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Entropy can be used in studies on foundations of quantum physics in many different ways, each
of them using different properties of this mathematical object. First of all, entropy can be intuitively
understood and we can exploit that fact by finding ways to derive predictions of quantum mechanics
without employing the full mathematical apparatus of that theory. Instead, we can propose operational
axioms which we can more easily understand and try to find the reasons why the universe behaves in
the way that it does.

The second reason for its usefulness stems simply from how convenient it is to use entropy
in different aspects of information processing. It is therefore an indispensable tool for quantum
information theory, which recently has been the field that led to the most breakthroughs in foundations
of physics.

Finally, sheer ubiquity of entropy in physics and other fields makes it a possible bridge between
different areas, enabling us to carry insights from one to another.

In this Special Issue, we find examples of papers which employ each of these approaches.
In the paper “Hypergraph Contextuality” [1], the author introduces a new form of quantum

contextuality. The two previously known forms were Kochen–Specker (KS) [2] and observable-based [3]
contextualities. In paper [1], hypergraphs with 3-dim vectors are considered, in which some of those
vectors that belong to only one triplet are dropped, as in the observable approach, and smaller
hypergraphs are generated from them, such that one cannot assign definite binary values to them, as
in the KS approach. This new approach is called hypergraph contextuality and allows us, among other
things, to establish new entropic contextualities.

In the paper “The Entropic Dynamics Approach to Quantum Mechanics” [4], the author develops
his theory of Entropic Dynamics introduced in [5–7]. In this paper [4], A new version of Entropic
Dynamics is introduced in which particles follow smooth differentiable Brownian trajectories in order
to discuss why wave functions are complex and the connections between the superposition principle,
the single-valuedness of wave functions, and the quantization of electric charges.

In the paper “A New Mechanism of Open System Evolution and Its Entropy Using Unitary
Transformations in Noncomposite Qudit Systems” [8], the authors develop further their method
introduced in [9], which models the dynamics of open system evolution of qubits by the unitary
evolution of qutrits instead of by composite systems as it is usually done. In particular, they apply
their methodology to study the behavior of phase damping and spontaneous emission channels and
compute the evolution of the state’s entropy in these channels.

In the paper “Uniqueness of Minimax Strategy in View of Minimum Error Discrimination of Two
Quantum States” [10], the authors consider minimum error discrimination of two quantum sates as a
game. This is not a new approach; however, in this paper [10], it is generalized to take into account
different prior probabilities for the states, choosing which constitutes the sender’s strategy. They are
able to obtain the necessary and sufficient condition for the uniqueness of it. They also provide a
condition for when the sender’s minimax strategy and the receiver’s optimal minimum error strategy
cannot both be unique.

Entropy 2020, 22, 371; doi:10.3390/e22030371 www.mdpi.com/journal/entropy1
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Paper [11] deals with the issue of parameter estimation in continuous variable QKD. This is very
simple problem with a straightforward solution if we work in an asymptotic limit. This is, however,
not very practical and if one considers realistic, finite-size scenario, the case becomes more complex.
Still, the authors of [11] have been able to adapt the parameter estimation technique to the entropic
uncertainty relation analysis method under composable security frameworks. Moreover, in their
approach, all the states can be exploited for both parameter estimation and key generation.

In the paper “On the Exact Variance of Tsallis Entanglement Entropy in a Random Pure State” [12],
the author studies the variance of the Tsallis entropy of bipartite quantum systems in a random
pure state. He is able to obtain an exact variance formula of the Tsallis entropy that involves finite
sums of some terminating hypergeometric functions, which in some cases can be simplified to more
compact equations.

In the paper “Probabilistic Resumable Quantum Teleportation of a Two-Qubit Entangled
State” [13], the authors introduce resumable quantum teleportation of a two-qubit, entangled, pure
state. Resumable here refers to the fact that the entanglement shred between the parties does not allow
for perfect deterministic teleportation, so the protocol sometimes fails. However, in these cases, the
sender is notified and can recover her initial state and try to teleport again until successful.

The paper by Jiménez et al. [14] is another paper in this issue that looks at minimum error
discrimination. While, in the paper by Kim et al. [10], the authors were studying optimal strategies,
Jiménez et al. [14] focuses on discrimination as a process and studies it as a thermodynamic cycle. The
authors consider the amount of quantum discord consumed and show that thermal discord is lower
than the entropy generated.

One paper which, in my opinion, stands out in this issue is [15]. It is much more philosophical
than others and perhaps fits the title “Entropy in Foundations of Quantum Physics” the best. The
author deals with different interpretations of quantum mechanics and the whole paper is an extensive
defense of a point of view that quantum states codify observer-relative information. The entropy enters
here because it is argued that probabilities relative to a non-participating observer evolve according to
an entropy maximizing principle.

In the paper “Some Consequences of the Thermodynamic Cost of System Identification” [16],
the author studies the problem of system identification. He uses the standard tool of quantum
thermodynamics to approach this surprisingly overlooked problem. The main result is the impossibility
of arbitrarily precise identification and the links between this process and the violation of CHSH and
Leggett-Garg inequalities.

Arguably, one of the most interesting papers in the issue is [17]. Usually, the insights from classical
information processing are used to develop foundations of quantum mechanics. Here the ideas from
the latter are used in the former. The authors of [17] propose a novel image encoding method inspired
by quantum theory, representing the details by density matrices. Then, they can use the techniques for
maximization of von Neumann entropy to improve image thresholding.

In the paper “Quantum Quantifiers for an Atom System Interacting with a Quantum Field Based on
Pseudoharmonic Oscillator States” [18], the authors develop the Jaynes–Cummings model, considering
the interaction between a two-level atom and a quantum field in the framework of pseudoharmonic
oscillator potentials. They also qualitatively examined various quantum quantifiers in terms of the
initial parameters during time evolution with and without time-dependent coupling, considering the
quantum entanglement, geometric phase, nonclassicality and atomic squeezing.

Paper [19] develops the ideas of self-referenced continuous-variable quantum key distribution
introduced in [20], which is a Gaussian modulated coherent state-continuous variable protocol with a
local oscillator generated at the receiver’s lab. The idea of [19] is to use the virtual photon subtraction
method introduced in [21] for this type of Quantum Key Distribution. The authors show that it can
lead to greater robustness and longer maximal distances in practical quantum cryptography.

The contribution by Wang et al. [22] is the third paper, after [11] and [19], on continuous variable
quantum key distribution. In this paper [22], the authors study a unidimensional version of that
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protocol. Their main result is that adding optimal noise to the receiver improves the resistance of the
protocol to excess noise.

The last, but definitely not least, paper [23] in this issue attempts an explanation of Tsirelson
bound via a communication protocol. The authors propose the Statistical No-Signaling principle,
which dictates that no information can pass through a disconnected channel. It is very similar in spirit
to Information Causality [24], as both deal with information passing through a channel made using
van Dam construction [25] and lead to the same restrictions on the maximal quantum violation of
CHSH and Uffink inequalities. The main difference between the two principles is that Information
Causality provides insights from the theory of communication, while Statistical No-Signaling from
statistical inference.

I hope that the papers of this issue will keep the interest in quantum foundations high and inspire
even more work in that field in future.
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Abstract: Quantum contextuality is a source of quantum computational power and a theoretical
delimiter between classical and quantum structures. It has been substantiated by numerous
experiments and prompted generation of state independent contextual sets, that is, sets of quantum
observables capable of revealing quantum contextuality for any quantum state of a given dimension.
There are two major classes of state-independent contextual sets—the Kochen-Specker ones and
the operator-based ones. In this paper, we present a third, hypergraph-based class of contextual
sets. Hypergraph inequalities serve as a measure of contextuality. We limit ourselves to qutrits
and obtain thousands of 3-dim contextual sets. The simplest of them involves only 5 quantum
observables, thus enabling a straightforward implementation. They also enable establishing new
entropic contextualities.

Keywords: quantum contextuality; hypergraph contextuality; MMP hypergraphs; operator
contextuality; qutrits; Yu-Oh contextuality; Bengtsson-Blanchfield-Cabello contextuality; Xu-Chen-Su
contextuality; entropic contextuality

1. Introduction

Recently, quantum contextuality found applications in quantum communication [1,2], quantum
computation [3,4], quantum nonlocality [5] and lattice theory [6,7]. This has prompted experimental
implementation with photons [8–19], classical light [20–23], neutrons [24–26], trapped ions [27],
solid state molecular nuclear spins [28] and superconducting quantum systems [29].

Quantum contextuality, which the aforementioned citations refer to, precludes assignments of
predetermined values to dense sets of projection operators, and in our approach we shall keep to this
feature of the considered contextual sets. Contextual theoretical models and experimental tests involve
additional subtle issues, such as the possibility of classical noncontextual hidden variable models
that can reproduce quantum mechanical predictions, up to arbitrary precision [30] or a generalization
and redefinition of noncontextuality [31,32]. These elaborations are outside the scope of the present
paper, though, since it is primarily focused on contextuality, which finds applications within quantum
computation versus noncontextuality, which is inherent in the current classical binary computation.
That means that we consider classical models with predetermined binary values, which can be
assigned to measurement outcomes of classical observables, which underlie the latter computation,
versus quantum models that do not allow for such values and underlie quantum computation. As for
the direct relevance of our results to quantum computation, we point out that the hypergraph presented
in Figure 2 of Reference [3]—from which the contextual “magic” of quantum computation has been
derived—is the kind of hypergraph contextual sets we present in this paper. However, the hypergraph
is from a 4-dim Hilbert space, so, we will not elaborate on it in this paper.

We give a pedestrian overview of our approach, methods and results, as well as their background
in the last few paragraphs of this introduction, describing the organization of the paper.

Entropy 2019, 21, 1107; doi:10.3390/e211111075 www.mdpi.com/journal/entropy5



Entropy 2019, 21, 1107

A class of state-independent contextual (SIC) [33] sets that have been elaborated on the most in
the literature are the Kochen-Specker (KS) sets [34–48]. They boil down to a list of n-dim vectors and
their n-tuples of orthogonalities, such that one cannot assign definite binary values to them.

Recently, different SIC sets have been designed and/or considered by Yu and Oh [49], Bengtsson,
Blanchfield and Cabello [33], Xu, Chen and Su [50], Ramanathan and Horodecki [51], and Cabello,
Kleinmann and Budroni [52]. They all make use of operators defined by vectors that define their
sets. You and Oh construct rather involved expression of state/vector defined 3 × 3 operators that
eventually reduces to a multiple of a unit operator while the other authors make use of projectors
whose expressions also reduce to a multiple of a unit operator. Therefore, we call their sets the
operator-based contextuality sets and assume that they form an operator contextuality class. All the sets
make use of a particular list of 3-dim vectors and their orthogonal doublets and triplets, such that
a given expression of definite binary variables has an upper bound which is lower than that of a
corresponding quantum expression. The last two References [51,52] also provide us with the necessary
and sufficient conditions for an SIC set in any dimension.

The difference between the KS contextuality and the operator contextuality is that KS statistics
include measured values of all vectors from each n-tuple, while the statistics of measurements are built
on values obtained via operators defined by possibly less than n vectors from each n-tuple.

In this paper, we blend the two aforementioned contextualities so as to arrive at hypergraph
one. We consider hypergraphs with 3-dim vectors in which some of those vectors that belong to only
one triplet are dropped, as in the observable approach, and generate smaller hypergraphs from them,
such that one cannot assign definite binary values to them, as in the KS approach. We call our present
approach the McKay-Megill-Pavičić hypergraph (MMPH) approach. MMPH non-binary sets directly
provide us with noncontextual inequalities. On the other hand, via our algorithms and programs we
obtain thousands of smaller MMPH sets which can serve for various applications as, for example,
to generate new entropic tests of contextuality or new operator-based contextual sets.

The smallest MMPH non-binary set we obtain is a pentagon with five vectors (vertices) cyclically
connected with 5 pairs of orthogonality (edges). It corresponds to the pentagram from Reference [53],
implemented in [15,20,23]. The difference is that the pentagram inequality is state dependent, while
the MMPH pentagon inequality is state independent. More specifically, in Reference [53], one obtains
a nonclassical inequality by means of the projections of five pentagram vectors at a chosen sixth vector
directed along a fivefold symmetry axis of the pentagram. By our method, one gets a nonclassical
inequality between the maximum sum of possible assignments of 1, representing classical measurement
clicks and the sum of probabilities of obtaining quantum measurement clicks.

Entropic test of contextuality for pentagram/pentagon has been formulated in Reference [54]
following Reference [55]. It can be straightforwardly reformulated for the other MMPH non-binary
sets we obtained.

The paper is organized as follows.
In Section 2.1 we present the hypergraph formalism and define n-dim MMPH set and n-dim

MMPH binary and non-binary sets as well as filled MMPH set. We explain how vertices and edges
in an n-MMPH set correspond to vectors and their orthogonalities, that is, m-tuples (2 ≤ m ≤ n) of
mutually orthogonal vectors, respectively.

In Section 2.2 we give the KS theorem and a definition of a KS set and prove that a KS set is a special
non-binary set. In Definition 3 we define a critical KS set, that is, the one which would stop being a KS
set if we removed any of its edges. Then we introduce known KS sets to compare them with operator
defined sets. In particular, we start with Conway-Kochen, Bub, Peres and original Kochen-Specker’s
sets. We show that the number of vectors they are characterised with in the original papers and most
of the subsequent ones, as well as in books—that is, 31, 33, 33, and 117, respectively—are not critical.
That, actually, enables the whole approach presented in this paper. We show that the aforementioned
authors dropped the vectors that are contained in only one triplet. If we took all the stripped vectors
into account, that is, if we formed filled sets, we would get 51, 49, 57 and 192 vectors, respectively.

6
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These sets are critical and the majority of researchers assumed that their stripped versions are critical
too and so they did not try to use them as a source of smaller non-classical 3-dim sets.

Next, we connect and compare KS sets with operator-based sets, in particular YU-Oh’s 13 vector
set whose filled version has 25 vectors and 16 triplets—we denote it as 25–16. In Figure 1, we show
Yu-Oh’s 25-16 as a subgraph of Peres’ 57–40. In Figure 2, we show how 25–16 can be stripped of vectors
contained in only one triplet, so as to arrive at the original Yu-Oh’s 13-16 set. Equations (1)–(6) and
their comments explain how Yu and Oh defined their operators with the help of the 13 vectors and
how they used them to arrive, via Equation (4), at the inequality defined by Equation (6). We then
used the operator expression given by Equation (4) to test 50 sets smaller and bigger than the 13–16
but did not obtain an analogous result. Some of the sets are shown in Figure 3.
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Figure 2. (a) An MMPH subgraph of Peres’ KS MMPH; (b) Yu-Oh’s reduction of (a); (c) Yu-Oh’s
Figure 2 from [49]; (d) Yu and Oh adopted a mixture of Kochen & Specker notation [56]; Cf. (Figure 19
in the [46], ) (the triangles in (c)) and MMPH notation (the circle in (c)).
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(c)(a) (b) (d)

13−11
8−7

16−15
16−13

Figure 3. (a) Hexagon MMPH from the KS set 192(117)–118 (Figure 6(ii) in the [35]) where it appears
in 15 instances; (b) a symmetric subgraph of Peres’ MMPH with a non-diagonal L̂; (c) an asymmetric
subgraph of Peres’ MMPH with a diagonal L̂ and 〈L̂〉 < Max[C]; (d) a constructed symmetric MMPH
with a diagonal L̂ and 〈L̂〉 < Max[C] but whose full scale version does not have a coordinatization.

In Section 2.3 we give a historical background of stripping the aforementioned vectors that are
contained in only one triplet and explain what was behind that “incomplete triplets” issue. Then
we give MMPH strings of Conway-Kochen’s 31–37, Bub’s 33–36, Peres’ 33–40 and Kochen-Specker’s
117–118 non-critical but still non-binary non-classical MMPH sets and take them as our master sets
from which we generate smaller non-binary critical MMPH sets in the next section. However, we stress
that any set we obtain by stripping some other number of vertices contained in only one edge from any
one of the original four KS sets can serve us as a master set. We give a Peres’ 40–40 set as an example.

In Section 2.4 we start with a definition of a critical MMPH non-binary set which differs from that
of a critical KS set. If we strip more and more edges from a critical KS set we shall never come to a KS
set again. This is not so with MMPH non-binary sets. MMPH non-binary critical sets might properly
contain smaller MMPH non-binary critical sets whose number of edges is smaller than the original
critical set for at least 2 edges.

Via our algorithms and programs, we obtain thousands of critical sets from our master sets, whose
distributions are shown in Figure 4. We say that a collection of MMPH non-binary subgraphs of an
MMPH master form its class.
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Bub’s MMPH

(c)

Figure 4. (a) Distribution of MMPH non-binary critical sets generated from Bub’s MMPH non-binary
master set; (b) Conway-Kochen’s criticals; (c) Peres’ criticals; (d) Kochen-Specker’s criticals.

Next we define measurements which can distinguish contextual from non-contextual MMPH sets,
that is, non-binary from binary ones. Similar to operator-based contextual measurements, dropped
vertices are not considered, that is, clicks obtained at their corresponding out-ports are not taken into
account when obtaining the statistics of collected data. So, measurements of MMPH non-binary sets
are carried out as for KS sets with triplets, that is, with the 1/3 probability of detection at each out-port
and via calibrated detections of a particle or a photon at out-ports of a gate representing a doublet with
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the 1/2 probability of getting a click at each of the two considered ports, while ignoring the third one.
When a vertex shares a mixture of triplet and doublet edges the probability of detection is 1/p, where
1/3 ≤ p ≤ 1/2. We call detections at all ports notwithstanding whether we include them in our final
statistics or not, uncalibrated detections—they simply have 1/3 probability of detection at every port.

To obtain contextual distinguishers of an MMPH set we consider the sum of probabilities of getting
clicks for all considered vertices and call it a quantum hypergraph index. We distinguish a calibrated
quantum hypergraph index, which we denote as HIq and an uncalibrated one, which we denote as
HIq−unc. On the other hand, each MMPH set allows a maximal number of 1s assigned to vertices so
as to satisfy the two conditions from Definition 2. We call the number classical hypergraph index and
denote it as HIc. Our weak contextual distinguisher is the inequality: HIq > HIc and the strong one
is the inequality HIq−unc > HIc. Yu-Oh, Bub, Conway-Kochen and Peres’ MMPH non-binary sets as
well as others given in the section, like, for example, 13–10, satisfy both inequalities.

We present several small critical MMPH sets in Figures 5 and 6 and discuss their features. We also
calculate Yu-Oh’s inequalities for several sets different from Yu-Oh’s 13–16 set. None of the 50 tested
sets satisfy the inequality.
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(d)

pentagon

Figure 5. Criticals generated from Bub’s master: (a) subgraph pentagon 5–5; (b) subgraph 10–9; (c)
standard subgraph 14–11; Critical generated from Peres’ master: (d) 13–11.
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Figure 6. (a) Conway-Kochen’s MMPH non-binary critical set 13–10; (b) Kochen-Specker’s 35–25a
critical with uncalibrated contextuality; the outer loop is a 19–gon; (c) Kochen-Specker’s 35–25b critical
without uncalibrated contextuality; the outer loop is a 16–gon; See text.

In Section 3 we discuss and reexamine the steps and details of our approach.

2. Results

We consider a set of quantum states represented by vectors in a 3-dim Hilbert space H3 grouped in
triplets of mutually orthogonal vectors. We describe such a set by means of a hypergraph which we call
a MMPH. In it, vectors themselves are represented by vertices and mutually orthogonal triplets of them
by edges. However, an MMPH itself has a definition which is independent of a possible representation
of vertices by means of vectors. For instance, there are MMPHs without a coordinatization, that is,
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MMPHs for whose vertices vectors one could assign to, do not exist. Also, edges can contain less
than 3 vertices, that is, 2 and form doublets. When a coordinatization exist, that does not mean that
a doublet belongs to a 2-dim edge but only that we do not take an existing third vertex/vector into
account.

2.1. Formalism

Let us define the hypergraph formalism.
A hypergraph is a pair v-e where v is a set of elements called vertices and e is a set of non-empty

subsets of e called edges. Edge is a set of vertices that are in some sense related to each other, in our
case orthogonal to each other.

The first definition of MMPH was given in Reference [35] where we called them, not hypergraphs,
but diagrams. In Reference [46], we gave a definition of an n-dim MMP hypergraph which required that
each edge has at least 3 vertices and that edges that intersect each other in n-2 vertices contain at least
n vertices. The definition of MMPH is slightly different.

Definition 1. An MMPH is an n-dim hypergraph in which

1. Every vertex belongs to at least one edge;
2. Every edge contains at least 2 vertices;
3. Edges that intersect each other in m—2 vertices contain at least m vertices, where 2 ≤ m ≤ n.

Then, in Reference [47] we presented a hypergraph reformulation of the Kochen-Specker
theorem [56] from which we derive the following definition of an MMPH non-binary set.

Definition 2. n-dim MMPH non-binary set, n ≥ 3, is a hypergraph whose each edge contains at least two
and at most n vertices to which it is impossible to assign 1s and 0s in such a way that

1. No two vertices within any of its edges are both assigned the value 1;
2. In any of its edges, not all of the vertices are assigned the value 0.

An MMPH set to which it is possible to assign 1s and 0s so as to satisfy the above two conditions we call
an MMPH binary set.

An MMPH non-binary set with edges of mixed sizes to which vertices are added so as to make all edges of
equal size each containing n vertices is called filled MMPH set.

A coordinatization of an MMPH non-binary set means that the vertices of its filled MMPH denote
n-dim vectors in Hn, n ≥ 3 and that its edges represent orthogonal n-tuples, containing vertices
corresponding to those mutually orthogonal vectors. Then the vertices of an MMPH set with edges
of mixed sizes inherit its coordinatization from the coordinatization of its filled set. In our present
approach a coordinatization is automatically assigned to each hypergraph by the very procedure of its
generation from master MMPHs as we shall see below.

In the real 3-dim Hilbert space edges form loops of order five (pentagon) or higher as we proved
in Reference [35]. For complex vectors our calculations always confirmed this result but we were
unable to find an exact proof. Loops of order two are precluded by Definition 1(3).

MMPH are encoded by means of printable ASCII characters organized in a single string,
and within it in edges, which are separated by commas; each string ends with a period. Vertices are
denoted by one of the following characters: 1 2 ... 9 A B ... Z a b ... z ! " # $ % & ’ ( ) *
- / : ; < = > ? @ [ \ ] ˆ _ ‘ { | } ~ [35]. When all of them are exhausted one reuses them prefixed by
‘+’, then again by ‘++’ and so forth. An MMPH with k vertices and l edges we denote as a k-l set.
In its graphical representation, vertices are depicted as dots and edges as straight or curved lines
connecting orthogonal vertices. In its ASCII string representation (used for computer processing) each
MMPH is encoded in a single line followed by assignments of coordinatization to k vertices. We handle
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MMP hypergraphs by means of algorithms in the programs SHORTD, MMPSTRIP, MMPSUBGRAPH,
VECFIND, STATES01, and others [6,35,38,39,57,58].

2.2. KS vs. Operator Contextuality

Let us start with the Kochen-Specker theorem and KS sets. Then we shall connect them with the
vectors and operators of one type of operator-based contextuality introduced by Yu and Oh.

Theorem 1. (Kochen-Specker [56,59,60]). In Hn, n ≥ 3, there are sets of n-tuples of mutually orthogonal
vectors to which it is impossible to assign 1 s and 0 s in such a way that

1. No two orthogonal vectors are both assigned the value 1;
2. In any group of n mutually orthogonal vectors, not all of the vectors are assigned the value 0.

The sets of such vectors are called KS sets and the vectors themselves are called KS vectors.

There is a one-to-one correspondence between KS n-tuples of vectors and MMPH edges when
they are all of their maximal size, as established in Reference [35,46–48] and between KS vectors and
MMPH vertices with coordinatization within an MMPH with maximal edges.

Theorem 2. An n-dim MMPH non-binary set with a coordinatization whose each edge contains n vertices, is a
KS set.

Proof. It follows straightforwardly from the KS theorem, its definition of a KS set and the
aforementioned correspondences between its vectors and MMPH vertices.

In 1988, Asher Peres presented a simple proof of the KS theorem in a 3-dim Hilbert space using
real vectors [61]. He implicitly made use of 57 vectors/rays and 40 triplets of mutually orthogonal
vectors but seemed to have dropped 24 vectors that appear in only one triplet and called his proof a
“33 vector [ray] proof.” However, he admitted the role of the remaining vectors, “It can be shown that
if a single ray is deleted from the set of 33, the contradiction disappears. It is so even if the deleted ray
is not explicitly listed in table 1.” ([61], L176, bottom paragraph). From Reference ([61], Table 1) we
can reconstruct the 33 vectors within their 40 triplets together with the “non-explicit” 24 vectors and
represent them in our MMPH notation, obtaining an MMPH non-binary set with 57 vertices (vectors)
and 40 edges (triplets), that is, a 57–40 KS set. We did so in two different ways with two resulting (but
isomorphic) hypergraphs in Reference ([6], Figure 4) and Reference ([46], Figure 19). Here we give a
third MMPH representation (isomorphic to the previous two) which contains the so-called full scale
Yu-Oh set 123,345,567,789,9AB,BCD,DEF,FGH,HI1,1JK,KLA,5LF,JPD,JM7,3OB,HN9. we elaborate
on below. The representation is carried out via our programs SUBGRAPH and LOOP [47].

Peres’ 57–40 MMPH KS set reads:
123,345,567,789,9AB,BCD,DEF,FGH,HI1,1JK,KLA,JM7,3BO,H9N,JPD,FL5,QRS,STA,AUV,VWX,

XYO,OZa,abc,cdC,CeQ,Sha,QgX,Vfc,bg9,qmU,Nnq,Bij,jku,klN,ur8,8st,iqt,Tpk,Tot,uvU.

Its graphical representation is given in Figure 1a.
Notice that gray dots 8,D,N,O in Figure 1b are not gray in Figure 1a and therefore the

representation of the original full scale 57–40 Peres KS set (with all gray dots included) by means of
the three original Yu-Oh non-KS sets (with gray vertices dropped), as depicted in Figure 1 of [62],
apparently does not work. Also, as verified with our program SUBGRAPH, Yu-Oh’s set is not a
subgraph of Peres’ 33–40 set (with all gray dots dropped). On the other hand, Yu-Oh’s set cannot be a
subgraph of Peres’ 57–40 because it lacks gray dots. The full scale Yu-Oh’s set 25–16 shown Figure 1b
is, of course, a subgraph of the full-scale Peres’ 57-40 set as shown in Figure 1a and confirmed by
SUBGRAPH.

The arguments that all vertices are indispensable for an experimental implementation of a KS
set can be found in Reference ([63], In particular Table on p. 804), Reference ([35], pp. 1583 top, 1588
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bottom, and top 1589), and Reference ([64], p. 332, end of the 1st par.). In essence, every n-tuple from
the KS Theorem 1 should contain no fewer than n vectors.

Below, the coordinatization of Peres’ 57–40 set is obtained via VECFIND [47] from the vector
components 0,±1,

√
2 (the component −√

2, used by Peres in Reference [61] is not needed):

1 = {1,
√

2,−1}, 3 = {0,1,
√

2}, 5 = {−1,
√

2,−1}, 7 = {
√

2,1,0}, 8 = {−1,
√

2,0}, 9 = {0,0,1}, A = {0,1,0},
B = {1,0,0}, C = {0,

√
2,1}, D = {0,−1,

√
2}, F = {1,

√
2,1}, H = {

√
2,−1,0}, J = {−1,

√
2,1}, K = {1,0,1},

L = {1,0,−1}, N = {1,
√

2,0}, O = {0,
√

2,−1}, Q = {−1,−1,
√

2}, S = {
√

2,0,1}, T = {−1,0,
√

2}, U = {1,0,
√

2},
V = {

√
2,0,−1}, X = {1,1,

√
2}, a = {−1,1,

√
2}, b = {1,1,0}, c = {1,−1,

√
2}, g = {1,−1,0}, i = {0,1,−1}, j = {0,1,1},

k = {
√

2,−1,1}, q = {
√

2,−1,−1}, t = {
√

2,1,1}, u = {
√

2,1,−1}

The aforementioned Peres’ statement, “if a single ray is deleted from the set of 33, the contradiction
disappears” amounts to a coarse definition of a vertex-critical KS set: “A KS [set] is termed critical iff it
cannot be made smaller by deleting the [vertices]” [65]. However, in KS sets, there are edges whose
removal does not remove any vertex (but nevertheless cause a disappearance of the KS property) and,
on the other hand, no vertex can be removed from a KS set without removing at least one edge as well,
in the sense that all edges/n-tuples should contain n mutually orthogonal vertices/vectors.

Therefore, we adopt a definition of an edge-critical KS set [6,46,58] (MMPH sets will require a
redefinition of critical sets, as we shall see later on):

Definition 3. KS sets that do not properly contain any KS subset, meaning that if any of its edges were removed,
they would stop being KS sets, are called critical KS sets.

Hence, the set 13,35,57,79,9AB,BD,DF,FH,H1,1JK,KLA,5LF,JD,J7,3B,H9. Yu and Oh obtained
in Reference [49] cannot be a KS set since it is a subgraph of a critical KS set (Peres’ set) and therefore
cannot provide a proof of the KS theorem contrary to the claim in the title of Reference [49], as we also
show in some detail in Reference ([46], Section XII). But, in Reference [49], Yu and Oh do define a new
kind of contextuality which we shall analyse and which we summarize as follows.

Consider the MMPH of the Yu-Oh representation of the MMPH Peres’ subgraph, from Figure 1b,
shown in Figure 2. They removed all the vertices that share only one edge and which are
depicted as gray dots in Figure 2a. Then they define operators by way of the remaining
vertices/vectors/rays/states which serve to define filters either for preparation or for detection
of arbitrary input or output states, respectively. The procedure goes as follows.

Some of the vectors from Figure 2a are represented as

|y−1 〉 =
1√
2

⎛⎜⎝ 0
1
−1

⎞⎟⎠ , |h2〉 = 1√
3

⎛⎜⎝ 1
−1
1

⎞⎟⎠ , |z3〉 =

⎛⎜⎝0
0
1

⎞⎟⎠ , |N〉 = 1√
6

⎛⎜⎝ 2
−1
1

⎞⎟⎠ . (1)

Vectors serve Yu and Oh to define the following operators

Âi = I − 2|i〉〈i| (2)

where i = 1, . . . , 13 correspond to y−1 , y−2 , . . . , z3 and we add i = 14, . . . , 25 corresponding to gray dots
in Figure 2a. For instance, for i = 1, 8, 13, 20, corresponding to vectors from Equation (1), we have:

Â1 =

⎛⎜⎝1 0 0
0 0 1
0 1 0

⎞⎟⎠ , Â8 =
1
3

⎛⎜⎝ 1 2 −2
2 1 2
−2 2 1

⎞⎟⎠ , Â13 =

⎛⎜⎝1 0 0
0 1 0
0 0 −1

⎞⎟⎠ , Â20 =
1
3

⎛⎜⎝−1 2 2
2 2 1
−2 1 2

⎞⎟⎠ . (3)
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The operators can be combined in the following way:

L̂13 =
13

∑
i

Âi − 1
4

13

∑
i

13

∑
j

Γij Âi Âj =
25
3

I = 8.3̇I, (4)

where Γij = 1 whenever corresponding vectors i, j are orthogonal to each other and Γij = 0 when they
are not; also Γii = 0. The value 25/3 is curious since it is also the sum of probabilities of detecting
photons in the full scale setup 25–16 shown in Figure 1b. That may be purely accidental. Also, L̂25 is
not diagonal. Yu and Oh consider neither vectors |i〉 nor operators Âi for i = 14, . . . , 25

The fact that each Âi has the spectrum {−1, 1, 1} prompted Yu-Oh to calculate the upper bound
of a corresponding expression for 13 classical variables with predetermined values −1 and 1:

C13 =
13

∑
i

ai − 1
4

13

∑
i

13

∑
j

Γijaiaj ≤ 8 (5)

The inequality

〈L̂〉 > Max[C] (6)

has been verified experimentally [16,21] and also improved theoretically by changing the coefficients
in Equations (4) and (5) [66,67]. However, no other set, apart from Yu-Oh’s 13–16 itself, with such
properties has been found since.

We tested 50 sets and found that L̂ of MMPHs without left right symmetry mostly do not have
diagonal matrices, although some do, and that L̂s of the majority of symmetric MMPHs are also not
diagonal; when they are, they are often not multiples of I; for the ones whose L̂s are multiples of I
we found that they satisfy either 〈L̂〉 < Max[C] or at most 〈L̂〉 = Max[C], that is, we have not found
instances of Equation (6) being satisfied. We give some examples below.

We should stress here that our definition of a subgraph differs from a standard one. The standard
definition assumes that a subgraph is a hypergraph contained in a bigger hypergraph as is.
In contradistinction, we shall assume that a subgraph might also be a hypergraph obtained from
a bigger hypergraph by taking out some edges and connecting the remaining edges together, or simply
by taking out some vertices. The latter subgraph we denote as subgraph. For instance 123,345,567.

is a standard subgraph of 123,345,567,781., while 123,345,561. and 13,345,567,781. are its
subgraphs. Yu-Oh’s 13–16 set is a subgraph of Peres’ full scale 57–40 set. It is not a subgraph of either
Peres’ 57–40 or Peres’ 33–40.

For a symmetric Kochen & Specker’s divided hexagon ([35], Figure 6(ii)) MMPH 8–7, a subgraph
of the KS set 117–118 [56], shown in Figure 3a, we obtain 〈L̂8〉 = Max[C8] = 9/2. The contextuality of
the set has previously been considered in Reference [68].

From Peres’ original KS set, using our programs STATES01, LOOP and VECFIND we can generate
arbitrary many subsets. Most of them are asymmetric and their L̂s are non-diagonal. Also, many
highly symmetric ones, such as, for example, 16–15, shown in Figure 3b with L̂16 given in Equation (7),
are not diagonal.

L̂16 =
1
6

⎛⎜⎝57 4 4
4 54 3
4 3 60

⎞⎟⎠ (7)

An example of a non-symmetric 13–11 with a diagonal L̂ is given in Figure 3c. It has 〈L̂13〉 = 7.5
and Max[C13] = 7.75, that is, 〈L̂〉 < Max[C].

We might try to construct a symmetric MMPH, for example, the 16–13 one given in Figure 3d.
For it we obtain 〈L̂13〉 = 9.5 and Max[C13] = 9.75, that is, again 〈L̂〉 < Max[C]. However, the main
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problem with such constructed MMPHs is that the probability of coming across their filled (full scale)
versions with coordinatizations and therefore belonging to the 3-dim Hilbert space is minute, that is,
negligible even via automated construction and search on a supercomputer. The full scale version
(23–13) of the aforementioned 16–13 apparently does not have a coordinatization either.

We give more examples of 〈L̂〉 versus Max[C] calculations for other MMPHs in Section 2.4.

2.3. MMPH Masters

There are several facts we would like to stress as starting points of our elaboration on the MMPH
non-binary sets.

(i) Peres wrote, “It can be shown that if a single ray is deleted from the set of 33, the contradiction
disappears. It is so even if the deleted ray is not explicitly listed in Table 1.” ([61], L176, bottom
paragraph)

Ad (i) The first sentence is wrong because MMPH 33–40 set 123,345,47,79,92A,AC,C4,AF,5F,HJ,
HL,H7M,NCO,OPQ,QRL,RT,TJ,JPV,VX,XR,Va,La,ce,cT1,cg,FXM,Mhi,ijg,jl,le,ehn,np,pj,

nN,gN,t9,tlO,t5,ap1,1MO. is not critical as verified by STATES01. It is also not a KS set
but only an MMPH non-binary set. The second sentence is conditionally correct because
the full scale MMPH 57–40, 123,345,467,789,92A,ABC,CD4,AEF,5GF,HIJ,HKL,H7M,NCO,

OPQ,QRL,RST,TUJ,JPV,VWX,XYR,VZa,Lba,cde,cT1,cfg,FXM,Mhi,ijg,jkl,lme,ehn,nop,

pqj,nrN,gsN,tu9,tlO,tv5,ap1,1MO. is a critical KS set but only if assume that with the
deleted ray we also delete the edge/triplet it belonged to. (This instance of Peres’ 57–40 KS
set is isomorphic to the one given above; the sequence of characters is different due to a
reshuffling by automated tools we used to obtain 33–40 as a subgraph of 57–40.

(ii) Yu and Oh write, “The KS value assignments to the 13-ray set [13-16] are possible; i.e., no
logical contradiction can be extracted by considering conditions 1 and 2 [of Theorem 1].” ([49],
p. 3, left column, top)

Ad (ii) The claim is provisionally correct, but not because “no logical contradiction can be extracted
by considering conditions 1 and 2”—it can be extracted—in 13–16 it is impossible to assign 1s
and 0s in such a way that conditions 1 and 2 are satisfied, and not because “value assignments
to the 13-ray set are possible”—they are not possible; one cannot assign 1s and 0s to its rays
in such a way that conditions 1 and 2 are satisfied—but because the 13–16 set is not a set of
triplets and therefore does not satisfy the first part of the KS theorem.

The “incomplete triplets” issue reappears in many papers and books. For instance in Karl
Svozil’s book [69] in Section 7.4 there is an excellent symmetric figure of Peres’ 33–40 set [Figure
7.12], we actually made use of to write down MMPH 57–40 set, but we had to add 24 vertices that
were not there; 33 vectors and their corresponding logical proposition were explicitly given, but the
remaining 24 vectors were not mentioned. In the original Kochen-Specker paper [56] the triplets
(edges with 3 vertices) were depicted as triangles and doublets (triplets from which one vertex was
dropped) as straight lines—all together 117 vertices of 192 ones contained in 118 triplets. Their triangles
are shown in Reference ([35], Figure 6(ii)). The same triangles are used in the Yu-Oh’s set and are
shown in Figure 2d. This triangle notation is a source of some confusion in the literature and research,
though. For instance, in Reference [52] on p. 4, Figure 1b, where one line from one of the triangles
from Yu-Oh’s set is deleted, we read: “(b) GYO minus one edge.” However, the lines in the triangle are
not edges. The whole triangle is an edge (triplet) as shown in Figure 2d. The lines within a triangle
are orthogonalities and a removal of one of them means splitting the triplet into two doublets, that is,
increasing the number of edges in the set. So, the set in Figure 1a of Reference [52] has 16 edges, while
the set in Figure 1b has 17 edges. In any case the set (b) is not a subgraph of (a) nor is (a) a subgraph of
(b). Of course, a removal of one of the orthogonalities must also be accompanied by a switch to a new
coordinatization of the whole set.

In The Kochen-Specker Theorem article in the Stanford Encyclopedia of Philosophy only 117 vertices
were considered. “[W]hat KS have shown is that a set of 117 yes-no observables cannot consistently be
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assigned 0-1 values” [70]. Jeffrey Bub writes, “This yields a total of 49 rays and 36 orthogonal triples.
Now the only rays that occur in only one orthogonal triple are the 16 rays with a 5 as component.
Removing these 16 rays from the 49 rays yields the following set of 33 rays that cannot be colored” [71].
However, 49 rays also cannot be colored and the 49–36 is critical, while 33–36 is not.

These facts offer the following approach, though. The aforementioned conditions 1 and 2 are
also contained in the Definition 2 of an MMPH non-binary set and Peres’ 33–40, Yu-Oh’s 13–16, Bub’s
33–36, Conway-Kochen’s 31–37 and Kochen-Specker’s 117–118 sets all violate conditions 1 and 2,
thus confirming that these sets are MMPH non-binary sets. Moreover, they actually enable us to get
many smaller MMPH non-binary sets from them because none of these sets is critical and they are all
equipped with at least the coordinatization they inherit from their full scaled versions 57–40, 25–16,
49–36, 51–37, and 192–118, respectively, but often with even simpler ones.

The MMPH strings of the last three sets are:
Bub’s 33–36 (derived from the full scale 49–36 ([46], Figure 19)): 12,134,156,67,48,9AB,CDE,6B,4E,
2FG,2HI,EG,GB,8I,I7,AJ,AK,C7L,MN9,HON,N3P,PL,MFQ,QL,M5R,RD,DO,STC,JHT,T5U,S3K,SFV,VW,

98W,WU,X9C.

Conway-Kochen’s 31–37 (derived from the full scale 51–37 ([46], Figure 19)):
123,245,26,57,89A,BCD,5D, 3EF,3G,DF,FA,9H,87I,9J,CK,CL,LM,HN,M1N,KO,1OP,Q6R,QGH,BQS,

PR,PJ, S4J,SET,NT,TI,RI,UV8, VGK,U6L,4V,UE,18B.

and the Kochen-Specker’s 117–118 (derived from the original full scale 192–118 ([46], Figure 19)):
12,234,45, 56,678,81,9A,ABC,CD,DE,EFG,G9,HI,IJK,KL,LM,MNO,OH,PQ,QRS,ST,TU,UVW,WP,1X,

XYZ,Za,ab, bcd,d1,ef,fgh,hi,ij,jkl,le,mn,nop,pq,qr,rst,tm,uv,vwx,xy,yz,z!","u,#$,$%&,

&’,’(,()*, *#,e-,-/:,:;,;<,<=>,>e,?@,@[\,\],]ˆ,ˆ_‘,‘?,{|,|}~,~+1,+1+2,+2+3+4,+4{,
+5+6,+6+7+8, +8+9,+9+A,+A+B+C,+C+5,+D+E,+E+F+G,+G+H,+H+I,+I+J+K,+K+D,?+L,+L+M+N,+N+O,

+O+P,+P+Q+R, +R?,37,BF,JN,RV,Yc,gk,os,w!,%),/=,[_,}+3,+7+B,+F+J,+M+Q,95e,HDe,PLe,aTe,

mi?,uq?,y’?, ;#?,{]1,+5+11,+D+91,+O+H1,1e?.

All of them have coordinatizations and none of them is critical. They will be our MMPH non-binary
master sets that we shall get smaller MMPH non-binary critical sets from in Section 2.4. Here, we want
to stress that we have chosen the above sets to be our masters for historical reasons. But any set we
obtain by stripping the original four KS sets from some other number of vertices being contained in
only one edge can serve us as a master set. For instance, by stripping not 24 but 17 such vertices from
Peres’ 57–40 KS set, we obtain the following set which we can also use as our master set:
Peres’ 40–40 (derived from the full scale 57–40 ([46], Figure 19)):
123,345,467,78,829,9A,A4,9B,5B,CD,CE, C7F,GAH,HIJ,JKE,KLM,MND,DIO,OPQ,QRK,OST,ET,UVW,

UM1,UX,BQF,FYZ,ZaX,ab,bW,WYc,cd,da,cG, XG,e8,ebH,e5,Td1,1FH.

We present two smaller critical MMPH non-binary sets, 35–27 and 38–30, obtained from this 40–40
set, in Appendix A.3 because they are bigger than Peres’ 33–40 and they are critical, while Peres’ 33–40
is not. Also, criticals with 33 or less vertices we obtained from Peres’ 33–40 and from Peres’ 40–40
coincide. The difference is only in criticals with 34 to 38 vertices which we, of course, cannot obtain
from Peres’ 33–40 set.

2.4. Classes of MMPH Non-Binary Sets, Their Implementation, and Their Inequalities

From the MMPH non-binary master sets given in Section 2.3, we obtain smaller MMPH non-binary
critical sets via STATES01. There is a principal difference in the feature of criticality between these sets
and the full scale KS sets, though.

If we removed any of the edges of a full scale KS critical set, the remaining set would not be a
KS set any more (see Definition 3). If we then continued to strip further edges from the remaining
set, we would never arrive at a KS set again. This is not so with an MMPH non-binary critical set.
When we remove any of its edges it does stop being an MMPH non-binary set, but if we removed
further edges from the obtained set, it would often turn into a smaller MMPH non-binary critical set.
Therefore we introduce:
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Definition 4. An MMPH non-binary set is called an MMPH non-binary critical set if a removal of any of its
edges would turn the remaining set into an MMPH binary set. MMPH non-binary critical sets might properly
contain smaller MMPH non-binary critical sets whose number of edges is smaller than the original critical set
for at least 2 edges.

Bub and Conway-Kochen’s master sets share the coordinatization while Peres and
Kochen-Specker’s ones have different ones mutually and with respect to the former two sets. Therefore,
also the classes of smaller MMPH non-binary critical sets we obtain from them will be structurally
different.

From these master sets we generated classes of smaller MMPH non-binary critical sets by means
of our programs [35,47], although the algorithms and programs should be redesigned and rewritten
for an automated generation. MMPH sets generated from a master set we call a class of MMPH sets.
So, we shall talk about Bub, Conway-Kochen, Peres and Kochen-Specker’s classes. Distributions
of their criticals are shown in Figure 4. The criticals are mostly the standard subgraphs of their
masters obtained via our automated algorithms and programs, except for a limited number of smaller
subgraphs we obtained via new algorithms which are still under development. Most subgraphs have
a parity proof unlike most of the standard subgraphs of which only a very few have a parity proof.

Notice that the biggest critical sets in Figure 4a,c have the same number of vertices as their master
sets, but 9,12 edges less, respectively.

A possible experimental implementation of MMPH non-binary sets might be made in analogy to
the experimental implementation of KS sets carried out in Reference [12]. The difference is that the
latter sets contain only triplets, while the former ones contain triplets and doublets, similarly to the
Yu-Oh’s 13–16 set, or even only doublets as in the 5–5 set. To carry out measurements on KS sets means
that we have to verify that the probability of detecting a particle or a photon at each out-port of a gate
representing an edge (triplet) is 1/3. Yu-Oh’s implementation rely on gates defined via Equations (2)
and (4) by means of 13 vertices/vectors/rays/states and the gates representing 12 dropped vertices
are not considered. Measurements on MMPH non-binary sets might be carried out as for KS sets
with triplets (with the 1/3 probability of detection at each out-port) and via calibrated detections of a
particle or a photon at out-ports of a gate representing a doublet with the 1/2 probability of detecting
a particle at each of the two considered ports. When a vertex share a mixture of triplet and doublet
edges the probability of detection is 1/p, where 1/3 ≤ p ≤ 1/2. The data obtained at the out-ports
corresponding to the dropped third vertices are discarded or we simply do not measure them at all as
in Yu-Oh’s experiments [16,21,66]. To assure an equal distribution of outcomes at each port, the inputs
to doublet gates should be scaled up with respect to the full triplet ones by 3/2 and this is why we call
them calibrated.

The inequalities to be experimentally verified for the MMPH non-binary sets can be defined as
for the other two kinds of sets. For instance, for Yu-Oh’s 13–16 set we verify their inequality given
by Equation (6): 8.3 > 8. Let us consider the set as shown in Figure 1b (excluding the gray dots).
This set contains 4 triplets and 12 doublets. Vertices A,K,L share only triplets, so the probability of
having a click along them is 1/3. Vertices 3,7,D,H share only doublets and the probability of getting
clicks along them is 1/2. Vertices 1,5,9,B,F,J share a triplet and two doublets, each, what yields
the probability (1/2 + 1/2 + 1/3)/3 = 4/9. Altogether, the probabilities for 13 vertices sum up to
3 × 1/3 + 4 × 1/2 + 6 × 4/9 = 17/3. This sum a quantum hypergraph index of an MMPH set and
we denote it as HIq. On the other hand, the set 13–16 allows at most four 1s. This is a classical upper
bound for getting classical detection clicks, i.e., the maximal number of 1s we can assign to vertices
of an MMPH non-binary set so as to satisfy the two conditions from Definition 2, i.e., a classical
hypergraph index which we denote as HIc. Hence, we obtain the inequality HIq[13-16] = 17/3 =

5.6̇ > HIc[13-16] = 4. Notice that even uncalibrated probabilities give us HIq−unc[13-16] = 13/3 =

4.3̇ > HIc[13-16] = 4. We obtain uncalibrated probabilities by measuring all vertices in all edges in
Figure 1b, meaning with gray dots included. With each vertex in every edge we have a probability of
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getting a click, that is, of assigning 1 to it, being equal to 1/3. If we now selected the 13 red-dot vertices,
we would get 13/3 = 4.3̇ which is also greater than HIc[13-16] = 4. Notice also that the maximal
number of 1s we can assign to vertices in the full scale 25–16 set is 11 and that gives us the inequality
HIq[25-16] = 25/3 = 8.3̇ < HIc[25-16] = 11 which is yet another proof that 25–16 is not a KS set.

It is interesting that three of four considered masters also satisfy the uncalibrated inequality
HIq−unc > HIc. Bub’s 33–36: HIq−unc[33-36] = 11 > HIc[33-36] = 10, Conway-Kochen’s 31–37:
HIq−unc[31-37] = 10.3̇ > HIc[31-37] = 8, and Peres’ 33–40 HIq−unc[33-40] = 11 > HIc[33-40] = 6.

Let us now present several smaller MMPH criticals from each class, consider their properties, and
calculate Yu-Oh-like expressions and values for some of them.

The smallest Bub’s critical subgraph with coordinatization we found is the pentagon 5–5
12,23,34,45,51 (with the gray dots excluded) shown in Figure 5a. The full scale hypergraph 10–5
162,273,384,495,5A1 is also shown Figure 5a (with the gray dots included).

As we proved in Reference [35], the smallest loop edges can form in a 3-dim space with vertices
endowed with a real coordinatization is a pentagon. We could not find (with Mathematica) a complex
coordinatization of any smaller MMPH, either. We conjecture that the filled pentagon MMPH 10–5
is the smallest MMPH with a coordinatization in the 3-dim Hilbert space. Its coordinatization is, for
example, 1 = {0,0,1}, 2 = {0,1,0}, 3 = {1,0,1}, 4 = {1,1,−1}, 5 = {1,−1,0}, 6 = {1,0,0}, 7 = {1,0,-1}, 8 = {−1,2,1},
9 = {1,1,2}, A = {1,1,0}. It, of course, includes the coordinatization of 5–5. As we can easily check,
the maximal number of 1s assignable to vertices of 5–5, satisfying the two aforementioned condition, is
2. Thus we have the following contextual inequality HIq[5-5] = 5× 1/2 = 2.5 > HIc[5-5] = 2. Yu-Oh’s
approach does not offer us such a contextual distinguisher since for L̂ and C of Equations (4)–(6) we
get L̂10 = 2.5I and C10 ≤ 2.5. Hence, 〈L̂10〉 = Max[C10]. MMPH non-binary subgraph 5–5 can actually
be generated in all four MMPH classes, but we have not shown them for Conway-Kochen and Peres’
classes in Figure 4. The pentagon 5–5 has a parity proof.

Subsequent small Bub’s critical subgraphs we obtained, are 9–9 and 10–9. The latter is shown in
Figure 5b. Its MMPH string can be easily read from the figure: 12,23,34,456,67,78,89,9A1,A5. Its
possible coordinatization is: 1 = {0,0,1}, 2 = {1,1,0}, 3 = {1,−1,1}, 4 = {0,1,1}, 5 = {2,−1,1}, 6 = {1,1,−1},
7 = {1,0,1}, 8 = {1,2,−1}, 9 = {2,−1,0}, A = {1,2,0}. Vector component ‘2’ is here because the set of 1-A
vertex coordinates is a subset of the 1-H set of coordinates of the filled set 17–9. As for the contextuality
verification, we have HIq[10-9] = 6 × (1/2 + 1/3)/2 + 4 × 1/2 = 9/2 = 4.53̇ > HIc[10-9] = 4. On the
other hand, we have L̂10 = 5.5I and C10 ≤ 5.5. Hence, 〈L̂10〉 = Max[C10]. The set has a parity proof.

The first standard subgraph in the Bub’s class we found is 14-11 shown in Figure 5c.
Its coordinatization is 1 = {2,0,1}, 2 = {−1,−1,2}, 3 = {1,−1,0}, 4 = {1,1,1}, 5 = {2,−1,−1}, 6 = {0,1,−1},
7 = {2,1,1}, 8 = {−1,1,1}, 9 = {1,1,0}, A = {1,−1,2}, B = {2,0,-1}, C = {1,0,2}, D = {0,1,0}, E = {−1,0,2}.
HIq[14-11] = 4 × 1/3 + 10 × (1/2 + 1/3)/2 = 11/2 = 5.53̇ > HIc[14-11] = 5. The Yu-Oh approach
gives: L̂10 = 8.5I and C10 ≤ 8.75. Hence, 〈L̂14〉 < Max[C14]. The set is one of the few standard
subgraphs that have a parity proof. The only other Bub’s criticals with a parity proof we found are
14–13, 18–15, 24–19, and 28–23.

Another critical with L̂ = cI (c is a constant) we found is 14–13: 12,23,34,45,56,67,789,

9A,AB,BC,CD,DE1,E8. 〈L̂14〉 = 7.5 < Max[C14] = 7.75,
Yu-Oh’s 13–16 is from the Peres’ class but the only other critical with L̂ = cI we found in

Peres’ class is the subgraph 13–11 shown in Figure 4d: 12,234,56,678,89,9A,ABC,CD,D1,35,4B7.
〈L̂13〉 = 7.5 < Max[C13] = 7.75, The coordinatization is 1 = {1,1,

√
2}, 2 = {0,

√
2,−1}, 3 = {0,1,

√
2},

4 = {1,0,0}, 5 = {1,
√

2,−1}, 6 = {
√

2,−1,0}, 7 = {0,0,1}, 8 = {1,
√

2,0}, 9 = {
√

2,−1,1}, A = {1,0,−√
2}, B = {0,1,0},

C = {
√

2,0,1}, D = {1,1,−√
2}. The components ±√

2 come from the coordinatization of the filled set
20–11 which requires the components ±√

2, 3, that is, more than Peres’ master set itself. This is because
13–11 is a subgraph and not a standard subgraph of the master set. HIq[13-11] = 5.53̇ > HIc[13-11] = 5.
The critical 13–11 has a parity proof. We found no standard subgraph of Peres’ master with a parity
proof, though.
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In Figure 4b, only critical standard subgraphs obtained via automated generation are shown.
Hence, they are all subgraphs of Conway-Kochen’s master but we shall explain how one can generate
subgraphs from them.

Let us consider Conway-Kochen’s critical 13–10 shown in Figure 6a: 12,234,45,56,678,89,9A1,
ABC,3B7,CD5. Its coordinatization is: 1 = {1,1,0}, 2 = {−1,1,1}, 3 = {1,0,1}, 4 = {1,2,−1}, 5 = {0,1,2},
6 = {1,−2,1}, 7 = {1,0,−1}, 8 = {1,1,1}, 9 = {1,−1,0}, A = {0,0,1}, B = {0,1,0}, C = {1,0,0}, D = {0,2,−1}., after
taking into account the filled 17–10 set. Similarly to Yu-Oh’s set, the 13–10 set exhibits both contextual
indices: HIq[13-10] = 4.94̇ > HIc[13-10] = 4 and HIq−unc[13-10] = 13/3 = 4.3̇ > HIc[13-10] = 4.
If we take out the vertex D (the gray dot in Figure 6a) the resulting subgraph 12–10 is critical too,
which also shows that vertex-criticality is not consistent. Unlike Yu-Oh’s set, neither 13–10 nor 12–10
have L̂ = cI satisfied. L̂13 is not diagonal and L̂12 is diagonal but it is not a multiple of the unit matrix.
The set 12–10 does not exhibit both contextual distinguishers: HIq[12-10] = 4.754̇ > HIc[12-10] = 4
but HIq−unc[12-10] = 12/3 = 4 = HIc[12-10] = 4. It is, of course, due to the lower number of vertices,
since the geometrical structure of the MMPHs, yielding the classical index 4, remains the same.

We find similar features within Kochen-Specker’s MMPH class. Let us take two MMPH
criticals from the middle of the distribution shown in Figure 4d. 32–25a: 45,5P7,76,6Q9,98,8V2,
2UI,IHA,AB,BC,CG,GDK,KLJ,JYF,F3,3E,EWN,NMO,OR4,123,DE,STL,UTC,XMF,ZHG. and 35–25b: 12,
2TJ,JK,KQM,ML,LDF,FG,GZ3,34,4U6,65,5X7,78,8W9,9A,AV1,BC,DE,HI,NO,PO,RPI,SNH,YEC,OLB.

Their coordinatization is too long to be given here. Neither of them nor any other standard subgraph
in the Kochen-Specker’s class we obtained in Figure 4d has a parity proof.

Their different geometrical structure yield different classical hypergraph indices: HIc[35-25a] = 11
and HIc[35-25b] = 12. However, the number of vertices and therefore the quantum uncalibrated
hypergraph indices of both MMPHs are the same: HIq−unc[35-25] = 35/3 = 11.6̇. That means that
35–25a exhibits contextuality even for uncalibrated measurement outcomes, while 35–25a does not.
Their calibrated indices are: HIq[35-25a] = 12.4̇ > HIc[35-25a] = 11 and HIq[35-25b] = 13.75 >

HIc[35-25b] = 12. Pentagons in 35–25b in Figure 6c are subgraphs of Kochen-Specker’s master unlike
the pentagon 5–5 (without gray dots) in Figure 5, which is a subgraph. If we removed all gray dots,
the resulting set 25–25 will not be critical any more, but if we leave S and R in the red pentagon, the
resulting 27–25 set will be critical. This cannot be achieved with the green pentagon—leaving Y as the
only gray dot in the 26–25 set will not make it critical. L̂ of the double pentagon is not diagonal.

In Appendix A we give chosen MMPH non-binary critical sets which are standard subgraphs of
the four MMPH master sets.

3. Discussion

In the last half a century, a vast number of constructive proofs of quantum contextuality were
obtained in even dimensional Hilbert spaces, but only a very few in odd dimensional ones. In particular,
in the 3-dim space—Bub, Conway-Kochen, Peres, and Kochen-Specker’s KS sets, Yu-Oh contextual set
and Klyachko-Can-Binicioğlu-Shumovsky’s pentagram/pentagon state-dependent set; in total, 6 sets.

In this paper, we present n-dim hypergraph contextuality which consists of generating sets
which preclude binary assignments of values 0 and 1 to vertices of a hypergraph, such that 1 is
assigned to only one of the vertices in each edge of the hypergraph, where an edge can contain less
than n mutually orthogonal vertices. Such a set which we call an n-dim MMPH non-binary set, is
defined by Definition 2. We stay with n = 3, that is, we deal with qutrits only, although the method
can be extrapolated to any dimension. The method serves us to distinguish classical models with
predetermined binary values, which can be assigned to measurement outcomes of classical observables
underlying classical computation, from quantum models that do not allow for such values and that
underlie quantum computation.

Let us make use of a graphical representation of an n-dim MMPH to describe the method. Vertices
within an MMP hypergraph are drawn as dots and edges containing mutually orthogonal vertices
are drawn with the help of straight or curved lines connecting these “orthogonal dots” as shown in
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Figures 1–3, 5 and 6. There can be a different number of vertices/dots in edges. Our program then
verifies whether a chosen MMPH k-l violates or obeys the 0,1 assignment rules from Definition 2.
Edges in MMPH k-l might contain 3 or 2 vertices. We then consider a filled MMPH k′-l in which
we add a vertex to each edge which contains only 2 vertices and try to find a coordinatization for it.
If successful, we make a one-to-one correspondence between vertices and vectors in the n-dim Hilbert
space, that is, for the MMPH k′-l set. The MMPH k-l set inherits the coordinatization from from the
MMPH k′-l set. If we implemented the MMPH k′-l, each edge would be a gate with n outcomes and
the probability of detecting an outcome would be 1/n.

Now, our approach consists of discarding the outcomes corresponding to chosen vertices which
share (are contained in) only one edge from chosen edges and considering outcomes only of the
remaining vertices. In the 3-dim Hilbert space, that means that some of the edges/gates should be
taken as doublets and the others as triplets. Our programs can handle such MMPHs because they are
written for edges of mixed sizes. Measurements on MMPH non-binary sets might then be carried for
triplets in a standard manner, that is, with the probability of 1/3 of obtaining a click (value 1) at each
of the three ports, at a gate corresponding to an edge/triple and via a calibrated detection at out-ports
of a gate representing a doublet with the probability of 1/2. For vertices that share triplet and doublet
edges, the probability would be equal to 1/p, where 1/3 ≤ p ≤ 1/2. Calibration consists of sending
three input particles to a doublet gate for each two sent to a triplet gate, that is, the ratio of doublet to
triplet inputs should be 3/2.

To obtain a measure of quantum contextuality of an MMPH non-binary set we define hypergraph
indices. A classical hypergraph index HIc is the maximal number of 1s we can assign to vertices within
edges of an MMPH so as to obey the 0,1 assignment rules from Definition 2. A (calibrated) quantum
hypergraph index HIq is the sum of calibrated probabilities for all k vertices of the aforementioned k-l
MMPH. An uncalibrated quantum hypergraph index HIq−unc is the sum of 1/3-probabilities for all k′

vertices of the aforementioned k′-l MMPH. A basic measure of quantum contextuality of an MMPH
non-binary set is the inequality HIc < HIq. If it were satisfied, the MMPH would be contextual. If
not, it would not. A stronger measure of quantum contextuality of an MMPH non-binary set is the
inequality HIc < HIq−unc. Some of the considered MMPHs do satisfy both inequalities. For instance,
Yu-Oh’s set 13–16, MMPH 13–10 shown in Figure 6a, MMPH 35–25a shown in Figure 6b and the
MMPH master sets considered in Section 2.4. Other considered critical non-binary MMPHs satisfy
only calibrated inequalities but that is sufficient for experimental verification of contextuality and
possible applications.

We get thousands of MMPH non-binary sets as follows. For the time being, we start with the
previously found KS sets—Bub 49–36, Conway-Kochen 51–37, Peres 57–40, and Kochen-Specker’s
192–118 which are all critical, that is, if we took out any edge from any of them they would stop being
KS ([46], Definition 3). However, when we strip all the vertices contained in only one edge we obtain
Bub 33–36, Conway-Kochen 32–37, Peres 33–40 and Kochen-Specker’s 117–118 master sets, none of
which are critical. This enables us to generate thousands of new smaller MMPH critical sets from them
via our programs. Their distributions are shown in Figure 4. Chosen MMPHs critical sets are given
in Section 2.4 and Appendix A and shown in Figures 5 and 6. They can be easily implemented, in
particular the smaller ones.

The large number of obtained sets can also be used for an automated testing of Yu-Oh’s operators
and inequalities along the examples we gave in Sections 2.2 and 2.4. For that we are developing new
algorithms and programs. This is a work in progress.

Next, one can make use of the obtained MMPHs to formulate new entropic tests of
contextualities following Kurzyński, Ramanathan and Kaszlikowski [54]. In 2012, they only had
one pentagram/pentagon set [53] at their disposal. The pentagon 5–5 set is the simplest MMPH set we
obtained (see Figure 4) and many other generated small sets can now serve the purpose.

Also, the methods for evaluating conditions for being a SIC set developed in References [51,52]
and the methods of Cabello-Severini-Winter graph-theoretic approach to quantum correlations [72]
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require samples of hypergraphs and that is what our method offers—a constructive probabilistic
generation of arbitrary MMPH sets when coupled with automated vector generation algorithms we
developed in Reference [47].

Finally, we stress that the MMPH constructive generation of non-binary quantum sets from
operationally chosen vectors out of all possible ones within such sets contribute to our understanding
of the physical origin of quantum correlations since they represent a new MMPH scenario for getting
“quantum correlations from simple assumptions” presented in Reference [73].

4. Methods

The methods we use to handle quantum contextual sets rely on algorithms and programs within
the MMP language—VECFIND, STATES01, MMPSTRIP, MMPSHUFFLE, SUBGRAPH, LOOP and
SHORTD developed in References [6,35,38,39,57,58,74,75]. They are freely available at https://www.
irb.hr/users/mpavicic/programs/. MMPHs can be visualized via hypergraph figures consisting
of dots and lines and represented as a string of ASCII characters. The latter representation enables
the processing of billions of MMPHs simultaneously via supercomputers and clusters. For the latter
elaboration, we developed other dynamical programs specifically to handle and parallelize jobs with
arbitrary number of MMP hypergraph vertices and edges.
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Abbreviations

The following abbreviations are used in this manuscript:

KS Kochen-Specker
MMPH McKay-Megill-Pavičić hypergraph

Appendix A. ASCII Strings from MMPH Non-Binary Classes

Below we give several chosen standard subgraphs from the four classes of critical MMPH sets
shown in Figure 4. The first number in each line is m of the biggest m-gon loop for the MMPH in the
line. The second and third numbers are the numbers of the MMPH vertices and edges, respectively.
Three commas “„,” denote the end of a loop and * behind an ASCII symbol means that the symbol
belongs to the loop.

Appendix A.1. Bub’s Class

10-v18-e13 213,36,6GC,CDB,BH8,89,9I4,45,5EA,A2„,73*,9*2*,FD*7.

11-v21-e16 213,3A,AHG,GFE,E57,76,6KL,LD8,89,9IC,C2„,45*,B3*,D*2*,JF*B,H*8*4.

14-v24-e18 12,2L3,34,4KG,GHI,I85,56,6B,BC,CA,A9,9FE,ED,DO1„,78*,JH*F*,MN7,ND*C*.

13-v27-e20 213,3L4,45,5B,BC,CMN,NOE,E6F,FD9,9A,AJI,IHG,GP2„,6*7,87,D*3*,KL*H*,

QRO*,O*82*,RD*B*.

17-v30-e23 543,3PC,CB,BA,AON,NJ6,67,7KL,L2S,SRI,IH,HTM,MGD,DE,E9,98,8Q5„,12*3*,

FG*,J*5*,P*O*M*,US*Q*,N*F2*.

17-v33-e26 45,5CL,L7E,EF,FG,GBH,HIJ,JN,NRS,SWO,O6P,PMQ,QA2,2V8,89,9TU,U34„,12*3*,

6*7*,A*B*,C*D,KL*H*,G*D,M*J*,O*H*3*,XU*R*.
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Appendix A.2. Conway-Kochen’s Class

8-v15-e11 12,2E7,78,8D3,34,4C6,65,5F1„,9AB,B7*6*,A3*1*.

12-v22-e16 67,7GF,FB,B5D,D3,3ME,EC,CK8,89,9HI,I2A,AL6„,12*3*,45*,A*B*C*,J42*.

14-v26-e19 312,2F,FMN,NL5,596,67,7OJ,JIE,EB,BA,APD,DC,CQH,H3„,45*3*,89*,G2*,

KL*G,I*H*8.

15-v29-e22 12,2RH,HQ3,34,47M,MT9,9A,AJE,ED,DIF,FG,GC,CB,B5N,NS1„,5*6,7*8,H*I*,

KL8,LD*6,OPG*,PN*M*.

17-v30-e24 12,2TD,DH,HRO,O87,76,65,5P4,43,3SJ,JK,K9L,LIM,MQN,NCE,EB,BU1„,8*9*,

AB*,C*D*,FG,I*G,P*GA,Q*J*F.

Appendix A.3. Peres’ Class

10-v15-e12 12,2A,AC8,87,7D5,56,6B9,94,43,3E1„,E*C*B*,FE*D*.

14-v19-e16 12,23,34,4E,EGA,A9,9HB,BC,CFD,D8,87,7I6,65,51„,I*G*F*,JI*H*.

14-v27-e19 12,2QD,DE,E3I,IJK,KM5,56,6L8,87,7PG,GHF,FAB,BC,CR1„,3*4,9A*,E*C*,NJ*9,

OH*4.

20-v35-e27 213,3G,GLM,MNE,EF,FVX,XYU,UP5,5I,IT7,78,89,9S6,6J,JZQ,QHA,AB,BKD,DC,

CR2„,45*6*,H*I*,F*3*,OP*K*,V*Q*L*,T*S*2*,WX*R*.

22-v38-e30 345,5SU,UTH,HI,IR2,2cZ,ZFa,aJW,WVX,XQG,G7,76,6LC,CB,BMD,DE,EYA,A9,98,

8ON,NbK,KP3„,12*3*,F*G*,J*5*,J*I*,K*E*,P*Q*L*,R*S*M*,a*Y*O*.

Appendix A.4. Kochen-Specker’ Class

7-v12-e9 12,23,34,456,6A9,987,7C1„,5*1*,B8*3*.

12-v19-e14 12,2IA,AB,BC8,87,7E5,56,6D4,43,3FG,G9H,HJ1„,9*A*,H*D*C*.

16-v30-e21 312,2E,EMN,NL8,8RC,CD,D7,76,6GH,HP9,9SA,AB,BQ4,45,5IJ,JO3„,8*9*3*,F2*,

KL*F,TO*B*,UP*D*.

18-v38-e27 34,4VD,DE,ETG,GF,FcO,ON,NHJ,JK,KSC,CB,BZ5,56,6Y9,9A,AX7,78,8W3„,12,

H*I,LM,PQ,RQ,UMI,aR2,bP1,QN*L.

18-v46-e33 56,6a8,87,7e9,9A,AcC,CB,BdD,DE,EbG,GF,FiP,PQ,QYX,XT,THJ,JK,Kh5„,12,

34,H*I,LM,NO,RS,T*US,VU,WU,ZRO,fI4,gM3,jW2,kV1,T*NL.

12-v54-e39 78,8oV,VW,WgX,XY,YZ,ZfU,UT,TpA,A9,9Ps,sN7„,12,34,56,BC,DE,FG,HI,JK,

LM,N*O,P*Q,RS,ab,cb,dcS,eaR,hK2,iI1,jM6,kOG,lQ5,mC4,nE3,qY*D,rbB,s*LH,s*JF.
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Abstract: Entropic Dynamics (ED) is a framework in which Quantum Mechanics is derived as an
application of entropic methods of inference. In ED the dynamics of the probability distribution
is driven by entropy subject to constraints that are codified into a quantity later identified as the
phase of the wave function. The central challenge is to specify how those constraints are themselves
updated. In this paper we review and extend the ED framework in several directions. A new
version of ED is introduced in which particles follow smooth differentiable Brownian trajectories
(as opposed to non-differentiable Brownian paths). To construct ED we make use of the fact that
the space of probabilities and phases has a natural symplectic structure (i.e., it is a phase space with
Hamiltonian flows and Poisson brackets). Then, using an argument based on information geometry,
a metric structure is introduced. It is shown that the ED that preserves the symplectic and metric
structures—which is a Hamilton-Killing flow in phase space—is the linear Schrödinger equation.
These developments allow us to discuss why wave functions are complex and the connections
between the superposition principle, the single-valuedness of wave functions, and the quantization
of electric charges. Finally, it is observed that Hilbert spaces are not necessary ingredients in
this construction. They are a clever but merely optional trick that turns out to be convenient for
practical calculations.

Keywords: quantum mechanics; entropic dynamics; symplectic geometry; information geometry

1. Introduction

Quantum mechanics has been commonly regarded as a generalization of classical mechanics with
an added element of indeterminism. The standard quantization recipe starts with a description in
terms of the system’s classical coordinates and momenta {q, p} and then proceeds by applying a series
of more or less ad hoc rules that replace the classical {q, p} by self-adjoint linear operators {q̂, p̂} acting
on some complex Hilbert space [1]. The Hilbert space structure is given priority while the probabilistic
structure is relegated to the less fundamental status of providing phenomenological rules for how to
handle those mysterious physical processes called measurements. The result is a dichotomy between
two separate and irreconcilable modes of wave function evolution: one is the linear and deterministic
Schrödinger evolution and the other is the discontinuous and stochastic wave function collapse [2,3].
To put it bluntly, the dynamical and the probabilistic aspects of quantum theory are incompatible
with each other. And furthermore, the dichotomy spreads to the interpretation of the quantum state
itself [4–8]. It obscures the issue of whether the wave function describes the ontic state of the system or
whether it describes an epistemic state about the system [9].

In the Entropic Dynamics (ED) approach these problems are resolved by placing the probabilistic
aspects of QM at the forefront while the Hilbert space structure is relegated to the secondary role of a
convenient calculational tool [10–12]. ED tackles QM as an example of entropic inference, a framework
designed to handle insufficient information [13–18]. The starting point is to specify the subject matter,
the ontology—are we talking about the positions of particles or the configurations of fields? Once this

Entropy 2019, 21, 943; doi:10.3390/e21100943 www.mdpi.com/journal/entropy25
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decision is made our inferences about these variables are driven by entropy subject to information
expressed by constraints. The main effort is directed towards choosing those constraints since it is
through them that the “physics” is introduced.

From the ED perspective many of the questions that seemed so urgent in other approaches are
successfully evaded. For example, when quantum theory is regarded as an extension of classical
mechanics any deviations from causality demand an explanation. In contrast, in the entropic approach
uncertainty and probabilities are the norm. Indeterminism is just the inevitable consequence of
incomplete information and no deeper explanation is needed. Instead, it is the certainty and
determinism of the classical limit that require explanations. Another example of a question that
has consumed an enormous effort is the problem of deriving the Born rule from a fundamental Hilbert
space structure. In the ED approach this question does not arise and the burden of explanation runs in
the opposite direction: how do objects such as wave functions involving complex numbers emerge
in a purely probabilistic framework? Yet a third example concerns the interpretation of the wave
function itself. ED offers an uncompromising and radically epistemic view of the wave function Ψ.
This turns out to be extremely restrictive: in a fully epistemic interpretation there is no logical room
for “quantum” probabilities obeying alternative rules of inference. Not only is the probability |Ψ|2
interpreted as a state of knowledge but, in addition, the epistemic significance of the phase of the
wave function must be clarified and made explicit. Furthermore, it is also required that all updates of
Ψ, which include both its unitary time evolution and the wave function collapse during measurement,
must be obtained as a consequence of entropic and Bayesian updating rules [19–24].

There is a large literature on reconstructions of quantum mechanics (see e.g., [25–31] and
references therein) and there are several approaches based on information theory (see e.g., [32–46]).
What distinguishes ED is a strict adherence to Bayesian and entropic methods and a central concern
with the nature of time. The issue here is that any discussion of dynamics must inevitably include a
notion of time but the rules for inference do not mention time—they are totally atemporal. One can
make inferences about the past just as well as about the present or the future. This means that
any model of dynamics based on inference must also include assumptions about time, and those
assumptions must be explicitly stated. In ED “entropic” time is a book-keeping device designed to keep
track of changes. The construction of entropic time involves several ingredients. One must introduce
the notion of an ‘instant’; one must show that these instants are suitably ordered; and finally, one must
define a convenient measure of the duration or interval between the successive instants. It turns out
that an arrow of time is generated automatically and entropic time is intrinsically directional.

This paper contains a review of previous work on ED and extends the formalism in several
new directions. In [10–12] the Schrödinger equation was derived as a peculiar non-dissipative diffusion
in which the particles perform an irregular Brownian motion that resembles the Einstein–Smoluchowski
(ES) process [47]. The trajectories are continuous and non-differentiable so their velocity is undefined.
Since the expected length of the path between any two points is infinite this would be a very peculiar
motion indeed. Here we exhibit a new form of ED in which the Brownian motion resembles the much
smoother Oernstein–Uhlenbeck (OU) process [47]. The trajectories have finite expected lengths; they
are continuous and differentiable. On the other hand, although the velocities are well defined and
continuous, they are not differentiable [25,48].

We had also shown that the irregular Brownian motion at the “microscopic” or sub-quantum level
was not unique. One can enhance or suppress the fluctuations while still obtaining the same emergent
Schrödinger behavior at the “macroscopic” or quantum level [49,50]. A similar phenomenon is also
found in the smoother ED developed here. In both the ES and the OU cases the special limiting case in
which fluctuations are totally suppressed turns out to be of particular interest because the particles
evolve deterministically along the smooth lines of probability flow. This means that ED includes the
Bohmian or causal form of quantum mechanics [51–53] as a limiting case.

ED consists of the entropic updating of probabilities through information supplied by constraints.
The main concern is how these constraints are chosen including, in particular, how the constraints
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themselves are updated. In [54] an effective criterion was found by adapting Nelson’s seminal insight
that QM is a non-dissipative diffusion [55]. This amounts to updating constraints in such a way that
a certain energy functional is conserved. Unfortunately, this criterion, while fully satisfactory in a
non-relativistic setting, fails in curved space-times where the concept of a globally conserved energy
may not exist.

The second contribution in this paper is a geometric framework for updating constraints that
does not rely on the notion of a conserved energy. Our framework draws inspiration from two sources:
one is the fact that QM has a rich geometrical structure [56–64]. The authors of [56–62] faced the task
of unveiling geometric structures that, although well hidden, are already present in the standard
QM framework. Our goal runs in the opposite direction: we impose these natural geometric structures
as the foundation upon which we reconstruct the QM formalism.

The other source of inspiration is the connection between QM and information
geometry [17,65–68] that was originally suggested in the work of Wootters [32]. This connection
has been explored in the context of quantum statistical inference [69], in the operational description of
quantum measurements [37,39], and in the reconstruction of QM [43,44]. Our previous presentation
in [12] has been considerably streamlined by recognizing the central importance of symmetry principles
when implemented in conjunction with concepts of information geometry.

In ED, the degrees of freedom are the probability densities ρ(x) and certain “phase” fields Φ(x)
that represent the constraints that control the flow of probabilities. Thus, we are concerned not just
with the “configuration” space of probabilities {ρ} but with the larger space of probabilities and phases
{ρ, Φ}. The latter has a natural symplectic structure, i.e., {ρ, Φ} is a phase space. Imposing a dynamics
that preserves this symplectic structure leads to Hamiltonian flows, Poisson brackets, and so much
of the canonical formalism associated with mechanics. To single out the particular Hamiltonian flow
that reproduces QM we extend the information geometry of the configuration space {ρ} to the full
phase space. This is achieved by imposing a symmetry that is natural in a probabilistic setting: we
extend the well-known spherically symmetric information geometry of the space {ρ} to the full phase
space {ρ, Φ}. This construction yields a derivation of the Fubini–Study metric. A welcome by-product
is that the joint presence of a symplectic and a metric structure leads to a complex structure. This is the
reason QM involves complex numbers.

The dynamics that preserves the metric structure is a Killing flow. We propose that the
desired geometric criterion for updating constraints is a dynamics that preserves both the symplectic
and the metric structures. Thus, in the final step of our reconstruction of QM we show that the
Hamiltonians that generate Hamiltonian-Killing flows lead to an entropic dynamics described by the
linear Schrödinger equation.

We conclude with some comments exploring various aspects of the ED formalism. We show that
despite the arrow of entropic time, the resulting ED is symmetric under time reversal. We discuss the
connections between linearity, the superposition principle, the single-valuedness of wave functions,
and the quantization of charge. We also discuss the classical limit and the Bohmian limit in which
fluctuations are suppressed and particles follow deterministic trajectories. Finally, we discuss the
introduction of Hilbert spaces. We argue that while strictly unnecessary in principle, Hilbert spaces
are extremely convenient for calculational purposes.

This paper focuses on the derivation of the Schrödinger equation but the ED approach has been
applied to a variety of other topics in quantum theory. These include: the quantum measurement
problem [70,71]; momentum and uncertainty relations [50,72] (see also [73–76]); the Bohmian
limit [49,50] and the classical limit [77]; extensions to curved spaces [78]; to relativistic fields [79,80];
and the ED of spin [81].

2. The ED of Short Steps

We deal with N particles living in a flat 3-dimensional space X with metric δab. For N particles
the configuration space is XN = X × . . . × X. We assume that the particles have definite positions xa

n
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and it is their unknown values that we wish to infer [82]. (The index n = 1, . . . , N denotes the particle
and a = 1, 2, 3 the spatial coordinates.)

In ED positions play a very special role: they define the ontic state of the system. This is in
contradiction with the standard Copenhagen notion that quantum particles acquire definite positions
only as a result of a measurement. For example, in the ED description of the double slit experiment the
particle definitely goes through one slit or the other but one might not know which. The wave function,
on the other hand, is a purely epistemic notion and, as it turns out, all other quantities, such as energy
or momentum, are epistemic too. They do not reflect properties of the particles but properties of the
wave function [70–72].

Having identified the microstates x ∈ XN we tackle the dynamics. The main dynamical
assumption is that the particles follow trajectories that are continuous. This represents an enormous
simplification because it implies that a generic motion can be analyzed as the accumulation of many
infinitesimally short steps. Therefore, the first task is to find the transition probability P(x′|x) for a
short step from an initial x to an unknown neighboring x′ and only later we will determine how such
short steps accumulate to yield a finite displacement.

The probability P(x′|x) is found by maximizing the entropy

S [P, Q] = −
∫

dx′ P(x′|x) log
P(x′|x)
Q(x′|x) (1)

relative to the joint prior Q(x′|x) subject to constraints given below. (In multidimensional integrals
such as (1) the notation dx′ stands for d3N x′.)

The prior. The choice of prior Q(x′|x) must reflect the state of knowledge that is common to all
short steps. (It is through the constraints that the information that is specific to any particular short step
will be supplied.) We adopt a prior that carries the information that the particles take infinitesimally
short steps and reflects the translational and rotational invariance of the Euclidean space X but is
otherwise uninformative. In particular, the prior expresses total ignorance about any correlations.
Such a prior can itself be derived from the principle of maximum entropy. Indeed, maximize

S[Q] = −
∫

dx′ Q(x′|x) log
Q(x′|x)

μ(x′) , (2)

relative to the uniform measure μ(x′) [83], subject to normalization, and subject to the N
independent constraints

〈δabΔxa
nΔxb

n〉 = κn , (n = 1 . . . N) , (3)

where κn are small constants and Δxa
n = x′an − xa

n. The result is a product of Gaussians,

Q(x′|x) ∝ exp−1
2 ∑

n
αnδabΔxa

nΔxb
n , (4)

where, to reflect translational invariance and possibly non-identical particles, the Lagrange multipliers
αn are independent of x but may depend on the index n. Eventually we will let αn → ∞ to implement
infinitesimally short steps. Next we specify the constraints that are specific to each particular short step.

The drift potential constraint. In Newtonian dynamics one does not need to explain why a
particle perseveres in its motion in a straight line; what demands an explanation—that is, a force—is
why the particle deviates from inertial motion. In ED one does not require an explanation for
why the particles move; what requires an explanation is how the motion can be both directional
and highly correlated. This physical information is introduced through one constraint that acts
simultaneously on all particles. The constraint involves a function φ(x) = φ(x1 . . . xN) on configuration
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space XN that we call the “drift” potential. We impose that the displacements Δxa
n are such that the

expected change of the drift potential 〈Δφ〉 is constrained to be

〈Δφ〉 =
N

∑
n=1

〈Δxa
n〉

∂φ

∂xa
n
= κ′(x) , (5)

where κ′(x) is another small but for now unspecified function. As we shall later see this information is
already sufficient to construct an interesting ED. However, to reproduce the particular dynamics that
describes quantum systems we must further require that the potential φ(x) be a multi-valued function
with the topological properties of an angle—φ and φ + 2π represent the same angle [84].

The physical origin of the drift potential φ(x) is at this point unknown so how can one justify its
introduction? The idea is that identifying the relevant constraints can represent significant progress
even when their physical origin remains unexplained. Indeed, with the single assumption of a
constraint involving a drift potential we will explain and coordinate several features of quantum
mechanics such as entanglement, the existence of complex and symplectic structures, the actual form
of the Hamiltonian, and the linearity of the Schrödinger equation.

The gauge constraints. The single constraint (5) already leads to a rich entropic dynamics but
by imposing additional constraints we can construct even more realistic models. To incorporate the
effect of an external electromagnetic field we impose that for each particle n the expected displacement
〈Δxa

n〉 will satisfy
〈Δxa

n〉Aa(xn) = κ′′n for n = 1 . . . N , (6)

where the electromagnetic vector potential Aa(xn) is a field that lives in the 3-dimensional physical
space (xn ∈ X). The strength of the coupling is given by the values of the κ′′n . These quantities could be
specified directly but, as is often the case in entropic inference, it is much more convenient to specify
them indirectly in terms of the corresponding Lagrange multipliers.

The transition probability. An important feature of the ED model can already be discerned.
The central object of the discussion so far, the transition probability P(x′|x), codifies information
supplied through the prior and the constraints which makes no reference to anything earlier than the
initial position x. Therefore ED must take the form of a Markov process.

The distribution P(x′|x) that maximizes the entropy S [P, Q] in (1) relative to (4) and subject to (5),
and (6), and normalization is

P(x′|x) = 1
Z

exp−∑
n

(αn

2
δabΔxa

nΔxb
n − α′ [∂naφ − βn Aa(xn)]Δxa

n

)
(7)

where α′ and βn are Lagrange multipliers. This is conveniently written as

P(x′|x) = 1
Z

exp−∑
n

αn

2
δab (Δxa

n − Δx̄a
n)
(

Δxb
n − Δx̄b

n

)
, (8)

with a suitably modified normalization and

Δx̄a
n =

α′

αn
[∂naφ − βn Aa(xn)] = 〈Δxa

n〉 . (9)

A generic displacement is expressed as a drift plus a fluctuation,

Δxa
n = 〈Δxa

n〉+ Δwa
n , (10)

where
〈Δwa

n〉 = 0 , and 〈Δwa
nΔwb

n′ 〉 = 1
αn

δnn′δab , (11)
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The fact that the constraints (5) and (6) are not independent—both involve the same displacements
〈Δxa

n〉—has turned out to be significant. We can already see in (7) and (9) that it leads to a gauge
symmetry. As we shall later see the vector potential Aa will be interpreted as the corresponding gauge
connection field and the multipliers βn will be related to the electric charges through βn = qn/h̄c.

3. Entropic Time

The task of iterating the short steps described by the transition probability (8) to predict motion
over finite distances leads us to introduce a book-keeping parameter t, to be called time, in order to
keep track of the accumulation of short steps. The construction of time involves three ingredients:
(a) we must specify what we mean by an ‘instant’; (b) these instants must be ordered; and finally;
(c) one must specify the interval Δt between successive instants—one must define ‘duration’.

Since the foundation for any theory of time is the theory of change, i.e., the dynamics, the notion of
time constructed below will reflect the inferential nature of entropic dynamics. Such a construction we
will call “entropic” time [10]. Later we will return to the question of whether and how this “entropic”
time is related to the “physical” time that is measured by clocks.

3.1. Time as an Ordered Sequence of Instants

ED consists of a succession of short steps. Consider, for example, the ith step which takes the
system from x = xi−1 to x′ = xi. Integrating the joint probability, P(xi, xi−1), over xi−1 gives

P(xi) =
∫

dxi−1P(xi, xi−1) =
∫

dxi−1P(xi|xi−1)P(xi−1) . (12)

No physical assumptions were involved in deriving this equation; it follows directly from the laws of
probability. To establish the connection to time and dynamics we will make the physical assumption
that if P(xi−1) is interpreted as the probability of different values of xi−1 at one “instant” labelled t,
then we will interpret P(xi) as the probability of values of xi at the next “instant” labelled t′. More
explicitly, if we write P(xi−1) = ρt(x) and P(xi) = ρt′(x′) then we have

ρt′(x′) =
∫

dx P(x′|x)ρt(x) . (13)

This equation defines the notion of “instant”: if the distribution ρt(x) refers to one instant t, then the
distribution ρt′(x′) generated by P(x′|x) defines what we mean by the “next” instant t′. Iterating this
process defines the dynamics.

This construction of time is intimately related to information and inference. An instant is an
informational state that is complete in the sense that it is specified by the information—codified
into the distributions ρt(x) and P(x′|x)—that is sufficient for predicting the next instant. Thus, the
present is defined through a sufficient amount of information such that given the present, the future is
independent of the past.

In the ED framework the notions of instant and of simultaneity are intimately related to the
distribution ρt(x). To see how this comes about consider a single particle at the point �x = (x1, x2, x3).
It is implicit in the notation that x1, x2, and x3 occur simultaneously. When we describe a system
of N particles by a single point x = (�x1,�x2, . . .�xN) in 3N-dimensional configuration space it is also
implicitly assumed that all the 3N coordinate values refer to the same instant; they are simultaneous.
The very idea of a point in configuration space assumes simultaneity. And furthermore, whether we
deal with one particle or many, a distribution such as ρt(x) is meant to describe our uncertainty about
the possible configurations x of the system at the given instant. Thus, a probability distribution ρt(x)
provides a criterion of simultaneity [85].
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3.2. The Arrow of Entropic Time

The notion of time constructed according to Equation (13) is intrinsically directional. There is an
absolute sense in which ρt(x) is prior and ρt′(x′) is posterior. Indeed, the same rules of probability
that led us to Equation (13) can also lead us to the time-reversed evolution,

ρt(x) =
∫

dx′ P(x|x′)ρt′(x′) . (14)

Note, however, that there is a temporal asymmetry: while the distribution P(x′|x), Equation (7), is a
Gaussian derived using the maximum entropy method, its time-reversed version P(x|x′) is related to
P(x′|x) by Bayes’ theorem,

P(x|x′) = ρt(x)
ρt′(x′)P(x′|x) , (15)

which in general will not be Gaussian.
The puzzle of the arrow of time (see e.g., [86,87]) arises from the difficulty in deriving a temporal

asymmetry from underlying laws of nature that are symmetric. The ED approach offers a fresh
perspective on this topic because it does not assume any underlying laws of nature—whether they be
symmetric or not. The asymmetry is the inevitable consequence of constructing time in a dynamics
driven by entropic inference.

From the ED point of view the challenge does not consist of explaining the arrow of time—entropic
time itself only flows forward—but rather in explaining how it comes about that despite the arrow of
time some laws of physics, such as the Schrödinger equation, turn out to be time reversible. We will
revisit this topic in Section 9.

3.3. Duration and the Sub-Quantum Motion

We have argued that the concept of time is intimately connected to the associated dynamics but at
this point neither the transition probability P(x′|x) that specifies the dynamics nor the corresponding
entropic time have been fully defined yet. It remains to specify how the multipliers αn and α′ are
related to the interval Δt between successive instants.

The basic criterion for this choice is convenience: duration is defined so that motion looks simple.
The description of motion is simplest when it reflects the symmetry of translations in space and
time. In a flat space-time this leads to an entropic time that resembles Newtonian time in that it
flows “equably everywhere and everywhen.” Referring to Equations (9) and (11) we choose α′ and
αn to be independent of x and t, and we choose the ratio α′/αn ∝ Δt so that there is a well-defined
drift velocity. For future convenience the proportionality constants will be expressed in terms of some
particle-specific constants mn,

α′

αn
=

h̄
mn

Δt , (16)

where h̄ is an overall constant that fixes the units of the mns relative to the units of time. As we shall
later see, the constants mn will eventually be identified with the particle masses while the constant
h̄ will be identified as Planck’s constant. Having specified the ratio α′/αn it remains to specify αn

(or α′). It turns out that the choice is not unique. There is a variety of motions at the sub-quantum
“microscopic” level that lead to the same quantum mechanics at the “macroscopic” level.

In previous work [10–12] we chose αn proportional to 1/Δt. This led to an ED in which the
particles follow the highly irregular non-differentiable Brownian trajectories characteristic of an
Einstein–Smoluchowski process. The first new contribution of this paper is to explore the consequences
of choosing αn ∝ 1/Δt3,

αn =
mn

ηΔt3 , (17)

where a new constant η is introduced.
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It is convenient to introduce a notation tailored to configuration space. Let xA = xa
n, ∂A = ∂/∂xa

n,
and δAB = δnn′δab, where the upper case indices A, B, . . . label both the particles n, n′, . . . and their
coordinates a, b, . . .. Then the transition probability (8) becomes

P(x′|x) = 1
Z

exp
[
− 1

2ηΔt
mAB

(
ΔxA

Δt
− vA

)(
ΔxB

Δt
− vB

)]
, (18)

where we used (9) to define the drift velocity,

vA =
〈ΔxA〉

Δt
= mAB [∂BΦ − ĀB] . (19)

The drift potential is rescaled into a new variable

Φ = h̄φ (20)

which will be called the phase. We also introduced the “mass” tensor and its inverse,

mAB = mnδAB = mnδnn′δab and mAB =
1

mn
δAB , (21)

and ĀA is a field in configuration space with components,

ĀA(x) = h̄βn Aa(xn) , (22)

A generic displacement is then written as a drift plus a fluctuation,

ΔxA = vAΔt + ΔwA , (23)

and the fluctuations ΔwA are given by

〈ΔwA〉 = 0 and 〈ΔwAΔwB〉 = ηmABΔt3 , (24)

or 〈(
ΔxA

Δt
− vA

)(
ΔxB

Δt
− vB

)〉
= ηmABΔt. (25)

It is noteworthy that 〈ΔxA〉 ∼ O(Δt) and ΔwA ∼ O(Δt3/2). This means that for short steps the
fluctuations are negligible and the dynamics is dominated by the drift. The particles follow trajectories
that are indeterministic but differentiable. Since ΔwA ∼ O(Δt3/2) the limit

VA = lim
Δt→0

ΔxA

Δt
= vA (26)

is well defined. In words: the actual velocities of the particles coincide with the expected or
drift velocities. From Equation (19) we see that these velocities are continuous functions. The question
of whether the velocities themselves are differentiable or not is trickier.

Consider two successive displacements Δx = x′ − x followed by Δx′ = x′′ − x′. The velocities are

VA =
ΔxA

Δt
and V′A =

Δx′A

Δt
. (27)

The change in velocity is given by a Langevin equation,

ΔVA = 〈ΔVA〉x′′x′ + ΔUA , (28)
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where 〈·〉x′′x′ denotes taking the expectations over x′′ using P(x′′|x′), and then over x′ using P(x′|x),
and ΔUA is a fluctuation. It is straightforward to show that

〈ΔVA〉x′′x′ = (∂tvA + vB∂BvA)Δt , (29)

so that the expected acceleration is given by the convective derivative of the velocity field along itself,

lim
Δt→0

〈ΔVA〉
Δt

= (∂t + vB∂B)vA . (30)

One can also show that

〈ΔUA〉x′′x′ = 0 , and 〈ΔUAΔUB〉x′′x′ = 2ηmABΔt , (31)

which means that ΔU is a Wiener process and we deal with a Brownian motion of the
Oernstein–Uhlenbeck type.

We conclude this section with some general remarks.
On the nature of clocks. In Newtonian mechanics time is defined to simplify the dynamics.

The prototype of a clock is a free particle which moves equal distances in equal times. In ED time is
also defined to simplify the dynamics of free particles (for sufficiently short times all particles are free)
and the prototype of a clock is a free particle too: as we see in (23) the particle’s mean displacement
increases by equal amounts in equal times.

On the nature of mass. In standard quantum mechanics, “what is mass?” and “why quantum
fluctuations?” are two independent mysteries. In ED the mystery is somewhat alleviated: as we see in
Equation (25) mass and fluctuations are two sides of the same coin. Mass is an inverse measure of the
velocity fluctuations.

The information metric of configuration space. In addition to defining the dynamics the
transition probability Equation (18) serves to define the geometry of the N-particle configuration
space, XN . Since the physical single particle space X is described by the Euclidean metric δab we can
expect that the N-particle configuration space, XN = X × . . . × X, will also be flat, but for non-identical
particles a question might be raised about the relative scales or weights associated with each X factor.
Information geometry provides the answer.

The fact that to each point x ∈ XN there corresponds a probability distribution P(x′|x) means
that to the space XN we can associate a statistical manifold the geometry of which (up to an overall
scale factor) is uniquely determined by the information metric [17,65],

γAB =
∫

dx′ P(x′|x)∂ log P(x′|x)
∂xA

∂ log P(x′|x)
∂xB . (32)

Substituting Equations (18) into (32) yields

γAB =
1

ηΔt3 mAB . (33)

The divergence as Δt → 0 arises because the information metric measures statistical distinguishability.
As Δt → 0 the distributions P(x′|x) and P(x′|x + Δx) become more sharply peaked and increasingly
easier to distinguish so that γAB → ∞. Thus, up to a scale factor the metric of configuration space is
basically the mass tensor.

The practice of describing a many-particle system as a single point in an abstract configuration
space goes back to the work of H. Hertz in 1894 [88]. Historically the choice of the mass tensor as the
metric of configuration space has been regarded as being convenient but of no particular significance.
We can now see that the choice is not just a merely useful convention: up to an overall scale the metric
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follows uniquely from information geometry. Furthermore, it suggests the intriguing possibility of a
deeper connection between kinetic energy and information geometry.

Invariance under gauge transformations. The fact that constraints (5) and (6) are not
independent—they are both linear in the same displacements 〈Δxa

n〉—leads to a gauge symmetry. This
is evident in Equation (7) where φ and Aa appear in the combination ∂naφ − βn Aa which is invariant
under the gauge transformations,

Aa(xn) → A′
a(xn) = Aa(xn) + ∂aχ(xn) , (34)

φ(x) → φ′(x) = φ(x) + ∑
n

βnχ(xn) . (35)

These transformations are local in 3d-space. Introducing

χ̄(x) = ∑
n

h̄βnχ(xn) , (36)

they can be written in the N-particle configuration space,

ĀA(x) → Ā′
A(x) = ĀA(x) + ∂Aχ̄(x) , (37)

Φ(x) → Φ′(x) = Φ(x) + χ̄(x) . (38)

Interpretation: The drift potential φ(x) = φ(�x1,�x2, . . .) is assumed to be an “angle”–φ(x) and
φ(x) + 2π are meant to describe the same angle. The angle at �x1 depends on the values of all the
other positions �x2,�x3, . . ., and the angle at �x2 depends on the values of all the other positions �x1,�x3, . . .,
and so on. The fact that the origins from which these angles are measured can be redefined by different
amounts at different places gives rise to a local gauge symmetry. To compare angles at different
locations one introduces a connection field, the vector potential Aa(�x). It defines which origin at �x + Δ�x
is the “same” as the origin at �x. This is implemented by imposing that as we change origins and Φ(x)
changes to Φ + χ̄ then the connection transforms as Aa → Aa + ∂aχ so that the quantity ∂AΦ − ĀA
remains invariant.

A fractional Brownian motion? The choices αn ∝ 1/Δt and αn ∝ 1/Δt3 lead to
Einstein–Smoluchowski and Oernstein–Uhlenbeck processes, respectively. For definiteness throughout
the rest of this paper we will assume that the sub-quantum motion is an OU process but more general
fractional Brownian motions [89] are possible. Consider

αn =
mn

ηΔtγ
, (39)

where γ is some positive parameter. The corresponding transition probability (8),

P(x′|x) = 1
Z

exp
[
− 1

2ηΔtγ
mAB

(
ΔxA − vAΔt

) (
ΔxB − vBΔt

)]
, (40)

leads to fluctuations such that

〈ΔwA〉 = 0 and 〈ΔwAΔwB〉 = ηmABΔtγ , (41)

or 〈(
ΔxA

Δt
− vA

)(
ΔxB

Δt
− vB

)〉
= ηmABΔtγ−2. (42)

We will not pursue this topic further except to note that since 〈ΔxA〉 ∼ O(Δt) and ΔwA ∼ O(Δtγ/2) for
γ < 2 the sub-quantum motion is dominated by fluctuations and the trajectories are non-differentiable,
while for γ > 2 the drift dominates and velocities are well defined.
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4. The Evolution Equation in Differential Form

Entropic dynamics is generated by iterating Equation (13): given the information that defines one
instant, the integral Equation (13) is used to construct the next instant. As so often in physics it is more
convenient to rewrite the equation of evolution in differential form. The result is

∂tρ = −∂A

(
vAρ

)
, (43)

where vA is given by (19). Before we proceed to its derivation we note that Equation (43) is a
consequence of the fact that the particles follow continuous paths. Accordingly, we will follow
standard practice and call it the continuity equation. Also note that in the OU process considered here
(γ = 3) the current velocity—the velocity with which the probability flows in configuration space—
coincides with the drift velocity (19) and with the actual velocities of the particles (26) [90].

Next we derive (43) using a technique that is well known in diffusion theory [91]. (For an
alternative derivation see [92].) The result of building up a finite change from an initial time t0 to a
later time t leads to the distribution

ρ(x, t) =
∫

dx0 P(x, t|x0, t0)ρ(x0, t0) , (44)

where the finite-time transition probability, P(x, t|x0, t0), is constructed by iterating the infinitesimal
changes described in Equation (13),

P(x, t + Δt|x0, t0) =
∫

dz P(x, t + Δt|z, t)P(z, t|x0, t0) . (45)

For small times Δt the distribution P(x, t + Δt|z, t), given in Equation (18), is very sharply peaked
at x = z. In fact, as Δt → 0 we have P(x, t + Δt|z, t) → δ(x − z). Such singular behavior cannot be
handled directly by Taylor expanding in z about the point x. Instead one follows an indirect procedure.
Multiply by a smooth test function f (x) and integrate over x,

∫
dx P(x, t + Δt|x0, t0) f (x) =

∫
dz
[∫

dx P(x, t + Δt|z, t) f (x)
]

P(z, t|x0, t0) . (46)

The test function f (x) is assumed sufficiently smooth precisely so that it can be expanded about z.
Then as Δt → 0 the integral in the brackets, dropping all terms of order higher than Δt, is

[· · · ] =
∫

dx P(x, t + Δt|z, t)
(

f (z) +
∂ f

∂zA (xA − zA) + ...
)

= f (z) + vA(z)Δt
∂ f

∂zA + . . . (47)

where we used Equation (23). Next substitute (47) into the right hand side of (46), divide by Δt, and let
Δt → 0. Since f (x) is arbitrary the result is

∂tP(x, t|x0, t0) = −∂A[vA(x)P(x, t|x0, t0)] , (48)

which is the continuity equation for the finite-time transition probability. Differentiating Equation (44)
with respect to t, and substituting (48) completes the derivation of the continuity Equation (43).

The continuity Equation (43) can be written in another equivalent but very suggestive form
involving functional derivatives. For some suitably chosen functional H̃[ρ, Φ] we have

∂tρ(x) = −∂A

[
ρmAB(∂BΦ − ĀB)

]
=

δH̃
δΦ(x)

. (49)
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It is easy to check that the appropriate functional H̃ is

H̃[ρ, Φ] =
∫

dx
1
2

ρmAB (∂AΦ − ĀA) (∂BΦ − ĀB) + F[ρ] , (50)

where the unspecified functional F[ρ] is an integration constant [93].
The continuity Equation (49) describes a somewhat peculiar OU Brownian motion in which the

probability density ρ(x) is driven by the non-dynamical fields Φ, and Ā. This is an interesting ED
in its own right but it is not QM. Indeed, a quantum dynamics consists in the coupled evolution of
two dynamical fields: the density ρ(x) and the phase of the wave function. This second field can
be naturally introduced into ED by allowing the phase field Φ in (19) to become dynamical which
amounts to an ED in which the constraint (5) is continuously updated at each instant in time. Our
next topic is to propose the appropriate updating criterion. It yields an ED in which the phase field Φ
guides the evolution of ρ, and in return, the evolving ρ reacts back and induces a change in Φ.

5. The Epistemic Phase Space

In ED we deal with two configuration spaces. One is the ontic configuration space XN = X × X × . . .
of all particle positions, x = (x1 . . . xN) ∈ XN . The other is the epistemic configuration space or
e-configuration space P of all normalized probabilities,

P =

{
ρ

∣∣∣∣ρ(x) ≥ 0;
∫

dxρ(x) = 1
}

. (51)

To formulate the coupled dynamics of ρ and Φ we need a framework to study paths in the larger space
{ρ, Φ} that we will call the epistemic phase space or e-phase space.

Given any manifold such as P the associated tangent and cotangent bundles, respectively TP and
T∗P, are geometric objects that are always available to us independently of any physical considerations.
Both are manifolds in their own right but the cotangent bundle T∗P—the space of all probabilities and
all covectors—is of particular interest because it comes automatically endowed with a rich geometrical
structure [56–62]. The point is that cotangent bundles are symplectic manifolds and this singles out
as “natural” those dynamical laws that happen to preserve some privileged symplectic form. This
observation will lead us to identify e-phase space {ρ, Φ} with the cotangent bundle T∗P and provides
the natural criterion for updating constraints, that is, for updating the phase Φ [94].

5.1. Notation: Vectors, Covectors, Etc.

A point X ∈ T∗P will be represented as

X = (ρ(x), π(x)) = (ρx, πx) , (52)

where ρx represents coordinates on the base manifold P and πx represents some generic coordinates
on the space T∗Pρ that is cotangent to P at the point ρ. Curves in T∗P allow us to define vectors.
Let X = X(λ) be a curve parametrized by λ, then the vector V̄ tangent to the curve at X = (ρ, π) has
components dρx/dλ and dπx/dλ, and is written

V̄ =
d

dλ
=
∫

dx
[

dρx

dλ

δ

δρx +
dπx

dλ

δ

δπx

]
, (53)

where δ/δρx and δ/δπx are the basis vectors. The directional derivative of a functional F[X] along the
curve X(λ) is

dF
dλ

= ∇̃F[V̄] =
∫

dx
[

δF
δρx

dρx

dλ
+

δF
δπx

dπx

dλ

]
, (54)
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where ∇̃ is the functional gradient in T∗P, i.e., the gradient of a generic functional F[X] = F[ρ, π] is

∇̃F =
∫

dx
[

δF
δρx ∇̃ρx +

δF
δπx

∇̃πx

]
. (55)

The tilde ‘˜’ serves to distinguish the functional gradient ∇̃ from the spatial gradient ∇ f = ∂a f∇xa

on R3.
The fact that the space P is constrained to normalized probabilities means that the coordinates ρx

are not independent. This technical difficulty is handled by embedding the ∞-dimensional manifold P

in a (∞ + 1)-dimensional manifold P+1 where the coordinates ρx are unconstrained [95]. Thus, strictly,
∇̃F is a covector on T∗P+1, i.e., ∇̃F ∈ T∗ (T∗P+1)

X and ∇̃ρx and ∇̃πx are the corresponding basis
covectors. Nevertheless, the gradient ∇̃F will yield the desired directional derivatives (54) on T∗P

provided its action is restricted to vectors V̄ that are tangent to the manifold P. Such tangent vectors
are constrained to obey

d
dλ

∫
dxρ(x) =

∫
dx

dρx

dλ
= 0 . (56)

Instead of keeping separate track of the ρx and πx coordinates it is more convenient to combine
them into a single index. A point X = (ρ, π) will then be labelled by its coordinates

XI = (X1x, X2x) = (ρx, πx) . (57)

We will use capital letters from the middle of the Latin alphabet (I, J, K . . .); I = (α, x) is a composite
index where α = 1, 2 keeps track of whether x is an upper index (α = 1) or a lower index (α = 2) [96].
Then Equations (53)–(55) are written as

V̄ = VI δ

δXI , where VI =
dXI

dλ
=

[
dρx/dλ

dπx/dλ

]
, (58)

dF
dλ

= ∇̃F[V̄] =
δF

δXI VI and ∇̃F =
δF

δXI ∇̃XI , (59)

where the repeated indices indicate a summation over α and an integration over x.

5.2. The Symplectic Form in ED

In classical mechanics with configuration space {qi} the Lagrangian L(q, q̇) is a function on
the tangent bundle while the Hamiltonian H(q, p) is a function on the cotangent bundle [97,98].
A symplectic form provides a mapping from the tangent to the cotangent bundles. Given a Lagrangian
the map is defined by pi = ∂L/∂q̇i and this automatically defines the corresponding symplectic form.
In ED there is no Lagrangian so to define the symplectic map we must look elsewhere. We propose
that the role played by the Lagrangian in classical mechanics will in ED be played by the continuity
Equation (49).

The fact that the preservation of a symplectic structure must reproduce the continuity equation
leads us to identify the phase Φx as the momentum canonically conjugate to ρx. This identification
of the e-phase space {ρ, Φ} with T∗P is highly non-trivial. It amounts to asserting that the phase Φx

transforms as the components of a Poincare 1-form

θ =
∫

dx Φxdρx , (60)

where d is the exterior derivative and the corresponding symplectic 2-form Ω = −dθ is

Ω =
∫

dx dρx ∧ dΦx =
∫

dx
[∇̃ρx ⊗ ∇̃Φx − ∇̃Φx ⊗ ∇̃ρx] . (61)
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By construction Ω is exact (Ω = −dθ) and closed (dΩ = 0). The action of Ω[·, ·] on two vectors
V̄ = d/dλ and Ū = d/dμ is given by

Ω[V̄, Ū] =
∫

dx
[
V1xU2x − V2xU1x

]
= ΩI JVIUJ , (62)

so that the components of Ω are

ΩI J = Ωαx,βx′ =

[
0 1
−1 0

]
δ(x, x′) . (63)

5.3. Hamiltonian Flows and Poisson Brackets

Next we reproduce the ∞-dimensional T∗P analogues of results that are standard in
finite-dimensional classical mechanics [97,98]. Given a vector field V̄[X] in e-phase space we can
integrate VI [X] = dXI/dλ to find its integral curves XI = XI(λ). We are particularly interested in
those vector fields that generate flows that preserve the symplectic structure,

£VΩ = 0 , (64)

where the Lie derivative is given by

(£VΩ)I J = VK∇̃KΩI J + ΩKJ∇̃IVK + ΩIK∇̃JVK . (65)

Since by Equation (63) the components ΩI J are constant, ∇̃KΩI J = 0, we can rewrite £VΩ as

(£VΩ)I J = ∇̃I(ΩKJVK)− ∇̃J(ΩKIVK) , (66)

which is the exterior derivative (basically, the curl) of the covector ΩKIVK. By Poincare’s lemma,
requiring £VΩ = 0 (a vanishing curl) implies that ΩKIVK is the gradient of a scalar function, which we
will denote Ṽ[X],

ΩKIVK = ∇̃I Ṽ . (67)

Using (63) this is more explicitly written as

∫
dx

[
dρx

dλ
∇̃Φx − dΦx

dλ
∇̃ρx

]
=
∫

dx
[

δṼ
δρx ∇̃ρx +

δṼ
δΦx

∇̃Φx

]
, (68)

or
dρx

dλ
=

δṼ
δΦx

and
dΦx

dλ
= − δṼ

δρx , (69)

which we recognize as Hamilton’s equations for a Hamiltonian function Ṽ. This justifies calling V̄ the
Hamiltonian vector field associated with the Hamiltonian function Ṽ.

From (62), the action of the symplectic form Ω on two Hamiltonian vector fields V̄ = d/dλ and
Ū = d/dμ generated respectively by Ṽ and Ũ is

Ω[V̄, Ū] =
∫

dx
[

dρx

dλ

dΦx

dμ
− dΦx

dλ

dρx

dμ

]
, (70)

which, using (69), gives

Ω[V̄, Ū] =
∫

dx
[

δṼ
δρx

δŨ
δΦx

− δṼ
δΦx

δŨ
δρx

]
def
= {Ṽ, Ũ} , (71)

where on the right we introduced the Poisson bracket notation.
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To summarize these results: (1) The condition for a flow generated by the vector field VI to
preserve the symplectic structure, £VΩ = 0, is that VI be the Hamiltonian vector field associated to a
Hamiltonian function Ṽ, Equation (69),

VI =
dXI

dλ
= {XI , Ṽ} . (72)

(2) The action of Ω on two Hamiltonian vector fields (71) is the Poisson bracket of the associated
Hamiltonian functions,

Ω[V̄, Ū] = ΩI JVIUJ = {Ṽ, Ũ} . (73)

We conclude that the ED that preserves the symplectic structure Ω and reproduces the continuity
Equation (49) is described by the Hamiltonian flow of the scalar functional H̃ in (50). However, the full
dynamics, which will obey the Hamiltonian evolution equations

∂tρ
x =

δH̃
δΦx

and ∂tΦx = − δH̃
δρx , (74)

is not yet fully determined because the integration constant F[ρ] in (50) remains to be specified.

5.4. The Normalization Constraint

Since the particular flow that we will associate with time evolution is required to reproduce the
continuity equation it will also preserve the normalization constraint,

Ñ = 0 where Ñ = 1 − |ρ| and |ρ| def
=

∫
dx ρ(x) . (75)

Indeed, one can check that
∂t Ñ = {Ñ, H̃} = 0 . (76)

The Hamiltonian flow (72) generated by Ñ and parametrized by α is given by the vector field

N̄ = NI δ

δXI with NI =
dXI

dα
= {XI , Ñ} , (77)

or, more explicitly,

N1x =
dρx

dα
= 0 and N2x =

dΦx

dα
= 1 . (78)

The conservation of Ñ, Equation (76), implies that Ñ is the generator of a symmetry, namely

dH̃
dα

= {H̃, Ñ} = 0 . (79)

Integrating (78) one finds the integral curves generated by Ñ,

ρx(α) = ρx(0) and Φx(α) = Φx(0) + α . (80)

This shows that the symmetry generated by Ñ is to shift the phase Φ by a constant α without otherwise
changing the dynamics. This was, of course, already evident in the continuity Equation (43) with (19)
but the implications are very significant. Not only does the constraint Ñ = 0 reduce by one the (infinite)
number of independent ρx degrees of freedom but the actual number of Φxs is also reduced by one
because for any value of α the phases Φx + α and Φx correspond to the same state. (This is the ED
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analogue of the fact that in QM states are represented by rays rather than vectors in a Hilbert space.)
An immediate consequence is that two vectors Ū and V̄ at X that differ by a vector proportional to N̄,

Ū = V̄ + kN̄ , (81)

are “physically” equivalent. In particular the vector N̄ is equivalent to zero.
The phase space of interest is T∗P but to handle the constraint |ρ| = 1 we have been led to using

coordinates that are more appropriate to the larger embedding space T∗P+1. The price we pay for
introducing one superfluous coordinate is to also introduce a superfluous momentum. We eliminate
the extra coordinate by imposing the constraint Ñ = 0. We eliminate the extra momentum by declaring
it unphysical. All vectors that differ by a vector along the gauge direction N̄ are declared equivalent;
they belong to the same equivalence class. The result is a global gauge symmetry.

An equivalence class can be represented by any one of its members and choosing a convenient
representative amounts to fixing the gauge. As we shall see below a convenient gauge condition is
to impose ∫

dx ρxV2x = 0 or 〈V2〉 = 0 , (82)

so that the representative “Tangent Gauge-Fixed” vectors (which we shall refer to as TGF vectors) will
satisfy two conditions, Equations (56) and (82),

|V1| =
∫

dx V1x = 0 and 〈V2〉 =
∫

dx ρxV2x = 0 . (83)

The first condition enforces a flow tangent to the |ρ| = 1 surface; the second eliminates a superfluous
vector component along the gauge direction N̄.

We end this section with a comment on the symplectic form Ω which is non-degenerate on T∗P+1

but at first sight appears to be degenerate on T∗P. Indeed, we have Ω(N̄, V̄) = 0 for any tangent
vector V̄. However, we must recall that N̄ is equivalent to 0. In fact, since the TGF equivalent of N̄ is 0,
Ω is not degenerate on T∗P.

6. The Information Geometry of E-Phase Space

The construction of the ensemble Hamiltonian H̃—or e-Hamiltonian—is motivated as follows.
The goal of dynamics is to determine the evolution of the state (ρt, Φt). From a given initial state
(ρ0, Φ0) two slightly different Hamiltonians will lead to slightly different final states, say (ρt, Φt) or
(ρt + δρt, Φt + δΦt). Will these small changes make any difference? Can we quantify the extent to
which we can distinguish between two neighboring states? This is precisely the kind of question that
metrics are designed to address. It is then natural that H̃ be in some way related to some choice
of metric. But although P is naturally endowed with a unique information metric the space T∗P

has none. Thus, our next goal is to construct a metric for T∗P.
Once a metric structure is in place we can ask: does the distance between two neighboring

states—the extent to which we can distinguish them—grow, stay the same, or diminish over time?
There are many possibilities here but for pragmatic (and esthetic) reasons we are led to consider the
simplest form of dynamics—one that preserves the metric. This leads us to study the Hamilton flows
(those that preserve the symplectic structure) that are also Killing flows (those flows that preserve the
metric structure).

In ED entropic time is constructed so that time (duration) is defined by a clock provided by
the system itself. This leads to require that the generator H̃ of time translations be defined in terms
of the very same clock that provides the measure of time. Thus, the third and final ingredient in
the construction of H̃ is the requirement is that the e-Hamiltonian agree with (50) to reproduce the
evolution of ρ given by the continuity Equation (49).
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In this section, our goal is to transform e-phase space T∗P from a manifold that is merely
symplectic to a manifold that is both symplectic and Riemannian. The implementation of the other
two requirements on H̃—that it generates a Hamilton–Killing flow and that it agrees with the ED
continuity equation—will be tackled in Sections 7 and 8.

6.1. The Metric on the Embedding Space T∗P+1

The configuration space P is a metric space. Our goal here is to extend its metric—given
by information geometry—to the full cotangent bundle, T∗P. It is convenient to first recall one
derivation of the information metric. In the discrete case the statistical manifold is the k-simplex
Σ = {p = (p0 . . . pk) : ∑k

i=0 pi = 1}. The basic idea is to find the most general metric consistent with
a certain symmetry requirement. To suggest what that symmetry might be we change to new
coordinates ξ i = (pi)1/2. In these new coordinates the equation for the k-simplex Σ—the normalization
condition—reads ∑k

i=0(ξ
i)2 = 1 which suggests the equation of a sphere.

We take this hint seriously and declare that the k-simplex is a k-sphere embedded in a generic
(k + 1)-dimensional spherically symmetric space Σ+1 [99]. In the ξ i coordinates the metric of Σ+1 is of
the form

d�2 = [a(|p|)− b(|p|)]
(

k

∑
i=0

ξ idξ i

)2

+ |p|b(|p|)
k

∑
i=0

(dξ i)2, (84)

where a(|p|) and b(|p|) are two arbitrary smooth and positive functions of |p| = ∑k
i=0 pi. Expressed in

terms of the original pi coordinates the metric of Σ+1 is

d�2 = [a(|p|)− b(|p|)]
(

k

∑
i=0

dpi

)2

+ |p|b(|p|)
k

∑
i=0

1
pi (dpi)2 . (85)

The restriction to normalized states, |p| = 1 with displacements tangent to the simplex,
∑k

i=0 dpi = 0, gives the information metric induced on the k-simplex Σ,

d�2 = b(1)
k

∑
i=0

1
pi (dpi)2 . (86)

The overall constant b(1) is not important; it amounts to a choice of the units of distance.
To extend the information metric from the k-simplex Σ to its cotangent bundle T∗Σ we focus on

the embedding spaces Σ+1 and T∗Σ+1 and require that

(a) the metric on T∗Σ+1 be compatible with the metric on Σ+1; and
(b) that the spherical symmetry of the (k + 1)-dimensional space Σ+1 be enlarged to full spherical

symmetry for the 2(k + 1)-dimensional space T∗Σ+1.

The simplest way to implement (a) is to follow as closely as possible the derivation that led
to (85). The fact that Φ inherits from the drift potential φ the topological structure of an angle suggests
introducing new coordinates,

ξ i = (pi)1/2 cos Φi/h̄ and ηi = (pi)1/2 sin Φi/h̄ . (87)

Then the normalization condition reads

|p| =
k

∑
i=0

pi =
k

∑
i=0

[
(ξ i)2 + (ηi)2

]
= 1 (88)
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which suggests the equation of a (2k + 1)-sphere embedded in 2(k + 1) dimensions. To implement (b)
we take this spherical symmetry seriously. The most general metric in the embedding space that is
invariant under rotations is

d�2 = [a(|p|)− b(|p|)]
[

k

∑
i=0

(
ξ idξ i + ηidηi

)]2

+|p|b(|p|)
k

∑
i=0

[
(dξ i)2 + (dηi)2

]
, (89)

where the two functions a(|p|) and b(|p|) are smooth and positive but otherwise arbitrary.
Therefore, changing back to the (pi, Φi) coordinates, the most general rotationally invariant metric for
the embedding space T∗Σ+1 is

d�2 =
1
4
[a(|p|)− b(|p|)]

[
k

∑
i=0

dpi

]2

+|p|b(|p|) 1
2h̄

k

∑
i=0

[
h̄

2pi (dpi)2 +
2pi

h̄
(dΦi)

2
]

. (90)

Generalizing from the finite-dimensional case to the ∞-dimensional case yields the metric on the
spherically symmetric space T∗P+1,

δ�̃2 = A
[∫

dx δρx

]2
+ B

∫
dx

[
h̄

2ρx
(δρx)

2 +
2ρx

h̄
(δΦx)

2
]

. (91)

where we set
A(|ρ|) = 1

4
[a(|ρ|)− b(|ρ|)] and B(|ρ|) = 1

2h̄
|ρ|b(|ρ|) . (92)

6.2. The Metric Induced on T∗P

As we saw in Section 5.4 the normalization constraint |ρ| = 1 induces a symmetry—points with
phases differing by a constant are identified. Therefore, the e-phase space T∗P can be obtained from
the spherically symmetric space T∗P+1 by the restriction |ρ| = 1 and by identifying points (ρx, Φx)

and (ρx, Φx + α) that lie on the same gauge orbit, or on the same ray.
Consider two neighboring points (ρx, Φx) and (ρ′x, Φ′

x). The metric induced on T∗P is
defined as the shortest T∗P+1 distance between (ρx, Φx) and points on the ray defined by (ρ′x, Φ′

x).
Setting |δρ| = 0 the T∗P+1 distance between (ρx, Φx) and (ρx + δρx, Φx + δΦx + δα) is given by

δ�̃2 = B(1)
∫

dx
[

h̄
2ρx

(δρx)
2 +

2ρx

h̄
(δΦx + δα)2

]
. (93)

Let
δs̃2 = min

δα
δ�̃2 . (94)

Minimizing over δα gives the metric on T∗P,

δs̃2 =
∫

dx
[

h̄
2ρx

(δρx)
2 +

2ρx

h̄
(δΦx − 〈δΦ〉)2

]
, (95)

where we set B(1) = 1 which amounts to a choice of units of length. This metric is known as the
Fubini–Study metric.
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The scalar product between two vectors V̄ and Ū is

G(V̄, Ū) =
∫

dx
[

h̄
2ρx

V1xU1x +
2ρx

h̄
(V2x − 〈V2〉)(U2x − 〈U2〉)

]
. (96)

It is at this point that we recognize the convenience of imposing the TGF gauge condition (83): the
scalar product simplifies to

G(V̄, Ū) =
∫

dx
[

h̄
2ρx

V1xU1x +
2ρx

h̄
V2xU2x

]
. (97)

An analogous expression can be written for the length δs̃ of a displacement (δρx, δΦx),

δs̃2 =
∫

dx
[

h̄
2ρx

(δρx)
2 +

2ρx

h̄
(δΦx)

2
]

, (98)

where it is understood that (δρx, δΦx) satisfies the TGF condition

|δρ| = 0 and 〈δΦ〉 = 0 . (99)

In index notation the metric (98) of T∗P is written as

δs̃2 = GI JδXIδXJ =
∫

dxdx′Gαx,βx′δXxαδXx′β (100)

where the metric tensor GI J is

GI J = Gαx,βx′ =

[
h̄

2ρx
δxx′ 0
0 2

h̄ ρxδxx′

]
. (101)

The tensor GI J in Equation (101) can act on arbitrary vectors whether they satisfy the TGF condition or
not. It is only when GI J acts on TGF vectors that it is interpreted as a metric tensor on T∗P.

6.3. A Complex Structure

Next we contract the symplectic form ΩI J , Equation (63), with the inverse of the metric tensor,

GI J = Gαx,βx′ =

[
2
h̄ ρxδxx′ 0

0 h̄
2ρx

δxx′

]
. (102)

The result is a mixed tensor J with components

J I
J = −GIKΩKJ =

[
0 − 2

h̄ ρxδxx′
h̄

2ρx
δxx′ 0

]
. (103)

(The reason for introducing an additional negative sign will become clear below.) The tensor J I
J maps

vectors to vectors—as any mixed (1, 1) tensor should. What makes the tensor J special is that—as
one can easily check— its action on a TGF vector V̄ yields another vector JV̄ that is also TGF and,
furthermore, its square is

J I
K JK

J = −δxx′

[
1 0
0 1

]
= −δI

J . (104)

In words, when acting on vectors tangent to T∗P the action of J2 (or Ω2) is equivalent to multiplying
by −1. This means that J plays the role of a complex structure.
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We conclude that the cotangent bundle T∗P has a symplectic structure Ω, as all cotangent
bundles do; that it can be given a Riemannian structure GI J ; and that the mixed tensor J provides it
with a complex structure.

6.4. Complex Coordinates

The fact that T∗P is endowed with a complex structure suggests introducing complex coordinates,

Ψx = ρ1/2
x exp iΦx/h̄ , (105)

so that a point Ψ ∈ T∗P+1 has coordinates

Ψμx =

(
Ψ1x

Ψ2x

)
=

(
Ψx

ih̄Ψ∗
x

)
, (106)

where the index μ takes two values, μ = 1, 2.
We can check that the transformation from real coordinates (ρ, Φ) to complex coordinates

(Ψ, ih̄Ψ∗) is canonical. Indeed, the action of Ω on two infinitesimal vectors δXI and δ′XJ is

ΩI JδXIδ′XJ =
∫

dx
(
δρxδ′Φx − δΦxδ′ρx

)
,

which, when expressed in Ψ coordinates, becomes

ΩI JδXIδ′XJ =
∫

dx
(
δΨδ′ih̄Ψ∗ − δih̄Ψ∗δ′Ψ

)
= Ωμx,νx′δΨμxδΨνx′ (107)

where

Ωμx,νx′ =

[
0 1
−1 0

]
δxx′ , (108)

retains the same form as (63).
Expressed in Ψ coordinates the Hamiltonian flow generated by the normalization constraint (75),

Ñ = 0 with Ñ = 1 −
∫

dx Ψ∗
xΨx , (109)

and parametrized by α is given by the vector field

N̄ = −
(

Ψx/ih̄
ih̄(Ψx/ih̄)∗

)
. (110)

Its integral curves are
Ψx(α) = Ψx(0)eiα/h̄ . (111)

The constraint Ñ = 0 induces a gauge symmetry which leads us to restrict our attention to vectors
V̄ = d/dλ satisfying two real TGF conditions (83). In Ψ coordinates this is replaced by the single
complex TGF condition, ∫

dx Ψ∗
x

dΨx

dλ
= 0 . (112)

In Ψ coordinates the metric on T∗P, Equation (98), becomes

δs̃2 = −2i
∫

dx δΨxδih̄Ψ∗
x =

∫
dxdx′Gμx,νx′ δΨμxδΨνx′ , (113)
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where the metric tensor and its inverse are

Gμx,νx′ = −iδxx′

[
0 1
1 0

]
and Gμx,νx′ = iδxx′

[
0 1
1 0

]
. (114)

Finally, using Gμx,νx′ to raise the first index of Ωνx′ ,γx′′ gives the Ψ components of the tensor J

Jμx
γx′′

def
= −Gμx,νx′Ωνx′ ,γx′′ =

[
i 0
0 −i

]
δxx′ . (115)

7. Hamilton-Killing Flows

Our next goal will be to find those Hamiltonian flows QI that also happen to preserve the metric
tensor, i.e., we want QI to be a Killing vector. The condition for QI is

(£QG)I J = QK∇̃KGI J + GKJ∇̃I QK + GIK∇̃JQK = 0 . (116)

In complex coordinates Equation (114) gives ∇̃KGI J = 0, and the Killing equation simplifies to

(£QG)I J = GKJ∇̃I QK + GIK∇̃JQK = 0 , (117)

or

(£QG)μx,νx′ = −i

⎡⎢⎣ δQ2x′
δΨx

+ δQ2x

δΨx′
; δQ1x′

δΨx
+ δQ2x

δih̄Ψ∗
x′

δQ2x′
δih̄Ψ∗

x
+ δQ1x

δΨx′
; δQ1x′

δih̄Ψ∗
x
+ δQ1x

δih̄Ψ∗
x′

⎤⎥⎦ = 0 . (118)

If we further require that QI be a Hamiltonian flow, £QΩ = 0, then we substitute

Q1x =
δQ̃

δih̄Ψ∗
x

and Q2x = − δQ̃
δΨx

(119)

into (118) to get
δ2Q̃

δΨxδΨx′
= 0 and

δ2Q̃
δΨ∗

xδΨ∗
x′

= 0 . (120)

Therefore, to generate a flow that preserves both G and Ω the functional Q̃[Ψ, Ψ∗] must be linear in
both Ψ and Ψ∗,

Q̃[Ψ, Ψ∗] =
∫

dxdx′ Ψ∗
xQ̂xx′Ψx′ , (121)

where Q̂xx′ is a possibly non-local kernel. The actual Hamilton–Killing flow is

dΨx

dλ
= Q1x =

δQ̃
δih̄Ψ∗

x
=

1
ih̄

∫
dx′ Q̂xx′Ψx′ , (122)

dih̄Ψ∗
x

dλ
= Q2x = − δQ̃

δΨx
= −

∫
dx′ Ψ∗

x′ Q̂xx′ . (123)

Taking the complex conjugate of (122) and compared to (123), shows that the kernel Q̂xx′ is Hermitian,

Q̂∗
xx′ = Q̂x′x , (124)

and we can check that the corresponding Hamiltonian functionals Q̃ are real,

Q̃[Ψ, Ψ∗]∗ = Q̃[Ψ, Ψ∗] .

45



Entropy 2019, 21, 943

The Hamiltonian flows that might potentially be of interest are those that generate symmetry
transformations. For example, the generator of translations is total momentum. Under a spatial
displacement by εa, g(x) → gε(x) = g(x − ε), the change in f [ρ, Φ] is

δε f [ρ, Φ] =
∫

dx
(

δ f
δρx

δερx +
δ f

δΦx
δεΦx

)
= { f , P̃aεa} (125)

where
P̃a =

∫
dx ρ ∑

n

∂Φ
∂xa

n
=
∫

dx ρ
∂Φ
∂Xa (126)

is interpreted as the expectation of the total momentum, and Xa are the coordinates of the center
of mass,

Xa =
1
M ∑

n
mnxa

n . (127)

In complex coordinates,

P̃a =
∫

dx Ψ∗
(

∑
n

h̄
i

∂

∂xa
n

)
Ψ =

∫
dx Ψ∗

(
h̄
i

∂

∂Xa

)
Ψ , (128)

and the corresponding kernel P̂axx′ is

P̂axx′ = δxx′ ∑
n

h̄
i

∂

∂xa
n
= δxx′

h̄
i

∂

∂Xa . (129)

8. The E-Hamiltonian

In the previous sections we supplied the symplectic e-phase space T∗P with a Riemannian
metric and, as a welcome by-product, also with a complex structure. Then we showed that the
condition for the simplest form of dynamics—one that preserves all the metric, symplectic, and complex
structures—is a Hamilton–Killing flow generated by a Hamiltonian H̃ that is linear in both Ψ and Ψ∗,

H̃[Ψ, Ψ∗] =
∫

dxdx′ Ψ∗
x Ĥxx′Ψx′ . (130)

The last ingredient in the construction of H̃ is that the e-Hamiltonian must agree with (50) to reproduce
the entropic evolution of ρ given by the continuity Equation (49).

To proceed we use the identity

1
2

ρmAB(∂AΦ − ĀA)(∂BΦ − ĀB) =
h̄2

2
mAB(DAΨ)∗DBΨ − h̄2

8ρ2 mAB∂Aρ∂Bρ (131)

where
DA = ∂A − i

h̄
ĀA and ĀA(x) = h̄βn Aa(xn) . (132)

Rewriting H̃[ρ, Φ] in (50) in terms of Ψ and Ψ∗ we get

H̃[Ψ, Ψ∗] =
∫

dx

(
−h̄2

2
mABΨ∗DADBΨ

)
+ F′[ρ] . (133)

where

F′[ρ] = F[ρ]− h̄2

8ρ2 mAB∂Aρ∂Bρ . (134)
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According to (121) for H̃[Ψ, Ψ∗] to generate an HK flow we must impose that F′[ρ] be linear in both Ψ
and Ψ∗,

F′[ρ] =
∫

dxdx′ Ψ∗
xV̂xx′Ψx′ (135)

for some Hermitian kernel V̂xx′ , but F′[ρ] must remain independent of Φ,

δF′[ρ]
δΦx

= 0 . (136)

Substituting Ψ = ρ1/2eiΦ/h̄ into (135) and using V̂∗
x′x = V̂xx′ leads to

δF′

δΦx
=

2
h̄

ρ1/2
x

∫
dx′ρ1/2

x′ Im
(

V̂xx′ e
−i(Φx−Φx′)/h̄

)
= 0 (137)

This equation must be satisfied for all choices of ρx′ , which implies

Im
(

V̂xx′ e
−i(Φx−Φx′)/h̄

)
= 0 , (138)

and also for all choices of Φx and Φx′ . Therefore, the kernel V̂xx′ must be local in x,

V̂xx′ = δxx′Vx , (139)

where Vx = V(x) is some real function.
We conclude that the Hamiltonian that generates a Hamilton–Killing flow and agrees with the ED

continuity equation must be of the form

H̃[Ψ, Ψ∗] =
∫

dxΨ∗
(
− h̄2

2
mABDADB + V(x)

)
Ψ . (140)

The evolution of Ψ is given by the Hamilton equation,

∂tΨx = {Ψx, H̃} =
δH̃

δ(ih̄Ψ∗(x))
, (141)

which is the Schrödinger equation,

ih̄∂tΨ = − h̄2

2
mABDADBΨ + VΨ . (142)

In more standard notation it reads

ih̄∂tΨ = ∑
n

−h̄2

2mn
δab

(
∂

∂xa
n
− iβn Aa(xn)

)(
∂

∂xb
n
− iβn Ab(xn)

)
Ψ + VΨ . (143)

At this point we can finally provide the physical interpretation of the various constants introduced
along the way. Since the Schrödinger Equation (143) is the tool we use to analyze experimental data
we can identify h̄ with Planck’s constant, mn will be interpreted as the particles’ masses, and the βn are
related to the particles’ electric charges qn by

βn =
qn

h̄c
. (144)
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For completeness we write the Hamiltonian in the (ρ, Φ) variables,

H̃[ρ, Φ] =
∫

d3N x ρ

[
∑
n

δab

2mn

(
∂Φ
∂xa

n
− qn

c
Aa(xn)

)(
∂Φ
∂xb

n
− qn

c
Ab(xn)

)

+ ∑
n

h̄2

8mn

δab

ρ2
∂ρ

∂xa
n

∂ρ

∂xb
n
+ V(x1 . . . xn)

]
. (145)

The Hamilton equations for ρ and Φ are the continuity equation (49),

∂tρ =
δH̃
δΦ

= −∑
n

∂

∂xa
n

[
ρ

δab

mn

(
∂Φ
∂xb

n
− qn

c
Ab(xn)

)]
, (146)

and the quantum analogue of the Hamilton-Jacobi equation,

∂tΦ = − δH̃
δρ

= ∑
n

−δab

2mn

(
∂Φ
∂xa

n
− qn

c
Aa(xn)

)(
∂Φ
∂xb

n
− qn

c
Ab(xn)

)

+ ∑
n

h̄2

2mn

δab

ρ1/2
∂2ρ1/2

∂xa
n∂xb

n
− V(x1 . . . xn)

]
. (147)

To summarize: we have just shown that an ED that preserves both the symplectic and metric structures
of the e-phase space T∗P leads to a linear Schrödinger equation. In particular, such an ED reproduces
the quantum potential in (147) with the correct coefficients h̄2/2mn.

9. Entropic Time, Physical Time, and Time Reversal

Now that the dynamics has been fully developed we revisit the question of time. The derivation of
laws of physics as examples of inference led us to introduce the notion of entropic time which includes
assumptions about the concept of instant, of simultaneity, of ordering, and of duration. It is clear that
entropic time is useful but is this the actual, real, “physical” time? The answer is yes. By deriving the
Schrödinger equation (from which we can obtain the classical limit) we have shown that the t that
appears in the laws of physics is entropic time. Since these are the equations that we routinely use
to design and calibrate our clocks we conclude that what clocks measure is entropic time. No notion of
time that is in any way deeper or more “physical” is needed. Most interestingly, the entropic model
automatically includes an arrow of time.

The statement that the laws of physics are invariant under time reversal has nothing to do with
particles travelling backwards in time. It is instead the assertion that the laws of physics exhibit a
certain symmetry. For a classical system described by coordinates q and momenta p the symmetry is
the statement that if {qt, pt} happens to be one solution of Hamilton’s equations then we can construct
another solution {qT

t , pT
t } where

qT
t = q−t and pT

t = −p−t , (148)

but both solutions {qt, pt} and {qT
t , pT

t } describe evolution forward in time. An alternative statement
of time reversibility is the following: if there is one trajectory of the system that takes it from state
{q0, p0} at time t0 to state {q1, p1} at the later time t1, then there is another possible trajectory that
takes the system from state {q1,−p1} at time t0 to state {q0,−p0} at the later time t1. The merit of this
re-statement is that it makes clear that nothing needs to travel back in time. Indeed, rather than time
reversal the symmetry might be more appropriately described as momentum or motion reversal.

Since ED is a Hamiltonian dynamics one can expect that similar considerations will apply to QM
and indeed they do. It is straightforward to check that given one solution {ρt(x), Φt(x)} that evolves

48



Entropy 2019, 21, 943

forward in time, we can construct another solution {ρT
t (x), ΦT

t (x)} that is also evolving forward
in time. The reversed solution is

ρT
t (x) = ρ−t(x) and ΦT

t (x) = −Φ−t(x) . (149)

These transformations constitute a symmetry—e.g., the transformed ΨT
t (x) is a solution of the

Schrödinger equation— provided the motion of the sources of the external potentials is also reversed,
i.e., the potentials Aa(�x, t) and V(x, t) are transformed according to

AT
a (�x, t) = −Aa(�x,−t) and VT(x, t) = V(x,−t) . (150)

Expressed in terms of wave functions the time reversal transformation is

ΨT
t (x) = Ψ∗−t(x) . (151)

The proof that this is a symmetry is straightforward; just take the complex conjugate of (143), and let
t → −t.

10. Linearity and the Superposition Principle

The Schrödinger equation is linear, i.e., a linear combination of solutions is a solution too.
However, this mathematical linearity does not guarantee the physical linearity that is usually referred to
as the superposition principle. The latter is the physical assumption that if there is one experimental
setup that prepares a system in the (epistemic) state Ψ1 and there is another setup that prepares the
system in the state Ψ2 then, at least in principle, it is possible to construct yet a third setup that can
prepare the system in the superposition

Ψ3 = α1Ψ1 + α2Ψ2 , (152)

where α1 and α2 are arbitrary complex numbers. Mathematical linearity refers to the fact that solutions
can be expressed as sums of solutions. There is no implication that any of these solutions will
necessarily describe physical situations. Physical linearity on the other hand—the Superposition
Principle—refers to the fact that the superposition of physical solutions is also a physical solution.
The point to be emphasized is the Superposition Principle is not a principle; it is a physical hypothesis
that need not be universally true.

10.1. The Single-Valuedness of Ψ

The question “Why should wave functions be single-valued?” has been around for a long time.
In this section we build on and extend recent work [100] to argue that the single- or multi-valuedness
of the wave functions is closely related to the question of linearity and the superposition principle.
Our discussion parallels that by Schrödinger [101,102]. (See also [103–110].)

To show that the mathematical linearity of (143) is not sufficient to imply the superposition
principle, we argue that even when |Ψ1|2 = ρ1 and |Ψ2|2 = ρ2 are probabilities it is not generally
true that |Ψ3|2, Equation (152), will also be a probability. Consider moving around a closed loop Γ in
configuration space. Since phases Φ(x) can be multi-valued the corresponding wave functions could
in principle be multi-valued too. Let a generic Ψ change by a phase factor,

Ψ → Ψ′ = eiδΨ , (153)

then the superposition Ψ3 of two wave functions Ψ1 and Ψ2 changes into

Ψ3 → Ψ′
3 = α1eiδ1 Ψ1 + α2eiδ2 Ψ2 . (154)
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The problem is that even if |Ψ1|2 = ρ1 and |Ψ2|2 = ρ2 are single-valued (because they are probability
densities), the quantity |Ψ3|2 need not in general be single-valued. Indeed,

|Ψ3|2 = |α1|2ρ1 + |α2|2ρ2 + 2Re[α1α∗2Ψ1Ψ∗
2 ] , (155)

changes into
|Ψ′

3|2 = |α1|2ρ1 + |α2|2ρ2 + 2Re[α1α∗2ei(δ1−δ2)Ψ1Ψ∗
2 ] , (156)

so that in general
|Ψ′

3|2 �= |Ψ3|2 , (157)

which precludes the interpretation of |Ψ3|2 as a probability. That is, even when the epistemic states Ψ1

and Ψ2 describe actual physical situations, their superpositions need not.
The problem does not arise when

ei(δ1−δ2) = 1 . (158)

If we were to group the wave functions into classes each characterized by its own δ then we could
have a limited version of the superposition principle that applies within each class. We conclude
that beyond the linearity of the Schrödinger equation we have a superselection rule that restricts the
validity of the superposition principle to wave functions belong to the same δ-class.

To find the allowed values of δ we argue as follows. It is natural to assume that if {ρ, Φ} (at some
given time t0) is a physical state then the state with reversed momentum {ρ,−Φ} (at the same time t0)
is an equally reasonable physical state. Basically, the idea is that if particles can be prepared to move
in one direction, then they can also be prepared to move in the opposite direction. In terms of wave
functions the statement is that if Ψt0 is a physically allowed initial state, then so is Ψ∗

t0
[111]. Next we

consider a generic superposition
Ψ3 = α1Ψ + α2Ψ∗ . (159)

Is it physically possible to construct superpositions such as (159)? The answer is that while constructing
Ψ3 for an arbitrary Ψ might not be feasible in practice there is strong empirical evidence that
there exist no superselection rules to prevent us from doing so in principle. Indeed, it is easy to
construct superpositions of wavepackets with momentum �p and −�p, or superpositions of states with
opposite angular momenta, Y�m and Y�,−m. We shall assume that in principle the superpositions (159) are
physically possible.

According to Equation (153) as one moves in a closed loop Γ the wave function Ψ3 will
transform into

Ψ′
3 = α1eiδΨ + α2e−iδΨ∗ , (160)

and the condition (158) for |Ψ3|2 to be single-valued is

e2iδ = 1 or eiδ = ±1 . (161)

Thus, we are restricted to two discrete possibilities ±1. Since the wave functions are assumed
sufficiently well behaved (continuous, differentiable, etc.) we conclude that they must be either
single-valued, eiδ = 1, or double-valued, eiδ = −1.

We conclude that the Superposition Principle appears to be valid in a sufficiently large number of
cases to be a useful rule of thumb but it is restricted to single-valued (or double-valued) wave functions.
The argument above does not exclude the possibility that a multi-valued wave function might describe
an actual physical situation. What the argument implies is that the Superposition Principle would not
extend to such states.
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10.2. Charge Quantization

Next we analyze the conditions for the electromagnetic gauge symmetry to be compatible with the
superposition principle. We shall confine our attention to systems that are described by single-valued
wave functions (eiδ = +1) [112]. The condition for the wave function to be single-valued is

Δ
Φ
h̄

=
∮

Γ
d�A∂A

Φ
h̄

= 2πkΓ , (162)

where kΓ is an integer that depends on the loop Γ. Under a local gauge transformation

Aa(�x) → Aa(�x) + ∂aχ(�x) (163)

the phase Φ transforms according to (38),

Φ(x) → Φ′(x) = Φ(x) + ∑
n

qn

c
χ(�xn) . (164)

The requirement that the gauge symmetry and the superposition principle be compatible amounts to
requiring that the gauge transformed states also be single-valued,

Δ
Φ′

h̄
=
∮

Γ
d�A∂A

Φ′

h̄
= 2πk′Γ . (165)

Thus, the allowed gauge transformations are restricted to functions χ(�x) such that

∑
n

qn

h̄c

∮
Γ

d�a
n∂naχ(�xn) = 2πΔkΓ (166)

where ΔkΓ = k′Γ − kΓ is an integer. Consider now a loop γ in which we follow the coordinates of
the nth particle around some closed path in 3-dimensional space while all the other particles are
kept fixed. Then

qn

h̄c

∮
γ

d�a
n∂anχ(�xn) = 2πΔknγ (167)

where Δknγ is an integer. Since the gauge function χ(�x) is just a function in 3-dimensional space it is
the same for all particles and the integral on the left is independent of n. This implies that the charge qn

divided by an integer Δknγ must be independent of n which means that qn must be an integer multiple
of some basic charge q0. We conclude that the charges qn are quantized.

The issue of charge quantization is ultimately the issue of deciding which is the gauge group
that generates electromagnetic interactions. We could for example decide to restrict the gauge
transformations to single-valued gauge functions χ(�x) so that (167) is trivially satisfied irrespective of
the charges being quantized or not. Under such a restricted symmetry group the single-valued (or
double-valued) nature of the wave function is unaffected by gauge transformations. If, on the other
hand, the gauge functions χ(�x) are allowed to be multi-valued, then the compatibility of the gauge
transformation (163)–(164) with the superposition principle demands that charges be quantized.

The argument above cannot fix the value of the basic charge q0 because it depends on the units
chosen for the vector potential Aa. Indeed since the dynamical equations show qn and Aa appearing
only in the combination qn Aa we can change units by rescaling charges and potentials according to
Cqn = q′n and Aa/C = A′

a so that qn Aa = q′n A′
a . For conventional units such that the basic charge is

q0 = e/3 with α = e2/h̄c = 1/137 the scaling factor is C = (αh̄c)1/2/3q0. A more natural set of units
might be to set q0 = h̄c so that all βns are integers and the gauge functions χ(�x) are angles.

A similar conclusion—that charge quantization is a reflection of the compactness of the gauge
group—can be reached following an argument due to C. N. Yang [113]. Yang’s argument assumes
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that a Hilbert space has been established and one has access to the unitary representations of
symmetry groups. Yang considers a gauge transformation

Ψ(x) → Ψ(x) exp i ∑
n

qn

c
χ(�xn) , (168)

with χ(�x) independent of �x. If the qns are not commensurate there is no value of χ (except 0) that
makes (168) be the identity transformation. The gauge group—translations on the real line—would
not be compact. If, on the other hand, the charges are integer multiples of a basic charge q0, then
two values of χ that differ by an integer multiple of 2πc/q0 give identical transformations and the
gauge group is compact. In the present ED derivation, however, we deal with the space T∗P which
is a complex projective space. We cannot adopt Yang’s argument because a gauge transformation χ

independent of �x is already an identity transformation—it leads to an equivalent state in the same
ray—and cannot therefore lead to any constraints on the allowed charges.

11. The Classical Limits and the Bohmian Limit

11.1. Classical Limits

There are two classical limits that one might wish to consider. One is the mathematical limit
h̄ → 0. Taking h̄ → 0 leaves unchanged both the velocities va

n of the particles, Equation (19),
and the probability flow, Equation (146). The main effect is to suppress the quantum potential so that
Equation (147) becomes the classical Hamilton-Jacobi equation. The symplectic form, Equation (63),
survives unscathed but the metric and the complex structures, Equations (101) and (103), do not.
However, this is not quite classical mechanics. Since the velocity fluctuations, Equation (25), remain
unaffected the resulting dynamics is a non-dissipative version of the classical Oernstein–Uhlenbeck
Brownian motion. To recover a deterministic classical mechanics one must also take the limit η → 0 .

The other classical limit arises in the more physically relevant situation where one deals with a
system with a large number N of particles—for example, a speck of dust—and one wishes to study the
motion of an effective macrovariable such as the center of mass (CM), Equation (127). The large N
limit of ED with particles undergoing an ES Brownian motion was studied in [77]. The same argument
goes through essentially unchanged for the OU Brownian motion discussed here. Skipping all details
we find that because of the central limit theorem the continuity equation for ρcm(Xa) and the velocity
fluctuations are given by the analogues of (43) and (25) for a single particle of mass M = ∑N

n=1 mn,

∂tρcm =
∂

∂Xa (ρcmVa) with Va =
〈ΔXa〉

Δt
=

1
M

∂Φcm

∂Xa , (169)

〈(
ΔXa

Δt
− Va

)(
ΔXb

Δt
− Vb

)〉
=

ηΔt
M

. (170)

We also find that under rather general conditions the CM motion decouples from the motion of the
component particles and obeys the single particle HJ equation

− ∂tΦcm =
1

2M

(
∂Φcm

∂Xa

)2
− h̄2

2M
∇2ρ1/2

cm

ρ1/2
cm

+ Vext(X) . (171)

In the large N limit M ∼ O(N) and we obtain a finite velocity Va in (169) provided Φcm ∼ O(N).
In Equation (171) we see that for a sufficiently large system the quantum potential for the CM
motion vanishes. Therefore, for N → ∞, the CM follows smooth trajectories described by a classical
Hamilton-Jacobi equation. Furthermore, Equation (170) shows that as N → ∞ the velocity fluctuations
vanish irrespective of the value of η. This is a truly deterministic classical mechanics.
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An important feature of this derivation is that h̄ and η remain finite which means that a
mesoscopic or macroscopic object will behave classically while all its component particles remain fully
quantum mechanical.

11.2. The Bohmian Limit

ED models with different values of η lead to the same Schrödinger equation. In other words,
different sub-quantum models lead to the same emergent quantum behavior. The limit of vanishing
η deserves particular attention because the velocity fluctuations, Equation (25), are suppressed and
the motion becomes deterministic. This means that ED includes the Bohmian form of quantum
mechanics [51–53] as a special limiting case—but with the important caveat that the difference in
physical interpretation remains enormous. It is only with respect to the mathematical formalism that
ED includes Bohmian mechanics as a special case.

Bohmian mechanics attempts to provide an actual description of reality. In the Bohmian view the
universe consists of real particles that have definite positions and their trajectories are guided by a
real field, the wave function Ψ. Not only does this pilot wave live in 3N-dimensional configuration
space but it manages to act on the particles without the particles reacting back upon it. These are
peculiarities that have stood in the way of a wider acceptance of the Bohmian interpretation. In contrast,
ED’s pragmatic goal is much less ambitious: to make the best possible predictions based on very
incomplete information. As in Bohmian mechanics, in ED the particles also have definite positions and
its formalism includes a function Φ that plays the role of a pilot wave. However, Φ is an epistemic tool
for reasoning; it is not meant to represent anything real. There is no implication that the particles move
the way they do because they are pushed around by a pilot wave or by some stochastic force. In fact,
ED is silent on the issue of what if anything is pushing the particles. What the probability ρ and the
phase Φ are designed to do is not to guide the particles but to guide our inferences. They guide our
expectations of where and when to find the particles but they do not exert any causal influence on the
particles themselves.

12. Hilbert Space

The formulation of the ED of spinless particles is now complete. We note, in particular, that the
notion of Hilbert spaces turned out to be unnecessary to the formulation of quantum mechanics. As we
shall see next, while strictly unnecessary in principle, the introduction of Hilbert spaces is nevertheless
very convenient for calculational purposes.

A vector space. As we saw above the infinite-dimensional e-phase space—the cotangent
bundle T∗P—is difficult to handle. The problem is that the natural coordinates are probabilities
ρx which, due to the normalization constraint, are not independent. In a discrete space one could
single out one of the coordinates and its conjugate momentum and then proceed to remove them.
Unfortunately, with a continuum of coordinates and momenta the removal is not feasible. The solution
is to embed T∗P in a larger space T∗P+1. This move allows us to keep the natural coordinates ρx but
there is a price: we are forced to deal with a constrained system and its attendant gauge symmetry.

We also saw that the geometry of the embedding space was not fully determined: any spherically
symmetric space would serve our purposes. This is a freedom we can further exploit. For calculational
purposes the linearity of the Schrödinger Equation (143) is very convenient but its usefulness is severely
limited by the normalization constraint. If Ψ1 and Ψ2 are flows in T∗P then the superposition Ψ3

in (152) will also be a flow in T∗P but only if the coefficients α1 and α2 are such that Ψ3 is properly
normalized. This restriction can be removed by choosing the extended embedding space T∗P+1 to
be flat—just set A = 0 and B = 1 in Equation (91). (The fact that this space is flat is evident in the
metric (89) for the discrete case.) We emphasize that this choice is not at all obligatory; it is optional.

The fact that in the flat space T∗P+1 superpositions are allowed for arbitrary constants α1 and
α2 means that T∗P+1 is not just a manifold; it is also a vector space. Each point Ψ in T∗P+1 is itself a
vector. Furthermore, since the vector tangent to a curve is just a difference of two vectors Ψ we see
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that that points on the manifold and vectors tangent to the manifold are objects of the same kind.
In other words, the tangent spaces T[T∗P+1]Ψ are identical to the space T∗P+1 itself.

The symplectic form Ω and the metric tensor G on the extended space T∗P+1 are given by
Equations (108) and (114). Since they are tensors Ω and G are meant to act on vectors but now they can
also act on all points Ψ ∈ T∗P+1 and not just on those that happen to be normalized and gauge fixed
according to (83). For example, the action of the mixed tensor J, Equation (115), on a wave function
Ψ is

Jμx
νx′Ψ

νx′ =

[
i 0
0 −i

](
Ψx

ih̄Ψ∗
x

)
=

(
iΨx

ih̄(iΨx)∗

)
, (172)

which indicates that J plays the role of multiplication by i, i.e., when acting on a point Ψ the action of J

is Ψ
J→ iΨ.

Dirac notation. We can at this point introduce the Dirac notation to represent the wave functions
Ψx as vectors |Ψ〉 in a Hilbert space. The scalar product 〈Ψ1|Ψ2〉 is defined using the metric G and the
symplectic form Ω,

〈Ψ1|Ψ2〉 def
=

1
2h̄

∫
dx dx′ (Ψ1x, ih̄Ψ∗

1x) (G + iΩ)

(
Ψ2x′

ih̄Ψ∗
2x′

)
. (173)

A straightforward calculation gives

〈Ψ1|Ψ2〉 =
∫

dx Ψ∗
1Ψ2 . (174)

The map Ψx ↔ |Ψ〉 is defined by

|Ψ〉 =
∫

dx|x〉Ψx where Ψx = 〈x|Ψ〉 , (175)

where, in this “position” representation, the vectors {|x〉} form a basis that is orthogonal and complete,

〈x|x′〉 = δxx′ and
∫

dx |x〉〈x| = 1̂ . (176)

Hermitian and unitary operators. The bilinear Hamilton functionals Q̃[Ψ, Ψ∗] with kernel
Q̂(x, x′) in Equation (121) can now be written in terms of a Hermitian operator Q̂ and its
matrix elements,

Q̃[Ψ, Ψ∗] = 〈Ψ|Q̂|Ψ〉 and Q̂(x, x′) = 〈x|Q̂|x′〉 . (177)

The corresponding Hamilton–Killing flows are given by

ih̄
d

dλ
〈x|Ψ〉 = 〈x|Q̂|Ψ〉 or ih̄

d
dλ

|Ψ〉 = Q̂|Ψ〉 . (178)

These flows are described by unitary transformations

|Ψ(λ)〉 = ÛQ(λ)|Ψ(0)〉 where ÛQ(λ) = exp
(
− i

h̄
Q̂λ

)
. (179)

Commutators. The Poisson bracket of two Hamiltonian functionals Ũ[Ψ, Ψ∗] and Ṽ[Ψ, Ψ∗],

{Ũ, Ṽ} =
∫

dx
(

δŨ
δΨx

δṼ
δih̄Ψ∗

x
− δŨ

δih̄Ψ∗
x

δṼ
δΨx

)
,

can be written in terms of the commutator of the associated operators, then

{Ũ, Ṽ} =
1
ih̄
〈Ψ|[Û, V̂]|Ψ〉 . (180)
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Thus, the Poisson bracket is the expectation of the commutator. This identity is much sharper than
Dirac’s pioneering discovery that the quantum commutator of two q-variables is analogous to the
Poisson bracket of the corresponding classical variables. Further parallels between the geometric and
the Hilbert space formulation of QM can be found in [56–64].

13. Remarks on ED and Quantum Bayesianism

Having discussed the ED approach in some detail it is now appropriate to comment on how
ED differs from the interpretations known as Quantum Bayesianism [20–22] and its closely related
descendant QBism [23,24]; for simplicity, I shall refer to both as QB. Both ED and QB adopt an epistemic
degree-of-belief concept of probability but there are important differences:

(a) QB adopts a personalistic de Finetti type of Bayesian interpretation while ED adopts an
impersonal entropic Bayesian interpretation somewhat closer but not identical to Jaynes’ [15–18].
In ED, the probabilities do not reflect the subjective beliefs of any particular person. They are
tools designed to assist us in those all too common situations in which are confused and due to
insufficient information we do not know what to believe. The probabilities will then provide
guidance as to what agents ought to believe if only they were ideally rational. More explicitly,
probabilities in ED describe the objective degrees of belief of ideally rational agents who have
been supplied with the maximal allowed information about a particular quantum system.

(b) ED derives or reconstructs the mathematical framework of QM—it explains where the symplectic,
metric, and complex structures, including Hilbert spaces and time evolution come from.
In contrast, at its current stage of development QB consists of appending a Bayesian interpretation
to an already existing mathematical framework. Indeed, assumptions and concepts from quantum
information are central to QB and are implicitly adopted from the start. For example, a major QB
concern is the justification of the Born rule starting from the Hilbert space framework while ED
starts from probabilities and its goal is to justify the construction of wave functions; the Born rule
follows as a trivial consequence.

(c) ED is an application of entropic/Bayesian inference. Of course, the choices of variables and of
the constraints that happen to be physically relevant are specific to our subject matter—quantum
mechanics—but the inference method itself is of universal applicability. It applies to electrons just
as well as to the stock market or to medical trials. In contrast, in QB the personalistic Bayesian
framework is not of universal validity. For those special systems that we call ‘quantum’ the
inference framework is itself modified into a new “Quantum-Bayesian coherence” in which the
standard Bayesian inference must be supplemented with concepts from quantum information
theory. The additional technical ingredient is a hypothetical structure called a “symmetric
informationally complete positive-operator-valued measure”. In short, in QB Born’s Rule is not
derived but constitutes an addition beyond the raw probability theory.

(d) QB is an anti-realist neo-Copenhagen interpretation; it accepts complementarity.
(Here complementarity is taken to be the common thread that runs through all
Copenhagen interpretations.) Probabilities in QB refer to the outcomes of experiments and not
to ontic pre-existing values. In contrast, in ED probabilities refer to ontic positions—including
the ontic positions of pointer variables. In the end, this is what solves the problem of quantum
measurement (see [70,71]).

14. Some Final Remarks

We conclude with a summary of the main assumptions:

• Particles have definite but unknown positions and follow continuous trajectories.
• The probability of a short step is given by the method of maximum entropy subject to a drift

potential constraint that introduces directionality and correlations, plus gauge constraints that
account for external electromagnetic fields.
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• The accumulation of short steps requires a notion of time as a book-keeping device. This involves
the introduction of the concept of an instant and a convenient definition of the duration between
successive instants.

• The e-phase space {ρ, Φ} has a natural symplectic geometry that results from treating the pair
(ρx, Φx) as canonically conjugate variables.

• The information geometry of the space of probabilities is extended to the full e-phase space by
imposing the latter be spherically symmetric.

• The drift potential constraint is updated instant by instant in such a way as to preserve both the
symplectic and metric geometries of the e-phase space.

The resulting entropic dynamics is described by the Schrödinger equation. Different sub-quantum
Brownian motions all lead to the same emergent quantum mechanics. In previous work we dealt
with an Einstein–Smoluchowski process; here we have explored an Oernstein–Uhlenbeck process.
Other “fractional” Brownian motions might be possible but have not yet been studied.

A natural question is whether these different sub-quantum Brownian motions might have
observable consequences. At this point our answer can only be tentative. To the extent that we
have succeeded in deriving QM and not some other theory one should not expect deviations in the
predictions for the standard experiments that are the subject of the standard quantum theory— at least
not in the non-relativistic regime. As the ED program is extended to other regimes involving higher
energies and/or gravity it is quite possible that those different sub-quantum motions might not be
empirically equivalent.

ED achieves ontological clarity by sharply separating the ontic elements from the epistemic
elements — positions of particles on one side and probabilities ρ and phases Φ on the other. ED is a
dynamics of probabilities and not a dynamics of particles. Of course, if probabilities at one instant are
large in one place and at a later time they are large in some other place one infers that the particles
must have moved—but nothing in ED describes what it is that has pushed the particles around. ED is
a mechanics without a mechanism.

We can elaborate on this point from a different direction. The empirical success of ED suggests that
its epistemic probabilities agree with ontic features of the physical world. It is highly desirable to clarify
the precise nature of this agreement. Consider, for example, a fair die. Its property of being a perfect
cube is an ontic property of the die which is reflected at the epistemic level in the equal assignment of
probabilities to each face of the die. In this example we see that the epistemic probabilities achieve
objectivity, and therefore usefulness, by corresponding to something ontic. The situation in ED is similar
except for one crucial aspect. The ED probabilities are objective, and they are empirically successful.
They must therefore reflect something real. However, it is not yet known what those underlying ontic
properties might possibly be. Fortunately, for the purposes of making predictions knowing those
epistemic probabilities is all we need.

The trick of embedding the e-phase space T∗P in a flat vector space T∗P+1 is clever but optional.
It allows one to make use of the calculational advantages of linearity. This recognition that Hilbert
spaces are not fundamental is one of the significant contributions of the entropic approach to our
understanding of QM. The distinction—whether Hilbert spaces are necessary in principle as opposed
to merely convenient in practice—is not of purely academic interest. It can be important in the search
for a quantum theory that includes gravity: Shall we follow the usual approaches to quantization
that proceed by replacing classical dynamical variables by an algebra of linear operators acting on
some abstract space? Or, in the spirit of an entropic dynamics, shall we search for an appropriately
constrained dynamics of probabilities and information geometries? First steps towards formulating a
first-principles theory along these lines are given in [114,115].
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Abstract: The evolution of an open system is usually associated with the interaction of the system with
an environment. A new method to study the open-type system evolution of a qubit (two-level atom)
state is established. This evolution is determined by a unitary transformation applied to the
qutrit (three-level atom) state, which defines the qubit subsystems. This procedure can be used
to obtain different qubit quantum channels employing unitary transformations into the qutrit system.
In particular, we study the phase damping and spontaneous-emission quantum channels. In addition,
we mention a proposal for quasiunitary transforms of qubits, in view of the unitary transform of the
total qutrit system. The experimental realization is also addressed. The probability representation of
the evolution and its information-entropic characteristics are considered.

Keywords: entropy; open systems; unitary evolution; qubit; qutrit

1. Introduction

The open system evolution of a qudit state is known to be the result of interactions with
an environment. Usually, the states of the complete system are thought to evolve by a unitary
transformation in the Hilbert space Ĥ = Ĥq ⊗ Ĥenv, then the density operator of the composite
system leads us, using the partial tracing procedure, to the density operator of the subsystem ρ̂q

(qudit), and its evolution is induced by the unitary evolution of the complete system. In this picture,
the qubit state dynamics needs the structure of the Hilbert space Ĥ corresponding to the presence of
two subsystems, qudit and environment [1]. In this work, we suggest a new mechanism to study the
open system evolution, which does not demand the complete system to have a subsystem.

We show that for any system without subsystems, there exist a unitary evolution, which due to
hidden correlations in the system, evolves according to the Gorini–Kossakowski–Sudarshan–Lindblad
equation [2–5]. We demonstrate this picture using the example of a qutrit (complete system without
subsystems), where the open-like evolution is available for their associated qubits.

In previous works [6–10], a new method to define different qubit density matrices from a qudit
system was established. This procedure uses the occupation probabilities and transition probability
amplitudes for different levels of a qudit system and groups them as if there exists two levels only.
This is done by mapping the qudit density matrix to the closest higher even-dimensional density matrix.
The partial trace operation then is enacted on the resulting matrix in order to obtain well-defined qubit
density matrices.

Entropy 2019, 21, 736; doi:10.3390/e21080736 www.mdpi.com/journal/entropy63
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The obtained qubits have been used to define a new geometric representation of the d-dimensional
qudit states through d Bloch vectors [10] associated with the generated qubits. Furthermore, it has
been possible to describe quantum phenomena as the entanglement on a two-qubit system in terms of
standard probabilities [9].

The evolution of a qutrit density matrix can provide the quantum channel, which maps the initial
state ρ̂a onto the density matrix ρ̂′a. The proposed open-type evolution establishes a new mechanism,
which will need a special state preparation and a specific unitary operation for the qutrit system, as we
will show later on. The experimental possibilities by which one can realize this new mechanism are
related to superconducting circuit devices [11,12].

Most quantum computing processes consider a set of pure qubit states, which are transformed by
unitary operators, also called gates, that are used to implement different computing algorithms. In this
article, instead, we have density matrices (which might be describing a mixed state) of larger qudit
systems. The definition of a set of qubit states from a qudit system is similar to the ideas established
in [13], where the emulation of a spin system was obtained from qudit states, and in [14], where
the quantum logic of qubits was simplified by the use of a higher dimensional Hilbert space; and in
general, with all the procedures that make use of larger Hilbert spaces. In this work, we demonstrate
that subsystems of qubits defined by larger systems can be used in quantum information. A principal
foundation of quantum computation is the study of quantum channels. These channels are linked to
unitary transformations of the qubit density matrix. There exist several channels that can describe
the interaction between a quantum system and its environment such as the bit-flip, depolarization,
spontaneous emission, phase, and amplitude damping channels. For this, the study of quantum
channels has been of relevance in the error correction theory of quantum computation [15,16].

Here, we present different examples of quantum channels, which act on the associated qubits
to qudit states. These quantum channels have the advantage of being represented as unitary
transformations acting in the qudit system, providing the possibility to study the qubits as if they were
interacting with an environment.

On the other hand, the study of the interaction of three-level systems with electromagnetic fields
has led to the discovery of important phenomena, such as the presence of dark states [17] together
with black resonances [18] and electromagnetically-induced transparency [19–21]. This is important to
our objectives as in some cases, the herein proposed qubit quantum channels can be obtained by a
unitary transformation of dark states, suggesting the possibility of checking our results experimentally.

The work is organized as follows: In Section 2, a review of the qubit density matrices that
are associated with a qutrit state is given. Furthermore, the association of a unitary transform of
the qutrit to the nonunitary transformations of the qubits is studied. In Section 3, the definitions
of the qubit phase damping and spontaneous-emission quantum channels are reviewed. Later,
the unitary transformations of a qutrit system are explicitly given, which yields the phase damping
and spontaneous-emission channels on the associated qubits. A way to obtain a quasi-unitary
transformation on the qubits is also explored. The change of entropy associated with the nonunitary
evolution of the qubits is discussed in Section 4. Finally, some concluding remarks are given.

2. Nonunitary Evolution for the Qubit Decomposition of Qutrit States

In a previous work [10], we showed the existence of six different qubit states associated with a
general qutrit density matrix:

ρ̂ =

⎛⎜⎝ ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

⎞⎟⎠ .

To define these states, different maps of ρ̂ to a 4 × 4 density matrix, with one row and one column
equal to zero (in such a way that ensures an eigenvalue equal to zero), were used. Then, the partial trace
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of the resulting 4 × 4 matrix was performed as if it was describing a two-qubit system. The obtained
qubit partial density operators can be explicitly written as:

ρ̂1 =

(
1 − ρ33 ρ13

ρ31 ρ33

)
, ρ̂2 =

(
1 − ρ22 ρ12

ρ21 ρ22

)
, ρ̂3 =

(
ρ11 ρ13

ρ31 1 − ρ11

)
,

ρ̂4 =

(
ρ22 ρ23

ρ32 1 − ρ22

)
, ρ̂5 =

(
ρ11 ρ12

ρ21 1 − ρ11

)
, ρ̂6 =

(
1 − ρ33 ρ23

ρ32 ρ33

)
. (1)

The qubit states can be characterized in different sets by their corresponding von Neumann
entropy Sk = −Tr ρk ln ρk, with k = 1, 2, . . . , 6. These qubits correspond to the reduction of the
three-level system to different two-level systems by the summation of the population probabilities of
two levels into one.

When the qutrit state is transformed using a general three-dimensional unitary matrix Û,
i.e., ρ̂′ = Û† ρ̂ Û, the qubits in Equation (1) are transformed in a nonunitary way. The transformed
qubit density matrices can be written by the following expressions:

ρ̂′1 =
1
D

(
D − M3,1N1,3 + M2,1N2,3 − M1,1N3,3 M3,3N1,3 − M2,3N2,3 + M1,3N3,3

M3,1N1,1 − M2,1N2,1 + M1,1N3,1 M3,1N1,3 − M2,1N2,3 + M1,1N3,3

)
,

ρ̂′2 =
1
D

(
D + M3,2N1,2 − M2,2N2,2 + M1,2N3,2 M3,3N1,2 − M2,3N2,2 + M1,3N3,2

−M3,2N1,1 + M2,2N2,1 − M1,2N3,1 −M3,2N1,2 + M2,2N2,2 − M1,2N3,2

)
,

ρ̂′3 =
1
D

(
M3,3N1,1 − M2,3N2,1 + M1,3N3,1 M3,3N1,3 − M2,3N2,3 + M1,3N3,3

M3,1N1,1 − M2,1N2,1 + M1,1N3,1 D − M3,3N1,1 + M2,3N2,1 − M1,3N3,1

)
,

ρ̂′4 =
1
D

(
−M3,2N1,2 + M2,2N2,2 − M1,2N3,2 −M3,2N1,3 + M2,2N2,3 − M1,2N3,3

M3,1N1,2 − M2,1N2,2 + M1,1N3,2 D + M3,2N1,2 − M2,2N2,2 + M1,2N3,2

)
,

ρ̂′5 =
1
D

(
M3,3N1,1 − M2,3N2,1 + M1,3N3,1 M3,3N1,2 − M2,3N2,2 + M1,3N3,2

−M3,2N1,1 + M2,2N2,1 − M1,2N3,1 D − M3,3N1,1 + M2,3N2,1 − M1,3N3,1

)
,

ρ̂′6 =
1
D

(
D − M3,1N1,3 + M2,1N2,3 − M1,1N3,3 −M3,2N1,3 + M2,2N2,3 − M1,2N3,3

M3,1N1,2 − M2,1N2,2 + M1,1N3,2 M3,1N1,3 − M2,1N2,3 + M1,1N3,3

)
, (2)

where Njk = (ρ̂Û)jk, D is the determinant of Û, and Mjk are the components of the minors of matrix
Û, i.e., its elements are the determinants after eliminating the (4 − j)th row and (4 − k)th column of
Û. The transformed states are characterized into different sets by their corresponding transformed
entropies S′

k = −Tr ρ′k ln ρ′k. We emphasize that the resulting qubit density matrices are associated,
in general, with a nonunitary evolution of the original qubits. This fact establishes a new mechanism
to obtain the open-like system evolution in a noncomposite qutrit system. Additionally, this procedure
can be extended to any qudit system, in view of the general definition of the qubit density matrices
obtained from a qudit system [10].

In [9], we discussed that a two-qubit density matrix with one of its rows and columns equal to
zero describes separable states, if one of the off-diagonal terms is equal to zero, for example, the state:

ρ̂ =

⎛⎜⎜⎜⎝
ρ11 ρ12 ρ13 0
ρ21 ρ22 ρ23 0
ρ31 ρ32 ρ33 0
0 0 0 0

⎞⎟⎟⎟⎠
is separable iff ρ23 = 0. To show this, one can consider the previous density matrix to be in the
standard two-qubit representation |00〉, |01〉, |10〉, and |11〉. It can be seen that the partial transpose
operation [22] implies the change ρ12 ↔ ρ21, and for this reason, the eigenvalues of ρ̂ with ρ23 = 0 are
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equal to the eigenvalues of its partial transpose. As the partial transpose is a nonnegative operator,
then the system is separable. The separability implies the invariance of the partial density matrices
under local unitary transformations. As this two-qubit density matrix has a pair of row-column with
a diagonal term equal to zero, the correspondence with a qutrit density matrix can be made. On the
other hand, the correspondence between two-qubit local unitary transformations and qutrit unitary
transformations can be made in the same way, e.g., by eliminating one row and one column of the
two-qubit local transformation. This procedure allows us to define different unitary transformations
that almost leave the qubits in Expression (1) invariant.

3. Phase Damping and Spontaneous-Emission Channels

It is known that the interaction of a qubit system with an environment leads to several physical
phenomena such as dissipation and decoherence in the qubit subsystem; an example of these
interactions is the phase damping channel. In this channel, the evolution of the qubit plus environment
(| · · · 〉q| · · · 〉e) is given by a unitary transformation T̂, which acts differently if the qubit is in the ground
or excited state, according to the following rules: T̂(|0〉q|0〉e) =

√
1 − p|0〉q|0〉e +

√
p|0〉q|1〉e and

T̂(|1〉q|0〉e) =
√

1 − p|0〉q|0〉e +
√

p|0〉q|2〉e with p being a probability, i.e., the environment subsystem
goes to a superposition of the states (|0〉e, |1〉e), or to (|0〉e, |2〉e), if the environment is in |0〉e, or |1〉e,
respectively [15,23]. This two-qubit unitary transformations result in a nonunitary change when the
partial trace over the environment subsystem is taken:(

1 − ρ22 ρ12

ρ∗12 ρ22

)
→

(
1 − ρ22 ρ12(1 − p)

ρ∗12(1 − p) ρ22

)
.

When the map is applied a very large number of times (→ ∞), it is straightforward that the initial
state tends to the completely decoherent state:(

1 − ρ22 ρ12

ρ∗12 ρ22

)
→

(
1 − ρ22 0

0 ρ22

)
,

with an exponential convergence.
The other example is the spontaneous-emission (also called the amplitude-damping) quantum

channel. In this channel, the dynamics of the qubit system plus the environment is determined by a
unitary transform T̂, which only acts if the qubit system is in the excited state |1〉q, according to the
following rules: T̂(|0〉q|0〉e) = |0〉q|0〉e and T̂(|1〉q|0〉e) =

√
1 − p|1〉q|0〉e +

√
p|0〉q|1〉e, where p is the

probability [15,23]. This channel then defines a nonunitary evolution over the qubit subsystem, which
transforms the qubit density matrix as follows:(

1 − ρ22 ρ12

ρ∗12 ρ22

)
→

(
1 − (1 − p)ρ22 ρ12

√
1 − p

ρ∗12
√

1 − p (1 − p)ρ22

)
.

If this channel is applied a very large number of times (→ ∞), the density matrix converges to a
ground state, i.e., (

1 − ρ22 ρ12

ρ∗12 ρ22

)
→

(
1 0
0 0

)
.

In addition to these examples, there exists another type of quantum channel defined in the theory
of interaction between a quantum system and an environment, which can be considered [15,23].

It is possible to demonstrate that phase damping and spontaneous-emission quantum channels
for qubits ρ̂1, . . . , ρ̂6 in Equation (1) can be obtained by the use of particular unitary transformations
of a qutrit state ρ̂. To justify this, we assumed a two-qubit quantum system where one of the levels
cannot be populated, i.e., the 4 × 4 density matrix has an eigenvalue equal to zero, e.g.,
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ρ̂ =

⎛⎜⎜⎜⎝
ρ11 ρ12 ρ13 0
ρ21 ρ22 0 0
ρ31 0 ρ33 0
0 0 0 0

⎞⎟⎟⎟⎠ ; (3)

it is clear that this density matrix is separable since ρ23 = ρ∗32 = 0. The partial density matrices can
be operated locally by unitary transformations of the form û1 ⊗ û2. When only one of the qubits is
operated, i.e., when the unitary matrix corresponds to a controlled operation [15]: û1 = Î or û2 = Î.
If û2 = Î, then the unitary transformation only operates over the second qubit,

û =

⎛⎜⎜⎜⎝
u11 u12 0 0
u21 u22 0 0
0 0 u11 u12

0 0 u21 u22

⎞⎟⎟⎟⎠ . (4)

By means of this type of unitary matrix, one can define an operation in the qutrit system that
approximately only affects ρ̂2. This is done by ignoring the fourth row and the fourth column of (3);
the resulting qutrit state is then operated by the unitary matrix resulting from the elimination of the
fourth row and the fourth column of Equation (4). For the operator to be still unitary, the (3, 3) entry
must be replaced by one. Following these and other analogous arguments, we study the application of
the unitary transforms:

Û1 =

⎛⎜⎝ u11 u12 0
u21 u22 0
0 0 1

⎞⎟⎠ , Û2 =

⎛⎜⎝ u11 0 u12

0 1 0
u21 0 u22

⎞⎟⎠ , Û3 =

⎛⎜⎝ 1 0 0
0 u11 u12

0 u21 u22

⎞⎟⎠ (5)

on the qutrit density matrices:

σ̂1 =

⎛⎜⎝ ρ11 ρ12 ρ13

ρ21 ρ22 0
ρ31 0 ρ33

⎞⎟⎠ , σ̂2 =

⎛⎜⎝ ρ11 0 ρ13

0 ρ22 ρ23

ρ31 ρ32 ρ33

⎞⎟⎠ , σ̂3 =

⎛⎜⎝ ρ11 ρ12 0
ρ21 ρ22 ρ23

0 ρ23 ρ33

⎞⎟⎠ . (6)

The unitary transformations in Equation (5) can be enacted on any of the density matrices
in Equation (6), which define a nonunitary transformation of the qubits defined in Equation (1).
These qubit transformations are found by the substitution of Equations (5) and (6) into Equation (2),
e.g., the unitary transformation Û†

1 σ̂1Û1 results in the following transformations of the qubits:

ρ̂′1 =

(
1 − ρ33 ρ13 u∗

11
ρ31 u11 ρ33

)
,

ρ̂′2 =

(
1 − u∗

12(σ̂1Û1)12 − u∗
22(σ̂1Û1)22 u∗

11(σ̂1Û1)12 + u∗
21(σ̂1Û1)22

u∗
12(σ̂1Û1)11 + u∗

22(σ̂1Û1)21 u∗
12(σ̂1Û1)12 + u∗

22(σ̂1Û1)22

)
,

ρ̂′3 =

(
u∗

11(σ̂1Û1)11 + u∗
21(σ̂1Û1)21 ρ13 u∗

11
ρ31 u11 1 − u∗

11(σ̂1Û1)11 − u∗
21(σ̂1Û1)21

)
,

ρ̂′4 =

(
u∗

12(σ̂1Û1)12 + u∗
22(σ̂1Û1)22 ρ13u∗

12
ρ31u12 1 − u∗

12(σ̂1Û1)12 − u∗
22(σ̂1Û1)22

)
,

ρ̂′5 =

(
u∗

11(σ̂1Û1)11 + u∗
21(σ̂1Û1)21 u∗

11(σ̂1Û1)12 + u∗
21(σ̂1Û1)22

u∗
12(σ̂1Û1)11(r11u11 + r12u21) + u∗

22(σ̂1Û1)21 1 − u∗
11(σ̂1Û1)11 − u∗

21(σ̂1Û1)21

)
,

ρ̂′6 =

(
1 − ρ33 ρ13 u∗

12
ρ31 u12 ρ33

)
.
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From these results, one can notice that the transformed qubits ρ̂′1 and ρ̂′6 correspond to the phase
damping channel of ρ̂1 with different damping parameters. Furthermore, the qubit states ρ̂′2, ρ̂′5
can be seen as quasi-unitary transformations of the initial states ρ̂2, ρ̂5, respectively. In a similar
way, one can obtain all the possible unitary transformations of the density matrices in Equation (6).
These transformations lead to the identification of two types of quantum channels: the phase damping
and a quasi-unitary operation described below.

The unitary transformation over the density matrices σ̂1, σ̂2, and σ̂3 results in a change over their
associated qubits ρ̂1, . . . , ρ̂6, to ρ̂′1, . . . , ρ̂′6, which denote the qubits after the transformation. We have
found the following interesting expressions:

Û†
1 σ̂1Û1 ⇒ ρ̂′1 =

(
1 − ρ33 u∗

11ρ13

u11ρ31 ρ33

)
, ρ̂′6 =

(
1 − ρ33 u∗

12ρ13

u12ρ31 ρ33

)
;

Û†
2 σ̂1Û2 ⇒ ρ̂′2 =

(
1 − ρ22 u∗

11ρ12

u11ρ21 ρ22

)
, ρ̂′4 =

(
1 − ρ33 u∗

12ρ12

u12ρ21 ρ33

)
;

Û†
2 σ̂2Û2 ⇒ ρ̂′2 =

(
1 − ρ22 u∗

21ρ32

u21ρ23 ρ22

)
, ρ̂′4 =

(
ρ22 u22ρ23

u∗
22ρ32 1 − ρ22

)
; (7)

Û†
3 σ̂2Û3 ⇒ ρ̂′3 =

(
ρ11 u22ρ13

u∗
22ρ31 1 − ρ11

)
, ρ̂′5 =

(
ρ11 u21ρ13

u∗
21ρ31 1 − ρ11

)
;

Û†
1 σ̂3Û1 ⇒ ρ̂′1 =

(
1 − ρ33 u∗

21ρ23

u21ρ32 ρ33

)
, ρ̂′6 =

(
1 − ρ33 u∗

22ρ23

u22ρ32 ρ33

)
;

Û†
3 σ̂3Û3 ⇒ ρ̂′3 =

(
ρ11 u12ρ12

u∗
12ρ21 1 − ρ11

)
, ρ̂′5 =

(
ρ11 u11ρ12

u∗
11ρ21 1 − ρ11

)
.

In most of the cases, the resulting qubits ρ̂′j correspond to the phase damping quantum channel
of ρ̂j, as can be seen in Expression (8). In this channel, the probability amplitudes given by the
original off-diagonal terms of the qubits are multiplied by a number. The damping parameters are
associated with different entries of the unitary transformation ujk, which in general are complex
numbers. When the unitary transformation correspond to a real matrix, then the expression for the
standard phase damping map is obtained. As you can see in Equation (8), in some cases, the unitary
transformations leads to the quantum channel of another qubit, e.g., after the application of Û1 to
σ̂1, the qubit ρ̂′6 is the phase damping channel of ρ̂1. Furthermore, in some other cases, the obtained
density matrices correspond to transformations similar to the phase damping channel of matrices
outside the ones in Equation (1), e.g., ρ̂′4 after the application of Û2 to σ̂1. Although these matrices
seem unrelated, they have the same form as the phase damping channel. In the case of Û being a
rotation matrix with a time-dependent angle θ = ωt, the original qubit states can be recovered at the
time t = 2πl/ω, l = 0, 1, 2, . . ..

The unitary transformations (Û1, Û2, Û3) previously described can also lead to quasi-unitary
transformations of the qubits. In particular, for the unitary transformation Û†

1 σ̂1Û1, one gets the
quasi-unitary transformations:

ρ̂′2 = Û †ρ̂2 Û + ρ33

(
|u12|2 −u∗

11u12

−u11u∗
12 −|u12|2

)
,

ρ̂′5 = Û †ρ̂5 Û + ρ33

(
−|u21|2 −u∗

21u22

−u21u∗
22 |u21|2

)
, (8)
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with Û =

(
u11 u12

u21 u22

)
being a two-dimensional unitary transformation. For the other qubits, one

can also define quasi-unitary transformations as follows:

(a) From the qutrit unitary transformation Û†
1 σ̂3Û1,

ρ̂′2 = Û †ρ̂2 Û + ρ33

(
−|u12|2 u∗

11u12

u11u∗
12 |u12|2

)
,

ρ̂′5 = Û †ρ̂5 Û + ρ33

(
|u21|2 u∗

21u22

u21u∗
22 −|u21|2

)
, (9)

(b) For the transformation Û†
2 σ̂1Û2,

ρ̂′1 = Û †ρ̂1 Û + ρ22

(
|u12|2 −u∗

11u12

−u11u∗
12 −|u12|2

)
,

ρ̂′3 = Û †ρ̂3 Û + ρ22

(
−|u21|2 −u∗

21u22

−u21u∗
22 |u21|2

)
. (10)

(c) For the transformation Û†
2 σ̂2Û2,

ρ̂′1 = Û †ρ̂1 Û + ρ22

(
|u12|2 −u∗

11u12

−u11u∗
12 −|u12|2

)
,

ρ̂′3 = Û †ρ̂3 Û + ρ22

(
−|u21|2 −u∗

21u22

−u21u∗
22 |u21|2

)
, (11)

(d) From Û†
3 σ̂2Û3,

ρ̂′4 = Û †ρ̂4 Û + ρ11

(
−|u21|2 −u∗

12u22

−u21u∗
22 |u21|2

)
,

ρ̂′6 = Û †ρ̂6 Û + ρ11

(
−|u12|2 u∗

11u12

u11u∗
12 |u12|2

)
. (12)

(e) Finally, for Û†
3 σ̂3Û3,

ρ̂′4 = Û †ρ̂4 Û + ρ11

(
−|u21|2 −u∗

12u22

−u21u∗
22 |u21|2

)
,

ρ̂′6 = Û †ρ̂6 Û + ρ11

(
−|u12|2 u∗

11u12

u11u∗
12 |u12|2

)
, (13)

For all the cases, Û is a two-dimensional unitary transformation.
As in the phase-damping case, one can think of a rotation matrix with a time-dependent angle

θ = ωt as the unitary operation, i.e.,

Û =

(
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)
,
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which, in the case where t ≈ 0, results in the following transformations:

ρ̂′j = Û †ρ̂j Û − ρkk ω t σ̂x +O(t2) , (14)

where σ̂x is the Pauli matrix and ρkk is a diagonal component of ρ̂, which depends on j. Its value is
k = 2 for j = 1, 3, k = 3 for j = 2, 5, and k = 1 for j = 4, 6. It is necessary to point out that, for ρ̂′5
associated with Û†

1 σ̂3Û1, we need to replace ρ33 with −ρ33 in Equation (14).
In the case where the density matrices correspond to states, where one of the accessible levels is

not occupied, i.e.,

σ̂4 =

⎛⎜⎝ ρ11 ρ12 0
ρ21 ρ22 0
0 0 0

⎞⎟⎠ , σ̂5 =

⎛⎜⎝ ρ11 0 ρ13

0 0 0
ρ31 0 ρ33

⎞⎟⎠ , σ̂6 =

⎛⎜⎝ 0 0 0
0 ρ22 ρ23

0 ρ32 ρ33

⎞⎟⎠ , (15)

we obtain the expressions:

Û†
2 σ̂4Û2 ⇒ ρ̂′5 =

(
ρ11|u11|2 ρ12u∗

11
ρ21u11 1 − ρ11|u11|2

)
, ρ̂′6 =

(
1 − ρ11|u12|2 ρ21u12

ρ12u∗
12 ρ11|u12|2

)
,

Û†
3 σ̂4Û3 ⇒ ρ̂′1 =

(
1 − ρ22|u12|2 ρ12u12

ρ21u∗
12 ρ22|u12|2

)
, ρ̂′2 =

(
1 − ρ22|u11|2 ρ12u11

ρ21u∗
11 ρ22|u11|2

)
,

Û†
1 σ̂5Û1 ⇒ ρ̂′3 =

(
ρ11|u11|2 ρ13u∗

11
ρ31u11 1 − ρ11|u11|2

)
, ρ̂′4 =

(
ρ11|u12|2 ρ13u∗

12
ρ31u12 1 − ρ11|u12|2

)
, (16)

Û†
3 σ̂5Û3 ⇒ ρ̂′1 =

(
1 − ρ33|u22|2 ρ13u22

ρ31u∗
22 ρ33|u22|2

)
, ρ̂′2 =

(
1 − ρ33|u21|2 ρ13u21

ρ31u∗
21 ρ33|u21|2

)
,

Û†
1 σ̂6Û1 ⇒ ρ̂′3 =

(
ρ22|u21|2 ρ23u∗

21
ρ32u21 1 − ρ22|u21|2

)
, ρ̂′4 =

(
ρ22|u22|2 ρ23u∗

22
ρ32u22 1 − ρ22|u22|2

)
,

Û†
2 σ̂6Û2 ⇒ ρ̂′5 =

(
ρ33|u21|2 ρ32u∗

21
ρ23u21 1 − ρ33|u21|2

)
, ρ̂′6 =

(
1 − ρ33|u22|2 ρ23u22

ρ32u∗
22 ρ33|u22|2

)
.

These transformations in many of the cases can represent the spontaneous-emission quantum
channel. As in the other examples studied above, when the unitary matrices are rotated by angle
θ = ωt, the original qubit systems can be recovered at times t = 2πl/ω; l = 0, 1, 2, . . .. It is important
to mention that the states represented by Equation (15) correspond to three-level systems, where one
of the levels is a dark state, and then only two of the levels can be populated, which have been
experimentally obtained [24]. These kinds of systems have been of relevance as they can be created by
two-photon processes in a three-level system [25] or by the adiabatic variation of the Rabi frequencies
associated with the transitions between the three states [26]. For example, to obtain the state σ̂4, one can
think of an atomic Λ-type three-level system (|1〉, |2〉, |3〉), which interacts with an environment [26];
see Figure 1. The Hamiltonian associated with this system can be written in the form:

Ĥ =

⎛⎜⎝ ω1 0 ω13

0 ω2 ω23

ω13 ω23 0

⎞⎟⎠ ,

where ω1,2 are the energies of the states |1〉, |2〉, respectively. By considering the energy of the ground
state |3〉 equal to zero, ω13 and ω23 are the transition energies. Taking the zero energy in the ground
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state |3〉, we can make the replacements ω13 → ω1 e−iω1t and ω23 → ω2 e−iω2t. The time evolution of
the density matrix can be obtained by the expression:

d
dt

ρ̂ = i[ρ̂, Ĥ] + ρ̂′ , (17)

where the matrix ρ̂′ is given by the interaction of the original density matrix with the environment:

ρ̂′ =

⎛⎜⎝ γ31ρ33 −γ′ρ12 −γ1ρ13

−γ′ρ21 γ32ρ33 −γ2ρ23

−γ1ρ31 −γ2ρ32 −γρ33

⎞⎟⎠ ,

where the parameters γ31, γ32, and γ are the spontaneous-emission rates, which must satisfy
γ = γ31 + γ32, and the relaxation terms for the coherence components are named γ1 and γ2, which also
satisfy γ′ = γ1 + γ2. The resulting differential Equation (17) can be reduced by considering that the
variation of the parameters ρ13, ρ23, and ρ33 over time is smaller compared to the spontaneous emission
and decoherence terms γ31 and γ32; this is called the adiabatic hypothesis. Under this hypothesis,
it is possible to obtain a state with ρ13 = ρ23 = ρ33 = 0, as the solution of the evolution of the density
matrix σ̂4 discussed above.

Another way to obtain these types of systems is the case where the environmental interaction is
neglected, i.e., ρ̂′ = 0 in Equation (17). The corresponding Schrödinger equation is i d|ψ〉

dt = Ĥ|ψ〉,
with |ψ〉 = a1(t)e−iω1t|1〉 + a2(t)e−iω2t|2〉 + a3(t)|3〉, which in view of the initial conditions
a1(0) =

ω2√
ω2

1+ω2
2
, a2(0) = − ω1√

ω2
1+ω2

2
, a3(0) = 0 leads to the solution:

a1(t) =
ω2√

ω2
1 + ω2

2

, a2(t) = − ω1√
ω2

1 + ω2
2

; a3(t) = 0 ,

so the level |3〉 is never populated.
The density matrices σ̂5 and σ̂6 can be obtained by means of analogous procedures applied to the

V and Ξ configurations of the three-level system depicted in Figure 1.

1

2
3

1312

12

32

3

1

2

1

2

3

32

21

Figure 1. State configurations for the V- (left), the Λ- (center), and the Ξ-level (right) systems.

It is also important to mention that the unitary transformations defined by the matrices Û1, Û2,
and Û3 in Equation (5) can be generated experimentally by different proposed mechanisms, such as
sliding mode control [27], adiabatic passage [28–30], and the robust control scheme [31,32]. We want
to emphasize that the resulting quasi-unitary evolutions and the different quantum channels obtained
in our work can have applications in quantum computing and quantum information theories. We
think so because the quasi-unitary operations discussed here could be used as approximations to the
standard quantum gates, and furthermore, the obtained quantum channels could also be used in the
quantum correction algorithms found in the literature.
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4. Probability Representation of the Qubit-State Evolution

In the quantum tomographic approach of qubit states [33,34], the states are identified with
tomographic probability distributions. In the case of the minimal number of probability parameters,
the density matrix of the qubit (spin-1/2) state reads [6]:

ρ̂ =

(
p3 p1 − 1/2 − i(p2 − 1/2)

p1 − 1/2 + i(p2 − 1/2) 1 − p3

)
,

3

∑
j=1

(
pj − 1

4

)2
≤ 1

4
, (18)

where 0 ≤ pk,≤ 1 with k = 1, 2, 3 are the probabilities to obtain the value +1/2 in the x, y, z
axis, respectively. Thus, any qubit state can be identified through the probabilities p1, p2, and p3,
i.e., given the density operator, one can get the set ρ̂ ↔ p1, p2, p3 and vice versa. In the case of
qubits (1) associated with the qutrit state, the evolution of the probabilities after the unitary operation
of the qutrit is determined by Equation (2). For example, we have a probabilistic representation
corresponding to ρ̂′5 in the first formula of Equation (17), i.e.,

p3 → p3|u11|2, p1 − 1/2 − i(p2 − 1/2) → (p1 − 1/2 − i(p2 − 1/2))u∗
11 . (19)

The change of probabilities can be characterized by the evolution of the Tsallis and Shannon
entropies. For example, in (19), the unitary matrix parameter u11 determines the evolution of the
Shannon entropy related to a coin probability distribution (p3, 1 − p3) (assume that we have two
nonideal classical coins I and II in such a game as coin flipping, coin tossing, or heads (up, ⊕) or tails
(down, �), which is the practice of throwing a coin in the air and checking which side is showing
when it lands, in order to choose between two alternatives Pk or (1 − Pk); k = 1, 2). This evolution is of
the form:

S(Û) = −p3|u11|2 ln
(

p3|u11|2
)
− (1 − p3|u11|2) ln

(
1 − p3|u11|2

)
.

This entropy, as a function of the unitary evolution applied to the qutrit state, characterizes some
aspects of the open dynamics of qubits. We point out that, as for p3, there exist other classical entropic
characteristics associated with the evolution of p1 and p2 given by Equation (19).

5. Concluding Remarks

A new mechanism to study the open system evolution of a noncomposite qudit system was
established. As an example of the general procedure, we considered a qutrit system. Associated with
the qutrit system, one can define different qubit density matrices, which evolve in an open-like way
when a unitary transformation is enacted on the qutrit.

The application of the resulting transformations for the qubits within the qutrit was also discussed.
The quasi-unitary transformations obtained here might be used as an approximation to quantum gates,
whereas the quantum channels could be employed in quantum correction protocols.

Different types of quantum channels can be observed using the qubit decomposition of a qutrit
system. In particular, the phase damping and the spontaneous-emission channels were obtained using
a unitary transformation acting on specific qutrit density matrices. The phase damping channel was
obtained when a unitary transformation of the density matrix with one off-diagonal term equal to zero
was performed. A spontaneous-emission channel can be observed by unitary transformations acting
over a dark state, i.e., a three-level state where one of the levels cannot be populated.

In addition to these channels, quasi-unitary transformations of the qubit states can be defined.
This was also done by the application of a unitary matrix to the generic qutrit state.

The entropy evolution of the tomographic-probability distributions determined by the system of
qubits was discussed.

We can extend our analysis to other qudit systems without subsystems since, o an arbitrary spin-j
density matrix and the spin unitary evolution, one can associate the smaller spin j′ < j evolution.
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The possible experimental implementation of the procedure was also addressed, given that
there exist several proposed ways to generate the unitary transformations such as by sliding mode
control [27], adiabatic passage [28–30], or the robust control scheme [31,32].
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Abstract: This study considers the minimum error discrimination of two quantum states in terms of
a two-party zero-sum game, whose optimal strategy is a minimax strategy. A minimax strategy is
one in which a sender chooses a strategy for a receiver so that the receiver may obtain the minimum
information about quantum states, but the receiver performs an optimal measurement to obtain
guessing probability for the quantum ensemble prepared by the sender. Therefore, knowing whether
the optimal strategy of the game is unique is essential. This is because there is no alternative if
the optimal strategy is unique. This paper proposes the necessary and sufficient condition for an
optimal strategy of the sender to be unique. Also, we investigate the quantum states that exhibit
the minimum guessing probability when a sender’s minimax strategy is unique. Furthermore, we
show that a sender’s minimax strategy and a receiver’s minimum error strategy cannot be unique
if one can simultaneously diagonalize two quantum states, with the optimal measurement of the
minimax strategy. This implies that a sender can confirm that the optimal strategy of only a single
side (a sender or a receiver but not both of them) is unique by preparing specific quantum states.

Keywords: quantum state discrimination; quantum minimax; uniqueness of strategy; guessing
probability

1. Introduction

Quantum information processing can be achieved by discriminating quantum states, where
classical information is encoded. Quantum states which are orthogonal to each other can be perfectly
distinguishable. However, non-orthogonal quantum states cannot be perfectly discriminated. Therefore,
one needs to have a discrimination strategy for non-orthogonal quantum states, and there are various
strategies [1–4] such as minimum error discrimination (MD) [4–7], unambiguous discrimination [8–12],
maximum confidence discrimination [13], and discrimination of fixed rate inconclusive result [14–18].
Unambiguous discrimination is a strategy where there is no error in the conclusive result by allowing
an inconclusive result. Maximum confidence is a strategy where one maximizes the confidence of a
conclusive result. Discrimination of fixed rate inconclusive result is a strategy where one may fix the
rate of an inconclusive result. Among these strategies, the MD strategy can conclusively discriminate
quantum states with a prior probability.

The MD strategy is employed for quantum states with a given prior probability, and the quantum
states are optimally measured. MD strategy is that one maximizes the probability that the result of
measurement of a receiver correctly points out the quantum state that a sender transmitted when only
a conclusive result is permitted. The maximum probability is called guessing probability. One can
investigate the behavior of MD in terms of a prior probability when quantum states are given.

Because the guessing probability is obtained based on prior probability, a change in prior
probability results in different guessing probabilities, which implies that prior probabilities can be
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considered as a strategy of a sender. Even though one has discussed the uniqueness of measurement
strategy in discrimination of two quantum states, the strategy of preparation such as a prior probability,
which can be a strategy of a sender, has not been discussed in terms of identical guessing probability
and optimal measurement strategy.

Quantum minimax approach is obtained by applying the minimax approach of a statistical
decision to quantum state discrimination. Von Neumann, the inventor of game theory, showed that
there exists a solution to the minimax problem when sender and receiver can choose a finite number of
strategies in a two-person zero-sum game. Wald proved that the necessary and sufficient condition to
the existence of a solution to the minimax problem is that the set of strategy for sender and receiver
is countable [19]. Hirota and Ikehara discussed quantum minimax theorem, using the fact that the
set of measurement strategy satisfies compactness [20]. They suggested the necessary and sufficient
condition for minimax strategy in quantum state discrimination.

Further, by mean value theorem D’Ariano showed that there exists a quantum minimax strategy
for two quantum state discrimination and provided a sufficient condition for the strategy [21]. However,
in spite of these studies, the necessary and sufficient condition for uniqueness of minimax strategy in
two quantum state discrimination is not known yet. Even more, the uniqueness of minimax strategy in
two quantum state discrimination is not understood in terms of sender’s strategy, which is a selection
of prior probability.

This study investigates a two-person zero-sum game where the payoff is defined by the correct
probability of two quantum states [19–22]. The optimal strategy of the game is a minimax strategy,
where the minimax strategy of a receiver is to select the optimal measurement providing MD and the
minimax strategy of a sender is to choose the prior probability providing the minimum of guessing
probability, which is displayed in Figure 1.

Figure 1. The strategy of the sender(Alice) and the receiver(Bob) in two-person zero-sum quantum
game. The strategy of Alice is to choose the optimal prior probability q, which is the probability of
quantum states prepared in the quantum system, to minimize the payoff. The strategy of Bob is to
choose the optimal measurement to maximize payoff.

In this scenario, the prior probability and the measurement in MD are constructed as the strategy
of a sender Alice and a receiver Bob [20,21]. First, Alice sends the quantum states, where classical
information (x = 1, 2) is encoded, to Bob. Because the quantum states are not orthogonal to each other,
a single measurement of Bob cannot perfectly discriminate the quantum states. Therefore, a suitable
strategy is needed. Here Bob should choose a measurement strategy that can perform MD.

Meanwhile, a suitable selection of prior probability can be obtained by Alice, as a sender’s
strategy. Alice’s strategy is to interfere with the minimum error strategy of Bob to minimize the
guessing probability. Because Bob should perform MD without noticing Alice’s strategy, Bob tries to
find an optimal strategy to obtain a payoff. Therefore, the minimum of guessing probability implies
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that a suitable selection of prior probability lets Bob obtain the minimum of guessing probability when
Bob performs an optimal measurement. Furthermore, if Bob cannot perform an optimal measurement,
he obtains a probability less than the guessing probability.

The quantum minimax theorem [20,21] can be used to prove that Alice and Bob can set up an
optimal strategy on both sides. However, it is not known whether the minimax strategy is unique
or not. The uniqueness of the optimal strategy of the game is important in performing the game.
There is no alternative to a unique optimal strategy. Therefore, a strategy cannot be optimal if an
error occurs when performing the strategy. However, a strategy can still be optimal if it is not unique,
even though an error occurs in the strategy. In this light, it is crucial to know whether the minimax
strategy is unique, when the strategy is optimal in the game. Here, we investigate the condition for
uniqueness of the optimal strategy of a sender. The condition is described by the quantum states and
the minimax strategy of a receiver. More explicitly, we study the necessary and sufficient condition
for the uniqueness of a sender’s strategy. Using the condition, we investigate the quantum states that
exhibit the minimum of guessing probability when a sender’s minimax strategy is unique.

Also, we show that a sender’s minimax strategy and a receiver’s minimum error strategy cannot
be unique if two quantum states are simultaneously diagonalized with the optimal measurement
of minimax strategy. Therefore, a sender can make the optimal strategy of only a single side unique
by preparing specific quantum states. Our investigation can be applied to various fields. As the first
example of our investigation, we explain how the BB84 protocol [23] with equal prior probability is
optimal in terms of the minimax strategy. We also discuss how the results of this study can be applied
to building a quantum random number generator(QRNG) [24–26].

This paper is organized as follows. In Section 2, we explain the necessary background of our
investigation. In Section 3, for the minimax strategy of a sender, we provide the necessary and sufficient
condition for uniqueness of the optimal strategy. We investigate the uniqueness of the strategy of the
sender for some quantum states by using this condition. Furthermore, we obtain the condition under
which both the sender’s minimax strategy and the receiver’s optimal minimum error strategy cannot
be unique. Finally, we discuss the results and conclusions in Section 4.

2. Preliminaries

For two quantum states ρ1 and ρ2, the minimal subspace H for discriminating ρ1 and ρ2 should
satisfy H = Supp(ρ1 + ρ2). In this study, we assume that the rank of quantum state is finite. Then,
by the relation dimH ≤ rank(ρ1) + rank(ρ2), a quantum state or an optimal measurement can be
represented as an operator on finite dimensional Hilbert space.

The MD of two quantum states ρ1 and ρ2 is a strategy to determine the maximum value of
correct probability Pcorr = qtr(ρ1 M1) + (1 − q)tr(ρ2 M2), which is called guessing probability, by
performing an optimal measurement. The maximum value of the correct probability is known as
Helstrom bound [27].

Assuming that the prior probabilities of two quantum states ρ1 and ρ2 are q and 1− q, respectively,
one can obtain the following lemma in the MD of the two quantum states. (The proof can be found in
the Appendix A).

Lemma 1 (Optimal condition of MD for two quantum states [27,28]). The necessary and sufficient
condition for optimal measurement {Mx}2

x=1 is given by

(−1)x ((1 − q)ρ2 − qρ1) Mx ≥ 0 ∀x ∈ {1, 2}. (1)

In general, the optimal measurement in MD is not unique. If the nullity of operator Λ ≡ (1 −
q)ρ2 − qρ1 is d, there exist at least 2d number of optimal extreme POVMs. A convex combination
of these POVM also provides an optimal measurement of MD. When Λ has full rank, the optimal
measurement is unique. Quantum minimax theorem tells that among optimal MD strategies there
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is at least a POVM of minimax strategy in a prior probability providing the minimum of guessing
probability [20,21].

Theorem 1 (Quantum minimax theorem [20,21]). There exists an a priori probability q� = (q�, 1 − q�) for
the states ρ1 and ρ2, and a measurement M� = (M�

1 , M�
2) such that

minqmaxMPcorr(q, M) = Pcorr(q
�, M�) = maxMminqPcorr(q, M) (2)

where q� ∈ (0, 1), Pcorr(q, M) =
2

∑
x=1

qxtr(ρx Mx).

Note that when quantum states are prepared in a prior probability q, maxMminqPcorr(q, M) =

Pcorr(q�, M�) implies that the measurement of M� is optimal and minqmaxMPcorr(q, M) =

Pcorr(q�, M�) implies that the prior probability of q� provides the minimum of guessing probability.
However, every optimal MD in the prior probability of q� is not a minimax strategy of Bob. Suppose
that a measurement of N = (N1, N2) in the prior probability of q� is an optimal strategy of MD,
satisfying tr(ρ1N1) > tr(ρ2N2) > 0. Then, the strategy of Alice in q� cannot be a prior probability for
the minimax strategy, as q̃ = (0, 1) of Alice’s strategy provides a lower guessing probability than that
of q�:

Pcorr(q
�, N) = q�tr(ρ1N1) + (1 − q�)tr(ρ2N2) > tr(ρ2N2) = Pcorr(q̃, N). (3)

Therefore, the first condition that the minimax strategy M� of Bob should satisfy is tr(ρ1 M�
1) =

tr(ρ2 M�
2). Because the measurement of M� is an optimal strategy for the prior probability of q�, it

satisfies the optimal condition of MD, which is the second condition. Inversely, the fulfillment of the
two conditions is the sufficient condition for the minimax strategy.

Here, the conditions can be explained as follows. Suppose that a measurement M◦ = (M◦
1 , M◦

2)

satisfies tr(ρ1 M◦
1) = tr(ρ2 M◦

2) and is optimal for the prior probability of q◦. Then, we find the
following relation:

minqmaxMPcorr(q, M) ≤ maxMPcorr(q
◦, M) = Pcorr(q

◦, M◦) = minqPcorr(q, M◦). (4)

The last equality holds by tr(ρ1M◦
1) = tr(ρ2M◦

2). Because of minqmaxMPcorr(q, M) ≥ minqPcorr(q, M◦),
we find minqmaxMPcorr(q, M) = minqPcorr(q◦, M◦). And the following relation holds:

maxMminqPcorr(q, M) ≤ minqPcorr(q, M◦) = Pcorr(q
◦, M◦) = maxMPcorr(q

◦, M) (5)

The first equality is obtained by tr(ρ1 M◦
1) = tr(ρ2 M◦

2). Because of maxMminqPcorr(q, M) ≥
maxMPcorr(q◦, M), we obtain maxMminqPcorr(q, M) = maxMPcorr(q◦, M◦) and
minqmaxMPcorr(q, M) = Pcorr(q◦, M◦) = maxMminqPcorr(q, M). It implies that (q◦, M◦) is a
minimax strategy. Then, one can obtain the following lemma.

Lemma 2. When MD is performed for a given prior probability, the minimum of guessing probability is obtained
iff an optimal measurement {Mx}2

x=1 satisfies tr(ρ1 M1) = tr(ρ2 M2).

3. Results

This section presents the necessary and sufficient condition that ensures the uniqueness of the
minimax strategy of a sender. Because there always exists a minimax strategy for the quantum minimax
theorem, when one finds a minimax strategy, one can obtain the condition by which the strategy is
unique. When MDs with different prior probabilities can provide the same guessing probability, the
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following lemma provides the condition by which the MDs with different prior probabilities can have
the same optimal measurement (The proof of this lemma can be found in the Appendix A).

Lemma 3. The quantum ensembles of S1 and S2 are given as {px, ρx}2
x=1 and {qx, ρx}2

x=1, respectively, where

p1 �= q1. Suppose that in the MD of a quantum ensemble Sx, the guessing probability is p(x)
guess and the minimum

value of guessing probability is p�guess. Then, when p(1)guess = p(2)guess, if there exists an measurement that can

simultaneously perform MD on two quantum ensembles S1 and S2, one can obtain p(1)guess = p�guess.

Note that the optimal measurement performing simultaneous MD on two quantum ensemble S1

and S2 satisfies the equal probabilities of correct detection. It is the minimax strategy of the receiver.
Here, the set of prior probability providing the minimum of guessing probability is a convex set. It can
be shown in the following way. Suppose that the prior probabilities of q and p provide the minimum
of guessing probability p�guess. Then, by Lemma 3 there exists a measurement M that can perform MD
on both the quantum states, satisfying ∑2

x=1 qxtr(ρx Mx) = p�guess = ∑2
x=1 pxtr(ρx Mx). Now, one can

see that the relation of ∑2
x=1(θqx + (1 − θ)px)tr(ρx Mx) = p�guess holds for θ ∈ [0, 1]. If one assumes

that the minimax strategy (q, M) is not unique and there is another strategy p for a sender, then the
minimax strategy of the sender forms a convex set, and one can find the prior probability where
M is optimal in the ε-neighborhood of q for an arbitrary positive number of ε. Therefore, one can
check the uniqueness of the prior probability of q providing the minimum of guessing probability,
by deciding whether there exists a prior probability exhibiting optimal M in the ε neighborhood of q

after finding the optimal POVM M for minimax strategy in the prior probability of q providing the
minimum of guessing probability. Proposition 1 shows the necessary and sufficient condition for the
non-uniqueness of a prior probability q of which M is optimal in the ε neighborhood (The proof of
this proposition can be found in the Appendix A).

Proposition 1. The prior probability providing the minimum of guessing probability is not unique if and only
if {Mx}2

x=1 satisfies the following conditions.

1. [ρx, M1] = 0 ∀x ∈ {1, 2},
2. For some x ∈ {1, 2}, every |v〉 ∈ Supp(Mx) satisfies 〈v| ρ1 |v〉 : 〈v| ρ2 |v〉 �= 1 − q : q.

where [A, B] = AB − BA.

Lemma 2 and Proposition 1 can be applied to check whether the strategy under a situation
is unique. By applying Lemma 2, one can explain why the identical prior probability in the
BB84 protocol is the best strategy of a sender. The quantum states used in the BB84 protocol are
{|0〉 , |1〉 , |+〉 , |−〉} [23]. Alice encodes (a0, a1) into quantum states and sends them to Bob. In general,
a0 is selected by Alice, but a1 is randomly chosen. Suppose that Table 1 is used for encoding bit. Here,
encoding means that a quantum state corresponding to a0a1 is prepared for communication.

Table 1. Encoding table for Alice.

a0a1 Quantum States

00 |0〉
01 |1〉
10 |−〉
11 |+〉

When Alice chooses 0 as the value of a0, the quantum state is determined by a1. If the value of a1

is 0, the quantum state becomes |0〉. However, when a1 is 1, |1〉 is prepared for the quantum state. If
the quantum state does not interact with the environment, Bob receives the quantum state prepared by
Alice. Then, Bob performs the following measurements:
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M0 = {|0〉 〈0| , |1〉 〈1|}, M1 = {|+〉 〈+| , |−〉 〈−|} (6)

When for the quantum states {|0〉 , |1〉 , |+〉 , |−〉} the prior probability of the quantum states is identical,
the optimal measurement becomes

M = {1
2
|0〉 〈0| ,

1
2
|1〉 〈1| ,

1
2
|+〉 〈+| ,

1
2
|−〉 〈−|}. (7)

The optimal measurement satisfies the following relation:

tr(|0〉 〈0| 1
2
|0〉 〈0|) = tr(|1〉 〈1| 1

2
|1〉 〈1|) = tr(|+〉 〈+| 1

2
|+〉 〈+|) = tr(|−〉 〈−| 1

2
|−〉 〈−|) = 0.5 (8)

It implies that the identical prior probability provides the minimum of guessing probability. It is because
if there exists an optimal measurement satisfying the above condition, the prior probability provides
the minimum of guessing probability. It should be noted that Lemma 3 implies that the measurement
of M is optimal for every prior probability providing the minimum of guessing probability. Meanwhile,
if the prior probability is not identical, all the quantum states in the BB84 protocol does not have M as
an optimal measurement. It can be shown in the following way. Let us assume that the probability of
a1 to become 0 or 1 is equal, and the probability of a0 to become 0 or 1 is q. Then, the prior probability
of each quantum state becomes q/2, q/2, (1 − q)/2, (1 − q)/2. We can show that if the measurement
M is optimal at q �= 0.5, the following inequalities should be satisfied [2,28]:

q
4
|0〉 〈0|+ q

4
|1〉 〈1|+ 1 − q

4
|+〉 〈+|+ 1 − q

4
|−〉 〈−| − q

2
|0〉 〈0| ≥ 0 (9)

q
4
|0〉 〈0|+ q

4
|1〉 〈1|+ 1 − q

4
|+〉 〈+|+ 1 − q

4
|−〉 〈−| − 1 − q

2
|+〉 〈+| ≥ 0 (10)

However, when q �= 0.5, one of these inequalities cannot be satisfied. Therefore, the prior probability
providing the minimum of the guessing probability is only the case of q = 1/2.

Using Proposition 1, we can investigate the quantum states of the unique prior probability, which
provides the minimum of the guessing probability. Here we consider the MD of the following two
quantum states:

ρ1 =
2
3
|φ−〉 〈φ−|+ I

12
, (11)

ρ2 =
1
3
|φ−〉 〈φ−|+ I

6
. (12)

From Figure 2, we can check whether the prior probability providing the minimum of guessing
probability is unique. We can see that the prior probabilities providing the minimum of guessing
probability are q1 = 2

5 and q2 = 3
5 . The optimal measurement for the quantum ensemble is {M1 =

4
5 |φ−〉 〈φ−| , M2 = I − 4

5 |φ−〉 〈φ−|}, since the measurement satisfies Lemma 1 as follows:

(qρ1 − (1 − q)ρ2)M1 =

(
2
5

ρ1 − 3
5

ρ2

)
M1 =

(
1

15
|φ−〉 〈φ−| − 1

15
I
)

4
5
|φ−〉 〈φ−| = 0 (13)

((1 − q)ρ2 − qρ1) M2 =

(
3
5

ρ2 − 2
5

ρ1

)
M2

=

(
1
15

I − 1
15

|φ−〉 〈φ−|
)(

I − 4
5
|φ−〉 〈φ−|

)
=

1
15
(

I − |φ−〉 〈φ−|) ≥ 0
(14)

In addition, {Mx}2
x=1 satisfies the relation of tr(ρ1 M1) = tr(ρ1 − 4

5 |φ−〉 〈φ−|) = 0.6 =

tr(ρ2

(
I − 4

5 |φ−〉 〈φ−|
)
) = tr(ρ2 M2). From Lemma 2, the prior probability of q1 = 2

5 and q2 = 3
5

provides the minimum of guessing probability. Now, we verify the uniqueness of the prior probability
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which provides the minimum of the guessing probability for the given quantum states. The following
relations show [ρ1 + ρ2, M1] = [ρ2, M1] = 0, which is the first condition of Proposition 1:

(ρ1 + ρ2)M1 =

(
|φ−〉 〈φ−|+ I

4

)
|φ−〉 〈φ−| = |φ−〉 〈φ−|

(
|φ−〉 〈φ−|+ I

4

)
= M1(ρ1 + ρ2) (15)

ρ2M1 =

(
1
3
|φ−〉 〈φ−|+ 2

3
I
4

)
|φ−〉 〈φ−| = |φ−〉 〈φ−|

(
1
3
|φ−〉 〈φ−|+ 2

3
I
4

)
= M1ρ2 (16)

However, |φ−〉 which is the support of M1 and M2, satisfies the following relation:

〈φ−| ρ1 |φ−〉 : 〈φ−| ρ2 |φ−〉 = 9
12

:
6

12
=

3
5

:
2
5
= 1 − q : q (17)

Because the second condition of Proposition 1 cannot be satisfied, the prior probability providing the
minimum of the guessing probability is unique.

Now, to investigate the case of non-unique prior probability, which provides the minimum of the
guessing probability, we consider the following quantum states:

ρ1 =

(
0.3 0
0 0.7

)
, ρ2 =

(
0.7 0
0 0.3

)

From Figure 2, we can see non-uniqueness of the prior probability, which can provide the minimum of
guessing probability.

Figure 2. (Left:) Example of unique prior probability providing the minimum of guessing probability.
The guessing probability of two quantum states ρ1 = 2

3 |φ−〉 〈φ−| + I
12 and ρ2 = 1

3 |φ−〉 〈φ−| + I
6

is shown in terms of prior probability (q, 1 − q). (Right:) Example of non-unique prior probability
providing the minimum of guessing probability. The guessing probability of two quantum states
ρ1 = diag[0.3, 0.7] and ρ2 = diag[0.7, 0.3] is shown in terms of prior probability (q, 1 − q).

For ρ1 and ρ2 with the prior probability of q = 0.5, we can obtain the minimum of the guessing

probability, which is 0.7. Then, the optimal measurements are M1 =

(
0 0
0 1

)
and M2 =

(
1 0
0 0

)
.

Because of tr(ρ1 M1) = tr(ρ2 M2) = 0.7, the minimum of the guessing probability becomes 0.7 at
q = 0.5. And because of (ρ1 + ρ2)M1 = M1, the support of M1 is |e2〉 = (0, 1)T , which is unique. Then,
one has

〈e2| qρ1 − (1 − q)ρ2 |e2〉 = 〈e2| 1
2

(
−0.4 0

0 0.4

)
|e2〉 = 0.2 > 0.
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Further, because of (ρ1 + ρ2)M2 = M2, the support of M2 is |e1〉 = (1, 0)T , which is unique. We have

〈e1| qρ1 − (1 − q)ρ2 |e1〉 = 〈e1| 1
2

(
−0.4 0

0 0.4

)
|e1〉 = −0.2 < 0.

Then, the prior probability providing the minimum of the guessing probability is not unique.
From Proposition 1, the unique prior probability providing the minimum of the guessing

probability has two cases. The interesting case of the two cases is one where the prior probability
providing the minimum of the guessing probability is unique, with the condition that the second
inequality of Proposition 1 does not hold. This is because, in this case, Bob’s optimal MD strategy
is not unique. When the second condition of Proposition 1 is satisfied, an element |v1〉 in the
support of M1 satisfies the relation of 〈v1| ρ1 |v1〉 : 〈v1| ρ2 |v1〉 = 1 − q : q. Then, from Lemma A1
in Appendix B, there exists ε > 0 providing M1 − ε |v1〉 〈v1| ≥ 0. Now, we define M′

1 and M′
2

as M1 − ε |v1〉 〈v1| and M2 + ε |v1〉 〈v1|, respectively. Then, M′
1 and M′

2 are positive semidefinite
operators. Because of M′

1 + M′
2 = (M1 − ε |v1〉 〈v1|) + (M2 + ε |v1〉 〈v1|) = I, M′ = (M′

1, M′
2) is

a POVM. We can verify whether M′ is an optimal measurement at q. First, from the relation of
〈v1| ρ1 |v1〉 : 〈v1| ρ2 |v1〉 = 1 − q : q, we have 〈v1| (1 − q)ρ2 − qρ1 |v1〉 = 0. For |v1〉 ∈ Supp(M1), by
Lemma A2, we can obtain ((1 − q)ρ2 − qρ1) |v1〉 〈v1| = 0. Then, we have the following relations that
show that M′ is an optimal measurement at q:

((1 − q)ρ2 − qρ1) M′
1 = ((1 − q)ρ2 − qρ − 1) (M1 − ε |v1〉 〈v1|) = ((1 − q)ρ2 − qρ1) M1 ≥ 0

(qρ1 − (1 − q)ρ2) M′
2 = (qρ1 − (1 − q)ρ2) (M2 + ε |v1〉 〈v1|) = (qρ1 − (1 − q)ρ2) M2 ≥ 0

According to Lemma A3 in the Appendix B, the necessary and sufficient condition that two conditions
of [ρ1 + ρ2, M1] = 0 and [ρ2, M1] = 0 are satisfied is that the optimal measurement M of a receiver
can be simultaneously diagonalized with two quantum states ρ1 and ρ2. Therefore, if the optimal
measurement M of a receiver is simultaneously diagonalized with two quantum states ρ1 and ρ2,
the uniqueness of the sender’s minimax strategy cannot be compatible with the uniqueness of the
receiver’s MD strategy. The following Corollary summarizes this result.

Corollary 1. If the optimal measurement M can be simultaneously diagonalized with two quantum states
ρ1 and ρ2, the uniqueness of minimax strategy of a sender and the uniqueness of MD of a receiver cannot
be compatible.

The above result can be applied to cases of building quantum random number generator(QRNG).
Suppose that only one side’s strategy is unique. Therefore, either the minimax strategy of a sender
or the minimum error strategy is unique. The randomness in QRNG is defined as the min-entropy
to the classical bit in the quantum-classical state and depends on the prior probability [25,29]. If the
prior probability providing minimum guessing probability is not unique, we can build QRNG that is
not sensitive to the prior probability. When QRNG is built such that the receiver’s strategy is unique,
even a slight error in the measurement leads to the loss of the optimality of the receiver’s strategy.
The quantum states with a unique receiver’s strategy in QRNG can be found by using Corollary 1.

4. Conclusions

We studied the two person zero sum game where the payoff is defined by the correct probability
of the two quantum states. Because it is known that the optimal strategy of the game is a minimax
strategy, and it is important to verify its uniqueness of the minimax strategy, we focused on the
uniqueness condition of the minimax strategy of a sender and the minimax strategy of a receiver.
In this study, we obtained the necessary and sufficient condition for the uniqueness of the sender’s
strategy. Using this condition, we investigated the quantum states providing the minimum guessing
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probability when a sender’s minimax strategy is unique. Further, we found the condition where both
the sender’s minimax strategy and the receiver’s optimal minimum error strategy cannot be unique.

Our result helps to understand the fundamental aspect of minimax strategy. We studied the
minimax strategy in the quantum state discrimination of two quantum states. The uniqueness of the
minimax strategy in the quantum state discrimination of more than two quantum states is not known
yet. In our future work, we hope to investigate this problem.
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Appendix A. Proofs

Proof of Lemma 1. (⇒) Suppose that measurement {Mx}2
x=1 satisfies the above condition. We define

the operator K to be qρ1M1 + (1 − q)ρ2M2. Then, we obtain the following relations:

K − qρ1 = qρ1M1 + (1 − q)ρ2M2 − qρ1 = ((1 − q)ρ2 − qρ1) M2 ≥ 0

K − (1 − q)ρ2 = qρ1M1 + (1 − q)ρ2M2 − (1 − q)ρ2 = (qρ1 − (1 − q)ρ2) M1 ≥ 0.

For an arbitrary measurement {Nx}2
x=1, we obtain:

tr(K)− tr(qρ1N1 + (1 − q)ρ2N2) = tr((K − qρ1) N1) + tr((K − (1 − q)ρ2) N2) ≥ 0.

This implies that the measurement {Mx}2
x=1 is optimal.

(⇐) Let us assume that measurement {Mx}2
x=1 is optimal in the MD of two quantum state. This

implies that the measurement provides the guessing probability:

pguess = qtr(ρ1 M1) + (1 − q)tr(ρ2 M2)

=
1
2
(1 + tr(((1 − q)ρ2 − qρ1) (M2 − M1)))

=
1
2
(1 + tr(Λ(M2 − M1))) ,

where Λ is (1 − q)ρ2 − qρ1. Because Λ is a Hermitian operator, from the spectrum theorem, we know
that there is a projection operator onto the eigenspace:

Λ = ∑
i∈Ω

λiPi = ∑
i∈Ω>

λiPi + ∑
i∈Ω<

λiPi
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Here, λi are eigenvalues and PiPj = Piδij is satisfied for every i, j ∈ Ω. Further, Ω> = {i ∈ Ω : λi > 0}
and Ω< = {i ∈ Ω : λi < 0}. Then, I − ∑i∈Ω>∪Ω<

Pi is a projection onto the kernel of Λ. Because
measurement {Mx}2

x=1 is optimal, the general form is given as:

M1 = ∑
i∈Ω<

Pi + N1, M2 = ∑
i∈Ω>

Pi + N2

Here, we have N1 ≥ 0, N2 ≥ 0 and N1 + N2 = I − ∑i∈Ω>∪Ω<
Pi. First, M1 is optimal and Λ contains

the projector ∑i∈Ω<
Pi onto the eigenspace of negative eigenvalues. And M2 is optimal and Λ includes

projector ∑i∈Ω>
Pi onto eigenspace of positive eigenvalues. However, for Ω �= Ω> ∪ Ω<, ∑i∈Ω>

Pi +

∑i∈Ω<
Pi = I is not generally satisfied. Meanwhile, I − ∑i∈Ω>∪Ω<

Pi is a projector onto the null
space of Λ, which does not affect optimization. Therefore, for N1 ≥ 0 and N2 ≥ 0, one can find
N1 + N2 = I − ∑i∈Ω>∪Ω<

Pi. Because ΛNx = 0(x = 1, 2), for x ∈ {1, 2}, we have

(−1)xΛMx = (−1)xΛ(Mx − Nx) = (−1)x(Mx − Nx)Λ(Mx − Nx) ≥ 0.

Therefore, when measurement {Mx}2
x=1 is optimal in the MD of two quantum states, the relation of

(−1)x ((1 − q)ρ2 − qρ1) Mx ≥ 0 (x = 1, 2) is satisfied.

Proof of Lemma 3. (⇒) Suppose that a measurement {Mx}2
x=1 can simultaneously perform MD

on {px, ρx}2
x=1 and {qx, ρx}2

x=1. This implies that ∑2
x=1 pxtr(ρx Mx) = ∑2

x=1 qxtr(ρx Mx) and one has
∑2

x=1(px − qx)tr(ρx Mx) = 0. Therefore, (p1 − q1)(tr(ρ1 M1)− tr(ρ2 M2)) = 0. Because of p1 �= q1, we
obtain tr(ρ1 M1) = tr(ρ2 M2). Note that only in the prior probability providing the minimum guessing
probability, there exists an optimal measurement that satisfies tr(ρ1 M1) = tr(ρ2 M2). Therefore, when
an optimal measurement of the simultaneous MD on {px, ρx}2

x=1 and {qx, ρx}2
x=1 exists, we have

p(1)guess = p�guess.
(⇐) When a prior probability can provide the minimum guessing probability, there exists at least
one optimal measurement {Mx}2

x=1 satisfying tr(ρ1 M1) = tr(ρ2 M2). Because of p(1)guess = p�guess,
an optimal measurement {Mx}2

x=1 satisfies tr(ρ1 M1) = tr(ρ2 M2) and we have ∑2
x=1 qxtr(ρx Mx) =

∑2
x=1 pxtr(ρx Mx) = p(1)guess = p(2)guess. This implies that the optimal measurement {Mx}2

x=1 which
performs the minimum error discrimination on {px, ρx}2

x=1 can discriminate {qx, ρx}2
x=1 with

minimum error. Therefore, when p(1)guess = p�guess, there exists an optimal measurement that can
simultaneously perform MD on {px, ρx}2

x=1 and {qx, ρx}2
x=1.

Proof of Proposition 1. (⇒) Suppose that the prior probability providing the minimum of guessing
probability is not unique. For example, prior prbability (p, 1 − p) or (q, 1 − q) exhibits the minimum of
the guessing probability. In this case, we will show [ρ1 + ρ2, M1] = 0 and [ρ2, M1] = 0. By Lemmas 2
and 3, measurement {Mx}2

x=1 is optimal in both prior probabilities p and q to ρ1. Therefore, one can
have the following relations:

(qρ1 − (1 − q)ρ2)M1 ≥ 0 (A1)

(pρ1 − (1 − p)ρ2)M1 ≥ 0. (A2)

Note that the two operators are Hermitian and their difference is (p − q)(ρ1 + ρ2)M1, which is also
Hermitian. Because of p �= q, (ρ1 + ρ2)M1 is a Hermitian operator and the relation of [ρ1 + ρ2, M1] = 0
holds. This is because (ρ1 + ρ2)M1 = ((ρ1 + ρ2)M1)

† = M†
1(ρ1 + ρ2)

† = M1(ρ1 + ρ2) when (ρ1 +

ρ2)M1 is Hermitian. Further, (p − q)ρ2M1 is also Hermitian, and because of p �= q and ρ2M1 is
Hermitian. Because of ρ2M1 = (ρ2M1)

† = M†
1ρ†

2 = M1ρ2, we have [ρ2, M1] = 0. This implies that both
(ρ1 + ρ2)M1 and ρ2M1 are positive semidefinite operator. ρ1 + ρ2 and M1 (ρ2 and M1) commute each
other and are simultaneously diagonalizable. Furthermore, the positive semidefinite operator

√
M1
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can be diagonalized by any basis that can diagonalize M1. Therefore, we can find [ρ1 + ρ2,
√

M1] = 0
and [ρ2,

√
M1] = 0. Then, we can obtain the following relations for a vector |v〉:

〈v| (ρ1 + ρ2)M1 |v〉 = 〈v|
√

M1(ρ1 + ρ2)
√

M1 |v〉 ≥ 0 (A3)

〈v| ρ2M1 |v〉 = 〈v|
√

M1ρ2
√

M1 |v〉 ≥ 0 (A4)

Hence, (ρ1 + ρ2)M1 ≥ 0 and ρ2M1 ≥ 0. In the prior probability (p, 1 − p) because {Mx}2
x=1 is optimal,

(pρ1 − (1 − p)ρ2)M1 and ((1 − p)ρ2 − pρ1)M2 are positive semidefinite. Therefore we obtain the
following relations:

(qρ1 − (1 − q)ρ2)M1 ≥ (q − p)(ρ1 + ρ2)M1 (A5)

((1 − q)ρ2 − qρ1)M2 ≥ (p − q)(ρ1 + ρ2)M2 (A6)

We will show that for x ∈ {1, 2} an element |v〉 of support of Mx does not satisfy 〈v| ρ1 |v〉 : 〈v| ρ2 |v〉 =
1 − q : q. First, we consider the case of p < q. Then, qρ1 − (1 − q)ρ2 and M1 commute each other and a
vector |v〉 satisfies the following relation:

〈v|
√

M1(qρ1 − (1 − q)ρ2)
√

M1 |v〉 = 〈v| (qρ1 − (1 − q)ρ2)M1 |v〉
≥ (q − p) 〈v| (ρ1 + ρ2)M1 |v〉
= (p − q) 〈v|

√
M1(ρ1 + ρ2)

√
M1 |v〉 ≥ 0

(A7)

Here, the first and the last equalities are satisfied by Corollary A1.
√

M1 and M1 have the same support
and

√
M1 |v〉 is a element of M1’s support. Every element of the support of M1 can be expressed by√

M1 |v〉 for a vector |v〉. Moreover, ρ1 + ρ2 is full rank and we obtain 〈v| ρ1 + ρ2 |v〉 > 0 for a non-zero
vector |v〉. Therefore, the condition for equality in the last inequality becomes

√
M1 |v〉 = 0, which

implies that |v〉 is a kernel of M1. Therefore, a non-zero element |v1〉 in the support of M1 satisfies the
inequality 〈v1| (qρ1 − (1 − q)ρ2) |v1〉 > 0.

Now, we consider the case of p > q. By the completeness condition of POVM, qρ1 − (1 − q)ρ2 and
M2 commute each other and for a vector |v〉 we have the following relation:

〈v|
√

M2((1 − q)ρ2 − qρ1)
√

M2 |v〉 = 〈v| ((1 − q)ρ2 − qρ1)M2 |v〉
≥ (p − q) 〈v| (ρ1 + ρ2)M2 |v〉
= (p − q) 〈v|

√
M2(ρ1 + ρ2)

√
M2 |v〉 ≥ 0

(A8)

The first and the last equalities are obtained by Corollary A1.
√

M2 and M2 have the same support
and

√
M2 |v〉 is an element of M2’s support. Every element of the support of M2 can be expressed

by
√

M2 |v〉 for an element of |v〉. The condition for the equality in the last inequality is
√

M2 |v〉,
which implies that |v〉 is a kernel of M2. Then, a non-zero element |v2〉 in the support of M2 satisfies
〈v2| (1 − q)ρ2 − qρ1 |v2〉 > 0. Therefore, when p < q, any vector |v1〉 in the support of M1 does not
satisfy 〈v1| ρ1 |v1〉 : 〈v1| ρ2 |v1〉 = 1 − q : q. When p > q, any vector |v2〉 in the support of M2 does not
satisfy 〈v2| ρ1 |v2〉 : 〈v2| ρ2 |v2〉 = 1 − q : q.

In summary, if the prior probability providing the minimum of guessing probability is not unique,
the relations of [ρ1 + ρ2, M1] = 0 and [ρ2, M1] = 0 hold and for x ∈ {1, 2}, any vector |vx〉 in the
support of Mx does not satisfy 〈vx| ρ1 |vx〉 : 〈vx| ρ2 |vx〉 = 1 − q : q. This contradicts the assumption
that condition 1 and 2 hold. Therefore, when condition 1 and 2 are satisfied, the prior probability
providing the minimum of guessing probability is unique.

(⇐) Assume that the measurement {Mx}2
x=1 satisfies [ρ1 + ρ2, M1] = 0, [ρ2, M1] = 0 and for some

x′ ∈ {1, 2} there is no |vx′ 〉 of the support of Mx′ that satisfies the relation 〈vx′ | ρ1 |vx′ 〉 : 〈vx′ | ρ2 |vx′ 〉 =
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1 − q : q. For every x ∈ {1, 2} the support of Mx is a subspace of the direct sum of the non-negative
eigenspace of (−1)x((1 − q)ρ2 − qρ1). Therefore, for an element |vx〉 in the support of Mx the relation
of (−1)x((1 − q)ρ2 − qρ1) holds. However, when x = x′, because of 〈vx′ | (1 − q)ρ2 − qρ1 |vx′ 〉 �= 0, we
can have (−1)x′ 〈vx′ | (1 − q)ρ2 − qρ1 |vx′ 〉 > 0.

Now, let us find the other prior probability which can share the optimal measurement. We

define p as q + (−1)x′
2 min|v〉∈Supp(Mx′ )(−1)x′ 〈v| (1 − q)ρ2 − qρ1 |v〉. When x′ = 1, we have p < q.

By min|v〉∈Supp(M1)
〈v| qρ1 − (1 − q)ρ2 |v〉 ≤ q we have p ≥ 0. When x′ = 2, one has p > q and by

min|v〉∈Supp(M2)
〈v| (1 − q)ρ2 − qρ1 |v〉 ≤ 1 − q we obtain p ≤ 1.

Then, we will show that {Mx}2
x=1 is optimal in (q, 1 − q). Note that the following two

relations hold:

〈v1| qρ1 − (1 − q)ρ2 |v1〉 ≥ −(p − q) 〈v1| ρ1 + ρ2 |v1〉 for all |v1〉 ∈ Supp(M1) (A9)

〈v2| (1 − q)ρ2 − qρ1 |v2〉 ≥ (p − q) 〈v2| ρ1 + ρ2 |v2〉 for all |v2〉 ∈ Supp(M2). (A10)

Here, ρ1 + ρ2 is full rank and for every vector |v〉 one has 〈v| ρ1 + ρ2 |v〉 > 0. When x′ = 1, p < q and
because of 〈v2| (1 − q)ρ2 − qρ1 |v2〉 ≥ 0 the second condition holds. By the following relation the first
inequality (A13) holds:

〈v1| qρ1 − (1 − q)ρ2 |v1〉 ≥ min
|v〉∈Supp(M1)

〈v| qρ1 − (1 − q)ρ2 |v〉

= −2(p − q) ≥ −(p − q) 〈v1| ρ1 + ρ2 |v1〉
(A11)

Let us consider the case of x′ = 2. Because p > q and 〈v1| qρ1 − (1 − q)ρ2 |v1〉 ≥ 0, the first condition
holds. By the following relation, the second inequality holds:

〈v2| (1 − q)ρ2 − qρ1 |v2〉 ≥ min
|v〉∈Supp(M2)

〈v| (1 − q)ρ2 − qρ1 |v〉

= 2(p − q) ≥ (p − q) 〈v2| ρ1 + ρ2 |v2〉
(A12)

Because [ρ1 + ρ2, M1] = 0 and [ρ2, M1] = 0, have the relation [pρ1 − (1 − p)ρ2, M1] = [p(ρ1 + ρ2)−
ρ2, M1] = 0. This implies that pρ1 − (1 − p)ρ2 and M1 are simultaneously diagonalizable. Then, pρ1 −
(1− p)ρ2 and the positive semidefinite operator satisfying N2

1 = M1 are simultaneously diagonalizable,
which has the same support as to that of M1. Therefore, for every vector |v〉 the following relation holds:

〈v| (pρ1 − (1 − p)ρ2)M1 |v〉 = 〈v| N1(pρ1 − (1 − p)ρ2)N1 |v〉 ≥ 0 (A13)

Note that N1 |v〉 is an element of M1. Therefore, we have (pρ1 − (1− p)ρ2)M1 ≥ 0. In the same manner,
by the completeness relation of POVM, pρ1 − (1 − p)ρ2 and M2 are simultaneously diagonalizable.
pρ1 − (1 − p)ρ2 and positive semidefinite operator N2 satisfying N2

2 = M2 are simultaneously
diagonalizable, which has the same support as that of M2 by Corollary A1. Therefore, for every
vector |v〉, the following relation holds:

〈v| ((1 − p)ρ2 − pρ1)M2 |v〉 = 〈v| N2((1 − p)ρ2 − pρ1)N2 |v〉 ≥ 0 (A14)

Note that N2 |v〉 is support of M2 and one has ((1 − p)ρ2 − pρ1)M2 ≥ 0.
By Lemma 1, for every x ∈ {1, 2}, one finds (−1)x((1 − p)ρ2 − pρ1)Mx ≥ 0 and {Mx}2

x=1
is optimal at the prior probability (p, 1 − p). This contradicts the assumption that the identical
measurement cannot be shared in the different prior probabilities. Therefore, when the prior probability
providing the minimum guessing probability is unique, the condition 1(or 2) holds.

Appendix B. Lemmas

Let H be a finite dimensional Hilbert space.
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Lemma A1. Let A be a positive semidefinite operator. Let |v〉 be an element of support of A. Then there exists
ε > 0 such that A − ε |v〉 〈v| ≥ 0.

Proof of Lemma A1. Let us assume that there exists no ε > 0 satisfying A − ε |v〉 〈v| ≥ 0. This implies
that for any ε > 0, there exists |w〉 ∈ H such that 〈w| (A − ε |v〉 〈v|) |w〉 < 0. Thus 〈w| A |w〉 <

ε|〈w|v〉|2. Because A ≥ 0, it follows that 0 ≤ 〈w| A |w〉 < ε|〈w|v〉|2.
Note that 〈w| A |w〉 cannot be zero. Because when we assume 〈w| A |w〉 = 0, |w〉 is an element

of ker(A). Since |v〉 is orthogonal to ker(A); this directly implies 〈w|v〉 = 0. Hence, 0 < 0, which is a
contradiction. Therefore 〈w| A |w〉 > 0.

Any vector in H can be decomposed as a linear combination of elements of Supp(A) and ker(A).
Furthermore |w〉 cannot be an element of kernel. Thus there exists |s〉 ∈ Supp(A) and |k〉 ∈ ker(A)

such that |w〉 = c1 |s〉+ c2 |k〉 and where c1 �= 0.
Because A is an operator on the finite dimensional Hilbert space, there exists γ > 0 such that

γ ≡ inf|s〉∈Supp(A) 〈s| A |s〉. When ε = γ,

〈w| A |w〉 = |c1|2 〈s| A |s〉 ≥ |c1|2ε ≥ |c1|2ε|〈s|v〉|2 ≥ ε|〈w|v〉|2.

This contradicts the initial assumption. Therefore there exists ε > 0 such that A − ε |v〉 〈v| ≥ 0.

Lemma A2. Let A be a Hermitian operator on H. Let B be a positive semidefinite operator on H. Suppose that
A and B are commutable. If |v〉 ∈ Supp(B) satisfies 〈v| A |v〉 = 0, then |v〉 ∈ ker(A).

Proof of Lemma A2. Because A and B are commutable, there exists an orthonormal basis {|φi〉}i such
that A = ∑i∈χA

ai |φi〉 〈φi|, B = ∑i∈χB
bi |φi〉 〈φi|, where ai �= 0 for all i ∈ χA and bi > 0 for all i ∈ χB.

Then AB = ∑i∈χA∩χB
aibi |φi〉 〈φi|. Because AB ≥ 0, ai > 0 for all i ∈ χA ∩ χB. As |v〉 ∈ Supp(B), we

can express |v〉 as ∑i∈χB
ci |φi〉. Then

∑
i∈χA∩χB

|ci|2ai = ∑
i,j∈χB

c∗i 〈φi| ∑
k∈χA

ak |φk〉 〈φk| |φj〉 cj

= 〈v| A |v〉 = 0.

Because ai > 0, it follows that |ci|2 = 0 for all i ∈ χA ∩ χB. This implies that ci = 0. Thus

A |v〉 = ∑
k∈χA

ak |φk〉 〈φk| ∑
i∈χB

ci |φi〉 = ∑
i∈χA∩χB

aici |φi〉 = 0

Therefore if |v〉 ∈ Supp(B) satisfies 〈v| A |v〉 = 0, then |v〉 ∈ ker(A)

Let H be a Hilbert space with dimension d. Let A, B be Hermitian operators on H.

Lemma A3. If [A, B] = 0, then A, B can be simultaneously diagonalizable.

Proof of lemma A3. Because A and B are Hermitian operators and [A, B] = 0, it follows that (AB)† =

B† A† = BA = AB. This implies that AB is a Hermitian operator. Let ∑d
i=1 ai |ai〉 〈ai| be a spectral

decomposition of A. Then

AB =
d

∑
i,j=1

ai |ai〉 〈ai| B |aj〉 〈aj| =
d

∑
i,j=1

ai 〈ai| B |ai〉 |ai〉 〈ai| .

Because AB is a Hermitian operator, it follows that

al 〈ak| B |al〉 = (AB)∗lk = (AB)kl = ak 〈ak| B |al〉 for all k, l ∈ {1, 2, · · · , d}
This implies that (al − ak) 〈ak| B |al〉 = 0. Thus al = ak or 〈ak| B |al〉 = 0.

87



Entropy 2019, 21, 671

Let us define a set of indices I ⊂ {1, 2, · · · , d} such that for every i ∈ I, if j ∈ {1, 2, · · · , d}\{i}
satisfies 〈ai| B |aj〉 �= 0, then j ∈ I and there is no non-empty subset J ⊂ I such that for every i ∈ I\J
and for every j ∈ J, 〈ai| B |aj〉 = 0. Using the result above, ai = aj for all i, j ∈ I. This implies that
∑i,j∈I 〈ai| B |aj〉 |ai〉 〈aj| can be represented with a block matrix with a basis of {|ai〉}i∈I by rearranging
the indices. Define a′ as the positive number satisfying ai = a′ for all i ∈ I. Then ∑i∈I |ai〉 〈ai| is a
projection operator on the eigenspace of A providing eigenvalue a′. Note that the eigenspace has a
degree of freedom in choosing the orthonormal basis.

Now let us explain how to choose a basis that can diagonalize A and B simultaneously. Because
∑i,j∈I 〈ai| B |ai〉 |ai〉 〈ai| is a Hermitian operator, it can be diagonalized with some orthonormal basis.
Suppose that {|ci〉}i∈I is the basis. Then ∑i,j∈I 〈ai| B |aj〉 |ai〉 〈aj| = ∑i∈I ci |ci〉 〈ci| holds, where ci is
a eigenvalue of B. Furthermore, because span{|ai〉}i∈I is an eigenspace of A, ∑i∈I a′ |ai〉 〈ai| can be
rewritten as ∑i∈I a′ |ci〉 〈ci|. Similarly, we can find a basis that diagonalizes each block matrix of B.
A can be diagonalized using this basis. Therefore if [A, B] = 0, then A and B can be simultaneously
diagonalizable.

Let ∑r
i=1 λiPi be a spectral decomposition of B. Then C = ∑r

i=1
√

λiPi satisfies C2 = B. We show
that the positive semidefinite operator satisfying C2 = B is unique.

Suppose that C is not unique. Then there exists another positive semidefinite operator C′ such
that C′2 = B. Because [B, C′] = 0, from Lemma A3, B, C′ are simultaneously diagonalizable. That is,
there exists an orthornormal basis {|ν(j)

i 〉}r,di
i,j=1 such that

B =
r

∑
i=1

λi

(
di

∑
j=1

|ν(i)j 〉 〈ν(i)j |
)

, C′ =
r

∑
i=1

(
di

∑
j=1

νij |ν(j)
i 〉 〈ν(j)

i |
)

for some non-negative λi, νi,j ∈ R. Because C′2 = B, it follows that

B − C′2 =
r

∑
i=1

di

∑
j=1

(λi − ν2
ij) |ν(j)

i 〉 〈ν(j)
i | = 0.

Thus νij =
√

λi for all i, j ∈ {1, 2, · · · , d}. Further, because ∑d
j=1 |ν(j)

i 〉 〈ν(j)
i | = Pi, it follows that C′ =

∑r
i=1

√
λi

(
∑di

j=1 |ν
(j)
i 〉 〈ν(j)

i |
)
= ∑r

i=1
√

λiPi = C. This contradicts the initial assumption. Therefore, the

positive semidefinite operator satisfying C2 = B is unique.
Let A, B be positive semidefinite operators on H. Let C be a positive semidefinite operator on H

satisfying C2 = B.

Corollary A1. If [A, B] = 0, then [A, C] = 0.

Proof of Corollary A1. According to Lemma A3, [A, B] = 0 implies that A and B are simultaneously
diagonalizable. That is there exists an orthonormal basis {|λi〉}d

i=1 such that

A =
d

∑
i=1

ai |λi〉 〈λi| , B =
d

∑
i=1

bi |λi〉 〈λi| ,

for some ai ≥ 0 and bi ≥ 0. Then C is uniquely defined as C = ∑d
i=1

√
bi |λi〉 〈λi| by the statement

above. Note that there exists an orthornormal basis {|λi〉}d
i=1 diagonalizing A, C simultaneously.

Therefore if [A, B] = 0, then [A, C] = 0.
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Abstract: The entropic uncertainty relation (EUR) is of significant importance in the security proof of
continuous-variable quantum key distribution under coherent attacks. The parameter estimation in
the EUR method contains the estimation of the covariance matrix (CM), as well as the max-entropy.
The discussions in previous works have not involved the effect of finite-size on estimating the CM,
which will further affect the estimation of leakage information. In this work, we address this issue by
adapting the parameter estimation technique to the EUR analysis method under composable security
frameworks. We also use the double-data modulation method to improve the parameter estimation
step, where all the states can be exploited for both parameter estimation and key generation; thus,
the statistical fluctuation of estimating the max-entropy disappears. The result shows that the adapted
method can effectively estimate parameters in EUR analysis. Moreover, the double-data modulation
method can, to a large extent, save the key consumption, which further improves the performance in
practical implementations of the EUR.

Keywords: entropic uncertainty relation; continuous-variable quantum key distribution; finite-size
effect; composable security; double-data modulation

1. Introduction

The quantum key distribution (QKD) [1–5] is one of the most mature quantum cryptography
technologies, which can provide information-theoretical provable security together with the one-time
pad method. The idea of QKD is to employ the basic principles of quantum physics to ensure the
security of random keys and to use classical post-processing methods to find potential eavesdropping
behaviors. Based on the dimension of the Hilbert space of the encoding, QKD can be roughly divided
into two categories. One kind of protocol is called the discrete-variable (DV) protocol, in which the
dimension of the Hilbert space is finite. DV-QKD protocols have the superiority of long transmission
distance, but depending on high-performance dedicated devices such as single-photon detectors.
As an alternative, continuous-variable (CV) protocols, which use the infinite dimension of Hilbert
space as the key space, give us opportunities to achieve the QKD process via off-the-shelf commercial
components, e.g., homodyne detector and heterodyne detector.

The first idea of the CV-QKD protocol was exploiting squeezed states to carry the key
information [6–9]. Then, in order to weaken the dependence on the squeezed-state sources, the
coherent-state-based CV-QKD protocols were proposed [10–12]. During these twenty years, research
on protocol design and corresponding experimental verification was developing rapidly. Different
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novel CV-QKD protocols have been proposed, such as the two-way protocol [13–18], the discrete
modulation protocol [19–21], the measurement-device-independent (MDI) protocol [22–28], etc., each
of which has its own advantages in different scenarios. Besides the protocol design, the experiments
also have made a tremendous step forward with the progress of today’s technology [29–31].

The core of QKD is the security, and there have been many security analysis methods proposed
to investigate the security of different CV-QKD protocols [4]. For the convenience of the security
analysis, the eavesdropper’s ability is usually restricted to three different levels, namely individual
attacks, collective attacks, and coherent attacks. Individual attacks and collective attacks are, to some
extent, to restrict the eavesdropper’s (Eve’s) attack ability, so that the exchanged state between Alice
(sender) and Bob (receiver) can be treated as an identical and independently distributed (i.i.d.) state,
i.e., ρAN BN = σ⊗N

AB (where N is the number of exchanged signals), which can simplify the security
analysis. However, a protocol is unconditionally secure only when it is secure under coherent attacks,
due to the fact that coherent attacks do not limit the ability of eavesdroppers, thereby the most general
attacks. In the case of coherent attacks, the exchanged states between Alice and Bob do not have the
i.i.d. structure anymore; thus, the security proof is complicated.

Diverse security analysis techniques have been developed to analyze the security of different
protocols under coherent attacks, typically the de Finetti theorem [32,33], the post-selection
technique [34,35], and the entropic uncertainty relation (EUR) [36–38]. Those analysis methods can also
be applied to analyze the quantum random number generation protocols [39,40]. Different analysis
methods have their advantages and disadvantages, so they are suitable for the analysis of different
protocols (see [4] for detailed discussions). The advantages of the EUR lies in its intuitive physical
meaning (corresponding to the guessing game [41]) and the simple estimation method. Most of the
work has been done in the EUR in [36], except for the finite-size effect in estimating the covariance
matrix (CM). However, in practical experiments, the estimation of the CM is always achieved by
limited data; thus, the finite-size effect not only affects the estimation of min-entropy, but also the
estimation of leakage information.

In this work, we focus on the parameter estimation of the EUR in CV-QKD, especially on the
finite-size estimation of the CM, and the modified estimation on the max-entropy. The discussion
involves only the squeezed state/homodyne detection-type protocols and has no assumption on Eve’s
ability, namely under coherent-attack cases. Due to the influence of the finite block length of the key,
the estimation of the CM is inaccurate in the case of a short block length, compared with the ideal
CM estimation cases (as shown in [36,37]). We exploit the parameter estimation technique developed
in [42] to consider the estimation of the CM under practical block sizes. Furthermore, inspired by
the double-modulation method developed in [42], we propose a double-data modulation method to
estimate the parameters in the security analysis effectively, and only one modulation is needed rather
than two, which simplifies the experimental structure of the double-modulation protocol. Since the
exchanged state can be used for both parameter estimation and key generation, the estimation of the
max-entropy is modified, and the statistical fluctuation of estimating the max-entropy disappears.
The simulation result shows that the modified estimation method can, to a large extent, save the key
consumption.

This paper is organized as follows. In Section 2, we review the composable security frameworks
in QKD and give the description of the discussed protocol. In Section 3, we discuss in detail the
channel parameter estimation process with finite-size. In Section 4, the modified parameter estimation
method is proposed with double-data modulation. The numerical simulation and discussion are give
in Section 5, and the conclusions are drawn in Section 6.

2. Composable Security and Description of the Protocol

In this work, we investigate the CV-QKD protocol under the universal composable framework
(UCF), which can be seen in [43,44] for the details, and the discussion is under the coherent-attack
cases. The UCF is of great importance to compose sequential rounds of a protocol, and even if some of
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the rounds are imperfect and deviate from the ideal model, the UCF can well describe their defects.
A general QKD protocol can always be divided into different parts; thus, one of the benefits of UCFs
is that even if part of the protocol is imperfect, this imperfection can still be applied to subsequent
analysis of the rest part of the protocol to obtain the final non-ideal key. Another advantage of UCFs is
that the final imperfect key generated from a QKD system can be well quantified as ε-secure and then
can be applied to other classical communication tasks, such as the one-time pad scenario.

To illustrate the composable security of QKD, we first use sA to denote Alice’s key and use sB
to denote Bob’s key. In the ideal case, the keys should be correct, secret, and robust. Correctness
means, for each round of the protocol, the keys of Alice and Bob are always the same, namely
sA = sB = S. Secrecy means the key is independent of the third part and only known to Alice
and Bob themselves. Robustness requires that, in every round of the protocol, Alice and Bob can
always generate a non-empty key, namely S �= ⊥. If a QKD protocol can satisfy correctness, secrecy,
and robustness, the protocol then can be called perfectly secure. We denote by {|s〉}s∈S the orthogonal
bases of the key, by ρE Eve’s auxiliary quantum systems, and by p⊥ the probability of generating an
empty key set. The perfectly secure classical-quantum (cq) state between the key S and the environment
E can be shown as follows,

ρ
per f ect
sE = (1 − p⊥) ∑

s∈S

1
|S| |s〉 〈s| ⊗ ρs

E + p⊥ |⊥〉 〈⊥| ⊗ ρ⊥E . (1)

Nevertheless, a protocol is always imperfect with practical issues, resulting in the security
deviating from the ideal model. Therefore, the ε-security can be used to describe the practical security
with imperfect features. We denote by εc, εr, εs the smoothness parameters of practical correctness,
robustness, and secrecy, respectively. εc-correctness requires that the key in Alice and Bob’s sides be
different only with very small probability εc, namely Pr (sA �= sB) ≤ εc. εr-robustness requires that
the set of the keys is empty only with a small probability, given by Pr (S = ⊥) ≤ εr. εs-secrecy can be
treated as the distance between the practical security and the perfect security, in terms of the trace
distance, given by 1

2

∥∥∥ρsE − ρ
per f ect
sE

∥∥∥
1
≤ εs. In summary, if a QKD protocol can contain εc-correctness,

εr-robustness, and εs-secrecy, then the protocol can be called ε-secure, with ε = εc + εr + εs.
Let us start with the execution of the prepare-and-measure (PM) version of the squeezed-states

protocol. The protocol can be divided into sequential parts, as shown in Figure 1, which can be
described by the following steps:

1. State preparation: Alice holds the squeezed states with squeezed variance VS before the protocol
begins, where VS ∈ (0, 1]. In every run of the protocol, Alice uses Gaussian random numbers xM
to encode the displacement of quadratures by using modulators (generally containing amplitude
and phase modulators), and the total modulation variance is denoted by VM.

2. State transmission: Alice sends the modulated state in the quantum channel, which is treated as
a totally untrusted channel and controlled by Eve.

3. State measurement: Bob receives the quantum state and randomly measures x or p quadrature
by an ideal homodyne detector. Resulting from the fact that the practical measurement phase is
always discrete, the ideal measurement outcomes should be discretized by the analogue-to-digital
converter (ADC). The final discretized results are denoted by xB.

4. Parameter estimation: Alice and Bob repeat the above steps many times until they have enough
raw data (e.g., N). Then, Alice or Bob reveals some of the raw data (with length m) through the
classical channel to estimate the key parameters of the channel, especially the data distance d0

between Alice’s and Bob’s data, the transmittance τ, and the excess noise ε. See Section 3 for a
detailed explanation of the parameter estimation step.

5. Error correction: According to the estimation parameters τ and ε, the communication parts
estimate the leakage information �EC during the error correction phase and choose an appropriate
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classical error reconciliation algorithm, e.g., low-density-parity-check (LDPC) code, to correct
Alice’s error (in reverse reconciliation cases) or Bob’s error (in direct reconciliation cases).

6. Privacy amplification: Alice and Bob randomly choose a universal2 hash function [45] and apply
it to their respective keys to get the final private keys sA and sB with length �, which are only
known to themselves.

Figure 1. Prepare-and-measure (PM) scheme of continuous-variable (CV)-quantum key distribution
(QKD) using squeezed states. Source: squeezed-state source with squeezed variance VS; Mod:
modulators containing amplitude and phase quadrature modulators with total modulation variance
VM; Hom: homodyne detection; xM: Gaussian modulation data on Alice’s side; xB: measurement
results on Bob’s side; Quantum channel: channel for the transmission of quantum states, with the
transmittance τ and the excess noise ε; Classical channel: channel for the transmission of classical data
during the post-processing procedure.

According to the UCF, one can write the upper bound of the final key length �low, even if the
above steps are not ideal, given by [43]:

�low = Hε
min (xB|E)− �EC − log2

1
ε2

1εc
+ 2, (2)

where Hε
min (xB|E) is the smooth min-entropy of xB conditioned on the information Eve may hold,

with smoothing parameter ε, and ε1 is the smoothness of the physical part of the protocol.

3. Channel Parameter Estimation with Finite-Size

There are roughly two parameters that need to be bounded in the protocol. One is the smooth
min-entropy Hε

min (xB|E), and the other is the leakage information �EC. We separately discuss the
estimation of the two parameters in two parts.

3.1. Estimation of Smooth Min-Entropy

There are different ways to estimate the min-entropy under coherent attacks. For instance, the de
Finetti theorem [32,33], which can reduce the analysis from the coherent attack case to the collective
attack case, has been successfully used to prove the security of CV-QKD protocols with the source of
coherent states [27,46]. The EUR has also been exploited to prove the security of squeezed-state-type
protocols [28,36,37]. In this work, we focus on using the uncertainty relation to bound the min-entropy
of the key.

In practical experiments, xM and xB are always discretized. We denote α as the maximum
discretization range of the sampling interval and denote δ as the discrete precision of the measurement,
which satisfy 2α/δ=2L ∈ N, where L is the number of discrete bits. Therefore, the measurement result
will fall into different intervals, namely,

(−∞,−α] , (−∞,−α + δ] , . . . (−α + (k − 1) δ,−α + kδ] , . . . (α − δ, α] , (α,+∞) , (3)
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where k = {1, 2, . . . , 2α/δ}. One can bound the smooth min-entropy of the discretized data xB
conditioned on Eve’s information Hε

min (xB|E) according to the CV version of EUR, given by:

Hε
min (xB|E) ≥ −n log c (δ)− Hε′

max (xM|xB) , (4)

where c quantifies the maximum overlap of the two measurements, namely c = max
x,z

|〈Xx | Zz〉|2
and X and Z are mutually unbiased bases; hence, c (δ) is the overlap between discrete quadrature
measurements related to the interval length δ, which reads:

c (δ) =
1

2π
δ2S(1)

0

(
1,

δ2

4

)2

, (5)

where S(1)
0 (.) is the zeroth radial prolate spheroidal wave function of the first kind [47] and

S(1)
0

(
1, δ2

4

)2
is approximately one if δ is small. The term Hε′

max (xM|xB) in Equation (4) denotes

the max-entropy between Alice’s and Bob’s data, with smoothing parameter ε′ = εs
/

4ppass −
2
√

2
[
1 − (1 − pα)

n]/√ppass, where pα is the probability that the measurement is outside of the
detection range.

According to Equation (4), in order to give a lower bound of the min-entropy, one should estimate
the upper bound of the max-entropy using some of the raw keys during the parameter estimation
phase. First, the average distance, which quantifies the correlation between Alice’s and Bob’s data,
should be estimated, given by:

d
(

xPE
M , xPE

B

)
=

1
m

m

∑
i=1

|Mi − Bi|, (6)

where we use Mi to denote the ith modulating value and Bi denotes the ith measurement result, for
i = 1, 2, . . . , m, respectively. If the data distance d

(
xPE

M , xPE
B
)

is smaller than a certain threshold d0, the
parameter estimation step passes. Then, one can bound the max-entropy according to Serfling’s large
deviation bound [48], given by:

Hε
max (xM|xB) ≤ nlog2γ (d0 + μ) , (7)

where γ is a large deviation function, which reads:

γ(t) =
(

t +
√

t2 + 1
) [ t√

t2 + 1 − 1

]t
, (8)

and μ quantifies the impact of statistical fluctuations resulting from estimating “data parameter”
Hε

max (xM|xB) by “PEparameter” Hε
max

(
xPE

M |xPE
B
)
, which reads:

μ =
2α

δ

√
N (m + 1)

nm2 ln
1
ε′ , (9)

where N denotes the total number of exchanged signals and satisfies N = n + m.

3.2. Ideal Estimation of Leakage Information with Infinite-Size

To estimate the leakage information in the error correction phase, we model Eve’s behavior by
the entangling cloner attack model, which is the most common example of a Gaussian attack [49].
We point out that the whole analysis of this paper is under the most general coherent attacks and
has no restriction on Eve’s ability. The model of the entangling cloner attack is only for intuitive
understanding, and it is convenient to investigate the performance of the protocol, which can be used
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to estimate the lower bound of the key rate. Even if Eve’s attack is not the entangling cloner attack, the
following analysis also holds, resulting from the fact that in a practical experiment, we do not need to
assume the eavesdropper’s strategy in advance and only need to estimate the channel parameters by
the existing data that Alice and Bob hold.

The quadrature of the quantum state sent by Alice’s side is denoted by xA = xs + xM. In order
to obtain the correlation between Alice and Bob after passing through the channel, we assume Eve
performs the entangling cloner attack, where Eve’s state is modeled by a two-mode squeezed vacuum
(TMSV) state ρeE0 with the CM γeE0 , which reads:

γeE0 =

(
ωI

√
ω2 − 1Z√

ω2 − 1Z ωI

)
, (10)

where ω is the variance of the TMSV, I = diag (1, 1), and Z = diag (1,−1). The channel is modeled by
a beam splitter with the transmittance τ, whose CM is given by:

Sτ=

( √
τI

√
1 − τI

−√
1−τI

√
τI

)
, (11)

and the excess noise ε can be defined as ε := (1 − τ) (ω − 1)
/

τ. Thus, it is easy to deduce the
quadrature on Bob’s side after passing through the quantum channel, given by:

xB =
√

τxA +
√

1 − τx0 + xε =
√

τxM + xN , (12)

where xN =
√

τxs +
√

1 − τx0 + xε. Assuming that the squeezing operation is performed for x
quadrature, the mutual information between Alice and Bob reads:

Ix (A : B) =
1
2

log2
VB

VB|A
=

1
2

log2

(
1 +

τσx

VN

)
, (13)

and VN has the form:
VN = 1 + τε + τ (VS − 1) := 1 + Vε + τ (VS − 1) . (14)

When Alice and Bob perform the error correction step, they need to randomly announce part
of the information through the public channel, which is also revealed to Eve. It is assumed that
eavesdroppers can monitor all classical communication processes; thus, the amount of information
leaked in the error correction process must be well estimated and then removed from the final keys.
The leakage information �EC in the error correction step can be described as

�DR
EC =H(xM)− βIx (A : B) , (15)

in the direct reconciliation (DR) case and:

�RR
EC=H(xB)− βIx (A : B) , (16)

in the reverse reconciliation (RR) case, where β is the reconciliation efficiency.

3.3. Practical Estimation of Leakage Information with Finite-Size

In the previous works, the estimator of the leakage information �̂EC was treated as an asymptotic
parameter, which is independent of the total key length. However in practice, the estimation of �̂EC
cannot be accurate especially when the key length is not large, further affecting the performance of
the error correction. To take finite-size effects into consideration, the estimator �̂EC under a practical
block length needs to be estimated. We adapt the estimation method shown in [42] to analyze the
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characteristics of the channel. Here, we only give the main results of the previous work, and the
detailed derivation can be seen in [42]. In the practical experiment, the data on Alice’s side is actually
the modulated data xM; thus, the key of parameter estimation is to estimate the CM γMB, namely
γMB = [VMI, cMBZ; cMBZ, VBI]. The relation of xM and xB (Alice’s and Bob’s data) has the form of
xB =

√
τxM + xN , where xN is the aggregated noise with zero mean, and the variance is shown in

Equation (14). The covariance of xM and xB is:

Cov (xM, xB) =
√

τVM =: cMB. (17)

For obtaining the estimator of covariance ĉMB, we also use Mi denoting the ith modulating value
and Bi denoting the ith measurement result, for i = 1, 2, . . . , m, respectively. According to the maximum
likelihood estimation, we can get:

ĉMB =
1
m

m

∑
i=1

MiBi. (18)

and it is easy to compute the expectation value E [ĉMB] and the variance V [ĉMB] by assuming Mi and
Bi are two independent Gaussian variables with zero mean values, which read:

E [ĉMB] = cMB, (19)

V [ĉMB] =
τV2

M
m

(
2 +

VN
τVM

)
. (20)

According to Equation (17), we can get the estimator τ̂ of τ, which reads:

τ̂ =
ĉ2

MB
V2

M
=

V [ĉMB]

V2
M

(
ĉMB√
V [ĉMB]

)2

, (21)

where
(

ĉMB√
V[ĉMB ]

)2
follows the χ2-distribution, namely,

(
ĉMB√
V [ĉMB]

)2

∼ χ2

(
1,

ĉ2
MB

V [ĉMB]

)
. (22)

Then, we can calculate the expectation value of τ̂, which reads:

E (τ̂) = τ + O (1/m) , (23)

and the variance is given by:

V (τ̂) =
4τ2

m

(
2 +

VN
τVM

)
+ O

(
1
/

m2
)

. (24)

For m � 1, which is practical in experiments, the term O
(
1
/

m2) can be negligible due to the
order 1

/
m2 being small. Thus, we define new variance of τ̂ under a practical block length, which

reads:

σ2
τ̂ =

4τ2

m

(
2 +

VN
τVM

)
, (25)

so that the confidence interval of estimating τ can be well quantified.
In order to estimate the upper bound of the leakage information �

up
EC, one should give the lower

bound of the transmittance τ. For practical purposes, we set the failure probability of the parameter
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estimation to εPE = 10−10, which corresponds to the confidence interval of 6.5στ̂ , and one can estimate
the lower bound of τ̂low, given by:

τ̂low = E

(
τlow

)
:= τ̂ − 6.5στ̂ . (26)

According to:
xB =

√
τ (xM + xS) +

√
1 − τx0 + xε =

√
τxM + xN , (27)

the estimator of Vε can also be calculated by the maximum likelihood estimation with the
following form:

V̂ε =
1
m

m

∑
i=1

(
Bi −

√
τ̂Mi

)2
+ τ̂ (1 − VS)− 1. (28)

In the case of m � 1, the estimator τ̂ converges rapidly to the actual value τ as m increases, owing
to the variance of τ̂ being negligible. Thus, here, we use τ to replace τ̂ to simplify the estimation

process. Noticing that the term 1
m

m
∑

i=1

(
Bi−

√
τMi√

VN

)2
also follows the χ2-distribution with the expectation

value E

(
1
m

m
∑

i=1

(
Bi−

√
τMi√

VN

)2
)
= m and variance V

(
1
m

m
∑

i=1

(
Bi−

√
τMi√

VN

)2
)
= 2m, respectively, resulting

from Bi −
√

τMi being Gaussian distributed with variance VN , therefore, one can get the following
approximation when m is large:

m

∑
i=1

(
Bi −

√
τMi

)2 ≈ VN ·
m

∑
i=1

(
Bi −

√
τMi√

VN

)2

. (29)

The expectation value of V̂ε can be obtained, which reads:

E
(
V̂ε

) ≈ 1
m

VN ·E
(

m

∑
i=1

(
Bi −

√
τMi√

VN

)2
)
+ τ (1 − VS)− 1 = Vε, (30)

and the variance of V̂ε can also be calculated, given by:

V
(
V̂ε

) ≈ 2
m

V2
N + σ2

τ̂(1 − VS)
2 := σ2

V̂ε
. (31)

The upper bound of the variance of excess noise can be given, also considering the failure
probability of the parameter estimation to εPE = 10−10, which is:

V̂up
ε = E

(
Vup

ε

)
:= V̂ε + 6.5σV̂ε

. (32)

4. Double-Data Modulation Method and the Modified Estimation Process

Inspired by the double-modulation method developed in [42], we find that this estimation method
is also useful in the parameter estimation of the EUR analysis method.

Here, we slightly modify the double-modulation method by pre-generating two sets of Gaussian
random numbers, namely xM1 and xM2, with variances VM1 and VM2 and zero mean values, encoding
quantum states by new random variable xM, where xM = xM1 + xM2. In this double-data modulation
method, Alice holds both data xM1 and xM2 in her memories and then generates data xM according to
data xM1 and xM2. The generated data xM are used to modulate the quantum states. After Alice and
Bob finish the key distribution processes, Alice reveals data xM2 to perform the channel parameter
estimation, and all the information about data xM1 is not announced throughout the parameter
estimation phase; thus, xM1 can be used for the key extraction step without leaking information about
the key during the parameter estimation step. The idea is very similar to that in [42], and the difference
is that this double-data modulation method only needs one modulation rather than two, since we
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perform the pre-processing of two independent random variables, which simplifies the experimental
setup of the double-modulation method.

Since all the exchanged signals can be used for both parameter estimation and key extraction,
the estimation of the max-entropy needs to be modified. Recalling that in Section 3, the key point of
estimating the max-entropy is to quantify the data distance d

(
xtotal

M , xtotal
B

)
. However, in traditional

EUR method, not all the data can be used for the parameter estimation, and only part of the
data (parameter estimation data) can be used to estimate the total data distance, resulting in the
statistical fluctuation of the estimating distance, thereby d

(
xtotal

M , xtotal
B

)
is approximately replaced by

d
(

xPE
M , xPE

B
)
+ μ, where the first term is the distance between the parameter estimation data and the

second term is the statistical fluctuation of estimating the total data distance by using the parameter
estimation data. In the double-data modulation protocol, we modify the L1 distance between the
key-extraction data xM1 and Bob’s data xB by exploiting the absolute value inequality, given by:

d (xM1, xB) =
1
N ∑

N

∣∣∣xi
B − xi

M1

∣∣∣
≤ 1

N ∑
N

∣∣∣xi
B − xi

M2

∣∣∣+ 1
N ∑

N

∣∣∣xi
M2 − xi

M1

∣∣∣ = d (xM2, xB) + d (xM1, xM2) , (33)

where d (xM2, xB) denotes the L1 distance between data xM2 and xB, which can be estimated after Alice
reveals data xM2, and d (xM1, xM2) denotes the L1 distance between data xM1 and xM2, which can be
calculated on Alice’s side locally. Here, we replace the number of parameter estimation signals m by N
since all the exchanged signals are used in this step. Therefore, the max-entropy can be bounded after
modifying the parameter estimation step, which reads:

Hε
max (xM1|xB) ≤ Nlog2 (d (xM2, xB) + d (xM1, xM2)) . (34)

Due to the fact that all the states are exploited to perform parameter estimation, the statistical
fluctuation of estimating L1 distance disappears, which reduces the finite-size effect on estimating
the max-entropy, especially in the short block size regime, where the statistical fluctuation cannot
be negligible.

The remaining task is to estimate the confidence intervals of the channel parameters by using data
xM2 and xB, which is the standard estimation method shown in [42]. The quadrature of the received
states on Bob’s side can be rewritten in the following form after using the double-data modulation
method,

xB =
√

τ (xM + xS) +
√

1 − τx0 + xε =
√

τxM2 + x∗N , (35)

where x∗N =
√

τ (xs + x1) +
√

1 − τx0 + xε is the aggregated noise when we use xM2 to perform the
parameter estimation, with variance V∗

N = τ (xs + x1 − 1) + 1 + Vε.
After comparing Equation (35) with Equation (27), it is easy to obtain the variances of the

estimators τ̂ and V̂ε by replacing VM with VM2, VN with V∗
N , and m with N, which are given by:

σ2
τ̂∗ =

4τ2

N

(
2 +

V∗
N

τVM2

)
, (36)

σ2
V̂∗

ε
=

2
N

V∗
N

2 + σ2
τ̂∗(1 − VS)

2. (37)

5. Numerical Simulation and Discussion

In this section, we focus on the simulation analysis of the protocol with the finite-size effect,
containing the comparison of the protocol’s performances between ideal and practical estimations
of the CM and the comparison between standard estimation method and the modified double-data
modulation method. The simulation assumes that Eve’s attack is the entangling cloner attack. We stress
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again that this attack model does not affect the security of the protocol and is just for the convenience
of the simulation. In practice, we do not need to assume the attack model in advance and only need
to estimate the correlation through the data in the hands of Alice and Bob. The correlation between
Alice’s and Bob’s data can be verified according to whether the L1 distance d

(
xPE

M , xPE
B
)

shown in
Equation (6) is greater than the threshold parameter d0. If the relation d

(
xPE

M , xPE
B
)
< d0 holds, we

think the data between Alice and Bob are correlated. Otherwise, we abort the protocol. In order to
determine whether the amount of data is sufficient for the parameter estimation, one needs to use the
experimental data of Alice and Bob with a finite block size to estimate the practical parameters and to
determine whether the finite-size effect is acceptable by simulation.

We point out that the analysis using the EUR does not rely on Eve’s attack method in the
experiment, which is due to two reasons. One reason is that the EUR security analysis method itself
does not restrict Eve’s ability [36], which means there is no need to assume that the quantum state is a
product state σ⊗N

AB , like the collective-attack analysis. Another reason is that the parameter estimation
does not need to assume Eve’s attacking model. The estimation of max-entropy only needs to estimate
the data distance d

(
xPE

M , xPE
B
)

by xM and xB. The estimation of �EC needs the variance of the measured
data and the signal-to-noise ratio after transmission, which can be obtained from the statistical CM
directly. Using the entangling cloner attack model to model Eve’s behavior just aims at getting the
lower bound of the transmittance τ and the upper bound of the excess noise ε, and then, the lower
bound of the key rate can be calculated.

In the following discussion, we consider the squeezed vacuum states with a squeezing level of
13.1 dB and an anti-squeezing level of 25.8 dB, which has experimentally been achieved at 1550 nm with
today’s technology [50]. We set the reconciliation efficiency β to 95%, which is also easily achievable
with CV-QKD’s post-processing method [51,52]. The excess noise is chosen as ε = 0.01, and the security
parameters are chosen as εc = εs = 10−9.

In Figure 2, we plot the key rate as a function of the transmission distance, expressed in terms
of km. The lower bound of the key length is given by Equation (2), and the secret key rate is
calculated by �low

/
N. The left panel and the right panel are the performances under the DR and RR

cases, respectively. We give the comparison between the ideal CM estimation and the practical CM
estimation with different practical block sizes, namely 107, 108, and 109. The solid lines are the protocol
under ideal CM estimation, and the dashed lines are the performances under practical CM estimation.
We can find that the finite-size effect of estimating the CM will slightly influence the final key rates,
and the larger the block size, the smaller the impact. For a practical block size of the order of 109, there
is almost no influence on the secret key rate.

In Figure 3, we plot the key rate of the protocol as a function of the block size and compare the
performances under different transmission distances. In the DR case (left panel), the performances
under transmission distances of 3 km, 5 km, and 10 km are illustrated, while the key rates under
transmission distances of 3 km, 10 km, and 15 km are plotted in the RR case (right panel), respectively.
We can see that the block length of the order of 107–109 is sufficient for the protocol under the
composable security analysis, achieving rates over 10−1 bits per channel use for transmission distances
of about 10 km in DR and 15 km in RR, respectively. The results also show that, in the case of short
transmission distance, the limited block length has a small impact on the performance of the protocol,
which will be weakened with the increase of the block length. Moreover, in the case of relatively long
transmission distance (approximately more than 10 km), the estimation of leakage information with
finite-size has little effect on the final key since the case of long transmission distance requires a larger
block size for the error correction.
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Figure 2. Comparison of performances between the previous key rates and the modified results under
different block lengths, namely, 107, 108, and 109. (a) shows the direct reconciliation (DR) cases, and
(b) shows the reverse reconciliation (RR) cases. The solid lines are the performances under the ideal
covariance matrix (CM) estimation, and the dashed lines are the performances under practical CM
estimation considering finite-size. The reconciliation efficiency β is under a practical value of 95%, and
the excess noise is chosen as ε= 0.01. We set the security parameters εc = εs = 10−9 and the detection
range to α = 61.6.

Figure 3. Comparison of performances between the previous key rates and the modified results under
different transmission distances. (a) shows the direct reconciliation cases, and (b) shows the reverse
reconciliation cases. The solid lines are the performances under ideal CM estimation, and the dashed
lines are the performances under practical CM estimation considering finite-size. The parameters are
chosen as in Figure 2.

The comparison of the performances between the standard estimation method and the modified
double-data modulation method is shown in Figure 4, where the left panel shows the performances of
two scenarios under different block sizes, while the right panel shows the protocol’s performances
under different transmission distances. We optimize the performance of the double-data method by
adopting the optimization method shown in [42]. In the left panel, we plot the performances of the
double-data modulation method under block sizes of 105 and 106 and the asymptotic case, respectively,
which are shown with solid lines, while the performances of the standard estimation method are
depicted with dashed lines, under block sizes of 108 and 109 and the asymptotic case. It can be seen
that, with the help of the double-data modulation method, using less quantum states can achieve better
performance than the standard estimation method in a short block-size regime, due to the fact that
the data fluctuation term μ in the previous estimation method is not negligible when the block-size is
not large, which makes the statistical fluctuation of the finite-size effect more significant in short key
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lengths. Thus, the double-data modulation method can efficiently improve the parameter estimation
process when the block size is not large. We also note that since we use all the states to extract the
key, leading to a high utilization of quantum states, the key rate of the modified method is higher
than that of the previous method. However, the double-data modulation method cannot achieve the
transmission distance as far as the single-modulation method in the asymptotic case. This is intuitive
since the statistical fluctuation in the standard estimation method converges to zero with N going
to infinity, while there still exit some noises in estimating data distance in double-data modulation
method, namely d (xM1, xM2), which will compromise the transmission distance. In the right panel
of Figure 4, we can see that the block length of the order of 105 − 107 is sufficient for the protocol to
support the previous transmission distances with the block size of the order of 107 − 109, which we
believe, to a large extent, saves the key consumption.

Figure 4. Comparison of the performances between the standard estimation method and the modified
double-data modulation method under the reverse reconciliation case. (a) shows the performances of
two scenarios under different block sizes, while (b) shows the protocol’s performances under different
transmission distances. The dashed lines are the performances using the standard estimation method,
and the solid lines are the performances using double-data modulation method.

6. Conclusions

In this work, we investigated the EUR used for the composable security analysis of the CV-QKD
protocol and focused on the parameter estimation step, containing the finite-size effect on estimating
the CM and the improvement of the parameter the estimation phase using the double-data modulation
method, which were not discussed in previous works [36–38]. We believe it is necessary to study
the finite-size effect on the parameter estimation in the EUR method, as well as its improvement,
since in practice, only limited exchanged states can be used for the parameter estimation, making the
estimation process non-ideal.

The analysis showed that the finite-size effect of estimating the CM had a slight influence on
the key rate. The larger the block size, the smaller the influence. For a practical block length of the
order of 109, the influence on the protocol’s performance was almost negligible. Thus, in a practical
experiment, if the amount of data is large, treating the estimators of parameters as ideal parameters
will not have a great influence on the key rate. The result also showed that the parameter estimation
method developed in [42] was very effective at handling the finite-size analysis of the covariance
matrix in EUR analysis.

To further reduce the impact of the finite-size effect in the parameter estimation phase, we also
improved the parameter estimation process by exploiting the double-data modulation method, which
was inspired by L. Ruppert, et al. [42]. All the quantum states can be used for both parameter estimation
and key extraction, which improves the utilization of exchanged states. After modifying the estimation
of the max-entropy, we found that the finite-size effect was to a large extent suppressed when the block

102



Entropy 2019, 21, 652

size was not large, which saved the key consumption, while the longest transmission distances in the
asymptotic case were compromised.

Our work is an improvement of previous works [36,37]. We believe that the modified estimation
method is practical by using less states to perform parameter estimation.
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Abstract: The Tsallis entropy is a useful one-parameter generalization to the standard von Neumann
entropy in quantum information theory. In this work, we study the variance of the Tsallis entropy of
bipartite quantum systems in a random pure state. The main result is an exact variance formula of the
Tsallis entropy that involves finite sums of some terminating hypergeometric functions. In the special
cases of quadratic entropy and small subsystem dimensions, the main result is further simplified to
explicit variance expressions. As a byproduct, we find an independent proof of the recently proven
variance formula of the von Neumann entropy based on the derived moment relation to the Tsallis
entropy.

Keywords: entanglement entropy; quantum information theory; random matrix theory; variance

1. Introduction

Classical information theory is the theory behind the modern development of computing,
communication, data compression, and other fields. As its classical counterpart, quantum information
theory aims at understanding the theoretical underpinnings of quantum science that will enable future
quantum technologies. One of the most fundamental features of quantum science is the phenomenon
of quantum entanglement. Quantum states that are highly entangled contain more information about
different parts of the composite system.

As a step to understand quantum entanglement, we choose to study the entanglement property
of quantum bipartite systems. The quantum bipartite model, proposed in the seminal work of Page [1],
is a standard model for describing the interaction of a physical object with its environment for various
quantum systems. In particular, we wish to understand the degree of entanglement as measured by
the entanglement entropies of such systems. The statistical behavior of entanglement entropies can
be understood from their moments. In principle, the knowledge of all integer moments determines
uniquely the distribution of the considered entropy as it is supported in a finite interval (cf. (5) below).
This is also known as Hausdorff’s moment problem [2,3]. In practice, a finite number of moments can
be utilized to construct approximations to the distribution of the entropy, where the higher moments
describe the tail distribution that provides crucial information such as whether the mean entropy
is a typical value [4]. Of particular importance is the second moment (variance) that governs the
fluctuation of the entropy around the mean value. With the first two moments, one could already
construct an upper bound to the probability of finding a state with entropy lower than the mean
entropy by using the concentration of measure techniques [4].

The existing knowledge in the literature is mostly focused on the von Neumann entropy [1,4–10],
where its first three exact moments are known. In this work, we consider the Tsallis entropy [11],
which is a one-parameter generalization of the von Neumann entropy. The Tsallis entropy enjoys
certain advantages in describing quantum entanglement. For example, it overcomes the inability of
the von Neumann entropy to model systems with long-range interactions [12]. The Tsallis entropy also

Entropy 2019, 21, 539; doi:10.3390/e21050539 www.mdpi.com/journal/entropy107



Entropy 2019, 21, 539

has the unique nonadditivity (also known as nonextensivity) property, whose physical relevance to
quantum systems has been increasingly identified [13]. In the literature, the mean value of the Tsallis
entropy was derived by Malacarne–Mendes–Lenzi [12]. The focus of this work is to study its variance.

The paper is organized as follows. In Section 2, we introduce the quantum bipartite model and the
entanglement entropies. In Section 3, an exact variance formula of the Tsallis entropy in terms of finite
sums of terminating hypergeometric functions is derived, which is the main result of this paper. As a
byproduct, we provide in Appendix A another proof to the recently proven [4,10] Vivo–Pato–Oshanin’s
conjecture [9] on the variance of the von Neumann entropy. In Section 4, the derived variance formula
of the Tsallis entropy is further simplified to explicit expressions in the special cases of quadratic
entropy and small subsystem dimensions. We summarize the main results and point out a possible
approach to study the higher moments in Section 5.

2. Bipartite System and Entanglement Entropy

We consider a composite quantum system consisting of two subsystems A and B of Hilbert
space dimensions m and n, respectively. The Hilbert space HA+B of the composite system is given
by the tensor product of the Hilbert spaces of the subsystems, HA+B = HA ⊗ HB. The random
pure state (as opposed to the mixed state) of the composite system is written as a linear combination
of the random coefficients xi,j and the complete basis

{∣∣iA〉} and
{∣∣jB〉} of HA and HB, |ψ〉 =

∑m
i=1 ∑n

j=1 xi,j
∣∣iA〉⊗ ∣∣jB〉. The corresponding density matrix ρ = |ψ〉 〈ψ| has the natural constraint

tr(ρ) = 1. This implies that the m × n random coefficient matrix X = (xi,j) satisfies:

tr
(

XX†
)
= 1. (1)

Without loss of generality, it is assumed that m ≤ n. The reduced density matrix ρA of the smaller
subsystem A admits the Schmidt decomposition ρA = ∑m

i=1 λi
∣∣φA

i
〉 〈

φA
i

∣∣, where λi is the ith largest
eigenvalue of XX†. The conservation of probability (1) now implies the constraint ∑m

i=1 λi = 1.
The probability measure of the random coefficient matrix X is the Haar measure, where the entries are
uniformly distributed over all the possible values satisfying the constraint (1). The resulting eigenvalue
density of XX† is (see, e.g., [1]),

f (λ) =
Γ(mn)

c
δ

(
1 −

m

∑
i=1

λi

)
∏

1≤i<j≤m

(
λi − λj

)2
m

∏
i=1

λn−m
i , (2)

where δ(·) is the Dirac delta function and the constant:

c =
m

∏
i=1

Γ(n − i + 1)Γ(i). (3)

The random matrix ensemble (2) is also known as the (unitary) fixed-trace ensemble.
The above-described quantum bipartite model is useful in modeling various quantum systems.
For example, in [1], the subsystem A is a black hole, and the subsystem B is the associated radiation
field. In another example [14], the subsystem A is a set of spins, and the subsystem B represents the
environment of a heat bath.

The degree of entanglement of quantum systems can be measured by the entanglement entropy,
which is a function of the eigenvalues of XX†. The function should monotonically increase from the
separable state (λ1 = 1, λ2 = · · · = λm = 0) to the maximally-entangled state (λ1 = λ2 = . . . λm =

1/m). The most well-known entanglement entropy is the von Neumann entropy:

S = −
m

∑
i=1

λi ln λi, (4)
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which achieves the separable state and maximally-entangled state when S = 0 and when S = ln m,
respectively. A one-parameter generalization of the von Neumann entropy is the Tsallis entropy [11]:

T =
1

q − 1

(
1 −

m

∑
i=1

λ
q
i

)
, q ∈ R\{0}, (5)

which, by l’Hôpital’s rule, reduces to the von Neumann entropy (4) when the non-zero real parameter
q approaches one. The Tsallis entropy (5) achieves the separable state and maximally-entangled state
when T = 0 and T =

(
mq−1 − 1

)
/(q − 1)mq−1, respectively. In some aspects, the Tsallis entropy

provides a better description of the entanglement. For example, it overcomes the inability of the von
Neumann entropy to model systems with long-range interactions [12]. The Tsallis entropy also has
a definite concavity for any q, i.e., being convex for q < 0 and concave for q > 0. We also point out
that by studying the moments of the Tsallis entropy (5) first, one may recover the moments of the von
Neumann entropy (4) in a relatively simpler manner as opposed to directly working with the von
Neumann entropy. The advantage of this indirect approach has been very recently demonstrated in
the works [4,15]. In the same spirit, we will also provide in Appendix A another proof to the variance
of the von Neumann entropy starting from the relation to the Tsallis entropy.

In the literature, the first moment of the von Neumann entropy E f [S] (the subscript f emphasizes
that the expectation is taken over the fixed-trace ensemble (2)) was conjectured by Page [1].
Page’s conjecture was proven independently by Foong and Kanno [5], Sánchez-Ruiz [6], Sen [7],
and Adachi–Toda–Kubotani [8]. Recently, an expression for the variance of the von Neumann entropy
Vf [S] was conjectured by Vivo–Pato–Oshanin (VPO) [9], which was subsequently proven by the
author [10]. Bianchi and Donà [4] provided an independent proof to VPO’s conjecture very recently,
where they also derived the third moment. For the Tsallis entropy, the first moment E f [T] was derived
by Malacarne–Mendes–Lenzi [12]. The task of the present work is to study the variance of the Tsallis
entropy Vf [T].

3. Exact Variance of the Tsallis Entropy

Similar to the case of the von Neumann entropy [1,10], the starting point of the calculation is to
convert the moments defined over the fixed-traced ensemble (2) to the well-studied Laguerre ensemble,
whose correlation functions are explicitly known. Before discussing the moments conversion approach,
we first set up necessary definitions relevant to the Laguerre ensemble. By construction (1), the random
coefficient matrix X is naturally related to a Wishart matrix YY† as:

XX† =
YY†

tr
(

YY†
) , (6)

where Y is an m × n (m ≤ n) matrix of independently and identically distributed complex Gaussian
entries (complex Ginibre matrix). The density of the eigenvalues 0 < θm < · · · < θ1 < ∞ of YY†

equals [16]:

g (θ) =
1
c ∏

1≤i<j≤m

(
θi − θj

)2
m

∏
i=1

θn−m
i e−θi , (7)

where c is the same as in (3), and the above ensemble is known as the Laguerre ensemble. The trace of
the Wishart matrix:

r = tr
(

YY†
)
=

m

∑
i=1

θi (8)

follows a gamma distribution with the density [9]:

hmn(r) =
1

Γ(mn)
e−rrmn−1, r ∈ [0, ∞). (9)
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The relation (6) induces the change of variables:

λi =
θi
r

, i = 1, . . . , m, (10)

that leads to a well-known relation (see, e.g., [1]) among the densities (2), (7), and (9) as:

f (λ) hmn(r)dr
m

∏
i=1

dλi = g (θ)
m

∏
i=1

dθi. (11)

This implies that r is independent of each λi, i = 1, . . . , m, since their densities factorize.
For the von Neumann entropy (4), the relation (11) has been exploited to convert the

first two moments [1,10] from the fixed-trace ensemble (2) to the Laguerre ensemble (7).
The moments conversion was an essential starting point in proving the conjectures of Page [1,6]
and Vivo–Pato–Oshanin [10]. We now show that the moments conversion approach can be also
applied to study the Tsallis entropy. We first define:

L =
m

∑
i=1

θ
q
i (12)

as the induced Tsallis entropy of the Laguerre ensemble (7). Here, for the convenience of the discussion,
we have defined the induced entropy, which may not have the physical meaning of an entropy.
Using the change of variables (10), the kth power of the Tsallis entropy (5) can be written as:

Tk =
1

(q − 1)k

(
1 − L

rq

)k
=

1
(q − 1)k

k

∑
i=0

(−1)i
(

k
i

)
Li

rqi (13)

and thus, we have:

E f

[
Tk
]
=

1
(q − 1)k

k

∑
i=0

(−1)i
(

k
i

)
E f

[
Li

rqi

]
. (14)

The expectation on the left-hand side is computed as:

E f

[
Li

rqi

]
=

∫
λ

Li

rqi f (λ)
m

∏
i=1

dλi (15)

=
∫

λ

Li

rqi f (λ)
m

∏
i=1

dλi

∫
r

hmn+qi(r)dr (16)

=
Γ(mn)

Γ(mn + qi)

∫
λ

∫
r

Li f (λ) hmn(r)dr
m

∏
i=1

dλi (17)

=
Γ(mn)

Γ(mn + qi)
Eg

[
Li
]

, (18)

where the multiplication of an appropriate constant 1 =
∫

r hmn+qi(r)dr in (16) along with the fact that
r−qihmn+qi(r) = Γ(mn)hmn(r)/Γ(mn + qi) lead to (17), and the last equality (18) is established by the
change of measures (11). Inserting (18) into (14), the kth moment of the Tsallis entropy (5) is written as
a sum involving the first k moments of the induced Tsallis entropy (12) as:

E f

[
Tk
]
=

Γ(mn)
(q − 1)k

k

∑
i=0

(
k
i

)
(−1)i

Γ(mn + qi)
Eg

[
Li
]

. (19)

With the above relation (19), the computation of moments over the less tractable correlation
functions of the fixed-trace ensemble (2) is now converted to the one over the Laguerre ensemble (7),
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which will be calculated explicitly. In particular, computing the variance Vf [T] = E f
[
T2]− E2

f [T]
requires the moments relation (19) for k = 1,

E f [T] =
1

q − 1

(
1 − Γ(mn)

Γ(mn + q)
Eg[L]

)
(20)

and k = 2,

E f

[
T2
]
=

1
(q − 1)2

(
1 − 2Γ(mn)

Γ(mn + q)
Eg[L] +

Γ(mn)
Γ(mn + 2q)

Eg

[
L2
])

, (21)

where the first moment relation (20) has also appeared in [12]. It is seen from (21) that the essential
task now is to compute Eg[L] and Eg

[
L2]. Before proceeding to the calculation, we point out that in

the limit q → 1, the derived second moments relation (21) leads to a new proof to the recently proven
variance formula of the von Neumann entropy [10] with details provided in the Appendix A.

The computation of Eg[L] and Eg
[
L2] involves one and two arbitrary eigenvalue densities,

denoted respectively by g1(x1) and g2(x1, x2), of the Laguerre ensemble as:

Eg[L] = m
∫ ∞

0
xq

1 g1(x1)dx1, (22)

Eg

[
L2
]

= m
∫ ∞

0
x2q

1 g1(x1)dx1 + m(m − 1)
∫ ∞

0

∫ ∞

0
xq

1xq
2 g2 (x1, x2) dx1 dx2. (23)

In general, the joint density of N arbitrary eigenvalues gN(x1, . . . , xN) is related to the N-point
correlation function:

XN (x1, . . . , xN) = det
(
K
(

xi, xj
))N

i,j=1 (24)

as [16] gN(x1, . . . , xN) = XN (x1, . . . , xN) (m − N)!/m!, where det(·) is the matrix determinant and the
symmetric function K(xi, xj) is the correlation kernel. In particular, we have:

g1(x1) =
1
m

K(x1, x1), (25)

g2(x1, x2) =
1

m(m − 1)

(
K(x1, x1)K(x2, x2)− K2(x1, x2)

)
, (26)

and the correlation kernel K(xi, xj) of the Laguerre ensemble can be explicitly written as [16]:

K(xi, xj) =
√

e−xi−xj(xixj)n−m
m−1

∑
k=0

Ck(xi)Ck(xj)

k!(n − m + k)!
, (27)

where:
Ck(x) = (−1)kk!L(n−m)

k (x) (28)

with:

L(n−m)
k (x) =

k

∑
i=0

(−1)i
(

n − m + k
k − i

)
xi

i!
(29)

the (generalized) Laguerre polynomial being of degree k. The Laguerre polynomials satisfy the
orthogonality relation [16]:

∫ ∞

0
xn−me−xL(n−m)

k (x)L(n−m)
l (x)dx =

(n − m + k)!
k!

δkl , (30)

where δkl is the Kronecker delta function. It is known that the one-point correlation function admits a
more convenient representation as [6,16]:

X1(x) = K(x, x) =
m!

(n − 1)!
xn−me−x

((
L(n−m+1)

m−1 (x)
)2 − L(n−m+1)

m−2 (x)L(n−m+1)
m (x)

)
. (31)
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We also need the following integral identity, due to Schrödinger [17], that generalizes the integral (30) to:

A(α,β)
s,t (q) =

∫ ∞

0
xqe−xL(α)

s (x)L(β)
t (x)dx

= (−1)s+t
min(s,t)

∑
k=0

(
q − α

s − k

)(
q − β

t − k

)
Γ(k + q + 1)

k!
, q > −1. (32)

With the above preparation, we now proceed to the calculation of Eg[L] and Eg
[
L2]. Inserting (25)

and (31) into (22) and defining further:

As,t = A(n−m+1,n−m+1)
s,t (n − m + q), (33)

one obtains by using (32) that:

Eg[L] =
m!

(n − 1)!
(Am−1,m−1 −Am−2,m) (34)

=
m!

(n − 1)!

(
m−1

∑
k=0

(
q − 1

m − k − 1

)2 Γ(n − m + q + k + 1)
k!

−

m−2

∑
k=0

(
q − 1

m − k − 2

)(
q − 1
m − k

)
Γ(n − m + q + k + 1)

k!

)
,

which is valid for q > −1. The first moment expression in the above form has been obtained in [12],
and we continue to show that it can be compactly written as a terminating hypergeometric function of
the unit argument. Indeed, since:(

q − 1
−1

)(
q − 1

1

)
Γ(n + q)
(m − 1)!

= 0, q > −1\{0}, (35)

we have:

Eg[L] =
m!

(n − 1)!

m−1

∑
k=0

Γ(n − m + q + k + 1)
k!

((
q − 1

m − k − 1

)2
−
(

q − 1
m − k − 2

)(
q − 1
m − k

))
(36)

=
m!Γ2(q)
(n − 1)!

m−1

∑
k=0

Γ(n + q − k)
(m − k − 1)!

(
1

k!2Γ2(q − k)
− 1

(k − 1)!(k + 1)!Γ(q − k + 1)Γ(q − k − 1)

)

=
m!Γ(q + 1)Γ(q)

(n − 1)!

m−1

∑
k=0

Γ(n + q − k)
(m − k − 1)!Γ(q − k + 1)Γ(q − k)k!(k + 1)!

(37)

=
m!Γ(q + 1)Γ(q)

(n − 1)!
Γ(n + q)

(m − 1)!Γ(q + 1)Γ(q)

m−1

∑
k=0

(1 − m)k(−q)k(1 − q)k
(1 − n − q)k(2)k

1
k!

(38)

=
mΓ(n + q)
(n − 1)! 3F2

[
1 − m, − q, 1 − q

1 − n − q, 2
; 1
]

, q > −1\{0}, (39)

where the second equality follows from the change of variable k → m − 1 − k, and (38) is obtained by
repeated use of the identity:

Γ(m − k) =
(−1)k

(1 − m)k
Γ(m) (40)

with (a)n = Γ(a + n)/Γ(a) being Pochhammer’s symbol; and (39) is obtained by the series definition
of the hypergeometric function:

pFq

[
a1, . . . , ap

b1, . . . , bq
; z
]
=

∞

∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

zk

k!
(41)
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that reduces to a finite sum if one of the parameters ai is a negative integer. Inserting (39) into (20),
we arrive at a compact expression for the first moment of the Tsallis entropy as:

E f [T] =
1

q − 1

(
1 − m(mn − 1)!Γ(n + q)

(n − 1)!Γ(mn + q) 3F2

[
1 − m, − q, 1 − q

1 − n − q, 2
; 1
])

, q > −1\{0}. (42)

We now calculate Eg
[
L2]. Inserting (25) and (26) into (23), one has:

Eg

[
L2
]
= I1 − I2 +

m2Γ2(n + q)
(n − 1)!2 3F2

[
1 − m, − q, 1 − q

1 − n − q, 2
; 1
]2

, (43)

where:

I1 =
∫ ∞

0
x2q

1 K(x1, x1)dx1, (44)

I2 =
∫ ∞

0

∫ ∞

0
xq

1xq
2 K2 (x1, x2) dx1 dx2, (45)

and we have used the result (39) with the fact that:∫ ∞

0
xqK(x, x)dx = Eg[L] . (46)

The integral I1 can be read off from the steps that led to (39) by replacing q with 2q as:

I1 =
mΓ(n + 2q)
(n − 1)! 3F2

[
1 − m, − 2q, 1 − 2q

1 − n − 2q, 2
; 1
]

. (47)

Inserting (27) into (45) and defining further (cf. (32)):

As,t = A(n−m,n−m)
s,t (n − m + q), (48)

the integral I2 is written as:

I2 =
m−1

∑
k=0

k!2A2
k,k

(n − m + k)!2
+ 2

m−1

∑
j=1

j−1

∑
i=0

i!j!A2
i,j

(n − m + i)!(n − m + j)!
, (49)

where by using (32) and (40), we obtain:

Ai,j = Γ2(q + 1)
i

∑
k=0

Γ(n − m + q + k + 1)
Γ(q − i + k + 1)Γ(q − j + k + 1)(i − k)!(j − k)!k!

(50)

=
Γ(n − m + q + 1)

Γ(q − i + 1)Γ(q − j + 1)i!j!

i

∑
k=0

(−i)k(−j)k(n − m + q + 1)k
(q − i + 1)k(q − j + 1)k

1
k!

(51)

=
Γ(n − m + q + 1)

Γ(q − i + 1)Γ(q − j + 1)i!j! 3F2

[−i, − j, n − m + q + 1
q − i + 1, q − j + 1

; 1
]

, (52)

and similarly:

Ak,k =
Γ(n − m + q + 1)
Γ2(q − k + 1)k!2 3F2

[−k, − k, n − m + q + 1
q − k + 1, q − k + 1

; 1
]

. (53)
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Finally, by inserting (47), (49), (52), and (53) into (43), we arrive at:

Eg

[
L2
]

=
m2Γ2(n + q)
(n − 1)!2 3F2

[
1 − m, − q, 1 − q

1 − n − q, 2
; 1
]2

+
mΓ(n + 2q)
(n − 1)! 3F2

[
1 − m, − 2q, 1 − 2q

1 − n − 2q, 2
; 1
]

−Γ4(q + 1)Γ2(n − m + q + 1)

(
m−1

∑
i=0

L2(i, i) + 2
m−1

∑
j=1

j−1

∑
i=0

L2(i, j)

)
, q > −1\{0}, (54)

where the symmetric function L(i, j) = L(j, i) is:

L(i, j) =
3F2

[−i, −j, n−m+q+1
q−i+1, q−j+1 ; 1

]
Γ(q − i + 1)Γ(q − j + 1)

√
i!j!(n − m + i)!(n − m + j)!

. (55)

With the derived first two moments (39) and (54) and the relations (20) and (21), an exact variance
formula of the Tsallis entropy is obtained.

4. Special Cases

Though the derived results (39) and (54) may not be further simplified for an arbitrary m, n, and q,
we will show that explicit variance expressions can be obtained in some special cases of practical
relevance.

4.1. Quadratic Entropy q = 2

In the special case q = 2, the Tsallis entropy (5) reduces to the quadratic entropy:

T = 1 −
m

∑
i=1

λ2
i , (56)

which was first considered in physics by Fermi [12]. The quadratic entropy (56) is the only entropy
among all possible q values that satisfies the information invariance and continuity criterion [18].

By the series representations (38) and (51), the first two moments in the case q = 2 are directly
computed as:

Eg[L] = mn(m + n), (57)

Eg

[
L2
]

= mn
(

mn3 + 2m2n2 + 4n2 + m3n + 10mn + 4m2 + 2
)

. (58)

By (20) and (21), we immediately have:

E f [T] =
mn − m − n + 1

mn + 1
, (59)

E f

[
T2
]

=
(m − 1)(n − 1)

(mn + 1)(mn + 2)(mn + 3)

(
m2n2 − mn2 − m2n + 5mn − 4n − 4m + 8

)
, (60)

which lead to the variance of Tsallis entropy for q = 2 as:

Vf [T] =
2
(
m2 − 1

) (
n2 − 1

)
(mn + 1)2 (mn + 2) (mn + 3)

. (61)

Finally, we note that explicit variance expressions for other positive integer values of q can be
similarly obtained.
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4.2. Subsystems of Dimensions m = 2 and m = 3

We now consider the cases when dimensions m of the smaller subsystems are small. This is
a relevant scenario for subsystems consisting of, for example, only a few entangled particles [14].
For m = 2 with any n and q, the series representations (38) and (51) directly lead to the results:

Eg[L] =
q2 + q + 2n − 2

(n − 1)!
Γ(q + n − 1), (62)

Eg

[
L2
]

=
2

(n − 1)!

(
Γ(q + n − 1)Γ(q + n)

(n − 2)!
+
(

2q2 + q + n − 1
)

Γ(2q + n − 1)
)

. (63)

In the same manner, for m = 3 with any n and q, we obtain:

Eg[L] =
6n
(
q2 + q − 3

)
+ (q − 2)(q − 1)(q + 2)(q + 3) + 6n2

2(n − 1)!
Γ(q + n − 2), (64)

Eg

[
L2
]

=
6n(q2 + q − 3) + q4 + 4q3 − 7q2 − 10q + 12 + 6n2

(n − 1)!(n − 2)!
Γ(q + n − 2)Γ(q + n − 1) +

3n(4q2 + 2q − 3) + 8q4 + 8q3 − 14q2 − 8q + 6 + 3n2

(n − 1)!
Γ(2q + n − 2). (65)

The corresponding variances are obtained by keeping in mind the relations (20) and (21). For m ≥ 4,
explicit variance expressions can be similarly calculated. However, it does not seem promising to find
an explicit variance formula valid for any m, n, and q.

5. Summary and Perspectives on Higher Moments

We studied the exact variance of the Tsallis entropy, which is a one-parameter (q) generalization
of the von Neumann entropy. The main result is an exact variance expression (54) valid for q > −1 as
finite sums of terminating hypergeometric functions. For q = 1, we find a short proof to the variance
formula of the degenerate case of the von Neumann entropy in the Appendix. For other special cases of
the practical importance of q = 2, m = 2, and m = 3, explicit variance expressions have been obtained
in (61), (63), and (65), respectively.

We end this paper with some perspectives on the higher moments of the Tsallis entropy.
In principle, the higher moments can be calculated by integrating over the correlation kernel (27) as
demonstrated for the first two moments. In practice, the calculation becomes progressively complicated
as the order of moments increases. Here, we outline an alternative path that may systematically lead
to the moments of any order in a recursive manner.

We focus on the induced Tsallis entropy L as defined in (12) since the moments conversion is
available (19). The starting point is the generating function of L:

τm(t, q) = Eg

[
etL
]

=
1
c

∫ ∞

0
· · ·
∫ ∞

0
∏

1≤i<j≤m

(
θi − θj

)2
m

∏
i=1

θn−m
i e−θi+tθq

i dθi (66)

=
1
c

det
(∫ ∞

0
xi+j+n−m−2e−x+txq

dx
)m

i,j=1
, (67)

which is a two-parameter (t and q) deformation of the Laguerre ensemble (7). Compared to the weight
function w(x) = xn−me−x of the Laguerre ensemble, the deformation induces a new weight function:

w(x) = xn−me−x+txq
, (68)

which generalizes the Toda deformation [19] w(x) = xn−me−x+tx with the parameter q. The basic
idea to produce the moments systematically is to find some differential and difference equations of
the generating function τm(t, q). The theory of integrable systems [16] may provide the possibility to

115



Entropy 2019, 21, 539

obtain differential equations for the Hankel determinant (67) with respect to continuous variables t
and q, as well as difference equations with respect to the discrete variable m. In particular, when q is a
positive integer, the deformation (68) is known as multi-time Toda deformation [19], where much of
the integrable structure is known [19].
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Appendix A. A New Proof to the Variance Formula of the von Neumann Entropy

Vivo, Pato, and Oshanin recently conjectured that the variance of the von Neumann entropy (4)
in a random pure state (2) is [9]:

Vf [S] = −ψ1 (mn + 1) +
m + n

mn + 1
ψ1 (n)− (m + 1)(m + 2n + 1)

4n2(mn + 1)
, (A1)

where:

ψ1(x) =
d2 ln Γ(x)

dx2 (A2)

is the trigamma function. The conjecture was proven in [4,10], and here, we provide another proof
starting from the relation (21),

E f

[
T2
]
=

1
(q − 1)2

(
1 − 2Γ(mn)

Γ(mn + q)
Eg[L] +

Γ(mn)
Γ(mn + 2q)

Eg

[
L2
])

. (A3)

To resolve the indeterminacy in the limit q → 1, we apply twice l’Hôpital’s rule on both sides of the
above equation:

E f

[
S2
]
= lim

q→1
E f

[
T2
]
=

Γ(mn)
2

(
− 2

Γ(mn + q)
Eg[L] +

1
Γ(mn + 2q)

Eg

[
L2
])′′ ∣∣∣∣

q=1
, (A4)

where f ′ = d f / dq. Define an induced von Neumann entropy of the Laguerre ensemble (7):

Ra =
m

∑
i=1

θi lna θi (A5)

with R1 further denoted by R = R1; the right-hand side of (A4) can be evaluated by using the
following facts:

Eg[L]
∣∣
q=1 = Er[r] , (A6)

Eg

[
L2
] ∣∣

q=1 = Er

[
r2
]

, (A7)

Eg
′ [L]

∣∣
q=1 = Eg[R] , (A8)

Eg
′′ [L]

∣∣
q=1 = Eg[R2] , (A9)

Eg
′
[

L2
] ∣∣

q=1 = 2Eg[rR] , (A10)

Eg
′′
[

L2
] ∣∣

q=1 = 2Eg

[
R2
]
+ 2Eg[rR2] , (A11)

and the definitions of the digamma function ψ0(x) = d ln Γ(x)/ dx and the trigamma function (A2)
that give:

Γ′(q) = Γ(q)ψ0(q), (A12)

Γ′′(q) = Γ(q)
(

ψ1(q) + ψ2
0(q)

)
, (A13)
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as:

E f

[
S2
]

=
1

mn

(
2Eg[R]ψ0(mn + 1) +Er[r]

(
ψ1(mn + 1)− ψ2

0(mn + 1)
)
−Eg[R2]

)
+

1
mn(mn + 1)

(
Eg

[
R2
]
+Eg[rR2]− 4Eg[rR]ψ0(mn + 2)−

2Er

[
r2
] (

ψ1(mn + 2)− ψ2
0(mn + 2)

))
. (A14)

In (A14), the first two moments of r are given by:

Er[r] = mn, Er

[
r2
]
= mn(mn + 1), (A15)

which are obtained from the kth moment expression (cf. (9)):

Er

[
rk
]
=

Γ(mn + k)
Γ(mn)

. (A16)

The first two moments of the induced von Neumann entropy over the Laguerre ensemble Eg[R] and
Eg
[
R2] in (A14) have been computed in [6] and [7] as:

Eg[R] = mnψ0(n) +
1
2

m(m + 1) (A17)

and in [10] as:

Eg

[
R2
]

= mn(m + n)ψ1(n) + mn(mn + 1)ψ2
0(n) + m

(
m2n + mn + m + 2n + 1

)
ψ0(n) +

1
4

m(m + 1)
(

m2 + m + 2
)

, (A18)

respectively. The remaining task is to calculate Eg[rR], Eg[R2], and Eg[rR2] in (A14). This relies on
the repeated use of the change of variables (10) and measures (11), which exploit the independence
between r and λ. Indeed, we have:

Eg[rR] = Eg

[
r

m

∑
i=1

rλi ln (rλi)

]
(A19)

= Er

[
r2 ln r

]
−Eg

[
r2S

]
(A20)

=
Γ(mn + 2)

Γ(mn)
ψ0(mn + 2)−Er

[
r2
]
E f [S] (A21)

= mn(mn + 1)
(

ψ0(n) +
1

mn + 1
+

m + 1
2n

)
, (A22)

where (A21) is obtained by (11) and the identity:∫ ∞

0
e−rra−1 ln r dr = Γ(a)ψ0(a), Re(a) > 0, (A23)

and (A22) is obtained by (A16) and the mean formula of the von Neumann entropy [1,5–8]:

E f [S] = ψ0(mn + 1)− ψ0(n)− m + 1
2n

. (A24)
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Define a generalized von Neumann entropy to (4) as:

Sa = −
m

∑
i=1

λi lna λi (A25)

with S = S1, we similarly have:

Eg[rR2] = Er

[
r2 ln2 r

]
− 2Eg

[
r2 ln rS

]
−Eg

[
r2S2

]
(A26)

= Er

[
r2 ln2 r

]
− 2Er

[
r2 ln r

]
E f [S]−Er

[
r2
]
E f [S2] , (A27)

where the term:
Er

[
r2 ln2 r

]
= mn(mn + 1)

(
ψ1(mn + 2) + ψ2(mn + 2)

)
(A28)

is obtained by the identity:∫ ∞

0
e−rra−1 ln2 r dr = Γ(a)

(
ψ1(a) + ψ2

0(a)
)

, Re(a) > 0, (A29)

and it remains to calculate the term E f [S2] in (A27),

E f [S2] =
∫

λ

(
−R2

r
− 2S ln r + ln2 r

)
f (λ)

m

∏
i=1

dλi

∫
r

hmn+1(r)dr (A30)

= − 1
mn

Eg[R2]− 2ψ0(mn + 1)E f [S] + ψ1(mn + 1) + ψ2
0(mn + 1) (A31)

= − 1
mn

Eg[R2] + ψ1(mn + 1)− ψ2
0(mn + 1) + 2ψ0(mn + 1)

(
ψ0(n) +

m + 1
2n

)
. (A32)

It is seen that the term involving Eg[R2] in the above cancels the one in (A14). Finally, inserting (A15),
(A17), (A18), (A22), (A27), and (A32) into (A14) and keeping in mind the mean formula (A24), we prove
the variance formula (A1) after some necessary simplification by the identities:

ψ0(l + n) = ψ0(l) +
n−1

∑
k=0

1
l + k

, ψ1(l + n) = ψ1(l)−
n−1

∑
k=0

1
(l + k)2 . (A33)
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Abstract: We explicitly present a generalized quantum teleportation of a two-qubit entangled state
protocol, which uses two pairs of partially entangled particles as quantum channel. We verify that the
optimal probability of successful teleportation is determined by the smallest superposition coefficient
of these partially entangled particles. However, the two-qubit entangled state to be teleported will be
destroyed if teleportation fails. To solve this problem, we show a more sophisticated probabilistic
resumable quantum teleportation scheme of a two-qubit entangled state, where the state to be
teleported can be recovered by the sender when teleportation fails. Thus the information of the
unknown state is retained during the process. Accordingly, we can repeat the teleportion process as
many times as one has available quantum channels. Therefore, the quantum channels with weak
entanglement can also be used to teleport unknown two-qubit entangled states successfully with
a high number of repetitions, and for channels with strong entanglement only a small number of
repetitions are required to guarantee successful teleportation.

Keywords: quantum teleportation; two-qubit entangled state; partially entangled state; local unitary
operation; controlled-U gate

1. Introduction

Quantum teleportation (QT) is one of the most astonishing applications of quantum mechanics.
This operable concept was originally presented by Bennett et al. in 1993 [1]. In this protocol, the
sender (Alice) and the receiver (Bob) prearrange the sharing of an Einstein-Podolsky-Rosen (EPR) [2]
correlated pair of particles. Alice makes a joint measurement on her EPR particle and the unknown
quantum system; she then sends Bob the classical result of her measurement. Finally, Bob can convert
the state of his EPR particle into an exact replica of the unknown state belonging to Alice by means of
local operations and classical communication (LOCC). QT has been realized experimentally [3–5] and
due to its fresh notion and latent applied prospects in the realm of quantum communication, various
kinds of QT have been widely studied both theoretically [6–9] and experimentally [10–12].

From above researches, we can learn that a maximally entangled state as the quantum channel
and two classical bits are the key ingredients for the deterministic teleportation with fidelity 1 [13,14].
However, in realistic situation, instead of the pure maximally entangled states, Alice and Bob usually
share a mixed entangled state or a partially entangled state due to the decoherence. Teleportation
using a mixed state as an entangled resource is, in general, equivalent to having a noisy quantum
channel. As a mixed state can’t be purified to a Bell state [15–17], a quantum channel of mixed states
could never provide a teleportation with fidelity 1 [18,19]. Therefore, only pure entangled pairs should

Entropy 2019, 21, 352; doi:10.3390/e21040352 www.mdpi.com/journal/entropy121
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be considered if we prefer an exact teleportation, even if it is probabilistic. Li et al. [20] put forward
a partially entangled quantum channel to probabilistically teleport the quantum state of a single
particle and extended this scheme to a multi-particle system. Much attention has been paid to this
direction [21–26].

Recently, the field of entanglement has become an intense research area due to its key role
in many applications of quantum information processing, such as precise measurement, quantum
communication, quantum network and quantum repeater, etc. It is therefore an interesting question
how we can teleport a pair of entangled particles. In 1999, Gorbachev et al. [27] proposed their protocol,
teleportation of a two-qubit entangled state (TTES), by using a three-particle maximally entangled
state of the type Greenberger-Horne-Zeilinger (GHZ). Two schemes for generalized TTES (GTTES)
have been reported soon. In one of them, the protocol is assisted with a generalized three-particle
entangled state as quantum channel, which is based on GHZ [28]. In the other probabilistic scheme,
teleportation is completed with an entanglement swapping process [29], which is carried out via two
pairs of partially entangled channels (TPEC). In their schemes, since the fidelity cannot reach 1, the
maximal probabilities of exact teleportation was provided. According to the no-cloning theorem [30,31]
and the irreversibility of quantum measurements [32,33], the information of the states to be teleported
will be lost if the processes fail. Obviously, their destructive protocols do not offer the chance to repeat
the process if TTES fails.

Roa et al. [34] presented a scheme for teleporting probabilistically an unknown pure state with
optimal probability and without losing the information of the state to be teleported, and its advantage
is that the unknown state is recovered by the sender when teleportation fails. This property offers the
chance to repeat the teleportation process as many times as one has available quantum channels.

This paper is organized as follow. In Section 2, we present the probabilistic quantum teleportation
of a two-qubit entangled state protocol, which uses two pairs of partially entangled particles as
quantum channel. We verify that the optimal probability of successful teleportation is determined by
the smallest superposition coefficient of these partially entangled particles. We introduce an optimal
scheme, probabilistic resumable quantum teleportation of a two-qubit entangled state (RTTES) in
Section 3, which is assisted with TPEC and has the advantage that the unknown entangled state can be
recovered by the sender when the process fails. That is to say, if the sender and receiver have more than
one partially entangled quantum channel, then the sender is able to teleport many times until RTTES
is successful because the sender still have the unknown state undisturbed. In Section 4, we discuss the
success probability of probabilistic TTES process. Finally, the conclusions are summarized in Section 5.

2. Probabilistic Teleportation of a Two-Qubit Entangled State

Suppose Alice has an arbitrary partially entangled pair, consisting of particles (1,2), which can be
described as

|φ〉12 = (x|00〉+ y|11〉)12, (1)

with |x|2 + |y|2 = 1, where {|0〉, |1〉} are the eigenstates of the Pauli operator σz = |0〉〈0| − |1〉〈1|.
Now Alice would like to teleport the unknown state |φ〉12 to Bob. She sets up two distant entangled
pure states as quantum channel between herself (particles 3 and 5) and Bob (particles 4 and 6), which
located in the following states, respectively:{|ψ〉34 = (a|00〉+ b|11〉)34,

|ψ〉56 = (c|00〉+ d|11〉)56,
(2)

with |a| � |b|, |a|2 + |b|2 = 1, |c| � |d|, |c|2 + |d|2 = 1. Note that when |a| = |b| and |c| = |d|, the
quantum channel is composed of two EPR pairs, and the deterministic teleportation can be achieved.
This is the special case of our scheme. We demonstrate that, by using entanglement swapping [29],
Alice can successfully transmit state |φ〉12 to Bob with certain probability.

122



Entropy 2019, 21, 352

The state of the whole system is given by

|Ψ〉123456 = |φ〉12 ⊗ |ψ〉34 ⊗ |ψ〉56

= [x(ac|000000〉+ ad|000011〉+ bc|001100〉+ bd|001111〉)
+y(ac|110000〉+ ad|110011〉+ bc|111100〉+ bd|111111〉)]123456.

(3)

Now Alice firstly performs local Bell-state measurements [35] on particles (1, 3) and particles
(2, 5), respectively. The particles (4, 6) belong to Bob will be projected to the corresponding quantum
state, i.e., the above strategy is provided for the receiver to extract the quantum information by
adopting a proper evolution. There are four outcomes in each Bell-state measurement, (|Φ±〉 =

1/
√

2(|00〉 ± |11〉), |Ψ±〉 = 1/
√

2(|01〉 ± |10〉)), so there are sixteen specific results in total.
For example, here we analyse the case that the results of measurement are |Φ+〉13 and |Ψ−〉25,

respectively. The particles (4, 6) are collapsed into the following state

|Φ〉46 = 〈Φ+
13|〈Ψ−

25|Ψ〉123456

= 1√
2
(〈00|+ 〈11|)13

1√
2
(〈01| − 〈10|)25|Ψ〉123456

= 1
2 (xad|01〉 − ybc|10〉)46.

(4)

Next, Alice informs Bob of the results by the classical communication and Bob performs a unitary
operation (|0〉〈0|+ |1〉〈1|)4 ⊗ (|0〉〈1| − |1〉〈0|)6 on Equation (4). Then its state changes to

1
2 (xad|00〉+ ybc|11〉)46. (5)

Without loss of generality, if the superposition coefficients satisfy |a| � |c| � |d| � |b|, we have
|ac| � |bd|, |ad| � |bc|. In order to carry out the proper evolution, we need to introduce an auxiliary
particle to Bob which initial state is |0〉aux, and operate the following controlled unitary transformation
under the basis {|0〉4|0〉aux, |1〉4|0〉aux, |0〉4|1〉aux, |1〉4|1〉aux}. The unitary transformation is described
as the following controlled-U gate

U1 = |0〉〈0| ⊗ Û1 + |1〉〈1| ⊗ I, (6)

with Û1 being a rotation in a π/2 angle around the n̂1 direction, specifically,

Û1 = e−i π
2 ei π

2 n̂1·σ, n̂1 =

(√
1 −

(
bc
ad

)2
, 0, bc

ad

)
, (7)

and σ = (σx, σy, σz). Note that the amplitudes a, b, c and d of the quantum channel have to be known in
order to apply the above unitary transformation. The collective unitary transformation U1 transforms
the un-normalized state Equation (5) to the result

|Φ〉46aux = 1
2 bc(x|00〉+ y|11〉)46|0〉aux +

1
2 ad

√
1 −

(
bc
ad

)2
x|00〉46|1〉aux, (8)

which is also un-normalized. Then we perform a measurement on the auxiliary particle. If the result of
measurement is |1〉aux, we can see that the teleportation fails with the state of qubits (4, 6) transformed
to the state 1/2ad

√
(1 − bc/ad)2x|00〉46 and no information regarding the initial state |φ〉12 is left.

On the contrary, if the result of measurement is |0〉aux, the state of particles (4, 6) collapses to an
exact replica of the teleported state |φ〉12. The teleportation is successfully accessed. The contribution
of this un-normalized state can be expressed by the probabilistic amplitude of (x|00〉+ y|11〉)46 in
Equation (8) as |(1/2)× bc|2 = (1/4)× |bc|2.

123



Entropy 2019, 21, 352

Similarly, if Alice’s measurement results are |Ψ+〉13 and |Ψ−〉25, the particles (4, 6) are collapsed
into the following state

|Φ〉46 = 〈Ψ+
13|〈Ψ−

25|Ψ〉123456

= 1
2 (xbd|11〉 − yac|00〉)46.

(9)

Bob operates a unitary operation (|0〉〈1|+ |1〉〈0|)4 ⊗ (|0〉〈1|− |1〉〈0|)6 on Equation (9) and changes
it to

1
2 (xbd|00〉+ yac|11〉)46. (10)

It should be noted that the unitary operation here is different from Equation (6):

U2 = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Û2, (11)

with Û2 being a rotation in a π/2 angle around the n̂2 direction, specifically,

Û2 = e−i π
2 ei π

2 n̂2·σ, n̂2 =

(√
1 −

(
bd
ac

)2
, 0, bd

ac

)
. (12)

The state of particles (4, 6) reduces to

|Φ〉46aux = 1
2 bd(x|00〉+ y|11〉)46|0〉aux +

1
2 ac

√
1 −

(
bd
ac

)2
y|11〉46|1〉aux. (13)

So, for Equation (13), the probability of successful teleportation is (1/4)× |bd|2. Other measuring
results can be discussed in the same way. The whole scheme is shown in Figure 1. We list all sixteen
kinds of results, and show the corresponding operations respectively in Table 1, where the unitary
operations U′

1 = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Û1 and U′
2 = |0〉〈0| ⊗ Û2 + |1〉〈1| ⊗ I. Synthesizing all cases, we

obtain the total probability of successful teleportation being

P = 1
4 |bc|2 × 8 + 1

4 |bd|2 × 8 = 2 |b|2 . (14)

Table 1. The specific situation of the measurement results and the corresponding unitary operations
in GTTES.

Alice’s Measurement Results Probability Bob’s Unitary Operation

|Φ+〉13|Φ±〉25
1
4 |bd|2 [I4 ⊗ (|0〉〈0| ± |1〉〈1|)6] · U′

2
|Φ−〉13|Φ±〉25

1
4 |bd|2 [I4 ⊗ (|0〉〈0| ∓ |1〉〈1|)6] · U′

2
|Φ+〉13|Ψ±〉25

1
4 |bc|2 [I4 ⊗ (|0〉〈1| ± |1〉〈0|)6] · U1

|Φ−〉13|Ψ±〉25
1
4 |bc|2 [I4 ⊗ (|0〉〈1| ∓ |1〉〈0|)6] · U1

|Ψ+〉13|Φ±〉25
1
4 |bc|2 [(|0〉〈1| ± |1〉〈0|)4 ⊗ I6] · U′

1
|Ψ−〉13|Φ±〉25

1
4 |bc|2 [(|0〉〈1| ∓ |1〉〈0|)4 ⊗ I6] · U′

1
|Ψ+〉13|Ψ±〉25

1
4 |bd|2 [(|0〉〈1|+ |1〉〈0|)4 ⊗ (|0〉〈1| ± |1〉〈0|)6] · U2

|Ψ−〉13|Ψ±〉25
1
4 |bd|2 [(|0〉〈1|+ |1〉〈0|)4 ⊗ (|0〉〈1| ∓ |1〉〈0|)6] · U2
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Figure 1. Colour online: blue represents the message to be teleported by Alice, and the information
that needs to be extracted further is gradient. (a) System model for teleporting an arbitrary partially
entangled pair consisting of particles (1, 2) by Alice. Particles (3, 4) and (5, 6) are partially entangled
pairs. (b) By performing local Bell-state measurements on particles (1, 3) and (2, 5), the entanglement
between particles (3, 4) and (5, 6) vanishes, while entanglement between particles (1, 3) and (2, 5) is
built up. And then Bob extract the information from particles 4 and 6 via unitary operations and a von
Neumann measurement. Eventually, the message has been teleported from Alice to Bob if and only if
the state of auxiliary particle is unchanged after measurement.

3. Resumable Quantum Teleportation of a Two-Qubit Entangled Sstate

Now we consider an improved project of GTTES to teleport a two-qubit entangled state via weak
entanglement quantum channels. Firstly, in order to implement the protocol it will be required to
apply a series of joint unitary transformations known as the controlled-NOT gate [36,37].

U(ij)
NOT = |0i〉〈0i| ⊗ Ij + |1i〉〈1i| ⊗ σ

(j)
x , (15)

where Ij is the identity operator of target system j and i is the control system. We apply the U(31)
NOT and

U(52)
NOT controlled-NOT gates onto the system, so the state (3) becomes

|Γ〉123456 = U(31)
NOTU(52)

NOT |Ψ〉123456

= [x(ac|000000〉+ ad|010011〉+ bc|101100〉+ bd|111111〉)
+y(ac|110000〉+ ad|100011〉+ bc|011100〉+ bd|001111〉)]123456.

(16)

Now we introduce two extra auxiliary qubits m and n set into the state |0〉m and |0〉n to Alice.
So Alice can apply the U(1m)

NOT and U(2n)
NOT gates. The process of taking the state |Γ〉 to the |Υ〉 given by

|Υ〉mn123456 = U(1m)
NOTU(2n)

NOT |Γ〉mn123456

= [x(ac|00000000〉+ ad|01010011〉+ bc|10101100〉+ bd|11111111〉)
+y(ac|11110000〉+ ad|10100011〉+ bc|01011100〉+ bd|00001111〉)]mn123456.

(17)

To carry out our RTTES scheme, we shall apply the following controlled-U gate [38,39],

U(i,j) = |00i〉〈00i| ⊗ Uj
00 + |01i〉〈01i| ⊗ Uj

01 + |10i〉〈10i| ⊗ Uj
10 + |11i〉〈11i| ⊗ Uj

11, (18)

where the superscript j means the target system (particles 1 and 2) and the subscript i is the control
system (particles 3 and 5). We define that the unitary matrices of U00, U01, U10 and U11 below:
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U00 =

⎛⎜⎜⎜⎜⎜⎜⎝
bd
ac 0 0

√
1 − (bd)2

(ac)2

0 1 0 0
0 0 1 0√

1 − (bd)2

(ac)2 0 0 − bd
ac

⎞⎟⎟⎟⎟⎟⎟⎠ , (19)

U01 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 bc
ad

√
1 − (bc)2

(ad)2 0

0
√

1 − (bc)2

(ad)2 − bc
ad 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (20)

U10 = I, (21)

U11 = I. (22)

After applying the above U(35,12) gate, we can obtain the following state |Λ〉:

|Λ〉mn123456 = U(35,12)|Υ〉mn123456

= x|00〉mn(bd|00〉+√
(ac)2 − (bd)2|11〉)12|0000〉3456

+y|11〉mn(−bd|11〉+√
(ac)2 − (bd)2|00〉)12|0000〉3456

+x|01〉mn(bc|01〉+√
(ad)2 − (bd)2|10〉)12|0011〉3456

+y|10〉mn(−bc|10〉+√
(ad)2 − (bd)2|01〉)12|0011〉3456

+x|10〉mnbc|10〉12|1100〉3456

+y|01〉mnbc|01〉12|1100〉3456

+x|11〉mnbd|11〉12|1111〉3456

+y|00〉mnbd|00〉12|1111〉3456.

(23)

Next, we apply the U(1m)
NOT and U(2n)

NOT again, so the state (23) becomes

|Π〉mn123456 = U(1m)
NOTU(2n)

NOT |Λ〉mn123456

= |11〉mn[|0000〉3456
√
(ac)2 − (bd)2(x|11〉+ y|00〉)12

+|0011〉3456
√
(ad)2 − (bc)2(x|10〉+ y|01〉)12]

+|00〉mn[bdx|00〉12|0000〉3456 + bcx|01〉12|0011〉3456

+bcx|10〉12|1100〉3456 + bdx|11〉12|1111〉3456

−bdy|11〉12|0000〉3456 − bcy|10〉12|0011〉3456

+bcy|01〉12|1100〉3456 + bdy|00〉12|1111〉3456].

(24)

In the following, we will analyse the different measurement results of the above final state.
If the qubits (m, n) are projected to |11〉mn, after Alice performs a Bell-state measurement on her

joint system consisting of particles (3, 5), she can recover the teleported entangled particle pair |φ〉12

of qubits (1, 2) by means of local operations. The detailed situations are summarized in Table 2, i.e.,
for the outcome |11〉mn, the teleportation fails but the process performs the projection |φ〉12 → |φ〉12

on itself.
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Table 2. The specific outcomes of measurement and the corresponding unitary operations.

Alice’ Result Probability Operation

|00〉35 |(ac)2)− (bd)2| (|0〉〈1|+ |1〉〈0|)1 ⊗ (|0〉〈1|+ |1〉〈0|)2
|01〉35 |(ad)2 − (bc)2| (|0〉〈1|+ |1〉〈0|)1 ⊗ (|0〉〈0|+ |1〉〈1|)2

On the contrary, if the qubits (m, n) are projected to |00〉mn, we can write out the system of residual
particles as

|Π〉123456 = bdx|00〉12|0000〉3456 + bcx|01〉12|0011〉3456

+bcx|10〉12|1100〉3456 + bdx|11〉12|1111〉3456

−bdy|11〉12|0000〉3456 − bcy|10〉12|0011〉3456

+bcy|01〉12|1100〉3456 + bdy|00〉12|1111〉3456.

(25)

Then, we apply the controlled-NOT gates U(31)
NOT and U(52)

NOT on the system consisting of the residual
particles, and the state |Π〉 becomes

|Ω〉123456 = U(31)
NOTU(52)

NOT |Π〉123456

= bdx|00〉12|0000〉3456 + bcx|00〉12|0011〉3456

+bcx|00〉12|1100〉3456 + bdx|00〉12|1111〉3456

−bdy|11〉12|0000〉3456 − bcy|11〉12|0011〉3456

+bcy|11〉12|1100〉3456 + bdy|11〉12|1111〉3456.

(26)

Then Alice carry out the joint Bell-state measurements on the systems consisting of particles (1, 3)
and (2, 5). For instance, here we assume that the results of the measurements are |Φ+〉13 and |Ψ−〉25.
The particles (4, 6) will be projected to

|Φ〉46 = 〈Φ+
13|〈Ψ−

25|Ω〉123456

= 1√
2
(〈00|+ 〈11|)13

1√
2
(〈01| − 〈10|)25|Ω〉123456

= 1
2 bc(x|01〉 − y|10〉)46.

(27)

We can see that the projection of qubits (m, n) to |00〉mn allows one to achieve the RTTES process by
means of LOCC. We list all 16 kinds of results and the corresponding operations in Table 3. The whole
scheme is shown in Figure 2.

Table 3. The specific situation of the measurement results and the corresponding unitary operations
in RTTES.

Alice’s Measurement Results the State of Particles (4, 6) Bob’s Unitary Operation

|Φ+〉13|Φ±〉25
1
2 bd(x|00〉 ± y|11〉)46 I4 ⊗ (|0〉〈0| ± |1〉〈1|)6

|Φ+〉13|Ψ±〉25
1
2 bc(x|01〉 ± y|10〉)46 I4 ⊗ (|0〉〈1| ± |1〉〈0|)6

|Φ−〉13|Φ±〉25
1
2 bd(x|00〉 ∓ y|11〉)46 I4 ⊗ (|0〉〈0| ∓ |1〉〈1|)6

|Φ−〉13|Ψ±〉25
1
2 bc(x|01〉 ∓ y|10〉)46 I4 ⊗ (|0〉〈1| ∓ |1〉〈0|)6

|Ψ+〉13|Φ±〉25
1
2 bc(x|10〉 ∓ y|01〉)46 (|0〉〈1| ∓ |1〉〈0|)4 ⊗ I6

|Ψ−〉13|Φ±〉25
1
2 bc(x|10〉 ± y|01〉)46 (|0〉〈1| ± |1〉〈0|)4 ⊗ I6

|Ψ+〉13|Ψ±〉25
1
2 bd(x|11〉 ∓ y|00〉)46 (|0〉〈1| ∓ |1〉〈0|)4 ⊗ (|0〉〈1|+ |1〉〈0|)6

|Ψ−〉13|Ψ±〉25
1
2 bd(x|11〉 ± y|00〉)46 (|0〉〈1| ± |1〉〈0|)4 ⊗ (|0〉〈1|+ |1〉〈0|)6

127



Entropy 2019, 21, 352

Figure 2. Colour online: blue represents the message to be teleported by Alice, and the information
that needs to be extracted further is gradient. The initial state of the system is the same as that of
(a) in Figure 1. (a) Alice introduces two extra auxiliary qubits m and n with the states |0〉m and |0〉n

respectively to extract information stored in qubits 1 and 2. A series of joint unitary transformations
known as the controlled-NOT gate and the controlled-U gate are performed by Alice. (b) Alice carry
out the joint Bell-state measurements on the systems consisting of particles (1, 3) and (2, 5). The
entanglement between particles (3, 4) and (5, 6) vanishes, while entanglement between particles (1, 3)
and (2, 5) is built up. And then Bob extract the information from particles 4 and 6 via unitary operations
and a von Neumann measurement. Eventually, the message has been teleported from Alice to Bob
if and only if the states of auxiliary particles are unchanged after measurement. (c) The states of the
auxiliary particles (m, n) are changed, the teleportation fails. Alice performs a Bell-state measurement
on her joint system consisting of particles (3, 5), she can recover the teleported entangled particle pair
|φ〉12 of qubits (1, 2) by means of local operations.

4. Discussion

We learn that the teleported two-qubit entangled state |φ〉12 can be recovered if RTTES process
fails. Thus we can repeat a single RTTES process as many times as one has available quantum channels.
And if a = b = 1/

√
2 and c = d = 1/

√
2 in Equation (2), the quantum channel reduces to maximally

entangled states and hence the total probability equals 1 [27]. On the other hand, it is obvious that the
RTTES is successful with probability 2 |b|2, which is the same as Equation (14) in Section 2. Therefore,
our RTTES scheme does not increase the probability of success by a single experiment, but provides a
chance to repeat the RTTES process many times until this process is successful. It can be regarded as a
Bernoulli experiment. After realizing N tries, the probability of having k successful events is in the
form of binomial distribution PN,k = (N

k )[2b2]k[1 − 2b2]N−k. Thus, we obtain the total probability of
success as follows

P = ∑N
k=1 PN,k = 1 − [1 − 2b2]N . (28)

The coefficient b in Equation (2) represents the degree of entanglement of the quantum channel.
When the quantum channel is a maximum entanglement state, i.e., a = b = 1/

√
2, c = d = 1/

√
2, see
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Figure 3b, the RTTES process becomes deterministic, which is consistent with the result in Ref. [29].
Note that the success probability of probabilistic RTTES process will increase significantly for many
tries. These results are summarized in Figure 3.

(a) (b)

Figure 3. Colour online: total success probability of RTTES, as a function of b and N, here N means we
performed RTTES N tries. (a) Total success probability of RTTES, as a function of the N for different
values of b. The larger the coefficient b, the stronger the entanglement of quantum channel and the
greater the probability of successful teleportation. (b) Total success probability of RTTES, as a function
of b for different values of N. The probability increases significantly for N higher than 1. We can draw
the conclusion that the quantum channels with weak entanglement (b = 0.1 or 0.2) can also be used to
teleport successfully with a high number of repetitions, and for channels with strong entanglement
(b = 0.5) only a small number of repetitions are required to guarantee successful teleportation.

5. Conclusions

In summary, we have proposed two teleportation schemes, the generalized probabilistic
teleportation of a two-qubit entangled state (GTTES) and the probabilistic resumable teleportation
of a two-qubit entangled state (RTTES), which use partially entangled pairs as quantum channel.
In the standard deterministic protocol, a maximally entangled quantum channel is necessary for
the success of teleportation. In real world, however, it is well known that the coupling between
quantum systems and surrounding environment is inevitable [40], e.g., different kinds of decoherence,
dephasing, and dissipation mechanisms reduce purity and entanglement of the channel. Therefore,
sender and receiver may not shared a maximally entangled state but a partially entangled state. For
this reason, GTTES is more general and practical. The differences between GTTES and TTES are
that GTTES introduces an auxiliary particle, and need to perform local unitary operations before
Bell-state measurements. We show that the optimal success probability of GTTES is only dependent on
the smallest superposition coefficient of the partially entangled quantum channels. In other words,
the success probability of GTTES cannot reach to 1. If GTTES fails, the state to be teleported will
be destroyed. In addition, taking into account that an unknown state cannot be cloned, the above
GTTES protocol do not offer the chance to repeat the process if GTTES fails. An improved scheme
of GTTES (RTTES) is proposed. The advantage of this approach is that we are able to try repeatedly
until the RTTES is successful. It is conformed to Bernoulli experiment, and total success probability of
teleportation increases significantly by attempting many times. Finally, weak entanglement can be
used to teleport a two-qubit entangled state effectively via RTTES. Our research also provides insights
into the role of entanglement in quantum teleportation that it can be regarded as a key resource.
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Abstract: We study the classical and quantum correlations in the minimum error discrimination (ME)
of two non-orthogonal pure quantum states. In particular, we consider quantum discord, thermal
discord and entropy generation. We show that ME allows one to reach the accessible information
between the two involved parties, Alice and Bob, in the discrimination process. We determine the
amount of quantum discord that is consumed in the ME and show that the entropy generation is,
in general, higher than the thermal discord. However, in certain cases the entropy generation is very
close to thermal discord, which indicates that, in these cases, the process generates the least possible
entropy. Moreover, we also study the ME process as a thermodynamic cycle and we show that it is
in agreement with the second law of thermodynamics. Finally, we study the relation between the
accessible information and the optimum success probability in ME.

Keywords: minimum error discrimination; accessible information; discord; second law
of thermodynamics

1. Introduction

Recently, quantum communication protocols have been studied from the point of view of the
quantum correlations between the involved parties [1–6]. This allows one to quantify the resources
that are required to carry out quantum communication protocols. Quantum correlations also allow us
to differentiate between quantum and classical properties of a quantum state. The implementation
of protocols for quantum communication requires that at least one of the parties implements a
quantum measurement. This is, in general, an irreversible process [7] that changes the quantum state,
produces decoherence and, also, entropy. Studied quantum correlations in bipartite scenarios are
entanglement [8], quantum discord [9–11], thermal discord [12] and global discord [13,14].

The total amount of correlations contained in a bipartite state is quantified by the quantum mutual
information, which represents the minimal amount of noise that is required to erase or destroy the total
correlations in a many-copy scenario [15]. Quantum mutual information is also directly connected with
Landauer’s original idea [16], which states that any logical irreversible process must dissipate entropy
into the environment [17]. It can be cast as the sum of two terms: classical correlations and quantum
discord. The latter, quantum discord, is defined in order to minimize the loss of quantum correlations
due to quantum measurements [9]. Another measure of quantum correlation is the thermal discord.
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This takes into account the entropic cost of measurements and minimizes the entropy generation
produced by quantum measurements [7,12]. Quantum discord and thermal discord are defined when
one of the parties implements measurements in specific bases. These bases, in general, are different
from each other. On the other hand, in some particular cases, such as in minimum error discrimination,
we need to implement a measurement in a determined basis. For those cases, the basis-dependent
versions of the aforementioned quantum correlations are considered [11]. In general, the discrimination
of non-orthogonal states must satisfy the second law of thermodynamics [18,19] and, to demonstrate
this, a central argument is the Landauer’s cost of erasure [12].

One of the most elemental quantum communication protocols is the discrimination among
states belonging to a predefined set of known quantum states. If the set contains two or more
non-orthogonal states, the discrimination of the quantum states cannot be carried out with certainty
and deterministically [20]. In this case, we can resort to several discrimination strategies that optimize
a predefined figure of merit. Minimum error discrimination (ME) is one of these strategies, where the
discrimination of the non-orthogonal states is carried out in such a way that the probability of mistaking
a retrodiction is minimized [21,22]. ME finds application in several quantum information processes
such as quantum teleportation [23,24], entanglement swapping [25,26], quantum cryptography [27] and
dense coding [28], among many others. The discrimination of non-orthogonal states by means of ME
has been experimentally implemented for two states [29,30], for four states [31] in a two-dimensional
Hilbert space, and for several sets of symmetric pure states in dimensions as high as 29 [32].

Here, we study the minimum error discrimination of two non-orthogonal states generated
with arbitrary probabilities, in terms of the quantum correlations involved in the process. For this
purpose, we consider the cases when Alice and Bob share a separable quantum channel. We determine
the quantum discord and the thermal discord and compare these with the loss of correlations and
the entropy generation in the case of ME. Moreover, we show that ME, when considered as a
thermodynamic cycle, is in agreement with the second law of thermodynamics. Finally, we study the
relation between the accessible information and the optimal probability of success in the ME protocol.

This article is organized as follows: In Section 2 we briefly review minimum error discrimination
for two non-orthogonal states at the Helstrom limit. In Section 3 we describe the initial and final
states of Alice and Bob after the measurement implemented by Bob according to ME. In Section 4
we study quantum and the thermal discord together with their relationship to the second law of
thermodynamics. Moreover, the relation between the information gained by Bob and the optimum
success probability in the ME, is studied. Finally, in Section 5 we summarize our results and conclude.

2. Minimum Error Discrimination

In the minimum error discrimination protocol, one of the communicating parties, let us say
Bob, receives a single copy of a quantum system. This can be described by one of two possible
non-orthogonal states in the set Ω = {|φ0〉B, |φ1〉B}. These states are generated with a priori
probabilities η0 and η1 = 1 − η0, respectively. The set of states and a priori probabilities are known by
Bob beforehand. Bob’s task is to identify, with the lowest average error, the probability of the state in
Ω that describes the quantum system.

The states in Ω can be written as

|φ0〉B = cos
β

2
|0〉B + sin

β

2
|1〉B, (1a)

|φ1〉B = sin
β

2
|0〉B + cos

β

2
|1〉B, (1b)

where the two orthonormal states {|0〉B, |1〉B} form a base of the two-dimensional Hilbert space
of Bob’s quantum system. The inner product between the non-orthogonal states is denoted by
α = 〈φ0|φ1〉 = sin β, where β ∈ [0, π/2], so that α ∈ [0, 1].
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In order to discriminate with ME between the non-orthogonal states {|φ0〉B, |φ1〉B}, Bob first
applies a unitary transformation UB. In this case, UB can be written in the following form

UB|φ0〉B =
√

p0|0〉B +
√

r0|1〉B, (2a)

UB|φ1〉B =
√

r1|0〉B +
√

p1|1〉B, (2b)

where, now, the orthonormal states {|0〉B, |1〉B} represent the base in which Bob must implement his
measurement in order to discriminate with ME probability. Here, ri (pi) represents the probability of
failure (success) in the identification of the state |φi〉B, where pi + ri = 1. The unitarity of UB implies
that the following constraint must be satisfied

α =
√

r0 p1 +
√

r1 p0. (3)

The average probability of error in the discrimination between the non-orthogonal states
{|φ0〉B, |φ1〉B} is

Pe = η0r0 + η1r1, (4)

where, ri = |〈j|UB|φi〉|2 for i �= j. We reach the minimum average error probability in the
discrimination process when the probabilities ri are given by [33]

ri =
1
2

⎛⎝1 − 1 − 2ηjα
2√

1 − 4ηiηjα2

⎞⎠ , (5)

for i �= j. Therefore, the minimal average error probability attained by the minimum error
discrimination strategy is given by

Pmin
e =

1
2
(1 −

√
1 − 4η0η1α2), (6)

which is equal to the Helstrom limit [20,22]. The optimal average success probability in the
discrimination is equal to Popt

s = 1 − Pmin
e . In what follows, given the symmetry with respect to

the a priori probabilities, we consider the case η1 ≥ η0 for 0 ≤ η0 ≤ 1/2.

3. Channel without Entanglement

Let us consider initially that the communicating parties, Alice and Bob, share a separable quantum
state of the form

ρAB =
1

∑
i=0

ηi|i〉A〈i| ⊗ |φi〉B〈φi|, (7)

where the states {|0〉A, |1〉A} form an orthonormal base for Alice’s two-dimensional quantum system,
and {|φ0〉B, |φ1〉B} are the two possible non-orthogonal states of Bob’s quantum system given by
Equations (1). Alice prepares a single copy of a quantum system in the state |φi〉B and sends it to Bob
with a priori probability ηi. Thereby, Alice and Bob share quantum and classical correlations encoded
in the joint state ρAB of Equation (7). The initial state ρA of Alice’s quantum system, that is, prior to the
application of any transformation or measurement, is obtained by ρA = trB(ρAB), where

ρA =
1

∑
i=0

ηi|i〉A〈i|. (8)

In a similar form, the initial state of Bob’s quantum system can be obtained from ρB = trA(ρAB), where

ρB =
1

∑
i=0

ηi|φi〉B〈φi|. (9)
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Once Bob has received the single copy of the quantum system in the state |φi〉B, he implements
the optimal strategy of ME. For that purpose, Bob first applies the unitary transformation UB onto
his quantum system. Thereby, the initial joint state ρAB of Equation (7) changes to ρ̂AB = (1A ⊗
UB)ρAB(1A ⊗ U†

B), where

ρ̂AB =
1

∑
i=0

ηi|i〉A〈i| ⊗ |φ̂i〉B〈φ̂i|, (10)

with |φ̂i〉B = UB|φi〉B. The unitary transformation UB of Equation (2), applied by Bob onto his quantum
system, is a reversible process [7]. Therefore, it does not change the quantum correlations between
Alice and Bob and it does not produce entropy either.

We consider that Bob can implement his measurement in an arbitrary basis {|0′〉B, |1′〉B}, which
is given by

|0′〉B = x|0〉B − y|1〉B, (11a)

|1′〉B = y|0〉B + x|1〉B, (11b)

where the coefficients x and y are real positive numbers that satisfy x2 + y2 = 1. The measurement
carried out by Bob on his quantum system generates two conditional post-measurement states ρi

A|b for
Alice’s quantum system. Provided that Bob’s measurement projects his quantum system onto the state
|i′〉B, Alice’s post-measurement states can be

ρ0
A|b = (t2

00|0〉A〈0|+ t2
10|1〉A〈1|)/pb

0, (12)

ρ1
A|b = (t2

01|0〉A〈0|+ t2
11|1〉A〈1|)/pb

1, (13)

respectively, where

t00 = xt0 − ym0, (14)

t01 = xm0 + yt0, (15)

t10 = xm1 − yt1, (16)

t11 = xt1 + ym1, (17)

with

mi =
√

ηiri, (18)

ti =
√

ηi(1 − ri), (19)

pb
i = t2

0i + t2
1i, (20)

for i = 0, 1 and
1

∑
i,j=0

t2
ij = 1. (21)

The final average joint state between Alice and Bob ρ′AB, when Bob implements his measurement
in the basis {|0′〉B, |1′〉B}, takes the following form:

ρ′AB =
1

∑
i=0

pb
i ρi

A|b ⊗ Πi′
b , (22)
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where, Πi′
b are the projectors |i′〉B〈i′| onto the Hilbert space of Bob’s quantum system. The state ρ′AB is

a classical state because there are local measurements in Alice’s and Bob’s systems that do not perturb
it [11]. The final reduced states for Alice’s and Bob’s quantum systems are given by

ρ′A = pb
0ρ0

A|b + pb
1ρ1

A|b, (23)

ρ′B = pb
0|0′〉B〈0′|+ pb

1|1′〉B〈1′|. (24)

Thereby, the final reduced state for Alice’s system does not change, that is, ρ′A = η0|0〉A〈0| +
η1|1〉A〈1| = ρA.

In the particular case of ME, that is, for x = 1 in Equations (11), the average joint state ρ′AB of
Equation (22) takes the following form

ρ′AB(x = 1) = t2
0|00〉AB〈00|+ m2

0|01〉AB〈01|+ m2
1|10〉AB〈10|+ t2

1|11〉AB〈11|. (25)

In this particular case, if Bob successfully discriminates the state |φi〉B, the final state that Alice
and Bob share will be |ii〉AB. Otherwise, when the discrimination attempt is unsuccessful, the final
state is |ij〉 with i �= j. The average error probability is equal to pmin

e = m2
0 + m2

1 and agrees with the
Helstrom bound given by Equation (6).

4. Correlations between Alice and Bob

4.1. Classical Correlations and Quantum Discord

In a bipartite state ρAB, the total amount of correlation, in the many copy scenario [15], is given by
the quantum mutual information. This is defined as [9,15]

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (26)

where S(ρ) is the von Neumann entropy of the state ρ, given by S(ρ) = −∑i λi log2 λi, where λi are
the eigenvalues of ρ. Hence, in our scheme of ME discrimination, we consider that Alice emits many
copies of independent identically distributed (i.i.d.) data, that is σ = ρn

AB for some large n [34].
The quantum mutual information can be written as [9,11]

I(ρAB) = J(A|{Πb}) + D(A|{Πb}), (27)

where, J(A|{Πb}) are the classical correlations and D(A|{Πb}) is the quantum discord. These two
quantities depend on the measurement implemented by Bob, through the set of projectors {Πb},
but their sum does not [2], i.e., they are complementary to each other. The classical correlations
J(A|{Πb}) between Alice and Bob are defined as [10,11]

J(A|{Πb}) = S(ρA)−
1

∑
i=0

pb
i S(ρi

A|b), (28)

which can be interpreted as the information about Alice’s system gained by Bob by means of the
measurement {Πb}. Here, we are interested in maximizing the classical correlation J(A|{Πb}) with
respect to all possible measurements implemented by Bob, that is

J(A|B) = max
{Πb}

J(A|{Πb}) = S(ρA)− min
{Πb}

1

∑
i=0

pb
i S(ρi

A|b), (29)

which is called the accessible information [35,36]. This represents the classical mutual information
maximized with respect to the detection strategy [31].
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On the other hand, the minimum quantum discord, which quantifies the quantum correlations
that are consumed or lost in the process, is given by

D(A|B) = I(ρAB)− J(A|B). (30)

To quantify the accessible information, we minimize the expression f (x) = ∑i pb
i S(ρi

A|b),
with respect to the variable x that defines the measurement base in Equation (11). The function
f (x) can be cast as

f (x) = −
1

∑
i,j=0

t2
ij log2

(
t2
ij

pb
j

)
, (31)

and its derivative with respect to x is

d
dx

f (x) = − 2√
1 − x2

1

∑
i=0

ti0ti1 log2

(
t2
i0 pb

1

t2
i1 pb

0

)
. (32)

This derivative vanishes at x = 0. In fact, this a minimum. However, the function f (x) is such
that f (x = 0) = f (x = 1) and consequently x = 1 is also a minimum. In both cases the entropy
of Alice’s conditional states are equal, S(ρ0

A|b) = S(ρ1
A|b). In fact, the cases x = 0 or x = 1 are

physically equivalent since they are connected by the transformations |0′〉 → |1′〉 and |1′〉 → |0′〉,
which is equivalent to the exchange |φ0〉B → |φ1〉B and |φ1〉B → |φ0〉B. On the other hand, to carry
out ME discrimination, Bob must consider the basis of measurement with x = 1 (or x = 0) in
Equations (11). Thereby, in these particular cases, the same measurement base reaches simultaneously
ME discrimination and accessible information [37,38].

To determine the amount of quantum discord, we consider the expression

D(A|B) = S(ρB) + min
{Πb}

1

∑
i=0

pb
i S(ρi

A|b)− S(ρAB), (33)

where the eigenvalues of Bob’s state ρB, given by Equation (9), are λb
0 = (1 −√

1 − 4η0η1 cos2 β)/2
and λb

1 = 1− λb
0. Moreover, the entropy of the joint initial state ρAB, given by Equation (7), is S(ρAB) =

S(ρA) + ∑ ηiS(|φi〉B〈φi|) = S(ρA).
Figure 1a,b show the accessible information and the quantum discord, respectively, for x = 1, as a

function of the inner product α for three decreasing values of η0 (from top to bottom). The accessible
information J(A|B) takes its maximum value, for a fixed value of η0, when the states {|φ0〉B, |φ1〉B} are
orthogonal (α = 0) and it decreases with the inner product α, reaching its minimum value, J(A|B) = 0,
when α = 1. Moreover, in the particular case η0 = 1/2, Alice and Bob share the maximal mutual
information available from any ensemble of quantum states [37]. If we consider the case η0 = 0, the
ME has only one state in the discrimination and the ME strategy does not convey any information at
all. In this case we have that J(A|B) = 0.

The quantum discord D(A|B) takes its minimum value equal to zero, for any value of η0,
when the states {|φ0〉B, |φ1〉B} are orthogonal (α = 0) or their inner product is equal to one. In the
aforementioned cases, Bob’s measurement does not change the joint state ρ′AB = ρ̂AB and therefore,
the states {|φ0〉B, |φ1〉B} behave like classical states. On the other hand, for a fixed value of α the
quantum discord takes its maximal value when η0 = 0.5. Simultaneously, the accessible information
for Bob is maximal in this case. As is apparent from Figure 1b, the maximum of the quantum discord
occurs at α = 1/

√
2 for any value of η0. This happens because D(A|B) is a concave function of α2 and it

is symmetric under interchange of α2 and 1 − α2. Physically, we can say that when α2 = 1/2, the states
{|φ0〉B, |φ1〉B} are in an intermediate position between the two cases α2 = 0 and α2 = 1, where the
quantum discord vanishes and, consequently, there are no quantum correlations. On the other hand,
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the case α2 = 1/2 is the least similar to the aforementioned ones and, therefore, a maximum value of
the quantum discord is to be expected.

Figure 1. (a) Accessible information and (b) quantum discord, when x = 1, as a function of the inner
product α for η0 = 0.5 (red line), η0 = 0.2 (green line), and η0 = 0.05 (black line).

4.2. Thermal Discord

Another measure of quantum correlations that we consider in the analysis of ME discrimination,
is the thermal discord. This takes into account the entropic cost of realizing local measurements.
The thermal discord is defined by [11,12]

Dth(A|B) = min
{Πb}

[S(ρ′B) +
1

∑
i=0

pb
i S(ρi

A|b)]− S(ρAB). (34)

In this case, the term S(ρ′B) + ∑1
i=0 pb

i S(ρi
A|b) to be minimized in the Equation (34) turns out to be

equal to the entropy S(ρ′AB) of the state ρ′AB of Equation (22), which corresponds to the joint state after
Bob’s measurement. Hence, the thermal discord is equal to the minimum entropy generation due to
the measurement implemented by Bob, which is also equal to the one-way quantum deficit [7,11,39].
Then the measurement-dependent thermal discord (DTD) is

Dth(A|{Πb}) = S(ρ′AB)− S(ρAB), (35)

and it corresponds to entropy generation due to Bob’s measurement in a particular basis {Πb}.
In general, the thermal discord is higher than or equal to the quantum discord [7,12,40], that is,

Dth(A|B) ≥ D(A|B). (36)

This indicates that the minimal generation of entropy must be higher or equal to the minimum
of the quantum correlations that are destroyed due to Bob’s measurement [16]. This inequality is
related to the second law of thermodynamics [12], by means of the entropic cost to take Bob’s system
to the initial state. Given that a projective measurement does not decrease the entropy [41], we have
S(ρ′B) ≥ S(ρB) and this is valid for any base chosen by Bob for implementing his measurement. On the
other hand, from the condition I(ρAB) ≥ J(A|B) we obtain that S(ρB) ≥ J(A|B). Thus, we have that

J(A|B) ≤ S(ρ′B). (37)

Equation (37) can be understood if we consider the scheme of ME as a thermodynamic cycle [17,42].
The second law establishes that the net work after completing a cycle cannot be positive, that
is Wout − Win ≤ 0. The work Wout that can be extracted is proportional to the classical mutual
information J(A|B) between Alice and Bob. The work invested Win is proportional to the Holevo
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bound S(ρB)− ∑ ηiS(|φi〉B〈φi|) = S(ρB) plus the minimal erasure work to take the final state ρ′B to
the initial state ρB, which is equal to S(ρ′B)− S(ρB) ≥ 0. From this, it is clear that Win = kBTS(ρ′B)
and Wout = kBTJ(A|B), where kB is the Boltzmann constant and T is the temperature of the thermal
reservoir. Thereby, the second law of thermodynamics is satisfied [17–19].

In our case, to determine the thermal discord and the entropy generation in Bob’s measurement,
we consider that S(ρ′B) = −pb

0 log2 pb
0 − pb

1 log2 pb
1. For the entropy generation in ME, we evaluate the

function of Equation (35) for x = 1. On the other hand, the DTD in Equation(35) is a function of the
variable x that defines the measurement base in Equations (11) and it can be cast as

Dth(A|{Πb})(x) = −
1

∑
i,j=0

t2
ij log2(t

2
ij)− S(ρA). (38)

In order to find the thermal discord, we need to minimize it with respect to the variable x, then
we consider the restriction d

dx Dth(A|{Πb})(x) = 0. The last condition takes the following form

1√
1 − x2

(
t00t01 log2

(
t2
00

t2
01

)
+ t10t11 log2

(
t2
10

t2
11

))
= 0. (39)

We solve Equation (39) numerically in order to find the values of x where the function
Dth(A|{πb})(x) takes its minimum values.

Figure 2a displays the values of x that allow us to attain the minimal value of the
measurement-dependent thermal discord, that is, the thermal discord as a function of the inner
product α for three values of η0. For η0 = 0.05 and η0 = 0.2 the variable x is close to the unity
in the complete interval of α values. For η ≈ 0.5 the values of x depart from the unity when α is
approximately equal to or larger than 0.5.

Figure 2. (a) Values of x that attain the thermal discord. (b) Entropy generation in minimum error (ME)
(solid line) and thermal discord (dashed line) as a function of the inner product α for: η0 = 0.49 (red
line), η0 = 0.2 (green line), and η0 = 0.05 (black line).

In the interval α ∈ [0, 0.5] the minimum error probability increases very slowly and is upper
bounded by the value 0.07 for any value of η0. Therefore, the discrimination process achieves a high
accuracy. In this regime, the coefficients m2

i are very small. As can be seen from Equation (5), the m2
i

coefficients are upper bounded by the value 0.035. In this case, the post-measurement state for ME
is approximately given by ρ′AB ≈ t2

0|00〉AB〈00|+ t2
1|11〉AB〈11|. A similar state can also be obtained

from Equation (22) considering a first order Taylor series expansion for mi and
√

1 − x2. The latter is
suggested because it is easy to show that the base-dependent thermal discord is optimized at x = 1 for
α2 = 0. Thus, for small values of α2 the Taylor series expansion is a good guess. The state obtained in
this way has four eigenvalues that are functions of x. In order to minimize the entropy of this state, we
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can vanish two of the eigenvalues by choosing x = 1 independently of the value of η0. This procedure
leads to a state that agrees with the state ρ′AB above. Therefore, when the minimum error probability
Pmin

e is very small, that is, for α ≤ 0.5, entropy generation in the ME process approximately agrees
with the value of the thermal discord.

Figure 2b shows the generation of entropy in ME in solid lines and the thermal discord in dashed
lines, as a function of the inner product α and for three values of η0. We obtained that the entropy
generation in ME is higher than or equal to the thermal discord. This means that, in general, the base
for the thermal discord and for ME do not coincide. However, for small values of α the entropy
generation is very close to the thermal discord and consequently, in these cases, ME is also almost
optimal from the point of view of the entropy generation.

When the states {|φ0〉B, |φ1〉B} are orthogonal (α = 0) the entropy generation and thermal discord
are zero because in this case, as already pointed out, the joint state does not change, that is, ρ′AB = ρAB.
On the other hand, in the case α = 1 and η0 = 0, the state ρAB is a product state and thus the entropy
generation and thermal discord are also zero. The maximum value of entropy generation in ME
occurs for η0 = 0.5 as in the case of the maximum accessible information J(A|B) between Alice and
Bob. As in the case of quantum discord, thermal discord is a concave function of α2 and also has its
maximum when α2 = 1/2 for any value of η0. This means that quantum correlations (quantum discord
and thermal discord) indicate that the biggest disturbance, due to the quantum measurement, of the
initial joint state ρAB will be produced if α2 = 1/2. However, in general, the process of ME generates
more entropy than thermal discord as we see in Figure 2b. The maximum of the entropy generation
now arises at values closer to α2 = 1, depending on the value of η0. We see that for large overlaps
(which means a more difficult discrimination process) the entropy generation departs from the thermal
discord. In addition, as η0 increases, this departure becomes more “dramatic”. Large values of η0

implies in less bias towards some state in the set. So, large overlaps and large η0 bring more difficulty
in the discrimination process and require a larger effort to perform ME. The extreme case would be
η0 = 0.5 and α = 1. Finally, we would like to point out that the choice of η0 = 0.49 was considered in
order to show that when α = 1 the entropy generation goes to zero.

Figure 3a compares the average error probability of ME (solid lines) to the average error probability
obtained when employing the base that optimizes the thermal discord (dashed lines). As is apparent
from the figure, the base associated with the thermal discord discriminates the states {|φ0〉B, |φ1〉B}
almost as good as ME in the interval α ∈ [0, 0.5] for the three inspected values of η0. For α equal or
larger than 0.5, ME delivers the smallest average error probability. Thus, the base that optimizes the
measurement-dependent thermal discord provides a discrimination almost as good as optimal ME in
the interval α ∈ [0, 0.5] for the inspected values of η0.

Figure 3. (a) Average error probability in ME (solid lines) and for the case when the measurement
base leads to the thermal discord (dashed lines). (b) Accessible information versus average success
probability in ME for η0 = 0.49 (red line), η0 = 0.2 (green line), and η0 = 0.05 (black line).
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4.3. Accessible Information and Optimum Success Probability

Finally, we study the relation between the accessible information J(A|B) and the optimal average
success probability in the minimum error discrimination. This can be done because the bases for
accessible information and optimal ME coincide. Figure 3b shows that for a fixed value of η0, the
accessible information J(A|B) increases as a function of the optimum probability of discrimination Popt

s .
When the states are orthogonal, i.e., α = 0, then Popt

s = 1 and the accessible information is maximal
for a fixed value of η0. On the other hand, if the states are equal, i.e., α = 1, then Popt

s = η1 and the
accessible information is equal to zero.

5. Conclusions

We studied ME discrimination for two non-orthogonal states generated with arbitrary a priori
probabilities from the point of view of the quantum correlations involved in the process. We recovered
a previously known result, namely, optimal ME allows us also to attain the accessible information
between the communicating parties, Alice and Bob. Thereby, in the ME discrimination process it is
possible to optimize simultaneously the average success probability as well as the information gained
by Bob through the measurement.

In general, the base that optimizes the measurement-dependent thermal discord does not agree
with the base that leads to ME. This implies that ME generates more entropy than the minimum
possible given by the thermal discord. However, for values of the inner product α in the interval [0, 0.5],
the entropy generated in the ME process is very close to the one obtained in the thermal discord. This
indicates that for these cases, the ME process is also efficient in terms of the generation of entropy.
Furthermore, when the discrimination process is carried out by measuring onto the base that leads
to the thermal discord, the average error probability becomes very close to the optimal value when
α ∈ [0, 0.5].

Quantum discord and thermal discord are zero when the states are orthogonal (α = 0) or when
we have only one state α = 1 or η0 = 0. Hence, in these cases, the ME protocol presents only a
classical behavior, i.e., the initial state does not change and there is no entropy generation with Bob’s
measurement. Otherwise, the scheme of ME presents quantum properties given that the quantum
discord and the thermal discord are greater than zero. Moreover, the quantum discord maximum and
the thermal discord maximum occur when α2 = 1/2, which is the intermediate point between the two
classical cases α = 0 and α = 1.

We showed that the process of ME discrimination satisfies the second law of thermodynamics
when it is considered as a thermodynamic cycle. Finally, we obtained that the amount of accessible
information increases as a function of the optimal average success probability of discrimination in the
minimum error discrimination strategy.

Here, we have studied the case of ME for two pure states. ME can also be formulated for
an arbitrary finite number of states, which points out to the possibility of generalizing our results
to this scenario. However, analytical solutions for ME are known in very few special cases such
as, for instance, sets of equally likely pure symmetric states [43] or two states with arbitrary prior
probabilities. Furthermore, in certain situations, when the number of states is larger than the dimension
of the underlying Hilbert space, the solution of ME requires the use of a positive-operator valued
measure, which is not analytically known. Therefore, the lack of analytical solutions prevents us
from extrapolating our results to more complex scenarios for ME. This also applies to other optimal
discrimination strategies, being these also complex optimization problems.

A feasible extension of our results might appear in the so-called sequential discrimination [44].
In this scenario, several parties attempt to discriminate among a set of states in such away that each
one of them has access to the post-measurement states generated by the other parties. All parties
cannot resort to classical communications. The strategy optimizes the joint discrimination probability.
Here, we could study the change of the classical and quantum correlations as the quantum system
encoding the unknown states passes from party to party.
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Abstract: Contemporary non-representationalist interpretations of the quantum state (especially
QBism, neo-Copenhagen views, and the relational interpretation) maintain that quantum states
codify observer-relative information. This paper provides an extensive defense of such views,
while emphasizing the advantages of, specifically, the relational interpretation. The argument
proceeds in three steps: (1) I present a classical example (which exemplifies the spirit of
the relational interpretation) to illustrate why some of the most persistent charges against
non-representationalism have been misguided. (2) The special focus is placed on dynamical evolution.
Non-representationalists often motivate their views by interpreting the collapse postulate as the
quantum mechanical analogue of Bayesian probability updating. However, it is not clear whether one
can also interpret the Schrödinger equation as a form of rational opinion updating. Using results due
to Hughes & van Fraassen as well as Lisi, I argue that unitary evolution has a counterpart in classical
probability theory: in both cases (quantum and classical) probabilities relative to a non-participating
observer evolve according to an entropy maximizing principle (and can be interpreted as rational
opinion updating). (3) Relying on a thought-experiment by Frauchiger and Renner, I discuss the
differences between quantum and classical probability models.

Keywords: foundations of quantum theory; entropy maximizing principle; information-theoretic
approaches to the quantum state; relational interpretation; toy-models; realism debate

1. Introduction

The idea that quantum states do not represent (or correspond to) physical reality is as old as quantum
theory itself. Niels Bohr, e.g., has famously been alleged to assert that “There is no quantum world . . .
It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we
can say about nature” (attributed to Bohr by Petersen [1] (p. 12)). However perplexing such claims
may appear, there still exists a colorful variety of contemporary views that have carried the idea
of non-representational quantum states into the 21st century. This paper develops a broad line of
defense on behalf of non-representationalist interpretations of the quantum state. In no particular
order, the ones I shall focus on are: QBism [2–7], neo-Copenhagen approaches [8–10], and the relational
interpretation [11–13]. But even though parts of the argument below might be adopted to suit the
purposes of any of these interpretations, I will emphasize the advantages of what appears to me to be
the most promising one: a slightly modified version of Rovelli’s relational interpretation. To this end,
I present a classical example, which exemplifies how defenders of the relational approach think about
quantum theory. Relying on this example, I will be able to discharge several worries that have been
levelled against non-representationalists more generally.

Let me start by providing the motivation for this project. The crux of the aforementioned
interpretations lies in their commitment to the claim that quantum theory’s probabilistic predictions
should be accounted for by information-theoretic means, where the information in question is
thought to be relative to some observer. Hence, according to these views, the quantum state is
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regarded as an irredeemably relational concept. While the different interpretations differ substantively
over what the quantum state is allegedly relative to (i.e., what they mean by the term “observer”
-QBism/neo-Copenhagn views: a decision-making agent or subject [2–6], [10] (p. 4); relational
interpretation: a physical reference system [11] (pp. 1–2)), this shared commonality runs deep–both
from a philosophical but also from a technical viewpoint.

The first set of issues that have plagued non-representationalist views are rooted in the (legitimate)
fear that if quantum state ascriptions are observer-relative, objective reality will escape our theoretical
clutch. This has both philosophical but also technical dimensions. On the philosophical side,
non-representationalists, by virtue of stripping quantum theory of the ability to offer third-person
descriptions of the world, have been charged with solipsism or skepticism. Relatedly, the introduction
of a subjective element into science has been the source of significant unease. On the technical side,
the “psi-ontology” theorems that have emerged in recent years, especially the theorem due to Pusey,
Barrett and Rudolph [14] (for an extended review, see [15]), have been interpreted as pulling towards
realist interpretations of the quantum state. My first goal will be to ease the pressure that derives
from these types of worries. This will be achieved by presenting a classical example of a blatantly
non-representational modelling practice which: (1) portrays striking similarities to quantum theory
(and the relational way of thinking about quantum theory in particular), and which (2) allows us to
demonstrate, using purely classical intuitions, why these arguments against non-representationalism
(although prima facie plausible) are ultimately guilty of what Dennett once called the “Philosophers’
Syndrome: Mistaking a failure of the imagination for an insight into necessity.” [16] (p. 406).

The second core issue that this paper addresses is more specific, and concerns the question of
dynamical evolution. To see why dynamics would play an important role for non-representationalists,
notice, first, that an important consequence of their shared commitment to observer-relative states is
that the textbook dynamical postulates—von Neumann’s [17] collapse postulate and the unitary evolution
of the Schrödinger equation—are not to be understood in terms of a mechanical/substance-type
story of some entity collapsing or evolving. Instead, those changes in the quantum state are to be
understood as the process in which the observer rationally updates her opinion—either literally
(QBism, neo-Copenhagen), or at least “on the model of” (relational interpretation).

What is thus often cited as a motivation for these views is the analogy between Lüder’s rule [18] and
its classical counterpart, i.e., Bayes’ theorem. [2,19] Lüder’s rule can be taken to justify the idea that one
may view von Neumann’s collapse postulate as a form of probabilistic conditionalization: the projected
(i.e., “collapsed”) state agrees, in its probability assignments to quantum mechanical observables,
with the (canonical) generalization of the notion of conditional probability to quantum mechanics.
(Recall that in classical probability theory, conditional probability is defined as follows: let P be a
probability measure on a Borel field. Then, define a derivative probability measure P′(−) = P(−|A)

for each Borel set A, which is the unique probability measure on the Borel subsets of A such that

(1) P′(A) = 1 and (2) the probability ratios (i.e., the “odds”) are preserved: P(A&X)
P(A&Y) = P′(A&X)

P′(A&Y) .
From this, Bayes’ theorem can be derived, and this way of thinking about conditional probability
can be generalized to the case in which the underlying domain isn’t a Boolean algebra but has the
particular structure of an ortho-modular lattice. [20] (pp. 171–175), [21], [22] (pp. 170–173)).

If this analogy between quantum and classical probability models indeed lends credence to
non-representationalist approaches, however, we immediately run into a problem: what is the classical
analogue of unitary evolution? Brown [23], e.g., raises this point in his discussion of QBism. If, for a
realist conception of a unitarily evolving wavefunction, the measurement problem was “mysteriously
solved” by the projection postulate, then, according to Brown, on the QBist framework it now seems
“as if von Neumann’s two motions in quantum mechanics have reappeared in a different guise!
The difference now is that the mystery lies with the unitary evolution.” (p. 17) Insofar as unitary
evolution appears mysterious on the observer-relative interpretations, this certainly presents challenge:
if these interpretations are (at least in part) inspired by the analogy between classical and quantum
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probability models, is there a classical counterpart of unitary evolution? And if so, can we make sense
of it as a form of rational opinion updating?

A central goal of the discussion below will be to show that unitary evolution indeed has a
counterpart in classical probability theory. Hence, in both cases, classical and quantum, probabilistic
information evolves differently relative to different observers (such that, as will be shown, the probabilities
relative to an external—i.e., “non-participating”—observer are the solutions to an entropy maximizing
problem). My own relational biases notwithstanding, this is good news for non-representationalists
more generally. The presentation of this theorem will follow Hughes and van Fraassen in Ref. [24]
(cf. [20]), but since that theorem doesn’t seem to be all that well-known, it is a worthwhile task to
repeat it. And while the mathematical details will mirror those of Hughes and van Fraassen, I will:
(1) put their theorem in the context of the previously developed example, which will engender certain
specific advantages; (2) make explicit in what sense the classical theorem can indeed be viewed as the
counterpart of unitary evolution (here I will rely on a result due to Lisi [25]).

The structure of this paper is as follows. Section 2 introduces the terms and intuitions by
means of a classical example of a modelling practice that closely resembles the way information
is encoded in quantum theory. Section 3 generalizes the initial example to derive, following Hughes
and van Fraassen [24], a version of the Schrödinger equation for classical probability models. While
Sections 2 and 3 are intelligible from a purely mathematical perspective, my interpretational motives
will be laid bare in Section 4. I will make explicit how the set-up presented in Sections 2 and 3
instantiates how defenders of the relational interpretation think about quantum theory, and I will also
point out several advantages of such an approach. Section 5 makes the transition to quantum theory,
where the first goal will be to illustrate how quantum mechanics mirrors the classical way of reasoning
presented in Sections 2–4. Using a result due to Lisi [25], the analogy between the classical and the
quantum case (and the relational approach in particular) will become strikingly clear: by an analogous
argument as in the classical case, unitary evolution of probabilities relative to an external observer
can be shown to be the result of an entropy maximizing principle (subject to analogous constraints
as in the classical case). Having discussed the similarities between classical and quantum probability
models, Section 6 will discuss their differences. I argue that a key difference between quantum and
classical probability models is that the latter can, but the former cannot (in general), be supplemented
with an ontological story about what the world is like. This will be achieved by placing the previous
discussion in the context of a recent thought-experiment proposed by Frauchiger and Renner [26],
which can be interpreted to show that, in general, quantum theory has no room for the notion of
observer-independent facts.

2. The Basic Set-Up

To set up the classical example, consider the model of a (presumably) familiar reality that is given
in Figure 1:

Figure 1. The English Premier League 1999.

The specifics of Figure 1 will not turn out to be important, and below I will only discuss the
general strategy for how such tables as Figure 1 are produced. Proceeding by means of an example,
however, has the advantage of allowing me to introduce the central terminology in intuitive terms.
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2.1. Measurements

The aim of this modelling practice is to characterize how successful a football team is—we want
to create an ordering of the teams on the scale of the natural numbers. This goal will be achieved by
letting the teams compete against one another. The games are to be regarded as real processes, real
interactions, between existing entities (the teams), such that each game has a determinate outcome,
which is either win, draw, or loss. Notice that not all combinations of outcomes are possible: although
both teams can draw in a single game, it is not the case that both teams can win (or lose). Thus:
(1) games are events, (2) the outcomes of these events are definitive of “what the world is like” (i.e., how
the teams will be ranked), and (3) there will be correlations in the descriptions of teams (if one team
wins, its opponent must have lost). The set of possible outcomes {win, draw, lose} will be referred to
as the “measurement context”; the individual games are called “measurements”. Due to the central
importance of these measurement interactions, I will refer to the probabilistic model that results from
the considerations below as an “interactional probability model”.

2.2. States

Once we have determined a measurement context, we can collect information about the teams.
This information will be called a “state.” However, the need will arise to distinguish between different
kinds of states, and to introduce different kinds of mathematical structures.

2.2.1. Betting-States

One way to encode information about the teams would be to provide a list of the outcomes of all
the individual games. But any attempt to define a relation “ . . . is better than . . . ” by virtue of, e.g.,
“K is better than L if and only if K has won against L” (information that would be provided by our list)
might lead to inconsistencies (if K wins against L, L wins against M, and M wins against K). To achieve
our initial aim, of creating a ranking of the teams, we will do much better if we begin by characterizing
each team by its total number of wins, draws, and losses. Such a triple of numbers will be called a
betting-state:

• Betting-states. The betting-state ascribed to a team is a triple 〈w, d, l〉 where w, d, and l denote the
number of wins, draws, and losses respectively.

Clearly, betting-states represent only the outcomes of the games, but not the underlying mechanisms
by which these outcomes are produced. There may or may not be any systematic way of modelling
these mechanism—the point is that we may choose not to worry about such vastly complicated things.
Hence, we wisely trade descriptive accuracy for predictive success.

Given this definition, it is natural to inquire into the structure of the set of betting-states. Suppose
a team is characterized by 〈w1, d1, l1〉 during the first m games, and by 〈w2, d2, l2〉 during the
subsequent n games. Then, the overall betting-state is given by 〈w1 + w2, d1 + d2, l1 + l2〉, and hence
we can define a component-wise addition for betting-states associated with a single team: 〈w1, d1, l1〉+
〈w2, d2, l2〉 := 〈w1 + w2, d1 + d2, l1 + l2〉 (clearly, it makes no sense to add betting-states that are
associated with different teams). Similarly, we can define a (component-wise) multiplication by a
scalar λ: 〈λw, d, l〉 = 〈λw, λd, λl〉 (where λmight represent the number of rounds in which the same
result was obtained, such that component-wise multiplication yields the overall betting-state after λ
rounds). Equipped with these operations, the set of betting-states is now a “vector space” (informally
speaking, of course; most notably, we are lacking an additive inverse and a multiplicative inverse for
multiplication by a scalar).

2.2.2. Odds Comparison

Let’s try and put our betting-states to use. Suppose there is a game coming up—can we use the
betting-states to inform our betting behavior? One might, first, propose that betting-states can be used
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to make probability assignments for future events: if a team’s betting-state is given by 〈w, d, l〉 (such
that w + d + l = n, where n denotes the total number of games), then the respective probabilities
are given as: pα = α/n (α = w, d, l). The suggestion is that these probabilities should guide our
betting behavior.

However, there is something a little naive about using the probabilities generated from the
betting-states like pα = α/n (α = w, d, l). Here is why: think about a team near the bottom of the
league. This team might have a low probability of winning (pw = w

n < 1
2 ). But while this may be

so, we should be wary not to take this “absolute” description (of a seemingly intrinsic property) of
the team all that seriously. Winning, after all, is inherently relational: you can only win against some
other team. Suppose that the lowly ranked team plays against a team that is located even further
down the table. Its chances of winning, in this case, may actually not be all that low. A sophisticated
bettor won’t read too much into the probabilities pα = α/n, but will acknowledge that, for each
team, the probability of winning, losing, and drawing is correctly specified relative to its opponent.
Betting behavior, in other words, must be informed by mathematical structures that are sensitive to
the measurement that is being performed, rather than those that aim for an “absolute” description of
each team.

These ideas can be modelled via what Hughes and van Fraassen [24] (cf. [20] (p. 70)) call an
“odds comparison.” If two teams are assigned betting-states 〈w1, d1, l1〉 and 〈w2, d2, l2〉 (after both
teams have played the same number of games), then we may define their odds comparison like this:
〈w1/w2, d1/d2, l1/l2〉. Determining these relative odds of two teams (recall that odds, by definition,
are probability ratios [20] (p. 69)) will certainly be a most valuable piece of information if we wish to
be even moderately sophisticated about our predictions for the outcomes of specific games.

2.2.3. Number-States

Even the odds comparisons, however, aren’t sufficient to unambiguously determine, for any
arbitrary pair of teams, which team is better. It is still unclear, e.g., which of the two betting-states
(associated with different teams) is better: 〈5, 1, 5〉 or 〈3, 7, 1〉?

A successful way of ordering the teams proceeds by defining a function s, which takes as its
input a betting-state and assigns to that state a number. Depending on whether this number is higher,
lower, or equal for the betting-states 〈w1, d1, l1〉 and 〈w2, d2, l2〉 that are associated with teams K
and L respectively, we will, by definition, know whether K is ranked above, below, or equal to L.
These functions will be called number-state functions. Let me reemphasize that the primary role of these
number-state functions is to assign numerical values to betting-states, which in turn generates a relative
ordering of the teams on the scale of the natural numbers.

The current number-state function is 〈s(w, d, l)〉 = 3w + d, where a win is assigned 3 points,
a draw is assigned 1 point, and a loss is assigned 0 points. Certainly, there are other sensible options:
we could, e.g., define number-state functions “projectively,” such that p(〈w, d, l〉) = w. This would
result in a model that would deem only the number of wins to be relevant. Clearly, there are many
potential choices of number-state functions, and any such choice is going to be conventional.

This immediately invites the question of how arbitrary our convention is going to be. A natural
constraint is that number-state functions should pay tribute to the vector-space structure of the
betting-states. Hence, we demand that s(∑〈wi, di, li〉) = ∑ s(〈wi, di, li〉). This is “natural” because
we have previously decided to collect, in the betting-states, only information about the outcome of
each game, but no information about the order of the results.

Before proceeding, let me summarize these remarks by formally introducing two closely
related concepts:

• Number-states. A number-state ascription is an ascription of a numerical value to a betting-state.
• Number-state functions. Number-state functions are linear functions from betting-states to the

natural numbers.
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The reason to insist on this distinction between the number-state functions and the number-states
themselves is because one could, in principle, assign numbers to betting-states in an arbitrary way.
Thus, it is not trivial to require (as I will) that all number-states derive from a choice of number-state
function, but a condition that must be put in by hand.

From the linearity constraint (and the additional constraint that s(〈0, 0, 0〉) = 0) we conclude
that number-state functions must be of the form s(〈w, d, l〉) = s1w + s2d + s3l. Hence, they can also
be written as triples s = 〈s1, s2, s3〉, and thus we can (informally, again) consider them to be vectors
as well. Number-state functions are therefore of the same mathematical type as the betting-states.
The identity of mathematical representations of both types of states, however, should not distract from
the fact that they should be interpreted differently.

These observations have two noteworthy consequences. First, notice that if the number-state
functions are of the form s(〈w, d, l〉) = s1w + s2d + s3l, we can interpret the resulting number-states
(somewhat informally) as being expectation values for the overall number of points a team will
receive after n games. (Observe that, strictly speaking, this yields an expectation value only
if we divide this expression by the total number of games n (the sum of the components):
s(〈w, d, l〉)/n = s1pw+ s2pd+ s3pl, where pα = α/n is the relative frequency of each of the outcomes
as specified in Section 2.2.2. Even though these probabilities were previously argued to not be
particularly useful (and actively misleading) they are, of course, still probabilities in a mathematical
sense, since the frequencies calculated via pα = α/n satisfy the probability axioms.) Secondly,
the similarity of mathematical representations of betting-states and number-state functions can be
exploited in the following way. The number-states, i.e., the function values s(〈w, d, l〉), can be written
in the form of a dot product between vectors: s(〈w, d, l〉) = s·x = s1w + s2d + s3l. [24] (p. 72).

Before moving on to the main point, which will concern the dynamical evolution of the
betting-states, let me add three important remarks:

(1) The correspondence between betting-states and number-states is many-to-one. If, e.g., a team
is assigned 15 points after 10 games (by the standard number-state function s = 〈3, 1, 0〉), this
is compatible with the team being in betting-states 〈5, 0, 5〉 or 〈4, 3, 3〉 or 〈3, 6, 1〉. In general,
therefore, knowledge of a team’s number-state only restricts, but does not determine, which
betting-state the team can be said to be in. Although it is natural to say that number-states
“encode information about the betting-states,” that information is not fully recoverable from the
number-states. (There is common ground here between the football example and the toy-model
developed by Spekkens in Ref. [27]: since the number-states put a limit on what can be known
about the betting-states, they echo what Spekkens’ refers to as the “knowledge balance principle”,
which he introduces as a postulate; cf. [27] (p. 3).) Introducing a further piece of terminology,
I will say that a number-state “declares possible” all the betting-states that are compatible with
it (so that, e.g., the number-state ascription “K has 15 points after 10 games” declares possible
the betting-states 〈5, 0, 5〉, 〈4, 3, 3〉 and 〈3, 6, 1〉 relative to the choice of number-state function
s = 〈3, 1, 0〉).

(2) The specific number-state assigned to a betting-state has no objective significance, in the sense
that (a) the choice of number-state function (from which it derives) is conventional, and (b) the
relative ordering of the teams is not preserved under a general change of number-state function.
In other words, since different choices of number-state functions (generically) produce different
tables, the relevant relations— “ . . . is better than . . . ,” “ . . . is worse than . . . ,” and “ . . . is equal
to . . . ”—are inherently relative to the choice of number-state function. Thus, these relations
cannot be said to reflect (or represent) objective states of affairs.

(3) Using a piece of terminology familiar from foundational studies on the reality of the quantum
state, we would say that the number-states are “ontic” rather than “epistemic” [14,15]. Since
this terminology will prove useful again below, it is worth outlining the main idea behind the
ontological models framework, from which this terminology derives (cf. [15] esp. (pp. 82–88) for
a comprehensive overview of the relevant issues). A model is called ontological, if each state
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in the model’s state-space, which will be denoted by Π, corresponds to a classical probability
distribution over some measurable space (Λ, Σ) (where Λ is called the ontic state-space, and Σ
is a Borel (σ-) algebra on Λ). An ontological model is called ontic if, for any two states n and
m in the state-space Π, every element in the ontic state-space Λ which n declares possible, m
declares impossible (this is a somewhat loose, though I hope appropriate, way of paraphrasing
the definition given in Ref. [15] for the case in which the elements of the state-space Π don’t
ascribe concrete probabilities to the elements of the ontic state-space Λ that they declare possible).

To see why our football example can be regarded as an instance of the ontological models
framework, we reason as follows. First, take the betting-states to be elements of the ontic state-space
Λ (and let Σ be the standard Borel field obtained from the set of—jointly exhaustive and mutually
exclusive—elementary propositions “K has won/drawn/lost against L”). The number-states are elements
of the state-space Π (which will thus be a subset of the natural numbers). Although the number-states
fall short of providing a probability distribution over the betting-states, they declare possible a set of
betting-states. However, each of these betting-states is declared possible by exactly one number-state
(the last two points follow because, as was noted above, the correspondence between betting-states
and number-states is many-to-one). Therefore, number-states are ontic. Despite being ontic, however,
there is clearly nothing in the world that “corresponds” to a choice of number-state (since, as was
already noted, different choices of number-state functions induce different orderings of the teams).
This establishes that number-states are counterexamples to the argument that infers claims about
“objective existence in reality” from a state’s logical property of “being ontic.” Number-states are both
ontic and non-representational, and this impairs on the logical validity of the argument that aims to
ground representationalist interpretations of the quantum state in the recent theorem by Pusey, Barrett
& Rudolph [14] (which shows that pure quantum states are ontic).

2.3. Dynamics

What is still lacking from our analysis is an account of dynamical evolution: we would like to know
how betting-states change over time. Consider, thus, how the situation looks from the point of view of
different observers, who both know that the initial betting-states of some team is 〈w, d, l〉. Suppose that
observer A was lucky enough to have acquired a ticket for the ensuing games. Observer B, however,
has been less fortunate, and she doesn’t know the outcomes the subsequent games. Since B, unlike
A, isn’t collecting any new descriptive information, I will refer to B as an external or non-participating
observer. The question now arises: how does each observer describe the change in betting-state for a given
team? (Notice that this set-up is the classical counterpart of the Wigner’s friend thought-experiment [28]
that will also be discussed below).

2.3.1. How the Situation Looks from A’s Perspective

From A’s perspective, the situation is clear. The correct state to assign after the next game is either
〈w + 1, d, l〉 or 〈w, d + 1, l〉 or 〈w, d, l + 1〉.

2.3.2. How the Situation Looks from B’s Perspective

For B, the situation is more complicated. If B only knows that a certain number of games has
taken place (i.e., if she agrees with A on the total number of games that were played), but not what the
outcomes of these games has been, she will have to hedge her bets more carefully. Lacking the relevant
descriptive information, she will be left to guesswork and speculation. However, not all speculation is
equally good, and in the next section I will outline in what sense B can make a best guess (subject to
certain constraints) as to what the final betting-state (into which the initial betting-states will have
evolved) will be. From here onwards, since B’s best guess is no longer defined as a partial description
of the actual outcomes of the games, I will refer to this best guess as the “betting-state relative to
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B” (or: “B’s betting-state”). This is intended to indicate that the concept of a betting-state functions
differently relative to B than it does relative to A.

In formal epistemology, the question of what B’s best guess consists in has been discussed under
the heading: “How do probabilities evolve if we do not assume an underlying determinism?” [20]
(p. 68) In the next section, this problem will, following the presentation in Ref. [24], be addressed in
its most general form. This will lead to a classical version of the Schrödinger equation as the correct
equation governing the evolution of B’s betting-state.

3. A Classical Version of the Schrödinger Equation for Optimal Opinion Updating Relative to
Non-Participating Observers

Before we can address B’s dynamics problem, it will be useful to first generalize the situation
described thus far. Box 1 summarizes the kinematics of interactional probability models, for which
Section 2 gave a specific example.

Box 1. Kinematics of Interactional Probability Models.

Kinematics of Interactional Probability Models

1. Measurement Context: In the general case, our measurement context consists of n distinguishable outcomes
of the interactions between the entities within the model’s scope.

2. Betting-states relative to B: The betting-state relative to B is an n-tuple of numbers x = x1, . . . , xn,
the components of which specify B’s best guess for how many times a particular outcome was observed
(this best guess will be a true guess, if B happens to know the outcomes of the games). The set of
betting-states has the following structure:

a. Betting-states are vectors. Betting-states can be added (component-wise) and multiplied by a scalar
(component-wise).

b. Odds-Comparison: The odds comparison of two betting-states x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , yn〉
is defined (for ∑ xi = ∑ yi) as x/y := 〈x1/y1, . . . , xn/yn〉 (if well-defined).

3. Number-states: A number-state ascription is an ascription of a numerical value to a betting-state.
All number-states that will be considered are required to arise from a choice of number-state function.

a. Number-state functions. Number-state functions are linear functions from betting-states to some choice
of number field. Thus, number-state functions are characterized by n numbers, s = 〈s1, . . . , sn〉,
such that: s(x) = ∑ sixi. Hence, they are vectors of the same mathematical type as the betting-states.

b. Number-states are expectation values. From the point of view of interpretation, the equation 〈x〉 =
s(x) = ∑ sixi yields an expectation value (for the number of points associated with a team after a
certain number of games, for caveats, cf. Section 2.2.3).

c. Number-state functions are coordinatizations. Since the primary role of number-state functions is that
of generating an ordering of the teams, I will say that number-states are “coordinatizations” of the
betting-states (cf. Section 4).

Let’s return to the problem of dynamical evolution (from the point of view of an external or
non-participating observer B). Suppose that B knows the initial betting-state x(0) of a team, at time
t = 0, and wishes to update her state to a final time tf, yielding a state x(tf). The question we are facing
is this: what is B’s best guess for the final betting-state x(tf)?

Before she can even begin to address this question, B must make an initial assumption.
This concerns that fact that so far, the components of the betting-states were integers. However,
since B is now confronted with the problem of having to account for the changes that occur in the
components of her betting-states, and since it can be computationally very difficult to model discrete
changes, she will do well to transform her problem into one that can be handled more easily. This can
be achieved by allowing the components of her betting-state to evolve continuously (with respect to a
parameter t). Therefore, she will embed (in the sense of providing an injective structure-preserving
map) the betting-states—which are of the form 〈w, d, l〉 (with the components elements of the natural
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numbers)—into the set of triples of the form 〈w, d, l〉 (where the components now lie in the real
numbers). This embedding is simply the trivial embedding of the natural numbers into real numbers
(i.e., the identity map: id : a  −→ a). The reason why this assumption is justified, is because the
embedding preserves the relevant algebraic structure (in particular: the vector-space structure and
the odds comparison). Therefore, although the problem has now been transformed, it has not been
significantly altered. [24] (p. 852) In a slight abuse of terminology, I will still refer to these new states as
“betting-states relative to B”.

In this more general scenario, we can ask what types of constraints should be respected, for the
evolution of x(0) to x(tf). One reasonable constraint is that dynamical evolution shouldn’t mess up the
odds comparison of the teams. Otherwise, the evolution would (unnaturally) privilege certain teams
over others, which might distort—not the facts, mind you!—but what is rational to believe from the
point of view of observer B. To implement this, we will need the concept of a symmetry.

• Symmetry. A symmetry of the space of betting-states is a linear map U that maps the space
onto itself such that the odds comparison of betting-states is preserved: U(x)/U(y) = x/y
(if well-defined). [24] (p. 857), [20] (p. 72).

Our first constraint, that odds comparisons should be preserved, therefore becomes: B’s evolved
state should be the result of a symmetry transformation on her initial state.

Before proceeding, let me add some brief comments. (1) As an important observation, notice
that Bayes’ theorem is also derived from a symmetry condition (this is a key element that Hughes
and van Fraassen in Ref. [24] draw attention to). (2) Notice that the justification for the first condition
relies on the relational nature of our description—what we want to be preserved is a relational quantity
(the odds comparison) rather than the quantities pα = α/n (α = w, d, l), which characterize a single
team. (3) We will have a chance to use the following theorem:

Theorem. A transformation U is a symmetry if and only if there exist positive real numbers u1, . . . , un such
that U(x) = 〈u1 x1, . . . , un xn〉. [24] (p. 857), [20] (pp. 71–73).

Proof. See Appendix A. �

The next condition is that evolving by a time t1 and then by t2 should be the same as evolving by
t1 + t2. (“The set of evolution operators form a semi-group”). This gives rise to another definition:

• Uniform motion. A uniform motion on the space of betting-states is an element of the set
{U(t), t ≥ 0 : U(t1) ◦ U(t2) = U(t1 + t2)} of symmetries labelled by a continuous parameter
t. [24] (p. 857), [20] (p. 72).

There is another straightforward theorem that will prove useful:

Theorem. If two betting-states x(0) and x(t) are related via a uniform motion x(t) = U(t)(x(0) ) =

u1(t) x1(0), . . . , un(t) xn(0), then there exist positive real numbers k1, . . . , kn such that ui(t) = ekit. [24]
(p. 858), [20] (pp. 72–73).

Proof. See Appendix A. �

The next constraint will put on the breaks. We still don’t know anything about the coefficients
ki that figure in the previous theorem. If those are chosen at random, the final state x(tf) might be
arbitrarily distant from the initial state. To prevent this, which we should, if B’s guess is to be taken
as a “best” guess, we impose that the overall change induced by the evolution operators is minimal.
Now, the total rate of change in B’s betting-state is given by: ∂

∂t ∑ xi(t) = ∑ kixi(t). Furthermore, since

the ki’s are positive real, we know that all derivatives ∂(m)

∂t(m) ∑ xi(t) are positive real. Thus, in particular,
the second derivative will be greater than 0, which means the first derivative will be a monotonically
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increasing function. To minimize the overall change in B’s betting-state, we can therefore require that
the quantity ∂

∂t ∑ xi(t) = ∑ kixi(t) be minimal for x(tf). Notice that, since ki ∼ ln
(

xi(tf)
xi(0)

)
, this has the

form of an entropy maximizing condition. [24] (pp. 858–860).
There are two final conditions. First, we want the total number of games to be known: the

betting-state relative to B should be normalized, in the sense that B knows the total number of games
that have been played at the final time: ∑ xi(tf) = n(tf). Secondly, we impose that the number-state
(which has played no role so far) at the final time is fixed, i.e., that ∑ sixi(tf) = r(tf) (thus r(tf)

denotes the final number-state of the team). The interpretational spin we could put on this is that the
number-states assigned to the teams should be the same for both observers. Hence, we allow that A
communicates to B (after all games have been played) what the final number-state of the team is. Since
there might be many different betting-states that give rise to the same number-state, this condition
plays an important role: the allowed betting-states are those that the number-state declares possible
(in the terminology from Section 2.2.3).

Summarizing the discussion, we can now present the problem of B’s dynamical evolution as the
following optimization problem:

Box 2. Non-participating observer B’s dynamical problem.

Optimal Rational Opinion Updating Relative to Non-Participating Observers
B’s dynamical problem: Find a set of evolution operators U that relate the betting-states x(0) and x(tf) (at time 0
and tf respectively) such that:

1. U is a uniform motion: x(tf) = U(tf)(x(0)).

According to the theorems mentioned above, this means that we already know that x(tf) =
〈u1(tf) x1(0), . . . , un(tf) xn(0)〉, and that there exist positive real numbers k1, . . . , kn such that ui(tf) = ekitf .

2 Find real numbers k1, . . . , kn such that ∑ kixi(tf) → min . This is subject to the constraints that:

a. The final betting-state relative to B is normalized: ∑ xi(tf) = n(tf).
b. The final number-state is agreed upon by both observers A and B: ∑ sixi(tf) = r(tf).

It now can be proven that [24] (pp. 860–862):

Theorem. There exist constants v & w such that the ui

(
t f

)
’s are given by ui

(
t f

)
= evt f ewsit f .

Proof. See Appendix A. �

In other words, B’s optimal opinion change is given by something that looks a lot like a classical version of
the Schrödinger equation: the constant w plays the role of Planck’s constant and the si’s play the role of
the eigenvalues of the Hamiltonian. w and v are Lagrange multipliers that are uniquely determined by
the boundary-conditions 2a/b in Box 2. [24] (p. 861) Observe, also, that evolution depends on a choice
of number-state function; hence different such choices induce different “shifts” in different “bases.”
Therefore, the final betting-state relative to B—which will be a different state than the betting-state
relative to observer A—is uniquely fixed by the above conditions. Therefore, the evolution of B’s
betting-state is deterministic.

This concludes the mathematical discussion. The challenges ahead, of course, are still quite
significant. For one, we haven’t said anything about quantum mechanics yet. While the above theorem
certainly resembles, rather closely, the form of the solutions to the Schrödinger equation, there are
still important differences (most notably, the additional factor of evtf and the absence of the imaginary
unit i). Section 5 tries to substantiate the claim that the above theorem can indeed be viewed as
a classical version of the Schrödinger equation. Specifically, I will argue that it is the form of the
problem, as well as the form of the solution, that justifies viewing the result of the above theorem as the
classical analogue of the Schrödinger equation. To pave the way for this discussion, Section 4 discusses
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some conceptual subtleties that, so far, haven’t received the attention they deserve. (There is another
worry, unrelated to the subsequent discussion, to which an anonymous referee has alerted me. This
concerns the fact that that the theorem predicts that the total number of games n(t)—i.e., the sum of the
components—evolves as a sum of exponential functions, which might appear counterintuitive. Why
would B conclude that n(t) evolves in this fashion (as opposed to, say, making the more reasonable
assumption that events occur at a constant rate)? To see that the theorem produces “reasonable” results,
there is an explicit example worked out in Appendix B.).

4. Preliminary Discussion—Some Advantages of the Example

The setting I have chosen will likely have struck the reader as somewhat peculiar. At the very
least, this interactional probability model is quite detached from the paradigm cases of probabilistic
models, such as coin-flipping and dice-tossing, which still often guide our thinking about these matters.
Here, I argue that this is a good thing, which will be achieved by locating the example relative to
some familiar issues in the philosophy of probability. I will also expose the sense in which Rovelli’s
relational interpretation [11–13] (or: at least one potential version of it; cf. Section 5) is inspired by such
interactional probability models as the one that was presented above. Using the classical example,
I will try to illustrate why the relational view might enjoy some important advantages over its closest
neighbors (such as QBism or neo-Copenhagen views).

Now, if we had chosen a more paradigmatic setting, such as a coin being tossed, the theorem
that fixes the evolution of B’s probabilities would still have gone through. After all, Hughes & van
Fraassen’s presentation in Ref. [24] can be interpreted in this way: how do the probabilities of a single
coin, or a dice, evolve relative to different rationality constraints (which specify the epistemic situation
of different observers: observer A has knowledge of outcomes, while observer B only knows that the
coin was tossed)? For this reason, proponents of observer-dependent interpretations of the quantum
state other than the relational view might wish to include the result of Section 3 in their argumentative
toolbox. Nevertheless, the set-up from Sections 2 and 3 has some strong conceptual advantages over
the more traditional examples, which merit closer inspection.

4.1. The Betting-States are not “Absolute Descriptions”

The claim that the betting-states are not “absolute” descriptions of the teams is intended in the
following sense: had we chosen a more traditional setting of a coin being tossed, the possible outcomes
heads and tails certainly characterize fully intrinsic properties of the coin. But while the concepts of
winning, losing, and drawing may give away the impression of characterizing the teams “absolutely”,
this is only an appearance: you can only win, lose, or draw against another team. There are two
noteworthy aspects to this.

4.1.1. Betting-States are Correlations

The first remark relates back to the observation that there will be correlations in the betting-states.
After each round, as many teams will have one more win as there will be teams with one additional
loss. Hence, if you ask a team how they played, and they tell you that they have won, you
know—instantaneously and without hesitation—that the other team has lost. For that reason, the above
example exemplifies a central commitment of Rovelli’s relational view, namely that the ascription of
any particular state (which is interpreted as codifying observer-dependent information) is equivalent
to asserting that there exists a certain correlation between systems: “The fact that the pointer variable in O
has information about S (has measured q) is expressed by the existence of a correlation between the q variable of S
and the pointer variable of O.” [11] (p. 9).

This is to be contrasted, in particular, with neo-Copenhagen interpretations of especially Zeilinger
and Brukner [8,9], according to which quantum theory is also grounded in information-theoretic
considerations, but in a different sense. Zeilinger [8], e.g., postulates his “foundational principle”,
which states that each elementary system carries one bit of information. This, clearly, suggests that the
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amount of information somehow characterizes an intrinsic property of certain systems, leading to the
vexing claim that “information is physical” (cf. Timpson in Ref. [29] (pp. 67–73; 152–158) for a pointed
discussion of the problems associated with such claims). On the relational view, information is simply
the existence of correlations, and hence, this view sidesteps these types of debates (of whether we can
make coherent sense of the suggestion that information is physical). This advantage of the relational
view over the neo-Copenhagen approach (one of its closest allies) carries over to the second point I
would like to stress.

4.1.2. “How Things Are” vs. “How Things Affect One Another”

It is important to observe that the betting-state relative to B isn’t useful because it characterizes
“how physical systems are.” On the contrary, it is useful primarily because it determines the odds for
how a team will fare when playing against some other team (since we required the odds comparison
to be preserved). To put it in a slogan: B’s problem is all about “how things affect one another”
rather than about “how things are.” In that sense, this example perfectly instantiates what is perhaps
the core commitment of Rovelli’s relational view: “The core idea is to read the theory [of quantum
mechanics] as a theoretical account of the way distinct physical systems affect each other when they
interact (and not the way physical systems ‘are’).” [12] In other words, on the relational interpretation,
quantum theory is interpreted along the following lines: from the previous point, we know that
quantum state ascriptions are the result of preparation procedures, in which a correlation between
measurement apparatus and system has been established. [11] (pp. 9–10) At the same time, the point
of collecting information in this way is that this allows predictions to be made (from the point of view
of different observers) for the outcomes of possible future interaction with other systems (as opposed
to: preparation procedures playing the role of characterizing “how quantum mechanical systems are”).

4.2. Completeness

The football example is “universal,” in the sense that the interacting entities (the teams) are, albeit
physically distinct (since they are characterized by different betting-/number-states), metaphysically
equal. This is important for the following reason. It is uncontroversial, though easily overlooked in
paradigmatic cases of probabilistic processes (such as a coin being tossed), that probabilities are a
peculiar mixture of being both “absolute” descriptions of “how things are,” but also descriptions of
“how things affect one another,” at least in the following sense: suppose, e.g., that we want to toss a
coin, but that this coin is also a magnet, such that if it is tossed over a sufficiently strong magnetic field,
it will always show heads. Since we might, e.g., turn the magnetic field on and off, the probabilities
that are to be assigned for each toss should always be thought of as functions of: (1) of the coin itself,
but also (2) the environment with which the coin, once tossed, will interact. In the traditional settings,
however, the environment will generically obey different (perhaps non-probabilistic) laws than the coin
itself (which is modelled probabilistically). In that sense, although both environment and system
may obey well-defined sets of physical laws, they will have to be viewed as metaphysically distinct.
This situation changes in the football example. The model universally applies to all entities within
its scope, and this shows how a theory of “how things affect one another” can consistently held to be
complete. We simply don’t require any story about “how things are” in order to have a substantive
and powerful account of “how things affect one another.” And this, in turn, captures the intuition
behind why Rovelli’s relational interpretation aspires to be complete: on the relational view every
system will be treated as a quantum mechanical system; all systems will be metaphysically equal, though
physically distinct, partners in the interactions, and the description in terms of transition probabilities
(from earlier to later states) will be held to be complete. [11] (p. 7), [11] Since completeness is a clear
virtue of any interpretational strategy, the relational view will enjoy this advantage over its next-door
neighbors such as QBism or the neo-Copenhagen view, which require further resources to describe
reality (QBists in terms of direct experience [7]; neo-Copenhagens in terms of classical mechanics [10]).
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4.3. The Role of Number-States

The football example reserves an explicit role for the number-states, which deepens the analogy
to quantum states in at least two ways.

4.3.1. Number-States are Expectation Values

Notice, first, that we can construct a counterpart to the problem of “choosing a number-state
function” for the traditional example of a coin being tossed. For example, since we could associate any
arbitrary pair of numbers with either side, we could, given any such assignment, calculate a numerical
expectation value (just as in the football example). And this expectation value is also going to be
conventional (as the numbers we could choose to associate with each side might be selected at random).
First of all, this would be somewhat artificial. Secondly, this is beset with some vexing philosophical
problems. For suppose we have decided to label the different sides of the coin with the numbers 1
and 2. In the next step, we will have to ask ourselves whether there is a correct way of labelling the
different sides of the coin. If the coin is slightly biased or asymmetrical, which must be assumed for any
non-ideal case, then it makes a difference which number we assign to which side. But we can’t know
what that bias is, if we don’t already know what the correct labelling consists in (arguing that there is a
primitive labelling of heads and tails only pushes the problem one step back). In the football example,
these problems, which echo some traditional problems from the philosophy of probability, simply
disappear (which, of course, is due to the fact that in the football example, symmetry considerations
don’t concern any intrinsic property of a single team, but a relational quantity, i.e., the preservation of
the odds comparison).

4.3.2. Number-States are Coordinatizations

The number-states have the peculiar role of generating a relative ordering of the teams (as, e.g.,
the relation “better than” was induced by a choice of number-state). This has an obvious counterpart
in physics: the claim that a particle is located at position x, must always be relative to some reference
system (which defines our origin). Hence, physics is in the same business of coordinating systems (a)
relative to other systems and (b) relative to a choice of coordinates (“S is m meters to the left of O”
maps onto “K is n points better than L”). Notice, in particular, that the condition that number-states
were agreed upon by both A and B (which implies that the ordering of the teams is the same for both
observers) played an important role in the derivation of the equation that governs the evolution of
B’s betting-states.

5. Quantum vs. Classical: The Similarities

Let’s now make the transition to quantum theory. Here, I focus on the similarities between the
classical example and quantum theory. In Section 6, I will discuss the differences between the classical
and the quantum case.

Rather than immersing ourselves in the details of these arguments straight away, however,
I would like to briefly comment on what such a discussion, of the similarities and differences between
quantum theory and a classical example, could possibly establish. Now, we might observe that
insofar as the dynamical evolution of betting-states relative to B was a result, a natural approach
would be to place the previous discussion in the context of existing “reconstruction programs,” and
investigate which assumptions would have to be modified in order to obtain a different result than in
the classical case (i.e., the actual Schrödinger equation). What this would mean, provided that some
of the more promising reconstruction projects proceed in terms of imposing information-theoretic
constraints [8,9,11,30–32] is that we would have to investigate in what sense quantum theory limits
the amount of knowledge an observer could, in principle, obtain. And certainly, this would sharpen
our sense for what is “quantum” about quantum mechanics. While there is a lot to say about the
similarities between the classical example and various reconstruction programs, the focus here will
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not be to provide such a systematic comparison or analysis. The reason is because it is not clear
what these reconstruction programs establish from the point of view of interpretation. Timpson has
articulated this issue like this: “By assumption [of a reconstruction project], the world is such that the
information-theoretic constraints are true, but this is too general and it says too little: it is consistent
with a wide range of ways of understanding the quantum formalism.” [29] (p. 177) In other words,
once we have reconstructed the formalism, we should expect to be able to annex any interpretation to
the result that we see fit. For this reason, the discussion here will instead take the following form:

• The goal of the discussion of the similarities between the quantum formalism and the classical
example will be to provide a suggestive reason for why the above theorem can indeed be viewed
as the counterpart of unitary evolution in quantum theory. This will rely on a result due to
Lisi [25], who has proposed a heuristic derivation of the Schrödinger equations from similar
assumptions as the ones that were required to prove the result of Section 3. Of course, and this
is the important point here, such a discussion could only be suggestive (establishing too close a
resemblance between the classical and the quantum case could only mean that we have made a
mistake—the two cases are, after all, fundamentally different).

• The discussion of the differences between the two cases will be less suggestive. The argument will
be structured around the thesis that unlike in the classical case, quantum theory is inconsistent
with the assumption that each measurement has a determinate outcome. This argument will rely
on a recent no-go theorem due to Frauchiger and Renner. [26], cf. [33] Since this no-go theorem
is derived on the basis of the quantum formalism itself, this purports to show in what sense the
formalism restricts the set of viable interpretations (this would not be visible if we stayed at the
level of the reconstruction programs, for the reason articulated by Timpson).

Let me, then, begin the discussion of the similarities between the classical and the quantum
case by briefly rehearsing the kinematical structure of the theory. Quantum mechanics is set in
separable Hilbert spaces H. Observables are defined to be the self-adjoint elements of B(H), the set
of bounded linear operators on the Hilbert space; the space of these observables is a von Neumann
algebra: an involutive Banach-algebra that’s closed in the strong topology. States are defined as linear
trace-class operators !(H) on the Hilbert space (of trace 1). Notice that the state-space, too, is a
vector-space: abstractly speaking, the state space is the dual vector space of the space of observables
(playing such similar mathematical roles of being structure-preserving functionals makes for the analogy
between number-state functions and quantum states). A special class of states, the so-called pure
states, stand in one-to-one correspondence to the 1-dimensional subspaces of the Hilbert space (the
so-called rays). Thus, we may (if we are dealing with pure states) use vectors in that subspace to
represent the state (by convention, we take a vector of unit length although, strictly speaking, that still
leaves a phase-ambiguity). To get probabilistic predictions from the theory, we rely on the Born rule,
P(A|ρ) = Tr(Aρ) (where A is an observable and ρ is a density operator). This specifies probabilities
(if A is a projection operator) and expectation values (for general self-adjoint operators). If ψ is a pure
state, the expectation value is given by a vector-space product of the form (ψ, Aψ).

This mathematical structure, oversimplifying rather drastically, allows us to make probabilistic
predictions for the outcomes of measurements, and hence it is sufficient to check quantum theory
in experimental practice. But suppose that we aren’t satisfied with making only such probabilistic
predictions, and that we want some form of understanding for how the experimental results are
brought about. Suppose, in other words, we want to be realists about the claim that “System S is in
state ψ.” How should we interpret this assertion?

On a first proposal, we might suggest that the state represents something in the world, in the sense
that the world should be thought to be “isomorphic” (“structurally equivalent in the relevant ways”)
to ψ. While this may sound tempting, there is something strange going on here from a conceptual
point of view. Ordinarily, we would suppose that systems exist but not that states exist—and what
type of thing or object in the world could possibly be isomorphic to ψ? As, e.g., Halvorson [34] points
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out, if we confuse states and the objects of which they are states, we run into the problem that “if states
are objects, then states themselves can be in states. But then, to be consistent, we should reify the
states of those states, and these new states will have their own states, ad infinitum. In short, if you run
roughshod over the grammatical rules governing the word “state”, then you can expect some strange
results.” [34] (p. 6) Consider, as a response, a second realist strategy: the suggestion that states play the
functional role within the theory of assigning to the system a rather specific property: “being in state
ψ.” This leads to what Halvorson calls a “state-to-property” link (he credits Wallace and Timpson [35]
for this proposal). According to this, states no longer represent objects, but they represent a property
of this object: a system is said to be in state ψ, just in case it has the property of being in state ψ. [34] (p. 24)
However, it is not clear what exactly this implies with respect to ontology. As Halvorson remarks,
“I suppose this claim is true. But I didn’t need to learn any physics to draw that conclusion. This is
nothing more than a disquotational theory of truth.” [34] (p. 25) But the state-to-property link can
be broadened: what certainly goes beyond the disquotational theory of truth, is the functional role
states could play in assigning values to other observables. The set B(H) contains a whole fauna of
self-adjoint operators, which represent physical properties. Relying on the eigenstate-eigenvalue link,
a realist interpretation of the quantum state will, on this proposal, amount to the claim that states
appropriately “track” the values (possibly unsharp!) that observables take for a given system. There is
a host of technical complications connected to this proposal (most notably, the Kochen-Specker no-go
theorem [36]). Here, however, I would only like to focus on the problem that has played center-stage
in the discussion of realist interpretations of the quantum state: the quantum measurement problem.

To illustrate what the measurement problem consists in, we need to include the dynamical
structure of quantum theory into our discussion. The first dynamical postulate of quantum theory
is the Schrödinger equation, according to which states evolve unitarily. But Schrödinger’s famous cat
thought-experiment [37] illustrates that this cannot be: macroscopic systems may evolve unitarily
into superpositions that aren’t observed in experiment. In textbook presentations of the theory, one
therefore typically encounters a further dynamical postulate: von Neumann’s collapse postulate, which
tells us that when the measurement happens, the state after this measurement is represented by the
projection operator corresponding to the eigenspace in which the system was observed to be. But this
also cannot be: even leaving aside quarrels about non-locality, if the state represents some objective
feature of the world, then collapse is a real physical process, which should have been brought about
for a certain reason. Since quantum theory itself doesn’t provide such a reason, the collapse postulate,
as Brown put it in the quote from the introduction, appears “mysterious.” [23] (p. 17).

Anti-realist interpretations escape this dilemma by dropping the assumption of realism about
the quantum state. This, of course, raises the question of what role the quantum state is then going
to play? The purported insight of, in particular, QBism [2–7], neo-Copenhagen views [8–10], and the
relational interpretation [11–13] is that the state does not represent an objective feature of the world, but
should be regarded as a codification of observer-relative information. It is a mere consequence of this
suggestion that different observers may have to update their opinions in different ways (i.e., subjected
to different constraints). Hence, these approaches, at least prima facie, are less threatened by the dualism
of dynamical evolutions—but only insofar as they can make sense of both types of evolution as forms
of rational opinion updating.

It would be too big a task to focus on all these interpretations here. Instead, I would like to
highlight how this purported insight—the democratization of state ascriptions across observers—plays
out for the case of Rovelli’s relational view, and how this insight bears on the measurement problem.

To this end, I will briefly outline the main commitments of the relational view. Now, on one way
of reading Rovelli, his view is built around the following postulates:

• (Equivalence of physical systems) “All systems are equivalent: Nothing distinguishes a priori
macroscopic systems from quantum systems.” [11] (p. 4).

• (Relative facts postulate) Any system has a quantum state relative to other physical systems
(which we, depending on context, consider as the “observing” or “reference” systems).
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To avoid any potential confusion, it is important to note that the (Relative facts postulate) is only
compatible with some of Rovelli’s remarks, most prominently with his suggestion that “The core idea
is to read the theory [of quantum mechanics] as a theoretical account of the way distinct physical
systems affect each other when they interact (and not the way physical systems ‘are’).” [11] (Relative
facts postulate) is inconsistent, however, with many other remarks of his, namely when he asserts what
might be more aptly called the (Empiricist facts postulate):

• (Empiricist facts postulate) “A quantum description of the state of a system S exists only if some
system O (considered as an observer) is actually “describing” S, or, more precisely, has interacted
with S.” [11] (p. 6).

Clearly, the (Relative facts postulate) and the (Empiricist facts postulate) express different propositions.
I will further restrain attention to the version of the relational view that is based on the (Relative facts
postulate) (although most of Rovelli’s own ideas seem to rely on a commitment to the (Empiricist
facts postulate)). There are several reasons for this (some of which will surface in Section 6). For the
purposes of the current discussion, I would only like to note that the (Relative facts postulate) seems
the more natural choice if we indeed take the classical example from Sections 2–4 as our intuition
pump. The pertinent point is that the betting-states should be said to exist, relative to the different
observers A and B, even if these observers don’t know what these betting-states are (as would be
suggested by the (Empiricist facts postulate)). B’s best guess exists—in the same thin sense of “existence”
in which any mathematical entity can be said to exist—even if B doesn’t follow the calculation from
Section 3. Similarly, the betting-state for A after the next game is either 〈w + 1, d, l〉 or 〈w, d + 1, l〉
or 〈w, d, l + 1〉. Even though we don’t know which one it will be, we are sure that one of these is
correct. Hence, there should be no requirement that either A and B know what the correct betting-state
is (relative to either of them), in order to say that there is such a state.

To illustrate the workings of the (Relative facts postulate), think about how mathematics is used
in physics more broadly. Take, for instance, a classical particle that is dropped from a high altitude,
while being subjected to air resistance. The particle’s trajectory will, in certain models, be the solution
to a (non-analytically solvable) differential equation of motion. Now, to say that this mathematical
description is true because the interactions that occur (between the gravitational field, the particle, and
the air) are nature’s way of “solving this equation” is obviously nonsense (how could nature solve
the equation, if it is not analytically solvable?). The ones solving the equations are certainly going to
be the users of the theory. To say that this equation is “true” says something about the solution of the
equation, but not anything about the process by which this solution is obtained—although the equation
tells us something about the interaction, the interaction itself is irrelevant for what the equation says.
The same applies to probability assignments on the relational approach that is based on the (Relative
facts postulate). The process of calculating or acquiring information about relative states is as irrelevant,
for the claim that there are such relative states, as the process of finding solutions to the equations
of motion is for the claim that the equations of motion are true. Hence, the relational view that is
based on the (Relative facts postulate) manages to incorporate the key conceptual point (that states
are always relative to a reference system) in a way that is consistent with how mathematical models
are applied in physics more broadly. Secondly, it is also worth emphasizing that assuming there
to be facts about states relative to physical reference systems is not to say that unanimated objects
use probability ascriptions to inform their betting behavior (just like nature doesn’t solve differential
equations). Of course, the state ascriptions are made, remembered, and exploited, by the users of
the theory for their epistemic or decision-theoretic purposes (just as in the case of the particle being
dropped, the equations are solved, and exploited, by agents for their epistemic or decision-theoretic
purposes). The claim is, rather, that nature just ends up behaving in a way that is compatible with what
would have been predicted if anyone had actually ascribed, recorded, or calculated these states (just
like nature ends up behaving in a way that solves the equation of motion, independently of whether
anyone actually solves the equation, or has any determinate record of the initial conditions). Only
conscious agents rely on ascribing relative states, but consciousness itself is irrelevant for the claim
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that there are relative states. These remarks are intended to show that the relational view manages to
deflate the subject/object dichotomy of QBism or neo-Copenhagen approaches (since the observers,
on the relational approach, are thought of as purely physical systems). One requirement we certainly
must place on the reference systems, however, is that they are the kinds of things that can in principle
acquire information about a system, by virtue of interacting with it in the appropriate way (hence the
(Relative facts postulate) requires the reference systems to be physical systems).

Departing now from these assumptions, let’s return to the main thread that was left hanging
above: how does the democratization of quantum state ascriptions, in the way that is prescribed by the
(Relative facts postulate), bear on the quantum measurement problem? What is suggested by the remarks
so far, is that the problem of understanding dynamical evolution in relational quantum mechanics will
be solved by the modelling our answer on the question: How should observers update their relative state
ascriptions in the “best” way? Let me reemphasize that it is a mere consequence of this view that we
may be forced to admit that, just as in the classical case, different observers might have to update their
opinions in different ways. If this would turn out to be the case, this would underscore the (Relative
facts postulate).

Let’s use the example of the Wigner’s friend thought-experiment [28] to illustrate how this line of
thought will be developed (the presentation here follows Rovelli in Ref. [11] (pp. 2–4)). Suppose that
there are two physical reference systems—referred to as “observers”—O and P, as well as a further
system S. So, according to the relational view, S has a state relative to both O and P. The experimental
protocol is such that O is going to conduct a measurement on S, but P doesn’t participate in the process.
For concreteness, let S be a spin-half system, and let the measurement that O performs on S be a
spin measurement along the z-axis. The relative states after the preparation procedure but before O’s
measurement are given by:

ψ(S, O) = α |up〉 + β |down 〉

ψ(S + O, P) = α
∣∣∣up

⊗ ′′
ready′′+

〉
β
∣∣∣down

⊗ ′′
ready′′

〉
Here the obvious notational convention is that ψ(S + O, P) denotes the state of the joint system

S+O relative to P (the second term after the tensor product denotes the state of O). Note that because
ψ(S + O, P) is a product state O and P will initially agree on the relative state of the system S
(“tracing out” the observer O from ψ(S + O, P) yields the state ψ(S, P) which is the same as ψ(S, O)).

Next, O carries out her measurement on S in the spin-z basis. After this measurement, the state
of S relative to O will collapse, according to the collapse postulate, into one of the eigenstates “up” or
“down.” As was mentioned in the introduction, this can be justified by the proponent of the idea that
the quantum state is observer-dependent by appealing to Lüder’s rule [18]: oversimplifying slightly,
the projected state agrees, in its Born probability assignments to observables, with the canonical
generalization of the notion of conditional probability (conditioned on the observed outcome) to a
quantum mechanical setting (in which the objects, to which probabilities are assigned, are elements of
an ortho-modular lattice rather than a Boolean algebra). Therefore, relative to O, who has access to the
measurement outcome, it is rational to use, as the basis for future predictions, the collapsed state [20]
(pp. 171–175), [21], [22] (pp. 170–173).

If P, however, doesn’t interact with S+O, then the standard quantum mechanical prediction for
the state of S+O relative to P after O’s measurement will be the unitarily evolved state:

ψ(S + O, P) = α
∣∣∣up

⊗ ′′
up′′ + β

∣∣∣down
⊗ ′′

down′′

But now the question arises: can the proponents of observer-relative interpretations of the state
justify unitary evolution as a form rational probability updating? By now it will be apparent that the
suggestion is to view the theorem for optimal rational opinion change we have met in Section 3 as the
classical counterpart of unitary evolution in quantum mechanics, in just the same way in which Bayes’
theorem may be viewed as the classical counterpart of the projection postulate in quantum mechanics.

161



Entropy 2018, 20, 975

To substantiate this claim, I will use a result by Lisi [25], according to which P’s question is
presented in an identical form as the problem of optimized probability updating that was discussed in
Section 3. Lisi, who explicitly puts his approach in the context of Rovelli’s relational interpretation
(cf. [38]), presents his argument in the language of the path-integral formalism developed by
Feynman. [39] In this formalism, we consider all possible paths of a system between two fixed
points, each of which is described by a configuration q(t). We then ascribe a probability p[q] to each
path. Then, it can be shown that solving the following optimization problem is equivalent to the path
integral formulation of quantum mechanics:

• Optimization problem for the external observer in quantum mechanics. We require that the
entropy—H = − ∫

Dq p[q] log(p[q])- is minimal, subject to the constraints that (1) the
probabilities associated with each path sum up to 1:

∫
Dq p[q] = 1 (normalization), and (2) the

expectation value of the action functional is fixed to be S =
∫

Dq p[q] S[q].

Solving this problem (using the method of Lagrange multipliers), Lisi derives the form of the
wavefunction (φ = e−iS/�). From this, the Schrödinger equation, i.e., unitary time-evolution, follows
in the standard manner. By virtue of requiring the expectation value of the action functional to be
constant, Lisi refers to his “heuristic derivation” [25] (p. 1) as an attempt to reconstruct quantum
theory from a universal action reservoir. [25] (p. 2) Despite acknowledging that his derivation is at best
heuristic, he argues that “The main product of the work is the proposal of a new physical principle for
the foundation and interpretation of quantum mechanics: a universal background action.” [25] (p. 4).

Notice that this situation is completely analogous to the one we encountered in Sections 2 and 3!
There are two observers (the participating observers A and O vs. the non-participating observers B and P),
with access to different pieces of information (A and O know the outcome of the interaction, while B and
P only know that the interaction has taken place). These differently situated observers are expected to
update their information subject to different sets of conditions of optimality (relative to their respective
epistemic situations). As before, the non-participating observer wishes to maximize entropy; and in
both cases, quantum and classical, we end up with a dualism of dynamical evolutions.

From these assumptions and results, Rovelli’s main observation follows:

“Main observation: In quantum mechanics different observers may give different accounts
of the same sequence of events.” [11] (p. 4)

To summarize, the reason why they must do so is because: (1) of the presupposition that the
relative states do not correspond to, or represent, real states of affairs, but should be understood as
“encoding observer-dependent information about the system,” and (2) different observers should
update their information relative to different criteria of optimality and rationality.

The (Relative facts postulate) therefore provides a natural explanation for why there is more than
one possibility to update one’s opinion: different observers, depending on whether they know the
outcome of an interaction (O’s knowledge) or only that the interaction between O+S has taken place
(P’s knowledge), might have to update their beliefs in different ways in order to act the most rationally.
In that sense, the suggestion that the quantum state is a codification of observer-relative information
offers an elegant (dis-)solution to the measurement problem.

What we have seen so far, then, is that there is a suggestive and far-reaching analogy between our
classical example and quantum mechanics. The proponents of the view that states are observer-relative,
therefore, have the means to justify the view that quantum theory is a new form of (non-Boolean)
probability theory. However, it is not immediately obvious what the democratization of quantum
state ascriptions—as postulated by in the (Relative facts postulate)—implies from the point of view
of interpretation. On the one hand, there clearly is no logical requirement that any such story of
observer-dependent facts must be completed by some realist-type ontological story. But, of course, we
might still want to find such a story. At least ideally, a stout non-representationalist should also provide
an argument to the effect (not only that one needn’t give a realist story but) that one couldn’t give
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such a story. In Section 6, I will outline what I consider the strongest argument to establish precisely
this conclusion.

6. Quantum vs. Classical: The Differences

As always, understanding an analogy, to a great extent, consists in the understanding of how
it breaks down. While I have, so far, focused on the similarities between quantum and classical
probability models, I will now discuss their differences.

The cue for understanding how quantum and classical probabilities differ, derives from the
observation that in the classical case, it is natural to argue that A’s betting-state is privileged over
B’s. After all, A has, unlike B, actually observed the outcome of the game, while B’s state is only a
“best guess.” In the classical case, then, not all models are epistemically equal, in the sense that we
might say that “A knows more than B.” This subsequently allows us to assert that A’s descriptions, i.e.,
the betting-states relative to A, corresponds to something in reality, while B’s description has a merely
epistemic function. For this reason, we may, in the classical case, envelop the probabilistic model in a
straightforward ontological story of what the world is like.

So, we must investigate whether this situation also obtains in quantum mechanics: can either
of the two perspectives (O’s or P’s) be privileged over the other? This, certainly, would undermine
the (Relative facts postulate) from Section 5, which only has real bite if we regard both O’s and P’s
relative state ascriptions as equally valid codifications of what is rational to believe from their respective
perspectives. Section 6.1 argues why these privileging strategies are unsuccessful. Oversimplifying the
matter slightly, the crux of the issue will be that unlike in the classical case, measurement outcomes,
in quantum theory, can’t (in general) be said to be determinate. This, after all, is the basis on which
(in the classical case) epistemic privilege is handed out to the participating observer A. To establish
that quantum mechanics differs from classical theories in precisely this respect, I will rely on a recent
thought-experiment by Frauchiger and Renner [16] (many thanks to Richard Healey for bringing this
to my attention).

But even so, there is still a third possibility that we will need to consider, namely that neither
description is privileged, but that they are compatible with some underlying realism (a situation that
obtains, e.g., for velocity ascriptions in special relativity).

I will try to illustrate how one might come to believe that neither of these three options—(1) O’s
state is privileged, (2) P’s state is privileged, (3) O’s and P’s states are compatible with some underlying
ontology—obtains. If the overall argument is indeed deemed successful, we will have a strong rationale
for claiming that quantum theory can’t, in general, be supplemented with a realist story (the argument
here may be thought of as an elaboration and development of Rovelli’s discussion of these issues in
Ref. [11], in light of more recent technical results).

6.1. Privileging Strategies

Section 6.1.1 will discuss the suggestion that O’s state is privileged. Section 6.1.2 will discuss the
possibility that P’s state is privileged. Both will be rejected.

6.1.1. Treating O’s State as Privileged

The first stab we might take at privileging one observer would be to follow the classical analogy.
According to this, we might argue that in our Wigner’s friend example, only observer O’s description
(i.e., the collapsed state) is a true description of reality, while P’s state has only an epistemic, but no
directly representational function (i.e., that of quantifying P’s degree of ignorance with respect to the
true state, which is correctly represented by ψ(S, O) after collapse has occurred). To motivate this
proposal, one could argue, first, that there is an important asymmetry in the Wigner’s friend example:
O has, unlike P, actually received a measurement outcome, which mirrors our reasoning in the classical
case (in which A’s description was privileged). The problem with this proposal is that P can use her
state to make predictions for future measurement outcomes, and for all we know, these predictions
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are empirically adequate. Therefore, the experimental facts undermine this strategy. [11] (p. 5) Since I
don’t know of any view that rejects this argument, I feel confident to move on to the next possibility.
(The situation is more complex if either of the systems O or S is macroscopic. In this case, interference
effects are seldom observed. However, rather than being forced to assume that the ascription of a
superposition is false, P could rely on decoherence-theory to at least explain why no interference effects
are observed.).

6.1.2. Treating P’s State as Privileged

In a radical change of heart, we might abandon the idea that O’s state is privileged and move
towards the other extreme of proposing that P’s state is privileged. On such a view, collapse never
occurs: all there is, is the unitarily evolving state, as prescribed by the Schrödinger equation. Of course,
this also requires an argument. In this section, I will consider—and reject—two possibilities.

6.1.2.1. Argument from Interference

The argument that’s sometimes favored in the literature picks up the thread from Section 6.1.1.
Using the unitarily evolved state, P can predict interference effects that can be confirmed experimentally,
but that cannot be explained on the basis of the collapsed state. But while P’s unitarily evolved state
has an important role in guaranteeing the empirical adequacy of the theory, this may provide just
enough reason not to “under”privilege P’s state. It doesn’t follow that we can “over”privilege this state.

One way to see this, is by noting that the argument from interference to reality is not logically
valid. A counterargument can be constructed within the ontological models framework that was
briefly introduced in Section 2.2.3. It can be shown that, e.g., Spekkens’ toy-model, whose states must
unambiguously be interpreted as epistemic, can reproduce interference effects, at least under certain
constraints. [27] (pp. 3, 11) This provides the counterexample, which establishes that the inference
from interference to reality is not logically valid (in Spekkens’ words: “All this argument demonstrates
. . . is a lack of imagination concerning the interpretation of coherent superposition within an epistemic
view” [27] (p. 11); cf. Leifer in Ref. [15] (pp. 78–79) for a more elaborate version of the argument).

6.1.2.2. Argument from Scientific Realism: Explanatory Virtues

One might respond to this by pointing out that the utility of the ontological models framework
for foundational issues is controversial. Instead of cosmetically altering the formalism (for example,
by adding an extra layer of ontological models) we should take the mathematical structures provided
by the formalism itself seriously—i.e., literally. In that sense, the argument for privileging P’s state
could derive from the scientific realism debate.

This line of thought can be developed as follows. First, observe that insofar as the collapse
postulate (as Brown [23] (p. 17) had put it) appears mysterious, we might reject it as an ad hoc
modification of the theory, and this is unacceptable from the point of view of a realist interpretation of
science. Furthermore, although the argument from interference to reality is not logically valid, it might
still be the case that such an inference is plausible; after all, one might reason, if the collapse postulate is
not “really” part of the quantum formalism, then the fact that P’s state expresses some actual states of
affairs is the best explanation for why quantum theory is so empirically successful. Hence, observer
O’s collapsed state should be underprivileged, and observer P’s unitarily evolved state should be
taken as the true description of the world.

This line of reasoning is endorsed by proponents of Everett’s many-worlds interpretation [40,41],
which has been argued to be the only strategy that reifies scientific realism and quantum theory [41]
(pp. 35–39). In this section, I will outline how the case against this line of reasoning might unfold
(thus, I use Everett’s interpretation as a paradigmatic example of a realist interpretation, to illustrate
what problems may arise in the context of such interpretations).
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Let me, first, expand on the core idea behind the Everett interpretation. To fix the attention, let’s
return to the Wigner’s friend example. According to Everettian views, the final state of the entire
multiverse, before P’s interaction with S+O but after O’s interaction with S will be given by:

ψ(S + O + P) = α
∣∣∣up

⊗
up

⊗
ready

〉
+ β

∣∣∣down
⊗

down
⊗

ready
〉

Proponents of the Everett interpretation then argue that after O’s measurement, the world has
split into two distinct branches, which are to be referred to as “worlds”—one in which O has received
outcome up and one in which O’s trans-worldly counterpart has received outcome down. According to
Wallace’s [41] influential construal of the Everett interpretation, the language of “worlds” is justified
because two further conditions are satisfied:

• (Non-interference) The different terms in the superposition are “causally shielded” from one another.
They are eigenvectors of some observable (thus they are necessarily orthogonal), and hence no
interference effects can be observed if we measure in that basis. [41] (pp. 60–63).

• (Functional instantiation of properties) Each of the non-interfering terms of the superposition
represent (= is functionally/structurally equivalent to) a world that consists of objects which
instantiate (at least some) determinate properties (such as a particle having the determinate
properties of being either “spin-up” or “spin down”). (ibid.)

The merits of this proposal are quite attractive. By equipping the formalism with a
straightforwardly realist interpretation (in terms of real physical objects that instantiate at least
some determinate properties) we gain the best possible understanding of what the world is really
like, if quantum mechanics were literally true. Since these explanatory benefits are only accessible to
the realist, the argument in favor of the reality of P’s state derives from the scientific realism debate.

Of course, many-worlds interpretations are not free of problems. The two problems most widely
recognized in the literature are the so-called preferred basis problem and the probability problem. Both have
been discussed extensively in the literature and there is no need to repeat these arguments here. [41–45]
Instead, I would like to very briefly mention one problem that can be generated due to the recent no-go
result by Frauchiger and Renner. [26]

We begin by observing that the many-worlds approach still needs to make sense of the usage
of the Born rule in experimental practice. One prominent strategy proceeds by giving the Born rule
an epistemic function [41,43–45], namely in the following sense. A proponent of the many-worlds
approach believes that only unitary evolution tracks real changes in the world. Thus, in our Wigner’s
friend example, there are (after O’s measurement on S) two copies of P. The state of the multiverse
ψ(S + O + P) represents two worlds, each of which contains a still uncertain observer P in the “ready”
state. In the case in which P happens to be a conscious agent, therefore, a question arises for P: which
of the two versions of herself is she? This is referred to as “self-locating uncertainty” that arises in
the many-worlds interpretation. The proposal then is that the Born rule provides the quantitative
measure for P’s degree of uncertainty: P can use this quantitative measure for her decision-theoretic
purposes. [41,43–45].

Notice, however, that P’s question only makes sense relative to the assumption that each version
of O has received a definite outcome during her measurement on S. Here is why: there is a trivial sense
in which it is silly to ask “Where am I?” In that trivial sense, the answer is always: “I am here . . . in my
world!” But there is sense in which this question is not trivial, namely if it is understood are referring
to external circumstances: “Which of the different physically possible worlds is my world?” And this
only makes sense if we have an account of what these different worlds are like. Only if there really are
distinguishable worlds (in terms of their properties such as: there is one world in which O has received
outcome “up”, and one in which O has received “down”) does it make sense for either version of P to
ask “In which of the two worlds am I?” Prima facie, this doesn’t sound like a problem; after all, this was
precisely the reason to introduce (Functional instantiation of properties) in the first place (i.e., to justify
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talk about “worlds” by virtue of the idea that the different terms in the superposition could be said to
represent objects that instantiate at least some determinate properties).

But now we phrase an attack against this as follows. Due to a recent no-go theorem by Frauchiger
& Renner [26], who develop on Hardy’s paradox [46,47], there are good reasons to believe that quantum
mechanics is inconsistent with the assumption that, in general, each term in a superposition can be
said to represent a world with determinate properties. The authors discuss an extended version of the
Wigner’s friend situation. In this extended version, there are two “friends” and two “external observers.”
They then set out to prove that no theory that is empirically equivalent to quantum mechanics can
be both (1) self-consistent and (2) be committed to the claim that each measurement has a unique,
determinate outcome. The details of their argument would distract from the current discussion
(Appendix C gives sufficiently elaborate version that contains the relevant details; for criticisms of
their argument, see [48–50]). The conceptual point is that this result provides a reason to believe that
the Everettian commitment to (Functional instantiation of properties) might be inconsistent with quantum
mechanics, at least in certain experimental set-ups. (In the preprint, Frauchiger and Renner suggested
that their argument lends support to the Everettian view. In the published version, however, they have
expressed doubts about whether the Everett interpretation is consistent with their no-go theorem, at
least if branching is supposed to be objective. [26] (p. 10) The argument here (and in Appendix C)
should strengthen these doubts. Cf. [33] (p. 7)).

From the point of view of interpretation, the consequences are twofold. For one thing, this shows
that P cannot, in general, discriminate between the two worlds (because she cannot tell us what the
different worlds are like). Therefore, P also cannot meaningfully ask questions about self-locating
uncertainty (she can’t question in which of the branches she has ended up in, if she can’t tell us what
these branches are like). Hence, we might ask the Everettian: if (Functional instantiation of properties)
is indeed inconsistent with quantum mechanics, then, on a decision-theoretic interpretation of the
Born rule, this rule aids users to make decisions... about what?! But clearly, this doesn’t only challenge
the decision-theoretic interpretation of the Born rule. It also undercuts the Everettian strategy in a
deeper sense: if the motivation for the many-worlds interpretation was that it provides us with an
understanding—in the peculiarly realist sense of providing an account of what the world would have to be
like if the theory were literally true—that motivation has now been lost! And with it the argument we are
currently considering—that P’s state should be regarded as epistemically privileged because it provides
us with such an understanding—disappears as well.

This concludes the discussion of the potential privileging strategies. If all these strategies are
unsuccessful, the two descriptions—i.e., the states relative to O and P—should be seen as equal.
This breaks the analogy to the classical case.

6.2. (Hidden) Commonalities?

There is one last case that we still need to consider: what if neither of the two states—the one
relative to O and the one relative to P—are privileged, but that they are not actually different descriptions
of what the world is like, in the sense that there is, really, some underlying commonality? In this most
general way of putting the problem, this question is unanswerable. But we can identify two important
aspects, which will be discussed in turn.

6.2.1. The Quantum State Is Not Epistemic!

The first brings us back to the ontological models framework that was introduced in Section 2.2.3:
what if two different quantum states—i.e., those relative to O and P—are interpreted as assigning
a non-zero probability to some underlying ontic state (from an ontic state-space that might be part
of some hidden-variable framework)? Couldn’t it be the case that two different quantum states
each assign a non-zero probability to one and the same ontic state? On such a scenario, the two
descriptions would certainly be compatible with a realist account, although neither description would
be a “direct” representation of what the world is like. This possibility, however, is ruled out by the
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PBR theorem [14]—in the ontological models framework, each ontic state is compatible with only one
quantum state! Thus, different quantum state ascriptions, if both are valid, are incompatible with
the assumption that the world is in some determinate state. At the same time, Section 2.2.3 already
illustrated how one may consistently argue that a state is “ontic” (in this peculiar sense of being
“non-epistemic”) while shying away from attributing any representational function to such a state.
(There is an important comment to be made here about the relationship between this argument and
the distinction between different versions of relational quantum mechanics, which are based on what
Section 5 referred to as the (Relative facts postulate) and the (Empiricist facts postulate). On the latter,
though perhaps not on the former, the possibility of ascribing a state to oneself is ruled out [11] (p. 15).
Thus, there is a trivial sense in which, on the empiricist version, O’s and P’s states are not compatible:
both O’s and P’s states are about different systems. Once we move to the version of relational quantum
mechanics based on the (Relative facts postulate), state ascriptions to oneself may become possible. Thus,
it is this version of the relational view that potentially needs to exploit the PBR theorem to establish
that relational quantum states are incompatible with the assumption of underlying realism.).

6.2.2. Measurement Outcomes Are Not Objective!

There is yet another sense in which the two state ascriptions, if neither is privileged, may be
compatible with an ontology, namely an ontology of measurement outcomes. After all, even though we
may have rejected a realist account of how measurement outcomes are brought about, we might still
believe in the existence of these outcomes. Such a view is indeed part and parcel of Rovelli’s own
thinking about these matters. Although his view is built around the idea that relative state ascriptions
vary with the reference systems, he nevertheless maintains that quantum theory is a theory about
(in an ontological sense) measurement outcomes: “in [relational quantum mechanics], physical reality
is taken to be formed by the individual quantum events (facts) through which interacting systems
(objects) affect one another. Quantum events are therefore assumed to exist only in interactions and
(this is the central point) the character of each quantum event is only relative to the system involved in
the interaction.” [51] (p. 2).

This claim is grounded in the alleged objectivity of measurement outcomes, which relates
to Deutsch’s influential discussion of the Wigner’s friend thought experiment. [52] In the simple
Wigner’s friend example, one can show that although the character of the event is observer-relative
(as O and P ascribe different relative states), the fact that they occurred is not [52], [51] (pp. 7–9).
Hence, measurement outcomes can, in the Wigner’s friend example, be thought of as objective, i.e.,
observer-independent. The problem with this, however, is that the technical aspects on which these
ideas are founded are artefacts of certain specific cases, like the simple Wigner’s friend example
discussed above. In a more general context—like in the extended Wigner’s friend experiment
discussed by Frauchiger and Renner [26]—this conclusion is no longer true (again, the reader might
wish to consult Appendix C). Therefore, even the thin ontology of measurement outcomes, can’t
consistently be postulated (at least not in general) as long as quantum theory remains our most
successful empirical theory.

Finally, we have exhausted the space of possibilities: the above argument illustrates why the
(classically expected) dualism of dynamical evolutions in quantum theory can’t be ramified with
our classical intuitions. Unlike in the classical case, in quantum mechanics the different descriptions,
offered by different observers O and P, can’t be endowed with a realist interpretation.

7. Conclusions: Representation Lost

The conclusion of this paper did not follow from any philosophical ideology. On the contrary,
it was based on a conceptual analysis of technical results—both in formal epistemology, but also in
quantum foundational research. This argument had three interdependent components: (1) Different
observers will, because of the different pieces of information available to them, ascribe different
quantum states to one and the same system. (2) In general, we cannot supplement the observer-relative
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quantum states with some kind of mechanical/substance-type story of what the world is like.
(3) To make these radical-sounding claims more easily digestible, I presented a simple example, which
also instantiated what I believe to be the most promising strategy to make sense of quantum theory.
The toy-example, specifically, illustrates that operating within a framework of non-representational
states is simply an artefact of certain modelling practices (and does not entail commitment to either
skepticism or solipsism).

Of course, the usage of non-scientific examples or toy-models for foundational issues might be
contested. Let me therefore conclude with some brief remarks about what I take to be the importance
of such simple-minded examples as the one that was discussed above. The reason why it is hard to
make sense of quantum theory is because the theory invites a battle of intuitions: between what science
could not possibly be doing, but nevertheless seems to be doing . . . In our strive for clarity, there is
only so much we can do. We might, for one, inquire into the mathematical architecture of the theory
(by arriving, for example, at such rightly celebrated results as the PBR theorem). But we can also aim
to provide examples and counterexamples, which allows us to better separate what is truly necessary
from what is merely plausible. The football example aims to do just this. Even if it isn’t anything more
than a crutch for our intuitions, it illustrates where these intuitions come from. And, at the very least,
such examples can provide a proof of concept that a certain set of beliefs can consistently be upheld,
even in light of strong results or intuitions that might suggest the opposite.

Funding: This work was supported by the Austrian Science Fund (FWF) W 1228-G18.

Acknowledgments: I would like to thank my supervisors, Markus Aspelmeyer and Martin Kusch, for their
continuous support and (always constructive) feedback. Furthermore, I am grateful to Richard Healey for his
insightful discussion of the Frauchiger & Renner no-go theorem (mistakes are mine). Finally, I would like to thank
Carlo Rovelli for encouraging me to think about the ideas discussed in this paper.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A Proofs of the Theorems from Section 3

I will provide a sketch of the proofs for the three theorems that were mentioned in Section 3. For a
complete discussion of the proofs, see Hughes and van Fraassen in Ref. [24], and van Fraassen in
Ref. [20] (pp. 68–73).

In the following, let x = 〈x1, . . . , xn〉 denote a betting-state.

Theorem. A transformation U is a symmetry if and only if there exist positive real numbers u1, . . . , un such
that U(x)〈 = u1 x1, . . . , un xn〉. [24] (p. 857), [20] (pp. 71–73).

Proof. If there exist positive real numbers u1, . . . , un such that for all x, U(x) = 〈u1 x1, . . . , un xn〉,
then clearly U is a symmetry. To prove the converse, take the unit betting-state 1, whose components
are all equal to 1. Let U

(
1
)
= 〈u1, . . . , un〉. Since U is a symmetry: U(x)/U

(
1
)
= x/1 = x. Let

U(x) = x′. Then we may write:
〈
x′1/u1, . . . , x′n/un

〉
= 〈x1, . . . , xn〉. Since two betting-states are equal

if and only if their components are equal, and since the components of betting-states must be positive
real, the result follows. �

Theorem. If two betting-states x(0) and x(t) are related via a uniform motion x(t) = U(t)(x(0)) =

〈u1(t) x1(0), . . . , un(t) xn(0)〉, then there exist positive real numbers k1, . . . , kn such that ui(t) = ekit ([24]
(p. 858), [20] (pp. 72–73)).

Proof. From before, we know that U(t)(x(0)) = 〈u1(t) x1(0), . . . , un(t) xn(0)〉, where the ui’s are
positive real. Since U is a uniform motion, it follows that ui(t1 + t2) = ui(t1)ui(t2). Hence, we may
define a function fi(t) = ln(ui(t)), which is additive in t. From elementary calculus, we know that
therefore fi(t) = kit + C. Since ui(0) = 1, it follows that C = 0, which proves the theorem. �

168



Entropy 2018, 20, 975

Theorem. There exist constants v & w such that the ui(t) ’s are given by ui(t) = evt ewsit.

Proof. We prove this by using the method of Lagrange multipliers. [24] (p. 861) The Lagrangian
is given by: L = ∑ kixi(t) − w(∑ sixi(t)− r(t)) − v(∑ xi(t)− n(t)). Here, w and v are Lagrange
multipliers. When we derive this with respect to component xi and set the result equal to 0, we get:
ki − wsi − v = 0. Hence the result follows. The two Lagrange multiplies are fixed by the conditions
that (1) (∑ ewsitxi(0)) evt = n(t) and (2) (∑ si ewsitxi(0)) evt = r(t) . �

Appendix B An Example for the Theorem in Section 3

In this appendix, I will try to illustrate why the theorem from Section 3 produces reasonable
results. This investigation is spurred by the worry that since the components of the betting-states
evolve exponentially, this implies (among other things) the rather counterintuitive result that the total
number of games played n(t) evolves as a sum of exponential functions. To see why this result is less
counterintuitive, and less threatening, than it might first appear to be, it will be best to just consider a
concrete example.

So, let’s assume the following boundary conditions: (1) At t = 0, the betting-state of a team
relative to B is assumed to be 〈3, 3, 2〉. Hence, the team has played 8 games. If we are assuming the
standard choice of number-state function s = 〈3, 1, 0〉 this means that the team has collected 12 points
at the initial time. (2) Let the boundary condition for the final time t = 1 month be that (a) the team
now has played 15 games in total, and (b) that it has picked up 22 points overall.

Using these boundary conditions, it is straightforward to calculate the values of the Lagrange
multipliers to be: v ≈ 0.66167 and w ≈ −0.02229. Relying now on the theorem from Section 3,
the final betting-state relative to B will therefore be given as 〈5.44, 5.69, 3.88〉. Of course, it has to
be admitted that this is not particularly useful—it is left open whether B should guess that the team
is really in the betting-state 〈6, 4, 5〉 or in the betting-state 〈5, 7, 3〉 (which were the only possible
betting-states to begin with; the remaining two betting-states that the final number-state ascription
declares possible—〈7, 1, 7〉 and 〈4, 10, 1〉—are ruled out by the initial conditions, since the team
cannot have fewer draws or losses than it had started out with).

However, to probe whether result is at least reasonable, we can use it to illustrate what the overall
evolution of n(t)—the total number of games as a function of time—looks like. This function is just the
sum of the components of the betting-state, i.e., it is a sum of exponentially evolving functions in time.
n(t) is plotted in Figure A1 for 0 < t < 1:

Figure A1. Total number of games as a function of time.
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Hence, the evolution of the total number of games, for the time-frame in question, is very close to
being linear. This therefore illustrates that the counterintuitive result—that n(t) is a sum of exponential
functions—will not be threatening in concrete examples. Therefore, the calculations from Section 3
produce reasonable results.

Appendix C The Frauchiger and Renner 2016 Thought Experiment

The thought-experiment constructed by Frauchiger and Renner [26] consists in an extended
version of Wigner’s friend example. There are two friends (F1 & F2), Wigner (W) and his assistant (A).
F1 prepares a quantum coin at t0 and depending on the outcome of her measurement (heads or tails)
at t1, she sends a spin-1/2 particle to the second friend F2. This spin particle is going to be prepared
in either the z+ or the x+ direction, depending on whether F1 has observed outcome heads or tails
respectively. F2 then conducts a measurement in the z-basis at t2 on the particle she has received
from F1. At t3 the assistant A conducts a measurement on F1 in the basis ok/fail (which is an equally
weighted superposition of the heads/tails basis—with a minus and a plus sign respectively—on the
Hilbert space of F1). At t4 Wigner conducts a measurement in the ok/fail basis on F2. The experiment
is repeated many times, until Wigner and A have both received the outcome ok in their respective
measurements on F2 and F1.

We then consider the final state of the entire system, which can be written in five equivalent ways,
given the initial state of the quantum coin (unnecessary normalizing factors and factors in the tensor
product have been omitted):

(A) : ψ ∼ (tailsF1
⊗

upF2 + tailsF1
⊗

downF2 + headsF1
⊗

downF2)

(B) : ψ ∼ (
√

2 failF1
⊗

downF2 + tailsF1
⊗

upF2)

(C) : ψ ∼ (tailsF1
⊗

failA +
1√
2

headsF1
⊗

(okA + failA))

(D) : ψ ∼ (

(
1√
2
− 1

)
okF1

⊗
okA +

(
1√
2
+ 1

)
failF1

⊗
failA)

(E) : ψ ∼ (3 failW
⊗

failA + failW
⊗

okA + okW
⊗

failA + okW
⊗

okA)

From these results, we will now prove the claim from Section 6.1.2.2 that (Functional instantiation
of properties) is inconsistent with quantum mechanics. From an Everettian standpoint, we assume that
each term in the superpositions constitutes a world in which the objects instantiate the properties
corresponding to the eigenvalue of the observable of which they are eigenvectors. With this assumption,
we can generate the contradiction:

• By (B) and (Functional instantiation of properties) W concludes that, in one world, there is a version
of F2 whose system instantiates spin-up. In another world, the particle that was measured
by F2 instantiates spin-down. If W now wonders which version of F2 he shares a world with
(what Section 6.1.2 called self-locating uncertainty), he will reason as follows.

• (Case 1) If the version of W (who is uncertain) is in the world in which F2’s system instantiates
spin-up, then by (A) this is also the same world in which F1’s coin instantiates tails. But then,
by (C), this is also a world in which A instantiates property fail.

• (Case 2) If the version of W (who is uncertain) is in the world in which F2’s system instantiates
spin-down, then by (B) this is also a world in which F1 instantiates outcome fail. But then by (D)
this is also a world in which A instantiates property fail.

Since, in all possible worlds, W concludes that his assistant A instantiates property fail,
the conjunction of quantum mechanics and (Functional instantiation of properties) predicts that whatever
world W is uncertain to have ended up in, neither of those could be a world in which the experiment
has stopped. But by (E), okW

⊗
okA has a non-zero probability. Therefore, quantum mechanics implies
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that there is a non-zero probability that the experiment will stop. Therefore, (Functional instantiation of
properties) is inconsistent with quantum mechanics.
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Abstract: The concept of a “system” is foundational to physics, but the question of how
observers identify systems is seldom addressed. Classical thermodynamics restricts observers to
finite, finite-resolution observations with which to identify the systems on which “pointer state”
measurements are to be made. It is shown that system identification is at best approximate, even in a
finite world, and that violations of the Leggett–Garg and Bell/CHSH (Clauser-Horne-Shimony-Holt)
inequalities emerge naturally as requirements for successful system identification.

Keywords: Bell/CHSH inequality; coarse-graining; decoherence; Leggett–Garg inequality;
LOCC protocol; observable; predictability sieve; system identification; thermodynamics

1. Introduction

The idea that all finite observers are characterized by uncertainty and must pay, in energetic
currency, to reduce their uncertainty was introduced into classical physics by Boltzmann [1].
Shannon [2] showed that information obtained from observations can be naturally quantized into
answers to yes/no questions and hence measured in bits. Landauer [3,4] then showed that such
information has been “obtained” and is available for future use only after it has been irreversibly
recorded on some physical medium. The resulting classical theory of observation—the exchange of
energy for information—states that, for any finite, physically implemented observer O, each bit
of irreversibly recorded uncertainty reduction (equivalently, each bit of information gain) costs
c(O)kBT, where kB is Boltzmann’s constant, T is temperature, and c(O) ≥ ln2, is a measure of O’s
information-aquisition efficiency that can for simplicity be considered constant. As all classical
observations in practice take place at T > 0, this energetic cost is always positive. This classical theory
of observation has two familiar practical consequences: observations are limited to finite resolution
and records of their outcomes to finite bit strings, and only some finite number of such finite-resolution
observations can be made in any finite time.

The consequences of this classical, thermodynamic limitation to finite, finite-resolution
observations have been investigated in both classical and quantum settings, particularly as they
bear on issues of noise (i.e., uncontrolled degrees of freedom) and measurement uncertainty.
It has been known since the pioneering work of Spekkens and colleagues [5,6], for example,
that classical statistical mechanics reproduces wave-packet quantum theory in the special case in
which wave packets are Gaussian. Jennings and Leifer [7] review this and other work, showing that
classical statistical mechanics reproduces “quantum” features and behavior including the uncertainty
principle, non-commutativity of measurements, state teleportation and the no-cloning theorem
when a finite-resource restriction limiting the number and resolution of measurements is imposed.
Krechmer [8] shows that “quantum” measurement disturbance and non-commutativity of observables
result whenever two measurement devices are calibrated using the same physical standard.
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My aim here is to investigate a different set of consequences of the classical thermodynamic
restriction to finite energy resources and hence to finite, finite-resolution observations: its consequences
for an observer’s ability to identify the physical system being observed. The question of system
identification has largely been neglected by theoretical physics, although it is of obvious practical
relevance to experimental physics. Discussions of quantum measurement, for example, standardly
examine the interaction between an observer and a fixed, well-defined system that is typically
stipulated a priori by stipulating its Hilbert space (for reviews, see [9,10]). System identification
has received more attention from engineers and computer scientists. Moore, for example,
proved in 1956 that finite, finite-resolution observations cannot fully determine the state space of
an otherwise-uncharacterized physical system; in particular, they cannot determine its state-space
dimension d ([11] Theorem 2; see [12,13] for discussion). This result underlies the proven unsolvability
of the halting problem in classical computer science [14]. Both of these results, however, rely on
limits in which numbers of degrees of freedom become arbitrarily large, and neither considers the
quantitative cost of system identification.

Here I characterize the thermodynamic cost of system identification in a general, operational
framework covering both classical and quantum systems and investigate some of its consequences.
The next section characterizes the system identification problem operationally as a search problem
constrained by a finite-resource restriction. The consequences of this restriction for system identification
and characterization are then discussed (Section 3), and the finite-resource restriction is shown to
forbid the arbitrary refinement of state spaces of observed systems to assumed “objective” or “ontic”
state spaces even when these are (Section 4). I then focus on two types of system-identification
problems that regularly arise in practice: the identification of a single system at multiple, significantly
separated times (Section 5) and the identification of a single system by multiple, spacelike-separated
observers (Section 6). I show in each case that classical correlations of measurement outcomes are
insufficient, in principle, for reliable system identification. A similar point regarding the second class
of problems has been made previously by Grinbaum [15]. Violations of Leggett–Garg [16] and Bell [17]
inequalities, respectively, thus arise naturally as requirements for reliable system identification in
these settings. These results extend and elaborate on previous work of a more systems-theoretic
nature [12,13,18,19]. The general theory of observation as a physical process, including the central role
of the observer’s memory as an encoding of observational outcomes, has also recently been discussed
by Kupervasser [20].

2. Formalizing System Identification as a Search Process

Characterizing the thermodynamic cost of system identification requires redescribing observation
in a way that makes the process of system identification explicit. Consider the standard, classical
“picture” of observation shown in Figure 1. Here the “observer” is a physical system that interacts with
a “system of interest” to obtain observational outcomes. Both observer and system are embedded in a
surrounding environment, which can be regarded as “everything else” in the universe. This classical
picture of observation is carried over unchanged into quantum theory, where the “observer” now
terminates the von Neumann chain [21] by recording their outcome(s) in a thermodynamically
irreversible way. It provides, by including the surrounding environment, the setting for environmental
decoherence [22–28]. Tegmark has emphasized that the observer O in this setting comprises only
the degrees of freedom that record observational outcomes, while the system S comprises only the
“pointer” degrees of freedom that specify these outcomes; all other degrees of freedom are considered
part of the “environment” E and traced over [29]. Tracing out the environment assures that information
about the state of S reaches O only through the channel defined by the O − S interaction, specified
in Figure 1b by the Hamiltonian HOS. The alternative channel via the environment E, given by the
Hamiltonian HSE + HE + HOE, contributes only classical noise. In the alternative “environment as
witness” formulation of decoherence developed by Zurek and colleagues [30–33], O is assumed to
be located sufficiently far from S that HOS ∼ 0. In this formulation, all information about S obtained
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by O flows through the channel HSE + HE + HOE. The state |E〉 of the environment is regarded as
“encoding” this information, with the encoding of information about the positions of macroscopic
objects by the ambient photon field as the canonical example.

Figure 1. (a) A classical observer interacts with a system of interest; both are embedded in a surrounding
environment. (b) Interactions between observer (O), system of interest (S) and environment (E)
enabling environmental decoherence. The Hamiltonian HOS transfers outcome information from S to
O; HSE, and HOE decohere S and O respectively. Adapted from Figure 1 in ref. [29].

This conventional conception of observation, even when made precise using the formalism of
decoherence, tells us nothing about how the observer identifies the system of interest. The system
S is given a priori in Figure 1: the interactions HOS, HOE, HES, HS, and HE are all assumed to be
given and well-defined. To include system identification in the picture, it is useful to describe it in
operational terms. Suppose I want Alice to report the observational outcome registered by a particular
macroscopic apparatus located in a laboratory filled with many other systems. How much information
do I need to give Alice to assure that she reports the outcome from the right apparatus? In this scenario,
the finite-resource restriction on Alice is clear: I can give Alice at most a finite description of the
apparatus that I want her to report an outcome from. I could instruct her, for example, to locate a
black laptop labeled “data 3,” running linux, with a counter window open, and to report the outcome
displayed in the counter window. I could add that “data 3” is connected to an ADC in the third rack
from the right wall. Alice must then enter the laboratory and look for, using observational means at
her disposal, an apparatus matching my finite description. The informational basis of this operational
scenario can be made precise as follows:

Finite-resource restriction: No observer can employ more that a finite number of
finite-resolution observational outcomes to identify a system of interest.

Classically, an observer subject to the finite-resource restriction has only a finite number of
finite-resolution criteria for system identification; in quantum theory, this corresponds to a finite
number of discrete-valued observables. Such criteria or observables can be considered to be binary
without loss of generality.

It is obviously circular to assume that, when Alice enters the laboratory, she can identify the
apparatus satisfying her finite criteria (or finite observables) without having to look at anything
else: this is equivalent to assuming that the apparatus is given a priori and hence does not need to
be identified. To identify the apparatus S, Alice must distinguish it, using her criteria/observables,
from everything else in the laboratory, i.e., from E. Alice must, in other words, employ her
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criteria/observables to search the combined system W = SE until she finds S. Hence, she is in
the position illustrated in Figure 2b, not that of Figure 2a as is standardly assumed.

Figure 2. (a) An observer equipped with an observable (e.g., a meter reading) interacts with a pre-given
system S. Adapted from Figure 1 in ref. [34]. (b) An observer with finite resources must look for the
system of interest by probing the “world” W in which it is embedded.

To make this idea of searching W for S precise, suppose as above that an observer O and world
W are given as collections of physical degrees of freedom, and assume for the present that they are
quantum systems characterized by Hilbert spaces HO and HW , respectively. Suppose further that
O can perform n distinct (but not necessarily orthogonal) binary-outcome measurements Mi on W,
that O’s thermodynamic cost per bit of recorded outcome is c(O)kBT as above, that deploying the Mi
has no other energetic consequences, and that O’s interaction with W consists entirely of deploying
the Mi. In this case, each of the Mi can be regarded as extracting one bit of information from W and
exhausting c(O)kBT of waste heat into W. The operations Mi can be regarded informally as “questions
to Nature” such as “is what I see before me a laptop?” or “is it black?” and formally as Hermitian
operators on HW in the usual way. No assumption need be made at this point about whether the Mi
commute; this question is addressed in Section 3. For simplicity, suppose O deploys the Mi one at
a time in the fixed order i = 1, ..., n, that each of the Mi is deployed for a fixed time Δt(O), the time
required for O to record one bit, and that O makes m cycles of measurements. The total elapsed time
during which O makes measurements on W is then nmΔt(O). Taking the O −W interaction to be given
by a Hamiltonian operator HOW on HO ⊗HW , the total action is

∫ nmΔt(O)

t=0
dt HOW(t) = nmΔt(O)c(O)kBT. (1)

To make HOW(t) explicit in the simplest case of sequential, equal-duration measurements, let Π(i,m)(t)
be the rectangular Pi function with offset i, 0 ≤ i ≤ n − 1, duty cycle n, and the number of cycles m, i.e.,

Π(i,m)(t) =
m−1

∑
j=0

Π(t − (nj + i + 1/2)Δt(O)) (2)

where

Π(t) =

⎧⎪⎨⎪⎩
0 if |t| > 1/2

1/2 if |t| = 1/2
1 if |t| < 1/2

.
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This Π(i,m)(t) is a sequence, starting at t = i, of m unit-height rectangular pulses with width Δt(O) and
separation nΔt(O) as shown in Figure 3. In this case, we can write, for 0 ≤ t ≤ nmΔt(O),

HOW(t) =
n−1

∑
i=0

Π(i,m)(t)Mi, (3)

with the heat dissipated by the action of the kth measurement operator during the first j ≤ m cycles of
measurement given by

(1/Δt(O))
∫ njΔt(O)

t=0
dt Π(k,j)(t)Mk = jc(O)kBT. (4)

If the requirement of a fixed sequence of equal-duration measurements is now dropped and O is
simply assumed to make N total observations, Equation (3) can be generalized, for 0 ≤ t ≤ NΔt(O), to

HOW(t) =
n

∑
i=1

αi(t)Mi, (5)

subject to the constraints that, at all t,

n

∑
i=1

αi(t) = 1, (6)

and, for any positive integer k < N,

(1/Δt(O))
n

∑
i=1

∫ (k+1)Δt(O)

t=kΔt(O)
dt αi(t)Mi = c(O)kBT. (7)

Here the function αi(t) is naturally interpreted as the probability of deploying the measurement Mi
at t. The sequence of outcomes obtained will depend on the αi(t); however, the incremental heat
dissipation, expressed in Equation (7), of the measurements will not.

Figure 3. The first three components of Π(i,m)(t) of Equation (2) in the first and nth cycles of
deploying the Mi.

With Δt(O) finite, t can be treated as having only integer values kΔt(O) and hence regarded as
a counter. This counter must be internal to O, as otherwise the values of t would be observational
outcomes obtained from an external clock by some subset of the Mi and the above representation
would be circular. The record of O’s N observations can, in this case, be represented as Table 1 indexed
by integer values of t:
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Table 1. Sample record of O’s observational outcomes from W, starting at t = 1.

Step t Measure Mi, i ≤ n Outcome xi ∈ {0, 1}
1 1 1
2 2 0
3 2 1
... ... ...
N 4 0

A table of this form contains all of the information about W available to O following N
observations. The energetic cost of these data to O is Nc(O)kBT, which is dissipated into W as waste
heat. The counter t can, alternatively, be regarded as counting sets of k simultaneously measurable
outcomes obtained “in parallel” at a cost of kc(O)kBT; however, here we will maintain the convention
that outcomes are obtained sequentially at discrete time steps.

As noted above, finite observations at finite resolution cannot fully determine the state space
of an otherwise-uncharacterized system [11]. The only information about W available to O are the
outcomes x1...xN of N finite-resolution observations; hence, O cannot determine the state space
of W, i.e., the assumed Hilbert space HW or even its dimension dW , and ipso facto can specify the
measurements Mi being performed on W only operationally. The complete set of possible outcomes
of the Mi are, however, fully specified: each action with Mi produces an outcome xi ∈ {0, 1}.
Associating each of these xi with a unit basis vector�i constructs a binary space W with dimension
dW ≤ n (equality if the Mi are orthogonal and all are employed at least once), which we can call the
apparent or observable state space of W for O. Each “observation” by O can, therefore, be thought of
not as an action with some Mi on W but as an operation on W with a binary-valued POVM Ei that
selects the same outcome xi as Mi. The Hilbert spaces standardly employed in quantum theory are
constructed in this way using possible outcomes as basis vectors and are hence “apparent” in this
sense. The operators Mi are, similarly, standardly defined in terms of the outcomes they produce,
i.e., as operators on such apparent state spaces; in this case, the relation Ei = M†

i Mi can be viewed as
operationally defining Mi. This standard practice justifies our starting assumption that O and W can be
treated as quantum systems. The same formalism can be employed to represent finite, finite-resolution
measurements of classical systems by requiring that all states be Gaussian [6,7].

3. Distinguishing Reference from Pointer Degrees of Freedom

We now turn to the question of commutativity requirements for the Mi. To be of empirical interest,
a “system” S must (1) be distinguishable from its surroundings, (2) be sufficiently persistent in time to
permit multiple observations (at minimum, “preparation” followed by observation), and (3) occupy
more than one state. Determining the state of S at multiple times requires an ability to distinguish
S from its surroundings, i.e., to identify S, at multiple times. Hence, any system S of empirical
interest can be decomposed as S = PR, where the generalized “pointer” component P indicates the
system’s time-varying state, and the remaining “reference” component R permits, by remaining in
a time-invariant state |R〉, re-identification of S at multiple times. For ordinary items of laboratory
apparatus like voltmeters or oscilloscopes, size, shape, mass, and the layout of controls and displays
on the surface are components of R and their fixed, system-identifying values are components of |R〉,
while the position of the apparatus, what the leads are connected to, control settings, and what is
indicated on the displays are components of P. The state |S〉 of S is then given by |S〉 = |R〉|P〉 with
|R〉 fixed and only |P〉 free to vary. Requiring S to be identifiable by observation is thus requiring
|S〉 to be separable as |R〉|P〉. If my laptop’s mass or the color of its exterior casing, for example,
become entangled with what is displayed in one of its windows, I will no longer be able to identify it
by observation.
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This requirement of re-identifiability can be formulated using Zurek’s notion of a “predictability
sieve” [28], a criterion that allows the future state of a system, here the state |R〉 of the time-invariant
reference component R, to be predicted with confidence. Predictability is only assured if, for all i,

[HW + HOW , M(R)
i ] = 0 (8)

where the measurement operators M(R)
i act on R but not P (cf. [28]; Equation 4.41). In practice, it is

sufficient that, for all i, [HW + HOW , M(R)
i ] < δ for some sufficiently small δ over the course of an

experiment involving multiple observations. Given Equation (5), the predictability sieve condition
expressed in Equation (8) requires that system identification using the M(R)

i does not disturb system

identity and that pointer-state measurements using some set of measurement operators M(P)
j that act

only on P do not disrupt system identification, i.e.,

[M(R)
i , M(R)

j ] = 0 and [M(R)
i , M(P)

j ] = 0 (9)

for all i, j. Nothing, however, requires the pointer measurements M(P)
j to all mutually commute, and

they do not, for example, if calibration is included ([8] or Section 5 below). With these definitions,
system identification is distinct from system preparation; operations employed for preparation must
preserve system identity and thus must commute with the M(R)

i , but need not, and in general will not,

commute with the M(P)
j . Preparation and observation of the “pointer state” |P〉 of P will be considered

equivalent in what follows.
In terms of the equivalent operators Ei defined on the apparent state space W , an “observable

system” S in W can now be operationally defined as

Definition 1. An observable system S in W is a collection (E(R)
i , x(R)

i ) of 1 < k < n mutually commuting

POVMs E(R)
i defined on the apparent state space W with specified outcomes xi ∈ {0, 1} that measure “reference”

degrees of freedom of W that are fixed and no longer free in S and hence “identify” S, together with a distinct
collection of 1 < l < (n − k) POVMs E(P)

j defined on W with unspecified binary outcomes x(P)
j that measure

“pointer” degrees of freedom of W that remain free in S, where for each E(P)
j , [E(P)

j , E(R)
i ] = 0 for every E(R)

i .

Note that, while O and W are collections of degrees of freedom and are hence “ontic” entities,
observable systems are collections of operations and outcomes and are hence in some sense “epistemic”
entities. The notations “S,” “R,” “P,” and, below, “E” will be maintained for consistency with the
literature, and to recognize that in practice systems are standardly defined in terms of observational
outcomes as noted above.

The l pointer degrees of freedom of S comprise its pointer P and their measured outcome values
constitute its pointer states |P〉 = |x(P)

1 ...x(P)
l 〉. While the E(P)

j selecting pointer outcomes are not
required to commute, at least pairs of pointer outcomes must be compatible in any “interesting”
system (an EPR/Bell experiment, for example, requires simultaneous measurement of two pointer
states, the “measurement setting” and the outcome, by each observer (Section 6)). The collection
(E(R)

i , x(R)
i ) of k specified (POVM, outcome) pairs specifies the pointer-state independent reference

component R and its time-invariant state |R〉 = |x(R)
1 ...x(R)

k 〉. We require that P ∩ R = ∅ and PR = S.
For macroscopic systems such as laboratory apparatus, the number of pointer degrees of freedom
l << n. Hence, the number of reference degrees of freedom k ∼ n; this will be assumed in what follows.

Two observable systems S and S′ are discernible in isolation only if they differ by at least one
reference (POVM, outcome) pair. Every observable system S has a complement S̄ that is the maximal
observable system that does not overlap S. In the limit n → ∞, SS̄ → W, i.e., S̄ → E as defined above.
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This limit cannot, clearly, be reached with finite observational resources; the consequences of this are
considered in Section 4 below.

Several remarks are in order:

Remark 1. Observable systems are defined here in terms of both the assumed partition of “the universe” into O
and W and the operations employed by O to identify them. They are, therefore, observer-relative in the sense
defined by Rovelli [35] for quantum states. However, as noted above, the present considerations apply to both
classical and quantum systems provided the finite-resource restriction is respected. This observer-relativity
naturally suggests counterfactual indefiniteness, i.e., that “unidentified systems have no states” (cf. [36]),
regardless of the equations of motion they obey while being observed.

Remark 2. The “world” W is not an observable system. As S → W the notion of “system identification” loses
any operational meaning.

Remark 3. The apparent state space W coarse-grains W. As will be made precise in the next section, unless
dW >> n (hence effectively, W >> O), waste heat cannot be dissipated by O and commutativity of observables
breaks down. This corresponds to the “large environment” assumption of decoherence.

Remark 4. No assumption is made that W exhibits objective classical randomness. The characterization of
the energetic cost of observation as waste heat reflects O’s objective uncertainty about the distribution of this
energetic input across the degrees of freedom of W.

Remark 5. The requirement that every E(P)
j commutes with all E(R)

i enables repeated pointer measurements to
have the same outcome, and hence enables “ideal measurements” as defined by Cabello [37], provided calibration
procedures are implemented as discussed in Section 5.

Remark 6. The support of the E(P)
j and E(R)

i in W can be considered the apparent or observable state space S
of S; again, this is the usual approach to defining state spaces for stipulated quantum systems. State transitions
in S can be represented as actions of a discrete observed propagator PS : |S〉|t  → |S〉|t+1. This PS maps each
observational outcome to its successor and so can be regarded as defining a computational process, regardless of
whether the system S is classical or quantum, provided the finite-resource restriction is respected [19].

4. System Identification Cannot Be Arbitrarily Refined

In contrast to the operational, observer-dependent conception of “systems” defined above,
classical (or “effectively classical”) macroscopic systems such as laboratory apparatus are standardly
thought of as both observation- and observer-independent. They are, in particular, standardly viewed
both as invariant under decompositions of “the universe” into alternative observer—world pairs—and
as well-defined independently of any particular observer or observables (see [38] for an example of
this “realist” position). Let us use the notation S to indicate an observer-independent (“objective” or
“ontic”) system, i.e., one that is considered well-defined in the absence of any observers, reserving S
for “observed systems” defined operationally as above in terms of sets of observational outcomes.
It is, for example, completely standard in classical physics to describe two observers interacting with
or otherwise obtaining information about a single, observer-independent, macroscopic “object” S.
This assumption of observer-independence is often carried over into quantum theory. Extensions of
the environment as witness formulation of decoherence to models of quantum Darwinism [32,33] or
quantum-state broadcasting [39,40], for example, postulate that multiple observers can independently
interact with separable, redundant encodings of the eigenvalues of a single, observer-independent
interaction HSE between an observer-independent quantum system S and its observer-independent
environment E. That such an encoding is redundant, i.e., that the multiple “copies” of the information
are encoded by the single, objectively well-defined interaction HSE must be assumed a priori, as it
cannot be established by observation [41]. It is also commonly assumed, for example, in stating
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the Pusey–Barrett–Rudolph theorem [42] that multiple “copies” of a single quantum system can be
acted upon (e.g., prepared and/or measured) independently by multiple, mutually distant observers.
The copies in this case are assumed to objectively have all and only the same degrees of freedom,
the same self-Hamiltonian, and the same interaction with their respective environments.

Here we consider whether, and to what extent, observers subject to the finite resource restriction
imposed in Section 2 can identify, and hence either prepare or measure, a postulated “objective” system
S. We first consider, in this section, the case of a single observer O interacting during one time period
with a single S. We then consider two cases of practical interest: in Section 5, that of a single observer
interacting with S during multiple time periods and, in Section 6, that of multiple observers interacting
with S during a single time period. We show that violations of Leggett–Garg and Bell inequalities,
respectively, can be interpreted as criteria for successful system identification in these two scenarios.

As noted above, the methods developed here apply equally to both classical and quantum systems
provided the finite-resource restriction is respected. Let us now assume, as is typical in classical
physics and as the simplest case, that W has an observer-independent, classical state |W〉, and first
consider the finite case in which W can be described by a dW-dimensional, classical, binary state
space, e.g., a real Hilbert space. Let us also assume that an observer-independent, classical system
S is embedded in W, that O obtains information specifically from S while dumping waste heat
specifically into an observer-independent environment E defined by SE = W, and that the dimension
dS << dE. We assume that O interacts with S via a set of operators Mi as defined by Equation (5)
above. The outcomes xi of this interaction can be associated with unit vectors to construct the apparent
state space S of O’s observed system S as described above. In this case, O can, given a sufficient
number (i.e., n ≥ dS) of binary measurement operators, refine the observed S to the objective S, i.e.,
the dimension dS → dS << dW , at a energetic cost of

H(S)
diss = (1/Δt(O))

∫ τ

t=0
HOSdt → dSc(O)kBT (10)

where t is a time coordinate associated with W, and τ → dSΔt(O) is the interval in t required by
O to identify S at the given refinement. By dissipating H(S)

diss exclusively into E, O assures that S
remains undisturbed. It is this transfer of waste heat to a large, unobserved, observer-independent
environment that enables the typical classical assumption of arbitrary measurement resolution and
hence real-valued measurement outcomes.

If the assumption that O obtains information specifically from S is now dropped and O is required
to identify S by observation as described above, O must search and therefore interact with, in the limit,
all of W. In this case, refining the observed S to the objective S requires refining the apparent state
space W to the full “ontic” state space of W. The number of measurement operators required is now
n ≥ dW , and the energetic cost is now

H(W)
diss = (1/Δt(O))

∫ τ

t=0
HOWdt → dWc(O)kBT (11)

where now τ → dWΔt(O). In this limit, c(O)kBT is transferred, on average, to every binary degree of
freedom of W. The environment E can no longer be treated as an unobserved “sink” for waste heat,
as in the limit every degree of freedom of W must be examined to see whether it is a degree of freedom
of the as-yet unidentified S. Equation (11) does not depend in any way on W being classical but rather
is a straightforward consequence of Equation (5); it is, therefore, completely general. Hence, we have
the following.

Theorem 1. An observed system S cannot be refined to an objective system S with finite resources.

Proof. Consider the states |W〉|t=1 and |W〉|t=kΔt(O) acted on by measurement operators M(R)
1 and

M(R)
k , respectively, for some k >> 1. As dW → dW , under increasing refinement, the maximum value
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of k → dW , and the energy difference between |W〉|t=1 and |W〉|t=kΔt(O) at maximum k, ΔH1,k → H(W)
diss .

None of the Mi are, however, orthogonal to HOW , so in this case [M(R)
1 , M(R)

k ] �= 0. This violates the
predictability sieve condition expressed in Equation (9), rendering |R〉 no longer invariant. Hence, S is,
by definition, unidentifiable in this limit, and the desired refinement of S to S fails.

Note that Equation (11) is independent of dS: the energy dissipation required for system
identification increases with dW even if dS << dW . As dW → ∞ or becomes continuous,
arbitrary refinement of W requires HOW ∼ HW and again commutativity of the (now infinitely
or continuously many) M(R) fails. Theorem 1 thus provides a quantitative extension of Moore’s
qualitative result that finite, finite-resolution observations cannot fully determine the state space of an
otherwise-uncharacterized system [11], and shows that it holds even in a finite “world” W.

System identification cannot, therefore, be arbitrarily refined to the limit of an “objective system”
even in classical physics. The predictability sieve expressed in Equation (8) that allows system
identification is only operable provided the measurement interaction HOW << HW and the apparent
state space dimension dW << dW . Coarse-graining W is, therefore, required to identify any embedded
system S, even if W is classical; if observer-independent “objective systems” exist in W, identifiable
systems only approximate them. An observed S can, at best, only be associated with a set {S} of
objective systems that could, in some theoretical model specifying some set of reference operators
{M(R)

i }, generate the observational outcomes {x(R)
i } that identify S. The dimensions of the elements

of {S} are constrained only by dW and dS as upper and lower bounds, respectively. Hence, Theorem 1
rules out any confirmation by finite observations that two independently observed systems S and S′,
whether classical or quantum, are copies of a single objective S.

In practice, observers search for systems only locally, effectively coupling a small, searched region
of W to a large, unobserved reservoir—the rest of W—into which energy can be dissipated. If this
coupling is weak and the dissipation constant c(O) >> 1, the predictability sieve condition expressed
in Equation (9) fails as search resolution increases, i.e. as S → S. Observers typically search even for
macroscopic systems at low resolution and then refine the search slightly after plausible candidates
have been identified. One may, for example, locate multiple systems of the right size and shape to be
one’s laptop and then refine the search by looking for identifying marks, checking the splash screen,
etc. Refining the search toward an “objective” limit by examining every transistor, much less every
atom, disrupts the commutativity of the MR

i and is therefore infeasible.

5. System Identification at Multiple Times

Let S|t be the observed system identified when O deploys n measurement operators Mi during
the interval between (t − nΔt(O)) and t. Theorem 1 above show that S cannot be refined to some
specific objective S. However, S|t can be associated with a set {S}|t of all objective systems for which
the Mi would yield, at t, the outcomes obtained. For example, if S|t is identified by the two criteria of
being red and having no linear dimension greater than 1 m, then the set {S}|t contains all objective
systems meeting these criteria at t. If O deploys the Mi at multiple times, a sequence S|t, S|t′ , S|t′′ , etc.
is obtained, with corresponding sets of objective systems {S}|t, {S}|t′ , {S}|t′′ , etc. The sequence S|t,
S|t′ , and S|t′′ identifies a single observed system S if there is a time-invariant set of reference outcome
values {x(R)

i } that fixes a reference state |R〉 and hence a reference component R ⊂ S. However,
O cannot determine by observation that {S}|t = {S}|t′ or even {S}|t ∪ {S}|t′ �= ∅, as doing so
requires determining the self-Hamiltonians of the S, i.e., arbitrarily accurate refinement forbidden by
Theorem 1. To continue the previous example, O cannot determine that each red thing will remain
red or that each small thing will remain small without examining, for each thing, more degrees of
freedom than color and size. Hence, even perfect correlation of each of the reference outcome values
x(R)

i between all pairs of measurement times cannot gaurantee that O is interacting with the same

objective system(s) at t, t′, t′′, etc. If the probability distributions over pointer outcome values x(P)
j are
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time-invariant, their time correlations are similarly insufficient to guarantee that O is interacting with
the same objective system(s) at all measurement times. Hence, we have the following.

Theorem 2. If for a set of measurements Mi and measurement times tj and tk, the two-time outcome correlation
functions Cjk = 〈xi(tj), xi(tk)〉 satisfy the Leggett–Garg inequality, the observed system S identified by the Mi
cannot be associated with any single element of the set {S} of objective systems associated with S.

Proof. Mapping each binary outcome from {0, 1} to {−1, 1}, the Leggett–Garg inequality can be
written C21 + C32 − C31 ≤ 1 for consecutive measurements at t1, t2, and t3 [16]. The reference outcomes
x(R)

i and hence the reference state |R〉 must remain fixed at all observation times to identify S; hence,

the x(R)
i satisfy this inequality trivially. To see that the fixed x(R)

i cannot identify any particular

element of the set {S} of objective systems associated with S, it is enough to note that obtaining x(R)
i

from a measurement on S at t provides no evidence that S was in state |R〉 at t − 1. Hence, if S is
to be identified, it must be identified by correlations between the pointer outcomes x(P)

j . If these

satisfy the Leggett–Garg inequality, however, each measurement of the x(P)
j is independent of all

previous as well as all future measurements. Hence, no measurement of the x(P)
j on S at t can provide

information about the state of S at t − 1. It is, therefore, consistent with both constant x(R)
i (t) and

classically correlated x(P)
j (t) that outcomes have been obtained from a different element of {S} at each

measurement time.

Theorem 2 restates, in effect, the general principle that classical correlation does not imply joint
causation; even perfectly correlated outcome values can have different causal sources. It shows, in the
present context, that an observed system S cannot be associated with a particular objective S without
violating the Leggett–Garg inequality. Violations of this inequality provide, therefore, evidence that a
single objective system has been identified over time.

To assure violations of the Leggett–Garg inequality, O must choose pointer measurement operators
M(P)

i such that, for tj < tk, Prob(x(P)
i (tk) = 1|x(P)

i (tj) = 1) �= Prob(x(P)
i (tk) = 1|x(P)

i (tj) = 0),

i.e., the pointer state |P〉 must “remember” previous applications of M(P)
i . Pointer states with this

property are commonplace in classical systems; magnetic hysteresis and work hardening in metals are
familiar examples. Direct measurements of such states are not non-disturbing. If the pointer states
of a macroscopic apparatus “remember” disturbances caused by previous measurements in this way,
the standard corrective is frequent recalibration. Calibrating an apparatus, i.e., using measurement of a
designated standard to adjust (i.e., intentionally disturb), the pointer state of the apparatus, effectively
erases the memory of the previous measurement-induced disturbance. By providing evidence that the
Leggett–Garg inequality has been violated, a need for re-calibration provides evidence of previous use
and hence evidence that a single objective system S, i.e., the apparatus, has been identified.

System identification over time, therefore, requires a significant asymmetry between reference and
pointer degrees of freedom. Measurements of reference degrees of freedom must be non-disturbing in
order for the reference state |R〉 to remain fixed and the observed system S to be identifiable. If S is to be
identified with an objective S, however, consecutive pointer measurements cannot be non-disturbing.
Re-preparing S between designated, non-consecutive “informative” measurements, i.e., re-calibration
to erase the memory of previous measurements, allows the “informative” measurements to be mutually
non-disturbing and hence ideal.

Quantum violations of the Leggett–Garg inequality can, clearly, only be observed if the pointer
state component exhibiting the violation is not re-prepared by calibration between measurements.
Observing quantum Leggett–Garg violations while maintaining a constant objective S requires at
least one pointer state component that both exhibits memory of previous measurements and can be
recalibrated between measurements. An apparatus control setting that is re-set, and hence re-prepared,
between measurements satisfies this requirement. Here the “standard” to which the state of the control
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setting is effectively being calibrated is the observer who manipulates the setting. Note that such control
settings cannot, while preserving their function of enabling re-preparation and hence re-identification,
become entangled with other components of P that register the observational outcomes of interest.
As in the case of R becoming entangled with P discussed in Section 3 above, entanglement between
control and outcome-registering components of P can lead to system-identification failure.

6. Joint System Identification by Multiple Observers

Suppose Alice deploys measurement operators Ai with outcomes ai(t) to identify and obtain
pointer-state outcomes from an observed system S = RP and Bob, who is spacelike separated
from Alice at each measurement time t, deploys measurement operators Bj with outcomes bj(t)
to identify and obtain pointer-state outcomes from an observed system S′ = R′P′. Under what
conditions can Alice and Bob conclude, when later comparing their separate sequences of observations,
that they were observing two “parts” of the same objective system S? It is useful to consider
this question from the perspective of an adversarial game; from this perspective, Alice and Bob
determining that they share a single S is equivalent to Alice and Bob determining that they share
a communication channel that cannot be, or at least has not been, manipulated by an adversary,
Charlie. Suppose S and S′ are connected by a classical, timelike communication channel C, such that
SCS′ = S. Under what conditions can Alice and Bob conclude that their observations of S and S′ are
unaffected by Charlie breaching and manipulating the channel C? In particular, under what conditions
can Alice and Bob conclude that their observational outcomes obtained from S and S′ are not the
result of Charlie breaching C and sending instructions to S and S′ that determine the observational
outcomes? This question has been extensively investigated in the guise of quantum communication
security [43,44], and the answer is well known. Any pattern of classical correlations between |S〉
and |S′〉 can be undetectably produced by a manipulative Charlie; therefore, no pattern of classical
correlations between Alice’s and Bob’s observational outcomes can demonstrate that the channel C is
secure. Hence, we have the following.

Theorem 3. If correlations between sequences ai(t) and bj(t) of observational outcomes obtained by
spacelike-separated observers A and B are consistent with a deterministic hidden-variable theory, they cannot
mutually identify a single jointly observed objective system S.

Proof. Any pattern of correlations between the ai(t) and the bj(t) that is consistent with a deterministic
hidden-variable theory can be implemented by Charlie; hence, any such pattern of correlations is
consistent with A and B observing separate systems, both of which are manipulated by Charlie.

As the reference states |R〉 and |R′〉 remain fixed throughout Alice’s and Bob’s measurements to
identify the observed systems S and S′, respectively, and hence remain perfectly classically correlated,
Theorem 3 effectively concerns patterns of correlations between the pointer-state outcomes a(P)

i (t)

and the b(P′)
j (t). Such pointer-state correlations only permit identification of a single jointly observed

objective system S if they are inconsistent with any deterministic hidden-variable theory.
Patterns of pointer-state correlations that are inconsistent with any deterministic hidden-variable

theory are well-known in the special case in which Alice and Bob perform a canonical EPR/Bell

type experiment. In this case, their sets of pointer measurement operators {A(P)
i } and {B(P′)

j },
respectively, each comprise one “control setting” observable and two mutually noncommuting,
two-valued “outcome” observables; the observed correlations between the “outcome” observables
are inconsistent with any deterministic hidden-variable theory if and only if they violate at least
one Bell/CHSH inequality [45]. Mermin [46] explicitly considers deterministic hidden variables
as “instruction sets” carried by particles from a central source to spacelike-separated detectors in
discussing such experiments. Correlations that violate one or more Bell/CHSH inequalities cannot be
replicated by such instruction sets or by a manipulative Charlie, and so provide evidence that Alice
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and Bob are jointly observing a single objective system S. Such correlations can, in particular, identify
an entangled state of S that Alice and Bob share (for recent experimental demonstrations, see [47–49]).
They cannot, however, by Theorem 1, specify the complete state space of S. Therefore, they cannot
identify the one system that Alice and Bob are guaranteed to share under any circumstances, viz. the
system comprising everything in the universe except Alice and Bob.

Two features of the use of Bell/CHSH inequalities as an entanglement witness are of particular
relevance to system identification. First, at least one of the Ai and one of the Bi must measure the
state of a pointer observable not manipulable by Charlie. In the canonical EPR-type experimental
setup, these observables correspond to the orientation settings for the polarization/spin measurements,
which are assumed to be freely chosen by Alice and Bob, respectively, at each t. This free-choice
assumption rules out super-determinism [50] by preventing Charlie from specifying correlations
involving these settings. As seen in Section 5 above, the existence of at least one pointer observable
controlled by the observer enables objective system identification over time. Hence, the free-choice
assumption can also be viewed as the assumption that Alice and Bob can each, independently,
identify their respective apparatus as objective. Second, Alice and Bob must, after their observations
have been completed, exchange a classical message encoding their observational outcomes to
compute the correlations observed. This separate, classical communication step (i.e., use of a LOCC
(Local Operations, Classical Communication) protocol) is required for shared entanglement to serve as
a communication resource [51]. It introduces a second system, the classical message, that Alice and
Bob must share, but without the restriction of spacelike separation. The separate, local observations
employed in a LOCC protocol can be regarded as detecting a Bell/CHSH inequality violation only if
the joint identification of this later, classical message—in practice, Alice and Bob agreeing that they
have securely shared reports of their outcomes—is regarded as unproblematic.

Theorem 3 shows that joint system identification by spacelike-separated observers is demonstrable
empirically only within quantum theory; in classical theory it can at best be assumed. By showing that
joint system identification requires use of a LOCC protocol, it suggests that all systems are equivalent to
communication channels. This idea is implicit in operational reconstructions of quantum theory [52,53]
and has been made explicit by Grinbaum [15].
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Abstract: Aiming to implement image segmentation precisely and efficiently, we exploit new ways
to encode images and achieve the optimal thresholding on quantum state space. Firstly, the state
vector and density matrix are adopted for the representation of pixel intensities and their probability
distribution, respectively. Then, the method based on global quantum entropy maximization (GQEM)
is proposed, which has an equivalent object function to Otsu’s, but gives a more explicit physical
interpretation of image thresholding in the language of quantum mechanics. To reduce the time
consumption for searching for optimal thresholds, the method of quantum lossy-encoding-based
entropy maximization (QLEEM) is presented, in which the eigenvalues of density matrices can give
direct clues for thresholding, and then, the process of optimal searching can be avoided. Meanwhile,
the QLEEM algorithm achieves two additional effects: (1) the upper bound of the thresholding
level can be implicitly determined according to the eigenvalues; and (2) the proposed approaches
ensure that the local information in images is retained as much as possible, and simultaneously,
the inter-class separability is maximized in the segmented images. Both of them contribute to the
structural characteristics of images, which the human visual system is highly adapted to extract.
Experimental results show that the proposed methods are able to achieve a competitive quality of
thresholding and the fastest computation speed compared with the state-of-the-art methods.

Keywords: image segmentation; thresholding; von Neumann entropy; density matrix

1. Introduction

Image segmentation is the task of dividing the image into different regions, each one of which
ideally belongs to the same object or content. As a key step from image processing to computer vision,
image segmentation is the target expression and has an important effect on the feature measurement,
high-level image analysis and understanding [1,2]. Examples of image segmentation applications
include medical imaging [3,4], document image analysis [5], object recognition [6,7] and quality
inspection of materials [8,9]. In the last two decades, a wide variety of segmentation techniques have
been developed, which conventionally fall into the following two categories [2]: layer-based and
block-based segmentation methods [10,11]. Among all these techniques, the thresholding methods
offer numerous advantages such as smaller storage space, fast processing and ease in manipulation.

In general, thresholding methods can be classified into parametric and nonparametric
approaches [12]. Parametric approaches assume that the intensity distributions of images obey the
Gaussian mixture (GM) model, which means the number and parameters of Gaussians in the mixture
(the model selection) must be determined [13]. Although these problems have been traditionally solved
by considering the expectation maximization (EM) algorithm [14] or gradient-based methods [15,16],
the methods are time consuming. Nonparametric approaches find the thresholds that separate
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regions of an image in an optimal manner based on discriminating criteria such as the between-class
variance [17], cluster distance [18], entropy [19–22], etc. Nonparametric methods have shown the
advantage of dispensing with the modeling thresholding. However, they still suffer from the problem
of high time consumption, although many techniques based on intelligent optimization algorithms
(IOAs) [23–25] have been used to speed up the thresholding procedure.

Quantum computation and quantum information processing techniques have shown an immense
potential and a revolutionary impact on the field of computer science, due to their remarkable resources:
quantum parallelism, quantum interference and entanglement of quantum states. Information
representing and processing in the framework of quantum theory is powerful for solving complex
problems that are difficult or currently even impossible for conventional methods. The most significant
works include Shor’s quantum integer factoring algorithm, which can find the secret key encryption of
the RSA algorithm in polynomial time [26], and Grover’s quantum search algorithm for databases,
which could achieve quadratic speedup [27]. In the recent years, quantum approaches have been
introduced into the image processing field. Various quantum image representation models have
been proposed, such as qubit lattice [28] and flexible representation of quantum images (FRQI) [29].
Meanwhile, several applications of quantum image processing have been researched including quantum
image segmentation [30], quantum edge detection [31], quantum image recognition [32], quantum image
watermarking [33] and quantum image reconstruction [34]. Though the research in quantum image
processing still confronts fundamental aspects such as image representation on a quantum computer
and the definition of basic processing operations, we still could be inspired to completely exploit new
methods for some classical problems from a quantum information theoretical viewpoint.

In this paper, we address the thresholding problem on quantum state space. The proposed
methods relate to the details of image representation by utilizing the density matrix, optimal threshold
selection based on the criteria of the maximum von Neumann entropy, a novel image encoding scheme
and the corresponding segmentation approaches, which can totally avoid the process of optimal
solution searching. Specifically, the contributions of this paper mainly include the following aspects:

(1) We present an image thresholding method based on the criteria of global quantum entropy
maximization (GQEM), which has an equivalent object function to Otsu’s, but gives more explicit
physical interpretation of image thresholding in the language of quantum mechanics.

(2) The quantum lossy-encoding based entropy maximization (QLEEM) approach is proposed to deal
with the time consumption problem of thresholding. The QLEEM algorithm directly takes the
eigenvalues of density matrices of lossy-encoded images as segmenting clues and then avoids the
time-consuming process of searching for optimal thresholds. It can achieve the highest execution
speed compared with the state-of-the-art methods.

(3) Due to the physical meaning of the lossy-encoding scheme and the unique procedure of optimal
thresholding, a brand-new approach to determine the upper bound of the thresholding level
automatically is offered in the proposed QLEEM algorithm. For most of the existing methods, this
parameter is conventionally predetermined according to empirical knowledge.

(4) The QLEEM method provides the maximum inter-class separability with lower loss of intra-class
information; thus, segmented images could keep more structural information. This feature is
highly consistent with the way the human visual system (HVS) works.

The paper is organized as follows: Section 2 gives a brief description of the image thresholding
and introduces some state-of-the-art thresholding methods including Otsu’s between-class variance
method [17], Kapur’s entropy-criterion method [19], the quantum version of Kapur’s method [35], and
Tsallis entropy-based method [22]. Section 3 introduces the details of the proposed methods. Section 4
provides the experimental results and discussions about our method’s performance. The conclusions
of this study are drawn in the last part of this paper.
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2. Related Works

Thresholding is a process in which a group of thresholds is selected under some criteria, and then,
pixels of an image are divided into a series of sets or classes according to the rule of:

l → Ci i f thi−1 ≤ l < thi, (1)

where l ∈ [0, L − 1] represents the intensity level of image pixels, {thi | i = 1, 2, · · · , M − 1} is the set
of thresholds and {Ci | i = 1, 2, · · · , M} are classes labeling different groups of pixels.

Otsu’s between-class variance method [17] selects the optimal thresholds by maximizing the
following object function:

σ2c
= ∑

i,j
ωiωj(μi − μj)

2. (2)

Here, i and j index the intensity classes, and ωi and μi are the probability of occurrence and the
mean of a class, respectively. Such values are obtained as:

ωi =
thi

∑
j=thi−1+1

pj, μi =
thi

∑
j=thi−1+1

qj j. (3)

where pj denotes the probability distribution of pixels and qj = pj/ωi. As we know, Otsu’s method
can achieve the best segmenting results if no contextual or semantic information is considered, but it
suffers from the drawback of time-consuming searching for optimal thresholds.

Kapur presented another discriminant criterion based on maximum entropy [19]:

arg max
TH

M−1

∑
i=0

H(Ci). (4)

where H(Ci) is the Shannon entropy corresponding to a specific class, which is defined as:

H(Ci) = −
thi

∑
j=thi−1+1

qj log qj. (5)

Similarly, the quantum version of Kapur’s method [35] determines the optimal thresholds by
maximizing the von Neumann entropy:

arg max
TH

M−1

∑
i=0

S(ρi). (6)

where:

ρi = −
thi

∑
j=thi−1+1

qj
∣∣θj
〉 〈

θj
∣∣ (7)

is the density matrix representation of the i-th class and:

S(ρi) = −tr(ρi log ρi). (8)

Recently, the Tsallis entropy-based bi-level thresholding method was proposed [22], in which the
optimal threshold is given by:

t∗(q) = arg max
t

[
SA

T (t) + SB
T(t) + (1 − q)SA

T (t)S
B
T(t)

]
. (9)
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Here, SA
T (t) and SB

T(t) represent the Tsallis entropy for object A and the background B, respectively,
and the entropic index q can be calculated through q-redundancy maximization.

The effectiveness of these entropy-based methods has been proven. However, similar to Otsu’s
method, they also have the drawback of high computational complexity, which will affect the efficiency
of the whole vision task.

3. Proposed Methods

In this section, we will start with a new method, which utilizes the criteria of global quantum
entropy maximization to achieve optimal thresholding, and then propose a novel encoding scheme.
Based on this scheme, the improved method for thresholding is derived, which can determine optimal
thresholds with linear time complexity.

3.1. Thresholding Based on Global Quantum Entropy Maximization

For an image, we can represent its histogram with the following entangled state of a composite
quantum system:

|I〉 =
L−1

∑
i=0

√
pi |θi〉 ⊗ |i〉 . (10)

where we encode the i-th intensity level to the vector |θi〉 = cosθi |0〉+ sinθi |1〉, which belongs to the
state space of the first one-qubit subsystem (labeled as “A”), by establishing a bijective relationship
between them, namely:

θi =
π

2
· i

L − 1
, i ∈ [0, L − 1], (11)

and |i〉 is the computational basis state of the second subsystem (labeled as “B”), which denotes
the indices of pixel intensities. Though |I〉 is a pure state, the subsystem A or B is in a mixed state.
Therefore, we describe these quantum systems in the language of the density matrix. Assuming |I〉 is
rewritten as ρAB, then the reduced density matrix for the subsystem A can be defined by:

ρ = trB(ρ
AB)

=
L−1

∑
i=0

pi |θi〉 〈θi| .
(12)

The density matrix ρ contains the information about the distance between any two intensities,
as well as their probability distribution. This property will be very useful for thresholding.

If pixels of an image are divided into M classes by using M-1 thresholds, we represent the
histogram of the segmented image with:

∣∣I′〉 = M−1

∑
i=0

(
√

ωi

∣∣∣θ̃i

〉
⊗

thi

∑
j=thi−1+1

√
qj |i〉), (13)

where θ̃i = π
2 · μi

L−1 , ωi and μi are defined in Equation (3). Then, the density matrix of the
subsystem A becomes:

ρ′ =
M−1

∑
i=0

ωi

∣∣∣θ̃i

〉 〈
θ̃i

∣∣∣ , (14)

and the von Neumann entropy of ρ′:

S(ρ′) = −tr(ρ′ log ρ′)
= −λ1 log λ1 − λ2 log λ2

(15)
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can quantify how much information is retained in the segmented image; where λ1 and λ2 are the
eigenvalues of ρ′. As a result, we maximize it to determine the optimal thresholds:

THop = arg max
TH

S(ρ′). (16)

According to Equations (14) and (15), the following equation is established through simple
algebraic computations:

λ1λ2 =
1
2

M−1

∑
i=0,j=0

ωiωjsin2(θ̃i − θ̃j), (17)

where λ1 + λ2 = 1, as the restriction must be held.
It is worthwhile to note that Equation (17) can also be used to evaluate thresholding: when

Equation (17) takes the maximum value, λ1 and λ2 will be most similar to each other, and then, S(ρ′)
also reaches its best value. Meanwhile, Equation (17) indicates that the distance between intensities
sin2(θ̃i − θ̃j), as well as the probability distribution (ωi, ωj) affect the thresholding results.

Different from Kapur’s entropy-based method and its quantum version, our method has more
explicit physical meaning for thresholding in terms of the following features:

(1) Encoding pixel intensities on the state space of a one-qubit system can be considered as a process
in which independent intensities are squeezed into a two-dimensional space. The similarity
between different state vectors, as well as its probability distribution, can be described with the
density matrix. Both factors contribute to thresholding.

(2) According to the fundamental principles of information theory, the image segmenting process
will causes the decrease of the information contained in images. Shannon entropy cannot directly
be used to measure the information losses because it quantifies the amount of information on
spaces with different dimensionality for original and segmented images. On the contrary, our
method encodes the histograms of original and segmented images on the same quantum state
space, which indicates that their entropies are comparable. As a result, the trivial solutions for
segmentation, for example the thresholds equally dividing intensities into clusters with the same
probability, could never appear since the entropy of the original image acts as the upper bound of
our object function for all possible solutions.

(3) From Equation (17), we find that the object function of our method is very similar to Otsu’s,
described in Equation (2). The following experimental results will prove that they both achieve
the best thresholding.

3.2. Quantum Lossy-Encoding-Based Entropy Maximization Method

As we have seen in Section 3.1, the proposed thresholding method derived from the viewpoint of
quantum principles can achieve the best segmenting results similar to Otsu’s. However, it still suffers
from the efficiency problem of searching for optimal thresholds. In this subsection, we present another
way for image thresholding on the quantum state space.

3.2.1. Quantum Lossy Encoding of Images

Different from the precedent method, we map the pixel intensities to quantum state vectors
according to the following rules:

(1) Multiple qubits should be required for encoding intensity levels in accordance with the
prospective number of thresholds. In other words, the state vectors are supposed to belong
to an M-dimensional space if we want the M-level segmentation.

(2) The angle parameter of state vectors ranges from zero to M ·π instead of π/2. Namely, θi = Mπi/L.
(3) After encoding, the terms contributing to density matrices should follow a π-periodic cyclical

pattern. Namely, |θ〉 〈θ| = |θ + π〉 〈θ + π|.

193



Entropy 2018, 20, 728

Rule (1) provides the foundation for dividing pixel intensities into M classes, being linearly
independent of each other. Rules (2) and (3) indicate that all state vectors representing pixel intensities
are equally divided into M classes, and the corresponding density matrix:

ρ̃ =
N−1

∑
i=0

(
M−1

∑
j=0

pN·j+i) |θi〉 〈θi| , θi ∈ [0, π], N = L/M, (18)

only measures the information related to the local or intra-class uncertainty contributed by those
adjoining intensity levels, but removes the global or inter-class information provided by those
intensities far apart from each other.

According to the above rules, an alternative encoding scheme is given in the recursive form of:

|θi〉2 = cosθi |0〉+ sinθi |1〉 , θi = 2πi/L

|θi〉3 = cosθicos2θi |0〉+ cosθisin2θi |1〉+ sinθi |2〉 , θi = 3πi/L

· · ·
|θi〉M = cosθi |2θi〉M−1 + sinθi |M − 1〉 , θi = Mπi/L

(19)

where the superscript M is temporarily borrowed to label the dimensionality of state vectors and
i ∈ [0, L − 1] denote pixel intensities. As an example, the traces of encoded state vectors in the 2D and
3D case are shown in Figure 1.

 

|0>

|2>

|1>

 

2D trace
3D trace

Figure 1. Traces of encoded state vectors on 2D and 3D space.

Differing from ordinary encoding practices, the proposed scheme records local information of
images, but removes the global information. More precisely, the following evidence could be verified
in the 2D case: we divide intensity levels into two classes equally and equivalently quantify the amount
of information with the product of eigenvalues of ρ̃:

λ1λ2 =
1
2

L−1

∑
i=0,j=0

pi pjsin2(θi − θj)

=
1
2
(

L/2−1

∑
i=0,j=0

pi pjsin2(θi − θj) +
L−1

∑
i=L/2,j=L/2

pi pjsin2(θi − θj)) +
L/2−1

∑
i=0

L−1

∑
j=L/2

pi pjsin2(θi − θj).

(20)

We note that the first term on the right of Equation (20) measures the local information (intra-class
uncertainty) contributed by intensities in the same class, and the second term counts the global
information (inter-class uncertainty) provided by intensities in different classes. Meanwhile, it is easy
to verify that the values of the two terms will increase and decrease respectively when θ covers [0, 2π]

instead of [0, π/2].
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3.2.2. The QLEEM Method

Intuitively, the intensities far apart from each other and their probability distribution provide
the evidence of thresholding. Therefore, we rewrite the density matrix of the given histogram in
a decomposed form:

ρ = υ1ρ1 + υ2ρ2. (21)

where ρ1 and ρ2 describe the probability distributions of local and remote intensity levels (that is,
intra-class and inter-class uncertainty), respectively. Meanwhile, as there is no more knowledge about
υ1 and υ2 except υ1 + υ2 = 1, we assume υ1 = υ2 = 1/2 according to the foundational principle of the
entropy theory.

Now, we substitute ρ1 with ρ̃ given by the proposed lossy encoding scheme, since it contains the
information contributed by local uncertainty of intensity vectors, and maximize the von Neumann
entropy of Equation (21) for determining optimal thresholds:

THop = arg max S(
1
2

ρ̃ +
1
2

ρ̂). (22)

Here, we adopt orthogonal state vectors in M-dimensional space representing M classes after
thresholding, since we want these intensity classes to be as independent as possible. Let:

ρ̃ =
M−1

∑
i=0

λ1,i |θ1,i〉 〈θ1,i| , ρ̂ =
M−1

∑
i=0

λ2,i |θ2,i〉 〈θ2,i| (23)

be orthonormal decompositions for the states ρ̃ and ρ̂, then for any one eigenvector of ρ̃ denoted with
|θ1,j >, there must exist an eigenvector of ρ̂ named |θ2,i > satisfying the relationship of |θ2,i >= ±|θ1,j >

when S((ρ̃ + ρ̂)/2) takes the max value. Meanwhile, the eigenvalues of the state can be determined
according to the following equation:

λ2,i =
2
M

− λ1,j, i f |θ2,i〉 = ± ∣∣θ1,j
〉

. (24)

For the sake of representation, here we give the evidence of the above conclusion for the 2D
situation. Assuming λ1 and λ2 are eigenvalues of the state (ρ̃+ ρ̂)/2, its entropy will take the maximum
value if we equivalently maximize:

λ1λ2 =λ1,0λ2,0sin2(θ1,0 − θ2,0) + λ1,0λ2,1sin2(θ1,0 − θ2,1) + λ1,1λ2,0sin2(θ1,1 − θ2,0)

+ λ1,1λ2,1sin2(θ1,1 − θ2,1) + λ1,0λ1,1 + λ2,0λ2,1
(25)

Notice that 〈θ1,0|θ1,1〉 = 0 and 〈θ1,0|θ1,1〉 = 0 must hold. Then:

λ1λ2 =(λ1,0λ2,0 + λ1,1λ2,1)sin2(θ1,0 − θ2,0) + (λ1,0λ2,1 + λ1,1λ2,0)cos2(θ1,0 − θ2,0)

+ λ1,0λ1,1 + λ2,0λ2,1
(26)

will take the extremum when 〈θ1,0|θ1,1〉 = 0 or 1. In other words,{
|θ2,0〉 = ± |θ1,0〉
|θ2,1〉 = ± |θ1,1〉

or :

{
|θ2,0〉 = ± |θ1,1〉
|θ2,1〉 = ± |θ1,0〉

(27)

must hold. Without loss of generality, we adopt the first case of Equation (27) for the succeeding
discussions. Then:

λ1λ2 = λ1,0λ2,1 + λ1,1λ2,0) + λ1,0λ1,1 + λ2,0λ2,1

= −λ2
2,0 + (1 + λ1,0 − λ1,1)λ2,0 + λ1,0λ1,1 + λ1,1

(28)
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will reach its maximum value when:

λ2,0 = (1 + λ1,1 − λ1,0)/2

=
2
M

− λ1,2

= λ1,1

. (29)

The above conclusions have the instructive function for thresholding, which can be seen in two
aspects:

(1) Based on the proposed lossy-encoding scheme, we can directly calculate the eigenvalues of ρ̂

according to Equation (24), which represent the probability distribution of intensity classes after
thresholding, and then determine the optimal threshold values.

(2) As the probability with which any one intensity class occurs must be greater than zero, according
to Equation (24), all eigenvalues of the density matrix ρ̃ would satisfy the condition of λ1,i < 2/M.
Otherwise,λ1,i ≥ 2/M indicates that there exist meaningless and unnecessary classes for
segmentation. In summary, the upper bound of the thresholding level can be determined
using our method. This feature implies that our method is more feasible than the most of the
other existing ones, since the thresholding level, as a hyperparameter, is often predetermined
empirically.

Finally, the optimal thresholds TH = th1, th2, · · · , thM−1 can be determined according to the
following relationships: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

th1
∑

i=0
pi ≤ λ0 <

th1+1
∑

i=0
pi

. . .
thM−1

∑
i=thM−2+1

pi ≤ λM−1 <
thM−1+1

∑
i=thM−2+1

pi

(30)

where λ0, λ1, · · · , λM−1 is the sequence taken from the eigenvalue set of ρ̂, and the corresponding
sequence |θ0〉 , |θ1〉 , · · · , |θM−1〉 belongs to the circular permutation of all eigenvectors, which satisfy
the following rules: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

|θi〉 = arg max
j

| 〈θj
∣∣0〉 |∣∣∣θ(i+1)modM

〉
= arg max

j
| 〈θj

∣∣1〉 |
· · ·∣∣∣θ(i+M−1)modM

〉
= arg max

j
| 〈θj

∣∣M − 1
〉 |

. (31)

According to the methods mentioned above, the framework of the QLEEM algorithm is given in
Algorithm 1.

Algorithm 1 The framework of the QLEEM algorithm
Input: The original image I, the thresholding level M
Output: The optimal thresholds
Init: Compute the histogram of the input image;
Step 1: Obtain density matrix ρ̃ by using the lossy-encoding scheme;
Step 2: Calculate the eigenvalues and eigenvectors of ρ̃ and then ρ̂
Step 3: Enumerate all possible M circular sequences of the eigenvalues of ρ̂, and then get M groups of
thresholds;
Step 4: loop over the M groups of thresholds, and select the optimal one based on which the entropy
denoted in Equation (15) takes the maximum value.
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3.2.3. Time Complexity of the QLEEM Algorithm

For the problem of M-level thresholding segmentation of images containing L-level intensities,
the time of calculating the density matrix ρ̃ is O(L); computing eigenvalues and eigenvectors of ρ̃ needs
O(M3); the time for performing Step 3 is O(M! + L); and the loop in Step 4 consumes O(M ∗ 23) time.
Since M << L is satisfied in general cases, the optimal performance time of the QLEEM algorithm is
achieved by T = O(L), which notably outperforms Otsu’s T = O(AM−1

L−1 /2M−2).

4. Experiments and Comparisons

4.1. Datasets and Settings

To evaluate the performance of the proposed methods, a set of standard test images was obtained
from the Berkeley segmentation dataset [36]. All of the test images are 8-bit in depth, with a size of
481 × 321 pixels. The algorithms used for comparison are Otsu’s between-class variance method [17],
Kapur’s entropy criterion method [19], the quantum version of Kapur’s [35] and our GQEM and
QLEEM methods. These algorithms are implemented with MathWorks MATLAB 2014a on a Thinkpad
notebook with an Intel Core-i5 2.2-GHz processor, 16 GB RAM and Ubuntu 14.04.

Threshold levels, quality of segmented images and time complexity are the most important
indicators for evaluating the performance of image thresholding algorithms. Here, we evaluate the
quality of segmented images by using the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM). In addition, four measures: the Dice similarity coefficient (DICE) [37], the probabilistic rand
index (PRI) [38], the global consistency error (GCE) [36] and the variation of information (VI) [39],
are used to assess segmentations against ground truth data. Time complexity is measured by the
execution time required in these methods. In particular, except for the proposed QLEEM, all the
other exhaustive-search-based methods used in our experiments are sped up with the harmony search
multithresholding algorithm (HSMA) [25].

4.2. Experimental Results and Comparisons

We applied these algorithms to all 300 pictures contained in the standard test dataset for assessing
their performance. For the sake of representation, only five images, which are presented in Figure 2,
have been used to show the bi-level segmented results. In Figure 3, the thresholding quality of the
outcomes is analyzed considering the complete set, where the PSNR and SSIM scores are calculated
under different thresholding levels, and we take the average values on the whole dataset.

(a) (b) (c) (d) (e) (f)

Figure 2. Visual comparison of (a) original images and bi-level segmented ones by using the (b) Otsu,
(c) Kapur, (d) quantum version of Kapur’s method (QKapur), (e) global quantum entropy maximization
(GQEM) and (f) quantum lossy-encoding-based entropy maximization (QLEEM) methods, respectively.
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Figure 3. Quality assessment of the segmented images in terms of (a) peak signal-to-noise ratio (PSNR)
and (b) structural similarity (SSIM).

Meanwhile, we recorded the CPU time consumed by these algorithms, and the average values
for all the test images under different thresholding levels are depicted in Figure 4. As an example,
the experimental results in terms of thresholding level, thresholds and CPU time are tabulated in
Table 1 for a randomly selected image.
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Figure 4. The comparison of the time consumption of different methods under different thresholding levels.

Table 1. Performance comparison in terms of thresholding level (M), thresholds and computation time.

Method M Thresholds CPU Time (s)

Otsu

2 116 0.233523
3 85-157 0.313405
4 69-120-178 0.348805
5 60-101-138-187 0.666153
6 52-85-117-150-193 1.293793

Kapur

2 155 0.256437
3 91-170 0.395228
4 75-130-183 0.473902
5 66-113-160-203 1.222006
6 56-93-132-170-209 1.181965

QKapur

2 147 2.007029
3 10-147 2.12888
4 10-17-147 3.924715
5 10-17-147-252 3.114482
6 10-17-147-251-252 4.59602

GQEM

2 114 0.338808
3 84-147 0.410247
4 70-117-168 0.666514
5 62-99-133-176 0.682051
6 54-86-114-143-182 0.985941

QLEEM

2 107 0.001661
3 86-135 0.002079
4 62-106-153 0.002549
5 53-90-121-160 0.003043
6 49-83-106-133-166 0.003673
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From Figure 2, we find that the segmentations obtained by using GQEM, QLEEM and Otsu
are visually indistinguishable, which means these three methods have a similar performance.
This conclusion can be further confirmed in Figure 3: the GQEM method obtains almost the same
PSNR score as Otsu’s in spite of very little computational error; meanwhile, both GQEM and QLEEM
outperform the others in terms of SSIM. The experimental results can be explained with the criteria
of maximizing quantum entropy and the lossy-encoding scheme proposed in our methods, because
they emphasize the weight of between-class variance and retain the local information, respectively.
This feature is highly consistent with the SSIM method, which assesses the perceived quality of images
based on structural similarity indicators, such as contrast and local inter-dependencies of pixels.

Examining Figure 4 and Table 1, we can see that the proposed QLEEM algorithm achieves the
fastest execution speed (at least 100-times faster than Otsu in the case of bi-level thresholding and up
to 350-times when the number of thresholds increases to five). In addition, the time consumption of
QLEEM was insensitive to increments of the threshold level, since the complexity of our algorithm
was mainly correlated with the total intensity level, instead of the amount of thresholds.

On the other hand, the upper bounds of the thresholding level recommended by the proposed
QLEEM algorithm were tested. We found that the maximum possible amount of thresholds was lower
than 10 for about 40 images in the test set. Our algorithm would terminate when we try to apply more
thresholds to them. Figure 5 lists two groups of images and corresponding histograms, for which the
proposed algorithm gave one and two thresholds, respectively. According to the visual observation, it
is reasonable to believe that the suggested amounts of thresholds are feasible, as there are no more
than three distinct peaks in their histograms.
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Figure 5. Two groups of images in the test dataset, to which the QLEEM algorithm suggests applying
(a) bi-level and (b) tri-level thresholding, respectively.

Finally, we evaluate segmentations against the ground truth data. The first experiment is
performed on a synthetic image corrupted by Gaussian noise (the mean value is zero, and the variance
is 0.03), which is utilized for testing the efficiency and robustness of the proposed methods. Figure 6
shows the noisy image and segmentation results obtained by different algorithms. In addition,
the performance indexes: the DICE ratio, PRI, GCE and VI scores, are used to assess the robustness of
these algorithms. The corresponding scores are listed in Table 2.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Comparison of segmentation results on a synthetic image. (a) noisy image (Gaussian noise
with zero mean and 3% variance); (b) Otsu result; (c) Kapur result; (d) QKapur result; (e) GQEM result;
(f) QLEEM result.

Table 2. Performance of different algorithms on a noisy image (the best values are highlighted). DICE,
Dice similarity coefficient; PRI, probabilistic Rand index; GCE, global consistency error; VI, variation
of information.

Algorithm DICE PRI GCE VI

Otsu 0.889787 0.934784 0.09807 0.54778
Kapur 0.908592 0.946141 0.093275 0.532568

QKapur 0.472366 0.426367 0.084447 1.570079
GQEM 0.921509 0.955491 0.078646 0.45552
QLEEM 0.908281 0.948501 0.097511 0.580201

The visual comparison in Figure 6 shows that the proposed GQEM and QLEEM algorithms
produce clearer and more accurate segmentation results. From Table 2, we can confirm this conclusion:
our GQEM clearly outperformed the others on the DICE, PRI, GCE and VI values. The robustness of
the proposed GQEM for noisy images can be explained by comparing the object function of GQEM
and Otsu. Considering the last term in Equations (2) and (17), both of them measure the distance
between pixel intensities, but our GQEM method scaled the range [0, L − 1] of this parameter down to
[0, 1]. This feature is helpful for suppressing the high contrast caused by noise, and then, our GQEM
algorithm partly played the role of a low-pass filter in segmentation tasks.

In the second experiment, we performed thresholding segmentation on BSDS300 dataset and
compared the results with the ground truth segmentations in terms of the DICE, PRI, GCE and VI
indexes. The average scores of these indicators obtained by different algorithms are presented in
Table 3.
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Table 3. Average performance of different algorithms on BSDS300 dataset (the best values are highlighted).

Algorithm DICE PRI GCE VI

Otsu 0.411934 0.613044 0.385938 2.825647
Kapur 0.400079 0.64313 0.366348 2.49384

QKapur 0.363979 0.542463 0.1704 1.802242
GQEM 0.412396 0.611379 0.384827 2.892085
QLEEM 0.405824 0.614035 0.386781 2.931183

From Table 3, we can see that all the listed algorithms obtained lower scores compared with those
that have been well trained with the manually-labeled dataset. In general, thresholding segmentation
is a form of unsupervised segmentation, which cannot use any a priori knowledge involving the
ground truth of a training set of images. Furthermore, the proposed GQEM and QLEEM along with the
others used for comparison are all histogram-based algorithms. They achieve optimal segmentation by
merely utilizing the probability distribution of colors, instead of the spatial and texture information.

5. Conclusions

In this paper, we address the image thresholding problem on quantum state space. The proposed
GQEM and QLEEM methods follow a different way to represent images and determine the optimal
thresholds in the language of quantum mechanics. In summary, the contributions of this paper mainly
include the following aspects: (1) To our knowledge, this is the first application of the global quantum
entropy criteria to the thresholding problem. The von Neumann entropy is more powerful for image
segmentations than the Shannon entropy, because it measures the distance between pixel intensities, as
well as the probability distribution. (2) Compared with other state-of-the-art approaches, our QLEEM
algorithm tends to retain more structural information after segmentations. It is highly consistent with
the way in which the HVS works. (3) The proposed QLEEM algorithm has the lowest consumption
of execution times known to us, even compared with others that are sped up with some intelligent
optimization techniques.

Author Contributions: Conceptualization, X.W. Formal analysis, X.W. Methodology, X.W. and C.Y. Project
administration, C.Y. Validation, G.-S.X. Writing, original draft, X.W. Writing, review and editing, C.Y. and Z.L.

Funding: This work was supported in part by the National Natural Science Foundation of China
(Nos. 61702163, U1504610).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bhat, M. Digital image processing. Int. J. Sci. Technol. 2014, 3, 272–276.
2. Zaitoun, N.M.; Aqel, M.J. Survey on image segmentation techniques. Procedia Comput. Sci. 2015, 65, 797–806.

[CrossRef]
3. Saha, S.; Bandyopadhyay, B. Automatic MR brain image segmentation using a multiseed based multiobjective

clustering approach. Appl. Intell. 2011, 35, 411–427. [CrossRef]
4. Iakovidis, D.; Savelonas, M.; Karkanis, S. A genetically optimized level set approach to segmentation of

thyroid ultrasound images. Appl. Intell. 2007, 27, 193–203. [CrossRef]
5. Kamel, M.; Zhao, A. Extraction of binary character/graphics images from grayscale document images.

Graph. Models Image Process. 1993, 55, 203–217. [CrossRef]
6. Vijayalakshmi, S.; Durairaj, D.C. Use of multiple thresholding techniques for moving object detection and

tracking. Int. J. Comput. Appl. 2013, 80, 1–7. [CrossRef]
7. Valova, I.; Milano, G.; Bowen, K.; Gueorguieva, N. Bridging the fuzzy, neural and evolutionary paradigms

for automatic target recognition. Appl. Intell. 2011, 35, 211–225. [CrossRef]
8. Yang, M.-D.; Su, T.-C.; Pan, N.-F.; Yang, Y.-F. Systematic image quality assessment for sewer inspection.

Expert Syst. Appl. 2011, 38, 1766–1776. [CrossRef]

201



Entropy 2018, 20, 728

9. Goumas, S.K.; Dimou, L.N.; Zervakis, M.E. Combination of multiple classifiers for post-placement quality
inspection of components: A comparative study. Inf. Fusion 2010, 11, 149–162. [CrossRef]

10. Sasirekha, D.; Chandra, D.E. Enhanced techniques for PDF image segmentation and text extraction. Int. J.
Comput. Sci. Inf. Secur. 2012, 10, 1–5.

11. Yang, Y.; Hallman, S.; Ramanan, D.; Fowlkes, C.C. Layered object models for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1731–1743. [CrossRef] [PubMed]

12. Ma, Z.; Tavares, J.; Jorge, R. A review of algorithms for medical image segmentation and their applications
to the female pelvic cavity. Comput. Methods Biomech. Biomed. Eng. 2010, 13, 235–246. [CrossRef] [PubMed]

13. Cuevas, E.; Zaldivar, D.; Sossa, H. A multi-threshold segmentation approach based on Artificial Bee Colony
optimization. Appl. Intell. 2012, 37, 321–336. [CrossRef]

14. Zhang, Z.; Chen, C.; Sun, J. EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recognit.
2003, 36, 1973–1983. [CrossRef]

15. Lu, Z. Entropy regularized likelihood learning on Gaussian mixture: two gradient implementations for
automatic model selection. Neural Process. Lett. 2007, 25, 17–30. [CrossRef]

16. Ma, J.; Wang, T.; Xu, L. A gradient BYY harmony learning rule on Gaussian mixture with automated model
selection. Neurocomputing 2004, 56, 481–487. [CrossRef]

17. Otsu, N. A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 1979,
9, 62–66. [CrossRef]

18. Farshi, T.P.; Demirci, R.; Feizi-Derakhshi, M.R. Image clustering with optimization algorithms and color
space. Entropy 2018, 20, 296. [CrossRef]

19. Kapur, J.; Sahoo, P.; Wong, A. A new method for gray-level picture thresholding using the entropy of the
histogram. Comput. Vis. Gr. Image Process. 1985, 29, 273–285. [CrossRef]

20. Pare, S.; Kumar, A.; Bajaj, V. An efficient method for multilevel color image thresholding using cuckoo search
algorithm based on minimum crossentropy. Appl. Soft Comput. 2017, 61, 570–592. [CrossRef]

21. Liang, Y.C.; Cuevas, J.R. An automatic multilevel image thresholding using relative entropy and meta-heuristic
algorithms. Entropy 2013, 15, 2181–2209. [CrossRef]

22. Ramirez-Reyes, A.; Hernandez-Montoya, A.R.; Herrera-Corral, G.; Dominguez-Jimenez, I. Determining the
entropic index q of Tsallis entropy in images through redundancy. Entropy 2016, 18, 299. [CrossRef]

23. Ye, Z.; Yin, H.; Ye, Y. Comparative analysis of two leading evolutionary intelligence approaches for multilevel
thresholding. Int. J. Signal Imaging Syst. Eng. 2018, 11, 20–30. [CrossRef]

24. Dehshibi, M.M.; Sourizaei, M. A hybrid bio-inspired learning algorithm for image segmentation using
multilevel thresholding. Multimedia Tools Appl. 2017, 76, 15951–15986. [CrossRef]

25. Oliva, D.; Cuevas, E.; Pajares, G. Multilevel thresholding segmentation based on harmony search optimization.
J. Appl. Math. 2013, 2013, 1–24. [CrossRef]

26. Shor, W.P. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings of the
35th Annual Symposium Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994;
pp. 124–134.

27. Grover, L. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th Annual
ACM Symposium on the Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219.

28. Venegas-Andraca, S.E.; Bose, S. Storing, processing and retrieving an image using quantum mechanics.
In Proceedings of the SPIE Conference Quantum Information and Computation, Orlando, FL, USA,
21–25 April 2003; pp. 137–147.

29. Le, P.Q.; Dong, F.; Hirota, K. A flexible representation of quantum images for polynomial preparation, image
compression, and processing operations. Quantum Inform. Process. 2011, 10, 63–84. [CrossRef]

30. Caraiman, S.; Manta, V.I. Image segmentation on a quantum computer. Quantum Inf. Process. 2015,
14, 1693–1715. [CrossRef]

31. Yangguang, S. Quantum statistical edge detection using path integral monte carlo simulation. Bio-Inspired
Computing-Theories and Applications. Commun. Comput. Inf. Sci. 2014, 472, 430–434.

32. Yan, F.; Iliyasu, A.M.; Fatichah, C.; Tangel M.L. Quantum image searching based on probability distributions.
J. Quantum Inf. Sci. 2012, 2, 55–60. [CrossRef]

33. Ning, W.; Song, L. A watermarking strategy for quantum image based on least significant bit. Chin. J.
Quantum Electron. 2015, 32, 263–269.

202



Entropy 2018, 20, 728

34. Feng, S.; Xiang, L.; Huabao, L. Sampling number of reconstruction arithmetic based on quantum correlated
imaging. Chin. J. Quantum Electron. 2015, 32, 144–149.

35. Du, S.; Wu, G.; Ma, L. Maximum quantum entropy based optimal threshold selecting criterion for
thresholding image segmentation. J. Comput. Inf. Syst. 2014, 10, 3359–3366.

36. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological statistics. Proc. Int. Conf. Comput. Vis. 2001,
2, 416–423.

37. Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302.
[CrossRef]

38. Unnikrishnan, R.; Pantofaru, C.; Hebert, M. Toward objective evaluation of image segmentation algorithms.
IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 929–944. [CrossRef] [PubMed]

39. Arbelaez, P.; Maire, M.; Fowlkes, C. Contour detection and hierarchical image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 2011, 33, 898–916. [CrossRef] [PubMed]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

203





Article

Quantum Quantifiers for an Atom System Interacting
with a Quantum Field Based on Pseudoharmonic
Oscillator States

Bahaaudin Mohammadnoor Raffah 1 and Kamal Berrada 2,*

1 Department of Physics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
braffah@kau.edu.sa

2 Department of Physics, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU),
Riyadh 11623, Saudi Arabia

* Correspondence: berradakamal@ymail.com

Received: 9 June 2018; Accepted: 2 August 2018; Published: 16 August 2018
��������	
�������

Abstract: We develop a useful model considering an atom-field system interaction in the framework of
pseudoharmonic oscillators. We examine qualitatively the different physical quantities for a two-level
atom (TLA) system interacting with a quantized coherent field in the context of photon-added
coherent states of pseudoharmonic oscillators. Using these coherent states, we solve the model
that exhibits the interaction between the TLA and field associated with these kinds of potentials.
We analyze the temporal evolution of the entanglement, statistical properties, geometric phase and
squeezing entropies. Finally, we show the relationship between the physical quantities and their
dynamics in terms of the physical parameters.

Keywords: pseudoharmonic oscillators; entanglement; von Neumann entropy; geometric phase;
nonclassicality; squeezing entropies; quantum dynamics; photon-added coherent states

1. Introduction

Recently, the outgrowth and development of quantum information processing (QIP) have
been supplied to enhance a large knowledge-base and increase the literature background of the
quantum entanglement phenomenon, which is responsible for the implantation of the most tasks of
QIP [1–4]. The importance of quantum entanglement in various applications of QIP has led to the
examination and realization of high-dimensional systems and provided the significance of this kind
of correlation in many-body quantum systems [5]. In recent years, various optical devices have been
suggested to realize and generate the quantum entanglement, such as NMR systems [6], beam splitters
[7], nanoresonators [8] and cavity QED [9]. Moreover, the generation of this kind of correlation
actually emerges as an objective in the quantum experimental implementation when examining the
non-classicality effects in quantum mechanics. Several attempts have been made to measure the
quantum entanglement among particles and fields. Entanglement between atoms and photons has
been treated and examined at optical frequencies with atoms [10] and electron spins [11], to interface
stationary and flying qubits [12], to perform quantum communication [13] and to implement nodes
for quantum repeaters [14] and networks [15].

The geometric phase (GP) is an example of the features of quantum mechanics that could remain
overlooked by almost two generations of physicists. A considerable understanding of the formal
description of quantum mechanics has been achieved after Berry’s discovery [16–20] of a geometric
feature related to the dynamics of a quantum system in the adiabatic and cyclic unitary evolution of
non-degenerate states. There are plenty of generalizations including nonadiabatic [17], non-cyclic and
even nonunitary evolution of the quantum state. Berry has demonstrated that the wave function of
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a quantum system retains a memory of its evolution in its complex phase argument, which apart from
the usual dynamical contribution, only depends on the geometry of the path traversed by the system.
Known as the GP factor, this contribution originates from the very heart of the structure of quantum
mechanics. The GP is attractive for the implementations of fault-tolerant quantum computation [21–25].
The idea is to exploit this inherent robustness provided by the topological properties of some quantum
systems as a means of constructing built-in fault-tolerant quantum logic gates.

Squeezed states in quantized electromagnetic fields have attracted much attention and exhibited
in several interesting works in the literature [26]. This squeezing physical concept has been extended
to atomic systems [27] considering the definition used for the radiation field. In this context, the atomic
squeezing has obtained a great deal of interest and provided many potential applications [28–30].
The atom-photon interactions are utilized to describe the conditions under which the squeezing
effect will exist [31]. The appearance of atomic squeezing in a system of three-level atoms placed in
a two-mode cavity is analyzed through the effective dipole-dipole interaction between atoms [32].
The model of spin-squeezed atoms, which is based on the Raman scattering with a strong laser pulse,
was used to determine the transfer of the change of the correlation between the atom and the light [33].
Atomic squeezing under collective emission was considered to introduce a method for controlling the
temporal behavior of the squeezing factor and characterizing the collective emission by the influence of
the squeezing effect [34]. The squeezing effect in optimal and nonlinear spin states has been examined
in [35,36], respectively. The relationship between the atomic spin squeezing and bosonic quadrature
was introduced [37]. Moreover, the experimental realization for an ensemble of V-type atoms was
reported [38,39]. In all these cases, the atomic squeezing has been treated in the framework of the
Heisenberg uncertainty relations.

The Jaynes–Cummings (JC) model has received much interest, and various axes in different
branches of the optical physics both theoretically and experimentally have been developed. The JC
model has seen its real practice by exploiting the experimental step in the electrodynamics cavities.
In order to understand the physical phenomena through that model, it is important to include the
external noises on the studied quantum system [40–43]. Interestingly, it is shown that the noises that
lead to the loss of energy have a significant impact on experimental progress in realistic physical
situations. On the other hand, the noises that lead to destruction of the coherence in the system state
also play a crucial role in those fields.

Coherent states play a crucial role in various physical branches [44,45], which are introduced as
an eigenvector of the lowering operator for quantum harmonic oscillators [46]. These states exhibit
physical properties like the classical electromagnetic field. In this context, the classical trajectory is
used to determine the center of the coherent states’ wave packet for the harmonic oscillator potentials.
There are other coherent states for nonlinear quantum electromagnetic fields, called nonclassical states,
which are antibunching and sub-Poissonian statistics, squeezing and high order squeezing [47,48].
When the nonclassical quantum effects are taken into account, the classical limit and nonclassical limit
of the radiation fields are determined by the ordinary coherent state.

The pseudoharmonic oscillator (PHO) potentials have attracted much attention, and more insights
are being obtained on different physical subjects [49]. The PHO can be considered in a certain sense
as an intermediate potential between the harmonic oscillator (HO) potential (an ideal potential)
and anharmonic potentials (the more realistic potentials) [50]. A comparative analysis of potentials
considering three-dimensional harmonic oscillator potential (HO-3D) and PHO was introduced in [51].
It is claimed that like the coherent states (CSs) for the HO, the CSs for the PHO can be helpful in
the theory of quantum information [50]. In this context, it is shown that even if the HO-3D can
be considered as a limit oscillator of the PHO, it is possible to find a harmonic limit that leads the
obtained formulae for the PHO in the CSs formalism to the corresponding well-known formulae for
the Glauber coherent state of the HO-1D (referring to a coherent state of a quantum simple harmonic
oscillator) [52,53]. In fact, it is shown that apart from their theoretical merit (by contributing to a better
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understanding of the behavior and properties of the PHO), the formalism of the CSs of the PHO may
have also a practical importance (by using it in the quantum information theory and practice) [50].

In the present manuscript, we consider the coherent states associated with the pseudoharmonic
oscillator potentials and propose a new model of the atom-field in the framework of these kinds of
potentials. We investigate the dynamical behavior of the atomic inversion, photons’ distribution,
geometric phase, degree of entanglement and atomic squeezing for the quantum system, which will
be described in the next section. The paper is organized as follows: In Section 2, we describe our
Hamiltonian model and provide an exact form for the ket state of the system using the Schrödinger
picture. Section 3 describes the quantum quantifiers considered in this manuscript. In Section 4,
we show the numerical results and discuss the variation of the population inversion, entanglement,
geometric phase and atomic squeezing. Finally, some conclusions are given in Section 5.

2. Physics Model and Dynamics

The PHO is considered as an anharmonic potential [51,54], which plays a similar role as
the HO potential, and it admits exact mathematical studies. The PHO potential can be utilized
in some cases as an intermediate oscillator between the HO and more anharmonic oscillators,
e.g., Morse oscillator [55,56], Pöschl–Teller oscillator [57], which are more realistic. Similarly to the
HO-1D (and a few other quantum systems, e.g., the Morse potential, as well as Poschl–Teller), the PHO
potential accepts the building of coherent states [49,58]. Generally, the coherent states are of special
importance due to their remarkable mathematical properties and interesting physical applications,
especially in quantum optics [59] and also in quantum information theory [60]. The excitation on
CSs can be considered as one of the possible generalizations of CSs. These states may be useful in
the optical communications field, which employes the nonclassical signal beams, usually mixed with
thermal noise [61]. On the other hand, the statistical properties of the CSs are useful in quantum
optics and quantum electronics. A new class of states has been introduced, which are generated by
the successive action of the raising operator on the Klauder–Perelomov coherent states of the PHO,
and we have shown the important nonclassical properties such states possess [61].

The PHO effective potential has the form [58]:

V(r) =
Mω2
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rj
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where ω presents the angular frequency, M defines the reduced mass and rj is the equilibrium distance
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It is shown that the bounded states for the PHO are associated with the dynamical SU(1, 1)
group [49]. The su(1, 1) Lie algebra is of great interest in quantum optics because it can characterize
many kinds of quantum optical systems [62,63]. It has recently been utilized for investigating the
nonclassical properties of light in quantum optical systems [45]. In particular, the bosonic realization of
su(1, 1) describes the degenerate and non-degenerate parametric amplifiers [64]. The squeezed states
and nonlinear CSs of photons have been considered in terms of the su(1, 1) Lie algebra and the CSs
associated with this algebra [64]. The photon-added coherent states of the pseudoharmonic oscillator
(PA-PHOCSs) are expanded as [65]:

|z, m, k〉 = 1√
Ck

(
|z|2

) ∞

∑
n=0

zn√
R(n, k, m)

|n + m, k〉, (3)
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where:

R(n, k, m) =
Γ(2k) {Γ(n + 1)}2

Γ(n + m + 2k)Γ(n + m + 1)
, (4)

and:

Ck

(
|z|2

)
=

∞

∑
n=0

z2n

R(n, k, m)
. (5)

where m denotes the excited or the number of added photons and k is the Bragmann index. The energy
spectrum of the PHO is identical to the HO-1D energy spectrum, up to a translation in the energy
scale. It was demonstrated [66,67] that two specific elements of the positive discrete series of the
SU(1, 1) group unitary irreducible representations (for k = 1/4 and k = 3/4) reduce the corresponding
representation spaces to the Hilbert space of the HO-1D.

The JC model is considered as one of the simplest models to describe the interaction between matter
and radiation [68]. This model provides a considerably richer way to investigate the dynamical behavior
of the physical phenomena that occur in the atom-field systems. In the rotating wave approximation
limit, the model allows an explicit solution, which may be proven empirically. Here, we consider a TLA
system interacting with PA-PHOCSs where the coupling term is dependent on the time,

HI(t) = λ(t)
(

â
√

â† â |0〉 〈1|+
√

â† ââ† |1〉 〈0|
)

, (6)

where |1〉 (respectively |0〉) defines the lower (respectively upper) level of the two-level atom
(TLA), â (two-level atom â†) is correspondent to the annihilation (respectively creation) operator
of the quantum field and λ(t) = g sin2(t) is the coupling parameter, where in the case of constant
coupling between the TLA and the field, it can be obtained at λ(t) = g. The time-dependent coupling
λ(t) is assumed to be a sine function. In this context, the transient regime of the coupling varies
rapidly with time. The generalization from the constant coupling λ to arbitrary time-dependent
coupling λ(t) gives the possibility to model various new physical situations not discussed before.
A realization of particular interest is when λ(t) may be the time-dependent alignment or orientation
of the atomic/molecular dipole moment using a laser pulse [69] and the motion of the atom through
the cavity. Theoretical examination of a cavity-quantum electrodynamics (QED) system monitored
by utilizing bichromatic adiabatic passage under the influence of a dissipative environment [70],
where the authors have analyzed the generation of a controlled Fock number state inside the cavity by
a traveling atom, encounters the time-dependent effect and the delays of the Rabi frequencies of the
laser fields and cavity.

We suppose that the TLA starts from the upper state |0〉, and the quantum field is prepared in the
PA-PHOCS, |z, m, k〉; hence, the quantum state of the combined system is written as:

|�(0)〉 = |�A(0)〉 ⊗ |z, m, k〉 . (7)

The ket state vector for any later time is written as:

|�(t)〉 = exp

⎧⎨⎩−i
t∫

0

HI(T)dT

⎫⎬⎭ |�(0)〉 =
∞

∑
n=0

{Xn(t)|n, u〉+ Yn(t)|n + 1, l〉} . (8)

The time-dependent functions Xn and Yn are given by:

Xn(t) = Qn cos( f (t)(n + m + 1))

Yn(t) = Qn sin( f (t)(n + m + 1)),

where |z, m, k〉 in Equation (7) can be written as:
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|z, m, k〉 =
∞

∑
n=0

Qn|n〉,

and:

f (t) =

{
gt f or λ(t) = g

g( t
2 − sin(2t)

4 ) f or λ(t) = g sin2(t).

Once the wave function has been analytically obtained, it can be employed to analyze and discuss
many physical features of the whole system and subsystems.

3. Quantum Quantifiers

In this section, we define and give a brief discussion of the different physical quantities. The atomic
inversion is introduced as the probability difference of getting the TLA system in the upper and
lower levels:

Sz(t) =
∞

∑
n=0

{
|Xn(t)|2 − |Yn(t)|2

}
. (9)

When the field is defined in a Glauber state at t = 0, the atomic inversion exhibits a collapse-revival
feature during the time-evolution [71]. The origin of this phenomenon is dependent on the photon
distribution of the field, and it is experimentally realizable through ionization detectors as the atomic
beam leaving the cavity [72].

To examine the dynamical behavior of the entanglement for the TLA-field state, we introduce the
von Neumann entropy as a measure, which is defined as [73]:

SA(t) = −Tr {ρA ln ρA} = −
2

∑
j=1

μj ln μj, (10)

where ρA (respectively ρF) presents the TLA (respectively field) density operator, obtained by making
the trace over the quantum field (respectively TLA) element basis, i.e., ρA = TrF (|�(t)〉 〈�(t)|)) and
μj denotes the eigenvalues of the TLA (respectively field) density operator. This entropy function
changes from zero value for a factorizable state to one for a maximally-entangled state.

In order to analyze the photons’ distribution, we utilize Mandel’s parameter, which is considered
as an accurate measure for the statistical properties of the quantum field. It is defined in terms of the
average photon number of the field state as [74,75]:

MP =
〈N2〉 − 〈N〉2 − 〈N〉

〈N〉 , (11)

where:

〈Ni〉 =
∞

∑
n=0

{
ni |Xn(t)|2 + (n + 1)i |Yn(t)|2

}
, i = 1, 2. (12)

The MP parameter determines the statistical properties of the field state, where (−1 ≤ MP < 0)
corresponds to the sub-Poissonian photon distribution, MP > 0 is for super-Poissonian distribution
and QP = 0 is for the Poissonian distribution (semi-classical states).

The evolution of the quantum system is described as noncyclic, when the initial and final states
are considered different. The initial and the final vector ket states are not connected through a complex
scalar factor. If we assume that the initial ket state |�(0)〉 evolves to |�(t)〉 and the scalar product
M(t) = 〈�(0)|�(t)〉 is expressed by a real number �, where M(t) = Reiφ, consequently, the noncyclic
phase is given by the angle φ. The cyclic geometric phase is considered as a particular case of the
noncyclic phase, and it can be obtained by taking R = 1. The Pancharatnam phase includes the
geometric phase (GP) and dynamical phase and is defined as [76]:
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ΦG(t) = arg(〈�(0)|�(t)〉). (13)

The Heisenberg uncertainty relation (HUR) is introduced to examine the squeezing entropy,
which is described by Pauli matrices σx, σy and σz for the TLA in the framework of the quantum
field as:

ΔσxΔσy ≥ 1
2
|〈σz〉|, (14)

where Δσα =
√〈σ2

α〉 − 〈σα〉2. If σα verifies the condition:

V(σα) = Δσα −
√

|〈σz〉|
2

< 0, α = x, y. (15)

then, the atomic dipole fluctuation in σα will be squeezed.
For sets of complementary observable in an even-dimensional Hilbert space, an optimal entropic

uncertainty relation has been studied through the quantum entropy theory [77],

N+1

∑
k=1

H(σk) ≥ N
2

ln(
N
2
) + (1 +

N
2
) ln(1 +

N
2
), (16)

with H(σk) giving the information entropy corresponding to the variable Sk. For the general criterion
of the squeezing, we employ entropic uncertainty relation (EUR) defined in Equation (16) in terms of
the information entropy to examine the squeezing for the considered JC model. For the TLA state, ρA,
the information entropies corresponding to the operators σx, σy and σz are given by:

H(σx) = −
{

1
2
+" [ρlu (t)]

}
ln
{

1
2
+" [ρlu (t)]

}
−
{

1
2
−" [ρlu (t)]

}
ln
{

1
2
−" [ρlu (t)]

}
, (17)

H(σy) = −
{

1
2
+! [ρlu (t)]

}
ln
{

1
2
+! [ρlu (t)]

}
−
{

1
2
−! [ρlu (t)]

}
ln
{

1
2
−! [ρlu (t)]

}
, (18)

H(σz) = −ρUu(t) ln ρUu(t)− ρll(t) ln ρll(t), (19)

where ρUu(t) = ∑∞
n=0 |Xn(t)|2, ρll(t) = ∑∞

n=0 |Yn(t)|2 and ρlu (t) = ∑∞
n=0 Xn(t)Y∗

n (t). For a TLA
N = 2, then 0 ≤ H(σα) ≤ ln 2, while from Equation (16), we obtain that the information entropies
corresponding to the operators σx, σy and σz verify:

H(σx) + H(σy) ≥ 2 ln 2 − H(σz). (20)

The aforementioned inequality may be also given as:

δH(σx)δH(σy) ≥ 4
δ|H(σz)| , (21)

where:
δH(σα) = exp[H(σα)]. (22)

The EUR, described by Equation (21), evidences the impossibility of knowledge of simultaneous
information about the observables σx and σy, where the uncertainty of the polarization component σx

(respectively σy) is measured by δH(σx) (respectively δH(σy)).
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Let us now introduce the squeezing of the TLA using EUR defined in Equation (21), which is
called squeezing entropy [77]. The component fluctuations σα (α = x or y) of the TLA are said to be
squeezed if the entropy H(σα) of σα verifies the inequality,

E(σα) = δH(σα)− 2√|δH(σz)|
< 0, α = x, y. (23)

4. Numerical Results and Discussion

In Figure 1, for a TLA initially defined in an upper-level state and the quantum field in
PA-PHOCSs, we display the variation of the population inversion Sz dimensionless for the scaled
time gt with respect to various physical parameters. We compare the effects of parameters k and m in
both cases with and without the time effect. We can see that the population inversion makes period
oscillations during the time-evolution. The atomic inversion after suddenly decreasing to its minimum
value at the beginning of the interaction increases to a maximum value for each periodicity in the case
of m = 0. When m �= 0, the behavior of the atomic inversion makes rapid oscillations exhibiting local
minima and local maxima in each periodicity. Moreover, as is seen, the parameter k has an impact
on the temporal evolution of the atomic inversion only in the absence of photon excitation k = 0
and leads to a decrease in the amount of Sz by a suitable choice k. On the other hand, the existence
of time-dependent coupling influence leads to a reduction of the oscillations of the Sz during the
time-evolution.

The numerical results of the von Neumann entropy have been shown versus the time gt in Figure 2
for various values of the photon-added number in the absence and existence of the time-dependent
coupling influence when the TLA initially stated in the upper level and the quantum field is in
PA-PHOCSs. The dashed line (red) is for m = 0, and the solid line (blue) is for m = 10. Figure 1c,d
presents the temporal evolution of the entanglement for λ(t) = g and λ(t) = g sin2(t), respectively,
in the case of k = 3/4. Generally, the von Neumann is a periodic function with sudden death and
sudden birth entanglement phenomenon during the time-evolution. In the ideal case in which no
atomic motion is considered, von Neumann entropy suddenly increases from zero to its maximum
value, then it decays to zero for each periodic time interval, whereas when the time-dependent effect is
considered, SA attains rapid oscillations due to the fluctuations during the interaction, but also leads
to an enhancement or reduction of the degree of entanglement. This shows that the quantum field
system can help to stabilize the temporal evolution of the entanglement. This behavior is due only to
the influence of the kind of coupling term via the generalized parameter λ(t) and the photon-added
number m. Moreover, it is found that as the parameter m increases, the structure of the oscillations
becomes very complex for different values of k, whereas the coupling effect leads to the disappearance
of these structures of the von Neumann entropy, i.e., the periodicity time increases and the oscillations
are more transparent and accompanied by an increase in the lifetime of sudden death entanglement
phenomenon. From Figures 1 and 2, an interesting relationship can be seen between the dynamical
behavior of the population inversion and the quantum entanglement.

Figure 3 refers to the effect of the parameters m and k on the time evolution of Mandel’s MP
parameter defined by Equation (11) when the field is initially defined in PA-PHOCSs in the absence and
existence of the time-dependent coupling influence. Generally, Mandel’s parameter makes periodic
oscillations, exhibiting a sub-Poissonian and Poissonian distribution at m = 0 for different values of
k. Whereas, for m �= 0, the field statistics tend to fluctuate around the sub-Poissonian distribution.
Interestingly, we obtain that the choice of the initial parameter k only influences the photon statistics of
the quantum field in the absence of the excited photons. When the time-dependent effect is considered,
Mandel’s parameter keeps its behavior with an increase in the periodic time interval during the
evolution.
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Figure 1. Population inversion for the two-level atom (TLA) initially defined in its excited state, and
the field is in photon-added coherent states of the pseudoharmonic oscillator (PA-PHOCSs) for z = 0.5.
(a) The solid line (blue) is for (k, m) = ( 1

4 , 0), and the dashed line (red) is for (k, m) = ( 1
4 , 10). (b) The

solid line (blue) is for (k, m) = ( 1
4 , 0), and the solid line (red) is for (k, m) = ( 1

4 , 10). (c) the solid line is
for (k, m) = ( 3

4 , 0) and the dashed line (k, m) = ( 3
4 , 10). (d) The solid line (blue) is for (k, m) = ( 3

4 , 0)
and the solid line (red) is for (k, m) = ( 3

4 , 10). In (a,c), we consider the case of constant coupling
λ(t) = g and in (b,d), the time dependent coupling λ(t) = g sin2(t).

0 3.14 6.28 9.45 12.56
0

0.1

0.2

0.3

0.4

0.5

0.6

0 3.14 6.28 9.45 12.56
0

0.1

0.2

0.3

0.4

0.5

0.6

0 3.14 6.28 9.45 12.56
0

0.1

0.2

0.3

0.4

0.5

0.6

0 3.14 6.28 9.45 12.56
0

0.1

0.2

0.3

0.4

0.5

0.6

a) b) 

c) d) 

g t g t 

g t g t 

S
A
 S

A
 

S
A
 S

A
 

Figure 2. von Neumann entropy SA with the same conditions of Figure 1. (a) The solid line (blue)
is for (k, m) = ( 1

4 , 0), and the dashed line (red) is for (k, m) = ( 1
4 , 10). (b) The solid line (blue) is for

(k, m) = ( 1
4 , 0), and the solid line (red) is for (k, m) = ( 1

4 , 10). (c) the solid line is for (k, m) = ( 3
4 , 0) and

the dashed line (k, m) = ( 3
4 , 10). (d) The solid line (blue) is for (k, m) = ( 3

4 , 0) and the solid line (red) is
for (k, m) = ( 3

4 , 10).
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Figure 3. Parameter MP with the same situation as in Figure 1. (a) The solid line (blue) is for (k, m) =

( 1
4 , 0), and the dashed line (red) is for (k, m) = ( 1

4 , 10). (b) The solid line (blue) is for (k, m) = ( 1
4 , 0),

and the solid line (red) is for (k, m) = ( 1
4 , 10). (c) the solid line is for (k, m) = ( 3

4 , 0) and the dashed
line (k, m) = ( 3

4 , 10). (d) The solid line (blue) is for (k, m) = ( 3
4 , 0) and the solid line (red) is for

(k, m) = ( 3
4 , 10).

Let us investigate the main results on the variation of the GP for the whole system state |ψ〉
with respect to the physical parameters in the presence and absence of the time-depending coupling
influence. To understand the impact of the parameters’ effects on ΦG, we display the dynamical
behavior of the ΦG in Figure 4 with respect to different values of k and m. Generally, it can be seen
that the GP provides a periodic behavior, exhibiting collapse and revival phenomena. The duration of
these phenomena strictly depends on the excited number m and coupling term λ(t), where the atomic
motion leads to an increase in the periodicity time of the GP. On the other hand, for large values of
m, the GP is unaffected by the parameter k, and the result seems to be similar for both cases k = 1/4
and k = 3/4. From the obtained results, we find that the control and the stabilization of the system
dynamics highly benefit from the combination of the quantum field and coupling term parameters.

We now examine the dynamical behavior of the atomic squeezing with regard to the physical
parameters. In Figures 5 and 6, we plot the time-evolution of E(σx) and E(σy) versus the dimensionless
time gt, respectively, with respect to different values of the parameters m and k for both cases λ(t) = g
and λ(t) = g sin2(t). We find that the atomic squeezing provides periodic oscillations, where E(σx)

and E(σy) remain unchanged under the parameter k as the added photon number m obtains large
values. This shows that the enhancement and loss of squeezing are due to the physical properties
of the quantum field. Interestingly, the atomic motion leads to an increase in the time periodicity of
the squeezing entropies. On the other hand, it seems that the squeezing occurs only in the variable y
and no squeezing in x, where the increase in m would be accompanied by an increase in E(σy) and
enhance the squeezing effect during the time-evolution. In a nutshell, the obtained results provide
that the effect of the initial parameters k and m on the physical quantities seems to be the same in the
existence and absence of the atomic motion influence, showing a monotonic relationship between
these quantifiers with respect to the initial parameters.
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Figure 4. Geometric phase φP with the same situation as in Figure 1. (a) The solid line (blue) is
for (k, m) = ( 1

4 , 0), and the dashed line (red) is for (k, m) = ( 1
4 , 10). (b) The solid line (blue) is for
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for (k, m) = ( 3

4 , 10).
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Figure 5. Entropy squeezing component E (σx) with the same conditions of Figure 1. (a) The solid line
(blue) is for (k, m) = ( 1

4 , 0), and the dashed line (red) is for (k, m) = ( 1
4 , 10). (b) The solid line (blue) is

for (k, m) = ( 1
4 , 0), and the solid line (red) is for (k, m) = ( 1

4 , 10). (c) the solid line is for (k, m) = ( 3
4 , 0)

and the dashed line (k, m) = ( 3
4 , 10). (d) The solid line (blue) is for (k, m) = ( 3

4 , 0) and the solid line
(red) is for (k, m) = ( 3

4 , 10).
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Figure 6. Entropy squeezing component E
(
σy
)

with the same conditions of Figure 1. (a) The solid line
(blue) is for (k, m) = ( 1

4 , 0), and the dashed line (red) is for (k, m) = ( 1
4 , 10). (b) The solid line (blue) is

for (k, m) = ( 1
4 , 0), and the solid line (red) is for (k, m) = ( 1

4 , 10). (c) the solid line is for (k, m) = ( 3
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5. Conclusions

We have developed a JC model considering the interaction between a TLA and a quantum field in
the framework of pseudoharmonic oscillator potentials. We have shown the necessary optimal conditions
that are appropriate for empirical implementation to execute various tasks of quantum computational and
information technologies. We have examined qualitatively various quantum quantifiers in terms of the
initial parameters during the time-evolution with and without time-dependent coupling, considering the
quantum entanglement, geometric phase, nonclassicality and atomic squeezing. Furthermore, we have
displayed the relationship between the different physical quantities in terms of the initial parameters
during the evolution. We have shown that the change of the parameters strongly influences the dynamical
behavior of the quantifiers. The obtained results confirm that the considered quantum system is
helpful to withstand the effect of noises on the physical quantities by a suitable choice of the initial
parameters. The result suggests future study, considering that the initial mixed state under the effect of
the finite-temperature environments on the quantifiers could be pondered.
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61. Popov, D.; Pop, N.; Luminosu, I.; Chiriţoiu, V. Density matrix approach of the excitation on coherent states

of the pseudoharmonic oscillator. EPL Europhys. Lett. 2009, 87, 44003. [CrossRef]
62. Mojaveri, B.; Dehghani, A. Generalized su (1, 1) coherent states for pseudo harmonic oscillator and their

nonclassical properties. Eur. Phys. J. D 2013, 67, 179. [CrossRef]
63. Perelomov, A.M. Coherent states for arbitrary Lie group. Commun. Math. Phys. 1972, 26, 222–236.
64. Wodkiewicz, K.; Eberly, J.H. Coherent states, squeezed fluctuations, and the SU (2) am SU (1, 1) groups in

quantum-optics applications. JOSA B 1985, 2, 458–466. [CrossRef]
65. Popov, D.; Pop, N.; Sajfert, V. Excitation on the Coherent States of Pseudoharmonic Oscillator. AIP Conf. Proc.

2009, 1131, 61–66.
66. Perelomov, A.M. Generalized Coherent States and Their Applications; Springer: Berlin, Germany, 1986.
67. Gerry, C.C.; Silverman, S. Path integral for coherent states of the dynamical group SU (1, 1). J. Math. Phys.

1982, 23, 1995–2003. [CrossRef]
68. Janes, E.T.; Cummings, F.W. Comparison of quantum and semiclassical radiation theories with application

to the beam maser. Proc. IEEE 1963, 51, 89–109. [CrossRef]
69. Phoenix, S.J.; Knight, P.L. Comment on “Collapse and revival of the state vector in the Jaynes-Cummings

model: An example of state preparation by a quantum apparatus”. Phys. Rev. Lett. 1991, 66, 2833. [CrossRef]
[PubMed]

70. Friedrich, B.; Herschbach, D. Alignment and trapping of molecules in intense laser fields. Phys. Rev. Lett.
1995, 74, 4623–4626. [CrossRef] [PubMed]

71. Rempe, G.; Walther, H.; Klein, N. Observation of quantum collapse and revival in a one-atom maser.
Phys. Rev. Lett. 1987, 58, 353–356. [CrossRef] [PubMed]

72. Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997.
73. Von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ,

USA, 1955.
74. Berrada, K.; El Baz, M.; Hassouni, Y. On the construction of generalized su (1, 1) coherent states. Rep. Math. Phys.

2011, 68, 23–35. [CrossRef]
75. Abdel-Khalek, S.; Berrada, K.; Ooi, C.R. Beam splitter entangler for nonlinear bosonic fields. Laser Phys. 2012,

22, 1449–1454. [CrossRef]
76. Pancharatnam, S. The adiabatic phase and pancharatnam’s phase for polarized light. Proc. Indian Acad. Sci.

1956, 44, 247–262.
77. Fang, M.F.; Zhou, P.; Swain, S. Entropy squeezing for a two-level atom. J. Mod. Opt. 2000, 47, 1043–1053.

[CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

218



Article

Enhancing of Self-Referenced Continuous-Variable
Quantum Key Distribution with Virtual
Photon Subtraction

Hai Zhong 1, Yijun Wang 1, Xudong Wang 1, Qin Liao 1, Xiaodong Wu 1 and Ying Guo 1,2,*

1 School of Information Science and Engineering, Central South University, Changsha 410083, China;
haizhong2018@foxmail.com (H.Z.); xxywyj@sina.com (Y.W.); wangxd11@foxmail.com (X.W.);
llqqlq@csu.edu.cn (Q.L.); XiaoDongWu514@126.com (X.W.)

2 School of IOT Engineering, Taihu University, Wuxi 214064, China
* Correspondence: yingguo@csu.edu.cn

Received: 28 June 2018; Accepted: 2 August 2018; Published: 6 August 2018
��������	
�������

Abstract: The scheme of the self-referenced continuous-variable quantum key distribution
(SR CV-QKD) has been experimentally demonstrated. However, because of the finite dynamics of
Alice’s amplitude modulator, there will be an extra excess noise that is proportional to the amplitude
of the reference pulse, while the maximal transmission distance of this scheme is positively correlated
with the amplitude of the reference pulse. Therefore, there is a trade-off between the maximal
transmission distance and the amplitude of the reference pulse. In this paper, we propose the scheme
of SR CV-QKD with virtual photon subtraction, which not only has no need for the use of a high
intensity reference pulse to improve the maximal transmission distance, but also has no demand of
adding complex physical operations to the original self-referenced scheme. Compared to the original
scheme, our simulation results show that a considerable extension of the maximal transmission
distance can be obtained when using a weak reference pulse, especially for one-photon subtraction.
We also find that our scheme is sensible with the detector’s electronic noise at reception. A longer
maximal transmission distance can be achieved for lower electronic noise. Moreover, our scheme has
a better toleration of excess noise compared to the original self-referenced scheme, which implies
the advantage of using virtual photon subtraction to increase the maximal tolerable excess noise for
distant users. These results suggest that our scheme can make the SR CV-QKD from the laboratory
possible for practical metropolitan area application.

Keywords: quantum cryptography; continuous-variable quantum key distribution; photon subtraction

1. Introduction

Quantum key distribution (QKD), which is the best-known application of quantum cryptography,
is able to distribute a secret key between two distant legitimate parties, called Alice and Bob, over
an a priori unsecure communication channel [1–4]. There are two branches in performing quantum
key distribution: the discrete-variable (DV) QKD based on modulating a single photon state and the
continuous-variable (CV) QKD based on coherent detection [5–8]. CV-QKD has demonstrated the
advantages of high detection efficiency and low experiment cost. More significantly, most standard
telecommunication technologies could be compatible with CV-QKD, which makes CV-QKD more
attractive and hence fruitful [9–14].

The major research protocol of CV-QKD is the Gaussian modulated coherent state (GMCS)
CV-QKD protocol, the unconditional security of which has been demonstrated in theory [15–17].
In order to provide a phase reference for Bob’s coherent detection on the received quantum signals,
the conventional GMCS protocol needs to co-transmit a local oscillator (LO), a high bright classical
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beam, between Alice and Bob. However, due to the existence of the LO, a series of new, severe
security loopholes has been proven, thus making some side-channel attacks possible [18–22], which
can greatly reduce the overall security of the GMCS CV-QKD protocol. In order to obtain a more
robust system against the aforementioned side-channel attacks, new schemes have been proposed in
recent years [23–25]. These schemes waive the transmission of the LO between legitimate users and
generate the LO locally at Bob’s side with an extra laser source, which can eliminate all of the above
side-channel attacks effectively. In the protocol of self-referenced (SR) CV-QKD [23], the maximal
transmission distance is positively correlated with the amplitude of the reference pulses. However,
an extra excess noise proportional to the amplitude of the reference pulse will be generated due to the
finite dynamics of Alice’s amplitude modulator [26]. This extra excess noise will limit the amplitude of
the reference pulse and then greatly degrade the performance of the SR CV-QKD scheme, especially
the maximal transmission distance. For example, for a more realistic value of the reference pulse
amplitude of VR = 20VA (VA is the variance of the signal pulse), the maximal transmission distance is
only around 5 km [23]. Therefore, it is of great practical significance to seek a solution to extend the
maximal transmission distance when the reference pulse is weak.

Facing the issue of improving the secure transmission distance of the CV-QKD protocol,
many approaches have been demonstrated to be useful. For example, the photon subtraction
operation, a non-Gaussian operation that has been demonstrated theoretically and experimentally
in CV-QKD [27–32], is an effective approach to enhance the transmission distance of CVQKD
protocols significantly. Through the photon subtraction operation, the entanglement of Gaussian
states can be enhanced; thus, the maximal transmission distance of CV-QKD protocols will be
extended, and the noise tolerance of the states may be improved. However, the practical operation of
photon subtraction will not only increase the physical complexity of the system, but also inevitably
encounter the imperfections of devices, especially the single-photon detector. Fortunately, in the
prepare-and-measurement (PM) scheme of CV-QKD with a coherent state, a real photon subtraction
operation can be emulated by a non-Gaussian post-selection method, which can be deemed as a virtual
photon subtraction [33]. This method not only has no need for complex physical operations, but
also can emulate the ideal photon-subtraction operations. Therefore, the method of virtual photon
subtraction is a superior way to improve the performance of CV-QKD protocols in practice, which has
been demonstrated by many researches [33–36].

In this paper, we propose the scheme of SR CV-QKD with virtual photon subtraction.
One advantage of using virtual photon subtraction is that it not only has no need for increasing
the practical complexity of the original SR CV-QKD protocol, but also can emulate the ideal
photon-subtraction operations. Another advantage is that it can extend the maximal transmission
distance without increasing the intensity of the reference pulse and, thus, can effectively avoid
the reference pulse’s leakage noise, which contributes to the finite dynamics of Alice’s amplitude
modulator. Compared to the original SR CV-QKD protocol, our simulation results show that the
maximal transmission distance can be extended considerably, especially for one-photon subtraction.
Meanwhile, a lower electronic noise of Bob’s detector can bring about a longer extension of the maximal
transmission distance. Moreover, our scheme can tolerate a larger excess noise than the original SR
CV-QKD scheme, which implies the advantage of using virtual photon subtraction to increase the
maximal tolerable excess noise for distant users. These results suggest that under existing technology,
our modified scheme of the SR CV-QKD can make possible the SR CV-QKD from the laboratory for
practical metropolitan area application.

This paper is organized as follows. In Section 2, we review the conventional Gaussian CV-QKD
and the SR CV-QKD scheme. In Section 3, we first show the basic photon subtraction on a two-mode
squeezed vacuum state, and then, we introduce our scheme of SR CV-QKD with virtual photon
subtraction. In Section 4, we analyze the performance of our proposed scheme in the secure key rate
and the maximal tolerable excess noise. Finally, we summarize this paper in Section 5.
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2. The Conventional Gaussian and the SR CV-QKD Scheme

The conventional Gaussian CV-QKD scheme is illustrated in Figure 1a. Through the techniques
of multiplexing in time and polarization, the quantum signals and the LO are co-transmitted from
Alice to Bob in the quantum channel. Moreover, one can utilize the wavelength-division multiplexing
technique to generate multiply-parallel quantum channels simultaneously, which are multiplexed
and demultiplexed by the wavelength multiplexer and demultiplexer. At the receiver, Bob splits the
quantum signals and the LO by the polarization controller and polarizing beam splitter. However,
an eavesdropper can utilize the possible security loopholes of the intensity LO to perform side-channel
attacks. Meanwhile, multiplexing and demultiplexing are knotty, as these are two kinds of signals that
differ greatly in amplitude.
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Figure 1. (a) The conventional Gaussian continuous-variable quantum key distribution (CV-QKD)
scheme. The quantum signal and local oscillator (LO) are co-propagated from Alice to Bob. (b) The
scheme of self-referenced (SR) CV-QKD. The quantum signals and reference pulses are co-transmitted
through the same channel. At reception, the received pulses are measured in Bob’s own phase reference
frame defined by the locally-generated LO. PM, phase modulator; AM, amplitude modulator; CD,
coherent detection; QM, quantum memory; AOM, acousto-optical modulator; PBS, polarizing beam
splitter; χline, channel-added noise; T, channel transmission; E, Eve’s ancillae.

Different from the conventional Gaussian CV-QKD scheme, the SR CV-QKD scheme in [23]
waives the transmission of the LO between legitimate users and operates essentially by employing
a locally-generated LO, which effectively resists the possible side-channel attacks. The SR CV-QKD
scheme could be generalized as shown in Figure 1b, and it contains two main steps:

Step 1: Alice prepares the Gaussian modulated coherent state |qA + ipA〉 as the quantum signal
pulse and the other coherent state |qAR + ipAR〉 as the reference pulse. Then, she sends these
coherent states to Bob without sending the LO. The two independent Gaussian random
variables (qA, pA) are both distributed as N (0, VA), while the mean quadrature values of
the reference pulse are fixed to (qAR , pAR) in Alice’s phase reference frame and are publicly

known. The amplitude of the reference pulse ER (ER =
√

p2
AR

+ q2
AR

) may be several orders

of amplitude larger than
√

VA and is much weaker than the amplitude of the LO.
Step 2: Bob performs a homodyne detection on the received signal pulse and a heterodyne detection

on the reference pulse in his own reference frame defined by the locally-generated LO.
He obtains qB or pB as one of the quadratures of the signal pulse and qBR and pBR as both of
the quadratures of the reference pulse.
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The reference pulse is used to estimate the phase deviation angle θ̂ between Alice’s and Bob’s
reference frames. The θ̂ can be estimated by θ̂ = θ + φ, where θ is the actual deviation angle and φ is
the measurement error contributed by the quantum uncertainty. The covariance matrix between Alice
and Bob can be written as [23]:

γ̄AB =

(
VI Ccos φσZ

Ccos φσZ Tη(V + χ)I

)
(1)

with C =
√

Tη(V2 − 1), where I =

(
1 0
0 1

)
and σZ =

(
1 0
0 −1

)
, V is the variance of Alice’s

output state, χ is the channel noise, T is the channel transmission, η is the detector efficiency,
cos φ =

∫ π
−π dφP(φ)cosφ and P(φ) is the probability distribution of the random variable φ and is

symmetric around φ = 0.
According to the results in [23], the maximal transmission distance is positively correlated with

the amplitude of the reference pulse. However, an extra excess noise proportional to the amplitude of
the reference pulse will be generated due to the finite dynamics of Alice’s amplitude modulator [26].
Therefore, an arbitrary large amplitude of the reference pulse is not proper, and a more realistic value,
such as E2

R = 20VA, will be rational. Unfortunately, this realistic value will restrict the maximal
transmission distance of the SR CV-QKD protocol to a fairly low level, as illustrated in Section 4
later on. This issue will hinder the practical application of the SR CV-QKD scheme.

3. SR CV-QKD with Virtual Photon Subtraction

Photon subtraction can improve the entanglement of the two-mode squeezed vacuum (TMSV)
state and hence enhance the performance of the system. In order to make the description of our scheme
self-contained, we first start with the basics of photon subtraction on a TMSV state. Figure 2 describes
the entire steps of the EB CV-QKD scheme with photon subtraction. An entanglement source |λ〉 is
used to produce the TMSV state and |λ〉 = √

1 − λ2 ∑∞
n=0 λn|n, n〉. Then, Alice performs heterodyne

detection on mode A and sends mode B to a beam splitter (BS) with transmittance τ. The mode B is
split into modes: B′ and B1. The modes A, B′, B1 form a tripartite state ρAB′B1

,

ρAB′B1
= UBS[|λ〉〈λ| ⊗ |0〉〈0|]U†

BS. (2)

The photon number resolving detector (PNRD) is used to perform the positive operator-valued
measure (POVM) {Π̂0, Π̂1} on mode B′ [37]. Only when the POVM elements Π̂1 click, the mode A
and B1 can be kept. The kept state is given by:

ρΠ̂1
AB1

=
trB′(Π̂1ρAB′B1

)

trAB′B1
(Π̂1ρAB′B1

)
, (3)

where trx(·) is the partial trace of the multimode quantum state and PΠ̂1 = trAB′B1
(Π̂1ρAB′B1

) denotes
the success probability of subtracting k photons.

However, the straightforward application of the above photon subtraction to the SR CV-QKD
is not a desirable method, in which the reference pulse will also pass through the BS and the
hardware requirement will be enhanced. Fortunately, the EB CV-QKD scheme with photon subtraction
can be equivalent to the PM CV-QKD scheme with virtual photon subtraction via non-Gaussian
post-selection [33]. In the post-selection step, Alice uses a post-selection filter function Q(·), or
acceptance probability, to decide which data will be accepted. The post-selection step is carried out
after Bob has performed coherent detection, which means it will not change the Gaussian state ρG

AB2
and the Gaussian process G. The mode B2 is the received mode at Bob’s side. Therefore, we propose
the scheme of SR CV-QKD with virtual photon subtraction, which can be realized via non-Gaussian
post-selection. The schematic diagram of our scheme is described in Figure 3, where α =

√
2τλγ/2,
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and γ is the measurement result of mode A in the EB scheme, i.e., γ = xA + ipA. The modulation
variance of xA and pA is Ṽ = (V + 1)/2, where V = (1 + λ2)/(1 − λ2) is the variance of the TMVS
state in the EB scheme. Hence, according to the derived results in [33], the covariance matrix γ̄G

AB2
of

the Gaussian state ρG
AB2

for subtracting k photons can rewrite Equation (1) as:

γ̄G
AB2

=

(
VAI CσZ
CσZ VBI

)
(4)

with:

VA = 2Vk − 1, (5)

VB = Te(2τλ2Vk + 1 + χ), (6)

C = 2
√

TeτλVkcos φ, (7)

χ =
(1 − Te)

Te
+

εel
Te

+ εc, (8)

Vk =
k + 1

1 − τλ2 , (9)

where εel is the electronic noise of the Bob’s detector, εc is the channel excess noise and Te = Tη.
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CD
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B2 

Figure 2. Schematic of EB CV-QKD with photon subtraction. PNRD: photon number resolving detector;
Het: heterodyne detection; CD: coherent detection; QM: quantum memory.
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A

Figure 3. Schematic of PM SR CV-QKD with virtual photon subtraction. QM: quantum memory; CD:
coherent detection; Mod: Gaussian modulator.

4. Performance Analysis

Usually, the secret key rate of the TMSV state is no less than the secret key rate of the equivalent
Gaussian state, which shares an identical covariance matrix due to the extremality of Gaussian
state [38–40]. Hence, we will use γ̄G

AB2
to derive the lower bound of the secret key rate. Besides, the

acceptance probability for each of the data in the post-selection step should also be taken into account.
This probability is equivalent to the success probability of Alice’s POVM measurement PΠ̂1 and can be
treated as a scaling factor.
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4.1. Individual Attacks

The lower bound of the secret key rate of our scheme against individual attack for reverse
reconciliation is:

Kind
min = PΠ̂1(βIG

AB − IEB), (10)

where PΠ̂1 = 1−λ2

1−τλ2

[
λ2(1−τ)
1−τλ2

]k
[33], IG

AB is the mutual information between Alice’s and Bob’s
measurements, IEB is mutual information between Eve’s and Bob’s measurements and β is the
reconciliation efficiency.

From the covariance matrix in Equation (4) and the derived results in [23], the mutual information
between Alice’s and Bob’s measurements IG

AB can be written as:

IG
AB =

1
2

log2

(
V′

VA|B

)
(11)

with V′ = (VA + 1)/2 and VA|B = V′ − C2/2VB. Through the relationship:

1 − cosφ
2
= Vθ̂ =

χ + 1
VR

+
δR

TηVR
, (12)

we can get:

C2
= 4Teτλ2V2

k cosφ
2
= 4Teτλ2V2

k (1 − Vθ̂), (13)

where VR = E2
R, δR = 1 for single-reference-pulse mode and Vθ̂ is the variance of the estimated

deviation angle θ̂. The upper bound of mutual information between Eve’s and Bob’s measurements
can be given by:

IEB =
1
2

log2

(
VB

VB|E

)
=

1
2

log2

(
VBVB|A

)
(14)

with VB|A = VB − C2/VA.

4.2. Collective Attacks

The asymptotic secret key rate against collective attacks for reverse reconciliation can be given by:

Kcol
min = PΠ̂1(βIG

AB − χG
BE), (15)

where IG
AB is given by Equation (11) and χG

BE is the maximal stolen information. The maximal stolen
information χG

BE can be written as:

χG
BE = G

(
λ1 − 1

2

)
+ G

(
λ2 − 1

2

)
− G

(
λ3 − 1

2

)
, (16)

where G(x) = (x + 1) log2(x + 1) − x log2(x) is the von Neumann entropy of a thermal state.
The eigenvalues λ1 and λ2 are obtained from:

λ2
1,2 =

1
2

(
Δ ±

√
Δ2 − 4D2

)
(17)
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with Δ = V2
A + V2

B − 2C2 and D = VAVB − C2. The square of symplectic eigenvalue λ3 reads:

λ2
3 = VA(VA − C2

VB
). (18)

In what follows, we will assume that VA = 40, β = 0.95, εc = 0.01, η = 0.719 and α = 0.2 dB/km [23].
All the variances in this paper are in shot-noise units. Figure 4 shows our simulation results against
individual and collective attacks. Figure 4a–d gives the maximum secure key rate at each transmission
distance for all possible τ of Alice’s BS. Note, due to the excess noise contributed by the leakage of
reference pulses, here, VR is set to a more realistic value of 20VA, and thus, we neglect this excess noise
(about 8 × 10−4 when the dynamics of Alice’s amplitude modulator is 60 dB) [26]. The figures show a
considerable maximal transmission distance improvement when the photon subtraction operation is
applied in the SR CV-QKD scheme, especially in the case of subtracting one photon. Furthermore,
we find that our scheme of SR CV-QKD with virtual photon subtraction is sensible with the detector
electronic noise. A lower electronic noise can result in a larger maximal transmission distance, as
shown in Figure 4b,d. We note that the electronic noise of 0.001 is achievable, which is demonstrated
in [41]. However, the secure key rate is worse than the original protocol in the short distance region.
The main reason for this phenomenon is that the limited acceptance probability degrades the final key
rate. τ is a key parameter, which should be determined in advance. Figure 4e shows the optimal τ

at each distance for the maximum secure key rate in Figure 4d. The optimal τ decreases along with
the increasing of the transmission distance, which implies a accurate estimation of τ is required for
each distance. Figure 4f represents the success probability of subtracting k (k = 1, 2, 3) photons at
each distance for the maximum secure key rate in Figure 4d. Although the success probability will
be larger in the region of large τ, a large success probability does not mean a large secure key rate,
especially when the transmission distance becomes longer. This is because τ not only impacts the
success probability, but also the entire key generation. We did not draw the optimal τ and the success
probability of subtracting k photons at each distance for the maximum secure key rate in Figure 4c, as
their results are similar to the case when the electronic noise is 0.001.

From a practical point of view, if the secure key rate varies rapidly with τ around its optimal
value, the accurate estimation of the optimal τ will need complicated implementations. Fortunately,
around the optimal value of τ, the secure key rate varies slowly with the change of τ at each distance,
as shown in Figure 5. Particularly, between the upper bound (black dashed line) and lower bound (red
dashed line) of τ at a specific distance, the secure key rate can maintain more than 90% of its optimal
value (Kopt).

Another aspect of our scheme is the tolerable excess noise. As shown in Figure 6a,b, we depict the
relationship between the maximal tolerable excess noise and the transmission distance for different
electronic noise and all possible τ. The original scheme is outperformed by the protocol of using
photon subtraction at all transmission distance ranges, which implies the advantage of using photon
subtraction, which increases the maximal tolerable excess noise for distant users. Moreover, if the
channel is less noisy, for example, εc ≈ 0.005, the one photon subtraction can expand the maximal
transmission distance to 20 km for εel = 0.01 and 33 km for εel = 0.001. As the tolerable excess noise is
not affected by the acceptance probability, the optimal τ for the maximal tolerable excess noise at each
distance is different from that of the one for the maximum secure key rate, as shown in Figure 6c,d.
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(a) (b)

(c) (d)
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Figure 4. The simulation results against individual and collective attacks. (a,b) give the maximum
secure key rate as a function of the transmission distance against individual attacks, when changing the
transmittance τ of Alice’s beam splitter (BS); (c,d) give the maximum secure key rate against collective
attacks; (e) shows the optimal τ corresponding to (d); (f) is the success probability of subtracting
kphotons at each transmission distance corresponding to (d). The black solid lines show the original
SR-CV-QKD protocol without photon subtraction. Other lines represent one-photon subtraction (red
dashed-dotted lines), two-photon subtraction (blue dashed lines), three-photon subtraction (violet
dotted lines).
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Figure 5. The secure key rate as a function of transmission distance and τ of Alice’s BS, when the
electronic noise is 0.001. The black solid line is the optimal τ, while the secure key rate reaches its
maximal value at each distance. The black (red) dashed line is the upper (lower) bound of τ, when its
secure key rate is 90% of its maximum at that distance.

(a) (b)

(c) (d)

Figure 6. The maximal tolerable excess noise and its corresponding value of τ at each distance. (a,b) are
the maximal tolerable excess noise at each distance for all possible τ when electronic noise is equal to
0.01 and 0.001; (c,d) are the optimal τ for the maximal tolerable excess noise corresponding to (a,b).

Actually, many protocols have investigated the CV-QKD with virtual photon subtraction. All of
them can significantly improve the maximal transmission distance of the CV-QKD protocols. In [33],
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the method of virtual photon subtraction was firstly used in the conventional one-way GMCS CV-QKD
scheme, the LO of which is co-transmitted with the quantum signal. The maximal transmission
distance can be extended from 90–220 km (144% improvement). The protocol of two-way GMCS
CV-QKD with virtual photon subtraction was investigated in [35]. The maximal transmission distance
can be extended from 85–310 km (266% improvement). In [34], the four-state CV-QKD protocol
combined with virtual photon subtraction can extend the maximal transmission distance from
140–330 km (136% improvement). For the protocol of measurement-device-independent CV-QKD
with virtual photon subtraction, the maximal transmission distance can be extended from 42–68 km
(62% improvement) [36]. In our scheme of SR CV-QKD with virtual photon subtraction, we also
obtained a considerable extension of the maximum transmission distance when the detector electronic
noise was 0.001. The maximum transmission distance increased from 18–58 km (222% improvement)
under individual attack and from 5–30 km (500% improvement) under collective attacks, which makes
possible the application of the SR CV-QKD from the laboratory to an actual metropolitan area. If we
increase the amplitude of the reference pulse appropriately and control the reference pulse’s leakage
noise in a certain range, the maximum transmission distance can be extended further. For example,
if VR = 50VA and the detector electronic noise is equal to 0.001, the maximal transmission distance can
be extended from 15–40 km. In practice, the imperfection of the detector will constrain the performance
of the CV-QKD protocol. Therefore, any imperfection of the detector should be taken into account,
while this was not considered in [34,36,37].

5. Conclusions

In this paper, we proposed the scheme of SR CV-QKD with virtual photon subtraction. It not
only has no need to increase the physical complexity of the original SR CV-QKD system, but also
can extend the maximal transmission distance without increasing the intensity of the reference pulse.
Performance analysis results show that a considerable extension of maximal transmission distance can
be obtained, especially for one-photon subtraction. Meanwhile, the scheme of SR CV-QKD with virtual
photon subtraction is sensible with the detector’s electronic noise. A longer maximal transmission
distance can be obtained when the electronic noise is lower. Furthermore, it is more tolerable against
excess noise for our scheme compared to the original protocol, which implies the advantage of using
virtual photon subtraction to increase the maximal tolerable excess noise for distant users. These results
suggest that under existing technology, our modified scheme of the SR CV-QKD can make possible
the SR CV-QKD from the laboratory to practical metropolitan area application. However, we note
that the gap between practical implementations and the theoretical analysis here should be taken
into account. Any imperfection factors in the practical experiment should introduce corresponding
parameters. This issue is not included in the scope of the present analysis, and deserves further study.
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Abstract: We study the equivalence between the entanglement-based scheme and prepare-and-measure
scheme of unidimensional (UD) continuous-variable quantum key distribution protocol. Based on this
equivalence, the physicality and security of the UD coherent-state protocols in the ideal detection and
realistic detection conditions are investigated using the Heisenberg uncertainty relation, respectively.
We also present a method to increase both the secret key rates and maximal transmission distances of
the UD coherent-state protocol by adding an optimal noise to the reconciliation side. It is expected
that our analysis will aid in the practical applications of the UD protocol.

Keywords: continuous-variable quantum key distribution; unidimensional modulation; Heisenberg
uncertainty relations

1. Introduction

Quantum key distribution (QKD), which is a prominent application of the quantum information,
enables two remote parties, conventionally called Alice and Bob, to share a common secret key
through an insecure quantum channel and an authenticated classical channel [1,2]. This unconditional
security is guaranteed by the basic principles of quantum mechanics. Continuous-variable quantum
key distribution (CV-QKD) has attracted considerable attention over the past years because of its
good performances in the secret key rates and compatibility with the current optical networks [3–16].
A particular class of CV-QKD protocols that is based on the Gaussian modulation of coherent states has
experienced a rapid development [17–27]. In a coherent-state protocol, Alice encodes her information
in the amplitude and phase quadratures of the coherent light field by using amplitude and phase
modulators, and Bob performs homodyne or heterodyne detection.

Recently, a further simplified unidimensional (UD) CV-QKD protocol has been proposed [28].
In such protocol, Alice, still using coherent states, encodes her information by using one modulator
(e.g., amplitude modulator) instead of two, whereas Bob performs a homodyne detection, hence
simplifying both the modulation scheme and the key extraction task. The security against collective
attacks has been proved in asymptotic regime. However, this early work only considered the UD
model under an idea homodyne detector. It does not refer to the realistic condition, such as the
efficiency and electronic noise of the homodyne detector. Then, a model of the UD protocol under
realistic condition was designed and realized in an experiment [29]. Furthermore, the finite size effect
was analyzed in paper [30], and an optimum ratio in parameters estimation was proposed.

In the UD protocol, due to the fact that the phase quadrature is not modulated in Alice’s side,
we cannot estimate the correlation in the phase quadrature between Alice and Bob. However, this
unknown parameter is bounded by the requirement of the physicality of the state. A Gaussian state
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can typically be characterized by a covariance matrix. However, not all covariance matrices correspond
to physical states, as the covariance matrix must respect the Heisenberg uncertainty relation [31,32].
By using this uncertainty relation, we can calculate the physical region boundary of a covariance
matrix, which is crucial for the security of the protocol. We can see that the UD CV-QKD protocol
is very different from the previous symmetrical (SY) coherent-state protocol [18,21]. Due to the
equivalence between the prepare-and-measure (PM) and entanglement-based (EB) scheme of UD
protocol, the differences of the Heisenberg uncertainty relations under the idea and realistic condition,
and the effect of noise from Bob’s setup on secret key rate under realistic condition are not described
or investigated in depth [28–30], a further study about above questions is required.

In this paper, we first consider the equivalence between the PM scheme and the EB scheme of
the UD CV-QKD protocol. Then, we analyze the boundary of the physical region of the symmetrical
coherent-state protocol based on the Heisenberg uncertainty relation. We also study the variances
of the physical region of the UD coherent-state protocol under the conditions of different detection
efficiency and electronic noise. Secure and unsecure regions of both the protocols are further analyzed
under ideal and realistic detection conditions. It is found that adding an optimal noise to Bob’s side
can truly help the improvement of the secret key rate and increase the transmission distance of the UD
coherent-state protocol under the assumption of reverse reconciliation.

The paper is organized as follows. In Section 2, we introduce the equivalence between the EB
scheme and the PM scheme of the UD CV-QKD protocol. In Section 3, a comparison between the
physical and secure regions of the UD protocol under ideal and realistic detection conditions is shown,
and a method to improve the performance of the UD coherent-state protocol by adding an optimal
noise to Bob’s side is proposed. In Section 4, we give our conclusions and discussions.

2. Unidimensional Quantum Key Distribution

2.1. Equivalence between the EB Scheme and the PM Scheme

Generally, most of the experimental systems in CV-QKD are focused on PM schemes currently,
given their ease of implementation in practice. However, it’s hard to analyze the security in theory.
On the contrary, the theoretical analysis based on EB scheme is maturity. The involved entangled
states make the calculations feasible and simpler [33]. Especially in UD CV-QKD protocol, the security
analysis based on EB scheme has more advantages. The covariance matrices achieved from the EB
schemes contain the constraints of phase amplitude quadrature. However these constraints is difficult
to achieve from the PM scheme. More details about the security analysis will be shown later. Now, it is
necessary to study the equivalence of EB and PM schemes, firstly. This equivalence is based on the
indistinguishability between these two protocols for Bob and Eve. The consequent advantage of this
equivalence is that it is sufficient to implement the PM scheme and study the EB scheme.

In the PM scheme, as depicted in Figure 1a, the sender, Alice, prepares coherent states using a
laser source. Then, she encodes the information in the amplitude or phase quadratures of coherent
states by using either amplitude or phase modulators. Here, without losing generality, we assume that
Alice uses an amplitude modulator with a modulation variance VM, which is assumed to be expressed
in shot-noise units, and that the coherent states follow the uncertainty principle of variance 1. Thus,
the mixture of Gaussian-modulated coherent states gives rise to a unidimensional chain structure with
a thickness of 1 and a length of

√
1 + VM in the phase space. These quantum states are then sent to

Bob through an untrusted quantum channel with transmittance Tx, Ty and excess noise εx, εy.
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Figure 1. Unidimensional (UD) protocol schemes under realistic conditions. (a) Prepare-and-measure
(PM) scheme of the UD protocol; (b) Entanglement-based (EB) scheme of the UD protocol.

In the EB scheme, as shown in Figure 1b, Alice starts with a two-mode squeezed vacuum state
ρAB0 with variance V. Then, she performs homodyne detection on the first half of the state and
squeezes the second half by r = ln

√
V. The result is the covariance matrix

γAS =

⎡⎢⎢⎢⎣
V 0

√
V(V2 − 1) 0

0 V 0 −√(V2 − 1)/V√
V(V2 − 1) 0 V2 0

0 −√(V2 − 1)/V 0 1

⎤⎥⎥⎥⎦ (1)

The covariance matrix of mode S, conditioned on Alice’s measurement result (xa), can be written as

γxa
S = γS − σT

AS(XγAX)MPσAS, (2)

and the displacement vector can be expressed as

dxa
S = σT

AS(XγAX)MPdA, (3)

where dA is the result of the homodyne measurement, γA and γS are the covariance matrices of the
modes A and S, respectively, σAS is the correlation matrix of the two modes, X = diag(1, 0), and MP
denotes the Moore–Penrose inverse of the matrix [34].

Then, we obtain

γxa
S =

[
1 0
0 1

]
and dxa

S =

√
V2 − 1

V
(xa, 0), (4)

which is a coherent state centered on dxa
S . Furthermore, the variance of dxa

S is

〈
Δ2dxa

S

〉
=

V2 − 1
V

〈
x2

a

〉
=

V2 − 1
V

· V = V2 − 1, (5)

where V2 − 1 is exactly the variance of the Alice’s VM. Then, we can establish a one-to-one
correspondence between the EB scheme and the PM scheme by multiplying the outcome of Alice’s

measurements by the factor α =
√

V2−1
V .

2.2. Calculation of Secret Key Rate with Reverse Reconciliation

Thus far, we have established the equivalence between the EB scheme and the PM scheme of the
UD CV-QKD protocol. In this subsection, we present a brief overview of the calculation of the secret key
rates. In the EB protocol, the realistic Bob’s detector can be modeled by an ideal balanced homodyne
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detector and a beam splitter, with transmission efficiency η and input noise VN = 1 + vel/(1 − η), as
the one shown in Figure 1b. The secret key rate against collective attacks for reverse reconciliation in
the asymptotic regime can be calculated as [29,30]

K∞
RR = β · IAB − χBE, (6)

where β is the reverse reconciliation efficiency and IAB is the mutual information between Alice and
Bob. IAB can expressed as

IAB =
1
2

log2 (1 +
VM

1 + χtotx
), (7)

where
χhom = (1 + vel)/η − 1
χlinex = (1 − Tx)/Tx + εx

χtotx = χlinex + χhom/Tx

. (8)

Still from Equation (6), χBE is the Holevo bound, which represents an upper bound on the
information acquired for reverse reconciliation by the potential eavesdropper Eve. The procedures to
calculate χBE can be written as:

χBE = S(ρE)− S(ρxb
E )

= S(ρAB1)− S(ρxb
ARH)

=
2
∑

i=1
g( λi−1

2 )− 5
∑

i=3
g( λi−1

2 )

, (9)

where S(ρ) is the von Neumann entropy of the quantum state ρ, g(x) = (x + 1) log2 (x + 1)− x log2 x
and λi are the symplectic eigenvalues of the covariance matrix γ, with

λ2
1,2 = 1

2 (a ±√
a2 − 4b)

λ2
3,4 = 1

2 (c ±
√

c2 − 4d)
λ5 = 1

, (10)

a = 1 + VM + VB1
y (1 + VM + χlinex)Tx + 2CB1

y (1 + VM)1/4√VMTx

b = (VB1
y (1 + VM)− (CB1

y )
2√

1 + VM)(1 + εxTx)

c = (a(χhom + 1) + ((1 + εxTx)(VM + 2) + VMTx − a))/e
d = (bχhom + (1 + VM)(1 + εxTx))/e
e = Tx(1 + VM + χtotx)

, (11)

where VB1
y is the variance of the mode B1 in phase quadrature with VB1

y = 1 + Tyεy and CB1
y is the

correlation between A and B1 in phase quadrature with CB1
y = −√TyVM(1 + VM)−1/4.

3. Security Analysis Using Uncertainty Relations

In this section, we provide a security analysis of continuous variable quantum key distribution
with coherent states based on the Heisenberg uncertainty relation. Before describing the UD
coherent-state protocol case, it is useful to first consider the SY coherent-state protocol case.

3.1. Uncertainty Relations for Symmetrical Coherent-State Protocol

Let us consider a n-mode quantum mechanical system that is described by the canonical conjugate
operators x̂j and p̂j, with j = 1, 2, · · · , n. In terms of the annihilation and creation operators (âj and â†

j ,
respectively), one has

x̂j =
1√
2
(âj + â†

j ) and p̂j = − i√
2
(âj − â†

j ), (12)
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which are the dimensionless position and momentum operators. Such operators also satisfy the bosonic
canonical commutation relations (CCR)

[x̂i, p̂j] = iδi,j, [x̂i, x̂j] = [ p̂i, p̂j] = 0, (13)

Furthermore, if we group together the canonical conjugate operators in a vector γ̂ as

γ̂ = (r̂1, r̂2, · · · r̂2n)
T = (x̂1, p̂1, x̂2, p̂2, · · · , x̂n, p̂n)

T , (14)

we can express the CCR in a compact form:

[γ̂j, γ̂k] = iΩjk, (15)

where Ω is defined as

Ω =
n⊕

i=1

[
0 1
−1 0

]
. (16)

By combining this CCR relation and the positive semi-definiteness of the density operator ρ, we
obtain the following uncertainty relation [35]

γ + i · Ω ≥ 0, (17)

which is a more precise and complete version of the Heisenberg uncertainty relation. This well-known
inequality is the only constraint that γ has to respect to be a covariance matrix satisfying a physical state.

Let us consider the physicality of the SY coherent-state protocol by using the uncertainty relation
in Equation (17). In the EB protocol, as shown in Figure 2, we have:

γ
sym
AB1

=

⎡⎢⎢⎢⎣
V 0

√
T(V2 − 1) 0

0 V 0 −√T(V2 − 1)√
T(V2 − 1) 0 T(V + χline) 0

0 −√T(V2 − 1) 0 T(V + χline)

⎤⎥⎥⎥⎦, (18)

γ
sym
AB =

⎡⎢⎢⎢⎣
V 0

√
ηT(V2 − 1) 0

0 V 0 −√ηT(V2 − 1)√
ηT(V2 − 1) 0 ηT(V + χtot) 0

0 −√ηT(V2 − 1) 0 ηT(V + χtot)

⎤⎥⎥⎥⎦, (19)

where χtot = χline + χhom/T, χline = (1 − T)/T + ε, χhom = (1 − η)/η + vel/η, and V = VA + 1,
VA is the modulation variance of the Alice’s side. According to the Heisenberg uncertainty relation,
we have: {

γ
sym
AB1

+ i · Ω ≥ 0
γ

sym
AB + i · Ω ≥ 0

. (20)

Then, we obtain{
εT(2 + (ε − 2)T)(V2 − 1) ≥ 0
(εTη(2 + (ε − 2)Tη) + 2vel(1 + (ε − 1)Tη) + v2

el)(V
2 − 1) ≥ 0

. (21)

The two inequalities in Equation (21) are simultaneously satisfied if ε, vel ≥ 0 and T, η ∈ [0, 1].
Here, we further consider the secure and unsecure regions of the protocol for both ideal and realistic
Bob’s detectors, which are shown in Figure 3a. In the secure region, the secret key rate is greater
than zero; in the unsecure region, the secret key rate is less than zero. We observe that the realistic
protocol can provide a bigger secure region. The secret key rate as a function of the excess noise,
in correspondence of three values of channel losses, under ideal and realistic detection conditions,
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is shown in Figure 3b. We can see that the realistic Bob detection improves the resistance of the
protocol to the excess noise, although the total noise is increased, which will lead to the appearance of
a phenomenon called “fighting noise with noise” [36], and will be discussed in detail in the following.
Here, we set the values of the actual parameters: the reconciliation efficiency is β = 0.99 [37] and the
modulation variance is VA = 10.

Figure 2. EB scheme of the SY protocol under realistic conditions.

Figure 3. (a) Secure and unsecure regions of the SY protocol using ideal homodyne detector
(η = 1, vel = 0) and realistic homodyne detector (η = 0.6, vel = 0.1); (b) Secret key rate versus the
excess noise for different channel losses.

3.2. Uncertainty Relations for Unidimensional Coherent-State Protocol

In the above, we have discussed the physicality of the SY coherent-state protocol by using the
Heisenberg uncertainty relation. The securities under ideal and realistic homodyne detectors have also
been analyzed. Next, let us consider the UD coherent-state protocol. As shown in Figure 1b, in the EB
scheme, we have

γuni
AB1

=

⎡⎢⎢⎢⎣
√

1 + VM 0
√

TxVM(1 + VM)1/4 0
0

√
1 + VM 0 CB1

y√
TxVM(1 + VM)1/4 0 Tx(VM + 1 + χlinex) 0

0 CB1
y 0 VB1

y

⎤⎥⎥⎥⎦ and (22)

γuni
AB =

⎡⎢⎢⎢⎣
√

1 + VM 0
√

ηTxVM(1 + VM)1/4 0
0

√
1 + VM 0 CB1

y
√

η√
ηTxVM(1 + VM)1/4 0 ηTx(VM + 1 + χtotx) 0

0 CB1
y
√

η 0 η(VB1
y + χhom)

⎤⎥⎥⎥⎦. (23)

In the UD protocol, in order to estimate the information of the Eve eavesdropping, χBE, we have
to know the parameters CB1

y and VB1
y . Here, VB1

y can be estimated by randomly measuring the phase
quadrature in Bob’s side, while CB1

y is unknown due to the fact that the phase quadrature is not
modulated in Alice’s side. However, such an unknown parameter is constrained by the requirement
of the physicality of the state. Differently from Ref. [30], under realistic condition, when the mode
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B1 is transformed into mode B after the beam splitter, there will have to be a new constraint on
the covariance matrix γuni

AB in order to make it correspondent to a physical state. According to the
Heisenberg uncertainty relation, we have{

γuni
AB1

+ i · Ω ≥ 0
γuni

AB + i · Ω ≥ 0
. (24)

Then, we obtain the following two parabolic equations:⎧⎪⎨⎪⎩
(CB1

y − C0)
2 ≤ VM√

(1+VM)

χlinex
1+χlinex

(VB1
y − V0)

(CB1
y − C′

0)
2 ≤ VM√

(1+VM)

χtotx
1+χtotx

(VB1
y − V′

0)
, (25)

where C0 = − V0
√

TxVM

(1+VM)1/4 , V0 = 1
Tx(1+χlinex)

, C′
0 = −

√
TxVM

(1+VM)1/4ηTx(1+χtotx)
and V′

0 = 1
η2Tx(1+χtotx)

− χhom.

The parabolic curves between CB1
y and VB1

y , under ideal and realistic detection conditions, are
shown in Figure 4. The whole plane is divided into two regions: the unphysical and physical regions.
In the unphysical region, the values of the parameters CB1

y and VB1
y cannot be satisfied simultaneously,

otherwise, the Heisenberg uncertainty principle will be violated. In the physical region, the whole region
is divided into two parts, R1 and R2. The R1 represents the real physical region, which is delimited by
the ideal parabolic curve and ensures the attacks of Eve to the quantum channel complying with the
physical principles. The red dashed line further divides the region R1 into unsecure and secure regions.
The R2 represents the pseudo physical region, which is the overlapped part between the physical region
contained by the realistic parabolic curve and the unphysical region, as defined by the ideal parabolic
curve. The appearance of the pseudo physical region is due to the fact that, even if some attacks of Eve
are unphysical, after the transform of the realistic homodyne detection of Bob, the final covariance matrix
can satisfy a physical state. Hence, the physical region should be delimited at the input side of Bob, or
equivalently, Bob performs an ideal detection. Furthermore, in Figure 5, we see how the physical region
delimited by the realistic parabolic curve changes according to different conditions of detection efficiency
and electronic noise. We also compare such regions with the one delimited by the ideal parabolic curve
(black solid line in Figure 5). We find that the physical region defined by the realistic parabolic curve
gradually decreases as the detection efficiency increases and the electronic noise decreases. Therefore,
also in this case, in order to ensure the physicality of the UD protocol, we select the smaller region R1.

Figure 4. Comparison among physical regions of the UD protocol under both ideal and realistic
detection conditions. The red solid line represents the realistic parabolic curve (equivalent to Bob
using a realistic homodyne detector with η = 0.6, vel = 0.1) and black solid line is the ideal parabolic
curve (equivalent to Bob using an ideal homodyne detector with η = 1, vel = 0). The red dashed line
represents the part where the key rate is zero under realistic detection condition. Here, we set: β = 0.99,
Tx = 0.4 (corresponding to a distance of 20 km fiber), εx = 0.01 and VM = 6.35.
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Figure 5. Comparison among physical regions delimited by the parabolic curves of the UD protocol.
The black solid curve corresponds to the ideal parabolic curve, whereas the others to the realistic
parabolic curves obtained for different parameter conditions. (a) Changes of the physical region
extension according to different values of η (vel remains constant); (b) Changes of the physical region
extension according to different values of vel (η remains constant). The values of the parameters Tx, εx,
and VM are the same as in Figure 4.

In Figure 6, we consider the dependence of the ideal parabolic curve (R1) on related parameters,
including VM, Tx, εx, and β. From Figure 6a, we can find that the parabolic curve moves down and
gradually becomes broader as the modulation variance increases. In Figure 6b, the parabolic curve
moves towards bottom-left corner and gradually becomes narrower as the transmission efficiency
increases. In Figure 6c, as the excess noise increases, the parabolic curve moves towards left and
gradually becomes larger. The reconciliation efficiency β does not change the shape of the parabola,
but rather expands the secure region. In Figure 6d, the red solid line represents the minimum secret
key rate, which was obtained by scanning the parameter CB1

y . The black solid line represents the ideal
parabolic curve. It is interesting that a larger CB1

y does not always give a higher secret key rate, more
details about the red solid line can be seen in paper [30]. Later, we can see that the minimum secret
key rate can also be achieved by scanning Ty and εy simultaneously.

Figure 6. Ideal parabolic curve versus related parameters. (a) Different modulation variance values
with Tx = 0.1 and εx = 0.01; (b) Different transmission efficiency values with εx = 0.01 and VM = 3; (c)
Different excess noise values with Tx = 0.1 and VM = 3; (d) Different reconciliation efficiency values
with Tx = 0.1, εx = 0.01, and VM = 3.
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Furthermore, if we assume CB1
y = −√TyVM(1 + VM)−1/4 and VB1

y = 1 + Tyεy, the parabolic
equations (Equation (25)), as determined by the Heisenberg uncertainty relation under ideal and
realistic detection conditions transform into{

(k
√

Tx −
√

Ty)
2 ≤ (1 − kTx)(1 + Tyεy − k)

(k′
√

Tx −
√

Ty)
2 ≤ (1 − k′Txη)(1 + Tyεy − k′/η + χhom)

, (26)

where k = 1
Tx(1+χlinex)

and k′ = 1
ηTx(1+χtotx)

. By this way, more details about eavesdropping method
taken by Eve can be found. Moreover, one can easily see that the transformed equations do not depend
on VM. We redraw the physical regions delimited by the new curves for different values of detection
efficiency and electronic noise as shown in Figure 7. We obtain the same rule as in Figure 5 that
the physical region gradually decreases as the detection efficiency increases and the electronic noise
decreases. Secure and unsecure regions under the realistic detection condition are shown in Figure 8.
The cyan curve with the secret key rate of zero represents the boundary of two regions. Although
the parameters Ty and εy are unknown, they are confined to the curve VB1

y = 1 + Tyεy, which can be
estimated by randomly measuring the phase quadrature in Bob’s side, meaning that Ty and εy cannot
be set simultaneously in other physical places outside this curve. We can see that Eve essentially
changes the value of the parameter CB1

y by controlling the value of Ty. For a constant value of VB1
y , we

can calculate the minimum secret key rate by scanning Ty or εy in the physical region. As shown in
Figure 8, the curve corresponding to the minimum secret key rate is divided into three parts. The red
curve part overlaps with the left boundary of the black solid curve which corresponds to the black solid
curve in Figure 6d. As the value of VB1

y increases, the worst-case Ty and εy (green curve part) gradually
separate from the black solid curve, meaning that the secret key rate of the protocol is not always
monotonically decreasing as εy increases or Ty decreases, but still lie in the secure region. The blue
curve represents the part where the minimum secret key rate is less than zero. We also find that this
minimum secret key rate is equal to the minimum secret key rate that was obtained by scanning CB1

y
(corresponding to the red solid line of Figure 6d) when other parameter values are set to be consistent.

Figure 7. Comparison among physical regions delimited by the new curves of the UD protocol. (a)
Changes of the physical region according to different values of η (vel remains constant); (b) Changes of
the physical region according to different values of vel (η remains constant). The other parameters are
β = 0.99, Tx = 0.1, εx = 0.01, and VM = 3.
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Figure 8. Secure and unsecure regions of the UD protocol under realistic detection condition.
The parameters are set to β = 0.99, VM = 3, Tx = 0.1, εx = 0.01, η = 0.6, and vel = 0.1.

In typical communication channels, the value of VB1
y can be estimated by setting VB1

y ≈ 1+Txεx = 1.001,
which is plotted with the black dashed line of Figure 8. At the black point, the conditions Tx = Ty

and εx = εy are satisfied. The red point represents the worst-case Ty and εy, which is the intersection
of the red line and black dashed line. Because Eve can distinguishes Ty, εy from Tx, εx by measuring
coherent states sent by Alice, she can arbitrarily change the values of both Ty and εy, while keeps VB1

y
unchanged, eventually, obtains more information. If Alice and Bob use Tx and εx to estimate Ty and εy

(black point), then this will underestimate the ability of the eavesdropper Eve and provide security
loopholes. Therefore, here we should consider the minimum secret key rate (red point).

In Figure 9, the curves representing the maximal tolerable excess noise versus the channel losses
under ideal and realistic detection conditions are shown. We observe that the UD protocol has a lower
tolerance to the excess noise than the SY protocol. However, the UD protocol reduces the complexity
of the experiment and still provides a reasonable secure region (all of the parameters are set under the
actual conditions).

Figure 9. (a) Comparison between secure and unsecure regions for the SY coherent-state protocol and
UD coherent-state protocol under different detection conditions; (b) Secure and unsecure regions of the
UD protocol using an ideal homodyne detector (η = 1, vel = 0) and a realistic one (η = 0.6, vel = 0.1).
Here we consider VM = 3, β = 0.99, and the estimated value VB1

y ≈ 1 + Txεx.

In addition, from Figure 9b, it is not difficult to find out that the realistic Bob’s detection can
slightly increase the secure region of the UD protocol. This effect can be explained by considering the
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fact that the noise added on Bob’s side not only affects Alice’s and Bob’s mutual information, but also
decreases Eve’s information in reverse reconciliation. Due to the detection at Bob’s side, which can be
controlled and observed by Bob, the noise added on Bob’s side could be considered as a believable
noise not controlled by the eavesdropper Eve. Moreover, it is found that there is an optimal noise χhom
(characterized by the detection efficiency η and electronic noise vel) that Bob needs to add to maximize
the secret key rate for each channel loss. Then, we can effectively improve the secret key rate and
increase the transmission distance by adding proper noise to Bob’s side, as we show in Figure 10.

Figure 10. (a) Minimum secret key rate as a function of the channel losses; (b) Optimal choice of χhom

that maximizes the secret key rate in (a). The other parameters are β = 0.99, εx = 0.04, VM = 3, and
VB1

y ≈ 1 + Txεx.

4. Conclusions

In this paper, we have proven the equivalence between the EB scheme and the PM scheme of
the UD CV-QKD protocol, and investigated the physical and secure regions of the SY coherent-state
protocol based on the Heisenberg uncertainty relation. It was shown that the realistic detection
condition in UD protocol results in an excess pseudo physical region, which corresponds to the
unphysical attack of Eve. In order to ensure the physicality, we should select the physical region
delimited by the ideal curve. We also found that a realistic Bob’s detection improves the resistance of
the protocol to the channel excess noise, therefore, the performance in terms of the secret key rates
and transmission distances of the UD coherent-state protocol can be improved by adding an optimal
noise to the reconciliation side. Overall, the results confirm the potential of a long-distance secure
communication through the usage of the UD CV-QKD protocol.
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Abstract: Why does nature only allow nonlocal correlations up to Tsirelson’s bound and not beyond?
We construct a channel whose input is statistically independent of its output, but through which
communication is nevertheless possible if and only if Tsirelson’s bound is violated. This provides a
statistical justification for Tsirelson’s bound on nonlocal correlations in a bipartite setting.
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1. Introduction

Some of the predictions made by quantum mechanics appear to be at odds with common sense.
Yet quantum mechanics remains the most precisely tested and successful quantitative theory of nature.
It is therefore believed that even if quantum mechanics is someday replaced, any successor will have
to inherit at least some of its “preposterous” but highly predictive principles. Perhaps the most
counter-intuitive quantum mechanical feature is nonlocality [1]: the correlations exhibited by remote
parties may exceed those allowed by any local realistic model.

The mystery of nonlocality is not only why nature is as nonlocal as it is, but why nature is not
more nonlocal than it is. There are alternative Non-Signaling theories which permit nonlocality beyond
the quantum limit [2,3]; why doesn’t nature choose one of these theories over quantum mechanics?
In Section 1.1 we review several previously proposed explanations. This paper presents another
explanation, from statistics.

In this paper we construct a protocol (a repeated oblivious transfer) which sends messages
through a disconnected channel. We show that Alice can communicate nontrivial information to
Bob via this protocol if and only if the maximal quantum mechanical violation of the Bell–CHSH
inequality [1,4], Tsirelson’s bound [5], is exceeded. We thus provide a statistical explanation of this
bound that is independent of the mathematical formalism of quantum mechanics.

We briefly recall the setting for the Bell–CHSH experiment. Section 2 provides a more detailed
account. A famous application of nonlocality is to construct an 1-2 oblivious transfer protocol between
two distant agents (A)lice and (B)ob. Alice and Bob each hold a box. Alice’s box might, for example,
contain one half of a singlet state of spin– 1

2 particles, with Bob’s box containing the other half [1,4].
In addition, Alice possesses a pair of bits x0 and x1, each of which is a zero or a one. Using boolean
algebra and her boxes (the protocol will be described later), Alice encodes her pair of bits into a single
bit x(1) which she sends across a classical channel to Bob. Bob wants to know the value either of x0 or
of x1, but Alice doesn’t know which of these Bob wants to know. Bob uses the received bit x(1), his
box, and some boolean algebra to construct an estimate yi for his desired bit xi. See Figure 2 later on.

What is the probability that Bob correctly estimates the bit he wishes to know? He has two
possible sources of knowledge—the bit x(1) he received from Alice, and some mysterious “nonlocal”
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correlation between his box and Alice’s. The strength of such a nonlocal coordination between two
systems is captured by a parameter c ∈ [−1, 1] called the Bell–CHSH correlator. Bob’s probability of
guessing the value of Alice’s bit correctly is (1 + |c|)/2. The Bell–CHSH inequality states that |c| ≤ 1/2
in a world governed by classical (non-quantum) mechanics [1,4]. Nonlocality is the state of affairs
in which the Bell–CHSH inequality is violated. To the best of our knowledge, real world physics is
nonlocal. Over the years, the violation of the Bell–CHSH inequality has been measured in increasingly
accurate and loophole-free experiments, culminating in celebrated loophole-free verifications [6–8].

Thus, we know that |c| can exceed 1/2. How large can |c| be? Tsirelson’s bound tells us that
|c| cannot exceed 1/

√
2 in a world described by quantum mechanics [5]. This quantum bound

on nonlocality:

|c| ≤ 1√
2

, (1)

has been tested experimentally, with the current state of the art being an experiment which has achieved
a value of c which is only 0.00084 ± 0.00051 distant from Tsirelson’s bound [9]. Such experimental
evidence supports the contention that Tsirelson’s bound indeed holds true in the real world. Tsirelson’s
result as presented in the original paper is a specifically quantum mechanical fact, following from
the Hilbert-space mathematical formalism for quantum mechanics, for which there has been no good
conceptual physical explanation. How fundamental is Tsirelson’s bound? Must this inequality also
hold for any future theory which might someday supercede quantum mechanics [10]? We are led to
the following question: Can we identify a plausible physical principle, independent of quantum mechanics
(or independent of functional analysis), which is necessary and sufficient to guarantee that |c| ≤ 1/

√
2?

1.1. Existing Principles

For the last two decades, people have searched for physical principles that bound nonlocality. It was
initially expected that the physical principle of relativistic causality (no-signaling) itself restricts the
strength of nonlocality [11–13]. But then it was discovered that no-signaling theories may exist for which
|c| > 1/

√
2. This led to the device-independent formalism of No-Signaling (NS)–boxes [2,14] (see also [3]).

In particular, maximum violation of the Bell–CHSH inequality is achieved by Popescu–Rohrlich (PR)–boxes
which are consistent with relativistic causality.

So relativistic causality doesn’t limit nonlocality after all; Why then does nature not permit (1) to
be violated (as far as we know)? Several suggestions have been made. Superquantum correlations
lead to violations of the Heisenberg uncertainty principle [15,16], which is another seemingly purely
quantum result. PR–boxes would allow distributed computation to be performed with only one bit
of communication [17], which looks unlikely but doesn’t violate any known physical law. Similarly,
in stronger-than-quantum nonlocal theories some computations exceed reasonable performance
limits [18]. The principle of Information Causality [19] shows that no sensible measure of mutual
information exists between pairs of systems in superquantum nonlocal theories. Our approach is
most directly comparable with Information Causality, with a conceptual difference being that we use
variance of an efficient estimator, therefore Fisher information, whereas information causality uses
mutual information (Shannon information). The relationship between our approach and theirs is
the topic of Section 6. Finally, it was shown that superquantum nonlocality does not permit local
(non-nonlocal) physics to emerge in the limit of infinitely many microscopic systems [20,21].

1.2. Tsirelson’s Bound from a Statistical No-Signaling Condition

Here we show that Tsirelson’s bound follows from the following principle applied to a certain
limiting Bell–CHSH setting:

Statistical No-Signaling: It is impossible to communicate a nontrivial message through a channel whose
output is independent of its input.
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Our strategy is to construct a channel whose input is a Bernoulli random variable X of mean θ and
whose output is another Bernoulli random variable Y (Section 3.2). The construction of our channel is
not new— it is a reinterpretation of the well-known van Dam protocol [17]. Through the channel, Alice
sends 2n samples A def

= {x0, x1, . . . , x2n−1} from X, and at the other end Bob receives a set of values
B def
= {y0, y1, . . . , ym−1}.

We imagine θ ∈ [−1, 1] as encoding a message, perhaps in the digits of its binary expansion.
Bob’s task is to estimate θ. The following theorem states that he can do so if and only if Tsirelson’s
bound fails.

Theorem 1.1.

1. The channel from X to Y we construct is described by the conditional probability p(Y = x | X = x) =
(1 + cn)/2, where c is the Bell–CHSH correlator. Its output satisfies:

p(Y = 1 | θ) =
1
2
+

cn · θ

2
.

In the n → ∞ limit it disconnects for p(Y | X) = p(Y) (i.e. we can arrange that c < 1).
2. The unbiased estimator:

θ̂
def
=

1
2ncn

2n−1

∑
i=0

yi ,

for θ has variance:

Var
[
θ̂ | θ

]
= lim

n→∞

1 − c2nθ2

(2c2)
n =

⎧⎪⎨⎪⎩
0, 2c2 > 1 (signaling)
1, 2c2 = 1 (randomness)
∞, 2c2 < 1 (no-signaling)

3. The estimator θ̂ is efficient, i.e. it has the minimal variance of any estimator of θ constructed from Bob’s
set of samples B for all n ∈ N.

The theorem is visually summarized by Figure 1.
The theorem shows that failure of Tsirelson’s bound leads to failure of the following consequence

of Statistical No-Signaling—Consequence of Statistical No-Signaling—In the above notation, if X and Y
are independent, then no estimator constructed from B has both mean θ and variance 0.

Section 5 shows that a violation of Uffink’s inequality [22], a generalization of Tsirelson’s bound,
also leads to the failure of the same consequence of Statistical No-Signaling. Uffink’s inequality is also
known to be recovered by Information Causality [23].

Theorem 1.1 is formulated as an asymptotic construction, but in practice a finite number of samples
suffices because for any experimental setup there exists a nonzero minimal possible environmental
noise level ε > 0 . By Theorem 1.1, p(Y = 1 | θ) is physically indistinguishable from 1/2 when the
absolute value of cnθ/2 is less than ε. Since |θ| ≤ 1, we need n ≥ ln 2ε/ ln c trials. As an example, for a
photon pair where ε is greater than or equal to the reduced Planck constant h̄, we find that n ≥ 244
suffices to make p(Y = 1 | θ) physically indistinguishable from 1/2 when |c| ≤ 1/

√
2. Thus, if we can

still distinguish p(Y = 1 | θ) from 1/2 for n = 244, we know that Tsirelson’s bound has been violated,
and if not then it holds.
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Figure 1. The Statistical No-Signaling condition. The van Dam protocol defines an underlying channel
which becomes disconnected in the n → ∞ limit. The upper illustration shows this channel and the
Fisher information (one over the variance) of the maximum likelihood estimators for θ at its input
and at its output. When the number of nonlocal resources increases unboundedly, the two ends of
the channel become disconnected as illustrated by a vanishing bottleneck in the lower illustration.
Statistical No-Signaling dictates that in this case no information can pass through. This occurs if and
only if 2c2 ≤ 1. The case of 2c2 > 1 leads to a physically unreasonable limit where Bob can fully read
off the value of Alice’s θ through a disconnected channel.

1.3. Organization of This Paper

Section 2 recalls the bipartite Bell experiment and exhibits the Bell–CHSH correlator c as the
correlator of a certain noisy symmetric channel. Section 3 presents the van Dam protocol as an
extension of the Bell–CHSH setup, and explain how it defines a noisy symmetric channel with
correlator cn. Section 4 computes the means and variance of an estimator θ̂ for θ, and proves that θ̂ is an
efficient estimator. Section 5 extends Theorem 1.1 to recover Uffink’s inequality [22,23] for anisotropic
correlators from Statistical No-Signaling. Finally, Section 6 discusses the relationship of Statistical
No-Signaling with Information Causality.

2. The Bipartite Bell Experiment as a Noisy Symmetric Channel

In this section we recall the definition of the Bell–CHSH correlator c and we formulate the
Bell–CHSH inequality, establishing notation. We then exhibit c as the correlator of a symmetric
binary channel.

2.1. The Bell–CHSH Inequality

Let us recall the classical bipartite Bell experiment [1]. Alice and Bob each hold one half of an EPR
pair (a pair of particles with certain properties summarized below) such as a singlet state of spin– 1

2
particles. They each possess two different measuring instruments. Alice measures her particle using
one of the instruments, and Bob measures his particles using one of his. We write i for the index of
the instrument used by Alice, and a for its reading. Similarly, we let j and b denote the index of an
instrument chosen by Bob and its reading correspondingly. In the language of probability, a and b are
±1–valued Bernoulli random variables. The choices of measuring instrument, i and j, may be either
parameters or 0/1–valued Bernoulli random variables.
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Repeating the experiment for many different EPR pairs, Alice and Bob may compute the two-point

correlator E
[

ab | i, j
]

of their readings a and b for any given pair of indices i and j, where E[·] is the
statistical expectation operator. We now define the Bell–CHSH correlator c by the formula:

c def
=

1
4

{
E
[

ab | 0, 0
]
+ E

[
ab | 0, 1

]
+ E

[
ab | 1, 0

]
− E

[
ab | 1, 1

]}
. (2)

In a theory in which both Alice and Bob’s choices, and the readings of their measuring devices,
are local, the Bell–CHSH inequality [4] holds:

|c| ≤ 1
2

. (3)

Operationally speaking, locality means that Alice’s readings may only be affected by her own
choices (and perhaps by other variables hidden locally at her site), and similarly for Bob’s readings.
Quantum mechanically, however, Alice and Bob may violate (3). Correlators violating (3) are said to
be nonlocal.

2.2. The Bell–CHSH Correlator c as a Channel Correlator

Non-signaling (NS)–boxes provide an abstraction and an extension of the Bell–CHSH
experiment [2,14]. This time, Alice and Bob each owns a box. Such a box may be thought
of as a complete laboratory containing two measuring devices. Either participants inserts their
choice of measuring device into their box. The box output is the respective reading of the chosen
measuring device.

Alice and Bob share a pair of NS–boxes whose 0/1–valued inputs are i and j and whose ±1–valued
outputs are Bernoulli random variables a and b. We will show that the Bell–CHSH correlator (2)
represents the correlator of a symmetric binary channel whose input is the Bernoulli random variable
X def

= (−1)ij and whose output is the Bernoulli random variable Y def
= a · b.

Let x ∈ {−1, 1}. Define the channel correlators cx as follows:

cx
def
= E

[
XY | X = x

]
= p(Y = x | X = x)− p(Y �= x | X = x) = 2p(Y = x | X = x)− 1 . (4)

With respect to a particular choice of measuring devices i and j and for x = (−1)ij, (4) becomes:

cx(i, j) = E
[

a · b · (−1)ij | i, j
]
= 2p(a · b = (−1)ij | i, j)− 1 . (5)

Assume the underlying channel is symmetric and therefore that cx(i, j) is fixed for all i, j. By (5)
the Bell–CHSH correlator (2) may be written as:

c =
1
4
(c1(0, 0) + c1(0, 1) + c1(1, 0) + c−1(1, 1)) = cx(i, j) = 2p(a · b = ij | i, j)− 1 . (6)

which is our promised interpretation of the Bell–CHSH correlator as a correlator of a noisy symmetric
binary channel.

3. The Van Dam Protocol as a Noisy Symmetric Channel

In this section we recall the construction of the van-Dam protocol [17,19]. We then reinterpret
this protocol as underlying a noisy symmetric binary channel, as a special case of the construction of
Section 2. We compute its correlator, and establish the effect of noise on its classical component.
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3.1. The Van Dam Protocol

The van Dam protocol realizes an oblivious transfer protocol by means of a classical channel and a
collection of NS-boxes. Each of Alice’s boxes has a corresponding box on Bob’s side, and different pairs
of boxes are statistically independent. Suppose that Alice has in her possession the bits x0, . . . , xm−1

where m = 2n, n ≥ 1. Bob wishes to know the value of one of her bits. He may do so by specifying the
address of the bit whose value he wishes to know via its binary address j = jn−1 jn−2 · · · j0. For example,
if n = 2 then Bob may specify which of the bits x0 to x3 he wants by specifying a binary address, 00,
01, 10, or 11. Alice bits and Bob addresses are encoded into the inputs of 2n − 1 NS-boxes following a
particular protocol which is described next.

Alice uses outputs of boxes and choices of measuring device to determine choices of measuring
device for other boxes. Such a procedure is called wiring. The wiring of boxes on Alice side admits a
recursive description which we now give. Let ak,l

i denote the output of Alice’s lth box on the kth level
for the input i. We follow the convention that box outputs for the van Dam protocol are 0/1–valued
(rather than ±1–valued) random variables. Let also:

f k,l (q1, q2)
def
= q1 ⊕ ak,l

q1⊕q2
. (7)

Suppose that Alice wishes to encode m = 4 bits with her boxes. To do so, she first picks two boxes
and computes:

x(1)1
def
= f 1,1 (x0, x1) , x(1)2

def
= f 1,2 (x2, x3) . (8)

This forms the first level in her construction. The second level then follows:

x(2) def
= f 2,1

(
x(1)1 , x(1)2

)
. (9)

In this example there are only two levels and so x(2) is the bit which Alice transmits to Bob
through the classical channel. In case where m = 2n there will be n levels and thus x(n) is the bit Bob
will receive from Alice.

Unbeknownst to Alice, Bob now decides which bit xj he would like to know the value of. He takes
its binary address j = jn−1 ji−2 · · · j0, and inserts jk−1 into all of his boxes whose counterparts are on
the k level on Alice’s side. He then uses the values bk,l

jk−1
that he obtains, together with the bit x(n) he

received from Alice, to construct the decoding function:

yj
def
= x(n) ⊕ b1,l1

j0
⊕ b2,l2

i1
⊕ · · · ⊕ bn,ln

jn−1
. (10)

The values l1, . . . , ln (which boxes Bob uses) are determined by the binary address j =

jn−1 jn−2 · · · j0 via the recursive formula lh−1 = 2lh − 1 + lh−1 for h = 1, 2, . . . n − 1 starting from
ln = 1.

The van Dam protocol we have described above is summarized in Figure 2.
The probability that Bob will decode the correct value of the bit he desires is governed by the

NS–box correlator c. In general, decoding any bit out of 2n possible bits involves using n pairs of
NS boxes. Noting that an even number of errors, a ⊕ b �= ij, will cancel out in such a construction,
we obtain the following expression [19]:

cn = 2p(yj = xj | xj)− 1 . (11)
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For example, for n = 2:

p(ai1 ⊕ bj1 ⊕ aj2 ⊕ bj2 = i1 j1 ⊕ i2 j2 | i1,2, j1,2, i1 j1 ⊕ i2 j2) =

p(ai1 ⊕ bj1 = i1 j1 | a1, b1)p(ai2 ⊕ bj2 = i2 j2 | i2, j2)+

p(ai1 ⊕ bj1 �= i1 j1 | i1, j1)p(ai2 ⊕ bj2 �= i2 j2 | i2, j2) =
1
2
(1 + c) · 1

2
(1 + c) +

1
2
(1 − c) · 1

2
(1 − c) =

1
2
(1 + c2) . (12)

Figure 2. Distributed oblivious transfer (van Dam) protocol [17]. Its basic building block is on the
left, where Alice inserts x0 ⊕ x1 into her box, receives a, and sends x0 ⊕ a to Bob. Bob decides that he
wants to know the value of xj, and he feeds j into his box, which outputs b. Bob’s estimate of xi is then
x(1) ⊕ b. When there are multiple boxes, Alice concatenates (the process is called wiring). For example,
with seven boxes, Alice begins with a collection of bits x0, x1, . . . , x7, and she inputs x2i ⊕ x2i+1 into
box i, where i = 0, 1, 2, 3, receiving a0, a1, a2, a3 correspondingly. The bits fed into the next level of

boxes become x(1)i
def
= x2i ⊕ ai with i = 0, 1, 2, 3. The final output x(3) is sent to Bob. Bob encodes the

address of the bit he wants as the binary number j3 j2 j1—for example, if he wants x2, then he sets
j3 = 0, j2 = 1, and j1 = 0 because 10 is 2 in binary. This binary encoding describes a path in his binary
tree from a root to a branch, where 0 means ‘go left’ and 1 means ‘go right’. Bob inserts j3 into the
lowermost box to obtain b6. Setting k def

= 5 − (1 − j3), he then inserts j2 into box k to obtain bk. Finally,
setting l def

= k − (3 − j3)− (1 − j2), Bob inserts j1 into box l to obtain Bl . His final estimate for xj is
yj = x(3) ⊕ b6 ⊕ bk ⊕ bl .

3.2. Van Dam Protocol as a Symmetric Channel

This section describes the modification of the van Dam protocol that we use.
Alice has in her possession an information source that is a ±1-valued Bernoulli random variable

X whose mean is θ. Alice takes m iid samples, x̃0, . . . , x̃m−1, from X and converts them into 0/1-valued
bits, x0, x1, . . . , xm−1 by mapping 0 to −1 and 1 to 1. Alice and Bob repeat the van Dam protocol m
times, once for each of Alice’s samples. Each time, Bob uses the protocol to estimate Alice’s bit, first x0,
then x1, and so on until xm−1.

As in (12), the van Dam protocol has a memoryless property:

p(yi = xi | x0, x1, . . . , xm−1) = p(yi = xi | xi) . (13)
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From this it follows that if Alice’s inputs x0, x1, . . . , xm−1 are iid then Bob’s outputs y0, y1, . . . , ym−1

are also iid. Therefore the set of ỹi
def
= (−1)yi determines a Bernoulli random variable Y. In this way,

the van Dam protocol may be viewed as a symmetric binary channel whose input is X and whose
output is Y. By (11) the channel correlator is:

E [XY | X = x̃i] = 2p(Y = x̃i | X = x̃i)− 1 = 2p(yi = xi | xi)− 1 = cn . (14)

We generalize slightly, for the purpose of treating the |c| = 1 case in the next section. Suppose that
Alice’s bits are contaminated with noise and therefore might be flipped once injected into her boxes.
Let [1− (c′)n]/2 be the probability that the bit xi is flipped where |c′| ≤ 1. In this case the corresponding
channel correlator (14) is E [XY | X = x̃i] = (cc′)n, which follows from (4) and:

p(Y = x̃i | X = x̃i) = p(Y = x̃i | X′ = x̃i)p(X′ = x̃i | X = x̃i)+

p(Y = x̃i | X′ �= x̃i)p(X′ �= x̃i | X = x̃i) =
1
2
[1 + (cc′)n] , (15)

where p(Y = x̃i | X′ = x̃i) = [1 + cn]/2 underlies the channel defined by the ordinary van Dam

protocol, and p(X′ �= x̃i | X = x̃i) = [1 − (c′)n]/2 is the probability of xi having been flipped.

3.3. The Van Dam Channel Disconnects in the n → ∞ Limit

If |c| < 1 or |c′| < 1 then it follows that:

E[XY] = 2p(Y = i | X = i)− 1 = (cc′)n n→∞−→ 0 . (16)

Therefore, in the n → ∞ limit:

p(Y = i | X = i) = 1/2 . (17)

But also:

p(Y = i) = p(Y = i | X = i)p(X = i) + p(Y = i | X �= i)p(X �= i) = 1
2 (p(X = i) + p(X �= i)) = 1

2 . (18)

Combining (17) with (18) gives:

p(Y | X)
n→∞−→ p(Y) . (19)

Thus X and Y are statistically independent in the n → ∞ limit, proving the first part of
Theorem 1.1.

4. Bob’s Estimator

4.1. Bob’s Estimator

In Section 3 we used the van Dam protocol to construct a symmetric channel whose input is a
±1–valued Bernoulli random variable X and whose output is another ±1–valued Bernoulli random
variable Y. The channel correlator is cn.

Alice sends m iid random samples X def
= {X1, . . . , Xm} through the channel. Denote the set of

respective outputs Y def
= {Y1, . . . , Ym}. Assume a prior distribution for X given by:

p(X = −1 | θ) =
1
2
(1 + θ) , (20)
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with parameter θ ∈ [−1, 1].
Bob attempts to estimate θ using the estimator:

θ̂
def
=

1
2ncn

2n−1

∑
i=0

Yi . (21)

We will show that Bob’s estimator is unbiased, E
[
θ̂ | θ

]
= θ. Note that

E
[
Yi | θ

]
= p(Y = 1 | θ)− p(Y = −1 | θ) . (22)

and

p(Y = −1 | θ) = p(Y = −1 | X = −1)p(X = −1 | θ) + p(Y = −1 | X = 1)p(X = 1 | θ) = 1+cnθ
2 . (23)

From (22) and (23) together, deduce:

E
[
Yi | θ

]
= cnθ . (24)

and therefore, E
[
θ̂ | θ

]
= θ.

As for variance, by (24):

Var
[
Yi | θ

]
= E

[
Y2

i | θ
]
− E

[
Yi | θ

]2
= 1 − c2nθ2 . (25)

Therefore:

Var
[
θ̂ | θ

]
=

1 − c2nθ2

(2c2)n . (26)

We have proved the second part of Theorem 1.1.

4.2. Bob’s Estimator θ̂ is Efficient

We prove efficiency of θ̂ by calculating the Fisher information about θ contained in Bob’s set of
samples B. The Cramer–Rao Theorem tells us that one over this Fisher information is a lower bound
for the variance of an estimator for θ constructed from B. By showing that θ̂ saturates this bound, we
will have proven that it is efficient. In the derivation that follows, we assume that |c| < 1 by replacing
c by cc′ if necessary.

We compute the Fisher information. The likelihood of θ given the set B is given by the expression:

p(B | θ) =
[

p(Y = −1 | θ)
]∑2n

i=1 1{Yi=−1} [
p(Y = 1 | θ)

]∑2n
i=1 1{Yi=1}

, (27)

where the indicator random variable of a random event A is given as:

1A
def
=

{
1, A occurred;
0, otherwise.

(28)

According to (27) the log-likelihood is given by the expression:

L(θ) def
= log p(B | θ) =

[
2n

∑
i=1

1{Yi=−1}

]
log p(Y = −1 | θ) +

[
2n

∑
i=1

1{Yi=1}

]
log p(Y = 1 | θ) . (29)
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The Fisher information about θ contained in the set B is defined as:

IB(θ) def
= E

[(
∂L(θ)

∂θ

)2
]
= −E

[
∂2L(θ)

∂θ2

]
. (30)

Note that:

E

[
2n

∑
i=1

1{Yi=s}

]
=

2n

∑
i=1

E
[
1{Yi=s}

]
= 2n p(Y = s | θ), s = −1, 1 . (31)

Using this, (30) reads:

IB(θ) = (2c2)n

1 − c2nθ2 . (32)

Indeed the Fisher information about θ in B as given by Equation (32) equals one over the variance
of θ̂ as given by Equation (26). Thus, by the Cramer–Rao Theorem, θ̂ is an efficient estimator for θ.
Parenthetically, note that the minimum of IB(θ) is obtained for θ = 0 in which case p(X | θ) = 1/2
and IB(0) = (2c2)n. We have proved the final part of Theorem 1.1.

5. Uffink’s Inequality from Statistical No-Signalling

The basic protocol in Section 3 assumes all box correlators are identical in absolute value. When
this assumption is relaxed, Statistical No-Signaling leads to Uffink’s inequality, which is a necessary
condition for quantum mechanical Bell-CHSH correlators [22,23]. Our approach is based on evaluating
the total Fisher information IB(θ) gained by Bob in 2n trials of the experiment.

Suppose that the mean of Alice’s bits, xi, is θ′ for even i, and θ otherwise. Consider now a pair of
NS-boxes with correlators, c(i, j) def

= E[ab | i, j]. The channel underlying the van Dam protocol in this
case is described by

p(yj = xj | x0, x1) = p(a ⊕ b = ij | j, i = x0 ⊕ x1) = [1 + c(x0 ⊕ x1, j)] /2, (33)

where yj is Bob’s guess of Alice’s bit xj. It now follows that

p(yj = 1 | θ′, θ) =

p(yj = xj | xj = 1, x1−j = 1)p(xj = 1)p(x1−j = 1) + p(yj �= xj | xj = 0, x1−j = 0)p(xj = 0)p(x1−j = 0)+
p(yj = xj | xj = 1, x1−j = 0)p(xj = 1)p(x1−j = 0) + p(yj �= xj | xj = 0, x1−j = 1)p(xj = 0)p(x1−j = 1) =
1
2

[
1 + 1

2 (c(0, j) + (−1)jc(1, j))θ′ + 1
2 (c(0, j)− (−1)jc(1, j))θ

]
.

(34)
For simplicity, assume that θ′ = 0. It can now be verified that for a n-level construction in the

van Dam protocol

p(yj1,...,jn = 1 | θ) =
1
2
[
1 + cj1 cj2 · · · cjn θ

]
, (35)

where cj
def
= (c(0, j)− (−1)jc(1, j))/2. According to (32) the Fisher information about θ contained in

yj1,...,jn is

Ij1,...,jn(θ) =

(
cj1 · · · cjn

)2

1 − (
cj1 · · · cjn

)2
θ2

. (36)

Assuming |c(i, j)| < 1, Bob’s total amount of information about θ in 2n trials is

IB(θ) = ∑
j1=0,1

· · · ∑
jn=0,1

Ij1,...,jn(θ) ≈ ∑
j1=0,1

· · · ∑
jn=0,1

(
cj1 · · · cjn

)2
=
[
c2

0 + c2
1

]n
, (37)
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for large n. As before, the underlying channel asymptotically disconnects for cj1 · · · cjn → 0 in
the n → ∞ limit. Statistical No-Signaling dictates that in this case the variance of Bob’s estimator

limn→∞ Var
[
θ̂ | θ

]
= limn→∞ IB(θ)−1 ≥ 1, which holds if and only if Uffink’s inequality holds [22],

c2
0 + c2

1 =
1
4
[c(0, 0)− c(1, 0)]2 +

1
4
[c(0, 1) + c(1, 1)]2 ≤ 1. (38)

6. Relation to Information Causality

Of previous non-quantum justifications of Tsirelson’s bound, Information Causality (IC) is perhaps
the closest to Statistical No-Signalling [19]. IC is also stated as a limit on communication: Information
gain that Bob can reach about a previously unknown to him data set of Alice, by using all his local resources and
m classical bits communicated by Alice, is at most m bits.

IC is formally a restriction on the classical channel capacity. Detecting violation of this principle
therefore requires the utilization of nonlocal resources, which the authors achieve through the
application of IC to the van Dam protocol, that is the same communication protocol used in this paper.

The Information Causality quantity I is defined as the Shannon mutual information of Alice’s
input and Bob’s output given the value of the single bit transmitted in the van Dam protocol. IC
holds if I ≤ 1 and is violated if I > 1. At the end of the supplementary section of [19], the following
expression for the IC quantity is obtained:

I ≥ 1
2 ln(2)

(
c2

1 + c2
−1

)n
, (39)

where ci
def
= E

[
XY | X = ĩ

]
as in (4). In the symmetric setting, c1 = c−1 = c, and for θ = 0,

Equations (39) and (32) combine to yield:

I ≥ 2nc2n

2 ln(2)
=

[1 − c2nθ2] IB(θ)
2 ln(2)

. (40)

In particular, in the n → ∞ limit, if 2c2 > 1 then IB(θ) → ∞ implying that I → ∞. Thus, violation
of Statistical No-Signaling implies violation of IC. Conversely, as (39) is an inequality, it is unknown
whether Tsirelson’s bound being satisfied implies I ≤ 1 (IC for the van Dam protocol), although, by our
main theorem, it does imply IB(θ) ≤ 1 (Statistical No-Signaling for the van Dam protocol).

7. Conclusions

We have formulated a Statistical No-Signaling principle which dictates that no information can
pass through a disconnected channel. A violation of Tsirelson’s bound, i.e. a value of |c| greater
that 1/

√
2, allows us to violate Statistical No-Signalling by constructing a disconnected channel

through which Bob can construct an unbiased estimator with variance 0 for Alice’s parameter θ.
Conversely, when Tsirelson’s bound holds, then, through this channel, so does Statistical No-Signalling.
Our construction thus provides a purely statistical justification for Tsirelson’s bound, independent of
quantum mechanics.
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