 0.776 0.858 0.765

Although the Bibles and the JW300 corpora belong to the same domain (religion), they greatly
differ in size and in the topics covered (they are also parallel at different levels). Despite this, all the
measures were positively correlated. The weaker correlation was obtained with H1, while complexity
measures such as TTR or TTR+H3 were strongly correlated across corpora.

The fact that the complexity measures are correlated among the two corpora suggest that they are
not very dependent of the corpus size, topics and other types of variations.

3.2. Correlation between Complexity Measures

In addition to the correlation across different corpora, we were interested in how the different
complexity measures correlate between them (in the same corpus). Tables 6 and 7 show the Spearman’s
correlation between measures in each corpus.

Table 6. Spearman’s correlations between measures in the corpus JW300 (all languages considered)
(H1: unigrams entropy; H3: trigrams entropy; TTR: Type-token relationship).

H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

H1 1.0 0.271 0.423 0.839 0.471 0.788
H3 - 1.0 0.112 0.238 0.746 0.64

TTR - - 1.0 0.843 0.732 0.709
TTR+H1 - - - 1.0 0.72 0.892
TTR+H3 - - - - 1.0 0.909

TTR+H1+H3 - - - - - 1.0

Table 7. Spearman’s correlations between measures in the Bibles corpus (all languages considered)
(H1: unigrams entropy; H3: trigrams entropy; TTR: Type-token relationship).

H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

H1 1.0 0.276 0.384 0.828 0.464 0.810
H3 - 1.0 0.006 0.152 0.693 0.585

TTR - - 1.0 0.815 0.654 0.637
TTR+H1 - - - 1.0 0.668 0.866
TTR+H3 - - - - 1.0 0.862

TTR+H1+H3 - - - - - 1.0
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In both corpora, the entropy-based measures (specially H3) were poorly correlated (or not
correlated) with the type-token relationship TTR. If these two types of measures are capturing, in fact,
two different dimensions of the morphological complexity then it should be expected that they are
not correlated.

The combined measures (TTR+H1, TTR+H3 and TTR+H1+H3) tend to be strongly correlated
between them. It seems that all of them can combine, to some extent, the two dimensions of complexity
(productivity and predictability).

Surprisingly, the entropy-based measures (H1 and H3) are weakly correlated between them,
despite both trying to capture predictability. We conjecture that this could be related to the fact that for
some languages, is more suitable to apply a trigram model and for some others the unigram model.
For instance, in the case of Korean, one character is equivalent to a whole syllable (syllabic writing
system). When we took combinations of three characters (trigrams) the model became very complex
(high H3), this does not necessarily reflect the real complexity. On the other hand, languages such as
Turkish, Finnish or Yaqui (see Appendix B) obtained a very high value of H1 (difficult to predict using
only unigrams, very long words), but if we use the trigrams the entropy H3 decreasse, trigram models
may be more appropriate for these type of languages.

3.3. Correlation with Paradigm-Based Approaches

Finally, we compared our corpus-based morphological complexity measures against two
paradigm-based measures. First, we used the CWALS measure proposed by [11], it is based on
28 morphological features/chapters extracted from the linguistic database WALS [16]. This measure
maps each morphological feature to a numerical value, the complexity of a language is the average of
the values of the morphological features.

The measure CWALS was originally applied to 34 typologically diverse languages. However,
we only took 19 languages (the shared set of languages with our Bibles corpus). We calculated the
correlation between our complexity measures and CWALS (Table 8).

In addition, we included the morphological counting complexity (MCC) as implemented by [34].
Their metric counts the number of inflectional categories for each language, the categories are obtained
from the annotated lexicon UniMorph [35].

This measure was originally applied to 21 languages (mainly Indo-European), we calculated the
correlation between MCC and our complexity measures using the JW300 corpus (which contained all
of those 21 languages) Table 8.

Appendices C and D contain the list of languages used for each measure and the complexities.

Table 8. Spearman’s correlation between CWALS, MCC and our complexity measures (H1: unigrams
entropy; H3: trigrams entropy; TTR: Type-token relationship).

H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

CWALS 0.322 −0.392 0.882 0.730 0.395 0.406
MCC 0.064 0.024 0.851 0.442 0.585 0.366

CWALS and TTR are strongly correlated, this was already pointed out by [11]. However,
our entropy-based measures are weakly correlated with CWALS, it seems that they are capturing
different things. MCC metric shows a similar behavior, it is highly correlated with TTR but not with
H1 (unigrams entropy) or H3 (trigrams entropy).

It has been suggested that databases such as WALS, which provide paradigmatic distinctions
of languages, reflect mainly the e-complexity dimension [2]. This could explain the high correlation
between CWALS, MCC, and measures such as TTR. However, the i-complexity may be better captured
by other types of approaches, e.g., the entropy rate measure that we have proposed.
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The weak correlation between our entropy-based measures and CWALS (even negative correlation
in the case of H3) could be a hint of the possible trade-off between the i-complexity and e-complexity.
However, further investigation is needed.

4. Discussion

Our corpus-based measures tried to capture different dimensions that play a role in the
morphological complexity of a language. H1 and H3 are focused on the predictability of the internal
structure of words, while TTR is focused on how many different word forms can a language produce.
Our results show that these two approaches poorly correlate, especially H3 and TTR (0.112 for JW300
and 0.006 for the Bibles), which give us a lead that these quantitative measures are capturing different
aspects of the morphological complexity.

This is interesting since, in fields such as NLP, languages are usually considered complex when
their morphology allows them to encode many morphological elements within a word (producing
many different word forms in a text). However, a language that is complex in this dimension can also
be quite regular (low entropy) in its morphological processes, e.g., a predictable/regular process can
be applied to a large number of roots, producing many different types; this is a common phenomenon
in natural languages [36].

We can also think in the opposite case, a language with poor inflectional morphology may have
low TTR; however, it may have suppletive/irregular patterns that will not be fully reflected in TTR
but they will increase the entropy of a model that tries to predict these word forms.

The aim of calculating the entropy rate of our language models was to reflect the predictability
of the internal structure of words (how predictable sequences of n-grams are in a given language).
We think this notion is closer to the concept of morphological integrative complexity (i-complexity);
however, there are probably many other additional criteria that play a role in this type of complexity.
In any case, it is not common to find works that try to conceptualize this complexity dimension based
only on raw corpora, our work could be an initial step towards that direction.

Measures such as H3, TTR (and all the combined versions) were consistent across the two parallel
corpora. This is important since these corpora had different sizes and characteristics (texts from
the JW300 corpus were significantly bigger than the Bibles one). These corpus-based measures may
not necessarily require big amounts of text to grasp some typological differences and quantify the
morphological complexity across languages.

The fact that measures such as CWALS highly correlated with TTR but negative correlated with H3,
suggests that CWALS and TTR are capturing the same type of complexity, closer to the e-complexity
criteria. This type of complexity may be easier to capture by several methods, contrary to the
i-complexity dimension, which is related to the predictability of forms, among other morphological
phenomena.

Adding typological information of the languages could help to improve the complexity analysis.
As a preliminary analysis, in Appendix E we classified a subset of languages as concatenative vs
isolating morphology using WALS. As expected, there is a negative (weak) correlation between the
TTR and H3. However, this sign of possible trade-off is more evident in isolating languages compared
to the ones that are classified as concatenative. This may be related to the fact that languages with
isolating tendency do not produce many different word forms (low TTR); however, their derivative
processes were difficult to predict for our sub-word language model (high entropy). More languages
and exhaustive linguistic analysis are required.

One general advantage of our proposed measures for approaching morphological complexity
is that they do not require linguistic annotated data such as morphological paradigms or grammars.
The only requirement is to use parallel corpora, even if the texts are not fully parallel at the
sentence level.

There are some drawbacks that are worth to discuss. We think that our approach of entropy rate
of a sub-word language model may be especially suitable for concatenative morphology. For instance,
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languages with root-and-pattern morphology may not be sequentially predictable, making the entropy
of our models go higher (Arabic is an example); however, these patterns may be predictable using a
different type of model.

Furthermore, morphological phenomena such as stem reduplication may seem quite intuitive
from a language user perspective; however, if the stem is not frequent in the corpus, it could be difficult
for our language model to capture these patterns. In general, derivational processes could be less
predictable by our model than the inflectional ones (more frequent and systematic).

On the other hand, these measures are dealing with written language, therefore, they can be
influenced by factors such as the orthography, the writing systems, etc. The corpus-based measures
that we used, especially TTR, are sensitive to tokenization and word boundaries.

The lack of a “gold-standard” makes it difficult to assess the dimensions of morphological
complexity that we are successfully capturing. The type-token relationship of a language seems to
agree more easily with other complexity measures (Section 3.3). On the other hand, our entropy rate is
based on sub-word units, this measure did not correlate with the type-token relationship, nor with
the degree of paradigmatic distinctions obtained from certain linguistic databases. We also tested an
additional characteristic, the average word length per language (see Appendix F), and this does not
strongly correlate either with H3 or H1.

Perhaps the question of whether this latter measure can be classified as i-complexity remains open.
However, we think our entropy-based measure is reflecting to some extent the difficulty of predicting a
word form in a language, since the entropy rate would increase with phenomena like: (a) unproductive
processes; (b) allomorphy; (c) complex system of inflectional classes; and (d) suppletive patterns [37],
just to mention a few.

Both approaches, TTR and the entropy rate of a sub-word language model, are valid and
complementary, we used a very simple way to combine them (average of the ranks). In the future,
a finer methodology can be used to integrate these two corpus-based quantitative approximations.

5. Future Work

In this section, we discuss some of the limitations that could be addressed as future work. The use
of parallel corpora offers many advantages for comparing characteristics across languages. However,
it is very difficult to find parallel corpora that cover a great amount of languages and that is freely
available. Usually, the only available resources belong to specific domains, moreover, the parallel texts
tend to be translations from one single language, e.g., English. It would be interesting to explore how
these conditions affect the measurement of morphological complexity.

The character n-grams that we used for training the language models could be easily replaced
by other types of sub-word units in our system. A promising direction could be testing different
morphological segmentation models. Nevertheless, character trigrams seem to be a good initial point,
at least for many languages, since these units may be capturing syllable information and this is related
to morphological complexity [38,39].

Our way to control the influence of a language script system in the complexity measures was to
consider two different character n-gram sizes. We noticed that trigrams (H3) could be more suitable for
languages with Latin script, while unigrams (H1) may be better for other script systems (like Korean
or Japanese). Automatic transliteration and other types of text pre-processing could be beneficial for
this task.

There are still many open questions, as a future work we would like to make a more fine-grained
typological analysis of the languages and complexity trends that resulted from these measures.
Another promising research direction would be to quantify other processes that also play a role
in the morphological complexity. For example, adding a tone in tonal languages is considered to add
morphological complexity [3].
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6. Conclusions

In this work we tried to capture two dimensions of morphological complexity. Languages that
have a high TTR have the potential of encoding many different functions at the word level, therefore,
they produce many different word forms. On the other hand, we proposed that the entropy rate of a
sub-word language model could reflect how uncertain are the sequences of morphological elements
within a word, languages with high entropy may have many irregular phenomena that are harder to
predict than other languages. We were particularly interested in this latter dimension, since there are
less quantitative methods, based on raw corpora, for measuring it.

The measures were consistent across two different parallel corpora. Moreover, the correlation
between the different complexity measures suggest that our entropy rate approach is capturing a
different complexity dimension than measures such as TTR or CWALS.

Deeper linguistic analysis is needed; however, corpus-based quantitative measures can
complement and deepen the study of morphological complexity.
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Appendix A. Complexity Measures for JW300 Corpus

Table A1. Complexity measures on the JW300 corpus (for all languages).

Language H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Afrikaans 0.566 (73) 0.674 (69) 0.047 (82) 0.013 (79) 0.013 (76) 0.013 (79)
Amharic 0.582 (56) 0.875 (4) 0.2 (8) 0.031 (22) 0.167 (1) 0.044 (8)
Arabic 0.586 (53) 0.827 (6) 0.171 (15) 0.029 (25) 0.095 (4) 0.041 (12)

Azerbaijani 0.661 (6) 0.728 (32) 0.151 (21) 0.074 (5) 0.038 (15) 0.051 (5)
Bicol 0.622 (18) 0.69 (57) 0.049 (79) 0.021 (44) 0.015 (63) 0.019 (40)

Cibemba 0.527 (107) 0.581 (115) 0.108 (39) 0.014 (73) 0.013 (79) 0.011 (99)
Bulgarian 0.56 (80) 0.68 (66) 0.091 (45) 0.016 (63) 0.018 (46) 0.016 (62)
Bislama 0.548 (88) 0.662 (75) 0.009 (132) 0.009 (120) 0.01 (117) 0.01 (112)
Bengali 0.546 (90) 0.801 (9) 0.06 (69) 0.013 (83) 0.026 (26) 0.018 (46)

Cebuano 0.543 (93) 0.708 (42) 0.051 (75) 0.012 (87) 0.017 (54) 0.014 (71)
Chuukese 0.579 (58) 0.618 (104) 0.037 (90) 0.014 (75) 0.01 (107) 0.012 (91)

Seychelles Creole 0.593 (46) 0.645 (87) 0.024 (107) 0.013 (77) 0.01 (107) 0.012 (85)
Czech 0.668 (4) 0.777 (13) 0.125 (29) 0.061 (10) 0.048 (9) 0.065 (4)
Danish 0.617 (22) 0.695 (53) 0.063 (65) 0.023 (36) 0.017 (55) 0.021 (34)
German 0.636 (14) 0.686 (62) 0.084 (50) 0.031 (22) 0.018 (47) 0.024 (29)

Ewe 0.488 (124) 0.717 (39) 0.05 (77) 0.01 (109) 0.017 (53) 0.012 (85)
Efik 0.61 (30) 0.657 (80) 0.043 (85) 0.017 (56) 0.012 (94) 0.015 (64)

Modern Greek 0.594 (44) 0.753 (19) 0.09 (47) 0.022 (40) 0.03 (21) 0.027 (22)
English 0.682 (3) 0.713 (41) 0.053 (74) 0.026 (29) 0.017 (51) 0.025 (26)
Spanish 0.59 (48) 0.65 (82) 0.079 (54) 0.02 (51) 0.015 (63) 0.016 (57)
Estonian 0.623 (17) 0.663 (74) 0.155 (19) 0.056 (12) 0.022 (32) 0.027 (22)

Western Farsi 0.569 (71) 0.739 (27) 0.061 (68) 0.014 (71) 0.021 (34) 0.018 (43)
Finnish 0.563 (75) 0.628 (96) 0.184 (9) 0.024 (34) 0.019 (40) 0.017 (52)
Fijian 0.517 (111) 0.66 (77) 0.022 (115) 0.009 (124) 0.01 (105) 0.01 (115)

French 0.522 (110) 0.674 (68) 0.072 (62) 0.012 (90) 0.015 (59) 0.012 (85)
Ga 0.547 (89) 0.664 (73) 0.046 (83) 0.012 (90) 0.013 (83) 0.012 (89)

Kiribati 0.506 (118) 0.592 (113) 0.031 (101) 0.009 (118) 0.009 (125) 0.009 (128)
Gujarati 0.542 (95) 0.835 (5) 0.048 (81) 0.011 (93) 0.023 (28) 0.017 (53)

Gun 0.575 (65) 0.691 (55) 0.024 (108) 0.012 (92) 0.012 (91) 0.013 (81)
Hausa 0.527 (106) 0.619 (102) 0.035 (94) 0.01 (107) 0.01 (109) 0.01 (114)

Hebrew 0.595 (43) 0.763 (17) 0.17 (16) 0.034 (19) 0.061 (6) 0.039 (13)
Hindi 0.591 (47) 0.783 (10) 0.022 (111) 0.013 (81) 0.017 (57) 0.018 (46)
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Table A1. Cont.

Language H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Hiligaynon 0.564 (74) 0.699 (48) 0.045 (84) 0.013 (81) 0.015 (62) 0.015 (70)
Hiri Motu 0.543 (94) 0.604 (111) 0.012 (128) 0.009 (122) 0.008 (131) 0.009 (129)
Croatian 0.63 (16) 0.735 (30) 0.109 (38) 0.037 (15) 0.029 (22) 0.036 (16)

Haitian Creole 0.552 (85) 0.662 (76) 0.022 (114) 0.01 (106) 0.011 (104) 0.011 (105)
Hungarian 0.694 (1) 0.747 (22) 0.172 (14) 0.133 (2) 0.056 (7) 0.081 (3)
Armenian 0.575 (64) 0.736 (29) 0.117 (33) 0.021 (44) 0.032 (19) 0.024 (29)
Indonesian 0.556 (82) 0.624 (97) 0.051 (76) 0.013 (81) 0.012 (98) 0.012 (94)

Igbo 0.576 (60) 0.613 (107) 0.032 (99) 0.013 (83) 0.01 (115) 0.011 (101)
Iloko 0.611 (29) 0.64 (89) 0.08 (53) 0.024 (32) 0.014 (71) 0.018 (48)

Icelandic 0.637 (11) 0.704 (45) 0.09 (46) 0.035 (18) 0.022 (30) 0.029 (19)
Isoko 0.569 (70) 0.656 (81) 0.02 (116) 0.011 (99) 0.01 (111) 0.011 (102)
Italian 0.595 (40) 0.614 (106) 0.082 (52) 0.022 (41) 0.013 (87) 0.015 (65)

Japanese 0.302 (133) 0.914 (1) 0.024 (106) 0.008 (128) 0.019 (42) 0.012 (85)
Georgian 0.563 (77) 0.729 (31) 0.175 (12) 0.022 (38) 0.047 (10) 0.025 (27)

Kongo 0.534 (100) 0.619 (103) 0.022 (112) 0.009 (114) 0.009 (127) 0.01 (122)
Greenlandic 0.538 (98) 0.623 (99) 0.335 (1) 0.02 (47) 0.02 (38) 0.015 (65)
Cambodian 0.509 (117) 0.779 (12) 0.011 (129) 0.008 (129) 0.014 (69) 0.012 (96)

Kannada 0.587 (52) 0.754 (18) 0.239 (3) 0.036 (16) 0.095 (4) 0.041 (10)
Korean 0.349 (131) 0.907 (2) 0.057 (71) 0.01 (110) 0.027 (24) 0.015 (69)

Kikaonde 0.553 (83) 0.541 (127) 0.087 (48) 0.015 (68) 0.011 (99) 0.012 (96)
Kikongo 0.486 (126) 0.541 (128) 0.079 (55) 0.011 (94) 0.011 (103) 0.01 (118)
Kirghiz 0.563 (76) 0.695 (51) 0.144 (24) 0.02 (49) 0.027 (25) 0.02 (39)

Luganda 0.601 (36) 0.539 (129) 0.14 (25) 0.033 (20) 0.013 (79) 0.016 (61)
Lingala 0.526 (108) 0.633 (93) 0.04 (88) 0.01 (105) 0.011 (101) 0.01 (109)
Silozi 0.539 (97) 0.598 (112) 0.033 (97) 0.01 (103) 0.01 (119) 0.01 (116)

Lithuanian 0.637 (13) 0.706 (43) 0.167 (17) 0.067 (9) 0.033 (18) 0.041 (10)
Kiluba 0.544 (92) 0.56 (125) 0.112 (35) 0.016 (64) 0.012 (89) 0.012 (91)

Tshiluba 0.489 (123) 0.617 (105) 0.074 (60) 0.011 (96) 0.012 (94) 0.01 (107)
Luvale 0.545 (91) 0.525 (133) 0.145 (23) 0.018 (55) 0.013 (83) 0.012 (90)
Mizo 0.595 (42) 0.681 (65) 0.04 (87) 0.016 (67) 0.013 (78) 0.015 (63)

Latvian 0.582 (57) 0.745 (24) 0.123 (32) 0.022 (38) 0.036 (16) 0.027 (24)
Mauritian Creole 0.583 (55) 0.624 (98) 0.019 (117) 0.012 (90) 0.009 (127) 0.011 (103)
Plateau Malagasy 0.499 (122) 0.538 (131) 0.062 (66) 0.011 (100) 0.01 (111) 0.009 (124)

Marshallese 0.587 (51) 0.718 (38) 0.022 (113) 0.012 (86) 0.013 (76) 0.015 (67)
Macedonian 0.571 (68) 0.698 (49) 0.083 (51) 0.017 (58) 0.02 (38) 0.018 (46)
Malayalam 0.607 (32) 0.701 (47) 0.272 (2) 0.059 (11) 0.041 (14) 0.037 (15)

Moore 0.561 (79) 0.724 (34) 0.027 (104) 0.011 (96) 0.014 (66) 0.014 (75)
Marathi 0.612 (27) 0.738 (28) 0.095 (44) 0.028 (27) 0.028 (23) 0.03 (18)
Maltese 0.616 (24) 0.683 (63) 0.075 (59) 0.024 (33) 0.016 (58) 0.021 (36)
Burmese 0.514 (113) 0.75 (20) 0.016 (121) 0.009 (126) 0.014 (69) 0.012 (93)
Nepali 0.524 (109) 0.768 (15) 0.096 (43) 0.013 (76) 0.034 (17) 0.018 (44)
Niuean 0.389 (129) 0.646 (86) 0.013 (125) 0.008 (131) 0.009 (122) 0.009 (131)
Dutch 0.604 (34) 0.683 (64) 0.061 (67) 0.02 (50) 0.015 (61) 0.018 (42)

Norwegian 0.605 (33) 0.723 (35) 0.056 (72) 0.019 (53) 0.019 (42) 0.021 (34)
Sepedi 0.514 (114) 0.637 (90) 0.037 (91) 0.01 (111) 0.011 (101) 0.01 (112)

Chichewa 0.567 (72) 0.562 (124) 0.124 (31) 0.019 (52) 0.013 (81) 0.013 (80)
Eastern Oromo 0.552 (86) 0.568 (121) 0.111 (36) 0.016 (61) 0.013 (85) 0.012 (88)

Ossetian 0.575 (63) 0.688 (61) 0.077 (57) 0.017 (60) 0.017 (55) 0.017 (53)
Punjabi 0.572 (66) 0.816 (7) 0.025 (105) 0.012 (88) 0.018 (47) 0.017 (51)

Pangasinan 0.612 (28) 0.66 (78) 0.058 (70) 0.02 (46) 0.014 (73) 0.017 (49)
Papiamento (Curaçao) 0.603 (35) 0.704 (46) 0.031 (102) 0.015 (70) 0.014 (73) 0.016 (55)

Solomon Islands Pidgin 0.642 (9) 0.64 (88) 0.013 (123) 0.015 (69) 0.009 (122) 0.014 (76)
Polish 0.617 (23) 0.745 (23) 0.152 (20) 0.047 (13) 0.047 (10) 0.045 (6)

Ponapean 0.533 (102) 0.576 (118) 0.032 (98) 0.01 (107) 0.009 (129) 0.009 (123)
Portuguese 0.595 (41) 0.697 (50) 0.075 (58) 0.02 (47) 0.019 (44) 0.02 (38)
Romanian 0.609 (31) 0.695 (52) 0.071 (63) 0.021 (43) 0.017 (51) 0.021 (36)

Russian 0.5 (121) 0.722 (37) 0.137 (26) 0.014 (74) 0.032 (20) 0.016 (57)
Kirundi 0.534 (101) 0.636 (91) 0.15 (22) 0.016 (62) 0.018 (49) 0.014 (73)
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Table A1. Cont.

Language H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Kinyarwanda 0.599 (38) 0.57 (120) 0.134 (28) 0.03 (24) 0.014 (73) 0.016 (59)
Sango 0.385 (130) 0.725 (33) 0.01 (130) 0.008 (133) 0.012 (91) 0.01 (111)

Sinhala 0.578 (59) 0.742 (25) 0.079 (56) 0.017 (56) 0.025 (27) 0.021 (34)
Slovak 0.614 (26) 0.767 (16) 0.124 (30) 0.036 (17) 0.043 (12) 0.042 (9)

Slovenian 0.637 (12) 0.69 (56) 0.111 (37) 0.041 (14) 0.022 (32) 0.029 (20)
Samoan 0.536 (99) 0.629 (95) 0.017 (119) 0.009 (117) 0.009 (125) 0.01 (121)
Shona 0.622 (19) 0.538 (130) 0.18 (10) 0.069 (7) 0.014 (67) 0.019 (41)

Albanian 0.648 (8) 0.723 (36) 0.073 (61) 0.029 (26) 0.021 (37) 0.029 (20)
Sranantongo 0.54 (96) 0.562 (123) 0.01 (131) 0.009 (125) 0.008 (133) 0.009 (132)

Sesotho (Lesotho) 0.465 (128) 0.58 (116) 0.033 (95) 0.009 (123) 0.009 (122) 0.009 (130)
Swedish 0.621 (20) 0.706 (44) 0.066 (64) 0.024 (34) 0.019 (44) 0.023 (31)
Swahili 0.598 (39) 0.566 (122) 0.098 (41) 0.025 (31) 0.012 (93) 0.015 (68)

Swahili (Congo) 0.562 (78) 0.586 (114) 0.098 (41) 0.017 (59) 0.013 (82) 0.013 (82)
Tamil 0.618 (21) 0.715 (40) 0.234 (6) 0.074 (5) 0.043 (12) 0.045 (7)

Telugu 0.66 (7) 0.811 (8) 0.211 (7) 0.143 (1) 0.133 (2) 0.136 (1)
Thai 0.552 (87) 0.74 (26) 0.013 (124) 0.009 (112) 0.013 (75) 0.013 (83)

Tigrinya 0.666 (5) 0.891 (3) 0.162 (18) 0.087 (4) 0.095 (4) 0.115 (2)
Tiv 0.576 (61) 0.659 (79) 0.017 (120) 0.011 (94) 0.01 (113) 0.012 (98)

Tagalog 0.514 (115) 0.676 (67) 0.054 (73) 0.011 (100) 0.014 (67) 0.012 (94)
Otetela 0.529 (105) 0.605 (110) 0.085 (49) 0.013 (78) 0.013 (88) 0.011 (100)

Setswana 0.503 (120) 0.612 (108) 0.031 (100) 0.009 (120) 0.01 (118) 0.009 (127)
Tongan 0.532 (103) 0.688 (60) 0.023 (110) 0.009 (115) 0.012 (96) 0.011 (104)

Chitonga 0.558 (81) 0.647 (85) 0.177 (11) 0.022 (41) 0.021 (35) 0.017 (50)
Tok Pisin 0.575 (62) 0.632 (94) 0.008 (133) 0.01 (104) 0.009 (130) 0.01 (109)
Turkish 0.684 (2) 0.65 (83) 0.175 (13) 0.133 (2) 0.021 (35) 0.031 (17)
Tsonga 0.572 (67) 0.571 (119) 0.036 (93) 0.012 (85) 0.009 (124) 0.011 (106)
Tatar 0.593 (45) 0.689 (58) 0.116 (34) 0.025 (30) 0.022 (31) 0.022 (32)

Chitumbuka 0.588 (49) 0.534 (132) 0.108 (40) 0.022 (38) 0.012 (97) 0.014 (78)
Twi 0.469 (127) 0.664 (72) 0.039 (89) 0.009 (116) 0.012 (90) 0.01 (107)

Tahitian 0.487 (125) 0.669 (70) 0.012 (127) 0.008 (130) 0.01 (111) 0.009 (126)
Ukrainian 0.601 (37) 0.775 (14) 0.136 (27) 0.031 (22) 0.049 (8) 0.038 (14)
Umbundu 0.531 (104) 0.56 (126) 0.048 (80) 0.011 (98) 0.01 (115) 0.01 (119)

Urdu 0.631 (15) 0.781 (11) 0.033 (96) 0.018 (54) 0.019 (42) 0.025 (28)
Venda 0.512 (116) 0.619 (101) 0.031 (103) 0.009 (118) 0.01 (114) 0.009 (125)

Vietnamese 0.344 (132) 0.692 (54) 0.014 (122) 0.008 (131) 0.011 (100) 0.01 (117)
Waray-Waray 0.586 (54) 0.665 (71) 0.042 (86) 0.014 (72) 0.013 (85) 0.014 (72)

Wallisian 0.517 (112) 0.577 (117) 0.013 (126) 0.008 (127) 0.008 (132) 0.008 (133)
Xhosa 0.615 (25) 0.647 (84) 0.237 (4) 0.069 (7) 0.023 (29) 0.027 (24)
Yapese 0.639 (10) 0.635 (92) 0.018 (118) 0.016 (65) 0.01 (120) 0.014 (76)
Yoruba 0.553 (84) 0.749 (21) 0.023 (109) 0.01 (102) 0.015 (59) 0.014 (73)
Maya 0.587 (50) 0.688 (59) 0.05 (78) 0.016 (65) 0.015 (65) 0.016 (60)
Zande 0.505 (119) 0.62 (100) 0.037 (92) 0.009 (112) 0.01 (105) 0.01 (120)
Zulu 0.57 (69) 0.609 (109) 0.235 (5) 0.027 (28) 0.018 (50) 0.016 (55)

Appendix B. Complexity Measures Bibles Corpus

Table A2. Complexity measures on the Bibles corpus (for all languages).

Language H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Amele 0.568 (37) 0.59 (29) 0.134 (26) 0.031 (36) 0.036 (34) 0.032 (36)
Alamblak 0.673 (11) 0.643 (18) 0.203 (15) 0.076 (8) 0.06 (8) 0.068 (9)
Bukiyip 0.651 (16) 0.591 (28) 0.119 (32) 0.041 (25) 0.033 (37) 0.039 (28)
Apurinã 0.592 (29) 0.523 (43) 0.205 (14) 0.046 (19) 0.035 (36) 0.034 (33)

Mapudungun 0.598 (27) 0.596 (27) 0.145 (20) 0.041 (25) 0.042 (20) 0.04 (26)
Egyptian Arabic 0.725 (5) 0.748 (4) 0.31 (4) 0.222 (2) 0.25 (3) 0.23 (2)
Barasana-Eduria 0.526 (45) 0.577 (35) 0.146 (19) 0.031 (36) 0.037 (31) 0.03 (40)

Chamorro 0.678 (10) 0.663 (13) 0.13 (29) 0.051 (17) 0.046 (16) 0.056 (12)
German 0.588 (30) 0.663 (13) 0.136 (24) 0.037 (29) 0.054 (12) 0.044 (18)

Daga 0.585 (32) 0.545 (41) 0.095 (39) 0.028 (40) 0.025 (44) 0.026 (44)
Modern Greek 0.683 (9) 0.655 (16) 0.181 (17) 0.076 (8) 0.06 (8) 0.071 (7)

English 0.703 (7) 0.667 (10) 0.082 (40) 0.042 (22) 0.04 (24) 0.052 (13)
Basque 0.655 (14) 0.588 (31) 0.224 (13) 0.074 (10) 0.045 (17) 0.051 (15)
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Table A2. Cont.

Language H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Fijian 0.568 (37) 0.519 (44) 0.048 (46) 0.024 (42) 0.022 (47) 0.023 (46)
Finnish 0.696 (8) 0.589 (30) 0.266 (6) 0.142 (5) 0.055 (10) 0.068 (9)
French 0.606 (25) 0.609 (24) 0.139 (23) 0.041 (25) 0.042 (20) 0.041 (23)

Paraguayan Guaraní 0.613 (21) 0.642 (19) 0.174 (18) 0.051 (17) 0.054 (12) 0.051 (15)
Eastern Oromo 0.652 (15) 0.573 (38) 0.196 (16) 0.064 (12) 0.037 (31) 0.043 (19)

Hausa 0.609 (24) 0.613 (23) 0.098 (38) 0.032 (32) 0.032 (39) 0.035 (30)
Hindi 0.54 (43) 0.729 (6) 0.057 (43) 0.023 (43) 0.04 (24) 0.032 (36)

Indonesian 0.661 (13) 0.598 (26) 0.115 (34) 0.042 (22) 0.033 (37) 0.041 (23)
Popti’ 0.624 (20) 0.646 (17) 0.108 (37) 0.035 (30) 0.037 (31) 0.04 (26)

Kalaallisut 0.572 (35) 0.455 (47) 0.542 (2) 0.054 (15) 0.04 (24) 0.035 (30)
Georgian 0.632 (18) 0.67 (9) 0.238 (9) 0.071 (11) 0.111 (5) 0.081 (5)

West Kewa 0.573 (34) 0.583 (33) 0.113 (35) 0.028 (40) 0.029 (41) 0.029 (41)
Halh Mongolian 0.745 (3) 0.601 (25) 0.228 (11) 0.142 (5) 0.055 (10) 0.076 (6)

Korean 0.393 (47) 0.861 (1) 0.348 (3) 0.04 (27) 0.5 (2) 0.058 (11)
Lango (Uganda) 0.602 (26) 0.558 (40) 0.112 (36) 0.032 (32) 0.026 (43) 0.029 (41)

San Miguel El Grande Mixtec 0.57 (36) 0.614 (22) 0.125 (30) 0.03 (39) 0.038 (27) 0.034 (33)
Burmese 0.739 (4) 0.822 (2) 0.791 (1) 0.4 (1) 0.666 (1) 0.428 (1)

Wichí Lhamtés Güisnay 0.586 (31) 0.585 (32) 0.117 (33) 0.031 (36) 0.03 (40) 0.031 (38)
Nama (Namibia) 0.576 (33) 0.665 (11) 0.131 (28) 0.032 (32) 0.05 (14) 0.041 (23)

Western Farsi 0.67 (12) 0.705 (7) 0.135 (25) 0.054 (15) 0.062 (7) 0.068 (9)
Plateau Malagasy 0.567 (39) 0.518 (45) 0.14 (21) 0.032 (32) 0.029 (41) 0.028 (43)

Imbabura Highland Quichua 0.598 (27) 0.492 (46) 0.249 (8) 0.057 (14) 0.037 (31) 0.037 (29)
Russian 0.75 (1) 0.732 (5) 0.225 (12) 0.153 (4) 0.117 (4) 0.166 (3)
Sango 0.537 (44) 0.56 (39) 0.024 (47) 0.021 (47) 0.023 (46) 0.023 (46)

Spanish 0.647 (17) 0.656 (15) 0.133 (27) 0.045 (20) 0.047 (15) 0.05 (17)
Swahili 0.612 (22) 0.575 (36) 0.233 (10) 0.06 (13) 0.043 (18) 0.043 (19)
Tagalog 0.632 (18) 0.629 (20) 0.121 (31) 0.04 (27) 0.038 (27) 0.042 (21)

Thai 0.554 (41) 0.752 (3) 0.055 (44) 0.023 (43) 0.042 (20) 0.034 (33)
Turkish 0.705 (6) 0.629 (20) 0.297 (5) 0.181 (3) 0.08 (6) 0.096 (4)

Vietnamese 0.406 (46) 0.684 (8) 0.066 (41) 0.022 (45) 0.04 (24) 0.031 (38)
Sanumá 0.546 (42) 0.574 (37) 0.05 (45) 0.022 (45) 0.024 (45) 0.024 (45)
Yagua 0.563 (40) 0.524 (42) 0.266 (6) 0.042 (22) 0.04 (24) 0.033 (35)
Yaqui 0.748 (2) 0.579 (34) 0.14 (21) 0.086 (7) 0.036 (34) 0.052 (13)

Yoruba 0.612 (22) 0.665 (11) 0.064 (42) 0.031 (36) 0.037 (31) 0.04 (26)

Appendix C. Complexity Measures Using CWALS

Table A3. CWALS complexity for the subset of languages shared with the Bibles corpus.

Language CWALS H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Amele 0.456 (9) 0.568 (17) 0.59 (13) 0.134 (13) 0.066 (17) 0.076 (16) 0.069 (18)
Apurinã 0.573 (5) 0.592 (15) 0.523 (17) 0.205 (8) 0.087 (12) 0.08 (14) 0.075 (16)
Basque 0.647 (4) 0.655 (8) 0.588 (14) 0.224 (7) 0.133 (5) 0.095 (9) 0.103 (7)

Eastern Oromo 0.487 (8) 0.652 (9) 0.573 (16) 0.196 (9) 0.111 (9) 0.08 (14) 0.088 (11)
Egyptian Arabic 0.563 (6) 0.725 (3) 0.748 (1) 0.31 (1) 0.5 (1) 1.0 (1) 0.6 (1)

English 0.329 (15) 0.703 (5) 0.667 (4) 0.082 (17) 0.09 (10) 0.095 (9) 0.115 (6)
German 0.397 (13) 0.588 (16) 0.663 (6) 0.136 (12) 0.071 (14) 0.111 (5) 0.088 (11)

Halh Mongolian 0.516 (7) 0.745 (2) 0.601 (11) 0.228 (5) 0.285 (3) 0.125 (4) 0.166 (4)
Hausa 0.322 (16) 0.609 (13) 0.613 (10) 0.098 (16) 0.069 (15) 0.076 (16) 0.076 (15)

Imbabura Quichua 0.662 (3) 0.599 (14) 0.492 (19) 0.25 (3) 0.117 (8) 0.09 (12) 0.083 (14)
Indonesian 0.336 (14) 0.661 (7) 0.598 (12) 0.115 (15) 0.09 (10) 0.074 (18) 0.088 (11)

Modern Greek 0.452 (11) 0.683 (6) 0.655 (8) 0.181 (10) 0.125 (6) 0.111 (5) 0.125 (5)
Plateau Malagasy 0.309 (17) 0.567 (18) 0.518 (18) 0.14 (11) 0.069 (15) 0.069 (19) 0.063 (19)

Russian 0.453 (10) 0.751 (1) 0.732 (2) 0.225 (6) 0.285 (3) 0.25 (2) 0.333 (2)
Spanish 0.44 (12) 0.647 (10) 0.656 (7) 0.133 (14) 0.083 (13) 0.095 (9) 0.096 (8)
Swahili 0.675 (2) 0.612 (11) 0.575 (15) 0.233 (4) 0.125 (6) 0.105 (7) 0.096 (8)
Turkish 0.775 (1) 0.705 (4) 0.629 (9) 0.297 (2) 0.333 (2) 0.181 (3) 0.2 (3)

Vietnamese 0.141 (19) 0.406 (19) 0.684 (3) 0.066 (18) 0.054 (19) 0.095 (9) 0.075 (16)
Yoruba 0.178 (18) 0.612 (11) 0.665 (5) 0.064 (19) 0.066 (17) 0.083 (13) 0.085 (13)
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Appendix D. Complexity Measures Using MCC

Table A4. MCC complexity for the subset of languages shared with the JW300 corpus.

Language MCC H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Bulgarian 96.0 (7) 0.56 (20) 0.68 (16) 0.091 (10) 0.016 (20) 0.018 (13) 0.016 (18)
Czech 195.0 (2) 0.668 (3) 0.777 (1) 0.125 (6) 0.061 (3) 0.048 (2) 0.065 (2)
Danish 15.0 (20) 0.617 (9) 0.695 (11) 0.063 (19) 0.023 (12) 0.017 (16) 0.021 (13)
Dutch 26.0 (19) 0.604 (13) 0.683 (15) 0.061 (20) 0.02 (18) 0.015 (19) 0.018 (16)

English 6.0 (21) 0.682 (2) 0.713 (7) 0.053 (21) 0.026 (9) 0.017 (16) 0.025 (10)
Estonian 110.0 (5) 0.623 (7) 0.663 (18) 0.155 (4) 0.056 (4) 0.022 (8) 0.027 (8)
Finnish 198.0 (1) 0.563 (19) 0.628 (20) 0.184 (1) 0.024 (10) 0.019 (11) 0.017 (17)
French 30.0 (18) 0.522 (21) 0.674 (17) 0.072 (16) 0.012 (21) 0.015 (19) 0.012 (21)

German 38.0 (16) 0.636 (6) 0.686 (14) 0.084 (12) 0.031 (8) 0.018 (13) 0.024 (11)
Hungarian 94.0 (8) 0.694 (1) 0.747 (4) 0.172 (2) 0.133 (1) 0.056 (1) 0.081 (1)

Italian 52.0 (13) 0.595 (14) 0.614 (21) 0.082 (13) 0.022 (14) 0.013 (21) 0.015 (20)
Latvian 81.0 (9) 0.582 (18) 0.745 (5) 0.123 (8) 0.022 (14) 0.036 (5) 0.027 (8)

Lithuanian 152.0 (3) 0.637 (4) 0.706 (8) 0.167 (3) 0.067 (2) 0.033 (6) 0.041 (5)
Modern Greek 50.0 (14) 0.594 (16) 0.753 (3) 0.09 (11) 0.022 (14) 0.03 (7) 0.027 (8)

Polish 112.0 (4) 0.617 (9) 0.745 (5) 0.152 (5) 0.047 (5) 0.047 (3) 0.045 (3)
Portuguese 77.0 (10) 0.595 (14) 0.697 (10) 0.075 (15) 0.02 (18) 0.019 (11) 0.02 (15)
Romanian 60.0 (12) 0.609 (12) 0.695 (11) 0.071 (17) 0.021 (16) 0.017 (16) 0.021 (13)

Slovak 40.0 (15) 0.614 (11) 0.767 (2) 0.124 (7) 0.036 (7) 0.043 (4) 0.042 (4)
Slovenian 100.0 (6) 0.637 (4) 0.69 (13) 0.111 (9) 0.041 (6) 0.022 (8) 0.029 (6)
Spanish 71.0 (11) 0.59 (17) 0.65 (19) 0.079 (14) 0.02 (18) 0.015 (19) 0.016 (18)
Swedish 35.0 (17) 0.621 (8) 0.706 (8) 0.066 (18) 0.024 (10) 0.019 (11) 0.023 (12)

Appendix E. Correlation Using Typological Classifications

For each language in the intersection set between the Bibles and JW300 corpora, we extracted
its information about the feature 20A: “Fusion of Selected Inflectional Formatives” (WALS database).
We focused on the languages classified as “concatenative” or “isolating”. For each corpus, we calculated
the correlations within complexity measures for concatenative languages and the correlations within
the isolating ones (Tables A5 and A6).

Table A5. Spearman’s correlation between complexity measures in concatenative and isolating
languages (Bibles corpus).

H1 H3 TTR

Concatenative H1 1.0 0.233 0.618
H3 - 1.0 −0.121

TTR - - 1.0

Isolating H1 1.0 −0.355 0.513
H3 - 1.0 −0.178

TTR - - 1.0

Table A6. Spearman’s correlation between complexity measures in concatenative and isolating
languages (JW300 corpus).

H1 H3 TTR

Concatenative H1 1.0 −0.12 0.296
H3 −12 1.0 −0.369

TTR - - 1.0

Isolating H1 1.0 −0.011 0.438
H3 - 1.0 −0.741

TTR - - 1.0
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Appendix F. Correlation Using Average Word Length

We calculate the average word length per language in both corpora. This is formulated as the
average of the number of characters per word. Tables A7 and A8 show the correlations of the average
word length with the other measures for the Bibles and JW300 corpora, respectively.

Table A7. Spearman’s correlation between complexity measures and the average length per word in
the Bibles corpus.

H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Average Word Length 0.354 −0.421 0.697 0.628 0.141 0.278

Table A8. Spearman’s correlation between complexity measures and the average length per word in
the JW300 corpus.

H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Average Word Length 0.296 −0.359 0.735 0.606 0.265 0.315
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Abstract: The entropy rate h of a natural language quantifies the complexity underlying the language.
While recent studies have used computational approaches to estimate this rate, their results rely
fundamentally on the performance of the language model used for prediction. On the other hand,
in 1951, Shannon conducted a cognitive experiment to estimate the rate without the use of any
such artifact. Shannon’s experiment, however, used only one subject, bringing into question the
statistical validity of his value of h = 1.3 bits per character for the English language entropy rate.
In this study, we conducted Shannon’s experiment on a much larger scale to reevaluate the entropy
rate h via Amazon’s Mechanical Turk, a crowd-sourcing service. The online subjects recruited
through Mechanical Turk were each asked to guess the succeeding character after being given the
preceding characters until obtaining the correct answer. We collected 172,954 character predictions
and analyzed these predictions with a bootstrap technique. The analysis suggests that a large number
of character predictions per context length, perhaps as many as 103, would be necessary to obtain a
convergent estimate of the entropy rate, and if fewer predictions are used, the resulting h value may
be underestimated. Our final entropy estimate was h ≈ 1.22 bits per character.

Keywords: entropy rate; natural language; crowd source; Amazon Mechanical Turk; Shannon entropy

1. Introduction

Entropy rates h of natural languages have been used to investigate the complexity underlying
these languages. The entropy rate of a sequence measures the amount of information per character [1]
and indicates that the number of possible sequences is 2hn for a sequence of length n.

Following the development of information theory and an abundance of data resources, recent
studies have used computational approaches for finding the entropy rates of natural languages.
Starting from the first attempt made by [2], which used a three-gram, word-level language model,
various compression algorithms have been utilized [3,4]. The most recent study makes use of a state-of
the art neural language model [5]. However, such computational attempts have a drawback; i.e., the
computation of h requires a computational language model with which to predict the probability
distribution of every character. As a result, the value of h reflects not only the complexity of the
language but also the performance of the model. Indeed, in natural language processing, such an
estimate of h is used as an indicator of the goodness-of-fit of a language model [6]. Recently reported
decreases in the upper bound of h, for which the current minimum for English is 1.08 bpc [7] are simply
highlighting improvements in the computational model.

Originally, Shannon’s study [1] and some work that followed [8–11] used cognitive methods to
estimate the entropy rate h. The original scientific interest in h had to do with the complexity of human
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language. Given this perspective, the performance of a computational model should not be involved
in obtaining a value of h.

The studies using cognitive approaches can be reconsidered from two perspectives. First, they
were all based on limited-scale experiments. In all of these studies, a subject was asked to predict the
n-th character given the preceding n− 1 characters. According to [11], Shannon’s spouse was his only
subject. Even the most recent cognitive study [11] relied on just eight subjects. Experimenting on such
a small scale raises the question of the statistical validity of the acquired estimate.

Second, none of the cognitive approaches considered the limit with respect to the context length n.
While the estimated values should be evaluated at infinite n by the definition of the entropy rate, the
reported values are obtained at some finite n. In Shannon [1], the value h = 1.3 bits per character (bpc)
for English was obtained at n = 100, and Moradi et al. [11] concluded that the estimated value does
not decrease beyond n ≥ 32 and reported a rate of h ≈ 1.6 bpc. For extrapolation, however, a large
number of observations becomes necessary in order to capture the dependence of the entropy rate on
n well.

To that end, we conducted a large-scale cognitive test to acquire the English language entropy
rate h through Amazon Mechanical Turk (AMT). AMT is a crowd-sourcing service offered by Amazon
that allowed us to gather a large number of participants in a short time and at a reasonable cost.
We focused on the entropy rate in English to make a fair comparison with Shannon [1] and other works.
Other languages possibly have different values of the entropy rate, as can be seen in the comparison
made in [4]. We collected a total of 172,954 character predictions from 683 different subjects. To the
best of our knowledge, the scale used in this experiment was more than two times larger than any
used in previous studies. At such a scale, the effects of factors that may influence the estimation of
the entropy rate can be examined. Our analysis implies that Shannon’s original experiment had an
insufficient sample size with which to find a convergent estimate. We finally obtained h ≈ 1.22 bpc for
English, which is smaller than Shannon’s original result of h = 1.3 bpc.

2. Entropy Rate Estimation

2.1. Entropy Rate and n-Gram Entropy

Definition 1. Shannon entropy

Let X be a stochastic process {Xt}∞
t=1, where each element belongs to a finite character set X . Let Xj

i =

Xi, Xi+1, . . . , Xj−1, Xj for i < j and P(Xj
i ) be the probability of Xj

i . The Shannon entropy of a stochastic process
H(Xn

1 ) is defined as
H(Xn

1 ) = −∑
Xn

1

P(Xn
1 ) log P(Xn

1 ). (1)

Definition 2. Entropy rate

The entropy rate h of a stochastic process X is defined as

h = lim
n→∞

1
n

H(Xn
1 ), (2)

if such a value exists [12]. The entropy rate h is the average amount of information per element in a
sequence of infinite length.

In the following, let Fn be the prediction complexity of Xn given Xn−1
1 , as follows:

Fn ≡ H(Xn|Xn−1
1 ). (3)

In other words, Fn quantifies the average uncertainty of the n-th character given a character string
with length n− 1. If the stochastic process X is stationary, Fn reaches the entropy rate h as n tends to
infinity, as follows [12]:

h = lim
n→∞

Fn. (4)
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In this work, h was estimated via Fn. A human subject was given Xn−1
1 characters and asked to

predict the next character Xn. We aimed to collect a large number of predictions from many subjects.
For a subject and a phrase, let a sample indicate the prediction of a Xn given a particular Xn−1

1 .
An experimental session is defined as a subject and phrase pair. For every experimental session,

a subject first predicts X1, then X2 given X1, then X3 given X2
1, then X4 given X3

1, . . . , Xn given Xn−1
1 ,

and so on. Therefore, in an experimental session, a number of observations are acquired for a given
phrase, with the maximum number of observations being the character length of the phrase.

2.2. Shannon’s Method

If a subject guesses a character given a string of length n, the answer will be correct or incorrect.
In Shannon’s setting and ours, the prediction of Xn by a subject is accomplished by making multiple guesses,
one character at a time, until he/she reaches the correct answer. In other words, a prediction for
character Xn in this setting consists of a series of guesses.

The number of guesses required to reach the correct answer reflects the predictability of that
character and should relate to the probability of that character Xn appearing after Xn−1

1 . Let qn
i denote

the probability that a subject requires i guesses in a prediction to find the correct letter following a block
of length n− 1.

Shannon deduced the following inequality [1]:

K

∑
i=1

i(qn
i − qn

i+1) log i ≤ Fn ≤ −
K

∑
i=1

qn
i log qn

i . (5)

Here, K is the number of characters in the set; in this work, K = 27, since the English alphabet
consists of 26 letters and the space symbol. This setting corresponds to the settings used in previous
works [9,11] using the cognitive approach to acquire the entropy rate in order for our results to be
comparable with those reported in these works. Note that this lower bound is the lower bound of the
upper bound of h and not the direct lower bound of h. For each context length n, the probability qn

i
can be calculated for a set of samples.

In Shannon’s original experiment, 100 phrases of length 100 were taken from Jefferson the Virginian,
a biography of ex-US President Thomas Jefferson authored by Dumas Malone. In each experimental
session, the subject (i.e., only his spouse, according to [11]) was asked to predict the next character
given a block of length n− 1. She continued in this manner for n = 1, 2, . . . , 15, and 100 for each phrase;
consequently, Shannon acquired 16 observations for each phrase. He used 100 different phrases;
therefore, he collected 16× 100 = 1600 observations from his spouse in total. He then calculated qn

i
for n = 1, 2, . . . , 15, and 100, each based on 100 observations, and the upper and lower bounds of h
were computed based on the leftmost and rightmost terms of the inequality (5), respectively. Shannon
observed a decrease in the bounds with respect to n and obtained an upper bound of h = 1.3 bpc for
n = 100.

Moradi et al. [11] conducted Shannon’s experiment under two different settings. In the first
experiment, they used 100 phrases of length n = 64 from Scruples II, a romance novel authored
by Judith Krantz. In the first setting, a single subject participated, and they calculated the upper
bounds from n = 1 to n = 64 based on 100 observations. They reported that the entropy rate reached
h ≈ 1.6 bpc at n = 32 and that larger values of n did not contribute to decreasing the upper bound.
In the second setting, the eight participants were given phrases extracted from four different books,
and the values of the upper bound at n = 32 were reported, which ranged between h = 1.62 and
h = 3.00 bpc.

Jamison and Jamison [9] used 50 and 40 phrases, both taken from some unspecified source, for
each of two subjects, respectively. They conducted the experiment for n = 4, 8, 12, and 100 and
obtained h = 1.63 and h = 1.67 bpc for the two subjects at n = 100 based on 50 and 40 phrase
samples, respectively.
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Note how the reported values deviate greatly from Shannon’s h = 1.3 bpc. In all these experiments,
since the number of subjects was small, the number of observations was limited, making the statistical
validity questionable.

2.3. Cover King’s Method

While Shannon’s method only considers the likelihood of the correct answer for each Xn, Cover
and King wanted to collect the distribution for each Xn. Hence, instead of counting the number of
guesses required, a subject was asked to assign a probability distribution to the nth character given
the preceding string of length n− 1. Precisely, in Cover and King [10], a prediction by a subject is the
character distribution of Xn.

They designed this experiment using a gambling framework, following their theory of information
in gambling [13,14]. A subject assigned odds to every character which could be used for Xn; i.e.,
a probability distribution.

Cover and King [10] conducted two experiments separately. In the first experiment, phrases
were extracted from Jefferson the Virginian for 12 subjects. The maximum length of a phrase was set as
n = 75. The estimated value of the upper bound of h for the 12 subjects ranged between h = 1.29 bpc
and h = 1.90 bpc. In the second experiment, phrases were taken from Contact: The First Four Minutes
(a science book on psychology authored by Leonard M. Zunin); lengths of n = 220 were used, and two
subjects participated. The estimated values of h produced by the two subjects were h = 1.26 bpc and
h = 1.30 bpc.

We conducted Cover and King’s experiment using the similar framework, as explained in detail in
the following section. Compared with the experiment proposed by Shannon, however, their experiment
demanded too much from each subject since he/she had to set the odds for all 27 characters every
time. The majority of the subjects abandoned the experiment before completing the assignment, and
it was difficult to collect a large number of reliable observations. Therefore, we could not utilize this
method effectively and focused on Shannon’s framework instead.

2.4. Summary of the Scales Used in Previous Studies

Table 1 summarizes the experimental settings of the previous reports [1,9–11]. We refer to
the total number of observations as the sum of the count of the predictions made by the subjects
for different phrases and context lengths. For example, in Shannon’s case, the total number of
observations was 1600, as one subject was asked to make predictions for 16 different context lengths
(i.e., n = 1, 2, . . . , 15, and 100) for each of 100 different phrases. The third and fourth columns in the
table list the numbers of distinct subjects and phrases used in each study, respectively. Note that a
phrase could be tested by multiple subjects or a subject could test multiple phrases, depending on the
experimental setting.

Table 1. Comparison of the scales of cognitive experiments undertaken in previous works for the
entropy rate estimation in English [1,9–11] and that of the present work.

Total Number Number of Number of Max n Number of
of Samples Subjects Phrases for a Session Sample Per n

Shannon [1] 1600 1 100 100 100
Jamison and Jamison [9] 360 2 50 and 40 100 50 and 40

Cover and King [10] No.1 440 2 1 220 2
Cover and King [10] No.2 900 12 1 75 12

Moradi et al. [11] No.1 6400 1 100 64 100
Moradi et al. [11] No.2 3200 8 400 32 100

Our Experiment 172,954 683 225 87.51 1954.86

140



Entropy 2019, 21, 1201

The fifth and sixth columns present the average maximum value of n obtained in one session and
the mean number of observations per n, respectively, where n represents the offset of a character from
the beginning of a phrase. Both of these values were fixed in the previous works.

3. Cognitive Experiment Using Mechanical Turk

3.1. The Mechanical Turk Framework

Our experimental framework was implemented through Amazon Mechanical Turk, a workplace
service offered by Amazon. AMT puts up tasks called HITs (human intelligence tasks) and workers do
them. AMT has been used previously as a research tool for conducting large-scale investigations that
require human judgment, ranging from annotating image data [15,16], to collecting text and speech
data [17,18], behavioral research [19], judging music and documents [20,21], and identifying complex
patterns in brain activity [22].

With AMT, the experimenter is able to collect a large number of observations on a wide range
of topics. Compared with standard in-laboratory studies, however, such an experiment is open to
anonymous subjects, and thus, control is limited. For example, in our case, a subject could use
any external information to predict the next character. In particular, we were unable to prohibit
subjects from conducting a search for the n− 1 characters to obtain the answer for the next character.
Furthermore, the English fluency of the subjects was unknown. Thus, the results should be examined
from this perspective as well; see Section 5.2.

An experimental user interface based on Shannon’s original proposal was developed. The most
important requirement of the design was the adequacy of the task load since a subject could easily lose
their concentration and abandon a prediction during the experiment. We designed the user interface
to be as simple as possible so as to lessen the psychological demand on the subjects.

3.2. Experimental Design

In this HIT, a subject was asked to start from the beginning fragment of a sentence, and then guess
character after character of the remainder of the sentence. Figure 1 shows the interface used in the
experiment. As shown, a subject received three types of information:

1. The number of characters still available for use.
2. The preceding n− 1 characters.
3. The set of incorrect characters already used.

In this framework, once a subject decides on their guess, they input it and press enter to submit it.
If the guess is correct, the context is updated to length n, and the task continues with the prediction of
the n + 1-th character. If the answer is incorrect, the subject must guess what the n-th character is until
obtaining the correct answer. Subjects were informed in advance of the number of characters in the
remaining phrase to avoid anyone abandoning the task.

Figure 1. Our user interface for our cognitive experiment on Amazon Mechanical Turk. It provides:
(i) the number of characters still available for use, (ii) the preceding n− 1 characters, and (iii) the set of
incorrect characters already used.

If a phrase is too long, subjects become easily distracted. Therefore, it was necessary to adjust the
length of time provided for an experimental session. Too short a time raises the cognitive load, whereas
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too long a time decreases a subject’s interest. After multiple trials across multiple options, such as
putting a constant cap on the time allowed for each guess, we chose to allow a maximum number of
guesses for every phrase. After some preliminary tests, this number was fixed to the character length
of the phrase. Therefore, a subject was able to complete the task only if they always guessed all of the
characters correctly. Most of the time, then, a subject was unable to finish a phrase.

The phrases were taken from the Wall Street Journal. In particular, 225 sentences were randomly
extracted for this experiment and used as the experimental phrases. Their average length was 150.97.
All characters were capitalized, and non-alphabetical symbols other than spaces were removed,
duplicating the settings in previous works [1,9–11]. Hence, the characters were limited to the 26 letters
of the alphabet, all in capital letters, and the space symbol. Table 2 lists the top ten most frequently
used words and two successive words used in the experiment. As shown, they are relatively simple
words that do not require specialized knowledge to predict correctly.

Table 2. The top ten most frequently used words along with two subsequent words appearing in the
phrases used in our experiment.

Rank Word Frequency Two Subsequent Words Frequency

1 market 15 interest rates 4
2 company 13 future contracts 3
3 investment 11 program trading 3
4 price 11 stock market 3
5 people 11 money managers 3
6 companies 10 same time 2
7 stock 9 wide variety 2
8 buy 9 time around 2
9 officials 7 higher dividends 2
10 growth 7 some firms 2

We considered multiple variations of Shannon’s experiment. The experiment could have consisted
of guessing a character of a different phrase every time; thus, increasing the cognitive load for the
subject by having them read through a different phrase every time. Another possibility was to proceed
even if the character guess was incorrect. Since multiple subjects participated, it would then still be
possible to acquire the probability of a correct guess. Such a method would decrease the task load
substantially. However, this idea was not adopted since some subjects could choose random characters
for all predictions. Finally, we reached the conclusion that Shannon’s framework was well designed
and utilized it in this work.

3.3. Experimental Outcomes

The last row of Table 1 provides the summary for the cognitive experiment. We collected
172,954 observations from 683 different subjects, whose residences were limited to the United States,
Canada, Great Britain, and Australia. The mean of the maximum values of n for each experimental
session was 87.51. The mean number of observations collected for n ≤ 70 was 1954.86.

These numbers are by far the largest collected for this type of experiment [1,9–11], in terms of
both the total number of observations and the number of subjects. While these values were fixed in the
previous works, they varied in our experiment due to the use of Mechanical Turk.

Figure 2 shows the number of samples acquired for different context lengths n− 1. As the context
length n− 1 increased, the number of observations decreased because, in our experiment, the number
of guesses could reach the maximum number of guesses allowed for a phrase, as mentioned in the
previous section. For up to n = 70, over 85% of the subjects made guesses. Beyond n = 70, however,
the number of subjects making guesses decreased quickly. As we discuss later, having a large number of
observations is crucial for acquiring a good estimate of the entropy rate within a statistically reasonable
margin.
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Figure 2. The number of observations collected for the predictions made for the n-th character.
The vertical line indicates n = 70, which provided the minimum direct estimate of hexpmin = 1.407 in
our experiment.

3.4. Human Prediction Accuracy with Respect to Context Length

Shannon [1] originally reported that the upper bound decreases with respect to the context length
for up to n = 100. This result implies that a human is able to improve their prediction performance
with more context. However, the later experiment by [11] disagreed with Shannon’s [1], as they
reported that the upper bound did not decrease for n ≥ 32. Therefore, the question remains as to
whether longer contextual phrases help humans to predict future characters more accurately. Hence,
we examined whether the prediction performance of subjects improved with a longer contextual
phrase length, based on all observations collected.

Figure 3 shows the probability that a subject provided the correct n-th character with their first
guess. At n = 1 (i.e., the subject was asked to predict the first character of a phrase with no context
given), the probability was below 20%. The probability improved greatly from n = 1 to n = 2, as it
reached above 50% for n = 2. As n increased to n = 100, the probability roughly monotonically
increased to nearly 80%. Based on this result, a subject improves their accuracy in predicting the next
character as the context length n increases, at least up to n = 100, which supports Shannon’s claim.

Figure 3. The probability that the subject needed only one guess to make the correct prediction of
n-th character.
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This result also implies that the subjects of our experiment exhibited reasonable performances
since it was a major concern that the collected observations might be of low quality due to the online
experimental setting.

3.5. The Datapoints of the Bounds for n

Using all of the observations, the upper and lower bounds can be estimated with Equation (5) for
every n. The number of collected observations varies with respect to n, as shown in Figure 2. Figure 4
shows the plots of the upper and lower bounds computed for n = 1, 2, . . . , 70 using all of the collected
observations. The blue plot indicates the upper bound, whereas the red plot shows the lower bound.
For the upper bound, the blue plot exhibits a decreasing tendency, although the values fluctuate along
with n. Our main interest lies in the upper bound.

Figure 4. The plots of the upper bound (blue) and the lower bound (red) acquired from all observations
and their extrapolations via ansatz functions of f1 (dashed lines).

Plots of both bounds have large fluctuations for n > 70 due to the decrease in the sample size for
large n, which will be examined later in Section 5.1. The minimum experimental value of the upper
bound was hexpmin ≡ 1.407 bpc, which was located at n = 70. Since this is the minimum of the direct
experimental values, any computed entropy rate larger than this would appear to be invalid. In the
remainder of this paper, the observations collected up to n = 70 are utilized.

4. Extrapolation of the Bounds with an Ansatz Function

As mentioned in the Introduction, the other drawback of the previous studies utilizing the
cognitive approach to the entropy rate lies in not extrapolating the experimental values. Precisely,
in the previous cognitive experiments [1,10,11], the reported entropy rate values were the direct upper
bounds at the largest n used, such as n = 100 in [1].

As the entropy rate, by definition, is the value of Fn with n tending to infinity, its upper
and lower bounds, as n tends to infinity, must be considered and can be examined via some
extrapolation functions.

4.1. Ansatz Functions

As the mathematical nature of a natural language time series is unknown, such a function can only
be an ansatz function. The first ansatz function was proposed by Hilberg [23], who hypothesized that
the entropy rate decreases according to the power function with respect to n based on the experimental
results of Shannon [1]. This function is as follows:
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f1(n) = Anβ−1 + h, β < 1. (6)

Originally, this function was proposed without the h term. There have been theoretical arguments
as to whether h = 0 [2–5,7,24,25]; therefore, a function with the h term was considered in this work.

Takahira et al. [4] suggested another possibility that modifies the function f1(n) slightly, which is
as follows:

f2(n) = exp (Anβ−1 + h), β < 1. (7)

They observed that the stretched exponential function f2(n) leads to a smaller value of h by
roughly 0.2 bpc in a compression experiment for English characters.

Schümann and Grassberger [3] introduced another function f3(n) based on their experimental
result:

f3(n) = Anβ−1 log n + h, β < 1. (8)

These three ansatz functions f1, f2, and f3 will be evaluated based on their fit to the data points
discussed in the previous section. For f1 and f3, h is the estimated value at infinite n, whereas in the
case of f2, the estimated value of the upper and lower bounds at infinity is eh.

4.2. Comparison among Ansatz Functions Using All Estimates

Every ansatz function was fitted to the plots of the upper and lower bounds via the
Levenberg–Marquardt algorithm for minimizing the square error. The ansatz functions’ fits to the data
points mentioned in Section 3.5, are shown in Figure 4 for f1 and in Figure A1 in the Appendix A for
f2 and f3.

For f1 and f2, the fits converged well and the errors were also moderate. The mean-root-square
error of f1 was 0.044, quite close to the error of f2, which was 0.043. Both the entropy rate estimates
also converged to similar values of h; namely, h = 1.393 and h = 1.353 bpc, respectively, for the upper
bounds. The values of β, were 0.484 and 0.603 for f1 and f2, respectively, suggesting monotonic decay
in both cases.

On the other hand, f3 presented some problems. The function did not fit well, and the error
was 0.069. Above all, f3’s extrapolated upper bound was h = 1.573 bpc. The value is larger than the
minimum experimental value hexpmin = 1.407 bpc considered in Section 3.5.

This tendency of f3 to overestimate the value h may be the result of f3(n) having been designed
based on the convergence of the entropy rate of some random sequence. Therefore, a suitable ansatz
function would be either f1 or f2. As seen, they provide similar results, which is consistent with the
original observation provided in [4]. Consequently, we focus on f1, the most conventional ansatz, in
the following section.

5. Analysis via the Bootstrap Technique

Section 2.3 mentioned that the scale of our experiment was significantly larger than the scales
used in previous experiments [1,9,11]. The large number of observations allowed us to investigate
the effect of the number of observations via the bootstrap technique, which uses subsets of the
experimental samples.

5.1. The Effect of the Sample Size

B sets of observations, each of which include S records of the experimental sessions, were sampled
without redundancy. Let S be referred to as the sample size in the following discussion. As defined in
Section 2.1, a record of an experimental session consists of a series of the number of guesses for each
context of length n− 1 produced by the same subject for a phase.

For each set, the upper bound of every n is the rightmost term in Equation (5), and an acquired set
of points is extrapolated with the ansatz function f1. We obtain B different values of h. In addition to
their mean value, it would be reasonable to examine the interval between some bounds for the entropy
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rate estimate. We consider these bounds based on the fixed percentile of B values of h. We set B = 1000
and acquired the means and both bounds at 5% upper/lower percentiles for different values of S.

Figure 5 shows the histograms of h values for S = 100, 500, 1000, and 1500. At S = 100,
the estimated values vary widely, and the 5% percentile bounds are h = 1.124 bpc and h = 1.467 bpc,
as shown in Table 3. The previous experiments, including Shannon’s study [1,9,11], used a maximum
of S = 100 observations for certain values of n. Our results suggest that the values reported by these
works have large intervals around them and should not be considered to be general results.

Furthermore, for small S, the estimated values also tend to be biased towards smaller values.
The mean value at S = 100 was h = 1.340 bpc, which is about 0.07 bpc smaller than the value
h = 1.412 bpc obtained for S = 1000. This underestimation occurred due to the fact that an event with
small probability cannot be sampled when the sample size is small. Such events with small probabilities
then contribute to increasing the entropy. When their contributions are ignored, the estimate tends to be
smaller than its true value. Consequently, Shannon’s original experiment could have underestimated
the upper bound.

These observations suggest that a large sample size is necessary to obtain convergence of the
upper bound. As observed in the values reported in Table 3, the histograms Figure 5, the red data
points, and the shaded area in Figure 6, the differences between the 5% upper/lower percentile bounds
decrease with larger sample size S. At S = 1000, the difference between the bounds is smaller than
0.1 bpc, which is a reasonably acceptable margin of error.

(a) S = 100. (b) S = 500.(a) S 100.

(c) S = 1000.

(b) S 500.

(d) S = 1500.

Figure 5. Histograms for the estimated values of the upper bound of the entropy rate h for different
sample sizes. (a) S = 100; (b) S = 500; (c) S = 1000; (d)S = 1500.
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Figure 6. The estimated upper bounds with ansatz function f1 using: (1) 1000 experimental sessions
with the best prediction performances (blue), and (2) all experimental sessions (red), with the values
reported in Table 3. The blue and red points indicate the mean values for the B = 1000 sets, and the
shaded areas indicate the 5% percentile bounds.

Table 3. The means and the 5% percentile-bound-intervals for the upper bound of h found by using
the ansatz function f1 for S = 100, 500, 1000, and 1500. The number of sets is B = 1000. The error
is large for a small sample sizes, such as S = 100, as the difference between the 5% percentile upper
and lower bounds is larger than 0.3 bpc. This difference decreases with increasing S and eventually
becomes smaller than ±0.1 bpc for S ≥ 1000.

Sample Size S Mean 5% Upper 5% Lower

100 1.340 1.467 1.124
200 1.383 1.468 1.263
300 1.391 1.459 1.302
400 1.398 1.456 1.327
500 1.405 1.455 1.349
1000 1.412 1.438 1.383
1500 1.411 1.444 1.374

5.2. The Effect of Variation on Subjects’ Estimation Performances

Our experiment was conducted with anonymous subjects, and therefore, was less controlled than
an in-laboratory experiment. Such factors could influence the entropy rate estimate; therefore, the bias
is examined in this section.

Although the residences of the participants were limited to native English speaking countries, as
mentioned in Section 3.3, we could not control the native tongues of our participants. Although our
phrases were extracted from the Wall Street Journal and the terms and expressions were easy to
understand, even for non-natives (see Table 2), the results might be biased. In addition, the experiment
was not supervised on site; therefore, subject conditions could have varied.

In principle, the entropy rate measures the maximal predictability of the text. Therefore, each
estimated value should be obtained based on the maximal performance of the subject. Here, we
consider estimating the entropy rate with only the best-performed experimental sessions. We first
defined the performance of an experimental session as the average number of guesses required to
predict the succeeding character Xn. The experimental sessions for which the maximal n was less than
70 were filtered out in order to keep the sample size the same for all n = 1 . . . 70.
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Next, the experimental sessions were sorted by performance, and the S = 1000 best sessions are
selected. Note that this S was necessary for obtaining convergence, as seen in the previous section.

We evaluated the mean and 5% percentile bounds of the best-performing set by measuring the
upper bound h from B = 1000 sets of S = 100, 150, 200, . . . , 1000 sub-samples. At S = 1000, there is
only one possible set; therefore, h can have just one value. The results are shown in Figure 6. The blue
data points in the middle show the means, and the blue-colored areas around them shows the intervals
contained within the 5% percentile bounds. Similar to the results for all experiment sessions (shown as
red data points and a red-shaded area), the widths of the intervals are quite large for small sample
sizes, such as S = 100, and decrease towards S = 1000. The mean value of the upper bound increased
with respect to S, which is also similar to the result for all experiment sessions.

Using just the selected experimental sessions, the final estimated value converged to h ≈ 1.22 bpc,
which is smaller than the value estimated when using all experimental sessions hexpmin and those
acquired by previous cognitive experiments.

6. Discussion

6.1. Computational versus Cognitive Methods

In parallel with the cognitive approach, computational approaches have also attempted to estimate
the entropy rate’s upper bound for natural language. Such an approach requires that some language
model be used, and previous estimates have been found with, for example, the n-gram language
model [2], compression algorithm model [3,4], and neural language model [5,7]. In particular,
Brown et al. [2] constructed the word-level n-gram language model and obtained h = 1.63 bpc,
whereas Takahira et al. [4] conducted a compression experiment using giga byte-scale newspaper
corpora and obtained an estimate of h = 1.32.

In addition to the compression algorithms and n-gram language models, recent works have also
employed neural language models, which potentially have higher capacities for accurately predicting
future characters. Recently, Dai et al. [7] reported h = 1.08 bpc when using Transformer XL on
text8. This dataset is a collection of natural language text taken from Wikipedia and cleaned to the
point of having only 26 alphabet characters and space corresponding to the setting of the Shannon’s
experiment. That h value was smaller than our estimated value, suggesting that humans may not
be able to outperform computational models in character guessing games. Nevertheless, it is worth
considering the differences in the conditions of the experiments.

The primary factor is the context length. Dai et al. [7]’s model utilized several hundred context
lengths to acquire their results. The high performance of the neural language models can be explained,
at least partially, by their ability to utilize long contexts. However, humans are also able to utilize long
contexts, at least as long as n ≈ 102, to improve their prediction performances, whereas our experiment
used the context lengths of up to n = 70 to obtain the upper bound for h.

Furthermore, while a cognitive experiment obtains the upper bound of the entropy rate from
the number of guesses, when using the computational model, the estimate is calculated based on
the probability assigned to the correct character. With a distribution at hand, the upper bound of the
computational model can be evaluated more tightly and precisely. The design of an experiment that
incorporates a longer context length and character probability distributions is a direction of research
that may be pursued in future work.

6.2. Application to Other Languages and Words

This work focused on English, which is the most studied language within the context of entropy
rate estimation. Shannon’s experiment is applicable to other languages if the alphabet size of the
writing system is comparable with that of English.

In contrast, for ideographic languages such as Chinese and Japanese, which have much larger
alphabet sizes, it is practically impossible to conduct Shannon’s experiment. A prediction could involve
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thousands of trials until a subject reaches the correct character. Therefore, a new experimental design
is required to estimate the entropy rate for these languages with large alphabet sizes.

Such an experimental setting would be also applicable to the estimation of the entropy rate at the
word level, which could be interesting to investigate via a cognitive approach. Humans partly generate
text word by word and character by character (sound by sound). Thus, any analysis could reveal new
information about linguistic communication channels, including their distortions, as studied in [26,27].

6.3. Nature of h Revealed by Cognitive Experimentation

Provided with some previous work and the good fit of an ansatz extrapolation function while
assuming that h ≥ 0 and using what we consider reliable data points, we arrived at h = 1.22.

There is more than one way, however, to investigate the true value of h. Figure 4 shows how data
points for larger n become lower than the estimated ansatz, perhaps suggesting that the values tend to
zero even for larger n. It could be the case that h goes to zero. Indeed, a function without an h term (i.e.,
h = 0) would fit reasonably well if the upper bound is evaluated only with relatively small datapoints
of n such as n ≤ 70. Overall, our analysis does not rule out the possibility of the zero entropy rate.

One observation gained from this work that highlighted the sample size is that data points are
distributed and statistical margins must be considered. Hence, h should be considered as having a
distribution and not as a single value. One such way of analysis was described in Section 5.

7. Conclusions

This paper presented a large-scale cognitive experiment for estimating the entropy rate for English.
Using AMT, we conducted Shannon’s experiment online and collected 172,954 character predictions in
total across 683 subjects. It was by far the largest cognitive experiment conducted thus far, and the
scale enabled us to analyze the factors that influence the estimation.

While Shannon implied that subjects’ prediction performances improved with increasing context
length, others disagreed with his implication. Our experiment showed that subjects’ prediction
performances improved consistently with increasing context length, at least up to 100 characters.

Further, we investigated the influence of the number of observations on the estimation via the
bootstrap technique. One of the most important insights gained is that the number of prediction
observations must be at least 1000 in order to produce an estimate with a reasonable margin of
error. In the case of small samples, the value of h could be potentially underestimated. Hence,
Shannon’s original experiment and other previous experiments provided estimates that could have
been underestimated. We believe that this present work reports a statistically reliable estimate with a
reasonable margin of error.

Due to the online environment, the performances of the subjects varied, and the upper bound
should be evaluated based on filtered results. With a sufficient number of well-performing samples,
we obtained an upper bound of h ≈ 1.22 bpc, which is slightly smaller than Shannon’s reported value
of h = 1.3 bpc.

Future work could include finding a new experimental design, one in which the participants use
longer contexts to predict the next character; thus, reducing the cognitive load. Such an experiment
would contribute to the tighter evaluation of the upper bound of the entropy rate. It would be also
interesting to examine the entropy rates of other languages and at the word level while still utilizing a
cognitive experiment.
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Appendix A

The fits of f2 and f3 to the same data points (as opposed to f1, shown in Figure 4) are shown in
Figure A1.

(a) f2(n). (b) f3(n).

Figure A1. The plots of the upper bounds (blue) and lower bounds (red) acquired from all observations
and their extrapolations via the ansatz functions f2 and f3 (shown as the dashed lines).
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Abstract: Language is processed on a more or less word-by-word basis, and the processing difficulty
induced by each word is affected by our prior linguistic experience as well as our general knowledge
about the world. Surprisal and entropy reduction have been independently proposed as linking
theories between word processing difficulty and probabilistic language models. Extant models, however,
are typically limited to capturing linguistic experience and hence cannot account for the influence of
world knowledge. A recent comprehension model by Venhuizen, Crocker, and Brouwer (2019, Discourse
Processes) improves upon this situation by instantiating a comprehension-centric metric of surprisal that
integrates linguistic experience and world knowledge at the level of interpretation and combines them in
determining online expectations. Here, we extend this work by deriving a comprehension-centric metric
of entropy reduction from this model. In contrast to previous work, which has found that surprisal and
entropy reduction are not easily dissociated, we do find a clear dissociation in our model. While both
surprisal and entropy reduction derive from the same cognitive process—the word-by-word updating
of the unfolding interpretation—they reflect different aspects of this process: state-by-state expectation
(surprisal) versus end-state confirmation (entropy reduction).

Keywords: natural language; entropy; neural networks

1. Introduction

Language is processed on a more or less word-by-word basis, and certain words induce more
processing effort (as reflected in higher reading times; RTs) than others. Inspired by Shannon’s [1]
theory of communication, it has been proposed that the informativity of a word is proportional to the
processing effort that it induces. One way to quantify word informativity is using the notion of surprisal,
which is a metric that quantifies the expectancy of a word [2,3]; the less expected a word is in a given
context, the higher its surprisal (also called self-information). A second metric for word informativity is
the entropy reduction induced by a word, which quantifies the extent to which the word decreases the
amount of uncertainty about what is being communicated [4]. Surprisal and entropy reduction have
been independently proposed as relevant linking hypotheses between probabilistic language models
and processing difficulty [5–15]. That is, instantiations of these metrics provide a computational-level
explanation (in terms of Marr [16]) of how the probability of a word in a linguistic context (estimated using
language models) affects processing difficulty. There exists, however, a range of experimental findings
that show that the processing difficulty of individual words is not only affected by their probability as part
of the (local) linguistic context but is also affected by the larger discourse and visual context as well as by
general knowledge about the world (see, e.g., [17–32]). Hence, in order to explain these findings in terms
of word informativity, the information-theoretic metrics of surprisal and entropy reduction should take
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into account the probabilistic structure of the world, above and beyond that of the linguistic signal alone.
This means that existing instantiations of these information-theoretic metrics, which are generally based
on language models, should either be augmented with a probabilistic notion of extra-linguistic knowledge
or be redefined in terms of the underlying cognitive processes.

In this paper, we take the latter approach by building upon previous work by Venhuizen et al. [33]
(henceforth, VCB), who put forward a model of language comprehension in which surprisal estimates
are derived from the probabilistic, distributed meaning representations that the model constructs on a
word-by-word basis. By systematically manipulating the model’s linguistic experience (the linguistic
input history of the model) and world knowledge (the probabilistic knowledge captured within the
representations), VCB show that, like human comprehenders, the model’s comprehension-centric surprisal
estimates are sensitive to both of these information sources. Since surprisal in this model directly derives
from the process of incremental linguistic comprehension, the model offers an explanation at Marr’s
representational and algorithmic level of how linguistic experience and world knowledge can affect
processing difficulty as quantified by surprisal. Given that entropy reduction has been argued to be a
relevant predictor of processing difficulty independent of surprisal [15], we here extend these results by
deriving a comprehension-centric metric of entropy from the meaning representations that the model
constructs. Whereas previous instantiations of entropy in language are defined over linguistic structures
(e.g., Probabilistic Context-Free Grammar, PCFG, states [4,14], parts-of-speech [8], or individual words [15]),
we here define entropy as the amount of uncertainty relative to the state of affairs of the world. That is, the
entropy reduction of a word wt quantifies how much uncertainty regarding the current state of affairs is
taken away by processing word wt. Empirical support for such an approach comes from a recent study of
situated language comprehension, which manipulated only the visual context, thus keeping (linguistic)
surprisal constant [34]. Words that reduce referential entropy to a greater extent—with respect to a visual
context—led to increased processing effort for otherwise identical utterances.

We investigate whether the comprehension-centric notions of surprisal and entropy reduction make
differential predictions within the model and how these metrics relate to the underlying cognitive process
of comprehension. Based on the results, we conclude that surprisal and entropy reduction derive from
a single cognitive process—comprehension as navigation through meaning space—and that they reflect
different aspects of this process: state-by-state expectation (surprisal) versus end-state confirmation
(entropy reduction). Critically, while previous language model-based instantiations have found that
surprisal and entropy reduction are not easily dissociated [15], the comprehension-centric perspective on
word informativity predicts that surprisal and entropy reduction differentially reflect effects of linguistic
experience and world knowledge during online comprehension.

In what follows, we first introduce the probabilistic, distributed meaning representations used
by VCB [33], from a novel, formal semantic perspective (cf. [35]) (Section 2.1). Next, we describe
the comprehension model (Section 2.2.1) as well as how processing in this model gives rise to a
comprehension-centric notion of surprisal (Section 2.2.2). From here, a comprehension-centric notion
of entropy is derived (Section 2.3). The remainder of the paper, then, explores how and why
comprehension-centric entropy reduction differs from comprehension-centric surprisal (Section 3). Finally,
we discuss the implications of our findings and outline directions for further study (Section 4).

2. Comprehension-Centric Surprisal and Entropy

VCB [33] present a computational model of language comprehension that explicates how world
knowledge and linguistic experience are integrated at the level of interpretation and combine in
determining online expectations. To this end, they present a neural network model that constructs a
representation of utterance meaning on an incremental, word-by-word basis. It is shown that word
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surprisal naturally derives from the incremental construction of these meaning representations, and that it
is affected by both linguistic experience (the linguistic input history of the model) and world knowledge
(the probabilistic knowledge captured within the representations). Here, we will show that in addition to
this comprehension-centric notion of surprisal, the meaning representations also allow for the definition of
a comprehension-centric notion of entropy.

2.1. Meaning in a Distributional Formal Meaning Space

The notion of surprisal presented in [33] exploits the rich, probabilistic meaning representations that
are constructed by the comprehension model on a word-by-word basis. These representations, which are
based on the Distributed Situation-state Space framework [36,37], are argued to instantiate situation models
that allow for world knowledge-driven inference. Following [35], we here reconceptualize this approach
in terms of model-theoretic semantics, thereby emphasizing the generalizability of the framework.

Based on a set of propositions P , and a set of models formal models M (which can be defined as
combinations of the propositions in P), we can define a meaning space: SM×P (see Figure 1). Importantly,
the set of modelsM is assumed to reflect the state of the world truth-conditionally and probabilistically
(i.e., reflecting the probabilistic structure of the world). The meaning of a proposition p ∈ P is defined as
the vector �v(p) that, for each M ∈ M, assigns a 1 iff M satisfies p (M � p) and a 0 otherwise. The resulting
meaning vector captures the truth conditions of individual propositions indirectly by identifying the
models that satisfy the proposition. Because the meaning vectors of all propositions are defined with
respect to the same set of models, the distributional meaning of any p ∈ P is defined in relation to all
other p′ ∈ P ; that is, propositions that have related meanings will be true in many of the same models and
hence have similar meaning vectors.

p1 p2 p3 . . . pn
M1 1 0 0 . . . 1
M2 0 1 1 . . . 1
M3 1 1 0 . . . 0
. . . . . . . . . .
Mm 0 1 0 . . . 0

Figure 1. Example of a meaning space SM×P , where M = {M1, . . . , Mm} defines the set of models and
P = {p1, . . . , pn} the set of propositions. Rows represent models as combinations of propositions and
columns represent meaning vectors that derive from this space, such that: �vi(pj) = 1 iff Mi � pj.

Given well-defined sets of modelsM and propositions P (i.e., P fully describes the set of propositions
that can be captured inM), the resulting vector space SM×P offers distributed representations that are
compositional and probabilistic. To start with the former, the meaning space SM×P not only allows for
deriving the meaning vectors of individual propositions in P but also combinations thereof. That is, given
a definition of negation and conjunction over meaning vectors, the meaning of any logical combination
of propositions in the semantic space can be defined. The meaning vector �v(p) of a proposition p ∈ P
defines its truth values relative to M, which means that we can define its negation �v(¬p) as the vector
that assigns 0 to all M ∈ M such that p is satisfied in M and 1 otherwise:

�vi(¬p) = 1 iff Mi � p for 1 ≤ i ≤ |M|. (1)

The meaning of the conjunction p ∧ q, given p, q ∈ P , then, is defined as the vector �v(p ∧ q) that
assigns 1 to all M ∈ M such that M satisfies both p and q and 0 otherwise:
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�vi(p ∧ q) = 1 iff Mi � p and Mi � q for 1 ≤ i ≤ |M|. (2)

The probabilistic nature of the meaning space SM×P derives from the fact that the meaning vectors
for individual propositions in SM×P inherently encode their probability. Given a set of modelsM that
reflects the probabilistic nature of the world, the probability of any formula ϕ can be defined by the number
of models that satisfy ϕ, divided by the total number of models:

P(ϕ) = |{M ∈ M | M � ϕ}|/|M|. (3)

Thus, (logical combinations of) propositions that are true in a large set of models will obtain a high
probability and vice versa. Given that this directly allows for the definition of the conjunctive probability
of two formulas, we can also define the conditional probability of any formula ψ given ϕ:

P(ψ|ϕ) = P(ϕ ∧ ψ)/P(ϕ). (4)

In order to obtain sensible probability estimations about propositional co-occurrence in SM×P , the set
of modelsM needs to reflect the probabilistic structure of the actual world regarding the truth-conditions
and co-occurrence of each proposition p ∈ P . Arriving at such a set of modelsM is a non-trivial exercise.
One possible strategy would be to deduce the meaning space from annotated corpora or knowledge bases
with world knowledge-driven inferences (e.g., [38]), or from crowd-sourced human data on propositional
co-occurrence (e.g., [39]). However, in order to empirically evaluate how the information-theoretic notion
of entropy (reduction) is affected by the structure of the world, the co-occurrence between propositions
needs to be defined in a controlled manner. Therefore, the meaning representations used here (following
VCB [33]) are induced from a high-level description of the structure of the world, using an incremental,
inference-driven construction procedure [35].

2.2. A Model of Surprisal Beyond the Words Given

2.2.1. The Comprehension Model

The model presented by VCB [33] is a simple recurrent neural network (SRN) [40] consisting of three
groups of artificial logistic dot-product neurons: an INPUT layer (21 units), HIDDEN layer (100 units), and
OUTPUT layer (150 units) (see Figure 2). Time in the model is discrete, and at each processing time-step
t, activation flows from the INPUT through the HIDDEN layer to the OUTPUT layer. In addition to the
activation pattern at the INPUT layer, the HIDDEN layer also receives its own activation pattern at time-step
t− 1 as input (effectuated through an additional CONTEXT layer, which receives a copy of the activation
pattern at the HIDDEN layer prior to feed-forward propagation). The HIDDEN and the OUTPUT layers
both receive input from a bias unit (omitted in Figure 2). The model was trained using bounded gradient
descent [41] to map sequences of localist word representations constituting the words of a sentence onto a
meaning vector from SM×P , representing the meaning of that sentence.
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Figure 2. Graphic depiction of the simple recurrent neural network from [33]. Boxes represent groups
of artificial neurons, and solid arrows between boxes represent full projections between the neurons in a
projecting and a receiving group. The dashed lines indicate that the CONTEXT layer receives a copy of the
activation pattern at the HIDDEN layer at the previous time-step. See text for details.

The sentences on which the model is trained describe situations in a world that is defined in terms
of three persons (p ∈ {beth, dave, thom}), two places (x ∈ {cinema, restaurant}), two types of food
( f ∈ {dinner, popcorn}), and three drinks (d ∈ {champagne, cola, water}), which can be combined using
the following seven predicates: enter(p,x), ask_menu(p), order(p,f/d), eat(p,f), drink(p,d), pay(p), and leave(p).
The resulting set of propositions P (|P| = 45) fully describes the world. A meaning space was constructed
from these atomic propositions by sampling a set of 10K models M, while taking into account world
knowledge in terms of hard and probabilistic constraints on propositional co-occurrence; for instance,
a person can only enter a single place (hard), ordering water is more common than ordering champagne
(probabilistic), and eating popcorn is more likely in the cinema than in the restaurant (probabilistic)
(see [33] for details). In order to employ meaning vectors derived from this meaning space in the SRN,
a subset M′ consisting of 150 models was algorithmically selected from M, such that M′ adequately
reflected the structure of the world ([33], Appendix B). Situations in the world were described using
sentences from a language consisting of 21 words. The grammar described in [33] generates a total of
117 different (active) sentences, consisting of simple noun phrase-verb phrase (NP VP) sentences and
coordinated (NP VP and VP) sentences. Sentence-initial NPs identify persons, and VPs directly map onto
the aforementioned propositions. The semantics assigned to the sentences were meaning vectors from
SM×P reflecting propositional (simple sentences) or conjunctive meanings (coordinated sentences). In
order to induce differential linguistic experience in the model, some of these sentences were encountered
more often than others during training; in particular, the sentences “NPperson ordered dinner/champagne”
occurred nine times more often than “NPperson ordered popcorn/water” (whereas the frequency of the different
NPs was held constant throughout the training set, see [33] for details). The resulting training set consisted
of 237 sentences, which the model encountered 5000 times during training (see [33] for details on other
training parameters).

After training, the model successfully learned to map sequences of word representations (representing
sentences) onto meaning vectors from SM×P that describe the semantics of these sentences. Since the aim
is to investigate how information-theoretic metrics can be derived from the processing behavior of the
model, the effects need to be tightly controlled, which is why the model is not tested using a separate set of
unseen test sentences (note, however, that other models employing similar meaning representations have
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shown generalization to unseen sentences and semantics, in both comprehension [37] and production [42]).
Instead, the performance of the model was evaluated using a comprehension score comprehension(a,b) [37]
that indicates how well meaning vector a is understood to be the case from meaning vector b, resulting
in a score that ranges from −1 (perfectly understood not to be the case) to +1 (perfectly understood to
be the case). The average comprehension score of the intended target given the model’s output vector
over the entire training set was 0.89, which means that after processing a sentence, the model almost
perfectly infers the intended meaning of the sentence. This shows that, due to the structured nature of the
meaning representations, the (rather simple) SRN architecture suffices to obtain the desired comprehension
behavior. It should be noted, however, that the meaning representations could also be employed in a more
cognitively plausible architecture, in order to gain more insight into the cognitive processes underlying
incremental language comprehension, for instance, by linking model behavior to electrophysiological
correlates [43].

2.2.2. A Comprehension-Centric Notion of Surprisal

On the basis of its linguistic input, the comprehension model incrementally constructs a meaning
vector at its OUTPUT layer that captures the meaning of the sentence so far; in other words, the model
effectively navigates the meaning space SM×P on a word-by-word basis. That is, each incoming word wt

induces a transition from a point in meaning space �vt−1 to the next �vt. Figure 3 provides a visualization of
this navigation process. This figure is a three-dimensional representation of the 150-dimensional meaning
space (for a subset of the atomic propositions), derived using multidimensional scaling (MDS). The grey
points in this space correspond to propositional meaning vectors. As this figure illustrates, meaning in
SM×P is defined in terms of co-occurrence; propositions that co-occur frequently inM (e.g., order(beth,cola),
and drink(beth,cola)) are positioned close to each other in space. Note that multidimensional scaling from
150 into three dimensions necessarily results in a significant loss of information; therefore, distances
between points in the meaning space shown in Figure 3 should be interpreted with care. The coloured
points show the model’s word-by-word output for the sentences “beth entered the cinema and ordered
[popcorn/dinner]” (as the function words “the” and “and” trigger minimal transitions in meaning space,
they are left out in Figure 3 to enhance readability). The navigational trajectory (indicated by the arrows)
illustrates how the model assigns intermediate points in meaning space to each (sub-sentential) sequence of
words. For instance, at the word “beth”, the model navigates to a point in meaning space that is in between
the meanings of the propositions pertaining to beth. The prior probability of propositions in SM×P (“world
knowledge”), as well as the sentences on which the model was trained (“linguistic experience”) together
determine the model’s trajectory through meaning space. For instance, while the model was exposed to the
sentences “beth entered the restaurant and ordered popcorn” and “beth entered the restaurant and ordered dinner”
equally often, the meaning vector at the word “ordered” is closer to order(beth,popcorn) (cos(θ) = 0.70) than
to order(beth,dinner) (cos(θ) = 0.16), because the former is more probable in the model’s knowledge of the
world (see [33] for details).
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Figure 3. Three-dimensional visualization of the meaning space (by means of multidimensional scaling)
for a subset of the atomic propositions (those pertaining to beth). Coloured points and arrows show the
word-by-word navigational trajectory of the model from [33] for the sentence beth entered the cinema and
ordered [popcorn/dinner] (function words are omitted; see text for details).

Based on the view of comprehension as meaning space navigation, VCB [33] define surprisal in
terms of the points in meaning space that the model incrementally constructs. As a result, surprisal in
the model essentially reflects the distance of transitions in meaning space: in case the meaning vector
after processing word wt (i.e., �vt) is close to the previous point in meaning space �vt−1, the transition
induced by word wt is small, indicating that this word is unsurprising. If, on the other hand, �vt is far away
from �vt−1, the transition induced by word wt is big, and thus, this word is highly surprising. Because
of the probabilistic nature of the meaning representations that are derived from SM×P , the conditional
probability P(�vt|�vt−1) can be calculated directly from the meaning vectors (see Equation (4)). This, then,
results in the following definition of surprisal:

S(wt) = − log P(�vt|�vt−1). (5)

That is, the surprisal induced by word wt is inversely proportional to the conditional probability of
the meaning vector constructed after processing word wt, given the meaning vector constructed after
processing words w1, . . . , wt−1. VCB [33] show that this comprehension-centric notion of surprisal is
sensitive to both the world knowledge represented in the meaning representations as well as to the linguistic
experience of the model. World knowledge derives from the probabilistic structure of the meaning space,
as determined by the truth-conditional and probabilistic co-occurrences between propositions in M.
As a result, (sub-)propositional meaning vectors that are likely to co-occur in the world will be close to
each other in meaning space. Hence, the surprisal of word wt will be affected by how likely its resultant
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meaning vector �vt is to co-occur with the previous meaning vector �vt−1 inM. The linguistic experience
of the model, in turn, is determined by frequency differences within the set of training items. When
certain sentence-final meaning vectors occur more frequently in the training data, this will affect the
word-by-word navigation of the model through meaning space; that is, the meaning vector constructed
at word wt−1 will be closer to the more frequent sentence-final meanings than to the less frequent ones.
As a result, surprisal of word wt will be lower if wt moves the model towards a point in space that is
closer to a more frequent sentence-final meaning vector. Crucially, since world knowledge and linguistic
experience in the model derive from different probability distributions (i.e., over models versus training
items), they need not be in unison. VCB [33] show that their notion of surprisal reflects a weighted average
predictability derived from both of these sources.

2.3. Deriving a Comprehension-Centric Notion of Entropy

Entropy is a metric that quantifies the amount of uncertainty in a given state. In the context of language
processing, entropy reduction defines the extent to which a word decreases the amount of uncertainty
about what is being communicated, which is hypothesized to affect cognitive processing [4,14,44]. In terms
of the model presented above, language comprehension can be viewed as navigating the meaning space
SM×P on a word-by-word basis (see again Figure 3). At each point in time t, the model finds itself at a
point in meaning space, defined by the meaning vector �vt, that reflects the meaning of words w1, . . . , wt

(as derived from the linguistic experience and world knowledge available to the model). This navigational
process effectively aims to recover which combinations of propositions satisfy the meaning at time t. That
is, at each point in space the model tries to determine the current state of affairs in terms of the propositions
in P (i.e., each p ∈ P is either true or false). In other words, the meaning vector �vt inherently reflects
uncertainty about which fully specified state of affairs corresponds to the current point in space. The
notion of entropy can be used to quantify this uncertainty.

Given |P| = n, there are 2n fully specified states of affairs. In order to calculate entropy, we need a
probability distribution over this entire set. This will, however, quickly become infeasible (in the current
model, |P| = 45, resulting in 245 > 1013 probabilities) [45]. Critically, however, not all combinations of
propositions are licensed by world knowledge; only those states of affairs that correspond to one of the
models that constitutes the meaning space will obtain a probability P > 0 (since all other combinations
will yield the zero vector �0). That is, the models in M themselves represent fully specified states of
affairs, which, like any other combination of propositions, can be represented as a meaning vector �vMi

(e.g., �vM1 = �v(p1 ∧ ¬p2 ∧ . . . ∧ pn); see Figure 1), which will have a 1 for exactly that unit that corresponds
to model Mi. By definition these model vectors inherently carry a probability, which can be used to
define entropy. To this end, we define a probability distribution over the set of meaning vectors that
identify unique models in M, i.e., VM = {�vM | �vM(i) = 1 iff Mi = M and M is a unique model in
M}. The probabilities of the unique models in VM form a proper probability distribution since they
are by definition mutually exclusive (P(�v1 ∧�v2) = 0 for each �v1,�v2 ∈ VM such that �v1 �= �v2), and their
probabilities sum to 1 since VM covers the entire meaning space:

∨
�v∈VM =�1. At time step t, entropy can

then be defined as follows:

H(t) = − ∑
�vM∈VM

P(�vM|�vt) log P(�vM|�vt). (6)

Following this definition, entropy will be zero if the current meaning vector �vt singles out a unique model.
If, on the other hand, all models are equally likely at t (i.e., the probability distribution over all possible
models is uniform), entropy will be maximal with respect to t.
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In the psycholinguistic literature, entropy has been linked to processing difficulty via the entropy
reduction hypothesis (ERH), which states that the reduction of entropy “is positively related to human
sentence processing difficulty” ([4], p. 650). The entropy reduction between two states, as triggered by
word wt, is defined as the difference between the entropy at state t− 1 and the entropy at state t:

ΔH(wt) = H(t− 1)− H(t). (7)

In terms of the comprehension-centric notion of entropy, this means that an increase in processing effort is
predicted for words that more greatly reduce uncertainty about fully specified states of affairs. Crucially,
however, the difference in entropy between time step t− 1 and t is not necessarily positive; that is, as the
model navigates the meaning space on a word-by-word basis, individual words may in principle result
in either an increase or a decrease in the uncertainty about which state of affairs is being communicated.
While there is no negative entropy reduction in the current model due to the structure of the training data
in which the coordinated sentences describe increasingly specific states of affairs, training the model to
achieve broader empirical coverage may lead it to exhibit behavior in which it finds itself in a state of
relative certainty about the communicated state of affairs, which is then challenged by additional input
that moves the model toward a state of increased uncertainty (note that any slightly negative entropy
reduction values shown in the plots below result from noise due to the processing behavior of the model).
Hence, just as a decrease in entropy reflects the transition from a state of uncertainty to a state of greater
certainty, an increase in entropy reflects the transition from a state of certainty to a state of uncertainty.
As a result, both positive and negative changes in uncertainty are predicted to increase processing effort.
Thus, in contrast to the—syntactically defined—ERH from [4], according to which entropy reduction
(and hence, processing effort) is zero in case the current state is more uncertain than the previous state,
the comprehension-centric perspective on entropy predicts that both a reduction and an increase in entropy
result in an increase in processing effort. That is, the processing difficulty indexed by entropy reduction is
a direct reflection of the absolute degree of change in (un)certainty (|ΔH(wt)|) about the communicated
state of affairs, as induced by word wt: the larger the change in (un)certainty between state �vt−1 prior to
processing word wt and state �vt after processing wt, the higher the processing difficulty.

In what follows, we will investigate how these comprehension-centric notions of entropy and entropy
reduction behave in the online comprehension model from [33] and how they relate to the notion of
surprisal described in Section 2.2.2.

3. Entropy Reduction in Online Comprehension

3.1. Comprehension-Centric Entropy Reduction versus Surprisal

Surprisal and entropy reduction have been independently proposed as a linking theory
between probabilistic language models and human processing difficulty in online word-by-word
comprehension [2–4]. Moreover, it has been shown that these information theoretic metrics also
independently account for variability in word processing difficulty [15]. A first step, therefore, is to
examine the degree to which the predictions of the comprehension-centric instantiations of surprisal and
entropy reduction align in the model.

Figure 4 (left) plots the online surprisal estimates for each training sentence of the VCB model [33]
against the corresponding online entropy reduction estimates (we here use the term “online” in order
to differentiate the model-derived surprisal and entropy reduction metrics from the “offline” metrics
derived from the model’s training data; see Section 3.2 below). Overall, there is no significant relationship
between the two metrics (r = 0.0261, p = 0.408). However, given that sentence-initial words minimally
reduce uncertainty about sentence-final meaning (all sentences start with a proper name, and all models
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in M satisfy at least one proposition concerning each person), they induce a rather uniform surprisal
(mean = 1.24, sd = 0.01) and entropy reduction (mean = 0.107, sd = 0.01) profile, which may cloud the
relationship between these metrics. To account for this, Figure 4 (middle) shows the estimates for all but the
sentence-initial word. This now reveals a significant relationship between surprisal and entropy reduction
(r = 0.177, p < 0.01), albeit a weak one (R2 = 0.0315), leaving the majority of variance unaccounted for.
Finally, as the last word of an utterance maximally disambiguates (or confirms anticipated) utterance
meaning, it is also of interest to look at these separately. Figure 4 (right) plots the estimates for all
sentence-final words. At this position, there is no significant relationship between surprisal and entropy
reduction (r = 0.0778, p = 0.233).

Figure 4. Comparison between online entropy reduction and online surprisal estimates. The scatter plots
show the correlation between the surprisal and entropy reduction estimates for all words (left), all but
the first words (middle), and for the last words only (right). The solid blue lines depict the corresponding
linear regressions with their 95% confidence intervals. The Pearson correlation efficient (r) is shown at the
top of each plot.

In summary, when we ignore the rather uniform surprisal and entropy reduction profiles at the
sentence-initial words, we observe a weak positive correlation between the two metrics. This relationship,
which does not appear to be driven by disambiguation or confirmation at sentence-final words, explains
about 3% of the variance and hence leaves the majority of variability unaccounted for. This raises the
question of where and how the comprehension-centric instantiations of the metrics diverge. VCB [33]
explored the online surprisal metric by investigating its sensitivity to different degrees of linguistic
experience and probabilistic world knowledge. Hence, one way forward is to examine the sensitivity
of online entropy reduction under these constellations and to identify where and how it differs from
online surprisal.

3.2. Effects of Linguistic Experience versus World Knowledge

The comprehension model of VCB [33] maps sentences onto their their corresponding probabilistic
meaning vectors on an incremental, word-by-word basis. Crucially, the model is exposed to certain
sentence-semantic pairs more frequently than others during training, thereby shaping its linguistic
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experience. In addition, as each meaning vector inherently carries its own probability in the meaning
space, certain sentences can map onto meanings that are more likely than others, which provides the
model with world knowledge. These individual sources of knowledge, which influence the behavior of
the model, can be independently quantified in the training data using surprisal.

The linguistic experience that the model is exposed to can be quantified using the offline linguistic
surprisal, which is straightforwardly estimated from the sentences that the model is trained on [2,3]:

Sling(wt) = − log P(wt | w1,...,t−1). (8)

If a word wt frequently occurs after the prefix w1, . . . , wt−1, its conditional probability will be high and
its linguistic surprisal low (and vice versa). Crucially, this linguistic surprisal metric is not influenced by
the world knowledge contained within meaning vectors; it solely derives from the distribution of word
sequences in the set of training sentences.

World knowledge, in turn, can be quantified using offline situation surprisal, which is derived from
the meaning vectors corresponding to the training sentences, rather than the sentences themselves. That is,
given a sequence of words w1, . . . , wt, a situation vector sit(w1,...,t) can be derived by taking the disjunction
of the semantics of all sentences that are consistent with this prefix. For instance, the situation vector
of the prefix ‘Dave drank’ is defined as sit(Dave drank) = �v(drink(dave, water) ∨ drink(dave, cola) ∨
drink(dave, champagne)), the disjunction of all meaning vectors consistent with the word sequence “Dave
drank”. The offline situation surprisal induced by a next word is then defined as follows:

Ssit(wt) = − log P(sit(w1,...,t) | sit(w1,...,t−1)). (9)

If an incoming word wt leads to a situation vector that is highly likely given the situation vector for
the disjunctive semantics consistent with the words w1, . . . , wt−1, its conditional probability—which is
estimated through its conditional belief—will be high and its situation surprisal low and vice versa. This
offline situation surprisal metric is independent of linguistic experience; it is only sensitive to probabilistic
world knowledge encoded within the meaning space.

By differentially manipulating linguistic experience and world knowledge, VCB [33] investigate the
behavior of their comprehension-centric, online surprisal metric under three constellations:

1. Manipulation of linguistic experience only: the model is presented with sentences that differ in terms
of their occurrence frequency in the training data (i.e., differential linguistic surprisal) but that keep
the meaning vector probabilities constant (i.e., equal situation surprisal).

2. Manipulation of world knowledge only: the model is presented with sentences that occur equally
frequently in the training data (i.e., equal linguistic surprisal) but differ with respect to their
probabilities within the meaning space (i.e., differential situation surprisal).

3. Manipulation of both linguistic experience and world knowledge: to investigate the interplay between
linguistic experience and world knowledge, the model is presented with sentences in which the
linguistic experience and world knowledge are in conflict with each other (i.e., linguistic experience
dictates an increase in linguistic surprisal whereas world knowledge dictates a decrease in situation
surprisal or vice versa).

Here, we compare the comprehension-centric notion of online entropy reduction (ΔHonl; see
Equations (6) and (7)) to online surprisal (Sonl; see Equation (5)) under these three constellations, which
are constructed by manipulating offline linguistic surprisal (Sling; see Equation (8)), reflecting the linguistic
experience of the model, and offline situation surprisal (Ssit; see Equation (9)), reflecting the world
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knowledge available to the model. Figure 5 shows the difference in surprisal/entropy reduction for
these manipulations.

Figure 5. Effects of linguistic experience (LE) versus world knowledge (WK) on linguistic surprisal
(Sling), situation surprisal (Ssit), online surprisal (Sonl), and online entropy reduction (ΔHonl). Bars represent
differences between two target words. Top: Effects of LE for the contrast “NPperson ordered popcorn [T]/dinner
[C]”. Middle: Effects of WK for ‘NPperson entered the cinema and ordered popcorn [T]/dinner [C]”. Bottom:
Interplay between LE and WK for the contrast “NPperson ordered champagne [T]/water [C]”. Error bars show
standard errors (n = 3). Individual means are shown in brackets (T-C).

When only linguistic experience is manipulated (the sentence “NPperson ordered dinner”
is more frequent than “NPperson ordered popcorn”) and world knowledge is held constant
(P(order(dinner)) = P(order(popcorn)) in the meaning space), online surprisal (Sonl) pairs with
offline linguistic surprisal (Sling) in that “popcorn” is more effortful than “dinner”. Online entropy
reduction (ΔHonl), in turn, like offline situation surprisal (Ssit), shows no effect (the negligible
differences between conditions are attributable to noise from the dimension selection procedure [33]); see
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Figure 5 (top). By contrast, when only world knowledge is manipulated (P(order(popcorn)|cinema) >
P(order(dinner)|cinema)), and linguistic experience is held constant (“NPperson entered the cinema and
ordered popcorn/dinner” are equally frequent), both online surprisal (Sonl) and online entropy reduction
(ΔHonl) pair with offline situation surprisal (Ssit) in that “dinner” is more effortful than “popcorn”, while
offline linguistic surprisal (Sling) shows no effect (Figure 5, middle). Finally, when there is a mismatch
between linguistic experience (“NPperson ordered champagne” is more frequent than “NPperson ordered water”)
and world knowledge (P(order(champage) < P(order(water))), online surprisal (Sonl) pairs with offline
linguistic surprisal (Sling) in that “water” is more effortful than “champagne” (Figure 5, bottom). Online
entropy reduction (ΔHonl), in turn, again aligns with offline situation surprisal (Ssit) in that “champagne”
is more effortful than “water”. Indeed, a correlation analysis between online entropy reduction and offline
situation surprisal for all words in the training data reveals a strong positive correlation between the two
metrics (r = 0.834, p < 0.01).

In addition to comparing online entropy reduction (ΔHonl) and online surprisal (Sonl) to offline
linguistic surprisal (Sling) and offline situation surprisal (Ssit), we could gain further insight by comparing
them to the entropy reduction counterparts of these offline metrics: offline linguistic entropy reduction
(ΔHling) and offline situation entropy reduction (ΔHsit), which can both be straightforwardly estimated
from the sentence-semantics pairs in the training data [45]. However, as all contrasts shown in Figure 5
concern sentence-final contrasts, there will in fact be no effects on linguistic entropy reduction: within each
contrast, entropy will be the same for the control and target conditions at the penultimate word position,
and in both conditions, the sentence-final words will reduce entropy to zero. Hence, there will be no
difference in linguistic entropy reduction between the conditions. As for offline situation entropy reduction,
this could be estimated by replacing�vt in Equation (6) with the situation vector sit(w1,...,t)—the disjunction
of all meaning vectors consistent with the prefix w1, . . . , wt—that is also used for offline situation surprisal
(see above). However, it turns out that for the model at hand, this yields the exact same predictions as
offline situation surprisal (ΔHsit) and hence will not lead to any further insights. This is a mathematical
artefact of using strictly binary meaning vectors that represent disjunctions over propositions, which yield
a uniform probability distribution over models. Under such a constellation, offline situation entropy and
offline situation surprisal will not diverge, as the former is the weighted average of the latter.

In sum, online entropy reduction makes different predictions than online surprisal; while online
surprisal reflects expectancy based on linguistic experience (∼offline linguistic surprisal) and world
knowledge (∼offline situation surprisal), online entropy reduction consistently aligns with world
knowledge and appears relatively insensitive to linguistic frequency differences.

3.3. Online Entropy Reduction as the Sentence Unfolds

Figure 6 shows the development of the surprisal and entropy reduction metrics across two sets
of sentences “NPperson entered the NPplace and asked [. . . ]” (top) and “NPperson entered the NPplace
and ordered [. . . ]” (bottom). These sets of sentences differ in terms of structural frequency (linguistic
experience) and probability of their corresponding semantics (world knowledge): the latter sentences
(ordering something after entering a place) are both more frequent and their semantics more probable than
the former (asking for something after entering a place). This difference is reflected in the offline linguistic
surprisal (Sling) and offline situation surprisal (Ssit) metrics at the verb of the coordinated sentence, which
is in non-final position: both predict higher surprisal for “asked” relative to “ordered”.

Indeed, online entropy reduction (ΔHonl) aligns with the trajectory of offline situation surprisal (Ssit).
Being consistent with both offline surprisal metrics, it predicts larger entropy reduction at “asked” than
at “ordered” (ΔHonl(asked)− ΔHonl(ordered) = 0.38− 0.02 = 0.36). By contrast, online surprisal (Sonl)
follows a completely different path as the sentences unfold: after the second word, it does not align with
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any of the other metrics. Instead, online surprisal is relatively high at the beginning of the sentence,
and at the critical words, it predicts only a slight (negative) difference in surprisal between “asked” and
“ordered” (Sonl(asked)− Sonl(ordered) = 0.68− 0.75 = −0.07). Hence, online entropy reduction and online
surprisal develop differently as the sentences unfold, and they make qualitatively different predictions at
the critical verb.

Figure 6. Word-by-word surprisal and entropy reduction metrics for two sets of sentences: “NPperson

entered the NPplace and asked [. . . ]” (n = 6, top) and “NPperson entered the NPplace and ordered [. . . ]”
(n = 30, bottom). Metrics shown are linguistic surprisal (Sling), situation surprisal (Ssit), online surprisal
(Sonl), and online entropy reduction (ΔHonl). Error bars show standard errors.

165



Entropy 2019, 21, 1159

The trajectory of online entropy reduction is relatively straightforward to understand: entropy
reduction stays relatively low throughout the sentence, except for the points at which propositional
meanings can be singled out (i.e., at “Place”, enter(Person,Place) is derived, and at “asked”,
ask_menu(Person)). In turn, online surprisal is relatively high for the sentence-initial words. This is
due to the way in which the model navigates through meaning space; it will start out with relatively
uniform meaning vectors (∼high entropy, see Figure 7 below) and gradually move toward more polarized
vectors with more units approximating 0 and 1 (∼lower entropy). Since surprisal derives from the
conditional probability between two model-derived meaning vectors, it will be affected by the amount
of polarization of these vectors, i.e., less polarized vectors generally lead to higher surprisal. Indeed,
if we quantify the polarization at t in terms of entropy H(t) and the interaction in entropy between time
step t− 1 and t as H(t− 1) ∗ H(t), we obtain a significant positive relationship between surprisal and
this interaction (r = 0.532, p < 0.01). In fact, this also explains the differential effect of surprisal and
entropy reduction at the critical word: the vector �vasked, constructed after processing “asked”, is more
polarized than the vector �vordered, constructed after “ordered” (|{i|�vasked(i) < 0.1∨�vasked(i) > 0.9}| = 126
and |{i|�vordered(i) < 0.1 ∨�vordered(i) > 0.9}| = 91, for the sentences “thom entered the restaurant and
asked/ordered”), since “asked” directly disambiguates the sentence-final meaning and “ordered” does
not (“asked” is necessarily followed by “for the menu”, whereas “ordered” has different continuations,
such as “cola”, “dinner”, etc.). As the amount of polarization affects the conditional probability, it may
thereby obscure the effect of linguistic experience and world knowledge reflected in the two offline
surprisal measures.

Since online entropy is defined relative to fully specified states of affairs, which are themselves
represented as meaning vectors identifying unique models in M, entropy effectively quantifies the
amount of polarization of the meaning vectors; low entropy states are more polarized. To illustrate how
this polarization develops as the sentence unfolds, Figure 7 shows the entropy at each word of each
training sentence of the VCB model (note that the distribution of sentence-lengths in the training data
is as follows: 2 words (6), 3 words (150), 4 words (3), 5 words (18), 6 words (6), 7 words (33), 8 words
(15), and 9 words (6); for a detailed description of the training data, see [33]). A first thing to note is
that entropy reduces as sentences unfold (r = −0.8; p < 0.01). As the model processes sentences on a
word-by-word basis, it moves through points in space that render it increasingly clear which propositions
are the case and which are not, thereby reducing uncertainty about the state of affairs conveyed by the
utterance. Secondly, this figure shows that sentence-final entropy remains relatively high (in comparison
to the maximum entropy for the 150 non-duplicate models constituting the meaning space in [33], which
is: − log( 1

150 ) = 5.01 nats (=7.23 bits)). Indeed, when entropy is defined relative to fully specified states
of the world, individual sentences will not reduce entropy to zero (in contrast to previous instantiations
of linguistic entropy that are defined over sentence-final structures [4,8,14,15]): for instance, the sentence
“beth ordered cola” is satisfied by all models in which order(beth,cola) is the case but is not explicit about all
the other propositions that can co-occur with it, thus leaving significant uncertainty with respect to the
fully-specified state of affairs.
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Figure 7. Online entropy by word position. The solid blue line depicts a linear regression and its 95%
confidence interval. The Pearson correlation coefficient (r) is shown at the top.

4. Discussion

We have derived a comprehension-centric notion of online semantic entropy, based on a
comprehension model that incrementally constructs probabilistic distributed meaning representations.
Instead of defining entropy over the probabilistic structure of the language, we here define it in terms
of the structure of the world [45]. That is, in line with the comprehension-centric notion of surprisal
presented by VCB [33], entropy derives from the model’s incremental navigation through meaning space,
which is guided by both linguistic experience and world knowledge [33]. More specifically, at time step
t, entropy in this model quantifies the amount of uncertainty at t with respect to fully specified states of
affairs, i.e., the combinations of propositions that constitute the meaning space.

While surprisal is estimated from the probabilistic properties of previous and current states of
processing—and hence naturally falls out of probabilistic language (processing) models—entropy derives
from the probabilities of all possible future states (e.g., every possible continuation of the sentence at hand),
which makes it typically less straightforward to estimate. Indeed, given that the set of possible sentences
that can be produced is non-finite, this quickly becomes infeasible, and some state-limiting mechanism
is required in order for entropy to be estimated (e.g., see [15]). In the present model, by contrast, this is
mitigated by the fact that entropy, like surprisal, directly derives from the finite dimensions of the utterance
meaning representations that the model constructs on a word-by-word basis. That is, at each time step t, the
model produces a vector �v(t) representing the activity pattern over |M| neuron-like processing units, and
entropy directly derives from these |M| states. While this offers an account of entropy (and surprisal) at
the level of representations—and hence at Marr’s [16] representational and algorithmic level—it does raise
questions about the ecological status ofM. We seeM as a set of representative, maximally informative
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models reflecting the structure of the world. That is, we do not take each M ∈ M to instantiate a single
observation of a state-of-affairs but rather as an exemplar state-of-affairs, which combines with the other
exemplars in M to represent the probabilistic structure of the world. In this sense, M can be seen as
an abstraction of our accumulated experience with the world around us. Indeed, this gives rise to the
question of howM could be acquired, developed, and altered as children and adults navigate the world
over time. While this is a question for language acquisition that is beyond the scope of this article, one
speculative approach could be to implementM as a self-organization map (SOM), which consists of the
running average of maximally informative states of affairs (e.g., see [37]) and which interfaces with the
comprehension model. Of course, despite this perspective on the set of states of affairsM that constitutes
our meaning space, the number of dimensions needed to capture real human world knowledge will
significantly exceed the limited dimensions of the current model. As a result, entropy is predicted to
be high in general, and individual sentences are predicted to reduce entropy only marginally. Critically,
however, sentences are generally interpreted in context (be it a linguistic or extra-linguistic context), which
significantly constrains the set of states of affairs that contribute to the word-derived entropy: for instance,
a context in which “beth enters the restaurant” will effectively reduce our meaning space to only those
states of affairs that are related to (beth) going to a restaurant. Hence, entropy calculation regarding
fully specified states of affairs becomes both feasible and intuitive when taking a context-dependent
(or dynamic) perspective on language comprehension.

Using the comprehension model presented in [33], we have investigated how the
comprehension-centric notion of entropy reduction behaves during online comprehension and
how it relates to online surprisal. We have found that online entropy reduction and surprisal correspond
to differential processing metrics, which may be reflected in different behavioral effects (cf. [15]). Critically,
entropy reduction and surprisal here are not conceived as reflecting different underlying cognitive
processes as both derive from the model’s comprehension process as navigation through meaning space.
They do, however, describe distinct aspects of this navigation process; whereas surprisal reflects the
transition in meaning space from one word to the next, entropy reduction quantifies how much uncertainty
is reduced with respect to the state of the world. This explains why entropy reduction seems less sensitive
to effects of linguistic experience than surprisal; even though the point in meaning space at which the
model arrives at time step t is determined by both linguistic experience and world knowledge (as reflected
in the online surprisal estimates [33]), entropy is calculated relative to fully specified states of affairs,
which means that it will be more sensitive to probabilities that derive from the structure of the world
than to those deriving from linguistic frequency effects. This is especially true in the current setup of the
model, where linguistic experience is limited to word frequency effects (sentence structures are relatively
invariant across the training data). Hence, to the extent that linguistic experience can restrict which
states of affairs are consistent with the current meaning vector, it may affect online entropy reduction.
However, the presented set of contrasts illustrates that online surprisal is inherently more sensitive than
entropy reduction to effects of linguistic experience. Overall, the observation that entropy reduction is
highly sensitive to the probabilistic structure of the world is consistent with recent findings from situated
language comprehension [34].

A consequence of deriving entropy from fully specified states of affairs is that entropy stays relatively
high after processing sentence-final words. As discussed above, this is because of the structure of the
world and the world knowledge-driven inferences that are inherent to the meaning representations: after
a sentence is processed, its literal propositional content and any highly likely or necessary propositions
that co-occur with it, are inferred to be the case, but there also remains a vast amount of uncertainty
regarding other propositions that could co-occur with it. This is consistent with a perspective on
language comprehension in which pragmatic inference is an inherent part of incremental, word-by-word
processing. In fact, one could argue that the model instantiates a perspective in which comprehension is
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pragmatic inference; the literal propositional content of an utterance has no special status—there is only
the probabilistic inferences that derive from processing an utterance (which will typically entail the literal
propositional content). This leads to another prediction regarding the difference between surprisal and
entropy reduction in our model: surprisal, which derives directly from two subsequent points in meaning
space, effectively reflects how the likelihood of inferred propositions changes locally, as it only takes into
account the inferences contained within these points. Entropy reduction, in turn, looks at the difference in
entropy between these points, which explicitly factors in the likelihood of all possible inferences. Entropy
reduction thus reflects how the likelihood of inferred propositions changes globally, i.e., with respect to the
full set of possible inferences that could be drawn. Hence, in the current instantiation of the model, the
surprisal of the word “restaurant” in the sentence “beth entered the restaurant” is driven by the change
in likelihood between the (probabilistic) inferences made at the word “the” and those made at the word
“restaurant”, while its entropy reduction is determined by the difference in uncertainty about the full set of
inferences available to the model.

In sum, in the comprehension-centric perspective on surprisal and entropy reduction formalized in the
current model, the metrics derive from a single process—word-by-word meaning space navigation—but
differ in which aspects of this process they elucidate. That is, the processing of an incoming word moves the
model from a previous point to a next point in space. The exact coordinates of these points depend on the
linguistic experience of the model as well as the world knowledge contained within the meaning space that
it navigates. Surprisal quantifies how likely the next point is given the previous one and thereby effectively
how expected the input was. Surprisal can thus be thought of as reflecting state-by-state expectation, where
input that moves the model to unexpected points in space yields high surprisal. Entropy, in turn, quantifies
how likely each fully-specified state of affairs constituting the meaning space is, given the current point in
space. Entropy reduction, then, is effectively a metric of end-state confirmation, where higher reduction of
uncertainty about the propositions that are communicated to be the case, i.e., stronger confirmation of
the communicated state-of-affairs, leads to higher reduction of entropy. This characterization appears to
be in line with recent theories and models from the text comprehension literature, in which the notion
of validation—the process of evaluating consistency of incoming linguistic information with the previous
linguistic context and general knowledge about the world—has a central role [46–48]. The above described
conceptualization of entropy reduction in terms of end-state confirmation might indeed turn out to be an
index of the degree of, or effort induced by, validating the incoming input against the larger context and
knowledge about the world. To the extent that this mapping is correct, one could explore the dissociation
between entropy reduction and surprisal even further by turning to experimental designs that pit global
knowledge of the world against local textual/discourse coherence—a good point to start this investigation
is by turning to the text comprehension literature [17,19,21,27,49,50].

Taken together, the conceptualization of comprehension as meaning-space navigation predicts
a dichotomy in which surprisal and entropy reduction—while often correlated—differentially index
effort during incremental, expectation-based comprehension: state-by-state expectation (surprisal) versus
end-state confirmation (entropy reduction). That is, while both metrics derive from transitions between
states in meaning space, surprisal approximates the distance of this transition, whereas entropy reduction
reflects a change in the inherent nature of these states: the degree of certainty regarding the state of affairs
being communicated.
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Abstract: In this work we consider Glissando Corpus—an oral corpus of Catalan and Spanish—and
empirically analyze the presence of the four classical linguistic laws (Zipf’s law, Herdan’s law, Brevity
law, and Menzerath–Altmann’s law) in oral communication, and further complement this with
the analysis of two recently formulated laws: lognormality law and size-rank law. By aligning
the acoustic signal of speech production with the speech transcriptions, we are able to measure
and compare the agreement of each of these laws when measured in both physical and symbolic
units. Our results show that these six laws are recovered in both languages but considerably more
emphatically so when these are examined in physical units, hence reinforcing the so-called ‘physical
hypothesis’ according to which linguistic laws might indeed have a physical origin and the patterns
recovered in written texts would, therefore, be just a byproduct of the regularities already present in
the acoustic signals of oral communication.

Keywords: Zipf’s law; Brevity law; Menzerath–Altmann’s law; Herdan’s law; lognormal distribution;
size-rank law; quantitative linguistics; Glissando corpus; scaling; speech

1. Introduction

Linguistic laws are statistical regularities and properties of linguistic elements (i.e., phonemes,
syllables, words or sentences) which can be formulated mathematically and estimated quantitatively [1].
While linguistic laws have been thoroughly studied over the last century [1–3], the debate on its
ultimate origin is still open. In what follows we summarise the classic four linguistic laws [3],
recently revised, mathematically substantiated and expanded to two other laws [4] (see Table 1 for
specific formulations):

1. Zipf’s law. After some notable precursors (as Pareto [5], Estoup [6] or Condon [7] among others),
George Kingsley Zipf formulated and explained in [8,9] one of the most popular quantitative
linguistic observations known in his honor as Zipf’s Law. He observed that the number of
occurrences of words with a given rank can be expressed as f (r) ∼ r−α, when ordering the words
of written corpus in decreasing order by their frequency. This is a solid linguistic law proven in
many written corpus [10] and in speech [11], even though its variations have been discussed in
many contexts [12–14].
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Table 1. Main linguistic laws, according to Torre and collaborators [4]. From left to right columns:
name of the linguistic law, its mathematical formulation, details on its magnitudes and parameters;
and finally some basic references about each law. While Zipf’s law is naturally defined and
measured in symbolic units (texts or speech transcriptions), Herdan-Heaps, Brevity, Size-Rank and
Menzerath-Altmann laws can be measured both in symbolic and physical units. Lognormality law is
only defined in physical units (time duration).

Mathematical Formulation Details References

Zipf’s law f (r) ∼ r−α
f : frequency
r: rank
α: parameter

[5–9]

Herdan-Heaps’ law V ∼ Lβ
L: text size / time elapsed
V: vocabulary
β: parameter

[15–17]

Brevity law f ∼ exp(−λ�), λ > 0
f : frequency
�: size
λ: parameter

[4,8,9,18,19]

Size-rank law � ∼ θ log(r), θ = α
λ

�: size
r: rank
θ: parameter

[4,9,18]

Menzerath-Altmann’s law y(n) = anb exp(−cn)
n: size of the whole
y: size of the parts
a, b, c: parameters

[4,20–24]

Lognormality law p(t; μ, σ) = 1
tσ
√

2π
e−

(ln(t)−μ)2

2σ2
t: time duration
σ, μ: parameters [4,25–28]

2. Herdan’s law. Although with little-known precedents [15], Herdan’s law [16] (also known as
Heap’s law, because it was also formulated later by Heaps in [17]) describes that the average
growth of new different words V in a text of size L follows V ∼ Lα, α < 1 [16]. Thus, Herdan’s
law shows the evolution of the number V of different words in a text (types) as its size increases,
measured in the total number of words (L). L obviously is obtained by the summation of the
number of occurrences of each word (tokens), for each different words types that appear in
the text.

3. Brevity law. Also known as Zipf’s law of abbreviation, its original qualitative statement claims
that the more a word is used, the shorter it tends to be [8,9,18]. In texts or transcriptions, usually
the way of measuring the word size is using the number of characters that compose the word.
In this way, brevity law has been empirically proven in texts from almost a thousand languages
of eighty different linguistic families [19], but also holds acoustically when measuring the time
duration of words [29,30].
The leap from the classical qualitative conception of brevity law to a quantitative proposal
has recently been made [4,31]. In information-theoretic terms [32], if a certain symbol i has a
probability pi of appearing in a given symbolic code with a D-ary alphabet, then its minimum
(optimal) expected description length �∗i = − logD (pi). Deviating from optimality can be
effectively modelled by adding a pre-factor, such that the description length of symbol i is �i ∼
− 1

λD logD (pi), where 0 < λD ≤ 1. So, the closer λD is to one, the closer it is the system to optimal
compression. Reordering terms, one finds an exponentially decaying dependence between the
frequency of a unit and its size (see [4] for further details on the mathematical formulation).

4. Size-rank law. Zipf’s law and brevity law involve frequencies. Taking advantage of the new
mathematical formulation of the latter, these can now be combined [4] in such a way the “size”
�i of a unit i is mathematically related to its rank ri via α (Zipf) and λ (brevity law) exponents.
Experimentally, θ = α

λ is therefore an observable parameter which indeed combines Zipf and
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Brevity exponents in a size-rank plot, and this law predicts that the larger linguistic units tend to
have a higher rank following a specific logarithmic relation [4].

5. Menzerath-Altmann law. Again after some forerunners [20], Paul Menzerath established that
there is a negative correlation between the length of a linguistic construct and the length of its
constituents [21,22]. Subsequently, a mathematical formulation law was heuristically proposed
by Gabriel Altmann [23,24]: if n stands for the size of the linguistic construct and y is the
constituent size, then y(n) = anb exp(−cn), being a, b and c free parameters of the model,
whose interpretation remains controversial [33]. Definitely, Menzerath–Altmann’s law could
be simplified and generalized qualitatively as “the longer a language construct the shorter its
components (constituents).” [23,34]. This law has been revised in different linguistic levels under
multiple and polyhedral perspectives [1,33,34], but above all in written texts. Recently some
researchers are turning back to the phonetic origins of the law [35] and new mathematical models
explaining the actual formulation have been proposed [4].

6. Lognormality law. Previous studies have found consistently lognormal distributions for spoken
phonemes in several languages [25–28,36] and in word and breath groups (BGs) duration
for English [4,37]. In [4] it was confirmed that the time duration of phonemes, words and
breath groups in speech are well described by lognormal distribution for the English language.
Moreover, in [4] a general stochastic model was presented to explain and justify such lognormality
at all linguistic levels only assuming that the lowest (phonemic) level follows a lognormal
distribution, hence claiming the universal validity of the lognormal shape and its proposal as a
‘lognormality law’.

A critical review of the literature about linguistic laws shows that the majority of empirical studies
have been conducted by analyzing written corpus or transcripts, while research on linguistic laws in
speech have been limited to small and fragmented corpora. In this work, we have followed the protocol
of [4] to systematically explore linguistic laws in speech in two new languages: Catalan and Spanish.
We simultaneously use both physical and symbolic magnitudes to examine the abovementioned laws at
three different linguistic levels in physical and symbolic space. We certify that these hold approximately
well in both languages, but better so in physical space. As we will see, this new evidence in Catalan
and Spanish further support the physical hypothesis as an alternative to the classical approach of the
so-called symbolic hypothesis in the study of language. On one hand, the symbolic hypothesis states
that these statistical laws emerge in language use as a consequence of its symbolic representation [4].
On the other hand, the physical hypothesis claims that the linguistic laws emerge initially in oral
communication—possibly as a consequence of physical, acoustic, physiological mechanisms taking
place and driven by communication optimization pressures—and the emergence of similar laws in
written texts can thus be regarded as a byproduct of such more fundamental regularities [4,38,39]. We
aim to recover in this way a more naturalistic approach to the study of language, somehow cornered
after many years of written corpus studies in computational linguistics.

2. Results

Our results are based on an analysis of Glissando corpus [40]. For illustration, Table 2 summarises
some general characteristics of this oral corpus (for more details, see Section 4, Materials and Methods).
For the phonetic inventory of Spanish and Catalan, note that only phonemes that appear effectively in
the Glissando corpus have been taken into account, without considering other phonemes that could
appear in other linguistic varieties of both languages [41].

In the next subsections we provide a systematic study of each of the six laws detailed above in
Glissando corpus. Table 3 summarizes the fitted exponents and parameters for all the linguistic laws
explored in this work at the level of words, whereas Table 4 does the same at the phonemic level,
with the exception, as explained in the following section, of the lognormality law for Catalan and
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Spanish. As we will see, linguistic laws are again recovered with only slight differences with respect to
English [4] and some technical details that are worth detailing for each law.

Table 2. Main characteristics of Glissando. This Table summarises main characteristics of Glissando
corpus [40] across linguistic levels for both Catalan and Spanish. For reference, a comparison to Buckeye
corpus (English) is provided [4,42,43]. We report the total number of linguistic elements (phonemes,
words and breath groups (BG)), specifying the number of different linguistic elements (types) and the
total (tokens). Since time duration distribution of linguistic levels are usually heavy-tailed [4], we use
median duration (instead of mean) as a reference.

Number of Elements Median Duration (secs.)

Phonemes Words BG
Phon Word BG

Tokens Types Tokens Types Tokens

Catalan 3× 105 35 8× 104 5× 103 2× 104 0.05 0.20 0.8
Spanish 2× 105 32 5× 104 4× 103 1× 104 0.05 0.21 0.9
English 8× 105 64 3× 105 9× 103 5× 104 0.07 0.20 1.1

Table 3. Summary of exponents and parameters for the case of words. Results are on reasonable good
agreement to those found for English in [4]. Note that actual fit of lognormality law in Spanish and
Catalan was not carried out due to low-resolution problems of the Glissando corpus, however we
certified that this law also holds (see the text).

Words
Zipf Herdan-Heaps Brevity Size-rank Menzerath-Altmann Lognormality

α β λ θ a b c μ σ

Catalan 1.42 0.62 23.8 0.060 0.301 −0.132 −0.004 - -
Spanish 1.41 0.63 24.1 0.058 0.336 −0.148 −0.003 - -
English 1.41 0.63 20.6 0.07 0.364 −0.227 −0.0067 −1.62 0.66

Table 4. Summary of exponents and parameters for the case of phonemes. Results are on reasonable
good agreement to those found for English in [4]. Note that actual fit of lognormality law in Spanish
and Catalan was not carried out due to low-resolution problems of the Glissando corpus, however we
certified that this law also holds (see the text).

Phonemes
Yule Brevity Menzerath-Altmann Lognormality

a b λ a b c μ σ

Catalan 0.04 0.90 297 0.092 −0.355 −0.037 - -
Spanish 0.16 0.89 76 0.102 −0.393 −0.032 - -
English 0.25 0.96 127 0.18 −0.23 −0.007 −2.68 0.59

2.1. Lognormality Law and Low-Resolution Effects

Recently [4], after exploring most common plausible family of probability distributions with the
use of maximum likelihood estimation method (MLE) [44], compelling statistical evidence showed
that the time duration distribution in speech in an English corpus is lognormally distributed across
linguistic scales (phonemes, words, and BG), and such regularity was robust for individual speakers.
Moreover, a generative mechanism able to explain the stability of the lognormal law for different
linguistic scales was also proposed [4], suggesting that such regularity is indeed universal, hence
proposing the so-called lognormality law. Here we explore the fulfillment of such new law in two
additional languages, Catalan and Spanish. Empirical results for the time duration distribution P(t)
of phonemes, words, and breath-groups (BGs) are depicted in the main plots of the top panels of
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Figure 1. Since a lognormal distribution appears normal (Gaussian) in linear-logarithmic axis, we have
logarithmically rescaled the time duration variable t as

t′ = log(t)− 〈log(t)〉
σ(log(t))

.

Accordingly, if P(t) is lognormal, then P(t′) is a standard Gaussian N (0, 1) regardless of the
linguistic scale. This fact is numerically checked in the inset panels of Figure 1.

Overall the data approximately collapse to the Gaussian shape—hence validating the lognormality
law—however, there are small deviations, and these are notably stronger for phonemes at short
timescales (note that only the right branch of the Gaussian is recovered and deviations are found at
t′ < 0). In what follows we argue that this is indeed an artifact due to finite-precision and lower-bound
resolution of the Catalan and Spanish corpus, rather than a genuine, linguistic effect.

First, note that lower-bound segmentation time in the Glissando Corpus is 30 ms, and the
corpus has a precision (granularity) of 10 ms. The lower-bound segmentation time precludes us from
experimentally observing the left-end of the phoneme time duration distribution. Furthermore, these
artifacts can propagate up to a higher scale (i.e., to words), as evidenced by the fact that words with
duration of 30, 40 or 50 ms turn out to be always composed by a single phoneme, words with time
duration of 60, 70 and 80 ms have one or two phonemes, and so on.

Figure 1. Lognormality law for time duration. (outer panels) Time duration distribution of phonemes
(orange), words (blue) and BGs (green) for Glissando corpus: Catalan (top left) and Spanish (top right).
For comparison, in the bottom left panel we show the results of English from Buckeye corpus (extracted
from [4]), where Buckeye has finer statistics (higher resolution) than Glissando. A coarsened version
of the English corpus—developed to be comparable with Glissando’s resolution—is plotted in the
bottom, right panel (see the text for details). (inset panels) Collapse of all distributions after time
rescaling t′ = (log(t)− 〈log(t)〉/std(log(t))) (where std(log(t)) stands for the standard deviation of
the random variable log t). If time durations at all levels comply with a lognormal distribution, then
the collapsed data should approach a standard Gaussian N (0, 1) (solid line), in good agreement with
the results. Small deviations found in Catalan and Spanish are similarly found in the coarsened version
of English, thus concluding that such deviations are mainly due to finite-precision and lower-bound
detectability effects, and the lognormality law otherwise holds.
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In order to certify that these low-resolution issues are indeed underpinning the deviations from
the pure lognormality law, we have added the following experiment. The so-called Buckeye corpus
(English corpus) has higher resolution than Glissando and precision and is, therefore, free from these
issues (also, Buckeye corpus has larger sample sizes than Glissando, see Table 2). Indeed for the
Buckeye corpus, compliance to the lognormality law has recently found to be excellent (see bottom left
panel of Figure 1). We thus proceed to construct a coarsened, low-resolution version of the Buckeye
corpus, comparable to the particularities of the Glissando corpus under study, by rounding up time
durations in Buckeye data to a precision of 10 ms and, by further setting the minimum observable
time duration (the lower limit segmentation) to 30 ms (we do not deal with further limitations such
as that words shorter than 60 ms are always composed of one phoneme in Glissando). The resulting
time distribution of phonemes, words, and BGs in this coarsened Buckeyed corpus are plotted in the
right panel of Figure 1. Interestingly, similar deviations from the lognormality law to the ones found in
the Glissando corpus are now recovered in the low-resolution version of the Buckeye corpus. This
evidence supports our hypothesis that the lognormality law indeed holds well in Catalan and Spanish,
albeit it might not be fully observable at the phoneme level in the Glissando corpus. Furthermore,
this analysis flags an important issue: low-resolution effects such as low precision and a too-large
lower limit segmentation time can induce important deviations and hinder the observation of the true,
underlying distribution.

To further investigate these effects, it is worth discussing at this point that the origin of the
lognormality law has been mathematically discussed recently in terms of a stochastic model [4].
Suppose that phoneme time durations can be modeled by a random variable Y, which is indeed
lognormally distributed. Since words can be understood as concatenation of phonemes, then the time
duration of words can thus be modeled by a random variable Z = ∑n

i=1 Yi, where each Yi is in principle
a different lognormal distribution and n is yet another random variable which describes the number
of phonemes shaping up a word. Whereas when n is large the central limit theorem predicts Z is
asymptotically normal when n is small and under some additional conditions, Z is well approximated
by a lognormal distribution [4], thereby explaining why the time duration of words is indeed found
to be lognormally distributed in practice. Now, how would Z be distributed if we imposed on its
sampling the artifacts detected in Glissando, such as a large lower-bound detectability threshold,
finite precision, or a smallish sample size? To illustrate these effects, we have run a numerical test
where we initially sample words of duration Z, constructed by concatenating phonemes with time
duration Y where Y = exp(X) and X is a Gaussian random variable. Y is therefore lognormal and if
we log-rescale it Ỹ = [log Y− 〈log Y〉]/std(log Y) (where std(log Y) stands for the standard deviation
of the random variable log Y) we should recover a standard Gaussian N (0, 1). This distribution is
shown (black curve) in the left panel of Figure 2, whereas the case of words is plotted in the right
panel of the same figure, approximately recovering again the lognormal shape (standard Gaussian in
rescaled units). Then, we have repeated the same experiment and ‘lowered its resolution’ by imposing
the following: (i) the precision of Y is rounded to two decimal digits, imitating the precision of 10 ms
found in Glissando, (ii) any synthetic phoneme shorter than a lower bound Y < 0.03 s is forced to
have the minimal allowed duration, Y = 0.03 s. Results for this low-resolution version of the original
experiment are then shown as purple curves in the same Figure 2. In particular, we can see how the
lognormal shape of the phoneme time duration is significantly affected for shorter timescales, and such
issues propagate to the word case at short timescales. The phenomenology is similar to what we found
by comparing the results on the Buckeye corpus (English) versus the same results on a low-resolution
version of the Buckeye corpus (bottom panels of Figure 1). All in all, this provides yet additional
evidence explaining why the lognormality law might not be fully observable across all linguistic scales
if the corpus has these kinds of limitations.
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Figure 2. Lognormality law truncation. (left) Rescaled log-time duration distribution of synthetic
‘phonemes’ P(Ỹ), estimated by (i) sampling Y = exp(X) where X is normally distributed X ∼ (μ, σ2)

with μ = −3, σ = 2, and then (ii) rescaling Ỹ = [log Y− 〈log Y〉]/std(log Y) (where std(log Y) stands
for the standard deviation of the random variable log Y). If Y is lognormal, then Ỹ ∼ N (0, 1). (right)
Rescaled log-time duration distribution of synthetic ‘words’ P(Z̃), obtained using the stochastic
model of [4] by concatenating n phonemes where n is another random variable whose distributed is
approximated empirically. As the left panel, if Z is lognormal, then Z̃ ∼ N (0, 1). In both panels, the
black curve is the original, high resolution experiment whereas the purple curve is the result of (i)
reducing the precision by rounding off to two decimal digits, (ii) reducing the sampling size to match
differences between Buckeye and Glissando, and (iii) impose a lower-bound detectability τ = 0.03 s
(akin to the 30 ms of Glissando), such that all synthetically generated phonemes with a duration Y < τ

are rounded to 0.03 s. Whereas lognormality is recovered in the original experiment, this shape is
smeared out as soon as the lower-bound detectability threshold and other low-resolution artifacts are
imposed, thereby explaining why the lognormality law might not be fully observable in Glissando.

2.2. Zipf’s Law for Words and Yule Distribution for Phonemes

Results for Zipf’s law are reported in Figure 3. The estimation of exponent α obtained for word
frequencies applying the methodology of Clauset et al [45,46] are in agreement with those previously
found [4] for the second regime in English (see Table 3), with α ≈ 1.41 (Spanish and English) and
α ≈ 1.42 (Catalan), pointing to the robustness of the law also in speech. However, in the case of
phonemes, whereas a Yule distribution can be fitted following the MLE method [44], fits are not very
good—perhaps due to lack of statistics—and there are some slight differences between the distribution
parameters of Catalan, Spanish and English (see Table 4). We conclude at this point that the Yule shape
might not be universal for phoneme distribution and this hypothesis should be carefully revisited.

Figure 3. Zipf’s law. Log-log frequency-rank of phonemes (orange squares) and words (blue circles)
for the case of Catalan (left) and Spanish (right). Words are fitted to a power law distribution
following [45,46] and leading to xmin = 1 and slopes almost similar for both languages. Phonemes are
fitted to a Yule distribution with the help of the maximum likelihood estimation method (MLE).
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2.3. Herdan–Heaps’s Law

This law accounts for the sublinear increase of the number of different words V, and can be
measured in physical units (i.e., as a function of the time elapsed T, V(T) ∼ Tγ) or in symbolic units
(i.e., as a function of the total number of words spoken L, V(L) ∼ Lβ). Results are reported in Figure 4,
certifying that (i) this law holds both in Catalan and Spanish and (ii) both in symbolic (β) and physical
(γ) units, (iii) with a scaling exponent β ≈ γ, in good agreement to previous results [4] found for
English: β ≈ 0.63 (Spanish and English) and β ≈ 0.62 (Catalan). In fact, this does not come as a
surprise, given that a number of works have derived an inverse relationship between Zipf’s and
Herdan’s exponents using different assumptions (see [47] or [48] for a review).

Figure 4. Herdan–Heaps’s law. Sublinear increase of number of different words V versus time elapsed
T (blue circles) and versus total number of words spoken L (green diamonds) for Catalan (left) and
Spanish (right). As we are leading with a multiauthor corpus, each line represents a different way
of permuting the order of concatenating each speaker. In every case we find scaling laws V(L) ∼ Lβ

and V(T) ∼ Tγ which holds for about three decades. The scaling exponents β and γ are estimated
for each permutation using the least-squares method, and the average value of each of them over all
permutations is shown in the figure. We find β ≈ γ, as previously justified in [4], while its numerical
value is on agreement with the one found for English [4].

2.4. Brevity Law

A mathematical formulation of brevity law was developed in [4] based on the
information-theoretic principle of compression [32,49], when the size of the units is expressed in
symbolic and physical units. In Figure 5 we report the results obtained for brevity law in the Glissando
corpus for the case of words (left panel for Catalan, right panel for Spanish). Raw data (light grey) was
fitted to the theoretical exponential law (see Table 1), and the best fit is depicted as a red dashed line.
Also, a data binning is added (blue dots) to be able to visually compare it with the fit (red dashed line).

When word size is measured in physical units (word duration), the best exponential fit to the raw
data (red dashed line) accurately matches the binned data, with similar fitting parameters λ ≈ 23.8
(Catalan) and λ ≈ 24.1 (Spanish) (to be compared with λ ≈ 20.6 for English in Buckeye Corpus [4]),
with significant Spearman correlations. Note that deviations of binned data from the red dashed
line take place for short timescales: we argue that these are indeed related to the finite-precision and
resolution issues discussed before, which propagate into (short) words.

When word size is measured in symbolic units (i.e., in the number of phonemes and number
of characters), the law is again recovered (inset panels of Figure 5). Interestingly, the mathematical
formulation of this law assigns a specific interpretation of the exponent λ when units are measured in
symbolic space (i.e., when a code is available): the exponent in this case is always bounded 0 ≤ λ ≤ 1
and quantifies the deviation of the language under study from compression optimality, where the closer
to 1 the closer to optimality [4]. Out of the three languages, results suggest that Spanish (λD = 0.56 for
phonemes and λD = 0.60 for characters) is slightly closest to optimality, followed by English (λD = 0.5
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for phonemes and λD = 0.6 for characters) and Catalan (λD = 0.49 for phonemes and λD = 0.53
for characters).

In the case of phoneme duration the statistics—and thus fit—are much poorer, especially for
Catalan (we recall again on the finite-precision and resolution issues of Glissando corpus). Nevertheless,
Spearman correlations are significant, both for Spanish and Catalan (Figure 6), although Spearman’s
correlation is better for Spanish (−0.54) than for Catalan (−0.3).

Figure 5. Brevity law: words (Catalan on the left panel and Spanish on the right panel). Red dashed
lines are fits to the exponential law f ∼ exp(−λ�), where � is the word size which can be measured in
physical units (mean duration) (outer panels) or in symbolical units (number of phonemes or number
of characters, inset panels). See the text for and Table 3 for data fits and interpretation. Blue dots are the
result of a data binning. Note that the fits are performed to the raw data, but the resulting exponential
shape accurately matches the binned data within a range (deviations occur for shorter sizes, when the
resolution and finite-precision issues of the Glissando corpus are important). Spearman test shows
consistent negative correlations for the three formulations for the case of Catalan of −0.27, while for
the case of Spanish the correlation is slightly stronger in physical magnitudes (−0.25) than in symbolic
units (−0.22).

Figure 6. Brevity law: phonemes (Catalan on the left panel and Spanish on the right panel). Red dashed
lines are fits to the exponential law f ∼ exp(−λ�), where � is the phoneme size measured in physical
units (mean duration). Orange squares are the result of a data binning. Spearman test always denote
negative correlations (−0.3 for Catalan, −0.54 for Spanish) but the data sample is too small to evaluate
the agreement to the exponential law.

2.5. Size-Rank Law

The size-rank law mathematically connects the Brevity and Zipf’s laws, indicating that the words
of larger rank tend to have larger size [4]. Results for the case of words are depicted in Figure 7.
Interestingly, despite the precision problems of Glissando for short durations already described
previously, the size-rank law holds more robustly than the brevity law for both Catalan and Spanish.
The slight variations in the exponent θ of Catalan (0.06) and Spanish (0.058), with respect to English
(0.07), are here a consequence of the variations in the λ exponents of brevity law (Table 3).
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Figure 7. Size-rank law for words. Linear-log representation of word size � versus rank of all words
(blue dots denote binned data) in Catalan (left) and Spanish (right). The black dashed line is a fit of
raw data (light grey dots) to the size-rank law (see Table 1), i.e., the fit of this law is not done to the
binned data, however its agreement is excellent.

2.6. Menzerath–Altmann’s Law (MAL)

The results of fittings of the Catalan and English corpus to MAL for different scales are depicted
in Figures 8 and 9. For the scale of BGs vs words (Figure 8), MAL holds well when the size of the
constituent is measured in physical units of time duration (outer panels) and it is either poorly or not
fulfilled when the size is measured in symbolic units such as number of letters or number of phonemes
per word (inset panels). Coefficients of determination R2 = 0.47 for Catalan and R2 = 0.84 for Spanish
when size is measured in time duration, to bee compared with Catalan R2 = 0.23 (Catalan, characters),
R2 = 0.11 (Catalan, phonemes), R2 = 0.04 (Spanish, characters) and R2 = 0.08 (Spanish, phonemes).
These results are in agreement with the case of English [4]. Overall, better agreement to MAL is found
for Spanish than for Catalan in time duration. Results and agreement to MAL also hold at the word
vs phoneme scale. In fact, these results are new clear evidence in favor of the acoustical origin of the
law [21] and the physical model explained in [4]. Note that while the size of the BGs are not large
enough to reach to observe the range where MAL is inverted (at b/c ≈ 34 words [4]), the value of the
exponents (see Tables 3 and 4) certifies that such regime inversion indeed exists.

Figure 8. Menzerath–Altmann law: BG vs words Representation of BG size measured in number of
words versus the mean size of those words for Catalan (left) and Spanish (right), where the size of the
words can be measured in physical magnitudes (main panel) or symbolic units (phonemes or number
of characters, inset panels). Each grey point represents one BG, whereas blue circles are the mean
duration of BGs. MAL holds in physical magnitudes (with coefficient of determination R2 = 0.47 for
Catalan and R2 = 0.84 for Spanish), while it is poorly fulfilled when the size is measured symbolically
(Catalan: R2 = 0.23 for character units and R2 = 0.11 for phoneme units; Spanish: R2 = 0.04 for
character units and R2 = 0.08 for phoneme units). Fitted parameters a, b, c are reported in Table 3.
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Figure 9. Menzerath–Altmann law: words–phonemes relation between the word size measured in
number of phonemes versus the size of those phonemes in physical magnitudes. Orange squares
represent the mean size of each word. Fitted parameters are shown in Table 4 coefficient of
determination for these are R2 = 0.75 for Catalan and R2 = 0.9 for Spanish.

3. Discussion

The relevance of the study of the frequency of linguistic elements and its relative marginalization
by the academy in the twentieth century was eloquently highlighted by Bybee [50] (p.6), stating that:

The other major theoretical factor working against an interest in frequency of use in language is
the distinction, traditionally traced back to Ferdinand de Sausurre (1916), between the knowledge
that speakers have of the signs and structures of their language and the way language is used by
actual speakers communicating with one another. American structuralists, including those of the
generativist tradition, accept this distinction and assert furthermore that the only worthwhile object of
study is the underlying knowledge of language (Chomsky 1965 and subsequent works). In this view,
any focus on the frequency of use of the patterns or items of language is considered irrelevant.

While agreeing with Bybee [50], let us add here that the relevance of the study of the frequency of
linguistic elements goes beyond the mere study of texts and, indeed, also concerns orality, which at
the end of the day is at the basis of most human languages—with obviously some notable exceptions
such as sign languages. In this work, we have studied the statistical properties and the onset of
linguistic laws in the structure of speech in Catalan and Spanish. Set aside a precedent in pre-phonemic
levels [39], to the best of our knowledge this is the first study of these characteristics in these two
languages. Not only the frequencies of phonemes, words or breath groups of Catalan and Spanish have
been examined here in speech transcriptions, but, perhaps more importantly, the presence of similar
linguistic laws in these languages has been analyzed in inherently acoustic magnitudes (time duration),
confirming some results previously found for English [4] and finding new evidence. Let us now
summarise some of these findings and discuss some open problems for future research.

First, we have concluded that in order to fully observe the lognormality law at all linguistic scales
the corpus under study needs to have sufficiently high resolution, and in particular a sufficiently low
segmentation time, as close as possible to the physiological limit given by the glottal pulse (about
10 ms, see [51]). For too large lower-bounds (30 ms in the case of Glissando) and finite-precision,
strong deviations from the lognormality law at the phoneme level will necessarily emerge, and some
of these effects can mildly percolate at the word level. While it is not a definite proof, our experimental
and numerical investigations supports our hypothesis that the lognormality law indeed holds well
in Catalan and Spanish, complementing previous results in English [4], albeit it might not be fully
observable at the phoneme level in Glissando corpus.

With respect to Zipf’s law for the frequency of words, as well as with Herdan’s law and the
size-rank law, the experimental evidence found here for Catalan and Spanish reinforces the universality
of these linguistic laws in speech. The mathematical models that relate these laws to each other are
fully verified [4]. We can also highlight here the empirical strength of the size-rank law, very robust
despite the variability of the data and the mentioned limitations of the corpus.
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In the case of the brevity law for words, in Catalan and Spanish, the mathematical formulation
derived from information theory and optimal coding [31] recently developed [4] is fully verified, and
the law holds quantitatively. In a recent work [31] it has been established that optimal non-singular
coding predicts that the length of linguistic elements should grow approximately as the logarithm of
its frequency rank, which is consistent with Zipf’s law of abbreviation and our approach [4], but more
work is needed to certify any optimality ranking between languages.Future work shall also extend this
analysis to other languages (ideally from different linguistic families beyond the Indo–European) one
and/or with different writing systems, and would also explore the connection between the brevity
exponents and other complexity metrics of language or the so-called orthographic transparency,
defined as the more or less direct relationship in the conversion between graphemes and phonemes for
each language [52].

Finally, MAL has been fully certified to hold in Catalan and Spanish only when measured in
physical units, in line with previous evidence for English [4] and providing additional evidence to
suggest that this is indeed a fundamentally acoustic law. In a similar vein, the bulk of results provided
in this work is yet another empirical support to the validity of the ‘physical hypothesis’, and we hope
it provides encouragement for other researchers to follow-up and address the necessary challenges to
fully verify this hypothesis and its implications for theoretical linguistics.

To round off let us discuss some additional open problems, potential objects of future research.
In the case of the Spanish written corpus, the frequencies of the words, lemmas and even their
punctuation marks have been extensively reviewed before [53], and similarly for the case of Catalan
and Spanish—in a bilingual context—the evolution of words and lemmas during childhood and
adolescence in written production has even been analyzed [54]. In future work, a similar approach
could be explored within speech, by analyzing in detail whether linguistic regularities emerge both in
pauses, interruptions and other elements of acoustic variability and also in prosody, which turn out to
be fundamental for example in clinical linguistics [55]. Finally, in relation to the ontogeny of language,
and similarly to recent works which study the evolution of Zipf’s law in language acquisition [13] as
well as the law of brevity [56], the evolution of linguistic laws in speech is an open problem which also
deserves investigation.

4. Materials and Methods

Glissando is a speech corpus for Spanish and Catalan which has been specially designed for
prosodic studies, but that can be used also for other purposes [40]. It includes more than 12 hours
of speech in Catalan and Spanish, recorded under optimal acoustic conditions, orthographically
transcribed, phonetically aligned and annotated with prosodic information (location of the stressed
syllables and prosodic phrasing). They are composed of three subcorpora: the ‘news’, a corpus of
read news texts; the ‘Task dialogues’, a set of three task-oriented dialogues, covering three different
interaction situations; and the ‘free dialogues’, a subcorpus of informal conversations. In this article,
we aimed to research on orality and spontaneous conversation and compare the results with previous
studies in English [4], so from those three we focused on ‘task dialogues’ and ‘free dialogues’.

We had simultaneous access to (i) the aligned speech signal, (ii) its symbolic transcription and (iii)
its phonetic transcription. In this way, we had control over all linguistic levels of phonemes and words,
while the annotations allowed us to define another linguistic level: the breath group (BG). BGs are
defined as the sequence of utterances between pauses in speech for breathing or longer [57]. A more
detailed description of the Glissando corpus can be found in [40].

Annotation files containing symbolic and phonetic transcription were derived from the
orthographic transcription using an automatic phonetic transcription tool, a phonetic aligner and a tool
for the automatic annotation of prosodic boundaries [58]. The phonetic transcription tool converted
the orthographic text into a chain of phonetic symbols, representing the theoretical pronunciation
of the text. This phonetic transcription was time-aligned with the speech signal using the phonetic
aligner, which established where to locate the initial and final boundaries for each phoneme. These
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aligners have some margin of error in the placement of these boundaries, so the output of this
automatic process is usually revised by hand [40]. In the case of the ‘News’ subcorpus, this automatic
annotation was manually revised by several experts in Phonetics, to obtain a transcription of the actual
pronunciation of the speakers and not a theoretical one, as provided by the automatic tools, and to
correct misplaced boundaries. During this process, some phonetic symbols not necessarily related to
Spanish or Catalan were included to transcribe anomalous or deviated pronunciations. The ’dialogues’
subcorpus, however, was not subject to this revision process [40]. This lack of manual revision might
explain some of the specific phenomenology observed in this work, such as the lower-bound time
duration resolution segmentation of the corpus, which could indeed be related to the limitations of the
phonetic aligner.

Data and Reproducibility

From the whole corpus, we have used data corresponding to ‘Free dialogues’ and ’Task dialogues’
in order to make the results more comparable with a previous work [4] which was based in the analysis
of spontaneous speech conversation. Glissando corpus is a freely accessible corpus for non-commercial
uses. It can be obtained through ELRA (http://catalog.elra.info/en-us/repository/browse/ELRA-
S0406/ for the Spanish subcorpus and http://catalog.elra.info/en-us/repository/browse/ELRA-
S0407/ for the Catalan subcorpus.).

Post-processed data of the Glissando corpus created by the authors of this article are available
at https://doi.org/10.6071/M3XW9T, while scripts for generating the results are available at https:
//github.com/ivangtorre/ling-law-speech-spanish-catalan. We used Python 3.7 for the analysis.
Levenberg–Marquardt algorithm, Kolmogorov–Smirnov distance, Spearman test and most of MLE fits
use Scipy 1.3.0. MLE fits for power laws that are self-coded. Other libraries such as Numpy 1.16.2,
Pandas 0.24.2 or Matplotlib 3.1.0 were also used. Fits to Zipf’s law are done with R and PowerRlaw [46].
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35. Mačutek, J.; Chromý, J.; Koščová, M. Menzerath-Altmann Law and Prothetic /v/ in Spoken Czech.
J. Quant. Linguist. 2019, 26, 66–80. [CrossRef]

36. Sayli, O. Duration Analysis and Modeling for Turkish Text-to-Speech Synthesis. Master’s Thesis, Bogaziei
University, Istanbul, Turkey, 2002.

37. Greenberg, S.; Carvey, H.; Hitchcock, L.; Chang, S. Temporal properties of spontaneous speech-a
syllable-centric perspective. J. Phon. 2003, 31, 465–485. [CrossRef]

38. Luque, J.; Luque, B.; Lacasa, L. Scaling and universality in the human voice. J. R. Soc. Interface 2015,
12, 20141344. [CrossRef]

39. Torre, I.G.; Luque, B.; Lacasa, L.; Luque, J.; Hernández-Fernández, A. Emergence of linguistic laws in
human voice. Sci. Rep. 2017, 7, 43862. [CrossRef]

40. Garrido, J.M.; Escudero, D.; Aguilar, L.; Cardeñoso, V.; Rodero, E.; de-la Mota, C.; González, C.; Rustullet, S.;
Larrea, O.; Laplaza, Y.; et al. Glissando: A corpus for multidisciplinary prosodic studies in Spanish and
Catalan. Lang. Resour. Eval. 2013, 47, 945–971. [CrossRef]

41. Fernández Planas, A. Así se Habla: Nociones Fundamentales de Fonética General y Española.; Apuntes de Catalán,
Gallego y Euskara; Horsori Editorial: Barcelona, Spain, 2005. (In Spanish)

42. Pitt, M.A.; Dilley, L.; Johnson, K.; Kiesling, S.; Raymond, W.; Hume, E.; Fosler-Lussier, E. Buckeye
Corpus of Conversational Speech, 2nd release; Columbus, OH: Department of Psychology, Ohio State
University, 2007. Available online: http://sldr.org/voir_depot.php?id=776&lang=en&sip=0 (accessed on
23 November 2019).

43. Pitt, M.A.; Johnson, K.; Hume, E.; Kiesling, S.; Raymond, W. The Buckeye corpus of conversational speech:
Labeling conventions and a test of transcriber reliability. Speech Commun. 2005, 45, 89–95. [CrossRef]

44. Eliason, S.R. Maximum Likelihood Estimation: Logic and Practice; Sage Publications: Tucson, AZ, USA, 1993;
Volume 96.

45. Clauset, A.; Shalizi, C.R.; Newman, M.E. Power-law distributions in empirical data. SIAM Rev. 2009,
51, 661–703. [CrossRef]

46. Gillespie, C.S. Fitting Heavy Tailed Distributions: The poweRlaw Package. J. Stat. Softw. 2015, 64, 1–16.
[CrossRef]

47. Lü, L.; Zhang, Z.K.; Zhou, T. Zipf’s law leads to Heaps’ law: Analyzing their relation in finite-size systems.
PLoS ONE 2010, 5, e14139. [CrossRef] [PubMed]

48. Font-Clos, F.; Boleda, G.; Corral, A. A scaling law beyond Zipf’s law and its relation to Heaps’ law.
New J. Phys.2013, 15, 093033. [CrossRef]

49. Ferrer-i Cancho, R. Compression and the origins of Zipf’s law for word frequencies. Complexity 2016,
21, 409–411. [CrossRef]

50. Bybee, J. Frequency of Use and the Organization of Language; Oxford University Press: Oxford, UK, 2007.
51. Quatieri, T.F. Discrete-Time Speech Signal Processing: Principles and Practice; Prentice Hall PTR: Upper Saddle

River, NJ, USA, 2002.
52. Borleffs, E.; Maassen, B.A.M.; Lyytinen, H.; Zwarts, F. Measuring orthographic transparency and

morphological-syllabic complexity in alphabetic orthographies: A narrative review. Read. Writ. 2017,
30, 1617–1638. [CrossRef]

53. Rojo, G. Sobre la configuración estadística de los corpus textuales. Lingüística 2017, 33, 121–134. (In Spanish)
[CrossRef]

54. Tolchinsky, L.; Martí, A.; Llaurado, A. The growth of the written lexicon in Catalan From childhood to
adolescence. Writ. Lang. Lit. 2010, 13, 206–235. [CrossRef]

55. Baken, R.; Orlikoff, R. Clinical Measurement of Speech and Voice (Speech Science); Cengage Learning: Boston,
MA, USA, 2000.

187



Entropy 2019, 21, 1153

56. Casas, B.; Hernández-Fernández, A.; Català, N.; i Cancho, R.F.; Baixeries, J. Polysemy and brevity versus
frequency in language. Comput. Speech Lang. 2019, 58, 1–50. [CrossRef]

57. Tsao, Y.C.; Weismer, G. Interspeaker variation in habitual speaking rate: Evidence for a neuromuscular
component. J. Speech Lang. Hear. Res. 1997, 40, 858–866. [CrossRef] [PubMed]

58. Garrido, J.M. SegProso: A Praat-Based Tool for the Automatic Detection and Annotation of Prosodic
Boundaries in Speech Corpora. In Proceedings of the TRASP 2013, Barcelona, Spain, 30 August 2013,
pp. 74–77.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

188



entropy

Article

Estimating Predictive Rate–Distortion Curves via
Neural Variational Inference

Michael Hahn 1,* and Richard Futrell 2

1 Department of Linguistics, Stanford University, Stanford, CA 94305, USA
2 Department of Language Science, University of California, Irvine, CA 92697, USA
* Correspondence: mhahn2@stanford.edu

Received: 13 May 2019; Accepted: 26 June 2019; Published: 28 June 2019

Abstract: The Predictive Rate–Distortion curve quantifies the trade-off between compressing
information about the past of a stochastic process and predicting its future accurately. Existing
estimation methods for this curve work by clustering finite sequences of observations or by utilizing
analytically known causal states. Neither type of approach scales to processes such as natural
languages, which have large alphabets and long dependencies, and where the causal states are not
known analytically. We describe Neural Predictive Rate–Distortion (NPRD), an estimation method
that scales to such processes, leveraging the universal approximation capabilities of neural networks.
Taking only time series data as input, the method computes a variational bound on the Predictive
Rate–Distortion curve. We validate the method on processes where Predictive Rate–Distortion is
analytically known. As an application, we provide bounds on the Predictive Rate–Distortion of
natural language, improving on bounds provided by clustering sequences. Based on the results, we
argue that the Predictive Rate–Distortion curve is more useful than the usual notion of statistical
complexity for characterizing highly complex processes such as natural language.

Keywords: Predictive Rate–Distortion; natural language; information bottleneck; neural variational
inference

1. Introduction

Predicting the future from past observations is a key problem across science. Constructing
models that predict future observations is a fundamental method of making and testing scientific
discoveries. Understanding and predicting dynamics has been a fundamental goal of physics for
centuries. In engineering, devices often have to predict the future of their environment to perform
efficiently. Living organisms need to make inferences about their environment and its future for
survival.

Real-world systems often generate complex dynamics that can be hard to compute. A biological
organism typically will not have the computational capacity to perfectly represent the environment.
In science, measurements have limited precision, limiting the precision with which one can hope
to make predictions. In these settings, the main goal will typically be to get good prediction at low
computational cost.

This motivates the study of models that try to extract those key features of past observations
that are most relevant to predicting the future. A general information-theoretic framework for this
problem is provided by Predictive Rate–Distortion [1,2], also known as the past-future information
bottleneck [3]. The Predictive Rate–Distortion trade-off seeks to find an encoding of past observations
that is maximally informative about future observations, while satisfying a bound on the amount
of information that has to be stored. More formally, this framework trades off prediction loss in the
future, formalized as cross-entropy, with the cost of representing the past, formalized as the mutual
information between the past observations and the compressed representations of the past. Due to its

Entropy 2019, 21, 640; doi:10.3390/e21070640 www.mdpi.com/journal/entropy189
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information-theoretic nature, this framework is extremely general and applies to processes across vastly
different domains. It has been applied to linear dynamical systems [3,4], but is equally meaningful for
discrete dynamical systems [2]. For biological systems that make predictions about their environment,
this corresponds to placing an information-theoretic constraint on the computational cost used for
conditioning actions on past observations [5].

The problem of determining encodings that optimize the Predictive Rate–Distortion trade-off
has been solved for certain specific kinds of dynamics, namely for linear dynamic systems [3] and
for processes whose predictive dynamic is represented exactly by a known, finite Hidden Markov
Model [2]. However, real-world processes are often more complicated. When the dynamics are
known, a representing Hidden Markov Model may still be extremely large or even infinite, making
general-purpose automated computation difficult. Even more importantly, the underlying dynamics
are often not known exactly. An organism typically does not have access to the exact dynamics of its
surroundings. Similarly, the exact distribution of sentences in a natural language is not known exactly,
precluding the application of methods that require an exact model. Such processes are typically only
available implicitly, through a finite sample of trajectories.

Optimal Causal Filtering (OCF, Still et al. [6]) addresses the problem of estimating Predictive
Rate–Distortion from a finite sample of observation trajectories. It does so by constructing a matrix
of observed frequencies of different pairs of past and future observations. However, such a method
faces a series of challenges [2]. One is the curse of dimensionality: Modeling long dependencies
requires storing an exponential number of observations, which quickly becomes intractable for
current computation methods. This exponential growth is particularly problematic when dealing with
processes with a large state space. For instance, the number of distinct words in a human language
as found in large-scale text data easily exceeds 1×105, making storing and manipulating counts of
longer word sequences very challenging. A second challenge is that of overfitting: When deploying a
predictive model constructed via OCF on new data to predict upcoming observations, such a model
can only succeed when the past sequences occurred in the sample to which OCF was applied. This is
because OCF relies on counts of full past and future observation sequences; it does not generalize to
unseen past sequences.

Extrapolating to unseen past sequences is possible in traditional time series models representing
processes that take continuous values; however, such methods are less easily applied to discrete
sequences such as natural language. Recent research has seen a flurry of interest in using flexible
nonlinear function approximators, and in particular recurrent neural networks, which can handle
sequences with discrete observations. Such machine learning methods provide generic models of
sequence data. They are the basis of the state of the art by a clear and significant margin for prediction
in natural language [7–10]. They also have been successfully applied to modeling many other kinds of
time series found across disciplines [11–18].

We propose Neural Predictive Rate–Distortion (NPRD) to estimate Predictive Rate–Distortion
when only a finite set of sample trajectories is given. We use neural networks both to encode past
observations into a summary code, and to predict future observations from it. The universal function
approximation capabilities of neural networks enable such networks to capture complex dynamics,
with computational cost scaling only linearly with the length of observed trajectories, compared to the
exponential cost of OCF. When deploying on new data, such a neural model can generalize seamlessly
to unseen sequences, and generate appropriate novel summary encodings on the fly. Recent advances
in neural variational inference [19,20] allow us to construct predictive models that provide almost
optimal predictive performance at a given rate, and to estimate the Predictive Rate–Distortion trade-off
from such networks. Our method can be applied to sample trajectories in an off-the-shelf manner,
without prior knowledge of the underlying process.

In Section 2, we formally introduce Predictive Rate–Distortion, and discuss related notions of
predictive complexity. In Section 3, we describe the prior method of Optimal Causal Filtering (OCF).
In Section 4, we describe our method NPRD. In Section 5, we validate NPRD on processes whose
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Predictive Rate–Distortion is analytically known, showing that it finds essentially optimal predictive
models. In Section 6, we apply NPRD to data from five natural languages, providing the first estimates
of Predictive Rate–Distortion of natural language.

2. Predictive Rate–Distortion

We consider stationary discrete-time stochastic processes (Xt)t∈Z, taking values in a state space S.
Given a reference point in time, say T = 0, we are interested in the problem of predicting the future of
Xt≥0 = (X0, X1, X2, ...) from the past Xt<0 = (..., X−2, X−1). In general—unless the observations Xt

are independent—predicting the future of the process accurately will require taking into account the
past observations. There is a trade-off between the accuracy of prediction, and how much information
about the past is being taken into account. On one extreme, not taking the past into account at all,
one will not be able to take advantage of the dependencies between past and future observations.
On the other extreme, considering the entirety of the past observations Xt≤0 can require storing large
and potentially unbounded amounts of information. This trade-off between information storage and
prediction accuracy is referred to as Predictive Rate–Distortion (PRD) [2]. The term rate refers to the
amount of past information being taken into account, while distortion refers to the degradation in
prediction compared to optimal prediction from the full past.

The problem of Predictive Rate–Distortion has been formalized by a range of studies. A principled
and general formalization is provided by applying the Information Bottleneck idea [2,6,21]: We will
write

←−
X for the past X<0, and

−→
X for the future X≥0, following [2]. We consider random variables Z,

called codes, that summarize the past and are used by the observer to predict the future. Formally,
Z needs to be independent from the future

−→
X conditional on the past

←−
X : in other words, Z does not

provide any information about the future except what is contained in the past. Symbolically:

Z⊥−→X |←−X . (1)

This is equivalent to the requirement that Z ↔ ←−
X ↔ −→

X be a Markov chain. This formalizes
the idea that the code is computed by an observer from the past, without having access to the future.
Predictions are then made based only on Z, without additional access to the past

←−
X .

The rate of the code Z is the mutual information between Z and the past: I[Z,
←−
X ]. By the Channel

Coding Theorem, this describes the channel capacity that the observer requires in order to transform
past observations into the code Z.

The distortion is the loss in predictive accuracy when predicting from Z, relative to optimal
prediction from the full past

←−
X . In the Information Bottleneck formalization, this is equivalent to the

amount of mutual information between past and future that is not captured by Z [22]:

I[
←−
X ,
−→
X |Z]. (2)

Due to the Markov condition, the distortion measure satisfies the relation

I[
←−
X ,
−→
X |Z] = I[

←−
X ,
−→
X ]− I[Z,

−→
X ], (3)

i.e., it captures how much less information Z carries about the future
−→
X compared to the full past←−

X . For a fixed process (Xt)t, choosing Z to minimize the distortion is equivalent to maximizing the
mutual information between the code and the future:

I[Z,
−→
X ]. (4)

We will refer to (4) as the predictiveness of the code Z.
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The rate–distortion trade-off then chooses Z to minimize distortion at bounded rate:

min
Z:I[

←−
X ,Z]≤d

I[
←−
X ,
−→
X |Z] (5)

or—equivalently—maximize predictiveness at bounded rate:

max
Z:I[

←−
X ,Z]≤d

I[Z,
−→
X ]. (6)

Equivalently, for each λ ≥ 0, we study the problem

max
Z

(
I[Z,

−→
X ]− λ · I[←−X , Z]

)
, (7)

where the scope of the maximization is the class of all random variables Z such that Z →←−
X → −→

X is a
Markov chain.

The objective (7) is equivalent to the Information Bottleneck [21], applied to the past and future of
a stochastic process. The coefficient λ indicates how strongly a high rate I[

←−
X , Z] is penalized; higher

values of λ result in lower rates and thus lower values of predictiveness.
The largest achievable predictiveness I[Z,

−→
X ] is equal to I[

←−
X ,
−→
X ], which is known as the excess

entropy of the process [23]. Due to the Markov condition (1) and the Data Processing Inequality,
predictiveness of a code Z is always upper-bounded by the rate:

I[Z,
−→
X ] ≤ I[

←−
X , Z]. (8)

As a consequence, when λ ≥ 1, then (7) is always optimized by a trivial Z with zero rate and zero
predictiveness. When λ = 0, any lossless code optimizes the problem. Therefore, we will be concerned
with the situation where λ ∈ (0, 1).

2.1. Relation to Statistical Complexity

Predictive Rate–Distortion is closely related to Statistical Complexity and the ε-machine [24,25].
Given a stationary process Xt, its causal states are the equivalence classes of semi-infinite pasts

←−
X

that induce the same conditional probability over semi-infinite futures
−→
X : Two pasts

←−
X ,
←−
X ′ belong

to the same causal state if and only if P(x1...k|←−X ) = P(x1...k|←−X ′) holds for all finite sequences x0...k
(k ∈ N). Note that this definition is not measure-theoretically rigorous; such a treatment is provided
by Löhr [26].

The causal states constitute the state set of a a Hidden Markov Model (HMM) for the process,
referred to as the ε-machine [24]. The statistical complexity of a process is the state entropy of the
ε-machine. Statistical complexity can be computed easily if the ε-machine is analytically known,
but estimating statistical complexity empirically from time series data are very challenging and seems
to at least require additional assumptions about the process [27].

Marzen and Crutchfield [2] show that Predictive Rate–Distortion can be computed when the
ε-machine is analytically known, by proving that it is equivalent to the problem of compressing
causal states, i.e., equivalence classes of pasts, to predict causal states of the backwards process, i.e.,
equivalence classes of futures. Furthermore, [6] show that, in the limit of λ → 0, the code Z that
optimizes Predictive Rate–Distortion (7) turns into the causal states.

2.2. Related Work

There are related models that represent past observations by extracting those features that are
relevant for prediction. Predictive State Representations [28,29] and Observable Operator Models [30]
encode past observations as sets of predictions about future observations. Rubin et al. [31] study
agents that trade the cost of representing information about the environment against the reward they
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can obtain by choosing actions based on the representation. Relatedly, Still [1] introduces a Recursive
Past Future Information Bottleneck where past information is compressed repeatedly, not just at one
reference point in time.

As discussed in Section 2.1, estimating Predictive Rate–Distortion is related to the problem of
estimating statistical complexity. Clarke et al. [27] and Still et al. [6] consider the problem of estimating
statistical complexity from finite data. While statistical complexity is hard to identify from finite data
in general, Clarke et al. [27] introduces certain restrictions on the underlying process that make this
more feasible.

3. Prior Work: Optimal Causal Filtering

The main prior method for estimating Predictive Rate–Distortion from data are Optimal Causal
Filtering (OCF, Still et al. [6]). This method approximates Predictive Rate–Distortion using two
approximations: first, it replaces semi-infinite pasts and futures with bounded-length contexts, i.e.,

pairs of finite past contexts (
M←
X := X−M . . . X−1) and future contexts (

→M
X := X0 . . . XM−1) of some

finite length M.(It is not crucial that past and future contexts have the same lengths, and indeed Still
et al. [6] do not assume this). (We do assume equal length throughout this paper for simplicity of our
experiments, though nothing depends on this). The PRD objective (7) then becomes (9), aiming to
predict length-M finite futures from summary codes Z of length-M finite pasts:

max
Z:Z⊥→M

X |M←X

(
I[Z,

→M
X ]− λ · I[M←

X , Z]
)

. (9)

Second, OCF estimates information measures directly from the observed counts of (
M←
X ), (

→M
X )

using the plug-in estimator of mutual information. With such an estimator, the problem in (9) can be

solved using a variant of the Blahut–Arimoto algorithm [21], obtaining an encoder P(Z| M←
X ) that maps

each observed past sequence
M←
X to a distribution over a (finite) set of code words Z.

Two main challenges have been noted in prior work: first, solving the problem for a finite empirical
sample leads to overfitting, overestimating the amount of structure in the process. Still et al. [6] address
this by subtracting an asymptotic correction term that becomes valid in the limit of large M and λ → 0,
when the codebook P(Z|←−X ) becomes deterministic, and which allows them to select a deterministic
codebook of an appropriate complexity. This leaves open how to obtain estimates outside of this
regime, when the codebook can be far from deterministic.

The second challenge is that OCF requires the construction of a matrix whose rows and columns
are indexed by the observed past and future sequences [2]. Depending on the topological entropy of
the process, the number of such sequences can grow as |A|M, where A is the set of observed symbols,
and processes of interest often do show this exponential growth [2]. Drastically, in the case of natural
language, A contains thousands of words.

A further challenge is that OCF is infeasible if the number of required codewords is too large,
again because it requires constructing a matrix whose rows and columns are indexed by the codewords
and observed sequences. Given that storing and manipulating matrices greater than 105 × 105 is
currently not feasible, a setting where I[

←−
X , Z] > log 105 ≈ 11.5 cannot be captured with OCF.

4. Neural Estimation via Variational Upper Bound

We now introduce our method, Neural Predictive Rate–Distortion (NPRD), to address the
limitations of OCF, by using parametric function approximation: whereas OCF constructs a codebook
mapping between observed sequences and codes, we use general-purpose function approximation
estimation methods to compute the representation Z from the past and to estimate a distribution over
future sequences from Z. In particular, we will use recurrent neural networks, which are known to

193



Entropy 2019, 21, 640

provide good models of sequences from a wide range of domains; our method will also be applicable
to other types of function approximators.

This will have two main advantages, addressing the limitations of OCF: first, unlike OCF, function
approximators can discover generalizations across similar sequences, enabling the method to calculate
good codes Z even for past sequences that were not seen previously. This is of paramount importance
in settings where the state space is large, such as the set of words of a natural language. Second,
the cost of storing and evaluating the function approximators will scale linearly with the length of
observed sequences both in space and in time, as opposed to the exponential memory demand of OCF.
This is crucial for modeling long dependencies.

4.1. Main Result: Variational Bound on Predictive Rate–Distortion

We will first describe the general method, without committing to a specific framework for function
approximation yet. We will construct a bound on Predictive Rate–Distortion and optimize this bound
in a parametric family of function approximators to obtain an encoding Z that is close to optimal for
the nonparametric objective (7).

As in OCF (Section 3), we assume that a set of finite sample trajectories x−M . . . xM−1 is available,
and we aim to compress pasts of length M to predict futures of length M. To carry this out, we restrict
the PRD objective (7) to such finite-length pasts and futures:

max
Z:Z⊥→M

X |M←X

(
I[Z,

→M
X ]− λ · I[M←

X , Z]
)

. (10)

It will be convenient to equivalently rewrite (10) as

min
Z:Z⊥→M

X |M←X

[
H[
→M
X |Z] + λ · I[M←

X , Z]
]

, (11)

where H[
→M
X |Z] is the prediction loss. Note that minimizing prediction loss is equivalent to maximizing

predictiveness I[
→M
X , Z].

When deploying such a predictive code Z, two components have to be computed: a distribution

P(Z| M←
X ) that encodes past observations into a code Z, and a distribution P(

→M
X |Z) that decodes the

code Z into predictions about the future.
Let us assume that we already have some encoding distribution

Z ∼ Pφ(Z| M←
X ), (12)

where φ is the encoder, expressed in some family of function approximators. The encoder transduces

an observation sequence
M←
X into the parameters of the distribution Pφ(·|

M←
X ). From this encoding

distribution, one can obtain the optimal decoding distribution over future observations via Bayes’ rule:

P(
→M
X |Z) = P(

→M
X , Z)

P(Z)
=

EM←
X

P(
→M
X , Z| M←

X )

EM←
X

Pφ(Z| M←
X )

=(∗)
EM←

X
P(
→M
X | M←

X )Pφ(Z| M←
X )

EM←
X

Pφ(Z| M←
X )

, (13)

where (∗) uses the Markov condition Z⊥ →M
X | M←

X . However, neither of the two expectations in the
last expression of (13) is tractable, as they require summation over exponentially many sequences,
and algorithms (e.g., dynamic programming) to compute this sum efficiently are not available in

general. For a similar reason, the rate I[
M←
X , Z] of the code Z ∼ Pφ(Z| M←

X ) is also generally intractable.
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Our method will be to introduce additional functions, also expressed using function
approximators that approximate some of these intractable quantities: first, we will use a parameterized

probability distribution q as an approximation to the intractable marginal P(Z) = EM←
X

Pφ(Z| M←
X ):

q(Z) approximates P(Z) = EM←
X

Pφ(Z| M←
X ). (14)

Second, to approximate the decoding distribution P(
→M
X |Z), we introduce a parameterized

decoder ψ that maps points Z ∈ RN into probability distributions Pψ(
→M
X |Z) over future

observations
→M
X :

Pψ(
→M
X |Z) approximates P(

→M
X |Z) (15)

for each code Z ∈ RN . Crucially, Pψ(
→M
X |Z) will be easy to compute efficiently, unlike the exact

decoding distribution P(
→M
X |Z).

If we fix a stochastic process (Xt)t∈Z and an encoder φ, then the following two bounds hold for
any choice of the decoder ψ and the distribution q:

Proposition 1. The loss incurred when predicting the future from Z via ψ upper-bounds the true conditional
entropy of the future given Z, when predicting using the exact decoding distribution (13):

−EXEZ∼φ(X)

[
log Pψ(

→M
X |Z)

]
≥ H[

→M
X |Z]. (16)

Furthermore, equality is attained if and only if Pψ(
→M
X |Z) = P(

→M
X |Z).

Proof. By Gibbs’ inequality:

−EXEZ∼φ(X)

[
log Pψ(

→M
X |Z)

]
≥ −EXEZ∼φ(X)

[
log P(

→M
X |Z)

]

= H[
→M
X |Z].

Proposition 2. The KL Divergence between Pφ(Z| M←
X ) and q(Z), averaged over pasts

M←
X , upper-bounds the

rate of Z:

EM←
X

[
DKL(Pφ(Z| M←

X ) ‖ q(Z))
]
= EM←

X
E

Z|M←X
log

Pφ(Z| M←
X )

q(Z)

≥ EM←
X
E

Z|M←X
log

Pφ(Z| M←
X )

P(Z)

= I[
M←
X , Z].

(17)

Equality is attained if and only if q(Z) is equal to the true marginal P(Z) = EM←
X

Pφ(Z| M←
X ).

Proof. The two equalities follow from the definition of KL Divergence and Mutual Information.
To show the inequality, we again use Gibbs’ inequality:

−EM←
X
E

Z|M←X
log q(Z) = −EZ log q(Z) ≥ −EZ log P(Z) = −EM←

X
E

Z|M←X
log P(Z).

Here, equality holds if and only if q(Z) = P(Z), proving the second assertion.
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We now use the two propositions to rewrite the Predictive Rate–Distortion objective (18) in a way
amenable to using function approximators, which is our main theoretical result, and the foundation of
our proposed estimation method:

Corollary 1 (Main Result). The Predictive Rate–Distortion objective (18)

min
Z:Z⊥→M

X |M←X

[
H[
→M
X |Z] + λ I[

M←
X , Z]

]
(18)

is equivalent to

min
φ,ψ,q

[
EM←

X ,
→M
X

[
−E

Z∼φ(
M←
X )

[
log Pψ(

→M
X |Z)

]
+ λ ·DKL

[
(Pφ(Z| M←

X ) ‖ q(Z))
]]]

, (19)

where φ, ψ, q range over all triples of the appropriate types described above.

From a solution to (19), one obtains a solution to (18) by setting Z ∼ Pφ(·|
M←
X ). The rate of this code is

given as follows:

I[Z,
M←
X ] = EM←

X

[
DKL(Pφ(Z| M←

X ) ‖ q(Z))
]

(20)

and the prediction loss is given by

H[
→M
X |Z] = −EXM←

X ,
→M

X
E

Z∼Pφ(
M←
X )

[
log Pψ(

→M
X |Z)

]
. (21)

Proof. By the two propositions, the term inside the minimization in (19) is an upper bound on (18),

and takes on that value if and only if Pφ(·|
M←
X ) equals the distribution of the Z optimizing (18), and

ψ, q are as described in those propositions.

Note that the right-hand sides of (20) and (21) can both be estimated efficiently using Monte Carlo

samples from Z ∼ Pφ(
M←
X ).

If φ, ψ, q are not exact solutions to (19), the two propositions guarantee that we still have bounds
on rate and prediction loss for the code Z generated by φ:

I[Z,
M←
X ] ≤ EM←

X

[
DKL(Pφ(Z| M←

X ) ‖ q(Z))
]

, (22)

H[
→M
X |Z] ≤ −EXM←

X ,
→M

X
E

Z∼Pφ(
M←
X )

[
log Pψ(

→M
X |Z)

]
. (23)

To carry out the optimization (19), we will restrict φ, ψ, q to a powerful family of parametric
families of function approximators, within which we will optimize the objective with gradient descent.
While the solutions may not be exact solutions to the nonparametric objective (19), they will still satisfy
the bounds (22) and (23), and—if the family of approximators is sufficiently rich—can come close to
turning these into the equalities (20) and (21).

4.2. Choosing Approximating Families

For our method of Neural Predictive Rate–Distortion (NPRD), we choose the approximating
families for the encoder φ, the decoder ψ, and the distribution q to be certain types of neural networks
that are known to provide strong and general models of sequences and distributions.

For φ and ψ, we use recurrent neural networks with Long Short Term Memory (LSTM) cells [32],
widely used for modeling sequential data across different domains. We parameterize the distribution
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Pφ(Z| M←
X ) as a Gaussian whose mean and variance are computed from the past

M←
X : We use an LSTM

network to compute a vector h ∈ Rk from the past observations
M←
X , and then compute

Z ∼ N (Wμh, (Wσh)2 Ik×k), (24)

where Wμ, Wσ ∈ Rk×k are parameters. While we found Gaussians sufficiently flexible for φ,
more powerful encoders could be constructed using more flexible parametric families, such as
normalizing flows [19,33].

For the decoder ψ, we use a second LSTM network to compute a sequence of vector representations
gt = ψ(Z, X0...t−1) (gt ∈ Rk) for t = 0, . . . M− 1. We compute predictions using the softmax rule

Pψ(Xt = si|X1...t−1, Z) ∝ exp((Wogt)i) (25)

for each element si of the state space S = {s1, ..., s|S|}, and Wo ∈ R|S|×k is a parameter matrix to be
optimized together with the parameters of the LSTM networks.

For q, we choose the family of Neural Autoregressive Flows [20]. This is a parametric family of
distributions that allows efficient estimation of the probability density and its gradients. This method
widely generalizes a family of prior methods [19,33,34], offering efficient estimation while surpassing
prior methods in expressivity.

4.3. Parameter Estimation and Evaluation

We optimize the parameters of the neural networks expressing φ, ψ, q for the objective (19)
using Backpropagation and Adam [35], a standard and widely used gradient descent-based method
for optimizing neural networks. During optimization, we approximate the gradient by taking a
single sample from Z (24) per sample trajectory X−M, . . . , XM−1 and use the reparametrized gradient
estimator introduced by Kingma and Welling [36]. This results in an unbiased estimator of the gradient
of (19) w.r.t. the parameters of φ, ψ, q.

Following standard practice in machine learning, we split the data set of sample time series into
three partitions (training set, validation set, and test set). We use the training set for optimizing the
parameters as described above. After every pass through the training set, the objective (19) is evaluated
on the validation set using a Monte Carlo estimate with one sample Z per trajectory; optimization
terminates once the value on the validation set does not decrease any more.

After optimizing the parameters on a set of observed trajectories, we estimate rate and prediction
loss on the test set. Given parameters for φ, ψ, q, we evaluate the PRD objective (19), rate (22), and the

prediction loss (23) on the test set by taking, for each time series X−M...XM−1 =
M←
X
→M
X from the test set,

a single sample z ∼ N (μ, σ2) and computing Monte Carlo estimates for rate

EX

[
DKL(Pφ(Z| M←

X ) ‖ q(Z))
]
≈ 1

N ∑
X−M...M∈TestData

log
pN (μ,σ2)(z)

q(z)
, (26)

where pN (μ,σ2)(z) is the Gaussian density with μ, σ2 computed from
M←
X as in (24), and prediction loss

−E
Z∼φ(

M←
X )

[
log Pψ(

→M
X |Z)

]
≈ − 1

N ∑
X−M...M∈TestData

log Pψ(
→M
X |Z). (27)

Thanks to (22) and (23), these estimates are guaranteed to be upper bounds on the true rate and
prediction loss achieved by the code Z ∼ N (μ, σ2), up to sampling error introduced into the Monte
Carlo estimation by sampling z and the finite size of the test set.

It is important to note that this sampling error is different from the overfitting issue affecting OCF:
Our Equations (26) and (27) provide unbiased estimators of upper bounds, whereas overfitting biases

197



Entropy 2019, 21, 640

the values obtained by OCF. Given that Neural Predictive Rate–Distortion provably provide upper
bounds on rate and prediction loss (up to sampling error), one can objectively compare the quality of
different estimation methods: among methods that provide upper bounds, the one that provides the
lowest such bound for a given problem is the one giving results closest to the true curve.

Estimating Predictiveness

Given the estimate for prediction loss, we estimate predictiveness I[Z,
→M
X ] with the following

method. We use the encoder network that computes the code vector h (24) to also estimate the marginal

probability of the past observation sequence, Pη(
M←
X ). Pη has support over sequences of length M.

Similar to the decoder ψ, we use the vector representations ft ∈ Rk computed by the LSTM encoder
after processing X−M...t for t = −M, . . . ,−1, and then compute predictions using the softmax rule

Pη(Xt = si|X1...t−1, Z) ∝ exp((Wo′ ft)i), (28)

where Wo′ ∈ R|S|×k is another parameter matrix.

Because we consider stationary processes, we have that the cross-entropy under Pη of
→M
X is

equal to the cross-entropy of
M←
X under the same encoding distribution: EXM←

X
→M

X

[
log Pη(

→M
X )

]
=

−EXM←
X
→M

X

[
log Pη(

M←
X )

]
. Using this observation, we estimate the predictiveness I[Z,

→M
X ] = H[

→M
X

]−H[
→M
X |Z] by the difference between the corresponding cross-entropies on the test set [37]:

−EXM←
X
→M

X

[
log Pη(

→M
X )− log Pψ(

→M
X |Z)

]
, (29)

which we approximate using Monte Carlo sampling on the test set as in (26) and (27).
In order to optimize parameters for estimation of Pη , we add the cross-entropy term

−EXM←
X
→M

X

[
log Pη(

M←
X )

]
to the PRD objective (19) during optimization, so that the full training

objective comes out to:

min
φ,ψ,q,η

[
EM←

X ,
→M
X

[
−E

Z∼φ(
M←
X )

[
log Pψ(

→M
X |Z)

]
+ λ ·DKL

[
(Pφ(Z| M←

X ) ‖ q(Z))
]
− log Pη(

M←
X )

]]
. (30)

Again, by Gibbs’ inequality and Propositions 1 and 2, this is minimized when Pη represents the

true distribution over length-M blocks P(
M←
X ), Pφ(Z| M←

X ) describes an optimal code for the given λ, q

is its marginal distribution, and Pψ(
→M
X |Z) is the Bayes-optimal decoder. For approximate solutions

to this augmented objective, the inequalities (22) and (23) will also remain true due to Propositions 1
and 2.

4.4. Related Work

In (19), we derived a variational formulation of Predictive Rate–Distortion. This is formally related
to a variational formulation of the Information Bottleneck that was introduced by [38], who applied
it to neural-network based image recognition. Unlike our approach, they used a fixed diagonal
Gaussian instead of a flexible parametrized distribution for q. Some recent work has applied similar
approaches to the modeling of sequences, employing models corresponding to the objective (19) with
λ = 1 [39–42].

In the neural networks literature, the most commonly used method using variational bounds
similar to Equation (19) is the Variational Autoencoder [36,43], which corresponds to the setting
where λ = 1 and the predicted output is equal to the observed input. The β-VAE [44], a variant of
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the Variational Autoencoder, uses λ > 1 (whereas the Predictive Rate–Distortion objective (7) uses
λ ∈ (0, 1)), and has been linked to the Information Bottleneck by [45].

5. Experiments

We now test the ability of our new method NPRD to estimate rate–distortion curves. Before we
apply NPRD to obtain the first estimates of Predictive Rate–Distortion for natural language in Section 6,
we validate the method on processes whose trade-off curves are analytically known, and compare
with OCF.

5.1. Implementation Details

OCF

As discussed in Section 3, OCF is affected by overfitting, and will systematically overestimate the
predictiveness achieved at a given rate [6]. To address this problem, we follow the evaluation method
used for NPRD, evaluating rate and predictiveness on held-out test data. We partition the available

time series data into a training and test set. We use the training set to create the encoder P(Z| M←
X )

using the Blahut–Arimoto algorithm as described by Still et al. [6]. We then use the held-out test set to
estimate rate and prediction loss. This method not only enables fair comparison between OCF and
NPRD, but also provides a more realistic evaluation, by focusing on the performance of the code Z
when deployed on new data samples. For rate, we use the same variational bound that we use for
NPRD, stated in Proposition 2:

1
N ∑

M←
X ∈Test Data

DKL(P(Z| M←
X ) ‖ s(Z)), (31)

where P(Z| M←
X ) is the encoder created by the Blahut–Arimoto algorithm, and s(Z) is the marginal

distribution of Z on the training set. N is the number of sample time series in the test data. In the limit
of enough training data, when s(Z) matches the actual population marginal of Z, (31) is an unbiased
estimate of the rate. We estimate the prediction loss on the future observations as the empirical
cross-entropy, i.e., the variational bound stated in Proposition 1:

1
N ∑

M←
X ,

→M
X ∈Test Data

E
Z∼P(·|M←X )

log P(
→M
X |Z), (32)

where P(
→M
X |Z) is the decoder obtained from the Blahut–Arimoto algorithm on the training set. Thanks

to Propositions 1 and 2, these quantities provide upper bounds, up to sampling error introduced by
finiteness of the held-out data. Again, sampling error does not bias the results in either direction,
unlike overfitting, which introduces a systematic bias.

Held-out test data may contain sequences that did not occur in the training data. Therefore,

we add a pseudo-sequence ω and add pseudo-observations (ω,
→M
X ), (

M←
X , ω), (ω, ω) for all observed

sequences
M←
X
→M
X to the matrix of observed counts that serves as the input to the Blahut–Arimoto

algorithm. These pseudo-observations were assigned pseudo-counts γ in this matrix of observed
counts; we found that a wide range of values ranging from 0.0001 to 1.0 yielded essentially the same
results. When evaluating the codebook on held-out data, previously unseen sequences were mapped
to ω.

Neural Predictive Rate–Distortion

For all experiments, we used M = 15. Neural networks have hyperparameters, such as the
number of units and the step size used in optimization, which affect the quality of approximation
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depending on properties of the dataset and the function being approximated. Given that NPRD
provably provides upper bounds on the PRD objective (18), one can in principle identify the
best hyperparameters for a given process by choosing the combination that leads to the lowest
estimated upper bounds. As a computationally more efficient method, we defined a range of
plausible hyperparameters based both on experience reported in the literature, and considerations of
computational efficiency. These parameters are discussed in Appendix A. We then randomly sampled,
for each of the processes that we experimented on, combinations of λ and these hyperparameters to
run NPRD on. We implemented the model using PyTorch [46].

5.2. Analytically Tractable Problems

We first test NPRD on two processes where the Predictive Rate–Distortion trade-off is analytically
tractable. The Even Process [2] is the process of 0/1 IID coin flips, conditioned on all blocks of
consecutive ones having even length. Its complexity and excess entropy are both ≈ 0.63 nats. It has
infinite Markov order, and Marzen and Crutchfield [2] find that OCF (at M = 5) performs poorly.
The true Predictive Rate–Distortion curve was computed in [2] using the analytically known ε-machine.
The Random Insertion Process [2] consists of sequences of uniform coin flips Xt ∈ {0, 1}, subject to the
constraint that, if Xt−2 was a 0, then Xt has to be a 1.

We applied NPRD to these processes by training on 3M random trajectories of length 30, and using
3000 additional trajectories for validation and test data. For each process, we ran NPRD 1000 times for
random choices of λ ∈ [0, 1]. Due to computational constraints, when running OCF, we limited sample
size to 3000 trajectories for estimation and as held-out data. Following Marzen and Crutchfield [2], we
ran OCF for M = 1, ..., 5.

The resulting estimates are shown in Figure 1, together with the analytical rate–distortion curves
computed by Marzen and Crutchfield [2]. Individual runs of NPRD show variation (red dots), but most
runs lead to results close to the analytical curve (gray line), and strongly surpass the curves computed
by OCF at M = 5. Bounding the trade-off curve using the sets of runs of NPRD results in a close fit
(red line) to the analytical trade-off curves.

Figure 1. Rate–Distortion for the Even Process (left) and the Random Insertion Process (right).
Gray lines: analytical curves; Red dots: multiple runs of NPRD; red line: trade-off curve computed
from NPRD runs; blue: OCF for M ≤ 5.

Recovering Causal States

Does NPRD lead to interpretable codes Z? To answer this, we further investigated the
NPRD approximation to the Random Insertion Process (RIP), obtained in the previous paragraph.
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The ε-machine was computed by Marzen and Crutchfield [2] and is given in Figure 2 (left).
The process has three causal states: State A represents those pasts where the future starts with
12k0 (k = 0, 1, 2, . . . )—these are the pasts ending in either 001 or 10111m (m = 0, 1, 2, . . . ). State B
represents those pasts ending in 10—the future has to start with 01 or 11. State C represents those pasts
ending in either 00 or 01—the future has to start with 12k+10 (k = 0, 1, 2, . . . ).

The analytical solution to the Predictive Rate–Distortion problem was computed by Marzen and
Crutchfield [2]. At λ > 0.5, the optimal solution collapses A and B into a single codeword, while all
three states are mapped to separate codewords for λ ≤ 0.5.

Does NPRD recover this picture? We applied PCA to samples from Z computed at two different
values of λ, λ = 0.25 and λ = 0.6. The first two principal components of Z are shown in Figure 3.
Samples are colored by the causal states corresponding to the pasts of the trajectories that were encoded
into the respective points by NPRD. On the left, obtained at λ = 0.6, the states A and B are collapsed,
as expected. On the right, obtained at λ = 0.25, the three causal states are reflected as distinct modes
of Z. Note that, at finite M, a fraction of pasts is ambiguous between the green and blue causal states;
these are colored in black and NPRD maps them into a region between the modes corresponding to
these states.

B

A C

1
2 |0

1
2 |1

1
2 |0

1
2 |1

1|1
Figure 2. Recovering the ε-machine from NPRD. Left: The ε-machine of the Random Insertion Process,
as described by [2]. Right: After computing a code Z from a past x−15···−1, we recorded which of the
three clusters the code moves to when appending the symbol 0 or 1 to the past sequence. The resulting
transitions mirror those in the ε-machine.

Figure 3. Applying Principal Component Analysis to 5000 sampled codes Z for the Random Insertion
Process, at λ = 0.6 (left) and λ = 0.25 (right). We show the first two principal components. Samples
are colored according to the states in the ε-machine. There is a small number of samples from sequences
that, at M = 15, cannot be uniquely attributed to any of the states (ambiguous between A and C); these
are indicated in black.

In Figure 2 (right), we record, for each of the three modes, to which cluster the distribution of the
code Z shifts when a symbol is appended. We restrict to those strings that have nonzero probability for

201



Entropy 2019, 21, 640

RIP (no code will ever be needed for other strings). For comparison, we show the ε-machine computed
by Marzen and Crutchfield [2]. Comparing the two diagrams shows that NPRD effectively recovers
the ε-machine: the three causal states are represented by the three different modes of Z, and the effect
of appending a symbol also mirrors the state transitions of the ε-machine.

A Process with Many Causal States

We have seen that NPRD recovers the correct trade-off, and the structure of the causal states, in
processes with a small number of causal states. How does it behave when the number of causal states
is very large? In particular, is it capable of extrapolating to causal states that were never seen during
training?

We consider the following process, which we will call COPY3: X−15, ..., X−1, are independent
uniform draws from {1, 2, 3}, and X1 = X−1, ..., X15 = X−15. This process deviates a bit from our
usual setup since we defined it only for t ∈ {−15, ..., 15}, but it is well-suited to investigating this
question: the number of causal states is 315 ≈ 14 million. With exactly the same setup as for the
EVEN and RIP processes, NPRD achieved essentially zero distortion on unseen data, even though
the number of training samples (3 Million) was far lower than the number of distinct causal states.
However, we found that, in this setup, NPRD overestimated the rate. Increasing the number of training
samples from 3M to 6M, NPRD recovered codebooks that achieved both almost zero distortion and
almost optimal rate, on fresh samples (Figure 4). Even then, the number of distinct causal states is
more than twice the number of training samples. These results demonstrate that, by using function
approximation, NPRD is capable of extrapolating to unseen causal states, encoding and decoding
appropriate codes on the fly.

Figure 4. Rate–Distortion for the COPY3 process. We show NPRD samples, and the resulting upper
bound in red. The gray line represents the anaytical curve.

Note that one could easily design an optimal decoder and encoder for COPY3 by hand—the point
of this experiment is to demonstrate that NPRD is capable of inducing such a codebook purely from
data, in a general-purpose, off-the-shelf manner. This contrasts with OCF: without optimizations
specific to the task at hand, a direct application of OCF would require brute-force storing of all
14 million distinct pasts and futures.

6. Estimating Predictive Rate–Distortion for Natural Language

We consider the problem of estimating rate–distortion for natural language. Natural language has
been a testing ground for information-theoretic ideas since Shannon’s work. Much interest has been
devoted to estimating the entropy rate of natural language [10,47–49]. Indeed, the information density
of language has been linked to human processing effort and to language structure. The word-by-word
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information content has been shown to impact human processing effort as measured both by per-word
reading times [50–52] and by brain signals measured through EEG [53,54]. Consequently, prediction is
a fundamental component across theories of human language processing [54]. Relatedly, the Uniform
Information Density and Constant Entropy Rate hypotheses [55–57] state that languages order
information in sentences and discourse so that the entropy rate stays approximately constant.

The relevance of prediction to human language processing makes the difficulty of prediction
another interesting aspect of language complexity: Predictive Rate–Distortion describes how much
memory of the past humans need to maintain to predict future words accurately. Beyond the entropy
rate, it thus forms another important aspect of linguistic complexity.

Understanding the complexity of prediction in language holds promise for enabling a deeper
understanding of the nature of language as a stochastic process, and to human language processing.
Long-range correlations in text have been a subject of study for a while [58–63]. Recently, Dębowski [64]
has studied the excess entropy of language across long-range discourses, aiming to better understand
the nature of the stochastic processes underlying language. Koplenig et al. [65] shows a link between
traditional linguistic notions of grammatical structure and the information contained in word forms
and word order. The idea that predicting future words creates a need to represent the past well also
forms a cornerstone of theories of how humans process sentences [66,67].

We study prediction in the range of the words in individual sentences. As in the previous
experiments, we limit our computations to sequences of length 30, already improving over OCF by
an order of magnitude. One motivation is that, when directly estimating PRD, computational cost
has to increase with the length of sequences considered, making the consideration of sequences of
hundreds or thousands of words computationally infeasible. Another motivation for this is that we
are ultimately interested in Predictive Rate–Distortion as a model of memory in human processing
of grammatical structure, formalizing psycholinguistic models of how humans process individual
sentences [66,67], and linking to studies of the relation between information theory and grammar [65].

6.1. Part-of-Speech-Level Language Modeling

We first consider the problem of predicting English on the level of Part-of-Speech (POS) tags,
using the Universal POS tagset [68]. This is a simplified setting where the vocabulary is small (20 word
types), and one can hope that OCF will produce reasonable results. We use the English portions of the
Universal Dependencies Project [69] tagged with Universal POS Tags [68], consisting of approximately
586 K words. We used the training portions to estimate NPRD and OCF, and the validation portions to
estimate the rate–distortion curve. We used NPRD to generate 350 codebooks for values of λ sampled
from [0, 0.4]. We were only able to run OCF for M ≤ 3, as the number of sequences exceeds 104 already
at M = 4.

The PRD curve is shown in Figure 5 (left). In the setting of low rate and high distortion, NPRD
and OCF (blue, M = 1, 2, 3) show essentially identical results. This holds true until I[Z,

−→
X ] ≈ 0.7,

at which point the bounds provided by OCF deteriorate, showing the effects of overfitting. NPRD
continues to provide estimates at greater rates.

Figure 5 (center) shows rate as a function of log 1
λ . Recall that λ is the trade-off-parameter from

the objective function (7). In Figure 5 (right), we show rate and the mutual information with the future,
as a function of log 1

λ . As λ → 0, NPRD (red, M = 15) continues to discover structure, while OCF
(blue, plotted for M = 1, 2, 3) exhausts its capacity.

Note that NPRD reports rates of 15 nats and more when modeling with very low distortion.
A discrete codebook would need over 3 million distinct codewords for a code of such a rate, exceeding
the size of the training corpus (about 500 K words), replicating what we found for the COPY3
process: Neural encoders and decoders can use the geometric structure of the code space to encode
generalizations across different dimensions, supporting a very large effective number of distinct
possible codes. Unlike discrete codebooks, the geometric structure makes it possible for neural
encoders to construct appropriate codes ’on the fly’ on new input.
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Figure 5. Left: Rate-Predictiveness for English POS modeling. Center and right: Rate (Center) and
Predictiveness (Right) on English POS Modeling, as a function of − log λ. As λ → 0, NPRD (red,
M = 15) continues to discover structure, while OCF (blue, plotted for M = 1, 2, 3) exhausts its capacity.

6.2. Discussion

Let us now consider the curves in Figure 5 in more detail. Fitting parametric curves to the
empirical PRD curves in Figure 5, we find a surprising result that the statistical complexity of English
sentences at the POS level appears to be unbounded.

The rate-predictiveness curve (left) shows that, at low rates, predictiveness is approximately
proportional to the rate. At greater degrees of predictiveness, the rate grows faster and faster, whereas
predictiveness seems to asymptote to≈ 1.1 nats. The asymptote of predictiveness can be identified with

the mutual information between past and future observations, E0 := I[
M←
X ,

→M
X ], which is a lower bound

on the excess entropy. The rate should asymptote to the statistical complexity. Judging by the curve,
natural language—at the time scale we are measuring in this experiment—has a statistical complexity
much higher than its excess entropy: at the highest rate measured by NPRD in our experiment, rate is
about 20 nats, whereas predictiveness is about 1.1 nats. If these values are correct, then—due to
the convexity of the rate-predictivity curve—statistical complexity exceeds the excess entropy by a
factor of at least 20

1.1 . Note that this picture agrees qualitatively with the OCF results, which suggest a
lower-bound on the ratio of at least 2.5

0.6 > 5.
Now, turning to the other plots in Figure 5, we observe that rate increases at least linearly with

log 1
λ , whereas predictiveness again asymptotes. This is in qualitative agreement with the picture

gained from the rate-predictiveness curve.
Let us consider this more quantitatively. Based on Figure 5 (center), we make the ansatz that the

map from log 1
λ to the rate R := I[

M←
X , Z] is superlinear:

R = α

(
log

1
λ

)β

, (33)

with α > 0, β > 1. We fitted R ≈
(

log 1
λ

)1.7
(α = 1, β = 1.7). Equivalently,

1
λ
= exp

(
1

α1/β
R1/β

)
. (34)

From this, we can derive expressions for rate R := I[
M←
X , Z] and predictiveness P := I[Z,

→M
X ] as

follows. For the solution of Predictive Rate–Distortion (10), we have

∂P
∂θ
− λ

∂R
∂θ

= 0, (35)

where θ is the codebook defining the encoding distribution P(Z| M←
X ), and thus
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λ =
∂P
∂R

. (36)

Our ansatz therefore leads to the equation

∂P
∂R

= exp
(
− 1

α1/β
R1/β

)
. (37)

Qualitatively, this says that predictiveness P asymptotes to a finite value, whereas rate R—which
should asymptote to the statistical complexity—is unbounded.
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Figure 6. Interpolated values for POS-level prediction of English (compare Figure 5).

Equation (37) has the solution

P = C− αβ · Γ
(

β, (R/α)1/β
)

, (38)

where Γ is the incomplete Gamma function. Since limR→∞ P = C, the constant C has to equal the

maximally possible predictiveness E0 := I[
M←
X ,

→M
X ].

Given the values fitted above (α = 1, β = 1.7), we found that E0 = 1.13 yielded a good fit.
Using (33), this can be extended without further parameters to the third curve in Figure 5. Resulting
fits are shown in Figure 6.

Note that there are other possible ways of fitting these curves; we have described a simple
one that requires only two parameters α > 0, β > 1, in addition to a guess for the maximal
predictiveness E0. In any case, the results show that natural language shows an approximately
linear growth of predictiveness with a rate at small rates, and exploding rates at diminishing returns
in predictiveness later.

6.3. Word-Level Language Modeling

We applied NPRD to the problem of predicting English on the level of part-of-speech tags in
Section 6.1. We found that the resulting curves were described well by Equation (37). We now consider
the more realistic problem of prediction at the level of words, using data from multiple languages.
This problem is much closer to the task faced by a human in the process of comprehending text,
having to encode prior observations so as to minimize prediction loss on the upcoming words. We will
examine whether Equation (37) describes the resulting trade-off in this more realistic setting, and
whether it holds across languages.

For the setup, we followed a standard setup for recurrent neural language modeling.
The hyperparameters are shown in Table A1. Following standard practice in neural language modeling,
we restrict the observation space to the most frequent 104 words; other words are replaced by their
part-of-speech tag. We do this for simplicity and to stay close to standard practice in natural language
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processing; NPRD could deal with unbounded state spaces through a range of more sophisticated
techniques such as subword modeling and character-level prediction [70,71].

We used data from five diverse languages. For English, we turn to the Wall Street Journal portion
of the Penn Treebank [72], a standard benchmark for language modeling, containing about 1.2 million
tokens. For Arabic, we pooled all relevant portions of the Universal Dependencies treebanks [73–75].
We obtained 1 million tokens. We applied the same method to construct a Russian corpus [76],
obtaining 1.2 million tokens. For Chinese, we use the Chinese Dependency Treebank [77], containing
0.9 million tokens. For Japanese, we use the first 2 million words from a large processed corpus
of Japanese business text [78]. For all these languages, we used the predefined splits into training,
validation, and test sets.

For each language, we sampled about 120 values of log 1
λ uniformly from [−6, 0] and applied

NPRD to these. The resulting curves are shown in Figures 7 and 8, together with fitted curves resulting
from Equation (37). As can be seen, the curves are qualitatively very similar across languages to what
we observed in Figure 6: In all languages, rate initially scales linearly with predictiveness, but diverges
as the predictiveness approaches its supremum E0. As a function of log 1

λ , rate grows at a slightly
superlinear speed, confirming our ansatz (33).

English (α = 2.0, β = 1.9, E0 = 3.5)
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Russian (α = 0.5, β = 2.3, E0 = 1.7)
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Arabic (α = 1.5, β = 2.0, E0 = 2.9)
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Figure 7. Word-level results.
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Japanese (α = 2.0, β = 2.0, E0 = 4.5)
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Chinese (α = 1.0, β = 2.3, E0 = 3.1)
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Figure 8. Word-level results (cont.).

These results confirm our results from Section 6.1. At the time scale of individual sentences,
Predictive Rate–Distortion of natural language appears to quantitatively follow Equation (37).
NPRD reports rates up to ≈ 60 nats, more than ten times the largest values of predictiveness.
On the other hand, the growth of rate with predictiveness is relatively gentle in the low-rate regime.
We conclude that predicting words in natural language can be approximated with small memory
capacity, but more accurate prediction requires very fine-grained memory representations.

6.4. General Discussion

Our analysis of PRD curves for natural language suggests that human language is characterized
by very high and perhaps infinite statistical complexity, beyond its excess entropy. In a similar vein,
Dębowski [64] has argued that the excess entropy of connected texts in natural language is infinite
(in contrast, our result is for isolated sentences). If the statistical complexity of natural language is
indeed infinite, then statistical complexity is not sufficiently fine-grained as a complexity metric for
characterizing natural language.

We suggest that the PRD curve may form a more natural complexity metric for highly complex
processes such as language. Among those processes with infinite statistical complexity, some will
have a gentle PRD curve—meaning that they can be well-approximated at low rates—while others
will have a steep curve, meaning they cannot be well-approximated at low rates. We conjecture
that, although natural language may have infinite statistical complexity, it has a gentler PRD curve
than other processes with this property, meaning that achieving a reasonable approximation of the
predictive distribution does not require inordinate memory resources.

7. Conclusions

We introduce Neural Predictive Rate–Distortion (NPRD), a method for estimating Predictive
Rate–Distortion when only sample trajectories are given. Unlike OCF, the most general prior method,
NPRD scales to long sequences and large state spaces. On analytically tractable processes, we show
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that it closely fits the analytical rate–distortion curve and recovers the causal states of the process.
On part-of-speech-level modeling of natural language, it agrees with OCF in the setting of low rate
and short sequences; outside these settings, OCF fails due to combinatorial explosion and overfitting,
while NPRD continues to provide estimates. Finally, we use NPRD to provide the first estimates
of Predictive Rate–Distortion for modeling natural language in five different languages, finding
qualitatively very similar curves in all languages.

All code for reproducing the results in this work is available at https://github.com/m-hahn/
predictive-rate--distortion.
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Abbreviations

The following abbreviations are used in this manuscript:

NPRD Neural Predictive Rate–Distortion
OCF Optimal Causal Filtering
POS parts of speech
PRD Predictive Rate–Distortion
LSTM Long Short Term Memory
VAE Variational Autoencoder

Appendix A. Hyperparameters

All hyperparameter choices are shown in Table A1. We defined separate hyperparameter ranges
for the three Sections 5.2, 6.1, and 6.3. Guided by the fact that the analytically known processes in
Section 5.2 are arguably less complex than natural language, we allowed larger and more powerful
models for modeling of natural language (Sections 6.1 and 6.3), in particular word-level modeling
(Section 6.3).

In Table A1, hyperparameters are organized into four groups. The first group of parameters is the
dimensions of the input embedding and the recurrent LSTM states. The second group of parameters
is regularization parameters. We apply dropout [79] to the input and output layers. The third group
of parameters is related to the optimization procedure [35]. Neural Autoregressive Flows, used to
approximate the marginal q, also have a set of hyperparameters [20]: the length of the flow (1, 2, ...),
the type (DSF/Deep Sigmoid Flow or DDSF/Deep Dense Sigmoid Flow), the dimension of the flow
(an integer) and the number of layers in the flow (1,2, ...). Larger dimensions, more layers, and longer
flows lead to more expressive models; however, they are computationally more expensive.

Training used Early Stopping using the development set, as described in Section 4.3. Models
were trained on a TITAN Xp graphics card. On Even Process and Random Insertion Process, NPRD
took a median of 10 min to process 3M training samples. OCF took less than one minute at M ≤ 5;
however, it does not scale to larger values of M. On English word-level modeling, training took a
median number of nine epochs (max 467 epochs) and five minutes (max 126 min).
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Table A1. NPRD Hyperparameters. See Appendix A for description of the parameters.

Section 5.2 Section 6.1 Section 6.3

Embedding Dimension 50, 100 50, 100, 200, 300 150
LSTM Dimension 32 64, 128, 256, 512 256, 512

Dropout rate 0.0, 0.1, 0.2 0.0, 0.1, 0.2 0.1, 0.4
Input Dropout 0 0.0, 0.1, 0.2 0.2

Adam Learning Rate {1, 5} · 10−4, {1, 2, 4} · 10−3 {1, 5} · 10−4, {1, 2, 4} · 10−3 0.00005, 0.0001, 0.0005, 0.001
Batch Size 16, 32, 64 16, 32 64 16, 32, 64

Flow Length 1, 2 1, 2, 3, 4, 5 1, 2, 3, 4, 5
Flow Type DSF, DDSF DSF, DDSF DSF, DDSF
Flow Dimension 32, 64, 128, 512 512 512
Flow Layers 2 2 2

Appendix B. Alternative Modeling Choices

In this section, we investigate the trade-offs involved in alternative modeling choices. It may be
possible to use simpler function-approximators for φ, ψ, and q, or smaller context windows sizes M,
without harming accuracy too much.

First, we investigated the performance of a simple fixed approximation to the marginal q.
We considered a diagonal unit-variance Gaussian, as is common in the literature on Variational
Autoencoders [36]. We show results in Figure A1. Even with this fixed approximation to q, NPRD
continues to provide estimates not far away from the analytical curve. However, comparison with the
results obtained from full NPRD (Figure 1) shows that a flexible parameterized approximation still
provides considerably better fit.

Second, we investigated whether the use of recurrent neural networks is necessary. As recurrent
models such as LSTMs process input sequentially, they cannot be fully parallelized, posing the question
of whether they can be replaced by models that can be parallelized. Specifically, we considered
Quasi-Recurrent Neural Networks (QRNNs), which combine convolutions with a weak form of
recurrence, and which have shown strong results on language modeling benchmarks [80]. We replaced
the LSTM encoder and decoder with QRNNs and fit NPRD to the Even Process and the Random
Insertion Process. We found that, when using QRNNs, NPRD consistently fitted codes with zero
rate for the Even Process and the Random Insertion Process, indicating that the QRNN was failing
to extract useful information from the past of these processes. We also found that the cross-entropies

of the estimated marginal distribution Pη(
M←
X ) were considerably worse than when using LSTMs or

simple RNNs. We conjecture that, due to the convolutional nature of QRNNs, they cannot model such
processes effectively in principle: QRNNs extract representations by pooling embeddings of words
or n-grams occurring in the past. When modeling, e.g., the Even Process, the occurrence of specific
n-grams is not informative about whether the length of the last block is even or odd; this requires some
information about the positions in which these n-grams occur, which is not available to the QRNN,
but which is generally available in a more general autoregressive model such as an LSTM.

Third, we varied M, comparing M = 5, 10 to the results obtained with M = 15. Results are shown
in Figure A2. At M = 5, NPRD provides estimates similar to OCF (Figure 1). At M = 10, the estimates
are close to the analytical curve; nonetheless, M = 15 yields clearly more accurate results.
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Figure A1. Rate–Distortion for the Even Process (left) and the Random Insertion Process (right),
estimated using a simple diagonal unit Gaussian approximation for q. Gray lines: analytical curves;
red dots: multiple runs of NPRD (>200 samples); red line: trade-off curve computed from NPRD runs.
Compare Figure 1 for results from full NPRD.

Figure A2. Rate–Distortion for the Even Process (left) and the Random Insertion Process (right),
varying M = 5 (blue), 10 (red), 15 (green); gray lines: analytical curves; red dots: multiple runs
of NPRD; red line: trade-off curve computed from NPRD runs. Compare Figure 1 for results from
full NPRD.

Appendix C. Sample Runs on English Text

In Figure A3, we provide four sample outputs from English word-level modeling with three
values of log 1

λ (1.0, 3.0, 5.0), corresponding to low (1.0), medium (3.0), and high (5.0) rates (compare

Figure 7). We obtained sample sequences by selecting the first 32 sequences
M←
X
→M
X (at M = 15) from

the Penn Treebank validation set, and selected four examples where the variation in cross-entropy
values at X0 was largest between the three models.

Across these samples, models generated at log 1
λ = 5 show lower cross-entropy on the first future

observation X0, as these codes have higher rates. For instance, in the first sample, the cross-entropy
on the first word Jersey is lowest for the code with the higher rate; indeed, this word is presumably
strongly predicted by the preceding sequence ...Sen. Billd Bradley of New. Codes with higher rates are
better at encoding such predictive information from the past.
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Past: within minutes after the stock market closed friday , i called Sen. Bill Bradley of new

Past: asset you own would be worth more if the government suddenly announced that if you sold

Past: he thinks, when the white house is forced to ask for higher taxes to meet

Past: to be dealt with by the oct. 15 deadline, and these senate democrats refused to

- - - - Low rate (log 1
λ = 1.0) – - – Medium rate (log 1

λ = 3.0) —— High rate (log 1
λ = 5.0)

Figure A3. Four example outputs from English word-level modeling, with low rate (log 1
λ = 1; red,

dotted), medium rate (log 1
λ = 3; green, dashed), high rate (log 1

λ = 5; blue, solid). For each sample,

we provide the prior context
M←
X (top), and the per-word cross-entropies (in nats) on the future words

→M

X (bottom).
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Abstract: Recently, it was demonstrated that generalized entropies of order α offer novel and
important opportunities to quantify the similarity of symbol sequences where α is a free parameter.
Varying this parameter makes it possible to magnify differences between different texts at specific
scales of the corresponding word frequency spectrum. For the analysis of the statistical properties of
natural languages, this is especially interesting, because textual data are characterized by Zipf’s law,
i.e., there are very few word types that occur very often (e.g., function words expressing grammatical
relationships) and many word types with a very low frequency (e.g., content words carrying most
of the meaning of a sentence). Here, this approach is systematically and empirically studied by
analyzing the lexical dynamics of the German weekly news magazine Der Spiegel (consisting of
approximately 365,000 articles and 237,000,000 words that were published between 1947 and 2017).
We show that, analogous to most other measures in quantitative linguistics, similarity measures
based on generalized entropies depend heavily on the sample size (i.e., text length). We argue that
this makes it difficult to quantify lexical dynamics and language change and show that standard
sampling approaches do not solve this problem. We discuss the consequences of the results for the
statistical analysis of languages.

Keywords: generalized entropy; generalized divergence; Jensen–Shannon divergence; sample size;
text length; Zipf’s law

1. Introduction

At a very basic level, the quantitative study of natural languages is about counting words: if
a word occurs very often in one text but not in a second one, then we conclude that this difference
might have some kind of significance for classifying both texts [1]. If a word occurs very often after
another word, then we conclude that this might have some kind of significance in speech and language
processing [2]. In both examples, we can use the gained knowledge to make informed predictions
“with accuracy better than chance” [3], thus leading us to information theory quite naturally. If we
consider each word type i = 1, 2, . . . , K as one distinct symbol, then we can count how often each
word type appears in a document or text t and call the resulting word token frequency fi. We can
then represent t as a distribution of word frequencies. In order to quantify the amount of information
contained in t, we can calculate the Gibbs–Shannon entropy of this distribution as [4]:

H(p) = −
K∑

i = 1

pi ∗ log2(pi) (1)

where pi =
fi
N is the maximum likelihood estimator of the probability of i in t for a database of

N =
∑K

i = 1 fi tokens. In [5], word entropies are estimated for more than 1000 languages. The results are
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then interpreted in light of information-theoretic models of communication, in which it is argued that
word entropy constitutes a basic property of natural languages. H(p) can be interpreted as the average
number of guesses required to correctly predict the type of word token that is randomly sampled from
the entire text base (more precisely, [4], Section 5.7) show that the expected number of guesses EG
satisfies H(p) ≤ EG < H(p) + 1). In the present paper, we analyze the lexical dynamics of the German
weekly news magazine Der Spiegel (consisting of N = 236,743,042 word tokens, K = 4,009,318 different
word types, and 365,514 articles that were published between 1947 and 2017; details on the database
and preprocessing are presented Section 2). If the only knowledge we possess about the database were
K, the number of different word types, then we would need on average Hmax = log2(K) = log2(4,009,318)
≈ 21.93 guesses to correctly predict the word type, calculating H for our database based on Equation (1)
using the corresponding probabilities for each i yields 12.28. The difference between Hmax and H(p) is
defined as information in [3]. Thus, knowledge of the non-uniform word frequency distribution gives
us approximately 9.65 bits of information, or put differently, we save on average almost 10 guesses to
correctly predict the word type.

To quantify the (dis)similarity between two different texts or databases, word entropies can be
used to calculate the so-called Jensen–Shannon divergence [6]:

D(p, q) = H
(p + q

2

)
− 1

2
H(p) − 1

2
H(q) (2)

where p and q are the (relative) word frequencies of the two texts and p+ q is calculated by concatenating
both texts. From a Bayesian point of view, D(p,q) can be interpreted as the expected amount of gained
information that comes from sampling one word token from the concatenation of both texts regarding
the question which of the two texts the word token belongs to [7]. If the two texts are identical,
D(p,q) = 0, because sampling a word token does not provide any information regarding to which text
the token belongs. If, on the other side, the two texts do not have a single word type in common, then
sampling one word token is enough to determine from which text the token comes, and correspondingly,
D(p,q) = 1. The Jensen–Shannon divergence has already been applied in the context of measuring
stylistic influences in the evolution of literature [8], cultural and institutional changes [9,10], the
dynamics of lexical evolution [11,12], or to quantify changing corpus compositions [13].

Perhaps the most intriguing aspect of word frequency distributions is the fact that they can be
described remarkably well by a simple relationship that is known as Zipf’s law [14]: if one assigns
rank r = 1 to the most frequent word (type), rank r = 2 to the second most frequent word, and so on,
then the frequency of a word and its rank r is related as follows:

p(r) ∝ r−γ (3)

where the exponent γ is a parameter that has to be determined empirically. An estimation of γ by
maximum likelihood (as described in [15]) for our database yields 1.10. However, when analyzing
word frequency distributions, the main obstacle is that all quantities basically vary systematically
with the sample size, i.e., the number of word tokens in the database [16,17]. To visualize this, we
randomly arranged the order of all articles of our database. This step was repeated 10 times in order to
create 10 different versions of our database. For each version, we estimate H and γ after every n = 2k

consecutive tokens, where k = 6, 7, . . . , log2(N) = 28. Figure 1 shows a Simpson’s Paradox [18] for
the resulting data: an apparent strong positive relationship between H and γ is observed across all
datapoints (Spearman ρ = 0.99). However, when the sample size is kept constant, this relationship
completely changes: if the correlation between H and γ is calculated for each k, the results indicate a
strong negative relationship (ρ ranges between −0.98 and −0.64 with a median of −0.92). The reason
for this apparent contradiction is the fact that both H and γ monotonically increase with the sample
size. When studying word frequency distributions quantitatively, it is essential to take this dependence
on the sample size into account [16].
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Figure 1. A Simpson’s Paradox for word frequency distributions. Here, the word entropy H and the
exponent of the Zipf distribution γ are estimated after every n = 2k consecutive tokens, where k = 6,
7, . . . , log2(N) for 10 different random re-arrangements of the database; each dot corresponds to one
observed value. The blue line represents a locally weighted regression of H on γ (with a bandwidth of
0.8). It indicates a strong positive relationship between H and γ (Spearman ρ = 0.99). However, when
the sample size is held constant, this relationship completely changes, as indicated by the orange lines
that correspond to separate locally weighted regressions of H on γ for each k. Here, the results indicate
a strong negative relationship between H and γ (ρ ranges between −0.98 and −0.64 with a median of
−0.92). The reason for this apparent contradiction is the fact that both H and γmonotonically increase
with the sample size.

Another important aspect of word distributions is the fact that word frequencies vary by a
magnitude of many orders, as visualized in Figure 2. On the one hand, Figure 2a shows that there
are very few word types that occur very often. For example, the 100 most frequent word types
account for more than 40% of all word occurrences. Typically, many of those word types are function
words [16] expressing grammatical relationships, such as adpositions or conjunctions. On the other
hand, Figure 2b shows that there are a great deal of word types with a very low frequency of occurrence.
For example, more than 60% of all word types only occur once, and less than 3% of all word types
have a frequency of occurrence of more than 100 in our database. Many of those low frequency words
are content words that carry the meaning of a sentence, e.g., nouns, (lexical) verbs, and adjectives.
In addition to the sample size dependence outlined above, it is important to take this broad range of
frequencies into account when quantitatively studying word frequency distributions [19].
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Figure 2. Visualization of the word frequency distribution of our database. Cumulative distribution
(in %) as a function of (a) the rank and (b) the word frequency.

In this context, it was recently demonstrated that generalized entropies of order α, also called
Havrda–Charvat–Lindhard–Nielsen–Aczél–Daróczy–Tsallis entropies [20], offer novel and interesting
opportunities to quantify the similarity of symbol sequences [21,22]. It can be written as:

Hα(p) =
1
α− 1

⎛⎜⎜⎜⎜⎜⎝1−
K∑

i = 1

pαi

⎞⎟⎟⎟⎟⎟⎠ (4)

where αis a free parameter. For α= 1, the standard Gibbs–Shannon entropy is recovered. Correspondingly,
a generalization of the standard Jensen–Shannon divergence (Equation (2)) can be obtained by replacing
H (Equation (1)) with Hα (Equation (4)) and thus leading to a spectrum of divergence measures Dα,
parametrized by α [22]. For the analysis of the statistical properties of natural languages, this parameter
is highly interesting, because, as demonstrated by [21,22], varying the α-parameter allows us to
magnify differences between different texts at specific scales of the corresponding word frequency
spectrum. If α is increased (decreased), then the weight of the most frequent words is increased
(decreased). As pointed out by an anonymous reviewer, a similar idea was already reported in the
work of Tanaka-Ishii and Aihara [23], who studied a different formulation of generalized entropy, the
so-called Rényi entropy of order α [24]. Because we are especially interested in using generalized
entropies to quantify the (dis)similarity between two different texts or databases, following [21,22], we
chose to focus on the generalization of Havrda–Charvat–Lindhard–Nielsen–Aczél–Daróczy–Tsallis
instead of the formulation of Rényi, because a divergence measure based on the latter can become
negative for α > 1 [25], while it can be shown that the corresponding divergence measure based on the
former formulation is strictly non-negative [20,22]. In addition, Dα(p,q) is the square of a metric for
α ∈ (0, 2], i.e., (i) Dα(p,q) ≥ 0, (ii) Dα(p,q) = 0⇐⇒ p = q, (iii) Dα(p,q) = Dα(q,p), and (iv)

√
Dα obeys the

triangular inequality [7,20,22].
In addition, [21] also estimated the size of the database that is needed to obtain reliable estimates

of generalized divergences. For instance, [21] showed that only the 100 most frequent words contribute
to Hα and Dα for α = 2.00, and all other words are practically irrelevant. This number quickly grows
with α. For example, database sizes of N ≈ 108 are needed for a robust estimation of the standard
Jensen–Shannon divergence (Equation (2)), i.e., for α = 1.00. This connection makes the approach
of [21,22] particularly interesting in relation to the systematic influence of the sample size demonstrated
above (cf. Figure 1).
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In this study, the approach is systematically and empirically studied by analyzing the lexical
dynamics of the Der Spiegel periodical. The remainder of the paper is structured as follows: In the next
section, details on the database and preprocessing are given (Section 2). In Sections 3.1 and 3.2, the
dependence of both Hα and Dα on the sample size is tested for different α-parameters. This section is
followed by a case study, in which we demonstrate that the influence of sample size makes it difficult
to quantify lexical dynamics and language change and also show that standard sampling approaches
do not solve this problem (Section 3.3). This paper ends with some concluding remarks regarding the
consequences of the results for the statistical analysis of languages (Section 4).

2. Materials and Methods

In the present study, we used all 365,514 articles that were published in the German weekly news
magazine Der Spiegel between January 1947, when the magazine was first published, and December
2017. To read-in and tokenize the texts, we used the Treetagger with a German parameter file [26].
All characters were converted to lowercase. Punctuation and cardinal numbers (both treated as separate
words by the Treetagger) were removed. However, from a linguistic point of view, changes in the usage
frequencies of punctuation marks and cardinal numbers are also interesting. For instance, a frequency
increase of the full stop could be indicative of decreases in syntactic complexity [15]. In Appendix A,
we therefore present and discuss additional results in which punctuation and cardinal numbers were
not removed from the data.

In total, our database consists of N = 236,743,042 word tokens and K = 4,009,318 different
word types.

Motivated by the studies of [21,22], we chose the following six α values to study the empirical
behavior of generalized entropies and generalized divergences: 0.25, 0.75, 1.00, 1.50, and 2.00.
To highlight that varying α makes it possible to magnify differences between different texts at specific
scales of the corresponding word frequency spectrum, we take advantage of the fact that Hα can be
written as a sum over different words, where each individual word type i contributes

pαi − 1
K

α−1 , f or α � 1.00
−pi ∗ log2(pi), f or α = 1.00

. (5)

In Table 1, we divided the word types into different groups according to their token frequency
(column 1). Each group consists of g = 1, 2, . . . , G word types (cf. column 2). For each group, column 3
presents three randomly chosen examples.
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Table 1. Contribution (in %) of word types with different token frequencies as a function of α *.

Token
Frequency

Number
of Cases

Examples α = 0.25 α = 0.75 α = 1.00 α = 1.50 α = 2.00

1 2,486,393
koalitionsbündnisse

nr.6/1962
bruckner-breitklang

48.65 9.32 2.38 0.00 0.00

2–10 1,135,102
geschlechterschulung

unal
wiedervereinigungs-prozedur

29.86 10.89 3.65 0.01 0.00

11–100 296,573
hotpants
lánský

planwirtschaftlichen
13.16 14.03 7.13 0.04 0.00

101–1000 74,791
wanda

verbannte
mitschnitt

5.83 19.21 14.69 0.28 0.00

1001–10,000 14,388
schüren
ablesen

vollmachten
1.96 19.81 22.07 1.53 0.06

10,001–100,000 1871
london
sitzen

beginnen
0.44 13.38 20.68 5.31 0.64

100,001–1,000,000 173
mark
frau

kaum
0.07 7.38 15.21 17.83 7.12

1,000,001 + 27
es
die
er

0.02 5.98 14.19 75.02 92.18

4,009,318 100.00 100.00 100.00 100.00 100.00

* Values are rounded for illustration purposes only throughout this paper.

This implies that the relative contribution C(g) per group can be calculated as (see also ([21],
Equation (5))):

C(g) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑G
g = 1 pαg∑K
i = 1 pαi

, f or α � 1.00
∑G

g = 1(−1)∗pg∗log2(pg)∑K
i = 1(−1)∗pi∗log2(pi)

, f or α = 1.00
. (6)

Columns 4–8 of Table 1 show the relative contribution (in %) for each group to Hα as a function of
α. For lower values of α, Hα is dominated by word types with lower token frequencies. For instance,
hapax legomena, i.e., word types that only occur once, contribute almost half of Hα=0.25. For larger
values of α, only the most frequent word contributes to Hα. For example, the 27 word types with
a token frequency of more than 1,000,000 contribute more than 92% to Hα=2.00. Because words in
different frequency ranges have different grammatical and pragmatic properties, varying α makes it
possible to study different aspects of the word frequency spectrum [21].

As written above, we are interested in testing the dependence of both Hα and Dα on the sample
size for the different α-values. Let us note that each article in our database can be described by different
attributes, e.g., publication date, subject matter, length, category, or author. Of course, this list of
attributes is not exhaustive but can be freely extended depending on the research objective. In order to
balance the article’s characteristics across the corpus, we prepared 10 versions of our database, each
with a different random arrangement of the order of all articles. To study the convergence of Hα, we
computed Hα after every n = 2k consecutive tokens for each version, where k = 6, 7, . . . , log2(N) = 27.
For Dα, we compared the first n = 2k word tokens with the last n = 2k of each version of our database.
Here, k = 6, 7, . . . , 26. For instance for k = 26, the first 67,108,864 word tokens are compared with
the last 67,108,864 word tokens by calculating the generalized divergence between both “texts” for
different α-values. Through the manipulation of the article order, it can be inferred that, random
fluctuations aside, any systematic differences are caused by differences in the sample size.

As outlined above, our initial research interest concerned the use of generalized entropies and
divergence in order to measure lexical change rates at specific ranges of the word frequency spectrum.
To this end, we used the publication date of each article on a monthly basis to create a diachronic version
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of our database. Figure 3 visualizes the corpus size Nt for each t, where each monthly observation is
identified by a variable containing the year y = 1947, 1948, . . . , 2017 and the month m = 1, 2, . . . ,12.

Figure 3. Sample size of the database as a function of time. The gray line depicts the raw data, while
the orange line adds a symmetric 25-month window moving-average smoother highlighting the central
tendency of the series at each point in time.

Instead of calculating the generalized Jensen–Shannon divergences for two different texts p and q,
Dα was calculated for successive moments in time, i.e., Dα(t,t − 1), in order to estimate the rate of lexical
change at a given time point t [11,12]. For instance, Dα at y = 2000 and m = 1 represents the generalized
divergence for a corresponding α-value between all articles that were published in January 2000 and
those published in December 1999. The resulting series of month-to-month changes could then be
analyzed in a standard time-series analysis framework. For example, we can test whether the series
exhibits any large-scale tendency to change over time. A series with a positive trend increases over
time, which would be indicative of an increasing rate of lexical change. It would also be interesting to
look at first differences in the series, as an upward trend here in addition to an upward trend in the
actual series would mean that the rate of lexical change is increasing at an increasing rate.

However, because the sample size clearly varies as a function of time (cf. Figure 3), it was essential
to rule out the possibility that this variation systematically influences the results. Therefore, we
generated a second version of this diachronic database in which we first randomly arranged the order
of each article again. We then used the first Nt=1 words of this version of the database to generate
a new corpus that has the same length (in words) as the original corpus at t = 1 but in which the
diachronic signal is destroyed. We then proceeded and used the next Nt=2 words to generate a corpus
that has the same length as the original corpus at t = 2. For example, the length of a concatenation of
all articles that where published in Der Spiegel in January 1947 is 94,716 word tokens. Correspondingly,
our comparison corpus at this point in time also consisted of 94,716 word tokens, but the articles of
which it consisted could belong to any point in time between 1947 and 2017. In what follows, we
computed all Dα (t,t − 1) values for both the original version of our database and for the version with a
destroyed diachronic signal. We tentatively called this a “Litmus test”, because it determined whether
our results can be attributed to real diachronic changes or if there is a systematic bias due to the varying
sample sizes.

Statistical analysis: To test if Hα and Dα vary as a function of the sample size without making any
assumptions regarding the functional form of the relationship, we used the non-parametric Spearman
correlation coefficient denoted as ρ. It assesses whether there is a monotonic relationship between two
variables and is computed as Pearson’s correlation coefficient on the ranks and average ranks of the two
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variables. The significance of the observed coefficient was determined by Monte Carlo permutation
tests in which the observed values of the sample size are randomly permuted 10,000 times. The null
hypothesis is that Hα/Dα does not vary with the sample size. If this is the case, then the sample size
becomes arbitrary and can thus be randomly re-arranged, i.e., permuted. Let c denote the number
of times the absolute ρ-value of the derived dataset is greater than or equal to the absolute ρ-value
computed on the original data. A corresponding coefficient was labeled as “statistically significant” if
c < 10, i.e., p < 0.001. In cases where l, i.e., the number of datapoints, was lower than or equal to 7, an
exact test for all l! permutations was calculated. Here, let c* denote the number of times where the
absolute ρ-value of the derived dataset is greater than the absolute ρ-value computed on the original
data. A coefficient was labeled as “statistically significant” if c*/l! < 0.001.

Data availability and reproducibility: All datasets used in this study are available in Dataverse (https:
//doi.org/10.7910/DVN/OP9PRL). For copyright and license reasons, each actual word type is replaced
by a unique numerical identifier. Regarding further data access options, please contact the corpus
linguistics department at Institute for the German language (IDS) (korpuslinguistik@ids-mannheim.de).
In the spirit of reproducible science, one of the authors (A.K.) first analyzed the data using Stata
and prepared a draft. Another author (S.W.) then used the draft and the available datasets to
reproduce all the results using R. The results of this replication are available and the code (Stata
and R) required to reproduce all the results presented in this paper are available in Dataverse
(https://doi.org/10.7910/DVN/OP9PRL).

3. Results

3.1. Entropy Hα

To test the sample size dependence of Hα, we computed Hα for the first n = 2k consecutive
tokens, where k = 6, 7, . . . , 27 for the 10 versions of our database (each with a different random article
order) and calculated averages. Figure 4A shows the convergence pattern for the five α-values in
a superimposed scatter plot with connected dots where the colors of each y-axis correspond to one
α-value (cf. the legend in Figure 4, the axes are log-scaled for improved visibility). For values of α <
1.00, there is no indication of convergence, while for Hα=1.50 and Hα=2.00, it seems that Hα converges
rather quickly. To test the observed relationship between the sample size and Hα for different α-values,
we calculated the Spearman correlation between the sample size and Hα for different minimum sample
sizes. For example, a minimum sample size of n = 217 indicates that we restrict the calculation to
sample sizes ranging between n = 217 and n = 227. For those 11 datapoints, we computed the Spearman
correlation between the sample size and Hα and ran the permutation test. Table 2 summarizes the
results. For all α-values, except for α = 2.00, there is a clear indication for a significant (at p < 0.001)
strong, positive, monotonic relationship between Hα and the sample size for all the minimum sample
sizes. Thus, while Figure 4A seems to indicate that Hα=1.50 converges rather quickly, the Spearman
analysis reveals that the sample size dependence of Hα=1.50 persists for higher values of k with a
minimum ρ of 0.80. Except for the last two minimum sample sizes, all the coefficients pass the
permutation test. For α = 2.00, Hα starts to converge after n = 214 word tokens. None of the correlation
coefficients of higher minimum sample sizes passes the permutation test. In line with the results
of [21,22], this suggest α = 2.00 as a pragmatic choice when calculating Hα. However, it is important to
point out that for α = 2.00, the computation of Hα is almost completely determined by the most frequent
words (cf. Table 1). For lower values of α, the basic problem of sample size dependence (cf. Figure 1)
persists. If it is the aim of a study to compare Hα for databases with varying sizes, this has to be taken
into account. Correspondingly, [23] reached similar conclusions for the convergence of Rényi entropy
of order α = 2.00 for different languages and for different kinds of texts, both on the level of words and
on the level of characters. In Appendix B, we have replicated the results of Table 2 based on Rényi’s
formulation of the entropy generalization. Table A5 shows that the results are almost identical, which
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is to be expected because the Havrda–Charvat–Lindhard–Nielsen–Aczél–Daróczy–Tsallis entropy is a
monotone function of the Rényi entropy [20].

Figure 4. Generalized entropies Hα and divergences Dα as a function of the sample size. (A) Pα, (B) Dα.

Table 2. Spearman correlation between the sample size and Hα for different α-values *.

Minimum Sample Size Number of Datapoints α = 0.25 α = 0.75 α = 1.00 α = 1.50 α = 2.00

26 22 1.00 * 1.00 * 1.00 * 1.00 * 0.92 *
27 21 1.00 * 1.00 * 1.00 * 1.00 * 0.91 *
28 20 1.00 * 1.00 * 1.00 * 1.00 * 0.89 *
29 19 1.00 * 1.00 * 1.00 * 1.00 * 0.87 *
210 18 1.00 * 1.00 * 1.00 * 1.00 * 0.85 *
211 17 1.00 * 1.00 * 1.00 * 1.00 * 0.82 *
212 16 1.00 * 1.00 * 1.00 * 1.00 * 0.79 *
213 15 1.00 * 1.00 * 1.00 * 1.00 * 0.74
214 14 1.00 * 1.00 * 1.00 * 1.00 * 0.71
215 13 1.00 * 1.00 * 1.00 * 0.99 * 0.65
216 12 1.00 * 1.00 * 1.00 * 0.99 * 0.55
217 11 1.00 * 1.00 * 1.00 * 0.99 * 0.43
218 10 1.00 * 1.00 * 1.00 * 0.99 * 0.24
219 9 1.00 * 1.00 * 1.00 * 0.98 * −0.05
220 8 1.00 * 1.00 * 1.00 * 0.98 * −0.17
221 7 1.00 * 1.00 * 1.00 * 0.96 * 0.25
222 6 1.00 * 1.00 * 1.00 * 0.94 −0.20
223 5 1.00 * 1.00 * 1.00 * 0.90 0.10
224 4 1.00 * 1.00 * 1.00 * 0.80 −0.80

* An asterisk indicates that the corresponding correlation coefficient passed the permutation test at p < 0.001.
For minimum sample sizes above 220, an exact permutation test is calculated.

3.2. Divergence Dα

To test the relationship between the sample size and Dα for different α-values, we computed
Dα for a “text” that consists of the first n = 2k word tokens, a “text” that consists of the last n = 2k

word tokens for each version of our database for k = 6, 7, . . . , 26, and took averages. As for Hα
above, we then calculated the Spearman correlation between the sample size and Dα for different
minimum sample sizes. It is worth pointing out that the idea here is that the “texts” come from the
same population, i.e., all Der Spiegel articles, so one should expect that with growing sample sizes, Dα

should fluctuate around 0 with no systematic relationship between Dα and the sample size. Table 3
summarizes the results, while Figure 4B visualizes the convergence pattern. For all settings, there is a
strong monotonic relationship between the sample size and Dα that passes the permutation test in
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almost every case. For α = 0.25, the Spearman correlation coefficients are positive. This seems to be
due to the fact that Hα=0.25 is dominated by word types from the lower end of the frequency spectrum
(cf. Table 1). Because, for example, word types that only occur once contribute almost half of Hα=0.25.
Those word types then either appear in the first 2k or in the last 2k word tokens.

Table 3. Spearman correlation between the sample size and Dα for different α-values *.

Minimum Sample Size Number of Datapoints α = 0.25 α = 0.75 α = 1.00 α = 1.50 α = 2.00

26 21 1.00 * −0.42 −1.00 * −1.00 * −1.00 *
27 20 1.00 * −0.54 −1.00 * −1.00 * −1.00 *
28 19 1.00 * −0.64 −1.00 * −1.00 * −1.00 *
29 18 1.00 * −0.74 −1.00 * −1.00 * −1.00 *
210 17 1.00 * −0.83 * −1.00 * −1.00 * −1.00 *
211 16 1.00 * −0.90 * −1.00 * −1.00 * −1.00 *
212 15 1.00 * −0.95 * −1.00 * −1.00 * −1.00 *
213 14 1.00 * −0.99 * −1.00 * −1.00 * −1.00 *
214 13 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
215 12 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
216 11 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
217 10 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
218 9 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
219 8 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
220 7 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
221 6 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
222 5 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
223 4 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
224 3 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *

* An asterisk indicates that the corresponding correlation coefficient passed the permutation test at p < 0.001.
For minimum sample sizes above 219, an exact permutation test is calculated.

The results demonstrate that the larger the sample sizes the larger Dα (cf. the pink line in Figure 4B).
For = 0.75, a similar pattern is observed for smaller sample sizes (cf. the orange line in Figure 4 B).
However, at around k = 15, the pattern changes. For k ≥ 15, there is a perfect monotonic negative
relationship between Dα=0.75 and the sample size. Surprisingly, there is a perfect monotonic negative
relationship for all settings for α ≥ 1.00, even if we restrict the calculation to relatively large sample
sizes. However, the corresponding values are very small. For instance, Dα=2.00 = 7.91 × 10−8 for
n = 224, Dα=2.00 = 4.08 × 10−8 for n = 225, and Dα=2.00 = 1.379 × 10−8 for n = 226. One might object that
this systematic sample size dependence is practically irrelevant. In the next section, we show that,
unfortunately, this is not the case.

3.3. Case Study

As previously outlined, our initial idea was to use generalized divergences to measure the rate
of lexical change at specific ranges of the word frequency spectrum. In what follows, we estimate
the rate by calculating Dα for successive months, i.e., Dα(t,t − 1). To rule out a potential systematical
influence of the varying sample size, we also calculated Dα(t,t − 1) for our comparison corpus where
the diachronic signal was destroyed (“Litmus test”).

For α, we chose 2.00 and 1.00. On the one hand, the analyses of [21,22] and our analysis presented
above indicate that α = 2.00 seems to be the most robust choice. On the other hand, we chose α = 1.00,
i.e., the original Jensen–Shannon divergence, because, as explained above, it has already been employed
in the context of analyzing natural language data without explicitly testing the potential influence of
varying sample sizes. Figure 5 shows our results. If we only looked at the plots on the left side (blue
lines), the results would look very interesting, as there is a clear indication that the rate of lexical change
decreases as a function of time for both α = 1.00 and for α = 2.00. However, looking at the plots in the
middle reveals that a very similar pattern emerges for the comparison data. For our “Litmus test”, we
destroyed all diachronic information except for the varying sample sizes. Nevertheless, our conclusions
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would have been more or less identical. Interestingly, the patterns in Figure 5 clearly resemble the
pattern of the sample size in Figure 3 (in reverse order) and thus suggest a negative association between
Dα(t,t − 1) and the sample size. To test this observation, we calculated the Spearman correlation
between the sample size and Dα(t,t − 1) for both α = 1.00 and α = 2.00 and ran a permutation test.
Table 4, row 1, shows that there is a significant strong negative correlation between the sample size and
Dα for both α = 1.00 and α = 2.00. Rows 2–5 present different approaches to solving the sample size
dependence of Dα. In row 2, we extended Equation (2) to allow for unequal sample sizes, i.e., Np � Nq

as suggested by ([22], Appendix A); here:

Dπα(p, q) = Hα
(
πpp + πqq

)
−πpHα(p) −πqHα(q)

where πp = Np/
(
Np + Nq

)
and πq = Nq/

(
Np + Nq

)
.

(7)

Figure 5. Dα(t,t − 1) as a function of time for α = 1.00 and α = 2.00. Lines represent a symmetric
25-month window moving-average smoother highlighting the central tendency of the series at each
point in time. Left: results for the original data in blue. Middle: results for the “Litmus” data in orange.
Right: superimposition of both the original and the “Litmus” data.

Row 2 of Table 4 demonstrates that this “natural weights” approach does not qualitatively affect
the results; there is still a significant and strong negative correlation between the sample size and Dπα
for both α = 1.00 and α = 2.00. Another approach is to increase the sample size (if possible). To this end,
we aggregated the articles at the annual level instead of the monthly level. On average, the annual
corpora are N = 3,334,409.04 words long, compared to N = 277,867.42 word tokens for the monthly
data. Row 3 of Table 4 shows that increasing the sample size does not help in removing the influence of
the sample size either. Another standard approach [15,22] is to randomly draw Nmin word tokens from
the monthly databases, where Nmin is equal to the smallest of all monthly corpora, here Nmin = 75,819
(June 1947). To our own surprise, row 4 of Table 4 reveals that this “random draw” approach also does
not break the sample size dependence. While the absolute values of the correlation coefficients for both
α = 1.00 and α = 2.00 are smaller for the original data than for the comparison data, all four coefficients
are significantly different from 0 (at p < 0.001) and thus indicate that the “random draw” approach
fails to pass the “Litmus test”. As a last idea, we decided to truncate each monthly corpus after Nmin
word tokens. The difference between this “cut-off” approach and the “random draw” is that the latter
approach assumes that words occur randomly in texts, while truncating the data after Nmin as in the
“cut-off” approach respects the syntactical and semantical coherence and the discourse structure at the

226



Entropy 2019, 21, 464

text level [16,17]. On the one hand, row 5 of Table 4 demonstrates that this approach mostly solves the
problem: all four coefficients are small, and only one coefficient is significantly different from zero,
but positive. This suggests that the “cut-off” approach passes the “Litmus test”. On the other hand,
it’s worth pointing out that we lose a lot of information with this approach. For example, the largest
corpus is N = 507,542 word tokens long (October 2000). With the “cut-off” approach, more than 85% of
those word tokens are not used to calculate Dα(t,t − 1).

Table 4. Spearman correlation between the sample size and Dα(t,t − 1) for the original data and for the
“Litmus test” for α = 1.00 and α = 2.00.

Row Scenario α Number of Cases Original Data Litmus Test

1 Original 1.00 851 −0.76 * −0.91 *
2.00 851 −0.70 * −0.79 *

2 Natural weights 1.00 851 −0.77 * −0.90 *
2.00 851 −0.70 * −0.79 *

3 Yearly data 1.00 70 −0.74 * −0.97 *
2.00 70 −0.46 * −0.87 *

4 Random draw 1.00 851 −0.16 * −0.69 *
2.00 851 −0.50 * −0.61 *

5 Cut-off 1.00 851 0.12 * 0.08
2.00 851 0.08 −0.10

* An asterisk indicates that the corresponding correlation coefficient passed the permutation test at p < 0.001.

While the resulting pattern in Figure 6 might be indicative of an interesting lexico-dynamical
process, especially for α = 1.00, what is more important in the present context is the fact that both blue
lines look completely different compared with the corresponding blue lines in Figure 5. Thus, in relation
to the analysis above (cf. Section 3.2), we concluded that the systematic sample size dependence of Dα
is far from practically irrelevant. On the contrary, the analyses presented in this section demonstrate
again why it is essential to account for the sample size dependence of lexical statistics.

Figure 6. Dα(t,t− 1) as a function of time forα= 1.00 andα= 2.00. Here, each monthly corpus is truncated
after Nmin = 75,819 word tokens. Lines represent a symmetric 25-month window moving-average
smoother highlighting the central tendency of the series at each point in time. Left: results for the
original data in blue. Middle: results for the “Litmus” data in orange. Right: superimposition of both
the original and the “Litmus” data.
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4. Discussion

In this paper, we explored the possibilities of using generalized entropies to analyze the lexical
dynamics of natural language data. Using theα-parameter in order to automatically magnify differences
between different texts at specific scales of the corresponding word frequency spectrum is interesting,
as it promises a more objective selection method compared to, e.g., [8], who use a pre-compiled list of
content-free words, or [12], who analyzes differences within different part-of-speech classes.

In line with other studies [17,23,27–29], the results demonstrate that it is essential for the analysis
of natural language to always take into account the systematic influence of the sample size. With the
exception of Hα=2.00 for larger sample sizes, all quantities that are based on general entropies seem to
strongly covary with the sample size (also see [23] for similar results based on Rényi’s formulation of
generalized entropies). In his monograph on word frequency distributions, Baayen [16] introduces the
two fundamental methodological issues in lexical statistics:

The sample size crucially determines a great many measures that have been proposed as
characteristic text constants. However, the values of these measures change systematically as
a function of the sample size. Similarly, the parameters of many models for word frequency
distribution [sic!] are highly dependent on the sample size. This property sets lexical
statistics apart from most other areas in statistics, where an increase in the sample size leads
to enhanced accuracy and not to systematic changes in basic measures and parameters. . . .
The second issue concerns the theoretical assumption [ . . . ] that words occur randomly in
texts. This assumption is an obvious simplification that, however, offers the possibility of
deriving useful formulae for text characteristics. The crucial question, however, is to what
extent this simplifying assumption affects the reliability of the formulae when applied to
actual texts and corpora. (p.1)

The main message of this paper is that those two fundamental issues also pose a strong challenge to
the application of information theory for the quantitative study of natural language signals. In addition,
the results of the case study (cf. Section 3.3) indicate that both fundamental issues in lexical statistics
apparently interact with each other. As mentioned above, there are numerous studies that used the
Jensen–Shannon divergence or related measures without an explicit “Litmus test”. Let us mention two
examples from our own research:

(i) In [12], an exploratory data-driven method was presented that extracts word-types from diachronic
corpora that have undergone the most pronounced change in frequency of occurrence in a given
period of time. To this end, a measure that is approximately equivalent to the Jensen–Shannon
divergence is computed and period-to-period changes are calculated as in Section 3.3.

(ii) In [15], the parameters of the Zipf–Mandelbrot law were used to quantify and visualize
diachronic lexical, syntactical, and stylistic changes, as well as aspects of linguistic change
for different languages.

Both studies are based on data from the Google Books Ngram corpora, made available by [30]. It
contains yearly token frequencies for each word type for over 8 million books, i.e., 6% of all books ever
published [31]. To avoid a potential systematic bias due to strongly changing corpus sizes, random
samples of equal size were drawn from the data in both [12] and [15]. However, as demonstrated
in Section 3.3, apparently this simplifying assumption is problematic, because it seems to make a
difference if we randomly sample N word tokens or if we keep the first N word tokens for the statistical
structure of the corresponding word frequency distribution. It is worth pointing out again that, without
the “Litmus test” the interpretation of the results presented in Section 3.3 would have been completely
different, because randomly drawing word tokens from the data does not seem to break the sample
size dependence. It is an empirical question whether the results presented in [12,15], and comparable
other papers would pass a “Litmus test”. In light of the results presented in this paper, we are rather
skeptical, thus echoing the call of [22] that it is “essential to clarify what is the role of finite-size effects in
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the reported conclusions, in particular in the (typical) case that database sizes change over time.” (p. 8).
One could even go so far as to ask whether relative frequencies that are compared between databases
of different sizes are systematically affected by varying database sizes. However, the test scheme as we
introduced it presupposes access to the full text data. For instance, due to copyright constraints, access
to Google Books Ngram data is restricted to token frequencies for all words (and phrases) that occur at
least 40 times in the corpus. Thus, an analogous “Litmus test” is not possible. At our institute, we are
rather fortunate to have access to the full text data of our database. Notwithstanding, copyright and
license reasons are a major issue here, as well [32]. To solve this problem for our study, we replaced
each actual word type with a unique numerical identifier as explained in Section 3.3. For our focus of
research, using such a pseudonymization strategy is fine. However, there are many scenarios where,
depending on the research objective, the actual word strings matter, making it necessary to develop a
different access and publication strategy. It goes without saying that, in all cases, full-text access is the
best option.

While the peculiarities of word frequency distributions make the analysis of natural language
data more difficult compared to other empirical phenomena, we hope that our analyses (especially
the “Litmus test”) also demonstrate that textual data offer novel possibilities to answer research
questions. Or put differently, natural language data contain a lot of information that can be harnessed.
For example, two reviewers pointed out that it could make sense to develop a method that recovers an
unbiased lexico-dynamical signal by removing the “Litmus test” signal from the original signal. This
is an interesting avenue for future research.
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presented in this paper are available in Dataverse (https://doi.org/10.7910/DVN/OP9PRL).
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Appendix A Inclusion of Punctuation and Cardinal Numbers.

Here, punctuation and numbers are included. This version of the database consists of N = 286,729,999
word tokens and K = 4,056,122 different word types. Table A1 corresponds to Table 1. Because (especially)
punctuation symbols have a very high token frequency, the contribution of the highest frequency groups
increases when punctuation is not removed from the database. However, the results are still qualitatively
very similar. Table A2 corresponds to Table 2. For α≤ 1.50, removing punctuation does not qualitatively
affect the results. However, for α= 2.00, except for n = 224 none of the correlation coefficients pass the
permutation test. Again, this indicates that α= 2.00 is a pragmatic choice when calculating Hα. However,
it also demonstrates that the conceptual decision to remove punctuation/cardinal numbers can affect the
results. Table A3 corresponds to Table 3 The results are not qualitatively affected by the exclusion of
punctuation/cardinal numbers. The same conclusion can be drawn for Table A4, which corresponds to
Table 4.
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Table A1. Contribution of word types with different token frequency as a function of α.

Token
Frequency

Number
of Cases

Examples α = 0.25 α = 0.75 α = 1.00 α = 1.50 α = 2.00

1 2,511,837
paragraphenplantage

penicillinhaltigen
partei-patt

48.51 8.94 2.16 0.00 0.00

2–10 1,148,295
koberten

optimis-datenbank
gazprom-zentrale

29.82 10.46 3.32 0.00 0.00

11–100 303,049
dunkelgraue

stirlings
drollig

13.26 13.57 6.54 0.02 0.00

101–1000 76,049
abgemagert

irakern
aufzugehen

5.86 18.56 13.50 0.15 0.00

1001–10,000 14,710 nord- selbstbestimmung
alexandra 1.99 19.35 20.60 0.83 0.02

10,001-100,000 1966
parteien
banken

entscheidungen
0.46 13.24 19.57 2.86 0.22

100,001-1,000,000 183
wurde
würde
dieses

0.08 7.47 14.89 10.05 2.66

1,000,001 + 33
auf
wie

,
0.03 8.40 19.42 86.09 97.09

4,056,122 100.00 100.00 100.00 100.00 100.00

Table A2. Spearman correlation between the sample size and Hα for different α-values *.

Minimum Sample Size Number of Datapoints α = 0.25 α = 0.75 α = 1.00 α = 1.50 α = 2.00

26 23 1.00 * 1.00 * 1.00 * 0.99 * 0.49
27 22 1.00 * 1.00 * 1.00 * 0.99 * 0.41
28 21 1.00 * 1.00 * 1.00 * 0.99 * 0.32
29 20 1.00 * 1.00 * 1.00 * 0.99 * 0.22
210 19 1.00 * 1.00 * 1.00 * 0.99 * 0.09
211 18 1.00 * 1.00 * 1.00 * 0.99 * −0.08
212 17 1.00 * 1.00 * 1.00 * 0.98 * −0.28
213 16 1.00 * 1.00 * 1.00 * 0.98 * −0.53
214 15 1.00 * 1.00 * 1.00 * 0.97 * −0.50
215 14 1.00 * 1.00 * 1.00 * 0.97 * −0.45
216 13 1.00 * 1.00 * 1.00 * 0.96 * −0.81
217 12 1.00 * 1.00 * 1.00 * 0.95 * −0.76
218 11 1.00 * 1.00 * 1.00 * 0.94 * −0.71
219 10 1.00 * 1.00 * 1.00 * 0.95 * −0.61
220 9 1.00 * 1.00 * 1.00 * 0.95 * −0.47
221 8 1.00 * 1.00 * 1.00 * 0.93 −0.31
222 7 1.00 * 1.00 * 1.00 * 0.89 0.04
223 6 1.00 * 1.00 * 1.00 * 0.83 0.66
224 5 1.00 * 1.00 * 1.00 * 1.00 * 1.00 *

* An asterisk indicates that the corresponding correlation coefficient passed the permutation test at p < 0.001.
For minimum sample sizes above 220, an exact permutation test is calculated.
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Table A3. Spearman correlation between the sample size and Dα for different α-values *.

Minimum Sample Size Number of Datapoints α = 0.25 α = 0.75 α = 1.00 α = 1.50 α = 2.00

26 22 1.00 * −0.51 −1.00 * −1.00 * −1.00 *
27 21 1.00 * −0.59 −1.00 * −1.00 * −1.00 *
28 20 1.00 * −0.68 * −1.00 * −1.00 * −1.00 *
29 19 1.00 * −0.76 * −1.00 * −1.00 * −1.00 *
210 18 1.00 * −0.84 * −1.00 * −1.00 * −1.00 *
211 17 1.00 * −0.89 * −1.00 * −1.00 * −1.00 *
212 16 1.00 * −0.94 * −1.00 * −1.00 * −1.00 *
213 15 1.00 * −0.97 * −1.00 * −1.00 * −1.00 *
214 14 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
215 13 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
216 12 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
217 11 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
218 10 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
219 9 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
220 8 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
221 7 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
222 6 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
223 5 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *
224 4 1.00 * −1.00 * −1.00 * −1.00 * −1.00 *

* An asterisk indicates that the corresponding correlation coefficient passed the permutation test at p < 0.001.
For minimum sample sizes above 220, an exact permutation test is calculated.

Table A4. Spearman correlation between the sample size and Dα(t,t − 1) for the original data and for
the “Litmus test” for α = 1.00 and α = 2.00.

Row Scenario α Number of Cases Original Data Litmus Test

1 Original 1.00 851 −0.77 * −0.91 *
2.00 851 −0.63 * −0.70 *

2 Natural weights 1.00 851 −0.77 * −0.91 *
2.00 851 −0.63 * −0.70 *

3 Yearly data 1.00 70 −0.74 * −0.98 *
2.00 70 −0.39 −0.83 *

4 Random draw 1.00 851 −0.29 * −0.69 *
2.00 851 −0.45 * −0.56 *

5 Cut-off 1.00 851 0.07 0.05
2.00 851 0.11 −0.07

* An asterisk indicates that the corresponding correlation coefficient passed the permutation test at p < 0.001.

Appendix B Replication of Table 2 for a Different Formulation of Generalized Entropy.

Here, we replicate Table 2 for a different formulation of generalized entropy, the so-called Rényi
entropy of order α [24]; it can be written as:

H′α(p) =
1
α− 1

log2

⎛⎜⎜⎜⎜⎜⎝
K∑

i = 1

pαi

⎞⎟⎟⎟⎟⎟⎠. (A1)
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Table A5. Spearman correlation between the sample size and H′α for different α-values *.

Minimum Sample Size Number of Datapoints α = 0.25 α = 0.75 α = 1.00 α = 1.50 α = 2.00

26 22 1.00 * 1.00 * 1.00 * 1.00 * 0.92 *
27 21 1.00 * 1.00 * 1.00 * 1.00 * 0.90 *
28 20 1.00 * 1.00 * 1.00 * 1.00 * 0.89 *
29 19 1.00 * 1.00 * 1.00 * 1.00 * 0.87 *
210 18 1.00 * 1.00 * 1.00 * 1.00 * 0.85 *
211 17 1.00 * 1.00 * 1.00 * 1.00 * 0.82 *
212 16 1.00 * 1.00 * 1.00 * 1.00 * 0.78
213 15 1.00 * 1.00 * 1.00 * 1.00 * 0.73
214 14 1.00 * 1.00 * 1.00 * 1.00 * 0.70
215 13 1.00 * 1.00 * 1.00 * 0.99 * 0.65
216 12 1.00 * 1.00 * 1.00 * 0.99 * 0.55
217 11 1.00 * 1.00 * 1.00 * 0.99 * 0.43
218 10 1.00 * 1.00 * 1.00 * 0.99 * 0.24
219 9 1.00 * 1.00 * 1.00 * 0.98 * −0.05
220 8 1.00 * 1.00 * 1.00 * 0.98 * −0.17
221 7 1.00 * 1.00 * 1.00 * 0.96 * 0.25
222 6 1.00 * 1.00 * 1.00 * 0.94 −0.20
223 5 1.00 * 1.00 * 1.00 * 0.90 0.10
224 4 1.00 * 1.00 * 1.00 * 0.80 −0.80

* An asterisk indicates that the corresponding correlation coefficient passed the permutation test at p < 0.001.
For minimum sample sizes above 220, an exact permutation test is calculated.
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