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Preface to “Imaging: Sensors and Technologies” 
This book contains high-quality works demonstrating significant achievements and advances in 

imaging sensors, covering spectral electromagnetic and acoustic ranges. They are self-contained works 
addressing different imaging-based procedures and applications in several areas, including 3D data 
recovery; multispectral analysis; biometrics applications; computed tomography; surface defects; 
indoor/outdoor systems; surveillance. Advanced imaging technologies and specific sensors are also 
described on the electromagnetic spectrum (ultraviolet, visible, infrared), including airborne 
calibration systems; selective change driven, multi-spectral systems; specific electronic devices 
(CMOS, CCDs, CZT, X-Ray, and fluorescence); multi-camera systems; line sensors arrays; video 
systems. Some technologies based on acoustic imaging are also provided, including acoustic planar 
arrays of MEMS or linear arrays. 

The reader will also find an excellent source of resources, when necessary, in the development 
of his/her research, teaching or industrial activity, involving imaging and processing procedures. 

This book describes worldwide developments and references on the covered topics—useful in 
the contexts addressed.  

Our society is demanding new technologies and methods related to images in order to take 
immediate actions or to extract the underlying knowledge on the spot, with important contributions to 
welfare or specific actions when required. 

The international scientific and industrial communities worldwide also benefit indirectly. 
Indeed, this book provides insights into and solutions for the different problems addressed. It also lays 
the foundation for future advances toward new challenges. In this regard, new imaging sensors, 
technologies and procedures contribute to the solution of existing problems; conversely, they 
contribute where the need to resolve certain problems demands the development of new imaging 
technologies and associated procedures.  

We are grateful to all those involved in the edition of this book. Without the invaluable 
contribution of the authors together with the excellent help of the reviewers, this book would not have 
seen the light of day. More than 150 authors have contributed to this book. 

Thanks to Sensors journal and the whole team involved in the edition and production of this 
book for their support and encouragement. 

Gonzalo Pajares Martinsanz 
Guest Editor 
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Abstract: Time-of-Flight (ToF) cameras, a technology which has developed rapidly in recent years,
are 3D imaging sensors providing a depth image as well as an amplitude image with a high frame rate.
As a ToF camera is limited by the imaging conditions and external environment, its captured data
are always subject to certain errors. This paper analyzes the influence of typical external distractions
including material, color, distance, lighting, etc. on the depth error of ToF cameras. Our experiments
indicated that factors such as lighting, color, material, and distance could cause different influences
on the depth error of ToF cameras. However, since the forms of errors are uncertain, it’s difficult to
summarize them in a unified law. To further improve the measurement accuracy, this paper proposes
an error correction method based on Particle Filter-Support Vector Machine (PF-SVM). Moreover,
the experiment results showed that this method can effectively reduce the depth error of ToF cameras
to 4.6 mm within its full measurement range (0.5–5 m).

Keywords: ToF camera; depth error; error modeling; error correction; particle filter; SVM

1. Introduction

ToF cameras, which have been developed rapidly in recent years, are a kind of 3D imaging sensor
providing a depth image as well as an amplitude image with a high frame rate. With its advantages of
small size, light weight, compact structure and low power consumption, this equipment has shown
great application potential in fields such as navigation of ground robots [1], pose estimation [2],
3D object reconstruction [3], identification and tracking of human organs [4] and so on. However,
limited by its imaging conditions and influenced by the interference of the external environment,
the data acquired by a ToF camera has certain errors, among which is the fact it has no unified correction
method for any non-systematic errors caused by the external environment. Therefore, different depth
errors must be analyzed, modeled and corrected case by case according to the different causes.

ToF camera errors can be divided into two categories: systematic errors, and non-systematic
errors. A systematic error is triggered not only by its intrinsic properties, but also by the imaging
conditions of the camera system. The main characteristic of this kind of error is that their form is
relatively fixed. These errors can be evaluated in advance, and the correction process is relatively
convenient. Systematic errors which can be reduced by calibration under normal circumstances [5]
and can be divided into five categories.

A non-systematic error is an error caused by the external environment and noise. The characteristic
of this kind of error is that the form is not fixed and random, and it is difficult to establish a unified

Sensors 2017, 17, 92 1 www.mdpi.com/journal/sensors
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model to describe and correct such errors. Non-systematic errors are mainly divided into four
categories: signal-to-noise ratio, multiple light reception, light scattering and motion blurring [5].

Signal-to-noise ratio errors can be removed by the low amplitude filtering method [6], or an
optimized integration time can be decided by using a complex algorithm as per the area to be
optimized [7]. Other ways generally reduce the impact of noise by calculating the average of data to
determine whether it exceeds a fixed threshold [8–10].

Multiple light reception errors mainly exist at surface edges and depressions of the target object.
Usually, the errors in surface edges of the target object can be removed by comparing the incidence
angle of the adjacent pixels [7,11,12], but there is no efficient solution to remove the errors of depressions
in the target object.

Light scattering errors are only related to the position of a target object in the scene; the closer
it is to the target object, the stronger the interference will be [13]. In [14], a filter approach based
on amplitude and intensity on the basis of choosing an optimum integration time was proposed.
Measurements based on multiple frequencies [15,16] and the ToF encoding method [17] both belong
to the modeling category, which can solve the impact of sparse scattering. A direct light and global
separation method [18] can solve mutual scattering and sub-surface scattering among the target objects.

In [19], the authors proposed detecting transverse moving objects by the combination of a color
camera and a ToF camera. In [20], transverse and axial motion blurring were solved by an optical flow
method and axial motion estimation. In [21], the authors proposed a fuzzy detection method by using
a charge quantity relation so as to eliminate motion blurring.

In addition, some error correction methods cannot distinguish among error types, and uniformly
correct the depth errors of ToF cameras. In order to correct the depth error of ToF cameras, a fusion
method with a ToF camera and a color camera was also proposed in [22,23]. In [24], a 3D depth frame
interpolation and interpolative temporal filtering method was proposed to increase the accuracy of
ToF cameras.

Focusing on the non-systematic errors of ToF cameras, this paper starts with the analysis of the
impacts of varying external distractions on the depth errors of ToF cameras, such as materials, colors,
distances, and lighting. Moreover, based on the particle filter to select the parameters of a SVM error
model, an error modeling method based on PF-SVM is proposed, and the depth error correction of ToF
cameras is realized as well.

The reminder of the paper is organized as follows: Section 2 introduces the principle and
development of ToF cameras. Section 3 analyzes the influence of lighting, material properties, color and
distance on the depth errors of ToF cameras through four groups of experiments. In Section 4, a PF-SVM
method is adopted to model and correct the depth errors. In Section 5, we present our conclusions and
discuss possible future work.

2. Development and Principle of ToF Cameras

In a broad sense, ToF technology is a general term for determining distance by measuring the flight
time of light between sensors and the target object surface. According to the different measurement
methods of flight time, ToF technology can be classified into pulse/flash, continuous wave,
pseudo-random number and compressed sensing [25]. The continuous wave flight time system
is also called ToF camera.

ToF cameras were firstly invented at the Stanford Research Institute (SRI) in 1977 [26]. Limited by
the detector technology at that time, the technique wasn’t used widely. Fast sampling of receiving
light didn’t come true until the lock-in CCD technique was invented in the 1990s [27]. Then, in 1997
Schwarte, who was at the University of Siegen (Germany), put forward a method of measuring
the phases and/or magnitudes of electromagnetic waves based on the lock-in CCD technique [28].
With this technique, his team invented the first CCD-based ToF camera prototype [29]. Afterwards,
ToF cameras began to develop rapidly. A brief development history is shown in Figure 1.
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Figure 1. Development history of ToF cameras.

In Figure 2, the working principle of ToF cameras is illustrated. The signal is modulated on the
light source (usually LED) and emitted to the surface of the target object. Then, the phase shift between
the emitted and received signals is calculated by measuring the accumulated charge numbers of each
pixel on the sensor. Thereby, we can obtain the distance from the ToF camera to the target object.

Figure 2. Principle of ToF cameras.

The received signal is sampled four times at equal intervals for every period (at 1/4 period).
From the four samples (ϕ0, ϕ1, ϕ2, ϕ3) of phase ϕ, offset B and amplitude A can be calculated as follows:

ϕ = arctan
(

ϕ0 − ϕ2

ϕ1 − ϕ3

)
, (1)

B =
ϕ0 + ϕ1 + ϕ2 + ϕ3

4
(2)

A =

√
(ϕ0 − ϕ2)

2 + (ϕ1 − ϕ3)
2

2
(3)

Distance D can be derived:

D =
1
2

(
cΔϕ

2π f

)
, (4)

where D is the distance from ToF camera to the target object, c is light speed and f is the modulation
frequency of the signal, Δϕ is phase difference. More details on the principle of ToF cameras can be
found in [5].

We list the exterior and parameters of several typical commercial ToF cameras on the market in
Table 1.
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Table 1. Parameters of typical commercial ToF cameras.

ToF Camera

Maximum
Resolution
of Depth
Images

Maximum
Frame

Rate/fps

Measurement
Rage/m

Field of
View/◦ Accuracy Weight/g

Power/W
(Typical/Maximum)

MESA-SR4000

 

176 × 144 50 0.1–5 69 × 55 ±1 cm 470 9.6/24

Microsoft-Kinect II 512 × 424 30 0.5–4.5 70 × 60 ±3 cm@2 m 550 16/32

PMD-Camcube 3.0 200 × 200 15 0.3–7.5 40 × 40 ±3 mm@4 m 1438 -

3. Analysis on Depth Errors of ToF Cameras

The external environment usually has a random and uncertain influence on ToF cameras, therefore,
it’s difficult to establish a unified model to describe and correct such errors. In this section, we take the
MESA SR4000 camera (Zurich, Switzerland, a camera with good performance [30], which has been
used in error analysis [31–33] and position estimation [34–36]) as an example to analyze the influence
of the external environment transformation on the depth error of ToF cameras. The data we get from
the experiments provide references for the correction of depth errors in the next step.

3.1. Influence of Lighting, Color and Distance on Depth Errors

During the measurement process of ToF cameras, it seems that the measured objects tend to have
different colors, different distances and may be under different lighting conditions. Then, the following
question arises: will the difference in lighting, distances and colors affect the measurement results?
To answer this question, we conduct the following experiments.

As we know, there are several natural indoor lighting conditions, such as light-sunlight,
indoor light-lamp light and no light. This experiment mainly considers the influence of these three
lighting conditions on the depth errors of the SR4000. Red, green and blue are three primary colors that
can be superimposed into any color. White is the color for measuring error [32,37,38], while reflective
papers (tin foil) can reflect all light. Therefore, this experiment mainly considers the influence of these
five conditions on the depth errors of the SR4000.

As the measurment target, the white wall is then covered by red, blue, green, white and reflective
papers, respectively, as examples of backgrounds with different colors. Since the wall is not completely
flat, laser scanners are used to build a wall model. Then we used a 25HSX laser scanner from Surphaser
(Redmond, WA, USA) to provide a reference value, because its accuracy is relatively high (0.3 mm).
The SR4000 camera is set on the right side of the bracket, while the 3D laser scanner is on the left.
The bracket is mounted in the middle of two tripods and the tripods are placed parallel to the white wall.
The distances between the tripods and the wall are measured with two parallel tapes. The experimental
scene is arranged as shown in Figure 3 below.

The distances from the tripods to the wall are set to 5, 4, 3, 2.5, 2, 1.5, 1, 0.5 m respectively. At each
position, we change the lighting conditions and obtain one frame with the laser scanner and 30 frames
with the SR4000 camera. To exclude the influence of the integral time, the SR_3D_View software of the
SR4000 camera is set to “Auto”.
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(a) (b) 

Figure 3. Experimental scene. (a) Experimental scene; (b) Camera bracket.

In order to analyze the depth error, the acquired data are processed in MATLAB. Since the target
object can’t fill the image, we select the central region of 90 × 90 pixels of the SR4000 to be analyzed
for depth errors. The distance error is defined as:

hi,j =

n
∑

f=1
mi,j, f

n
− ri,j, (5)

g =

a
∑

i=1

b
∑

j=1
hi,j

s
(6)

where hi,j is the mean error of pixel i,j, f is the frame number of the camera, mi,j,f is the distance
measured at pixel i,j in Frame f, n = 30, ri,j is the real distance, a and b are the row and column number
of the selected region respectively and s is the total number of pixels. The real distance ri,j is provided
by the laser scanner.

Figure 4 shows the effects of different lighting conditions on the depth error of the SR4000.
As shown in Figure 4, the depth error of the SR4000 is on slightly affected by the lighting conditions
(the maximum effect is 2 mm). The depth error increases approximately linearly with distance, and the
measurement error value complies with the error test of other Swiss Ranger cameras in [37–40]. Besides,
as seen in the figure, SR4000 is very robust against light changes, and can adapt to various indoor
lighting conditions for the lower accuracy requirements.

5



Sensors 2017, 17, 92

 
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

-0.005

0

0.005

0.01

0.015

0.02

0.025

measured distance[m]

de
vi

at
io

n[
m

]

light

 

 
dark
natural
indoor

Figure 4. Influence of lighting on depth errors.

Figure 5 shows the effects of various colors on the depth errors of the SR4000 camera. As shown
in Figure 5, the depth error of the SR4000 is affected by the color of the target object, and it increases
linearly with distance. The depth error curve under reflective conditions is quite different from the
others. When the distance is 1.5–2 m, the depth error is too large, while at 3–5 m, it is small. When the
distance is 5 m, the depth error is 15 mm less than when the color is blue. When the distance is 1.5 m,
the depth error when the color is white is 5 mm higher than when the color is green.
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Figure 5. Influence of color on depth errors.

3.2. Influence of Material on Depth Errors

During the measurement process of ToF cameras, it seems that the measured objects tend to be of
different materials. Then, will this affect the measurement results? For this question, we conducted the
following experiments: to analyze the effects of different materials on the depth errors of the SR4000,
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we chose four common materials in the experiment: ABS plastic, stainless steel, wood and glass.
The tripods are arranged as shown in Figure 3 of Section 3.1, and the targets are four 5-cm-thick
boards of the different materials, as shown in Figure 6. The tripods are placed parallel to the
target and the distance is set to about 1 m, and the experiment is operated under natural light
conditions. To differentiate the boards on the depth image, we leave a certain distance between them.
Then we acquire one frame with the laser scanner and 30 consecutive frames with the SR4000 camera.
The integral time in the SR_3D_View software of the SR4000 camera is set to “Auto”.

 

Figure 6. Four boards made of different materials.

For the SR4000 and the laser scanner, we select the central regions of 120 × 100 pixels and
750 × 750 pixels, respectively. To calculate the mean thickness of the four boards, we need to measure
the distance between the wall and the tripods as well. Section 3.1 described the data processing method
and Figure 7 shows the mean errors of the four boards.
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Figure 7. Depth data of two sensors.

As shown in Figure 7, the material affects both the depth errors of the SR4000 and the laser scanner.
When the material is wood, the absolute error of the ToF camera is minimal and only 1.5 mm. When the
target is the stainless steel board, the absolute error reaches its maximum value and the depth error is
13.4 mm, because, as the reflectivity of the target surface increases, the number of photons received by
the light receiver decreases, which leads to a higher measurement error.

3.3. Influence of a Single Scene on Depth Errors

The following experiments were conducted to determine the influence of a single scene on
depth errors. The tripods are placed as shown in Figure 3 of Section 3.1, and as shown in Figure 8,
the measuring target is a cone, 10 cm in diameter and 15 cm in height. The tripods are placed parallel
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to the axis of the cone and the distance is set to 1 m. The experiment is operated under natural light
conditions. We acquire one frame with the laser scanner and 30 consecutive frames with the SR4000
camera. The integral time in the SR_3D_View software of the SR4000 camera is set to “Auto”.

 

Figure 8. The measured cone.

As shown in Figure 9, we choose one of the 30 consecutive frames to analyze the errors,
extract point cloud data from the selected frame and compare it with the standard cone to calculate the
error. The right side in Figure 9 is a color belt of the error distribution, of which the unit is m. As shown
in Figure 9, the measurement accuracy of SR4000 is also higher, where the maximal depth error is
0.06 m. The depth errors of the SR4000 mainly locate in the rear profile of the cone. The measured
object deformation is small, but, compared with the laser scanner, its point cloud data are sparser.

Figure 9. Measurement errors of the cone.

3.4. Influence of a Complex Scene on Depth Errors

The following experiments were conducted in order to determine the influence of a complex
scene on depth errors. The tripods are placed as shown in Figure 3 of Section 3.1 and the measurement
target is a complex scene, as shown in Figure 10. The tripods are placed parallel to the wall, and the
distance is set to about 1 m. The experiment is operated under natural light conditions. We acquire
one frame with the laser scanner and 30 consecutive frames with the SR4000 camera. The integral time
in the SR_3D_View software of the SR4000 camera is set to “Auto”.

8
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Figure 10. Complex scene.

We then choose one of the 30 consecutive frames for analysis and, as shown in Figure 11, obtain the
point cloud data of the SR4000 and the laser scanner. As shown in Figure 11, there is a small amount
of deformation in the shape of the target object measured by the SR4000 compared to the laser
scanner, especially on the edge of the sensor where the measured object is clearly curved. However,
distortion exists on the border of the point cloud data and artifacts appear on the plant.

Figure 11. Depth images based on the point cloud of depth sensors.

3.5. Analysis of Depth Errors

From the above four groups of experiments, the depth errors of the SR4000 are weakly affected
by lighting conditions (2 mm maximum under the same conditions). The second factor is the target
object color. Under the same conditions, this affects the depth error by a maximum of 5 mm. On the
other hand, the material has a great influence on the depth errors of ToF cameras. The greater the
reflectivity of the measured object material, the greater the depth error, which increases approximately
linearly with the distance between the measured object and ToF camera. In a more complex scene,
the depth error of a ToF camera is greater. Above all, lighting, object color, material, distance and
complex backgrounds could cause different influences on the depth errors of ToF cameras, but it’s
difficult to summarize this in an error law, because the forms of these errors are uncertain.

4. Depth Error Correction for ToF Cameras

In the last section, four groups of experiments were conducted to analyze the influence of several
external factors on the depth errors of ToF cameras. The results of our experiments indicate that
different factors have different effects on the measurement results, and it is difficult to establish a unified
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model to describe and correct such errors. For a complex process that is difficult to model mechanically,
an inevitable choice is to use actual measurable input and output data to model. Machine learning is
proved to be an effective method to establish non-linear process models. It maps the input space to
the output space through a connection model, and the model can approximate a non-linear function
with any precision. SVM is a new generic learning method developed on the basis of a statistical
learning theory framework. It can seek the best compromise between the complexity of the model
and learning ability according to limited sample information so as to obtain the best generalization
performance [41,42]. Also in the last section of this paper, we learn and model the depth errors of ToF
cameras by using a LS-SVM [43] algorithm.

Better parameters generate better SVM recognition performance to build the LS-SVM model.
We need to determine the penalty parameter C and Gaussian kernel parameter γ. Cross-validation [44]
is a common method which suffers from large computation demands and long running times.
A particle filter [45] can be used to approximate the probability distribution of parameters in the
parameter state space by spreading a large number of weighted discrete random variables, based on
which, this paper puts forward a parameter selection algorithm, which can fit the depth errors of
ToF cameras quickly and meet the requirements of correcting the errors. The process of the PF-SVM
algorithm is shown in Figure 12 below.

Figure 12. Process of PF-SVM algorithm.

4.1. PF-SVM Algorithm

4.1.1. LS-SVM Algorithm

According to statistical theory, during the process of black-box modeling for non-linear systems,
training set {xi,yi}, i = 1,2, . . . ,n is generally given and non-linear function f is established to minimize
Equation (8):

f (x) = wT ϕ(x) + b, (7)

minw,b,δ J(w, δ) =
1
2

wTw +
1
2

C
n

∑
i=1

δ2, (8)
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where ϕ(x) is a nonlinear function, and w is the weight. Moreover, Equation (8) satisfies the constraint:

yi = wT ϕ(xi) + b + δi, i = 1, 2 · · · n, (9)

where δi ≥ 0 is the relaxation factor, and C > 0 is the penalty parameter.
The following equation introduces the Lagrange function L to solve the optimization problem in

Equation (8):

L =
1
2
‖w‖2 +

1
2

C
n

∑
i=1

δ2
i −

n

∑
i=1

αi(ϕ(xi) · w + b + δi − yi), (10)

where αi is a Lagrange multiplier.
For i = 1,2, . . . n by elimination of w and δ, a linear equation can be obtained:

[
0 eT

e GGT + C−1 I

]
(n+1)×(n+1)

[
b
α

]
=

[
0
y

]
, (11)

where e is an element of one n-dimensional column vector, and I is the n × n unit matrix:

G =
[

ϕ(x1)
T ϕ(x2)

T · · · ϕ(xn)
T
]T

, (12)

According to the Mercer conditions, the kernel function is defined as follows:

K
(

xi, xj
)
= ϕ(xi) · ϕ

(
xj
)
, (13)

We substitute Equations (12) and (13) into Equation (11) to get a linear equation from which α

and b can be determined by the least squares method. Then we can obtain the non-linear function
approximation of the training data set:

y(x) =
n

∑
i=1

αiK(x, xi) + b, (14)

4.1.2. PF-SVM Algorithm

The depth errors of ToF cameras mentioned above are used as training sample sets
{xi,yi}, i = 1,2, . . . n, where xi is the camera measurement distance, and yi is the camera measurement
error. Then the error correction becomes a black-box modeling problem of a nonlinear system. Our goal
is to determine the nonlinear model f and correct the measurement error with it.

The error model of ToF cameras obtained via the LS-SVM method is expressed in Equation (14).
In order to seek a group of optimal parameters for the SVM model to approximate the depth errors in
the training sample space, we put this model into a Particle Filter algorithm.

In this paper, the kernel function is:

k(x, y) = exp

(
−‖x − y‖2

2γ2

)
, (15)

(1) Estimation state.

The estimated parameter state x at time k is represented as:

xj
0 =

[
Cj

0 γ
j
0

]T
, (16)

where xj
0 is j-th particle when k = 0, C is the penalty parameter and γ is the Gauss kernel parameter.
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(2) Estimation Model.

The relationship between parameter state x and parameter α,b in non-linear model y(x) can be
expressed by state equation z(α,b):

z(α, b) = F(γ, C), (17)

⎡
⎢⎢⎢⎢⎣

b
α1
...

αn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0 1 · · · 1
1 K(x1, x1) · · · K(x1, xn)

...
...

. . .
...

1 K(xn, x1) · · · K(xn, xn) +
1
C

⎤
⎥⎥⎥⎥⎥⎦

−1⎡
⎢⎢⎢⎢⎣

0
y1
...

yn

⎤
⎥⎥⎥⎥⎦, (18)

where Equation (17) is the deformation of Equation (11).
The relationship between parameter α,b and ToF camera error y(x) can be expressed by observation

equation f :

y(x) = f (α, b), (19)

y(x) =
n

∑
i=1

αiK(x, xi) + b, (20)

where Equation (20) is the non-linear model derived from LS-SVM algorithm.

(3) Description of observation target.

In this paper, we use yi of training set {xi,yi} as the real description of the observation target,
namely the real value of the observation:

z = {yi}, (21)

(4) The calculation of the characteristic and the weight of the particle observation.

This process is executed when each particle is under characteristic observation. Hence the error
values of the ToF camera are calculated according to the sampling of each particle in the parameter
state x:

zj
(

αj, b
j
)
= F

(
γj, Cj

)
, (22)

yj(x) = f
(

αj, b
j
)

, (23)

Here we compute the similarity between the ToF camera error values and the observed target
camera values of each particle. The similarity evaluation RMS is defined as follows:

RMS =

√√√√ 1
n

n

∑
i=1

(
yj − yi

)2

, (24)

where yj is the observation value of particle j and yi is the real error value. The weight value of each
particle is calculated according to the Equation (24):

w(j) =
1√
2πσ

e−
RMS2

2σ , (25)

Then the weight values are normalized:

wj =
wj

m
∑

j=1
wj

, (26)
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(5) Resampling

Resampling of the particles is conducted according to the normalized weights. In this process,
not only the particles with great weights but also a small part of particles with small weights should
be kept down.

(6) Outputting particle set xj
0 =

[
Cj

0 γ
j
0

]T
. This particle set is the optimal LS-SVM parameter.

(7) The measurement error model of ToF cameras can be obtained by introducing the parameter into
the LS-SVM model.

4.2. Experimental Results

We’ve performed three groups of experiments to verify the effectiveness of the algorithm.
In Experiment 1, the depth error model of ToF cameras was modeled with the experimental data in [32],
and the results were compared with the error correction results in the original text. In Experiment 2,
the depth error model of ToF cameras was modeled with the data in Section 3.1, and the error correction
results under different test conditions were compared. In Experiment 3, the error correction results
under different reflectivity and different texture conditions were compared.

4.2.1. Experiment 1

In this experiment, we used the depth error data of the ToF cameras which was obtained from
Section 3.2 of [32] as the training sample set. The training set consists of 81 sets of data, where x is
the distance measurement of the ToF camera and y is the depth error of the ToF camera, as shown
in Figure 13 by blue dots. In the figure, the solid green line represents the error modeling results by
using the polynomial given in [32]. It shows that the fitting effect is better when the distance is 1.5–4 m,
and the maximum absolute error is 8 mm. However, when the distance is less than 1.5 m or more
than 4 m, the error model deviated from the true error values. By using our algorithm, we can obtain
the results C = 736 and γ = 0.003. By substituting these two parameters into the abovementioned
algorithm, we can also obtain the depth error model of the ToF camera as shown in the figure by the
red solid line. For this, it can be seen that the error model can match the real errors well.
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Figure 13. Depth error and error model.

In order to verify the validity of the error model, we use the ToF camera depth error data obtained
from Section 3.3 of [32] as a test sample set (the measurement conditions are the same as Section 3.2
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of [32]). The test sample set consists of 16 sets of data, as shown in Figure 14 by the blue line. In the
figure, the solid green line represents the error modeling results by using the polynomial in [32].
It shows that the fitting effect is better when the distance is 1.5–4 m, and the maximum absolute error is
8.6 mm. However, when the distance is less than 1.5 m or more than 4 m, the error model has deviated
from the true error value. The results agree with the fitting effect of the aforementioned error model.
The model correction results obtained by using our algorithm are shown by the red solid line in the
figure. It shows that the results of the error correction are better when the distance is in 0.5–4.5 m,
and the absolute maximum error is 4.6 mm. Table 2 gives the detailed performance comparison results
of these two error corrections. From Table 2, we can see that, while expanding the range of error
correction, this method can also improve the accuracy of the error correction.
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Figure 14. Depth error correction results.

Table 2. Analysis of depth error correction results.

Comparison
Items

Maximal Error/mm Average Error/mm Variance/mm Optimal
Range/m

Running
Time/s1.5–4 0.5–4.5 1.5–4 0.5–4.5 1.5–4 0.5–4.5

This paper’s
algorithm 4.6 4.6 1.99 2.19 2.92 2.4518 0.5–4.5 2

Reference [32]
algorithm 4.6 8.6 2.14 4.375 5.34 29.414 1.5–4 -

4.2.2. Experiment 2

The ToF depth error data of Section 3.1 on the condition of blue background is selected as the
training sample set. As shown in Figure 15 by blue asterisks, the training set consists of eight sets of
data. The error model established by our algorithm is shown by the blue line in Figure 15. The model
can fit the error data well, but the training sample set should be as rich as possible in order to build
the accuracy of the model. To verify the applicability of the error model, we use white, green and
red background ToF depth error data as test samples, and the data after correction is shown in the
figure by the black, green and red lines. It can be seen from the figure that the absolute values of the
three groups of residual errors is less than the uncorrected error data after the application of the blue
distance error model. The figure also illustrates that this error model is very applicable to the error
correction of ToF cameras for different color backgrounds.
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Figure 15. Depth error correction results of various colors and error model.

4.2.3. Experiment 3

The experimental process similar to that of Section 3.1 hereof was adopted in order to verify the
validity of the error modeling method under different reflectivity and different texture conditions.
The sample set, including 91 groups of data, involved the depth errors obtained from the white wall
surfaces photographed with a ToF camera at different distances, as shown with the blue solid lines
in Figure 16. The error model established by use of the algorithm herein is shown with the red solid
lines in Figure 16. The figure indicates that this model fits the error data better. With a newspaper
fixed on the wall as the test target, the depth errors obtained with a ToF camera at different distances
are taken as the test data, as shown with the black solid lines in Figure 16, while the data corrected
through the error model created here are shown with the green solid lines in the same figure. It can be
seen from the figure that the absolute values of residual errors is less than the uncorrected error data
after the application of the distance error model. The figure also illustrates that this error model is very
applicable to the full measurement range of ToF cameras.
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Figure 16. Depth error correction results and error model.
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5. Conclusions

In this paper, we analyzed the influence of some typical external distractions, such as material
properties and color of the target object, distance, lighting and so on on the depth errors of ToF cameras.
Our experiments indicate that lighting, color, material and distance could cause different influences
on the depth errors of ToF cameras. As the distance becomes longer, the depth errors of ToF cameras
increase roughly linearly. To further improve the measurement accuracy of ToF cameras, this paper
puts forward an error correction method based on Particle Filter-Support Vector Machine (PF-SVM).
Then, the best parameters with particle filter algorithm on the basis of learning the depth errors of ToF
cameras are selected. The experimental results indicate that this method can reduce the depth error
from 8.6 mm to 4.6 mm within its full measurement range (0.5–5 m).
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Abstract: The introduction of RGB-Depth (RGB-D) sensors into the visually impaired people
(VIP)-assisting area has stirred great interest of many researchers. However, the detection range
of RGB-D sensors is limited by narrow depth field angle and sparse depth map in the distance,
which hampers broader and longer traversability awareness. This paper proposes an effective
approach to expand the detection of traversable area based on a RGB-D sensor, the Intel RealSense
R200, which is compatible with both indoor and outdoor environments. The depth image of RealSense
is enhanced with IR image large-scale matching and RGB image-guided filtering. Traversable area is
obtained with RANdom SAmple Consensus (RANSAC) segmentation and surface normal vector
estimation, preliminarily. A seeded growing region algorithm, combining the depth image and RGB
image, enlarges the preliminary traversable area greatly. This is critical not only for avoiding close
obstacles, but also for allowing superior path planning on navigation. The proposed approach has
been tested on a score of indoor and outdoor scenarios. Moreover, the approach has been integrated
into an assistance system, which consists of a wearable prototype and an audio interface. Furthermore,
the presented approach has been proved to be useful and reliable by a field test with eight visually
impaired volunteers.

Keywords: RGB-D sensor; RealSense; visually impaired people; traversable area detection

1. Introduction

According to the World Health Organization, 285 million people were estimated to be visually
impaired and 39 million of them are blind around the world in 2014 [1]. It is very difficult for
visually impaired people (VIP) to find their way through obstacles and wander in real-world scenarios.
Recently, RGB-Depth (RGB-D) sensors revolutionized the research field of VIP aiding because of
their versatility, portability, and cost-effectiveness. Compared with traditional assistive tools, such as
a white cane, RGB-D sensors provide a great deal of information to the VIP. Typical RGB-D sensors,
including light-coding sensors, time-of-flight sensors (ToF camera), and stereo cameras are able to
acquire color information and perceive the environment in three dimensions at video frame rates.
These depth-sensing technologies already have their mature commercial products, but each type of
them has its own set of limits and requires certain working environments to perform well, which brings
not only new opportunities but also challenges to overcome.

Light-coding sensors, such as PrimeSense [2] (developed by PrimeSense based in Tel Aviv, Israel),
Kinect [3] (developed by Microsoft based in Redmond, WA, USA), Xtion Pro [4] (developed by Asus
based in Taipei, Taiwan), MV4D [5] (developed by Mantis Vision based in Petach Tikva, Israel),
and the Structure Sensor [6] (developed by Occipital based in San Francisco, CA, USA) project
near-IR laser speckles to code the scene. Since the distortion of the speckles depends on the depth
of objects, an IR CMOS image sensor captures the distorted speckles and a depth map is generated

Sensors 2016, 16, 1954 19 www.mdpi.com/journal/sensors



Sensors 2016, 16, 1954

through triangulating algorithms. However, they fail to return an efficient depth map in sunny
environments because projected speckles are submerged by sunlight. As a result, approaches for VIP
with light-coding sensors are just proof-of-concepts or only feasible in indoor environments [7–15].

ToF cameras, such as CamCube [16] (developed by PMD Technologies based in Siegen, Germany),
DepthSense [17] (developed by SoftKinetic based in Brussels, Belgium), and SwissRanger (developed
by Heptagon based in Singapore) [18] resolve distance based on the known speed of light, measuring
the precise time of a light signal flight between the camera and the subject independently for each pixel
of the image sensor. However, they are susceptible to ambient light. As a result, ToF camera-based
approaches for VIP show poor performance in outdoor environments [19–21].

Stereo cameras, such as the Bumblebee [22] (developed by PointGrey based in Richmond, BC,
Canada), ZED [23] (developed by Stereolabs based in San Francisco, USA), and DUO [24] (developed
by DUO3D based in Henderson, NV, USA) estimates the depth map through stereo matching of
images from two or more lenses. Points on one image are correlated to another image and depth is
calculated via shift between a point on one image and another image. Stereo matching is a passive
and texture-dependent process. As a result, stereo cameras return sparse depth images in textureless
indoor scenes, such as a blank wall. This explains why solutions for VIP with stereo camera focus
mainly on highly-textured outdoor environments [25–28].

The RealSense R200 (developed by Intel based in Santa Clara, CA, USA) uses a combination
of active projecting and passive stereo matching [29]. IR laser projector projects static non-visible
near-IR patterns on the scene, which is then acquired by the left and right IR cameras. The image
processor generates a depth map through an embedded stereo-matching algorithm. In textureless
indoor environments, the projected patterns enrich textures. As shown in Figure 1b,c, the texture-less
white wall has been projected with many near-IR patterns which are beneficial for stereo matching
to generate depth information. In sunny outdoor environments, although projected patterns are
submerged by sunlight, the near-IR component of sunlight shines on the scene to form well-textured
IR images as shown in Figure 1g. With the contribution of abundant textures to robust stereo
matching, the combination allows the RealSense R200 to work under indoor and outdoor circumstances,
delivering depth images though it has many noise sources, mismatched pixels, and black holes.
In addition, it is possible to attain denser depth maps pending new algorithms. Illustrated in Figure 1,
the RealSense R200 is quite suitable for navigational assistance thanks not only to its environment
adaptability, but also its small size.

 
(a)

 
(b) (c) (d) (e) 

 
(f) (g) (h) (i) 

Figure 1. (a) The RealSense R200; (b,f) color image captured by the RealSense R200; (c,g) IR image
captured by the right IR camera of the RealSense R200; (d,h) the original depth image from the
RealSense R200; and (e,i) the guided filtered depth image acquired in our work.
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However, the depth range of the RGB-D sensor is generally short. For the light-coding sensor,
the speckles in the distance are too dark to be sensed. For the ToF camera, light signals are overwhelmed
by ambient light in the distance. For stereo-cameras, since depth error increases with the increase
of the depth value, stereo-cameras are prone to be unreliable in the distance [30]. For the RealSense
R200, on the one hand, since the power of IR laser projector is limited, if the coded object is in the
distance, the speckles are too dark and sparse to enhance stereo matching. On the other hand, depth
information in the distance is much less accurate than that in the normal working distance ranging
from 650–2100 mm [31]. As shown in Figure 2, the original depth image is sparse a few meters
away. In addition, the depth field angle of RGB-D sensor is generally small. For the RealSense R200,
the horizontal field angle of IR camera is 59◦. As we know, the depth image is generated through
stereo matching from overlapping field angles of two IR cameras. Illustrated in Figure 3, though red
and green light are within the horizontal field angle of the left IR camera, only green light is within
the overlapping field angle of two IR cameras. Thus, the efficient depth horizontal field angle is
smaller than 59◦, which is the horizontal field angle of a single IR camera. Consequently, as depicted in
Figure 2, both the distance and the angle range of the ground plane detection with the original depth
image are small, which hampers longer and broader traversable area awareness for VIP.

 
(a) (b) (c) 

Figure 2. (a) Color image captured by the RealSense R200; (b) the original depth image captured by
the RealSense R200; (c) traversable area detection with original depth image of the RealSense R200,
which is limited to short range.

Figure 3. Horizontal field angle of IR cameras.
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In this paper, an effective approach to expand the traversable area detection is proposed. Since the
original depth image is poor and sparse, two IR images are large-scale matched to generate a dense
depth image. Additionally, the quality of the depth image is enhanced with the RGB image-guided
filtering, which is comprised of functions, such as de-noising, hole-filling, and can estimate the depth
map from the perspective of the RGB camera, whose horizontal field angle is wider than the depth
camera. The preliminary traversable area is obtained with RANdom SAmple Consensus (RANSAC)
segmentation [32]. In addition to the RealSense R200, an attitude sensor, InvenSense MPU6050 [33],
is employed to adjust the point cloud from the camera coordinate system to the world coordinate
system. This helps to eliminate sample errors in preliminary traversable area detection. Through
estimating surface normal vectors of depth image patches, salient parts are removed from preliminary
detection results. The highlighted process of the traversable area detection is to extend preliminary
results to broader and longer ranges, which fully combines depth and color images. On the one hand,
short-range depth information is enhanced with long-range RGB information. On the other hand,
depth information adds a dimension of restrictions to the expansion stage based on seeded region
growing algorithm [34]. The approach proposed in this paper is integrated with a wearable prototype,
containing a bone-conduction headphone, which provides a non-semantic stereophonic interface.
Different from most navigational assistance approaches, which are not tested by VIP, eight visually
impaired volunteers, three in whom are suffering from total blindness, have tried out our approach.

This paper is organized as follows: in Section 2, related work that has addressed both traversable
area detection and expansion are reviewed; in Section 3, the presented approach is elaborated in
detail; in Section 4, extensive tests on indoor and outdoor scenarios demonstrate its effectiveness
and robustness; in Section 5, the approach is validated by the user study, effected by real VIP; and in
Section 6, relevant conclusions are drawn and outlooks to future work are depicted.

2. Related Work

In the literature, a lot of approaches have been proposed with respect to ground plane
segmentation, access section detection, and traversable area awareness with RGB-D sensors.

In some approaches, ground plane segmentation is the first step of obstacle detection, which aims
to separate feasible ground area from hazardous obstacles. Wang adopted meanshift segmentation
to separate obstacles based on the depth image from a Kinect, in which planes are regarded as
feasible areas if two conditions are met: the angle between the normal vector of the fitting plane
and vertical direction of the camera coordinate system is less than a threshold; and the average
distance and the standard deviation of all 3D points to the fitting plane are less than thresholds [35].
Although the approach achieved good robustness under certain environment, the approach relies
a lot on thresholds and assumptions. Cheng put forward an algorithm to detect ground with a Kinect
based on seeded region growing [15]. Instead of focusing on growing thresholds, edges of the depth
image and boundaries of the region are adequately considered. However, the algorithm is unduly
dependent on the depth image, and the seed pixels are elected according to a random number, causing
fluctuations between frames, which is intolerable for assisting because unstable results would confuse
VIP. Rodríguez simply estimated outdoor ground plane based on RANSAC plus filtering techniques,
and used a polar grid representation to account for the potential obstacles [25]. The approach is one of
the few which have involved real VIP participation. However, the approach yields a ground plane
detection error in more than ten percent of the frames, which is resolvable in our work.

In some approaches, the problem of navigable ground detection is addressed in conjunction
with localization tasks. Perez-Yus used the RANSAC algorithm to segment planes in human-made
indoor scenarios pending dense 3D point clouds. The approach is able to extract not only the
ground but also ascending or descending stairs, and to determine the position and orientation
of the user with visual odometry [36]. Lee also incorporated visual odometry and feature-based
metri-topological simultaneous localization and mapping (SLAM) [37] to perform traversability
analysis [26,38]. The navigation system extracts ground plane to reduce drift imposed by the
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head-mounted RGB-D sensor and the paper demonstrated that the traversability map works more
robustly with a light-coding sensor than with a stereo pair in low-textured environments. As for
another indoor localization application, Sánchez detected floor and navigable areas to efficiently
reduce the search space and thereby yielded real-time performance of both place recognition and
tracking [39].

In some approaches, surface normal vectors on the depth map have been used to determine the
accessible section. Koester detected the accessible section by calculating the gradients and estimating
surface normal vector directions of real-world scene patches [40]. The approach allows for a fast
and effective accessible section detection, even in crowded scenes. However, it prevents practical
application for user studies with the overreliance on the quality of 3D reconstruction process and
adherence to constraints such as the area directly in front of the user is accessible. Bellone defined
a novel descriptor to measure the unevenness of a local surface based on the estimation of normal
vectors [41]. The index gives an enhanced description of the traversable area which takes into account
both the inclination and roughness of the local surface. It is possible to perform obstacle avoidance and
terrain traversability assessments simultaneously. However, the descriptor computation is complex
and also relies on the sensor to generate dense 3D point clouds. Chessa derived the normal vectors to
estimate surface orientation for collision avoidance and scene interpretation [42]. The framework uses
a disparity map as a powerful cue to validate the computation from optic flow, which suffers from the
drawback of being sensitive to errors in the estimates of optical flow.

In some approaches, range extension are concerned to tackle the limitations imposed by RGB-D
sensors. Muller presented a self-supervised learning process to accurately classify long-range terrain as
traversable or not [43]. It continuously receives images, generates supervisory labels, trains a classifier,
and classifies the long-range portion of the images, which complete one full cycle every half second.
Although the system classifies the traversable area of the image up to the horizon, the feature extraction
requires large, distant image patches within fifteen meters, limiting the utility in general applications
with commercial RGB-D sensors, which ranges mush closer. Reina proposed a self-learning framework
to automatically train a ground classifier with multi-baseline stereovision [44]. Two distinct classifiers
include one based on geometric data, which detects the broad class of ground, and one based on color
data, which further segments ground into subclasses. The approach makes predictions based on past
observations, and the only underlying assumption is that the sensor is initialized from an area free of
obstacles, which is typically violated in applications of VIP assisting. Milella features a radar-stereo
system to address terrain traversability assessment in the context of outdoor navigation [45,46].
The combination produces reliable results in the short range and trains a classifier operating on distant
scenes. Damen also presented an unsupervised approach towards automatic video-based guidance
in miniature and in fully-wearable form [47]. These self-learning strategies make feasible navigation
in long-range and long-duration applications, but they ignore the fact that most traversable pixels or
image patches are connected parts rather than detached, which is fully considered in our approach,
and also supports an expanded range of detection. Aladrén combines depth information with image
intensities, robustly expands the range-based indoor floor segmentation [9]. The overall diagram of
the method composes complex processes, running at approximately 0.3 frames per second, which fails
to assist VIP at normal walking speed.

Although plenty of related works have been done to analyze traversable area with RGB-D
sensors, most of them are overly dependent on the depth image or cause intolerable side effects in
navigational assistance for VIP. Compared with these works, the main advantages of our approach can
be summarized as follows:

• The 3D point cloud generated from the RealSense R200 is adjusted from the camera coordinate
system to the world coordinate system with a measured sensor attitude angle, such that the
sample errors are decreased to a great extent and the preliminary plane is segmented correctly.

• The seeded region, growing adequately, considers the traversable area as connected parts, and
expands the preliminary segmentation result to broader and longer ranges with RGB information.
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• The seeded region growing starts with preliminarily-segmented pixels other than according to the
random number, thus the expansion is inherently stable between frames, which means the output
will not fluctuate and confuse VIP. The seeded region growing is not reliant on a single threshold,
and edges of the RGB image and depth differences are also considered to restrict growing into
non-traversable area.

• The approach does not require the depth image from sensor to be accurate or dense in long-range
area, thus most consumer RGB-D sensors meet the requirements of the algorithm.

• The sensor outputs efficient IR image pairs under both indoor and outdoor circumstances,
ensuring practical usability of the approach.

3. Approach

In this section, the approach to expand traversable area detection with the RealSense sensor
is elaborated in detail. The flow chart of the approach is show in Figure 4. The approach is
described in terms of depth image enhancement, preliminary ground segmentation, and seeded
region expansion, accordingly.

Figure 4. The flowchart of the approach.

3.1. Depth Image Enhancement

The original depth image from the RealSense R200 is sparse and there are many holes, noises,
and mismatched pixels. Besides, the embedded stereo-matching algorithm in the processor is
fixed, which is unable to be altered. The embedded algorithm is based on local correspondences,
and parameters are fixed with the algorithm, such as the texture threshold and uniqueness ratio,
limiting the original depth map to be sparse. Typical original depth images are shown in Figure 1d,h.
Comparatively, IR images from the RealSense are large-scale matched in our work.

To yield a dense depth map with calibrated IR images, original efficient depth pixels are included
in the implementation of efficient large-scale stereo matching algorithm [48]. Support pixels are
denoted as pixels which can be robustly matched due to their textures and uniqueness. Sobel masks
with fixed size of 3 × 3 pixels and a large disparity search range are used to perform stereo matching
and obtain support pixels. As Sobel filter responses are good, but still insufficient, for stereo matching,
original depth image pixels are added to the support pixels. In addition, a multi-block-matching
principle [49] is employed to obtain more robust and sufficient support matches from real-world
textures. Given the resolution of IR images is 628 × 468, the best block sizes found with IR pairs are
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41 × 1, 1 × 41, 9 × 9, and 3 × 3. Then, the approach estimates the depth map by forming triangulation
on a set of support pixels and interpolating disparities. As shown in Figure 5, the large-scale matched
depth image is much denser than the original depth map, especially in less-textured scenarios, even
though these original depth images are the denser ones acquired with the sensor.

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

 
(i) (j) (k) (l) 

 
(m) (n) (o) (p) 

Figure 5. Comparison of depth maps under both indoor and outdoor environments. (a,e,i,m) Color
images captured by the RealSense sensor; (b,f,j,n) original depth image from the RealSense sensor;
(c,g,k,o) large-scale matched depth image; and (d,h,l,p) guided-filter depth image.

However, there are still many holes and noises in the large-scale depth image. Moreover,
the horizontal field view of the depth image is narrow, which hampers broad navigation. In order to
take advantage of available color images acquired with the RealSense R200 instead of filling invalid
regions in a visually plausible way using only depth information, we incorporate a color image
and apply the guided filter [50] to refine and estimate the depth of unknown areas. In this work,
we implement a RGB guided filter within the interface of enhanced photography algorithms [51] to
improve the depth image, which is to fill holes, de-noise and, foremost, estimate the depth map from
the field view of the RGB camera. The color image, depth image, and calibration data are input to the
post-process, within which the original depth image is replaced by a large-scale matched depth image.
Firstly, depth information from the perspective of one IR camera is projected onto the RGB image with
both IR cameras and the RGB camera calibration parameters. In this process, depth values are extracted
from the large-scale matched depth image instead of original depth image. Secondly, a color term is
introduced so that the weighting function in the guided filter is able to combine color information for
depth inpainting. This color-similarity term is based on an assumption that neighboring pixels with
similar color are likely to have similar depth values. In addition, there are filter terms which decide
that the contribution of depth values to an unknown pixel varies according to geometric distance and
direction. Additionally, the pixels near the edges of the color image are estimated later than the pixels
which are far away from them to preserve fine edges. Overall, the interface of enhanced photography
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algorithms is hardware accelerated with OpenCL, so it is computationally efficient to be used in the
approach to obtain smoother and denser depth images, which are beneficial for both the detection
and the expansion of the traversable area. Shown in Figure 5, the presented approach remarkably
smooths and improves the density of the original depth image from the RealSense sensor: firstly,
the horizontal field angle of depth image has increased from 59◦ to 70◦, which is the field angle of
the color camera, allowing for broader detection; secondly, the filtered depth image has far less noise
and fewer mismatches than the original depth image; lastly, the guided filtered depth image achieves
100% density.

3.2. Preliminary Ground Segmentation

In order to detect the ground, a simple and effective technique is presented. Firstly, 3D coordinates
of the point cloud are calculated. Given the depth Z of pixel (u, v) in the depth image, the calibrated
focal length f , and (u0, v0) the principal point, the point cloud in the camera coordinate system can be
determined using Equations (1) and (2):

X = Z × u − u0

f
(1)

Y = Z × v − v0

f
(2)

On the strength of the attitude sensor, X, Y, and Z coordinates in the camera coordinate system
can be adjusted to world coordinates. Assume a point in the camera coordinate system is (X, Y, Z)
and the attitude angles acquired from the attitude sensor are (a, b, c). This means the point (X, Y, Z)
rotates about the x-axis by α = a, then rotates about the y-axis by β = b and rotates about z-axis by
γ = c in the end. Shown in Equation (3), multiplying the point (X, Y, Z) by the rotation matrix, and
the point (Xw, Yw, Zw) in world coordinates is obtained:

⎡
⎢⎣ Xw

Yw

Zw

⎤
⎥⎦ =

⎡
⎢⎣ cosγ −sinγ 0

sinγ cosγ 0
0 0 1
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0 1 0
−sinβ 0 cosβ

⎤
⎥⎦
⎡
⎢⎣ 1 0 0

0 cosα −sinα

0 sinα cosα

⎤
⎥⎦
⎡
⎢⎣ X

Y
Z

⎤
⎥⎦ (3)

The ground plane detection is based on the RANdom SAmple Consensus (RANSAC)
algorithm [32]. By using the plane model, the RANSAC algorithm provides a robust estimation of the
dominant plane parameters, performing a random search to detect short-range ground preliminarily,
which is assumed to be the largest plane in the scenario. Although the assumption is violated in some
real-world scenes, attitude angles of the camera and real vertical heights are employed to restrict the
sampling process. The plane model is shown in Equation (4), and the inlier points of ground are
determined with Equation (5). Firstly, a set of 3D points are randomly chosen from the point cloud
to solve for the initial parameters A, B, C, and D. Secondly, the remaining 3D points are validated to
count the number of inliers. After m computations, the ground plane is determined, which is the plane
with the most inlier points. For the RANSAC algorithm, shown in Equation (6), if P is the probability
of not failing the computation of outliers, p is the dimension of the model (three in our case), and η is
the overall percentage of outliers, the number of computed solutions m can be selected to avoid overall
sampling error:

AXw + BYw + CZw + D = 0 (4)

d(Xw, Yw, Zw) =
|AXw + BYw + CZw + D|√

A2 + B2 + C2
< T (5)

m =
log (1 − P)

log
(
1 − (1 − η)p) (6)
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Rather than generate ground plane segmentation with the original point cloud, points are adjusted
from the camera coordinate system to the world coordinate system in consideration of three respects:

• The inclination angle θ of the sampled plane can be calculated using Equation (7). This allows for
dismissing some sample errors described in [25]. For example, if inclination angle of a sampled
plane is abnormally high, the plane could not be the ground plane.

• Since the incorrect sampled planes are dismissed directly, the validation of inlier 3D points can be
skipped to save much computing time.

• Given points in the world coordinate system, we obtain a subset of 3D points which only contains
points whose real height is reasonable to be ground according to the position of the camera while
the prototype is worn. Points which could not be ground points, such as points in the upper
air are not included. As a result, η the percentage of outliers is decreased, so m, the number of
computations, is decreased and, thereby, a great deal of processing time is saved.

θ = arccos
|B|√

A2 + B2 + C2
(7)

After initial ground segmentation, some salient parts, such as corners and little obstacles on the
ground may be included in ground plane. Salient parts should be wiped out of the ground for two
reasons: little obstacles may influence VIP; these parts may extend out of the ground area in the stage
of seeded region growing. In this work, salient parts are removed from the ground based on surface
normal vector estimation. Firstly, the depth image is separated into image patches; secondly, the surface
normal vector of each patch is estimated through principal component analysis, the details of which
are described in [14]; lastly, patches whose normal vector has a low component in the vertical direction
are discarded. In the sampling stage, the number of iterations m equals 25, and inclination angle
threshold of the ground plane is empirically set to 10◦. Figure 6 depicts examples of short-range ground
plane segmentation in indoor and outdoor environments, both of them achieving good performance,
detecting the ground plane and dismissing salient parts correctly.

(a) (b)

(c) (d)

Figure 6. Ground plane segmentation in indoor and outdoor environments. (a,c) Ground plane
detection based on the RANSAC algorithm; (b,d) salient parts in the ground plane are dismissed with
surface normal vector estimation.
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3.3. Seeded Region Growing

In order to expand traversable area to longer and broader range, a seeded region growing
algorithm is proposed, combining both color images and filtered depth images. Instead of attaching
importance to thresholds, edges of the color image are also adequately considered to restrict growth to
other obstacle regions.

Firstly, seeds are chosen according to preliminary ground detection. A pixel is set as a seed to
grow if two conditions are satisfied: the pixel is within the ground plane; four-connected neighbor
pixels are not all within the ground plane. The seeds are pushed into the stack.

Secondly, a seed is valid to grow when it meets two conditions: the seed has not been traversed
before, which means each seed will be processed only once; the seed does not belong to the edges of
the color image.

Thirdly, we assume the growing starts from pixel G, whose depth value is d and hue value
is v. One of the four-connected neighbors is Gi, whose depth value is di and hue value is vi.
Whether Gi belongs to G’s region and be classified as traversable area depends on the following
four growing conditions:

• Gi is not located at Canny edges of color image;
• Gi has not been traversed during the expansion stage;
• Real height of Gi is reasonable to be included in traversable area; and

• |v − vi| < δ1 or
|v − vi| < δ2

|d − di| < δh
, where δ1 is the lower hue growing threshold, and δ2 is the higher

growing threshold, while δh the height growing threshold, limits the expansion with only the
color image.

If all four conditions are true, Gi is qualified for the region grown from G, so Gi is classified as
a traversable area. Each qualified neighbor pixel is put into the stack. When all of G’s four-connected
pixels have been traversed, pop G out of the stack and let Gi be the new seed and repeat the above
process. When the stack is empty, the seeded growing course finishes. After the seeded growing
stage, the short-range ground plane has been enlarged to a longer and broader traversable area.
Figure 7 depicts examples of expansion based on seeded region growing under indoor and outdoor
situations, both expanding the traversable area to a great extent and preventing growth into other
non-ground areas.

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 7. Traversable area expansion in indoor and outdoor environments. (a,d) Ground plane
detection based on the RANSAC algorithm; (b,e) salient parts in the ground plane are dismissed with
surface normal vector estimation; and (c,f) preliminary traversable area are expanded greatly with
seeded region growing.
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4. Experiment

In this section, experimental results are presented to validate our approach for traversable area
detection. The approach is tested on a score of indoor and outdoor scenarios including offices, corridors,
roads, playgrounds, and so on.

Figure 8 shows a number of traversable area detection results in the indoor environment.
Largely-expanded traversable area provides two superiorities: firstly, longer range allows high-level
path planning in advance; and, secondly, broader range allows precognition of various bends and
corners. For special situations, such as color image blurring and image under-exposing, the approach
still detects and expands the traversable area correctly, as shown in Figure 8g,h. Additionally,
the approach is robust regardless of continuous movement of the cameras as the user wanders
in real-world scenes.

 
(a) (b)

 
(c) (d)

 
(e) (f)

 
(g) (h)

Figure 8. Results of traversable area expansion in indoor environment. (a,b) Traversable area detection
in offices; (c–e) traversable detection in corridors; (f) traversable area detection in an open area;
(g) traversable area detection with color image blurring; abd (h) traversable area detection with color
image under-exposing.
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Figure 9 shows several traversable area detection results under outdoor circumstances. It can be
seen that traversable area has been enlarged greatly out to the horizon. Rather than the short-range
ground plane, the expanded traversable area frees the VIP to wander in the environment.

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

Figure 9. Results of traversable area expansion in outdoor environment. (a–g) Traversable area
detection on roads; (h) traversable area detection on a platform; and (i) traversable area detection on
a playground.

To compare the performance of traversable area detection with respect to other works in the
literature, the results of several traversable detection approaches on a typical indoor scenario and
outdoor scenario are shown in Figure 10. Given the depth image, the approach proposed by Rodríguez
estimated the ground plane based on RANSAC plus filtering techniques [25]. Figure 10n is a correct
result of detecting the local ground, but the wall is wrongly detected as the ground plane in Figure 10e,
which is one type of sample error mentioned in the paper. This kind of error is dissolvable in our work
with consideration of the inclination angle of the plane. The approach proposed by Cheng detected
the ground with seeded region growing of depth information [15]. The approach in [15] projects RGB
information onto the valid pixels of depth map, so the detecting result shown in Figure 10f,o has many
noises and black holes, and the detecting range is restricted since the depth information is discrete and
prone to inaccuracy in long range. However, the main problem of the algorithm lies in that the seed
pixels are elected randomly, thereby causes intolerable fluctuations to confuse VIP. In our previous
works, we only employed depth information delivered by the light-coding sensor of the Microsoft
Kinect [14,15]. However, the sensor outputs a dense 3D point cloud (ranges from 0.8 m to 5 m) indoors
and fails in sunny outdoor environments. As a result, the algorithms are unable to perform well
when the sensor could not generate a dense map. In Figure 10g,p, the idea of using surface normal
vectors to segment ground presented in [14,40] is able to segment the local ground plane but fails to
segment the long-range traversable area robustly as the estimation of normal vectors asks the sensor
to produce dense and accurate point clouds. In this paper, we fully combine RGB information and
depth information to expand the local ground plane segmentation to long range. In the process, IR
image large-scale matching and RGB image guided filtering are incorporated to enhance the depth
images. Although the computing time improves from 280 ms to 610 ms per frame on a 1.90 GHz
Intel Core Processor, within which the RGB image-guided filtering is hardware accelerated with the
HD4400 integrated graphics, the range of traversable detection has been expanded to a great extent
and the computing time contributed in this process endows VIPs to perceive traversability at long
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range and plan routes in advance so the traversing time eventually declines. Figure 10h,q shows the
results of traversable area detection without IR image large-scale matching and RGB image-guided
filtering. The seeded region growing process is unable to enlarge the local ground segmentation based
on RANSAC to long-range as the depth map is still discrete and sparse in the distance. Comparatively,
in Figure 10i,r, after IR image large-scale matching and RGB image-guided filtering, the segmented
local ground plane largely grows to a longer and broader traversable area. The set of our images is
available online at Kaiwei Wang Team [52].

 

Figure 10. Comparisons of results of different traversable area detection approaches. (a–d) The set of
images of a typical indoor scenario including color image, depth map, and calibrated IR pairs; (e–i) the
results of different approaches on the indoor scenario; (j–m) the set of images of a typical outdoor
scenario; and (n–r) the results of different approaches on the outdoor scenario.

 

Figure 11. An example of expansion error. The ground has been unexpectedly expanded to a part of
the car.

The approach creates a multithreaded program including a thread for image acquisition and
depth enhancement, a thread for traversable area detection and expansion, as well as a thread for
audio interface generation for the VIP. Together, the average processing time of a single frame is
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610 ms on a 1.90 GHz Intel Core 5 processor, making the refresh rate of the VIP audio feedback
1.6 times per second. In addition, detection rate and expansion error for indoor and outdoor scenarios
are presented to demonstrate the robustness and reliability of the approach. Indoor scenarios,
including a complicated office room and a corridor are analyzed, while outdoor scenarios, including
school roads and a playground, are evaluated. Typical results of the four scenarios are depicted in
Figures 8a,c and 9c,i. As depicted in Figure 11, part of the car has been classified as traversable area,
which is a typical example of expansion error.

In order to provide a quantitative evaluation of the approach, given Equations (8) and (9), detection
rate (DR) is defined as the number of frames which ground has been detected correctly (GD) divided
by the number of frames with ground (G). Meanwhile, expansion error (EE) is defined as the number of
frames which traversable area has been expanded to non-ground areas (ENG) divided by the number
of frames with ground (G):

DR = GD/G (8)

EE = ENG/G (9)

Shown in Table 1, detection rates of the four scenarios are all above 90%, demonstrating the
robustness of the approach. For the scene of the corridor, it yields an expansion error of 15.9%. This is
mainly due to inadequate lighting on the corners in the corridor, so the edges of the color image are
fuzzy and the traversable area may be grown to the wall. Overall, the average expansion error is
7.8%, illustrating the reliability of the approach, which seldom recognizes hazardous obstacles as safe
traversable area.

Table 1. Detection rate and expansion error of the approach.

Scenario
Frames with
Ground (G)

FRAMES Detected
Ground Correctly (GD)

Detection
Rate (DR)

Frames Expanded to
Non-Ground Areas (ENG)

Expansion
Error (EE)

An office 1361 1259 92.5% 44 3.2%
A corridor 633 614 97.0% 101 15.9%

School roads 837 797 95.2% 81 9.7%
A playground 231 228 98.7% 13 5.6%

All 3062 2898 94.4% 239 7.8%

Additionally, the average density of depth images of four different scenarios is calculated to prove
that IR image large-scale matching and RGB image guided filtering remarkably improve the density
of the original depth image from the RealSense sensor. The density of the depth image is defined as
the number of valid pixels divided by the resolution. As shown in Table 2, the average density of the
large-scale matched depth image is much higher than the original depth image and the guided-filtered
depth image achieves 100% density.

Table 2. Average density of depth images including the original depth image, large-scale matched
depth image and guided-filtered depth image.

Scenario
Original Depth Image
(Resolution: 293,904)

Large Scale Mathced Depth
Image (Resolution: 293,904)

Guided Filtered Depth
Image (Resolution: 360,000)

An office 68.6% 89.4% 100%
A corridor 61.4% 84.5% 100%

School roads 76.2% 91.2% 100%
A playground 79.5% 92.0% 100%

5. User Study

In this section, a user study is elaborated in terms of assisting system overview, non-semantic
stereophonic interface, and assisting performance study.
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5.1. Assisting System Overview

The approach presented has been integrated in an assisting system. As shown in Figure 12,
the system is composed of a RGB-D RealSense R200sensor, an attitude sensor MPU6050, a 3D-printed
frame which holds the sensors, a processor Microsoft Surface Pro 3, as well as a bone-conducting
headphone AfterShokz BLUEZ 2S [53], which transfers non-semantic stereophonic feedback to the VIP.
Since the RealSense R200 only uses part of the USB 3.0 interface to transmit data, spare interfaces which
are compatible with USB 2.0 are employed to transmit attitude angles from the MPU6050. Additionally,
the processor communicates with the headphone through Bluetooth 4.0. Thereby, the system only
needs a USB 3.0 cord to transfer images and data from sensors to the processor. As we know, VIP rely
on voices from the environment great deal. For example, they use the sounds from cars to understand
the orientation of streets. The assisting prototype is not only wearable but also ears-free, because the
bone-conducting interface will not block VIP’s ears from hearing environmental sounds.

Figure 12. The assisting system consists a frame which holds the RealSense R200 and the attitude
sensor, a processor, and a bone-conducting headphone.

5.2. Non-Semantic Stereophonic Interface

The assisting system uses a non-semantic stereophonic interface to transfer traversable area
detection results to the VIP. The generation of the non-semantic stereophonic interface follows
rules below:

• Divide the detection result into five directions, since the horizontal field view has been enlarged
from 59◦ to 70◦, so each direction corresponds to traversable area with a range of 14◦.

• Each direction of traversable area is represented by a musical instrument in 3D space.
• In each direction, the longer the traversable area, the greater the sound from the instrument.
• In each direction, the wider the traversable area, the higher the pitch of the instrument.

To sum up, the directions of traversable area are differentiated not only by sound source locations
in 3D space, but also by musical instruments, whose tone differs from each other. As shown in
Figure 13, five instruments, including trumpet, piano, gong, violin, and xylophone, produce sounds
simultaneously which last for 0.6 s, notifying the user the traversable area. Additionally, we also
implemented a simple obstacle detection method to warn against walking on the ground under
obstacles in the air (e.g., Figure 8g). The 3D points which are not within traversable area and are within
close range (1 m in our case) are counted in respectively five directions. If the number of points in one
direction exceeds a threshold, it means there is one obstacle in the close range. In this case, the audio
interface generates a friendly prompt to help VIP to be aware of close obstacles. Since that is not the
major topic of this paper, specific parameters of the audio feedback are not discussed here.
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Figure 13. Non-semantic stereophonic interface of the assisting system. Sounds of five directions of
traversable area are presented by five musical instruments in 3D space, including trumpet, piano, gong,
violin, and xylophone.

5.3. Assisting Performance Study

Eight visually impaired volunteers including three suffering from total blindness participated
in the user study. Figure 14 are the moments of the assisting study. During the assisting study,
participants first learned the audio feedback. The working pattern of the system and signals from the
headphone was introduced. Each one of them has ten minutes to learn, adapt to the audio interface,
and wander around casually. After that, participants were asked to traverse through obstacles without
collisions, and finally find the person standing at the end point. A contrary test is designed to compare
its performance under two conditions: the signal from the audio interface is generated according
to the original ground detection, and the audio interface is generated according to the traversable
area expansion.

(a) (b) (c) (d) 

Figure 14. Eight visually impaired volunteers took part (a–d). The moments of the assisting study.
Participants’ faces are blurred for the protection of the privacy (we have gotten the approval to use the
assisting performance study for research work).

After the learning stage, eight visually impaired participants were required to travel through
obstacles. Shown in Figure 15, six different white boards including large columns were employed
as obstacles. Five different obstacle arrangements were generated by arranging the position of
obstacles differently. Firstly, they were asked to complete the course with traversable area expansion,
and a typical detection example is shown in Figure 7. Secondly, they were asked to complete the
course with original ground detection, which is shown in Figure 2. All visually impaired participants
completed the test and found the person standing at the end point. The average number of collisions,
average time and average number of steps to complete a single test were recorded. Collisions include
collisions with obstacles and walls. The timer starts when a participant is sent to the start region and
stops when the participant completes a single test. The distance between the start region and the end
point is the same for all tests. However, the number of steps to complete a single test varies. As shown
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in Table 3, average number of collisions to complete a single test with traversable area expansion is
78.6% less than that with original ground detection. Most of the collisions occurred when the user
did not know which direction to walk as the original ground detection is at short-range. Additionally,
the average time to complete a single test with traversable area expansion is 29.5% less than that
with original ground detection. Moreover, the number of average steps to complete a single test with
traversable area expansion is 43.4% less than that with original ground detection. It is the expansion
of traversable area which endows VIP the ability to plot routes farther ahead and, therefore, reduce
traversing time and the number of steps. Each participant completes the tests with different obstacle
arrangements in a random order. As a result, the participants have no idea about the arrangement of
obstacles each time. It is ruled out that the decrease of collisions and traversing time after traversable
area expansion is due to variation of familiarity with the prototype. Since the test was taken with
traversable area expansion first and the taken with original ground detection afterwards, if it was due
to the variation of familiarity, it would enhance rather than weaken the performance of navigational
assistance, such as the number of collisions and the traversing time taken with traversable expansion
would be more than with original ground detection. It can be proved convincingly that traversable
area expansion improves the performance dramatically. In other word, the safety and robustness
enhances navigation.

(a) (b)

Figure 15. Obstacle arrangements. (a) An image of obstacle arrangement; (b) Four other
obstacle arrangements.

Table 3. Number of collisions and time to complete tests in two conditions: the audio interface
transferred to the VIP is generated according to original ground detection or traversable area expansion.

Detection Result
Transfered to VIP

Total
Number of
Collisions

Average Number
of Collisions of

Each Time

Total Time
to Complete

Tests

Average Time
to Complete
a Single Test

Total Number
of Steps

Average Number of
Steps to Complete

a Single Test

Original ground
deteciton 103 2.58 733 s 18.33 s 1850 46.25

Traversable area
expansion 22 0.55 517 s 12.93 s 1047 26.18

After the test, eight participants were asked two simple questions including whether the prototype
is easy to wear and whether the system provides convenient assistance to travel in an unfamiliar
environment. Shown in the questionnaire (Table 4), all users answered that the system is useful and can
offer help in unknown or intricate environments. It not only gave us significant confidence, but also
demonstrated usefulness and reliability of the approach. In addition, some users gave some advice on
adding functions, such as face recognition or GPS navigation and a user hopes that the prototype be
designed in a hat.

35



Sensors 2016, 16, 1954

Table 4. A questionnaire. After the test, eight participants were asked two simple questions.

User Total Blind or Partially Sighted Easy to Wear? Useful? Advice

User 1 Partially sighted Yes Yes
User 2 Partially sighted Yes Yes Add face recognition
User 3 Total blind Yes Yes Design the prototype in a hat
User 4 Partially sighted Yes Yes
User 5 Partially sighted No Yes Add GPS navigation
User 6 Total blind Yes Yes
User 7 Total blind No Yes
User 8 Partially sighted Yes Yes

6. Conclusions

RGB-D sensors are a ubiquitous choice to provide navigational assistance for visually impaired
people, with good portability, functional diversity, and cost-effectiveness. However, most assisting
solutions, such as traversable area awareness, suffer from the limitations imposed by RGB-D sensor
ranging, which is short, narrow, and prone to failure. In this paper, an effective approach is proposed
to expand ground detection results to a longer and broader range with a commercial RGB-D sensor,
the Intel RealSense R200, which is compatible with both indoor and outdoor environments. Firstly,
the depth image of the RealSense is enhanced with large scale matching and color guided filtering.
Secondly, preliminary ground segmentation is obtained by the RANSAC algorithm. The segmentation
is combined with an attitude sensor, which eliminates many sample errors and improves the robustness
of the preliminary result. Lastly, the preliminary ground detection is expanded with seeded region
growing, which fully combines depth, attitude, and color information. The horizontal field angle of the
traversable area has been increased from 59◦ to 70◦. Additionally, the expansion endows VIP the ability
to predict traversability and plan paths in advance since the range has been enlarged greatly to a large
extent. The approach is able to see smoothly to the horizon, being acutely aware of the traversable
area at distances far beyond 10 m. Both indoor and outdoor empirical evidences are provided to
demonstrate the robustness of the approach, in terms of image processing results, detection rate,
and expansion error. In addition, a user study is described in detail, which proves the approach to be
usable and reliable.

In the future, we aim to incessantly enhance our navigational assistance approach for the visually
impaired. Especially, the implementation of the algorithm is not yet optimized, so we are looking
forward to speeding it up. Additionally, a cross-modal stereo-matching scheme between IR images
and RGB images would also be interesting and useful to inherently improve the detecting range and
ranging accuracy of the camera.
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Abstract: We propose a liquid crystal (LC)-based 3D optical surface profilometer that can utilize
multiple fringe patterns to extract an enhanced 3D surface depth profile. To avoid the optical phase
ambiguity and enhance the 3D depth extraction, 16 interference patterns were generated by the
LC-based dynamic fringe pattern generator (DFPG) using four-step phase shifting and four-step
spatial frequency varying schemes. The DFPG had one common slit with an electrically controllable
birefringence (ECB) LC mode and four switching slits with a twisted nematic LC mode. The spatial
frequency of the projected fringe pattern could be controlled by selecting one of the switching slits.
In addition, moving fringe patterns were obtainable by applying voltages to the ECB LC layer, which
varied the phase difference between the common and the selected switching slits. Notably, the DFPG
switching time required to project 16 fringe patterns was minimized by utilizing the dual-frequency
modulation of the driving waveform to switch the LC layers. We calculated the phase modulation
of the DFPG and reconstructed the depth profile of 3D objects using a discrete Fourier transform
method and geometric optical parameters.

Keywords: optical surface profilometry; interference; phase modulation; liquid crystal; dynamic
fringe pattern generator

1. Introduction

Recently, the demand for acquiring 3D information has increased, accompanied by improvements
in several 3D applications like 3D displays, 3D printing technologies, 3D medical or dental imaging
systems, and 3D vision modules for robot or vehicle applications [1–6]. For these applications, 3D depth
information together with conventional 2D images is critically needed, and cannot be obtained with
conventional 2D vision systems. Optical 3D vision systems can measure 3D information for an
object with a wide scope in a relatively short time because they obtain the 2D coordinate information
together with the depth information optically in parallel using a Charge-Coupled Device (CCD) or
Complementary Metal Oxide Semiconductor (CMOS) image sensor.

The optical 3D surface profilometer can optically measure the surface morphology of an object
and compute the depth information without direct contact. In general, optical surface profilometers,
which extract 3D depth information from distortions of the projected optical beam patterns, need
an optical beam pattern generator module to utilize several structured beam. To measure a surface
profile of 3D objects, N-bits of binary-coded stripe patterns could be projected [7], where the number
of the binary-coded projection beam patterns needed to be increased to improve the measurement
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resolution. By utilizing gray-level beam patterns, the number of projection patterns could be effectively
reduced [8], but this approach needs more complex spatial light modulators (SLMs) with a higher
pixel resolution and a larger pixel density to generate the gray-level patterns. To effectively reduce
the measurement time, a one-shot scanning method using periodic grid patterns was proposed [9].
Using a coherent light source, interference fringe patterns could be projected [10–14]. To avoid the
optical phase ambiguity from the fringe patterns distorted by the surface morphology, multiple sets of
interference patterns were needed, and phase unwrapping or geometrical parameter methods were
applied to reconstruct surface depth profiles. The depth extraction method based on the geometrical
parameters could provide the depth and position value informations in the absolute coordinate system
without the phase unwrapping process [10]. These optical techniques do not damage the surface
morphology of an object even for a soft surface.

In most cases of optical surface profilometries, to acquire more precise 3D depth information,
several sets of specific beam patterns are needed. These are generated by beam pattern projecting
modules such as mechanically moving wedge plates [15], tunable gratings [16], switchable gradient
index lenses [17], polymer dispersed liquid crystal (LC) techniques [18,19], and several types of phase
modulators using SLMs [20,21]. Recently, to obtain color information of an object in addition to the 3D
depth information, time-sequential projection of structured and RGB-colored beam patterns was also
proposed using fast switching digital light processing (DLP) projectors [22]. However, conventional
projection units based on commercial SLMs and DLP are too bulky and not cost-effective for industrial
field applications, especially dental imaging, which needs an elaborate and complex semiconductor
manufacturing process for the preparation of backplanes to control the 2D phase or intensity patterns
with matrix driving schemes [23–25].

In this study, we propose an LC-based dynamic fringe pattern generator (DFPG) for a more
compact 3D optical surface profilometer system, which can generate multiple fringe patterns to
enhance the 3D depth extraction and avoid the optical phase ambiguity in analyzing the 3D depth
profile from distorted fringe patterns induced by the surface morphologies. Sixteen interference
patterns are generated with four-step phase shifting and four-step spatial frequency varying schemes
by the proposed LC-based DFPG without a mechanically moving part. In our DFPG, the 16 sets of
fringe patterns can be generated by a single, compact LC cell, which has one common slit operated by
an electrically controllable birefringent (ECB) LC mode and four switching slits operated by a twisted
nematic (TN) LC mode. Four different moving fringe patterns are controlled by the phase value of
the ECB LC layer behind one common slit. The interferometric fringe patterns with four different
spatial frequencies are controlled by electrically selecting one of the switching slits operated by the TN
mode. The switching time of the DFPG module, required for projecting the 16 sets of fringe patterns,
is minimized by utilizing the dual-frequency-based LC switching scheme. We present the optical
and material design of the LC-based DFPG and its manufacturing process obtaining multiple sets of
fringe patterns using a compact module with a fast switching time. The electrical switching properties
of the phase modulation and the slit spacing controls for the interference patterns of the DFPG are
characterized and the 3D depth profile reconstruction from the distorted fringe patterns using the
discrete Fourier transform (DFT) method and geometric optical parameters is presented.

2. Operation Principle of the DFPG and the Theory of Depth Extraction

2.1. Schematic and Operation Principle of the DFPG

2.1.1. Schematic of the DFPG

In this study, the DFPG was designed to develop a 3D optical surface profilometer that can exhibit
multiple sets of interference fringe patterns with four steps of the spatial frequency and four steps of the
phase shifting properties without any mechanical translation stages. As shown in Figure 1, the DFPG
consists of a multi-directional LC alignment layer on the top substrate to provide the ECB LC and TN
LC modes for the phase-shifting common slit and four switching slits, respectively. On the other side
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of the multi-alignment layer of the top substrate, five Al slits were fabricated by the lift-off process.
The indium tin oxide (ITO) layer under the multi-directional alignment layer was also patterned
using photolithography to control one ECB LC layer and four TN LC layers individually by applying
appropriate voltages to them. The positions of the patterned ITO layer, patterned LC alignment layers,
and Al slits were precisely aligned with each other with alignment marks. The spacings between
one common slit with the ECB LC mode and the other switching slits with the TN LC modes were
Δg = 200, 400, 600, and 800 μm. The widths of the Al slits and the patterned ITO electrodes were 52 and
50 μm, respectively. A uni-directionally rubbed LC alignment layer was prepared on the non-patterned
ITO glass substrate as the bottom substrate. Parallel polarizers were attached on both sides of the
two substrates.

Figure 1. Schematic of the LC-based dynamic fringe pattern generator for projecting multiple sets of
interference patterns with phase-shifting and spatial-frequency-varying properties.

The multi-spatial frequency properties of the interference fringe patterns were achieved by
applying a turn-on voltage on one of the switching slits prepared with the TN LC mode. The four-step
phase shifting properties were developed by controlling the applied voltage through the ECB LC
mode layer used for the common slit. As a result, the DFPG can generate 16 sets of the multiple fringe
patterns that exhibit four different spatial frequencies together with four-step phase-shifted fringe
patterns for each selected spatial frequency.

The DFPG was fabricated with a dual-frequency LC (MLC-2048, Merck Ltd., Seoul, Korea) to
enhance its switching response time required for generating the 16 sets of fringe patterns. The inversion
frequency of the dielectric anisotropy of MLC-2048 is 50 kHz. Its dielectric anisotropy values are
Δε = 3.2 at the low frequency AC driving of 1 kHz and Δε = −3.4 at the high frequency AC driving
of 100 kHz. The extraordinary refractive index of the dual-frequency LC is 1.7192, and the ordinary
refractive index is 1.4978. Therefore, the cell gap of the DFPG was calculated as 2.48 μm to realize
over 3π/2 phase modulation of the LC layer. We dropped a mixture of an optical adhesive polymer
(NOA 65, Norland Products, Inc., Cranbury, NJ, USA) with ball spacers on the four edges of the
patterned ITO/Al substrate, and the top substrate was covered with the bottom electrode substrate.
The ball spacers uniformly supported the cell gap of the DFPG required for reliable phase modulation.
In our DFPG, the cell gap was about 4 μm. The empty DFPG cell was filled with MLC-2048 by the
capillary force over the nematic-isotropic phase transition temperature (TNI = 106.2 ◦C) of the LC.
After slowly cooling the LC cell to room temperature, the LC layer was well aligned multi-directionally
along the patterned rubbing directions of the alignment layer of the top substrate, showing the two LC
domains of the ECB and TN LC modes.

2.1.2. Operation Principle of the DFPG

The operation principles of our DFPG and field-dependent LC orientations on each patterned slit
are shown in Figure 2, where the projected fringe patterns, which were measured under the far-field
interference conditions using a CCD camera, are co-plotted according to the applied voltage conditions.
As shown in Figure 2, the common slit is aligned with the ECB LC mode that can modulate the phase
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shifting and the four switching slits are aligned with the TN LC mode that can modulate the spatial
frequencies of the fringe pattern. Under the parallel polarizer condition, the LC alignment direction of
the bottom substrate is parallel with the transmission axes of the top and bottom polarizers. Therefore,
the incident polarization state after the bottom polarizer does not change irrespective of the applied
voltage within the ECB LC mode. The incident beam passing through the ECB LC layer always
transmits the top polarizer after passing though the common slit without intensity loss irrespective of
the applied voltage.

However, the polarization states of the incident beams passing through the TN LC layers, initially
polarized by the bottom polarizer, are rotated by 90◦ owing to the polarization rotating effect of the
twisted LC structure in the field-off state. Thus, the beams after four switching slits are blocked by the
second polarizer without an applied voltage in our parallel polarizer scheme. The dielectric anisotropy
of the LC used in our experiment is positive under low frequency AC driving conditions, and the
LCs are reoriented along the applied field direction. When a voltage sufficient to fully reorient the
LCs along the vertical field direction is applied to the TN LC layer under one of the switching slits
by the patterned ITO electrode, the LC molecules in the selected local area can be fully reoriented to
the vertically aligned geometry, as shown in Figure 2a,b. Thus, the beam passing through the selected
switching slit can be transmitted through the second polarizer. Therefore, depending on the applied
voltages of the patterned ITO electrodes under the four switching slits, the distance between two
interference slits can be controlled, which enables four different spatial frequencies of the projected
fringe patterns, as shown in Figure 2a,b. In Figure 2a,b, the fringe patterns measured under the shortest
and the longest slit distances in our DFPG are shown for the example cases of the lowest and the
highest spatial frequencies of the projected fringe patterns, respectively. By using these methods,
the multi-spatial frequency schemes were developed in the DFPG without any mechanical translation
stage part.

Figure 2. Operation principles of the DFPG switched by field-induced patterned LC orientations
and the resulting projected fringe patterns. (a,b) show the LC orientations and spatial frequency
variations of the projected fringe patterns by control of the selected switching slit with applied
voltages: (a) Δg = 200 μm slit spacing and (b) Δg = 800 μm slit spacing; (c,d) show the field-induced
LC orientations and the moving fringe patterns by control of the phase shifting at the common slit with
applied voltages under the fixed slit spacing condition (Δg = 200 μm slit spacing).
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Under the fixed spatial frequency attained by selecting the switching slit of one TN LC layer, the
four-step phase-shifting schemes can be achieved by applying voltages to the ECB LC layer of the
common slit for an appropriate phase difference with the phase of the selected switching slit. The phase
shift is decided by the optical path length difference between the ECB LC layer and the field-applied
TN LC layer under two slits of one common slit and the selected switching slit, respectively. Figure 2c,d
show the initial and the relatively moved fringe patterns according to the applied voltages in the
ECB LC layer for the same selected switching slit condition, where the spatial frequencies of two
fringe patterns maintain each other. The effective refractive index of the ECB LC layer can be varied
by applying voltages because the incident polarization is parallel to the rubbing direction of the LC
alignment layer, and the LC layer operated with the ECB LC mode, which has a field-dependent
tilting redistribution of the LC layer, does not exhibit any LC twisting distortion irrespective of the
applied voltages. Thus, the optical path length passing though the common slit can be modulated
according to the voltage applied to the ECB LC layer. For 3D depth extraction from the projected fringe
patterns, which are distorted by an object, four-step phase shifting, especially over 3π/2 phase shifting,
is needed, and the thickness of the DFPG LC cell is designed considering the birefringence of the LC
used in our experiment.

2.1.3. Fabrication Process of the DFPG

To electrically control the spatial-frequencies and phase modulation of the fringe patterns,
the ITO electrodes were patterned by a photolithography and chemical etching process, as shown in
Figure 3a. The first step for developing the patterned ITO electrodes was the spin-coating of a positive
photoresistor (GXR-601, AZ Electronic Materials Co., Wiesbaden, Germany) on the ITO glass substrate.
The GXR-601 photoresistor was coated under the conditions of 2500 rpm for 5 s, 3500 rpm for 30 s, and
2500 rpm for 5 s. After the spin-coating process, the coated ITO glass was heated to 90 ◦C on a hotplate
for 90 s. Then, the coated photoresistor was projected through the photo-mask pattern by ultraviolet
light and was etched with the photoresistor developer (AZ300, AZ Electronic Materials Co.) for 18 s.

Figure 3. Fabrication process of the top substrate for the multiple slits and the aligned ITO patterns
of the LC-based DFPG device: (a) ITO electrode patterning and (b) Al slit array patterning using the
lift-off process.

The patterned photoresistor coated on the ITO glass was heated again on the hotplate at 120 ◦C
for 3 min. Finally, to define the ITO electrode pattern, the ITO electrode was etched by the ITO etchant
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(LCE-12K, Cyantek Co., Fort Worth, TX, USA) for 20 min and the photoresistor, which might have
remained on the substrate, was removed by an acetone cleaning process.

To generate the interference patterns, the Al slits were prepared on the backside of the patterned
ITO surface of the glass substrate. In this study, the Al slits were fabricated using the metal lift-off
method to avoid chemical damage on the ITO patterns during our Al slit manufacturing prepared at
the same substrate. For the Al slit patterning process, the patterned ITO glass substrate was turned
over and the photoresist was patterned with a photo-mask, as shown in Figure 3b. The Al slits must be
aligned precisely with the patterned ITO electrodes to control each slit independently. The positions
of the patterned ITO electrodes and the Al slits were aligned with the alignment marks. A negative
photoresist (AZ-5214, AZ Electronic Materials Co.) was used for the Al slit patterning, which was
suitable for the metal lift-off process. After the process of the negative photoresist pattering, the Al
layer was deposited using vacuum thermal evaporation equipment with a 500 nm thickness. The Al
slit patterns were defined clearly by removing the photoresist with acetone. To protect the Al slits from
a physical scratch damage, the SiO2 layer was deposited on the patterned Al layer as a passivation
layer with a 500 nm thickness.

To realize the optical 3D surface profilometry system without any mechanical stage, we implemented
an orthogonally aligned LC sample, where the two LC alignment directions were precisely aligned
with two regions of the common slit and four switching slits. Those were also aligned with the
patterned ITO electrodes, as shown in Figures 1 and 4. As shown in Figure 4, the orthogonally aligned
LC sample was implemented using the multi-rubbing method on the patterned ITO/Al substrate.
After rubbing the LC alignment layer with a soft rubbing cloth attached on the roll-based rubbing
machine, the LC molecules can be unidirectionally aligned on the LC alignment surface along the
rubbing direction owing to the rubbing-induced surface morphology change and the alignment
effect of the LC-interactive side chains of the LC alignment surface material [26]. However, with this
conventional rubbing process, the multi-directional patterned LC alignment condition, required in our
DFPG for coexisting two LC modes of the ECB LC mode and the TN LC mode in single LC cell, cannot
be obtained. To develop the DFPG with the multi-directional LC alignment, we suggested two steps of
the rubbing process supported by the photolithography process between each rubbing step. First,
the LC alignment layer (polyimide, PI, SE-5811, Nissan Chemical Industries Co., Tokyo, Japan) was
spin-coated on the patterned ITO electrode under the conditions of 1000 rpm for 5 s, 3000 rpm for 30 s,
and 1000 rpm for 5 s.

Figure 4. Schematic of the multi-rubbing process for two domains of the initial LC alignments on
patterned ITO substrates to enable the ECB LC mode on the common slit for the phase changing of the
interference patterns and the TN LC mode on the switching slits for changing the spatial frequency of
the projected fringes: (a) spin-coating of the LC alignment layer; (b) the first rubbing process over the
whole area; (c) the second rubbing process after the formation of the patterned passivation layer with
photoresistor where the rubbing direction is orthogonal to the first rubbing direction; and (d) the final
multi-rubbed LC alignment layer for the top substrate of the DFPG device, prepared after removing
the passivation layer.
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The coated PI layer was baked at 230 ◦C for 30 min and then it was uni-directionally rubbed with
the roll-based rubbing machine at a roller speed of 300 rpm and a substrate speed of 10 mm/s in the
horizontal direction, as shown in Figure 4b. Before the second rubbing process, the rubbed PI layer was
protected by the photoresist (GXR-601) layer, and it was partially patterned by the photolithography
process using the photo-mask, as shown in Figure 4c, where the LC alignment layer prepared for the
ECB LC mode operation under the common slit was locally protected for the second rubbing process.
With the partially passivated PI layer, the uncovered PI surface was rubbed orthogonal to the first
rubbing direction, and then the residual GXR-601 layer was completely removed using acetone, as
shown in Figure 4d, which schematically shows the final LC alignment directions of the top substrate
of our DFPG, which has two orthogonal LC alignments for two LC domains of the ECB and TN LC
modes. For our two domains of LC alignment, the photoresist process and its removing process should
not physio-chemically degrade the LC alignment capability produced by the first rubbing process.
Thus, the types of photoresist and their etchants should be carefully chosen, as mentioned in our
experimental procedure.

Figure 5a,b show the photo-mask used for the ITO etching and the Al slit patterning process,
respectively. In Figure 5a, five wide ITO patterns, directly connected to each ITO line pattern, can
be seen, which were prepared for the wire-bonding process to control the electro-optic properties
of the common slit and five switching slits individually with the driving signals. Figure 5c shows
the finally implemented top substrate of the DFPG with the patterned ITO electrodes and the Al slit
arrays. The substrate size was 15 × 20 mm2 in our sample implementation. The size of the actual area,
which optically acts as the DFPG, was almost 8 × 1 mm2.

 
(a) (b) (c) 

Figure 5. CAD images of photo-lithographic masks with the alignment marks for (a) ITO patterning
and (b) Al slit patterning; (c) Image of the fabricated DFPG device.

2.2. Theory of Depth Extraction

2.2.1. Calculation of the Phase Modulation

When using our four-step phase-shifting scheme for the 3D depth extraction, the phase-shifting
in our DFPG according to an applied voltage to the common slit needs to be precisely measured.
The optical set-up of the phase modulation measurement is shown in Figure 6a. The coherent light
source of a He-Ne laser (λ = 632.8 nm) was used to generate interference fringe patterns and to measure
the field-dependent phase modulation of the LC layer operated by the ECB LC mode. The speckle
noise and high order fringe visibility could be minimized to be a negligible level as shown in Figures 2
and 6 because the coherence length of the He-Ne laser used in our experiment was 20 cm that was
much smaller than those of coherent light sources used for conventional holographic interference
experiments. The fringe visibility of the dynamic fringe patterns was about 0.9 in our system. This
fringe visibility was enough to obtain the 3D depth extraction with our four-step phase-shifting and
four steps of multi-spatial frequency scheme [21]. The beam from the He-Ne laser was expanded by
a beam expander and was passed through an iris to reduce the optical noise so that a suitable spot
size with a uniform beam intensity can cover all of the five Al slits. The light polarized with the x-axis
polarizer was passed through the DFPG. The DFPG generated fringe patterns from two slits and the
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fringe patterns expanded by a projection lens were projected on a flat-panel screen. The projected
fringe patterns on the flat-panel screen were captured by a CCD (FL2-14S3H, Pointgrey, Richmind, BC,
Canada) with 4.4 μm pixel pitch and the field of view (FOV) of the CCD lens module was 12◦.

We used the DFT method to measure the phase modulation. The fringe pattern by the DFPG
was calculated using the equation Mphase = angle[X(pN/Λ + 1)], as explained in our previous study,
obtained using a mechanical moving slit system [21]. The values of the phase modulation were
repeatedly calculated depending on the change of the applied voltage with an increase of 0.01 V per
step. As shown in Figure 6b, the phase modulation over 3π/2 was achieved at 5.6 V. The voltage
values for the four-step phase modulation were measured as 2.1, 3.1, 3.8, and 5.6 V, each for the phase
shift of Δφ = 0, π/2, π, and 3π/2, respectively, as shown in Figure 6b. For each step of increasing the
applied voltage to the common slit, the projected fringe patterns with the same spatial frequency were
moved spatially by a quarter of the periodicity of the fringe patterns, as shown in the inset picture of
Figure 6b.

(a) (b) 

Figure 6. (a) Optical system for measuring phase modulation values of the common slit according to
an applied voltage and their moving fringe patterns; (b) Measured phase modulation curve according
to an applied voltage and the fringe patterns captured under Δφ = 0, π/2, π, and 3π/2 conditions.

Figure 7 shows the time sequence of the driving waveforms applied to the common slit part and
four switching slit parts used for our DFPG. The driving waveforms for the common slit were changed
every 200 ms and the amount of the applied voltage was increased to 2.1 V, 3.1 V, 3.8 V, and 5.6 V
at 1 kHz to achieve phase shifting of Δφ = 0, π/2, π, and 3π/2, respectively, as shown in Figure 6.
At a given phase-shifting amount condition, four-step spatial-frequency-varying fringe patterns were
projected by applying dual-frequency-driving waveforms to the TN LC parts individually operated
by the four patterned ITO electrodes. The turn-on waveform for each TN LC part of the switching
slits was applied with 5 V of the applied voltage at 1 kHz for 50 ms, and then the turn-off waveform
was applied with 5 V of the applied voltage at 100 kHz for 150 ms. These frequency-modulating
AC waveforms were applied in sequence to the ITO electrode pattern of each switching slit every
50 ms to obtain four sets of fringe patterns with four different spatial frequencies. When applying
the turn-off waveform with high frequency AC driving to the switching slit IV, the voltage required
for the next step of the phase-shifting was applied to the ECB LC layer of the common slit and then,
frequency-modulating waveforms were sequentially applied to the four TN LC layers to select four
different spatial frequencies of the projected fringe patterns. In this manner, the whole scanning time
required for the four-step multi-spatial frequencies and four-step phase shifting schemes could be
completed in less than 800 ms. This means that the optical surface profilometry can capture 16 sets
of fringe patterns distorted by an object in less than 800 ms. Our profilometry using the DFPG can
exhibit quite fast scanning and capturing speeds suitable for hand-held dental applications, compared
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with our previous study of a 3D optical surface profilometry system constructed with a mechanically
moving optical element [21].

Figure 7. Driving waveforms of voltages applied to the LC layer on each slit of the DFPG utilizing
the dual-frequency modulation for projecting 16 fringe patterns with the four different multi-spatial
frequencies and the four-step phase shifting within the fast switching time.

2.2.2. Theory of 3D Depth Extraction

Figure 8a shows the optical setup used to reconstruct a 3D depth profile with the DFPG device.
The multiple sets of fringe patterns generated by the DFPG were projected though the projection lens
onto the surface of an object. The fringe patterns distorted by the object surface were captured by a
CCD. Figure 8b shows the geometrical parameters used to calculate the depth and position information
from the CCD images. The optical system is composed of the DFPG, projection lens, CCD camera,
and testing object. The DFPG and CCD are on the y-z plane. The center points of the projection lens,
CCD, and object are defined by (yM, zM), (yC, zC) and (yPOI, zPOI), respectively. The fringe patterns are
expanded through the projection lens, and the projected fringe patterns are distorted depending on the
surface profile of an object. The optical axis of the DFPG is parallel to the z-axis, and the optical axis of
the CCD is tilted at an angle of φC to the z-axis. A point of interest (POI) on the object is expressed
using geometrical parameters. As shown in Figure 8, a POI on the object is defined as (yPOI, zPOI).
The line between the center of the projection lens and the POI is tilted at an angle of α with respect to
the optical axis of the DFPG. The line between the center of the CCD and the POI is tilted at an angle
of θPOI with respect to the optical axis of the CCD. In this case, the triangular method, defined by the
geometrical parameters, leads to the following relationships:

zPOI − zC = − (yPOI − yC) cot (φC − θPOI) and (1)

zPOI − zM = (yPOI − yM) cotα (2)

From Equations (1) and (2):

zPOI =
(yC − yM)− (zC − zM) tanα

tanα− tan (φC − θPOI)
+ zC and (3)
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yPOI =
(zC − zM)− (yC − yM) cotα

cotα+ cot (φC − θPOI)
+ yC (4)

are obtained. Finally, Equations (3) and (4) show the depth and position information of the object
calculated from the geometrical parameters [21].

Figure 8. (a) Optical set-up to reconstruct the depth profile of a 3D object with the DFPG device;
(b) Geometrical parameters of the 3D vision system used for 3D depth extraction.

3. Experimental Results and Discussion

3.1. Dynamic Phase Changing and Multiple Spatial Frequency Modulation Properties of the DFPG

In our DFPG for 3D optical surface profilometry, the transmission axes of the two polarizers and
the rubbing direction of the LC alignment layer of the bottom substrate are aligned to be parallel to
each other. In this device configuration, Figure 9a shows the polarization optical microscope (POM)
images of the DFPG cell measured with applying the turn-on voltage to one of the TN LC layers used
for switching the switching slits with varying the spacing for two beam interference, Δg = 200, 400, 600
and 800 μm. As shown in Figure 9a, the beam transmitted through the common slit, which is used as
one beam spot for two-beam interference, is always under the turn-on state without intensity variation.
However, the spacing between the two slits for interference can be controlled by the applied voltage
conditions of the TN LC layers under the four switching slits. In all cases, three switching slit areas,
which were not selected by the turn-on voltage, showed a dark texture without light transmittance.

To observe the field-dependent birefringence change in the ECB LC layer under the common
slit, POM images of the DFPG cell were obtained between the crossed polarizers after detaching the
parallel polarizers from the DFPG cell, as shown in Figure 9b. In this measurement, the POM images
were captured by rotating the rubbing direction of the bottom substrate of the DFPG cell by 45◦ with
respect to the crossed polarizers. On the common slit area, light transmittance or a color change could
be observed owing to a variation of the phase modulation with increasing applied voltage to the ECB
LC layer.
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Figure 9. POM images depending on applied voltage conditions at each slit. (a) POM images
measured between the parallel polarizers with varying selected switching slits for interference, which
creates fringe patterns with four different spatial frequencies; (b) POM images showing the four-step
phase shifting of the LC layer on the common slit captured between the crossed polarizers to show
field-dependent birefringence variation.

It is important to obtain the fast response property of the DFPG required in projecting 16 sets of
multiple fringe patterns. The 3D depth profile is calculated from the 16 fringe pattern images distorted
by surface morphology. The fast response time of each LC slit is positively necessary to improve the
operating time of the 3D vision system. In this study, the dual-frequency LC was used to improve
the response time of the LC layer switching. A dual-frequency LC exhibits the frequency-dependent
dielectric anisotropy where Δε is positive under the low frequency operation and Δε is negative under
the high frequency operation. That means that the LC molecules are reoriented along the applied field
direction under the low frequency operation, whereas the LC molecules are reoriented perpendicular
to the applied field direction under the high frequency operation.

The response times of the DFPG were measured by electro-optic characterization equipment
(LCMS200, Sesim Photonics Technology Co. Ltd., Uiwang, Korea). The common slit was blocked to
measure the response times of the switching slits operated by the TN LC mode. Figure 10a shows
that the turn-on response time switched by the low Hz operation of 5 V at 1 kHz was about 1.6 ms,
sufficient for projecting multiple fringe patterns. However, the turn-off response time, measured by
the field-off condition, showed a relatively slow response with a value of about 36.1 ms, as shown
in Figure 10b. The natural field-off LC relaxation to the initial TN state is supported only by the LC
elastic property and the LC surface anchoring, which was too slow to be used in our optical surface
profilometry system. In our experiment, the turn-off response of the switching slit was improved
by applying the high frequency operating field to obtain the field-driven turn-off property instead
of the natural field-off LC relaxation. Figure 10c shows that the turn-off response was improved to
about 8.1 ms by applying a high frequency AC field of 5 V at 100 kHz. Consequentially, the total
response time of the TN slit was about 9.7 ms. As shown in Figure 7, the dual-frequency modulation
scheme was used to switch four switching slits in sequence at a given phase-shifting amount of the
common slit.
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Figure 10. On/Off response times of the LC layer of the DFPG. (a) Field-on response time; (b) Field-off
response time obtained by the natural relaxation of the LC layer due to the surface alignment effect
without applying any electric field; (c) Off response time obtained by applying a high frequency field
to the LC layer utilizing the frequency inversion effect of the LC dielectric anisotropy.

3.2. Depth Extraction from 3D Optical Profilometry

Figure 11a shows a the photographic image of the object used for the 3D depth extraction
with the presented 3D optical surface profilometry system, which was deliberately chosen to have a
continuously slanted surface together with an abrupt depth change discontinuity from the background
reference surface. The smallest height at the abrupt side edges of the slanted object was over 40 mm,
which was much higher than the optical wavelength used in our experiment. The regions marked with
the dotted red box were reconstructed after projecting multiple sets of fringe patterns with our DFPG.
Figure 11b shows the 16 sets of fringe patterns distorted on the slanted object. Four sets of laterally
moved fringe patterns were obtained by changing Δφ via the common slit control. At a given Δφ

condition, multiple fringe patterns having four different spatial frequencies were sequentially projected
by selecting the Δg condition of the switching slits. Because there was a high depth discontinuity
between the slanted surface and the background surface, some bright (or dark) fringe lines on the
slanted surface were continuous with those on the background surface. This optical phase ambiguity
could be solved using the four-step phase shifting scheme during the depth reconstruction [21,27].

The upper image of Figure 12a shows the enlarged CCD image of one of the projected fringe
patterns, where we can observe some optical noises within the fringe patterns, which might be
produced by some particles from our optical components. However, the synthesized phase map
obtained after applying the four-step phase shifting algorithm, presented in the lower image of
Figure 12a, shows that this type of the background optical noise within the fringe patterns can be
successfully eliminated after the 3D depth reconstruction.
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Figure 11. (a) Photographic image of the slanted object used for the 3D depth extraction; (b) CCD
images of the distorted fringe patterns projected on the slanted object.

Figure 12. (a) Original fringe optical pattern image (upper image) projected on the slanted surface of
Figure 11a using the interference slit of Δg = 200 μm and the synthesized phase map (lower image)
obtained using the four-step phase shifting algorithm; (b) Fictitious scanning pattern images generated
from two spatial frequencies (Δg = 200 and 800 μm) of the projected fringe patterns (the upper images)
and four spatial frequencies (Δg = 200, 400, 600, and 800 μm) of the projected multiple fringe patterns
(lower images).

In our depth reconstruction, the fictitious scanning pattern is generated through multiple spatial
frequencies of the interference fringes for the 3D depth reconstruction using the geometrical optical
parameters [21,27]. In Figure 12b, the upper and the lower images show the fictitious scanning patterns
generated from the two spatial frequencies of Δg = 200 and 800 μm and generated from full sets of four
spatial frequencies (Δg = 200, 400, 600, and 800 μm), respectively. Compared with the upper image,
the fictitious scanning pattern shown in the lower image can make much sharper peaks owing to more
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sinusoidal sets of the spatial frequencies used in the synthesis of the fictitious scanning pattern [21,27].
This could result in the enhanced depth resolution and precision after the 3D depth reconstruction.

Figure 13 shows the 3D depth profile reconstructed from the slanted object using the 16 sets of the
dynamic fringe patterns. Compared with conventional phase unwrapping methods [28], one of the
merits of the depth reconstruction based on the geometrical optical parameters used in our experiment
is that the absolute depth values together with the 2D positional values, not just the relative phase
values, can be obtained, as shown in Figure 13.

 
Figure 13. 3D depth profile reconstructed from the slanted object.

When the size of an object to be measured with projecting the dynamic fringe patterns and to be
reconstructed with the 3D depth extraction increases with approaching the values of the numerical
aperture (NA) of the projection lens and the FOV of the CCD lens module, the calibrations of the
fringe images captured by the CCD camera would be needed to reduce and to compensate the image
distortions which might become more severe especially in the captured image boundaries owing to
like the vignetting effect of the lens-based projection and imaging system. In our experiment, the NA
of the projection lens was 0.4 and the FOV of the CCD lens module was 12◦. Considering the projection
distance of 1 m, the object size which can be measured in our experiment would be about 25 × 25 cm2.
However, our object size was limited under 20 × 20 cm2 because we had a problem in enlarging the
detectable object size because of the highly weakened fringe intensity with increasing the fringe pattern
size as shown in Figures 2 and 11. In our projection system, the much parts of the incident optical
beams were blocked by the five slits and the intensity profiles projected by the projection lens decrease
from the center to the image edges. We expect that this problems would be solved by improving the
collimating projection lens part and by introducing the optical coupling module between the light
source and the individual slits in the future work. However, this nonuniform intensity profile did
not affect the depth extraction process in our four-step phase shifting and four steps of multi-spatial
frequency scheme as shown in Figure 12. In our experiment set-up, we used the surface-distorted
dynamic fringe patterns captured by the CCD lens module without the positional image calibration for
the 3D depth extraction process. We checked the effect of the image distortion by our lens system by
placing a grid pattern at the object plane, the image distortion was negligible under our experimental
conditions of the FOV and the measurement distance. In Figure 13, the measurement error in the
absolute value was less than 2 mm. This might originate from additional image distortions produced
during the depth reconstruction process based on the geometric parameters, which are dependent on
the perspective imaging condition expressed by the angle values of α and θPOI of Equations (3) and (4).
We expect that the measurement accuracy can be further improved after calibration of these geometric
parameters by using the periodic test patterns and the size of the measurable object can be enlarged
after improving the projection parts and improving the CCD camera module.
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Figure 14a shows the CCD images of the distorted fringe patterns projected on a square
box object (80 × 80 × 80 mm3). The perspective view of the 3D depth profile obtained after
the 3D depth reconstruction is presented in Figure 14b with the absolute coordinate axis values.
For each x, y, and z coordinate axis, the measurement errors of the extracted 3D depth profile
were 1.6, 0.9, 1.2 mm, respectively, which were slightly different depending on the coordinate axis.
This coordinate-dependent measurement error might originated in the different perspective viewing
conditions between the projection lens part and the image-capturing CCD camera part in our optical
system as shown in Figure 8. In the previous approaches, most of the optical surface profilometry
systems are based on the phase unwrapping algorithm for the depth reconstruction [28–30] and
need more complex optical elements like the time-sequentially switching multi-wavelength light
sources [31,32], additional optical components [33,34], and a mechanical translation state [21,35] for
the projection to generate multi-spatial-frequency or/and phase-shifting fringe patterns. Our optical
surface profilometry system based on the electrically switching single DFPG cell can generate dynamic
fringe patterns in a fast switching time and can extract the depth and 2D positional information of a
3D object even for cases having large surface depth discontinuities.

Figure 14. (a) CCD images of the distorted fringe patterns projected on the square box object; (b) 3D
depth profile reconstructed from the square box object.

4. Conclusions

3D optical surface profilometry systems have been applied to measure the depth profile of a
3D object and their application fields are much growing recently. To enhance the accuracy of the
3D depth extraction and/or to avoid the phase ambiguity problem, multiple sets of fringe pattern
projections are essential in the optical surface profilometry system. We suggested a single LC cell DFPG
operated by a simple passive driving scheme, which can be fabricated into a compact optical module.
To project 16 sets of dynamic fringe patterns having the optical features of four-step phase shifting
and four different spatial frequencies without any mechanical parts and any complex and expensive
SLM parts, two types of LC modes—the ECB LC mode and the TN LC mode—were included in the
single LC cell by preparing two orthogonal LC alignments on one of the LC alignment layers. Five
optical slits were prepared using photolithography and aligned with the patterned LC alignment
layer, where one common slit with the ECB LC layer was used for the four-step phase-shifting control
and four switching slits with the TN LC layers were used for the generation of four different spatial
frequencies. Moreover, to improve the scanning time required for generating the 16 sets of dynamic
fringe patterns, dual-frequency switching LC was employed, where the switching time—including the
turn-on and the turn-off times—controlled by the frequency modulation increased four-fold about
four times compared with the switching time controlled by the conventional single frequency. As a
result, the 16 sets of fringe patterns could be projected and captured within 800 ms. For the depth
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reconstruction procedures, the phase shifting in the common slit of the DFPG according to the applied
voltages was accurately measured. The resolution of the depth reconstruction obtained by applying
the DFT method and the optical geometric parameters was improved by using the four different sets
of spatial frequencies of the dynamic fringe patterns. Our 3D optical surface profilometry system
yields 3D depth profiles with respect to the absolute value 3D coordinates, not just the relative phase
depth maps, even for objects with abruptly changing surface profiles. Owing to the compactness and
fast switching properties of the DFPG, we expect that the presented 3D optical surface profilometry
system can be applied to a hand-held 3D vision module, which can be widely used for several mobile
applications requiring 3D depth information.
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ITO indium thin oxide
He-Ne Laser Helium-Neon Laser
DFT Discrete Fourier Transform
POM Polarizing Optical Microscope
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Abstract: Depth image acquisition with structured light approaches in outdoor environments is
a challenging problem due to external factors, such as ambient sunlight, which commonly affect
the acquisition procedure. This paper presents a novel structured light sensor designed specifically
for operation in outdoor environments. The sensor exploits a modulated sequence of structured
light projected onto the target scene to counteract environmental factors and estimate a spatial
distortion map in a robust manner. The correspondence between the projected pattern and the
estimated distortion map is then established using a probabilistic framework based on graphical
models. Finally, the depth image of the target scene is reconstructed using a number of reference
frames recorded during the calibration process. We evaluate the proposed sensor on experimental
data in indoor and outdoor environments and present comparative experiments with other existing
methods, as well as commercial sensors.

Keywords: depth imaging; modulated acquisition; structured light; triangulation; probabilistic
graphical models; 3D reconstruction

1. Introduction

Over the last few years, we have witnessed the rapid growth of 3D imaging technologies in
various application areas, ranging from autonomous navigation of robots, drones or cars [1–3], medical
applications [4,5], consumer electronics [6] and surveillance systems [7,8] to object reconstruction [9,10],
biometrics [11–13], and others [14–16]. Especially, with the introduction of low-cost commercial 3D
imaging sensors, such as Microsoft’s Kinect (Microsoft, Redmond, WA, USA) [6], depth sensing has
become a popular research direction with new applications and use cases being presented on a regular
basis. Several major corporations have since introduced their own depth imaging technology (e.g., Intel
(Santa Clara, CA, USA) recently announced the Euclid sensor; Sony (Tokio, Japan) introduced the
PlayStation Camera with the PS4 console; and Infineon (Neubiberg, Germany) developed the Real3
sensor) with the goal of participating in this rapidly growing depth-sensor market.

Existing 3D imaging techniques can be divided into two main categories: (i) active and (ii) passive.
Active techniques utilize an active source of illumination to project a suitably-devised pattern of
structured light onto the target scene and then perform 3D reconstruction based on temporal or
spatial distortions of the projected pattern caused by interactions with the target scene. Examples of
active techniques include standard structured light approaches [17–19], time-of-flight methods [20,21]
or interferometry [22]. A comprehensive review of existing techniques from this group can be
found in [23,24]. Passive techniques, on the other hand, do not rely on active illumination, but
commonly require only a calibrated pair of cameras. Typical examples of passive techniques represent
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stereo-vision [25], shape-from-focus [26], shape-from-shading [27] and other related shape-from-X
approaches [28]. The reader is referred to [29] for more detailed coverage of this topic.

When applied in outdoor environments, 3D imaging techniques are expected to provide accurate
depth information regardless of the external lighting and atmospheric conditions, which are known
to negatively affect the existing range measurement techniques. This property is crucial for various
outdoor applications that require reliable depth information to function properly. This paper addresses
the problem of outdoor depth imaging with structured light approaches and presents a novel sensor
designed specifically for outdoor deployment [30]. The sensor exploits the recently-proposed concept
of modulated pattern projection, introduced by our group in [31], which facilitates the acquisition of
spatial distortion maps in real-world environments (even in the presence of strong incident sunlight),
where other existing approaches often fail or at least struggle with their performance. Correspondences
between the projected pattern and the acquired distortion map are established based on a novel
probabilistic approach relying on graphical models (inspired by [32,33]) and are used in conjunction
with prerecorded reference frames to compute the depth information for each point of the projected
structured light pattern. All components of the sensor presented are designed for outdoor deployment
and contribute to the overall performance, as demonstrated in the experimental section.

We make the following three contributions in this paper: (i) we present a novel 3D imaging sensor
that supports robust acquisition of spatial distortion maps and is able to generate accurate depth
maps in challenging outdoor environments; (ii) we describe the complete hardware and software
(algorithmic) design of the sensor; and (iii) we present a comprehensive experimental evaluation,
as well as comparative results with competing techniques and existing commercial sensors.

The paper is organized as follows: Section 2 presents the main components of the depth sensor
and outlines their characteristics. The individual components are discussed in Sections 3, 4 and 5.
Experimental results and comparative evaluations are described in detail in Section 6. The paper
concludes with some final remarks and directions for future work in Section 7.

2. Sensor Overview

This section presents a short overview of a novel sensor designed for depth image acquisition.
The sensor presented was developed as part of our research efforts with respect to an active
triangulation system (ATRIS) capable of capturing depth images in difficult settings; for example,
under exposure to strong incident sunlight. The sensor relies on the established concept of depth image
acquisition based on structured light, in which a light pattern is first projected onto a target scene, and
the shape (i.e., depth information) of the scene is then inferred based on the spatial distortions of the
projected pattern and the (known) geometrical properties of the prototype.

A schematic representation of the three key components of the ATRIS sensor is shown in Figure 1.

• The image acquisition procedure uses specialized hardware (comprised of a laser projector and
a high-speed camera) to project a structured light pattern onto the target scene with the goal of
capturing an image of the distorted pattern (i.e., a spatial distortion map). The procedure is based
on the recently-introduced concept of modulated pattern projection [31,34], which ensures that
spatial distortion maps of good quality can be captured in challenging conditions; for example,
in the presence of strong incident sunlight or under mutual interference caused by other similar
sensors directed at the same scene.

• The light plane-labeling procedure establishes the correspondence between all parts of the
projected light pattern and the detected pattern that has been distorted due to the interaction
with the target scene. The procedure uses loopy-belief-propagation inference over probabilistic
graphical models (PGMs) as proposed in [33] to solve the correspondence problem and, differently
from other existing techniques in the literature, exploits spatial relationships between parts
of the projected pattern, as well as temporal information from several consecutive frames to
establish correspondence.
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• The 3D reconstruction procedure reconstructs the depth image of the target scene based on (i) the
reference frames of the light pattern projected onto a planar surface at different distances from the
camera and (ii) the established correspondence between parts of the projected pattern and the
detected distortion map.

A detailed description of all three key ATRIS components is presented below.

ATRIS Sensor

Acquisition setup (i)
• laser
• high-speed camera
• modulation for robust

pattern detection
• demodulation on FPGA

Light plane labeling (ii)
• probabilistic graphical models
• loopy belief propagation
• temporal information

3D reconstruction (iii)
• calibration
• interpolation
• reconstruction

Figure 1. Schematic representation of our active triangulation system (ATRIS) sensor. The sensor
comprises three key components: (i) an image acquisition procedure, which captures an image of
the projected light pattern; (ii) a light plane labeling technique, which establishes the correspondence
between all parts of the projected and detected patterns; and (iii) a 3D reconstruction procedure, which
constructs a depth image from the detected light pattern.

3. The Acquisition Procedure

This section describes the modulated pattern acquisition procedure used in the ATRIS sensor.
The section starts by presenting the hardware setup used in the sensor and then proceeds by describing
the pattern acquisition procedure and its characteristics. Note that the underlying concept of the
acquisition procedure was originally introduced in [31].

The hardware setup (shown in Figure 2a) used in the ATRIS sensor comprises a high-speed
industrial camera with an integrated FPGA processing core and a modulable 650-nm LED laser.
The high-speed (Velociraptor [35]) camera (Optomotive, Ljubljana, Slovenia) is capable of operating at
a frame rate of 480 fps, which allows the ATRIS sensor to capture images of the structured light pattern
at a speed of several frames per second. The sensor can therefore be used with static or dynamic scenes.

To acquire one image (or better said, a single frame) of the projected light pattern, the camera first
captures a series of images of the target scene (we refer to these images as sub-frames). Every time an
image (sub-frame) is taken, the laser projector is turned either on or off depending on the current value
of the pseudo-random binary control/modulation sequence c ∈ {0, 1} that is cyclically shifted in the
FPGA modulation register [31]. If the control/modulation sequence takes a value of c = 1, the laser
projector is turned on, and the captured sub-frame contains a snapshot of the illuminated target scene.
Similarly, when the control/modulation sequence takes a value of c = 0, the laser projector is turned
off, and the captured sub-frame contains a snapshot of the scene without the structured light pattern
(see Figure 2b). Based on these sub-frames, the final image of the projected pattern is generated as a
normalized superposition of all sub-frames captured during one cycle of the control sequence.

As illustrated in Figure 2b, all sub-frames captured during the on state of the laser are added to
the superposition, and all sub-frames captured during the off state are subtracted. This demodulation
procedure is implemented in FPGA and removes most information about the appearance of the
target scene from the generated image/frame, thus significantly emphasizing the projected pattern.
A thresholding step is ultimately applied to the demodulated image to remove all remaining
(scene-related) artifacts and to produce the final binary image of the projected pattern needed for the
light plane labeling.
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Figure 2. The acquisition procedure. (a) Visual appearance of the hardware setup of the ATRIS
sensor. The left side of the image shows the casing of the sensor and the right side the arrangement
of the camera (above) and the laser projector (below) in the casing. (b) Illustration of the modulated
acquisition procedure.

The acquisition procedure presented exhibits several desirable characteristics that are also
experimentally validated in Section 6.1 (for a formal theoretical argumentation of the characteristics,
the reader is referred to [31]):

• Noise suppression: The modulated acquisition procedure is robust for various types of noise.
If information related to the visual appearance of the target scene is treated as “background
noise,” then the procedure presented obviously removes the background noise as long as the
control/modulation sequence employed in the FPGA register is balanced (a balanced modulation
sequence is defined as a sequence with an equal number of zero- and one-valued bits). Because
demodulation is a pixel-wise operation, the acquisition procedure presented also suppresses
sensor noise (typically assumed to be Gaussian) caused, for instance, by poor illumination or high
temperatures, where a simple pair-wise sub-frame subtraction would not suffice.

• Operation under exposure to incident sunlight: Even if the illumination of the target scene by
incident sunlight is relatively strong, the modulation sequence is capable of raising the level
of “signal” pixels sufficiently to recover a good-quality image of the projected pattern. This
characteristic is related to the noise suppression property discussed above, because incident sunlight
behaves very much like background noise under the assumption that the intensity level of the
sunlight is reasonably stable.

• Mutual interference compensation: With the modulated acquisition procedure, it is possible to
compensate for the mutual interference typically encountered when two or more similar sensors
operate on the same target scene. This can be done by constructing the control/modulation
sequences based on cyclic orthogonal (Walsh–Hadamard) codes, in which the cross-correlation
properties of the modulation codes are exploited to compensate the mutual interference (see [31] for
more information). Similar concepts are used in other areas, as well; for example, for synchronized
CDMA (code division multiple access) systems [36] or sensor networks [37], for which mutual
interference also represents a major problem.

It should be noted that in the current implementation of the ATRIS sensor, a diffractive optical
element (DOE) mounted in front of the laser is used to split the laser beam and produce a structured
light pattern comprising 11 parallel light planes (see Figure 3a). For the modulation sequence, a 16-bit
long modulation sequence is used, which results in a stable pattern acquisition rate of 30 fps given a
camera frame rate of 480 fps (i.e., 480 fps/16 = 30 fps).
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(a) Original structured light pattern (b) Sample target scene (c) Image of deformed pattern

Figure 3. The correspondence problem: (a) an illustrative image of the structured light pattern produced
by the ATRIS sensor, without distortions; (b) an example of a target scene illuminated by the light
pattern; (c) an example of the spatial distortion map captured with the sensor. To be able to reconstruct
a depth image of the target scene, each pixel comprising the light pattern in (c) needs to be assigned a
label corresponding to one of the light planes in the pattern shown in (a).

4. Light-Plane Labeling

The modulated acquisition procedure presented in the previous section results in a binary image
(or frame) of the projected pattern that forms the basis for depth image reconstruction. As pointed
out in Section 2, the depth image is computed based on the geometrical properties of the acquisition
setup and the distortions of the structured light pattern caused by projecting the light pattern onto
the target scene [33]. Although the geometrical properties of the acquisition setup are commonly
known in advance, the pattern distortions need to be quantified before a depth image can be
constructed. Typically, this is achieved by establishing the correspondence between all parts of
the original structured light pattern (Figure 3a) and all parts of the captured distortion map (Figure 3c).
Because solving this correspondence problem (illustrated in Figure 3) is crucial for the success of
the depth-image-construction step, an efficient procedure based on probabilistic graphical models
(PGMs) was developed for the ATRIS sensor. A detailed description of the procedure is given below in
this section.

4.1. Problem Statement

The binary distortion map captured with the ATRIS acquisition setup contains a large number
of binary regions. The 11 light planes that constitute the structured light pattern are usually not
detected as large connected binary regions in the captured image, but in the form of shorter, potentially
discontinuous line fragments (we refer to any connected binary region (using eight-adjacency) in the
image as a line fragment), as shown in Figure 4. In addition, small binary regions not corresponding to
any of the projected light planes can also appear in the captured image due to the presence of noise.

Pixel segments Line fragments

Figure 4. Visual illustration of some terminology used in this paper. Connected binary regions (using
eight-adjacency) are referred to as line fragments. Smaller parts of the line fragments of fixed width are
referred to as pixel segments.
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The structured light pattern used in the ATRIS sensor consists of 11 parallel light planes. Solving
the correspondence problem, therefore, amounts to finding the correct light plane label for each of the
connected binary regions in the captured binary distortion map [33]. Although this labeling problem
could be approached for each non-zero pixel individually, we group the non-zero pixels into pixel
segments (i.e., parts of the line fragments with a fixed width; see Figure 4) and try to assign each pixel
segment one of the light plane labels to reduce the computational burden of the labeling procedure.

The illustrated labeling problem can be formally defined as follows: assume that the detected
light pattern is represented in the form of the binary distortion map I, that the scene points illuminated
by the projected pattern are encoded with a pixel value of one and that all other pixels are encoded
with a value of zero. Furthermore, assume that the non-zero pixels that form the line fragments are
grouped into pixel segments of fixed width (i.e., spanning a predefined number of image columns).
Let us now denote the set of all pixel segments in the distortion map I as P = {p1, p2, . . . , pN},
where pi stands for the i-th pixel segment (for i = 1, 2, ..., N) and N represents the number of all
pixel segments in I. Moreover, let us denote the set of indices of the light planes constituting our
pattern as L = {1, 2, . . . , M}, where M stands for the number of light planes in the structured light
pattern (M = 11 in our case), and Index 1 represents the light plane that is closest to the bottom of
I. The correspondence (or labeling) problem can then be defined as the mapping ψ that assigns each
pixel segment from P an index (or label) from L:

ψ : pi → L, for i = 1, 2, ..., N. (1)

4.2. Labeling with Graphical Models

We follow the ideas presented in [32,33] and formulate the correspondence problem as an inference
problem over probabilistic graphical models (PGMs). The formalism associated with PGMs allows
us to break down complex problems into (smaller) simpler parts that can easily be modeled. For the
labeling problem in the ATRIS sensor, these simpler parts correspond to geometrical relationships
between pixel segments and their relative positions in a series of consecutive frames (captured by our
ATRIS sensor).

Graphical models G are defined by a set of vertices V and a set of edges E connecting the vertices;
that is, G = (V , E). To represent the labeling problem in the form of a graphical model, the pixel
segments in the detected pattern are represented as vertices v ∈ V , and the dependencies between the
pixel segments are represented as edges e ∈ E of the graph. Each pixel segment (and in turn each vertex)
is associated with a discrete random variable X from X t = {Xt

1, Xt
2, ..., Xt

N}, where the set of all N
random variables X t is defined by the binary distortion map I taken at time instance t. Similarly, each
edge is associated with a factor that models the functional relationship between the vertices (random
variables) connected by the edge. Solving the labeling problem defined in Equation (1) amounts to
finding the most likely value (from L) for each random variable in X t given the dependencies (and
relationships) between the pixel segments.

The PGM-modeling procedure used for the ATRIS sensor is illustrated in Figure 5. Here, the left
side of Figure 5 depicts two sample frames, each containing two line fragments and a total of four pixel
segments. The two frames are assumed to have been captured at two consecutive time instances, t − 1
and t, and the color-coded pixel segments are assumed to be reasonably well aligned in the vertical
(y axis), horizontal (x axis) and “temporal” (t axis) directions. The right side of Figure 5 shows the
corresponding PGM constructed based on the two frames. As can be seen, the state (or value) of each
random variable (i.e., each pixel segment) depends on the state of its horizontal, vertical and temporal
neighbors. The dependencies between the neighboring pixel segments are defined by so-called factors
(illustrated by squares), which model the relationships/dependencies between random variables and
are for the case of horizontal, vertical and temporal neighbors denoted as φh, φv and φt, respectively.
So-called unary factors are also used in our modeling procedure to construct the graph. These factors
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act only on a single variable (vertex) at a time and, in our case, encode the prior knowledge about the
structure of the projected pattern [33]. They are denoted as φp in Figure 5.
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(b) Constructed PGM

Figure 5. Illustration of the probabilistic graphical model (PGM)-based modeling procedure:
(a) simplified distortion map; (b) corresponding PGM.

With the illustrated modeling approach, the joint probability distribution of the PGM used in the
ATRIS sensor can be written as a factor product:

p(X t−1,X t) =
1
Z

t

∏
t′=t−1
(i,j)∈Eh

φh(Xt′
i , Xt′

j )
t

∏
t′=t−1
(i,j)∈Ev

φv(Xt′
i , Xt′

j ) ∏
(i,j)∈Et

φt(Xt−1
i , Xt

j)
t,N

∏
t′=t−1

i=1

φp(Xt′
i ), (2)

where Z denotes the partitioning function and the sets Eh, Ev and Et correspond to subsets of all edges
E , over which the horizontal, vertical and temporal factors are defined, respectively. In the above
equation, N can in general also take different values at different time instances. The joint distribution is
defined only for the case of two consecutive frames (from time instances t and t − 1), but the extension
to a longer sequence is trivial [33].

Inference over the constructed model can be conducted using various inference algorithms
(e.g., [38] or [39]), where the goal is to find the most likely value (label) for each random variable in
the constructed graph. A detailed description of the inference algorithm used for the ATRIS sensor is
given in Section 4.2.3.

4.2.1. Graph Construction

Unlike the toy example in Figure 5, where all line fragments are more or less parallel and the
pixel segments are near perfectly aligned in all directions, building a PGM from real sensory data is a
more complex task. Because no specific topology (e.g., nodes arranged in a grid) is present in the light
pattern that is projected onto the target scene with the ATRIS sensor, it is necessary to formulate criteria
for identifying vertical, horizontal and temporal neighbors. Based on these criteria, dependencies
(i.e., factors) between neighboring pixel segments can be defined, and inference over the constructed
graph can be conducted.

For the ATRIS graph construction procedure, horizontal neighbors are defined as connected
pixel segments (here, eight-adjacency is used [40] to probe for the connectivity). On the left side of
Figure 6, where four pixel segments (labeled a, b, c and d) are presented, only segment pairs a-b
and d-b represent horizontal neighbors, whereas the segment pair b-c does not, because b and c are

63



Sensors 2016, 16, 1740

not connected. The main motivation for introducing horizontal neighbors in the PGM construction
procedure is to “encourage” horizontally-connected pixel segments to take the same label.

a
a

a
b

b b

c

c

c
d

d

de f
t

t
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Figure 6. Defining the neighbors: horizontal neighbors (left image), valid neighbors are a-b, d-b;
vertical neighbors (middle image), valid neighbors are a-e, b-e, b-d, b-f, c-f, d-f; (right image) temporal
neighbors, valid neighbors are a-c.

Vertical neighbors in the ATRIS sensor are defined as pairs of pixel segments that are not connected,
but share at least one pixel at the same x-coordinate (and different y-coordinates). In the middle image
of Figure 6, pixel-segment pairs a-e, b-e, b-d, b-f, c-f and d-f represent vertical neighbors according to
this definition. Note that a pixel segment can easily have several vertical neighbors. Vertical neighbors
are needed in the PGM to ensure that the detected light planes tend to be labeled consecutively.
Due to this fact, vertical dependencies between pixel segments are extremely important for the
modeling procedure.

Finally, temporal neighbors are defined as pixel segments belonging to detected patterns recorded
at two consecutive time instances, t − 1 and t, that share at least one non-zero pixel at the same spatial
coordinates. This definition requires no tracking of the pixel segments over time and is extremely
simple to implement. On the right side of Figure 6, only pixel segments a and c represent temporal
neighbors, whereas all other segment pairs do not. Temporal neighbors are included in the graphical
model to exploit additional temporal information when labeling the light planes of the projected
pattern. As shown in the experimental section, the addition of temporal neighbors contributes to the
accuracy of the labeling procedure.

The definitions presented define the topology of the PGM (i.e., vertices and edges) constructed
from the given input image I. However, to be able to conduct inference on the graph, factors between
pairs of neighboring vertices (or on a single vertex) that model the dependencies between the random
variables associated with the vertices need to be defined, as well. The procedure for defining the
factors used in this paper is described in the next section.

4.2.2. Factor Definition

Factors represent functions of random variables. Typically, factors model the dependencies
(relationships, constraints) between neighboring vertices and, hence, represent functions of two
random variables. Alternatively, they relate only to a single vertex and act as functions of a single
random variable. In the modeling procedure used for the ATRIS sensor, factors are used to model the
relationships between horizontally-, vertically- and temporally-neighboring pixel segments, and unary
factors are added to include knowledge about the structure of the projected light pattern.

Horizontal factors φh describe the relationship between horizontally-neighboring pixel segments
and return a fitness score with respect to the labels assigned to the neighboring segments. The factor
returns a score of one when both pixel segments are assigned the same label and some small score fc if
they are assigned different labels. This definition reflects the structure of the projected pattern and
encourages horizontal neighbors to take the same light plane label [33]. The fitness score returned by
the horizontal factor is defined as:

φh(Xt
i = k, Xt

j = k′) =
{

1, k = k′,
fc, else

, (3)
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where k, k′ ∈ L and fc (0 < fc < 1) denotes the fraction-cost parameter that penalizes horizontal
neighbors that are labeled differently.

Vertical factors φv are assigned between random variables identified as vertical neighbors.
The factor returns a high fitness score when the two vertically-neighboring pixel segments are
labeled in an ascending manner and a fitness score of zero otherwise. This definition encourages the
vertical neighbors to take consecutive light plane labels and prevents the assignment of labels in a
non-ascending order. The relationship between vertically-neighboring segments in the ATRIS sensor is
modeled as follows:

φv(Xt
i = k, Xt

j = k′) =
{

f (k − k′), k > k′

0, else
, (4)

where k, k′ ∈ L and f denotes a linear function of the difference of two labels. The function f decreases
monotonically with the label difference:

f (δ) =

{
g(1 − (δ − 1)h), δ 	= 0
oc, else

. (5)

The parameter h defines the slope of the linear part of the function f ; oc (overlap cost) stands
for a parameter that penalizes vertical neighbors with the same variable value; and the function g(.)
represents a function that truncates all negative values to zero.

Temporal factors φt are assigned between pixel segments identified as temporal neighbors in two
consecutive frames (of distortion maps). Under the assumption of a sufficiently high frame rate, the
spatial location of most pixel segments can be considered constant. Pixel segments originating from
two consecutive frames having approximately the same spatial location should therefore be assigned
the same light plane label. The temporal factors defined for our modeling approach are functions that
assign a fitness score of one if the pixel segments are assigned the same label and a fitness score of zero
if the labels differ; that is [33]:

φt(Xt−1
i = k, Xt

j = k′) =
{

1, k = k′

0, else
, (6)

where k, k′ ∈ L.
Finally, the prior factors φp are assigned to all vertices and operate on a single random variable at a

time. They are used to incorporate prior knowledge about the spatial structure of the projected pattern
into the modeling procedure and in a sense carry information about the most likely range of values a
random variable can take with respect to the vertical position of the pixel-segments and the number of
its vertical neighbors above and below. The prior factors are computed based on the pseudo-procedure
presented in Algorithm 1. Below, we outline the algorithm for a single pixel segment based on the toy
example shown in Figure 7. However, the procedure is identical for all pixel segments.

Assume that our goal is to compute the prior factor for the red pixel segment and that all other
pixel segments in image I are shown in white and gray (Figure 7b). To compute the prior factor, we first
scan over all x-coordinates of the red segment and for each x-coordinate search for (at most M) line
fragments above and below the current x-position of the red segment. We then label the pixel segments
found at the current x-coordinate consecutively from the bottom of the image up and increase the
likelihood of the label assigned to the red-segment by some arbitrary constant q. If we are able to find
M pixel segments at the given x-coordinate, only the likelihood of a single label is increased (shown
by the graph in Figure 7a), whereas the likelihood of several labels is increased if fewer than M pixel
segments were found (shown by the graph in Figure 7c). The procedure aggregates the likelihoods
over all x-coordinates of the red pixel segment and in the final step normalizes the likelihoods to
the unit L1 norm over all light plane labels to produce the final prior factor for the corresponding
random variable.
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Algorithm 1 Calculating prior factors

1: for all pixel-segments (i.e., random variables Xi) in the image I do

2: Init: Initialize p as an M-dimensional vector of all zeros

3: Result: Normalized distribution (prior factor) φp(Xi)

4: for all x-coordinates of the pixel-segment corresponding to Xi do

5: � find (at most) M biggest line fragments in I having a pixel segment at the current x-coordinate

6: � record the position, k, of the pixel-segment (corresponding to Xi) among the found m line fragments
counting from the bottom of image I up

7: if the number of found line fragments m equals M then

8: � increase the k-th element of p by some positive constant q

9: else

10: � increase all elements of p from position k to k + (M − m) by some positive constant q

11: end if

12: end for

13: � normalize the vector p to unit L1 norm; φp(Xi) = p

14: end for

Figure 7. Computing prior factors: illustration of the procedure with a simple example (shown in (b)).
For each random variable, the prior factor represents a probability distribution over all light-plane labels.
Estimates of the probabilities are obtained by labeling the pixel segments and increasing the likelihood
(shown in (a) and (c)) of the label assigned to the observed pixel segment at each x-coordinate.

4.2.3. Inference

To solve the labeling problem using the constructed PGM, a value needs to be assigned to each
random variable (or vertex) constituting the graph, for which the range of possible values is given by
the set of light plane labels L (see Equation (1)). The assignment is computed based on maximum a
posteriori probability (MAP) estimation:

X̂ t = arg max
X t

p(X t−1,X t), (7)

where p(X t−1,X t) is the joint probability distribution of the PGM defined by Equation (2) and X̂ t is
the most likely configuration of random-variable assignments for the PGM at time instance t.
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MAP estimation can be conducted using different inference techniques; for example, [38,39,41].
In the case of acyclic graphs, an exact solution can be found; on the other hand, with cyclic graphs,
as in our case, the problem is NP hard and only an approximate solution can be computed. Thus, for
the ATRIS sensor, we use loopy-belief propagation for the inference on the PGM as described in [38].

5. Depth Image Reconstruction

In order to reconstruct a depth image of the target scene based on the labeled distortion map,
we use a simple processing approach involving reference frames of the projected pattern taken at
various distances from the camera.

To capture the reference frames, we start by placing a planar surface parallel to the XY plane of
the camera’s coordinate system (see Figure 8a) at some initial distance z1 from the camera. We project
our light pattern onto the surface and capture the first reference frame, R1, corresponding to the
distance z1. We then move the surface by some depth increment Δz away from the camera and take
another reference frame, R2, at the distance z2 from the camera. We repeat the procedure for the entire
measurement range of our ATRIS sensor and thus generate a set of reference frames that are later used
for depth calculation. The procedure for capturing the reference frames is illustrated in Figure 8a, and
some sample frames are shown in Figure 8b. Here, the fourth and fifth light plane are labeled in each
frame to demonstrate how the position of the detected light planes changes in accordance with the
distance at which the reference frames are recorded.

projector

camera

Z

Y
X

Δz

R3 R2 R1

z1z2z3

(a) Reference frame acquisition procedure

R1 R2 R3

5
4 5

4 54

(b) Sample reference frames captured at three distances

Figure 8. Illustration of the reference frame acquisition procedure: (a) the setup; (b) sample reference
frames captured at distances z1, z2 and z3. The reference frames are used to compute the depth value
of each pixel segment in the labeled distortion map.

Let us denote the distances at which the reference frames, Rs, were captured with:

zs = z0 + s · Δz, for s = 1, . . . , S, (8)

where z0 denotes some minimum distance from the camera and the measurement range of the sensor
lies between z1 and zS. The depth increment Δz defines the depth resolution of the ATRIS sensor
and may be selected arbitrarily. Each reference frame, Rs, contains at most M line fragments f (s)i (for

i = 1, . . . , m ≤ M) with associated light plane labels k(s)i ∈ L.
Consider a non-zero pixel (note that depth calculation is conducted for each pixel separately

and not for the entire pixel segment at once) from the distortion map I located at image coordinates
p = [xpix, ypix]

T and associated with some light plane label k ∈ L assigned during the labeling
procedure. To compute the [x, y, z]T position of the pixel (in camera coordinates), we first find the
reference frame, Rŝ, that contains the line fragment (at the same x-coordinate, i.e., xpix) with the same
label as the given non-zero pixel and is closest in terms of its y coordinate; that is:

ŝ = arg min
s

|y
f (s)i

− ypix|, subject to k = k(s)i , (9)
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where y
f (s)i

stands for the y-coordinate of the i-th line fragment in the reference frame Rs. We then

assign the distance, at which the frame Rŝ was taken, as the z-coordinate of the given pixel with respect
to the camera’s coordinate system:

z = z0 + ŝ · Δz. (10)

The x and y coordinates of the pixel (in camera coordinates) are computed using the hardware’s
intrinsic parameters, which can be estimated with standard techniques [42]. The procedure presented
is applied to all non-zero pixels of the spatial distortion map I and results in a sparse depth map,
which is interpolated during the last processing step to fill in the missing values.

6. Experiments

This section describes the experiments conducted to demonstrate the merits of the developed
sensor and to evaluate its performance on experimental data using quantitative performance metrics.
We start the section by presenting experiments related to the characteristics of the sensor and the
proposed acquisition procedure, proceed by providing results on the performance of the proposed
light plane labeling technique and conclude the section with some examples of 3D reconstructions of
scenes generated with our ATRIS sensor.

6.1. Characteristics of the Acquisition Procedure

One of the main merits of our pattern acquisition procedure is the fact that it is possible to deploy
several depth sensors exploiting our procedure in the same environment. In fact, we demonstrated
in [31] that it is possible to completely compensate for the mutual interference usually encountered
when deploying several identical depth sensors in the same environment by constructing the
modulation sequence of our acquisition procedure based on cyclic orthogonal (Walsh–Hadamard)
codes. (A detailed discussion on the construction of the modulation sequence is beyond the scope of
this paper. The reader is referred to [31] for detailed coverage of this topic.) An illustrative example
of this characteristic is presented in Figure 9 on a simple indoor toy scene. Here, the images in the
upper row correspond to our ATRIS sensor, and the images in the lower row correspond to images
captured with the first generation Kinect sensor, which also exploits structured light [6]. The image in
the upper left corner presents a sample scene with two of our sensors directed at it; the second image
shows a demodulated image with non-cyclic orthogonal codes; and the last image in the upper right
shows the demodulated image based on cyclic orthogonal codes. Note how the projected pattern can
be recovered despite the presence of more than one active sensor operating on the same scene. In the
lower row, the left most image depicts the acquisition setup using a pair of Kinect sensors. The middle
image shows the depth map acquired when only one sensor is active, and the third image in the lower
row demonstrates the effect of two Kinects capturing depth images of the same target scene. In the
latter case, white areas appear in the image where depth information cannot be computed. This effect
demonstrates the effect of the mutual interference of the two Kinects and is not present with the ATRIS
sensor. As a consequence of the interaction of the Kinects’ light patterns, the shape of the objects
comprising the scene is distorted, and part of the depth information is missing.

Another important aspect of the developed pattern acquisition procedure is its robustness to
ambient illumination and the presence of incident sunlight. To demonstrate this characteristic, we
again provide a few (qualitative) illustrative examples. We first present sample results for a simple
indoor scene imaged in three distinct illumination conditions: (i) under ambient lighting with no
additional illumination directed at it (first row of Figure 10), (ii) under ambient lighting and with
the room lights turned on (second row of Figure 10) and (iii) under ambient lighting, with room
lights turned on and with a flashlight directed at the scene (third row of Figure 10). The first and
third columns of Figure 10 show gray-scale images of the scene with the ATRIS prototype and Kinect
sensor (taken at the same time instance), respectively, and the second and fourth columns show the
corresponding distortion maps (for ATRIS) and depth images (for Kinect). Our acquisition procedure
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produces stable results with minor differences in the intensities of the distortion maps, but information
is missing from the depth images generated by Kinect when the imaging conditions become more
challenging. Note that missing information corresponds to white areas in the depth images.

Figure 9. An illustrative example of the behavior of the developed acquisition procedure when two
identical sensors are directed at the same scene and a comparison with a commercial sensor. Upper row:
a sample scene illuminated with two ATRIS sensors (left); the demodulated images with non-cyclic
orthogonal codes (middle); the demodulated images with cyclic orthogonal codes (right). Lower row:
acquisition setup with two Kinect (v1) sensors (left); captured depth image when one sensor is active
(middle); captured depth image when both sensors are active (right). Observe how the ATRIS sensor
is able to compensate for the mutual interference, to recover a spatial distortion map and is unaffected
by the pattern projected by the second ATRIS sensor.

Figure 10. Qualitative examples of the performance of the developed acquisition procedure under
various ambient lighting conditions. The first column shows a sample scene in different illumination
conditions (from top to bottom): no additional illumination (top), with room lights on (middle) and
with room lights on and a flashlight directed at the scene (bottom). The second column of images shows
the distortion maps captured with the ATRIS sensor for the different illumination conditions. The third
column depicts the same scene captured at the same time instance as the images in the first column,
but with the Kinect sensor (v1). The last column presents the corresponding depth images generated
by the Kinect sensor. Here, white areas indicate that no depth information could be computed.
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In our next experiment, we deploy our sensor outdoors and again provide comparative results
with the first-generation Kinect sensor that uses the same imaging technology (i.e., active structured
light) as our ATRIS sensor. The results of this experiment are shown in Figure 11. Here, the first column
shows images of our scene with the projection pattern barely visible due to the incident sunlight; the
second column shows images of the acquired distortion maps; and the third column shows images
taken with the Kinect sensor. The upper row of images was taken under moderate incident sunlight,
and the lower row of images was taken under relatively stronger sunlight. Note that the Kinect sensor
is unable to acquire a complete depth map of the observed scene due to deployment outdoors (white
areas in the output image of the Kinect sensor indicate that no data are available for that area), but our
acquisition procedure produces stable (though noisy) distortion maps that can be used with our light
plane labeling procedure. Although there are obvious differences in the number of pixels in which
the two sensors interact with the scene, it is clear from the images presented that the ATRIS sensor is
capable of operating outdoors in a robust manner.

Figure 11. Illustrative example of the behavior of the developed acquisition procedure when deployed
in outdoor environments. The first column shows gray-scale images of the target scene, the second
column shows the distortion maps captured with the ATRIS sensor; and the last column of images
presents the output of the Kinect sensor. The upper row presents images taken under exposure to
moderate sunlight, and the lower row shows images taken under exposure to strong incident sunlight.

For our third and last experiment with the acquisition procedure, we set up another outdoor scene
and compared the performance of our ATRIS sensor with the first and second generation Kinect sensor.
The second generation Kinect (v2) uses time of flight (ToF) technology and requires a full-fledged GPU
supporting DirectX 11 to produce depth maps. Due to the required computing resources and different
technology, Kinect v2 is not a direct competitor to our ATRIS sensor (which runs on a simple FPGA),
but is included in our comparison to demonstrate the performance of a state-of-the-art depth sensor.
The qualitative comparison is presented in Figure 12. Here, the first column of images represents the
outdoor scene and corresponding distortion map captured with the ATRIS sensor; the second column
depicts the scene and the depth image acquired with the first generation Kinect; and the third column
shows the scene and the depth map captured with the second generation Kinect. As can be seen, both
Kinect v2 and our ATRIS sensor produce solid, though noisy, results for all measured pixels, whereas
the first generation Kinect struggles with its performance outdoors.
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Figure 12. Qualitative comparison of the ATRIS sensor and both generations of the Kinect sensor on an
outdoor scene. The first column shows the scene and distortion map from the perspective of the ATRIS
sensor; the second column presents images from the first generation Kinect; and the last column of
images shows the results produced by the second generation Kinect. Note that the second generation
Kinect that uses time of flight technology, and our ATRIS sensor produces good results in all pixels
measured, whereas the first generation Kinect performs less well outdoors.

6.2. Characteristics of the Light-Plane Labeling Technique

The distortion maps (see Figures 9–12) acquired with our ATRIS sensor form the basis for the
light plane labeling procedure presented in Section 4. To evaluate the performance of the proposed
procedure, we construct two datasets of spatial distortion maps.

The first dataset serves as our development set and is used in the experiments for tuning the
open-hyper parameters of the labeling procedure (e.g., the values of oc, fc, h, etc.). In practice, it
is necessary to fix the open-hyper parameters in such a way that the labeling technique exhibits
the best possible performance. We therefore construct the first dataset from 152 images of a simple
indoor scene, which is suitable for our purposes, because images taken indoors contain very little
noise. The indoor scene comprises three objects positioned over a rotating table that change position
backwards, forward, left and right, thus creating different depth discontinuities. The second dataset
used for our experiments is a more realistic dataset of outdoor images. Here, we record 15 images of a
scene containing a moving vehicle and a person passing between the vehicle and our ATRIS sensor.
The images in this dataset contain objects with more complex geometry and are used to evaluate the
performance of the labeling technique with fixed hyper-parameters.

All images from the two datasets are manually annotated to provide the ground truth for our
experiments, in which we measure the accuracy of the labeling procedure using (what we refer to as)
the correct labeling rate (CLR):

CLR =
nc

Na
, (11)

where nc denotes the number of correctly-labeled non-zero pixels and Na stands for the number of all
non-zero pixels (the term “correctly” in this context stands for “being the same as the ground truth”).
The correct labeling rate (CLR), as defined above, measures the fraction of correctly-labeled pixels
among all pixels that have to be labeled. Note that the CLR in all graphs and tables presented below is
computed over all images of the given dataset.

A few sample images from both datasets and color-coded examples of the ground truth are shown
in Figure 13. The upper group of images presents sample images from the (first) indoor dataset, and
the lower group of images presents images from the (second) outdoor dataset. The imaging conditions
outdoors are more challenging than the conditions indoors, which results in a higher level of noise in
the demodulated images of the second dataset (observe the difference between the second and fourth
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row of images on the left). The images on the right side of Figure 13 represent annotated samples from
both datasets.

Figure 13. Sample images from the two datasets used in the experiments. The upper group of images
shows sample images from the indoor dataset, and the lower group of images shows samples from the
outdoor dataset. Both visible-spectrum and demodulated images are shown. The images on the right
show the color-coded ground truth (best viewed in color).

As indicated above, the goal of the first series of experiments is to examine the impact of various
hyper-parameters of the proposed techniques on the labeling accuracy. Towards this end, we first set
the values of all hyper-parameters to a default value, then change a single parameter at a time and
observe how the labeling accuracy changes with respect to the varying parameter. Even though the
hyper-parameters of the proposed labeling technique are generally not mutually independent, we can,
nevertheless, obtain a rough impression of the performance of the proposed method with respect to
the varying parameter. We only make use of the first, the indoor dataset, in this series of experiments.

Figure 14 shows that the fraction cost fc (see Equation (3)) and overlap cost oc (see Equation (5))
have only a little effect on the labeling accuracy (graphs in the top row), whereas the function drop
rate h (see Equation (5)), on the other hand, has a significantly larger impact on the labeling accuracy
(graph in the lower left corner of Figure 14). These results suggest that the parameters fc and oc

can be selected over a wide range of values with no significant performance loss, whereas h needs
to be kept sufficiently small to ensure good performance. The most interesting observation of this
series of experiments, which supports our working hypothesis that temporal information can improve
labeling accuracy, can be made from the graph in the lower right corner of Figure 14. Note how the
accuracy of the labeling procedure improves when two consecutive images from a sequence are used
for constructing the PGM instead of only one. Adding additional images to the sequence further
improves the labeling performance, albeit to a lesser extent. The best labeling accuracy we manage to
achieve on the indoor dataset is a CLR of 0.9755 given a sequence length of five.

Based on the results of this series of experiments, the following parameter values are selected
for the subsequent experiments on the outdoor dataset: oc = 1e−6, fc = 1e−5 and h = 0.1. Note that
it is not our goal to find values of the hyper-parameters that result in the best possible performance
on the indoor dataset because this could lead to over-fitting and poor generalization abilities of the
final labeling approach. We therefore make no further effort to find a better set of parameters for our
technique and run a second series of experiments on the outdoor dataset with the hyper-parameter
values listed above.

72



Sensors 2016, 16, 1740

Figure 14. Impact of various hyper-parameters of the proposed technique on the labeling accuracy
(measured in terms of the CLR). The results were generated on the indoor dataset and, except for the
graph in the lower right corner, were computed using a sequence length of one. (a) impact of the
overlap-cost parameter oc, (b) impact of fraction-cost parameter fc, (c) impact of the function drop rate
h, (d) impact of the sequence length.

To gain insight into the characteristics of the proposed labeling approach and examine its behavior
on more challenging data, we run several tests in the second series of experiments. These tests are
conducted on the outdoor dataset and aim at: (i) examining the rationale behind defining the PGMs
using horizontal, vertical and prior factors, (ii) evaluating the importance of temporal information on
more challenging data and (iii) comparing the proposed technique to the existing labeling techniques.

To demonstrate the importance of each of the factors in the PGM, we conduct several tests. During
each test, we remove a single factor and keep the rest. (For example, we remove the horizontal factors
φh, which pull horizontally-neighboring pixel segments towards the same label, and keep only the
vertical, prior and temporal factors. This case is denoted as “no φh”. Other cases follow a similar
notation.) We run the tests two times, first with a single image of the scene (i.e., q = 1) and then with
two consecutive images (i.e., q = 2), to directly demonstrate the importance of the temporal factors,
as well. The results of these tests are shown in Figure 15a. Several observations can be made from the
results presented. First of all, the results indicate that prior factors are the most important component
of the PGM. If the information about the structure of the projected patterns encoded in the prior factors
is removed, the labeling accuracy drops significantly, to a value of CLR = 0.346 (in the case of a single
image), as shown by the graph labeled ”no φp”. Without the prior information, the labeling accuracy
becomes even worse when a second image is added to the sequence; that is, when temporal factors
are introduced. However, when the prior factors are considered during the construction of the PGM,
temporal information always improves the labeling performance. Similarly, both the horizontal and
vertical factors also add to the overall labeling accuracy, as noticeable from the graphs labeled “no φh”,
“no φv” and “all”. Here, “all” stands for the case when all four factor types are considered. All in all,
the results of these tests suggest that all factors are important for the labeling procedure and contribute
to the overall performance of the proposed labeling technique.
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Figure 15. Results obtained on the outdoor dataset: (a) the results illustrate the importance of the
selected structure of the PGM and (b) the impact of the sequence length on the correct labeling
rate (CLR).

The graphs in Figure 15b show how the number of consecutive images used for constructing
the PGM affects the labeling accuracy. As can be seen, the biggest increase in performance is
noticeable when two consecutive images are used during construction of the PGM instead of one.
The performance jump here is in fact a little larger than in the case of the indoor dataset, which can
be attributed to the fact that the acquired distortion maps from the outdoor dataset are noisier, and
hence, using more than one image from a sequence helps reduce the noise and determine the right
labels. Interestingly, using more than two images from a sequence does not increase the performance
further, but keeps it more or less stable. These results suggest that temporal information is useful for
the labeling technique.

Next, we demonstrate the performance of the proposed labeling technique in comparison with
other techniques that can be used for labeling the structured light pattern used in the ATRIS sensor.
The implemented reference techniques are related to other structured light approaches from the
literature that exploit light patterns comprised of parallel stripes (e.g., [43–46]), but, differently from
these techniques, do not rely on coding strategies (in terms of color, intensity, geometry or time; see [18]
for information on existing coding strategies) to solve the correspondence problem. Our comparison
is therefore limited to techniques capable of handling uncoded structured light. Specifically, we
implement the following reference techniques and include them in our comparison presented in
Table 1:

• The naive labeling approach (NLA), which assigns light plane labels to the detected non-zero pixels
in a consecutive manner. The first non-zero pixel at the given x-coordinate (looking from the bottom
of the image up) is assigned the label 1; the second detected non-zero pixel at the given x-coordinate
is assigned the label 2, and so on; until all 11 labels have been assigned.

• The labeling approach based on prior information (PR), which assigns light plane labels to the
detected non-zero pixels by constructing a PGM based on prior factors only. This approach
represents a refined version of the naive labeling technique introduced above.

• The reference approach from Ulusoy et al. (RUL) [32], which also exploits probabilistic graphical
models, but relies only on spatial information to assign light plane labels to the detected non-zero
pixels in the distortion map.

74



Sensors 2016, 16, 1740

Table 1. Quantitative comparison with other labeling techniques (higher is better; 1 indicates a perfect
score). NLA, naive labeling approach; PR, prior information approach; RUL, reference approach from
Ulusoy et al.

Method
Outdoor Dataset (Noisy)

NLA PR RUL Ours

CLR 0.888 0.912 0.950 0.989

Note that even the naive labeling approach results in a relatively high labeling accuracy with a
CLR of 0.888. This approach is expected to work well in simple conditions, where there is no noise
in the detected distortion maps and no large depth discontinuities are present in the scene. All other
techniques improve the performance of the NLA technique with the proposed approach resulting in a
CLR of 0.989.

All in all, the results of our experimental assessments suggest that exploiting spatio-temporal
information for determining light plane labels in our ATRIS sensor is a feasible approach that results
in state-of-the-art performance. The PGM approach is capable of assigning the correct label to most
pixel segments of the detected light pattern even if large depth discontinuities are present in the scene
observed. To visually demonstrate the efficacy of our approach, a few illustrative results of the labeling
procedure are presented in Figure 16. Here, the first row depicts sample images from the outdoor
dataset; the second row shows the color-coded ground truth; and the third row shows the color-coded
results of the labeling procedure. Note how most of the assigned labels correspond to the ground truth,
while there are, of course, a few errors, as well (right side of the image: the errors are marked with
arrows). These errors typically introduce artifacts in the reconstructed depth images, but can easily be
removed through simple post-processing of the depth images if they are not too frequent.

Figure 16. Visual examples of the results of the proposed light plane labeling procedure. The
first row shows sample images from the outdoor dataset; the second row shows the (color-coded)
manually-annotated ground truth; and the third row shows color-coded results of the labeling
procedure. The images on the right side show an example of a labeling error, which is highlighted by
arrows (best viewed in color).

6.3. Constructing Depth Maps: 3D Reconstruction

Once the light plane labels have been assigned to all parts of the detected light pattern, depth
images of the observed scene can be reconstructed using the procedure presented in Section 5.
To demonstrate the result of this process for our ATRIS sensor, we again present a couple of illustrative
examples. The first example, which is shown in Figure 17, shows a number of stones with relatively
simple geometry. The stones were placed on a street outdoors, and an image was captured using
a commercial camera (upper left corner of Figure 17), as well as our sensor. Note that, despite the
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exposure to relatively strong incident sunlight, the sensor was able to capture an image with the
projected pattern clearly visible (lower left corner of Figure 17) and reconstruct the depth images quite
well (right side of Figure 17).

Figure 17. A visual example of the 3D reconstruction capabilities of the developed sensor. The image
in the upper left corner shows a (visible light) image of the observed scene captured under strong
incident sunlight; the image in the lower left corner shows the image of the detected light pattern; and
the image on the right shows the reconstructed depth image from various angles.

The second example in Figure 18 shows a gray-scale image of a hand captured with a commercial
camera (upper left corner of Figure 18), the labeled spatial distortion map generated by our ATRIS
sensor (lower left corner of Figure 18) and the 3D reconstruction from various viewing angles (right
side of Figure 18). Note that, despite the more challenging geometry of the hand (compared to the
stones in the first example), our ATRIS sensor successfully captures all parts of the hand and recovers a
good-quality depth image. The results show that usable depth images can be obtained with our sensor
in difficult imaging conditions, as well as with relatively complex geometry of the target scene. This
makes the sensor applicable in outdoor applications that require reliable depth information regardless
of the external imaging conditions.

Figure 18. A visual example of the 3D reconstruction capabilities of the developed sensor. The image
in the upper left corner shows a (visible light) image of the observed scene (i.e., a hand); the image in
the lower left corner shows the labeled distortion map; and the image on the right shows the depth
image from our ATRIS sensor from various viewing angles.
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7. Conclusions and Future Work

We have presented and experimentally demonstrated the merits of a novel sensor for depth
image acquisition. The sensor presented is based on the recently-introduced concept of modulated
pattern projection [31], which ensures that the procedure of detecting the projected light pattern is
robust with respect to various factors, such as background noise, background illumination or the
mutual inference of similar systems operating on the same scene. The procedure for determining the
correspondence between the projected and detected light patterns, which forms the basis for depth
image reconstruction, is implemented with an approach based on probabilistic graphical models and,
in addition to spatial information, also exploits temporal information when solving the correspondence
problem. As demonstrated in the experimental section, the proposed procedure performs well even
when large depth discontinuities are present in the scene. The experimental results also show that the
sensor presented is capable of acquiring stable distortion maps when competing commercial systems
struggle with their performance.

As part of our future work, we plan to further improve the sensor presented. One of the main
drawbacks of the current implementation is the structure of the projected light pattern, which affects
the resolution and quality of the acquired depth image. To address this issue, we intend to explore
structured light patterns that can be used with the PGM-based labeling procedure presented. The goal
here is to devise a pattern that ensures an even better quality of the captured depth images compared
to what is possible with the current sensor. A possible way to achieve this is by using more lines in the
light pattern or combining the existing pattern with line scanning techniques capable of generating
dense depth maps.

The current implementation of the ATRIS sensor is suitable for outdoor applications, such
as collision avoidance or autonomous navigation, where approximate depth maps need to be
acquired as reliably as possible and the resolution of the depth maps is not of major concern.
Another application domain for our ATRIS sensor is computer vision applications exploiting action
recognition [47,48], pose estimation [49,50], facial expression recognition [51,52] or motion analysis
technology [53]. These applications are commonly deployed outdoors and could benefit from robust
depth imaging technology.
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Abstract: Nowadays, the creation of methodologies and tools for facilitating the 3D reproduction of
artworks and, contextually, to make their exploration possible and more meaningful for blind users is
becoming increasingly relevant in society. Accordingly, the creation of integrated systems including
both tactile media (e.g., bas-reliefs) and interfaces capable of providing the users with an experience
cognitively comparable to the one originally envisioned by the artist, may be considered the next
step for enhancing artworks exploration. In light of this, the present work provides a description
of a first-attempt system designed to aid blind people (BP) in the tactile exploration of bas-reliefs.
In detail, consistent hardware layout, comprising a hand-tracking system based on Kinect® sensor
and an audio device, together with a number of methodologies, algorithms and information related
to physical design are proposed. Moreover, according to experimental test on the developed system
related to the device position, some design alternatives are suggested so as to discuss pros and cons.

Keywords: hand-tracking system; Kinect sensor; 3D reconstruction; blind people

1. Introduction

Lack of sight affects blind people’s possibilities in many aspects of everyday life. Movements,
tasks and actions that are simple, or even trivial, to sighted people become really challenging for blind
people (BP). To support BP in a great number of situations, in the last decades many devices have
been designed all over the world. In most cases, research has been focused on developing systems for
assisting BP in their everyday activities such as walking [1], reading books, using computers [2] and
so on. However, there are other blind people needs that, although not essential for living, contribute
to the overall well-being of an individual. The possibility of enjoying artworks is probably one of
the most relevant one since it helps BP in taking part, on an equal basis with others, in cultural life.
Not surprisingly, some museums (e.g., the Omero Tactile Museum of Bologna or the Art Institute
of Chicago) have created tactile exhibitions dedicated to blind people. The majority of museums,
however, present touchable reproductions of sculptures or other 3D objects; tactile 3D reproductions
of pictures or other 2D artworks are very rare and only a few institutions have them at their disposal.
Usually, these models are handmade by artists thus offering artistic 3D interpretations of the 2D
original artwork. To increase and speed-up this “translation” process, in the last few years a few
computer aided approaches have been developed [3–5]. Recent studies [6,7] suggest that the mere
tactile exploration of 3D models (even in case these are optimally reproducing the original painting)
is not sufficient to fully understand, and enjoy, the artwork. Blind people understanding of the
original artwork is, in fact, subject to a lot of factors (e.g., sensitivity and personal ability of the person,
size and quality of the tactile model); for this reason a good quality verbal guidance is essential in
order to appreciate even the best possible artistic relief reproduction of a given painting. Such a verbal
description is usually provided by a sighted person (museum employee, accompanying person, etc.);
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this allows the blind person to build a complete mental image of the tactile model, and to not be
stopped by the lack of comprehension of a single element of the bas-relief. The presence of another
person, however, could be perceived as a limiting factor in enjoying the artwork since the blind
person is forced to discover in the perspective of someone else; art is through a language that requires
autonomy and freedom to be fully apprehended!

The introduction of an automatic verbal guide could increase the autonomy of the user during the
exploration, allowing him to lead the experience (e.g., autonomously establishing the time needed for
a full appreciation, moving the hands freely, taking time to think, etc.), achieving the same freedom of
sighted people. To fulfil this goal, the guide should not be merely automatic (e.g., audio-guide such as
the ones already available for sighted people), but rather “active” i.e., capable of following the user’s
movements so as to provide information in form of verbal descriptions [7].

This ambitious objective is still far to be accomplished in scientific literature, not only for technical
restrains: guiding a BP in the exploration of an artworks cannot be limited to a description of an
artwork scene and/or of touched areas, but is rather a gradual help to acquire information and to
organize it into a “mental scheme” that become progressively more and more complete and detailed.
However, the design of a first-attempt system able to automatically provide verbal information of
touched areas is still an advancement of the state of the art in this topic.

With this aim in mind, the authors of the present work presented a brief feasibility study [8] of a
system to improve blind people tactile exploration of bas-reliefs, where a possible methodology for
conceiving an active guide for BP was sketched.

Starting from such a preliminary work, the present paper provides a comprehensive description
of the design phases required to build a first-attempt cost-effective system able to properly guide BP
in exploring tactile paintings. Such a designed system consists of (1) a 3D Kinect® sensor + software
package to track the user hands; (2) a number of algorithms capable of detecting the position of the
bas-relief in the same reference frame defined by the acquisition sensor; (3) a number of algorithms
aiming at detecting the position and the distance of the user hand/finger with respect to the model;
(4) the complete knowledge of the digital 3D bas-relief model and (5) an appropriate verbal description
linked to relevant objects/subjects in the scene. The designed system, integrating latest methodologies
and algorithms, represents a first consistent step in building an assistive system (not obviously aimed
in completely replacing human assistance) to help BP in tactile exploration.

The remainder of the paper is as follows: in Section 2 a brief description of the state of the art for
most relevant previous works (related to the designed system) is provided. In Section 3 the system
hardware layout is described. In Section 4 methods and algorithms implemented and tested to build
the Kinect® sensor-based system are provided. In Section 5, physical layout alternatives of the system
are analyzed. Finally, conclusions and future works are discussed in Section 6.

2. Background

The bas-relief exploration system (BES) relies on the implementation of well-known pre-existing
methods to perform hand tracking, point cloud registration and 3D evaluation of the distance between
two point clouds. Therefore, it’s hereby presented a brief review of these techniques, focused on the
most promising approaches in literature for the considered application.

2.1. Hand Tracking

Hand tracking (HT) techniques aim at identifying, in real-time, the 3D position of a human
hand. This goal is tackled with various approaches in the state of the art, using different data inputs
and strategies. HT has been extensively applied in a number of fields: gestural interfaces, virtual
environments and videogames are only few examples of the areas where it is gradually becoming a
key-factor [9–12]. Application of HT techniques to help impaired people, including BP, in a number of
everyday life problems makes no exception [13–15]. Since for the present application the HT system
should not limit the user’s haptic sensitivity and his/her gestural freedom (allowing for a fulfilling
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tactile exploration), among all the different HT techniques available in literature, this state of the art
focuses on the vision-based ones. This class, in fact, uses only optical sensors (i.e., cameras, 3D optical
scanners and other unobtrusive devices) to obtain data. Vision-based techniques can be roughly
classified in two great groups: appearance-based [16–18] techniques and model-based ones [19].

Model-based approaches are the most interesting for the present application since provide a
full DOF hand pose estimation together with real-time 3D position of the hand. In detail, a digital
model of the hand, comprising all joints and articulations, is used. Usually, the solution is retrieved
performing a minimization of an objective function that describes (using data from a set of visual cues)
the discrepancy between observed data (real position of the hand) and the solution obtained using the
digital model. Accordingly, although computationally costly, model-based approaches are the best
candidates for this application where the hand position must be determined continuously and entirely.

A first approach to model-based tracking is presented in [20]; a 27 DOF hand modelled by quadrics
is used to generate the contours of the hand, which are then confronted with processed images of the
real hand. De La Gorce et al. [19] instead propose an approach that takes advantage of shading and
texture information as visual cues to compare the digital model and data observed from a single RGB
camera. One of the most promising works using model-based approach is the one proposed in [17]
where a Microsoft Kinect® is used to obtain 3D data from the scene.

The user hand in 2D and 3D is isolated from the background by means of a skin colour detection
followed by depth segmentation. The hand model (palm and five fingers) is described by geometric
primitives and parametrized encoding 26-DOF (i.e., is represented by 27 parameters). The optimization
procedure is carried out by means of a Particle Swarm Optimization technique [21]. The procedure
contemplates temporal continuity of subsequent frames, searching for a solution in the neighborhood
of the one found for the last frame analysed. The authors further developed their work in [22–24],
covering simultaneous tracking of two hands and tracking of a hand interacting with real objects.

2.2. Point Cloud Registration

As widely recognized [25–27], point cloud registration is a class of algorithms that perform
the alignment of two partially or entirely overlapping sets of points by means of a roto-traslation,
minimizing relative distances. Among the wide range of methods for point cloud registration,
the present work focuses on rigid techniques i.e., the ones that perform the alignment of the two sets
of point by means of a rigid transformation (without changing the relative position of the points
belonging to the transformed point cloud).

Rigid registration is usually performed by means of a two-step procedure: a first coarse
registration and a subsequent fine one. Coarse registration performs a rough alignment of the two point
sets, minimizing the distance between correspondences, such as points, curves or surfaces (or other
geometric entities) extracted from the dataset with different criteria [27]. A number of algorithms can
be used to perform coarse registration: Point Signature, Spin Image, RANdom SAmple Consensus
(RANSAC)-based, Principal Component Analysis (PCA) and genetic algorithms. Fine registration,
on the other hand, uses the result obtained by coarse registration as starting point and searches, in its
neighborhood, for a more refined solution.

Among the wide range of algorithms available in the scientific literature, the most relevant for the
present work are: the Iterative Closest Point (ICP) (which has been implemented in many different
ways in recent years), the Chen’s method (a variation of ICP), the signed distance fields and genetic
algorithms [28]. ICP and Chen’s methods are, by far, the most common and used: presented at the
beginning of 90s, such methods are now implemented in many software libraries.

The ICP method aims to obtain an accurate solution by minimizing the distance between
point-correspondences, known as closest point. When an initial estimation is known, all the points
are transformed to a reference system applying the Euclidean motion. Then, every point in the
first image is taken into consideration to search for its closest point in the second image, so that the
distance between these correspondences is minimized, and the process is iterated until convergence.
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Chen’s method is quite similar to ICP; the only difference is the use of point-to-plane distance instead
of point-to-point.

The minimization function is defined by the distances between points in the first image with
respect to tangent planes in the second. In other words, considering a point in the first image,
the intersection of the normal vector at this point with the second surface determines a second point in
which the tangent plane is computed. The algorithm is, in this formulation, usually less conditioned
by local minima and by the presence of non-overlapping regions [27].

2.3. Distance Evaluation

A number of methods coping with distance evaluation between sets of 3D points can be found in
the literature [29–32]. Specifically, this work deals with the so called nearest neighbour search (NNS)
problem, (also known as “proximity search”), which addresses the goal of finding the nearest point,
within a data set, to a given query point (and the consequent computation of its distance). Although
very simple in its definition, this issue becomes complicate either when the data set consists of a huge
number of points or when a high number of query points are provided. Due to its importance in a
number of computer vision problems, over the years the NNS problem has been tackled with several
different strategies, partially discussed in this section.

Basically, NNS methods exploit the construction of search trees among the inspected dataset (i.e.,
data structures that organize the information about points distribution in a convenient way), in order to
increase the efficiency of the nearest point search. In one of the most used methods, i.e., the “KD-Tree”
one [29] a k-dimensional tree-like structure is created by means of recursive binary partitions of the
dataset resulting from regions circumscribed by k-dimensional hyper-planes.

Another known method is the so called “Ball Tree” (also known as “Metric Tree”): in this case,
the dataset is described by a tree modelled using hyper-spheres; this kind of structure, although
computationally costly to build, guarantees a faster search, especially with high-dimension problems.

3. System Layout

As depicted in Figure 1, the layout of the designed BES consists of:

(1) A physical bas-relief to be explored by BP and its digital counterpart (e.g., a high-definition point
cloud/polygonal model describing it).
Even if, in principle, any kind of bas-relief could be used for developing the BES, in this
work the used tactile models are the ones created by using the procedure described in [33],
where shape from shading-based methods are devised to obtain both 3D polygonal models
(e.g., STL) and a physical prototype of such a digital model starting from a shaded picture
(for example a renaissance painting). In fact, by using such a procedure both the physical
and digital 3D information are directly available. In any case, the proposed procedure can
be applied to any kind of bas-relief (or in case the bas-relief is not allowed to be touched,
to a replica) since the required initial information (polygonal model) can be easily achieved using
a commercial 3D scanner.

(2) A 3D acquisition device capable of (i) tracking the user hands and (ii) detecting the position of
the physical bas-relief in its reference frame.
The device used to build the system is the Microsoft Kinect®. As widely known, it consists of
a projector-camera triangulation device furnished with a 43◦ vertical by 57◦ horizontal field of
view that covers, at 1 m distance a visible rectangle of 0.8 m × 1.1 m. Such a field of view, to be
considered as a plausible value for tracking according to [17], is required to cover the typical
dimension of tactile bas-reliefs.

(3) A PC workstation, in control of the whole BES.
This element is responsible for the hand tracking, the required calculations (point clouds
registration and distances computation, as previously described) and for the touch identification.
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The hardware needs to be equipped for GPU computing, and with hand tracking performances
comparable with [17], to assure satisfying results.

(4) An Audio system.
Since the final outcome of the BES is, as already mentioned above, a verbal description of the
scene and/or of touched objects or features, the system is equipped with headsets/headphones.
Of course, to locate headsets could be difficult for unaccompanied BP; unfortunately, since the
installation is specifically addressed to museum installations, the use of audio speakers could not
represent a valid option.

Figure 1. BES layout.

4. Materials and Methods

This section provides a step-by-step description of methods and algorithms implemented and
tested to build such a system. All necessary procedures were developed using Matlab® that offers a
number of embedded tools and algorithms useful for this application.

To help in understanding the devised system the overall method is described with reference to
the tactile reproduction of ”Guarigione dello storpio e resurrezione di Tabita” by Masolino da Panicale
(see Figure 2). The physical model has size 900 × 420 × 80 mm while its digital counterpart is described
by 3.6 million points.

Figure 2. “Guarigione dello storpio e resurrezione di Tabita” by Masolino da Panicale: original artwork,
digital 3D model and 3D-printed bas-relief.

4.1. Hand Tracking

The first step of the entire procedure consists of detecting the position of the bas-relief to be
explored in the Kinect® reference frame and, contextually, to detect the areas touched by the user
(whose hand position has to be expressed in the same reference system). In fact the knowledge of the
position of the hand, together with the position of the tactile model, will allow to determine if the user
is touching the bas-relief and in which area. This information, however, must be known in the same
reference system.
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Accordingly, the very first step of the proposed procedure consists of tracking the user hand.
Among the several interesting works in literature exploring the use of the Kinect® sensor as a device for
hand tracking [10] the HT system used for building the proposed system is the one developed in [17].
Such a real time HT system, working using Microsoft Kinect® as optical sensor, is characterized by a
20 fps framerate when running on modern architecture PCs and moreover it does not require any visual
marker on the user’s hand. Moreover, the system is delivered with a convenient ready-to-use library
(developed by the Forth Institute in 2015). Accordingly, the use of the above mentioned HT system is
a straightforward method to know the fingertip position directly in the acquisition device reference
system. For the proposed application a high frame rate value is crucial. In fact, it directly affects the
quality of the solution provided by the system: with higher frame rate values rapid movements of the
hand are more easily registered. Moreover, a small time step between evaluated solutions increases
the soundness of the last-known position, used as reference value for the location of the hand.

For this reason, in the proposed system, the procedures accomplishing the HT (i.e., the HT library),
have been left free to run separately and independently to the rest of the algorithms (e.g., touch
identification), which could slow down the HT. In fact, two main cycles run simultaneously: a hand
tracking cycle (HTC), which evaluates continuously hand pose solutions and saves them, and a touch
identification cycle (TIC). TIC consists of a number of procedures (extensively described in next steps)
that rely on the latest hand pose solution stored in the system by the HTC to assess if and where the
user is touching the bas-relief.

Moreover, to reduce the complexity of tracking problem, hand tracking has been performed
with reference to a single fingertip (index). This choice is recommended for this application since the
proposed BES is only a prototypal version of a future automatic verbal guide system to be installed
into museum environments. Consequently, the final result obtained by using the HT system is to
detect the coordinates of the extreme point of the index fingertip in the Kinect® reference frame.

4.2. Bas-Relief Positioning

To retrieve the position of the tactile bas-relief in the Kinect® reference frame, the simplest way is
to use such a device as a sort of “traditional” 3D scanner; with a single placement a 3D scan of the
scene in the Kinect® field of view is accomplishable simply using Kinect® Fusion library.

However, the quality of the Kinect® 3D scan is not good enough to obtain detailed information
about the bas-relief or to identify the contact with the finger; especially with a single placement,
obtained 3D polygonal model have a low resolution and is affected by high noise. Moreover,
the Kinect® acquires the entire scene (not only the bas-relief), resulting in lot of undesired scan
points or polygons. Nonetheless, despite the device provides low-definition (LD) scans almost useless
for accurate reconstruction of the scene, the scanned points can be used as a provisional reference for
registering the (available) high-definition (HD) model as explained in the next procedural step.

4.3. Registration

Once the LD model (correctly referred to the device reference frame) is available, the original
high-definition model (HD) of the bas-relief is registered upon the LD one. With this strategy, a very
refined 3D model correctly referenced in the Kinect® frame can be obtained. The registration is
accomplished by using a two-steps procedure: first a coarse registration is performed to roughly align
and over-impose the HD onto the LD points (belonging to the point cloud or polygon vertices in case
polygonal models are used). Then, a fine registration, using the rough results obtained in the coarse
registration as initial guess, is made to increase the quality of points’ alignment.

4.3.1. Coarse Registration

As described in the introductory session, several methods for coarse registration are available in
literature. However, in the present work, it is performed with an appositely devised interactive
procedure, taking advantage of the hand tracking system implemented to obtain the required
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initial rough alignment. In effect, traditionally coarse registration algorithms search for geometric
correspondences in the two point sets. This procedure, instead, imitates the common “point and
click” procedure for coarse registration that is usually implemented in reverse engineering software
(where the selection of correspondences is done by the user itself).

In detail an appositely developed point-and-click interface (Figure 3) is used to pick a number
N ≥ 3 of non-aligned pairs of equivalent points in both the LD and HD clouds (or polygonal models).

 

Figure 3. Custom-made coarse registration GUI.

To select the points in the LD model, the HT system is used as follows: first the user touches the
desired point using the tracked fingertip. Once the contact between finger and physical bas-relief is
established, the user click on the “acquire” pushbutton so that the coordinates of the fingertip are
stored in a matrix PLD (size N × 3) and a numbered tag is attached in the touched point. Subsequently,
the user is required to touch the correspondent point on the HD model, using the sequence defined by
the numbered tags. The coordinates of these points are finally stored in a matrix PHD (size N × 3).

The PLD and PHD matrices, whose elements are the coordinates of, roughly the same points in,
respectively, the reference frame of the LD and HD models, can be used for effectively registering the
HD model onto the LD ones.

In fact, the reciprocal alignment between the two mentioned reference frames consists of the
roto-translation described by the following equation:

PHD = R × PLD + t (1)

where R is the rotation matrix and t is the translational vector. Since in Equation (1) both R and t
are unknown, a proper procedure for determining them is required. In particular, a singular value
decomposition (SVD)-based method (Besl and McKay, [34]), covering three steps has been used.

Firstly, the centroids of both sets of points PLD and PHD are computed as follows:

centroidLD =
1
N

N

∑
i=1

Pi
LD (2)

centroidHD =
1
N

N

∑
i=1

Pi
HD (3)

where Pi
LD and Pi

HD are the 1 × 3 vectors describing the coordinates of the ith point belonging,
respectively, to the set PLD and PHD.

Once the centroids are evaluated, it is possible to build the matrix H as follows:

H =
N

∑
i=1

(Pi
LD − centroidLD)(Pi

HD − centroidHD)
T

(4)
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The widely known SVD procedure can now be applied to matrix H allowing to determine the
matrices U, W and V:

[U, W, V] = SVD(H) (5)

As a consequence, the rotation matrix R is easily evaluable as follows:

R = VUT (6)

Once R is known, the translational vector can be evaluated using the following equation:

t = −R × centroidA + centroidB (7)

Finally, the knowledge of R and t allows to determine the rough alignment between HD model
and Kinect® acquired LD one, according to Equation (2); in other words, to find the whole set of
coordinates P′

HD of the HD model in the reference frame of the LD one (i.e., the Kinect® reference
frame) it is sufficient to apply Equation (1) as follows:

P′
HD = R × PHD + t (8)

This procedure showed good results on the point registration, especially when the points chosen
by the user are well-separated and non-aligned.

4.3.2. Fine Registration

Fine registration is performed starting from the roughly aligned point sets resulted from
Section 4.3.1 (Coarse Registration). Among the already mentioned algorithms proposed in scientific
literature, ICP and Chen’s method were tested so as to find the best one suited for this application.

Both methods perform an iterative minimization of properly defined distance functions. Given the
two point sets P′

HD and PLD to be aligned, ICP iteratively searches for each P′i
HD point of set P′

HD the
nearest point Pi

LD of set PLD and apply to the original set P′
HD a proper roto-translation to minimize

the distance between the two points. At the end of iterations (reached when a proper cost function is
minimized) the set P′′

HD represents the best HD aligned model.
As mentioned in Section 2, Chen’s method is quite similar to the ICP one, with the difference of

using point-to-plane instead of point-to-point distances. Also using this algorithm, the final result is
the set P′′

HD describing the aligned HD model.
Both these methods, easily implementable in the Matlab® environment, are reliable and show

overall good results. Accordingly, ICP and Chen’s methods were tested on the registration of the
LD and HD scans and showed comparable results. Despite Chen’s method being considered in the
literature as the most reliable among the two analysed, for the proposed application tests demonstrated
that it exhibit more sensitivity to local minima during iterations. Given that fine registration needs to
be executed just once during the calibration of the models (i.e., before the bas-relief exploration starts),
solution stability was considered as the most important factor. ICP was therefore chosen as preferred
method to perform fine registration. Tests performed by authors demonstrated that the average time
for convergence of ICP is in the range of 5−8 min, with model dimensions in the order of 105 points
for the HD scan and 106 points for the LD scan (it has to be noticed that LD scans contains also points
that are not belonging to the bas-relief). Iterations usually stop with a RMS error between 2−3 mm,
value comparable with the Kinect® accuracy. A visual example of the final result obtained with this
method is depicted in Figure 4.
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Figure 4. HD and LD bas-relief models after coarse and fine registration (ICP algorithm).

It is important to remark that the whole registration procedure (coarse + fine) should be performed
only one time, before the exploration task starts, or at worst it has to be repeated in case the relative
position between the bas-relief and the sensor changes for any reason.

4.4. Touch Identification

As already said, thanks to the strategies presented in Section 4.1, Section 4.2 and Section 4.3,
the position of the index fingertip and of all the points composing the HD bas-relief model are known
in the same reference system. The next step consists of identifying if and where the contact between
the finger and the bas-relief occurs.

To perform touch identification, the most convenient method is to find, among all the points of the
3D model, the nearest to the fingertip. Moreover, the distance between such two points is compared
to a given threshold to decide whether the finger is in contact or not with the bas-relief. To find the
nearest point, the k-nearest neighbour algorithm method was tested against both the “N-D nearest
point search” method and the “brute force” method.

Though the proposed prototypal application is based on a single query point (i.e., the index
fingertip) algorithms were tested with up to 16 query points with the aim of simulating more complex
versions of the system (i.e., with more hand points processed by the system at the same time and/or
with more points taken in a single finger). In particular, tests were carried out increasing the number of
query points (1–2–4–8–16 points) and the dimension of the dataset (50–100–200–400–800–1600 k points).
K-nearest neighbour resulted as the best performing method in all the situations since its computing
time is lower than 0.1 s even in the most challenging condition. Such a value guarantees a frame rate
of approximately 10 fps and may be therefore considered acceptable for the touch identification task.

In Figure 5 the results of the test performed with one query point are presented. Computing time
value, equal to about 0.05 s in the worst conditions, confirms that the implemented k-nearest neighbour
algorithm performs perfectly for the considered application.

Accordingly, once the nearest point P ∈ P′′
HD to the query point Q is evaluated using the k-nearest

neighbours (together with the distance value d) it is possible to identify the touching condition. In fact,
if d is smaller than the threshold value dtouch, the finger is identified as in touch with the bas-relief;
conversely, the devised algorithm considers that no contact occurred between the finger and the HD
model. In this last case, the current touch identification cycle (TIC) is considered completed and the
touch identification task starts again.

On the basis of a number of tests performed using the whole system of Figure 6, the threshold
value dtouch was set to 5 mm. This value showed the best compromise between false positive and
negative occurrences.
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Figure 5. Nearest point methods comparison, 1 query point.

 

Figure 6. Hardware for the test of touch identification.

A touch identification test was performed using the setup pictured in Figure 6 to evaluate the
performances of this phase. The Kinect® sensor was placed at a distance of 1 m from the test model
(a plausible value to obtain good hand tracking results, according to [17]). The test began with the
hand tracking calibration (required by the implemented method), which registered the hand model
upon the user hand. Once that the tracking was stable, the user approached the test model with his
hand, describing a roughly vertical movement, until his right index fingertip touched the tip of a
pyramidal shape (i.e., the target point of the test), as in Figure 6. The test results (Table 1) showed
74 positive touch identifications on a total of 100 runs. Eighteen false negatives (situations where the
touch condition was not recognized) occurred, partly caused by the complete loss of the tracking;
eight false positives were registered, characterized by the identification of touch between the finger
and the model that significantly anticipated the actual contact between the two.

Table 1. Touch identification test results.

Number of Tests Positive Touch Identifications False Negatives False Positives

100 74 18 8

These values, although promising for a first test, represent a significant limit to an actual
implementation of the whole system; this aspect, therefore, needs to be considered and addressed
during the study of a first BES functional prototype.
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4.5. 3D Segmentation and Region Identification

The last step to be performed consists on the identification of the touched bas-relief region (in such
a region, in the future, it will be possible to convey associated verbal description). Region identification
starts from a 3D segmentation of the HD digital bas-relief model. Different regions of the bas-relief are
identified considering their significance in the original artwork and according to the desired level of
detail. These m regions are easily segmentable using a reverse engineering software (e.g., Polyworks®);
for the proposed procedure each segment is individually stored as an STL file.

Of course each segmented region consists of a number of points of the set P′′
HD. As a consequence

it is possible to associate to each point of the 3D model a label (from 1 to m) identifying the region
containing the point itself. In other words, it is possible to build a matrix A (size m × 4) where the first
three columns are the coordinates xyz and the last column is the associated label.

Once the touch identification cycle identifies the touching condition, the corresponding touched
region is detected simply by searching in matrix A the label associated to the coordinates P.

4.6. Verbal Description

Each segmented region of the HD model can also be enriched by an audio file containing a
verbal description; by a way of example it is sufficient to associate to each region a single wav file.
Once the touched area is identified, such description can be transmitted to the user by means of a pair
of headphones, to guide him/her in the exploration so to allow a full-immersion experience. Until the
description is provided, the TIC is maintained in stand-by in order to avoid undesired interruptions
due to a different position of the finger.

5. Physical Layout Alternatives

To select the best physical layout of the devised prototypal system, the relative positions among
the user, the bas-relief and the Kinect® have to be investigated. In fact, the system should be capable of
providing the best possible accessibility to the tactile bas-relief thus maximizing the comfort during
the tactile exploration and, at the same time should guarantee the best system performances. To this
purpose, CAD models of the 50th percentile male and of the bas-relief to be explored have been realized
in order to get a first idea of the overall dimensions of the two elements (see Figure 7a).

 

Figure 7. (a) CAD model of the bas-relief and the user; (b) CAD model of the plausible region (green)
to host the Kinect®.

The bas-relief has been positioned at an approximate height of 1.2 m from the ground and with
an inclination toward the user of 45◦. This position was determined to be the most comfortable for
the user, thanks to information gathered by the authors in tests performed together with a panel of
blind persons, within the T-VedO project [33]. Starting from this configuration, it has been possible to
determine the occlusions introduced in the scene by the users’ hand (a key information to place the
visual sensor) and, therefore, to identify the areas suitable for housing other elements of the system.

Of course, the most important element to be positioned is the Kinect®; according to [17],
and supported by further tests performed by authors of the present work using the device library,
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an average distance of 1 m between the sensor and the user’s hand may be considered among the
best options to obtain good performances in terms of resolution and visibility. Moreover, besides the
possible obstruction of the scene provided by users’ hand, it has to be taken into account that some
areas have to be left free for accessing the bas-relief. As a consequence a portion of spherical shell with
radius equal 1 m, centred in the barycentre of the bas-relief and with an angle of 60◦ (Figure 7b) has
been found as a plausible area to host the Kinect®.

The sensor position influences also the percentage of bas-relief directly visible by the acquisition
device due to the optical occlusions created by parts of the bas-relief itself. Since the system needs to
be functional independently from the specific bas-relief selected for exploration, it is not possible to
determine a sensor position for avoiding all possible self-occlusions. However, by studying a set of
representative case studies it is possible to select a position which is generally suitable though not
optimal for each single case. In detail, the percentage of bas-relief visible from a discrete set of points
taken on the previously defined spherical shell is evaluated. The results, depicted in Figure 8, show a
common central region that maximises the visibility percentage (with an average value near to 90%).

Figure 8. Visibility analysis for bas-reliefs; (a) “Madonna con Bambino e Angeli” by Niccolò Gerini di
Pietro; (b) “Guarigione dello storpio e resurrezione di Tabita” by Masolino da Panicale; (c) ”Pala di
Santa Lucia de’ Magnoli” by Domenico Veneziano; (d) ”Annunciazione” by Beato Angelico.

To choose, among the set of positions that maximise the visibility of the bas-relief, the better
solution, it has to be considered that the HT precision strongly depends also by the portion of users’
hand acquired during the sensor acquisition. Test performed with different positions of the Kinect®

(in the points with maximum percentage of visibility) showed that the best performance is obtained
when the hand is placed perpendicular with respect to the line of sight of the Kinect® sensor (see the
red hand in Figure 9a). This is probably due to the fact that, in this position, the hand shows to the
sensor its most distinctive features (e.g., the silhouette shows all five fingers and the back of the hand
is clearly visible). Conversely, when the acquisition device line of sight is inclined with respect to the
hand (see the green hand in Figure 9a), it shows less features and accordingly the silhouette could be
lost or ignored during skin segmentation.
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Figure 9. (a) Views and silhouettes of the user hand as seen by the Kinect® with different elevation
angles; (b) Bas-relief reference frame for Kinect® positioning, where α is the azimuth angle and β the
elevation angle.

Since on the basis of the mentioned tests performed by authors in the T-VedO project, BP usually
explore bas-reliefs with palms placed approximately parallel to the explored surface, among the
possible configurations showing better visibility results, the preferable options are the ones where the
sensor is placed approximately perpendicular to the bas-relief. Finally, it is possible to state that the
best positioning option, referring to Figure 9b, corresponds to the angles α = 90◦ (azimuth angle) and
β = 60◦ (elevation angle). In fact this configuration is the optimal compromise between bas-relief
visibility and hand features recognition.

On the basis of the above considerations, the final layout of the proposed prototype is the one
depicted in Figure 10 where a vertical structure, located directly under the bas-relief, is designed with
the aim of (1) containing the computer hardware and control devices; (2) sustaining the tactile model
in the desired position; (3) placing the acquisition sensor in the above mentioned optimal position.
The structure, moreover, has a lectern-like shape, suitable for museum exhibits.

 
Figure 10. Final layout of the BES prototype.

6. Discussion and Conclusions

In this work, a full description of a first-attempt tactile bas-relief exploration system to improve
blind people tactile exploration of artwork has been presented. The system, today in the form of
prototype, consists of a bas-relief, a 3D scanner (Microsoft Kinect®) tracking the user’s hands connected
to a PC, and an audio device providing the user verbal descriptions in response to the hand movements
relatively to the bas-relief.
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The system functionalities are of course limited, mainly due to the fact it tracks only a single finger
and the verbal guidance is only an embryonal idea. Moreover, the accuracy of the touch identification
needs to be carefully improved and assessed. The main drawback of the proposed system, up-to-date,
is related to the HT system; in fact while slow movements and limited hand rotations are excellently
tracked, the hand position is lost from time to time when movement speed increases. Accordingly,
at this time it is still premature to think of an implementation of the entire system at least until the
issues related to HT and touch identification are coped with. In other words, the answer to the question
posed at the beginning is: “probably not yet!”.

Fortunately, additional refinements of the work in [22–24] are now under further development
at the Forth Institute and the release of better HT algorithms is expected soon. Consequently,
such improvements will be tested with the proposed system. Furthermore, the use of the new version
of the Kinect® (Kinect® 2.0) with enhanced depth fidelity could improve the HT performance as well,
together with an expectable higher resolution provided by the sensor.

Future work will be addressed to the implementation of the HT system to detect more fingers
and even the two full hands. The introduction of multiple points, although challenging, could be
useful to refine the identification logic of the regions (e.g., interpretation of the full hand position
could resolve conflicts in the identification of two contiguous regions). Other issues that will be
investigated to improve the system performances are: (a) lighting condition on the scene, which
could affect skin segmentation performed by the HT system; (b) implementation of multiple visual
sensors, to increase the number of viewpoints and strengthen the HT; (c) study of multi-cue strategies
to increase the robustness of the hand identification by HT, appositely devised for this application and
its features (e.g., computer vision techniques like background subtraction). Moreover, despite the fact
the devised system is largely based on prior studies with a panel of BP, further studies will be assessed
by involving more BP to highlight strengths and weaknesses of the proposed system as well to find
possible improvements. Moreover, a detailed analysis of system performance on a panel of BP is still
required to assess the effectiveness of the designed solution.

The implementation of a gestural interface (i.e., conferring different meanings to specifics gestures
made by the user) could dramatically increase the autonomy of blind people, the interactivity of
the system and, therefore, its potentiality. Different positions of the hand during exploration could,
in effect, be interpreted to transmit different kind of information to the user (e.g., art-related, semantics
of the touched regions). This particular issue is not trivial and accordingly more work is required prior
to reach exploitable results. Issues such as cost of the entire system, industrial production feasibility,
optimization of procedures at industrial scale constitute further future studies to be confronted with
prior to effectively introduce the proposed system in museum environments.
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Abstract: Giving unmanned aerial vehicles (UAVs) the possibility to manipulate objects vastly
extends the range of possible applications. This applies to rotary wing UAVs in particular, where their
capability of hovering enables a suitable position for in-flight manipulation. Their manipulation skills
must be suitable for primarily natural, partially known environments, where UAVs mostly operate.
We have developed an on-board object extraction method that calculates information necessary for
autonomous grasping of objects, without the need to provide the model of the object’s shape. A local
map of the work-zone is generated using depth information, where object candidates are extracted
by detecting areas different to our floor model. Their image projections are then evaluated using
support vector machine (SVM) classification to recognize specific objects or reject bad candidates.
Our method builds a sparse cloud representation of each object and calculates the object’s centroid
and the dominant axis. This information is then passed to a grasping module. Our method works
under the assumption that objects are static and not clustered, have visual features and the floor
shape of the work-zone area is known. We used low cost cameras for creating depth information that
cause noisy point clouds, but our method has proved robust enough to process this data and return
accurate results.

Keywords: UAV; object detection; object recognition; SVM; manipulation

1. Introduction

Unmanned aerial vehicles (UAVs) have been the subject of much research [1] and attracted the
interest of the public in recent years. Not only do they offer cost reductions in deployment and
operation in a number of scenarios, but they also provide new capabilities in industrial and consumer
applications. In order to reduce their dependence on an operator, UAVs have also gained several
autonomous capabilities. They are able to autonomously plan paths, cooperate with each other,
and even avoid obstacles while flying [2–4]. More recently, the interest in developing manipulation
capabilities for UAVs has been spurred.

Such a robotic system, also called an aerial manipulator, merges the versatility of multirotor UAVs
with the precision of robotic arms. However, the coupling effects between the aerial vehicle and the
manipulator gives rise to several modeling and control problems. Several studies have focused on the
control of the arm and how it influences the dynamics of UAVs [5–10], with the goal of developing
a cooperative free-flying robot system for assembly structures. An extension of this idea is under way,
which aims to develop the first aerial robots in the world with multiple arms.

Nevertheless, manipulation involves more than the control of an aerial manipulator. In order
to grasp and manipulate objects, the robot must first be able to perceive them. The complementary
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required skill to aid manipulation is therefore object perception using arbitrary sensors. Methods using
different types of markers for detecting objects have been developed, e.g., radio markers [11] or visual
printed tags [11,12]. In this article, however, we focus on object detection methods that do not rely
on additional visual cues but solely on the object’s visual characteristics. Since drones are often
used for surveillance tasks, many methods of detecting and tracking objects have been proposed.
Some look for motion in images as a cue for object detection [13–16]. Others use color and intensity
information [17,18]. These methods apply for objects that are relatively far away from a high flying
drone. We want to solve the task of locating an object in close proximity to the drone, where it can
reach it. In order to attempt to grasp an object, the UAV has to acquire some three-dimensional (3D)
information about the scene; therefore, the methods mentioned above do not suffice.

Such 3D information is usually gathered in a map of an area. There are several approaches to
creating general 3D maps, usually simultaneously localizing the viewer in the scene (SLAM). Some of
these approaches use monocular systems [19–21], stereo cameras [19,22,23], depth cameras (or RGB-D
sensors) [24], or even laser sensors that return very accurate distances to objects in the scene [25]. The
task at hand, however, is not to accurately map a large area, but to return the objects pose relative to
the drone, so that the drone can use that shape information in order to grasp the object.

There are several methods to describe objects in order to obtain grasping data. For the sake
of the greater generality, we are interested in methods that do not require object CAD models (or
computer-aided drafting models) to initiate the grasping. Using sparse depth information about an
object a Gaussian processes can be used to describe its implicit surfaces [26,27]. The main advantage of
this approach is that it provides a guess of the surface of the object and also offers a measurement of
uncertainty of the shape, which can be used to decide where to further inspect the object. It has also
been shown that when dealing with novel objects, a reactive grasping mechanism can be used to grasp
objects using a humanoid robot by determining its dominant axis and centroid [28,29].

In this paper, we propose a method that extracts objects from a local map of the work-zone,
generated using depth information. Candidate objects are extracted from this map by detecting areas
different from our floor model. The candidates are then evaluated using their projections in the color
images, where the object classification is executed. Our method builds a sparse cloud representation of
each object and calculates the object’s centroid and dominant axis. This information can be passed to
a grasping module for a grasping attempt. Our code is suitable for on-board execution and ought to
be initiated after the drone has approached the work-zone. The principle of how the drone comes to
the actual pick-up location, within two meters of the objects, is beyond the scope of this paper. In our
implementation, we use extremely low cost USB cameras, as seen in Figure 1, which capture images
using a rolling shutter and do not have control over image triggering and focus. We show that our
system is robust enough to successfully tackle the effects produced by these affordable cameras.

(a) Drone with stereo system (b) Logitech c920

Figure 1. The UAV (a) used in the experiments with a stereo system comprised of low cost cameras;
(b) More information about the system is shown is Section 3.
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2. Methodology

2.1. System Description

The general principle of our method is best understood by following the flow chart in Figure 2.
The system is initialized once the drone is within two meters above the work-zone floor for our
cameras to return usable depth information. Our method requires input from the camera and the
inertial measurement unit (IMU) with integrated compass data as explained in Section 2.2. The robot
determines whether it is necessary to learn the floor appearance model as described in Section 2.4.
The robot then predicts its current position in the map, depending on its previous movement
(Section 2.6) and determines whether the images are blurry [30]. Due to motion blur or focus hunting,
the images might be useless, and, therefore, the robot does not waste time processing them and goes
straight to the Extended Kalman filter module to update the UAV’s current pose (Section 2.6). If the
images are in focus, the robot first excludes the floor from the images in case the floor appearance
model has been learned (Section 2.4). Afterwards, a point cloud is generated as explained in Section 2.3
and aligned to the map (Section 2.5). The robot then extracts candidate objects from the map and
attempts to classify them using a support vector machine (SVM) classifier, as described in Sections 2.7
and 2.8, respectively. Lastly, at the end of each loop, the object data is returned for a grasping
attempt (Section 2.9).

Figure 2. System flow chart.

2.2. Data Acquisition

Our system requires information from two different sensors:

1. Stereo cameras.
2. Inercial measure unit (IMU) module with compass data (Accelerometer, Gyroscope).
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We focused on using cheap stereo cameras that do not have trigger control, which results in
unsynchronized stereo images. In the execution loop, the cameras are prompted to return new images
and the time difference between them can be anything up to 1/FPS. The drone moves rather slowly
above the objects while inspecting them, but larger time shifts are still noticeable and they result in
poor point clouds. In Section 2.5, we describe how we deal with noisy clouds, and it is possible to see
examples of good and bad clouds in Section 3. The IMU unit provides acceleration and orientation
information. The latter can be used directly to estimate the robot’s orientation, while the acceleration
data is corrected for gravity and fed into an Extended Kalman filter for the motion model (Section 2.6).

2.3. Point Cloud Generation

In order to satisfy a broad spectrum of applications, an affordable depth sensor is required to
gather 3D Rdata. Common off-the-shelf depth sensors, such as the Kinect, do not work well at short
distances under 1 m [31,32], which makes them difficult to use for manipulation by drones with short
arms. An alternative is to use stereoscopy to recover 3D information, while also acquiring 2D color
information. Our proposed method works with any method of acquiring depth information and color
images; however, we used low cost unsynchronized USB web cameras for the task.

In this implementation, the generation of the point clouds is divided into three steps:

1. Visual feature detection in the left image.
2. Template matching in the right image.
3. Triangulation.

Keypoints or visual features are distinctive points in an image that are invariant to small changes
in view. Keypoints extracted from one stereo image should therefore also be distinctive in the
other image. Our camera pair is calibrated, therefore we can use the constraints of epipolar geometry
to look for keypoint matches. A template window is slid across the epipolar line and compared to the
template of each corresponding keypoint. If the matching score is sufficient, a keypoint pair is then
triangulated (Figure 3). All the triangulated keypoints make up the point cloud.

Figure 3. Epipolar geometry.

There are several feature detectors to choose from and several metrics for template matching.
Often, features like scale invariant feature transform (SIFT) [33] or speeded up robust features
(SURF) [34] are used. These features were designed to be robust in order to track them reliably
over longer periods of time. However, we require features that are calculated quickly and we need
to detect many of them in order to create a more dense point cloud. For this purpose, we chose
the Shi–Tomasi corner detector [35] in combination with the squared sum of differences for template
matching, but an arbitrary detector can be applied.
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2.4. Floor Detection and Extraction

Floor extraction is analogous to the background subtraction problem, which is tackled frequently
in surveillance tasks. The initialization of the background model is crucial to ensure foreground
objects can be extracted effectively. Current state-of-the-art methods such as [36–39] propose different
algorithms for the initialization and maintenance of the background model. However, these approaches
assume static cameras. Some methods consider camera movement intrinsically as in [40,41]. Authors
in [42] introduce a Bayesian filter framework to estimate the motion and the appearance model of
background and foreground. Others like [43] tackle the problem using an optical flow algorithm to
segment the foreground objects. All mentioned methods require moving objects in order to extract
them from the background, which is not the case in our scenario, where a UAV tries to pick up a
static object.

Our method works under the assumption that the floor shape model is known in advance.
After the initial 3D map is generated from the point clouds, we use the random sample consensus
(RANSAC) algorithm to find the best match of the floor model in the map [44]. Extracting the floor is
very important, as it helps to segment the cloud into candidate objects. Only the floor shape model is
assumed, but the robot also learns a color and texture model in order to extract it from the images.
Floor extraction from the images is done due to the fact that visual features can appear overwhelmingly
only on the floor. Our method of point cloud generation relies on visual features appearing on the
objects in order to detect them. Distinctive keypoints appear predominantly on the floor, when it has
small repetitive patterns, e.g., a gravel floor or a pebble floor. Our method looks for the maximum
N best features for point cloud generation in order to satisfy the time constraints and the quality of
the floor features can completely overwhelm the object features. We consider the following scenarios
regarding the floor:

1. The floor in the scene is uniform so it has few features on it.
2. The floor has a texture that can be modeled/learned.
3. The floor has a texture that cannot be learned.

The first scenario is the simplest. The feature detector will mostly find keypoints that correspond
to objects and will produce good and accurate 3D points. In this case, RANSAC will not detect a good
floor match, but the pipeline will continue to work flawlessly and extract candidate objects.

In the second scenario, the floor has some textures that produce keypoints. RANSAC is able to
detect the floor in this case and the robot tries to learn the floor appearance model. Repetitive small
patterns in particular cause a lot of problems. However, the good thing is that these patterns can be
learned and extracted from the images [45] before creating the 3D cloud. It is important to notice that
cropping the floor at this stage will speedup the system as fewer features are detected in the remaining
image, so the matching, triangulation and then aligning to the map takes less computational time.

Finally, the third scenario has the same problem with dominant features on the floor as the second.
In this case, it is not possible to learn the floor pattern for some reason. This is a less likely event, but if
a floor has great variance, it can occur and has to be considered. RANSAC extracts the floor model
from the map, but at least some keypoints on the objects have to be found for the system to be able
to extract objects. Since geometric parameters of floor are detected, we can exclude the points of the
map that belong to the floor and pass the result on to the procedure for candidate extraction. In this
scenario, the number of object keypoints will obviously be smaller due to most of them being part of
the excluded floor; however, as shown later in Section 3, our system can handle these types of scenarios
as well.

The system automatically detects whether the floor models can be learned in order to extract the
floor either from the images (second scenario) or in 3D (third scenario). In all other cases, the system
processes the entire map as in the first scenario. Figure 4 gives a the detailed flow chart of our floor
learning method with the starred block representing all the other processes in the loop.
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Figure 4. Floor detection and extraction flow chart.

2.5. Temporal Convolution Voxel Filtering for Map Generation

Point clouds generated by matching features from stereo cameras include noisy points due to
bad matches, triangulation and calibration errors, mistimed stereo images (Unsynchronized stereo
produces a delay between the captured frames), occasional rolling shutter effect because of vibrations,
and even some partially blurry images that get through to this point. For this reason, it is necessary
to process these clouds before adding them to the map. We developed a method that processes
sequential point clouds in both spatial and time dimensions before adding the result to the map.
Due to the movement of the UAV, sequential point clouds first need to be aligned properly using affine
transformations. Section 2.6 will explain how this transformation is obtained. After the alignment of
the point clouds, we filter out the bad points using our probabilistic map generation procedure based
on a sequence of the N previous point clouds.

As mentioned, the point clouds are filtered in two steps: (1) Spatial filtering: Isolated particles or
small clusters of particles are considered noise (using [46]) and the remaining points are transformed
into a grid of cubic volumes of equal size, also called voxels, where a voxel is occupied if at least one
point from the point cloud belongs to it [47]; (2) Time filtering: We propose a filtering method over
time using sequential voxel point clouds stored into memory, also called history. The occupancy of
each voxel is checked in each cloud in history, so that only voxels that have a higher probability of
being occupied by a real point will be kept. We call this method Temporal Convolution Voxel Filtering
(or TCVF).

Given a set of N consecutive point clouds PCi, the goal is to obtain a realistic representation of
the environment by filtering out incorrect points. The Algorithm 1 describes the process.

TCVF adds a new cloud to the history in each iteration and evaluates the clouds kept in the
history at that moment. The result of this operation is then added to the map. By discretizing the space,
the number of points for computation is reduced, which reduces the computational time. We use
an occupancy requirement of 100% throughout the entire history, making this calculation a simple
binary operation of occupancy check, which is very fast and is only evaluated on occupied voxels,
making this method computationally light. The number of operations is O(nk), with n the number
of occupied voxels in the smallest cloud in the history and k the history size. The voxel size is
predetermined and represents the resolution of our map. Figure 5 shows a schematic of a 2D example
using a history size of three.
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Algorithm 1 Probabilistic Map Generation.

MAP ← empty
for i ∈ [0, N] do

PCI ← filter(PCI)
PCI ← align(PCI)
PCI ← voxel(PCI)
addToHistory(PCI)

end for

for point in PCi do

if point ∃ in PCi with i ∈ [0, N] then

MAP add point
end if

end for

Figure 5. A 2D example of our Temporal Convolution Voxel Filtering for history size of 3. The method
checks the occupancy of each voxel through the history of point clouds and only voxels occupied in the
entire history are passed through the filter.

2.6. Drone Positioning and Cloud Alignment

At the start of the application, the drone acquires the first point cloud and initializes an empty
local map. Since we do not want noise in our map, we use our TCVF algorithm to add points to
the map. TCVF needs to first fill the entire history with sequential point clouds in order to determine
whether specific points exist. However, the drone is not static, so from the camera’s point of view, the
points might move, even though they represent the same actual static point. The camera origin of a
point cloud effectively represents the relative position of the drone to the detected scene. Obviously,
the sequential clouds must be aligned in order for TCVF to work. The effect of aligning sequential
clouds is also an assessment of the updated position of the drone. We use the iterative closest point
(ICP) algorithm, which minimizes the distances of pairs of closest points in an iterative fashion, to
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align point clouds. However, ICP algorithms have difficulties detecting the correct transformation
between two sequential point clouds if the change in pose between them is large.

This problem can be solved by using IMU data from the drone to provide an assessment of the
pose change and feed this to the ICP algorithm. Unfortunately, it is not possible to rely solely on the
IMU data for positioning in GPS-denied environments, because it tends to drift quickly. Luckily, the
ICP result gives us an estimation of the drone position, so we implemented an algorithm to fuse the
information from the IMU and the ICP result to estimate the position of the drone in the map.

Traditionally, an Extended Kalman Filter (EKF) is used to fuse the visual and inertial data.
The result of using an EKF is a smoothed pose estimation. There are several implementations of this
idea [48–51]. In particular, in [51], the effect of the biases in the IMU is studied and a solution provided.
Suppose that the system’s state is:

Xk = {xx
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k, ẍx
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k−1, i = x, y, z

biasẍi
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Introducing these equations into the EKF allows for predicting the current state of the system.
This information is used to locate the cameras in the environment. It is also used to provide a guess
in the next iteration of ICP, by taking the current state and assessing the drone’s position after Δt.
The orientation is taken directly from the IMU, since it is provided by the compass and does not drift.

Figure 2 shows the pipeline of the whole system and illustrates how the EKF information is used
for drone positioning and cloud alignment:

1. The previous state Xk−1 is used to obtain X̃k, which is a rough estimation of the current position
of the robot.

2. If the stereo system has captured good images, a point cloud is generated and aligned with the
map using X̃k as the initial guess. The transformation result of the alignment is used as the true
position of the drone X̂k. The obtained transformation is compared to the provided guess and
discarded, if the difference exceeds a predefined threshold.

3. If the stereo system has not captured good images, it is assumed that X̃k is a good approximation
of the state, so X̂k = X̃k

4. The EKF merges the information from the ICP X̂k, with the information from the IMU, ˆ̈Xk,
and the resulting Xk is the current filtered state.

2.7. Candidate Selection

As the robot builds the representation of the environment in the map, the search for candidate
objects can be executed. The input cloud for this processing module has already had the floor points
removed or has very few floor features as described in Section 2.4. Candidate objects are extracted
from the cloud using a clustering algorithm based on Euclidean distances [52]. This clustering method
extends each cluster if a point appears closer than a predetermined threshold to any current point in
the cluster. An example of this procedure can be seen in Figure 6. Clusters that meet the minimum

104



Sensors 2016, 16, 700

number of points requirement are selected as candidate objects. The idea behind this is that a tight
cluster of features that is not part of the floor could represent an object. Assuming the objects are
not cluttered, several candidate objects are extracted and passed to the object recognition module
for validation.

Figure 6. A visualization of the Euclidean cluster extraction [53].

2.8. Object Recognition

This is the final step of the object detection and recognition system. After the candidate extraction,
their point clouds are projected onto the images from the cameras. Due to the accurate cloud alignment
and drone positioning system described earlier, the projected points correspond well to their respective
objects as seen in Figure 7. For each cluster of 2D points, a convex hull that envelops the object is
generated, and a patch is extracted for object classification.

Figure 7. Reprojection of the points belonging to candidate objects, surrounded by a convex hull.

The recognition system is based on the Bag of Visual Words (BoW) model [54]. Each object is
represented by a histogram of visual descriptors, computed by detecting features in the extracted
image patch. We used the Shi–Tomasi corner detector in combination with the SIFT descriptor [33] to
describe each object.

The BoW model requires a vocabulary, which is a set of representative descriptors that are used
as a reference to quantify features in the images. The vocabulary is generated during the offline
classifier training process, where the algorithm detects all features in the training input set and extracts
a representative set of words. During the training process, an SVM model is trained using positive
and negative object samples. The negative samples are used in order to reject false candidate objects,
for example if a big enough cluster appears in the map due to noise or a bad floor model. The resulting
object detection and recognition system returns the labels of the detected objects, which the drone
users can use if a specific object must be picked up or located.

The BoW model has been chosen due to another useful characteristic. It has been shown that it is
also good for learning more general representations, like object categories. By training the object to
recognize object categories, a novel object can also be classified.
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2.9. Grasping Data

Each object is represented by a cluster of points. The grasping module can process this
information arbitrarily. However, for purposes of illustration and evaluation, we provide the grasping
data in a similar form to that defined in [29]. A grasp is planned by calculating the mean position p

and the dominant principal axis a of the object. The dominant axis is used for the robot to grasp the
object on the narrow side and the centroid is the grasping approach target. Let xi = [xi, yi, zi] be the
position of N cluster points:

p =
1
N

N

∑
i=1

xi (5)

By calculating the principal axes of the object’s points, we estimate the object’s greatest extent in
each direction. First, the covariance matrix Σ is calculated as:

Σ = cov ({x1, x2, . . . xN}) = 1
N − 1

N

∑
i=1

(xi − p)(xi − p)T (6)

Next, we calculate the three eigenvalues λ1, λ2, λ3 and eigenvectors v1, v2, v3 of the covariance
matrix Σ, which is done by solving the equation

(Σ − λI) v = 0 (7)

The eigenvector associated with the biggest eigenvalue represents the dominant axis a of
the object.

3. Experimental Validation

We performed several experiments to evaluate our proposed method. A pair of Logitech
c920 cameras [55] were mounted on the bottom of a hexacopter as seen in Figure 1. The drone is
equipped with a Pixhawk IMU [56] for the inertial measurements. The baseline of the cameras was
approximately 20 cm and they were facing towards the floor at an angle of 70◦ to the horizon. The
detailed specifications and parameters of the system can be found Appendix A. A human operator
controlled the drone during flights and the initialization of our method was triggered manually. An
Intel NUC [57] computer with a 5th generation i7 processor was on board for vision processing, and
our method was able to run at about five frames per second.

The experiments were executed in four different scenarios, summarized in Table 1. In all examples,
our floor model was a plane. The Laboratory scenario was executed on a white uniform floor with very
few visual features, where the drone was hand-held and moved manually. Due to the white floor,
this scenario does not trigger our floor extraction module, and there is no vibration from the motors to
cause image acquisition problems.

The Street 1 scenario was again hand-held, but executed outside on a gravel floor. This floor
was full of visual features, an example where features are detected predominantly on the floor as
described in Section 2.4. The floor extraction module detected the floor within the first three iterations
and learned its appearance, removing it from the images before creating point clouds.

In the Street 2 scenario (Figure 8), the drone was airborne, flown by an operator above a floor with
similar texture as in Street 1. This scenario represents an example, where vibrations are generated by
the motors and images may suffer from the rolling shutter effect. The effect results in bad point clouds.
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Table 1. Description of the testing scenarios.

Scenario Location Movement Floor Type

Laboratory indoor hand-held white uniform
Street 1 outdoor hand-held gray textured
Street 2 outdoor flight gray textured
Testbed indoor flight textured complex

Figure 8. The drone flying above the objects during an outdoor experiment.

Lastly, the scenario Testbed was executed in an indoor test facility for drones with a VICON [58]
measuring system. The drone flew above a complex textured floor, where the ground truth of all of the
objects’ positions and the drone motion was measured by VICON. This represents the most difficult
scenario for our method, where the floor has many visual features, but it is not possible to learn its
appearance and the motors are running and causing vibrations. Our method has to deal with bad
point clouds, where few visual features belong to actual objects.

Table 2 summarizes the results of our object extraction method after 15 s of flight. In our scenarios,
the number of total points in the local map stopped, increasing significantly after this point, meaning the
area had been mostly inspected and the results have converged. However, this is an empirically derived
value that depends on the diversity of the observed scene and the flight path the UAV takes to inspect it.

Table 2. Results of the object extraction method.

Categories Objects

Dataset Precision Recall F-Score Precision Recall F-Score

Laboratory 1 1 1 1 0.5 0.667
Street 1 0.429 0.6 0.6 0.333 0.4 0.36
Street 2 0.783 0.4 0.53 0.75 0.33 0.462
Testbed 0.429 0.5 0.462 0.2 0.167 0.182

The SVM classifier was trained using 16 individual objects, and, in the other case, the objects were
grouped by categories (Figure 9): cans; juice boxes; circuits; cars; boxes; Some of the objects were very
similar and hard to distinguish from certain angles, e.g., the original coke and generic copy, juice boxes
of the same brand but different flavors, since they possess intentionally similar appearance. In the
Laboratory scenario with a plain background, the results for individual object recognition were good
and perfect when the objects were grouped in categories. It should be noted that we used no color
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information for training and recognition, although it could improve recognition results of individual
objects. In the other scenarios, the recognition rates were lower, and we attribute this to our feature
extraction implementation. We used a square bounding box around the objects to extract features
instead of only the convex hull. In training, the background was plain, but for those examples with
a textured floor, a lot of the background is included in the bounding box, and it is very rich with visual
features. Still, we can see that the categories were detected better than the individual objects.

(a) Objects of category cans (b) Objects of category juice (c) Objects of category circuits

Figure 9. Our test objects were also grouped into categories. We see category examples belonging to
cans in (a); juice boxes in (b) and circuits in (c).

Because our system works with low-cost unsynchronized USB cameras with auto-focus,
some pairs of images are not useful. Blurring can occur due to motion or focus hunting, the timing
difference between the pair can be too big and occasionally even distortions appear due to the vibrations
producing the rolling shutter effect. There are two possible outcomes. If our blur detection module
registers a blurry image, we omit it and get a new pair. However, in low light, when the shutter speed
of the camera is decreased, motion blur can be present for a longer time. This poses a problem for the
ICP algorithm, which requires a good guess for successful alignment. If the position of the drone is
lost, the guess cannot be provided and the ICP fails. Our positioning system ensures that the position
of the drone is estimated in the EKF using IMU data. The ICP is then able to align a new cloud after
a longer period of blurry images and recover the drone’s true position. Due to drift, the IMU based
guess is not perfect, but, without using it, recovery is unlikely.

The other possible outcome is that the drone generates a point cloud from the bad images. In that
case, the quality of the cloud decreases drastically as shown in Figure 10. However, the TCVF is able to
handle such clouds and does not compromise the map with noisy data. A noisy point would have
to appear in the same voxel throughout the entire history of k for it to appear in the map. In our
experiments, we used empirically obtained parameters of history k = 3 and voxel size 5 mm.

(a) Sharpy picture (b) Good cloud (c) Blurry picture (d) Bad cloud

Figure 10. (a) shows a good input image. A point cloud generated from good images is shown in (b);
where the floor plane is clear with objects protruding out; (c) shows a blurry image that generates a
poor quality cloud (d); where the floor and objects are indistinguishable. A similarly bad cloud is also
generated when images are mistimed too much.

The positioning system of the drone relative to the objects is one of the key issues. Figure 11
shows how the fusion of ICP information and IMU information gives more robust and accurate results
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than using only IMU data or ICP results separately. The RGB dotted lines refer to the XYZ estimation
of position using only IMU information. As mentioned in Section 2.6, this tends to drift due to the
accumulation of errors. The RGB dashed lines are the XYZ positions using only ICP. These results are
initially good in so far as all the input clouds are confident. In iteration 120, the algorithm converges to
a wrong solution, and then it does not recover. The RGB solid lines are the XYZ positions of the drone
for the fusion algorithm. It returns stable and robust estimates of the position of the drone.

Figure 11. Comparison of drone positioning using the EKF with: only IMU data; only ICP results;
fused IMU data and ICP results. Using only IMU data, the position drifts away quickly. Using only
ICP results, the position has several bad discrete jumps and does not correspond to actual motion.
Using the fused data, the position corresponds to actual motion.

The progress of building the local map of the scene can be seen in Figure 12. The number of
features in the map grows and candidate objects appear defined by points of the same color. In order
to analyze the quality of the object localization, we compared the results to the ground truth acquired
using the dataset Testbed. Figure 13 shows the resulting position of the candidates in the scene after
approximately 15 s of inspection. Each colored cluster represents a candidate with a PCA defined
coordinate system of its pose in the center. The red circles represent the ground truth position of
the objects. Three objects were not detected in this dataset.

In order to evaluate the grasping information returned by our system, we calculated the error
between each candidate and the ground truth in position and orientation. Figure 14 shows how
these errors evolve over time for each object. The position error decreases or remains very stable.
When a candidate is first discovered, it has fewer features and might not contain features seen from
different angles, rendering its centroid less accurate. As the object is inspected from different angles,
this centroid improves accordingly. Similar behavior is noticeable with angles. When a complete
representation of the object is acquired, the accuracy of the centroid and orientation is very good.
Table 3 shows the average error and variance of the object centroids and orientation after observing
the scene for about 50 s. An example of an extracted object can be seen in Figure 15.
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Figure 12. The local map in different iterations. The size of the map is increasing (red points) and new
object candidates are discovered (seen in color).

Figure 13. Reconstruction of the objects in the scene (colored clusters) compared to ground truth
(red circles). The frame in each object represents the PCA (principal component analysis) results with
the red axis representing the dominant axis.

Figure 14. Error of extracted objects’ centroid (left) and orientation (right). The moment of object
discovery is aligned to zero on the abscissa. If an object disappears from the view, its plot ends but its
last pose is kept.

Table 3. Centroid and orientation error of the extracted objects.

Error Mean σ

centroid (m) 0.0256 0.1356
angle (rad) 0.3831 0.4320
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(a) Top view of object’s cloud (b) Side view of object’s cloud (c) Actual object

Figure 15. Example of an extracted object. (a,b) show the point cloud from different angles; (c) is a
picture of the actual object.

4. Conclusions

We have developed an on-board object extraction method for rotary wing UAVs that calculates
the information necessary for autonomous grasping of objects, without the need of providing a model
of the object’s shape. An SVM classification procedure is used to recognize specific objects or reject
bad candidate objects in a work-zone populated with several objects. Our method works under the
assumption that the objects are static and not clustered, have visual features, and that floor shape
model of the work-zone area is known. The low cost cameras we have used for creating the depth
information occasionally cause very noisy point clouds, but our method for creating a local map has
proved robust enough to process this data and return accurate results.

There are several applications for our method to work under the previously mentioned assumptions,
particularly industrial applications in partially unknown environments. A drop-off/pick-up zone
for arbitrary objects can be selected and the drone ought to pick up objects autonomously without
requiring any information about the exact location and shape of the object in advance. A limitation
of our method is the time the UAV can handle without accurate point clouds due to either blurry
images, the rolling shutter effect or unsynchronized stereo. Blurry images are not used for point cloud
generation, while point clouds produced from mistimed or distorted images result in incorrect ICP
alignment results. The UAV discards bad ICP results as described in Section 2.6 and must rely solely
on the IMU data, causing a slow drift in position estimation. Eventually this drift is so large that the
position cannot be recovered anymore due to ICP failure. We can tackle this limitation by improving
the camera sensors, reducing the number of bad images, which improves the stability of the system for
observing the scene.

A particular advantage of our system is that we extract objects using a bottom-up approach,
where candidate objects are extracted from a stereo reconstructed local map of the scene and then
recognized using 2D information from the images. Our method is therefore also applicable to the
localization and grasping of completely novel objects, since no knowledge about the object is needed
for the generation of the candidate objects. The manipulation module can then work in unison with
our system to validate candidate objects with information acquired during grasping.

A lightweight arm must be designed and mounted on our UAV in order to test the grasping
module that uses the information returned using our proposed method. We plan to design a control
method for flying the UAV over objects in a way that will optimize building the local object map and
the recognition of the objects. Currently, an operator either flies the UAV manually or predetermines
a way-point flight plan. Ultimately, we want to enhance our method to handle mobile objects too,
which represents a significant challenge.
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Appendix Parameters of the System

Parameter Description Value

Camera Parameters
ROI Usable part of images due to distortion [∼ 30,∼ 30,∼ 610,∼ 450]
Blur Threshold Max. value of blurriness (Section 2.2) 1.1–1.5

Disparity Range
Min-max distances between pair of pixels.

[∼ 50,∼ 300] px → [∼ 0.3,∼ 2] m
This value determine the min-max distances

Template Square Size Size of the template for template matching 7–15
Max Template Score Max. allowed score of template matching 0.004–0.05

Map Generation Parameters
Voxel Size Size of voxel in 3D space grid 0.005–0.03
Outlier Mean K Outlier removal parameter 10–20
Outier Std Dev Outlier removal parameter 0.05–0.1

ICP max epsilon
Max. allowed error in transformation

0.001
between iterations in ICP

ICP max iterations Number of iterations of ICP 10–50
ICP max corresp. dist Max. initial distance for correspondences 0.1–0.2
ICP max fitting Score Max. score to reject ICP result 0.05–0.1
Max allowed Translation Max. translation to reject ICP result 0.05–0.15
Max allowed rotation Max rotation to reject ICP result 10–20
History Size History size of TCVF 2–4
Cluster Affil. Max. Dist. Minimal distance between objects 0.035

EKF Parameters
Acc Bias Calibration Bias data from IMU X,Y,Z −0.14, 0.051, 6.935
Acc Frequency Mean frequency of data 1 KHz
Gyro Noise Average magnitude of noise 0.05 rad/s
Gyro Frequency Mean frequency of data 30 KHz
Imu to cam Calibration Transformation between camera and IMU Data from Calib
Q System cov. Mat. Covariance of System state variables Data from Calib
R Observation cov. Mat. Covariance of Data Data from Calib

Recognition System
Training params Train parameters of SVM —-
Detector Descriptor Feature detector and descriptor used SIFT
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Abstract: Depth estimation is a classical problem in computer vision, which typically relies on either
a depth sensor or stereo matching alone. The depth sensor provides real-time estimates in repetitive
and textureless regions where stereo matching is not effective. However, stereo matching can obtain
more accurate results in rich texture regions and object boundaries where the depth sensor often fails.
We fuse stereo matching and the depth sensor using their complementary characteristics to improve
the depth estimation. Here, texture information is incorporated as a constraint to restrict the pixel’s
scope of potential disparities and to reduce noise in repetitive and textureless regions. Furthermore, a
novel pseudo-two-layer model is used to represent the relationship between disparities in different
pixels and segments. It is more robust to luminance variation by treating information obtained from
a depth sensor as prior knowledge. Segmentation is viewed as a soft constraint to reduce ambiguities
caused by under- or over-segmentation. Compared to the average error rate 3.27% of the previous
state-of-the-art methods, our method provides an average error rate of 2.61% on the Middlebury
datasets, which shows that our method performs almost 20% better than other “fused” algorithms in
the aspect of precision.

Keywords: stereo matching; depth sensor; multiscale pseudo-two-layer model; segmentation; texture
constraint; fusion move

1. Introduction

Depth estimation is one of the most fundamental and challenging problems in computer vision.
For decades, it has been important for many advanced applications, such as 3D reconstruction [1],
robotic navigation [2], object recognition [3] and free viewpoint television [4]. Approaches for obtaining
3D depth estimation can be distinguished into two categories: passive and active. The goal of
passive methods like stereo matching is to estimate a high-resolution dense disparity map by finding
corresponding pixels in image sequences [5]. However, these methods heavily rely on how the
scene is presented and contain error matchings caused by the luminance variation. Passive methods
fail in textureless and repetitive regions where there is not enough visual information to obtain the
correspondence. On the contrary, active methods, like depth sensors (ASUS Xtion [6] and Microsoft
Kinect [7]), do not suffer from ambiguities in textureless and repetitive regions, because they emit
an infrared signal. Unfortunately, sensor errors and the properties of the object surfaces mean that
depth maps from a depth sensor are often noisy [8]. Additionally, their resolution is at least an
order of magnitude lower than common digital single-lens reflex (DSLR) cameras, which limits many
applications. Moreover, they cannot satisfactorily deal with object boundaries and a wide range of
distances. Therefore, fusing different kinds of methods using their complementary characteristics
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undoubtedly makes the obtained depth map more robust and improves the quality. Commonly-used
consumer DSLR cameras have higher resolution and can record better texture information than depth
sensors. Therefore, it is reasonable to fuse the depth sensor with DSLR cameras to yield a high
resolution depth map. Note that for notational clarity, all values mentioned here are disparities
(considering that depth values are inversely proportional to disparities).

Wireless  Remote
Controller

Xtion Depth Sensor

DSLR Camera Adjustable Bracket

Figure 1. The system used in our method. It consists of two Cannon EOS 700D digital single-lens reflex
(DSLR) cameras and one Xtion depth sensor. All DSLR cameras are controlled by the wireless remote
controller. We used an adjustable bracket to change the angle and height of the Xtion depth sensor.

In this paper, we propose a novel disparity estimation method for the system shown in Figure 1.
It fuses the complementary characteristics of high resolution DSLR cameras and the Xtion depth sensor
to obtain an accurate disparity estimate. Compared to the average error rate 3.27% of the previous
state-of-the-art methods, our method provides an average error rate of 2.61% on the Middlebury
datasets. It is clear that our method performs almost 20% better than other “fused” algorithms in the
aspect of precision. The proposed method views a scene with complex geometric characteristics as a
set of segments in the disparity space. It assumes that the disparities of each segment have a compact
distribution, which strengthens the smooth variance of the disparities in each segment. Additionally,
we assume that each segment is biased towards being a 3D planar surface. The major contributions are
as follows:

1. We incorporated texture information as a constraint. The texture variance and gradient is used to
restrict the range of the potential disparities for each pixel. In textureless and repetitive regions
(which often cause ambiguities when stereo matching), we restrict the possible disparities for a
neighborhood centered on each pixel to a limited range around the values suggested by the Xtion.
This reduces the errors and strengthens the compact distribution of the disparities in a segment.

2. We propose the multiscale pseudo-two-layer image model (MPTL; Figure 2) to represent the
relationships between disparities at different pixels and segments. We consider the disparities
from the Xtion as the prior knowledge and use it to increase the robustness to luminance variance
and to strengthen the 3D planar surface bias. Furthermore, considering the spatial structures of
segments obtained from the depth sensor, we treat the segmentation as a soft constraint to reduce
matching ambiguities caused by under- and over-segmentation. Here, pixels with similar colors,
but on different objects are grouped into one segment, and pixels with different colors, but on the
same object are partitioned into different segments. Additionally, we only retain the disparity
discontinuities that align with object boundaries from geometrically-smooth, but strong color
gradient regions.
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(a) (b)

(c) (d)

Segment-level

Pixel-level

PixelSegment SP-edgeEdges
(e)

H

Figure 2. The illustration of the multiscale pseudo-two-layer (MPTL) model. The rectified left (a)
and right (b) images from DLSRs, the segmentation; (c) as well as the depth map (d) from the depth
sensor are taken as our inputs; (e) The conceptual structure of our MPTL. The MPTL captures the
complementary characteristics of active and passive methods by allowing interactions between them.
All interactions are defined to act in the segment-level component, the pixel-level component and the
edges that connect them (Segment Pixel-edge, SP-edge). See Section 3.2 for the full details of the MPTL
model and Section 4 for further results.

The remainder of this paper is organized as follows. Section 2 gives a summary of various
methods used for disparity estimation. We present a pre-processing and some important notations
of our model in Section 3.1. We discuss the details of the MPTL image model in Section 3.2, the
optimization in Section 3.7 and the post-processing in Section 3.8. Section 4 contains our experiments,
and Section 5 presents some conclusions with suggestions for future work.

2. Previous Work

There are many approaches to obtaining disparity estimation. They can generally be categorized
into two major classes: passive and active. A passive method indirectly obtains the disparity map
using image sequences captured by cameras from different viewpoints. Among the plethora of passive
methods, stereo matching is probably the most well known and widely applied. Stereo matching
algorithms can be divided into two categories [9]: local and global methods. Local methods [10]
estimate disparity using color or intensity values in a support window centered on each pixel. However,
they often fail around disparity discontinuities and low-texture regions. Global methods [11] use a
Markov random field model to formulate the stereo matching as a maximum a posteriori probability
energy function with explicit smoothness priors. They can significantly minimize matching ambiguities
compared to local methods. However, the biggest disadvantage of them is the low computational
efficiency. Segmentation-based global approaches [12,13] encode the scene as a set of non-overlapping
homogeneous color segments. They are based on the hypothesis that the variance of the disparity
in each segment is smooth. In other words, the segment boundaries are forced to coincide with
object boundaries. Recently, the ground control point (GCP)-based methods [14] were used as prior
knowledge to encode rich information on the spatial structure of the scene. Although a significant
number of stereo matching methods have been proposed for obtaining dense disparity estimation,
they heavily rely on radiometric variations and assumptions regarding the presentation of the scene.
This means that stereo matching often fails in textureless and repetitive regions, where there is not
enough visual information to obtain a correspondence. Furthermore, their accuracy is relatively low.
Passive methods heavily rely on the luminance condition and how the scene is presented. They
often fail in textureless and repetitive regions where there is not enough visual information to obtain
the correspondence.
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On the contrary, active methods like depth sensors, do not suffer from ambiguities in textureless
and repetitive regions, because they emit an infrared signal. Three different kinds of equipments
are used in active methods: a laser scanner device, a time-of-flight (ToF) sensor and an infrared
single-based device (such as ASUS Xtion [6] and Microsoft Kinect [7]). The laser scanner device [15]
can provide extremely accurate and dense depth estimation, but it is too slow to use in real time and
too expensive for many applications. The ToF sensor and infrared single-based device can obtain
real-time depth estimation and have recently become available from companies, such as 3DV [16] and
PMD [17]. However, sensor errors and the properties of the object surfaces mean that depth maps
from them are often noisy [8]. Additionally, their resolution is at least an order of magnitude lower
than commonly-used DSLR cameras [18], which limits many applications. Moreover, they cannot
satisfactorily deal with object boundaries.

It is clear that each disparity acquisition method is limited in some aspects where other approaches
may be effective. Joint optimization methods that combine active and passive sensors have been used
to make the obtained depth map more robust and to improve the quality. Zhu et al. please check
throughout [19,20] fused a ToF sensor and stereo cameras to obtain better disparity maps. They
improved the quality of the estimated maps for dynamic scenes by extending their fusion technology
to the temporal domain. Yang et al. [21] presented a fast depth sensing system that combined the
complementary properties of passive and active sensors in a synergistic framework. It relied on
stereo matching in rich textured regions, while using data from depth sensors in textureless regions.
Zhang et al. [22] proposed a system that addresses high resolution and high quality depth estimation by
fusing stereo matching and a Kinect. A pixel-wise weighted function was used to reflect the reliabilities
of the stereo camera and the Kinect. Wang et al. [23] presented a novel method that combined the initial
stereo matching result and the depth data from a Kinect. Their method also considers the visibilities
and pixel-wise noise of the depth data from a Kinect. Gowri et al. [24] proposed a global optimization
scheme that defines the data and smoothness costs using sensor confidences and the low resolution
geometry from a Kinect. They used a spatial search range to limit the scope of the potential disparities
at each pixel. The smoothness prior was based on the available low resolution depth data from the
Kinect, rather than the image color gradients.

Although existing disparity estimation methods have achieved remarkable results, they are
typically performed using pixel-level cues, such as the smoothness of neighboring pixels, and do not
consider the regional information (regarding, for example, 3D spatial structure, segmentation and
texture) as a cue for the disparity estimation, which is the largest distinction between their method and
ours. For example, occlusion cannot be precisely estimated using a single pixel, but a fitted plane-based
filling occlusion in a segment can give good results. Additionally, if the spatial structure of neighboring
segments is not known, matching ambiguities can arise at the boundaries of neighboring segments
that physically belong to the same object, but have different appearances. Without texture information,
we cannot be sure if the disparity from stereo matching is more confident than that from the depth
sensor in textureless and repetitive regions (where stereo matching usually fails and the depth sensor
performs well).

3. Method

The proposed method can be partitioned into four phases: pre-processing, problem definition,
optimization and post-processing. Each phase will be discussed in detail later.

3.1. Pre-Processing

There are three camera coordinates involved in our system (Figure 1): the Xtion coordinate, the
coordinates of the two DSLR cameras before the epipolar rectification and the DSLR camera coordinates
after the epipolar rectification. During the pre-processing step, in order to combine the data from the
Xtion and DSLR cameras, as shown in Figure 3, we firstly calibrated two DSLR cameras using the
checkerboard-based method [25] and calibrated the DSLR camera pair with the Xtion sensor using the
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planar surfaces-based method [26], respectively. After the calibration, the depth image obtained from
the Xtion is first transformed from the Xtion coordinate to the original DSLR cameras’ coordinates, then
rotated and up-sampled, so that it registers with the unrectified left image. Furthermore, according to
the theory of epipolar geometric constraints, the registered depth image and original left image, as
well as the original right image are rectified to be row-aligned, which means there are only horizontal
disparities in the row direction. We denote the seed image (Π) as the map with disparities transferred
from the rectified depth map. Each pixel p ∈ Π is defined as a seed pixel when it is assigned a non-zero
disparity. The initial disparity maps (DL and DR) of the rectified left and right images (IL and IR) are
computed using a local stereo matching method [27]. IL is partitioned into a set of segments using the
edge-aware filter-based segmentation algorithm [28].

Left  Camera Right CameraDepth Sensor

Seed  Image

Calibration & Rectification

Rectified Left Image Rectified Right Image

Non-local cost aggregation 
stereo matching

Segmentaion

Color Segments

Left Initial Disparity Map Right Initial Disparity Map

Figure 3. Conceptual flow diagram for the calibration and rectification phase.

In addition, as shown in Figure 4, all pixels and segments are divided into different categories.
The occlusion judgment is used to find the occluded pixels with initial disparity maps (DL and DR of
IL and IR, respectively) and to classify pixels into different categories: reliable and occluded. As we
known, how to find occluded pixels accurately is always the challenging problem, because it often
leads to error results that matching points might not even exist at all, especially in depth discontinuities.
Pixels are defined as occluded when they are only visible from the left rectified view (IL), but not from
the right rectified view (IR). Since image pairs have been rectified, we assume that occlusion only
occurs in the horizontal direction. In early algorithms, cross-consistency checking is often applied to
identify occluded pixels by enforcing a one-to-one correspondence between pixels. It is written as:

O(p) =

{
0 |DL(p)− DR (q)|< 1
1 otherwise

p ∈ IL, q ∈ IR (1)

DL(p) and DR(q) are the disparity of p and q, and q is the corresponding matching point of p. If p
does not meet the cross-consistency checking, then it will be regard as an occluded pixel (O(p) = 0);
otherwise, p is a reliable pixel (O(p) = 1). The cross-consistency checking states that a pixel of one
image corresponds to at most one pixel of the other image. However, because of different sampling, the
projection of a horizontal slant or a curved surface shows various lengths in the image pairs. Therefore,
conventional cross-consistency checking that often identifies occluded pixels by enforcing a one-to-one
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correspondence is only suitable for a frontal parallel surface and cannot be true for a horizontal slant
or curved surfaces. Considering the different sampling of image pairs, Bleyer et al. [29] proposed a
new visibility constraint by extending the asymmetric occlusion model [30] that allows a one-to-many
correspondence between pixels. Let p0 and p1 be neighboring pixels in the same horizontal line of IL.
Then, p0 will be occluded by p1 when they meet three conditions:

- p0 and p1 have the same matching point in IR under their current disparity value;
- DL(p0) ≤ DL(p1);
- p0 and p1 belong to different segments.

In this paper, for each pixel p of IL, if there is only one matching point in IR, the conventional
cross-checking is applied to obtain the occlusion Equation (1). Otherwise, if there are more than two
matching points in IR, pixels in IL are marked as either reliable (O(p0) = 0) or occluded (O(p0) = 1),
which satisfy or do not satisfy the Bleyer’s asymmetric occlusion model. As shown in Figure 4,
each segment belongs to the reliable segment (R) if it contains a sufficient amount of reliable pixels;
otherwise, it belongs to the unreliable segment (R). Furthermore, each segment fi ∈ R is denoted as a
stable segment (S) when it contains a sufficient number of seed pixels. Otherwise, fi belongs to the
unstable segment (S). We apply a RANSAC-based algorithm to approximate each stable segment si ∈ S
as a fitted plane Ψsi using the image coordinates and known disparities of all seed pixels belonging to
si. Table 1 lists important notifications used in this paper.

Left Initialization 
Disparity Map

N

Right Initialization 
Disparity Map

Reliable Pixels

Color Segmentation

Occlusion Pixels Unreliable Segment

Reliable Segment

Stable Segment

Unstable Segment Plane Fitting 

Seed Image

Y

Y

N

N Y
Occlusion Judgment Enough Reliable Pixels Enough Seed Pixels

Figure 4. Conceptual flow diagram for the classification phase.

Table 1. Notations.

D: Disparity map D(p): Disparity value of pixel p Π: Seed image

DL: Initial disparity map of
rectified left image DR: Initial disparity map of

rectified right image IL: Rectified left DSLR image

IR: Rectified right DSLR image R: Reliable segment R: Unreliable segment
S: Stable segment S: Unstable segment fi: i-th segment

si: i-th stable segment Ψsi :
Fitted plane of stable
segment si

f (p): Segment that contains pixel
p

fi: i-th segment dl : Minimum disparity du: maximum disparity

�: Segment boundary pixels Λp
l :

Pixel’s potential minimum
disparity Λp

u:
Pixel’s potential maximum
disparity

Ψl
i :

Minimum fitted disparity of
the i-th stable segment Ψu

i : Minimum fitted disparity of
the i-th stable segment

3.2. Problem Formulation

In the problem formulation phase, we propose the MPTL model, which combines the
complementary characteristics of stereo matching and the Xtion sensor. As shown in Figure 2, the
MPTL model consists of three components:

- The pixel-level component, which improves the robustness against the luminance variance
(Section 3.3) and strengthens the smoothness of disparities between neighboring pixels and
segments (Section 3.4). Nodes at this level represent reliable pixels from stable and unstable
segments. The edges between reliable pixels represent different types of smoothness terms.
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- The edge that connects two level components (the SP-edge), which uses the texture variance and
gradient as a guide to restrict the scope of potential disparities (Section 3.5).

- The segment-level component, which incorporates the information from the Xtion as prior
knowledge to capture the spatial structure of each stable segment and to maintain the relationship
between neighboring stable segments (Section 3.6). Each node at this level represents a
stable segment.

Existing global methods have achieved remarkable results, but the capability of the traditional
Markov random field stereo model remains limited. To lessen the matching ambiguities, additional
information is required to formulate an accurate model. In this paper, the pixel-level improved
luminance consistency term (El), the pixel-level hybrid smoothness term (Es) and the SP-edge
texture term (Et), as well as the segment-level 3D plane bias term (Ep) are integrated as additional
regularization constraints to obtain a precise disparity estimation (D) for a scene with complex
geometric characteristics. According to Bayes’ rule, the posterior probability over D given l, s, t
and p is:

p(D|l, s, t, p) =
p(l, s, t, p|D)p(D)

p(l, s, t, p)
(2)

During each optimization process, P(l, s, t, p|D) is only dependent on l, s, t and p. Therefore,
P(D|l, s, t, p) can be rewritten as:

p(D|l, s, t, p) ∝ p(l|D)p(s|D)p(t|D)p(p|D)p(D) (3)

Because maximizing this posterior is equivalent to minimizing its negative log likelihood, our
goal is to obtain the disparity map (D) that minimizes the following energy function:

E(D) = El(D) + Es(D) + Et(D) + Ep(D) (4)

Each term will be discussed in detail in the following sections.

3.3. Improved Luminance Consistency Term

The conventional luminance consistency hypothesis is used to penalize the appearance
dissimilarity between corresponding pixels in IL and IR, based on the hypothesis that the surface
of a 3D object is Lambertian. Because it refers to a perfectly-diffuse appearance in which pixels
originating from the same 3D object have similar appearances in different views, its accuracy is heavily
dependent on the lighting condition for which colors change substantially depending on the viewpoint.
Furthermore, an object may appear to have different colors because different views have different
sensor characteristics. In contrast, the Xtion sensor is more robust to the light condition and can be
used as prior knowledge to reduce ambiguities caused by the non-Lambertian surface. Thus, the
improved luminance consistency term is denoted as:

El = ∑
p∈IL

λl ·(1 − O(p))·
[
wl

p·C(p, q) + wx
p·X(p, q)

]
+ O(p)·λo (5)

where q is the matching pixel of p in the other image. O(p) is the asymmetric occlusion function
described in Section 3.1, and λo is a positive penalty used to avoid maximizing the number of
occluded pixels. C(p, q) is defined as the pixel-wise cost function from stereo matching to measure the
color dissimilarity.

C(p, q) = α·(1 − exp (−Cssd(p, q)
rssd

)) + (1 − α)·(1 − exp (−Cg(p, q)
rg

)) (6)
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where rssd and rg are constant values defined by our experience. α is the scalar weight from zero to
one. Cssd(p, q) and Cg(p, q) are the color dissimilarity and gradient in three color channels as:

Cssd(p, q) =
√

∑
i=R,G,B

(
Ii
L(p)− Ii

R(q)
)2 (7)

Cg(p, q) =
√

∑
i=R,G,B

(∇Ii
L(p)−∇Ii

R(q)
)2 (8)

X(p, q) is the components from the Xtion sensor, which are defined as:

X(p, q) = min{|D(p)− Π(p)|, Tπ} (9)

Tπ is the constant threshold, and D(p) is the disparity value assigned to pixel p in each
optimization. Π(p) is the disparity of pixel p ∈ Π. wx

p and wl
p are pixel-wise confidence weights that

are denoted as wx
p = 1 − wl

p. They are derived from the reliabilities of disparities obtained from stereo
matching (ml

p) and the Xtion (mx
p) as:

wl
p =

⎧⎨
⎩

ml
p

ml
p+mx

p
p ∈ Π

1 otherwise
(10)

where ml
p is similar to the attainable maximum likelihood (AML) in [31], which models the cost for

each pixel using a Gaussian distribution centered at the minimum actually achieved cost value for
that pixel. The reliability of Xtion data mx

p is the inverse of the normalized standard deviation of the
random error [20]. The confidence of each depth value obtained from the depth sensor decreases with
the increasing of the normalized standard deviation.

3.4. Hybrid Smoothness Term

The hybrid smoothness term strengthens the segmentation-based assumption that the disparity
variance in each segment is smooth and reduces errors caused by under- and over-segmentation.
It consists of four terms: the smoothness term for neighboring reliable pixels belonging to the unstable
segment (Es0 ), the smoothness term for neighboring reliable pixels in the same stable segment (Es1 ), the
smoothness term for neighboring reliable pixels in different stable segments (Es2 ) and the smoothness
term for neighboring reliable pixels that belong to stable and unstable segments (Es3 ).

Because there is no prior knowledge about the spatial structure of unstable segments, we define
the smoothness term Es0 as the conventional second-order smoothness prior Equation (11), which can
produce better estimates for a scene with complex geometric characteristics [11].

Es0 = ∑
Φ0

i ∈Φ0

λ0
s ·
[

1 − exp

(
−∇D

(
Φ0

i
)

γs

)]
{p0, p1, p2} ∈ Φ0

i (11)

where γs and λ0
s are the geometric proximity and the positive penalty. Φ0 is the set of triple-cliques

consisting of consecutive reliable pixels belonging to unstable segment. ∇D
(
Φ0

i
)

is the second
derivative of the disparity map as:

∇D
(

Φ0
i

)
= D(p0)− 2D(p1) + D(p2).{p0, p1, p2} ∈ Φ0

i (12)

Es0 captures richer features of the local structure and permits planar surfaces without penalty
by setting ∇D

(
Φ0

i
)
= 0. However, Es0 only considers disparity information when representing the

smoothness of neighboring pixels. This means that, in several cases, error matching can result in
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different disparity assignments, which correspond to the same second derivatives in the disparity
map (see Figure 5b–d). Meanwhile, each stable segment can be represented as a fitted plane using
the disparity data from the Xtion, which contains prior knowledge about the spatial structure of each
stable segment. We can incorporate the spatial similarity weight with the prior knowledge from the
Xtion into a conventional second-order smoothness prior. This term encourages constant disparity
gradients for pixels in a stable segment and local spatial structures that are similar to the fitted plane
of the stable segment. The smoothness term for neighboring reliable pixels in the same stable segment
is as follows.

Es1 = ∑
Φ1

i ∈Φ1

λ1
s ·[2 − δ

(
Φ1

i

)
− exp (−∇D

(
Φ1

i
)

γs
)] (13)

where Φ1 is the set of triple-cliques defined by all 3 × 1 and 1 × 3 consecutive reliable pixels along the
coordinate direction of the rectified image coordinate in each stable segment. λ1

s is a positive value
penalty. As for the spatial 3D relationship shown in Figure 5, let si be the stable segment containing Φ1

i
and Ψsi be its corresponding fitted plane. Then, the spatial similarity weight δ

(
Φ1

i
)

is denoted as:

δ
(

Φ1
i

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 I : p0 p1 �= p1 p2

0.25 II : p0 p1 = p1 p2 and p0 p2 ∩ Ψsi

0.5 III : p0 p1 = p1 p2 and p0 p2//Ψsi

1 IV : p0 p1 = p1 p2 and p0 p2 ∈ Ψsi

{p0, p1, p2} ∈ Φ1
i (14)

- Case I: When p0 p1 �= p1 p2, the disparity gradients of pixels in Φ1
i are not constant (∇D

(
Φ1

i
) �= 0).

This case violates the basic segmentation assumptions that the disparity variance of neighboring
pixels is smooth, so a large penalty is added to prevent it from happening in our model (see
Figure 5a).

- Cases II, III and IV: When p0 p1 = p1 p2, the disparity gradients of pixels in Φ1
i are constant

(∇D
(
Φ1

i
)
= 0). This means that the variance of the disparities is smooth. Furthermore, our

model checks the relationship between all pixels in Φ1
i and Ψsi (see Figure 5b–d). δ

(
Φ1

i
)

does not
penalize the disparity assignment if all pixels in Φ1

i belong to Ψsi (Case IV in Figure 5d), because
it is reasonable to assume that the local structure of Φ1

i is the same as the spatial structure of
Ψsi . Note that we impose a larger penalty to Case II than to Case III to strengthen the similarity
between the spatial structure of Φ1

i and Ψsi .
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Figure 5. Smoothness term for pixels in the same stable segment (si) with the spatial similarity weight
as the triple-clique Φ1

i = {p0, p1, p2}, under different disparity assignments. Given Ψsi (blue line)
as the fitted plane of si. Yellow nodes are the intersect points. (a) Case I, D(p0) �= D(p1) �= D(p2)
with ∇D

(
Φ1

i
) �= 0; (b) Case II, D(p0) = D(p1) = D(p2) with ∇D

(
Φ1

i
)
= 0; (c) Case III, D(p0) �=

D(p1) �= D(p2) with ∇D
(
Φ1

i
)
= 0; (d) Case IV, D(p0) �= D(p1) �= D(p2) with ∇D

(
Φ1

i
)
= 0. As

shown in Cases II, III and IV, different disparity assignments correspond to the same second derivative
(∇D

(
Φ1

i
)
= 0).
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In some segmentation-based algorithms [32], the segmentation is implemented as a hard constraint
by setting λ0

s and λ1
s to be positive infinity. This does not allow any large disparity variance within

a segment. In other words, each segment can only be represented as a single plane model, and the
boundaries of a 3D object must be exactly aligned with segment boundaries. Unfortunately, not all
segments can be accurately represented as a fitted plane, and not all 3D object boundaries coincide with
segment boundaries. The accuracy of the segmentation-based algorithms is easily affected by the initial
segmentation. On the one hand, the initial segmentation typically contains some under-segmented
regions (where pixels from different objects, but with similar colors are grouped into one segment). As a
direct consequence of under-segmentation, foreground and background boundaries are blended if they
have similar colors at disparity discontinuities. To avoid this, we use segmentation as a soft constraint
by setting λ0

s and λ1
s to be positive finite, so that each segment can contain arbitrary fitted planes.

On the other hand, pixels with different colors, but on the same object are over-segmented
into different segments in the initial segmentation, which causes computationally inefficiency
and ambiguities on segment boundaries. In this paper, we considered the spatial structure of
neighboring stable segments using disparities from the Xtion. Therefore, we apply the smoothness
term for neighboring pixels belonging to different stable segments (Es2 ) to avoid errors caused by
the over-segmentation. Let p and q be neighboring pixels belonging to stable segments si and sj,
respectively, Then, Es2 can be expressed as:

Es2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 I : Ψsi �= Ψsj andD(p) �= D(q)
λ2

s II :: Ψsi �= Ψsj andD(p) = D(q)
λ2

s III :: Ψsi = Ψsj andD(p) �= D(q)
0 IV : Ψsi = Ψsj andD(p) = D(q)

(15)

As shown in Equation (15), for Cases I and II, if Ψsi is not equal to Ψsj , this means that si and sj
have different spatial structures, and the 3D object boundary coincides with the boundary between
them. The disparity variance between p and q is allowed without any penalty (Case I); otherwise, a
constant penalty λ2

s is added (Case II). In contrast, for Cases III and IV, if Ψsi is equal to Ψsj , this means
that si and sj have different appearances, but have similar spatial structures and belong to the same 3D
object. In these two cases, the disparity variance between p and q is not allowed by adding a penalty.
Es2 reduces the ambiguities caused by over-segmentation and retains only the disparity discontinuities
that are aligned with object boundaries from geometrically-smooth, but strong color gradient regions,
where pixels with different colors, but from the same object are partitioned into different segments.

Because unstable segments do not have sufficient disparity information from the Xtion to regard
their spatial plane models, the smoothness term for neighboring pixels that belong to the stable and
unstable segments (Es3 ) encourages neighboring pixels to take the same disparity assignment. It takes
the form of a standard Potts model,

Es3 =

{
0 D(p) = D(q)
λ3

s D(p) �= D(q)
p ∈ S, q ∈ S (16)

Thus, let � be the set of pixels belonging to segment boundaries, the hybrid smoothness term is:

Es =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Es0 {p0, p1, p2} ∈ Φi and Φi ∈ S and Φi ∩ � = ∅

Es1 {p0, p1, p2} ∈ Φi and Φi ∈ S and Φi ∩ � = ∅

Es2 {p0, p1, p2} ∈ Φi and Φi ∩ � �= ∅ and {p0, p1, p2} ∈ S
Es3 {p0, p1, p2} ∈ Φi and Φi ∩ � �= ∅ and {p0, p1} ∈ S, {p2} ∈ S

(17)

3.5. Texture Term

Stereo matching often fails in textureless and repetitive regions, because there is not enough visual
information to obtain a correspondence. However, the Xtion does not suffer from ambiguities in these
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regions. Therefore, the disparities from the Xtion are more reliable than those obtained from stereo
matching on textureless and repetitive regions and should be closer to the range of potential disparities
for pixels in these regions. In contrast, the disparities from the Xtion are susceptible to noise and
problems caused by rich texture regions and have poor performance in preserving object boundaries.
Therefore, the disparities obtained from stereo matching are more reliable than that of the Xtion and
should be used to define the scope of potential disparities of pixels in those regions. Considering the
complementary characteristics of stereo matching and the Xtion sensor, texture information can be
used as a useful guide for disparities.

Radius

PP

(a) (b)

Figure 6. Surrounding neighborhood patch, Np, for: (a) pixel p and (b) its corresponding sub-regions.

The texture variance and gradient are used as a cue to restrict the scope of potential disparities
for pixels. This reduces errors caused by noise or outliers and makes the distribution of the disparity
more compact. To do this, we first define a surrounding neighborhood patch Np (with a radius of,
for example, 20 pixels) centered at each pixel p ∈ IL, as shown in Figure 6. Considering that the
annular spatial histogram is translation and rotation invariant [33], Np is evenly partitioned into four
annular sub-regions. For each sub-region Ni

p(i = 0 · · · 3), we compute its normalized intensity 16-bin

gray histogram Hi
p =

{
h(i,j)p , j = 0 · · · 15

}
to represent the annular distribution density of Np as a

64-dimensional feature vector.
Finally, let Lp be a 1D line segment ranging from (p − 10) to (p + 10) in the same row of p in IL.

The texture variance and gradient of p is determined by the texture dissimilarity Γp Equation (18),
using the Hamming distance Equation (19) between the annular distribution densities of p and its
neighboring pixel q in Lp. That is,

Γp = min(q∈Lp ,q �=p)

3

∑
i=0

15

∑
j=0

H
(

h(i,j)p , h(i,j)q

)
(18)

H
(

h(i,j)p , h(i,j)q

)
=

{
1|h(i,j)p − h(i,j)q |≥TH
0 otherwise

(19)

Each pixel’s disparity variance buffer (Ωp) can be denoted as:

Ωp = 1 +
[

1 − exp
(
− Γp

γH

)]
·ξξ = 0.2·(du − dl) (20)

dl and du are the minimum and maximum disparities. Γp is small in the textureless and repetitive
regions and is large in the rich texture regions or object boundaries. The scope of each pixel’s potential
disparities [Λp

l , Λp
u] is denoted as:

Υl = max
{(

Ψl
f (p) − Ωp

)
, dl

)
} (21)
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Υu = min
{(

Ψl
f (p) + Ωp

)
, du

)
} (22)

Λp
l =

⎧⎪⎨
⎪⎩

max
{(

Θp
l − Ωp

)
, Υl

}
χp ≥ TΛand f (p) ∈ S

Υl χp < TΛand f (p) ∈ S
dl f (p) ∈ S

(23)

Λp
u =

⎧⎪⎨
⎪⎩

min
{(

Θp
u + Ωp

)
, Υu

}
χp ≥ TΛand f (p) ∈ S

Υu χp < TΛand f (p) ∈ S
du f (p) ∈ S

(24)

where Θp
l and Θp

u are the minimum and maximum disparities from the Xtion in the region centered at
p in IL. f (p) is the segment that contains p. Ψl

f (p) and Ψu
f (p) are the minimum and maximum fitted

disparities of f (p). χp is the number of seed pixels in the region centered at p. TΛ is a positive value.
As described in Equation (23), there are three cases for the definition of Λp

l :

- When f (p) is a stable segment ( f (p) ∈ S) and contains sufficient seed pixels (χp > TΛ), Λp
l

is equal to max
{(

Θp
l − Ωp

)
, Υl

}
. In this case, there are enough seed pixels from the Xtion to

denote a guide for the variance of disparities of p. If p is in the textureless or repetitive region,
Ωp is small. This indicates that stereo matching may fail in these regions, and a small search
range should be used around disparities from the Xtion. In contrast, if p is in the rich textured
region or object boundaries, Ωp is large. This indicates that disparities from the Xtion may be
susceptible to noise and problems caused by rich texture regions where disparities obtained from
stereo matching are more reliable. Then, a broader search range should be used, so that we can
extract better results not observed by the Xtion.

- When f (p) is a stable segment ( f (p) ∈ S), but there are not enough seed pixels around p
(χp ≤ TΛ), Λp

l is equal to Υl . In this case, although there are some seed pixels from the Xtion,
they are not enough to represent the disparity variance around p. On the other hand, because
each stable segment is viewed as a 3D fitted plane, the search range for the potential disparities is
limited by the fitted disparity of f (p) and the disparity variance buffer (Ωp).

- When f (p) is an unstable segment ( f (p) ∈ S), Λp
l is the minimum disparity (dl).

Similarly, Λp
u can be obtained in the same way. Then, the SP-edge term (which defines the scope

of pixel’s potential disparities) is:

Et =

{
0 Λp

l ≤ D(p) ≤ Λp
u

λt otherwise
(25)

3.6. 3D Plane Bias Term

This 3D plane bias term focuses on strengthening the assumption that each stable segment has a
3D plane bias. It is denoted as:

Ep = ∑
si∈S

∑
p∈si

λp·min
{∣∣D(p)− Ψsi (p)

∣∣, Tp
}

(26)

where D(p) is the assigned value of pixel p in IL. Ψsi (p) is the plane fitted value, and Tp is a threshold
value. Note that for notation clarity, the traditional 3D bias assumption is a hard constraint that forbids
any distinctive between D(p) and Ψsi (p) by setting λp to be infinite. On the contrary, our 3D plane
bias term is a soft constraint that a certain distinctive between D(p) and Ψsi (p) is allowed by setting
λp to be a finite positive value.
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3.7. Optimization

The energy function defined in Equation (4) is a function of the real discrete disparity map. In
this section, we describe how to optimize Equation (4) using the fusion move algorithm to obtain the
disparity map D∗:

D∗ = argminDE(D) (27)

The fusion move approach [34] is an extended approach of the α − expansion algorithm [35],
which allows arbitrary values for each pixel in the proposed disparity map. It generates a new result
by fusing the current and proposed disparity maps with the energy either decreasing or remaining
constant. Let Dc and Dp be the current and proposed disparity maps of IL. Our goal is to optimally
“fuse” Dc and Dp to generate a new depth map Dn, so that the energy E(Dn) is lower than E(Dc).
This fusion move is achieved by taking each pixel in Dn from either Dc or Dp, according to a binary
indicator map B. B is the result of the graph cut-based fusion move Markov random field optimization
technique. During each optimization, each pixel either keeps its current disparity value (B(p) = 0) or
changes it to proposed disparity value (B(p) = 1). That is,

Dn = (1 − B)·Dc + B·Dp (28)

However, the fusion move is limited to optimizing the submodular binary fusion-energy functions
that consist of unary and pairwise potentials. Because of the hybrid smoothness term, our binary
fusion-energy functions are not submodular and cannot be directly solved using the fusion move [36].
Using the quadratic pseudo-Boolean optimization (QPBO) algorithm [37], we can obtain a partial
solution for the non-submodular binary fusion-energy function by assigning either zero or one to
partial pixels, and leaving the rest unassigned. The partial solution is a part of the global minimum
solution, and its energy is not higher than that of the original solution. Because of the given lowest
average number of unlabeled pixels, we used Quadratic Pseudo Boolean Optimization with Probing
(QPBO-P) [38] and Quadratic Pseudo Boolean Optimization with Improving (QPBO-I) [39] as our
fusion strategies. During the optimization, the pixel-level improved luminance consistency term (El),
the SP-edge texture term (Et) and the segment-level 3D plane bias term (Ep) are expressed as unary
terms, respectively. We tackle the transformation problem of the pixel-level hybrid smoothness term
(Es) that contains triple-cliques using the decomposition method called Excludable Local Configuration
(ELC) [40]. The essence of the ELC method is a QPBO-based transformation of a general higher-order
Markov random field with binary labels into a first-order one that has the same minima as the
original. It combines a new reduction with the fusion move and QPBO to approximately minimize
higher-order multi-label energies. Furthermore, the new reduction technique is along the lines of
the Kolmogorov-Zabih reduction that can reduce any higher-order minimization problem of Markov
random fields with binary labels into an equivalent first-order problem. Each triple clique in Es is
decomposed into a set of unary or pairwise terms by ELC without introducing any new variables.

The choice of the proposed disparity maps in the fusion move approach is another crucial factor
for the successful use and efficiency of the fusion move. Because there is not an algorithm that can
be applied to all situations, our goal is to expect all proposed disparity maps to be correct in some
parts and under some parameter setting. Here, we use the following schemes to obtain all proposed
disparity maps:

- Proposal A: Uniform value-based proposal. All disparities in the proposal are assigned to a
discrete disparity, in the range of dl to du.

- Proposal B: The hierarchical belief propagation-based algorithm [41] is applied to generate
proposals with different segmentation maps.

- Proposal C: The joint disparity map and color consistency estimation method [42], which
combines mutual information, a SIFT descriptor and segment-based plane-fitting techniques.
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During each optimization, the result of the current fusion move is used as the initial disparity
map of the next iteration.

3.8. Post-Processing

The post-processing is composed of two steps: filling occlusions and refinement. Given that p is
a occluded pixel in IL, a two-step method is implemented to estimate disparities of occluded pixels.
If f (p) ∈ S, the fitted plane value Ψ f (p)(p) is assigned as p’s disparity. Otherwise, the disparity of p is
the smaller disparity of its closet left and right seed pixels that belongs to the background.

After filling occlusions, in order to obtain an accurate disparity map and to remove ambiguities at
object boundaries, the weighted joint bilateral filter with the slope depth compensation filter [43] is
applied to refine the disparity map.

4. Results and Discussion

Here, a series of evaluations were performed to verify the effectiveness and accuracy of the
proposed method. Results were composed of qualitative and quantitative analyses. The segmentation
parameters for all experiment are the same: spatial bandwidth = 7, color bandwidth = 6.5, minimum
region = 20. Other parameters are presented in Table 2. They were kept constant for all experiments
and were typically empirically based.

Table 2. Parameter settings for all experiments.

TH TΛ Tπ Tp γH γs λt λl λo λ0
s λ1

s λ2
s λ3

s λp

0.1 50 3 5 35 1.5 200 12 200 40 40 15 15 10

4.1. Qualitative Evaluation Using the Real-World Datasets

We performed qualitative analyses of the proposed method using real-world datasets. In
all evaluations, we captured the image pairs using the system in Figure 1 and regarded the left
DSLR cameras as the target to be estimated by the disparity map. Notice that all scenes contain
weakly-textured and repetitive regions, as well as a non-Lambertian surface.

In order to illustrate that our method combines the complementary characteristics of the various
disparity estimation methods and outperforms using the conventional stereo matching or depth sensor
alone, we evaluated the qualitative quality of the disparity estimates from three stereo matching
methods, the Xtion depth sensor and the proposed method using several complex indoor scenes in
Figure 7. As show in Figure 7c, although the local stereo matching with fast cost volume filtering
(FCVF [44]) performed well by recovering the object boundaries using a color image as a guide,
it was very fragile for noise and textureless regions (such as the uniformly-colored board in the
yellow rectangle of Figure 7a). In contrast, the depth values obtained from the active sensor are more
accurate (see the same regions in Figure 7f). Therefore, our method overcame these problems with the
improved luminance consistency term and texture term by incorporating the prior depth information
from the depth sensor. As shown in Figure 7d, segmentation-based global stereo matching with
second order smoothness prior (SOSP [11]) overcame some of the problems caused by the noise and
outliers, but did not solve the problems caused by the over-segmentation, which led to ambiguous
matching when segment boundaries did not correspond to object boundaries (green rectangle in
Figure 7a). Segment tree-based stereo matching (ST [13]) blended the foreground and background in
the under-segmented region (as shown in Figure 7e), where different objects with similar appearances
(such as the red rectangle in Figure 7b) were grouped into a segment. Comparing to our result and those
of segmentation-based methods, it is clear that the proposed hybrid smoothness term helps reduce
matching ambiguities causing by over-segmentation and under-segmentation with the indication
of the depth sensor. The raw data from the depth sensor were noisy and had poor performance in
preserving object boundaries (blue rectangle in Figure 7f); our result is more robust in this situation and
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can be used to improve the performance of the depth sensor by considering the color and segmentation
information from stereo matching. Based on the above, we can safely draw the conclusion that the
proposed method obtains accurate depth estimation by combining the complementary characteristics
of stereo matching and the depth sensor. We also tested the proposed method on other real-world
scenes to verify its robustness (see Figure 8).

(a)

(c)

(d)

(e)

(f)

(g)

(b)

Figure 7. Results of the different methods applied to the real-world scenes: Dragon, Book, Plant and
Tablecloth. Each column from up to down is: (a) the rectified left image; (b) the segmentation result,
(c) the disparity map of FCVF [44]; (d) the disparity map of SOSP [11]; (e) the disparity map of segment
tree (ST) [13]; (f) the seed image transformed from the Xtion data and (g) our result.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Comparative results for different real-world scenes: (a) Board; (b) Box; (c) Kola; (d) Vase;
(e) Dragon and Kola; (f) Piggy. All scenes were approximately 0.5–1.5 m from the cameras, and the
maximum disparity was 107 pixels. Each scene from left to right contains the rectified left image and
its associated result of our method.

Furthermore, we implemented the post-processing processing introduced in Section 3.8 to assign
valid disparities to pixels in the black regions of seed images. The seed image after assignment can
be treated as the up-sampling disparity map of the target image captured by the Xtion alone. Then,
we evaluated the quality of the 3D reconstruction from our method and that using only Xtion data
(see Figure 9). The 3D point cloud reconstructions consist of the pixels’ image coordinates and their
associated disparities in disparity space. The blue rectangles highlight some regions where our method
performed well. For example, the proposed method was more effective at retaining the boundaries
of Piggy and Plant (Figure 9a,c) and correctly recovered the top of the head and beard of the dragon
(Figure 9b). These comparisons illustrate that the stereo matching using the the depth sensor as the
prior knowledge is more effective and accurate than using stereo matching or the depth sensor alone.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Comparative results for 3D reconstructions. (a) Book; (b) Dragon; (c) Plant; (d) Tablecloth;
(e) Box; (f) Piggy; (g) Vase; (h) Dragon and Kola. Each scene from top to bottom contains the
reconstruction using our method and the result using the up-sampled disparity map captured by
the Xtion depth sensor.

4.2. Quantitative Evaluation Using the Middlebury Datasets

To quantitatively illustrate the validity of the proposed method, we also conducted evaluations on
the Middlebury datasets [9,45] and focused on recovering the disparity map of the left image in each
dataset. The evaluation is made by third-size resolution Views 1 and 5 of all image pairs. However,
because there is nothing about the scanning depth information of this dataset, we used the method
described in [14] to simulate the seed image transformed from the Xtion projected to View 1. This
technique is based on a voting strategy and simply requires some disparity maps produced using
several stereo methods [46–48]. Each pixel was labeled as a seed if its disparity in different maps was
consistent (varied by less than a fixed threshold and was not near the intensity edge). Results on these
datasets and their corresponding errors (compared with the ground truth) in non-occlusion regions are
shown in Figure 10. As shown in Figure 11, our method ranks first among approximately 164 methods
listed on the website [49]. It performs especially well on the Tsukuba image pairs, with minimum
errors in non-occluded regions and near depth discontinuities.

On the other hand, as shown in Figure 12, we presented some evaluation results of the Middlebury
extension datasets [50,51] to illustrate the robustness of the proposed method. Meanwhile, we also
show the quality of 3D reconstruction of Middlebury datasets using the pixels’ image coordinate and
their corresponding disparities in disparity space (see Figure 13). The evaluation results in Figures 12
and 13 illustrate that our method is robust to different types of scenes and outperforms in slanted and
highly curved surfaces.
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(a)

(b)

(c)

(d)

Figure 10. Evaluation results on the Middlebury standard data. (a) Tsukuba; (b) Venus; (c) Teddy;
(d) Cones. Each row contains (from left to right): the left image, our results, the error map (error
matching pixels whose absolute disparity errors are larger than one in non-occlusion and occlusion
regions are marked in black and gray), the occlusion map (occluded pixels are marked black) and the
ground truth map.

Figure 11. Middlebury results of our method. All numbers are the percentage of error pixels whose
absolute disparity error is larger than one. The blue number is the ranking in every column. Our
method outperforms the conventional stereo matching algorithms and ranks first among approximately
164 methods according to the average of the sum of the rankings in every column (up to 20 April 2015).

Besides, we also compared our results with those produced by other “fused” schemes [20,23,52–56],
and the compared results are listed in the Table 3. Our method provides an error rate of 2.61% on the
Middlebury datasets, compared to the average error rate 3.27% of the previous state-of-the-art “fused”
methods. It is clear that our method performs almost 20% better than other “fused” scheme-based
algorithms in the aspect of precision. Furthermore, As shown in Figures 14 and 15, our method
achieves comparable results in the following aspects:
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- Noise and outliers are significantly reduced, mainly because of the improved luminance
consistency term and the texture term.

- The method obtains precise disparities for slanted or highly-curved surfaces of objects with
complex geometric characteristics, mainly because of the 3D plane bias term.

- Ambiguous matchings caused by over-segmentation or under-segmentation are overcome and
disparity variances become smoother, mainly because of the hybrid smoothness term.

(a)

(b)

(c)

(d)

Figure 12. Evaluation results on the Middlebury extension datasets. (a) Wood1; (b) Cloth4; (c) Reindeer;
(d) Dolls. Each row contains (left to right): the left image, our results, the error map (from top to bottom,
the percentages of error pixels with absolute disparity error larger than one in non-occlusion regions
are: 4.35%, 1.03%, 4.31%, 4.78%; error pixels are marked red), the occlusion map (occluded pixels are
marked black) and the ground truth map.

Table 3. The percentages of error pixels (absolute disparity error larger than 1 in non-occlusion
regions) of our method and other “fused” methods on the Middlebury datasets. “Averages” are the
average percentages of error pixels over all images. Compared to the average error rate 3.27% of the
previous state-of-the-art “fused” methods, our method provides a lower average error rate of 2.61%
on the Middlebury datasets. It performs almost 20% better than other “fused” methods in the aspect
of precision.

The Percentages of Error Pixels (%)

Tsukuba Venus Teddy Conse Wood1 Colth4 Reimdeor Dools Averages

Zhu et al. [20] 1.16 0.14 2.83 3.47 5.38 3.74 5.83 5.46 3.50
Wang et al. [23] 0.89 0.12 6.39 2.14 4.05 3.81 3.55 2.71 2.96
Yang et al. [52] 0.94 0.26 5.65 7.18 1.76 2.60 4.43 4.13 3.37
Jaesik et al. [53,55] 2.38 0.56 5.59 6.28 3.72 2.88 4.04 4.69 3.77
James et al. [54] 2.90 0.29 2.12 2.83 2.74 2.32 5.02 4.02 2.78
Ours 0.79 0.10 3.49 2.06 4.35 1.03 4.31 4.78 2.61
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(a) (b)

(c) (d) (e) (f )

(g) (h)

Figure 13. The results of 3D reconstructions. (a) Tsukuba; (b) Venus; (c) Teddy; (d) Cones; (e) Wood1;
(f) Cloth4; (g) Reindeer; (h) Dolls.

(a) (d)(c)(b)

Figure 14. Evaluation results with the state-of-the-art “fused” scheme-based algorithms on the
Middlebury datasets. (a) Tsukuba; (b) Venus; (c) Teddy; (d) Cones. Each column from top to bottom
is the results obtained from: Zhu et al. [20], Wang et al. [23], Yang et al. [52], Jaesik et al. [53,55],
James et al. [54] and our method. Error pixels with absolute disparity error larger than one in
non-occlusion regions are marked red. The percentages of error pixels are listed in Table 3.
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(a) (d)(c)(b)

Figure 15. Evaluation results with the state-of-the-art “fused” scheme-based algorithms on the
Middlebury extension datasets. (a) Wood1; (b) Cloth4; (c) Reindeer; (d) Dolls. Each column from top to
bottom is the results obtained from: Zhu et al. [20], Wang et al. [23], Yang et al. [52], Jaesik et al. [53,55],
James et al. [54] and our method. Error pixels with absolute disparity error larger than one in
non-occlusion regions are marked red. The percentages of error pixels are listed in Table 3.

4.3. Evaluation Results for Each Term

We conducted evaluations to analyze the effect of the individual terms in Equation (4). In each
experiment, one term was turned off and the others remained on. First, the texture term was turned
off, which meant that the range of the potential disparities for each pixel was no longer restricted by
the texture variance and gradient. Ambiguities occurred in textureless and repetitive texture regions
without the prior restriction from the data of the depth sensor (see the yellow rectangle in Figure 16b).
The average error rate of all images in non-occlusion regions sharply increased to 2.77%. Furthermore,
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the improved luminance consistency term was turned off by setting wx
p := 0. Then, this term can be

viewed as the conventional one that is easily affected by light variation and causes error matching on
the non-Lambertian surface and rich texture regions (see the green rectangle regions in Figure 16c–e).
The corresponding average error rate of all images in the non-occlusion regions is 2.37%. Thirdly,
the hybrid smoothness term was turned out by replacing by the usual second-order smoothness
term [11]. Some artifacts in the red rectangle in Figure 16f were caused by over-segmentation and
under-segmentation. Its average error rate sharply increased to 3.02%. Finally, the 3D plane bias
term was turned off by setting λp:=0. In that case, all 3D object surfaces are assumed as the frontal
parallel ones, and the depth map is rather noisy, which makes it difficult to preserve the details at the
boundary of objects (see the blue rectangle region in Figure 16g). Its average error rate is 2.14%. The
corresponding error statistic analysis on the Middlebury datasets is listed in Table 4. It is clear that our
method can obtain the lowest average error rate when all terms turn on (average error rate of 1.61% in
non-occlusion regions).

(a)

(b)

(c)

(d) (f)

(g)
(e)

Figure 16. Evaluation results when turning off some terms. (a) Our result; (b) result without the texture
term; (c) result without the improved luminance consistency term; (d) the detail with an enlarged
scale in the green region of (c); (e) our result detail with enlarged scale in the same green region of
(c); (f) result without the hybrid smoothness term; (g) result without the 3D plane bias term. Nonocc:
non-occlusion regions.

Table 4. Error statistic for the Middlebury datasets with different constraint terms turned off.
“Averages” are the average percentages of error pixels over all images in different regions.

Tsukuba Venus Teddy Cones Averages

nonocc all disc nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Texture term off 2.04 2.12 5.78 0.81 1.03 3.09 5.43 10.2 13.25 2.79 8.26 6.35 2.77 5.40 7.12
Luminance term off 1.01 1.65 4.78 0.11 0.25 1.54 5.49 11.20 14.92 2.88 8.47 7.74 2.37 5.39 7.25
Smoothness term off 1.39 2.14 4.94 0.85 0.93 2.02 6.57 13.01 14.80 3.28 7.50 7.13 3.02 5.90 7.22
Plane bias term off 0.88 1.49 4.86 0.23 0.65 2.27 4.53 9.30 10.63 2.90 7.96 8.96 2.14 4.76 6.68
All terms on 0.79 1.21 4.30 0.10 0.21 1.27 3.49 9.04 10.90 2.06 7.05 5.80 1.61 4.37 5.56

4.4. Computational Time Analyses

The proposed method was implemented on a PC with Core i5-2500 3.30 GHZ CPU and 4 GB RAM.
Tables 5 and 6 list the running time of the proposed method for all experiments. It is obvious that the
computational time is proportional to the image resolution and the scope of potential disparities. For
example, it took approximately 1–9 mins to obtain results on Middlebury data and 19–25 mins on the
real-world scene datasets. In the future, we aim to implement our method on a GPU to achieve a good
balance between accuracy and efficiency.
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Table 5. Running times for the real-world datasets. The disparity map resolution of all real-world
datasets is 1024 × 960. The corresponding maximum disparity is 107.

Dragon Book Plant TableclotdBoard Box Kola Vase Piggy
Dragon

and Piggy

Running
Time (m):

22.15 20.54 22.16 24.31 21.51 24.26 23.43 22.30 19.44 23.04

Table 6. Running times for the Middlebury datasets.

Tsukuba Venus Teddy Cones Wood1 Cloth4 Reindeer Dolls

Running
Time (m):

1.03 1.19 4.08 4.57 8.18 7.44 7.02 8.31

Disparity
Map
Resolution:

384 × 288 434 × 383 450 × 375 450 × 375 457 × 370 433 × 375 447 × 370 463 × 375

Maximum
Disparity:

15 19 59 59 71 69 67 73

5. Conclusions

In this paper, we present an accurate disparity estimation fusion model that “fused” the
advantages of the complementary nature of active and passive sensors. Our main contributions are
the texture information constraint and the multiscale pseudo two-layer image model. The comparison
results show that our method can reduce the error estimate caused by under- or over- segmentation
and has good performance in keeping object boundaries compared to using the conventional stereo
matching or the depth sensor alone. Furthermore, the proposed method provides an error rate
of 2.61% on the Middlebury datasets, compared to the average error rate 3.27% of the previous
state-of-the-art “fused” methods. It is clear that our method performs almost 20% better than other
“fused” scheme-based algorithms in the aspect of precision. In the future, we will investigate a more
accurate method for estimating the disparities of occluded pixels. We also intend to transform our
method to a parallel GPU implementation.
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Abstract: A MATLAB/SIMULINK software simulation model (structure and component blocks) has
been constructed in order to view and analyze the potential of the PSD (Position Sensitive Detector)
array concept technology before it is further expanded or developed. This simulation allows
changing most of its parameters, such as the number of elements in the PSD array, the direction
of vision, the viewing/scanning angle, the object rotation, translation, sample/scan/simulation
time, etc. In addition, results show for the first time the possibility of scanning an object in 3D
when using an a-Si:H thin film 128 PSD array sensor and hardware/software system. Moreover,
this sensor technology is able to perform these scans and render 3D objects at high speeds and
high resolutions when using a sheet-of-light laser within a triangulation platform. As shown by the
simulation, a substantial enhancement in 3D object profile image quality and realism can be achieved
by increasing the number of elements of the PSD array sensor as well as by achieving an optimal
position response from the sensor since clearly the definition of the 3D object profile depends on the
correct and accurate position response of each detector as well as on the size of the PSD array.

Keywords: three-dimensional sensing; arrays; three-dimensional image acquisition; optical sensing
and sensors; thin film devices and applications; three-dimensional image processing

1. Introduction

Sheet-of-light range imaging is an interesting technique that is used in a number of 3D object
rendering applications. Among the existing laser scanning techniques, a structured light triangulation
method is considered to be fastest when acquiring 3D data information from an object in real time [1].
Generally, sheet-of-light systems use digital sensors such as CCDs (Charged Coupled Devices) or
CMOS (Complementary Metal Oxide Semiconductors) [2], nevertheless, analog sensors such as
arrays of PSDs (position sensitive detectors) with reported sizes of up to a maximum of 128 have also
been employed [3,4]. The latter are fabricated using crystalline silicon, however, PSD arrays based on
amorphous silicon nip or pin structures also exist and have already been described elsewhere [5,6].
In this work, results show for the first time the possibility of scanning an object in 3D when using an
a-Si:H thin film 128 PSD array system and, in addition, a MATLAB/SIMULINK software simulation
has been constructed in order to view and analyze the potential of PSD array concept technology
before it is further expanded or developed. This study will enable the triangulation platform and
system to be further developed and enhanced for future needs identified during simulations. Inspired
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by the simulation, examples of improvements and future adaptations could be the inclusion of
suitable 360˝rotation plates, faster translation tables, more precise optics and laser lines as well
as larger sensor arrays depending of course on the limitations imposed by such a scenario. This
simulation allows changing most of its parameters, such as the number of elements in the PSD
array. The existing 128 PSD array sensor system, when mounted in a triangulation platform, is able
to perform 3D object profile scans at high resolutions and speeds with a large number of frames,
and this experiment was already presented here. Our previous works describe the implementation,
characteristics and behavior of such 32/128 PSD array sensor systems, as well as the manner in which
the scanned 3D object profile image is constructed thereby presenting a high speed sheet-of-light 3D
object rendering platform [7] using as sensor an array of 32 amorphous silicon position sensitive
detectors [6]. In the most recent work [8], we also exploited the 3D scanning optical characteristics of
such an inspection system.

Analog versus Digital Technology

The foreseen PSD array technology roadmap proposes the use of amorphous silicon or other
more suitable materials such as nanocrystalline silicon (which does not degrade as much), for the
fabrication of analog 32/128/256/512/1024 PSD array sensors. The latter are used to scan and
represent 3D profiles of objects in real-time [8], preferably at a greater speed than digital CCD or
CMOS-based systems.

AT-Automation Technology GmbH [9], manufactures the most advanced CMOS sensor based
sheet-of-light laser triangulation 3D cameras. They use digital sensors such as CMOS sensors (e.g.,
1280 ˆ 1024 pixels). The principle of application for these 3D sheet-of-light cameras is exactly the
same as the one used for the 3D PSD sensor system and thereby they are the most advanced direct
competitors in terms of speed, resolution and overall system performance, since they claim their
cameras are the fastest in the world. One of their cameras (C4-1280) reaches 40,000 profiles/frames
per second, when using 128 pixels and 128 rows of the sensors, representing only just a small part of
the whole sensor (1280 ˆ 1024 pixels).

Amorphous or nanocrystalline 32/128/256/512/1024 PSD array 3D sensors would be an
alternative to these CMOS cameras in similar application scenarios. The overall performance
between both technologies will be similar when using the 128 PSD sensor, however, amorphous or
nanocrystalline 256/512/1024 PSD array 3D sensors are expected to outperform these 3D CMOS
cameras when used in high speed 3D scanning applications. The reason for this is that the analog
structure of the PSD sensor is different to the traditional discrete sensor and thereby it can process
data much faster than a pixel-based structure. The resolution of these 3D CMOS cameras is quite
good, depending on the application, and, in some applications, they claim to reach resolutions of
about 35 μm or even 10 or 5 μm [9].

Therefore, it seems 3D cameras with digital sensors are already quite advanced and relatively
cheap. A complete set generally includes a camera, laser and lens but not the software; nevertheless,
third party software is readily available.

2. 128 PSD Array System 3D Object Profile Scanning

As already described in our previous work [7], an array of 32 amorphous silicon position
sensitive detectors, was integrated inside a self-constructed machine vision system as the vision
sensor component and the response was analyzed for the required application. Such work proposed
the use of these sensors and relevant systems for 3D object profiling even at high speeds. A
photograph of an amorphous silicon 128 element PSD linear array developed at CEMOP/UNINOVA
is shown in Figure 1.

143



Sensors 2015, 15, 29938–29949

 

Figure 1. Amorphous silicon 128 PSD array glued and wire bonded to a suitable chip carrier.

This device can also be regarded as a three-dimensional PSD, being simply an array of
one-dimensional PSDs mounted together in parallel to each other on a surface, where the separation
between them and the detector width defines the minimum discrimination in one direction (discrete),
while in the other (along the strip) it is continuous [6]. This type of structure has been specially
designed for sheet-of-light 3D shape measurement.

The experimental setup and procedure for obtaining 3D object profiles with the 32 PSD sensor
system were already described elsewhere [7,8] and these also apply for the 128 PSD sensor system.
Here, we show results for the detection of the same object when using the 128 PSD array sensor
system. The width of the rubber is small and it is only covered or detected by a few sensor channels.
In addition, in these trials, the translation table (and object) moved from one side to the other so that
the object (white color rubber), shown in Figure 2a, was scanned by the laser sheet-of-light system.

The object reflection was projected onto the active area of the 128 PSD sensor array. The
dimensions of the rubber object, as measured by an electronic ruler, were the following: Length,
41.90 mm; Width, 16.70 mm; and Height, 11.74 mm.

The total distance travelled by the translation table (object) or scanned distance was about
69.37 mm at a speed of about 0.197 cm/s. As already reported elsewhere [8], here the incident
scanning angle was fixed at 45˝ and the rate of acquisition was kept at 8 ms. The system integration
time was maintained at 1ms for all scans and for low noise purposes, results were acquired using
128 sub-samplings (128 sample average). The light intensity recorded on the active area of the 128 PSD
sensor array was 2.53 μW/cm².

The results obtained when channel 75 of a 128 PSD sensor array detects the light reflected by
the white rubber as a function of the scanned distance are illustrated in Figure 2b. The response was
acquired at 65 frames per second leading to 2289 frames in total.

The maximum resolution that can be obtained with an acquisition time of 8 ms derives from
the number of maximum possible frames acquired in one second taking into account the lowest
possible scanning speed. Therefore, 1/0.008 s = 125 frames per second is the maximum possible
acquisition frame rate at present (WINDOWS limitation) for this particular system configuration.
Using the previously referred to acquisition time of 8ms and speed of 0.197 cm/s, a calculated
scanning resolution of around 15.76 μm should be expected (0.00197/125 = 15.76 μm). However,
in reality it takes more than 30 μm to acquire each frame, mainly due to software execution internal
timings, etc.

The response shown in Figure 2b corresponds fairly well to the measured length of the rubber
object being 41.90 mm as measured by an electronic ruler. Channel 75 of the sensor detects a signal
for about 41mm. The difference in the position of the laser line reflected on the sensor active area [8]
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in Figure 2b (Y-axis) corresponds to the height of the rubber. The real measured height of the rubber
being 11.74 mm is equivalent to a height of about 3 mm (from 0 mm to 3 mm on the Y axis) measured
of course on the sensor active area after a lens reduction [8].

Figure 2. (a) Photograph of a white rubber object; (b) 3D object profile representation for the
individual detection of channel 75 from the 128 PSD array sensor.

The stability of the profile detected is acceptable, even though a slight flickering is observed,
which could be attributed to vibrations caused by the translation table during the scanning
procedures as well as to the noise of the sensor.

3. 3D Sensor MATLAB/SIMULINK Simulation

A MATLAB/SIMULINK model has been constructed in order to analyze and view the
possibilities of the PSD array sensor technology before it is further expanded or developed.

The simulation reads any “PLY” 3D data file located inside a predefined directory. In our case,
the file “teapot.ply” is used. This file contains the raw 3D cloud data of the object that is to be scanned
in 3D, and, in this case, it is a teapot; however any other predefined 3D object can be employed.

When the function “ply_read.m” is executed, the simulation reads the object. Two matrices,
“[Tri, Pts]”, are then recorded, one regarding the triangular connectivity information (triangle faces)
and another regarding the VERTEX information (vertex or 3D points) of the object to be scanned in
3D within the simulation.

Figure 3 shows the structure of the simulation model with all its component blocks. Relevant
blocks from this SIMULINK model are explained.
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3.1. Initial Rotation

The object can be rotated before starting the scan. Any angle of initial rotation can be defined,
e.g., (15˝), however it should be entered/translated to radians (instead of degrees), so for 15˝ case,
the term 15π/180 should be inserted. The default value is 0.

3.2. Rotation Velocity

The velocity of rotation is defined as the speed in which the object rotates per second.
For example, a value of 36˝ per second could be inserted since the default value of the simulation is
10 s and this would result in the object rotating 360˝ in 10 s. The default value is 0. The value should
be inserted in radians per second, instead of degrees, so therefore it would be 36π/180 or 2π/10. If we
are only interested in rotating the object without translating, we can change the velocity of rotation
to 2π/10 and change the translation velocity to 0 so that the object does not move. In addition, we
can set the initial position to 0 so that the object is right below the lens and a better scan would be
obtained in this particular case.

 

Figure 3. Structure of the SIMULINK simulation model with all its component blocks.
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3.3. Translation Velocity

The translation velocity is defined as the speed in which the object translates, per second, in the
X direction (X-axis). For example, a value of 1 cm/s could be inserted. The default value is 1. Thus,
in order to rotate and translate the object at the same time, a value of rotation velocity of for example,
2π/10 can be inserted in combination with the default value of 1cm/s for the translation velocity and
the default value of initial position of ´5 cm (see Section 3.4)).

3.4. Initial Position

This value determines the position (generally in the x-axis) where the object starts to be scanned
in relation to the 0, 0, 0 (x, y, z) point or center of the system, perpendicular to the lens and 3D sensor.
The default value is ´5 cm in the X-axis, which is from where the object starts to be scanned along
the X-axis. The center position is at the value x = 0, right below the lens.

3.5. Object Points

This value refers to the “Pts” matrix of points or (x, y, z) array of points returned by the
ply_read.m function.

3.6. Object Faces

This value refers to the “Tri” matrix of faces or triangular order for the connectivity of the points
returned by the ply_read.m function.

3.7. Angle of Incidence

This is the viewing or scanning angle, which exists between the laser and the normal to the
lens/sensor system. A default value of 45π/180 has been set (45˝ in radians), however it can be
changed in order to scan the object at various other angles. For example, a viewing/scanning angle
of 15˝ will yield a different result to a 45˝ angle, since the laser would be projected differently and on
different parts/sides of the object.

3.8. Direction of Vision

This parameter indicates the direction in which the lens/sensor system is viewing the object.
This parameter is composed of three coordinates (x, y, z). The default value is [0, 0, ´1], indicating
that the direction of vision is downwards in the ´Z direction (negative Z-axis). In our system setup,
this value is currently fixed since the object is passing and is being scanned below the lens/sensor
system as it moves in the X-axis.

3.9. Displacement

This SIMULINK block calculates the displacement taking into account the parameters of
translation and rotation velocity. The displacement is calculated as the simulation runs on every
sample interval.

3.10. Focal Distance

This is the focal distance provided by the physical lens used in the real system setup, which, in
this case, is set to a default value of 5 cm. Of course, in this simulation, it can also be changed to
other values.

3.11. Lens Centre

This parameter defines where the center of the lens is located with reference to the 0, 0, 0 (x, y, z)
point, which is located where the object meets the normal of the lens/sensor system. The default
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value is [0, 0, 24], so this means that the center of the lens is located 24 cm above the [0, 0, 0] reference
point, so 24 cm in the Z-axis (upwards). This corresponds to the reality, since in the real system setup,
the center of the lens is also located 24 cm above the [0, 0, 0] reference point.

3.12. Laser/Object Intersection Calculation and Visibility

This SIMULINK block considers the points of the object, the triangular object faces formed by
those points from the object, the direction of vision, the viewing/scanning angle of the laser and the
laser sheet of light itself in order to calculate the intersection of the object points/faces with the laser.
The visibility of those intersecting points is also determined.

For a 32 PSD sensor, the physical number of detectors on the sensor is 32 and thereby the
“numrays” variable defined in the code of the SIMULINK block is set to 32. This variable may be
changed by accessing the code in the MATLAB workspace and by simply modifying the value of
“numrays = 32” to any other value, taking into account that usually the physical number of detectors
in these kind of PSD array sensors should vary from 32 through to 128, 256, 512 or 1024. The higher
the number of detectors, the higher the resolution in the Y- axis.

Once the value is modified, the model should be “re-built” and thereafter updated using the icon
“Build Model” on the MATLAB menu bar. The SIMULINK model should now be ready to “RUN”
with the new value.

3.13. Projection on the Sensor

This SIMULINK block calculates and performs the 2D projection of the scanned object points or
2D frames on the sensor active area at each sample interval as the simulation runs.

3.14. Triangulation

This SIMULINK block uses the triangulation formulae and its relevant parameters in order
to calculate the 3D coordinates (x, y, z) of each of the scanned points from the object at each
sample interval.

3.15. 3D Object Rendering/Reconstruction

This SIMULINK block uses the previously calculated 3D coordinates and 2D frames to
reconstruct or render the object shape in 3D. The 3D object mesh of points is plotted as a 3D map
at each sample interval as the simulation runs.

3.16. Points

The matrix or array of points is returned to the MATLAB workspace at each sample interval.

3.17. Visible

The matrix or array of visible points is returned to the MATLAB workspace at each
sample interval.

3.18. Running the Simulation

The simulation is compiled and run with the default parameters for each block; however, as
already described, most of these can be modified to suit the needs of the required 3D scan.

Figure 4 shows the simulation running when the default parameters were used and Figure 5
presents the simulation results at the end of the simulation.

In Figures 4 and 5 the teapot was scanned and rendered using a 0.2 s sample time at a 45˝
scanning angle, a translation velocity of 1 cm/s, an initial position of –5 cm and no rotation velocity
(0). At the end of the simulation, the relevant scanned 3D object generated data can be exported
and, in that case, a file of “xyz” format called “puntos.xyz” is stored in a predefined directory. The
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file “puntos.xyz” can now be opened using a 3D mesh visualization program, such as MESHLAB.
Figure 6a shows the generated file “puntos.xyz” opened in MESHLAB. Here, the teapot (object),
which was scanned in the 3D sensor simulation, is illustrated and we can ZOOM IN, rotate and have
a closer look at the resulting mesh of 3D points. Figure 6b shows the best 3D scanning results obtained
when using a 32 PSD array sensor, starting at the default initial position of –5 cm, translating 1 cm/s,
rotating 360˝ 10 times in 10 s, while using a sample time of 1/360 s.

 

Figure 4. Simulation running when default parameters were used.

 

Figure 5. Simulation results at the end of the 3D object scan simulation.

(a) (b) 

Figure 6. (a) Scanned teapot (3D point mesh) viewed in MESHLAB; (b) Best 3D scanning result
(3D point mesh) viewed in MESHLAB, obtained with a 32 PSD sensor array.
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3.19. Expansion of the PSD Array Size

As referred to in Section 3.12, the default number of simulated detectors on the sensor is 32 and
can be expanded to any desired value, although the proposed sizes are 128, 256, 512 and 1024. The
higher the number of detectors, the higher the resolution in the Y-axis and the higher the definition
and quality of the 3D scanned object. Such a fact is clearly noticeable in Figure 7a–e, where we can see
how the number of points or vertices of the scanned 3D object increases as we increase the number of
detectors in the PSD sensor array.

 
(a) (b) 

 
(c) (d) 

(e) 

Figure 7. Expansion of the simulated PSD array size: (a) 32 PSD; (b) 128 PSD; (c) 256 PSD; (d) 512 PSD;
and (e) 1024 PSD.
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3.20. Object Resolution

The “teapot.ply” object file used in this simulation has 279 vertices and 500 faces. A lower
resolution “teapot.ply” file does not affect the outcome of this research since the simulation calculates
the point of intersection of the laser line with the surface of the object at each time frame and so
it is scanning exactly what comes in the file. Even if the object’s resolution is lower or higher, the
simulation will still scan the object’s surface at the intersection points between the laser line and the
object. Therefore, the resolution does not depend on the number of vertices or faces and it will scan it
as it is.

Since “teapot.ply” is composed of polygon faces that do not exactly represent the 3D profile of a
real teapot composed of curved surfaces, a file with the highest possible resolution will of course best
mimic the object being 3D scanned/simulated and provide the most precise estimate of a real teapot.

4. Triangulation Platform Configuration and Formulae

The triangulation configuration sketch and formulae derived by Park and DeSouza (see Figure
6.4 in reference [10]) was used to construct the simulation depicted in Figures 6 and 7 which
corresponds to the real physical triangulation 3D sensor system scenario, which is being simulated in
this SIMULINK model.

The coordinates of each of the 3D scanned points are calculated in accordance to the properties
of similar triangles.

The Z-coordinate is calculated using the following expression [10]:

z “ f b
p ` f tan θ

(1)

where f is the focal length of the camera, p is the image coordinate of the illuminated point, θ is the
incident/scanning angle, Xc and Zc (see Figure 6.4 in reference [10]) are two of the three principle
axes of the camera coordinate system, respectively, and b (baseline) is the distance between the focal
point and the laser along the Xc axis (see Figure 6.4 in reference [10]).

The X-coordinate is calculated using the following expression [10]:

x “ b ´ z tan θ (2)

The Y-coordinate is calculated using the following expression also from the principle of
similar triangles:

y “ Yq
z

(3)

where y is the distance along individual detectors on the sensor measured from the middle point of
the sensor on the Y-axis on the sensor active area, Y is the distance measured from the middle point
of the translation table (where object is placed) along the Y-axis within the scanning area, q is the
distance between the sensor and the lens which is not the focal distance f, and z is the perpendicular
distance between the lens and the object or the Z coordinate.

The error in the Z-coordinate measurement, Δz, is obtained by differentiating the equation of the
Z-coordinate (Equation (1)), and the resulting expression is illustrated below [10]:

Δz “ z2

f b
Δp ` z2sec2θ

b
Δθ (4)

where Δp and Δθ are the measurement errors of p and θ, respectively.
The results obtained by the physical sensor system (e.g., Figure 2b) when measuring object

profiles in 3D conclude that the error of the sensor system when detecting objects in the existing
triangulation platform setup is of ~5% in the X-axis and of ~5.6% in the Z-axis, which could be
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attributed to possible vibrations of the translation table (object) movement during the scanning
process as well as to sensor noise. Signal fluctuations (noise in the signal) on the scanned profile
define the object measurement error in the Z-axis and the maximum and minimum values of such
fluctuations define such error interval.

5. Conclusions and Future Work

It has been demonstrated that a-Si:H 128 PSD sensor arrays and their corresponding systems
work correctly and can be used as high speed and high resolution sheet-of-light 3D object scanning
systems. The constructed simulation shows a huge potential for the proposed 3D sensor technology,
which is clearly able to compete with the most advanced CMOS sensor-based sheet-of-light laser
triangulation 3D cameras. Improvements are needed in order to achieve 100% correct sensor position
response, especially for the 128 PSD array sensor and such a goal could be attained by fabricating
a sensor using a different material, such as nanocrystalline silicon, which hardly degrades the
overall position response of the structure over time. Other foreseen restrictions are expected when
miniaturizing the sensor, for example to 256, 512 or 1024 elements, now that even if the technology
for that purpose exists, problems may occur during material layer fabrication procedures, such as
possible short circuiting in sensor channels, etc. Other limitations exist within the triangulation
platform. Better optics and equipment can be used to improve the 3D detection setup overall.
Anti-vibration and sensor noise reduction measures could be introduced, too. However, system
hardware and software do not need to be enhanced.

The successful integration of amorphous silicon PSD array sensors into suitable sheet-of-light
3D object rendering systems is now possible and feasible. The quality and realism of the 3D object
profiles depends on the correct and accurate position response of each detector from the sensor as
well as on the size of the PSD array, meaning that the higher the number of PSDs integrated on the
array, the higher the 3D object profile resolution on the discrete sensor axis, and, subsequently, the
higher the number of total image 3D scan points.
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Abstract: This study proposes an obstacle detection method that uses depth information to allow the
visually impaired to avoid obstacles when they move in an unfamiliar environment. The system is
composed of three parts: scene detection, obstacle detection and a vocal announcement. This study
proposes a new method to remove the ground plane that overcomes the over-segmentation problem.
This system addresses the over-segmentation problem by removing the edge and the initial seed
position problem for the region growth method using the Connected Component Method (CCM).
This system can detect static and dynamic obstacles. The system is simple, robust and efficient. The
experimental results show that the proposed system is both robust and convenient.

Keywords: obstacle detection; Kinect; depth map; travel aid

1. Introduction

According to new statistics [1], there are 285 million visually impaired people relying on the guide
cane or guide dogs to move around freely in the world. However, not every visually impaired person
can easily pair successfully with guide dogs and there is often a long wait for an animal.

Most visually impaired people use a cane to touch an obstacle, to assess the position of the
obstacle and avoid it. Sometimes at the point when they touch the obstacle, the danger is unavoidable.
These two methods for travel are neither convenient nor safe. Using computer vision technology
reduces this problem. The efficient detection of obstacles is important. In recent years, there have
been many developments in computer vision for this field. Many studies have proposed obstacle
detection methods. In [2] Obstacle detection can be classified into three categories: Electronic travel
aids (ETAs), electronic orientation aids (EOAs) and position locator devices (PLDs). However, this
paper classifies obstacle detection into three categories. One uses non-depth information, a second
uses depth information and the third uses neither.

There are many proposed methods for the first category, such as [3–8]. Ma et al. [3] proposed an
object detection algorithm that uses edges and motion. The motion-information is used to determine
the dynamic obstacles and the edge-information is used to determine obstacles. This information is
combined with free space detection to determine the position of the obstacles. Zhang et al. [4] proposed
an obstacle detection algorithm that uses a single camera. This uses edge detection to segment objects.
However, these methods require a simple texture for the surface of the ground. Chen et al. [5] proposed
an obstacle detection method that uses a saliency map. This uses a threshold value to determine the
position of the obstacles. However, this method requires that there are few obstacles in the execution
environment. Ying et al. [6] proposed an obstacle detection method that uses a gray-scale image. This
method searches the region of interest (ROI) in the gray-scale image and then determines the location
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of obstacles. However, this method uses a gray-scale image, so it is easily affected by illumination.
These methods are very robust if there is sufficient light, but not if there is insufficient light. The
proposed system uses Kinect directly to capture the depth map, so it addresses these drawbacks.

The second category of methods for obstacle detection is been proposed in [9–24]. These methods
detect obstacles using depth information. This is obtained from various capture devices, such as
stereovision cameras, Leap Motion controllers [25], laser rangefinders [26], RealSense 3D Cameras [27]
or Kinect sensors. Zollner et al. [8] just given a proof-of-concept idea of a mobile navigational aid, but
the implementation of the proposed Kinect application was lacked. Filipe et al. [10] applied Neural
Network to extract the features from the depth information captured by Kinect sensor and the extracted
features are enabled to detect possible obstacles. In general, depth information of obstacles is really
similar to the surrounding floor (ground plane) and the trained NN may be hard to separate the
obstacles from the floor. Hotaka et al. [11] proposed Kinect cane system and tactile inform system, that
is different from ours. Above three papers don’t remove ground plane from depth map. However,
our proposed system resolves the over-segmentation problem by removing the edge and the initialize
seed position problem for the growth method (RGM) using the Connected Component Method (CCM).
The RGM concept is simple. We only need a certain numbers of seed point to represent the property
we want, then grow the region. The vocal inform system of our proposed system is more intuitive.
And we do not change cane of visually impaired people. Zhang et al. [12] proposed an obstacle
detection algorithm that uses a U-V disparity map analysis. This combines straight-line fitting and the
standard Hough Transform [28] to determine the location of obstacles. However, the U-V disparity
map is generated using two webcams, so the degree of illumination affects the performance of the
system. In [13], Gao et al. use a 3D camera to obtain the depth map. This study combines straight-line
fitting, the standard Hough Transform and a U-V disparity map to determine the location of obstacles.
Choi et al. [14] used a Kinect sensor to obtain color images and depth maps (RGB-D images). This
study uses edge detection for both color images and depth maps and then processes these edge images
by morphology [29]. The results for the two images are then combined to determine the position of
obstacles. However, the color image used in this study is still affected by illumination and the ground
plane affects obstacle detection. The proposed system addresses these two problems.

For the third category of systems for obstacle detection, Brock et al. [30] used a vibrotactile belt
to convey the position and distance to an obstacle using the position and strength of the vibrations.
For more detail about a vibrotactile belt, please refer to [31]. The vOICe’s Glasses for the Blind [32]
are a wearable device that is equipped with a webcam and translates video data into a sound stream.
Mann et al. [33] presented a novel head-mounted navigational aid that uses Kinect and vibrotactile
devices built onto a helmet.

The method detailed in [34] does not process the ground, but segments object directly to calculate
the standard deviation using an object’s depth value and then determines whether it is an obstacle
using the scale of the object’s standard deviation. Although this detection method is simple, smaller
objects on the ground are not detected. The proposed system filters the ground out before obstacle
detection is begun, so this issue is eliminated. The system used in [35] is an autonomous navigation
system that uses a finite state machine that is taught by an Artificial Neural Network (ANN) in
an indoor environment. The system used in [36] uses machine learning for this field. The design
goals for the proposed system are cost-efficiency, robustness and convenience. The system must
address the ground plane problem, in order to detect rising stairs, descending stairs and static and
dynamic obstacles.

The remainder of the paper is organized as follows. Section 2 gives a system overview and the
details of the system. Section 3 gives the experimental results for different environments and the
experimental results for two blind subjects and ten blindfolded subjects. Finally, a conclusion and
details of future work are given in Section 4.
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2. Proposed Methods

2.1. System Architecture

The proposed system flowchart is shown in Figure 1. Firstly, the morphology is dilated and eroded
to remove the distracting noise of the depth map and the Least Squares Method (LSM) in a quadratic
polynomial is used to approximate ground curves and to determine the ground height threshold in
the V-disparity. The system then searches for dramatic changes in the depth value, depending on
the ground height threshold, to determine stair-edge points. The Hough Transform is then used to
determine the location of the drop line [37]. In order to strengthen the characteristics of the different
objects and to overcome the drawbacks of the region growth method [38], edge detection is used to
remove the edge. The ground height threshold and the features of the ground are then used to remove
ground plane. The system then uses the region growth method to label the tags on different objects
and analyzes each object to determine whether the object is a stair. Finally, the system allows users to
navigate and gives them a vocal message about the distance to the obstacle and the obstacle category
using Text To Speech (TTS).

 

Figure 1. The system flowchart.
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2.2. Noise Reduction

Because of the limitations of the Kinect hardware, a depth map can be broken. In order to make
the depth map more complete, some simple morphology processing is used. This paper uses a closing
operation for morphology to repair the black broken areas. Figure 2 shows that the processed depth
maps are better than the original depth maps.

 

Figure 2. Noise Removal. (a) Original depth map; (b) Processing result; (c) Original depth map;
(d) Processing result.

2.3. Ground Height Detection

A UV disparity map is composed of the U disparity map and the V disparity map from the depth
map. Figure 3 shows that the V-disparity [39] concept simplifies the process of separating obstacles
in an image, where “V” corresponds to the vertical coordinate in the (u, v) image coordinate system.
Similarly, the U-disparity concept simplifies the process of separating obstacles in an image, where “U”
corresponds to the vertical coordinate in the (u, v) image coordinate system.

A UV disparity map [40] is a statistical method that is similar to a histogram. However, the
statistical target is different. The proposed system only uses V-Disparity because the effect is better.
Figure 4a shows that this table is a depth map. The statistics for different depth values are gathered,
row-by-row, and the results are shown in Figure 4b. For example, there are 15 zeros in row one in
Figure 4a, so the position of Row 2 and Column 1 in Figure 4b records this value (15). This means that
the depth value, 0, has an image height of 15.

 

Figure 3. The relationship between the depth map and the V-disparity. (a) Depth map; (b) V-disparity.
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Figure 4. A schematic diagram of the V disparity map. (a) Depth map; (b) V disparity map.

The detection needs for subsequent steps require that noise must be removed from the captured
depth map this must be projected into the V disparity map, as shown in Figure 5. The Y-axis height of
the V disparity map corresponds to the Y-axis height of the depth maps, as shown in Figure 5, so the
vertical length of an image represents the height of the actual object in the image. If the object is closer
to the right side of the depth map, the distance between the object and the sensor is greater. The greater
the pixel value in the V disparity map, the bigger is the object in the image. The normalization equation
for the cumulative amount of depth is shown in the following equation. The cumulative value must
be between 0 and 255. The cumulative value is statistical value of depth value of the row of the V
disparity map image, and the Max cumulative value is image wide value of the depth map:

Depth cumulative value =
cumulative value

Max cumulative value
∗ 255 (1)

According to [11], the ground is a rising curve in a V disparity map. The LSM is used to determine
the equation of the curve, as shown in Figure 6 and Equation (2).

Figure 5. (a) The depth map with noise removed and (b) the V disparity map image.
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Figure 6. The ground curve in V disparity map. (a) Segment consisting of points (red); (b) The line of
the equation (red).

ay2 + by + c = d (2)

where a, b and c respectively represent the parameters of the equation, y is the image height and d is
the horizontal axis value (0 to 255) in the V-disparity map. However, we want to find out a quadratic
equation to closer ground curve strip, then use it to remove ground plane. The ground plane is not
only a simple line in the V-disparity map. Because pixels that are the same height in a depth map
can have a different depth value, the curve becomes a strip, so several approximation targets, such as
the minimum, the maximum, the mean and the specific value of every row of V-disparity map are
used (the rightmost value of the strip, the leftmost value of the strip, the middle value of the strip on
x-axis).When the obstacle is on the ground, these methods do not work. To address this problem, the
proposed method uses the quadratic offset equation, which is shown as Equation (3):

TH1 = ay2 + by + c − o f f set = d − o f f set (3)

where TH1 is the shifted threshold depending on the ground height. The ground height threshold
value indicates a height in the depth map and the minimum value cannot be less than TH1. The
appropriate offset value is 35, which is obtained through experience. The offset value affects the
removal of the ground, so several offset values, such as the minimum, the maximum, the mean and
the specific value, are tried. The offset value controls the location of the approximation curve for
the disparity map. The quadratic offset equation is the fastest and simplest method. Comparing the
disparity map in Figure 7 with that in Figure 8, it is seen that the depth value of the ground plane
(background) is greater than the depth value of the obstacle (foreground) for the same height. Figure 9
shows that the mean method (no offset) does not completely remove the ground plane. Therefore,
the maximum method does not remove the ground plane either. In contrast, the minimum method
is perhaps the best, but the depth of the obstacle interferes with this method. Because the depth
value for the background is greater than the depth value for the foreground for the same height in the
V-disparity, the minimum method cannot be used directly. Using the LSM to subtract the specific value
is the best method, as shown in Figure 10. Figure 11 shows that Equation (3) improves the robustness
of the system.
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Figure 7. The scene without people. (a) Real scene; (b) V-disparity; (c) Depth map.

 

Figure 8. The scene with people. (a) Real scene; (b) V-disparity; (c) Depth map.

 

Figure 9. No offset. (a) Real scene; (b) No LSM Curve; (c) LSM Curve without offset; (d) Depth map.

 

Figure 10. Offset value = 20. (a) Real scene; (b) No LSM Curve; (c) LSM Curve without offset;
(d) Depth map.
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Figure 11. The result of the offset. (a) Original depth map; (b) Result image before offset; (c) Result
image after offset.

2.4. Removal of the Edge

In the depth map, the depth represents the distance between the objects and the sensor. The
variation in depth demonstrates whether the obstacles are the same. Variations in depth are usually not
too significant for a specific object. If there are different objects, the relationship between the distances
causes a significant variation in the depth. In this paper, in order to clarify the characteristics of
different objects, the strong edge is removed. There are many edge detection methods, such as Roberts,
Prewitt, Sobel, Laplace and Canny. In this paper, a function to detect the edge uses the following
Equation (4):

P(x, y) =

⎧⎨
⎩

0 , i f ∑
xn ,yn∈Sn

|P(xn, yn)− P(x, y)| ≥ TH2

unchange , others
(4)

 

Figure 12. Removal of the edge. (a) Noiseless image; (b) Processing result; (c) Noiseless image;
(d) Processing result.

The processing result is shown in Figure 12. Here, P(·) represents the pixel value of the coordinates
(x, y) and TH2 represents the threshold. If P(xn, yn) is P(x, y)′s neighboring pixel and Sn is a set of
P(x, y)′s neighboring pixels and the image is traversed using Equation (4), then the edges in the
image can be detected. When all of the edges in the depth map are found, objects can be isolated, so
segmentation is accurate.
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2.5. The Detection of Descending Stairs

In this section, a method to search and record points that exhibit significant variation from the
noiseless image is proposed. In this study, the pixel values are larger than the setting threshold (50)
and are defined as significant variation. The ground height threshold (TH3) is then used to filter
out possible points, as shown in Figure 13a. These depth values of vertical adjacent point are very
difference. After filtering, they become a group of points. We call these points “possible points”. In
depth map, the Hough Transform technique transforms the possible points into edge line of descending
stairs. The Hough Transform technique then transforms the filtered points into a horizontal line, as
shown in Figure 13b.

Figure 13. The results for the detection of descending stairs. (a) Suspicious points of downstairs depth
map; (b) The results of the Hough transform.

2.6. Removal of the Ground

If connected component labeling or other labeling methods are directly used to label tags, it is
difficult to separate the obstacles from the ground, because the junctions between the ground and the
obstacles have the same depth value. Therefore, the information for the ground must be removed.
RANSAC plane fitting [35,37] is used to determine the ground plane in the 3D space. Because the
sensor cannot be fixed, the calculation of the ground information requires an iterative approach. In
order to improve the speed of the system, [38] and the following information are used to filter out
the ground: (1) The ground is usually relatively flat and (2) Using the information on depth, the
gray value varies from large to small (from far to near). (3) Only the large areas of the ground are
required, so Equation (5) is used. Using these features, the planes of interest meet three conditions.
The regions and the sizes of the different planes of interest are determined and then the ground plane
is removed using Equation (5), which has a large area. The processing result is shown in Figure 14.
These separated objects are label as different color in Figure 15. The least squares method (LSM) in a
quadratic polynomial is used to approximate the ground curves and to determine the ground height
threshold in the V-disparity:

Ground(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , P(x, y)− P(x, y − n) ≥ 2

∧ n−1∩
i=0

P(x, y − i)− P(x, y − i − 1) ≥ 0

∧ P(x, y) > TH1
unchanged , others

(5)

where P(·) and Ground(·) represent the pixel value of the coordinates (x, y), n determines the range
(n = 10) and TH1 represents the threshold (TH1 = 35). These characteristics of ground plane in depth
map must meet the following three points: (1) Depth values of horizontally adjacent points of ground
plane are almost the same; (2) Depth values of vertically adjacent points of ground plane are gradient;
(3) Depth values must be greater than TH1.
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Figure 14. Removal of the ground. (a) Edge removed image 1; (b) Processing result of (a); (c) Edge
removed image 2; (d) Processing result of (c).

 

Figure 15. Labeling. (a) Ground removed image; (b) Labeling result; (c) Ground removed image;
(d) Labeling result.

2.7. Labeling

The reason of using the labeling is easy to observe the experiment. After observations, we can stop
this function, and then the performance is better. The Connected Component Method (CCM) and the
region growth method [13,41] are the most common methods of labeling. The connected component
method is used for a 2-D binary image. It scans an image, pixel-by-pixel (from top to bottom and left
to right), in order to identify connected pixel regions, i.e., regions of adjacent pixels, that share the
same set of intensity values. CCM can be either 4-Connected Component or 8-Connected Component
for two dimensions. The Connected Component Method can be a 6-connected neighborhood, an
18-connected neighborhood, or a 26-connected neighborhood for three dimensions. The disadvantage
of the connected component method is that it is time-consuming.

A Region Growth Algorithm (RGA) is a simple, region-based image segmentation method. RGA
is suitable for a gradient image. A Seeded Region Growth Method (SRG) [42] is a type of RGA.
SRG is rapid, robust and allows free tuning of a parameter. SRG is faster than CCM, but it allows
over-segmentation there is a problem with the initial positions of seeds. We briefly conclude the
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advantages and disadvantages of region growing. The advantages of region growing are as follows:
(1) Region growing methods can correctly separate the regions that have the same properties we
define; (2) Region growing methods can provide the original images, which have clear edges the
good segmentation results; (3) The concept is simple. We only need a small numbers of seed point
to represent the property we want, then grow the region; (4) We can determine the seed point and
the criteria we want to make; (5) We can choose the multiple criteria at the same time; (6) It performs
well with respect to noise. The Disadvantage of region growing as following: Noise or variation of
intensity may result in holes or over-segmentation. We proposed system could solve this disadvantage
of region-growing techniques.

The sensing range of Kinect is 0.8 to 4.0 m. When the range is greater than the maximum distance,
it cannot determine the distance, so the distant information must be removed. In order to measure
distances accurately, the distance information for less than 3 m is retained.

Different tags are then placed on different objects. The general labeling methods use eight
connected component labeling and region growth, but tag harmonization for connected component
labeling requires much iteration, because of the complex shape of the connected area:

S(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(i, j), i f [ (P(i − 1, j − 1) = 0)
Λ(P(i, j − 1) = 0)
Λ(P(i + 1, j − 1) = 0)
Λ(P(i − 1, j) = 0)
Λ(P(i, j) �= 0)]

not seed, others

(6)

Equation (6) is 8-connnected of image processing. According to neighbor state of P(i, j), to
determine P(i, j) belongs to which seed (classification). Here, S(i.j) represents the seed coordinate and
P(i, j) represents the pixel value at the coordinate (i, j).

In order to increase the efficiency of the system, Connected Component Region Growth is used.
Traditional region growth initially sprinkles some seeds in the image. If the distribution of the
sprinkled seeds is not appropriate, the growth results are imperfect, so the choice of the initial position
of the seeds is improved in the proposed system. Information about object edges is used. Because
the previous step removes the edge information for an object, each object is isolated by black color.
Equation (6) and the mask for the initial seed are used to select the coordinates of initial seeds, as
shown in Figure 16. These coordinates are then used to execute region growth. This ensures that each
object has an initial seed and that any growth is not been repeated. Therefore, a system to reduce the
amount of computation is proposed. The processing result is shown in Figure 17.

 

 

Figure 16. The mask for the initial seed.
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Figure 17. The results for obstacle detection. (a) Bright indoor; (b) Bright indoor; (c) Low-light indoor;
(d) Low-light indoor.

2.8. The Detection of Rising Stairs

The system then analyzes each of the tagged objects individually, to determine whether the
object is rising stairs because of a change in depth. The rising stairs depth value has a hierarchical
characteristic, from top to bottom and from large to small. When the obstacle fulfills these
characteristics, it is determined to be rising stairs. The detection results are shown in Figure 18.

Figure 18. The detection of rising stairs. (a) Satisfied conditions of a suspicious plane; (b) Upstairs
detection image.

2.9. The Labeling of Objects and Informing the User

This system labels objects with rectangle. It shows the information about detected objects on the
image and the distance of the obstacle or the staircase. The results are shown in Figure 19.

Finally, the system uses Text-To-Speech (TTS) software [43]. When the obstacle is in front of the
user, the system vocally informs the user of the distance to the obstacle and the obstacle category.
When the system detects stairs, it gives the direction and the distance to the stairs to the user to
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ensure the user’s safety. This vocal alarm is very short and focuses on concise information about the
closest obstacle.

 

Figure 19. The result of labeling.

3. Experimental Results

A Microsoft Kinect sensor is a tool that captures images, as shown in Figure 5 and Table 1. The
experimental platform is Windows 7. The programming language is Visual C++ 2010 with Opens
2.3, running on a notebook with an Intel(R) Core(TM) i5-3210M CPU@2.5GHz 8G 64 bits. The image
resolution is 640 × 480 and the depth map capture rate is 30 frames per second. The sensing range is
0.8 to 4.0 m.

A Kinect sensor uses structured light methods to give an accurate depth map of a scene. Both
the video and depth sensor cameras in the Kinect sensor have a 640 × 480-pixel resolution and run at
30 FPS (frames per second). There are two cameras and an IR projector. One camera is for color video
and the other one with the IR Projector is for the depth map. Currently, there are two categories of
SDK for Kinect: Open NI and Microsoft Kinect for Windows SDK.

Kinect configuration height and distance accuracy are related. If possible, the Kinect sensor keeps
horizontally that experiment results are better. The Kinect sensor configuration is as shown in Figure 20.
Our Kinect sensor is totally fixed on a helmet or chest and waist.

 

 

Figure 20. The Schematic diagram of the Kinect configuration for different stature person. (a) A short
person; (b) A medium stature person; (c) A tall person.

Infrared rays are easily affected by sunlight [44]. The Kinect sensor depends on emitted infrared
rays to generate a depth map, so the Kinect sensor has some hardware limitations. The Kinect sensor
is easily affected by sunlight, so it can only be used for environments that lack sunlight, such as a
night scene, a cloudy day or indoors. It is worthy of note that the Kinect sensor is not totally useless
outdoors, but it cannot be used in sunny environments.

In this section, all of the experiment images are random images taken from the experiment.
The experiments are divided into two different environments: simple and complicated. A simple
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environment does not include stairs and a complicated environment has stairs. Both environments are
situated indoors and outdoors, with sufficient and insufficient light. The experiments use different
brightness values for the indoor and outdoor environments and for with stairs and without stairs.
Figure 17a,b shows the results for a bright indoor environment. Figure 17c,d shows the results for a
low-light indoor environment. When obstacles are in front of the user, the system vocally informs the
user of the distance to the obstacle.

3.1. System Testing in a Simple Environment

This section details the success rate for obstacle detection in a simple environment without stairs.
In this study, an object that affects the path of a user is defined as an obstacle. If an obstacle is labeled,
the detection is successful. If not, there is a failure to detect.

3.2. An Indoor Environment under Sufficient Light

The detection success rate and the failure rate are shown in Table 1. As shown in Figure 21, indoor
ground is flatter than outdoor ground so the projection distribution of the ground in V-disparity is
more concentrated. The success rate is excellent when the ground in the depth map is removed using
the ground height threshold in the V-disparity. There are some failures due to the material nature of
objects, such as a large expanse of transparent glass or smooth metal.

Table 1. The success rate and the failure rate for the detection of obstacles.

Frame Amount (Total 2265 frames) Percentage (%)

Success 2201 97.17%
Failure 64 2.83%

 

Figure 21. The detection of an obstacle indoors under sufficient light. (a) Corridor 1; (b) Laboratory 1;
(c) Corridor 2; (d) Laboratory 2.
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3.3. An Indoor Environment under Insufficient Light

The detection success rate and the failure rate for obstacle detection are shown in Table 2. As
shown in Figure 22, the depth information is not affected by illumination because it is obtained from
the Kinect sensor. Indoor ground is flatter than outdoor ground so the projection distribution of the
ground in V-disparity is more concentrated. The success rate is excellent when the ground in depth
map is removed using the ground height threshold in the V-disparity. The nature of the material of an
object in the scene influences the success rate, for example, glass or metal.

Table 2. The success rate and the failure rate for obstacle detection.

Frame Amount (Total 213 frames) Percentage (%)

Success 206 96.71%
Failure 7 3.29%

 

Figure 22. The detection of an indoor obstacle under insufficient light. (a) Laboratory 1; (b) Laboratory
2; (c) Lobby; (d) Corridor.

3.4. System Testing in a Complicated ENVIRONMENT

If the test environment contains stairs, it is defined as a complicated environment. The basic
structure of the stairs is shown in Figure 23. This study focuses on rising and descending stair
structures. If the system identifies the obstacles and the stairs accurately, it is a successful detection.
If not, then it is a failure.
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Figure 23. The structure of the stair.

3.5. An Indoor Environment under Sufficient Light

The success rate and the failure rate for detection are shown in Table 3. The types of stairs are
simpler in the indoor environment, so there is no problem with detection. Figure 24 shows that if
the most of the stair structures are not obscured by person or objects, it is successfully detected. The
experimental results show that as long as most of the stair is not occluded, it is successfully detected.

Table 3. The success rate and the failure rate for obstacle detection.

Frame Amount (Total 262 frames) Percentage (%)

Success 245 93.5%
Failure 17 6.5%

 

Figure 24. The detection of an obstacle indoors under sufficient light. (a) Rising stairs; (b) Rising and
descending stairs; (c) Obstacle and descending stairs; (d) Obstacle and descending stairs.
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3.6. An Indoor Environment under Insufficient Light

The success rate and the failure rate for obstacle detection are shown in Table 4. The success rate
and failure rate for detection of descending stairs are shown in Table 5. To improve the accuracy and
the capturing of images, the system uses a Kinect sensor, so that stairs can be easily detected, even in
dimly lit environments as shown in Figure 25.

Table 4. The success rate and the failure rate for obstacle detection.

Frame Amount (Total 104 frames) Percentage (%)

Success 96 92.3%
Failure 8 7.7%

Table 5. The success rate and failure rate for detection of descending stairs.

Frame Amount (Total 592 frames) Percentage (%)

Success 498 84.12%
Failure 94 15.88%

 
Figure 25. The detection of an obstacle indoors under insufficient light. (a) Descending stairs 1;
(b) Descending stairs 2; (c) Rising stairs 1; (d) Rising stairs 2.

3.7. The Confusion Matrix for Experiment Results

The indoor experimental data is expressed using a confusion matrix, as shown in Table 6. If there
is a large size break in the depth map, the obstacle is not detected. When the remaining part in depth
map is calculated, it is so small as to be negligible. When rising stairs are to be detected, because there
are broken parts in the image depth, some blocks are mistaken for obstacles. In an indoor environment
there are fewer false assessments because the ground is uniform. The probability of a false assessment
is greater in an outdoor environment because the ground is diverse, such as where there is a rough
surface. The detection rate for an indoor obstacle reaches 97.40%.
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Table 6. The confusion matrix for the indoor experiment results.

Confusion Matrix
Actual Output

Obstacle Upstairs Downstairs Barrier Free Recognition Rate

Expected
output

Obstacle 1660 0 0 24 98.57%
Upstairs 30 382 0 0 92.72%

Downstairs 0 0 248 13 95.02%
Barrier free 8 0 0 524 98.50%

Accuracy rate 2814/2889 97.40%

3.8. The Detection of Static and Dynamic Obstacles

Our system detects static and dynamic obstacles simultaneously as shown in Figure 24d.
Figure 24a–c shows static obstacle detection. As illustrated in Figure 26, this testing is for dynamic
obstacle detection. The scenario is that one man walks from the left to the right in the scene.

Figure 26. The detection of static and dynamic obstacles. (a) Walking people walks from the left side;
(b) Walking people at the middle; (c) Walking people walks to the right side.

3.9. The Evaluation of the System by Blind and Blindfolded Participants

Three blind university students (as shown in Figure 27a,b) and thirty-eight blindfolded university
students were used to evaluate the system. The system is not meant to take the place of a cane or a
guide dog but to improve perception using a depth sensor-based sound system. A traditional cane,
which is the standard navigation tool for the blind, is difficult to replace because a cane is cheap, light
and can be folded.

 

 

Figure 27. Blind and blindfolded participants. (a) Blind participant 1; (b) Blind participant 2;
(c) Blind-folded participant.
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These experiments use a control experiment. There is an experimental group and a control group.
The experimental environment (as shown in Figure 28) includes rising stairs, descending stairs, static
obstacles and dynamic obstacles along a specific path. The participants consisted of three blind junior
students (Blind Participants: BP) and thirty-eight junior students (Blindfolded Participants: BFP).
The best and worst experimental results were removed. The distribution of the experimental data is
shown in Figure 29. Figure 30 shows that experimental results when only the proposed system is used
are similar to the experimental results when only a cane is used. However, using the system and a
cane together gives significantly improved experimental results that are closer experimental results of
normal people.

We calculate the p-value for the cane and proposed system with cane as shown in Table 7. The
calculating result of p-value is 0.001508556 (two-tail). In general, the significance level is 0.05 or 0.01.
In our case, the two-tailed p-value suggests rejecting the null hypothesis of no difference. The p-value
is less than 0.5 or 0.01, so the result is significant improvement.

 

Figure 28. The experimental environment.

 

Figure 29. The statistical data of experiment.
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Figure 30. The distribution of the experimental data.

Table 7. t-Test: Paired Two Sample for Means.

Cane Cane and Proposed System

Mean 176.4615385 164.3846154
Variance 310.097166 213.5587045

Observations 39 39
Pearson Correlation 0

Hypothesized Mean Difference 74
t Stat 3.295836168

P (T ≤ t) one-tail 0.000754278
T Critical: one-tail 1.665706893
P (T ≤ t) two-tail 0.001508556

T Critical: two-tail 1.992543495

4. Conclusions

This paper proposes an obstacle detection method that uses depth information. Because the depth
information is obtained using an infrared sensor, the depth information is not affected by the degree
of illumination. The proposed system is effective in detecting obstacles in a low light environment.
The system addresses the problem of over-segmentation by removing the edge and eliminating the
problem of the initial seed position for the region growth method, using CCM. It can also detect static
and dynamic obstacles. These experimental results show that when only the proposed system is
used similar to the experimental results when only a cane is used. However, using the system and a
cane together gives significantly improved experimental results that are closer experimental results of
normal people. The system is simple, robust and efficient.

Three thresholds are used: TH1 = 35 for the removal of the ground plane, TH2 = 15 for the
removal of the obstacle edge and TH3 = 50 for the detection of descending stairs. The detection rate
for an indoor obstacle is as high as 97.40%. The experimental results show that the proposed system is
very robust, efficient and convenient in an indoor environment. The system can also detect rising stairs
and descending stairs and ensures that visually impaired people have the environmental information
that is required to avoid danger.

The system vocally informs the user of the distance of an obstacle and the category of the obstacle.
This voice alarm is very short and focuses on the most concise information about the closest obstacle.
The TTS voice is not a natural voice so it has a robotic sound. In the future, the system will be improved
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to support multiple languages. Image processing performance of our proposed system for ROI or
fully image is different, but they are small and almost the same. The most of calculations are based on
Kinect. To detect object in fully image is easier than in ROI. Our system detects complete object, not
just a part.
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Abstract: When detecting a target over the diurnal cycle, a conventional infrared thermal sensor
might lose the target due to the thermal crossover, which could happen at any time throughout the
day when the infrared image contrast between target and background in a scene is indistinguishable
due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared
sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal
crossover influences a conventional thermal sensor, within the conditions where the thermal crossover
would happen and why the mid-infrared (3~5 μm) multispectral technology is effective, is presented.
Furthermore, the effectiveness of this technology is also described and we describe how the prototype
design and multispectral technology is employed to help solve the thermal crossover detection
problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h
period. The experimental results show that the multispectral infrared imaging system can enhance
the contrast of the detected images and effectively solve the failure of the conventional infrared sensor
during the diurnal cycle, which is of great significance for infrared surveillance applications.

Keywords: infrared sensor; multispectral; diurnal cycle; thermal crossover

1. Introduction

Infrared imaging detection systems are becoming more prevalent in numerous fields, including
remote sensing [1], medical monitoring [2], military surveillance [3], and scientific research [4,5].
These systems offer major advantages over visual detection systems, such as their continuous day and
night imaging capabilities, especially for target detection and acquisition [6].

When targets are aimed to be detected over the diurnal cycle using a conventional mid-infrared
(3~5 μm) sensor, the results are generally affected by thermal crossover, where the infrared image
contrast from the target and the background is difficult to discriminate from each other as the target
would have integrated with the background and the radiation difference between the target and
background was too low to be sensed by the infrared thermal sensor. Moreover, this could cause
the targets to be blended into the background, lowering the detection accuracy, and even make the
thermal sensor lose the target. In addition, the thermal crossover may also occur at any point in the
day, because of solar loading, clouds, rain and fog. Therefore, it is critical to solve this problem for the
conventional mid-infrared thermal sensor, especially for the infrared surveillance system.

In the last few decades, research has focused on how to solve the problem of infrared detection
during thermal crossover periods and the thermal polarization technique, which is proposed as a
method to enhance conventional thermal imaging, has been employed. Felton et al. [7–9] compared
the crossover periods for mid-and long-wave infrared polarimetric and conventional thermal imagery.
The mid-infrared (3~5 μm) imaging polarimeter they used was based on a division-of-aperture (DoA)
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lens technology developed by Polaris Sensor Technologies, which employed a 2 × 2 array of mini-lenses
followed by four linear polarizers at different orientations, forming four identical images of the scene
on four quadrants of the sensor focal plane array. The long-wave infrared (8~12 μm) polarimeter
they used was a microbolometer-based rotating retarder imaging polarimeter developed by Polaris
Sensor Technologies, which could capture up to 12 images sequentially in time with each image at
a different orientation. Their experimental results showed that the polarimetric technology could
be used as a method to enhance the conventional infrared image contrast between the targets and
background during thermal crossover periods. However, their infrared image contrast improvement
was not direct but resulted from the calculation of Stokes vector formula, which might not be suitable
for the systems that requires high-performance of real-time processing. Still, as their work mainly
focused on polarimetric detection experiments, what the pictures are when the target integrated with
the background during the diurnal cycle and the theoretical analysis on how the thermal crossover
influences the conventional thermal sensor and why the polarimetric technology could be used to
solve the thermal crossover detection problem was also not mentioned. Based on Felton’s research,
Wilson et al. [10,11] used a single pixel scanning passive millimeter-wave polarimetric sensor, operating
at a frequency of 77 GHz with a noise equivalent temperature difference (NETD) of 0.5 K, to measure
the infrared image contrast during thermal crossover periods. As the passive millimeter-wave sensor
is designed with capabilities to measure two linear polarization states simultaneously, it breaks
the limitation that many of millimeter wave (mmW) sensors are only able to detect a single linear
polarization state and improve the detection accuracy. Additionally, Retief et al. [12] studied the
prediction method of thermal crossover based on imaging measurements under different weather
conditions over the diurnal cycle. They used a series of infrared background objects images as the
basis to establish the heat balance model and, on this basis, to predict when the thermal crossover
may occur. In addition to the thermal polarization technique, the infrared multispectral technology is
also considered as an important approach to solve the thermal crossover detection problem. The prior
studies [13–17] on infrared multispectral technology mainly showed the potential benefits of infrared
multispectral processing for clutter-limited ground target detection. However, due to constraints on
the spectral resolution, band coverage, and radiometric sensitivity of existing sensors at that time,
accurate measurement data and the real experimental image data were not available. Despite this, these
studies firstly made the infrared multispectral technology a potential method for target/background
identification. Furthermore, Schwartz and Eismann et al. [18–20] conducted a series of multispectral
field measurements at Redstone Arsenal using a Bomem-developed high-sensitivity infrared Fourier
Transform Spectrometer, which operates in the IR region (3–12 μm) with 8 cm−1 spectral resolution
and noise equivalent spectral radiance (NESR, in nW/cm2sr·cm−1 units) 7.5@3.8 μm, to enhance
the capabilities of passive infrared surveillance. With the instrument, the data of several test panels,
military vehicles and vegetated backgrounds at different times and under various environmental
condition were obtained, their analysis of the experimental results statistically showed that the thermal
sensor could detect the target hidden in vegetated and desert backgrounds with the use of multispectral
techniques. As their work mainly focused on post-collection data analyses of infrared hyperspectral
measurements and multispectral target detection algorithms, the design of the instrument, the real
experimental image data and how the multispectral technology could be employed as an effective
supplementary method for the conventional mid-infrared broadband thermal detection over the
diurnal cycle was not mentioned. Nevertheless, their research results showed the potential and
capacity of multispectral processing to detect low-contrast ground targets by providing valid estimates
of targets to the background spectral contrast.

Overall, from the abovementioned research results, although the polarization technique was
an effective solution to thermal crossover detection, there were still some disadvantages. Firstly,
the improvement of the infrared image contrast resulted from the calculation of Stokes vector formula,
which means that the contrast enhancement is not direct. Secondly, the time division imaging or
simultaneous imaging technique are usually used in polarization detection, which would increase
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image processing time or the system size and weight. In addition, the environmental factors could
affect the polarimetric contrast. Potential sources include vehicles, buildings, trees, clouds, water vapor,
etc., which are not necessarily visible within the scene but still illuminate the objects in the field of
view of the detector could be a reduction in the magnitude of polarimetric signature of a target.
Compared with the polarization technique, as the target’s infrared spectrum signature only differs
with materials, one or some characteristic wavelengths could be enough to reflect the difference
between the target and background without any redundant calculation. Thus, it would be faster
and more direct to distinguish the target from the background in a complex environment with the
multispectral technology if the characteristic wavelengths were acquired in advance according to prior
knowledge. In this paper, our goal is to discuss how the multispectral technology could be employed
to solve the problem of thermal crossover, design a fast, compact and light infrared multispectral
prototype with the known characteristic wavelengths according to the prior knowledge and conclude
that multispectral technology is capable of enhancing conventional thermal imaging.

Overview of Thermal Detection over the Diurnal Cycle

Thermal crossover is defined as a natural phenomenon that normally occurs twice daily, but may
occur at any time throughout the day when temperature conditions are such that there is a loss of
contrast between two adjacent objects on the infrared sensor. Figure 1 pictorially shows a schematic of
an infrared system measuring the target radiance Lt and the background radiance Lbg. The infrared
system can be any conventional infrared sensor or camera and located at any arbitrary orientation.
The target can be any typical common objects, such as vehicles, and the background can be any natural
or artificial objects, such as grass, tree, or road. To simplify, without considering the scattering, the total
received radiance at the infrared system can be expressed by two components:

{
Lbg(λ, θv, θs, ϕ) = Lr

bg(λ, θv, θs, ϕ) + Le
bg(λ, θv, θs, ϕ, T)

Lt(λ, θv, θs, ϕ) = Lr
t(λ, θv, θs, ϕ) + Le

t(λ, θv, θs, ϕ, T)
(1)

where Le
bg and Le

t are the emissive radiance (the radiant flux emitted by a surface, per unit solid angle,
per unit projected area, per wavelength) of the background and target, Lr

bg and Lr
t are the reflection of

the solar irradiance on the background and the target, λ is the wavelength of light, θν is the viewing
zenith angle of the detection system, θs is the solar zenith angle, and ϕ is the azimuth angle between θν

and θs, T is the temperature. As DN = a · L+ b, the DN difference between the targets and background
objects (represented by C) can be expressed as [21]:

C =
∣∣∣DNt − DNbg

∣∣∣ = ∣∣∣a(Lt − Lbg)
∣∣∣ = a

∣∣∣(Le
t − Le

bg) + (Lr
t − Lr

bg)
∣∣∣ (2)

Furthermore, assuming that the reflectivity of the target and the background objects are ρt

and ρbg, respectively, if ignoring the scattering and transmittance, the target and background objects’
absorptivity would be αt = 1 − ρt and αbg = 1 − ρbg. As the vast majority of objects in nature produce
diffuse reflection, the reflectivity ρt and ρbg should be replaced by the Bidirectional Reflectance
Distribution Function (BRDF, a function which defines the spectral and spatial reflection characteristic
of a surface and is the ratio of reflected radiance to incident irradiance at a particular wavelength [22])
to represent the anisotropic properties of solar radiation effects on the reflectivity of objects. Therefore,
Equation (2) can be rewritten as:

C = a ·
∣∣∣∣∣∣
∫ λ2

λ1

[
BRDFt(λ, θs, θv, ϕ)− BRDFbg(λ, θs, θv, ϕ)

]
Ls(λ)dλ

+
∫ λ2

λ1

(
[1 − BRDFt(λ, θs, θv, ϕ)]Le

t(λ, T)−
[
1 − BRDFbg(λ, θs, θv, ϕ)

]
Le

bg(λ, T)
)

dλ

∣∣∣∣∣∣ (3)

where Ls(λ) is the solar radiation and λ1~λ2 is the working wavelength range of the infrared thermal
sensor. In the case that θν, θs and λ are constant, BRDF only differs with the object’s material.
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Figure 1. (a) Schematic of the infrared system measuring the radiance Lt and the background radiance
Lbg. (b) Description of θν, θs and ϕ.

As can be seen from Equation (3), in general, the thermal crossover over the diurnal cycle would
occur when C between the target and the background is zero or below the threshold value required to
execute a specific task by the conventional infrared thermal sensor. Specifically, we divide one day,
24 h, into five time zones, as shown in Figure 2.

Figure 2. Five time zones from over one day.

Time after midnight:

C = a
∣∣∣∣
∫ λ2

λ1

(
[1 − BRDFt(λ, θs, θv, ϕ)]Le

t(λ, T)−
[
1 − BRDFbg(λ, θs, θv, ϕ)

]
Le

bg(λ, T)
)

dλ

∣∣∣∣ (4)
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provided that the target and background have different material; in this case, the thermal crossover
would not occur as C would not be zero.

First crossover period: in case of a sunny day, for the target with lower thermal inertia, such as
metal, thermal crossover would occur. In this case, the multispectral exploration technique can be
used to find the emissivity difference between the target and the background in Δλ to enhance the
contrast C. For the target with higher thermal inertia, such as water, thermal crossover might not occur.

Daytime: The circumstance is more complicated as Ls(λ) would have an effect on thermal
crossover. No matter whether the target has lower or higher thermal inertia, thermal crossover may
occur at any time, depending both on temperature differences and environmental factors, such as rain,
and fog. In this case, the multispectral exploration technology can still be used to find the emissivity
difference in Δλ to enhance the contrast C if thermal crossover occurs.

Second crossover period: similar to the “first crossover period”, for the target with lower thermal
inertia the thermal crossover would occur and the multispectral exploration technology can be used to
solve the problem of infrared detection during thermal crossover periods.

Sunset to midnight: similar to the “time after midnight”, provided that the target and background
have different materials C would not be zero and thermal crossover would not occur.

2. Materials and Methods

2.1. Why the Infrared Multispectral Technology Works

From the abovementioned discussion and Equation (3), it can be seen that it is the combined
impact of temperature difference, emissivity difference between the targets and background objects,
and reflected solar radiation that leads to the occurrence of thermal crossover. To simplify the problem
analysis, the single factor analysis of temperature and emissivity was specified in the following
two cases.

In the first case, we assume that the targets and background objects have the same emissivity
and use RRD(λ, T) to represent the relative thermal radiation differences between the targets and
background objects, which is shown as Equation (5).

RRD(λ, T) =
1
π

∫ λ2
λ1

(
αtLe

t(λ, T1)− αbgLe
bg(λ, T2)

)
dλ

1
π

∫ λ2
λ1

αbgLe
bg(λ, T2)dλ

(5)

Figure 3 shows the graphed outputs of Equation (5), provided that the ambient temperature was
300 K and the temperature difference between the targets and the background objects changes within
±5 K. As can be seen from Figure 3, between the 3.7 μm–4.8 μm region, which is also the typical
working wavelength range for a commercial infrared detector, RRD(λ, T) changes within −20%–25%
In addition, with the decrease of wavelength, the curve RRD(λ, T) becomes steeper and would be
more sensitive to the changes in temperature. Particularly, the calculation of Equation (5) in the whole
3.7 μm–4.8 μm region was also made (not shown in Figure 3) and RRD(λ, T) changes within a smaller
region, −15%–15%, which points out that, to a certain degree, for the traditional infrared broadband
thermal sensor, compared to the one with several narrow wavebands, the thermal crossover would be
more likely to happen and affect thermal detection for a longer time under the same conditions.

In the second case, we assume that the targets are grey plate and steel plate, and background
objects are road and sand, respectively, both of them have the same temperature, 300 K. With the
emissivity data obtained from the IR module using the software Sensors, the calculation results of
Equation (4) is shown as Figure 4. As can be seen from Figure 4, in the 3.7 μm–4.8 μm region, the
RRD(λ, T) curve changes from 65% to 900%. Compared with RRD(λ, T) in the first case, obviously,
the change of RRD(λ, T) caused by emissivity presents a greater volatility and wider range than that
caused by temperature in Figure 3, which, in other words, indicates that the emissivity difference
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under characterized bands between the targets and background objects could be utilized to solve the
detection problem during the thermal crossover periods.

Figure 3. Relative thermal radiation differences Curve under the condition of the same emissivity in
3.7 μm–4.8 μm region.

(a) 

(b) 

Figure 4. RRD curve under the condition of the same temperature in the 3.7 μm–4.8 μm region.
(a) RRD curve among the targets grey plate, steel plate, and the background objects road and sand;
(b) RRD curve among the target grey plate and the background objects road and sand.
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2.2. Design of the Multispectral Infrared Imaging System

In order to verify the effectiveness of the multispectral infrared technology in solving the thermal
crossover detection problem. A multispectral infrared imaging system prototype was designed and
employed to conduct field experiment. The prototype consists of the infrared optical system, which
is composed of the front infrared optical system and rear infrared optical system, a filter wheel with
five band-pass filters, and a mid-infrared detector, as shown in Figure 5. The infrared camera lens
has a focal length 100 mm. The mid-infrared detector is a France Sofradir Ltd. Model Mars 320 × 256
detector operating in region of 3.7–4.8 μm with a 5.5◦ × 4.4◦ field of view and up to 100 fps; this detector
has a geometrical resolution of 0.3 mrad and a minimum detectable temperature difference between
pixels of 0.03 ◦C and NETD of 9 mK. The five band-pass filters are produced by Sweden Spectrogon
Ltd. with central wavelengths of 3700 nm, 3800 nm, 4120 nm, 4420 nm, and 4720 nm, respectively,
and mounted on the filter wheel, which is driven by a stepper motor. In addition, the filter wheel
reserves a hole without any filters so that the image comparison between the traditional broadband
infrared image and narrowband infrared multispectral images can be conducted. Additionally, the cold
reflection impact on the image has been considered and reduced to the minimum. The mid-infrared
detector, filter wheel, and data acquisition and storage are controlled by a PC. The laboratory prototype
is shown in Figure 6.

MWIR 
Detector

Front Infrared Optical System Rear Infrared Optical System

Filter Wheel

PC

Control

Image 
acquisition 
and storage

Band-pass filter

No filter

 

Figure 5. Schematic of multispectral infrared imaging system.

 

Figure 6. Prototype of multispectral infrared imaging system.
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For the polarization technique used by Felton in [7–9], the MWIR imaging polarimeter employed
division-of-aperture lens technology and the infrared image contrast improvement resulted from
the calculation of Stokes vector formula. Thus, its image processing time, the system size and
the system weight were longer and larger, the three parameters were 87 fps, the system size was
420L × 90W × 210H and weight was 4.99 kg. However, for our designed multispectral imaging
system prototype, one or some characteristic wavelengths would be enough to reflect the difference
between target and background without any redundant sensors and calculation if the characteristic
wavelengths were acquired in advance according to the prior knowledge. Thus the prototype is
faster, more compact, lighter and less costly. The image processing time of our prototype was up to
100 fps, the system size was 200L × 180W × 135H and was 3 kg, making it more suitable for practical
applications. The specific specifications of the two sensors are listed in Table 1.

Table 1. Specifications of imaging polarimeter and multispectral infrared thermal sensor.

Parameter Value of Felton’s MWIR Imaging Polarimeter Value of Our MWIR Imaging Spectrometer

Technological type Polarization technique with four polarizers Multispectral technique with five filters
FOV (◦) 5.5 5.5 × 4.4

Focal Length (mm) 100 100
F/# 2.3 2

Total FPA pixels Four FPA arrays 640 × 512 (single 220 × 220) Single FPA 320 × 256
Pixel size (μm) 24 × 24 30 × 30

Max Frame Rate (fps) 87 up to 100
Sensor Dimensions (mm) 420L × 90W × 210H 200L × 180W × 135H

Sensor weight (kg) 4.99 3
Central wavelength (nm) - 3700 nm, 3800 nm, 4120 nm, 4420 nm, 4720 nm

FWHM (nm) - 80~100 nm
Sensitivity 10−7 W/cm2sr 9 mK

Prior to the field experiment, the infrared multispectral imaging system is radiometrically
calibrated in the field laboratory through a calibration procedure developed by EOI Ltd. so that
the imaging capabilities of each wavelength can be assessed. The imaging capabilities measurement
results are summarized in Table 2.

Table 2. Noise equivalent temperature difference (NETD) Measurement Results.

Wavelength NETD (Background 298 K, f/2, Integration Time 6 ms)

3700 nm 476.6 mK
3800 nm 556.2 mK
4120 nm 533.9 mK
4420 nm 513.6 mK
4720 nm 490.1 mK

When conducting reconnaissance or surveillance tasks with the infrared multispectral imaging
system, the blank hole without any filters is initially rotated to the optical axis of the system and the
imaging system is just a conventional broadband infrared sensor under the initial state. With the change
of time and weather conditions around the observed area, thermal crossover may occur. Once the
observed target is hidden in the background caused by thermal crossover, the PC will rotate the filter
wheel and control the detector to acquire the images under different multispectral wavebands to find
the emissivity difference in the narrow wavebands between the targets and background objects and
solve the thermal crossover problem. Afterwards, in order to highlight the multispectral information
of the image and conform to the human eye’s visual acquity at the same time, the narrow-band
multispectral images and infrared broadband thermal image are blended to enhance the target
recognition and solve the thermal crossover problem by using an HSV fusion algorithm [23]. HSV is
one of the color systems that is used to pick a color from the color palette (H is hue, S is saturation and
V is Value) and it is closer to people’s experience and perception of color, compared with RGB.
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2.3. Consideration of Experiment Design

To test the validity of the prototype, the field experiment was performed at the New Main Building
at Beihang University. The infrared multispectral sensor was situated on the eighth floor of Tower B
of the New Main Building (approximately 40 m) looking out of the window in the direction towards
the target site, which was at approximately 100 m in distance. This open area was selected for the
purpose of long-period image acquisition. The targets consisted of three different plates, galvanized
sheet, steel sheet, and a wooden plate, and the natural backgrounds included grass, trees, and concrete
road, which are shown in Figure 7a,b.

 
(a) 

 
(b) 

Figure 7. (a) Visible image of the target site consisting of three different plates and natural background;
(b) The visible image of the test scene obtained on 15 March 2016.

The wooden plate was selected to make comparative experiments in order to prove the thermal
radiation difference between the object with high inertia and one with low inertia over the diurnal cycle.
The galvanized sheet and steel sheet were selected to demonstrate the thermal radiation difference
under their characteristic wavebands and confirm the effectiveness of the multispectral technology.
As some environmental parameters, like ambient temperature, relative humidity, and solar irradiance,
may affect the experiment result, the experiment date was selected in advance according to the
weather forecast, and the environmental parameters with a large ambient temperature difference,
fewer clouds during the testing period, and relatively stable humidity, are advantageous to the
experiment. The environmental data was collected on 15 March 2016 and the image data and
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environmental parameters were acquired continuously between 00:00 on 15 March 2016 and 23:59 on
15 March 2016 with a speed of half a minute per image and half a minute per measurement, respectively.
The sunrise and sunset on 15 March 2016 occurred at roughly 06:25 and 18:21, respectively.

3. Results and Discussion

According to Figure 2, in which the 24 h day was divided into five time zones, the experimental
results were demonstrated similarly. The contrast ratio between the DN values of the target and the
background C′ = DNtarget/DNbg can be employed to reflect the contrast change of the regions of
interest (ROI). At the time, after midnight, due to the different materials and temperature among the
target galvanized sheet, steel sheet, and wooden plate, and the background road, C′ did not approach 1
and thermal crossover did not occur, as shown in Figure 8a. At the first crossover period, for the
wooden plate with higher thermal inertia, C′ was 0.837 and thermal crossover did not occur, while
for the galvanized sheet and steel sheet with lower thermal inertia, C′ was approximately 1 (the exact
number was 0.962 and 1.025, respectively) and thermal crossover did occur, as shown in Figure 8b.
During the daytime, as Ls(λ) had an effect on thermal crossover, the temperature difference among
the background and the galvanized sheet and steel sheet increased gradually, C′ was significantly
greater than 1 and thermal crossover did not occur unless there was a rapid change in the weather
conditions, as shown in Figure 8c. At the second crossover period, for the galvanized sheet and steel
sheet with lower thermal inertia, C′ was 1.011 and 1.045, respectively, and thermal crossover did occur
again while, for the wooden plate, C′ was 0.924 and the thermal crossover still did not occur, as shown
in Figure 8d. From sunset to midnight, for each target C′ was far less than 1 and thermal crossover did
not occur, as shown in Figure 8e. Additionally, the average grey value of the image was larger than
Figure 8a at the time after midnight because of the higher temperature. The contrast values among the
three targets and the background in Figure 8 are listed in Table 3.

Figure 8. Infrared image obtained in each time zone. (a) Infrared image obtained at 03:00; (b) infrared
image obtained at 06:50; (c) infrared image obtained at 12:30; (d) infrared image obtained at 18:05;
and (e) infrared image obtained at 21:00.

Table 3. Contrast among the three targets and background in Figure 8.

Figure Number Wooden Plate Galvanized Sheet Steel Sheet

a 0.822 0.784 0.632
b 0.837 0.962 1.025
c 0.825 1.098 1.151
d 0.810 1.011 1.045
e 0.807 0.786 0.612
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In order to clarify the effectiveness of the multispectral technology to solve the thermal crossover
problem, the multispectral images under central wavelengths of 4120 nm, 4420 nm, and 4720 nm at
the first crossover period were obtained, and the results are presented in the form of image contrast
plots, calculated using C′ = DNtarget/DNbg. Included with each of these plots are the corresponding
environmental data, as shown in Figure 9. Specifically, Figure 9b,c clearly show that the contrast
curve of the galvanized sheet and steel sheet varied more significantly than the wooden plate during
the 24-h test period and the contrast of the galvanized sheet and steel sheet was close to 1 during
two diurnal cycles, while the contrast of the wooden plate fluctuated between 1.0 and 1.16 throughout
the experiment time, proving the existence of thermal crossover for the objects with lower thermal
inertia once again. Figure 9d showed the multispectral images, which were obtained at the same
period with Figure 9b. As can be seen from Figure 9d, the multispectral technology was used to
find the emissivity difference between the target and the background at 3700 nm, 3800 nm, 4120 nm,
4420 nm, and 4720 nm to enhance the contrast among the galvanized sheet, steel sheet, and road.
Among the five wavebands the best contrast improvement was at 4720 nm, with 4420 nm following,
which presented a consistent trend in accordance with Figure 4a and indicated the effectiveness of
the multispectral technology in solving the thermal crossover problem. The contrast values among
the three targets and the background under different wavebands in Figure 9d are listed in Table 4.
Compared with the Figure 8, the image contrast enhancement in the target area is direct after employing
the narrow band-pass filters.
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Wooden plate
Galvanised sheet
Steel sheet

4120nm
Contrast:

Wooden plate 1.083
Galvanised sheet 1.252

Steel sheet 1.274

4420nm
Contrast:

Wooden plate 1.133
Galvanised sheet 1.232

Steel sheet 1.311

4720nm
Contrast:

Wooden plate 1.161
Galvanised sheet 1.218

Steel sheet 1.362

(a)

(b)

(c)

(d)

3700nm
Contrast:

Wooden plate 1.019
Galvanised sheet 1.073

Steel sheet 1.079

3800nm
Contrast:

Wooden plate 1.034
Galvanised sheet 1.128

Steel sheet 1.137

Figure 9. (a) Ambient temperature during the 24-h test; (b) contrast curve among the three targets and
the background road; (c) images of the targets in the five time zones; and (d) images of the targets at
3700 nm, 3800 nm, 4120 nm, 4420 nm, and 4720 nm at the first diurnal cycle.

Figure 10 showed the pseudo-color image obtained by running the HSV image fusion algorithm
described in Section 3 with Figures 8b and 9d. Combining the infrared broadband image with the
infrared images under characteristic wavebands, the three targets were marked with different colors
and presented clearly, by which the multispectral technology employed an effective supplementary
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method for the conventional mid-infrared broadband thermal sensor to solve the thermal crossover
detection problem.

Further, it can be noted that the magnitude of contrast improvement is not as large as the
calculation results in Figure 4a because of the solar radiation effect, stray radiation caused by band-pass
filters, and the difference between the actual emissivity value and the real emissivity value. However,
this does not influence our experimental conclusions that multispectral technology can be employed
to solve the thermal crossover problem.

In order to further show the advantage of multispectral technology in solving the thermal
crossover problem, the same field experiment with polarization technique by using 0◦, 45◦, 90◦,
135◦ four linear polarizers was also conducted and the four polarization state polarization images
obtained at 07:00 were shown in Figure 11.

Table 4. Contrast among the three targets and the background in Figure 9.

Wavebands Wooden Plate Galvanized Sheet Steel Sheet

3700 nm 1.019 1.073 1.079
3800 nm 1.034 1.128 1.137
4120 nm 1.083 1.252 1.274
4420 nm 1.133 1.232 1.311
4720 nm 1.161 1.218 1.362

 

Figure 10. Pseudo-color image fused by Figures 7b and 8d.

Figure 11. Infrared polarization images with four polarization states. (a) 0◦; (b) 45◦; (c) 90◦; (d) 135◦.
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As can be seen from Figure 11, for the wooden plate, thermal crossover still did not occur, while
for the galvanized sheet and steel sheet, the thermal crossover did occur, which was similar to the
results with multispectral technology. The contrast values between the galvanized sheet, steel sheet
and the background in Figure 11 are listed in Table 5.

Table 5. Contrast between galvanized sheet, steel sheet targets and background in Figure 11.

Figure Number Galvanized Sheet Steel Sheet

a 0.909 0.942
b 0.977 0.964
c 0.979 0.981
d 0.965 0.976

From Table 5, it can be found that, compared with the infrared multispectral images, without
further image processing, the image contrast enhancement in the target area in the infrared polarization
images with four polarization states were not obvious. Thus, the Stokes vectors, which completely
characterized the polarization states of targets from the scene need to be calculated. The data products
used in this experiment included S0 and S1 Stokes parameter images where S0 is the horizontal (0◦)
plus the vertical (90◦) components of polarization and the S1 Stokes parameter is the horizontal
minus the vertical components of polarization. The S0 and S1 Stokes parameter images are shown as
Figure 12a,b respectively.

Figure 12. S0 and S1 Stokes parameter images (a) S0 image; (b) S1 image; (c) S1 after contrast stretching.

The image contrast of the galvanized sheet and steel sheet in Figure 12a was 0.921 and 1.073,
respectively, which showed some extent of improvement compared with Figure 11. However the DN
difference between the galvanized sheet, steel sheet targets and background in Figure 12a were only
16 and 7. In Figure 12b, although the calculated image contrast, according to C′ = DNtarget/DNbg,
was improved, it was meaningless as the DN of targets and background were too low to be sensed by
eyes. In fact, the DN difference between the galvanized sheet, steel sheet targets and background in
Figure 12b were only 3 and 2, respectively. In order to show the targets in Figure 12b relatively clearly,
the images were further processed with the contrast stretching algorithm, as shown in Figure 12c.
Through the data processing procedure, it could be found that even with the Stokes parameter
calculation, the difference between target and background had still not been improved significantly
so that further image processing procedures were required. The main reason for the polarization
detection experiment result was that the abundant geometry information contained in the background
weakened the polarization characteristics differences. Because the polarization technology achieves
distinction between target and background through the perception of their polarization characteristics
differences, the background information might have an influence on the target detection. However,
for the multispectral technology, as stated previously, compared with the polarization technique, as the
target’s infrared spectrum signature only differs with materials, it would be faster and more direct
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to distinguish the target from the background in the complex environment only if the characteristic
wavelengths of the targets and backgrounds were acquired in advance.

4. Conclusions

As the thermal crossover has great influence on the infrared sensors working in a single wide
range, it is significant to solve this problem for the conventional mid-infrared thermal sensor, especially
for the infrared surveillance system. In this study, we analyze theoretically how the thermal crossover
disables the conventional thermal sensor and under what conditions the thermal crossover would
happen. Furthermore, based on the analysis, a fast, compact and light optical prototype based on
infrared multispectral technology is designed with the known characteristic wavelengths according
to the prior knowledge. Then the experimental process has been optimized and more image data is
provided, especially regarding what the pictures are when the target integrated with the background
during the diurnal cycle. Then, the whole process of employing the multispectral technology to solve
the thermal crossover detection problem is clearly shown. In addition, a comparison experiment with
polarization technique is also conducted to further show the advantage of multispectral technology.

The field experiment with multispectral technology was conducted over a 24-h period with the
targets of galvanized sheet, steel sheet, and wooden plate, and the background road on a sunny day.
The results showed that, for the galvanized sheet and steel sheet targets, the thermal crossover could
affect a contrast for up to four hours at two diurnal cycles, jeopardizing the success of surveillance
missions. For the wooden plate target, although the image contrast reduced over the diurnal cycle,
it could still distinguish the targets from the background objects, which means that thermal crossover
might not always occur, or even possibly not exist at all over the diurnal cycle for the objects with higher
thermal inertia. Through employing the infrared narrow band-pass filters, thermal crossover in the first
diurnal cycle was relieved as the contrast was upgraded to the levels such that the metal targets could
be distinguished from the background objects. Furthermore, the experimental results provided us with
the information about what the characterized bands between the targets and background objects were,
which would be useful for system design in the future. In addition, the pseudo-colored image produced
by multi-spectral image fusion method showed the effectiveness of the multispectral technology for
contrast promotion of each target. Then, as a comparison, the same field experiment with polarization
technique by using 0◦, 45◦, 90◦, 135◦ four linear polarizers was also conducted and the S0 and S1

Stokes parameter images showed that the image contrast showed some extent of improvement but no
obvious improvement, as the background weakened the polarization characteristics differences.

While promising, the field experiment should just be considered as very preliminary practical
application and the experimental results should also just be viewed as a proof-of-principle.
Nevertheless, the conclusion that the multispectral technology can be employed to solve the thermal
crossover problem is unambiguous. In future, it might be possible to further extend the range of
applications for the conventional thermal infrared broadband sensor into the thermal crossover periods
by exploiting the emissivity of infrared spectral signatures and fusing multispectral images from the
perspective of mid-infrared thermal detecting system design. Research focusing on the characterized
bands between different common targets and background objects and how the weather conditions
influence the thermal crossover will be undertaken.
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Abbreviations

The following abbreviations are used in this manuscript:

mmW Millimeter Wave
NESR Noise Equivalent Spectral Radiance
NETD Noise Equivalent Temperature Difference
DN Digital Number
BRDF Bidirectional Reflectance Distribution Function
RRD Relative thermal radiation differences
IR Infrared
PC Personal Computer
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Abstract: A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared
(NIR) filters is useful for various imaging applications with the advantages that it obtains color
information and NIR information simultaneously. Because the MSFA image sensor needs to acquire
invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the
IRCF, the color of the image is desaturated by the interference of the additional NIR component of
each RGB color channel. To overcome color degradation, a signal processing approach is required
to restore natural color by removing the unwanted NIR contribution to the RGB color channels
while the additional NIR information remains in the N channel. Thus, in this paper, we propose
a color restoration method for an imaging system based on the MSFA image sensor with RGBN
filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation
and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor.
The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue
and color saturation by decomposing the visible band component and the NIR band component in
each RGB color channel. The experimental results show that the proposed method effectively restores
natural color and minimizes angular errors.

Keywords: color restoration; infrared cut-off filter removal; multispectral imaging; spectral
estimation; spectral decomposition

1. Introduction

The near-infrared (NIR) is one of the regions closest in wavelength to the radiation detectable
by the human eye. Unlike human eyes, sensors based on silicon (SiO2) are sensitive to NIR up to
1100 nm, limited by the cut-off value of silicon. Due to the proximity of NIR to visible radiation, NIR
images share many properties with visible images. However, surface reflection in the NIR bands is
material dependent. For instance, most dyes and pigments used for material colorization are somewhat
transparent to NIR. This means that the difference in the NIR intensities is not only due to the particular
color of the material, but also to the absorption and reflectance of dyes. Therefore, the NIR intensity
provides the useful information pertinent to material classes rather than the color of that object [1].

Recently, there have been several attempts to use NIR band information. In remote sensing
applications [2,3], the multispectral images observed in a variety of spectrum bands have been used
where both the visible and NIR bands are included. As each spectral band provided different kinds of
information, the spectral bands were selectively used in the observation of the multispectral images.
In surveillance cameras [4] and night vision cameras [5], the NIR band is used especially under low
lighting conditions or invisible NIR lighting conditions. The NIR band is also used in biometric [6],
face matching [7] and face recognition [8] applications, which have been studied based on the intrinsic
reflectivity of the skin or eyes under NIR illumination. Since the reflection in NIR is material dependent,
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it is also used in material classification [1] and illuminant estimation [9]. NIR images can be used in
image enhancement applications, such as image dehazing [10].

To develop an NIR image acquisition system, Kise et al. designed a three-band spectral imaging
system composed of multiple cameras with a beam splitter [11]. This imaging system has been used
to acquire multispectral images in user-selected spectral bands simultaneously by utilizing three
interchangeable optical filters and various optical components. Similarly, Matsui et al. implemented a
multispectral imaging system, where two infrared cut-off filter (IRCF)-removed cameras were used
to capture the color and NIR images independently [12]. In this system, the IRCF-removed cameras
were perpendicularly aligned, and the IRCF was used as a light splitter for the visible and NIR
bands. By managing the shutter of two cameras with a single controller, each spectral band image
pair was acquired, simultaneously. However, this imaging system requires a large space to attach
two or more cameras and to perform the alignment process. Due to the lack of portability of these
devices, multi camera-based imaging systems are not suitable for practical outdoor environments.
C. Fredembach [13] suggests another approach in which an IRCF-removed single camera with multiple
optical band pass filters can achieve smaller sizes than multi-camera systems. On the other hand, this
imaging system requires too much time to change the optical filters. Because of this weakness, some
artifacts, like motion blur and registration problems, can occur during the image acquisition process.

As an alternative approach, an IRCF-removed color filter array (CFA) image sensor, such as a
Bayer image sensor without an IRCF, can be used [13]. By using a single digital camera without an
IRCF, the spectral information of the visible bands and that of the NIR bands can be acquired at the
same time. Figure 1 shows a conventional camera system approach with an IRCF and a spectral
sensitivity of a complementary metal-oxide semiconductor (CMOS) imager integrated with traditional
RGB Bayer filters. By removing the IRCF, the NIR contribution to the RGB channel can reach the CMOS
imager. This additional NIR information can be used to allow for invisible monitoring in surveillance
applications.

Figure 1. (a) Conventional camera system based on a color filter array (CFA) image sensor with the IR
cut-off filter. (b) Spectral sensitivity of the camera system.

On the other hand, mixing color and NIR signals at the pixel level can result in extreme color
desaturation if the illumination contains sufficient amounts of NIR. Although it may be possible to
overcome the unwanted NIR contribution to the RGB color channel through the signal processing
technique, it is hard to estimate the NIR spectral energy in each RGB color channel, because there is no
way to detect the NIR band spectral characteristics.

As an improved system based on a single image sensor, an imaging system based on the
multispectral filter array (MSFA), which simultaneously obtains visible and NIR band images, can be
considered [14]. A pixel configuration of the RGB filters and another NIR pass filter, which transmits
NIR light only, is shown in Figure 2. In the following descriptions, we refer to the four channels
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as RGBN channels, where RGB represents the red, green and blue channels and N represents the
additional channel for the NIR band.

Figure 2. Infrared cut-off filter (IRCF): (a) typical imaging system using IRCF; (b) IRCF-removed
imaging system.

Because these sensors based on the RGBN filter array need to acquire invisible range information,
removing IRCF is necessary. Without IRCF, RGB and NIR signals can be obtained simultaneously.
Because of this advantage, imaging systems based on MSFA sensors can be applied to a wide variety
of applications. Under certain circumstances, especially low lighting conditions, this system can obtain
wide spectral information simultaneously. Furthermore, by applying fusion technology that uses NIR
band information, gaining additional sensitivity to colors that do not deviate considerably from the
human visual system is possible [15].

However, without IRCF, the additional NIR component penetrates through the color filter to
each R, G, B pixel. The unwanted NIR interference distorts the color information of each R, G, B
color channel. Figure 3 is an example of an imaging system based on the MSFA image sensor. Many
researchers studied the interpolation method, such as [15–17], to make a full resolution image in each
RGBN channel. Since the input RGB signals contain NIR, natural RGB color information needs to
be calculated by subtracting an NIR band component from the input RGB signals that have been
deteriorated with NIR interference. During the process, the NIR channel information in the N pixel
can be used to remove the unnecessary NIR contribution to the RGB channel. After restoring the
color information of the RGB channel from the input signal received through the MSFA image sensors
without an IRCF, a fusion method can be applied to generate the new blended images, which have not
only natural color information, but also additional NIR spectral information. To take advantage of this
benefit, it is necessary to restore natural color. As a result, the IRCF can be removed day and night
with color restoration process.

Figure 3. Example of a multispectral filter array (MSFA)-based imaging system.
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In recent studies, researchers have proposed CFA for one-shot RGB and NIR capture in NIR
imaging. However, the studies do not consider color restoration [16,17]. Although [18] addresses both
crosstalk and demosaicing, it assumes crosstalk between the green and NIR channels only. Chen et al.
proposed a color correction pipeline [15], which is able to apply only specific NIR illumination. The
color correction method in [15] does not guarantee successful color correction results if the illumination
spectrum is widely distributed in an NIR range. Furthermore, in [19], NIR restoration was proposed;
however, the method does not consider crosstalk in a visible range in an NIR channel. The IR removal
method proposed by Martinello et al. considers the crosstalk happening in the near IR range of 650 nm
to 810 nm. This method assumes that the contribution from the wavelengths in the visible range
(λ < 650 nm) to the IR channel can be ignored. On the contrary, the proposed color restoration method
divides the visible and NIR bands to estimate the color correction matrix. In the visible band, the
crosstalk in the N channel is estimated by using the linear regression of RGB channels by using the N
channel decomposition matrix. By removing the estimated crosstalk in the N channel, the N channel
information in the NIR band is obtained. The N channel information in the NIR band is used to
estimate the NIR contribution to the RGB channels by using the RGB channel decomposition matrix.
In this way, the proposed method copes with the different spectral responses of the visible and invisible
bands, respectively. Furthermore, the proposed method considers the crosstalk happening in the near
IR range from 650 nm to 1100 nm.

We proposed a brief idea to restore color information with an RGBN sensor [20]. However, since
we focused only on color restoration under generally bright illumination environments, our previous
work did not have good performance in low light conditions. In this paper, we proposes a color
restoration method that removes the NIR component in each RGB color channel with an imaging
system based on the IRCF-removed MSFA image sensor. To investigate the color restoration method
for various illumination environments, we analyze the change of the chromaticity feature obtained by
the additional NIR. In addition, the color restoration method for the low lighting condition based on
the spectral energy distribution analysis is proposed. Since color degradation caused by IRCF removal
is a huge limitation, the NIR contribution to each RGB color channel needs to be eliminated. To remove
unwanted NIR components in each RGB channel, the color restoration model was subdivided into two
parts of the spectral estimation and the spectral decomposition process.

The remainder of this paper is organized as follows: In Section 2, we discuss the problem that
arises when a color image is acquired with the IRCF-removed MSFA image sensor. In Section 3,
we analyze the color model of an IRCF-removed MSFA image sensor. In Section 4, we outline our
proposed color restoration method with spectral estimation and spectral decomposition. In Section 5,
we present our results and compare our solution to another state-of-the-art method. In Section 6, we
provide a conclusion.

2. Color Degradation

To analyze the change of the chromaticity feature by the additional NIR, the RGB color space was
converted to the HSI color space, as in [21]:

H = cos−1{
1
2 [(R − G) + (R − B)]

[(R − G)2 + (R − B)(G − B)]1/2 }

S =
I − a

I
where a = min[(R, G, B)] (1)

I =
R + G + B

3

where min[(·)] represents the minimum value among three values. H, S and I represent the hue,
saturation and intensity, respectively.

In Figure 4, the NIR band is divided into two sub-bands: we define these sub-bands as a chromatic
NIR band (700 nm∼800 nm) and an achromatic NIR band (800 nm∼1100 nm), respectively. Figure 5
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shows that the responses of the achromatic NIR bands are identical. To obtain achromatic NIR band
information, we used an NIR band pass filter that passes a specific wavelength (800 nm∼1100 nm).
The distribution of 96 color patch values in the Gretag color checker SG shows a linear response in
the achromatic NIR band with respect to the NIR channel. Based on this, we define these responses
as a constant at each pixel, such as Rnir(achr) = Gnir(achr) = Bnir(achr) = δ. The Rnir(achr), Gnir(achr) and
Bnir(achr) represent the achromatic colors of the image sensor beyond an 800-nm wavelength in each
channel. As a result, the RGB intensities at a pixel position are represented as:

R(i, j) = Rchr(i, j) + δ(i, j)

G(i, j) = Gchr(i, j) + δ(i, j) (2)

B(i, j) = Bchr(i, j) + δ(i, j)

where Rchr, Gchr, Bchr represent the chromatic colors of the image sensor under an 800-nm wavelength.

Figure 4. Spectral response of the MSFA image sensor.

Figure 5. Correlation between the RGB channel and the N channel in the NIR band beyond 800 nm
(a) Nnir(achr) vs. Rnir(achr) (b) Nnir(achr) vs. Gnir(achr) (c) Nnir(achr) vs. Bnir(achr).
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With the RGB color values with offset δ, the intensity of the observed color is defined as follows:

I =
[(Rchr + δ) + (Gchr + δ) + (Gchr + δ)]

3
(3)

= Ichr + δ

where Ichr = (Rchr +Gchr + Bchr)/3 represents the intensity of the chromatic spectral band of the image
sensor. The intensity of the IRCF-removed MSFA image sensor is changed by the amount of the offset
value. The hue value in Equation (1) is redefined as:

H = cos−1{
1
2 [(R − G) + (R − B)]

[(R − G)2 + (R − B)(G − B)]1/2 } (4)

= cos−1{
1
2 [(Rchr − Gchr) + (Rchr − Bchr)]

[(Rchr − Gchr)2 + (Rchr − Bchr)(Gchr − Bchr)]1/2 }

Because the achromatic offset value δ is removed during subtraction, an identical offset on the
RGB channels could not change the hue value. Finally, the saturation value is described as:

S =
I − a

I
=

Ichr − achr
I

=
Ichr

I
· Schr (5)

where Schr = (Ichr − achr)/Ichr represents the saturation of the chromatic spectral band of the image
sensor and achr = min(Rchr, Gchr, Bchr). Since the range of Ichr

I is 0 ≤ Ichr
I ≤ 1, the saturation of the

image obtained by the IRCF-removed MSFA image sensor is degraded and becomes smaller than the
image obtained by the chromatic spectral band of the image sensor.

Figure 6 describes how NIR affects the RGB color images. The illuminance was 200 lx, and
the exposure time was 0.03 s. When objects are illuminated by an incandescent lamp, an image
sensor with an IRCF obtains a yellowish hue due to the low color temperature of the illuminance.
After performing a white balance technique from the grey color patch, a white-balanced color image
was obtained as shown in Figure 6b. On the other hand, due to the additive NIR intensities included
in the RGB channels, Figure 6c appears brighter than Figure 6a, and low color saturation was observed
in Figure 6d.

Figure 6. Color observation of the MSFA image sensor under incandescent light. (a) Image captured
with IRCF; (b) (a) with white balance; (c) image captured with IRCF removal MSFA image sensor;
(d) (c) with white balance.
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To correct desaturated color from the input image acquired by the MSFA image sensor, several
conventional methods can be considered, as described in [22,23]. A straightforward method is to train
the matrix to reproduce a set of known reference colors. Given the observed color vector Y and the
visible band color vector with canonical illuminance X, the color correction method is represented in a
matrix form:

X = ΦTY (6)

where Φ is a matrix whose component corresponds to the ratio between the canonical and the current
illuminance value of each channel. The illuminant color estimation was performed under unknown
lighting conditions where pre-knowledge based approaches, such as gamut mapping [24] or the color
correlation framework [25], were used.

However, color degradation caused by IRCF removal is not considered a multiplicative process,
but an additive process. Applying a conventional color correction approach to the RGBN images
yielded poor results, because it did not sufficiently remove the NIR contributions to the RGB channels.
The higher the energy in the NIR band relative to that in the visible band, the higher the color errors
caused by NIR contributions to the RGB signals. As a result, the conventional color correction method
restored visible band color in a limited way. Although each color was obtained under the same
illuminant conditions with and without an IRCF, respectively, the mixture of the exclusive NIR band
intensity to the visible band intensity resulted in severe color distortion.

Figure 7 shows the result of the conventional color correction method for an MSFA image.
In Figure 7c, the color correction matrix worked well for colors in the color chart with low reflectance
in the NIR band. However, despite the fact that the colors of the black paper and velvet paper were the
same in the visible band, the conventional color correction method could not restore the black color
with high reflectance in the NIR band (such as fabric substance).

Figure 7. Example of the conventional color correction method for the MSFA image. (a) MSFA image
without IRCF; (b) MSFA image with IRCF; (c) color correction result.

3. Color Model of an IRCF-Removed MSFA Image Sensor

A color image observed by a CMOS image sensor can be modeled as a spectral combination of
three major components: illuminant spectra E(λ), sensor function R(k)(λ) and the surface spectra S(λ).
The color image formation model in the visible band for channel k was defined as [26]:

C(k)
vis =

∫
wvis

E(λ)R(k)(λ)S(λ)dλ (7)

where wvis represents the spectral range of the visible band between 400 nm and 700 nm. Since an
IRCF-removed MSFA image sensor can acquire the additional NIR band spectral energy beyond a
700-nm wavelength, the range of these three major components in Equation (7) had to be expanded
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to the NIR band. The observed camera response for channel k when using the IRCF-removed MSFA
image sensor is represented by the color image formation model C(k)

MSFA [19] from Equation (7):

C(k)
MSFA =

∫
wvis+wnir

E(λ)R(k)(λ)S(λ)dλ

=
∫

wvis

E(λ)R(k)(λ)S(λ)dλ +
∫

wnir

E(λ)R(k)(λ)S(λ)dλ (8)

= C(k)
vis + C(k)

nir

where wnir represents the NIR band beyond 700 nm. C(k)
vis and C(k)

nir represent the camera response
for channel k by using the IRCF-removed MSFA image sensor in the visible band and the NIR
band, respectively. For an image sensor with RGBN filters, the intensities at each pixel position are
represented as,

R(i, j) = Rvis(i, j) + Rnir(i, j)

G(i, j) = Gvis(i, j) + Gnir(i, j)

B(i, j) = Bvis(i, j) + Bnir(i, j)

N(i, j) = Nvis(i, j) + Nnir(i, j)

(9)

In Equation (9), each pixel contained additional NIR band information. Since this additional
information can be helpful to increase the sensitivity of the sensor, this feature can be useful under
low light condition. However, mixing color and NIR intensities can result in color degradation if
the illumination contains high amounts of NIR. To restore the RGB channels corrupted by NIR band
spectral energy, the additional NIR band components (Rnir, Gnir, Bnir) in the RGB channels have to
be removed:

Rvis = R − Rnir

Gvis = G − Gnir

Bvis = B − Bnir

Nvis = N − Nnir

(10)

Since the spectral response function of the RGBN filter is not defined only in the NIR band, we
used a signal processing approach to estimate the NIR band response. To decompose the spectral
information of the RGBN channel, the unknown value Nvis or Nnir must be estimated. To cope
with the different characteristics of the correlation in the visible band, as well as the NIR band,
we set the correlation model in each sub-band, separately. In the visible band, the RGB channel
filters show different peak spectral responses, while the N channel filter covered all spectral ranges
without outstanding peaks. As a result, the N channel filter response function is modeled as a linear
combination of the others:

Nvis =
∫

wvis

ωr(λ)E(λ)R(r)(λ)S(λ)dλ

+
∫

wvis

ωg(λ)E(λ)R(g)(λ)S(λ)dλ (11)

+
∫

wvis

ωb(λ)E(λ)R(b)(λ)S(λ)dλ

where ωr(λ), ωg(λ) and ωb(λ) represent the coefficients that show cross-correlation in the visible band.
Since the spectral response of the N channel in the visible band covers a wide spectral range without
an outstanding peak, those coefficients are constrained to be constant in terms of the wavelength [27].
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Using the constrained weights, the intensities of the N channel in the visible band are approximated
as follows:

Nvis(i, j) ≈ ωr · Rvis(i, j) + ωg · Gvis(i, j) + ωb · Bvis(i, j) (12)

where ωr, ωg and ωb represent the visible band cross-correlation coefficients obtained by the linear
transformation model:

N = DC (13)

where D is a one by three matrix describing the mapping between the RGB to N channel values. The
transformation D is obtained by solving the following minimization function:

D̂T = argminDT ||N − DTC||2 (14)

where N and C are matrices whose components are the NIR and the RGB components. Each
cross-correlation coefficient could have been of any arbitrary form determined by the illuminance
change and the spectral response of the sensor. As a result, the function ω depends not on the
spectrum λ itself, but on the spectral response of the illuminance and the sensor. Figure 8 represents
the comparison between the optical filtered N channel image in visible band and estimated N channel
image in the visible band by using Equation (12).

Figure 8. Comparison between (a) the optical filtered N channel image and (b) the estimated N channel
image in visible bands.

In the NIR band, the cross-correlation is derived more intuitively, since the RGBN filters are all
pass filters where the filter responses are highly correlated in the NIR spectral range. Since there is
an energy difference between the two spectral ranges in the N filter response, the cross-correlation
coefficients in Equation (12) have to be modified. To cope with the different energy ratios in the visible
and the NIR bands, the response of the N channel in the NIR band is:

Nnir(i, j) ≈ βv,n · (ωr · Rnir(i, j) + ωg · Gnir(i, j) + ωb · Bnir(i, j)) (15)

where βv,n is the inter-spectral correlation coefficient that considers the visible band to the NIR band
energy balance. Figure 9 represents the comparison between the optical filtered N channel image in
the NIR band and the estimated N channel image in the NIR band by using Equation (15).
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Figure 9. Comparison between (a) the optical filtered N channel image and (b) the estimated N channel
image in NIR bands.

4. Proposed Methods

The purpose of the proposed method is to restore the original color in the visible bands from the
mixed wide band signal. However, the color restoration in the spectral domain is an underdetermined
problem, as described in Equation (9). Since MSFA image sensors have additional pixels whose
intensity was represented in Equation (9), we redefined this underdetermined problem with eight
unknown spectral values.

From Equation (8), the observed intensity vectors of the multispectral images are represented
as C(i, j) = [R(i, j), G(i, j), B(i, j), N(i, j)]T . To focus on the color restoration at each pixel position, we
assumed that the spatially-subsampled MSFA image was already interpolated. As a result, there are
four different intensities at each RGBN pixel position.

In Figure 4, the spectral response of each channel is described with the corresponding RGB and N
values. The energy of the NIR band is obtained by the RGB color filters, as well as the N filter. Similarly,
a large amount of the energy in the visible band is obtained by the N channel. By considering the
observed multispectral intensity vector C, the spectral correlation between the channels in the visible
band and the NIR band resulted in a mixture of exclusive responses in each channel, as represented in
Equation (9).

From the sub-spectral band intensity mixture model, the color restoration problem is defined
to find the unknown visible band intensity values Rvis, Gvis, Bvis from the observed intensity values
R, G, B and N, which contained the unknown NIR band intensity values and the unknown visible
intensity values.

4.1. Color Restoration Based on Spectral Decomposition

When we spectrally decompose the N channel to the visible and NIR bands, the given N channel is
represented by the RGB channel intensities in the visible and NIR bands from Equations (12) and (15):

N = Nvis + Nnir

= ωr · (Rvis + βv,n · Rnir) + ωg · (Gvis

+ βv,n · Gnir) + ωb · (Bvis + βv,n · Bnir)

(16)

In Equation (16), the observed N channel is described with unknown RGB values in the visible
bands and the NIR bands. Therefore, the decomposed N channel is obtained indirectly from
Equation (16). Corresponding to the spectral response of the N channel, we define the artificial N
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channel N̂ made by using the observed RGB channels and the visible band cross-correlation coefficients
in Equation (12):

N̂ = ωr · R + ωg · G + ωb · B

= ωr · (Rvis + Rnir) + ωg · (Gvis + Gnir) (17)

+ωb · (Bvis + Bnir)

Since the visible band cross-correlation coefficients are designed to fit the N channel in the visible
band, the estimated N̂ value resembles the N channel filter responses in the visible band, but not in
the NIR band. By using the energy difference between N and N̂ in the NIR band, the observed N
channel is decomposed into the two bands by subtracting the original N channel in Equation (16) and
the artificial N channel N̂ in Equation (17):

N − N̂ = ωr · (βv,n − 1) · R + ωg · (βv,n − 1) · G

+ ωb · (βv,n − 1) · B

= (βv,n − 1) · (ωr · Rnir + ωg · Gnir + ωb · Bnir) (18)

=
βv,n − 1

βv,n
· N̂nir

= K · N̂nir

where K = βv,n−1
βv,n

is a scaling factor and N̂nir represents the artificial N channel in the NIR band from
Equation (15). Based on Equation (18), we decompose the spectral response of the N channel into
two different channels, the visible band and the NIR band. The N channel information in the NIR
band is recovered from the N channel that contained the energy of the entire spectrum of the MSFA
image sensor. As a result, the decomposed N channel intensities in the NIR band and the RGB channel
intensities in the NIR band are estimated from the result of Equation (18).

Figure 10 shows the relationship of the RGB channel intensities and the N channel intensity
of 96 color patches of the Gretag color checker SG in the NIR band. As described in Figure 10, they are
asymptotically linear in the NIR band. From this linear correlation, the decomposed RGB channel in
the NIR band is defined as follows:

R̂nir = αr · N̂nir

Ĝnir = αg · N̂nir

B̂nir = αb · N̂nir

(19)

where αr, αg and αb represent the coefficients of the linear correlations between the RGB channels and
the N channel in the NIR band. From the equation, the intensities of the RGB channel in the NIR band
are estimated, and this color restoration model was processed with a single matrix transformation of:

(R̂vis, Ĝvis, B̂vis)
T = M · (R, G, B, N)T (20)

where M is:

M = E +
1
K

AW (21)
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where W is the N channel decomposition matrix, A is the RGB channel decomposition matrix and E is
a 3 × 4 matrix of zeros with ones along the leading diagonal. The N channel decomposition matrix W

is defined as:

W =

⎛
⎜⎜⎜⎝

ωr ωg ωb −1
ωr ωg ωb −1
ωr ωg ωb −1
ωr ωg ωb −1

⎞
⎟⎟⎟⎠ (22)

and the RGB channel decomposition matrix is defined as:

A =

⎛
⎜⎝αr 0 0 0

0 αg 0 0
0 0 αb 0

⎞
⎟⎠ (23)

Based on Equation (21), the unified matrix M is:

⎛
⎜⎝R̂vis

Ĝvis
B̂vis

⎞
⎟⎠ =

⎛
⎜⎝

αr ·ωr+K
K

αr ·ωg
K

αr ·ωb
K − αr

K
αg ·ωr

K
αg ·ωg+K

K
αg ·ωb

K − αg
K

αb ·ωr
K

αb ·ωg
K

αb ·ωb+K
K − αb

K

⎞
⎟⎠
⎛
⎜⎜⎜⎝

R
G
B
N

⎞
⎟⎟⎟⎠ (24)

where K = βv,n−1
βv,n

is a scaling factor in Equation (18), ωr, ωg, ωb are the coefficients for the linear
combination in Equation (11) and αr, αg and αb are the coefficients that represent the linear correlation
between the RGB channels and the N channel in the NIR band in Equation (19). Because Equation (24)
is a combination of cascaded linear decomposition matrices W and A, the proposed color correction
matrix is more flexible than the simple 3 × 4 linear color correction model. Further, because the sensor
response function over the entire band is nonlinear, color correction error is inevitable when the linear
color correction method is employed. Moreover, there is an energy difference between the visible and
NIR bands. The spectral response of the local spectral band can be approximated to a linear model. On
the basis of linear model approximation of each local spectral band, the proposed method separates
the visible and NIR bands to estimate the color correction matrix and, thereby, obtain a more accurate
estimation of the NIR interference in each RGB channel. Using W, the proposed method decomposes
the N channel to the visible and NIR bands and uses the NIR band information obtained from W to
estimate the NIR contribution in the RGB channels. The correlation between the RGB and N channels
in the NIR band is estimated using A. Because the proposed method separates the visible and NIR
bands to estimate the color correction matrix (CCM), it is possible to estimate the correlation between
RGB and NIR in various illumination environments.

Figure 10. RGBN channel correlation in the NIR band: (a) Nnir vs. Rnir; (b) Nnir vs. Gnir;
(c) Nnir vs. Bnir.
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Figure 11 shows the experimental results obtained under an incandescent lamp with 300 lx
illumination. Because the incandescent lamp emits an amount of spectral energy in the NIR band,
we selected this lamp to show the advantage of the proposed method. By comparing Figure 11b
and Figure 11c, the level of restoration of the overall colors of each color patch can be ascertained.
In Figure 11a, which is the target optical filtered image, it can be seen that some color patches are
slightly different. To investigate the color restoration accuracy, we calculated angular error. Table 1
shows the average angular error. From Table 1, it is clear that the proposed method restores color
better than the linear 3 × 4 color correction method.

Figure 11. Experimental results under an incandescent lamp (300 lx). (a) Optical filtered visible band
image; (b) 3 × 4 color correction method; (c) proposed method.

Table 1. Average angular error (×10−2). CCM, color correction matrix.

3 × 4 CCM Proposed Method

Incandescent (300 lx) 5.12 4.17

4.2. Low Light Conditions

Because of the additional NIR band information, an IRCF-removed MSFA image sensor has
advantages in low visible light conditions. From the perspective of color restoration, however, there
is no advantage, since the unnecessary NIR interference to the RGB color channel does not have any
visible band color information. Figure 12 represents the spectral energy distribution of an incandescent
lamp with a variety of illuminance values. The correlated color temperature of the lamp is 3000 K.
As illuminance decreased, the overall intensities of spectral energy decreased, too. In addition, the
energy ratio between the visible band and the NIR band varied as the illuminance decreased.

Table 2 shows that decreasing illuminance increases the portion of the NIR band spectral energy
under incandescent light. The numbers in Columns 2 and 3 represent the summation of the spectrum
values in Figure 12. This implies that 60% of the unwanted NIR contributions in each RGB channel
must be removed to obtain a natural color image under an incandescent lamp with 10 lx. Because the
NIR contribution is greater than the color information in each RGB channel, it is important to estimate
the NIR band spectral information precisely to prevent false color generation.
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Figure 12. Spectrum of an incandescent lamp under various kinds of illumination (3000 K).

Table 2. Relationships between illuminance and the portion of the NIR band spectral energy.

Illuminance Visible Band NIR Band Portion of the NIR Band (%)

250 lx 57,978.6 45,337.7 43.8

150 lx 26,833.2 23,587.7 46.7

50 lx 8045.7 8847.2 52.3

10 lx 1347.9 2042.7 60.2

4.3. Two-Step Color Restoration

In general lighting situations, the proposed color restoration method based on Equation (24) can
decompose the NIR contribution in each RGB channel. However, as mentioned in Section 4.2, the
spectral energy distribution changed under low lighting conditions. Furthermore, the ratio between
the visible band and the NIR band changed. Therefore, the estimation of the N channel in the NIR
band is more important under low lighting conditions. The color restoration model in Equation (24) is
based on the assumption that the spectral response of the MSFA sensor in the NIR band correlated with
the spectral linearity between the RGB and N channels. However, in the 700 nm to 800 nm spectral
range, there was a lack of linear correlation between the channels, except for between the R and N
channels. If the spectral energy distribution of the light source shows strong energy between this
nonlinear range, the spectral decomposition error of the result will increase. Because the visible band
information is smaller than the NIR band under low lighting conditions, the spectral decomposition
error can produce a false color result.

To overcome this spectral nonlinearity problem, we used a two-step color restoration method that
divides the spectral range into two parts and removes the NIR band information sequentially. Figure 4
represents the two-step color restoration process. In the first step, the intensities of the RGB channel in
the NIR band with a spectral wavelength range greater than 800 nm were decomposed using the B
channel. In Figure 13, the ratio between the B channel and the N channel of 96 color patches of the
Gretag color checker SG is represented. Since the visible band information of the B channel is quite
small under low lighting conditions, there is a strong correlation between the B channel and the N
channel whose wavelength is above 800 nm, as described in Figure 13.
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Figure 13. Relationship between the B channel and the N channel (incandescent lamp, 1 lx): the ratio
between the B channel and the N channel in a wide spectral range (Top); the ratio between the B channel
beyond 800 nm and the N channel in a wide spectral range (Bottom).

The N channel whose wavelength is beyond 800 nm was approximated from the B channel
as follows:

N̂800
nir = γ · B (25)

where γ is the correlation coefficient between the B channel and the N channel above 800 nm. Figure 14
represents the result of Equation (25). Figure 14a is the image obtained with the optical filter, and
Figure 14b is the result of the proposed method after the first step of color restoration. By comparing
(a) to (b), the overall colors of the entire image were similar.

Figure 14. Result of the achromatic NIR band (above 800 nm) component removal (incandescent 5 lx).
(a) Optical filtered image; (b) first step of the proposed method.
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After the first step, the remaining NIR intensities in the RGB channel were removed through the
spectral decomposition method as proposed in Equation (24). Based on Equation (20), the two-step
color restoration model can be processed with a matrix equation as follows:

(R̂vis, Ĝvis, B̂vis)
T = M · (R, G, B, N)T − P (26)

where P is defined as:

P = (γr, γg, γb)
T · B (27)

The γr, γg and γb values represent the correlation coefficient between the B channel and the N
channel whose wavelength was above 800 nm. The proposed two-step color restoration method was
applied to estimate the NIR component of the image obtained under particular illumination situations,
such as low light conditions, especially the illuminance of an incandescent lamp under 5 lx. In this
paper, we use the proposed method with a two-step color restoration with Equation (26) when the
illuminance of the light source is under 5 lx.

From Section 2, the achromatic NIR component δ did not affect the hue and saturation value of
the images. The achromatic NIR component is not an important part of restoring the color component.
Therefore, we estimated the spectral information of the chromatic NIR band precisely after removing
the achromatic NIR component δ.

Figure 15 represents the result of the proposed method under an incandescent lamp with 5 lx.

Figure 15. Comparison between proposed methods (incandescent, 5 lx). (a) Multi-spectral image;
(b) optical filtered image; (c) proposed method without two-step color restoration; (d) proposed
method with two-step color restoration.

Figure 15a is the input image, the color of which is desaturated by additional NIR, and Figure 15b
is the optical filtered visible band image. Figure 15c is the result obtained using the proposed method in
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Equation (24) as given in Section 4.1, and Figure 15d is the result that was obtained using the two-step
color restoration described in Section 4.3. By comparing Figure 15c to Figure 15d, the overall color
of Figure 15c is yellow-shifted, especially in red color patches. Since the spectral energy distribution
changed under low lighting conditions, the unified color restoration model M in Equation (24) was
limited in explaining the complicated nonlinear transformation. After removing the achromatic NIR
band information, the only concern was the chromatic NIR band used to restore the color information.
Since the unified color restoration model M handled the chromatic NIR band information, the color
was successfully restored as represented in Figure 15d.

5. Experimental Results

The proposed color restoration method was tested with images captured under different standard
illuminations: sunlight, incandescent lamp, sodium lamp and fluorescent lamp. Since the spectrum of
these light sources was spread over a wide range, we used these lights as the target illuminance values
as represented by Figure 16.

Figure 16. Spectral distribution of a variety of light sources. (a) Incandescent lamp (3000 K);
(b) sunlight (6500 K); (c) fluorescent lamp (5000 K); (d) sodium lamp (2700 BK).

As the training set for the correlation coefficients, we used 96 standard colors of the Gretag
color checker SG. Because the color samples were distributed widely, these colors were used for the
training set. The input multispectral image was obtained by a camera system with an RGBN image
sensor without IRCF, and we used a target visible band image with an IRCF as a reference image. The
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96 patches were manually segmented, and we used the average RGB of each patch. The resulting
average RGB values in the input image and the reference image were used to derive a set of color
restoration models in Equation (24). We also measured the XYZ of each of the 96 patches using a
spectrophotometer. If an illuminance value was less than 5 lx, we used an additional optical filter
that passes wavelengths beyond 800 nm to derive a set of color restoration models in Equation (27).
After setting a color restoration model, the proposed method was applied to an input multispectral
image without IRCF. As mentioned in Section 4.3, we used two-step color restoration when the
illuminance of the light source was darker than 5 lx. In our experiment, we measured the illumination
level using an illuminometer. In practical situations, the light sensor commonly used to turn on the
flash light or changing to night shot mode must be installed to measure the luminance level of the
illumination. The light sensor performs the simple role of determining whether the luminance level
corresponds to dark or bright. When the illuminance of the light source is brighter than 5 lx, we used
the color restoration model in Equation (24).

As an error criterion, the angular error was calculated. Considering the Z color sample entities in
the training set, the angular error for the z-th color was defined as:

θz = cos−1(
mz · pz
|mz||pz|

) (28)

where θz is the angular error between the target color vector mz and the color restoration result pz.
‘·’ represents the inner product of two vectors, and |m| represents the magnitude of the vector m.
In addition, we measured the color difference ΔE of each color sample in the CIELAB color space
defined by:

ΔE∗
ab = [(ΔL∗)2 + (Δa∗)2 + (Δb∗)2]1/2 (29)

We regarded the average of ΔE as the color correction error. To convert RGB to the CIELAB color space,
the RGB signals were transformed to CIE tristimulus values by using a spectrophotometer with a
standard illuminant, after which the CIELAB equation was applied [28]. The tristimulus values of the
illuminant were A, F and D65 with respect to the incandescent lamp, fluorescent lamp and sunlight,
respectively. We used a visible band image with IRCF as a reference image that was used to compare
to the input image and the result image. As comparative methods for the proposed color restoration
algorithm, we implemented the least squares-based color correction method [29] and the N-to-sRGB
mapping color correction method based on root-polynomial mapping [30].

Figure 17 depicts the experimental results under a fluorescent lamp with 350-lx illumination.
Since the fluorescent lamp did not emit NIR, the input image in Figure 17a and the optical filtered
image in Figure 17b were almost similar. Our proposed method preserved the color of the input image
(Figure 17f) and the other color correction methods (Figure 17c to Figure 17e) because of the absence of
NIR color distortion in the input image.

Figure 18 shows the experimental result under sunlight, which has a wide range of spectral
distribution and abundant visible band information. In this case, it was sufficient to restore color
using the proposed method in Equation (24). Comparing Figure 18b and Figure 18c to Figure 18f, the
resulting image of the proposed method restored the distorted color well, especially the materials with
high reflectance in the NIR band. The root-polynomial mapping method in Figure 18e restored the
overall colors of each color patch and black materials well. The comparison of Figure 18b,e shows
that the saturation is slightly high. Since sunlight has plenty of spectral energy in visible bands, the
root-polynomial mapping restores color information as well as the proposed method. To investigate
color restoration accuracy, each method was compared in Tables 3 and 4.
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Figure 17. Experimental results under a fluorescent lamp (350 lx). (a) Input image; (b) optical filtered
visible band image; (c) 3 × 3 CCM; (d) 3 × 4 CCM; (e) root-polynomial mapping; (f) proposed method.

Figure 18. Experimental results under sunlight (400 lx) (a) Input image (b) optical filtered visible band
image; (c) 3 × 3 CCM; (d) 3 × 4 CCM; (e) root-polynomial mapping; (f) proposed method.
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Another set was tested under an incandescent lamp, which emits much spectral energy in the NIR
band. Figure 19a represents the multispectral image obtained under the incandescent lamp. The color
channels were white balanced without considering the color degradation caused by the additional
NIR; therefore, the overall colors of the image show low saturation and blue hue over much of the
NIR band. Figure 19c shows the result of the conventional color correction method. When comparing
Figure 19c to Figure 19b, the overall colors of each color patch and object were close to the target image.
The comparison of Figure 19d to Figure 19f shows that the overall colors of each color patch and object
were close to the optical-filtered visible band image (Figure 19b). However, the color of the objects
with high reflectance in the NIR band, such as fabric, leaf, and so on, was slightly different. This means
that the accuracy of the NIR estimation was different. Figure 19f is much closer to the visible color in
Figure 19b because the proposed method separates the visible and NIR bands to estimate the color
correction matrix and, thereby, obtains a more accurate estimation of the NIR interference in each RGB
channel. The black colors of the fabric patch in the upper side of the image, as well as the doll’s cap
and clothes were restored to their original colors successfully.

Figure 19. Experimental results under an incandescent lamp (200 lx). (a) Input image; (b) optical filtered
visible band image; (c) 3 × 3 CCM; (d) 3 × 4 CCM; (e) root-polynomial mapping; (f) proposed method.

As discussed in Section 4.3, the proposed two-step color restoration method is useful under
particular illumination. Figure 20 represents a comparison with and without two-step color restoration
under an incandescent lamp at 1 lx. Since the visible band information was less than that of the NIR
band in low lighting conditions, the spectral estimation error increased. As a result, Figure 20c shows
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a yellow image compared to Figure 20b. With the proposed two-step color restoration method, the
color of the image was successfully restored, as shown in Figure 20d. Based on this result, we tested
the proposed method under low lighting situations.

Figure 20. Two-step color restoration result comparison (1 lx). (a) Input image; (b) optical filtered
visible band image; (c) proposed method without two-step color restoration; (d) proposed method
with two-step color restoration.

Figure 21 represents the experimental results under an incandescent lamp at 1 lx. This illumination
emits plenty of spectral energy in the NIR band. In Figure 16, the spectrum distribution of the
incandescent lamp is spread evenly over a wide range. In low lighting conditions, the lack of
visible band information makes the overall saturation of the images low. Figure 21c shows that
the 3 × 3 CCM-based method could not restore the overall color of the input image (Figure 21a). By
comparing Figure 21d to Figure 21f, the overall colors of each color patch and object were close to
the optical-filtered visible band image (b). However, the colors of black materials were not restored
correctly in Figure 21d,e. Since the spectral energy of the incandescent lamp under 550 nm and the
MSFA sensor response in the blue channel were low, blue information is lacking in the black area. As
a result, the blue intensity was boosted during the process of color constancy. Both root-polynomial
mapping and our proposed color restoration method are based on least-square linear mapping;
therefore, a large amount of NIR spectral energy in low-lighting condition (see Section 4.2) must be
considered. Compared to Figure 21d,e, Figure 21f shows that the proposed method restored colors
satisfactorily for both the patches and for materials with high NIR component.
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Figure 21. Experimental results under an incandescent lamp (1 lx) (a) Input image; (b) optical filtered
visible band image; (c) 3 × 3 CCM; (d) 3 × 4 CCM; (e) root-polynomial mapping; (f) proposed method.

Figure 22 represents the experimental results under a sodium lamp at 1 lx. Figure 22c shows
that the 3×3 CCM-based method could not restore the overall color of the input image (Figure 22a).
The spectrum distribution of the sodium lamp is concentrated at a particular wavelength at 830 nm,
as shown in Figure 16. In this case, the sensor spectral response of the local spectral band can be
approximated to a linear model. For this reason, the experimental results in Figure 22d to Figure 22f
show high restoration performance visually. To investigate the color restoration accuracy, each method
was compared in Tables 3 and 4.

Table 3. Average angular error.

Average Angular Error (×10−2)

Input Image 3 × 3 CCM 3 × 4 CCM Root-Polynomial Proposed

fluorescent (350 lx) 0.77 0.80 0.77 0.78 0.77

sunlight (400 lx) 6.97 2.93 2.27 1.98 1.53

incandescent (200 lx) 28.73 7.79 5.31 5.05 4.53

incandescent (1 lx) 29.94 8.71 5.88 6.59 4.89

sodium (1 lx) 28.94 5.99 3.15 3.13 3.13
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Table 4. Average color difference, ΔE.

Average Color Difference ΔE

Input Image 3 × 3 CCM 3 × 4 CCM Root-Polynomial Proposed

fluorescent (350 lx) 0.98 1.12 1.06 1.04 1.04

sunlight (400 lx) 15.66 10.97 9.83 8.16 7.50

incandescent (200 lx) 20.32 8.62 4.98 4.55 4.19

incandescent (1 lx) 22.28 8.18 6.45 7.24 5.07

Figure 22. Experimental results under sodium lamp (1 lx) (a) Input image; (b) optical filtered visible
band image; (c) 3 × 3 CCM; (d) 3 × 4 CCM; (e) root-polynomial mapping; (f) proposed method.

Tables 3 and 4 show the average angular error and the color difference with a variety of light
sources. The performance of the proposed method was confirmed visually for materials with high
reflectance in the NIR band. However, the performance of the proposed method for various colors
in the color chart and substances had to be measured. Table 3 shows the amount of angular error,
where our proposed method outperformed other methods. Since the color of the input image was
severely distorted, the angular error between the input image and the optical filtered image was
significantly high. After the application of color correction methods, the average angular errors
were reduced, and the performance of the proposed method was better than that of the conventional
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methods. Similarly, the color difference in Table 4 shows that the color correction results obtained with
the proposed method were better compared to the another methods.

In addition, to calculate the gain advantage provided with NIR information, we measured the
intensities of the image obtained in various illuminations with or without IRCF. Figure 23 represents
the sensitivity boosting provided by the NIR information. To measure the additional intensities, the
image is divided into 16 sections. After that, the intensities are averaged in each section. As shown
in Table 5 and Figure 23, the sensitivity was boosted by 10 dB without IRCF under an incandescent
lamp. On the contrary, because the fluorescent lamp does not emit an NIR component, there is no
gain advantage.

Figure 23. Sensitivity boosting provided by the NIR information.

Table 5. Average intensity value with or without IRCF in various illuminations.

Illumination With IRCF Without IRCF Sensitivity Gain (dB)

Incandescent 35.6 122.3 10.71 dB

Fluorescent 112.7 112.5 0.01 dB

6. Conclusions

In this paper, a color restoration algorithm for an IRCF-removed MSFA image sensor in low
light conditions was proposed. In the proposed method, the color degradation caused by the
spectral composition of the visible and NIR band information was mainly considered. For the
spectrally-degraded color information with RGB channels, the spectral estimation and spectral
decomposition method were proposed to remove additional NIR band spectral information. Based
on the channel estimation when considering the nonlinearity of the spectral response function of the
MSFA sensor in low light conditions, the channel approximation using the B channel is for two-step
color restoration. Based on the filter correlation, the inter-channel correlation on the visible and NIR
band were assumed, respectively. When the N channel was decomposed into visible and NIR band
information, the RGB channel in the visible band was finally restored with spectral decomposition.
The experimental results show that the proposed method effectively restored the visible color from the
color-degraded images caused by IRCF removal.
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Abstract: The increasingly common application of the near-infrared (NIR) hyperspectral imaging
technique to the analysis of food powders has led to the need for optical characterization of
samples. This study was aimed at exploring the feasibility of quantifying penetration depth of NIR
hyperspectral imaging light for milk powder. Hyperspectral NIR reflectance images were collected
for eight different milk powder products that included five brands of non-fat milk powder and three
brands of whole milk powder. For each milk powder, five different powder depths ranging from
1 mm–5 mm were prepared on the top of a base layer of melamine, to test spectral-based detection
of the melamine through the milk. A relationship was established between the NIR reflectance
spectra (937.5–1653.7 nm) and the penetration depth was investigated by means of the partial least
squares-discriminant analysis (PLS-DA) technique to classify pixels as being milk-only or a mixture
of milk and melamine. With increasing milk depth, classification model accuracy was gradually
decreased. The results from the 1-mm, 2-mm and 3-mm models showed that the average classification
accuracy of the validation set for milk-melamine samples was reduced from 99.86% down to 94.93%
as the milk depth increased from 1 mm–3 mm. As the milk depth increased to 4 mm and 5 mm,
model performance deteriorated further to accuracies as low as 81.83% and 58.26%, respectively. The
results suggest that a 2-mm sample depth is recommended for the screening/evaluation of milk
powders using an online NIR hyperspectral imaging system similar to that used in this study.

Keywords: penetration depth; hyperspectral imaging; milk powder; PLS-DA

1. Introduction

Milk, both a nutritious food in itself and a functional ingredient in other food products, is a
complex fluid consisting of fats, proteins, minerals, vitamins, enzymes, carbohydrates and water.
However, fluid milk is difficult to transport and store. Therefore, milk powders are produced
using drying technologies to turn fluid milk into dry milk powder. Nonfat milk and whole milk
are the two most common milk powders and contribute nutritionally to many food formulations,
including reconstituted milk, dairy products, baked goods, confectionery, processed meat products,
nutritional beverages and prepared ready-to-eat foods. As an important food ingredient for human
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and animal food, milk powder safety is a worldwide concern. In recent years, incidents of milk
powder adulteration by melamine (2,4,6-triamino-1,3,5-triazine) to boost apparent protein content
caused illnesses and resulted in wide recognition of melamine contamination as a food safety problem.
Traditional methods of melamine detection in foods involve analytical techniques, such as mass
spectrometry and high performance liquid chromatography, are time consuming, expensive and require
complicated sample preparation procedures [1,2]. Visible (VIS) and near-infrared (NIR) spectroscopy
have been studied as non-destructive methods to detect melamine in milk by several research
groups [3,4]; however, spectroscopic assessments with relatively small point-source measurements
cannot provide information on the spatial distribution of melamine particles within a food sample.

As one of the most promising tools for non-destructive real-time evaluation of food quality
and safety in numerous applications, hyperspectral imaging combines features of both imaging
and spectroscopy, such that it is capable of not only directly assessing the presence of different
components simultaneously, but also locating the spatial distribution of those components in the
products under examination [5]. Hyperspectral imaging may be operated in either reflectance or
transmittance modes, although reflectance is more commonly used. Generally, transmittance mode
is used for thinly-prepared samples, allowing light to pass through the samples [6–9], while diffuse
reflectance is used for thicker samples in hyperspectral imaging measurements of whole or larger
portions of foods, such as apples [10], peach [11], mushrooms [12], cucumbers [13] and chickens [14].
Hyperspectral reflectance imaging has been used to detect defects and contaminants and to evaluate
quality attributes for fruits, vegetables, meats and dairy products. Implemented with automated
image processing and analysis algorithms, hyperspectral imaging has been demonstrated for effective
real-time assessment of the quality and safety attributes of poultry [14]. For reflectance imaging,
the NIR light must sufficiently penetrate the food material in order for the intensity of the remitted
radiation, as a function of wavelength (or frequency), to have been influenced by the chemical nature
of the absorbing compound.

Light penetration depth is defined as the depth in a sample material at which incident light
is reduced by 99% and will vary with the status of sample, the type of sample and the detection
wavelength [15]. Hyperspectral reflectance imaging is usually operated in the VIS-NIR (400–1000 nm)
or NIR (1000–1700 nm) range. Limited research exists for the investigation of the penetration depth
in the VIS and NIR ranges. Lammertyn et al. [16] reported light penetration depth in apples to be
up to 4 mm in the 700–900-nm range and between 2 and 3 mm in the 900–1900-nm range. Qin and
Lu [15] found that the light penetration depth in fruit tissue varies depending on the type of fruit,
ranging from 7.1 mm for plums to 65.2 mm for zucchini. Most studies reporting light penetration
depths were conducted on fruits. Further research would provide not only helpful references for
thickness determination, but also valuable insight into appropriate sensing configurations, especially
for milk powder products [17,18]. Fu et al. [18] coupled the NIR hyperspectral imaging technique
(990–1700 nm) with spectral similarity analyses to detect melamine mixed into samples of dry milk
powder. Imaging allowed visualization of the distribution of melamine particles in the milk mixture
samples that were prepared at melamine concentrations ranging from 0.02%–1.00% and presented for
imaging in plastic Petri dishes. However, it was not examined exactly how many millimeters the NIR
hyperspectral imaging light could penetrate into the milk powder samples. The objective of this study
was to determine the penetration depth of NIR hyperspectral imaging light in milk powder for the
wavelengths between 937.5 nm and 1653.7 nm.

2. Experimental Section

2.1. Sample Preparation

Eight different milk powder products were purchased from commercial retailers, including
5 brands of nonfat milk powders (‘valley (N)’, Organic Valley, La Farge, WI, USA; ‘nestle (N)’, Nestle,
Solon, OH, USA; ‘hoosier (N)’, Hoosier Hill Farm, Fort Wayne, IN, USA; ‘now (N)’, Now Real Food,
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Blooming, IL, USA; ‘bob (N)’, Bob’s Red Mill, Pheasant Court Milwaukie, OR, USA) and three brands
of whole milk powders (‘hoosier (W)’, Hoosier Hill Farm, Fort Wayne, IN, USA; ‘nestle (W)’, Nestle,
Glendale, CA, USA; ‘peak (W)’, Peak, Friesland Campina, P. Stuyvesantwet 1, AC Leeuwarden,
Holland). Melamine powder (99% purity) was obtained from Sigma-Aldrich Company (M2659,
St. Louis, MO, USA). For detecting the light penetration depth of the hyperspectral imaging system,
different thicknesses (1 mm, 2 mm, 3 mm, 4 mm and 5 mm) of pure milk powders were layered on the
top of pure melamine. These milk-melamine samples were prepared in black electroplated aluminum
plates precisely machined with square wells (30-mm width and height, 10-mm depth). Each sample
was first prepared with a leveled layer of pure melamine in the bottom of the well, followed by a
leveled layer of pure milk powder on top of the melamine. The combined thicknesses of the melamine
and milk powder layers completely filled the 10-mm depth of each well, with the milk depth ranging
between 1 and 5 mm (i.e., 1 mm-thick milk layer over 9 mm of melamine, 2 mm-thick milk layer over
8 mm of melamine, and so on). Figure 1 illustrates the preparation of a sample containing 3 mm of
milk over 7 mm of melamine. For each kind of milk powder, three samples were prepared at each
of the five milk depths, as well as three samples of pure dry milk (10 mm of milk with no melamine
underneath) and one sample of pure melamine. With 19 plates prepared for each of the milk powder
products, a total of 152 samples were measured for the eight milk products used in this study.

7 mm Melamine 

3 mm Milk 

Figure 1. Milk-melamine sample holder (e.g., 3 mm-thick milk and 7 mm-thick melamine layers). The
light grey area shows the sample surface (30 mm ˆ 30 mm).

2.2. Instrument and Experiment

As shown in the schematic in Figure 2 and described in detail in Kim et al. [19], the line-scan
NIR hyperspectral imaging system consists of an InGaAs focal-plane-array (FPA) camera with
320 ˆ 256 pixels (Xenics, Model Xeva-1.7-320, Leuven, Belgium), an imaging spectrograph (SWIR
Hyperspec, Headwall Photonics, MA, USA) and a 25-mm zoom lens (Optec, Model OB-SWIR25/2,
Parabiago, Italy), as well as a computer for controlling the camera and acquiring images, two 150-W
DC light sources with fiber optic bundles (Dolan Jenner, Model DC-950, Boxborough, MA, USA) and
a motorized uniaxial stage (Velmex, Model XN10-0180-M02-21, Bloomfield, NY, USA). The camera
array sensor consists of 150 usable pixels in the spectral dimension over a wavelength range of
937.5–1653.7 nm, with an average wavelength spacing of 4.8 nm. Except for the two 150-W quartz
tungsten halogen light sources, the system is entirely housed with an aluminum-framed enclosure. The
light is conveyed via the low-OH fiber optic bundles, with each bundle terminating in a 250 mm-long
line of fibers encased in a machined aluminum head. The angle of incidence from the line lights is 30˝
(from surface normal), and the distance between line lights and sample surface is 20 mm. For each
light source, a mechanical iris was used to allow approximately 75% of 150-W light intensity to arrive
at the sample surface. The motorized stage moved the samples incrementally across the linear field of
view for step-by-step acquisition of line-scan images.
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Figure 2. Schematic of the NIR hyperspectral imaging system used to acquire reflectance images of
milk powders. FPA, focal-plane-array.

In this study, square imaging pixels were achieved by setting the incremental step size to 0.1 mm
to match the pixel-to-pixel distance along the imaging line, which included 320 pixels. The camera
exposure time was set at 2.5 ms, and a total of 360 scans were acquired in 1 min. The camera digitized
raw energy readings in 14-bit resolution. Finally, each sample’s spectral data were stored as a 16-bit
hyperspectral image cube of dimensions 320 ˆ 360 ˆ 150 containing spatial and spectral data. The
hypercube is a three-dimensional image, which represents a 2D spatial image with x-axis and y-axis
coordinate information and z-axis spectral information.

2.3. Hyperspectral Data Analysis

2.3.1. Image Preprocessing

In this study, dark current and white reference images were collected to correct the raw reflectance
images for wavelength-dependent system responses and heterogeneous dark current in the FPA
camera. The dark current image was captured while the lens was covered by a lens cap. An image
of an illuminated 99% diffuse reflectance standard (SpectralonTM, SRT-99-120, Labsphere, NH, USA)
was acquired for use as the white reference image. These images were used to calculate the relative
reflectance image of each sample, which was calculated by dividing the difference in energy readings
between sample and dark current by the difference in energy readings between the white reference
and dark current.

2.3.2. Spectral Preprocessing

The region of interest (ROI) for each sample was composed of a square region of 10,000 pixels
(100 ˆ100 pixels around the image center), selected within the 30 mm ˆ 30 mm sample area (shown in
Figure 1) so as to include only milk powder areas and exclude background (plate) regions for further
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analyses. Spectral preprocessing techniques were used prior to develop a calibration model in the
quest for improving the subsequent classification model. Common preprocessing methods for NIR
spectra were used, including Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC),
Extended MSC (EMSC), Normalized (NORMALIZED), the common (base 10) Logarithm (LOG10),
Savitzky–Golay Smooth (SMOOTH) and the Savitzky–Golay 1st (1ST) and the Savitzky–Golay 2nd
(2ND) derivative [20].

2.3.3. Development of the Classification Model

After spectral preprocessing, partial least squares discriminant analysis (PLS-DA) was used to
classify each pixel as belonging to either the pure milk class or the milk-melamine mixture class.
PLS-DA, an extension of PLS modeling, aims to find the variables and directions in a multivariate
space that discriminate the known classes in the calibration set. PLS components are computed under
the constraint of the maximization of covariance between inputs and outputs. Therefore, it can provide
a set of orthogonal factors that have the best predictive power from the combinations of different
methods with an increased number of variables [21–23].

Prior to model development, the triplicate samples (three samples imaged at each depth of milk
over melamine and three samples for each pure milk powder product) were divided into two groups,
with two samples (comprising 20,000 ROI pixels) assigned to a model development dataset and one
sample (comprising 10,000 ROI pixels) assigned to a validation dataset for use in evaluating model
performance. Model performance was compared based on classification accuracies, i.e., the percentage
of correctly-classified pixels over the total number of pixels. To better assess the performance of the
classification models, calibrations and validations for each depth were run three times [24]. For each of
the 5 different milk-melamine preparations, a separate PLS-DA model (1-mm model, 2-mm model,
3-mm model, 4-mm model and 5-mm model) was developed. The number of components chosen for
the PLS-DA models was determined by a contiguous block cross-validation method, in which each
block contained the samples from one milk powder product.

Image processing, selection of the square ROI, the spectral preprocessing operation and model
development were performed in MATLAB (R2007b, MathWorks, Natick, MA, USA) equipped with the
PLS Toolbox (v. 7.5, Eigenvector Research, Manson, WA, USA).

3. Results and Discussion

3.1. Hyperspectral Spectra

Figure 3 shows representative mean absorption spectra (calculated from 10,000-pixel ROI) of
pure melamine and the eight pure milk products (including five nonfat and three whole) obtained
from the LOG10 preprocessing technique. Significant differences, absorption peaks related to the first
and second N-H functional group, can be clearly observed between melamine and milk spectra. The
mean melamine spectrum had peaks near 1523.9 and 1490.3 nm, corresponding to the first overtone of
N-H symmetric and anti-symmetric stretching vibration, respectively. The second overtone of N-H
stretching vibration is located near 985.6–1033.7 nm (centered at 1009.6 nm). The most significant
spectral difference between melamine and milk occurred near 1466.3 nm, which is attributed to
aromatic amine structures [3] and showed the highest absorption in the melamine spectrum. For the
nonfat milk spectra, the spectral patterns of the five different brands are similar, and another similar
spectral pattern was observed for the three brands of whole milk from Figure 3. The absorbance
of most nonfat milk spectra is lower than that of the whole milk spectra. For the visual difference
between the nonfat and whole milk pattern, whole milk spectra have an evident absorption peak
around 1211.5 nm, which is due to the second overtone of C-H stretching vibration constituted by
saturated fat structures [25].
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Figure 3. Representative mean spectra of pure nonfat (N) and whole (W) milk powders and pure
melamine, each calculated from a 10,000-pixel ROI.

Figure 4. Mean ROI spectra of samples prepared using (a) ‘valley’ (N) nonfat milk and (b) ‘peak’ (W)
whole milk, including pure milk samples and milk-melamine samples with milk depths from 1–5 mm
(thickness). Plots A and C show the full spectra, while Plots B and D show the enlarged view of the
mean spectra near the 1466.3-nm melamine peak.
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Figure 4 shows representative mean spectra for one nonfat milk and one whole milk, valley (nonfat
(N)) and peak (whole (W)), including milk-melamine samples for milk depths of 1–5 mm (thickness)
and for pure milk. Among the eight milk products used in this study, ‘peak’ (W) had the strongest
absorbance and ‘valley’ (N) had the weakest absorbance. The mean spectra of milk-melamine samples
are very similar to the mean spectrum of pure milk; all exhibit no obvious melamine absorption features.
This observation suggests that individual pixel-based spectral evaluations (instead of averaged spectra
across spatial image areas) may allow better detection of melamine to measure the penetration depth
of milk [18]. In the region of the 1466.3-nm melamine absorption peak, the mean absorbance notably
decreased as the milk depth increased from 1 mm–3 mm. For 3 mm–5 mm, the mean spectra were
nearly the same as that for pure milk. The same trends were observed for both nonfat milk ‘valley’ and
whole milk ‘peak’.

3.2. Discriminant Models for Milk Depth Classification

The plots in Figure 5 compare the validation set classification results (average of three runs) for the
PLS-DA models coupled with specific spectral preprocessing algorithms, for milk-melamine at each of
the five different milk depths (1-mm–5-mm models). As shown in Figure 5, the different preprocessing
algorithms can have a great impact on model accuracy. Compared to the other spectra preprocessing
algorithms, the 2ND derivative consistently resulted in low classification accuracy. The reason may
be that it has a more prominent spectra shoulder after derivative transformation, but it affects the
component number selection of PLS-DA. The models coupled with the SNV and MSC algorithm gave
better, more robust performance than the NORMALIZED model (mean zero, unit variance), which is
due to reducing the scattering influence from particle size.

Since the classification accuracies of the calibration set were better than those of the validation sets,
only the classification results of the validation set for milk and milk-melamine samples are presented.
Table 1 shows the classification results of the validation set based on the PLS-DA model coupled with
the SNV preprocessing algorithm for the eight milk powders. The data show the classification accuracy
notably decreasing as the milk depth increases from 1 mm–5 mm. For the 1-mm model, 99.65%–100%
of milk samples (pixels) and 99.06%–100.00% of milk-melamine samples were correctly classified, for
overall accuracies of 99.93% and 99.86% for milk and milk-melamine samples, respectively, across the
eight milk powders. The 2-mm model’s highest accuracy was the same as that for the 1-mm model,
while its lowest accuracies were lower at 95.53% for milk and 96.4% for milk-melamine samples. The
average misclassification rates were 1.39% for milk and 1.58% for milk-melamine samples across all
eight milk powders. Although the 3-mm model achieved an average accuracy 95.54% for milk and
94.93% for milk-melamine samples, the classification accuracies of nonfat milk ‘hoosier’ and ‘nestle’
were lower than 90%, which is not suitable for melamine detection at lower concentrations. As the
milk depth increased to 4 mm and 5 mm, the nearly identical spectra for milk and for milk-melamine
(shown in Figure 3) resulted in deteriorated model performance. The average misclassification rate
of the 4-mm model was greater than 10%, while about 20% of the samples were misclassified by the
5-mm model for some of the milk powders. This means that the 4-mm and 5-mm models were invalid
for classification.
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Figure 5. Classification comparison of classification results for PLS-DA models coupled with specific
spectral preprocessing algorithms for milk-melamine samples at milk depths from 1 mm to 5 mm (a–e).
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Table 1. Classification results of the validation set for milk and milk-melamine samples from
a 1-mm–5-mm depth using PLS-DA coupled with the Standard Normal Variate (SNV) spectra
preprocessing algorithm.

Classification (%)

Depth 1 mm 2 mm 3 mm 4 mm 5 mm
valley (N) 99.98 99.66 98.20 94.13 87.41

hoosier (N) 99.86 95.53 89.37 84.43 80.91
nestle (N) 100.00 98.72 92.08 91.39 74.26
bob (N) 99.65 96.51 94.49 92.70 90.52

Milk now (N) 99.97 98.80 95.86 89.56 78.50
nestle (W) 100.00 99.98 98.19 89.57 81.29

hoosier (W) 99.98 99.73 97.29 83.77 73.19
peak (W) 99.99 99.98 98.86 87.81 83.85
Average 99.93 98.61 95.54 89.17 81.24

valley (N) 99.91 98.56 94.81 83.94 78.60
hoosier (N) 99.96 96.43 90.21 82.47 78.62
nestle (N) 100.00 97.97 87.34 84.35 58.26

Milk- bob (N) 99.06 95.82 95.29 93.42 90.30
melamine now (N) 99.94 98.89 96.21 92.03 72.73

nestle (W) 100.00 100.00 98.27 92.32 87.42
hoosier (W) 99.98 99.70 97.66 81.83 62.43

peak (W) 99.99 99.99 99.70 95.76 92.92
Average 99.86 98.42 94.93 88.26 77.66

Figure 6 shows the classification results for two brands of nonfat and whole milk using the
PLS-DA model coupled with the SNV spectra preprocessing algorithm. For the same brand milk
powder, the classification results of whole milk were slightly higher than those of nonfat milk for
the 1-mm–3-mm valid models.

Figure 6. Comparison of the classification results for the same brand nonfat and whole milk using
the PLS-DA model coupled with the SNV spectral preprocessing algorithm for (a) milk and (b)
milk-melamine.

4. Conclusions

In this study, the penetration depth of near-infrared hyperspectral imaging light (937.5–1653.7 nm)
was investigated for milk powders. Five different depths of milk powder, from 1 mm–5 mm, were
investigated for the detection of melamine underneath the milk powder. Classification models were
developed using the PLS-DA technique for milk and milk-melamine samples prepared using five
brands of non-fat milk powder and three brands of whole milk powder. The classification results
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showed that the classification accuracy gradually decreased as the milk depth increased. For the
2-mm models, the classification accuracies were higher than 95% for both milk and milk-melamine
samples for all of the milk powders under investigation. It can be concluded that the use of a 2-mm
milk powder depth can be recommended for applying NIR hyperspectral imaging for the detection of
contaminants in milk powder. In addition, the method described can also be potentially applied to
other food powders for penetration depth measurement of NIR hyperspectral imaging system.
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Abstract: We apply the principles of atmospheric surface layer dynamics within a vineyard canopy to
demonstrate the use of forward-looking infrared cameras measuring surface brightness temperature
(spectrum bandwidth of 7.5 to 14 μm) at a relatively high temporal rate of 10 s. The temporal surface
brightness signal over a few hours of the stable nighttime boundary layer, intermittently interrupted
by periods of turbulent heat flux surges, was shown to be related to the observed meteorological
measurements by an in situ eddy-covariance system, and reflected the above-canopy wind variability.
The infrared raster images were collected and the resultant self-organized spatial cluster provided the
meteorological context when compared to in situ data. The spatial brightness temperature pattern
was explained in terms of the presence or absence of nighttime cloud cover and down-welling
of long-wave radiation and the canopy turbulent heat flux. Time sequential thermography as
demonstrated in this research provides positive evidence behind the application of thermal infrared
cameras in the domain of micrometeorology, and to enhance our spatial understanding of turbulent
eddy interactions with the surface.

Keywords: time sequential thermography; micrometeorology; self-organizing maps; surface energy
balance; turbulence; microclimate; infrared camera

1. Introduction

There is great interest in using near-target remote sensing techniques such as time-sequential
thermography (TST) in precision agriculture, ecology [1] and phenomics [2]. Thermography techniques
have to address the thermal condition of the object of interest and the thermal and humidity conditions
of the intervening atmosphere. Near-surface atmospheric temperature is influenced by synoptic
weather patterns and their interaction with local topography at the smaller scale, which together
determines the nature of the air turbulence that envelops the plant and controls the rate of water vapor
and heat exchanges. On the other hand, plants are more than passive objects and employ stomata to
sense the surrounding environment and respond rapidly to abiotic stresses, such as the air temperature.
Their response is typically through stomatal conductance to water vapor and/or transpiration, which
are critical physiological controls. The plant’s surface temperature, or its brightness temperature as
sensed by a thermal infrared camera, is the result of the interaction of the air temperature and the
plant’s physiological response. Thus, to understand the plant’s microclimate through thermography
(or the environment that embodies the plant to a few orders of magnitude in spatial scale relative
to the plant’s volume), it is important to understand the brightness temperature signal (measured
by a infrared camera) as a function of near-surface meteorological parameters controlling the energy
exchanges happening across the plant-environment envelope.

Land surface temperatures are influenced by surface energy balance [3] especially when horizontal
advection processes are negligible. Surface temperature varies as a consequence of partitioning of
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net-all wave radiation (Q*, or the balance between solar and infrared radiation input and output to
the surface) into the subsurface conduction of heat (QG) and changes in sensible (QH) and latent heat
exchange (QE) with the overlying atmosphere. On short time scales (less than an hour), radiative input
is relatively constant, unless clouds interfere or overlying plant canopy causes rapid changes (flickering)
in solar radiation [4]. Higher frequency (seconds to minutes) surface temperature fluctuations are
a response to the turbulent sensible and latent heat fluxes. Turbulence, caused by eddy motion, is
expected to control temperature fluctuations on the same length and time scales as the atmospheric
eddy motions.

The brightness temperatures of objects within the surface layer were not typically considered in
the atmospheric community as a proxy for near-surface turbulence, but as infrared cameras become
cheaper and are able to record data at high spatial and temporal resolutions, it is now feasible to study
turbulence through the acquisition of brightness temperature. One of the earlier studies to investigate
the coupling between coherent turbulent structures and surface temperature over an agricultural field
(maize canopy) employed a directional infrared thermometer (sampling at 10 Hz) in identifying ramp
structures in the surface temperature signal of the canopy with significant correlation with fluctuations
in the air temperature above the canopy [5]. Coherent structures were identified as temperature ramps
in the surface and air temperature time series, with the magnitude of surface temperature ramps
being significantly smaller than the air temperature ramps. Surface temperature ramps are caused by
turbulent eddies mixing warmer (or cooler) air with cool (warm) air from aloft. A similar study was
conducted over grass [3] and also found direct relationships between surface brightness temperatures
and independently measured surface-layer turbulence parameters.

Application of time-sequential thermography (TST) to calculate urban sensible heat fluxes
(from a building) was first demonstrated by Hoyano et al. [6], and was further developed conceptually
by Voogt [7] as a method for viewing the “footprint” of the coherent flow structures, and it was
later emphasized by Christen et al. [8] that brightness temperature fluctuations are largely controlled
by atmospheric turbulence while the level of fluctuation becomes modulated by surface properties,
especially its thermal admittance. The application of TST to detect large temperature fluctuations in
the unstable surface layer to understand the turbulence structure has shown great promise in field
experiments [9], and was successful in deriving surface wind velocities over simple grass areas [10]
via the principle of turbulent eddy interaction with surface brightness temperatures.

As forward-looking infrared cameras become more affordable, TST will become an attractive
method to measure the energy and moisture exchanges between the surface and overlying atmosphere.
This research utilizes spatial brightness temperature data from infrared cameras looking onto a
vineyard canopy. The canopy is also instrumented with an eddy covariance system measuring in situ
turbulent and radiation fluxes and near-ground thermistor-based temperature sensors. The brightness
temperature fluctuations (sampled sequentially over a nighttime period at a high frequency) are
then used to interpret the spatial variability of the turbulent nature of the site using a combination
of in situ metrological measurements and a pattern recognition algorithm (or self-organizing maps,
SOM) applied to the acquired brightness temperature data. The SOM approach allows for clustering
self-similar images into groups that could then be analyzed according to their unique meteorological
context. This research highlights the significance and relevance of the methodology in terms of relating
the brightness temperature variability to atmospheric turbulence, which also highlights the local
meteorology. This approach is not only limited to vineyard applications and could be applied and
assessed over various other crop types or surfaces.

2. Methods

2.1. Study Site and Instrumentation

The experimental site is located in Marlborough, situated in the South Island of New Zealand,
renowned for abundance of vineyards and a major wine-producing region. The experimental site
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was chosen to be at the Lions Back vineyard in Seddon (41◦41′51.5′ ′S, 174◦05′13.6′ ′E) (Figure 1).
This vineyard is ideal for the purpose of this experiment as it is easy to access and a nearby-elevated
escarpment provides an ideal platform for placement of the infrared cameras overlooking most of
the vineyard. Within the field of view of the cameras we have placed an eddy covariance system
containing a 3D sonic anemometer, water vapor analyzer, measurements of all-wave radiation, and near
surface air and soil temperature loggers in the same measurement area (Table 1). All measurements
were controlled through data logging devices and/or monitored manually throughout the sampling
period. The meteorological variables measured by the eddy covariance system (surface energy balance
measurement system), climate station (standard meteorological parameters), and the near surface
temperature logger (thermistor-based temperature sensing) were taken from 17 May 2014 12 a.m.
up until 18 May 2014 9 p.m. While the thermography data was collected during the evening of the
17 May 2014 between 5 p.m. and 9 p.m. local standard time, which is also highlighted with a black
rectangular box in Figure 2a.

 
(a) 

 
(b) 

Figure 1. (a) The vineyard site covering most of the field of view of the two longwave infrared cameras
shown on tripods in the foreground. The near-ground Hobo temperature logger is shown in the small
figure inset; (b) A close up on the eddy covariance system (or EC-station in left panel) placed in the
center of the camera’s field of view.

Table 1. Instrumentation specifications and measured variables.

Instrument Description Measured Variable Range and Accuracy
Sampling
Frequency

Campbell
Scientific
CSAT3

Three-dimensional
ultrasonic anemometer

Cartesian components of velocity
and sonic temperature (u, v, w, Ts)

±65 m·s−1 ± 0.08 m·s−1 for u, v
±0.04 m·s−1 for w, and −30 to

50 ◦C ± 0.01 ◦C for Ts
20 Hz

LICOR-7500
Open path infrared H2O

analyzer (situated 30 cm below
the sonic anemometer)

Specific humidity 0 to 60 parts per trillion (ppt)
±0.6 ppt 20 Hz

Kipp and
Zonen CNR1 Net radiometer Incident and reflected long- and

short-wave radiation components ±10% over 24 h 1 Hz

Vaisala
HMP45C

Temperature and relative
humidity probe

Air temperature, soil surface
temperature, and relative humidity

−40 to +60 ◦C ± 0.3 at 0 ◦C
0 to 90% ± 2% 1 Hz

HOBO U23 Radiation shielded
temperature sensor

Air temperature at 35 cm above
ground level or AGL −40 to +70 ◦C ± 0.2 ◦C 0.1 Hz

FLIR A644sc Uncooled infrared camera Brightness temperature on a raster
of 640 × 480 pixels

−40 to 150 ◦C ± 2 ◦C
Spectral range 7.5 to 14 μm
Thermal sensitivity 30 mK

50 Hz

Optris Pi 640 Uncooled infrared camera Brightness temperature on raster of
640 × 480 pixels

−20 to 900 ◦C ± 2◦C
Spectral range 7.5 to 13 μm
Thermal sensitivity 75 mK

0.1 Hz
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Figure 2. (a) Air temperature and relative humidity from within and above the vineyard canopy.
The climate station data was collected from a low escarpment around 5 m above the canopy’s horizon.
The black box shows the time period of the operation of the infrared cameras; (b) Wind speed (line)
and direction (dotted) from within (blue) and above (black) the canopy; (c) The surface radiation and
turbulent energy budget from the eddy covariance system inside the canopy.

2.2. Self-Organizing Maps, SOMs

The SOMs algorithm for the pattern recognition used in this analysis is SOM_PAK, found at
Helsinki University of Technology website [11]. SOM iterates through the input dataset while matching
each input to the SOM node that is closest in terms of its Euclidean distance, and then adjusts the node
and its neighbors to incorporate the input data. A learning rate parameter controls the rate at which
the SOM absorbs the information from the input data while a neighborhood radius determines which
other nodes, are affected by the input data. The learning rate decreases to zero and the neighborhood
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radius decreases to one as the algorithm iterates through the dataset. Several matrix sizes (representing
the number of maps or patterns) were tested, and for each matrix size the number of iterations and
learning rate function types were adjusted, with the aim of reducing the quantization error, or the
mean Euclidean distance between the input data and the SOM; bigger matrices generally exhibit lower
errors. When the change in the error is minimal, the process can be considered complete. Criterion
referred to as the “Sammon Map” is used to inspect whether each node of the SOM has more in
common with its neighboring nodes, than non-neighboring. If not, the SOM algorithm was rerun
with adjusted parameters. For examples on using SOM for various sources of meteorological data
see [12–18].

The brightness temperatures (180 × 180 pixels) extracted as a spatial subset from the total infrared
camera image (640 × 480 pixels) were used as input data for the SOM algorithm. First the pixel-wise
data was normalized so that all pixel variables have a variance of 1, this allows for a more effective
way in extracting patterns without biasing regions towards extreme values. Before executing the
SOM algorithm the infrared brightness temperature perturbations (Tb’) were calculated based on
the deviation of every sample (at 10 s interval) from the 10 min average. The de-trended Tb’ were
then related to the turbulence and/or radiation forcing measured by the eddy covariance unit. The
number of nodes (or pattern groups) was chosen to be a 3 × 3 matrix arrangement after testing with
several other arrangements and an optimization between the size of the matrix and the detail of output
was reached. After constructing the SOM, the non-clustered data was then matched with its most
representative node (or spatial pattern), and then a number count was found to compare the relative
population of each node with the original or non-clustered data. As a result, all 9 nodes had best
matching units between 60 and 120, which suggests that the nodes were relatively well populated.

3. Results

3.1. Micrometeorological Context

The experiment extends between midnight of 17 May 2014 up until the early evening of
18 May 2014. During this period the region was synoptically quiescent, which limited surface wind
speeds to less than 3 m·s−1, and the diurnal temperature ranged between just below freezing level and
20 ◦C (Figure 2). The air temperatures measured from within the vineyard canopy (EC station), near
the surface air (Hobo north) and from a nearby climate station (Figure 2a) all show similar diurnal
temperature variations within the experimental domain. The first morning period (17 May 12 a.m. to
8 a.m.) was colder by 5 to 10 ◦C than the following morning period (18 May 12 a.m. to 8 a.m.), mainly
due to the more stable atmosphere maintained by weak surface wind speeds and the surface radiation
cooling process. The following early morning wind speeds measured at 6 m above ground level (AGL)
at the nearby climate station site increased up to 6 m·s−1, causing higher levels of turbulence within
the canopy as registered by the increase in the sonic wind speed (Figure 2b) and the increase in the
latent heat flux during the period between 12 a.m. and 8 a.m.) on 18 May. The relative humidity during
this period (70%) was also lower than the night before (90%, Figure 2b), and the wind direction was
from the northwest sector which blows relatively dryer air from the elevated mountainous regions.

3.2. Brightness and Air Temperature Relationship

In this section we aim to present a direct comparison between the measured brightness
temperatures as seen by both of the long-wave infrared cameras and in situ air temperatures measured
from within the canopy and from the surface at the northern edge of the canopy. The method we
have used relies on averaging the brightness temperature over a 25 m2 area and a larger field of view
area (see boxes (1), (2) and (3) in Figure 3a). Figure 3a shows a snapshot from the Optris camera of
the entire field of view taken at 7:28 p.m. on 17 May 2014 local standard time. The color scale in
Figure 3a represents the brightness temperature and a clear depiction of the warmer vegetated canopy
(around 7 ◦C) rows running north to south and a cooler grass surface between the canopy rows with a
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brightness temperature of around 4 ◦C. Figure 3b is a derived image that represents the brightness
temperature perturbation calculated by de-trending each sampled pixel from the temporal mean over
a 10 min period. This statistical quantity represents a perturbation value that clearly shows pixels
and regions that are either warmer (positive) or cooler (negative) than their neighbors. The resulting
image highlights clouds in the upper sky section of the image that were invisible in Figure 3a, and
warmer structures over the canopy. Figure 3c presents a time series of the area-averaged brightness
temperature measured by the FLIR and Optris cameras over regions (2) and (3). A time series of the air
temperature as measured by the EC-station and the HOBO temperature logger is also added to the
figure to relate the brightness temperature to the air temperature as a function of the height of the air
temperature measurement and location with respect to the vegetated canopy.
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Figure 3. (a) A sample snapshot in time of the brightness temperature measured by the Optris camera.
Regions (1), (2) and (3) represent the areas from which the mean was calculated from some of the
analysis; (b) The same snapshot in time as in (a) but for the derived perturbation brightness temperature
calculated from the deviation of each of the 10 s samples from the 10 min mean. Positive values show
areas of increasing temperature in time; (c) Time series comparison of brightness temperature from two
cameras, air temperature from the eddy covariance station and near-surface Hobo temperature logger;
(d) Scatter plot of brightness temperature and in situ air temperatures.

3.3. Brightness Temperature and Turbulent Heat Flux

The horizontal and vertical kinematic heat flux components were calculated from the covariance
of the horizontal (U, V) and vertical (W) velocity components and the sonic temperature recorded by
the sonic anemometer. In Figure 4a the kinematic heat flux is sampled at 10 s periods from collected
data at 20 Hz; the results show turbulent horizontal and vertical heat advection over the few hours
of the evening when the brightness temperature was sampled via the infrared cameras. Figure 4a
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shows an initial period of moderate to little turbulent heat flux (5 p.m. to 6:30 p.m.), with an increase
of heat flux over the rest of the evening. This result is also supported by an increase in above-canopy
wind speeds after 6 p.m. as depicted by the climate station wind speed data in Figure 2b. Figure 4b
shows the area-averaged (area (2) in Figure 3a) de-trended brightness temperature from the FLIR and
Optris cameras around the EC-station, and the corresponding de-trended air temperatures form the
EC-station in the green line.

 

Figure 4. (a) Turbulent kinematic heat flux in the three Cartesian directions (U for east-west, V for
north-south, and W in the vertical). Statistically, the heat flux was calculated based on the covariance
of the velocity and sonic temperature; (b) Time series of brightness and air temperature at the eddy
covariance area-averaged site.

3.4. Self-Organizing Maps (SOMs) of Brightness Temperature

In this section we relate the spatial pattern of the brightness temperature to the meteorological
conditions observed at the center of the image via the eddy covariance system. An unsupervised
pattern recognition algorithm (SOM: see descriptions in the Methods section) was used to cluster
the brightness temperature field into nine different nodes. This method allows us to interpret the
brightness temperature field within the right meteorological context when other parameters (such as
data from the eddy covariance system) are composited as a function of individual clusters. Figure 5 is
the resulting SOM of all of the nearly 1000 images that were taken at a 10 s sampling interval from the
Optris infrared camera; the sky brightness temperatures (appearing as a white mask at the top half of
the nodes) were not used in the clustering but used as a derived composite variable for further analysis.
The variables, which appear in parentheses in Figure 5 and are illustrated in Equations (1) and (2),
represent the (A) mean sky brightness temperature perturbation, and the (B) ratio of the mean sky
brightness temperature perturbation to the mean of the absolute sum of the three kinematic turbulence
heat flux components derived earlier for Figure 4a.
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A (per node) = ∑n
i=1 Tb′_sky

n
(1)

where n is the number of images per node.

Tb′ _sky is the spatial average of the de-trended sky brightness temperature Tb′_sky = Tb_sky−
Tb_sky, where Tb_sky is the instantaneous pixel-based value and Tb_sky is the 10 min average.

B (per node) =
A (per node)

|cov(UTs)|+ |cov(VTs)|+ |cov(WTs)| (2)

 

Figure 5. SOM nodes derived from the perturbation brightness temperature. Positive or red values
or colors indicate an increase in Tir and negative or blue values or colors indicate a decrease in Tir or
surface cooling. The numbers (A, B) on the top of each node are derived from the best matching units
of that specific node and are perturbations of (A = average sky brightness perturbation temperature,
B = average of the ratio of A by the absolute sum of the three kinematic turbulent heat flux components
that were used in Figure 4a).

4. Discussion

The results comparing the brightness temperature measured by the Optris infrared camera and in
situ air temperatures show a very good match for the canopy height air temperature measurement
and a warm bias for the air temperature measurement at the near-ground level (Figure 3c). The FLIR
camera results show a systematic cold bias, with larger temperature oscillations when compared with
the Optris, which could be explained by the automatic focusing method employed by the FLIR camera,
which tends to periodically auto-sharpen the image, but also could be explained by the need for a
camera calibration. Figure 3d shows a correlation diagram between the brightness temperature and
the in situ air temperature measurement between the smaller area-averaged regions (1) and (2) and the
larger field of view region (3). The results show a good linear correlation and a low value of root mean
square error; they also show the cold bias offset previously revealed by the FLIR camera. This results
also shows that the one-to-one relationship between the brightness temperature and the in situ air
temperature is still preserved while spatially up-scaling the image over a homogenous terrain.
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The brightness temperature signal of the Optris camera when compared to the direct
measurements of turbulent heat flux (shown in red in Figure 4b) follows the air temperature trend and
responds to the cooling and warming period suggested by the heat flux advection. The brightness
temperature oscillation range also scales to the ranges shown by the air temperature record. The FLIR
brightness temperature trend (shown in blue in Figure 4b) generally follows the initial cooling and then
warming cycle but tends to overestimate the range with around five relatively large peaks. These peaks
are linked to the automatic focusing of this specific infrared camera. Between 5 p.m. and 6:30 p.m. the
brightness and air temperature trend did not exhibit either a positive or negative trend in comparison
with the negative (cooling) or warming (positive) trends outside this period. This period also reflects a
period of quiescence and little to no turbulent heat flux as shown in Figure 4a.

The unsupervised clustering carried out by the SOM technique in Figure 5 was successful in
distinguishing nine clusters that have a meteorological context when compared to in situ measurements.
The color in Figure 5 represents the brightness temperature perturbation (red being a warming trend
and blue a cooling trend). The SOM shows distinct features that are relatively different among nodes.
For example, node 1 shows a field-wide warming trend, while node 9 a field-wide cooling trend.
Nodes 4 and 6 show the same extremes but with lower magnitudes, while nodes 3 and 7 show a north
to south cooling or warming gradient and appear to represent an opposite brightness temperature
gradient. In order to link the SOM patterns to a meteorological context we have composited two
different variables (A and B in Figure 5 and Equations (1) and (2)) from the un-clustered data behind
the construction of each of the node patterns. The mean sky brightness temperature perturbations, or
A (varying between −0.17 and 0.17), correlate well with the brightness temperature trends. Positive
values of quantity A (such as in nodes 1 and 4 for example) indicate a warming sky brightness
temperature that relates to nocturnal cloud cover, which reradiates long-wave radiation back onto the
surface, creating a homogenous spatial brightness temperature positive trend. The opposite applies
for clear sky conditions (for example nodes 6 and 9). This result does not apply for nodes 2, 3, 5, 7, and
8 which show an order of magnitude lower mean sky brightness temperature perturbation and higher
values of turbulent heat flux, which clearly creates localized and distinct warming and cooling trends
within the brightness temperature spatial pattern. The particular patterns shown by nodes 3 and 7 are
intriguing, as one could hypothesize that these opposite patterns are related to turbulent advection or
mixing events that are happening within this local topographic catchment, especially as these patterns
only exist during high turbulent heat flux periods (see quantity B for these nodes in comparison to
quantity A for the other nodes).

5. Conclusions

We have demonstrated the use of forward-looking infrared cameras measuring the surface
brightness temperature over a vineyard in the spectrum bandwidth of 7.5 to 14 μm at a relatively high
temporal rate of 10 s for the application of vineyard-scale micrometeorology. Our results show that
this technique, when applied for interpreting the micrometeorology as a function of cloud cover and
within-canopy turbulence, could become a useful tool for up-scaling point measurements to spatially
wide footprints. The temporal surface brightness signal over a few hours of the stable nighttime
boundary layer intermittently interrupted by periods of turbulent heat advection was shown to be
related to the atmospheric surface-layer dynamics observed by the eddy-covariance measurements,
and reflects the temporal evolution of above-canopy wind variability.

The analysis also introduced the SOM of the spatio-temporal brightness temperature data to
reduce the dimensionality of this large dataset, but more importantly to highlight the physical dynamics
of nighttime surface brightness temperature over a complex canopy measured by an infrared camera.
The resultant spatial clusters were self-organized and compared to the meteorological context they
reflected, and the spatial brightness temperature pattern was explained in terms of the presence or
absence of nighttime cloud cover and down-welling of long-wave radiation and the canopy turbulence
heat flux. Time sequential thermography as demonstrated in this research provides positive evidence
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behind the application of thermal infrared cameras in the domain of micrometeorology. The results of
this experiment could then be used in accordance with the surface renewal theory (which assumes that
surface-atmospheric turbulence exchanges are driven by ramp-like structures within the temperature
time series), which will eventually allow for a spatial pixel-based derivation of sensible and latent heat
flux which are essential for the canopy’s water balance during daytime periods [19–22].

There are a couple of limitations to this study that need to be considered when it is applied for more
complex terrain. The first limitation comes from the potential effect of air temperature and humidity
fluctuations along the camera’s line of sight on the interpretation of surface brightness fluctuations.
This effect is usually addressed by simple one-dimensional radiative transfer modeling, which
delineates the role of infrared signal attenuation. Both of these effects have been previously found to
be less than 10% (for atmospheric temperature) and less than 3% (for atmospheric humidity) [8] for an
urban setting and results may vary for other applications. The other limitation is the variable image
pixel resolution as a function of depth. So the pixels furthest away from the camera have a different
pixel resolution than pixels close to the camera. This could be only fixed with ortho-rectification when
a high-resolution digital elevation map (DEM) for the site is available. A DEM was not available for
this study, and given that the focus of this study was not to study atmospheric turbulence as a function
of length scale, we considered that not affecting our major conclusions in this study.
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Abstract: For many practical applications of image sensors, how to extend the depth-of-field (DoF) is
an important research topic; if successfully implemented, it could be beneficial in various applications,
from photography to biometrics. In this work, we want to examine the feasibility and practicability
of a well-known “extended DoF” (EDoF) technique, or “wavefront coding,” by building real-time
long-range iris recognition and performing large-scale iris recognition. The key to the success of
long-range iris recognition includes long DoF and image quality invariance toward various object
distance, which is strict and harsh enough to test the practicality and feasibility of EDoF-empowered
image sensors. Besides image sensor modification, we also explored the possibility of varying
enrollment/testing pairs. With 512 iris images from 32 Asian people as the database, 400-mm focal
length and F/6.3 optics over 3 m working distance, our results prove that a sophisticated coding
design scheme plus homogeneous enrollment/testing setups can effectively overcome the blurring
caused by phase modulation and omit Wiener-based restoration. In our experiments, which are based
on 3328 iris images in total, the EDoF factor can achieve a result 3.71 times better than the original
system without a loss of recognition accuracy.

Keywords: wavefront coding; extended depth of field; iris recognition; biometrics

1. Introduction

Biometric recognition has been applied to many practical uses, including homeland security,
e-commerce or other authentication management purposes. Basically, the personal attributes used for
authentication were classified into two parts: (1) physiological attributes, such as DNA, facial features,
retinal vasculature, fingerprint, hand geometry, iris texture and so on; and (2) individual behavior
features, such as signature, keystroke, voice, and gait style [1]. Among these features, iris texture is
one of the most attractive modalities because of its inherent distinctiveness, high stability over time
and low risk of circumvention [2].

An iris recognition system consists of modules of the imaging optics unit, the image processing
unit and the feature matching unit, as shown in Figure 1. The optical system, involving the camera and
the irradiance, is used to capture a distant iris image with the highest fidelity possible. The captured
images are subsequently processed through many steps. Firstly, the iris images are segmented by
determining the centers and radii of the pupillary and limbic boundaries. A conventional segmentation
method, such as an integro-differential operator [2–4] or Hough transform [4,5], can be applied. Then
the iris images are normalized by transforming the coordinates from Cartesian to Polar accordingly.
The prominent features of the iris texture are extracted using Gabor filters. Finally, the features are
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thresholded into binary codes (called iris codes) for the recognition algorithm [2–4]. Matching two
iris codes using the bit-wise XOR operation generates a distance score. The distance score, Hamming
Distance (HD), is employed to measure the distance between two iris codes. An appropriate threshold
value of HD is determined so that a decision of acceptance or rejection can be made. For example,
two iris images are said to be independent if their HD is above a certain threshold, which is about
0.33 according to Daugman’s algorithm [6]. Otherwise they are assumed to be a match.

 

Figure 1. An iris recognition system is composed of the imaging optics unit, the iris image processing
unit and the feature matching unit, respectively.

For the practical scenario in iris recognition, the acquisition volume, which is defined as the depth
of field (DoF), should be large enough to preserve the high reliability and robustness of the system.
Imaging optics with sufficient DoF while preserving satisfactory spatial resolution is highly desirable.
The conventional approach to increase the DoF is to increase the F-number, which corresponds to
using a smaller aperture or longer focal length. However, both scenarios have a side effect. A smaller
aperture would lead to a poor optical throughput, and thus a low signal-to-noise ratio; a longer focal
length would reduce the field-of-view (FoV), thereby adversely affecting the resolution of the system.
Computational imaging proposed by Dowski and Cathey engineered the pupil function to resolve this
dilemma in a successful way. After that, many studies applied the coded image for iris recognition and
extended the acquisition volume without loss of recognition accuracy [7–11]. To our understanding,
numerous previous studies were addressed by the simulation, where the phase mask is assumed to be
on the pupil plane exactly. However, for most practical uses, the pupil plane is unreachable by end
users because it is hidden inside a complex optomechanical layout. Meanwhile, imperfect irradiances
such as glare reflection, non-uniform distribution and brightness level should be considered as well.

In this paper, we implemented the wavefront coded iris recognition system starting from the
acquisition optics to the final score-matching stage. We experimentally compared the recognition
performance with different enrollment/testing schemes. The results offer some insight for utilizing
the wavefront coding image to provide maximal allowable DoF while maintaining the high
recognition accuracy.

The remainder of this paper is organized as follows. Section 2 introduces the optical consideration
and the corresponding terminologies. In Section 3, an extended depth of field (EDoF) system for iris
recognition is implemented [12]. In Section 4, the experimental results are examined in terms of various
figure of merits, including equal error rate (EER) and HD distributions. In Section 5, discussions on
homogeneous or heterogeneous iris recognition are carried out to explore the performance difference
between different setups. Section 6 concludes the paper.
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2. Optical Consideration

2.1. Tradeoff between Resolution and Field-of-View

The major challenge of a prime lens for iris recognition lies in a constant acquisition volume
(which can be expressed as resolution × FoV). The iris images need sufficient sampling resolution
to ensure recognition performance. At the same time, the FoV should be wide enough to cover the
entire ocular region and localize the facial landmarks. ISO/IEC 19794-6 suggests that the sampling rate
across the iris region should exceed at least 150 pixels so as to contain sufficient features [13]. For an
image sensor with a pixel size d, the minimum width of iris images D′

1 is given by:

D′
1 = 150 × d, (1)

With average width of an adult’s iris D1 = 12 mm [14], the magnification m of the camera can be
obtained as:

m =
D′

1
D1

≥ 150 × d
12

, (2)

The effective focal length f of a camera is related to the magnification m and object distance
So [15]:

f =
m

1 + m
So, (3)

For the sensor pixel size d = 8 μm in our case, by Equations (2) and (3), the magnification m ≥ 0.1
and focal length f ≥ 0.09 So, which defines the lower bound in terms of resolution. As shown in
Figure 2, in case of So = 3 m working distance, the available focal length should be larger than 272 mm.

Figure 2. The focal length f is constrained by two boundaries for the resolution and the field of view.
For object distance So = 3 m, the available focal length is in range of f = 272–499 mm. In this study, the
focal length is set to 400 mm and illustrated as the orange point in this figure.

On the other hand, another boundary of focal length was defined by the FoV, which is given by:

FoV = 2tan−1
(

D2

2S0

)
= 2tan−1

(
L

2Si

)
, (4)
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where D2 is the width of full ocular region. The ratio of D2/So in object space is equivalent to the L/Si
is image space, where L is the full size of an image sensor and Si is the image distance. For the distant
imaging, the paraxial approximation holds that Si ∼ f , Equation (4) can be rewritten as:

f =
L

D2
So, (5)

Since the FoV should be large enough to encompass the entire ocular region, with typical size of
an adult’s ocular region D2 = 100 mm and the available sensor diameter L = 16.64 mm, Equation (5)
defines the upper boundary, f = 0.16So, as shown in Figure 2. For the object distance So = 3 m, the
available focal length should be smaller than 499 mm accordingly. Taking both resolution and FoV into
account, we employed a commercial telephoto lens, Sigma APO, with 400-mm effective focal length.
Detailed specifications of the image sensor and lens set are listed in Table 1.

Table 1. Specification of image sensor and telephoto lens set.

MV1-D2080 IR Sensor Sigma APO 150–500 mm

Optical Format 23.5 mm Field of View 5–16 degrees
Resolution 2080 × 2080 Minimum Distance 220 cm
Pixel Size 8 μm Maximum Mag. 1:5.2

Dark current 0.65 fA/pixel Caliber Diameter 86 mm

2.2. Depth of Field

Figure 3 illustrates the concept of DoF, which is marked as dotted zone on the left. When the
subject is out of DoF, the point spread functions (PSFs) of the imaging system would increase by the
path-length error. The most common merit to evaluate the defocus extent is the circle of confusion
(CoC), which is defined as the largest blur PSFs indistinguishable from two distant point sources.
For computational imaging with the aid of post-processing, currently there is no universal definition for
CoC in optics. In our work, we defined CoC as the maximally allowable iris blurring with acceptable
recognition performance [7]. Under the paraxial approximation, the imaging condition at the near and
far limits of the DoF (DN and DF) can be described as:

1
Si

+
1
So

=
1
f

, (6)

1
Si(1 + C

P−C )
+

1
So − DN

=
1
f

, (7)

1
Si(1 + C

P+C )
+

1
So + DF

=
1
f

, (8)

where P and C are the diameter of the pupil and CoC, respectively. According to Equations (6)–(8), the
DoF of an imaging system can be obtained as:

DN =
CSo(So − f )

f P + C(So − f )
, (9)

DF =
CSo(So − f )

f P − C(So − f )
, (10)

DoF = DN + DF =
2CSo

f P/(So − f )− C2(So − f )/ f P
, (11)
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Figure 3. Schematic illustration of the DoF (dotted zone) in an imaging system. DoF is determined by
four factors: circle of confusion C, exit pupil P, object distance So and focal length f, respectively.

In our case with P = 86 mm, f = 400 mm and C = 0.136 mm, the DoF is merely 60 mm, which is
too shallow to be operated in a robust way. Motion blur inevitably occurs if users are allowed to move
or walk, like the use case reported in [12]. One scheme is to increase the shutter speed or F-number by
sacrificing the image brightness, which degrades the image quality with a low signal-to-noise ratio.
In this study, we resort to the computational image, which cleverly enlarges the acquisition volume
without any possible thermal hazard or glare reflection by strong irradiance.

2.3. Irradiation Condition

The performance of an iris recognition system depends greatly on captured image quality. Without
cooperation of the subject, image quality is subject to many factors like the low contrast, the inconsistent
illumination or the specular reflection. The low contrast is due to the reason that human iris has lower
reflectance under visible light but higher reflectance under near infrared (NIR) light [16]. To overcome
this issue, we equipped two LED illuminators (BE-IR80L, BlueEyes Technology, TW), which have
850 nm central wavelength and 50 nm full width at half maximum (FWHM). The average irradiance in
continuous mode is about 13 mW/cm2 to acquire enough information. We set the ISO value of the
camera so that the iris image is dark when the NIR LEDs were in off state. Therefore, no NIR pass
filter is needed. To take the specular reflection into consideration, we set the incident angle from the
illuminators to 35 degrees. When the subject is at 70 cm from the illuminators, such geometry can
avoid strong specular reflection even when the subjects wear glasses. An adequate irradiance setup
can enhance the probability of the correctness of iris segmentation [17].

3. Method to Extend the Depth-of-Field

As the preceding discussion (Section 2.2) states, an iris image with insufficient DoF would
inevitably cause motion blur and reduce recognition accuracy. Although decreasing the aperture size is
the easiest way to alleviate the phase degradation which is quadratically proportional to the pupil size,
smaller apertures will be accompanied by insufficient irradiance and low signal-to-noise ratio. In order
to overcome this issue, we applied computational imaging techniques to extend DoF. Computational
imaging integrating optics with post signal processing can keep the PSF more robust toward defocusing.
Two issues are addressed about the coding scheme. One is to find the appropriate function of the phase
mask on the basis of merit. The other is about the coding strength of the phase mask. In addition to
coding strategy, decoding is a counterpart issue about the performance of recognition. The intermediate
iris image with blurriness undergoes an approximately linear transformation, which ideally can be
reversed by a linear reconstruction. A matched filter thus can fully restore the original iris texture.
However, noise prevents the reconstruction from being perfect in practical case. In the second part of
this section, we examine the decoding scheme coupled with matching algorithm. The following issues
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are addressed in this section: function of phase modulation with respect to optical transfer function
(OTF) analysis; optimal coding strength, which is a tradeoff between increasing defocus insensitivity
and loss of information; and the restoration process with optimal matched filter design parameters.

3.1. Wavefront Coding

Generally, there are two strategic approaches for phase modulation. One is to use a free-form
phase plate, whose distribution is expressed as a polynomial expansion [18]:

ϕ(x, y) = ∑k
n=0

(
∑n

m=0 Cnmxnyn−m
)

, (12)

where Cnm are a set of coefficients that will be determined by the optimization algorithm to balance
the factor of EDoF and zero nulls over a broad band range of DoF. Such free-form phase masks have
circular symmetric OTFs. The major challenge for the free-form phase plate lies in its fabrication
tolerance. More than 10 dominant coefficients in shape formulation would result in difficulties with
fabrication [19]. Meanwhile, tilt or alignment error would drastically reduce the performance in an
unexpected way. In contrast, the more popular scheme in phase coding is to use a separable function
like the cubic phase form P (x, y) in the rectangle coordinate [20]:

P(x, y) = exp
[
iα(x3 + y3)

]
, (13)

where x and y are the normalized pupil coordinates. The phase coding strength, α, is determined by
the numerical evaluation. In our study, we chose cubic phase form to be our candidate because the
mask is easier to be fabricated and implemented in an iris recognition system.

We utilized the optical software ZemaxTM to compromise the coding strength of the cubic phase
mask and a quadratic defocus term W02

(
x2 + y2) [20]. Unlike the conventional approach which finds

the coding strength based on diffraction-limited OTF in simulation, we set the PSF similarity as the
merit function and find its mean-square-error (MSE) through the focus range. With different coding
strengths, the PSF similarity and its derivative with respect to defocus provide insight into the optical
layout that we could conduct in optical design. It should be noticed that the OTF of the coded system
cannot cross zero, because the null point in the OTF will lead to permanent loss of information which
cannot be restored by post-processing [20–22]. The worse situation is that when the strong coding is
imposed, the negative value (contrast reversal) occurred. In order to keep the system within a safe
margin, we allow OTF threshold at the Nyquist frequency to be larger than 0.169, which ensures
most information is above the noise floor and thus well recoverable [23,24]. With an off-the-shelf
telephoto lens system with focal length f = 400 mm (F/6.3), the maximum value of α is 42, which
enables a three-fold DoF. The feasibility of EDoF was convincingly demonstrated in our simulation
which coincides with the prior literatures [25–27].

3.2. Restoration Decoding Process

The coded PSFs are restored by the Wiener filter, which is one of the best known approaches
to linear image restoration [28,29]. The Wiener filter expressed in Fourier domain (u, v are spatial
frequencies in x and y direction, respectively) can be formulated as:

F̂(u, v) =

[
1

H(u, v)
|H(u, v)|2

|H(u, v)|2 + Sη(u, v)/S f (u, v)

]
G(u, v), (14)

where H(u, v) is the coded transfer function, G(u, v) is the intermediate iris image. The ratio
Sη(u, v)/S f (u, v) is the noise-to-signal ratio (NSR) of the imaging system, where Sη(u, v) and S f (u, v)
is the power spectrum of the noise and the ideal image, respectively. Generally, the NSR of an imaging
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system is unknown, and it can only be obtained empirically. We conducted a preliminary test to
fine-tune the NSR parameter (denoted as R) used in Wiener filtering.

Iris images of 64 subjects are collected and inversely filtered by Wiener filtering with different
R values. Then those iris images are used as probe images to match with the iris images in gallery
(iris images captured at on-focus position). In principle, Wiener filtering should not affect the inter-class
iris matching scores since they are intrinsically different. For the purpose of decreasing computational
complexity, we only consider the intra-class comparisons. By accumulating all HD of intra-class
comparisons, we obtained the relation between the averaged HD and parameter R, as shown in
Figure 4. Since HD indicates the distance of two iris images, by locating the minimum of the curve,
we are able to estimate the optimal parameter R that leads to the best inverse filtering performance.
The optimal R is found near 0.15 in our case.

Figure 4. Hamming distance (HD) with different parametric estimation R in the Wiener filter, where
the HD are averaged based on 64 intra-class comparisons. The optimal R is about 0.15.

4. Laboratory Experimentation

4.1. Optical Quality

We embedded a cubic phase mask with optimized coding strength α = 42 into the off-the-shelf
telephoto camera, as shown in Figure 5, where the phase mask was fabricated by the diamond turning
process. We implemented wavefront coding by putting the cubic phase mask at the rear space of the
system. The influence of mask displacement away from the focus has been examined by a series of
testing in our past research work. Interested readers can refer to our previous research [30]. Figure 6
shows the PSFs across a range of object distances from −18 to 18 cm. It is apparent that the cubic mask
helps to reduce the spreading of PSFs. When the FWHM of PSF is comparable to the size of CoC, the
object defocus corresponds to −30 mm and +40 mm, which is very close to the theoretical prediction
of 60 mm in Section 2.2.
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Figure 5. Cubic phase mask with optimized coding strength α = 42 was imbedded into the off-the-shelf
telephoto camera, where the mask was placed at the rear space of the system. (a) The off-the shelf
telephoto lens; (b) the mask holder; (c) the cubic phase mask.

 

Figure 6. PSFs with different defocus position for top row: conventional, and bottom row: EDoF.
Compared with conventional optics whose PSFs are quadratically broadened by defocus, EDoF enables
PSFs to be more robust against the defocus.

4.2. Image Quality

Figure 7 shows a series of iris images captured with respect to different object distances. Compared
with the conventional image (left column), wavefront coding with (middle column) or without
(right column) Wiener filtering effectively kept the iris image insensitive to the defocus effect. From the
right column of Figure 7, EDoF with Wiener filter restoration manifested the detailed texture of iris
image. However, the fidelity of the restored image was deteriorated by the artificial and ringing effect,
respectively. The artificial effect was due to the wavefront error caused by the cubic phase mask. In an
imaging optics, it is obvious that slight rotation and displacement of the phase components in a real
system would induce the changes of phase error with respect to the focus [30].

The second factor is the ringing effect caused by Wiener filtering itself. As a phenomenon already
presented in the literature [31,32], when images were restored by either the inverse linear filtering
or the Wiener filtering, there would be a certain amount of noticeable edge error. For the inverse
linear filtering, coded transfer function occurring to be zeros at high frequency caused singularities.
For the Wiener filtering, though the above problem was solved by replacing the singularities of the
inverse filter at zeros, there also existed edge error, as discussed in [30]. An optimization process on
parameter R of the Wiener filtering may adequately reduce the edge error to some degree, but it is
virtually impossible to remove all of it. In addition, even when the R value has been fine-tuned, the
Wiener filtering could still cause a smearing effect near the center of the restored frequency spectrum,
resulting in a reduction of the image’s resolution. Such a problem can be lessened or solved by further
modification of the Wiener filtering, for example, using the method proposed in [32]. However, in
order to restrict ourselves to focus on the main topic of this paper, we did not perform further analysis
in this research direction. Detailed features were further examined on normalized iris image and iris
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code, as shown in Figure 8. The dissimilar iris code after Wiener filtering (bottom row) revealed that
the restoration process was vulnerable to artificial noise and leads to increasing HDs.

 

Figure 7. Iris image (640 × 480p) captured with different scenarios. From left to right: (a) conventional;
(b) EDoF; and (c) EDoF with Wiener filtering. From top to bottom, the object distances are set to:
(1) −15 cm; (2) on focus; and (3) +15 cm, respectively.

 

Figure 8. The intermediate images in stage of iris normalization and feature extraction (of images
shown in Figure 7). The HD increased when wavefront coded image was used. The HD further
increased when the wavefront coded image is restored using Wiener filtering.

4.3. Database

We collected iris images from 64 subjects (32 persons × 2 eyes) in National Chiao Tung University,
Taiwan. Each subject stood at the on-focus position eight times, where the on-focus raw images and
wavefront coded images were used as the different enrollment data. The total number of enrollment
images was 512. Each subject stood at 11 defocus positions (from −15 to +15 cm, at 3-cm intervals)
and was captured by both conventional and wavefront coded system. The total number of both
conventional and wavefront coded probe images was 2816. The iris images were manually segmented
and iris masks were also manually created. We used Libor Masek’s iris recognition toolbox written
in Matlab for iris feature extraction [33], which used 1D Log-Gabor filters for iris feature extraction.
After the iris codes were extracted, we computed normalized HD as described in Section 1. Each testing
iris code was compared with the enrollment data. After all the possible combination comparison
finished, we plotted the HD distributions for evaluation.

4.4. EDoF Performance Evaluation Method

Because we aimed to extend the DoF without compromising the iris recognition performance,
the extension factor of DoF was defined as the longest object distance that can be achieved under
the same error rate (i.e., accuracy invariance). Four error rates were used to examine the recognition
performance: (1) false acceptance rate (FAR): the probability of falsely accepting an impostor as
an authentic sample; (2) false rejection rate (FRR): the probability of falsely rejecting an authentic
sample as an impostor sample; (3) equal error rate (EER): the value when FAR is equivalent to FRR;
and (4) sensitivity index (SI): a measure to describe the separability between scores of authentic and
impostor distributions. Sensitivity index is represented as follows.
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SI =
(

m2
im. − m2

au.

)
/
√(

σ2
im. − σ2

au.
)

/2 (15)

where m and σ are the mean and standard deviation, respectively. Afterward, we chose EER as the
evaluation metric with different enrollment/testing schemes because EER is less sensitive to outliers.

4.5. Different Enrollment/Testing Schemes

The conventional scheme of an iris recognition system is to use the clear (on-focus) iris raw image
as the enrollment data. During the testing stage, wavefront coded iris images were used as testing data.
Such a scheme can be called heterogeneous matching. In this study, we would like to design a series of
enrollment/testing pairs to test the feasibility of the combination of homogeneous and heterogeneous
matching. A total of six approaches were carried out to inspect two issues: (1) whether the DoF of
the iris recognition system can be effectively increased by employing the wavefront coded images as
the enrollment data; and (2) among the various approaches, which (homogeneous or heterogeneous
matching) approach is the best to balance the recognition accuracy and extended the DoF.

4.5.1. Approach 1: Raw/Raw Pair

Approach 1 is the conventional imaging, where both enrollment and testing are not coded.
The gallery images (i.e., enrollment) were iris images captured at on-focus position, while the probe
images (i.e., testing) were iris images captured with various object distances. It can be considered a
practice of “homogeneous matching”. Figure 9a shows the HD distribution when the subject stood
on focus, where SI was 4.3, FRR was 4.7% when FAR was 0.1%, and EER was 1.0%. Blue and red
bars represent the distribution of the HD of the authentic and impostor matching results, respectively.
Such results were reasonable based on the small number of test subjects. For example, in the result of
the Multiple Biometric Grand Challenge (MBGC) 2009 version 2, it reports that the best four groups
had FRR ranging from roughly 10% when FAR was set to 0.1% [34]. Such great results were computed
based on a dataset which consists of 4789 right iris and 4792 left iris images of 136 subjects. With much
less iris data, our recognition rate outperformed theirs. In this way, the quality of our iris recognizer
was assured, since our recognition results were comparable to the best four groups from the MBGC
2009 version 2.
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Figure 9. Experimental results, where the iris database (gallery images) is enrolled by the conventional
optics, with testing images (probe images) captured by different schemes. Top row: HD Histogram
distribution at on-focus: (a) conventional (Approach 1); (c) EDoF (Approach 2); and (e) EDoF with
Wiener filtering (Approach 3). Bottom row: HD distribution (shown as the multiple boxplots colored
in red and blue) and EER (shown as the black dotted curve) with different defocus: (b) Approach 1;
(d) Approach 2; and (f) Approach 3. When EER was set to 5.2% as the baseline, Approach 2 extends the
depth of field about 3.07-fold, whereas no improvement by Wiener filtering (Approach 3).
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Figure 9b shows HD versus defocus. The boxplot represents the first quartile to third quartile of
the data, while the five error bars from the top to the bottom represent the maximum, 99%, median,
1 percent and minimum values of the data. The HD of authentic matching rapidly increased as the
subject was out of DoF, whereas the impostor matching was kept at a high value. The increasing
authentic HD was due to the quality heterogeneity of iris images with defocus effect. The trend of EER
was in close agreement with the theoretical prediction in Section 2.2. If we set ±30-mm as the DoF, the
EER = 5.2% was defined as the baseline for the following comparison.

4.5.2. Approach 2: Raw/EDoF Pair

Approach 2 was the case where the wavefront coded images were captured as probe images.
The gallery images were the same as Approach 1. It can be considered = a practice of “heterogeneous
matching”. Figure 9c shows the authentic and impostor HD histogram when the subjects were on
focus. The SI was 4.5, FRR was 17.5% when FAR was 0.1%, and EER was 2.9%. As expected, the
performance of recognition at the best focus was poorer than the conventional one due to a prior
phase modulation.

Figure 9d shows the authentic and imposter HD with defocus. Compared to conventional imaging
(Approach 1), EERs were increasing less rapidly with respect to increasing defocus. With the same
merit in terms of EER was 5.2%, the DoF by wavefront coding was extended by a factor of 3.07.
Such results validated the feasibility of DoF theory in Section 2.2, where the extended factor could be
higher if the lower F-number optics were used.

4.5.3. Approach 3: Raw/Wiener Pair

In this approach, we aimed to examine the performance of restoration of coded iris images (probe
images). The gallery images were the same as Approach 1, and the probe images were coded iris
images after Wiener filtering. It can be considered another practice of “heterogeneous matching”.
Figure 9e shows the authentic and impostor HD histograms. The SI was reduced to 3.3, FRR was 53.3%
when FAR was 0.1%, and EER was 7.0%. The large amount of overlapping would prevent the practical
use of the system in most recognition requests.

Figure 9f shows that high EER over the capture zone causing the system to be highly unstable.
Some of the literature claimed that a perfect digital filter had the capacity to restore the coded iris image
over an extended DoF without adversely affecting the recognition accuracy. Unfortunately, in this
study, no improvement was observed compared to the conventional iris imaging system (Approach 1)
as well as wavefront coding image without the restoration (Approach 2).

4.5.4. Approach 4: EDoF/EDoF Pair

Iris recognition relies heavily on the correct feature matching of the iris codes between enrollment
and test images. The failure of Approach 3 inspired us to investigate the performance of recognition
with a new EDoF enrollment. In this approach, both the gallery images and the probe images were iris
images acquired by a wavefront coded image without any restoration process. The difference between
them lies in that gallery images were captured in focus, while the probe images were captured at
various defocus positions. It can be considered another practice of “homogeneous matching”.

Figure 10a shows the authentic and impostor HD histogram on focus. The SI was 4.0, FRR
was 23.0% when FAR was 0.1%, and EER was 3.0%. Figure 10b shows authentic and impostor HD
versus defocus range. With the same baseline (EER = 5.2%), the DoF was extended by a factor of
3.71. Surprisingly, the extended factor was higher than Approach 2. Compared with different types of
the gallery and the probe images (i.e., heterogeneous pair) in Approach 2, the recognition rate was
improved by the same types of gallery and the probe images (i.e., homogeneous pair).
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Figure 10. Experimental results, where the iris database (gallery images) is enrolled by the EDoF
image (Approach 4 and 5); and EDoF+Wiener image (Approach 6), respectively; For different
enrollment/testing pairs, the homogeneous imaging pairs (Approaches 4 and 6) is superior to
heterogeneous one (Approach 5) in terms of recognition rate. Top row: HD Histogram distribution
at on-focus: (a) EDoF/EDoF (Approach 4); (c) EDoF/Wiener (Approach 5); and (e) Wiener/Wiener
(Approach 6). Bottom row: HD distribution (shown as the multiple boxplots colored in red and blue)
and EER (shown as the black dotted curve) with different defocus: (b) Approach 4; (d) Approach 5;
and (f) Approach 6. Compared to the conventional optics with EER was set to 5.2%, the DoF was
extended by a factor of 3.71 (Approach 4) and 3.10 (Approach 6), respectively.

4.5.5. Approach 5: EDoF/Wiener Pair

For the sake of completeness of this study, we also examined the recognition performance through
the Wiener filtering with EDoF enrollment. In this approach, the gallery images were the same as in
Approach 4, while the probe images were coded iris images with restoration by Wiener filtering. It can
be considered as another practice of “heterogeneous matching”. Figure 10c shows the authentic and
impostor HD histogram. The SI was 2.8, FRR was 18.3% when FAR was 0.1%, and EER was 3.3%.
High EERs showed that the iris codes were dramatically changed by the noticeable artifacts from
Wiener filtering. Therefore, Approach 5 was not suggested for the purpose of iris recognition.

4.5.6. Approach 6: Wiener/Wiener Pair

In the last scheme, both the gallery and the probe images were coded iris images restored by
Wiener filtering. It can be considered another practice of “homogeneous matching”. We aimed to check
whether the homogeneous acquisition scheme (EDoF with Wiener filtering) in both enrollment and
testing would alleviate the side effects caused by the Wiener filtering. Figure 10e shows the authentic
and impostor HD histogram. The SI was 3.9, FRR was 23.3% when FAR was 0.1%, and EER was 3.3%.
Figure 10f shows authentic and impostor HD versus defocus range.

For wavefront coded image, the performance of homogeneous pairs (Approaches 4 and 6) were
better that of heterogeneous pairs (Approach 5). Compared to Approach 4, the global distribution
of the HD in Approach 6 showed a decreasing trend, as could be observed for both authentic and
imposter HD distributions. Such property reveals that after performing image restoration using the
Wiener filtering, the induced artifacts would make images of different classes look more similar to each
other, causing a decreased HD for inter-class comparison. For the purpose of biometric identification,
such a phenomenon was not desirable and should be avoided.

252



Sensors 2016, 16, 1994

5. Discussion

In this paper, six enrollment/testing system configurations were carried out for the iris recognition
system. These configurations can be divided into homogeneous pairs (Approaches 1, 4 and 6) and
heterogeneous pairs (Approaches 2, 3 and 5). Based on the statistical results summarized in Table 2, the
DoF of the wavefront coding image was significantly extended. Taking the best scheme (Approach 4),
the factor was 3.71 based on the criteria EER = 5.2%. For optimal system in operation, we suggest
using the homogeneous optics (Approach 1, 4 or 6) to achieve a more satisfactory recognition rate.
However, if we consider the power of the EDoF capability as one of the core objective functions from
the experimental results, Approach 4 is the best approach with a 3.71 EDoF factor.

Table 2. The results of six experimental approaches.

Test Enrollment Conventional EDoF EdoF with Wiener

Conventional

DoF = 6 cm DoF = 18.4 cm DoF = 0 cm
SI = 4.3 SI = 4.5 SI = 3.3

FRR = 4.7% FRR = 17.5% FRR = 53.3%
EER = 1.0% EER = 2.9% EER = 7.0%

EdoF

DoF = 22.2 cm DoF = 4.5 cm
SI = 4.0 SI = 2.8

FRR = 23.0% FRR = 18.3%
EER = 3.3% EER = 3.3%

EdoF with Wiener

DoF = 18.6 cm
SI = 3.9

FRR = 23.3%
EER = 3.3%

One lesson we learned from the experiment is how to design an imaging system for the purpose
of pattern recognition. In order to achieve the highest recognition rate, one should make sure to
put into the gallery set those images which were processed in exactly the same procedure as the test
images. Otherwise, the heterogeneity caused by the hardware mismatch would degrade the accuracy.
From the perspective of pattern recognition theory, it is better that the gallery image set involves the
largest possible amount of variations which could possibly be observed in the probe image set. In such
conditions, pattern recognition or machine learning algorithms could estimate the density of the image
sample distribution correctly. During the testing stage the learned decision boundary can be robust
enough to achieve higher recognition rate.

Another question we can ask ourselves is, given the aforementioned principle, why is the
performance of Approach 4 better than 6? As discussed in Section 4.2, using Wiener filtering for
image restoration may introduce additional artifacts, which may degrade the image and modify
the detailed textural structures in iris images. Iris recognition relies heavily on the correct pattern
matching of the iris code between training and test images. If the detailed textural components of an
iris image are changed by some unpredictable factor, the iris code changes dramatically. That is the
reason why the recognition performance of Approach 6 is worse than 4. Such experimental results also
coincide with the practice proposed in [11], which shows that such methodology is supported by two
independent research groups.

The comparison between the proposed method in the best scheme and existing works is
summarized in Table 3 [7–11]. Compared to other works, the desired distance is set to 300 cm
for a long range iris recognition system. As it is strict and harsh enough to test the practicality and
feasibility of the EDoF-empowered image sensors, the database is abundantly captured. Due to the
difficulty of long range image acquisition, the optics, sensor and wavefront coding technique are
systematically designed and integrated into our laboratory. Finally, the EDoF factor reached 3.71 times
that of the original system without loss of recognition accuracy.
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Table 3. Comparison between existing works and this study.

Proposal Gracht [7] Narayanswamy [8] Smith [9] Barwick [10] Boddeti [11]

Scheme Experiment Experiment Simulation Simulation Simulation Simulation

Database
Laboratory Laboratory Laboratory ICE UPOL ICE

3328 images
64 classes

- 44 images 150 images 168 images 1061 images
one class two classes 50 classes 56 classes 61 classes

Distance 300 cm 50 cm 55 cm 50 cm 55 cm -

Optics
f = 400 mm f = 57 mm f = 50 mm f = 53 mm f = 50 mm

-F/6.3 F/8 F/3.5 F/2 F/2.85
λ = 850 nm λ = 830 nm λ = 780 nm λ = 760 nm λ = 768 nm

Sensor
2080 × 2080 1300 × 1300 1024 × 768 - - -

8 μm 6.7 μm - 5.134 μm 3 μm

Wavefront
coding

Cubic Cubic Cubic Cubic Cubic-pentic Cubic

α = 42 α = 11 α = 156 α =30
(−16, 71,
−265, 370,

267)
α = 60

Restoration without with with without without without

Merit
function

Accuracy
invariant HD = 0.32 Iris score 1 set to 0.3 HD = 0.33 SI = 5

Error bars of the
authentic and

impostor scores
do not overlap

Extended
factor 3.71 over 2 over 3.3 2.8 2.2 4.8

1 Iris score: using exclusive-NOR operator for bit comparison. The values 1 and 0 represents the match and
mismatch bit pairs, respectively.

6. Conclusions

In this paper, we examine a number of EDoF approaches for the purpose of a distant iris
recognition system. Unlike prior studies that mostly addressed this in a simulation, we experimentally
overhauled the entire computational imaging flow via an EDoF imagery and verified the ultimate
performance with different homo- and hetero-enrollment/testing image pairs.

On the basis of experimental results, the DoF of the wavefront coding system is significantly
increased in comparison with the conventional imaging. Taking the best scheme (Approach 4) as
the benchmark, the EDoF factor was 3.71 under the constraint EER = 5.2%. For optimal system
configurations of testing and enrollment image sets, we suggest using the homogeneous pair
(Approaches 1, 4 and 6) to achieve a more satisfactory recognition rate.

The EDoF function via pupil engineering is validated based on the assumption that the pupil
mask should be in place of the pupil or equivalent in the imaging system. For practical use, different
positions of the phase mask would lead to diverse coding effects with respect to field of view. As a
result, the fidelity of the restored image is difficult to keep constant within a wide acquisition volume.
To keep the uniform phase coding satisfying the linear shift invariant, the position of the aperture stop
in the system layout should be further examined in future work.
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Abstract: Biometrics is a technology that enables an individual person to be identified based on
human physiological and behavioral characteristics. Among biometrics technologies, face recognition
has been widely used because of its advantages in terms of convenience and non-contact operation.
However, its performance is affected by factors such as variation in the illumination, facial expression,
and head pose. Therefore, fingerprint and iris recognitions are preferred alternatives. However,
the performance of the former can be adversely affected by the skin condition, including scarring
and dryness. In addition, the latter has the disadvantages of high cost, large system size, and
inconvenience to the user, who has to align their eyes with the iris camera. In an attempt to
overcome these problems, finger-vein recognition has been vigorously researched, but an analysis of
its accuracies according to various factors has not received much attention. Therefore, we propose a
nonintrusive finger-vein recognition system using a near infrared (NIR) image sensor and analyze
its accuracies considering various factors. The experimental results obtained with three databases
showed that our system can be operated in real applications with high accuracy; and the dissimilarity
of the finger-veins of different people is larger than that of the finger types and hands.

Keywords: nonintrusive finger-vein capturing device using NIR image sensor; misalignment of
finger-vein image; multiple images for enrollment; score-level fusion

1. Introduction

Recent developments have led to the widespread use of biometric technologies, such as face,
fingerprint, vein, iris, and voice recognition, in a variety of applications in access control, financial
transactions on mobile devices, and automatic teller machines (ATMs) [1–4]. Among them, finger-vein
recognition has been highlighted because it can overcome several drawbacks of other biometric
technologies, such as the effect of sweat, skin distortions, and scars in fingerprint recognition, or
the effect of poses and illumination changes in face recognition. Moreover, a finger-vein recognition
system is cost effective in comparison, and offers high accuracy together with the advantages of fake
detection and a bio-cryptography system [5]. Finger-vein recognition uses the vascular patterns inside
human fingers to uniquely identify individuals. Vein imaging technology relies on the use of near
infrared (NIR) illuminators at a wavelength longer than about 750 nm, because the deoxyhemoglobin
in veins absorbs light in this range [6,7]. Previous work on finger-vein recognition include research
aimed at enhancing vein image quality, increasing recognition accuracy by various feature extraction
methods, considering finger veins as a factor for individual recognition in multimodal systems,
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as well as detecting fake finger veins. The research on finger-vein image enhancement, which is
based on a software algorithm, can be classified into restoration-based and non-restoration-based
methods [7,8]. The restoration-based methods proposed by Yang et al. [9–11] were able to produce
enhanced finger-vein images by considering the effect of the layered structure of skin and restored the
images by using a point-spread function (PSF) model [10], and a biological optical model (BOM) [11].
In the non-restoration-based approaches, Gabor filtering was popularly used [6–8,12,13]. Yang et al.
introduced an enhancement method that uses multi-channel even-symmetric Gabor filters with four
directions to strengthen the vein information in different orientations [6]. A study by Park et al. [8] led
to the proposal of an image enhancement method using an optimal Gabor filter based on the directions
and thickness of the vein line. An adaptive version of the Gabor filter was used in the research of
Cho et al. [12] to enhance the distinctiveness of the finger-vein region in the original image. The Gabor
filter was also used in combination with a Retinex filter, by using fuzzy rules in the method proposed
by Shin et al. [7]. Zhang et al. proposed gray-level grouping (GLG) for the enhancement of image
contrast, and a circular Gabor filter (CGF) for the enhancement of finger-vein images [13].

Pi et al. proposed a quality improvement method based on edge-preserving and elliptical
high-pass filters capable of maintaining the edges and removing blur [14]. In addition, Yu et al.
proposed a fuzzy-based multi-threshold algorithm considering the characteristics of the vein patterns
and skin region [15].

Work has also been conducted on extracting and combining various features from finger-vein
images to increase the quality of the recognition results [16–19]. In [16], they used both the global
feature of the moment-invariants method and Gabor filter-based local features. In the method proposed
by Lu et al. [17], eight-channel Gabor features were extracted and analyzed prior to application to
score-level fusion to obtain the final matching score. Qian et al. [18] proposed a finger-vein recognition
algorithm based on the fusion of score level moment invariants by the weighted-average method.
In [19], Yang et al. proposed a binary feature for finger-vein matching, termed personalized best bit
map (PBBM), which was extracted based on the consistent bits in local binary pattern (LBP) codes.
Finger-vein recognition was also considered as a sub-system in multimodal biometric systems [20–23]
along with other individual recognition methods to compensate for the drawbacks of each of the
recognition methods. The results of finger-vein and fingerprint recognitions were matched and
combined by using various methods, such as decision level fusion of “AND” or “OR” rules as in [20],
a support vector machine (SVM) as in [21], or score level fusion as in [22]. He et al. [23] proposed a
multimodal biometric system by considering the three biometric characteristics of fingerprint, face,
and finger-vein, and evaluated the performance of the system with the use of sum rule-based and
SVM-based score level fusion. The research on finger-vein recognition has also taken counterfeit
vein information into account, as in [24,25]. In the anti-spoofing system for vein identification in [24],
live fingers were detected by continuously capturing successive heart-rate-based images and then
examining the details in the series of images. Nguyen et al. [25] proposed an image-analysis method
for fake finger-vein detection based on Fourier transform and wavelet transforms.

A number of research efforts on finger-vein recognition have considered the quality of the
preprocessed images, as well as the effectiveness of the matching features. However, the evaluation of
the discriminant factors on finger-vein information, such as the differences between people, left and
right hands, and the type of finger, has not received much attention. In our research, we propose a
nonintrusive finger-vein capturing device.
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Table 1. Comparison of the proposed method with previous methods.

Category Methods Strengths Weaknesses

Accuracy evaluation
without considering the
various factors of people,
hands, finger types, and
the number of images

EER or ROC curve-based
evaluation of finger-vein
recognition with the
assumption that the
veins from different
hands or finger types are
different classes without
comparing the
dissimilarity of
finger-vein among
people, hands, and finger
types [7–9,11,16–23,25]

New methods for
enhancing finger-vein
images with feature
extraction or score
fusions for enhancing the
recognition accuracy are
proposed

Assuming the veins from
different hands or finger
types are different
classes without any
theoretical or
experimental ground

Accuracy evaluation
according to people,
hands, finger types, and
the number of images

The dissimilarity of
finger-veins among
people, hands, and finger
types are quantitatively
evaluated (Proposed
method)

Providing the
experimental ground for
the dissimilarity of
finger-veins among
people, hands, and finger
types

Not providing the
experimental ground for
the dissimilarity of
palm-veins or hand
dorsal veins among
people and hands

Our research is novel in the following three ways compared to previous work.

· We propose a nonintrusive finger-vein capturing device using a small-sized web-camera and NIR
light-emitting diodes. To reduce the misalignment of captured images while ensuring minimal
user inconvenience, two guiding bars for positioning the fingertip and side of the finger were
attached to the device.

· The accuracies of recognition were compared by assuming that images from the same person,
the same hand, and the same finger types form the same classes. Based on the receiver
operational characteristic curve, equal error rate, authentic and imposter matching distributions,
and d-prime value, the dissimilarity of finger-veins among people, hands, and finger types are
quantitatively evaluated.

· The accuracies of recognition are compared according to the number of finger-vein images
combined by score-level fusion for recognition, and the number of images for enrollment.

Table 1 presents a comparison of the proposed method with previous methods.
The remainder of this paper is organized as follows. Section 2, explains the details of the proposed

method and Section 3, shows the experimental results and discussions. Finally, the conclusions and
opportunities for future work are given in Section 4.

2. Finger-Vein Recognition and Evaluation Method

2.1. Overview of the Finger-Vein Recognition System

An overview of the proposed method is shown in Figure 1. Because the input finger-vein image
consists of two parts, i.e., the finger region containing the finger-vein information and the background
region, the method to detect the finger region is first applied in order to remove the background, which
contains unnecessary information. In the next step, based on the detected upper and lower finger
boundaries detected in the previous step, the segmented finger region is stretched into a rectangular
form in the normalization step. The processing time is reduced by obtaining a sub-sample of the
stretched finger-vein image to reduce the size of the image. Before the recognition features are extracted,
the quality of the finger-vein image is enhanced by using Gabor filtering, subsequent to which the
preprocessed image is applied to the feature extraction step using the local binary pattern (LBP)
method. In the next step, the hamming distance (HD) is calculated to determine the matching distance
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between the extracted code features of the input finger-vein image and the enrolled image. The input
finger-vein image is then classified as either being genuine or being that of an imposter by using the
enrolled data based on the matching distance.

Figure 1. Flowchart of the experimental procedure of our research.

2.2. Finger Region Detection and Normalization

As shown in Figure 2, a captured finger-vein image consists of the background surrounding the
finger region, which contains the vein pattern, which is used for recognition purposes, and which
has higher gray levels than the background. The background is removed from the captured image
by detecting the four boundaries of the finger region consisting of the left and right boundaries in
the horizontal direction, and upper and lower boundaries in the vertical direction, based on previous
research [7]. In the images from the three databases, the left and right finger region boundaries are
restricted by the size of the hole in the device for capturing the finger-vein image. Detailed explanations
of the three databases and the device are provided in Section 3. As such, the values of XL and XR,
which determine the left and right boundaries, as shown in Figure 2, are experimentally defined for
the three databases. In the case of the good-quality database with 640 × 480 pixel images, the values of
XL and XR are 180 and 480 pixels, respectively. For the mid-quality database with the same image size,
the values of XL and XR are 220 and 470 pixels, respectively. The third (open) database, which consists
of images with a size of 320 × 240 pixels, XL and XR are 20 and 268 pixels, respectively.

The 1st (Figure 2a) and 2nd database (Figure 2c) are collected by our lab-made devices (see
Section 3). In our devices, each person puts his or her finger on the hole of the upper-part of device,
and the size of the hole in the device for capturing the finger-vein image is fixed and limited in order
to remove the effect by the environmental light into the captured image. Therefore, the part of the
finger area can be acquired in the image, and the positions of left and right finger boundaries are
restricted and same in all the captured images as shown in Figure 2a,c. Therefore, in order to enhance
the processing speed of segmenting the finger area from the image, we use the pre-determined XL and
XR values as the horizontal (X) position of the left and right boundary of the finger area, respectively.

In case of the 3rd database (Figure 2e), although the whole finger area can be acquired in the
image, the left and right-most areas of finger are so dark (caused by the insufficient illumination of NIR
light) that these areas are difficult to be used for finger-vein recognition. Therefore, we use the part of
finger area by removing these left and right-most areas, based on pre-determined XL and XR values.
The positions of the left and right boundaries can be automatically segmented with the 3rd database,
but these positions can be different from each other among images, according to the performance of
the segmentation algorithm of the finger area. The main goal of our research is not focused on the
segmentation algorithm but on comparing the accuracies of recognition by assuming that images
from the same person, the same hand, and the same finger types form the same classes. In addition,
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another goal is to compare the accuracies of recognition according to the number of finger-vein images
combined by score-level fusion for recognition, and the number of images for enrollment. Therefore,
we use the part of finger area by removing these left and right-most areas, based on pre-determined
XL and XR values.

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 2. Examples of input finger-vein images and finger-region detection results obtained with
images from the three databases: Original images from the (a) good-quality; (c) mid-quality; and (e)
open databases with their corresponding finger-region detection results shown in (b,d,f), respectively.

Then, two masks of 4 × 20 pixels, which are shown in Figure 3, were used to detect the upper and
lower boundaries of the finger region. Because the gray level of the background region is lower than
that of the finger region, as shown in Figure 2, the value that was calculated by using the masks in
Figure 3 is maximized at the position of the finger boundary. Examples of the finger region detection
results are given in Figure 2b,d,f.

Based on the detected finger boundaries, the finger-vein image is normalized to the size of
150 × 60 pixels by using a linear stretching method, and it is then sub-sampled to produce a
50 × 20 pixel image to enhance the processing speed [7]. This is done by averaging the gray values
in each 3 × 3 pixel block of the 150 × 60 pixel image. Figure 4 shows examples of the normalization
results of the images in Figure 2.
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(a) 

 
(b) 

Figure 3. Masks for detecting finger-region boundaries in the vertical direction: Masks for detecting
(a) the upper boundary; and (b) the lower boundary of the finger region.

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

Figure 4. Linear stretching and sub-sampled results of finger-vein images from the three databases:
Detected finger-region image from the (a) good-quality; (d) mid-quality; and (g) open databases,
with their corresponding 150 × 60 pixel stretched images shown in (b,e,h), respectively, and their
corresponding 50 × 20 pixel sub-sampled images shown in (c,f,i), respectively.
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2.3. Four-Directional Gabor Filtering

Gabor filtering has been popularly used in finger-vein recognition for enhancing the image
quality [6–8]. In this research, we apply a four-directional Gabor filter to the 50 × 20 pixel sub-sampled
image prior to extracting the finger-vein code to enhance the distinctiveness of the vein image. Gabor
filtering of the sub-sampled image could also be helpful to reduce the processing time compared to
that of the original finger-vein image [7,8]. A two-dimensional Gabor filter can be represented as
follows [6–8]:

G(x, y) =
1

2πσxσy
exp
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2
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)}
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]

where j =
√−1, θ is the direction, and f 0 is the central frequency of the Gabor kernel. The two

coordinates (x, y) are rotated to xθ and yθ, respectively, and on each coordinate, the spatial envelopes of
the Gaussian function are represented by σx and σy, respectively. By eliminating the imaginary part of
the Gabor filter, the real part, namely the even-symmetric Gabor filter, is used in this research because
of the effectiveness with which it processes time. An even-symmetric Gabor filter is represented as
Equation (2) as follows [6–8]:

GE
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with
θk = kπ/4; k = 1, 2, 3, 4

where k is the index of the directional channel, and θk and fk represent the orientation and spatial
frequency of the kth channel, respectively. Based on previous research [6], the optimal parameters
of fk, σx, and σy, are determined to be 0.2, 2.38, and 2.38, respectively, for the four channels in the 0◦,
45◦, 90◦, and 135◦ directions of the Gabor filter applied to the sub-sampled image of 50 × 20 pixels.
A convolution operation is applied to an input finger-vein image with the Gabor filter of the four
channels to obtain the filtered image in the form of four separated convolution result images. These
images are then combined by selecting, at each pixel position, the pixel with the lowest gray-level
value among the four pixels of the four result images to be the final result of Gabor filtering, because,
generally, the vein line is darker than the skin region [7]. Figure 5 provides example results of
four-directional Gabor filtering on the sub-sampled images in Figure 4c,f,i.

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 5. Gabor filtering results of the 50 × 20 pixel sub-sampled images from the three databases:
Sub-sampled image from the (a) good-quality; (c) mid-quality; and (e) open databases with their
respective Gabor filtered images shown in (b,d,f).
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2.4. Finger-Vein Code Extraction Using LBP and Matching

The binary codes are extracted from the quality enhanced finger-vein image by using the LBP
method, which was selected based on its high performance [7]. This method encodes the difference
between the gray level of each central pixel (IC) and that of its neighboring pixels (IN) to the binary
values of 0 or 1, as described by Equation (3) and illustrated in Figure 6. For each pixel position in
a 50 × 20 pixel image, an 8-bit code string is extracted. Consequently, for each finger-vein image, a
6912-bit binary code (8 bits × 48 columns × 18 rows) is generated by the LBP operator.

LBP(xC, yC) =
7
∑

k=0
S(IN − IC)·2k

S(t) =

{
1 i f i ≥ 0
0 otherwise

(3)

 

Figure 6. LBP operator.

The matching distance is calculated by using the HD between the enrolled and input LBP binary
codes. In this research, we used the normalized version of the Hamming distance on all of the 6912
bits of each finger-vein image as the following Equation (4) [7]:

HD =
VCE ⊕ VCI

N
(4)

where VCE and VCI are the binary codes extracted from the enrolled and input images, respectively, ⊕
is the Boolean exclusive OR (XOR) operator, and N is the total number of bits (6912).

3. Experimental Results

3.1. Proposed Finger-Vein Capturing Device

Figure 7 depicts our finger-vein capturing device. This device consists of six NIR light-emitting
diodes (LEDs) operating at a wavelength of 850 nm and a webcam (Logitech Webcam C600) [26].
Alignment of the input finger-vein image in the capturing process was achieved by attaching two
bars to the device to guide the positioning of the fingertip and the side of the finger. This was done
to ensure a high similarity between images acquired from the same finger of an individual and thus,
increase the matching accuracy. By adding the guiding bars, our device is able to acquire finger-vein
images for each person non-intrusively. This enabled us to create a good-quality finger-vein database
with enhanced alignment of the finger position, and to use the database for the following experiments.
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Figure 7. Proposed finger-vein capturing device used to build a good-quality database.

3.2. Performance Evaluation on Three Databases

For this research, we used three different finger-vein databases to evaluate the factors that affect
the matching accuracy. The first database was created by collecting finger-vein data from 20 people
using the device proposed in Section 3.1. [27]. For each person, the vein images of the index, middle,
and ring fingers on both the left and right hands were captured 10 times with an image resolution
of 640 × 480 pixels. The total number of images in our database was 1200 (20 people × 2 hands × 3
fingers × 10 images). Because the finger alignment and image quality of the images in this database
were strictly assured, it was considered a good-quality database.

In addition, we used two other databases, the first of which was constructed by selecting the vein
images of six fingers among the images of 10 fingers in the database I (which were collected by the
finger-vein capturing device without the guiding bar in previous research [7]). The device, which
was used for collecting the database I [7], is shown in Figure 8. Because the guiding bar was absent,
the misalignment among trial images of each finger in this database is relatively high; therefore, this
was considered mid-quality database. In detail, each people puts his or her finger on the hole of the
upper-part of device, and the size of the hole in the device for capturing the finger-vein image is
fixed and limited in order to remove the effect by the environmental light into the captured image.
Therefore, the part of finger area can be acquired in the image as shown in Figure 9a,b. Consequently, it
is often the case that some part of the finger area (which is seen in the enrolled image) is not seen in the
recognized image, which cannot be compensated by preprocessing step and can reduce the accuracy
of recognition. In order to solve this problem, we propose a new device including two guiding bars for
fingertip and side of finger as shown in Figure 7, which can make the consistent finger area be acquired
by our device with reduced misalignment. However, no guiding bar is used in the other device of
Figure 8, which is used for collecting the 2nd database. Therefore, we call the 1st and 2nd databases
collected by the devices of Figures 7 and 8 as good-quality and mid-quality databases, respectively.

The number of images in the mid-quality database is 1980 (33 people × 2 hands × 3
fingers × 10 trials), and each image has the same size as that of the images in the good-quality
database, i.e., 640 × 480 pixels [27].

The last database used in this study is an open finger-vein database (SDUMLA-HMT Finger-vein
database) [28], which comprises 3816 images, with a size of 320 × 240 pixels, from 106 people, including
six fingers from each person and six trials for each finger. Example images of different trials of one
individual (same finger) from each database are given in Figure 9. It can be seen in Figure 9 that the
degree of misalignment among the trials of each finger from the mid-quality and open databases is
larger than that from the good-quality database.
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Figure 8. Device for capturing finger-vein images for the second (mid-quality) database.

 
(a) 

 
(b) 

 
(c) 

Figure 9. Input images of different trials from the same finger of one individual from each database:
(a) good-quality; (b) mid-quality; and (c) open database.

The accuracies of the finger-vein recognition method were evaluated by performing authentic
and imposter matching tests. In our experiments, the images in each finger-vein database could be
classified in various ways to allow the discrimination factors to be evaluated. In each experiment,
authentic matching tests were used to calculate the pairwise matching distances between the images
selected from the same class, whereas for the imposter matching tests, the distances between the
pairs of images from different classes were calculated. Assuming that for a particular database, we
classify finger-vein images into M classes and each class has N images, then the number of authentic
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and imposter matching tests denoted by A and I are determined by the following Equations (5)
and (6), respectively.

A = NC2 × M (5)

I = N × MC2 × N (6)

where NC2 = N(N − 1)/2 is the number of two-combinations from a set of N elements.
By applying and adjusting the threshold on the matching Hamming distance, we calculated the

false acceptance rates (FARs), false rejection rates (FRRs), and the EER. FAR refers to the error rates
of imposter matching cases, which are misclassified into authentic classes, whereas FRR refers to the
error rates of misclassified authentic testing cases into imposter classes. EER is the error rate when
the difference between FAR and FRR is minimized. In addition, we measured the d-prime (d') value,
which represents the classifying ability between authentic and imposter matching distributions as the
following Equation (7) [3].

d′ = μA − μI√
σ2

A+σ2
I

2

(7)

where μA and μI represent the mean values of the authentic and imposter matching distributions,
respectively, and σA and σI denote the standard deviations of authentic and imposter matching
distributions, respectively. A higher d-prime value indicates a larger separation between the authentic
and imposter matching distributions, which corresponds to a lower error of recognition, in case that
the distributions of authentic and imposter matching scores are similar to Gaussian shape, respectively.

We conducted the following experiments to evaluate the various factors that affect the results of
the finger-vein recognition system.

First, we considered each finger of each person to form a different class. This method is used by
conventional finger-vein recognition systems to evaluate the recognition accuracy [7–9,11,16–23,25].
Consequently, for the good-quality, mid-quality, and open databases, the number of classes were 120
(20 people × 6 fingers), 198 (33 people × 6 fingers), and 636 (106 people × 6 fingers), respectively.
As this class definition method includes the dissimilarity information of fingers, hands, and people
in the finger-vein database, we considered this as the 1st experiment (classified by fingers, hands,
and people).

In the 2nd experiment, we classified the finger-vein images based on people (classified by people),
by assuming that the images of all the fingers on both hands from the same person formed the same
class. As a result, in the 2nd experiment, the number of classes in each database equaled the number
of users, which was 20, 33, and 106 for the good-quality, mid-quality, and open databases, respectively.

In the 3rd experiment, we assumed that the finger-vein images of all the fingers on the left
hands of all the people belong to the same class, and those on the right hands of all the people form
another class. Thus, there were two classes based on different hand sides in this experiment (classified
by hands).

In the 4th experiment, we evaluated the dissimilarities of finger types by assuming that the images
from the index fingers, middle fingers, and ring fingers on both hands of all the people belong to three
different classes. This assumption is referred to as (classified by fingers). The organization of these
experiments is summarized in Figure 10. The numbers of authentic and imposter matching tests in the
experiments on the three databases are determined by Equations (5) and (6), and are shown in Table 2.
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Table 2. Number of matching tests (authentic and imposter) for the experiments on the three finger-vein
databases (M is the number of classes in each experiment and N is the number of images belonging
to one class. Authentic and Imposter refer to the numbers of authentic and imposter matching
tests, respectively).

Experiments Databases
1st Experiment

2nd
Experiment

3rd
Experiment

4th
Experiment

Classified by
Fingers, Hands

and People

Classified by
People

Classified by
Hands

Classified by
Fingers

Good-quality
Database

N/M 10/120 60/20 600/2 400/3
Authentic 5400 35,400 359,400 239,400
Imposter 714,000 684,000 360,000 480,000

Mid-quality
Database

N/M 10/198 60/33 990/2 660/3
Authentic 8910 58,410 979,110 652,410
Imposter 1,950,300 1,900,800 980,100 1,306,800

Open Database
N/M 6/636 36/106 1908/2 1272/3

Authentic 9540 66,780 3,638,556 2,425,068
Imposter 7,269,480 7,212,240 3,640,464 4,853,952

Table 3 shows the comparative results of the four experiments defined in Table 2 and Figure 10
for the three databases. In the 1st experiment, in which finger-vein images were classified by fingers,
hands, and people, the lowest EER (0.474%) was obtained for the good-quality database. This is due
to the fact that this database was captured by the proposed capturing device, which uses a guiding
bar to reduce the misalignment among input finger-vein images. In the case of the open database, the
authors did not apply any guiding bar for alignment in the image-capturing device [29]. As a result,
the EER obtained from this database was the highest (8.096%) because of the misalignment of captured
fingers. The results of the first experiment also indicate that the matching accuracies from images in the
good-quality database were the highest, followed by those in the mid-quality database, whereas the
worst matching accuracies were obtained for the open database, in terms of EERs (0.474%, 2.393%, and
8.096%, respectively). These results correspond to the level of misalignment in each finger-vein
database. The resulting plots of the ROC curves and matching distance distributions obtained
from the experiments classified by fingers, hands, and people for the three databases are shown in
Figures 11 and 12.

Table 3. Comparative results of the four experiments for the three databases.

Experiments
Good-Quality Database Mid-Quality Database Open Database

EER (%) d-Prime EER (%) d-Prime EER (%) d-Prime

1st Experiment

Classified
by Fingers,

Hands,
and People

0.474 5.805 2.393 4.022 8.096 2.727

2nd Experiment Classified
by People 40.223 0.695 39.280 0.759 36.095 0.791

3rd Experiment Classified
by Hands 48.427 0.136 49.320 0.072 49.137 0.039

4th Experiment Classified
by Fingers 45.434 0.277 45.506 0.267 47.299 0.147
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Figure 10. Organization of experiments for finger-vein database.

Figure 11. ROC curves of the 1st experiment on the three databases (DBs).

In the 2nd experiment, we classified the finger-vein images from the three databases based on
people. In this way, the finger-vein images from the same person were considered as belonging to
the same class; hence, the finger-vein images in different classes indicated the dissimilarities between
different people. Likewise, the 3rd and 4th experiments on the three databases, considered images
from the same hand side (i.e., either the left or the right hand), and images from the same finger
type (i.e., the index, middle, or ring fingers) of all the people to be from the same classes, respectively.
A comparison of the results of the three experiments (2nd, 3rd and 4th) on each database by considering
the finger-vein dissimilarity between people, hands, and fingers, enabled us to evaluate the effect of
each of these factors on the accuracy of the finger-vein recognition system.

269



Sensors 2015, 15, 16866–16894

(a) 

(b) 

(c) 

Figure 12. Matching distance distribution of authentic and imposter matching tests in the 1st
experiment on the three databases: (a) good-quality; (b) mid-quality; and (c) open database.
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(a) 

(b) (e) 

(c) (f) 

(d) (g) 

Figure 13. Results of the 2nd, 3rd and 4th experiments on the good-quality database: (a) ROC curves
of the results of the three experiments; matching distribution of (b) the experiment classified by people
(2nd experiment); (c) the experiment classified by hands (3rd experiment); and (d) the experiment
classified by fingers (4th experiment), each shown with its corresponding false rejection error case:
(e) images of the ring and index fingers on left hand of the same person; (f) images of the ring and
index fingers on left hands of two different people; and (g) images of the middle fingers on left and
right hands of two different people.
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(a) 

(b) (c) 

(d) (e) 

(f) (g) 

Figure 14. Results of the 2nd, 3rd, and 4th experiments on the mid-quality database: (a) ROC curves of
the results of the three experiments; matching distribution of (b) the experiment classified by people
(2nd experiment); (d) the experiment classified by hands (3rd experiment); and (f) the experiment
classified by fingers (4th experiment), each shown with its corresponding false rejection error case:
(c) images of the right ring and left middle fingers of the same person; (e) images of the ring and index
fingers on right hands of two different people; and (g) images of the ring fingers on right hands of two
different people.
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(a) 

(b) (c) 

(d) (e) 

(f) (g) 

Figure 15. Results of the 2nd, 3rd, and 4th experiments on the open database: (a) ROC curves of the
results of the three experiments; matching distribution of (b) the experiment classified by people (2nd
experiment); (d) the experiment classified by hands (3rd experiment); and (f) the experiment classified
by fingers (4th experiment); each shown with its corresponding false rejection error case: (c) images
of the right middle and right ring fingers of the same person; (e) images of the index and middle
fingers on left hands of two different people; and (g) images of the middle fingers on two hands of two
different people.

Table 3 indicates that, when the three databases are compared, the lowest EERs (the highest
d-prime value) were obtained from the experiment classified by people (the 2nd experiment), the
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second lowest EERs (the second highest d-prime value) were obtained from the experiment classified
by fingers (the 4th experiment), and that classified by hands (3rd experiment) produced the highest
EERs (the lowest d-prime value). This sequence was consistent for all three of the databases.

Consequently, we are able to conclude that, finger-vein dissimilarity increases in the order people,
fingers, and hands, respectively. In other words, the discrimination between finger-vein images from
different people is larger than that between the different finger types (index, middle, and ring fingers)
and that between hands from different sides (left or right hands).

The plots of the ROC curves and matching distributions of authentic and imposter tests obtained
from the three experiments (the 2nd, 3rd, and 4th experiments) as well as the error cases for the
good-quality, mid-quality, and open databases are shown in Figures 13–15, respectively. In the 2nd
experiment (classified by people), the cases for which a false rejection was obtained were for different
fingers from the same person. The false rejection cases of the 3rd experiment (classified by hands) were
the matching pair of vein images of fingers from the same hand side, but belonging to different people
or captured from different fingers. Similarly, the false rejections of the 4th experiment (classified by
fingers) are cases in which images were captured from the same finger types (i.e., index, middle, or
ring fingers) but belonged to different people or hand sides.

3.3. Experimental Results Using Multiple Images for Enrollment

In this experiment, we used a number of input finger-vein images for enrollment instead of using
only one image as was done previously [7–9,11,16–23,25]. The method involving the enrollment of
finger-vein data using the average of multiple finger-vein images is as follows. After the input images
were captured for enrollment, they were processed and normalized by the methods described in
Sections 2.2 and 2.3. From the image consisting of 50 × 20 pixels, obtained as a result of sub-sampling,
we obtained the average image from which we extracted the LBP code which was then enrolled into the
system. We applied this method by using either three or five enrollment finger-vein images to compare
the matching accuracies with the conventional method, which only uses one image for enrollment.
Examples of the average images generated from the 50 × 20 pixel images are shown in Figure 16. The
experiments were conducted on the good-quality database as demonstrated in Figure 9a.

 
(a) 

(b) 

Figure 16. Normalized finger-vein images and their average images when: (a) three images; and
(b) five images were used for enrollment.

When three images were used for enrollment, these were selected from the 10 images of each
finger of the same user. Then, we extracted the finger-vein code from the average of these three images,
and used the data extracted from the remaining seven images of the same finger to perform authentic
matching tests. For the imposter matching tests, we used the images of the other fingers to perform
matching with the average image generated for the enrolled finger. This experimental method is
illustrated in Figure 17.

Assuming that the images from different fingers, hands, and people belong to different classes,
the good-quality database contained 120 classes in total, as shown in Table 2. When three images were
used for enrollment, the number of authentic matching tests was 100,800 (10C3 × 7 (the number of
remaining images in the same class) × 120 (the number of classes)), whereas the number of imposter
matching tests was 17,136,000 (10C3 × 10 (the number of images in other classes) × 119 (the number of
other classes) × 120 (the number of classes from which images for enrollment were selected)).
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When five images were used for enrollment, the number of authentic matches was 151,200
(10C5 × 5 (the number of remaining images in the same class) × 120 (the number of classes)), whereas
that of imposter matches was 35,985,600 (10C5 × 10 (the number of images in other classes) × 119 (the
number of other classes) × 120 (the number of classes from which images for enrollment were selected)).

Figure 17. Experimental method when three images were used for finger-vein enrollment.

The experimental results of the methods in which three and five images were used for enrollment,
are compared with those obtained by the conventional method (using one image for enrollment) in
Table 4, where it can be seen that the matching accuracy was enhanced by increasing the number of
enrollment images, in terms of low EER and high d-prime values. The ROC curves and the distribution
plots of authentic and imposter tests corresponding to the results in Table 4 are shown in Figures 18
and 19, respectively, and can be explained as follows. In the finger-vein database, matching errors were
mostly caused by misalignment at the time when the input finger-vein images were initially recorded,
which subsequently resulted in translation errors in the normalized images of 50 × 20 pixels. The use
of image averaging reduced the translation errors within the normalized images and increased the
similarities between the enrolled and the matched finger-vein data. Table 5 shows examples of error
cases resulting in false rejection when the enrolled images were compared with the test image in the
same class, listed according to the number of images used for enrollment.

Table 4. Comparative results when multiple images were used for enrollment.

Number of Images for Enrollment EER (%) d-Prime

1 0.474 5.805
3 0.454 6.406
5 0.362 6.633
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Figure 18. ROC curves of using multiple images for enrollment methods.

(a) 

(b) 

Figure 19. Matching distance distributions of authentic and imposter tests using (a) three images; and
(b) five images for enrollment methods.
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Table 5. False rejection cases: Comparison of the detected input finger-vein images with the
enrolled images.

Number of Images
for Enrollment

Enrolled Images
Average Image
for Enrollment

Input Image

1  
N/A

 

 
N/A

 

3

 

 

 

  

5

 

 

 

 

 

  

From Table 5, we can see that, when one image was used for finger-vein enrollment, false rejection
was mostly caused by translational errors between images of the same finger. These errors can either
occur during translations in the horizontal direction of the image (the first row of Table 5) or in the
vertical direction of the image (the second row of Table 5).

The reason why false rejections occur when either three or five images are used for enrollment is
as follows. The misalignment between finger-vein images selected for enrollment resulted in blurred
vein lines and the appearance of artifacts in the average images that were generated. Consequently,
this led to high matching distances between the enrolled finger-vein data and test data, and these cases
were misclassified into the imposter matching class.

3.4. Experimental Results Using Score-level Fusion Methods with Multiple Input Images

In the final set of experiments, we evaluated the matching accuracies and classifying ability of the
system by using score-level fusion methods with multiple input images. This involved the application
of SUM and PRODUCT rules, of which the formulas are expressed by Equations (8) and (9), to combine
either three or five matching scores, which were then used to classify images as being either authentic
or those of an imposter.

SUM rule : dS =
N
∑

i=1
di (8)
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PRODUCT rule : dP =
N
∏
i=1

di (9)

where di is the original matching score between the ith input finger-vein image and the one that was
enrolled, and dS and dP are the resulting matching scores obtained by using the SUM and PRODUCT
rules, respectively. N (3 or 5) is the number of scores to be combined.

The experiments were conducted on the good-quality database of Figure 9a as follows. From the
10 finger-vein images of each finger of an individual person in the database, we selected either three or
five images as the authentic test images and used the remaining seven or five images as the enrolled
images, respectively. For the imposter tests, we considered each of the 10 images of the other fingers in
the database as the enrolled finger-vein image. For each enrolled image, we calculated the matching
scores with the test images, combined these scores using the SUM and PRODUCT rules, and used the
fused scores for final decisions. The use of this experimental method produced the same number of
authentic and imposter-matching test results as for the experiments in which multiple images were
used for enrollment in Section 3.3. That is because the number of images used for enrollment in
the previous experiments (Section 3.3) and the number of scores used for score-level fusion in these
experiments were the same, i.e., three and five. Therefore, for each of the rules, SUM and PRODUCT,
when three scores were used for fusion purposes, the numbers of authentic and imposter tests were
100,800 and 17,136,000, respectively, whereas the use of the five-score-level fusion method produced
151,200 authentic matches and 35,985,600 imposter matches.

Figure 20. ROC curves obtained from the experiments with or without score-level fusion (the 1st
experiment of Table 3) on good-quality database.
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(a) 

(b) 

(c) 

 
(d) 

Figure 21. Matching distance distributions of authentic and imposter tests using score-level fusion
methods: Three-score fusion method (a) using the SUM rule; and (b) using the PRODUCT rule;
five-score fusion method (c) using the SUM rule; and (d) using the PRODUCT rule.
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The experimental results of the score-level fusion methods were compared with the previous
experiment in which one score was used for finger-vein recognition (the 1st experiment performed on
the good-quality database of Table 3 in Section 3.2) and shown in Table 6. The ROC curves and the
distribution plots of the authentic and imposter matching scores obtained from these experiments are
shown in Figures 20 and 21.

Table 6. Comparisons of the matching accuracies of the score-level fusion methods and the previous
matching method in which one finger-vein image was used.

Number of Score Score-Level Fusion Rule EER (%) d-Prime

1 N/A 0.474 5.805

3
SUM 0.220 6.892

PRODUCT 0.215 5.573

5
SUM 0.180 7.183

PRODUCT 0.172 3.755

It can be seen from Table 6 that the score-level fusion methods enhanced the matching accuracies
in that they resulted in low EER values and that the best results (the EER of 0.172%) were obtained
in case that five matching scores were fused with the PRODUCT rule. In the case of using the same
number of fused scores, the PRODUCT rule produced a lower EER value compared to the SUM rule.
However the d-prime value of PRODUCT rule was lower than that of SUM rule. In general, the case of
lower EER produces that of the higher d-prime value only in the case that the authentic and imposter
distributions are similar to Gaussian shape, respectively. However, the authentic distributions obtained
by PRODUCT rule of Figure 21b,d are different from the Gaussian shape, which causes the d-prime
value not to correctly reflect the accuracy of finger-vein recognition. Therefore, the d-prime value of
PRODUCT rule was inconsistently lower than that of SUM rule in Table 6.

3.5. Discussions

Regarding the issue of using average images for feature extraction as shown in Figures 16 and 17,
the method of selecting one enrolled image (whose finger-vein code shows the minimum distances
compared to the codes of other enrolled images) has been most widely used (1st method). However,
the finger-vein code of one image among three or five enrolled images for enrollment is selected by
this method, which cannot fully compensate for the differences among three or five enrolled images.
Therefore, we adopt the method of using average image for enrollment as shown in Figures 16 and 17
(2nd method). To prove this, we compared the accuracy of finger-vein recognition by this 1st method
with that by the 2nd method. The EER (d-prime) by the 1st method with three and five images for
enrollment are 0.468% (6.128) and 0.412% (6.597), respectively. By comparing the EER (d-prime) by
the 2nd method as shown in the 3rd and 4th rows of Table 4, we confirm that our 2nd method using
average image for enrollment outperforms the 1st method.

The method of simply averaging the images for enrollment can be sensitive to image alignment
and detailed features can be lost in the average image. In order to solve this problem, in our research,
the misalignment among the images was firstly compensated by template matching before obtaining
the average image. For example in Table 5, in the case that the number of images for enrollment is 3, the
horizontal and vertical movements of the second enrolled image based on the first one are measured by
template matching with the first enrolled image. If the measured horizontal and vertical movements
of the second enrolled image are −2 and −1 pixels, respectively, for example, the compensated image
is obtained by moving the original second enrolled image by +2 and +1 pixels, respectively, in the
horizontal and vertical directions. From this, we can obtain the (compensated) second enrolled image
where the misalignment based on the first enrolled image is minimized. Same procedure is iterated
with the third enrolled image. From this procedure, we can obtain three (compensated) enrolled images
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where the misalignment between each other is minimized, and these three images are averaged for
obtaining one enrolled image. Therefore, we can solve the problem that the average image is sensitive
to image alignment and detailed features can be lost in the average image.

The total number of images in the good-quality database was 1200 (20 people × 2 hands × 3
fingers × 10 images), and that in the mid-quality database is 1980 (33 people × 2 hands × 3 fingers ×
10 images). In order to obtain the meaningful conclusions and prove our conclusion irrespective of
kinds of database, we also include the third open database for experiments. The total number of
images in the open database was 3816 (106 people × 2 hands × 3 fingers × 6 images). Consequently, a
total of 6996 images were used for our experiments, and we obtained the conclusion through a great
deal of authentic and imposter matching, as shown in Table 2.

The original LBP used in our method can be more sensitive to noise than the uniform LBP.
Therefore, in our method, the sub-sampled image of 50 × 20 pixel is used for feature extraction by LBP
as shown in Figure 4c,f,i, which can reduce the noise in the image for feature extraction. In addition,
the two cases of LBP codes in Figure 22c are assigned as same decimal code of 1 by the uniform LBP
although they are actually different LBP code (00000001 (left case) and 00010000 (right case)), which
can reduce the dissimilarity between two different patterns of finger-vein image. Therefore, we use the
original LBP method in our research.

(a) 

(b) 

(c) 

Figure 22. Example of uniform and nonuniform patterns and their assigned decimal codes by uniform
LBP, respectively: (a) uniform patterns; (b) nonuniform patterns; (c) two cases of decimal code of 1 by
uniform LBP.

We compared the accuracies by our original LBP and those by uniform LBP. The EER (d-prime) by
uniform LBP with 1st, 2nd, and 3rd databases are 0.925% (5.122), 4.513% (3.443), and 12.489% (2.114).
The EERs by uniform LBP are larger than those by original LBP of the 1st row of Table 3. In addition,
the d-prime values by uniform LBP are smaller than those by original LBP of the 1st row of Table 3.
From that, we can confirm that the performance by our original LBP is better than that by uniform LBP.

4. Conclusions

This paper proposed a new finger-vein capturing device that relies on accurate finger positioning
to reduce misalignment when vein images are captured. This device was used to capture images
to construct a database composed of good-quality finger-vein images, which were compared to the
images in the mid-quality database (which was used in previous research) and an open database. The
images in the good-quality database produced lower matching EER and higher d-prime values. Based
on the comparative experimental results considering finger-vein dissimilarities between people, hands,
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and fingers in the three databases, we evaluated the factors that affect the accuracy of finger-vein
recognition and concluded that finger-vein dissimilarity decreases for people, fingers, and hands in
that order. We also proposed a method based on the use of multiple images to generate an image for
finger-vein enrollment, instead of using one image as done previously. For our final set of experiments,
we proposed a recognition method using score-level fusion obtained by using SUM and PRODUCT
rules. The experimental results obtained for images from the database captured by our device,
showed that the use of multiple enrollment images and score-level fusion could enhance the matching
accuracies by reducing the EER. For future work, we plan to evaluate the various factors determining
the accuracies of hand vein or palm vein recognition systems. In addition, we would also consider
evaluating the effect of race, age, and gender on the accuracy of vein recognition.
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Abstract: We report a wavelength swept laser-based full-field optical coherence tomography for
measuring the surfaces and thicknesses of refractive and reflective samples. The system consists of
a galvo filter–based wavelength swept laser and a simple Michelson interferometer. Combinations
of the reflective and refractive samples are used to demonstrate the performance of the system.
By synchronizing the camera with the source, the cross-sectional information of the samples can be
seen after each sweep of the swept source. This system can be effective for the thickness measurement
of optical thin films as well as for the depth investigation of samples in industrial applications.
A resolution target with a glass cover slip and a step height standard target are imaged, showing the
cross-sectional and topographical information of the samples.

Keywords: OCT; wavelength swept laser; full-field OCT; large area scanning; galvo filter

1. Introduction

With the rapid development of technology, the precision requirement in semiconductor chip
technology, printed electronics, and various component industries has been increased owing to
miniaturization. Additionally, the complexity of products has been increased using micro-processing
technology. As a result, surface profile measurement has become an important issue in industrial
inspection processes to reduce the defect rate and to fulfill the consumers’ demand. Many nondestructive
three-dimensional (3D) surface profiling techniques have been developed to monitor product
quality and to improve process efficiency [1–4]. Furthermore, different optical inspection methods
have been proposed for 3D surface profile imaging with cost-effective, nondestructive, noncontact,
high-speed, and high-accuracy solutions [5–9]. The amplitude variation is recorded by an optical
interferometer with axial scanning methods utilizing the mechanical movement [6–8]. However, the
susceptibility to hysteresis of the mechanical movement in imaging systems makes it unsuitable for
profile measurement.

Optical coherence tomography (OCT) is a noninvasive and nondestructive technique for obtaining
high-resolution tomographic images of microstructures [10]. OCT utilizes a Michelson interferometer
with a low-coherence light source to obtain the cross-sectional depth information of an object. Using this
method, three-dimensional images are obtained either in the time or frequency domain. Therefore, OCT
is classified into two categories, the time domain and frequency domain [11]. The time domain
(TD) OCT is relatively slow and has a low signal-to-noise ratio compared to the frequency domain
(FD). The depth information obtained in the TD-OCT is because of the mechanical movement of
the reference arm. In the frequency domain, the Fourier transform of the fringe patterns reveals
the depth information of the sample in the FD-OCT [12,13]. In the frequency domain, the Fourier
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transform of the fringe patterns reveals the depth information of the sample. FD-OCT is further
classified as spectral domain (SD) OCT and swept source (SS) OCT. In the SD-OCT, a broadband
source is used for the illumination of the sample and reference, whereas the interference fringe is
detected by a spectrometer. In the SS-OCT, a broadband swept source is employed to obtain the
spectral fringes using a photodetector. Further, with the advancement in OCT, parallel acquisition of
the interference fringe is possible by using an area camera in a full-field configuration; as a result, fast
acquisition of the volume data is possible in the time domain as well as in the frequency domain [14,15].
The frequency domain full-field setup employs a wavelength swept laser for acquiring the interference
signal from the sample and the reference arms without mechanical scanning, compared to the time
domain. The frame rate in the frequency domain is a function of the sweep rate of the source and the
camera acquisition speed.

OCT has extended its applications not only in biomedical imaging but also in agriculture,
where it is used for the early detection of diseases in seeds and plants by investigating morphological
abnormalities [16,17]. Numerous industrial applications of the OCT such as optical thin film, touch-screen
panel assessment, liquid crystal display (LCD), and light-emitting diode (LED) inspections have been
reported [18–21]. Similarly, various techniques have been employed in the OCT for increasing the image
resolution, penetration depth, sensitivity, and field of view [22–24]. In the parallel area’s acquisition
scheme, various samples have been investigated using a swept source with different filtering
mechanisms and optical architecture. These samples include finger print detection, silicon integrated
circuits, composite material reconstruction, micro-lens array measurement, in vivo human retina,
ex vivo porcine eye, and tree shrew retina [25–28]. Similarly, wavelength scanning interferometry has
been demonstrated for the profile measurement of transparent films and industrial objects [29–32].
In several applications, the thickness of a thin film including the measurements of both the top and
bottom surfaces is critical. Similarly, in the semiconductor industry, a micrometer analysis includes the
solder mask connection, through silicon via (TSV), and multilayer silicon wafer investigation.

In order to develop the wavelength swept laser, different filtering mechanisms have been
used which includes the Fabry-Perot tunable filter, acousto-optic tunable filter, fiber Bragg grating,
polygon mirror scanning filter, etc. Wavelength swept laser-based full-field OCT systems have several
advantages compared to the other systems. One of the advantages is the parallel acquisition of signals
using an area detector to get the area image of the sample. As a result, more power can be spread
across the sample. The other advantage is that it does not need mechanical scanning in the sample arm
to acquire a volume image. Because of the absence of x-y-z scanning, the full-field system is robust
with high phase stability. The depth information is obtained by sweeping the wavelength in SS-OCT;
the wavelength sweeping is done by the filtering mechanism incorporated in the source.

In this study, a simple, high-power galvo filter–based wavelength swept laser is integrated
with a full-field OCT system for obtaining the tomographical as well as topographical features of the
samples. The custom-built high-power wavelength swept laser is used to demonstrate the performance
of the full-field OCT system for area scanning of samples. This study will contribute to the application
of full-field OCT systems in the semiconductor industry for defect identification and investigation
of samples.

2. Materials and Methods

2.1. Wavelength Swept Laser

Figure 1a shows the schematic diagram of a galvo filter–based wavelength swept laser.
The wavelength swept laser is composed of a fiber coupled semiconductor optical amplifier (SOA),
two isolators, a 50:50 optical coupler, an optical circulator for the formation of a unidirectional ring
cavity, two polarization controllers, and a galvo filter–based external cavity filter for selection of
the lasing wavelength. The semiconductor optical amplifier (SOA-372, Superlum, Cork, Ireland)
with maximum gain at a center wavelength of 848 nm is utilized as the broadband gain medium.
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All the components are connected in a ring cavity configuration through optical fibers. The SOAs
have a high gain coefficient, robustness, and quick response characteristics in the gain medium for
wavelength amplification.

Figure 1. Schematic and timing diagram of the wavelength swept laser. (a) Schematic diagram of
a galvo filter–based wavelength swept laser. C: collimator, DG: diffraction grating, G: galvo scanner,
M: mirror, O: final output, OC: optical coupler, PC: polarization controller, SOA: semiconductor
optical amplifier. (b) Timing of the main signals of the wavelength swept laser (i) scanning spectrum,
(ii) waveform input to the galvo scanner driving board, and (iii) trigger signal at a 1 Hz frequency and
a 10% duty cycle.

The SOA has a broad amplified spontaneous emission (ASE) spectrum with 6 mW of optical
power at a current of 145 mA. One side of the SOA is connected to the 50:50 optical fiber coupler
through an isolator and the other side is connected to port-3 of the optical circulator. One of the output
terminals of the coupler is connected to port-1 of the optical circulator through the other isolator,
while the other output provides the wavelength swept laser spectrum. In this wavelength swept laser
setup an external cavity is utilized as the band pass filter for selecting the wavelength. The wavelength
selection filter is connected to port-2 of the optical circulator. The components used for wavelength
selection in the external cavity configuration are a transmission type diffraction grating with 1800 lines
per millimeter from Wasatch Photonics Inc. (Logan, UT, USA), a galvo scanner (GS001, Thorlabs,
Newton, NJ, USA) and a mirror. The optical alignment of the filter is as follows: The output light from
port-2 of the optical circulator is collimated and is incident on the center of the galvo scanning mirror
after which it is reflected and passed through the diffraction grating, where it is dispersed into discrete
wavelengths. The grating is aligned for providing the angular diffraction as a function of the input
angle and wavelength with a maximum light intensity. As the grating’s grove direction is vertical,
the incident light on the grating is diffracted horizontally.

The spectrally distributed light reflects back from the mirror placed at a centimeter distance
from diffraction grating. This light follows the same return path and is coupled back to the optical
circulator after passing through the grating, reflecting from the galvo mirror and is then incident on
the collimator. Note that only the component of light that is normal to the mirror is coupled back to
the fiber-based ring cavity. The galvo scanner is repeatedly scanned to produce the lasing output that
results in an amplified optical signal at the output of the SOA. The isolators in the ring cavity ensure
a unidirectional flow and protect the source by preventing reflections back from the application system
to the cavity, to avoid catastrophic damages to the SOA. The sweeping output as a function of the
galvo scanner frequency can be obtained from the output terminal of the optical coupler. The spectral
line width of the feedback light is 0.05 nm with instantaneous coherence length of ~12 mm. The ring
cavity length of the wavelength swept laser is approximately 2 m. This cavity length is acceptable for
low sweep rate.
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Figure 1b shows the input and output signal timing diagrams during the working of the wavelength
swept laser. Three different signals are depicted: (i) the scanning spectrum of the wavelength swept laser,
achieved when a (ii) triangular input signal is applied to the scan drive and simultaneously a (iii) trigger
signal is generated. The arrow indicates the directions of the signals. The trigger signal has a 10%
duty cycle that corresponds to the ramp-up duration of the triangular signal. The trigger signal can
be synchronized to the application system for starting and stopping the data acquisition. In a single
cycle of the input triangular signal to the galvo scanner drive, two sweeps are generated, as shown
in (i). The forward and backward in (ii) indicate the voltage increment and decrement applied to the
galvo scanner. In this wavelength swept laser the sweeping frequency, duty cycle, and the output
power can be controlled by a customized electronic circuit with software control. This laser has a broad
sweeping range with a 3 dB bandwidth of 48 nm as shown in Figure 2. Detailed information regarding
this wavelength swept laser has been provided in a previous research [33]. The output profile of this
source is assumed almost Gaussian. Therefore, the coherence length (lc) of the wavelength swept laser
can be calculated using the following equation:

lc =
4ln(2)

π

λ2
0

Δλ
(1)

From the above description of the source, we know that Δλ = 48 nm and λ0 = 848 nm;
therefore, substituting these values in Equation (1) will give us a coherence length of 13.184 μm. The axial
resolution of the OCT system is half of lc; therefore, it is approximately 6.59 μm.
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Figure 2. Swept source spectral bandwidth profile.

2.2. Full-Field OCT System

The optical architecture of a wavelength swept laser-based full-field OCT system is shown in
Figure 3. A Michelson interferometer setup is used to obtain an interference fringe signal by reflections
from the sample and reference arms. The light from the wavelength swept laser is collimated using
a metal-coated reflective parabolic mirror collimator (RC12APC-P01, Thorlabs, USA). The collimated
light then passes through the beam splitter and it is divided into two paths. A portion of the light travel
towards the sample and the remaining light is incident on the reference mirror. A variable neutral
density filter is placed in the reference arm to decrease the intensity of the light in order to control the
optical power in the reference arm. A continuously variable ND filter (NDC-50C-2M, Thorlabs, USA)
is rotated to adjust the reflection from the reference arm in proportion to the back scattering from the
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sample. Data are acquired by a frame grabber through two camera link cables. A customized electronic
control board is used to control the sweep frequency, SOA current, galvo signal, and the trigger signal.

Figure 3. Schematic diagram of a full-field OCT system. BS: pellicle beam splitter, CMOS: complementary
metal oxide semiconductor, L: lens, M: mirror, ND: neutral density filter, RC: reflective collimator,
S: sample, WSL: wavelength swept laser.

An achromatic lens with a 30 mm focal length is utilized as the imaging lens for acquiring the raw
fringe data from the sample and reference arms. The near infrared 8-bit area camera utilized here is the
Basler ace (acA2000-340kmNIR, Basler, Ahrensburg, Germany) with a pixel resolution of 2048 × 1088 and
maximum frame rate of 340 fps at full resolution. In order to avoid memory errors owing to large data
and frame rate reduction problems, the region of interest is reduced to 500 × 500 pixels. The lateral
resolution depends upon the numerical aperture of the lens and the pixel size of the camera. The axial
resolution is a function of the spectral bandwidth of the source. The measured axial and lateral
resolution of the system in current setup is ~10 μm and ~15 μm, respectively. The penetration depth
depends on the wavelength and properties of sample. The sampling frequency of the camera also
impacts the depth (axial) range. At sampling frequency of 340 fps, the wavelength sampling interval
is ~0.15 nm which in turns gives the maximum imaging depth of ~2 mm. The system sensitivity drops
off to 10 dB at 400 μm. The system has signal to noise ratio of 75 dB.

In the Fourier domain, the depth information can be obtained from the frequency components of
the interference pattern after signal processing. If S (x, y; k) is the spectral density of the wavelength
swept laser, IR and Is are the intensities of the reflected light from the reference and sample arms,
respectively; hence, the total intensity detected at the camera is given as:

I (x, y; k) = S (x, y; k) IR + S (x, y; k)
∞�

−∞

√
IS (z) IS (z′)exp (i {k [(z − z′) + θ (z)− θ (z′)]}) dzdz′

+2S (x, y; k)
√

IR

∞∫
−∞

IS (z) cos [kz + θ (z)] dz
(2)

where k is the wave number, z is the depth, and θ (z) is the phase shift. The first two terms in Equation (2)
are dc components; the first is generated by the intensity reflection from the reference mirror and the
second is owing to the mutual interference between different layers of the sample. The third component
is the result of the interference between the reference and sample signals. The cross-sectional depth
information, z, of the sample can be retrieved from the third term after performing fast Fourier
transform from the k to the z domain. Due to the non-linearity of the galvo filter, the interference
signals are first resampled and linearized before Fourier transformation. The wavelength swept laser
has phase stability with a standard deviation of ±0.01 radian.
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2.3. Data Processing Steps

For capturing images, a camera is synchronized with the wavelength swept laser using a trigger
signal. The frame grabber utilized in this system is the PCIe-1433 (National Instruments, Austin, TX, USA)
and a camera link full configuration is used to run the camera at a maximum frame rate. Figure 4 shows
the signal processing mechanism employed for obtaining the OCT images in a wavelength swept
laser based full-field OCT system. The mechanism is initiated by the acquisition of raw area images
from the camera in the wavelength scanning direction of the wavelength swept laser. The camera
starts the acquisition with the falling edge of the trigger and continues up to the rising edge of the
trigger. All the acquired frames contain the interference fringe information along with the number
of frames. Fast Fourier transform (FFT) of this acquired signal will provide the depth information.
The data is resampled and linearized before FFT to avoid wave number non-linearization due to the
non-linearity of galvo filter. In the case of the mirror, a single peak represents the mirror position as
a function of the path difference between the two arms. In the case of complex samples, multiple peaks
are obtained in the Fourier spectrum. By applying FFT for each interference signal, all the frames are
processed and the resulting enface images at different depths can be seen (Figure 4). Similarly, by
selective filtering of the peaks, the amplitude and phase information of a particular surface can be
extracted with a micrometer to nanometer resolution. A LabVIEW program is coded to acquire the
data and view the real-time cross-sectional image with the depth information. For enface OCT images,
a program is coded to post-process the saved data. As mentioned earlier that the area image has
dimension of 500 × 500 pixels with 340 frames per second. Therefore, the system has B-scan frame rate
of 500 with each frame contains 500 A-scans and each A-scan contains 340 sample points.

 

Figure 4. Signal processing steps (left to right) for acquiring the enface depth image. A stack of images is
acquired by the camera along the wavelength axis, as indicated by the downward arrow. Next, a single
interference signal is depicted with respect to the wavelength samples. A fast Fourier transform of this
signal will provide the depth information. Hence, the respective enface depth image can be extracted
from the 3D cube after processing all the acquired data.

3. Results and Discussion

Figure 5 shows the cross-sectional images using the proposed wavelength swept laser-based
full-field OCT system. The wavelength swept laser is operated at 1 Hz with two sweep spectrums
corresponding to a 10% forward sweep and a 90% backward sweep, as shown in (i) of Figure 1b.
The camera starts the acquisition at the falling edge of the trigger signal connected to the frame grabber.
The data acquired in the 90% backward sweep is processed in the 10% forward sweep duration and
simultaneously displayed. Figure 5a,c show the raw area images of an Edmund optics target and
an Edmund optics target with a 170-μm-thick cover slip, respectively. Similarly, Figure 5b,d are the
cross-sectional images along the red-colored dashed line of the respective targets. Different fringe
patterns appear in regions with and without the cover slip in Figure 5c. The fringe pattern is obtained
as a result of the interference between the sample and reference arms, provided that the path difference
is within the coherence length of the source. In Figure 5c, the fringe pattern in the right half is
due to the interference between the reference arm and light reflected from the top of the cover slip
and the Edmond optics target. The Edmund optics target has various lines per millimeter (l pmm),
starting from five and reaching up to 200. In this experiment, the portions containing 25, 20, and 15 lines
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per millimeter are imaged with a field of view of 3 mm × 3 mm, corresponding to 500 × 500 camera
pixels. In Figure 5b, the line separation can be seen clearly, corresponding to a lateral distance of 20 μm
according to the target. The refractive index of the cover slip is 1.52 μm. The separation between
the cover slip and the target can be clearly seen in Figure 5d, corresponding to an optical thickness
of 112 μm. Owing to the change in the refractive index, there is a shift in the position of the surface of
the resolution target, as can be seen at the intersection. The solid arrows indicate the fringe pattern,
while the dashed arrows point to the background noise. Using this experiment, the tomographical
thickness variation in the samples can be observed, and with calibration, an accurate measurement can
be computed.

Figure 5. Tomographic images of the full-field OCT system. (a,c) Raw enface images of the Edmund optics
target and the Edmund optics target with a 170-μm-thick cover slip, respectively. (b,d) Cross-sectional
images, clearly distinguishing the line separations along the dashed lines in (a,c), respectively.
The solid arrow in (a) shows the interference fringe because of the reference mirror and the resolution
target, while in (c) the arrow indicates the fringe pattern owing to the cover slip, reference mirror,
and resolution target. The dotted arrow shows the background noise on the sample.

The next experiment is performed for visualizing the topological information of a very large scale
integration (VLSI) height standard target with a step height of 50 μm. Figure 6a shows a 3 mm × 3 mm
portion of the standard mark on the VLSI target. The height variations are shown in Figure 6b,c
along the vertical and horizontal cross-sections, respectively, of the red-colored dashed line in
Figure 6a. These tomographical features can be seen in entirety in real time using the proposed
system. For visualizing and detecting defects in industrial samples with refractive and reflective
characteristics, the proposed system can be effective and can generate fault detection results with
microscopic resolutions. Similarly, tomographical and topographical variation in samples can be
precisely monitored using this system.

 

Figure 6. Tomographic images of the full-field OCT system; (a) Raw enface image of the VLSI 50 μm
step height standard target; (b,c) Cross-sectional profiles along the horizontal and vertical red-colored
dashed lines in (a), respectively.
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Figure 7 shows the enface image of a portion of the VLSI target. The color-coded image in
Figure 7a shows the topographical variations with an almost 50 μm step height with a 3 mm × 3 mm
field of view. Figure 7b,c show the height variation along the horizontal and vertical white dashed
line in Figure 7a, respectively. By utilizing this information, the topographical variations in industrial
samples can be monitored with high precision. The system has height variation within the standard
deviation of ±1 μm.
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Figure 7. Tomographic image of the full-field OCT system; (a) Enface image of the VLSI 50 μm step
height standard target; (b,c) Cross-sectional profiles along the horizontal and vertical white-colored
dashed lines in (a), respectively.

In future works, the performance of this system can be improved by utilizing the 4f configuration
in the detection part of the camera. By increasing the sweep duration of the wavelength swept laser,
more images can be acquired to improve the imaging depth of the system. The further improvement
of the system can be done by increasing the sweep rate of the source with a high speed camera.
The spatial interference of light reflected from the sample affects the transverse resolution of the system.
Therefore, the transverse resolution of the system can be improved by destroying the spatial coherence
of the illumination beam by utilizing the diffuser or mode mixer.

4. Conclusions

We have demonstrated the tomographical and topographical features of samples using the
wavelength swept laser-based full-field optical coherence tomography system. The Edmund optics
target with a transparent cover slip indicates the lateral resolution and thickness of the cover slip.
The optical arrangement is realized by using a high-power wavelength swept laser. The simple
proposed optical system can play an important role in the inspection of industrial samples. The system
has a comparatively large field of view, is easy to align with non-mechanical scanning components,
and has a compact optical setup. In future works, this system will be used for measuring the varying
thicknesses of optical thin films including both the top and bottom surfaces. Solder mask connection
tests, the connectivity of through silicon vias, and multilayer silicon wafer investigations in the
semiconductor industry are the areas in which the system performance can be further evaluated.
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Abstract: Vision-based sensing algorithms are computationally-demanding tasks due to the large
amount of data acquired and processed. Visual sensors deliver much information, even if data
are redundant, and do not give any additional information. A Selective Change Driven (SCD)
sensing system is based on a sensor that delivers, ordered by the magnitude of its change, only
those pixels that have changed most since the last read-out. This allows the information stream
to be adjusted to the computation capabilities. Following this strategy, a new SCD processing
architecture for high-speed motion analysis, based on processing pixels instead of full frames, has
been developed and implemented into a Field Programmable Gate-Array (FPGA). The programmable
device controls the data stream, delivering a new object distance calculation for every new pixel.
The acquisition, processing and delivery of a new object distance takes just 1.7 μs. Obtaining a similar
result using a conventional frame-based camera would require a device working at roughly 500 Kfps,
which is far from being practical or even feasible. This system, built with the recently-developed
64 × 64 CMOS SCD sensor, shows the potential of the SCD approach when combined with a hardware
processing system.

Keywords: CMOS image sensor; event-based vision; high-speed visual acquisition; data-flow
architecture; FPGA system; laser scanning

1. Introduction

Most common artificial vision systems are based on full-frame image processing [1].
The representation of a scene in an instant t as a still image is the typical source of data to extract
visual information. Conventional video systems are based on the sequential acquisition and processing
of full-frame images. Independently of whether there have been changes in the scene or not, all of the
pixels are acquired, stored and processed, which is not efficient in terms of resources if there are no
relevant changes. Moreover, this sequential nature makes it more difficult to reduce the control loop
delay in real-time applications.

Nature, with evolution being the key point, has developed one of the most perfect machines any
engineer could possibly conceive of: living beings. Engineering has drawn on nature as a source of
inspiration to solve many problems, particularly in the field of sensing [2,3]. Biological vision systems
do not follow the policy of capturing and sending sequences of full frame images at a fixed rate.
The idea of a snapshot sequence is not present in biological systems. Visual systems in living beings
are based on different types of photoreceptors, which respond to light stimuli, sending information
asynchronously to the upper levels of cognitive systems [4].

A Selective Change Driven (SCD) vision sensor delivers only the pixels that have changed most
since the last read-out, ordered by the magnitude of their change [5]. Therefore, an SCD sensor only
delivers information that is not redundant; as a consequence, there is an efficient use of time and energy,
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contrary to conventional vision sensors. Additionally, since this information is ordered and delivered
synchronously according to the absolute magnitude of its change, the most significant changes (that are
related to higher light intensity variations) will be processed first. This pixel prioritization, based
on change ordering, can be relevant for some real-time applications that must be accomplished with
time restrictions, because it could not be possible to process all of the events delivered by the sensor.
The SCD policy ensures that in the case of time constraints, the most relevant changes will be processed.

1.1. Event-Based Sensors

Most sensors that have been inspired by this biological approach are based on the Address Event
Representation (AER) model [6,7]. In the AER model, pixels operate as individual processing units
and fire themselves according to their spatial or temporal change of illumination level. Moreover,
event-based sensors can also be classified taking into account how they transform light into an
electrical signal. There are integration-based sensors and continuous conversion-based sensors.
Light integration is based on a capacitor that stores a charge, which is proportional to both illumination
intensity and integration time. Sensors designed with integration photoreceptors offer better
image quality. As a drawback, these sensors lose part of their event-based philosophy, because the
integration time degrades the fast event-driven response speed. Instead, continuous conversion-based
sensors offer a faster response to the stimuli, better mimicking the visual system of living beings.

Many event-based sensors have been developed up to the present. Several of them are
especially significant. For instance, [8] has only eleven transistors per pixel and can work in three event
triggering modes: illumination level, spatial contrast and temporal contrast. However, this sensor has
a low temporal resolution since it is based on fixed time integration. Similarly, the sensors described
in [9,10] have good signal quality, since they are based on integration to a fixed voltage, but with a lower
time resolution than the events. Worth mentioning is the so-called Dynamic Vision Sensor (DVS) where
each pixel autonomously computes the normalized time derivative from the sensed light and provides
an output event with its coordinate when this amount exceeds a programmed contrast. DVS cameras
offer contrast coding under wide illumination variation and microsecond latency response [11,12].
Hence, it is possible to track fast motion without special lighting conditions

All of the above-mentioned sensors have their particular advantages in certain circumstances.
The recently-developed 64 × 64 SCD sensor [13] presents, in our view, a good trade-off,
taking advantage of the data reduction that event-driven sensors have, while keeping a synchronous
interface that delivers information when the processing system is capable of processing it. Moreover,
the feature of reading-out events ordered by the magnitude of their change contributes to the
implementation of systems that can work even without full data processing. The fact of having
this computing-oriented interface makes the SCD sensor a good candidate to be easily integrated
into an embedded processing system. Additionally, the SCD sensor is the only one that combines
illumination level and temporal contrast in continuous time, thus providing high-speed operation
in both event and illumination response. The SCD sensor will be described in depth in Section 2.2.
There is an earlier SCD sensor, with a 32 × 32 resolution based on an integration photoreceptor,
which gave a resolution time of 500 μs [14]. However, the current 64 × 64 SCD sensor takes advantage
of a continuous conversion cell, allowing higher working speeds.

1.2. Event-Based Systems

The next natural step after event-based sensors is the development of vision systems based on
that philosophy. However, a problem arises because there is an inherent contradiction when trying
to mimic complex mammal vision systems with a traditional computing system. The human brain
is a massive parallel system with nearly 100 billion neurons [15]; its good performance relies on the
huge amount of connections and on its parallel functioning ability. However, a traditional computing
system is sequential in nature. It is true that this drawback can be partially overcome with parallel
architectures, but their performance is still very far away from the vision systems of real living beings.
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Neuromorphic systems [16,17] appear as implementations in VLSI (Very Large Scale of Integration)
circuits of sensor and neural systems, whose architecture and design are based on neurobiology.
These systems try to mimic neuro-biological structures present in the nervous system, and AER fits
perfectly into this strategy [18].

There are some examples of neuromorphic systems implemented in full custom chips and some
others that use FPGAs as processing elements. In [18], a 32 × 32 convolution chip with a 155-ns event
latency and a theoretical throughput of 20 mega events per second is presented. The low latency
between the input and output streams in a neuromorphic system they term pseudosimultaneity.
In this paper, several experiments with both dynamic and recorded AER stimuli are shown,
although the highest speed experiments are performed with simulated data. In [19], another
convolution module is presented, with a similar speed performance, but in this case with 64 × 64 pixels.
It has been designed to allow many of them to be assembled to build modular and hierarchical
Convolutional Neural Networks (ConvNets). Similarly, in [20], a neuromorphic system is implemented
mixing the DVS event-driven sensor chip together with event-driven convolution module arrays
implemented on FPGAs. Experimental results in this paper are the implementation of Gabor
filters and 3D stereo reconstruction systems. More recently, a fully-digital implementation of a
spiking convolutional event-driven core that can be implemented in FPGAs [21] has been presented.
This system uses a DVS sensor, an FPGA and two USB AER mini boards that send AER spikes through
a USB connection to a computer. This system is capable of updating 128 synaptic connections in 12 ns,
this being an improvement with respect to previously reported FPGA convolutional event-driven cores.

Some processing systems based on AER sensors show the desired pseudosimultaneity, to reduce
the control loop delay to its minimum, achieving in this way real-time performance. Most of
them are complex systems with a high quantity of resources, which means they cannot be used in
embedded systems. Neuromorphic systems try to implement image processing algorithms mimicking
living beings’ neural systems as a guideline. In our view, the asynchronous nature of AER sensors
makes the subsequent processing system difficult. Sometimes, the processing stages must deal with an
explosion of events that are hard to process. In our opinion, event-based systems tailored to embedded
systems should have a traditional synchronous interface rather than a neuromorphic approach, which
in the end results in a more resource-heavy, less feasible system.

Many AER systems are usually based on FPGAs, often on several boards, due to the complexity
of dealing with asynchronous events. Conversely, our approach, based on SCD vision, uses very few
resources. We have developed a high-speed event-based motion tracking system, with just the sensor,
a medium-size FPGA and some support components. This characteristic means that the system can be
integrated into an autonomous platform or any system with limited resources.

1.3. Laser Scanning

High speed object detection and scene mapping is an extensively-investigated topic in
computer vision. It is useful, for instance, in autonomous vehicle navigation, where it is important to
detect obstacles located in the direction the vehicle is traveling [22]. One of the sensing methods used
to measure depth without physical contact is laser-based 3D scanning. It is common for laser-based
scanners to generate a huge amount of data, for instance in the case of Laser Imaging Detection and
Ranging systems (LiDAR) [23]. There are several solutions to measure distances with laser-based
scanners: photogrammetry, interferometry or ToF (Time of Flight). The most common technique is
known as active triangulation. This method is relatively easy to implement, giving good results for
measuring distances in the range of millimeters to several meters. These scanners mainly consist of a
laser line generator and a camera that records the pattern projected onto the surface to be measured.
Active triangulation has several error sources that limit its resolution, such as any other measurement
technique [24]. Many contributions have been published trying to overcome the drawbacks of this
technique. For instance, in [25], some solutions are proposed to increase the accuracy of measurements
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through sub-pixel resolution. Moreover, the basic configuration sometimes varies in order to minimize
the occlusion problem due to laser/receiver distance [26].

Nowadays, additional developments have produced small commercial sensors that are employed
in robotic applications. For instance, the SICK LMS 200 sensor (Sick AG, Waldkirch, Germany) is
based on the ToF measurement principle, and the Hokuyo URG-04LX scanner (Hokuyo Automatic
Co. ltd., Osaka, Japan) uses amplitude modulated laser light. By measuring the phase shift between
the emitted light wave and its reflection, it computes the target distance. In [27], there is an in-depth
comparison of both sensors. It is shown how, in the case of the Hokuyo sensor, the accuracy is strongly
dependent on the target surface properties. ToF techniques have been employed in other commercial
scanners, such as the MESA SR4000 scanner sensor (Mesa Imaging AG, Zurich, Switzerland). It has
a resolution of 176 × 144 pixels and 50 fps. Similarly, PMD’s CamCube 3.0 (PMD Technologies AG,
Siegen, Germany) also uses ToF and achieves 40 fps for a resolution of 200 × 200 pixels or 80 fps
for 160 × 120 pixels. An analysis of the state-of-the art in the field of lock-in ToF cameras can be
seen in [28]. The performance of ToF range cameras has been improved over the last few years; error
sources are minor, and higher resolution and frame rates can be achieved. Despite these improvements,
ToF cameras cannot yet achieve the depth accuracy obtained by classical triangulation systems. As a
final example, Microsoft’s Kinect is being used nowadays for depth mapping. In [29], there is an
in-depth analysis of this sensing system. Similarly, high-speed cameras, devices capable of frame rates
in excess of 250 frames per second (typically over 1000), are being used nowadays intensively in many
applications [30,31].

The volume of data involved that needs to be processed in real time, together with the power
and size restrictions inherent in an embedded system suggest the use of an SCD vision system to
address these problems. It has been already proven, with the previous 32 × 32 SCD sensor based on an
integration cell, that this approach can be employed to detect the frequency of a rotating movement at
very high speeds [32]. In this study, movement detection is done off-line by software in a PC (with the
Fourier transform), due to the relatively long delay of the data in the order of tenths of μs. With these
experiments, it has been shown that the SCD approach has been able to detect frequencies up to 240 rps,
frequencies that cannot be detected with an equivalent classical sensor.

In this paper, we present a real-time high-speed working system, developed with the new
64 × 64 SCD sensor based on a conversion cell. The system is able to track movements in real time.
This tracking is done by means of computing an object’s distance. This distance computation is made
in real time for each new pixel that arrives, instead of off-line, as reported in previous experiments.
As will be shown in Section 3, it has been possible to track a rotating movement with a delay of 1.7 μs.
This speed is above one order of magnitude faster than the speed of previous systems. The proposed
system can track arbitrary movements in real time, thanks to the use and combination of a new
SCD sensor, a new pipelined processing architecture and the use of hardware based on a portable
FPGA board. The following sections describe the system in detail.

2. System Description

Our original motivation was to build a real-time working system as a proof-of-concept of SCD
vision. This sensor combines the advantages of event-based sensors, though it can be used in real
embedded systems because of its easily integrated synchronous interface. A good application of
SCD sensing is object-distance detection for autonomous vehicle navigation. With a few resources,
the proposed system should be able to detect objects moving at very high speeds, something that a
conventional vision system would not be capable of. Relative movement between the camera and the
detected object is necessary. Either the vehicle with the detection system or the obstacle if the vehicle is
stationary must be moving to generate a stream of changes. This condition could appear to be a serious
restriction, but in fact, it is not. If the vehicle is moving, objects in the moving direction can be detected.
If the vehicle is stationary, approaching objects can be detected. Only if there is no relative movement
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between the vehicle and the obstacle would the object not be detected. In this case, this would not
cause any problems.

Figure 1 shows the system conception. In order to push the system to the limit instead of a real,
slow moving vehicle, we have tested the system with the fastest mechanical system available in our
lab: a high-speed rotating tool.

SCD camera

SCD sensor plane

Laser

FPGA board

Control

Distance
 computation

pipeline

Visualization
stage

SRAM
Displays

FPGA

Figure 1. Motion detection system.

The system, as Figure 1 shows, is based on active laser triangulation. The detection system
must be set in front of the moving vehicle. There is a laser that projects a line in front of the camera.
In the case of Figure 1, the laser is projected onto a moving object. The laser line is captured by the
SCD camera, placed at a known distance from the laser. The position of the laser in the sensor image
gives the distance between the camera and the surface, as explained in Section 2.1. In fact, for a
fixed y position (row), the x column will give the horizontal distance to the obstacle. As long as the
vehicle moves, the laser image will change when there are distance variations. In any case, the SCD
sensor will only deliver pixels that have changed. This characteristic dramatically reduces the amount
of data to be processed. Of course, it is possible for each row to obtain a different column value.
The line can be projected onto an irregular surface, so the line image will give a different column for
each different distance, providing an exact depth map. This task is not complicated because as there
are only 64 columns and each column position is bi-univocally related to a distance, then it is possible
to implement a Look-Up Table (LUT) to instantaneously calculate each pixel distance. This distance
profile can be sent to the vehicle control, which decides what to do. Instead of a LUT, because we have
assumed that the object has a regular surface, we have decided to compute the average distance of
the surface profile. This calculation is an example of how a system can take advantage of the SCD
architecture. Each new pixel arrival updates its contribution to the average distance computation,
being obtained a new distance value with each pixel. The same algorithm using a classical approach
would have required a complete image acquisition. Afterwards, it would have been necessary to
binarize the image taking into account only the pixels illuminated by the laser. Then, the average
column value of these pixels would have been employed to compute the distance. In our system,
each new pixel produces a new distance value in the fastest possible way.

2.1. Laser Triangulation System

As already mentioned in Section 1.3, active triangulation is an easy, widely-used technique for
non-contact distance measurement. There are some differences in the method implementation, which
depends on the final goal; accuracy, range, etc. Some well-known configurations can be seen in [29] or
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in [33]. Equations in those papers give accurate values when all of the system variables are known.
After all, if extremely high accuracy is not a key factor in the experiment, as in the case of our SCD
proof-of-concept, it is very common to use simplified formulae. Figure 2 depicts a simplified pin-hole
representation of triangle equivalences shown in those papers. The basic principle of the method
consists of projecting a pattern of light (usually a laser line) on the surface to be measured. Afterwards,
the pattern image is captured in the sensor plane. Because the laser line is so narrow and the sensor
has only 64 columns, it is almost guaranteed that in the range of operation, the laser line will be in
one column, or two, while it changes from one column to the neighboring column.

Sensor plane

Laser
Object

d

f

b h

Figure 2. Simple pin-hole triangulation scheme.

From Figure 2, it is possible to infer:

h =
d

tan(θ)
(1)

Equation (1) gives the value of the distance h between the laser-camera system and the surface to
be measured. It can be obtained from d, the known laser-camera gap, and the angle θ. This angle can
be obtained as a function of the shift in the image plane (in pixels).

In a linear model, the angle θ can be expressed as:

θ = x · ω + φ (2)

where x is the distance in pixels from the computed pixel to the image center, ω represents the radians
per pixel and φ is a useful parameter for alignment error compensation. Hence, Equation (1) can be
rewritten as:

h =
d

tan(x · ω + φ)
(3)

It is possible to easily obtain x from the sensor data stream (in fact, it is the column value), but ω

and φ must be obtained through the calibration process; this is shown in Section 3.1. The system range
is adjusted by computing these parameters. Of course, higher polynomial fitting would give more
accurate values of the angle θ as a function of column y. This higher precision has a major drawback:
higher Programmable Logic Device (PLD) complexity and, consequently, a higher delay, since all of
the computations must be made by hardware in the FPGA. Nevertheless, a coefficient of determination
R2 of 0.9984 has been achieved with the linear adjustment, as is shown in Section 3.1. This coefficient
of determination corresponds to a percent of standard deviation of 96%.
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2.2. SCD Sensor

The first version of an SCD sensor has been designed [34]. Although it is just a 32 × 32 sensor based
on an integration cell, it has shown its utility in resource-limited systems [35]. Recently, a 64 × 64 SCD
sensor has been designed based on a conversion cell, which will allow it to take advantage of higher
working speeds [13].

The basic SCD sensor cell scheme can be seen in Figure 3. This sensor has an array of 64 × 64 pixels.
Each pixel can detect whether it has experienced the largest change in illumination since the last time
it has been read-out. Any pixel can detect if it is the winner because there is a Winner-Take-All (WTA)
circuit that decides which is the pixel with the greatest change. The winner selection has two stages:
the first one consists of an analog WTA that selects the set of pixels that have changed most. This set
usually already has one single pixel, but in the case of several potential pixels, the second stage digitally
selects one of them. All this winner selection takes place in less than 1 μs.

LogAmpli

OTA
Rectifier WTA Select

Logic
Logic

Sample
& Hold

Vin

Vout

colR
Q

colG
R

col

row
rowRQ

Level

Common

Vlight

Vlast

Idiff Vwta prewin

Figure 3. Basic SCD cell.

A photodiode transforms incident light into current in each cell. This current generates a
logarithmic dependent voltage with a dependency through a log-amplifier configuration, based on
a weak inversion transistor negative feedback amplifier and a source follower. The signal Vlight is
the logarithmic voltage of the incident light. There is a sample and hold circuit, which stores the last
read-out value (Vlast) in a capacitor. All pixels compare the difference between their last read-out value
Vlast and the present incident light Vlight. This absolute difference is calculated using an Operational
Transconductance Amplifier and rectifier (OTA rectifier) that transforms it into the current Idiff. All of
the Idiff currents are compared through the WTA circuit. The Common line, shared by all WTA circuits
in the sensor array, allows any pixel to generate the Vwta signal. The WTA is designed to pull-down the
Vwta of the winner pixel and pull-up the Vwta of the rest. Because there are 64 × 64 = 4096 competitors,
it is possible to have more than one pixel signaled as a winner. All of these pixels have their prewin
signal asserted, and all of them will enter a second-stage competition to select just a single winner.
The logic block allows only one of the columns of the attempting winners, setting the colGR of the
selected column. Each pixel detects this colGR setting its row request rowRQ, because again, there could
be more than one pre-winner pixel cell in the selected column. Immediately, an arbitration circuit
decides a single row winner, giving a final winner pixel. This winner will not be sent out until the
sensor receives an external clock signal. This signal latches the column and row winners, so the winner
will set its win signal when both col and row are set. The sample and hold circuit, triggered by the win
signal, charges the capacitor to Vlight. Consequently, since there is now no difference, the pixel loses
the present competition and un-sets the prewin signal. The col and row signals remain unchanged until
a new clock signal is received.

The chip, which can be seen in Figure 4, has been designed with 0.18 μm 6M1P (6-Metal
1-Polysilicon) MIM (Metal-Insulator-Metal) CMOS technology. A single pixel uses 41 transistors
and occupies 30 ×30 μm2 with a fill factor of 4%. Additionally, the sensor has the feature of working
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as a conventional camera. The sensor has an input signal, SCDena, which selects whether the camera
works following the SCD function (if set to one) or whether it works as a conventional camera. In the
latter, the pixel address must be supplied in order to obtain the corresponding illumination value as a
random access memory. This characteristic is useful for system calibration, as is shown in Section 3.1.

Figure 4. Details of the SCD sensor in the camera.

2.3. SCD Camera

One of the main advantages of the SCD sensor, compared to other event-based sensors, is that
it offers a simple interface. The sensor always works as the slave of a processing unit to which
it communicates in a synchronous way. A SAM4S Xplained pro micro-board (Atmel Corporation,
San Jose, CA, USA) has been used to implement the SCD camera. The camera offers a USB interface to
a computer and digitalizes the analogue illumination level value obtained by the sensor. Both functions
have not been used in the system, since the pixel stream control has been carried out directly in the
FPGA, and the illumination value is not being used. Nevertheless, the camera has been kept in the
system because the sensor needs nine polarization analogue values. The camera also adapts the
voltage levels between the sensor (1.8 V) and the FPGA (3.3 V). Figure 4 shows the sensor and part of
the camera. Similar to most AER systems, only the event address has been taken into account. This
has been done in this way in order to reduce the 2-μs conversion time needed for the analogue to
digital conversion.

The sensor always sends the pixel that has changed the most based on an external request. Figure 5
shows the timing schema for this. Initially, the competition signal Comp must be asserted. After that,
the Ck signal must be set to one and then set to zero again to generate a pulse while Comp is asserted.
Then, Comp can be released. A few nanoseconds later, the column and row of the pixel appear in the
sensor bus. Exact signal timing has been tested with FPGA system clock multiples (t = 20 ns period),
the event generation being stable with the timing shown in Figure 5. A Finite State Machine (FSM)
in the FPGA is in charge of generating these signals. As a conclusion, it is possible to generate a new
event each 120 ns in our system, which would be the highest temporal resolution of the sensor without
the illumination level.
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Figure 5. Sensor protocol and timing.

2.4. High-Speed Computation Pipeline

Our assumption is that due to laser brightness, the most significant changes will mostly occur in
the laser line. Equation (3) gives the distance of the point where the laser is being projected depending
on x, the column position of the laser line in the sensor. In our demonstration, we have assumed that
there is an almost constant distance where the laser line is being projected. Of course, different values
of h could be obtained for each different x. In this case, and because there are only 64 possible y values,
a simple LUT with the 64 possible pre-computed depth values would solve the problem. However, our
system is not just a pre-computed LUT. Ideally, all of the lines will have the same column, but in a
real situation, there would be different values for the columns corresponding to the 64 rows. Therefore,
our system computes the average column value, or x, as an average distance from the object.

Figure 6 shows a scheme of the computation pipeline. There is a column of 64 registers, one for
each row. When an event arrives with its (x, y) coordinates, the y-th row updates its column value x.
Each row in the registers column stores the present laser position in the image, and it is updated as
soon as there is a change. All column registers are added with a tree of carry-lookahead adders. Due to
the reduced number of bits involved, these kinds of adders are usually fast enough. The limitation
would appear if the adder delay exceeded the clock period; taking into account that the FPGA clock
has a period of 20 ns, simulations proved that this restriction is not going to be exceeded. As will be
shown later in Section 2.6, the maximum system clock after synthesis is 97.84 MHz, which means that
the delays in the carry chain of the adders are below 10.3 ns. This is the expected result since these
adders have 12 bits [36].
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Figure 6. Computation stage.
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The maximum result of the addition of 64 registers of six bits fits in a 12-bit register, but an
additional bit has been added to the left with a zero value. This has been done to guarantee that the
result is interpreted as positive in the next stage. The average value must be computed by dividing the
sum by 64, something that is easily done just by moving the point six bits to the left. This operation
converts a natural number into a real fixed point number, as Figure 6 shows.

Once the average column value has been computed, Equation (3) must be applied in order to
obtain the depth related to that column displacement. To do so, the Altera Library of Parameterized
Modules (LPM) has been used since the FPGA employed is the Cyclone II 2C35 from Altera (San Jose,
CA, USA). The sequence of mathematical operations that can be inferred from Equation (3) will be
done by hardware, as Figure 6 shows.

First of all, the average column value must be converted from fixed-point representation to IEEE
754 floating-point representation, in order to serve as input to the subsequent modules. Secondly,
the θ angle is calculated by first multiplying x by ω and then adding the φ parameter. Next, the cosine
and sine of this angle are computed. Because the cosine calculus is one cycle shorter than the sine,
a one cycle delay is necessary to equalize the delay in both paths. Afterwards, the division of both
magnitudes is performed in the subsequent LPM module, this result being finally multiplied by d.

The latency of each LPM module can be seen in Figure 6. Adding these values, the latency
of the system is 64 cycles. This is not a bad result, taking into account the complexity of the
operations performed. The system has been successfully compiled in the target FPGA obtaining
a clock frequency of nearly 100 MHz, which gives a latency of 0.6 μs. Nevertheless, it has been decided
to utilize the 50-MHz system clock generated by the board, so the initial latency is 1.3 μs. After this,
the system can give a new result each clock cycle, that is each 20 ns or even each 12.5 ns with a 100-MHz
clock. In any case, the bottleneck of the system is not the computation pipeline, but the sensor data
stream. An FSM needs six cycles to obtain each new pixel event, as shown in Figure 5.

All of the LPM modules have been slightly tuned to reduce their bus widths and the number of
pipeline stages. Moreover, the synthesis parameters have been fine-tuned towards maximizing speed
instead of reducing area.

2.5. Display Stage and Memory Access

Our system is focused on taking advantage, through specialized hardware, of the high-speed
resolution time achieved with the SCD sensor. This system is beyond any other previous system using
an SCD sensor. Once the distance to the moving object has been computed, it can be used to activate
some actuators or just help to make decisions in an autonomous navigation vehicle. In our case,
we implemented a simple display system to see, in real time, the computed distance. This has been
useful to gauge the accuracy of the system at low speeds. Nevertheless, in order to prove the correctness
of the computed data in high-speed experiments, the implemented control FSM stores distance data in
an external SRAM (Static Random Access Memory), which is in the FPGA board. Afterwards, data can
be extracted from the SRAM and plotted.

Figure 7 shows a schema of the system with the display stage, the SRAM and the control FSM.
In order to visualize distance data in real time, distance is converted to a fixed point representation
using an LPM module and then to BCD (Binary-coded decimal) and seven-segment format through
a custom combinatorial module. The involved magnitudes are estimated to be from millimeters to
roughly two hundred centimeters. The distance between the laser and the camera d has been expressed
in centimeters, so h will also be expressed in centimeters. This has been done with the intention
of representing these figures in the display. The theoretical range of distances achieved with the
triangulation system would be, as later shown in Section 3.1, in the order of 250 cm. To express these
figures, eight bits are necessary for the integer part. Consequently, the decimals appearing as a result
will be millimeters. Unfortunately, the low sensor resolution makes it difficult to detect the laser when
it is in the range of more than roughly 100 cm.
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Figure 7. Display and memory stages.

2.6. Synthesis Details

The FPGA board used is the Altera DE2 board. This board contains a Cyclone II FPGA
device, with:

• 33,216 logic elements
• 105 M4K RAM (Random Access Memory) blocks
• 483,840 total RAM bits
• 35 embedded multipliers
• 4 PLLs (Phase-Locked Loops)
• 475 user I/O pins
• FineLine BGA (Ball Grid Array) 672-pin package.

The synthesis results shown in Table 1 justify the use of this device. There is still room to add
some improvements, although all of the multipliers have already been used.

Table 1. Synthesis results.

Parameter Value

System clock 97.84 MHz
Total logic elements 16,064 (48%)

Total registers 8285 (25%)
Total memory bits 4608 (1%)

Embedded Multiplier 9-bit elements 70 (100%)

The FPGA board has many interfaces and additional hardware, although only a few buttons,
four seven-segment displays and the SRAM have been used to store the results in the experimentation
process. The SRAM is a 512-Kbytes chip, organized as a 256 K × 16, with a 10-ns access time.

3. Experimentation

Most smart sensors are developed in CMOS technology because it is possible to include some
processing or “smart” capabilities added to the sensing part. Unfortunately, CMOS technology
offers worse image quality compared to older CCD technologies. CMOS vision sensors have some
noise problems that can be overcome with some additional strategies. In the case of our system,
the illumination level has been discarded, and only the events have been taken into account.
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There is a source of noise that must be faced in most event-based sensors, the Random Telegraph
Signal (RTS). This effect causes some pixels (hotspots) to behave randomly, registering large changes
when they should not and, consequently, firing wrong events [37]. This source of noise is related
to the presence of traps in the transistor channel and affects a really low quantity of photosensors.
The practical effect of RTS noise in a CMOS imager is that it invalidates a few pixels. Each sensor must
be characterized to find out which pixels must be marked as faulty. In the case of the 64 × 64 SCD
sensor used in our system, only 28 pixels were discarded, giving a ratio of 0.7%. The control FSM
incorporates a module that identifies the received pixel, and it is not sent to the pipeline if it is in the
faulty pixel list.

The experiment was focused on proving the high-speed capabilities of the system, but beforehand,
some low-speed experiments were performed in order to characterize the sensor.

3.1. Calibration

Equation (1) expresses the relationship between the object distance h and the angle θ.
In Equation (2), a linear relationship between the angle variation and the column value has
been supposed. Finally, Equation (3) gives the object distance as a function of the column number x.
Since the SCD sensor can work in conventional mode, it has been possible to obtain the column
number x of the laser in the image plane for several h values. The value of d has been fixed to 7.5 cm,
and the angle θ = arctan(d/h) has been represented.

Figure 8 shows the least squares adjustment of theta as a function of x. This adjustment gives
a coefficient of determination R2 = 0.9984, which justifies, in our view, the linear model for θ.
The linear equation obtained was θ = ω · x + φ = 0.0065 · x − 0.1012. These values give a theoretical
distance range between 23 cm, as the nearest detectable point, and roughly 250 cm as the farthest
measurable distance. Unfortunately, due to the sensor resolution, it has not been possible to keep this
range of distances with a single lens. The system has been proven to work effectively in a range up to
roughly 100 cm.

Figure 8. Least squares adjustment of sensor parameters.

Three supply sources are needed for the system: one 9-V supply for the FPGA board, a USB
5-V connection to power the camera and another 5 V to power the laser, which has also been taken
from a USB connection. A portable battery with these supply sources has been employed, making a
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fully-portable system. Everything was set on the top of a wheeled cart, moving it in a controlled
environment. Figure 9 shows the upper part of the system and the laser projected onto a wall. With the
sensor parameters already computed, some low-speed controlled experiments were performed to
verify that the system was working correctly.

During start up, the system may give wrong distance values. This happens because initially, all of
the registers do not store the right column values. This is going to happen until all of the registers that
store the row value for each column are updated, as Figure 6 shows. It is necessary to update the row
of 64 pixels where the laser is projected, but this happens very quickly because these changing events
are going to be the first events to be sent out and processed. This is guaranteed by the SCD policy of
first sending the pixels that have changed most.

Figure 9. System on the upper part of a wheeled cart in the approaching wall experiment.

Several low-speed experiments, with different surfaces, have been carried out to test the accuracy
of the system at low speed. All of the experiments have been repeated until two standard deviations
in confidence have been obtained. The first experiment has been to move the wheeled cart towards a
white plaster wall to measure the distance. The experiment needed to be repeated five times to achieve
the required degree of certainty. Figure 10a shows the results of the average distance versus time
(a new event each 328 μs), with a Root Mean Square Error (RMSE) of 2 mm.
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Figure 10. (a) Approaching a white plaster wall experiment; (b) approaching a blue painted wooden
door experiment.
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The second experiment has been carried out with a blue painted wooden door. Figure 10b shows
a better result in terms of less error and a better coefficient of determination. In fact, this second
experiment has been repeated only three times, since the required level of certainty has been achieved
with three measurements. Additionally, a third experiment with a brown paperboard sheet fixed to a
wall has been performed, as Figure 11a shows, with slightly better results.

Better results could be expected with the white surface, since that color is clearer, and it offers
greater laser reflection; but this expectation has been proven to be wrong. The brighter color has
been shown to be worse for laser line definition in the sensor plane. Nevertheless, experiments done
with flatter surfaces and matte colors have worked better. Figure 11b shows the inverse experiment
of moving the wheeled cart away from the wall with the brown paperboard; this has been repeated
three times.
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Figure 11. (a) Approaching a brown paperboard experiment; (b) moving away from a brown
paperboard experiment.

3.2. High-Speed Experiments

The system challenge is to test its movement detection capabilities at high speed. This is really
one of the most important facets of any event-based vision system. The delay loop in a control
system can be reduced to the minimum possible, because only pixels that have changed are acquired
and processed. In our view, the SCD system has the additional advantage that it offers a constant event
rate controlled by the processing system, and it also has a very simple interface. This fact allows very
high-speed movements in an embedded system to be analyzed, with very few resources. To do so,
the fastest tool that we could find was used: a rotating tool with a theoretical maximum speed of
33,000 rpm with no load.

Figure 12 shows three pictures of the experimental setup. A plastic stick is fixed to the rotating
tool, with the laser beam illuminating the stick in a perpendicular manner. When the stick is fully
vertical (Figure 12a), it offers the maximum surface to the laser beam, being fully detected and giving
the minimum distance to the system. Conversely, when the stick is fully horizontal (Figure 12b),
it offers the minimum surface to the laser beam contributing, in this case, mostly the background to
the average distance.

The display is not going to be useful in this case, because the figures change so quickly. Instead,
the recorded file in the SRAM is going to be especially useful. Moreover, a theoretical model of what is
going to be measured as the average distance in the experiment has been developed. Figure 13 shows
a parametrized scheme of the experimental setup.

The stick is rotating at a constant speed of α radians per second. There are some assumptions in the
model to simplify it: only the laser projection is considered to generate a change in the image, and the
laser beam fully occupies one column and only one column. The stick width and the rotating tool axis

307



Sensors 2016, 16, 1875

are not taken into consideration. The upper and lower part of the image are fixed in a symmetrical
scenario. The image column received, that is the lateral view of Figure 13, is discretized into 64 rows,
so the model adds the contribution of each row and computes the average value, exactly as the
proposed system does.

(a) (b) (c)

Figure 12. Rotating stick experiment. (a) Stick side fully illuminated by the laser (minimum distance
to the camera); (b) Background mostly illuminated by the laser (maximum distance to the camera);
(c) Overall experiment set-up view with the rotating stick.
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Figure 13. Parametrized model of the rotating stick experiment.

The first experiment performed was done at the lowest speed of the rotating tool. Figure 14
shows the distance position obtained experimentally (red points). In this experiment, an event has
been received each 1.7 μs. Experimental data show that the tool is rotating at roughly 12,400 rpm.
There is a high coincidence between the theoretical model (blue line) and the experimental result.
The coincidence is not absolute, because the model is quite limited, but the periodic movement is
perfectly detected. The magnitude of the involved distances is quite coincident, as well.

The experiment shows that a pixel can be acquired and processed each 1.7 μs. A frame rate
of 588 Kfps would be needed to achieve this temporal resolution with a conventional camera.
A frame-based camera working at that speed is almost impractical, apart from the extremely high
required data bandwidth or processing power. It is true that in a conventional system, we would
obtain full frames each acquisition time, but there is no way of acquiring, storing and processing such
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a rate of frames in an embedded system. The SCD system has been able to track a very high-speed
movement with very low resources. An equivalent traditional system is not capable of tracking the
movement of an object with so much detail at such a speed.

More experiments were performed with the rotating tool, changing some parameters and,
more importantly, increasing the tool speed. Figure 15a shows the experimental results with the
tool rotating at 21,000 rpm. Again, the periodic movement can be reconstructed, and there is some
correspondence with the theoretical mode; for instance, some of the wave peaks are quite sharp as
predicted by the model. At this rotation speed, some uncontrolled vibrations appear, which makes it
difficult for the laser to point to the side of the stick.

Finally, Figure 15b shows the stick distance at the maximum speed achieved with the rotating
tool. This speed is roughly 26,000 rpm, less than the theoretical speed of 33,000 reported in the tool
data sheet. We suppose that the tool’s maximum speed must be without any load or just with the tool
drills. The stick’s inertia and air resistance are probably why the theoretical maximum speed could not
be achieved. In this experiment, the periodicity of the movement is also perfectly detected, and the
sharp form of the curves corresponds to the theoretical model. Again, vibrations appear in the system,
which make it difficult to obtain more accurate results.
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Figure 14. Rotating stick at 12,400 rpm. Red points: experimental data. Blue line: predicted data by
the model.
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Figure 15. (a) Rotating stick at 21,000 rpm; (b) rotating stick at 26,000 rpm.
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4. Conclusions

The combination of SCD sensing, which is a case of event-based sensing, together with full
custom hardware processing gives a temporal resolution of 1.7 μs, which is about three orders of
magnitude better than that offered by frame-based systems, with even fewer processing requirements.
With this temporal resolution, it is possible to track movement at very high speeds, which would
be almost impossible with a classical full frame approach. Theoretically, it would be necessary to
have a camera working at more than 500,000 fps in order to achieve a similar temporal resolution.
Moreover, the hardware needed to acquire, store and process such a massive data stream would be
beyond any practical application and would be prohibitive for an embedded system. The system is
fully portable and has a simple interface. This new system is also one order of magnitude faster than
previous realizations of similar laser scan systems based on event-based sensors.

The implemented algorithm in the FPGA can ask for a new event every six cycles = 120 ns.
The processing pipeline can deliver a new distance data each cycle, with a latency of 64 cycles.
Since data are being stored in the SRAM and in order to avoid contention, a sequential process
of acquiring, computing and storing data has been implemented. This is why the delay has been
set to 1.7 μs. The system could work with a temporal resolution of 120 ns, which has been proven
to be the minimum sensor event access time (without the illumination value). Sometimes, this time
will be greater since some events must be discarded because they are coming from faulty pixels.
The processing stage would not be the throughput bottleneck, although as in any pipelined system, it
would include some latency. In any case, this latency is several orders of magnitude lower than the
latency in a classical full-frame vision system.

Additionally, the SCD approach offers an easy interface, with a processing system that can control
the stream data and adjust them to its computation capabilities. The implemented system is also a
proof-of-concept of how event-based systems, and particularly selective change-driven vision, can be
implemented in real high-speed applications.

Some system limitations must be noted: Object detection with this approach only works when
there is movement perpendicular to the sensor plane under the laser line. Furthermore, this first
prototype has a relatively low measurement range (distances up to 100 cm) because of the optics
and sensor resolution. Additionally, 64 × 64 pixels can be considered a low resolution for some
practical applications. Finally, system vibrations and some CMOS sources of noise may affect the
distance measurements.
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Abbreviations

The following abbreviations are used in this manuscript:

AER Address Event Representation
CK Clock sensor signal
CMOS Complementary Metal Oxide Semiconductor
Comp Competition sensor signal
ConvNets Convolutional Neural Networks
DVS Dynamic Vision Sensor
FPGA Field Programmable Gate Array
fps frames per second
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FSM Finite State Machine
Kfps Kilo frames per second
LiDAR Light Detection and Ranging or Laser Imaging Detection and Ranging
LPM Library of Parameterized Modules
LUT Look-Up Table
PLD Programmable Logic Device
RMSE Root Mean Square Error
RTS Random Telegraph Signal
SCD Selective Change-Driven
SRAM Static Random Access Memory
ToF Time of Flight
VLSI Very Large Scale of Integration
WTA Winner-Take-All
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Abstract: Kompsat-3A, which was launched on 25 March 2015, is a sister spacecraft of the
Kompsat-3 developed by the Korea Aerospace Research Institute (KARI). Kompsat-3A’s AEISS-A
(Advanced Electronic Image Scanning System-A) camera is similar to Kompsat-3’s AEISS but it was
designed to provide PAN (Panchromatic) resolution of 0.55 m, MS (multispectral) resolution of 2.20 m,
and TIR (thermal infrared) at 5.5 m resolution. In this paper we present the geometric calibration
and validation work of Kompsat-3A that was completed last year. A set of images over the test
sites was taken for two months and was utilized for the work. The workflow includes the boresight
calibration, CCDs (charge-coupled devices) alignment and focal length determination, the merge
of two CCD lines, and the band-to-band registration. Then, the positional accuracies without any
GCPs (ground control points) were validated for hundreds of test sites across the world using various
image acquisition modes. In addition, we checked the planimetric accuracy by bundle adjustments
with GCPs.

Keywords: Kompsat-3A; AEISS-A; calibration; validation

1. Introduction

Kompsat-3A, which was launched on 25 March 2015, is a sister spacecraft of the
Kompsat-3 developed by the Korea Aerospace Research Institute (KARI). Kompsat-3A’s AEISS-A
(Advanced Electronic Image Scanning System-A) camera is similar to Kompsat-3’s AEISS but it was
designed to provide PAN (Panchromatic) resolution of 0.55 m, MS (multispectral) resolution of 2.20 m,
and TIR (thermal infrared) at 5.5 m resolution as presented in Table 1. The altitude of Kompsat-3A is
528 km—which is lower than that of Kompsat-3 (685 km)—for better spatial resolution, sacrificing the
swath width.

In-orbit geometric calibration and validation of high-resolution Earth-observation satellites is
important because various impulses and vibrations during the launch process may have affected
the satellite’s payload [1–8]. Therefore, the in-orbit geometric calibration process determines the
focal length, the distortions of lenses, CCD (charge-coupled device) alignments, and other geometric
distortions. For this purpose, bundle adjustments are carried out utilizing GCPs (ground control
points) at the reference sites that give accurate location information. This leads to the elimination of a
series of systematic errors and reduction of correlation between the interior and exterior orientation
parameters to improve the geometric accuracy. Then the validation process is conducted to check and
ensure the mapping accuracy.

Sensors 2016, 16, 1776 313 www.mdpi.com/journal/sensors
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Table 1. Kompsat-3A specifications.

PAN (Panchromatic) MS (Multispectral)

Spectral Bands 450–900 μm

Blue: 450–520 μm
Green: 520–600 μm
Red: 630–690 μm

NIR (Near infra-red): 760–900 μm

GSD (Ground Sample Distance) 0.55 m at nadir 2.2 m at nadir
Focal Length 8.6 m 8.6 m

Swath Width at Nadir 12 km 12 km
Data Quantization 14 bit 14 bit

CCD (Charge-Coupled Device) Detector
Array of 24,000 pixels

(2 × 12,000)
Arrays of 4 (RGB and IR) ×

6,000 pixels (2 × 3,000)

Pixel Pitch 8.75 μm 35 μm

The geometric calibration and validation of the Kompsat-3A AEISS-A camera have been
completed [9]. The geometric calibration consisted of two phases. At phase I, AOCS (attitude and orbit
control subsystem) in-orbit calibration was performed with the satellite’s position and attitude data,
which are estimated through time synchronization of GPS, AOCS, and payloads. Phase II included the
calibration of CCD alignments and the focal length, the CCD overlap area correction, and band-to-band
alignments. This was followed by the validation of positional accuracy.

In this paper, we introduce the Kompsat-3A AEISS-A camera and the physical sensor model that
incorporates the interior and exterior orientation parameters. Based on the rigorous sensor model,
the geometric calibration method of Kompsat-3A will be explained. This includes the boresight
calibration, and the calibration of the CCD alignments and the focal length. Then we present the results
of the geometric calibration and validation including not only the aforementioned sensor calibrations
but the merge of sub-images and the band-to-band registrations. Finally, the positional accuracy after
the calibration is presented.

2. Kompsat-3A AEISS-A Camera

2.1. AEISS-A Sensor

Figure 1a shows the configuration of Kompsat-3A AEISS-A camera. Blue, PAN1, PAN2, TIR,
green, red, and near-infrared (NIR) channels are aligned in a unifocal camera. Figure 1b depicts the
design of PAN, MS, and TIR (written IR in the figure). The gaps between the sensors in the focal plane
correspond to the differences of the projection centers. The telescope uses a Korsch combination with
three aspheric mirrors and two folding mirrors, using an aperture diameter of 80 cm. This design
was chosen because of its simplicity and compact size, allowing it to fit within the small spacecraft
platform. Also, the camera was designed to minimize the aberration.

Figure 2 presents the detailed configuration of the panchromatic CCD-lines [10]. A single CCD-line
consists of 12,080 pixels with 20 dark pixels on each side and the overlapping area is 100 pixels in the
center. The pixel size is 8.75 micron. Each CCD-line produces a single subimage with overlapping areas,
and the two produced subimages must be merged together into a single image that is 24,020 pixels of
image width.
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(a) (b) 

Figure 1. Kompsat-3A AEISS-A (Advanced Electronic Image Scanning System-A) sensor configuration.
(a) Camera rear view; (b) CCD array configurations.

 
Figure 2. Kompsat-3A AEISS-A panchromatic CCD-lines configuration with an overlapping zone
(the scan direction is upward).

2.2. Physical Sensor Modeling

The physical sensor model of Kompsat-3A is in a nonlinear form of projection from a given ground
point in an Earth-centered Earth-fixed (ECEF) coordinate frame to a point in the body coordinate frame
as shown in Equations (1) and (2). We call this the forward model. The exterior orientation parameters
(EOPs) can be interpolated from the ephemeris data given an instant time.

⎡
⎢⎣ U

V
W

⎤
⎥⎦ = MT

Bore MBody
Orbit MOrbit

ECEF

⎡
⎢⎣ X − XS

Y − YS
Z − ZS

⎤
⎥⎦ (1)

⎡
⎢⎣ xb

yb
zb

⎤
⎥⎦ = λ

⎡
⎢⎣ U

V
W

⎤
⎥⎦ (2)

where
[

X Y Z
]T

is the ground point in the ECEF coordinate frame,
[

XS YS ZS

]T
is the

satellite position in the ECEF coordinate frame, MECI
ECEF is the time-dependent rotation matrix from the

ECEF coordinate frame to the inertial coordinate frame, MBody
ECI is the time-dependent rotation matrix

from the inertial coordinate frame to the body coordinates frame, MBore is the boresight rotation matrix,
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xb, yb, zb are the coordinates in the body coordinate frame (xb is the flight direction, zb is the direction
to the Earth, and yb completes the right-handed coordinate system), and λ is the scale factor.

The position and the rotation of the satellite at time t can be computed using Equation (3). A scan
time t corresponding to an image line is used for the computation of the position and the rotation
using the Lagrange interpolation of 8 neighboring ephemeris data.

→
P(t) =

8

∑
j=1

→
P(tj)×

8

∏
i = 1
i 	= j

(t − ti)/
8

∏
i = 1
i 	= j

(
tj − ti

)
(3)

where
→
P(t) is the position and the rotation of the satellite at time t.

The relationship between the sensor coordinate frame and the body coordinates frame is presented
in Figure 3 and Equation (4). In, xs, ys show the sensor coordinate frame and zs completes the
right-handed coordinate system.

 

Figure 3. The relationship between the sensor coordinate frame and the body coordinate frame.

⎡
⎢⎣ −ys

−xs

f

⎤
⎥⎦ = Ms

b

⎡
⎢⎣ xb

yb
zb

⎤
⎥⎦ , Ms

b =

⎡
⎢⎣ 0 −1 0

−1 0 0
0 0 −1

⎤
⎥⎦ (4)

where Ms
b is the transformation matrix from the body coordinate frame to the sensor coordinate frame,

and f is the focal length.
The sensor coordinates can be converted from the image coordinates using CCD-line alignment

information parameters as shown in Equation (5). An individual CCD-line requires unique alignment
parameters. The CCD alignment equation was determined based on the precise calibration performed
before the launch. The second-order equation showed 0.01% difference compared to the reference,
satisfying the requirement of distortion 0.2%.

xs = a0i + a1i × (c − c0i) + a2i × (c − c0i)
2

ys = b0i + b1i × (c − c0i) + b2i × (c − c0i)
2 (5)

where i is the CCD chip index, a0, b0 are the x, y coordinates of the first pixel in the CCD chip, a1, a2

are related to the pixel size (a2 is the nonlinearity part), b1, b2 are the alignment parameters of the
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non-straight line CCD chip, and c is the column (sample) coordinate in pixels (c0 is for the first column
of the CCD chip).

2.3. Sensor Geometric Calibrations

During the calibration process, the focal length, the boresight angles, and CCD alignment
parameters are estimated. Removing the scale factor in Equation (2), observation equations can
be established as Equation (6).

Fx = xb − f U
W = 0

Fy = yb − f V
W = 0

(6)

The first step of the AOCS absolute calibration is to perform the boresight calibration between
the star tracker and the other payloads using GCPs (ground control points) located at calibration sites.
To this end, the boresight rotation matrix MBore must be estimated.

MBore = MYb MPb MRb (7)

MYb =

⎡
⎢⎣ cYb sYb 0

−sYb cYb 0
0 0 1

⎤
⎥⎦ , MPb =

⎡
⎢⎣ cPb 0 −sPb

0 1 0
sPb 0 cPb

⎤
⎥⎦ , MRb =

⎡
⎢⎣ 1 0 0

0 cRb sRb
0 −sRb cRb

⎤
⎥⎦ (8)

cYb = cos(yawB), sYb = sin(yawB)

cPb = cos(pitchB), sPb = sin(pitchB)

cRb = cos(rollB), sRb = sin(rollB)

(9)

The partial derivatives with respect to the boresight angles can be expressed as Equations (10)
and (11), which show the case of the boresight roll angle. The same analogy is applied to the other
angle cases, such as the pitch and yaw.

∂Fx
∂Rb

= − f
W

(
∂U
∂Rb

− U
W

∂W
∂Rb

)
∂Fy
∂Rb

= − f
W

(
∂V
∂Rb

− V
W

∂W
∂Rb

) (10)

∂

∂Rb

⎡
⎢⎣ U

V
W

⎤
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⎡
⎢⎣ 0 0 0

0 −sRb −cRb
0 cRb −sRb

⎤
⎥⎦ MT

Pb
MT

Yb
MBody

Orbit MOrbit
ECEF

⎡
⎢⎣ X − XS

Y − YS
Z − ZS

⎤
⎥⎦ (11)

Secondly, the calibration of the focal length is simply carried out by deriving the partial derivatives
with respect to the focal length as Equation (12).

∂Fx

∂ f
= − U

W
,

∂Fy

∂ f
= − V

W
(12)

Finally, the calibration for the CCD alignment parameters can also be carried out by computing
partial derivatives as shown in Equation (13). Note that Kompsat-3A AEISS-A sensor consists of
several CCD lines and they are calibrated all together. Note that i is the CCD chip index.

⎡
⎣ ∂Fxi

∂a0i

∂Fxi
∂a1i

∂Fxi
∂a2i

∂Fxi
∂b0i

∂Fxi
∂b1i

∂Fxi
∂b2i

∂Fyi
∂a0i

∂Fyi
∂a1i

∂Fyi
∂a2i

∂Fyi
∂b0i

∂Fyi
∂b1i

∂Fyi
∂b2i

⎤
⎦ =

[
1 (c − c0i) (c − c0i)

2 0 0 0
0 0 0 1 (c − c0i) (c − c0i)

2

]
(13)

The partial derivatives with respect to the focal length, the boresight angles, and CCD alignment
parameters, as well as EOPs (exterior orientation parameters) are used to form a design matrix A
for the linearized observation equation in Equation (14) and iteratively solved using the least square
adjustment as Equation (15). Note that the calibrations of boresight angles, focal length, and CCD
alignment parameters are carried out sequentially to avoid large correlations among the parameters.
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Note that single iterative least squares can make the normal matrix not invertible. Therefore, other
systems utilized a step-by-step approach for the geometric calibration [11].

Aξ = y (14)

ξ̂ =
(

AT PA
)−1

AT Py (15)

3. Geometric Calibration and Validation

3.1. Workflow

The geometric calibration consists of AOCS in-orbit calibration (boresight calibration), the
focal length calibration, the calibration of CCD alignments, the CCD overlap area correction, and
band-to-band registration, as shown in Figure 4. The details on the AOCS absolute calibration, focal
length, and the CCD alignments were presented in the previous section. For the CCD overlap area
correction and band-to-band registration we applied the same merging process used for Kompsat-3
data [10]. This method generates a grid of tie points over the subimages based on the physical
sensor model and uses them for similarity transformation with the compensation of ephemeris and
terrain variation.

 

Figure 4. Summarized geometric calibration procedure of Kompsat-3A.

3.2. Calibration Sites

We classified test sites into two categories according to their positional accuracies. Level 0 sites are
located in several sites over Mongolia and Korea where about 150~180 circle targets of 3 m diameter
were established. The coordinates of the targets were acquired by GNSS surveys and they showed
the positional accuracy of 5 cm in RMSE (root mean square error). They were used for the CCD
alignment, the focal length calibration, AOCS absolute calibration, and validation of mapping accuracy.
Average 9~20 points were used for each scene.

Level 1 sites are distributed at 82 locations across the world as shown in Figure 5. Locations such
as road intersection were global navigation satellite system (GNSS)-surveyed with about 70 cm
accuracy in RMSE. Level 1 reference data were used for AOCS absolute calibration and validation of
positional accuracy.
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Figure 5. Level 1 site locations.

3.3. AOCS Absolute Calibration

First we conducted the AOCS absolute calibration. The accuracy of the AOCS absolute calibration
highly depends on the accuracy of GCPs, and its reliability can also be affected by the temperature
characteristics of the star tracker. Note that the accuracy of the star tracker used (Sodern SED36) is
1 arcsec for the cross-boresight and 6 arcsec for the boresight axis. This necessitated using the GCPs
from different calibration sites of the southern and northern hemispheres to carry out the boresight
calibration. We used five image strips over level 0 sites and six strips over the level 1 sites with
difference roll angles ranging −25.5◦~27.9◦ for the calibration as shown in Table 2.

The result of the calibration, which is the rotation matrix MBore in Equation (1), was used to update
the system. The horizontal accuracy of the check points was estimated to 2.9 km (CE90) before the
calibration, but the error was reduced to 13.6 m (CE90) after the system update, as shown in Figure 6.

Table 2. Attitude angles of Kompsat-3 test data used for the AOCS (attitude and orbit control subsystem)
absolute calibration.

Strip Roll (◦) Pitch (◦) Yaw (◦)

1 −15.6 −0.96 2.85
2 0.56 0.20 2.78
3 12.52 0.63 2.09
4 27.91 0.71 1.65
5 0.05 0.17 3.04
6 6.41 0.23 3.33
7 −25.48 −0.99 2.42
8 −9.24 −0.30 2.89
9 27.58 1.16 1.90

10 15.09 0.80 2.31
11 11.88 0.67 2.38
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(a) (b) 

Figure 6. Horizontal accuracy in the ground before (a) and after the AOCS calibration (b).

3.4. Calibration of Focal Length and CCD Alignments

Focal length and CCD alignments are determined before the satellite launch, but the information
may change due to the large acceleration during launch. Therefore, in-orbit calibrations should be
carried out for better geometric accuracy.

For the in-orbit calibration of focal length and CCD alignment, we utilized 29 images acquired
over level 0 calibration sites. The roll and pitch angle ranges are −29.1◦~+30.3◦ and −1.1◦~+1.2◦,
respectively. The focal length of the camera was determined to 8.56181 m and the determined alignment
parameters for each CCD sensor are presented in Table 3. Precisions of the calibration for each CCD
line are less than one pixel and less than half-pixels for PAN and the others, respectively. Note that
the across-track is the direction along the CCD lines and the along-track is opposite to the flight
direction as shown in Equation (5). a1 and a2, linearity, and nonlinearity parameters of the pixel
size are determined to be slightly larger than 1.0 and 0.0, respectively, meaning the pixel size is not
exactly regular. Also, small but non-zero b1, b2 values indicate non-straightness of the CCD lines.
Thus we plotted the PAN#1 and BLUE#1 CCD lines to see the patterns (Figure 7). PAN #1 shows that
the non-regularity of the pixel size accumulates up to about 40 pixels in the across-track alignment.
The along-track direction plot shows that the CCD is almost straight with less than half pixels of
discrepancy. In case of BLUE#1, the non-regularity of the pixel is accumulated up to about 10 pixels
and the non-straightness is about a quarter pixels.

Table 3. Determined alignment parameters for each CCD.

Detector
Across-Track (LOD) Along-Track (LOS) RMSE

a0 a1 a2 b0 b1 b2 [pixels]

PAN#1 −12053.14 1.00142 1.26346 × 10−8 0.41 −0.00006 1.88813 × 10−9 1.00
PAN#2 −12053.07 1.00142 1.25988 × 10−8 −340.02 −0.00003 1.96001 × 10−9 0.86
Red#1 −3013.24 1.00126 3.50715 × 10−8 1556.21 0.00023 −1.25847 × 10−8 0.33
Red#2 −3013.16 1.00119 4.51743 × 10−8 1454.06 0.00026 −1.34342 × 10−8 0.33

Green#1 −3014.48 1.00137 3.73793 × 10−8 1058.21 0.00024 −2.70587 × 10−8 0.32
Green#2 −3014.41 1.00130 4.71767 × 10−8 956.04 0.00029 −2.85802 × 10−8 0.32
Blue#1 −3013.74 1.00160 3.68874 × 10−8 −496.87 0.00004 5.24967 × 10−10 0.32
Blue#2 −3013.68 1.00152 4.80332 × 10−8 −599.04 0.00006 1.53648 × 10−9 0.28
NIR#1 −3014.57 1.00130 2.56360 × 10−8 2052.60 0.00022 −1.60160 × 10−8 0.35
NIR#2 −3014.50 1.00125 3.30289 × 10−8 1950.17 0.00037 −2.97782 × 10−8 0.31
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Figure 8 is the plotted horizontal accuracy of GCPs before and after the in-orbit CCD alignment
calibration. We can clearly observe the accuracy improvement from 12.5 m (CE90) in Figure 8a to 8.0 m
(CE90) in Figure 8b.

Figure 7. CCD alignment plots for PAN#1 and BLUE#1.

(a) (b) 

Figure 8. Horizontal accuracy before (a) and after the CCD alignment calibration (b).
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3.5. Merge of Subimages and Band-to-Band Registration

As described in Figure 2, individual CCD lines of Kompsat-3A produce overlapping subimages.
These subimages should be merged side-by-side for a larger swath width, but the process is not simple
because the sensor alignment, ephemeris effects, and terrain elevations should be considered each
time. We applied an automated approach using virtual tie points to estimate the shift and similarity
transformation, as well as to compute compensations according to the satellite’s attitude differences
and terrain elevations due to the gap between the CCD lines [10]. Figure 9 presents an example image
before and after the merging. We can hardly identify the discrepancy by applying the process.

We tested the quality of the merging results to plot the estimated discrepancies for various
acquisition modes of Kompsat-3, as presented in Figure 10. The results showed that the discrepancy
between the sub-images from the PAN sensors was estimated to 0.25 pixels (CE90). In addition,
the merge quality is not affected by the acquisition modes.

 

Figure 9. Comparison between before and after the merge of subimages.

Figure 10. Discrepancy between subimages after the merge for various image acquisition modes.
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Following the subimage merge, we continue the band-to-band registration process. We utilized a
total 30 image strips of various acquisition modes, such as 9 single strips, 6 stereos, 6 standard multi,
5 immediate multi, and 5 wide-along modes. In addition, we used SRTM (shuttle radar topography
mission) V2 for the elevation information. Table 4 shows that the accuracy of the registration between
PAN and MS sensor is lower than a half pixel in RMSE. Figure 11 shows examples of the band-to-band
registration showing the negligible saturation of multispectral colors after the process.

 

Figure 11. Examples of the band-to-band registration results.

3.6. Validation of Positional Accuracy

Completing the geometric calibration, we validated the positional accuracy. To this end we used
325 sets of test images across the world. The validation data were categorized for several acquisition
modes which Kompsat-3A is capable of, as shown in Table 5.

Figure 12 presents the horizontal accuracy for various image acquisition modes in RMSE and
CE90. The strip mode showed the best accuracy among the acquisition modes with 8.9 m (RMSE) and
13.5 m (CE90). The one-pass stereo mode showed about 1 m larger error range than the strip mode.
In the cases of multi (normal) and wide-along modes, the accuracy decreased to 13~14 m (RMSE) and
20~21 m (CE90).

Next, we validated the potential mapping accuracy using GCPs. A total of 16 image strips with
−21.5◦~+29.8◦ of roll angle range were used for the bundle adjustment. Note that these data were not
used for the calibration. Each image was adjusted with 8~9 GCPs and 32~148 check points were used
to validate the accuracy. The resultant errors were 0.91 (0.5 m) and 1.39 pixels (0.8 m) in RSME and
CE90, respectively, as shown in Figure 13.
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Table 5. Test data used for the positional accuracy validation.

Acquisition Mode Number of Data Sets

Strip 94
Multi (Immediate/Normal) 63/63

Wide-Along 63
Along-Track Stereo 56

Figure 12. Horizontal accuracy for various acquisition modes without any GCPs.

Figure 13. Mapping accuracy for 16 independent data.

4. Conclusions

We presented the geometric calibration and validation work of Kompsat-3A that was completed
last year. A set of images over the test sites was taken for two months and was utilized for the

325



Sensors 2016, 16, 1776

work. The works include the AOCS absolute calibration, the calibration of the focal length and CCD
alignments, the merge of CCD lines, the band-to-band registration, and, finally, by the validation of
the positional accuracy.

The successful AOCS’ calibration increased the horizontal accuracy from 2.9 km (CE90) to 13.6 m
and the CCD alignment calibration determined the non-regular and nonlinear CCD distortions,
improving the accuracy from 12.5 m (CE90) to 8.0 m. Based on the calibration results, we could
successfully merge the subimages from each CCD line with a negligible discrepancy of 0.25 pixels
(CE90). Finally, we validated the positional accuracy with completion of the geometric calibrations.
Without any GCP, the popularly used image acquisition mode, the strip mode, showed 13.5 m of
horizontal accuracy, though other modes showed slightly lower accuracies. When GCPs were used for
the bundle adjustment, we could obtain less than 1 m of horizontal accuracy in CE90.
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Abstract: This paper proposes a scalable and multi-platform framework for signal acquisition
and processing, which allows for the generation of acoustic images using planar arrays of MEMS
(Micro-Electro-Mechanical Systems) microphones with low development and deployment costs.
Acoustic characterization of MEMS sensors was performed, and the beam pattern of a module, based
on an 8 × 8 planar array and of several clusters of modules, was obtained. A flexible framework,
formed by an FPGA, an embedded processor, a computer desktop, and a graphic processing unit, was
defined. The processing times of the algorithms used to obtain the acoustic images, including signal
processing and wideband beamforming via FFT, were evaluated in each subsystem of the framework.
Based on this analysis, three frameworks are proposed, defined by the specific subsystems used and
the algorithms shared. Finally, a set of acoustic images obtained from sound reflected from a person
are presented as a case study in the field of biometric identification. These results reveal the feasibility
of the proposed system.

Keywords: MEMS array; scalable system; multi-platform framework; acoustic imaging

1. Introduction

In recent years, techniques for obtaining acoustic images have been developed rapidly. At present,
acoustic images are associated with a wide variety of applications [1], such as non-destructive
testing of materials, medical imaging, underwater imaging, SONAR, geophysical exploration, etc.
These techniques for obtaining acoustic images are based on the RADAR (RAdio Detection and
Ranging) principles, which form an image of an object from the radio waves that have been reflected
on it [2]. RADAR systems require high-cost hardware and their application with people and
specific materials is difficult, due to their low reflectivity. These are the reasons why acoustic
imaging techniques, also called SODAR (Sound Detection and Ranging) techniques, were developed.
These SODAR techniques, mainly based on the use of arrays, represent a simple, low-cost alternative
for obtaining “acoustic images” of an object.

An array is an arranged set of identical sensors, excited in a specific manner [3]. Microphone arrays
are a particular case, used in applications such as speech processing, echo cancellation, localization,
and sound sources separation [4]. By using beamforming techniques [5], the array beam pattern can
be electronically steered to different spatial positions, allowing the discrimination of acoustic sources
based on their position.
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The authors of this paper have experience in the design [6] and development of acoustic imaging
systems, based in acoustic arrays, used in many different fields, such as detection and tracking
systems [7,8], Ambient Assisted Living [9], or biometric identification systems [10–12]. The arrays
used were ULA (Uniform Linear Array), formed by acoustic sensors distributed uniformly along a line.
These arrays are simple, but limited to one dimension (azimuth or elevation) to estimate the spatial
position of the sound source. In order to obtain spatial information in two dimensions, it is necessary
to work with planar arrays with sensors distributed on a surface.

Working with planar arrays leads to an increase in both system complexity and space required by
the acoustic sensors and the associated hardware, since the extension from a 1D array of N element,
to a 2D array of N × N elements increases the number of the required channels in an order of N2.
These factors are accentuated when the number of sensors to work with is large. In the design of a
system for acquiring and processing signals from an acoustic array, it should be noted that costs and
complexity are directly related to the number of channels/sensors of the system. A typical system
to obtain acoustic images has four basic elements: sensors, signal conditioners, acquisition devices
and signal processor. For the first three elements, system cost increases linearly with the number of
channels, as each sensor needs a signal conditioner and an acquisition device.

Digital MEMS (Micro-Electro-Mechanical System) microphones include a microphone, a signal
conditioner, and an acquisition device incorporated in the chip itself. For this reason, an acquisition
and processing system based on MEMS microphone arrays is reduced to two basic elements:
MEMS microphone and a processing system. This processing system is usually based on an FPGA
(Field Programmable Gate Array), as it is a digital system with multiple I/O nodes. The integration of
the microphone preamplifier and the ADC in a single chip significantly reduces costs, if compared
with solutions based on analog microphones. This is one of the main reasons why MEMS microphones
are used in acoustic arrays with a large number of channels. However, cost reduction is not the only
advantage of working with MEMS microphones. This technology also reduces the space occupied by
the system, which makes it feasible to build arrays with hundreds or even thousands of sensors.

Arrays of MEMS microphones are specially designed for acoustic source localization [13–15];
however, they are also used in other applications such as DOA (direction of arrival) estimation for
vehicles in motion [16], speech processing [17,18], turbulence measurements [19], identifying geometric
dimensions and internal defects of concrete structures [20], or acoustic imaging [21–23]. The system
presented in this paper has two main characteristics/novelties: (i) it is scalable using several subarrays
or modules, increasing the number of sensors used, and reconfigurable in the position and orientation
of the modules; and (ii) its multi-platform framework is reconfigurable. These characteristics made
our system flexible and suitable for many different applications. Many of the systems found on the
literature show fixed solutions to particular problems, where the hardware is not scalable or the
software is not reconfigurable as in the system that is proposed in this paper. The system shown in [22]
is reconfigurable, i.e., in the position of its modules, but its acquisition framework, based on an USB
port, limits the maximum number of sensors that could be added to the system. For its part, the system
shown by Turqueti [16] is scalable; it allows multiple arrays to be aggregated, as the system detailed in
this paper. However, our system has two advantages in comparison with Turqueti’s system: (i) it can
be a standalone system, due to the use of a myRIO platform (embedded hardware with a FPGA and
an ARM processor) as an acquisition and data processing system; and (ii) it allows for emitting sounds,
making it an active system.

This paper presents in detail the framework of a system that acquires and processes acoustic
images. This system is based on a multi-platform framework, where each processing task can be
interchanged between the different levels of the framework. Thus, the system can be adapted to
different cost and mobility scenarios by means of its reconfigurable framework. The paper also
shows the evaluation of processing times of the algorithms involved in obtaining an acoustic image,
including signal processing and wideband beamforming via FFT, in each subsystem of the framework.
The hardware of the system is based on modules of 8 × 8 square arrays of MEMS microphones,
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allowing the system to be scalable, by means of the cluster of several modules. This paper also shows
the acoustic characterization of the MEMS microphones of the square array, as well as a comparative
analysis of the theoretical and measured beam patterns of one of the array modules and of some
clusters formed by several array modules.

Section 2 describes the hardware setup of the system and the implemented software algorithms,
both defined on the basis of the requirements stated. Section 3 presents the planar array designed for
the system: it introduces MEMS microphones technology and characterizes the frequency response of
the microphones used, and it characterizes the array module acoustically, obtaining its beam pattern
and also the beam pattern of some clusters of modules. A reconfigurable acquisition and processing
framework is proposed in Section 4, and its performance is analyzed for several scenarios. Section 5
presents a case study using the system for biometric identification tasks. Finally, Section 6 contains the
conclusions and future research lines.

2. System Description

In this section, the requirements for the implementation of the acquisition and processing
system for a 2D array, based on MEMS sensors, are analyzed. Then, the hardware chosen for
the implementation is defined, and the processing algorithms to obtain an acoustic image using
beamforming techniques are explained.

2.1. Requirements

The size of an acquisition and processing system for an array depends on the number of sensors
and the set of processing algorithms. Thus, it is necessary to use a very low-cost technology per channel,
in order to build a viable high dimensional array. Using MEMS microphones allows for a cost reduction
of two main elements of the system: sensors and acquisition systems. Digital MEMS microphones need
only one digital input to be read, although the received digital data must be processed to obtain the
waveform signal. Most acquisition systems are based on FPGAs, which have a large number of digital
inputs, between 40 and 1400 depending on the model; so, one FPGA can acquire as much channels as
the number of digital inputs it contains. Besides, FPGA processing capacity allows the system to carry
out simple operations with the acquired signals without increasing costs. The processing capacity of
the FPGA is not enough to obtain the final acoustic image so it is necessary that another processor with
higher capacity be joined to the FPGA.

The system must be modular and scalable. Thus, for applications that require a large number
of channels, it would only be necessary to add modules of lower dimension instead of designing a
new system with higher capacity. In this way, reusing arrays and their processing systems reduces
costs. Extra arrays, with their acquisition subsystem, can always be added in order to build higher
dimensional systems. The array modules can increase the dimension of the array, but they can also
form different kinds of module configurations in order to obtain specific beam patterns, improving the
performance of the array, and thus of the complete system. The use of modular subsystems implies the
use of a central unit that joins the data from all the modules and controls them.

Finally, the tools and programming languages to be used should also be defined. As this system
has different processing platforms, one solution can be the use of a specific language for each platform,
but the use of a common programming language on all platforms is desirable.

2.2. Hardware Setup

2.2.1. MEMS Array

The acoustic images acquisition system shown in this paper is based on a Uniform Planar Array
(UPA) of MEMS microphones. This array, which has been entirely developed by the authors, is a square
array of 64 (8 × 8) MEMS microphones that are spaced uniformly, every 2.125 cm, in a rectangular
Printed Circuit Board (PCB), as shown in Figure 1. As can also be observed in Figure 1, the PCB where
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the MEMS microphones are placed has square gaps between the acoustic sensors, in order to make the
array as light and portable as possible.

 

 

(a) (b)

Figure 1. System microphone array: (a) sensor spacing; (b) system array.

This array was designed to work in an acoustic frequency range between 4 and 16 kHz.
The 2.125 cm spacing corresponds to λ/2 for the 8 kHz frequency. This spacing allows a good resolution
for low frequencies, while avoiding grating lobes for high frequencies in the angular exploration zone
of interest [10].

For the implementation of the array, MP34DT01 microphones of STMicroelectronics were chosen.
They are digital MEMS microphones with a PDM (Pulse Density Modulation) interface and with
a one-bit digital signal output, obtained using a high sampling rate (1 MHz to 3.25 MHz) [24–26].
The main features of these microphones are: low-power, omnidirectional response, 63 dB SNR, high
sensitivity (−26 dB FS) and an almost flat frequency response (±6 dB in the range of 20 Hz to 20 kHz).

2.2.2. Processing System

Taken into account the previous requirements, the hardware used to implement the system was
selected. The design of a specific hardware was rejected due to the high cost of the design and the
required time, so a search for a commercial solution was done.

MyRIO platform [27] has been selected as the base unit for this system. This platform belongs to
the Reconfigurable Input-Output (RIO) family of devices from National Instruments that is oriented to
sensors with nonstandard acquisition procedures, allowing low-level programming of the acquisition
routines. Specifically, myRIO platform is an embedded hardware based on a Xilinx Zynq 7010 chip,
which incorporates a FPGA and a dual-core ARM® Cortex™-A9 processor. The FPGA has 40 lines of
digital input/output, 32 of which are used as the connection interface with the 64 MEMS microphones
of the array, multiplexing two microphones in each I/O line; while the other eight lines are used to
clock generation and synchronization. The ARM processor is equipped with 256 MB of DDR3 RAM,
512 MB of built-in storage space, USB Host port, and Wi-Fi interface. All this hardware is enclosed in a
small box (136 × 89 × 25 mm) that costs about $1,000.

The embedded processor included in myRIO is capable of running all the software algorithms
to generate acoustic images, so it can be used as a standalone array module formed by a myRIO
connected to a MEMS array board as shown in Figure 2. The acoustic images can be stored in the
internal storage of myRIO or in an external disk connected through the USB port.
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Figure 2. Array module with myRIO and MEMS array board.

Although myRIO can work as a standalone system, the lack of display means that it is
usually controlled from a PC connected using a Wi-Fi interface. In a global hardware setup,
as shown in Figure 3, the system includes a PC and one or more array modules. The PC performs
three main functions:

• As user interface, the PC allows changing the system parameters and visualizing the acoustic images.
• As processing unit, the processors inside the PC could be used to execute the algorithms in order

to obtain the acoustic images faster. Two processors are available in the PC: a general-purpose PC
processor and a Graphical Processing Unit (GPU) included in the graphics card.

• As a control unit, a single PC can manage several myRIO platforms, each one associated to an
array module. This feature allows clustering several modules for a proper operation of the system,
which are synchronized between them using their I/O lines, where one myRIO is the master and
the others are slaves.

 

Figure 3. Global hardware setup.
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2.3. Software Algorithms

The algorithms implemented in the system, shown in Figure 4, can be divided into three blocks:
MEMS acquisition, signal processing, and image generation.

 

Figure 4. Software algorithms diagram.

The programming language used is LabVIEW 2015, along with its Real Time, FPGA, and GPU
modules, which allows developing applications on different hardware platforms like those used in the
system: FPGA, Embedded Processor (EP), PC, and GPU. In addition, most of the developed algorithms
can run on any of the platforms without reprogramming.

In the acquisition block, each MEMS microphone with a PDM interface, which internally
incorporates a one-bit sigma-delta converter with a sampling frequency of 2 MHz, performs signal
acquisition. So, each acquired signal is coded with only one bit per sample. This block is implemented
in the FPGA, generating a common clock signal for all MEMS, and reading simultaneously 64 sensors
signals via the digital inputs of the FPGA. These signals are stored in 64-bit binary words, where each
bit stores the signal of each MEMS. Thus, the size of the data is minimal and the transfer rate is high.

In the signal processing block two routines are implemented: (i) Deinterlacing: Through this
process, 64 one-bit signals are extracted from each binary word and (ii) Decimate & Filtering: Applying
downsampling techniques, based on decimation and filtering [25], 64 independent signals are obtained
and the sampling frequency is reduced from 2 MHz to 50 kHz.

Finally, in the image generation block, based on wideband beamforming, a set of N × N steering
directions are defined, and the beam former output are assessed for each of these steering directions.
Wideband beamforming [3] computes the FFT of the MEMS signals xi[n]; multiplies, element by
element, each FFT Xi[k] by a phase vector, that depends on the steering direction and the sensor
position; and finally takes the sum of the FFT shifted in phase, as shown in Figure 5. The images
generated are then displayed and stored in the system.

Figure 5. Wideband beamforming.
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3. MEMS Array Description and Characterization

The acronym MEMS refers to mechanical systems with a dimension smaller than 1 mm [28]
manufactured with tools and technology arising from the integrated circuits (ICs) field. These systems
are mainly used for the miniaturization of mechanical sensors. Their small size makes interconnection
with other discrete components more difficult. Therefore, when ordered, they are supplied as part of
an encapsulated micro-mechanical system composed by a sensor, a signal conditioning circuit and an
electric interface [29].

3.1. MEMS Microphones Characterization

An analysis of the frequency response of all MEMS microphones included in the array was
performed. A sinusoidal 4 ms pulse, with a frequency changing between 2 and 18 kHz, was generated
using a reference loudspeaker. Previously, the frequency response of the reference loudspeaker was
calibrated using a measurement microphone (Behringer ECM 8000) and placing it in the same position
as the array. Figure 6 shows the arrangement of the components used to perform this analysis.
All measurements were performed in an anechoic chamber.

 

Figure 6. Arrangement of the components in the anechoic chamber.

The frequency response of each MEMS sensor was obtained and normalized according to the
loudspeaker’s response. Then, the average of the frequency responses was assessed. Figure 6 shows
all the responses. It can be observed that the averaged frequency response is essentially flat, with
a slight increase at high frequencies. This averaged response is bounded within a range of ±3 dB.
Figure 7 also shows that the frequency response of MEMS sensors varies in a range of ±2 dB around
the averaged value.

333



Sensors 2016, 16, 1671

 
Figure 7. Frequency responses and averaged response of the MEMS microphones.

3.2. MEMS Array Characterization

3.2.1. Acoustic Characterization of an Array Module

Figure 8 shows some theoretical beam patterns of the UPA system, which are pointed towards
several steering angles ([azimuth, elevation]): [−15◦, −15◦], [0◦, 0◦] and [5◦, 10◦], for several working
frequencies: 4 kHz, 8 kHz and 16 kHz. It can be observed that: (i) as the frequency increases, the array
angular resolution also increases, because the mainlobe beamwidth is reduced; and (ii) the sidelobe
level is constant –at −13 dB for all frequencies. Figure 8b,c show that, for high frequencies, there are
not grating lobes in the angular exploration zone of interest.

 
(a) (b) (c) 

Figure 8. Theoretical beam patterns for different frequencies and pointing to different steering angles
[azimuth, elevation]: (a) 4 kHz [−15◦, −15◦]; (b) 8 kHz and [0◦, 0◦]; and (c) 16 kHz and [5◦, 10◦].

For the acoustic characterization of the MEMS array, a reference loudspeaker placed in different
positions was employed to obtain its beam patterns. Beamforming was carried out with a wideband
FFT algorithm, focused on the loudspeaker position. Figure 9 shows some of these beam patterns.

The measured beam patterns are very similar to the theoretical ones, which assume that the
acoustic sensors are omnidirectional and paired in phases. Nevertheless, a more detailed analysis of
the measured beam patterns shows: (i) there are more sidelobes with a level higher than −20 dB; and
(ii) there is a very small displacement of the sidelobes, which are closer. These effects are because the
gain of each microphone is slightly different for each frequency, as shown in Figure 7. This is the same
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effect as applying windowing techniques to the beamforming weight vector, which modifies the level
and the position of the sidelobes. Thus, as the variations of the measured beam pattern, with respect to
the theoretical one, are limited, it is not necessary to apply calibration techniques to the array.

   

(a) (b) (c) 

Figure 9. Measured beam patterns for different frequencies and pointing to different steering angles
[azimuth, elevation]: (a) 4 kHz and [−15◦, −15◦]; (b) 8 kHz and [0◦, 0◦]; and (c) 16 kHz and [5◦, 10◦].

3.2.2. Acoustic Characterization of Array Clusters

The proposed system, characterized by its modularity and scalability, can group together multiple
modules with 64 sensors to build clusters with a very large number of sensors, where their geometry
and spatial properties could be adapted to specific application requirements.

As an example, the acoustic characterizations of three clusters geometries are shown:

• A row cluster, to increase the directivity in one direction.
• A square cluster, to increase directivity in two orthogonal directions.
• A star cluster, to implement special radiation beam patterns.

Figure 10 shows the implemented cluster, the theoretical beam pattern, steered towards the
broadside for 8 kHz, and the measured beam pattern.

 

 

 

(a)

 
(b)

Figure 10. Cont.
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(c)

Figure 10. Cluster (col. 1), theoretical (col. 2) and measured beampatterns (col. 3) for 8 kHz, pointed to
the broadside. Cluster geometries: row (a); square (b); and star (c).

The row cluster shows that the beamwidth in azimuth has been reduced by a factor of 3, increasing
the angular resolution of the image in that direction. In the square cluster, the beamwidth in azimuth
and elevation is halved. Finally, in the star cluster, a radial symmetrical pattern is achieved with a
similar beamwidth in multiple directions.

4. Multiplatform Processing Framework

On the basis of the global hardware setup presented in Section 2, a multiplatform framework with
four processing levels, each one implemented over a hardware platform, was defined. These processing
levels are:

• Level 1 (L1) corresponds to the FPGA based on its capacity to carry out simple tasks of filtering
and decimation. The parallelization degree is maximum and limited by the number of the FPGA
resources (Look Up Tables, multipliers, DSP units, RAMs, etc.).

• Level 2 (L2) is based on an Embedded Processor (EP), such as an ARM processor that picks up
the FPGA signals and carries out the first processing stages. It has limited memory as well as
processing and storage capacity.

• Level 3 (L3) is based on a PC processor, such as an Intel Core i5/i7 with two to four cores. It is in
charge of the main processing of the application, with medium cost and consumption. It has a
high processing capacity, a great amount of memory (up to 64 Gb) and storage capacity based
on a disk.

• Level 4 (L4) is formed by coprocessors, which can carry out massive FFT and lineal algebra
operations, such as a Graphical Processing Unit (GPU), and they have from 200 to 1200 cores.

Processing time, parallelization degree and required memory must be analyzed for all the
algorithms, needed to obtain an acoustic image, described in Section 2. The objective of this analysis
is to determine the platforms/levels where these algorithms can be implemented, and the optimal
distribution between the available algorithms and platforms.

The time required to transfer data between levels should also be taken into account. This transfer
time, in many situations, can be similar to, or even greater than the algorithm processing time. Ideally,
these transfers should be minimized, in order to process data on the same level and work with a
one-way processing flow, i.e., the FPGA sends data to the EP, and it sends its data to the PC. When
one level is used as a coprocessor, bidirectional flows are established, i.e., between the EP and the PC
processor, through a TCP-IP interface, or between the PC processor and the GPU, using a PCIe interface.

4.1. Analysis Settings

In order to analyze the performance of the algorithms in each level, a work scheme, based on
an active acoustic system, was defined. This system sends a multifrequency acoustic signal that
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reaches the person under test and then, the reflected signal is collected by the MEMS array. Finally,
a multichannel signal is processed following the block diagram shown in Figure 11.

 

Figure 11. Processing block diagram.

There are hardware constrains that make the implementation of some algorithms in every
processing level unfeasible, i.e., MEMS acquisition can only be carried out in the FPGA, or image
storage cannot be executed either in the FPGA or in the GPU. Table 1 shows the main algorithms used
and the processing levels where they could be implemented.

Table 1. Algorithms vs. processing level.

Algorithms L1 FPGA L2 EP L3 PC L4 GPU

MEMS acquisition •
Deinterlacing • • •

Decimation and filtering • • •
Wideband beamforming • • •

Image storage • •

The performance measurements have been carried out using the global hardware setup, with one
array module, controlled by a PC. The selected PC is based on an i5 processor with four cores and 32 GB
RAM, including a NVIDIA GTX 660 card with 960 cores. As algorithm parameters, an acquisition time
of 30 ms, 256-point FFTs, and a grid of 40 × 40 steering directions have been assumed.

4.2. Performance Analysis

4.2.1. Signal Processing

The time required to implement each of the algorithms included in the signal processing on the
different levels are presented in Table 2.

Table 2. Processing and transfer times 1 for the signal processing tasks.

Algorithms L1 FPGA L2 EP L3 PC L4 GPU

Processing time: Deinterlacing 0 270.3 22.4 -
Processing time: Decimation/Filtering 0 354.1 9.7 -

Transfer time: EP→PC 113.0
Total 624.4 145.1

1 Time is expressed in ms.

Level 1 allows the implementation of all these algorithms using FPGA hardware resources,
simultaneously with capture and signal processing without consuming additional processing time.
Analyzing data from Levels 2 and 3, it can be observed that PC processing time is about 20 times lower
than the time required by the EP. The times on Level 3 can be increased by transferring time from the
EP to the PC for further processing. This transfer time was measured and its value is about 113 ms.
Level 4, based on GPUs, was discarded because the algorithms required to perform deinterlacing and
decimation/filtering are not available for this platform in LabVIEW.
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4.2.2. Image Generation

Table 3 shows the required processing times related with wideband beamforming and transfer
times between the PC and the GPU, for the generation of an acoustic image.

Table 3. Processing and transfer times 1 for wideband beamforming.

Algorithms L1 FPGA L2 EP L3 PC L4 GPU

Processing time: Wideband beamforming - 257.3 18.5 25.8
Transfer time: PC→GPU→PC 7.6

Total 257.3 18.5 33.4
1 Time is expressed in ms.

Level 1 is discarded due to the fact that (i) the FPGA included in myRIO does not have enough
memory to generate and store images; and (ii) the implementation of the beamforming algorithms
requires FPGAs with a large number of slices which makes it more costly. Processing times on Level 2
are the longest and the memory capacity of the EP is limited, therefore, this level is also discarded.

In order to compare Levels 3 and 4, transfer times between the PC and the GPU should be
considered. The results in Table 3 show that it is preferable to perform the beamforming on the PC.
These results might seem contradictory, since the processing power of the GPU is higher than the PC’s.
This is due to the following: (i) for 64 sensors, the GPU capacity of parallel processing is not totally
used; and (ii) libraries included in LabVIEW-GPU are limited, which forces multiple data transfers
between PC and GPU memories. The implementation of the beamforming algorithm in native code
for the GPU and its subsequent invocation from LabVIEW would significantly reduce the overall
processing time.

If the number of sensors of the system increases, by adding multiple modules of 64 sensors, the
performed operations increase proportionately, taking advantage of the whole capacity of GPU parallel
processing. In Table 4, the processing and transfer times versus the number of sensors is analyzed.
If the number of sensors is larger than 128, GPU performance improves.

Table 4. Processing and transfer times 1 vs. number of sensors in the system.

# Sensors

PC GPU

Processing Time:
Wideband BF 2

Processing Time:
Wideband BF

Transfer Time:
PC↔GPU

Total

64 18.5 25.8 7.6 33.4
128 49.1 40.7 8.1 48.8
256 100.2 72.9 8.7 81.6
512 198.6 138.8 11.2 150.0
1024 394.3 267.8 12.5 280.3

1 Time is expressed in ms; 2 BF: beamforming.

Image storage can be implemented in Levels 2 and 3 because embedded microprocessors and
PCs have the capacity to store data. Embedded systems incorporate a low capacity internal disk and
can use external high-capacity USB drives/disks. In the case of PCs, they include both high-capacity
internal and external hard drives. As storage times are very dependent of the type and model of the
used media, they were discarded for the analysis.

4.3. Framework Proposals

Depending on the level where the signal processing algorithm runs, there are three
implementation options. In turn, for each of these possibilities, there are up to three options depending
on where the wideband beamforming algorithm is implemented. Table 5 summarizes the different
options to implement the acoustic imaging algorithms with their corresponding processing and transfer
times for all feasible processing levels.
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Table 5. Processing and transfer times 1 for acoustic imaging algorithms.

Algorithms Processing Level
Processing time: L1: FPGA L2: EP L3: PC 
Signal processing 0 624.4 32.1 

 L2: EP L3: PC L4: GPU L2: EP L3: PC L4: GPU L3: PC L4: GPU
Wideband BF 2 257.3 18.5 25.8 257.3 18.5 25.8 18.5 25.8 

Transfer time: EP PC - 113.0 113.0 - 113.0 113.0 113.0 113.0 
PC GPU - - 7.6 - - 7.6 - 7.6 

Total 257.3 131.5 146.4 881.7 755.9 770.8 163.6 178.5 
1 Time is expressed in ms; 2 BF: Beamforming.

The frameworks that are based on the implementation of the signal processing algorithms
through an embedded processor or a PC (grey columns) are discarded, as the FPGA allows the
parallel implementation of the capture and signal processing. Thus, only three framework proposals
(white columns) have been considered, associating each one to a particular use:

(1) Embedded system: The whole processing takes place in the embedded processor/FPGA without
a PC, as shown in Figure 12a. This framework is optimal for applications that require portable
systems and where the processing speed is not critical.

(2) PC system: The processing is shared between the FPGA and the PC. The embedded processor
is used to control and transfer data between the PC and FPGA, as shown in Figure 12b.
This framework presents the lowest processing time using 64 sensors. It is optimal for systems
that require a short response time and/or a small number of sensors.

(3) PC system with GPU: The algorithms are implemented in the same way as in the previous
framework excluding beamforming, which is implemented on the GPU, as shown in Figure 12c.
This framework improves processing time as the number of sensors increases. It is the most
versatile framework and it is optimal for systems that require a large number of sensors.

 

 

(a) (b)

 

(c)

Figure 12. Embedded system (a); PC system (b); and PC system with GPU framework (c).
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5. Case Study: Biometric Identification of People

The proposed system has multiple applications: localization and characterization of noise or
vibration sources, spatial filtering and elimination of acoustic interference, etc. This case study is
focused on biometric identification, as an extension of the previous system developed by the authors
with a linear array of analog microphones [10]. This system could be used as an access control to enter
in a medium-sized research department, where only several subjects have authorized access.

The biometric identification system is based on placing the person in front of the array and sending
a multifrequency signal that is reflected on the person to be identified. The person and the system
are placed inside an anechoic chamber in order to simplify the processing, but the chamber could be
avoided if clutter removal techniques are used. The reflected signal is captured by the microphone
array, obtaining several acoustic images for different ranges. The acoustic images are pre-processed to
extract the information needed for further biometric identification. Figure 13 shows the image of a
person under testing.

 

Figure 13. Example of a person under testing.

Figure 14 shows an example of some acoustic images obtained for a range of 2 m with a ±22◦

angle in the azimuth coordinate and ±15◦ angle in the elevation. It is observed that if the frequency
increases, the spatial resolution improves and the main parts of the body could be discerned. The use
of parameter extraction algorithms will improve the classification, as shown in the authors’ previous
work, using 1D microphone arrays [12].

 

Figure 14. Acoustic images of a person with increasing frequencies, from left to right, at a
constant range.
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The range information can also be obtained from the captured images. Figure 15 shows images
for a constant frequency and an elevation of 5◦, 0◦ and −10◦, with 0.5 m range intervals and a ±22◦

azimuth. Figure 15b shows that the torso is closer to the MEMS array than the arms. These results
show that the designed system allows for the acquisition of 3D acoustic images.

  

(a) (b) (c) 

Figure 15. Acoustic images of a person at different elevations: (a) 5◦; (b) 0◦; and (c) −10◦ with a
constant frequency.

6. Conclusions

A modular, scalable, multiplatform, and low-cost acquisition and processing system was designed
to obtain acoustic 3D images. This system is based on a module with a myRIO platform and a planar
array that consists of 64 MEMS microphones uniformly distributed on an 8 × 8 grid. The system can
work with only one module or with a cluster of several of them, using the same PC unit. The system
can be adapted to different cost and mobility scenarios, by means of its reconfigurable multi-platform
framework, where each processing tasks can be interchanged between its different levels.

A digital MEMS microphone was selected as the acoustic sensor. This microphone allows the
integration of a large number of sensors on a small sized board at low cost. An analysis of the frequency
responses of these 64 MEMS microphones was carried out, obtaining: (i) a flat average response in the
acoustic band, with a variation of ±3 dB; and (ii) dispersion between the responses lower than ±2 dB.
The beampatterns of an array module and of different clusters of modules were also characterized,
verifying that they indeed fit the theoretical models, so it is not necessary to calibrate the array.

Finally, a multiplatform framework and the necessary algorithms to obtain acoustic images from
the data captured by each microphone were jointly defined. The processing time of the algorithms
was evaluated on each platform. Based on these results, three different frameworks were defined for
specific uses.

Thus, a versatile system for different applications, due to its modularity, scalability and
reconfigurability, was designed to obtain acoustic images. Currently, the authors are using the system
in the field of biometric identification, working on feature extraction and person identification from
acoustic images.
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Abbreviations

The following abbreviations are used in this manuscript:

MEMS Micro-Electro-Mechanical Systems
FPGA Field Programmable Gate Array
FFT Fast Fourier Transform
ULA Uniform Linear Array
ADC Analog-Digital Converter
DOA Direction of Arrival
IC Integrated Circuit
SNR Signal to Noise Ratio
PDM Pulse Density Modulation
I2S Integrated Interchip Sound
PCM Pulse Code Modulation
UPA Uniform Planar Array
PCB Printed Circuit Board
GPU Graphical Processing Unit
RIO Reconfigurable I/O
PC Personal Computer
OS Operative System
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Abstract: A 1 ˆ 16 capacitive micro-machined ultrasonic transducer linear array was designed,
fabricated, and tested for underwater imaging in the low frequency range. The linear array was
fabricated using Si-SOI bonding techniques. Underwater transmission performance was tested
in a water tank, and the array has a resonant frequency of 700 kHz, with pressure amplitude
182 dB (μPa¨ m{V) at 1 m. The ´3 dB main beam width of the designed dense linear array is
approximately 5 degrees. Synthetic aperture focusing technique was applied to improve the resolution
of reconstructed images, with promising results. Thus, the proposed array was shown to be suitable
for underwater imaging applications.

Keywords: capacitive micro-machined ultrasonic transducer linear array; transmission performance;
synthetic aperture focusing technique; underwater imaging

1. Introduction

Ultrasound imaging has played an important role in various areas, such as medical diagnosis,
medical treatment, nondestructive testing, and ultrasound microscopy [1–3]. The ultrasonic transducer
is the core component of ultrasound imaging, and currently piezoelectric micro-machined ultrasonic
transducers (PMUTs) based on the piezoelectric effect are widely used [4,5]. However, PMUT
performance in underwater and medical applications is limited by material properties and impedance
matching issues [2,6,7]. Capacitive micro-machined ultrasonic transducers (CMUTs) have many
advantages over conventional PMUTs, such as wide bandwidth, high mechanical-electrical conversion
efficiency, and ease of integration with electronic circuits to enhance signal-to-noise ratio [2,8–12].
Furthermore, CMUT membranes have low mechanical impedance, which makes them match well with
air and other fluid media, and are suitable for manufacturing in large arrays [2,6]. These characteristics
promote CMUTs as the development direction for next generation ultrasonic transducers.

Much research has been conducted regarding CMUT structural design, fabrication methods,
and implementations. However, most studies have considered high frequency CMUTs (ě3 MHz) for
medical imaging applications, with few studies on underwater imaging applications, which require
low frequency. Roh et al. used finite element models to design a 1dimensional (1D) CMUT array robust
to crosstalk [13]. ChiaHung et al. [14] designed and fabricated an underwater CMUT using full surface
micro-machining technique. The transducer operated underwater at approximately 2 MHz with a
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detection range of 273 mm. Cheng et al. [15] realized B-mode imaging of a metal wire phantom using a
21-element 1-D array with 3.8 MHz central frequency and fractional bandwidth 116% in water, which
limited the detection range. Doody et al. [16] designed a CMUT-in-CMOS array, which achieved central
frequency 3.5 MHz, fractional bandwidth 32%–44%, and pressure amplitude 181–184 dB (μPa¨ m{V) at
15 mm when operated in a water tank. In this work, we designed and fabricated a 1 ˆ 16 CMUT linear
array with resonance frequency 700 kHz, and pressure amplitude 182 dB (μPa¨ m{V) at 1 m for use in
underwater imaging.

2. Structural Design

CMUT array elements are composed of multiple sensitive cells connected in parallel. Each cell is
composed of electrodes, vibrating membrane, vacuum cavity, insulating layer, and silicon substrate,
as shown cross-sectional in Figure 1. A single CMUT array element often cannot meet imaging
requirements with its low lateral resolution, low transmission power, and poor directivity. Therefore, a
CMUT array composed of N identical elements is used to improve the imaging resolution.

Top Electrode

Membrance

Bottom Electrode

Substrate

SiO2

Cavity Support

Insulation Layer 1

Insulation Layer 2

Rm

t g
t m

Figure 1. The structure of a cell.

The natural frequency is one of important performance parameters, whether operating in emission
or receiving mode. When CMUTs work in the liquid, the resonant frequency of circular membrane fr

is [17,18]:

fr “

0.469tm

R2
m

d
E

ρ
`
1 ´ σ2

˘
d

1 ` 0.67
ρl Rm

ρtm

(1)

where E, ρ, ρl , σ, tm, Rm represent the Young’s modulus, the density of membrane, the density of liquid,
the Poisson’s ratio, the thickness of the membrane, and the radius of the membrane, respectively.
High-resistivity silicon was chosen as the membrane material. From previous finite element software
ANSYS analysis [19,20], following Equation (1), tm “ 3.5 μm and Rm “ 90 μm.

The emission performance of ultrasonic transducers is closely linked with its structural parameters.
From previous studies [21], several directivity functions were deduced by Huygens’ Principle to guide
the array structure design, and the resultant 1 ˆ 16 CMUT structure is shown in Figure 2.

Si-SOI low temperature wafer bonding technology [22,23] was used to fabricate the CMUT linear
array (see Figure 3). The silicon wafer was first thermally oxidized, then part-etched to form cavities
(tg = 0.8 μm) and an insulation layer (0.15 μm) (Figure 3a). The silicon wafer and SOI wafer were
bonded using low temperature bonding (Figure 3b), and the silicon substrate and buried oxide layer
of the SOI wafer was eliminated (Figure 3c) to form the silicon membrane (tm = 3.5 μm). Finally, an
isolation channel was formed using photolithography and dry etching, and low pressure chemical
vapor deposition was used to form a 0.15 μm insulation layer to prevent conductive contact between
the top electrodes and the vibration membrane, and evaporation methods were used to form the
top electrodes with Al. To ensure fine conductive contact between the bottom electrode and silicon
substrate, the other side of the Si wafer had phosphorus ions implanted and metal Al deposited
(Figure 3d).
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Figure 2. The resultant 1 ˆ 16 CMUT array structure.
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Figure 3. The main fabrication flow-charts. (a) part etched to form cavities; (b) bonding; (c) form
membrane; (d) form isolation channel, insulation layer and electrodes.

3. Underwater Experimental

The CMUT resonant frequency was found as shown in Figure 4. The linear array was encapsulated
for insulation from the water [21], and a precision impedance analyzer (Agilent 4294A, Agilent
Technologies, Santa Clara, CA, United States) was used to measure the array impedance in water
(underwater penetration 0.45 m, water temperature 13 ˝C). The CMUT resonant frequency = 700 kHz,
and electric conductance = 222.35 mS. The CMUT transmission characteristics (transmitting voltage
response and directivity) were analyzed over the frequency range of interest (100–1000 kHz).

The CMUT transmitting voltage response was measured as shown in Figure 5. A CMUT
linear array (transmitter) and a standard hydrophone (receiver) were placed face to face, 1 m apart.
The received electrical signal was displayed on an oscilloscope (Agilent 54624A), with direct current
(DC) bias 20 V. The CMUT array was driven with a 5 cycle burst signal incorporating 100–1000 kHz
and amplitude of 20 Vpp.

The transmitting voltage response can be expressed as [24]:

Sv “ 20lg
us¨ l
u f

´ Mo (2)

where l is the distance between the two transducers, u f is the applied driving voltage of the transmitting
CMUT, us is the collected voltage standard hydrophone, and Mo is the receiving sensitivity of the
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hydrophone, the CMUT transmitting voltage response was obtained at different frequencies, as shown
Figure 5b. The 1 ˆ 16 CMUT linear array has resonant frequency 700 kHz, and pressure amplitude of
182 dB (μPa¨ m{V) at 1 m for underwater applications.
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Figure 4. Resonant frequency.
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Figure 5. (a) Schematic diagram of the transmitting voltage response experiment; (b) Transmitting response.

The sector scanning experimental setup is shown in Figure 6. The operating conditions of the
CMUT array were the same as previously, except it was now excited with a burst signal at 700 kHz for
two cycles. The receiving and transmitting array was fixed on a precision rotary table and rotated to
implement sector scanning for two-obstacle imaging.

Precision
Rotary
Table

CMUT

Obstacles

 

Figure 6. Sector scanning configuration.

Figure 7 shows the S-scan results and corresponding directivity diagrams for four transmitting
conditions Figure 7b,d,f,h, where N is the number of array elements, d is the element spacing
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between array elements, and λ is the wavelength. The ´3 dB main beam width of Figure 7b,d,f,h are
approximately 21˝, 6.4˝, 8˝, and 5˝, respectively.
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Figure 7. Sector scanning results: (a) N = 5, d = 0.5¨ λ; (b) directivity of diagram (a); (c) N = 5, d = 1.5¨ λ;
(d) directivity of diagram (c); (e) N = 13, d = 0.5¨ λ; (f) directivity of diagram (e); (g) N = 16, d = 0.5¨ λ;
(h) directivity of diagram (g).
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(1) For the fixed array element number (Figure 7a,c, or Figure 7b,d), the main lobe becomes sharper
as d increases. However, when d > λ [19], strong grating lobes emerge, causing interference in the
ultrasound image.

(2) For fixed array length (Figure 7c,e, or Figure 7d,f), the directivity of a dense array is better than
that of a sparse array.

(3) For fixed element spacing (Figure 7a,e,g or Figure 7b,f,g), directivity improves as N increases.
The wider main lobe also make severe interference.

Thus, N = 16, d = 0.5λ was selected as the transmission mode for subsequent underwater imaging.

4. Imaging

To reduce the influence of side lobes and improve the lateral resolution of reconstructed CMUT
underwater images, the synthetic aperture focusing technique (SAFT) [25–27], an optimization method
involving B-scan implemented by delay-and-sum on the received A-scan signals, was applied [28,29].

Figure 8 shows the SAFT experimental setup. The operating conditions of the CMUT linear array
were the same as for Section 3. The CMUT array was fixed on the electronic control guideway
and moved horizontally to implement linear scanning for two-obstacle imaging. 16 elements
were simultaneously excited. Figure 9 shows the SAFT reconstructed image (Figure 9a,b) is a
significant improvement over traditional B-scan (Figure 9c,d), and artifacts caused by side lobes
are effectively suppressed. Thus, the proposed array greatly reduces transmission issues without
requiring phased transmission, thereby improving lateral resolution, which will be of great benefit in
underwater imaging.

CMUT

Obstacles

Electronic
Control

Guideway

Figure 8. Linear scanning imaging configuration.
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(a) (b) 

  
(c) (d) 

Figure 9. Reconstructed images (a) B-san reconstructed image; (b) 3-dimensional view of diagram (a);
(c) SAFT reconstructed image; (d) 3 dimensional view of diagram (c).

5. Conclusions

A 1 ˆ 16 CMUT array was designed and fabricated for underwater imaging in the low frequency
range. The transmission performance of the array was analyzed in a water tank, showing transmission
voltage response 182 dB (μPa¨ m{V) was achieved at 1 m underwater. Directivity and sector scanning
were also analyzed to determine the optimal transmission mode for linear underwater imaging.
Significant resolution improvement was obtained by applying SAFT to the received A-scan signals.
Thus, the proposed CMUT array shows great benefit for underwater detection applications, such as
obstacle avoidance, distance measuring, and imaging.
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Abstract: Here, we report, for what we believe to be the first time, on the modification of a low cost
sensor, designed for the smartphone camera market, to develop an ultraviolet (UV) camera system.
This was achieved via adaptation of Raspberry Pi cameras, which are based on back-illuminated
complementary metal-oxide semiconductor (CMOS) sensors, and we demonstrated the utility of
these devices for applications at wavelengths as low as 310 nm, by remotely sensing power station
smokestack emissions in this spectral region. Given the very low cost of these units, ≈ USD 25, they
are suitable for widespread proliferation in a variety of UV imaging applications, e.g., in atmospheric
science, volcanology, forensics and surface smoothness measurements.

Keywords: UV camera; UV imaging; smartphone sensor technology; sulphur dioxide emissions;
Raspberry Pi; low-cost camera

1. Introduction

Ultraviolet (UV) imaging has a wide variety of scientific, industrial and medical applications,
for instance in forensics [1], industrial fault inspection [2], astronomy, monitoring skin conditions [3]
and in remote sensing [4,5]. To date, scientific grade UV cameras, which have elevated quantum
efficiencies in this spectral region, have been applied in this context. However, these systems are
relatively expensive (typical unit costs thousands of dollars) and can be power intensive, since they
may incorporate thermo-electric cooling. Although these units may provide high signal-to-noise ratios,
a lower price point solution could expedite more widespread implementation of UV imaging.

Recently, considerable effort has been invested in developing low cost back-illuminated
complementary metal-oxide semiconductor (CMOS) sensor technology. Previously, this sensor
architecture was applied only within specialist, low light imaging arenas, e.g., in astronomy. In the last
few years, however, the manufacturing costs of these devices have been reduced markedly, such that
they now feature prominently in consumer electronic products, particularly smartphones. The key
advantage of the back-illuminated sensor architecture, over the conventional CMOS configuration,
is that the photo-diodes are placed in front of the metal wiring matrix layer of the sensor, thereby
improving fill factor and substantially increasing optical throughput to the photoreceptors, particularly
in the UV, where these detectors are photosensitive.
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To date, however, application of these inexpensive sensors has predominantly been focused on
visible imaging, due to the choice of fore-optics and the Bayer filter layer applied to the sensors, in order
to generate red-green-blue (RGB) mosaics. Recent studies have highlighted that these smartphone
cameras do have some UV sensitivity [6–8], even with the above optical arrangement. Here, we build
on this work by modifying such a camera sensor, to maximize UV throughput to the sensor. To the best
of our knowledge, this constitutes the first report of an imaging system specifically adapted for the
UV, based on a back-illuminated CMOS device developed for the smartphone market. In particular,
we developed a UV camera system, based on Raspberry Pi camera boards, and demonstrated its utility
for UV imaging applications down to 310 nm, via a case study involving remote sensing of sulphur
dioxide (SO2) emissions from a power station smokestack.

2. UV Camera Development

This work was achieved using Raspberry Pi Camera Module v1.3 boards (referred to as PiCams
hereafter), of cost ≈ USD 25 (Raspberry Pi Foundation). The PiCam is based on an Omnivision OV5647
back-illuminated CMOS sensor, developed primarily for the mobile phone market; the OV5647 is a
1/4” 5-megapixel (2592 × 1944 active array) backlit-CMOS unit, with 8-/10-bit RGB/RAW image
output. PiCam boards were chosen here due to the ease of data acquisition and image processing
using Raspberry Pi computer boards (Raspberry Pi Foundation), via the Python programming
language. Due to their low expense and power consumption, Raspberry Pi computers are increasingly
being used in a variety of sensing applications (e.g., [9,10]). Whilst this work is focused on one
sensor type, preliminary tests with another such back-illuminated CMOS device, the Sony IMX219
(Sony Corporation, Minato, Tokyo, Japan), also evidence UV sensitivity.

The PiCam lens and filter, housed above the sensor within a plastic casing unit, both absorb
the UV signal, and were therefore removed as a first step to developing the UV camera. This was
achieved chemically using a Posistrip® EKC830TM (DuPont, Wilmington, DE, USA) bath. To improve
UV sensitivity of the sensor, we then removed the microlens and Bayer filter layers, the latter of which
masks the sensor in a mosaic of RGB colour filters (Figure 1), and attenuates much of the incident UV
radiation. This process effectively turns the PiCam into a monochrome sensor.

Figure 1. A schematic (Centre) of the Bayer filter array and its positioning on the photodetector
array. Also shown are microscope images of the PiCam sensor pre- (Left) and post- (Right) Bayer
removal process.

Whilst the filter can be removed by careful scratching (a range of tools, such as metal tweezers
or a pointed wooden object, can be used for this process), a far more uniform finish is achievable
chemically; we adopted the latter approach using a five step procedure. We first submerged the sensors
in photoresist remover (Posistrip® EKC830TM) and heated (70–100 ◦C) until the filter was entirely
removed; this generally takes 10–30 minutes, depending on the level of applied heating and agitation.
A second bath of this remover was then applied to optimise the cleaning procedure. Following this,
the photoresist remover was washed from the sensor by a three stage cleaning procedure, using
successive baths of n-butyl acetate, acetone and isopropyl alcohol. All the above chemicals were
applied undiluted. For each of these steps, the sensor was submerged on the order of minutes,
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to ensure a thorough cleaning. Careful and rigorous application of this methodology can result in
uniform and clean sensors which exhibit greatly enhanced UV sensitivity relative to non-de-Bayered
units. For example, a clear-sky image taken with a partially de-Bayered unit, captured through a
310 nm filter and with a shutter speed of 400 ms, exhibits an increase of ≈ 600% in a de-Bayered region
relative to the unmodified section of the sensor.

For image capture, it is necessary to retrieve RAW sensor data, rather than the standard JPEG
image output, as the former excludes the de-Bayering algorithm and image processing, which results
in a non-linear response from the sensor. This, and all the below acquisition and processing steps
were achieved with in-house authored Python codes. Here the RAW images were saved to the camera,
where they were stored in the metadata of the 8-bit JPEG image. These binary data are then extracted
and saved as PNG images, to preserve the 10-bit RAW digital number (DN) format, in files of ≈ 6 MB.
These images could then be straightforwardly processed and analysed.

A UV transmissive anti-reflection (AR) coated plano-convex quartz lens of 6 mm diameter and
9 mm focal length (Edmund Optics Ltd., Barrington, NJ, USA; $100), was then mounted to the fore
of the PiCam, using an in-house designed, 3D printed lens holder, attached to the board using its
pre-existing mount holes; this provided a field of view of ≈ 28◦. This lens housing consists of two
parts, enabling straightforward focusing via screw thread adjustment. As the housing covers the entire
camera board, it was necessary to disable the board’s light-emitting diode (LED), which, by default,
is programmed to turn on during image acquisition (see Figure 2). By way of comparison: the all
in cost of this camera configuration (e.g., PiCam, lens, filter, filter holder, chemical removal costs)
including a UV bandpass filter is ≈ USD 200–300, depending on the filter, in comparison to a typical
figure of at least ten times the upper value, for such a system based on currently available scientific
grade UV cameras.

 

Figure 2. A profile image of the Raspberry Pi Camera Module (Right), and the modified system with
custom built optics (Left). The custom design is bolted to the camera board using the pre-existing
mount holes.

Following construction of the imaging system, the sensor linearity, which is important for
quantitative applications, and UV sensitivity were tested. This was achieved by mounting a UV
bandpass filter, of 12.5 mm diameter, centred on 310 nm and of 10 nm full width at half maximum
(FWHM) (Edmund Optics Ltd.) to the fore of the camera lens; these filters have no other transmission
features in the spectral sensitivity range of the CMOS detectors.

To test the UV sensor response, images of uniformly illuminated clear-sky were taken through
the 310 nm filter at varying shutter speeds; these experiments were performed in Sheffield, UK,
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at approximately 11:00 local time (solar zenith angle of around 50◦), during February 2016. At each
shutter speed four images were captured and analog gain was fixed throughout, for consistency;
the operating software does not allow gain specification, but it does enable this to be fixed, following
stabilization of the system after the camera start-up process. By averaging pixel DNs from a
800 × 600 pixel region in the centre of each image, we observed a linear increase in average pixel DN
relative to shutter speed, for the RAW 10-bit sensor data (Figure 3A). Furthermore, the RAW images
demonstrated near saturation at shutter speeds well below 1 s, in a spectral region where there is very
little skylight due to ozone absorption, indicating usable UV sensor sensitivity.

Figure 3. Plots of average pixel signal (in digital number; DN) vs. shutter speed (ms) for a cropped
region (800 × 600 pixels) of clear-sky images taken at 310 nm: (A) the 10-bit RAW image output
shows a linear increase in DN with respect to shutter speed; (B) the 8-bit standard output JPEG image
shows a non-linear response in all three of the red-green-blue (RGB) channels (Red-channel DNs are
plotted here) in line with gamma correction. An error bar is inserted on one data point per exposure
time, indicating the standard deviation of the pixel intensities in the cropped region; the bar heights
are approximately the same for all points of equivalent shutter speed, and just one bar is displayed
for clarity.

3. Measurements of Power Station Sulphur Dioxide Emissions

Sulphur dioxide has strong UV absorption bands between 300 and 320 nm [11], which have been
exploited in a range of atmospheric remote sensing measurements of this species, using differential
optical absorption spectroscopy and UV imagery [12–14]. In particular, power stations release SO2

to the atmosphere from their smokestacks, and remotely sensing these emissions is one means of
ensuring regulatory compliance and constraining effects on the atmosphere [4,5,15,16].

In order to demonstrate proof of concept of the utility of the developed sensors for UV imaging
applications, we deployed two UV PiCam units at Drax power station in the United Kingdom over
a ≈ 15 min period on 15 August 2016. Bandpass filters, centred at 310 and 330 nm (10 nm FWHM;
Edmund Optics Ltd.), were mounted to the fore of the co-aligned cameras, one on one unit, with
the other filter on the other camera. Both devices simultaneously imaged the rising smokestack
plume. Shutter speeds of ≈ 300 and 40 ms, respectively, were applied for the cameras, in view of the
greater scattered skylight intensity at the latter wavelength, and images were acquired at 0.25 Hz.
Camera-to-camera pixel mapping was achieved subsequently in software, using the smokestack as a
reference. The acquisition and retrieval protocols followed those of Kantzas et al. [17], in particular
by collecting dark images for each camera, which were subtracted from all acquired sky images.
Clear sky images, taken adjacent to the plume, were also acquired, then normalised to generate a
mask, which all acquired plume images were divided by; this eliminates vignetting as well as any
sensor non-uniformity which may have resulted from the de-Bayering process. As SO2 absorbs at
310 nm, but not at 330 nm, contrasting resulting images provides a means of constraining the spatial
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distribution of gas concentration across the field of view, whilst eliminating sources of extinction
common to both wavelengths, e.g., due to aerosols. In particular, SO2 apparent absorbance (AA) for
each pixel was determined using the following relation [17]:

AA = −log10

[
IP310

IB310

/ IP330

IB330

]
(1)

where IP is the in-plume intensity, and IB is the background intensity, taken as the average value in the
clear sky adjacent to the rising gas plume; the subscripts specify the camera filter in question, for the
dark subtracted, mask corrected imagery. Calibration of AA was then carried out using quartz cells
containing known column amounts of SO2 (in our case 0, 300 and 900 ppm.m), in particular measuring
AA values for each cell when pointing at plume free sky, plotting concentration vs. these, and then
multiplying all acquired plume image AA values by this gradient. The cell column amounts were
verified using an Ocean Optics Inc. USB2000 spectrometer, using the VolcanoSO2 differential optical
absorption spectroscopy code [18].

Figure 4C shows a typical calibrated SO2 image, after binning pixels to a 648 × 486 array to
reduce noise, highlighting the ability of the cameras to clearly resolve the smokestack emissions.
Furthermore, background image noise levels are remarkably low (typically ≈ 25 ppm.m standard
deviation in a 648 × 486 binned image), in contrast to values of ≈ 30 ppm.m, previously reported from
more expensive scientific grade camera systems in atmospheric SO2 monitoring [5], indicating the
potential of these low cost units in UV imaging applications.

Figure 4. (A) A cropped image of the Drax smokestack taken at 310 nm with a shutter speed of 300 ms.
The initial image pixels are binned to generate a pixel resolution of 648 × 486, to reduce noise; dark
image subtraction and mask corrections have been applied. (B) As in (A) but at 330 nm with a shutter
speed of 40 ms. (C) The resulting calibrated SO2 image of Drax power station stack and plume showing
the clear capacity of the system to resolve the plume emissions. (D) A cross-section of (C) showing
gas concentrations along the row delineated by the red line. The background noise level can be clearly
observed between pixels 300 to 350.
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By integrating across the plume, perpendicular to the plume transport direction, integrated
column amounts (ICAs) of SO2 were obtained, and a time series of ICAs through successive images
was produced. A plume speed of ≈4.9 m/s was calculated by generating two such ICA time series,
determined for parallel plume cross sections, located at different distances from the source, and then
cross correlating these. This plume speed was then multiplied by the ICA values to generate a SO2 flux
time series, as shown in Figure 5. The SO2 flux was found to be relatively stable from the smokestack,
with a mean emission of 0.44 kg/s; nevertheless, notable gas “puffs” are apparent, and can be seen
both in the flux time series and SO2 absorption image video (see Video S1 in the supplementary
materials). The Drax Annual Reviews of Environmental Performance [19], provide the best available
ancillary emissions data for comparison, stating annual SO2 loadings ranging 24.5–35.1 kt/yr for the
period 2008–2013, and thus, average annual fluxes ranging 0.78–1.1 kg/s. These data corroborate
our observations, falling within an order of magnitude, given that Drax’s operational output will fall
somewhat below the mean annual value during the British summer.

Figure 5. Time series of SO2 flux from Drax power station for a 15 min acquisition period.

4. Discussion and Concluding Remarks

In this paper we have presented, for the first time, a relatively simple methodology for the
development of low-cost UV cameras, based on inexpensive sensors developed for the smartphone
market. We show that by modification of Raspberry Pi camera sensors, and rebuilding of the optical
systems, camera boards as cheap as ≈ USD 25 can be adapted to applications down to wavelengths of
at least 310 nm. The potential utility of such devices in UV imaging applications was illustrated via a
case study, in which we used the cameras to perform ultraviolet remote sensing of SO2 fluxes from a
power station smokestack.

With this in mind, other possible areas in which this technology could be applied include, but are
not limited to: ground-based mineral aerosol detection (331/360 nm), to mimic satellite based TOMS
retrievals [20,21], monitoring skin conditions [3,22], forensics during crime scene investigation [1,23],
fault detection in power systems [2], fault detection in vehicles, and astronomy. The low cost would
be of particular benefit in application areas where budgets are limited, or arrays of these units are
required. One example of such a scenario is in the field of volcanology, where UV cameras are used
to image SO2 emissions in volcanic plumes [4,24,25] as a means of investigating magmatic processes.
As many volcanoes are located in developing countries, lower cost sensors could greatly expedite
more comprehensive monitoring of global volcanic hazards, with allowance for sensor destruction in
the event of explosions.

One potential current limitation to this system is its maximum achievable frame rate. The shutter
speeds used here at the power station (300 ms at 310 nm) correspond to a theoretically achievable
acquisition rate of >1 Hz. However, in reality obtainable frame rates are rather lower due to on chip
processing. Preliminary tests suggest that framerates >0.5 Hz are achievable, however, over prolonged
periods this resulted in sporadic dropping of frames, which disappeared altogether for acquisition at
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0.25 Hz. More work is required to identify the limiting factor in frame capture, and whether stable
higher acquisition rates might be achievable with further software optimisation. For the majority of
applications, however, we suggest that framerates of 0.25 Hz will be more than adequate.

Future work could focus on the spectral range of such units; the sensitivity of this system
below 310 nm has not been quantified herein, and whilst the sensors do likely respond at deeper
UV wavelengths, there may be a trade off in terms of signal to noise. Investigating the longer
wavelength cut off of these monochrome devices could also be of interest, in establishing their use in
high temperature thermal imaging applications. Other work may include consideration of thermal
effects on sensor stability/noise, and the degree to which cooling/temperature stabilisation might
improve signal to noise. Finally, whilst signal to noise levels appear promising here, particularly given
the low sensor price point, further work is now also merited in comparing the system sensitivity and
noise characteristics against more expensive scientific grade UV cameras.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/16/10/1649/
s1, Video S1: Absorbance image sequence of Drax SO2 emissions. Warmer colours indicate larger SO2 column
densities. Images were captured at 0.25 Hz, and this video sequence is speeded up to eight times real-time.
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Abstract: A Delay-Locked Loop (DLL) with a modified charge pump circuit is proposed for
generating high-resolution linear delay steps with sub-picosecond jitter performance and adjustable
delay range. The small-signal model of the modified charge pump circuit is analyzed to bring
forth the relationship between the DLL’s internal control voltage and output time delay. Circuit
post-layout simulation shows that a 0.97 ps delay step within a 69 ps delay range with 0.26 ps
Root-Mean Square (RMS) jitter performance is achievable using a standard 0.13 μm Complementary
Metal-Oxide Semiconductor (CMOS) process. The post-layout simulation results show that the power
consumption of the proposed DLL architecture’s circuit is 0.1 mW when the DLL is operated at 2 GHz.

Keywords: delay step; delay range; time jitter; Delay-Locked Loop (DLL); charge pump;
Capacitor-Reset Circuit (CRC)

1. Introduction

Delay-Locked Loops (DLLs) with high-resolution delay steps are extensively used for time
management of large systems [1]. For example, they are used in Fluorescence Lifetime Imaging
Microscopy (FLIM) sensors where a light pulse is modulated with the capture window that is shifted in
picosecond-order delay steps for a total range of tens of picoseconds [2]. Furthermore, high-resolution
DLLs are used in the compensation for PVT variations and any delay mismatch that may be caused to
signals during the operation of many high-frequency VLSI circuits [3]. For all of these applications,
DLLs should generate an adequate amount of lock/delay range while maintaining the output jitter
as low as possible. This is because there is a trade-off relation between delay range and the jitter
performance [4]. In addition, the total delay fluctuations including jitter should be less than the delay
resolution for optimum operation [5].

Since DLLs only adjust the phase (delay) of an input signal and not its frequency, DLLs suffer
from limited delay range. Therefore, a considerable amount of new techniques has been developed to
address this issue. For example, a technique employing a Digital-to-Analog Converter (DAC) with
Parallel Variable Resistor (PVR) is used to realize high-resolution delay steps with a wide delay range
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by accurately controlling the Current-Controlled Delay Element (CCDE) of the DLL [1]. Another
technique developed is the use of a dual-loop architecture which utilizes multiple delay lines [6].
The first “reference” loop generates a clock with quadrature phases. In the second “main” loop,
these phases are delayed by four Voltage-Controlled Delay Lines (VCDLs) and then multiplexed to
generate the output clock. A new technique based on cycle-controlled delay unit was proposed by [7]
to enlarge the delay range by reusing the delay units in a cycle-like process without the need for
cascading a large number of delay units. A DLL with a new voltage-controlled delay element based
on body-controlled current source and body-feed technique was also developed to widen the delay
range [8]. In this method, the Phase Detector (PD) is replaced by a Phase/Frequency Detector (PFD)
with a start controller to achieve a sufficient locking range. Another new architecture was proposed
by [9] which employs a mixed-mode Time-to-Digital Converter (TDC) for enabling a frequency-range
selector. The frequency-range selector can generate digital control signals to switch the delay range of
the multi-controlled delay cell in the VCDL and the current of the digitally-controlled charge pump.

However, the majority of the techniques mentioned above result in complex circuit architectures
that lead to degraded jitter performance as well as increased area overhead, cost, and power
consumption. Motivated by this research gap, this work proposes a new and simple technique
using a Capacitor-Reset Circuit (CRC) to reset the loop filter capacitor for delay range extension and
at the same time reducing the jitter performance into the sub-picosecond range. The capacitor-reset
technique is widely used to reinitialize a control voltage to a fixed initial value and has been applied
in many circuits such as pixels of image sensors and PLL circuits [10,11]. At this point, mathematical
analysis confirmed by circuit simulation, our proposed technique is capable of generating a comparably
wide delay range and picosecond-resolution delay steps with a sub-picosecond jitter performance.
In addition, this architecture consumes a relatively small area and power compared with the available
techniques reported in literature.

Table 1 below shows performance specifications of the most recent and relevant high-resolution
DLL designs reported in the literature.

Table 1. Performance specifications of previously reported high-resolution DLLs.

Variable [12] [13] [14] [15]

CMOS technology 130 nm 55 nm 350 nm 65 nm
Supply voltage 1.5 V 1 V 3.5 V 1 V

Delay range 345 ps 128 ps 375 ps 161 ps
Delay resolution 4 ps 8.5 ps 7.5 ps 5.21 ps

No. of steps 63 15 7 31
Operating frequency range 1.5–2.5 GHz 200–850 MHz N/A 3 MHz–1.8 GHz

RMS jitter N/A 0.04 ps @ 850 MHz 7.5 ps @ 400 MHz 0.85 ps @ 1.8 GHz
Power consumption 30 mW @ 2.5 GHz 1.02 mW @ 850 MHz N/A 9.5 mW @ 1.8 GHz

Active area 0.03 mm2 0.007 mm2 N/A 0.0153 mm2

Table 1 summarizes the DLL’s parameters that have a direct impact on the performance in terms
of speed and power consumption. For example, information about achievable delay range, delay
resolution, number of delay steps, operating frequency range, RMS jitter, and power consumption
is provided in Table 1. It is worth noting that the finest delay step is 4 ps achieved by [12]. It also
generates a comparably long delay range of approximately 345 ps.

The proposed design is explained in the subsequent section. The results and discussion are
presented in Section 3. Finally, Section 4 summarizes and concludes this paper.

2. Materials and Methods

Our proposed circuit is shown in Figure 1a. It consists of a conventional VCDL, an Exclusive-OR
(XOR) gate-based Phase Detector (PD), a Charge Pump (CP), and a modified Loop Filter (LF) with the
addition of the CRC. It works by resetting the loop filter’s capacitor by a pre-determined time constant
before lock is achieved. The reset operation is performed by a reset signal, ϕR. By varying the pulse
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width of ϕR using a simple Pulse-Width Generator (PWG) circuit that will be illustrated at the end of
this section, a change in the time constant τR of the modified loop filter is achieved. This results in a
change in delay range of the DLL.

(a)

 
(b)

Figure 1. (a) Schematic of DLL with the CRC; and (b) small-signal model of DLL’s charge pump
with CRC.

Figure 1a shows the modification made to the loop filter of a DLL where M5 and M6 are used to
create the CRC. M5 acts as a switch that resets the loop filter’s capacitor, Cf. On the other hand, M6 is
connected as a diode whose resistance together with the capacitance Cf of the loop filter’s capacitor
creates a time constant τR that controls the magnitude of vc which is fed to the VCDL current to control
bias current and propagation delay. This ultimately controls the delay step and lock/delay range.
The aspect ratio of both pMOS transistors, M5 and M6, is 0.35 μm/0.13 μm.

The capacitor-reset operation at a pre-determined reset signal duration results in a varying
charge/discharge rate of Cf when Vbp is changed as opposed to a DLL without the CRC. This results in
changes in vc settling time that controls the delay of the VCDL. To illustrate this operation, the charge
pump’s small-signal model shown in Figure 1b is used. vc is expressed in Equations (1) and (2) during
charging and discharging operations, respectively.

vc(t) = vch0

(
1 − e−

t
τR

)
, (1)

vc(t) = vdis0

(
e−

t
τR

)
. (2)

where vch0, vdis0, and τR are the initial voltage across Cf during charging (which is equal to −VTp),
initial voltage across Cf during discharging (which is equal to maximum vc), and the time constant of
the loop filter, respectively. This time constant, τR, is written as:

τR = R3Cf . (3)

where R3 is the equivalent resistance of the diode-connected transistor’s (M6) output resistance in
series with transistor M5’s output resistance.
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From Equations (1) and (2), it is obvious that the capacitor’s voltage vc is directly dependent on
charging/discharging time, t. Equations (1) and (2) also implies that the charging/discharging time of
Cf can be changed by changing the time constant τR of the CRC, which will in turn change vc. This is
achieved through changing the reset duration of the reset signal ϕR that is applied to the gate of M5
(see Figure 1a).

The small-signal model of the charge pump connected to the CRC shown in Figure 1b is also
used to analyze how the DLL generates fine-linear delay steps within a selectable delay range. Vbp
is varied in order to vary the delay steps. The series output resistance of transistors M4 and M3 is
modeled as R1 in Figure 1b. Likewise, R2 in Figure 1b models the series output resistance of transistors
M2 and M1 and R3 models the output resistance of the diode-connected transistor M6 in series with
transistor M5’s output resistance when M5 is turned on. It should be mentioned that the aspect ratio of
the nMOS transistors M1 and M2 is 0.6 μm/0.13 μm, and that of the pMOS transistors M3 and M4 is
1.2 μm/0.13 μm. The value of the capacitance Cf in Figure 1a,b is 0.63 fF.

R1, R2 and R3 are given by Equations (4)–(6), respectively [16]:

R1 ≈ (gm3rds3) rds4. (4)

R2 ≈ (gm2rds2) rds1. (5)

R3 ≈ (gm5rds5) rds6. (6)

When Vbp is varied, it is obvious that rds3 and gm3 change accordingly, resulting in a change in R1.
Due to this, R1 is written as:

R1 ≈ (gm3 + Δgm3) (rds3 + Δrds3) rds4,
R1 ≈ gm3rds3rds4 + rds4 (gm3Δrds3 + rds3Δgm3 + Δrds3Δgm3).

(7)

where Δrds3 and Δgm3 are the changes in rds3 and gm3, respectively. Equation (7) represents the change
in R1 when Vbp 	= 0 and can also be written in the following form:

R1 ≈ RC0 + RP. (8)

where RC0 is a constant corresponding to the term (gm3rds3rds4) and RP is a variable corresponding
to the term (rds4(gm3Δrds3 + rds3Δgm3 + Δrds3 Δgm3)) in Equation (7). According to simulation results
shown in Figure 2, when Vbp is varied from 1 V to 0.8935 V, Δrds3 changes from 10.66 GΩ to 4.29 GΩ.
Likewise, for the same Vbp range, the charge pump’s charging current I3 changes from 110.37 pA to
117.99 pA. However, when Vbp = 0, rds3 and gm3 are at their minimum values. This implies that Δrds3
and Δgm3 will have very small values which can be neglected compared with other R1 cases in which
Vbp 	= 0. Hence, Equation (8) can be rewritten as:

R1,0 ≈ RC0 . (9)

where R1,0 represents the case when Vbp = 0. Thus, Equation (8) can be rewritten as follows:

R1 ≈ R1,0 + RP. (10)

It should be mentioned that the non-monotonicity points in Figure 2b can be a consequence of the
non-convergence problems. These problems can be caused during the simulation if the resistance of the
transistor is very high or very low. This can be solved by adjusting either the simulator options or the
transistor model parameters (Ron and/or transconductance gm) [17]. However, no significant impact
can be observed in the overall behavior and performance of the DLL circuit, as will be demonstrated in
the delay steps linearity results explained in the next section. In addition, a linear regression has been
employed and superimposed on the plot in Figure 2b regarding the charge pump charging current
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I3 versus the control voltage Vbp. It can be seen from Figure 2b that the Root-Mean Square Error
(RMSE) of the linear regression plot is only 0.06, which indicates that the original plot of I3 versus Vbp
is almost linear.

 
(a)

 
(b)

Figure 2. (a) rds3 versus control voltage, Vbp; and (b) I3 versus control voltage, Vbp.

According to [1], the relationship between the change in resistance and the change in current is
expressed as:

R1 (t − 1)
R1 (t − 1) + ΔR1 (t)

≈ I3 (t − 1)− ΔI3 (t)
I3 (t − 1)

. (11)

The time delay, td, of the VCDL is given as [18]:

td = Tre f − (KVCDLvc) + Δd. (12)

where Tref, KVCDL, and Δd are the period time of the input clock signal, the gain of the VCDL, and the
jitter caused by the VCDL, respectively. Equation (12) indicates that the voltage, vc, across the capacitor
determines the time delay, td. The voltage vc can be written as [18]:

vc (t) = 1
Cf

Δt�
0

I3 (t)× dt + vc (0),

vc (t) = 1
Cf

Δt�
0

I3 (t)× dt +
(−VTp

)
.

(13)

Substituting Equation (13) into Equation (12), td is written as:

td = Tre f −
⎛
⎝KVCDL ×

⎛
⎝ 1

Cf

Δt�
0

I3 (t)× dt +
(−VTp

)⎞⎠
⎞
⎠+ Δd. (14)
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Substituting Equation (11) for I3 into Equation (14) yields td in terms of the change in R1 and I3

and is written as:

td = Tre f −
⎛
⎝KVCDL ×

⎛
⎝ 1

Cf

Δt�
0

(R1 (t − 1))× (I3 (t − 1))
R1 (t − 1) + ΔR1 (t)

× dt +
(−VTp

)⎞⎠
⎞
⎠+ Δd. (15)

td in Equation (15) represents the delay step. On the other hand, the delay range, tdr, is defined as
the difference between maximum and minimum delays and can be written as:

tdr = td(max) − td(min). (16)

where td(max) and td(min) are the maximum and the minimum delays. On the other hand, the maximum
and minimum delays are expressed by Equations (17) and (18), respectively:

td(max) = Tre f −
⎛
⎝KVCDL ×

⎛
⎝ 1

Cf

Δt max�
0

(R1 (t − 1))× (I3 (t − 1))
R1 (t − 1) + ΔR1(max) (t)

× dt +
(−VTp

)⎞⎠
⎞
⎠+ Δdmax, (17)

td(min) = Tre f −
⎛
⎝KVCDL ×

⎛
⎝ 1

Cf

Δt min�
0

(R1 (t − 1))× (I3 (t − 1))
R1 (t − 1)

× dt +
(−VTp

)⎞⎠
⎞
⎠+ Δdmin. (18)

In order to demonstrate the operation of the charge pump circuit without and with the proposed
CRC technique, Figure 3 is considered. This figure is an illustration figure that illustrates the differences
in the discharge rates for two extreme values of Vbn (1 V and 0 V). Figure 3a highlights the discharge
rates for a charge pump without the proposed CRC and Figure 3b with the CRC. It is obvious from
Figure 3b that the difference in discharge rates is significantly higher than that of the case in Figure 3a.
To clarify this, according to the simulations, the discharge rates’ difference for the case with the
CRC technique is 2.49 mV/ps, while that for the case without CRC is only 0.2 mV/ps. The higher
is the difference in the discharge rate, the bigger is the difference in vc settling values according to
Equations (1), (2), (15), (17) and (18). In relation to the simulation results, the discharge rate of vc is
faster when Vbn value is 1 V, causing the capacitance Cf to fully discharge faster and the discharging
time to have a lower value compared to the case when Vbn is 0 V. The discharge rate is directly
proportional to the discharge current I2. Since the discharge rate is different, the settling voltage for vc

is also different, causing a change in the control voltage of the VCDL and resulting in a change in time
delay of the DLL.

The charge pump circuit of a DLL suffers from amplifier noise charge injected from its amplifier
into the loop filter capacitor, thus reducing this noise will result in better time jitter performance [19].
Figure 4 is used to illustrate error charge accumulation in charge pump’s loop filter capacitor. Figure 4a
shows a conventional charge pump where initially amplifier noise charge qn is injected into Cf from
the amplifier at the ON phase of the input signal. When the input signal goes low, Cf discharges
but a small amount of residual noise charge qnr is left in Cf. The next ON phase of the input signal
injects new amplifier noise charge and it is added with the residual noise charge left from the previous
discharge cycle. Therefore, for simplicity, the output voltage vc of the charge pump, is given by:

vc =
qn + qnr

Cf
. (19)

The numerator of Equation (19) gives the total noise charge of a conventional charge pump.
On the other hand, Figure 4b shows that noise charge is also transferred into the loop filter’s capacitor.
However, when the signal goes high, the CRC is activated and causes Cf to fully discharge. Only a
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small amount of reset charge qr is injected into Cf from transistors M5 and M6 that make up the CRC
(see Figure 1a). Thus, the output voltage vc of the charge pump is given by:

vc =
qr

Cf
(20)

 

Figure 3. Difference in discharge rates for two cases: (a) without CRC; and (b) with CRC.

Figure 4. Error charge accumulation in loop filter’s capacitor: (a) without CRC; and (b) with CRC.
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We can also view qr as noise charge since it is random in nature. However, qr is much less than
qn + qnr, thus the jitter of vc is significantly reduced for a charge pump with the CRC. Moreover, this
technique also produces a wider delay range since a larger and accurate level of vc can be achieved
when the ON phase period of the reset signal ϕR is made longer through the PWG circuit.

The PWG circuit, used to control the pulse width of the reset signal ϕR, is shown in Figure 5.
This circuit is used to set the time constant of the loop filter in order to set the desired discharge rate of
Cf (see Equations (1) and (2)). Once a desired delay range is acquired, the charge pump’s charging
current I3 can be varied through the charge pump amplifier’s bias voltage, Vbp (see Figure 1a), to allow
small-linear changes in the DLL’s output signal time delay.

Figure 5. Simple Pulse-Width Generator (PWG) circuit.

It is also noted that the input of the PWG circuit shown in Figure 5 is fed from the input signal of
the DLL itself in order to synchronize the discharge time of node vc with the input pulse, as illustrated
in the timing diagram shown in Figure 6.

 

Figure 6. Timing diagram showing how the reset signal activation is synchronized with the input
reference pulse.

3. Results and Discussion

The proposed DLL is simulated using a 0.13 μm CMOS process. The power supply voltage is
1.2 V. From post-layout simulations, the delay is controlled from zero to 69 ps by varying Vbp from
0.8935 V to 1 V in steps of 1.5 mV. In this simulation, parametric analysis was used to change Vbp;
however, the value of Vbp can be controlled by a 10-bit Digital-to-Analog Converter (DAC). Vbn is fixed
at 0.2 V.

Figure 7 shows the generated output time delay td as a function of the control voltage Vbp with
respect to the delay steps linearity. It is clear from Figure 7 that the time delay increases linearly with
the increase in Vbp. The sensitivity of the linear regression plot is approximately 644 (ps/V) with
Root-Mean Square Error (RMSE) equals to 0.64. For an LSB of 0.97 ps, it can be seen in Figure 7a
that the delay steps’ Differential Non-Linearity (DNL) does not exceed 0.86. Moreover, the DNL values
of the delay steps located between the 41st and 70th delay steps are all concentrated in the positive
region. This has mainly caused the slight deviation observed between the linear regression and the
simulated output delay steps shown in Figure 7a,b, and it has also resulted in the maximum 1.5
Integral Non-Linearity (INL) value at the end of the INL plot in Figure 7b. On the other hand, the
INL values across the generated delay steps in Figure 7b are somewhat concentrated in the negative
region. This indicates that the resolution of most of the delay steps is very close to one LSB of the
output delay.
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(a)

 
(b)

Figure 7. DLL’s total time delay and control voltage ranges with respect to the delay steps linearity:
(a) DNL; and (b) INL.

Figure 8 shows the simulated DLL’s output signal, which is delayed by 0.97 ps as the minimum
delay step and total of 69 ps as the maximum delay range, when operated at 2 GHz of the input
reference signal. The lock-in time of the DLL is only 14 cycles.

 

Figure 8. DLL’s input and output signals when operated at 2 GHz of the input reference signal, where
tdmin and tdmax correspond to the minimum and maximum times of the output time delay td and
their values are 124 ps and 193 ps, respectively, the loop filter’s time constant τR values are 2.32 μs at
tdmin and 14.22 μs at tdmax, and the reference signal’s period Tref is 0.5 ns.
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Figure 9 shows the simulated voltage vc across the loop filter’s capacitor with the reset signal ϕR.

 
Figure 9. Voltage across the loop filter’s capacitor vc and reset signal ϕR at locked state.

It can be seen in Figure 9 that the duration of the reset signal ϕR is almost identical to the
maximum discharge time, Tdischarge,max, obtained when Vbp equals to 1 V. The waveforms plotted in
Figure 9 have been obtained after the locked state has been achieved, i.e., after 14 cycles. Likewise,
at locked state and when Vbp equals to 1 V, the input and output signals of the phase detector are
presented in Figure 10. Figure 10a shows the input reference and output delayed signals which are fed
to the two inputs of the phase detector. According to the phase difference between these two inputs,
the phase detector generates phase difference information, signal “PD-UP” and signal “PD-DN” in
Figure 10b, which is fed to the charge pump to keep the operation of the DLL in the locked state.

 

Figure 10. Input and output signals of the phase detector at locked state: (a) Inputs; and (b) Outputs.
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For completeness, the PVT variations effects on the DLL’s delay range have been simulated and
analyzed, as shown in Figure 11. Since the maximum achievable delay range is 69 ps, it can be noted
in Figure 11a that the process corner FF can degrade the delay range and the corner SS can mostly
degrade the jitter through the extremely extended range. Nonetheless, extending or narrowing the
pulse width of the reset pulse, ϕR, can solve these shortcomings. In Figure 11b, three temperature and
voltage variations all located at 1.38 V for 0 ◦C, 27 ◦C, and 70 ◦C, which are all dark black-colored, can
degrade the delay range by 12 ps, 15 ps, and 18 ps, respectively. Similarly, the small violations in the
delay range with the other PVT variations can be compensated by extending the pulse width of ϕR

without significantly degrading the total output jitter or the delay steps linearity.

 
(a)

 
(b)

Figure 11. Maximum DLL’s delay range versus: (a) process corners; and (b) temperature and supply
voltage variations.

 

Figure 12. DLL output jitter histogram.

Simulation results on jitter show that the output jitter of the DLL is remarkably low. Figure 12
shows the simulated jitter when the DLL is operated at 2 GHz of the input reference signal.
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The peak-to-peak and RMS values are 7.2 ps and 0.26 ps, respectively. As mentioned, this is attributed
to the cycle-to-cycle reset operation of the charge pump’s capacitor, which significantly minimizes the
accumulated noise originated from the charge pump’s amplifier. It is also worth mentioning that the
low jitter is attributed to the use of only one NAND gate-based buffer in the VCDL circuit.

In addition, the effects of the PVT variations on the jitter performance have also been simulated
and analyzed, as shown in Figure 13.

 
(a)

 
(b)

Figure 13. RMS cycle-to-cycle jitter versus: (a) process corners; and (b) temperature and supply
voltage variations.

Since the desired value of the output jitter is in the sub-picosecond range, it can be noted in
Figure 13a that only the process corner FS degrades the jitter. However, this shortcoming can be
mitigated by optimizing the pulse width of the reset pulse, ϕR. In Figure 13b, only two temperature
and supply voltage variations located at 1.02 V for 0 ◦C and 27 ◦C, which are dark black-colored and
dark grey-colored, can degrade the output jitter to over 1.75 ps RMS and 1.3 ps RMS, respectively.

A summary of the performance specifications and results of the proposed work is presented in
Table 2. The proposed CRC technique successfully achieves sub-picosecond-resolution delay step,
a high number of delay steps within a specific range, sub-picosecond jitter performance, a wide
operating frequency range, sub-milliwatt power consumption, and a small occupied active area
for layout. The layout area is significantly minimized because the VCDL, which is followed by an
uncontrolled inverter-based buffer as shown in Figure 1a, only uses a single NAND-based buffer. It is
worth mentioning that the achieved delay range for the case without the proposed CRC technique is
only 2 ps using the same transistor sizes and operating conditions as in the case with the CRC whose
achieved delay range is 69 ps.
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Table 2. Summary of performance specifications and results achieved by the proposed DLL design.

Variable Value

CMOS technology 130 nm
Supply voltage 1.2 V

Delay range 69 ps
Delay resolution 0.97 ps

No. of steps 71
Operating frequency range 50 MHz–2 GHz

RMS jitter 0.26 ps @ 2 GHz
Power consumption 0.1 mW @ 2 GHz

Active area 0.001 mm2

The layout of the proposed DLL circuit architecture is shown in Figure 14.

 

Figure 14. Layout of the proposed DLL.

It can be seen in Figure 14 that guard rings and n-well contacts have been used for the proposed
DLL’s layout in order to reduce the effects of the substrate and power noise. In addition, separation of
the digital circuits from the analog circuits as well as utilizing separate VDD and GND lines for each of
these circuits have been employed to further reduce the substrate noise effects.

In order to compare the performance of this work with other reported high-resolution DLL
circuits, Table 3 is presented. In this table, the proposed work has been compared with the work
reported by [12], which has been presented earlier in Table 1 and has shown to have almost the best
performance compared with the other works in Table 1.

Table 3. Performance comparison of this work with a reported high-resolution DLL.

Variable [12] This Work

CMOS technology 130 nm 130 nm
Supply voltage 1.5 V 1.2 V

Delay range 345 ps 69 ps
Delay resolution 4 ps 0.97 ps

No. of steps 63 71
Operating frequency range 1.5–2.5 GHz 50 MHz–2 GHz

RMS jitter N/A 0.26 ps @ 2 GHz
Power consumption 30 mW @ 2.5 GHz 0.1 mW @ 2 GHz

Active area 0.03 mm2 0.001 mm2
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According to Table 3, the proposed lock-range extension technique in this work achieves
higher-resolution delay step, higher number of delay steps within a specific range, better jitter
performance, lower power consumption, and smaller occupied active area.

4. Conclusions

The proposed DLL architecture uses a CRC at the output of the DLL’s charge pump in order to
change the delay range and generate small steps with sub-picosecond jitter performance. Through
simulation, the DLL maximum delay is 69 ps with 0.97 ps delay steps, while maintaining the total jitter
at the output in the sub-picosecond range. In terms of circuit complexity, our proposed technique is
much simpler when compared to others as only a reset circuit is added to the charge pump. This not
only allows a smaller layout area, but also enhances the DLL’s jitter performance and output range.
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Abstract: In this paper, an accumulation technique suitable for digital domain CMOS time delay
integration (TDI) image sensors is proposed to reduce power consumption without degrading the rate
of imaging. In terms of the slight variations of quantization codes among different pixel exposures
towards the same object, the pixel array is divided into two groups: one is for coarse quantization of
high bits only, and the other one is for fine quantization of low bits. Then, the complete quantization
codes are composed of both results from the coarse-and-fine quantization. The equivalent operation
comparably reduces the total required bit numbers of the quantization. In the 0.18 μm CMOS
process, two versions of 16-stage digital domain CMOS TDI image sensor chains based on a 10-bit
successive approximate register (SAR) analog-to-digital converter (ADC), with and without the
proposed technique, are designed. The simulation results show that the average power consumption
of slices of the two versions are 6.47 × 10−8 J/line and 7.4 × 10−8 J/line, respectively. Meanwhile, the
linearity of the two versions are 99.74% and 99.99%, respectively.

Keywords: CMOS TDI image sensor; accumulation technique; coarse quantization; fine quantization

1. Introduction

Linear image sensors capture images by scanning the target scene. In low light or high
speed scanning condition, the integration time of each pixel is too short to collect enough photons,
which results in low signal-to-noise ratio (SNR). The time delay integration (TDI) images’ sensor
technology adopts more rows of pixels to scan the same scene, and the integrated signals are
accumulated together, which extends the integration time equivalently. Thus, a better SNR can be
achieved using a TDI image sensor. Compared with the regular linear image sensor, the accumulated
signal and uncorrelated noise of a TDI image sensor are amplified by a factor N and square root of N
respectively, which results in a square root of N times improvement of SNR, where N is the stage of
accumulation. TDI image sensors are suitable in the situations where a line-scan system is required
for high quality and low noise imaging even under low illuminations and high speed scanning [1,2].
The TDI technology could be easily implemented in a charge coupled device (CCD) [3] because it
allows noiseless accumulation of signals in the charge domain. However, the CCD requires high
supply voltage, which results in large power consumption. Additionally, due to the incompatibility
with the CMOS process, the CCD could not integrate with other functions on the same chip with
the sensor [4]. In recent years, TDI image sensors implemented with the CMOS process have been
reported [5–14]. Compared with the CCD, CMOS TDI image sensors could successfully integrate
various analog and digital circuits as an on-chip camera [4]. Such integration further reduces the
power consumption and size [4].

There are typically three kinds of accumulation methods: charge-domain accumulation
scheme [5–8], analog-domain accumulation scheme [9–11] and digital domain accumulation
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scheme [12–14] for CMOS TDI image sensors. In the charge-domain accumulation scheme, the
noiseless accumulation enables good SNR. However, the charge transfer efficiency and full well
capacity, which strongly depend on process, limit its momentum of development [6,7]. With respect to
the analog-domain accumulation scheme, the generated signals from pixels are firstly accumulated by
the analog accumulator, and then the accumulated result is quantized by column analog-to-digital
converter (ADC) [9,10]. Because the maximum accumulated voltage depends on the supply voltage, the
dynamic range of the analog-domain CMOS TDI image sensor is limited by the supply voltage [9,10].
Since the analog memory cell of the analog accumulator is implemented with capacitors, the
accumulator area is considerably large [9,10]. In the digital domain accumulation scheme, the outputs
of pixels are firstly quantized by column ADC, and then the corresponding digital results are added
together by the digital accumulator [14]. The memory cell of the digital accumulator is implemented
by digital registers, so the digital accumulator area is less than an analog accumulator with the same
accumulation stages [14]. In order to make the most use of the quantization range of ADC, the output
signals of pixels are usually amplified several times before being sent to the ADC, which results in
better SNR than that of analog-domain accumulation [13,14]. However, at high speed scanning and
high accumulation stages, a large amount of data generated by ADC bring in more power consumption.
In this paper, a low power digital accumulation technique for a CMOS TDI image sensor is proposed
to reduce power consumption without degrading the rate of imaging by means of downscaling the bit
numbers of the quantization.

The remainder of this paper is organized as follows. In Section 2, we firstly describe the principle
of the low power accumulation technique, the optimized implementation scheme is then discussed,
and finally a behavioral simulation is completed with MATLAB (R2011b, MathWorks, Natick, MA,
USA). Section 3 presents the circuit implementation scheme of the low power accumulation technique
and the simulation results. A brief conclusion is drawn in Section 4.

2. Low Power Digital Accumulation Technique

2.1. Principle of the Low Power Digital Accumulation Technique

The accumulation scheme of the traditional N-stage digital domain CMOS TDI image sensor with
L-bit column ADC, where L = (M + K) is shown in Figure 1. During the exposure time, the exposed
object moves at a constant speed relative to the pixel array. The line time (TL) is defined as the
time that the exposed object moves over exactly one pixel pitch, and the line rate is defined as 1/TL.
The operation procedure is briefly described as follows. At the first TL, the object is captured by
pixel1. At the end of the integration of pixel1, the exposure result is sent to the column ADC and
quantized into L-bit digital data. Then, the data is sent to the digital accumulator. At the second TL,
the same object is captured by pixel2 and its quantized data is also sent to the digital accumulator.
In the same way, the object is exposed N times, and the corresponding quantized data are added in
the digital accumulator. With the imaging flow above, the ADC converts L × N bits data at the N
accumulation stage.

Ideally, the output results of pixels detecting the same object should be same. However, the noise
may bring some variation in the low-bit codes of the quantized data. The influenced bit numbers
depend on the SNR of output signals. The high bits of the quantized results remain the same among
pixels detecting the same object. Therefore, there is no need to fully quantify every output signal
of pixels. A low power digital accumulation technique for CMOS TDI image sensors is proposed
by introducing coarse quantization and fine quantization, aiming at less data and lower power
consumption. Based on the discussion above, when the output signals of pixels are quantized into L-bit
codes by ADC, only the low K bits varies. The rest of the high bits is indicated by M and L = (M + K).
The high M bits of the quantized results of the same object are the same.
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Figure 1. Traditional digital domain accumulation scheme.

The proposed low power digital domain accumulation scheme with L-bit column ADC is shown
in Figure 2. The digital accumulator is divided into high M-bit accumulator and low K-bit accumulator.
At the first TL, the object is captured by pixel1. At the end of integration of pixel1, its analog result
is sent to the column ADC and only coarsely quantized into high M bits, where the low power
accumulation scheme differs from the traditional accumulation scheme. Then, the high M-bit codes are
sent to the high M-bit accumulator. During the second TL, the same object is captured by pixel2 and its
analog result is sent to the column ADC for fine quantization. It only needs to be quantized into low K
bits, as the high M bits have been already quantized in the first TL. Then, the low K-bit codes are sent
to the low K-bit accumulator. In the same way, the remaining pixels are all quantized with only low K
bits and then transmitted to the low K-bit accumulator. Finally, the complete quantization result is
obtained by combining high M bits with low K bits. To accomplish N-stage accumulation, the ADC
needs to convert (M + N × K) bits data in the proposed low power accumulation scheme. Compared
with the traditional accumulation scheme, the ADC saves (N − 1)× M bits conversion time with the
low power accumulation scheme.

Figure 2. Low power digital domain accumulation scheme.
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In order to increase the quantization precision of the high M bits, some lines of pixels are
arranged to repeat the coarse quantization, and then the quantized high M-bit codes are averaged.
Assuming that P lines of pixels are used to repeat the coarse quantization, the ADC of the low
power digital accumulation scheme will save (N − P)× M bits conversion time compared with the
traditional digital accumulation scheme for a complete N-stage accumulation. The low power digital
domain CMOS TDI image sensor needs much less conversion time at the same conversion speed
and accumulation stages, which could achieve lower power consumption than the traditional digital
domain CMOS TDI image sensor. According to the operation procedure, successive approximate
register (SAR) ADC is very suitable for the low power digital domain accumulation scheme.

2.2. Analysis and Optimization of the Coarse Quantization Bit Numbers and Coarse Quantization Times

To analyze and optimize the coarse quantization bit numbers and coarse quantization times of
the low power accumulation scheme, a 16-stage digital domain CMOS TDI image sensor based on
10-bit column parallel SAR ADC is established. The total conversion time of a SAR ADC is divided
into two parts: sampling time and quantization time. While the sampling time is negligible, it needs
11 clock cycles to complete one conversion for a 10-bit SAR ADC. In the low power accumulation
scheme, the full 10-bit conversion is divided into a coarse one and a fine one. Then, the saved time of
SAR ADC depends on the maximum consumption time between the coarse quantization and the fine
quantization, and the saved time could be roughly calculated as

Saved time =
11 − max(K, M)− 1

11
× 100%, (1)

where M is the coarse quantization bit numbers and K is the fine quantization bit numbers.
The relationship between the coarse quantization bit numbers and the saved time of the ADC
conversion is illustrated in Figure 3. When the coarse quantization bit numbers are 5-bit, the saved
time could reach a maximum value of 45.45%.

Figure 3. Relation curve between the saved time of SAR ADC and coarse quantization bit numbers.

Because the output signals of pixels are influenced by the pixel noise and readout circuit noise,
the precision of the coarse quantization decreases with the increase of the coarse quantization bit
numbers. Therefore, the precision of the coarse quantization should be taken into account considering
the saved time. More than one line of pixels can be used to repeat the coarse quantization procedure to
improve the precision. A behavioral simulation is implemented with MATLAB to explore the precision
difference between the traditional accumulation scheme and the low power accumulation scheme that
adopts different coarse quantization bit numbers and different lines of pixels for coarse quantization.
The simulation result is shown in Figure 4. The difference between the results of the proposed scheme
and the traditional digital accumulation scheme is indicated by probability that the quantization results
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of the proposed scheme can reach that of the traditional one. As shown in Figure 4, the probability
decreases with the increase of the coarse quantization bit numbers and it is proportional to the lines of
pixels for coarse quantization. Considering the quantization precision, chip area and saved time, 4-bit
coarse quantization and four-line pixels for coarse quantization are selected for a 16-stage low power
digital domain CMOS TDI image sensor with 10-bit SAR ADC. The analysis method is suitable for
digital domain CMOS TDI image sensors with various accumulation stages.

Figure 4. Comparing results between the low power accumulation scheme and the traditional
accumulation scheme.

As the sampling time of SAR ADC is taken into consideration, a complete conversion needs
(11 + H) clock periods for a 10-bit SAR ADC in the actual design, where H is the number of clocks
for sampling. If an N-stage low power digital domain CMOS TDI image sensor adopts the above
optimized parameters, a complete N-stage accumulation consumes (N + 4) × (11 + H − 4) clock
periods. With the same accumulation stages, a complete N-stage accumulation consumes N × (11 + H)

clock periods using the traditional accumulation scheme. If the two kinds of image sensors work in
the same conversion rate, the ratio of the line rate between them could be expressed as

line rate ratio =
N × (11 + H)

(N + 4)× (11 − 4 + H)
. (2)

Since the power consumption is proportional to the line rate, the low power accumulation scheme
could achieve lower power consumption than the traditional accumulation scheme with the same line
rate. The saved power consumption increases with the increase of accumulation stages for the fixed
coarse quantization bit numbers and coarse quantization times.

2.3. MATLAB Behavioral Simulation

In order to verify the efficiency of the low power accumulation technique, a behavioral simulation
is completed with MATLAB to compare the imaging quality between the proposed and the traditional
16-stage digital domain accumulation schemes. The brief block diagram of the behavioral model is
shown in Figure 5. First, a 256 × 256 greyscale image is obtained under the low illumination condition,
and then the greyscale image is transferred to analog voltage array according to the performance of SAR
ADC. The terms ’Vre f ’ and ’G’ shown in Figure 5 indicate the quantization range and precision of SAR
ADC, respectively. According to the voltage information, the Gaussian noise is mapped to the greyscale
image. Then, the greyscale images with Gaussian noise are amplified by digital programmable gain
amplifier (DPGA) and are handled with the two kinds of accumulation schemes. The greyscale image
with auxiliary Gaussian noise is shown in Figure 6a and the image that is amplified by DPGA is
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shown in Figure 6b. Figure 6c,d illustrate the reconstructed images processed with the two kinds of
accumulation schemes. There are no more differences between the two images from the visual effect.

Figure 5. Block diagram of the MATLAB behavioral simulation.

(a) (b)

(c) (d)

Figure 6. Greyscale images (a) Greyscale image with auxiliary noise; (b) Amplified image;
(c) Reconstructed image processed by the traditional accumulation scheme; and (d) Reconstructed
image processed by the low power accumulation scheme.

3. Circuit Implementation and Simulation Results

3.1. Circuit Implementation

In this work, two versions of 16-stage digital domain CMOS TDI image sensor chains, with and
without the low power accumulation technique, are designed in the 0.18 μm CMOS process. The image
sensor chain consists of one column pixel and one column readout circuit. According to the analysis in
Section 2, 4-bit coarse quantization and four lines of pixels for coarse quantization are selected in the
16-stage low power version. The low power digital domain CMOS TDI image sensor chain is shown in
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Figure 7. It consists of a pixel column, a DPGA, a 10-bit SAR ADC and a digital accumulator. The pixel
column consists of a coarse quantization pixel column and a fine quantization pixel column.

Figure 7. Block diagram of the 16-stage low power digital domain CMOS TDI image sensor chain.

3.1.1. Pixel and DPGA

As is shown in Figure 8, the pixel circuit consists of a normal 3T structure and a class AB output
stage for driving the large load capacitor provided by the DPGA. The schematic of the DPGA is shown
in Figure 9. It is composed of some switches, one group capacitor of C2 = C

′
2, one group programmable

capacitor array of Csp = Csn, and a two-stage fully differential operational amplifier (OPA) [15] with
hybrid cascade compensation technique [16]. The simulation results of the OPA are shown in Table 1
with a 3.3 V supply voltage and 5 pF capacitance load. The corners ‘ss’, ‘tt’ and ‘ff’ are defined as
(NMOS: slow and PMOS: slow), (NMOS: typical and PMOS: typical) and (NMOS: fast and PMOS: fast).

Figure 8. Schematic of the pixel circuit.

Figure 9. Schematic of the DPGA.
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Table 1. Simulation results of the OPA.

Corner Temperature
Supply Voltage

of OPA
Output Voltage
Swing of OPA

Unity
Gain-Bandwidth

Gain Phase Margin

tt −40◦C–80◦C 2.97 V –3.63 V 0.85 V–2.45 V 135 MHz–167 MHz 105 dB–117 dB 68◦–69◦
ss −40◦C–80◦C 2.97 V –3.63 V 0.85 V–2.45 V 118 MHz–161 MHz 107 dB–117 dB 67◦–69◦
ff −40◦C–80◦C 2.97 V–3.63 V 0.85 V–2.45 V 124 MHz–173 MHz 97 dB–116 dB 68◦–71◦

3.1.2. SAR ADC

The SAR ADC uses a split-capacitor structure with redundancy and a digital correction
technique [17]. The schematic of the SAR ADC is shown in Figure 10. It is composed of a
digital-to-analog converter (DAC), a comparator and one SAR logic. The comparator of the SAR
ADC uses three cascaded low-gain amplifiers as the preamplifier and a latch, applying a dynamic
input offset cancellation technique [18]. Thus, the input offset is quite small [19]. Figure 11a shows
the simulation results of the fast Fourier transform (FFT) spectrum of the SAR ADC with an input
frequency close to 400 KHz at a 1.96 MS/s sampling rate. Figure 11b plots the simulation results of
total harmonic distortion (THD), spurious free dynamic range (SFDR), SNR, signal to noise distortion
ratio (SNDR) versus the input frequency at 1.96 MS/s sampling rate.

Figure 10. Schematic of the SAR ADC.

(a) (b)

Figure 11. Simulation results of the SAR ADC (a) 1024-point FFT spectrum at 1.96 MS/s of SAR ADC;
and (b) dynamic performance of SAR ADC versus input frequency.
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3.1.3. Digital Accumulator

The block diagram of the digital accumulator is shown in Figure 12. It consists of a 10-bit digital
adder, a multiplexer, a memory array A, a memory array B, a combination adder, a divider, a round
divider, three one-way buses (bus1 to bus3), and three two-way buses (bus4 to bus6). The memory
array A is used to store the coarse quantization results, and the memory array B is used to store the fine
quantization results. The combination adder is used to combine separate quantization results, and the
round divider is used to calculate the round average value of the accumulated high-bit codes. As the
discussion above, the coarse quantization pixel column consists of four lines (C1–C4) of pixels and the
fine quantization pixel column is composed of 16 lines (D1–D16) of pixels. Based on the oversampling
exposure method [20], 2 × (4 + 6 + 1) memories are needed to store the results of coarse quantization
and fine quantization.

Figure 12. Block diagram of the digital accumulator.

The detailed operation procedure of the digital accumulator is described as follows. Because the
SAR ADC uses a redundancy method, the actual bit numbers of coarse quantization increase to 5 bits.
When the image sensor starts to work, the four lines coarse quantization pixels (C1–C4) perform in
advance to capture the object four times. The output result of the C1st line of pixels undergoes the
coarse quantization by SAR ADC, and then the quantized high 5-bit data are stored in the memory A16.
After that, the output result from the C2nd line of pixels also completes the coarse quantization through
SAR ADC, and the quantized digital codes are transferred to the digital adder via bus1. The data stored
in the memory A16 is also delivered to the digital adder through bus4, multiplexer and bus2. Then,
the output of the digital adder is sent back to the memory A16 through bus3, multiplexer and bus4.
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With the same technique, the signals output by four lines of coarse quantization pixels are quantized
and accumulated. Then, the accumulated result is stored in the memory A16.

During the fine quantization, after the D1st line of pixels finishes the exposure of the same object,
the result is sampled by SAR ADC. In the meantime, the round average value of the accumulated data
stored in the memory A16 is sent back to the DAC of SAR ADC through bus6. Based on the coarse
quantization results, the SAR ADC performs the remaining successive approximation to the analog
input signal, which is defined as the fine quantization. The quantized digital codes are stored in the
memory B16. In a similar manner, the signal stored in the memory B16 is accumulated 16 times. Then,
the round average value of the data stored in the memory A16 is delivered to an input port of the
combination adder. Meanwhile, the data stored in the memory B16 is divided by 16, and the quotient
is also delivered to the other port of the combination adder. Finally, the output of the combination
adder is served as the complete quantization result of the scanned object.

3.1.4. Noise Analysis of the Low Power Readout Circuit

The noise of the low power digital domain readout circuit is mainly contributed by the pixel
circuit, the DPGA and the SAR ADC. There are two important intrinsic noise sources: thermal noise
and flicker noise [21]. The flicker noise of the pixel circuit and DPGA are reduced to a negligible level
by using theinut input–offset storing technique [22]. Because the pixel uses a 3T structure, KTC noise
could not be eliminated. Benefitting from the DPGA, the total equivalent input noise of DPGA and
SAR ADC is divided by the amplified magnitude of the DPGA. Therefore, we mainly concentrate on
the effect of the thermal noise contributed by the source follower. Assuming that the source follower
is equivalent to a unity-gain amplifier and the total equivalent output power spectral density of the
noise of the source follower could be expressed as

VnSF_out( f )2 = 4kTγ × ( 1
gm1

+ 1
gm3

+ 1
gm4

+ 1
gm10

+ 1
gm11

)

+ 4kTγ

g2
m3

× (gm2 + gm6 + gm7) +
4kTγ

g2
m4

× (gm5 + gm8 + gm9),
(3)

where k is the Boltzmann constant, T is the absolute temperature, and γ is a coefficient of process.
Since the source follower could be equivalent to a single-pole system, the equivalent bandwidth of
noise could be expressed as

BWnSF_equ =
1
2
× gm1

2 × (Cbus + Cs)
, (4)

where Cbus and Cs are the total node parasitic capacitance and load capacitance of the pixel readout
circuit. Thus, the total equivalent output noise of the source follower could be expressed as

VnSF_out
2 =

∫ BWnSF_equ
1 VnSF_out( f )2d f = gm1×ξ1

(Cbus+Cs)

ξ1 = kTγ × ( 1
gm1

+ 1
gm3

+ 1
gm4

+ 1
gm10

+ 1
gm11

+ gm2
g2

m3
+ gm6

g2
m3

+ gm7
g2

m3
+ gm5

g2
m4

+ gm8
g2

m4
+ gm9

g2
m4
).

(5)

The noise optimization of the source follower is completed by properly increasing gm3−4, gm10−11
and reducing gm2, gm5−9. Since the output signals of pixels are amplified H times, the total equivalent
input noise contributed by the readout circuit after N times accumulation could be expressed as

VNtot =

√
N × (

kT
CPD

+ VnSF_out
2) +

N
H2 × (VnDPGA_out

2 + VnADC_out
2), (6)

where CPD is the photo-diode node capacitance, VnDPGA_out
2 is the noise energy contributed by the

DPGA, and VnADC_out
2 is the noise energy contributed by the SAR ADC.
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3.2. Linearity Simulation Results and Power Consumption Analysis

According to the non-linearity measured method of CMOS image sensors [23], the linearity is
defined as

Linearity =(1 − ΔVmax

Vmax
)× 100%, (7)

where the ΔVmax is the maximum difference between the simulated and fitted transmission curves and
the Vmax is the full scale. The linearity simulation results of the two versions are shown in Figure 13.
The linearity of the image sensor chains are 99.74% with the low power accumulation scheme and
99.99% with the traditional accumulation scheme.

Figure 13. Linearity simulation results of the two versions.

The total power consumption of the image sensor chain is contributed by the DPGA, the SAR
ADC, the accumulator, the pixel circuit and other circuits. The other circuits include a brief current
generation circuit and some digital buffers. The distributions of the power consumptions of the
two versions are shown in Figure 14. The comparisons of some main parameters of the two kinds of
image sensor chains with our prior works are shown in Table 2. Compared with our prior works and
the traditional accumulation scheme, the proposed low power digital accumulation technique can
achieve lower average power consumption of each slice. The average power consumption of each slice
is defined as

average power consumption of slice =
total power consumption

(horizontal resolution)× (line rate)
. (8)

(a) (b)

Figure 14. Power consumption distributions of the two kinds of image sensor chains (a) low power
accumulation scheme; and (b) traditional accumulation scheme.
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Table 2. Comparisons of some main parameters of the two kinds of image sensor chains with
prior works. (H-Horizontal, V-Vertical).

Parameter
This Work

[10] [14]
Low Power Traditional

Technology 0.18 μm CMOS 0.18 μm CMOS 0.18 μm CMOS 0.18 μm CMOS
Array size 1 (H)×20 (V) 1 (H) ×16 (V) 1024 (H)×128 (V) 1024(H)×128 (V)

Maximum stage 16 16 128 128
Maximum line rate 138888 lines/s 122549 lines/s 3875 lines/s 3875 lines/s

Total power consumption 8.991 mW 9.065 mW 500 mW 290 mW
Average power consumption of slice 6.47 × 10−8 J/line 7.4 × 10−8 J/line 12.6 × 10−8 J/line 7.3 × 10−8 J/line

4. Conclusions

In this paper, a low power digital accumulation technique for a digital domain CMOS TDI
image sensor is proposed to reduce power consumption without degrading the rate of imaging.
The low power accumulation scheme is composed of coarse quantization and fine quantization. The
optimized bit numbers and times of coarse quantization are analyzed. With the 0.18 μm CMOS
process, two versions of 16-stage digital domain CMOS TDI image sensor chains, with and without the
proposed technique, were designed. The simulation results show that the average power consumption
of each slice are 6.47 × 10−8 J/line and 7.4 × 10−8 J/line, respectively. The linearity of the image
sensor chains are 99.74% with the low power accumulation scheme and 99.99% with the traditional
accumulation scheme.
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Abstract: In this study, a 40 ˆ 48 pixel global shutter complementary metal-oxide-semiconductor
(CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a
0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring
around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding.
The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 ˆ 107 when
illuminated by a 405-nm diode laser and 1/1.4 ˆ 104 when illuminated by a 650-nm diode laser.
The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per
side, the measured random readout noise was 217 e´ rms, and the measured dynamic range of the
pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed
here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena.

Keywords: CMOS image sensor (CIS); gated imager; snapshot imager; ultra-fast global shutter;
framing camera; low parasitic light sensitivity; high shutter efficiency

1. Introduction

Fast gated or global shutter cameras with shutter time at a level of tens of picoseconds are
widely used in the observation of fast-evolving phenomena, including repeatable and non-repeatable
processes. Traditionally, micro-channel plate (MCP)-based gating cameras are used in range imaging
systems (time-of-flight depth cameras) and wide-field fluorescence-lifetime imaging microscopy to
observe repeatable fast evolving phenomena. In recent years, a large number of solid-state devices
have been developed for such applications [1–5].

Currently, MCP-based gated cameras are almost the only type of receive-only 2D imaging device
used in applications that require the observation of non-repeatable fast-evolving phenomena, with
a time resolution as little as approximately 35 ps [6]. Such applications include plasma expansion
dynamics research, charged particle accelerator diagnosis, optical time-of-flight measurements of
fast moving objects, and high-resolution photo-acoustic imaging. However, some other successful
efforts have also been presented for these purposes that use streak cameras [7] or that rely upon
light-absorption-induced modulation of the optical refractive index of a semiconductor sensor
medium [8].

A pulse-dilation enhanced gated optical imager can achieve a time resolution of approximately
5 ps [9–11], which is an overwhelmingly high speed for receive-only 2D imaging. The drawback of such
a device is that it is bulky in size, sensitive to magnetic fields, and relatively low in spatial resolution.

Very fast global shutter complementary metal-oxide-semiconductor (CMOS) readout test chips
with on-chip photodiodes have also been implemented [12]. Tests to measure the minimum exposure
time when using on-chip photodiodes have achieved results of approximately 200 ps [13], but without

Sensors 2016, 16, 999 389 www.mdpi.com/journal/sensors
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any reports on the successful implementation of the sensor chip it requires, their use in practical
applications is still limited. To the best of the authors’ knowledge, no reports have been given on the
parasitic light sensitivity of the global shutter CMOS readout chip while using the on-chip photodiodes.

If the parasitic light sensitivity does not meet requirements, artifacts will be captured within an
image from bright moving objects or light spots after exposure and before the readout [14].

In this paper, the authors present the detailed design, test methods, and results of a low parasitic
light sensitivity 40 ˆ 48 pixel gated CMOS image sensor that is sensitive to visible and near ultraviolet
light with a shutter time as low as 75 ps, which is manufactured using a 0.5-μm 2-poly 3-metal polycide
mixed-signal CMOS process. The type of CMOS image sensor proposed in this paper can be used in
ultra-fast framing cameras to observe single-shot fast-evolving phenomena.

2. Pixel Circuit Design

In order to obtain the desirable fast photo response, p+/n-well photodiodes are used in the pixel
array. Semiconductor processes and device simulations have shown that a small-sized p+/n-well
photodiode manufactured using this process has an impulse response time that is shorter than
approximately 5 ps, for visible light or near ultraviolet, at a bias of 5 V. Figure 1a shows the simulated
photocurrent response of the small-sized p+/n-well photodiode at a 5-V bias after illumination by
1 ps short light pulses with 0.2 pJ of energy. The software used in the device simulation was Silvaco
Atlas, and Figure 1b shows the structure and the doping profile of the photodiode used in the device
simulation. A wavelength of 558 nm was used in the simulation, which is the maximum emission of a
bright ultra-fast scintillator (n-C6H13NH3)2PbI4, which is in a natural multiple quantum well (MQW)
structure and has a decay component of 390 ps (30%) at room temperature [15]. X-ray or electron
sensitivity can be achieved by coupling the proposed image sensor to this type of bright ultra-fast
scintillator screen by microscopy.
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Figure 1. (a) The simulated transient response of the p+/n-well photodiode at three different
wavelengths; (b) The structure of the photodiode used in the transient simulation.

The circuit diagram for a single pixel is shown in Figure 2a. In the design, Vreset, Vstart, and Vend
are set to the same value as VDD, and Vselect is set to ground when waiting for the trigger signal. Thus,
only the transistors M1 and M2 are turned on. Once triggered, Vstart and subsequently Vend are pulled
down to ground in the sequence, within a time interval that is slightly shorter than the exposure time.
During exposure, when M1 is turned off and M2 is still on, part of the photo-induced charge is stored
on the polysilicon-insulator-polysilicon (PIP) capacitor C1. After exposure, all five transistors of the
pixel are turned off. After approximately 14 nanoseconds, Vreset is pulled down to ground, thus pulling
up the anode of the photodiode to VDD and forming the final signal voltage on the gate of M3 for
the read-out.
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(a) (b) 

Figure 2. (a) The pixel circuit schematic; (b) The timing chart of the pixel and the simulated results of
the drain voltage of M1 and M2.

A timing chart for Vstart, Vend, Vreset, and the simulated results of the drain voltages of M1 and
M2 is shown in Figure 2b. In the simulation, a 6.25-fF capacitor representing the parasitic capacitance
was added between the bottom plate of C1 and the ground. Figure 2b shows that the M2 drain voltage
drops to around ´0.396 V after Vend has been pulled down to ground. This value is acceptable as the
simulated leakage current of the 0.396-V forward-biased p´ substrate/n+ drain diode of M2 is only
216 pA at room temperature. The relatively large parasitic capacitance between the bottom plate of
C1 and the grounded p´ substrate is the key to keeping the M2 drain voltage from dropping deeper,
while it also restricts the sensitivity of the proposed image sensor.

In more recently developed global shutter CMOS image sensors, a photodiode substrate and an
in-pixel storage node substrate is interconnected by microbumps to achieve excellent parasitic light
sensitivity [14]. In an ultra-fast gated CMOS image sensor, this type of strategy is not the best choice
as the parasitic capacitance of the microbump interconnections is too large. Instead, sufficient light
shield, and some shield for the carriers, is applied to a single-chip CMOS image sensor to achieve a
low enough level of parasitic light sensitivity. In the proposed CMOS image sensor, the entire area in
the pixel array, with the exception of the photodiodes, is shielded by the top metal layer in order to
achieve high shutter efficiency. Furthermore, for each pixel, a continuous contact ring is included in
the design, which is in contact with the n+ active area within the photodiode n-well and surrounding
the photodiode p+ active area, in order to achieve superior light shielding efficiency. The anode of the
photodiode (the p+ area) is led out by metalized polysilicon through a small opening on the contact
ring. There are also continuous via rings between the metal layers (1,2) and (2,3) surrounding the
photodiode without any openings. Although using continuous contact rings or via rings in the circuit
violates the topological design rule from the foundry, the proposed design works well. It is based
on the 0.5-μm CMOS process without any changes to the default process parameters. The 0.5-μm
CMOS process that is used to fabricate the proposed chip does not include any chemical mechanical
planarization (CMP) processing.

The layout of a couple of pixels in the pixel array is shown in Figure 3a, and a cross-sectional
diagram of the photodiode in the pixel is shown in Figure 3b. Transistors M1 and M2 of the pixels
in the even and odd columns share the same active areas. Thus, the drain of transistor M2 is far
away from the nearest contact opening, which helps provide sufficient light shielding to the drain of
transistor M2. This approach also simplifies the layout of the vertical clock tree in the pixel array.
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Figure 3. (a) The layout of two pixels; (b) Cross-sectional diagram of the p+/n-well photodiode
in a pixel.

In order to minimize the drain capacitance, both gates of transistors M1 and M2 are configured in
a square annular structure. This also provides some shield for the photoelectrons for the drain of M2
and increases the shutter efficiency. The authors also used several depletion NMOS capacitors with an
approximate total value of 200 fF in each pixel for power-decoupling purposes.

3. Limitations of Shortest Shutter Time

Figure 4a shows a simplified circuit model of a pixel before exposure at the moment when
transistors M1 and M2 are both on. Cd includes the capacitance from the photodiode D1 and the
transistors M1 and M5. C1 represents the capacitance of the sampling capacitor C1 in Figure 2a. R1 and
R2 represent the on-state resistance of the transistors M1 and M2, respectively. It can be assumed
that the pulse current source Id emits a short enough current pulse with a total charge of Qp before
exposure. The time interval between the current pulse and the start of exposure is t1, and Q1 is the
charge on capacitor C1 after the shutter has remained in the “open” state, as shown in Figure 4b, for
sufficient time. For simplicity, let C = Cd = C1, and then Q1 can be expressed as

Q1 “ p2R1 ´ R2q sinhpτt1q ` 2R1R2Cτ ¨ coshpτt1q
4R1R2Cτ

¨ e´ 2R1`R2
2R1R2C t1 ¨ Qp (1)

τ “
a

4R1
2 ` R2

2

2R1R2C
(2)

(a) (b) 

Figure 4. Simplified circuit model of a pixel. (a) Before exposure. (b) During exposure.

Q1 will decline as t1 increases. In the proposed design, R1 = R2 = 1413 Ω, and we assume C = 21 fF.
Let thalf1 be the value of t1 when Q1 has decreased to half of its maximum value. For the values given
above, thalf1 = 31.5 ps.

Figure 4b shows the simplified circuit model of a pixel during exposure, when transistor M1 is off
and M2 is still on. It can be assumed that the current source Id emits a short enough current pulse with
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a total charge Qp during the shutter “open” state. If t2 denotes the time interval after the current pulse
and Q2 denotes the charge on capacitor C1 at time t2, Q2 can be expressed as

Q2 “ C1

C1 ` Cd

„
1 ´ e´ C1`Cd

R2C1Cd
t2

j
Qp (3)

Q2 will increase after the current pulse and eventually reaches a maximum value. Let thalf2 be the
time after the current pulse when Q2 reaches half of its maximum value; thalf2 can then be expressed as

thal f 2 “ lnp2q R2C1Cd
C1 ` Cd

(4)

In the proposed design, C1 = 21 fF, R2 = 1413 Ω, and the simulated value of Cd is 27 fF with a 5-V
power supply, giving thalf2 = 11.7 ps. The shortest shutter time of the proposed design should therefore
be longer than thalf1 + thalf2, i.e., 43.2 ps.

4. Sensor Chip Architecture

Figure 5a shows a micrograph for the designed image sensor, and Figure 5b illustrates the circuit
architecture of the sensor. The exposure control signals Vstart and Vend can be configured to be directly
controlled by an external digital input, or alternatively the exposure process can be triggered using
an external digital signal. When the exposure process is triggered by an external signal, the time
between the falling edge of Vstart and Vend signal (roughly the exposure time) is controlled by a
voltage-controlled delayer, which is located in the exposure clock control circuits at the bottom of
the chip.
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Figure 5. (a) Micrograph of the designed image sensor. (b) Structural diagram of the designed image
sensor; simplified schematic of a single vertical component in the clock trees.

The exposure control signals Vstart and Vend are firstly distributed across the horizontal
components [4,5], then across the vertical components of the clock trees, and finally to the pixels.
The vertical components of the clock trees are placed in the pixel array by pruning one row of pixels
after every eight rows, as shown in Figure 5b. The three even and the four odd vertical components
of the clock trees belong to the Vstart and the Vend signals, respectively. A simplified schematic of the
single vertical components of the clock trees is shown in the right part of Figure 5b. These clock trees
consist of fast falling-edge digital buffers [12] and distributed power decoupling capacitors. This type
of design of clock trees can be easily extended to large-format gated CMOS image sensors.
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Since balanced clock trees with fast falling-edge digital buffers are used in the exposure control
signal distribution in both the horizontal and vertical directions, and the output of the final nodes of
all vertical components of the Vstart clock tree are connected together as shown in the right part of
Figure 5b, as are the horizontal components and the Vend clock tree, the exposure signal skew should
be relatively small compared with the shortest shutter time of the small designed image sensor.

The image signal from the pixels is first multiplexed by an analog multiplexer to a voltage shifter,
and it is then buffered by an on-chip analog buffer and eventually drives an off-chip analog-to-digital
(A/D) converter.

5. Test Methods and Results

A test board connected to a PCI digital data acquisition board was used to test the designed chip.
A 12-bit A/D converter chip operating at a 5-V input range was used on the test board. The highest
speed achievable by the digital data acquisition board when operating bi-directionally is 10 M samples
per second. This speed limits the A/D converter clock frequency and the sampling rate to a maximum
of 5 M samples per second.

Figure 6 shows the measured photo response curve and the photo response non-uniformity
(PRNU) between pixels of the proposed image sensor. The photo response curve and the PRNU were
obtained by varying the exposure time, while keeping a constant uniform illumination by a blue
LED. The measured PRNU for the selected area at half of the saturated voltage for all columns, odd
columns only and even columns only was 1.39%, 1.42%, and 1.28%, respectively. This is normal and
the difference in the pixel layouts for the odd and even columns show no significant influence on
the PRNU.
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Figure 6. The measured photo response curve and the photo response non-uniformity of the designed
image sensor.

To measure small signal responsivity or the charge-to-voltage gain of the designed image sensor,
the central area of the pixel array was illuminated by a defocused 405-nm wavelength continuous-wave
(CW) diode laser spot, as shown in Figure 7a. The difference between the measured total supply
current of the chip when the 405-nm laser was on and off was the measured total photocurrent. During
such measurements, the pixel array was in a state of waiting for the trigger signal, and Vselect of all
pixels was set to ground, so that the output analog buffer remained in the same state. The measured
small signal responsivity of the designed chip was 1.47 μV/e´. The linear range of the output signal
was from 2.5 V to about 0.7 V, so the full capacity of the pixel was around 1,200,000 e´. The measured
random readout noise of the output signal was 475 μV rms. The quantization noise of a 12-bit readout
with a 5-V full range is 352 μV rms. Thus, the random readout noise of the designed chip was
319 μV rms, which is equivalent to 217 photoelectrons generated by the photodiode. Therefore, the
dynamic range of the designed chip was about 5500:1.
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Figure 7. Images captured by the designed image sensor. (a) Image of the defocused laser spot used
in the small signal responsivity measurement; (b) Image of the fiber bundle at a 17 ns shutter time.
(c) Image of the fiber bundle at a 30 ps simulated shutter control signal delay.

The measured parasitic light sensitivity of the in-pixel storage node was very low when
illuminated by a continuous-wave diode laser with a peak wavelength of 405 nm. The parasitic
light sensitivity was measured by comparing the following two images. For the first image, the shutter
time was set to approximately 300 ps. The exposure to the 405-nm diode laser lasted 0.5 s after the
shutter was closed, and the captured image was then read out. The second image was taken by setting
the shutter time to 100 ns and read out immediately after the shutter was closed. The dark image
taken with the laser off was subtracted from both images to eliminate the output signal bias and fixed
pattern noise. The resulting two images were then used to calculate the parasitic light sensitivity. The
final measured parasitic light sensitivity when illuminated by a 405-nm diode laser was 1/8.5 ˆ 107.

The parasitic light sensitivity when illuminated by a 650-nm continuous-wave diode laser was
measured using a similar method, and the measured value was 1/1.4 ˆ 104.

The measured leakage signal in a dark environment after the global shutter was closed was
0.7 V/s. According to the simulation, this leakage signal value is equivalent to a leakage current of
approximately 22 fA on the storage node in the pixel.

The shortest shutter time (fastest shutter speed, best temporal resolution) of the designed chip
was measured using a frequency-doubled 400-nm wavelength Ti:sapphire laser system with a 130-fs
pulse width. The 400-nm laser flash was used to uniformly illuminate a fiber cable. The cable was
composed of 30 silica fibers of different lengths [11]. The difference in length between adjacent fibers
in the fiber cable was 2.0 mm. The output port of the fibers was imaged on the image sensor using
the lens. During the shutter time measurement, the image sensor was triggered by a biased p-i-n
photodiode outside the chip. Figure 7b shows the image that was obtained at a 1-V exposure time
control voltage, which corresponds to a shutter time of 17 ns, whereas Figure 7c was obtained at a
4-V exposal time control voltage, which corresponds to a 30 ps simulated shutter control signal delay.
The two images were used to obtain a normalized exposure curve, as shown in Figure 8. The measured
shortest shutter time of this camera was less than 75 ps.
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Figure 8. Exposure curve of the designed image sensor.
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The characteristics and measurement results of the designed image sensor and a comparison with
prior works are summarized in Table 1.

Table 1. Comparison with previous ultra-fast gated CMOS image sensors.

Reference
JSSC 2008 [12]
SPIE 2012 [13]

SPIE 2012 [13] JSSC 2016 [3] This Work

Design aim Test readout chip for ultra-fast
gated X-ray imager

Readout chip for ultra-fast
gated X-ray imager

Fluorescence
lifetime imaging

Test ultra-fast gated
imager for visible light

Supply voltage 1.8 V 1.8 V – 5 V

Process 0.18-μm CMOS 0.18-μm CMOS 0.11-μm CIS CMOS 0.5-μm CMOS

Chip size 3 mm ˆ 3 mm > 15 ˆ 15 mm 7.0 mm ˆ 9.3 mm 2 mm ˆ 2 mm

Resolution 64 ˆ 64 pixels 512 ˆ 512 pixels 256 ˆ 512 pixels 40 ˆ 48 pixels

Pixel pitch 30 μm 30 μm 11.2 μm ˆ 5.6 μm 24 μm

Photodiode aperture area – – ~10.5 μm2 6.9 μm ˆ 6.9 μm

Power consumption 125 mW – 540 mW 50 mW

Fixed pattern noise (rms) 9 mV – 0.12 e´ (vertical) 23.3 mV

Random readout noise 115 e´ – 1.75 e´ 475 μV

Random readout noise
(rms, with quantization

noise subtracted)
– – – 217 e´

(319 μV)

PRNU – – – 1.4%

Full capacity 310, 000 e´ – 2,700 e´ 1,200,000 e´

Small signal responsivity 11 μV/e´ – 85 μV/e´ 1.47 μV/e´

Output swing 0.8 V – 0.3 V 1.8 V

Leakage signal (global
shutter closed) < 125 fA – – 22 fA (0.7 V/s)

Parasitic light sensitivity – – 1/16.7 (472 nm) 1/8.5 ˆ 107(405 nm)
1/1.4 ˆ 104(650 nm)

Shortest shutter time 200 ps 250 ps 180 ps (374 nm) 75 ps

6. Discussion

A measured leakage signal of 0.7 V/s in a dark environment is too large compared to the readout
time of a large-format imager when there are 5-M samples being read out per second. Therefore, either
the readout speed needs to be increased, or the leakage current needs to be lowered for an imager with
much more pixels. Methods such as cooling or improving the pixel circuit design can be used to lower
the leakage current.

The measured minimum shutter time of 75 ps is much larger than the calculated value of 43.2 ps,
and the exposure curve shown in Figure 8 seems to be symmetric. This is as expected, since the shutter
time is limited mainly by the fall time of the exposure control signals Vstart and Vend driving the gates
of M1 and M2, and not by the intrinsic minimum shutter time of the pixel circuit.

The parasitic light sensitivity that is measured when a 650-nm diode laser is used for illumination
is much higher than that obtained using a 405-nm diode laser. This is due to the fact that the absorption
depths of light at 405 nm and 650 nm in intrinsic silicon is approximately 0.12 μm and 3.56 μm,
respectively [16]. Therefore, much more photoelectrons are generated in the p´ substrate under the
photodiode when it is illuminated by the 650-nm light, and some of these photoelectrons drift to
the n+ drain of the transistor M2, although the p-well of transistor M2 provides some shield to the
photoelectrons generated in the p´ substrate [17]. Therefore, placing the p-well of transistor M2 in a
deep n-well isolated area may provide considerable improvement to the shutter efficiency.

Since the exposure signal skew is relatively small compared with the shortest shutter time in the
small designed image sensor, and there is a lack of pixels with skew test circuits [12] in the pixel array,
it is hard to measure the exact exposure signal skew. Precise measurement may be possible in the
future using an ultra-fast gated CMOS image sensor based on a similar design, but with a much larger
imaging area.
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7. Conclusions

For this paper, a 40 ˆ 48-pixel ultra-fast global shutter CMOS image sensor was designed and
manufactured using a 0.5-μm mixed-signal CMOS process. The measured parasitic light sensitivity
for a 405-nm diode laser was 1/8.5 ˆ 107, which is comparable to MCP-based gated cameras and
is low enough for most applications. The measured shutter time can be as short as 75 ps, and the
measured dynamic range of the pixel of the designed chip was 5500:1, which is no worse than
MCP-based picosecond framing cameras that are currently used [18]. The authors are confident that
further significant improvements can be made to the proposed design’s temporal resolution through
the combined use of more advanced CMOS processes such as advanced silicon-on-insulator (SOI)
CMOS technologies and by overdriving the gates of M1 and M2 immediately before and during the
exposure process.
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Abstract: This paper presents a fast multiple sampling method for low-noise CMOS image sensor
(CIS) applications with column-parallel successive approximation register analog-to-digital converters
(SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D
conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion,
reducing noise of the CIS by one over the square root of the number of samplings. The area of the
12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four
scaled reference voltages. In addition, a simple up/down counter-based digital processing logic
is proposed to perform complex calculations for multiple sampling and digital correlated double
sampling. To verify the proposed multiple sampling method, a 256 ˆ 128 pixel array CIS with 12-bit
SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the
proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and
random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

Keywords: successive approximation register ADC; column parallel readout; CMOS image sensor

1. Introduction

Recently, noise performance of CMOS image sensors (CISs) has become an important factor for
images captured under low light conditions. The CIS typically uses a programmable gain amplifier
(PGA) and a multiple sampling method to suppress noise caused by the pixel and readout circuit [1–8].
The PGA amplifies the pixel output and reduces noise with respect to the gain of the PGA. The readout
circuit using the multiple sampling method repeatedly samples the pixel output and then averages the
sampled pixel outputs to reduce noise by one over the square root of the number of samplings [7,8].

Several multiple sampling methods, such as the correlated multiple sampling (CMS), digital
correlated multiple sampling (DCMS), and pseudo-multiple sampling (PMS) methods, have
been studied for CISs with single-slope analog-to-digital converters (SS ADCs) [4–6]. The CMS
method repeatedly integrates and averages the pixel output in the analog domain, but requires a
power-consuming amplifier [4]. The DCMS method repeatedly converts the pixel output to a digital
signal and averages the A/D conversion results in the digital domain. However, the total A/D
conversion time increases in proportion to the number of samplings [5]. An alternative solution
to DCMS, the PMS method which uses multiple ramp signals with different offsets is reported [6].
However, it requires an accurate ramp generator to control the offset of multiple ramp signals.

Several ADCs using the multiple sampling method have been researched to achieve low noise
and overcome the drawbacks of SS ADC, which makes achieving short conversion time and high
resolution difficult. A ΔΣ ADC easily achieves low noise by repeating sampling and integrating
operations, but requires many clocks and a complex decimation filter [9]. An extended counting
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ADC (EC ADC) achieves short conversion time by sequentially converting the pixel output to the
upper bit by using ΔΣ ADC and the lower bit by using cyclic ADC. However, an operational amplifier
in EC ADC increases power consumption [10,11]. A successive approximation register ADC (SAR
ADC) consumes less power due to its simple structure [3,12–15] and reduces noise by using the PMS
method [14]. However, since the SAR ADC repeats the operation of the 1st A/D conversion, long A/D
conversion time is required.

This paper proposes a fast multiple sampling (FMS) method for CIS with SAR ADC to achieve
short conversion times and low noise. A 12-bit SAR ADC using the proposed FMS method repeatedly
converts the pixel output to the lower 4-bit among the 12-bit output. Therefore, the required number
of bit conversion steps is reduced to one-third. The 12-bit SAR ADC in the readout channel employs
a 10-bit capacitor DAC with four scaled reference voltages to reduce the area. In addition, a simple
digital processing logic consisting of a 3-input MUX and toggle flip-flop (T-F/F) is proposed to perform
the complex calculations for multiple sampling and digital correlated double sampling (DCDS).
In Section 2, the architecture of the developed CIS is described, along with the operating principle of
the proposed FMS method. Section 3 presents the circuit implementations of the SAR ADC and the
digital processing logic in the readout channel. In Section 4, the experimental results of the developed
CIS are analyzed and compared with prior works. Finally, conclusions are given in Section 5.

2. CIS Architecture

2.1. Block Diagram

Figure 1 shows the block diagram of the developed CIS employing the proposed FMS method.
The pixel array is composed of 256 ˆ 128 pixels with a pixel size of 4.4 μm ˆ 4.4 μm. Each readout
channel, consisting of a PGA, a 12-bit SAR ADC, a digital processing logic, and a column decoder, has
a pitch of 17.6 μm and converts the four column outputs of the pixel array to digital signals.

Figure 1. Block diagram of the developed CIS with a schematic of pixel circuit.

The PGA amplifies the pixel output, VPIX , and then the 12-bit SAR ADC using the proposed FMS
method repeatedly converts the PGA output, VPGA, to a digital signal. The digital processing logic
simultaneously performs the calculations for multiple sampling and DCDS. The output of the digital
processing logic selected by the column decoder is transferred to the sense amplifier. To reduce the
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area and power consumption, four images obtained from each column output are externally combined
to form an entire image. The timing circuit generates control signals for the row driver, readout circuit,
and sense amplifier, while the bias and reference circuits provide the bias and reference voltages,
respectively, for the PGA and 12-bit SAR ADC.

Figure 2 shows the operating sequence of the developed CIS in a row line time. The pixels
selected by SX sequentially generates a pixel reset voltage, VPIX_RST , and a photo-induced signal
voltage, VPIX_SIG, according to the control signals, RX and TX, respectively. The PGA with a gain of
G generates a PGA reset voltage, VPGA_RST , and an amplified pixel signal voltage, VPGA_RST + G ˆ
(VPIX_RST – VPIX_SIG), according to the pixel output. The SAR ADC using the proposed FMS method
has the maximum number of samplings of 17. At the first A/D conversion, the 12-bit SAR ADC
converts VPGA to 12-bit, and then repeatedly converted VPGA to the lower 4-bit. The digital processing
logic combines the sequential outputs of the comparator to obtain the A/D conversion result, and then
subtracts the A/D conversion result of VPGA_RST from that of VPGA_RST + G ˆ (VPIX_RST – VPIX_SIG).
Finally, the digital processing logic output becomes the A/D conversion result of G ˆ (VPIX_RST –
VPIX_SIG) [16,17].

 

Figure 2. Operating sequence in a row line time.

2.2. Operating Principle of the Proposed FMS Method

Figure 3 shows the signal flow diagram of the proposed FMS method. The proposed FMS method
operates in four steps: (1) An N-bit ADC converts the input voltage, VIN , to an N-bit digital signal,
D1st_N´bit, for the first A/D conversion, where VIN is a constant for CIS applications; (2) An N-bit
DAC converts D1st_N´bit to an analog voltage, V1st, and then the error voltage, VERR, is obtained by
subtracting V1st from VIN . With no quantization errors and noise, V1st is equal to VIN , and VERR
becomes GND. (3) An M-bit ADC converts VERR to the lower M-bit among the N-bit output, where
the range of VERR is determined by the quantization error and noise. The proposed FMS method
repeats the second and third steps (L ´ 1) times, where L is the number of samplings. Therefore, the
lower M-bit conversion results, DKth_M´bit’s, are repeatedly obtained from the second to Lth A/D
conversion, where DKth_M´bit corresponds to the Kth A/D conversion result. (4) To obtain the final
A/D conversion result, DFIN_N´bit, the digital processing logic adds D1st_N´bit to the average value
of DKth_M´bit’s.

Figure 3. Signal flow diagram of the proposed FMS method.
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Figure 4 shows the block diagram of the N-bit SAR ADC employing the proposed FMS method,
without the use of an additional analog circuit for the N-bit D/A conversion in the second step and
lower M-bit conversion in the third step. The N-bit SAR ADC consists of an N-bit capacitor DAC,
a SAR logic, and a comparator. The reference voltages, +VREF, ´VREF, and GND are used for the
SAR ADC.

 

Figure 4. Block diagram of the N-bit SAR ADC.

In the first step of the proposed FMS method, the N-bit capacitor DAC samples VIN by connecting
the top and bottom plates of all capacitors to VIN and GND, respectively, and then its output, VDAC,
became VIN . The comparator compares VDAC with GND to obtain the most significant bit (MSB), and
the SAR logic connects the largest capacitor, 2N´1¨ CU , to +VREF or ´VREF. This operation is repeated
until the least significant bit (LSB) is obtained. Then, the smallest capacitor, CU , is connected to +VREF
or ´VREF. After the first A/D conversion by the N-bit SAR ADC, VDAC is expressed as:

VDAC “ VIN ` V1st_NOISE ´
Nÿ

i“1

ˆ
D1st_N´bitris ˆ VREF

2i

˙
« GND (1)

where D1st_N´bit[i] corresponding to the ith bit of the first A/D conversion result has a value of ”1” or
“´1”, and V1st_NOISE is an input-referred noise which includes the sampling and circuit noises at the
first A/D conversion.

Figure 5a shows an example of the 4-bit capacitor DAC when D1st_N´bit is ”1001”. The capacitors,
8¨ CU , 4¨ CU , 2¨ CU , and CU , are connected to ´VREF, +VREF, +VREF, and ´VREF, respectively, and
VDAC, which is equal to VIN + V1st_NOISE ´ 3/16¨ VREF, converges to GND. In the second step, VIN
is sampled again in the 4-bit capacitor DAC, and the capacitors, 8¨ CU , 4¨ CU , 2¨ CU , and CU , are
connected to +VREF, ´VREF, ´VREF, and +VREF, respectively, as shown in Figure 5b, which are
inversely connected as compared with Figure 5a. Afterwards, all capacitors are connected to GND
as shown in Figure 5c, and VDAC becomes VIN + V2nd_NOISE ´ 3/16¨ VREF which is equal to VERR,
where V2nd_NOISE is an input-referred noise at the second A/D conversion. From the second to Lth
A/D conversions, the N-bit capacitor DAC repeats the second step, and VDAC after the second step is
expressed as:

VDAC “ VIN ` VKth_NOISE ´
Nÿ

i“1

ˆ
D1st_N´bitris ˆ VREF

2i

˙
“ VKth_ERR (2)

where VKth_NOISE and VKth_ERR are the input-referred noise and error voltage at the Kth A/D
conversion, respectively. Using Equations (1) and (2), VKth_ERR can be simplified as:

VKth_ERR « GND ´ V1st_NOISE ` VKth_NOISE (3)

VKth_ERR has a Gaussian distribution around GND ´ V1st_NOISE and its minimum and maximum
voltages are determined by VKth_NOISE.
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(a) 

 
(b) 

 
(c) 

Figure 5. Schematics of the 4-bit capacitor DAC when the first A/D conversion result is “1001”:
(a) when converting the 4-bit; (b) when sampling VIN , and (c) when obtaining VERR.

In the third step, since the range of VKth_ERR is relatively small compared with that of VIN ,
VKth_ERR can be converted to a digital signal using only lower capacitors in the N-bit capacitor DAC.
After the N-bit SAR ADC converts VKth_ERR to the lower M-bit among the N-bit output, VDAC is
expressed as:

VDAC “ VKth_ERR ´
Mÿ

i“1

ˆ
DKth_M´bitris ˆ VREF

2N´M`i

˙
« GND (4)

where DKth_M´bit[i] corresponding to the ith bit of the Kth A/D conversion result has a value of ”1”
or “´1”. From the second to Lth A/D conversions, the SAR ADC repeats the second and third steps.
After completing the total A/D conversion, the analog voltage corresponding to an average value of
the lower M-bits, AVR[V(DKth_M´bit)], is expressed as:

AVR rV pDKth_M´bitqs “ 1
L ´ 1

ˆ
Lř

k“2

Mř
i“1

ˆ
DKth_M´bitris ˆ VREF

2N´M`i

˙
« 1

L ´ 1
ˆ

Lř
k“2

pVKth_ERR ´ GNDq

« 1
L ´ 1

ˆ
Lř

k“2
p´V1st_NOISE ` VKth_NOISEq « ´V1st_NOISE ` 1

L ´ 1
ˆ

Lř
k“2

VKth_NOISE

(5)

where (L ´ 1) is the repeated number of the second and third steps at the number of samplings of L.
The final A/D conversion result, DFIN_N´bit, is obtained by adding D1st_N´bit and the average value
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of the lower M-bits, while the analog voltage corresponding to DFIN_N´bit, V(DFIN_N´bit), can be
expressed as:

V pDFIN_N´bitq “
Nř

i“1

ˆ
DFIN_N´bitris ˆ VREF

2i

˙

“
Nř

i“1

ˆ
D1st_N´bitris ˆ VREF

2i

˙
` 1

L ´ 1
ˆ

Lř
k“2

Mř
i“1

ˆ
DKth_M´bitris ˆ VREF

2N´M`i

˙

« VIN ´ GND ` 1
L ´ 1

ˆ
Lř

k“2
VKth_NOISE

(6)

where DFIN_N´bit[i] corresponding to the ith bit of the final A/D conversion result has a value of
”1” or “´1”. Since the effect of VKth_NOISE on V(DFIN_N´bit) decreases by averaging VKth_NOISE,
V(DFIN_N´bit) converges to VIN ´ GND as L increases.

3. Circuit Implementation

3.1. Design of 12-bit SAR ADC Using the Proposed FMS Method

Figure 6 shows a schematic of the 12-bit SAR ADC which converts the PGA output, VPGA, to a
digital signal. The PGA in [2,3], which has gains of ˆ1, ˆ2, and ˆ4, is used for the developed CIS. To
reduce the area, the SAR ADC uses a 10-bit capacitor DAC, which has a split capacitor structure with
an attenuation capacitor, CATT , instead of a 12-bit capacitor DAC. To obtain the additional lower 2-bit,
four scaled reference voltages, +1/2¨ VREF, +1/4¨ VREF, ´1/4¨ VREF, and ´1/2¨ VREF, are used in the
10-bit capacitor DAC. The reference voltages, +VREF, ´VREF, and GND, are generated via an off-chip
DAC, whereas the scaled reference voltages are generated by using an internal R-string. All reference
voltages are provided to the 12-bit SAR ADC via on-chip reference buffers. At the rising edge of the
control signal, EN_CMP, the clocked comparator compares two outputs of the preamplifier which
amplifies the difference between VDAC and GND. The SAR ADC converts VPGA to 12-bit at the first
conversion, and then repeatedly converts VPGA to the lower 4-bit. 12 latches and four latches operate
as SAR logic at the 12-bit and lower 4-bit conversions, respectively. The SAR logic sequentially stores
the output of the clocked comparator and selects the reference voltages connected to the capacitors in
the 10-bit capacitor DAC.

 

Figure 6. Schematic of the 12-bit SAR ADC.

Figure 7 shows the maximum switching energies of the capacitor DAC according to the bit
conversion step of the 12-bit conversion. Since charges in the capacitor DAC are provided from the
reference voltages, the switching energy determines the settling time for each bit conversion step [12],
and it is calculated using equations in [15]. When the capacitor DAC is reset and samples VPGA, all the
capacitors are simultaneously charged to VPGA and the largest switching energy is required in the bit
conversion steps. The maximum switching energy decreases with an increase of the bit conversion step
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with an exception of the second bit, sixth bit, and seventh bit conversion steps, due to the split capacitor
structure. Considering the driving capability of the PGA and the decrease in switching energy, the
12-bit SAR ADC is designed to take 200 ns to sample VPGA, 100 ns to convert each upper 8-bit, 50 ns to
convert each lower 4-bit, and 100 ns to obtain VKth_ERR. Therefore, each A/D conversion time becomes
1.2 μs for the first conversion, and then is reduced to 0.45 μs for the second to seventeenth conversion.

 
Figure 7. Normalized maximum switching energies of the capacitor DAC.

Figure 8 shows the theoretical normalized noise of the SAR ADC with the proposed FMS method
and conventional DCMS method, which repeats the same operations for each A/D conversion,
according to the total A/D conversion time. When the number of samplings is L, the noise for
the proposed FMS method decreases by one over the square root of (L ´ 1), according to Equation (6),
and the noise for the conventional DCMS method decreases by one over the square root of L. However,
when the number of samplings is 17, which is the maximum number for the developed CIS, the total
A/D conversion time of the SAR ADC using the proposed FMS method is reduced to 8.4 μs from
19.2 μs, which is that of the SAR ADC using the conventional DCMS method.

 

Figure 8. Theoretical normalized noise of the SAR ADC output.

3.2. Design of Digital Processing Logic

Figure 9 shows the block diagram of the proposed up/down counter-based digital processing
logic for the 12-bit SAR ADC employing the proposed FMS method. The proposed digital processing
logic consists of a digital-to-pulse converter (DPC) and 17 unit cells for the maximum number of
samplings of 17, of which each unit cell consists of a T-F/F and 3-input MUX. The T-F/F output or
its inverting output, Q or Qb, respectively, is transferred to the next T-F/F though the 3-input MUX
according to the control signal, UP. The DPC, which consists of a 2-input MUX, selects a signal, GND
or PULSE, according to the comparator output, CMP_OUT, and its output, DPC_OUT, is applied to
one of the T-F/Fs through the 3-input MUX selected by the control signal, SEL. The control signal,
EN_T, becomes low to maintain the output of the T-F/F when the control signal, UP or SEL, changes.
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The digital processing logic subtracts the A/D conversion result of the PGA reset voltage from that
of the amplified pixel signal voltage, and the developed CIS uses the upper 13-bit, from DOUT[16] to
DOUT[5], among the 17-bit outputs of the digital processing logic for displaying the captured image.
The MSB generated via subtraction is used as a sign bit.

Figure 9. Block diagram of the digital processing logic.

Figure 10 shows the timing diagram of the digital processing logic. Before converting the PGA
reset voltage, all T-F/Fs are reset by the control signal, RST, and the digital processing logic acts as a
down counter by setting the control signal, UP, to low. At the first A/D conversion, the 12-bit SAR
ADC converts the PGA reset voltage to 12-bit, and DCMP_OUT from the MSB to the LSB is sequentially
provided to the DPC. When DCMP_OUT is low or high, DPC_OUT keeps or toggles the output of the
T-F/F, respectively, starting from DOUT[15] to DOUT[4] sequentially. Therefore, DOUT becomes two’s
complement of the first A/D conversion result. From the second to seventeenth A/D conversion,
the 12-bit SAR ADC converts the PGA reset voltage to the lower 4-bit, and DPC_OUT is sequentially
provided from the fourteenth to seventeenth T-F/F, which corresponds to the lower 4-bit. Therefore,
the lower 4-bit conversion results are repeatedly subtracted from DOUT 16 times, and then averaged
by 16. Therefore, the upper 13-bit, from DOUT[16] to DOUT[4], becomes a final A/D conversion result
of the PGA reset voltage. Afterwards, the 12-bit SAR ADC converts the amplified pixel signal voltage
to 12-bit. The same operations as those in the PGA reset voltage conversion are repeated, with the
exception of the digital processing logic, which acts as an up counter by setting UP to high. Therefore,
the upper 13-bit becomes the difference between the A/D conversion results of the PGA reset voltage
and the amplified pixel signal voltage.

 

Figure 10. Timing diagram of the digital processing logic.
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The proposed up/down counter-based digital processing logic uses a T-F/F and 3-input MUX
per unit cell. As a result, the number of transistors per unit cell is reduced by 29% compared with that
of the SAR ADC described in [3]. Moreover, the proposed digital processing logic is also applicable
to the multi-bit cyclic ADC with the error correction algorithm in [18] by controlling the number of
output pulses from the DPC without the use of additional circuits in the unit cell. The multi-bit cyclic
ADC sequentially generates the multi-bit per clock cycle to compensate for the comparator offset.

4. Experimental Results

The proposed FMS method is verified using a 256 ˆ 128 pixel array CIS with column-parallel
12-bit SAR ADCs. Figure 11 shows the chip photomicrograph and readout channel layout of the
developed CIS which is fabricated using a 0.18 μm 1-poly 4-metal CMOS process. The developed CIS
occupies an area of 2.35 mm ˆ 2.35 mm.

Figure 11. Photomicrograph and readout channel layout of the developed CIS.

The developed CIS uses supply voltages of 2.8 V for the pixel array, analog circuit, and 1.8 V
for digital circuit. The total power consumption excluding PAD power is obtained from post layout
simulation results under the operating conditions at the number of sampling of 17 and 90 frames/s.
It has 4.4 mW which includes the power consumptions of the pixel array of 0.79 mW, reference and
bias circuits of 1.14 mW, and readout channel array of 2.3 mW. In a readout channel, the PGA, SAR
ADC, and digital processing logic consume 20.6 μW, 11.3 μW, and 4.3 μW, respectively.

Figure 12 shows the measured sensor output signal and random noise of the developed CIS
according to light intensity, which is obtained from the average and standard deviation values of
100 images, respectively, at a PGA gain of ˆ1 and the number of samplings of 17. The output signal
and random noise increases linearly according to the light intensity. However, the nonlinearity of the
conversion capacitor and source follower in the pixel causes the non-linear behavior [3,19]. The light
sensitivity obtained from the slope of the output signal is 6.2 V/lx¨ s. Random noise has a minimum
value of 1.2 LSB (270.4 μV) in near-dark condition, where flickers and thermal noises of the pixel and
readout circuits are the dominant sources of noise. As the light intensity increases, random noise
increases due to photon shot noise. At a light intensity of 40 lx, the measured output signal and random
noise have 3110 LSB and a maximum value of 34 LSB, respectively. An output signal of 3110 LSB
corresponds to the full well capacity of 11.4 ke´ with a conversion gain of 60 μV/e´ [19]. The dynamic
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range obtained from the ratio of the full well capacity to the minimum random noise measured in
near-dark conditions is 68.1 dB. The signal-to-noise ratio (SNR) obtained from the ratio of the output
signal to random noise is 39.2 dB at a light intensity of 40 lx.

 

Figure 12. Measured output signal and random noise according to light intensity.

Figure 13 shows the measured differential non-linearity (DNL) and integral non-linearity (INL)
of the 12-bit SAR ADC for the developed CIS. The measurement results of the DNL and INL are
´0.62/+1.37 LSB and ´1.42/+3.55 LSB, respectively. Since code saturations are caused by the parasitic
capacitors connected to upper capacitors in the capacitor DAC, the peaks of the DNL and INL
repeatedly occur. In addition, a mismatch of CATT repeatedly causes peaks of DNL and INL in each
128 LSB over the full code range. Linearity of the CIS is not affected by the INL of the ADC, but are
determined by the photon shot noise and photo conversion nonlinearity [3]. In addition, the error of
VERR is not occurred due to capacitance mismatch of the capacitor DAC since the D/A conversion error
of the capacitor DAC is cancelled out while converting the input voltage to D1st_Nbit and generating
VERR from D1st_N´bit. However, since the asymmetry of +VREF and ´VREF causes an offset error in
VERR, the A/D conversion range for the lower 4-bit conversion should be wider than the offset error.

 
(a) 

 
(b) 

Figure 13. Measured (a) DNL and (b) INL of the SAR ADC.
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Figure 14 shows the measured and theoretical input referred noises according to the number of
samplings and PGA gain at the same exposure time. As the number of samplings increased from 1
to 17, the input referred noise decreases from 848.3 μV to 270.4 μV, 449.2 μV to 155.8 μV, and 255 μV to
96.5 μV, for a PGA gain of ˆ1, ˆ2, and ˆ4, respectively. VKth_ERR, which is the sum of input referred
noises at the 1st and Kth conversions, is repeatedly converted to lower 4-bit after 1st A/D conversion.

 

Figure 14. Measured and theoretical input referred noise.

Therefore, lower 4-bit for the fast conversion is derived by considering a measured input referred
noise of 848.3 μV, which corresponds to 3.9 LSB, at the number of samplings of 1 and a PGA gain
of ˆ1. Theoretically, for the number of samplings of L, the input referred noise should be decreased
by one over the square root of (L ´ 1), but the measured input referred noise is greater than the
theoretical noise due to the linearity error of the lower 4-bit conversion of the SAR ADC. The lower
4-bit conversion results after the first conversion exhibits a Gaussian distribution due to temporal
noise, but linearity error distorts the distribution. In addition, the measured input referred noise
proportionally decreases according to the PGA gain because, for the input referred noise, the noise
caused by the readout circuit is dominant compared with what is caused by the pixel circuit [1]. The
developed CIS achieves the lowest input referred noise of 96.5 μV at the number of samplings of 17
and a PGA gain of ˆ4.

Figure 15 shows the captured image of the developed CIS at the number of samplings of 17 and
a PGA gain of ˆ1. The captured image exhibits a 12-bit resolution, but it is difficult to evaluate the
noise performance of the CIS with the naked eye because the monitor system generally features an
8-bit resolution. To solve the above problem, images are captured in short exposure time and are
displayed by using the lower 5-bits among the 12-bit CIS outputs, corresponding to a digital gain
of ˆ128. Figure 16a,b shows the captured images for the following number of samplings, 1 and 17,
respectively, at a PGA gain of ˆ1, in which Figure 16b has less noise than Figure 16a.

 

Figure 15. Captured 12-bit image at the number of samplings of 17.
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(a) 

 
(b) 

Figure 16. Captured lower 5-bit images in short exposure time for the following number of samplings:
(a) 1 and (b) 17.

The performance of the developed CIS is summarized in Table 1 and compared with prior CISs
using column-parallel SAR ADCs in Table 2. The figure of merit, representing noise and energy
efficiency, was defined as:

FOM “ Power ˆ Noise
Pixel_rate

(7)

where Pixel_rate is a product of the total number of pixels and the frame rate. The CIS employing the
proposed FMS method achieves the best FOM of 145 μV¨ nJ by simultaneously reducing the total A/D
conversion time and random noise.

Table 1. Performance summary.

Parameter Value

Process 0.18 μm 1-poly 4-metal CMOS process
Supply voltage 2.8 V/1.8 V

Chip size 2.35 mm ˆ 2.35 mm
Pixel array size 256 (H) ˆ 128 (V)

Maximum frame rate 90 frames/s
Pixel size 4.4 μm ˆ 4.4 μm

Conversion gain 60 μV/e´
Full well capacity 11.4 ke´

Sensitivity 6.2 V/lx¨ s
Column FPN at dark 0.17 LSB

SNR 39.2 dB
Dynamic range 68.1 dB

ADC input range 0.9 V
ADC resolution 12-bit

DNL ´0.62/+1.37 LSB
INL ´1.42/+3.55 LSB

Power consumption 4.4 mW
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Table 2. Comparison with prior CISs with column-parallel SAR ADCs.

Parameter This Work [3] [12] [13] [14] [20] [21]

Pixel array size 256 ˆ 128 4112 ˆ 2186 1280 ˆ 800 920 ˆ 256 644 ˆ 488 54 ˆ 50 64 ˆ 45
Frame rate (frame/s) 90 60 35 9 120 7.4 21.2
ADC Resolution (bit) 12 14 11 9 14 10 8

Random noise (μVrms) 96.5
(0.44 LSB) 130.5 1500 5300 83 0.98

LSB 0.5 LSB

Power consumption
(mW) 4.4 108.5 40 1.1 78 0.014 0.021

FOM (μV¨ nJ) 145 265 1674 28147 171 - -

5. Conclusions

In this paper, a fast multiple sampling method for CISs with column-parallel 12-bit SAR ADCs
is proposed. The SAR ADC repeatedly converts a pixel output to 4-bit after the first 12-bit A/D
conversion. As a result, each A/D conversion time after the first A/D conversion is reduced to 37.5%
of the first A/D conversion time, and the total A/D conversion time at the number of samplings of 17
is reduced to 44% of that of the SAR ADC using conventional DCMS method. The 12-bit SAR ADC
uses a 10-bit capacitor DAC with an attenuation capacitor and four scaled reference voltages to reduce
the area. A simple up/down counter-based digital processing logic, consisting of a 3-input MUX and
T-F/F is proposed to perform complex calculations for multiple sampling and DCDS. The measurement
results shows that random noise decreases from 848.3 μV to 270.4 μV by using the proposed multiple
sampling method, and the best FOM of 145 μV¨ nJ is achieved. Therefore, the proposed multiple
sampling method is suitable for low-noise, high-frame rate CISs with column-parallel SAR ADCs.
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Abstract: Meteor detection and analysis is an essential topic in the field of astronomy. In this paper,
a high-sensitivity and high-time-resolution imaging device for the detection of faint meteoric events
is presented. The instrument is based on a fast CCD camera and an image intensifier. Two such
instruments form a double-station observation network. The MAIA (Meteor Automatic Imager
and Analyzer) system has been in continuous operation since 2013 and has successfully captured
hundreds of meteors belonging to different meteor showers, as well as sporadic meteors. A data
processing pipeline for the efficient processing and evaluation of the massive amount of video
sequences is also introduced in this paper.

Keywords: faint meteor shower; meteoroid; CCD camera; image intensifier; image processing

1. Introduction

Modern image sensors used in astronomy provide high sensitivity and high frame-rates, allowing
for the detection of weak and rapidly-changing events in the atmosphere. Among these phenomena
are meteors, streaks of light that appear in the sky when an interplanetary dust particle ablates in the
Earth’s atmosphere. The study of meteors and meteoroids provides clues about their parent objects:
comets [1] and asteroids [2]. The light curve of the meteor contains information about the mass of the
original particle. Both the shape of this curve as well as the height interval where the meteor radiates
correspond to the structure of the parent meteoroid. It is possible to investigate the above-mentioned
and many other properties of meteors using video records. Video data has the advantage that if the
meteor is recorded with high time resolution from at least two stations simultaneously, its atmospheric
trajectory can be calculated. Moreover, the heliocentric orbit can be determined if we know the exact
time of the event, which is common for video observation. It was shown that the properties of systems
with image intensifiers enable the detection of meteors with masses down to fractions of a gram.

The multi-station observation of meteors using two or more video systems first appeared in
the 1970s [3,4], and became a standard technique for the measurement of meteoroid trajectories.
Current networks vary in the number of cameras and observation locations. Video systems within the
framework of the SPanish Meteor Network (SPMN) use three cameras at three different locations [5].
The Cameras for Allsky Meteor Surveillance (CAMS) system operates 60 identical narrow-angle field
of view (FOV, 30◦) cameras at three locations [6]. The above-mentioned networks employ low-cost
1/3” or 1/2” security cameras [7] with a typical spatial resolution of 720 × 564 pixels and a frame rate
between 20 and 25 frames per second (fps). Highly-sensitive E2V CCD still cameras [8] or cameras
with custom-made electronic shutter systems [9] are also utilized. GigE (Gigabit Ethernet) cameras
with 30 fps are used in the framework of the French initiative Fireball Recovery and InterPlanetary
Observation Network (FRIPON) [10].
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Double-station observation using S-VHS (Super Video Home System) camcorders coupled with
image intensifiers started at the Ondřejov observatory about two decades ago [11]. The system had a
horizontal resolution of 420 lines per picture, and video data were stored on S-VHS tapes, generally
unsuitable for scientific purposes due to the mechanical movement of the tape causing video jitter.
The MAIA (Meteor Automatic Imager and Analyzer) system introduced in this paper is a technological
successor of the original analog one [12]. It consists of two identical stations placed in Ondřejov and
Kunžak, Czech Republic (see Figure 1). The distance between stations is 92.5 km. The Ondřejov camera
is aiming at the azimuth of 40◦, elevation 45◦, the Kunžak at azimuth of 120◦, elevation 45◦.

Figure 1. Location of the Meteor Automatic Imager and Analyzer (MAIA) stations. FOV: field of view.

With spatial resolution close to VGA and temporal resolution up to 61 fps, every single MAIA
station produces almost 2 TB of raw video data per night. Since there is limited data storage at
each MAIA station, image processing algorithms have to make a decision about the importance
of the recorded data during daytime and free up the disk space for the following night. Due to
restricted Internet access, the problem of the automatic processing of a massive amount of data
has to be solved employing local computing power (e.g., Field-Programmable Gate Array, FPGA,
or Graphical Processing Unit, GPU). These techniques make high-performance parallel processing
tasks feasible. The computing power of a GPU can reach a thousandfold performance of a standard
central processing unit (CPU) with an affordable price. The utilization of a GPU enables a substantial
improvement in the performance of astronomical data processing algorithms. At this point, it is worth
mentioning related solutions of N-body [13], radio-telescope signal correlation [14], adaptive mesh
refinement [15], and gravitational microlensing [16]. These examples mostly focus on complicated
numerical and cosmological problems, data mining [17], and the visualization of tera-scale astronomical
datasets [18]. Classical image processing problems are addressed to a lesser extent.

The paper is organized as follows. Section 2 gives an overview of the technical properties of the
MAIA system. Quality and formal aspects of acquired video data (significantly affecting the design of
video processing pipeline) are addressed in Section 3. Section 4 concludes the paper.

2. Meteor Automatic Imager and Analyzer

The design of the MAIA system (see Figure 2) is based on our expertise gained with its previous
analog version used in Ondřejov for many years. The electro-optical subsystem of MAIA consists of two
main components: a second-generation image intensifier XX1332 and a GigE camera JAI CM-040GE.
The image intensifier has a large diameter input (50 mm) and output (40 mm) apertures, high gain
(typically 30,000 to 60,000 lm/lm), and a spatial resolution of 30 lp/mm [19]. Since the diameter of
the photocathode in image intensifier is 50 mm, and the angle of view for meteor observation should
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be about 50◦, then the most suitable focal length of the input lens comes at about 50 mm. The MAIA
system uses a Pentax SMC FA 1.4/50 mm—this lens offers the angle of view of 47◦. Due to the large
aperture, a high input signal-to-noise ratio is achieved at the intensifier.

Figure 2. MAIA uncovered.

Camera JAI CM-040GE is equipped with a 1/2” progressive scan CCD sensor. This sensor
provides a resolution of 776 × 582 pixels (i.e., 0.45 megapixels), 8.3μm square pixels, and 10- or 8-bit
monochrome output. Maximum framerate of 61.5 fps can be increased if needed with vertical binning
and partial scan. The exposure time can vary between 54.874 s to 16.353 ms (or preset electronic shutter
1/60 to 1/10,000 in 10 steps) in full frame scan. The camera has high sensitivity of 1.3 lux (on the
sensor, maximum gain, shutter off, 50% of peak video level) and a signal-to-noise ratio greater than
50 dB at 0 dB gain setting. The focal length of the camera lens (Pentax H1214-M 1.4/12 mm) was
selected to get a perfect match between the output screen of the image intensifier (diameter of 40 mm),
the height of the CCD (4.83 mm), and a suitable distance between the camera and the image intensifier
(about 10 cm).

The outer housing of the device was selected taking into account weatherproof requirements.
The characteristics of the housing are very similar to those required for video surveillance. The body
of the housing is made of extruded aluminum, and the end-cover plates of die-cast aluminum.
The weatherproof feature is maintained by the rubber gaskets between the cover plates, and three
cable glands. The housing is equipped with a heater kit and a sun shield. One-day exposure of
sunlight through the fast lens reliably damages the sensitive layer of the image intensifier. Thus, the
crucial part of the device is a mechanical shutter fulfilling the function of protection from the Sun.
The solenoid opens the shutter for acquisition while a spring ensures that the shutter is closed in the
case of power failure. The electro-mechanical design of the solenoid-operated mechanical shutter was
a delicate matter. High reliability was required, but electromagnetic compatibility issues also had to be
carefully treated, since the image intensifier is prone to electromagnetic interference.

MAIA has a local computer (Raspberry Pi) to handle data transfers between the main computer
and the instrument. The data communication between the main computer and the instrument include
video stream from the CCD camera, control signals (shutter, heating, local power supply), and
environmental data (temperature, humidity). The distance between the device and the main computer
is about 10–15 m. A fiber optic cable is used to ensure uncompromising protection of the instrument
during thunderstorms.

2.1. Electro-Optical Characteristics

The XX1332 image intensifier has a highly nonlinear input–output conversion function as a result
of the automatic gain control (AGC). This nonlinearity can be characterized by the dependence of
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the normalized gain (normalized ratio of the output pixel level in the captured image and the input
power of the light, measured at a wavelength of 650 nm) on the normalized input power. The curve
describing this dependency is depicted in Figure 3a. The image intensifier’s AGC feature helps to
accommodate extremely high dynamic range, and also brings high nonlinearity, which is especially
critical for photometric measurements.
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Figure 3. Properties of the MAIA system (a) Gain of the intensifier; (b) Spectral sensitivity.

The overall relative spectral sensitivity can be seen in Figure 3b. This characteristic takes into
account the properties of the input lens, the image intensifier, the camera lens, and the camera itself.
There are five curves of the relative spectral sensitivity for several digital values in the output image
(B = 1 means white level; i.e., 255 in 8 bpp representation). This result applies to the particular
setting of the camera; i.e., electronic shutter set to 1/100 s exposure time, gain of 0 dB, and zero
black level. It is evident that the sensitivity is not constant for a chosen wavelength. This is the
impact of AGC, as discussed above. The sensitivity is much higher for low-level light conditions in
order to achieve sufficiently bright images on the image intensifier’s output screen. However, the
spectral dependence of the sensitivity does not change significantly with the variable gain set by the
device’s AGC. The FWHM (Full Width Half Maximum) spectral range of the system is approximately
455–845 nm; i.e., slightly shifted to the near-infrared (NIR) domain. This property is crucial, since
meteors radiate significantly in this spectral region [20].

2.2. Spatiotemporal Characteristics

Intensified TV systems exhibit a prominent speckle noise component, caused by the
intensifier’s AGC. The level of individual bright spots in the video frame fluctuates significantly,
while the overall signal level remains roughly constant (i.e., a couple of bright spots increase their
level, while the level is decreased for other bright spots). This phenomenon affects conventional image
processing algorithms concerning their scalability and performance. Figure 4a shows the dependence
of the pixel intensity standard deviation on the pixel intensity value for a video sequence of 100 frames.

Aside from the high non-linearity discussed in the previous section, MAIA also exhibits features
of a shift-variant imaging system. Figure 5 shows the shape of stellar objects in the FOV. It is clearly
visible that the object in the middle of the image has a circular shape, whereas objects occurring on
the border are heavily distorted. The shape of a stellar object is usually modeled by an asymmetric
Gaussian function [21]. Then, the object’s spatial distortion (i.e., its ellipticity) can be described as
a ratio of sigma parameters in vertical and horizontal directions. Figure 4b shows the dependence
of an object’s ellipticity on the angular distance from the center of the image. The object’s ellipticity
plays a significant role in the efficiency of the object detection—for angular distances higher than 40◦

(i.e., close to the border of the FOV), efficiency decreases significantly.
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Figure 5. Shift-variant point spread function of the MAIA electro-optical system.

3. Video Data Processing Pipeline

The primary goal of the MAIA video processing pipeline is to find faint meteor showers in
the recorded video sequence. A typical video sequence consists mostly of static stellar objects
and noise. There is little or no change between the consecutive frames, due to the high frame rate of
the camera. Thus, variations in the image data (e.g., meteors or optical transients) are detectable
while using relatively simple algorithms based on comparison via image subtraction. Figure 6
summarizes the essential elements of the proposed video processing pipeline. The double-station
system deals with simultaneous observation of the same astronomical events observed from two
different locations. Therefore, it is important to ensure synchronous execution of the processes
running on both stations. The internal clock of the computer is used as the time authority. An NTP
(Network Time Protocol) service is employed to synchronize each computer. Achieved precision
of approximately one second is sufficient for the successful identification of meteors recorded in
double-station configuration. Precise alignment of the appropriate meteor frames is performed
through calculation of the meteor’s atmospheric trajectory.

As discussed in the previous sections, MAIA’s electro-optical characteristics are far from those of
an ideal imaging system. Currently, the conventional approach for obtaining the Point Spread Function
(PSF) of the space-shift-variant system is based on modeling the wavefront aberrations using Zernike
polynomials [22]. An efficient way of bypassing the impact of spatiotemporal fluctuations is described
in [23]. The authors employed statistical analysis with nonlinear preprocessing of image intensity
using Box-Cox and logarithmic transform. Our pipeline uses a more traditional method based on
the detection and classification of the object while taking into account spatial relations between
consecutive frames.
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Figure 6. Double-station video processing pipeline.

3.1. Object Detection and Classification

A Canny algorithm [24] is used for object detection in the MAIA system. The algorithm detects
edges, while static objects are identified as stars (see Figure 7a). The remaining moving objects
can be classified as meteors. Linear motion between consecutive frames is then detected for such
moving objects. If an object with linear motion is identified within a certain number of consecutive
frames (usually at least five frames), then it is classified as a meteor. Finally, the positions of all detected
objects are exported into an external text file (MAIA Object File, MOF). Moreover, the video sequence
(approx. 80 frames, i.e. 35 frames before and 35 after the event) containing the meteor candidate is
saved into a video file and further processed.

(a) (b)

Figure 7. Calibration of the frame. (a) Edges detected by Canny filter; (b) Identified stars.

The first step in the video processing pipeline is the calculation of the calibration image.
The calibration image is obtained as a time average of an odd number of video frames (five frames
is usually sufficient). Then, the dark frame is subtracted, and the image is flat-fielded. Stars can be
detected using values available in the MOF file. Another approach is based on repeated star detection
using the Canny method. The star catalog information is loaded using the previously recorded meteor
data (i.e., date, time, aiming point of the camera). Then, the catalog stars can be plotted over the
acquired image (Figure 7b). Samples of the detected stars (x, y) and catalog stars (α, δ) are aligned.
Then, parameters of the transformation between both coordinate systems are determined, and the
corresponding pairs are identified. The signal of the stellar object is measured as a sum of the pixels in
the box surrounding the star. Finally, the calibration curve is constructed (Figure 8a).
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Figure 8. (a) Calibration curve; (b) Light curve of detected meteor.

The second step consists of the meteor’s position and brightness measurements. The data stored
in the MOF file are used. The particular point can be defined manually, or the MOF positions can be
adjusted (Figure 9a). When finished, the boxes around the meteor are set for each frame. The meteor
signal is measured as a sum of the pixels within the box (Figure 9b). The brightness of the meteor is
determined using the calibration curve. Finally, the light curve of the meteor is calculated (Figure 8b).

(a) (b)

Figure 9. Measurement of meteor parameters. (a) Detected Meteor’s path and its magnified detail;
(b) Meteor signal measured within the box for each frame.

3.2. GPU Acceleration

The general-purpose CUDA (Compute Unified Device Architecture) GPU is a highly parallel
multi-threaded architecture [25]. CUDA became the de facto standard software development kit
(SDK) for astronomy computation [26]. One can find numerous studies on the acceleration of image
processing for real-time applications, including techniques for real-time moving object detection,
a topic related to the subject of this paper. The main bottleneck of GPU acceleration is inefficient data
transfer between the host and the device—meaning that implementation of data transfers between the
host and the GPU device can negatively affect the overall application performance [27]. The MAIA
pipeline solves this issue by batching many small transfers into one larger transfer; i.e., the GPU
simultaneously processes more frames.

The most time-consuming operation of the MAIA image processing pipeline is Canny detection.
It is used for the detection of objects within particular video frames. This critical part of the pipeline
is therefore implemented on the GPU. For the testing, we used video sequences acquired by the
MAIA system with a duration of 10 min each (i.e., approximately 36,000 frames at the frame rate
of 61 fps). It is worth noting that frame rate is not fully constant and depends highly on the bus
workload. The resolution of a single frame is 776 × 582 pixels. Since a pixel takes 2 B of memory (10 b
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depth, monochrome), one frame requires approximately 1 MB of memory. Consequently, simultaneous
processing of more frames brings substantial performance gain. Figure 10 shows the execution times
required for processing, depending on the frame size. An image size of 3104 × 2328 pixels means
that eight regular input frames are processed simultaneously. Assuming the speed of transfer of
about 3000 MB/s between the host and the GPU, this transfer takes around 10 ms, including all
necessary data (i.e., convolution kernels, both input and output). We compared execution times of the
sequential code written in OpenCV, executed using an Intel Core i7-4790 machine with 16 GB of RAM
to parallelized code executed using NVIDIA K4200 and NVIDIA Tesla K40 graphic cards.
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Figure 10. Comparison of the execution time of sequential and parallelized implementation of the
Canny detection algorithm.

The time needed for the processing of a 60 s video sequence on the quad-core CPU is about 100 s.
The current version of the GPU-optimized code can process the same sequence in 70 s. Our goal is to
process a 60 s video sequence in 60 s or faster (i.e., in real time or faster).

4. Conclusions

Automatic double station observations using the MAIA system were carried out continuously
during last three years, on each night with good weather conditions. For example, in the year 2015,
the camera at Kunžak station was in operation for 202 nights and recorded more than 6500 meteors.
The data for the Ondřejov station are slightly lower, since the observational conditions in Onřejov
are worse, mostly due to light pollution. Currently, the observations and meteor detection are fully
automatic, while the video data processing is semiautomatic, since the operator’s input is still needed.

The comparison of the detection efficiency (which was done for the Perseid campaign) shows
that the current MAIA pipeline can detect about 72% of meteors detected by the old system with a
S-VHS camera. In the case of the old system, the detection software was usually run several times
with parameters tuned manually by the operator. Such an approach is not applicable to the automatic
MAIA system. On the other hand, the MAIA system successfully detected some meteors which were
not detected by the old system.

The current implementation offers close to real-time video processing; i.e., the processing time is
close to the duration of the captured video sequence. Once the development of the MAIA pipeline is
finished, it will be released under GPL (General Public License) or a similar license (For information
about the current status of the project, please visit http://maia-project.net).
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22. Anisimova, E.; Bednář, J.; Blažek, M.; Janout, P.; Fliegel, K.; Páta, P.; Vítek, S.; Švihlík, J. Estimation and
measurement of space-variant features of imaging systems and influence of this knowledge on accuracy of
astronomical measurement. SPIE Opt. Eng. Appl.—Int. Soc. Opt. Photon. 2014, doi:10.1117/12.2061736.

23. Kukal, J.; Klimt, M.; Švihlík, J.; Fliegel, K. Meteor localization via statistical analysis of spatially temporal
fluctuations in image sequences. SPIE Opt. Eng. Appl.—Int. Soc. Opt. Photon. 2015, doi:10.1117/12.2188186.

24. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6,
679–698.

25. Cook, S. CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs; Newnes: Sebastopol, CA,
USA, 2012.

26. Fluke, C.J.; Barnes, D.G.; Barsdell, B.R.; Hassan, A.H. Astrophysical supercomputing with GPUs: Critical
decisions for early adopters. Publ. Astron. Soc. Aust. 2011, 28, 15–27.

27. Harris, M. How to Optimize Data Transfers in CUDA C/C++. Available online: https://devblogs.nvidia.
com/parallelforall/how-optimize-data-transfers-cuda-cc/ (accessed on 13 July 2016).

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

422



sensors

Article

Evaluation of a Wobbling Method Applied to
Correcting Defective Pixels of CZT Detectors in
SPECT Imaging

Zhaoheng Xie 1,†, Suying Li 1,†, Kun Yang 2, Baixuan Xu 3 and Qiushi Ren 1,*

1 Department of Biomedical Engineering, Peking University, No. 5, Yiheyuan Road, Beijing 100871, China;
xiezhaoheng@163.com (Z.X.); lisuying90@163.com (S.L.)

2 Department of Control Technology and Instrument, Hebei University, No. 180, Wusi East Road,
Baoding 071000, China; yangkun9999@hotmail.com

3 General Hospital of Chinese People’s Liberation Army, No. 28 Fuxing Road, Beijing 100039, China;
xbx301@163.com

* Correspondence: renqsh@coe.pku.edu.cn; Tel.: +86-10-6276-7113
† These authors contributed equally to this work.

Academic Editor: Gonzalo Pajares Martinsanz
Received: 17 February 2016; Accepted: 16 May 2016; Published: 27 May 2016

Abstract: In this paper, we propose a wobbling method to correct bad pixels in cadmium zinc telluride
(CZT) detectors, using information of related images. We build up an automated device that realizes
the wobbling correction for small animal Single Photon Emission Computed Tomography (SPECT)
imaging. The wobbling correction method is applied to various constellations of defective pixels.
The corrected images are compared with the results of conventional interpolation method, and the
correction effectiveness is evaluated quantitatively using the factor of peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM). In summary, the proposed wobbling method, equipped
with the automatic mechanical system, provides a better image quality for correcting defective pixels,
which could be used for all pixelated detectors for molecular imaging.

Keywords: semiconductor detector; CZT; defective points; calibration; wobbling method

1. Introduction

Radionuclide imaging has become one of the most advanced molecular imaging techniques to
monitor physiological functions [1,2]. However, Single Photon Emission Computed Tomography
(SPECT) images tend to be “noisy” because of the low amount of radiotracer per volume of interest
(VOI) and the effect of Compton scattering in tissue and collimators. Over the past decades, researchers
have been dedicated to developing gamma-cameras with improved spatial resolution and energy
resolution. Semiconductor nuclear radiation detectors, especially cadmium zinc telluride (Cd1´xZnxTe,
CZT) materials, have been considered as alternatives to scintillator detectors [3–5] because of their
good stopping power and low dark current [4,6,7]. Notably, the major advantage of semiconductor
over traditional scintillator detectors is that they can directly convert the deposited photon energy into
measurable signals, which could improve energy resolution and detection efficiency [4,5,7,8]. Hence,
CZT detectors are regarded to be the most promising option for SPECT imaging.

The CZT detector consists of a semiconducting crystal that is bump-bonded to a large area ASIC
and packaged with a high performance data acquisition system. Recently, great progress has been
made in electronics [9–12] and crystal growing [13,14]. However, there are still some defective pixels,
showing degraded features, such as split or broadening spectral peaks and extraordinarily low or
high response, especially for pixels with smaller sizes or at the edge of module. Though the defective
pixels only occupy a small proportion of each module, separate defects of each module may cluster
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to form continuous defective regions if several modules are arranged into a large detector, as shown
in Figure 1. The continuous defective region in detector occurs in projections and introduces ring
artefacts [15] after reconstruction, which degrades image quality and may lead to misinterpretation,
e.g., misdiagnosis or overdiagnosis [16].

 

Figure 1. Example of different defective pixel patterns in multi-module pixelated detector; 1, 2, 3, 4
means four adjacent detector modules, black squares represent cluster of defective pixels.

Interpolation is a common correction method for defective pixels, which may work well for
separate or individual bad pixels in homogeneous regions. For bad pixel cluster regions, however,
simple interpolation often leads to inaccurate estimations. The determination of interpolation
direction also poses more complexity since there are many variations for the constellation of defective
pixels. Moreover, the advantage of interpolation method vanishes when the pixel size is small [17].
A proposed alternative plan is using sinogram-processing to eliminate the ring artifacts. Nonetheless,
the 2D-wavelet-analysis [18] and polyphase decomposition in sinogram process [19] may introduce
some noise or artifacts, and it has higher numerical complexity.

In this paper, an advanced wobbling method is proposed to correct the defective pixels. In order to
accomplish the correction method and demonstrate its effects, we built a CZT SPECT system equipped
with a simple mechanical device and conduct phantom experiment. The correction method is applied
to various constellations of defective pixels. The correction effectiveness is evaluated quantitatively and
is compared with conventional interpolation method. The results proved that the proposed wobbling
method provides improvement in image quality of pixelated semiconductor detector, especially for
the small object imaging with pinhole collimator.

2. Materials and Methods

2.1. Wobbling Correction Method

The wobbling method mainly includes following four steps:

2.1.1. 1st Step: Uniformity Correction and Wobbling Path Planning

The uniformity corrections are conducted by flood phantom first. From the flood image, some
continuous bad pixels, which would affect image quality and cause ring artifacts after reconstruction,
have been localized. Then all of defective pixels are recognized and the wobbling path is defined.

2.1.2. 2nd Step: Acquisition of the Wobbling Images

The basis of the wobbling correction method is the acquisition of wobbling images. Typically,
it acquires different observations of the same object, i.e., images with shifts of several pixel dimensions.
Figure 2 shows an example of wobbling acquisition for the method. It is assumed that the projection
on the detector is a “PKU”-shaped image and an “L”-shaped bad pixel pattern exists on CZT detector,
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as shown in Figure 2a. The detector performs a scan at Position 1 and subsequently acquires a wobbling
image after a left shift of two pixel dimension in the horizontal direction (Figure 2b). In this way, we get
the related images (“twin images”, as shown in Figure 2c). Each of the wobbling images contributes
useful information to the final corrected image and its correlation will be illustrated in the following
3rd Step.

 
Figure 2. Description of the method for the wobbling technique. (a) Example of image without
defectives and “L”-shaped bad-pixel pattern in detector; (b) The sketch of wobbling acquisition with
Left shift; (c) Two images of different positions for the same object (Black points represent defective
pixels in the fixed position of detector).

The wobbling acquisition can perform vertical and horizontal movement according to the
defective-pixel patterns. In this paper, we mainly considered two-pixel shifts to correct defective
pixels, so that there are 72.5% overlap between the two related images.

2.1.3. 3rd Step: Registration of Images Obtained from the Wobbling Method

After wobbling acquisition, each projection has two samples (images A and B), which respectively
represent the initial and wobbling images, regarding the same imaging object. fA pxA, yAq and
fB pxB, yBq are the number of emitted photons which are detected by each pixel. px, yq means pixel
index. The correlation between fA and fB can be expressed as a general rigid-body transformation that
includes a combination of rotation and translation:

fBpxB, yBq “ RAB¨ fApxA, yAq ` TAB (1)

where RAB and TAB is the translate transformation and rotate transformation between fA pxA, yAq and
fB pxB, yBq. A rigid-body transformation is applicable provided the pixel size of the CZT detector is
negligible compared with the accuracy of the linear translation stage.

2.1.4. 4th Step: Replace the Defective Pixels and Apply an Image Fusion Algorithm

After establishing the point-to-point correspondence of fA and fB, we replace defective pixels
using their counterparts and apply an image fusion algorithm to the two related images. The basic
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case of two roughly aligned images fA and fB with the overlapped area Ω is shown in Figure 3. In this
paper, we mainly investigate the following two approaches to produce the mosaic image IΩ:

(1) Simple averaging function(Fusion method A):

IΩ “ 1
2

fApxA, yAq ` 1
2

fBpxB, yBq (2)

(2) Distance weighted function(Fusion method B):

IΩ “ σ fApxA, yAq ` p1 ´ σq fBpxB, yBq (3)

where σ(0 ď σ ď 1) is the transition factor, as shown in Figure 3, based on the distance of the
current pixel coordinate from its own boundary.

Figure 3. Image fusion algorithms and examples of different weighted function. (a) The overlapped
regions are indicated by the slant dashed line. The two images on the left and right are to be stitched;
(b) represents distinctive average features in overlapped region Ω. R and L are the region viewed
exclusively in image fA and fB (L X R “ L X Ω “ R X Ω “ ∅).

The trade-off relationship between image quality and acquisition time is also considered here.
Compared with the common acquisition mode, the acquisition time of each scan in the wobbling
method is halved for two positions. In this way, the wobbling method can acquire sufficient counts
without extending the data acquisition time. In this study, we are mainly interested in how to correct
fixed defective pixels and edge-effects in CZT detectors, other defects such as geometric deformation,
noise corruption and subsequent reconstruction algorithms, are not considered here.

2.2. System Description

The pinhole SPECT system is developed based on a CZT-detector and aiming for small animal
imaging. The system, as shown in Figure 4, contains the detector, pinhole collimator and rotation
stage where imaging objects are placed. The single pinhole collimator is made of tungsten alloy
(ρ = 18.5 g/cm3), with 0.8 mm aperture diameter, 1.38 mm channel height, and 60˝ opening angle.
A linear translation stage is installed underneath the detector that provides support for the detector and
the drive for wobble motion. It allows linear movement along the X, Y axes within a 50 mm range and
its precision can reach 20 μm. The stage contains a grating ruler, which gives the feedback of motion
position and guarantees the precision. With the translation stage, the wobbling range of detector can
be adjusted from 0.25 to 50 mm in steps of 0.25 mm. The movement of linear stage is controlled by
dedicated C++ codes, which are integrated into the acquisition software. After the first position the
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detector performs a scan and is subsequently wobbled for the following acquisition. Each scan is
saved for post-processing according to the described wobbling method in Figure 2. A standard M1522
CZT detector module (Figure 4), has an active region of 40 ˆ 40 mm2 and 5 mm thick with Au contact
(Redlen Technologies Inc., Saanichton, BC , Canada) was used in this work. The module is organized
in a 16 ˆ 16 array with a 2.46 mm pixel pitch and its acquisition software provides pixel position and
energy value in a binary format. Energy resolution of this module is typical about 6.5% (Co-57 source).

Figure 4. (a) Schematic diagram of the pinhole SPECT system design, which consists of rotary stage,
collimator and CZT detector; (b) Close-up of the pinhole SPECT system.

2.3. Phantom Experiment

2.3.1. Flood Image Experiment

Flood images are obtained to check the performance of the CZT detector. We arranged four CZT
modules into a 2 ˆ 2 array, resulting in an 80 ˆ 80 mm2 detection area. It was exposed to a Tc-99m
flood source with 2.22 mCi for 3600 s. The flood images are obtained with the 15% energy window
(140 keV). The uniformity and energy spectrum of individual pixel as well as whole entire detector
have been analyzed.

2.3.2. Line Source Phantom Experiment

To evaluate the performance of the proposed correction method, line source phantom experiment
is designed as shown in Figure 5.

Figure 5. The geometry of keel-edge pinhole aperture and four linear sources phantom, where b is the
perpendicular distance between source and the focal point (pinhole center), l is focal length, d is the
physical diameter of pinhole, α is half of the pinhole opening angle.
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Four line sources (2 mm inner diameter) are placed off-axis, symmetrically on the two sides
of axis of rotation (AOR) which is 60 mm away from the aperture (120 mm from the detector
surface). The center distance between each source is 4 mm. This geometric configuration
approximately results in 2ˆ magnification. Each line source is filled with 2.6 mCi/mL Tc-99m labelled
medronate (MDP). After data acquisition, the correction and evaluation processes are performed by a
Matlab-based program.

2.4. Image Quality Evaluation

Aiming at evaluating the effect of our wobbling correction method, we conducted phantom
experiments and compared the results with a conventional correction method. Firstly, line sources are
scanned statically as reference images. On the reference images, we deliberately defined some pixels as
bad pixels and set the counts as zero, resulting in the image waiting to be corrected (identified as “bad
image” in the following). Correction methods are applied to various bad-pixel patterns such as: (1) two
bad pixels (vertical); (2) two bad pixels (horizontal); (3) three bad pixels; (4) four bad pixels. Here,
we mainly investigate the effect of the wobbling method in the correction of bad pixels that appear in
the region of interest (ROI) and appear in the background. We defined the effectiveness of a correction
method as the similarity between the corrected image (C) and reference image (R). The similarity is
assessed using peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), which are the widely
used full-reference quality metrics [20,21]. Given the reference image R and the corrected image C,
both of size M ˆ N, the PSNR between C and R is defined as:

PSNRpC, Rq “ 10log10p2552{MSEpC, Rqq (4)

where:

MSEpC, Rq “ 1
MN

Mÿ
i“1

Nÿ
j“1

pCij ´ Rijq (5)

When MSE, which is short for mean squared error, approaches zero, the PSNR value approaches
infinity, thus a higher PSNR value provides a higher image quality.

The SSIM is a well-known quality metric used to assess the similarity between two image,
considering a combination of three factors that loss of correlation, luminance distortion and contrast
distortion. The SSIM is defined as:

SSIMpC, Rq “ rlpC, Rqsα¨ rcpC, Rqsβ¨ rspC, Rqsγ (6)

where l(C, R) is the luminance comparison function, c(C, R) is contrast comparison function, and s(C, R)
is structure comparison function and they are calculated as following equations:

lpC, Rq “ 2μCμR ` c1
μC

2 ` μR
2 ` c1

, cpC, Rq “ 2σCσR ` c2
σC

2 ` σC
2 ` c2

, spC, Rq “ σCR ` c3
σCσR ` c3

(7)

Moreover, α, β, γ in Equation (7) are parameters used to adjust the relative importance of the
three factors and the positive values constants c1, c2, c3 are used to avoid a null denominator. In order
to simplify the expression, we set α = β = γ = 1 and c1 = c2 = 2c3 in this paper. We use PSNR
to assess the correction effect of pixels that appeared in ROI and use SSIM in terms of bad pixels
appearing in the background. Here, we execute the wobbling correction method using averaging
and distance-weighting fusion models (mentioned as “Method A” and “Method B”) and compare the
results with a conventional interpolation correction method.
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3. Results

3.1. Flood Image Result

A typical image is shown in Figure 6. In the following pairs of spectra, we describe the different
pixels’ behavior. The black spots in Figure 6a represent dead pixels which have resulted in a large
reduction of system sensitivity. Otherwise, pixels with split spectrum (247th pixel), broadening peaks
(246th pixel) or non-standard response (65th pixel) are compared with “normal” pixels in Figure 6b,c.
We found the unusual response pixels tend to bunch together, especially at the edge of the module.
This may be attributed to the effects of local crystal structure variations. Overall, defective pixels
represent less than 10% of all the pixels.

Figure 6. Spectra and counts are measured by flood phantom from a 2 ˆ 2 modules of detector. (a) The
Tc-99m flood image, the black spot (no counts) in the detector area (solid box) is caused by a cluster
defect region. The white and brown spots (dashed box) in the image can be attributed to irregular
response pixels; (b) Extreme high response pixels compared with adjacent normal pixels; (c) Pixels
which show split or broadening spectral peak at the edge of detector.

3.2. Line Source Image Result

Figure 7 displays an example of the application of the wobbling correction method to four
continuous bad pixels on the detector. A line source image is acquired statically as reference image
(Figure 7a). Then we define four continuous bad pixels in ROI (8th and 9th row, 10th and 11th column)
as Figure 7b. Figure 7c,d is the corrected image using a conventional interpolation method and the
proposed wobbling correction method, respectively. Figure 8 compares line profiles of the pixel
counts across the 8th row (the bad pixel location) after application of the different correction methods.
The interpolation results in an obvious decrease of counts and information loss around the bad pixel
region. Contrarily, the wobbling correction result shows similar counts as the reference image and
recovers the missing information more effectively. The phantom results are valid examples to highlight
the enhancement of the wobbling correction method.
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Figure 7. Results of the acquired line source phantom and correction results comparison. (a) Reference
image: static imaging of line sources; (b) Bad image: image with 4 continuous bad pixels;
(c) Conventional interpolation result: image using interpolation method; (d) Wobbling correction
result: image using wobbling correction method.
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Figure 8. The pixel counts across row 8th of the corrected images. The blue line indicates the pixel
counts after conventional interpolation and the green line indicates the counts after the proposed
wobbling method is applied. The red line is the counts of the reference image.

4. Discussion

According to the evaluation factor defined in Section 2.4, the PSNR and SSIM are calculated
for various bad pixel conditions with different pixel numbers and arrangements. The PSNR results
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of bad pixels appearing in the ROI are listed in Table 1. The SSIM results, assessing the correction
effect for background bad pixels, are listed in Table 2. The improvements of the wobbling methods
A and B compared with the conventional interpolation method are also marked in Tables 1 and 2.
In order to demonstrate the improvement of the wobbling correction method explicitly, the PSNR and
SSIM values of different correction methods for various bad-pixel numbers are plotted in Figures 9
and 10 respectively.
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Figure 9. PSNR of different correction methods for various bad-pixel numbers.
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Figure 10. SSIM of different correction methods for various bad-pixel numbers.

The proposed wobbling correction method results in higher PSNR and SSIM, in particular when
there are more than two continuous bad pixels. For the condition where bad pixels appear in the
ROI, the improvement of the wobbling method results is around 10%~20% when the number of
bad pixels is less than three. As the number of continuous bad pixels gets larger, he PSNR of the
proposed wobbling method is significantly higher. For three continuous bad pixels, the PSNR of
the wobbling method A and B is 1.6 and 1.5 times higher than the interpolation result. According
to Table 2 of SSIM results, the overall improvement of the wobbling method is 10% for correction
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of background bad pixels, compared with conventional interpolation. As can be seen in Figures 8
and 9 defects up to 4 bad pixels can be corrected almost flawlessly when the wobbling correction
is used. Conventional interpolation may already be inadequate for bad-pixel numbers up to four.
This is because the conventional interpolation method is based on using the neighboring pixels to
estimate the bad pixels’ counts. When the defects cluster to form large regions of corrected pixels, the
neighboring information is not sufficient for the correction, whereas the proposed method acquires
two images of related wobbling positions, which can provide a comprehensive reference for correction,
so the wobbling method is still effective when there are large defective regions. Moreover, the proper
fusion model in the wobbling method can make effective use of the two wobbling images, producing
desirable correction results.

Table 1. PSNR of correction for bad pixels appearing in the ROI.

Number of Bad Pixels Shape
PSNR (Improvement %)

Conventional Interpolation Method A Method B

2 Vertical 6.3953 6.8457 (+7%) 7.3356 (+14.7)
2 Horizontal 7.8373 9.5113 (+21%) 9.7114 (+23.9%)
3 “L”-shaped 7.1087 11.4718 (+61.4%) 10.745 (+51.2%)
4 Square 5.6144 9.2081 (+64%) 9.6518 (+71.9%)

Table 2. SSIM of correction for background bad pixels.

Number of Bad Pixels
SSIM (Improvement %)

Conventional Interpolation Method A Method B

2 0.584 0.607 (+3.9%) 0.6532 (+11.8%)
3 0.5166 0.5767 (+11.6%) 0.5374 (+4%)
4 0.4419 0.497 (+12.5%) 0.4574 (+3.5%)

5. Conclusions

In this paper, we propose a novel method for correcting continuous bad pixels. Within the same
acquisition time, images of two wobbling positions provide a reference for reasonable correction.
We conduct corrections for various bad pixel conditions and use PSNR and SSIM estimators to evaluate
the correction results. In the phantom experiment, the conventional interpolation method is used for
comparison. The results show that wobbling method can correct continuous bad pixels effectively,
no matter whether they appear in the ROI or background, whereas, a conventional interpolation
method cannot effectively recover the original information, especially when there are more than
three continuous bad pixels. In our future study, a proper image fusion algorithm of the wobbling
images can be further investigated, resulting in a more effective correction. The wobbling method is
conceptually simple, computationally efficient, and easy to use. Furthermore, this correction technique
is potentially applicable to the standard pixelated detector, such as Si, GaAs and CdTe, with a proper
motorized system.
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Abbreviations

The following abbreviations are used in this manuscript:

CZT Cadmium zinc telluride
SPECT Single Photon Emission Computed Tomography
VOI Volume of interest
SNR Signal-to-noise
PSNR Peak signal-to-noise ratio
MSE Mean squared error
SSIM Structural similarity
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Abstract: Surface defect detection and dimension measurement of automotive bevel gears by
manual inspection are costly, inefficient, low speed and low accuracy. In order to solve these
problems, a synthetic bevel gear quality inspection system based on multi-camera vision technology
is developed. The system can detect surface defects and measure gear dimensions simultaneously.
Three efficient algorithms named Neighborhood Average Difference (NAD), Circle Approximation
Method (CAM) and Fast Rotation-Position (FRP) are proposed. The system can detect knock damage,
cracks, scratches, dents, gibbosity or repeated cutting of the spline, etc. The smallest detectable defect
is 0.4 mm × 0.4 mm and the precision of dimension measurement is about 40–50 μm. One inspection
process takes no more than 1.3 s. Both precision and speed meet the requirements of real-time online
inspection in bevel gear production.

Keywords: multi-camera vision; bevel gear; defect detection; dimension measurement

1. Introduction

The bevel gear, also called the automobile shift gear, is an important part in an automobile
transmission. Its quality directly affects the transmission system and the running state of the whole
vehicle [1]. According to statistics, about one third of automobile chassis faults are transmission
faults, in which gear problems account for the largest proportion [2]. Although the bevel gear’s
design, material and manufacturing technique are quite mature and standard, in today’s high-speed
production lines there are still inevitably defects such as dimension deviations, surface scratches,
crushing, dents or insufficient filling, etc. Defective gears will not only reduce the performance of the
car, but also cause security risks and potentially huge losses to manufacturers [3].

Figure 1a shows some kinds of bevel gears. The shape and structure of bevel gears are complicated
and the types of defects various, so bevel gear quality inspection is very difficult. At present it is mainly
completed manually, which is tedious and inefficient. It is hard to guarantee the quality stability and
consistency. Recently Osaka Seimitsu Precision Machinery Corporation in Japan developed a high
precision gear measuring instrument as shown in Figure 1b, but the inspection speed is very slow and
cannot meet the requirements of high-speed production lines. There has been gear defect detection
technology based on machine vision, but it’s mainly used in the inspection of broken teeth and flat
surfaces of general gears [4]. There is no precedent research for bevel gears with complicated shape
and structure [5]. Because of the multiple measurement tasks and diverse defects, the traditional single
vision system cannot obtain enough information. To measure the multiple dimensions quickly and
accurately, to detect and classify the defects completely and precisely, a more efficient vision system
is needed.

Machine vision is such an advanced quality inspection technology which uses intelligent cameras
and computers to detect, identify, judge and measure objects [6–14]. To solve the above problems,
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this paper develops a multi-vision bevel gear quality inspection device which combines defect
detection and dimension measurement in one system. Three efficient image processing algorithms
named Neighborhood Average Difference (NAD), Circle Approximation Method (CAM) and Fast
Rotation-Position (FRP) are proposed. The system successfully solves the problem of bevel gear defect
detection and measurement at high speed and accuracy. One can find a short Chinese article describing
this system in [15].

 
(a) 

 
(b) 

Figure 1. (a) Samples of bevel gear; (b) Gear measuring instrument of Osaka Seimitsu Precision
Machinery Corporation.

2. System Design

2.1. Inspection Project and Requirement Analysis

The defect detection and dimension measurement system developed in this paper is designed for
two specific types of bevel gears, A4 and F6, as shown in Figure 2.

(a) (b) (c) (d) 

Figure 2. Samples of gear A4 and F6: (a) Top surface of gear A4; (b) Bottom surface of gear A4;
(c) Top surface of gear F6; (d) Bottom surface of gear F6.

The requirements of defect detection and measurement are as follows:

(1) Defect detection of tooth end surface, spherical surface and mounting surface, including knock
damage, cracks, insufficient filling, folding, scratches, dents or gibbosity, repeated spline
broaching, etc. As shown in Figure 3. Defects greater than 0.5 mm × 0.5 mm should be detected.

(2) Measurement of bevel gear’s height, diameters of two circumcircles, spline’s big and small
diameters, end rabbet’s diameter. Measurement accuracy is 80–100 μm.

(3) Defect detection speed is about 1 s for each surface.

2.2. Hardware Design

Bevel gears have many teeth and each tooth has different lateral surfaces. For example, gear A4

has 13 teeth and 26 surfaces; gear F6 has 14 teeth and 28 surfaces. The defects are diverse. How to
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realize the real-time online inspection of all the teeth and surfaces is a big challenge. One approach is
using a single camera and rotational shooting mode, but it requires a high-precision rotary positioning
system. The inspection speed is too low to meet the requirements. Because the bevel gear’s teeth
surfaces are uniformly distributed and rotationally symmetric, we propose a solution which can
complete image acquisition and processing synchronously by using multiple high-speed cameras.
The speed was an order of magnitude faster than single camera rotary positioning system.

 

Figure 3. Examples of defects on bevel gear surface.

Figure 4 shows the total plan of our inspection system. Nine high speed USB cameras are used to
capture different parts of the bevel gear simultaneously. The top camera is the core of the whole image
acquisition system. It undertakes the positioning of the bevel gear, defect detection and measurement
of the top and bottom surfaces.

 
Figure 4. Diagram of bevel gear inspection system.

Seven side-view cameras are emplaced evenly around the bevel gear, with a 45◦ tilt angle with
respect to the horizontal plane and perpendicular to gear tooth groove, detecting the lateral teeth
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surfaces omni-directionally. In addition, one more camera with a horizontal view is located on the
platform to measure the bevel gear’s height. After the gear is loaded, the operator gives a command
that all of the cameras acquire images at the same time. An industrial computer receives and processes
the images one by one and gives control signals according to the detected results. To meet the different
accuracy requirements of bevel gear defect detection, three types of industrial cameras are adopted in
this system. They are 3 megapixels, 2 megapixels and 1.3 megapixels, respectively. We can calculate
that one pixel represents 40–50 μm according to the gear’s actual size and image size. That is to say,
the accuracy in the bevel gear’s height and diameter measurements is 40–50 μm.

The system hardware includes four modules, which are camera module, control and process
module, I/O module and gear rotary module, as shown in Figure 5. The camera module consists
of nine high speed industrial cameras and a top ring light. The ring light illuminates the whole
system. The cameras capture every part of the bevel gear. The control and processing module is
responsible for image processing and output of instructions and inspection results. I/O module
includes monitor, keyboard, mouse and pedal. The monitor displays the results. The software is
operated by mouse and keyboard. The foot pedal starts the inspection of each surface. Software button
starter and automatically trigger are also provided in this system. The gear rotation module is made up
of a stepping motor and a reducer. It rotates the bevel gear precisely in the defect detection of special
parts and template acquisition section.

 

Figure 5. Hardware structure of the bevel gear inspection system.

Figure 6 shows the prototype of this multi-camera bevel gear quality inspection system. In order
to adapt to various inspection tasks and objects, a series of position adjusting elements are designed.
The height of top camera and illumination can be adjusted. Each camera can be adjusted slightly in the
horizontal direction. For side-view cameras, the tilt angle and distance to the gear are adjustable in
a large range, so the system can detect and measure the vast majority of bevel gears and other gears or
parts of similar structure.

2.3. Software Design

Based on above hardware, a fast and multifunctional bevel gear inspection software is developed
under the MFC and OpenCV platforms. The inspection includes two steps, top and bottom surface
respectively. The software can automatically identify the current inspection is the top or the bottom of
a bevel gear, and whether the bevel gear is in the right place. Top inspection includes two sub-modules,
top surface and lateral surface, each one compose of size measurement and defect detection.
The software flowchart is shown in Figure 7.
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Figure 6. Prototype of multi-camera bevel gear inspection system.

 

Figure 7. Software flowchart of bevel gear inspection system.

For a new inspection task, the software runs in order of top→lateral→bottom surface inspection.
If any fault is found, the program marks it at once and outputs the defects and size measurement
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results, and then terminates. The software of the bevel gear inspection system employs a multi-thread
technique. It includes four modules, which are defect detection, equipment calibration, template
acquisition and parameter setting. The equipment calibration module calibrates the position, apertures
and focuses of the nine cameras. The template acquisition module completes the sample collection
and size calibration of a standard gear. The parameter setting module adjusts the related parameters
for different kinds of inspection tasks. The defect detection module marks the faults in the gear image,
and shows all the size and statistical data. Figure 8 shows the appearance of the software.

(a) (b) 

(c) (d) 

Figure 8. Soft interface of bevel gear inspection system: (a) Defect detection; (b) Equipment calibration;
(c) Template acquisition; (d) Parameter setting.

3. Key Algorithms in Defect Detection

Because the defects of the bevel gears are complex and various, and the inspection time is
short, the general algorithms cannot meet the requirements. In this system, we use multi-threading
technology and propose several efficient image processing algorithms, which are NAD, CAM and FRP.
The following introduces these key algorithms in detail.

3.1. Neighborhood Average Difference Method

From the point of texture, all kinds of defects are shown as waves, twists, undulations or roughness
of the surface, thus defects can be detected by analyzing gear texture. Texture description operators
based on gray-scale histograms include average, standard deviation, smoothness, third order moment,
consistency and entropy, etc. A large number of experiments show that the combination of third order
moment and smoothness do best in bevel gear defect detection, but these operators are sensitive
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to outside interference. The threshold setting is complicated and based on massive numbers of
experiments and the results cannot show the characteristics of defects directly and comprehensively
(such as area). In our system, we present an algorithm called Neighborhood Average Difference (NAD),
which can extract the defects entirely and define larger ones as faults, ignoring tiny ones. The steps are
as follows:

Step 1: Count the number of nonzero pixels in a neighborhood, denoted by N, given the
neighborhood range is L × L pixels, here L = 30.

Step 2: Calculate the sum of gray values in the neighborhood: S = ∑L−1
i=0 ∑L−1

j=0 p (i, j), in which p(i,j)
is the pixel value of point (i,j).

Step 3: Calculate the average pixel value in a neighborhood: M = S/N.
Step 4: For each point p(i,j) in the neighborhood, if |p(i,j)− M| > δ, δ is a threshold, then the point is

marked by setting p(i,j) = 255.
Step 5: Scan the marked points in the image. If they are in connected region and the size of the

region is greater than a threshold, then the region is a defect. Single marked points and tiny
connected regions are ignored.

In addition, interference such as the impurities, dust and dirt on the surface can be removed
partly by image dilation and erosion processing.

3.2. Circle Approximation Method

Circle detection is a classical problem in image processing [16–19]. To detect the actual and virtual
circles on the bevel gear fast and accurately, an algorithm named CAM is presented. The main idea is:
Draw a circle with initialized center and radius, then expands or contracts it slowly and moves the
center continuously until it is tangent to the circle to be detected. Then keep adjusting its radius and
center on condition that they remain tangent. The drawn circle will move closer and closer to the circle
to be detected until they match perfectly. Figure 9 shows this process.

 

Figure 9. Circle Approximation Method: Each row shows an example of circle fitting process. The solid
circles are to be detected and the dash circles are regulated to match the solid ones.

Circle center, radius and rotation angle step are three initial inputs of this method. The center and
radius can be approximated only asking the drawn and the target circles have some common area.
The more accurate the initial parameters are, the faster the method gets an idea result. It utilizes the
positioning result in dimension measurement, and the steps are as follows:

Step 1: Extract the edge of the circle (actual or virtual) to be detected by threshold segmentation of
the original image. Store the edge in target pixel set C.

Step 2: Set the initial center (x0, y0) and radius r0 of the drawn circle. Set the rotation angle step θ.
Step 3: Increase or decrease radius r0, r0 = r0 + δr, or r0 = r0 − δr, δr is the change value in

each adjustment.
Step 4: Calculate the pixel set C’ on the drawn circle with the current center and radius. Find the

intersection of C and C’, record as X. If X is empty, return to Step 3.
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Step 5: If X is non-empty and the number of its elements is Xnum, judge whether Xnum satisfies the
matching condition. If satisfies, output the center and radius information, otherwise move
the center in its eight neighborhoods and find the position where X has the least elements,
record and return to step 3.

The parameter θ is used in calculation of set X. Figure 10 shows how it is defined. R is the
radius. A and B are the starting and ending point of a rotation. Line segment L connects A and B.
For computational convenience, the center coordinate is set to (0, 0), B is set to (R, 0), A is set to
(x1, y1), then:

x1 = Rcosθ, y1 = Rsinθ (1)

L2 = (R − Rcosθ)2 + R2sin2θ (2)

θ = arccos[(2R2 − L2)/2R2] (3)

Because the image is discrete, L ≥ 1, then across
(

2R2−1
2R2

)
≤ θ ≤ π.

Figure 10. The calculation of rotation angle step θ in CAM.

The method counts target pixels on the drawn circle based on the parameter θ, it searches step
by step like the second hand of a clock. The value of θ is closely related to the cost of computation.
Theoretically, the greater the θ is, the faster the algorithm is, but the robustness of the algorithm will
be decreased and the detection accuracy will be reduced at the same time, so the detection accuracy,
the execution speed and the robustness of the algorithm should be all taken into account to set the
angle step θ. In addition, θ can be set dynamically. In early of the algorithm a bigger θ is used to
approach the detected circle quickly. θ becomes smaller as soon as the drawn circle touches the detected
circle which is then searched and fitted in a small range. The algorithm is efficient and accurate with
a dynamic theta.

Similar to Hough Transform, our method is robust to image noise and disturbance in virtue
of cumulative sum. It has a simple searching idea and only requires a preprocessing of threshold
segmentation. While in Hough Transform, preprocessing of edge detection or skeleton extraction is
very time consuming.

In order to verify the detection results of our algorithm, we compare it with Hough transform
by fitting the moon in Figure 11. The results of the two methods are almost identical and cannot be
distinguished by naked eye. Details of the comparison are shown in Table 1. The data show that
CAM is about 50 times faster than Hough Transform, with little difference in initial parameter setting.
In addition, the classical Hough Transform cannot be used in high resolution images because the
parameter space matrix will increase dramatically with the increase of the image size, resulting in
a large amount of computation and storage space. However, our circle approximation algorithm is not
restricted in this aspect. It is simple and fast with less computation, and is very suitable for the high
precision circle detection situation.
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CAM is suitable for fitting circles when a good initialization is available. Hough is suitable for
fitting circles in the presence of noise and multiple models (multiple circle arcs). A solution from
Hough transform will generally require refinement using an iterative method like CAM.

Our method is more suitable for detection of circles which have been positioned approximately.
In actually, with the auxiliary system composed by sensors and cameras, the location of bevel gear
won’t deviate greatly. The gross location of the circle can be determined by software in advance. So our
method can be successfully applied to most of the industrial circle detection occasions. The detection
and production efficiency can be improved significantly with its speed advantage.

 

Figure 11. Moon picture (952 × 672 pixels) and circle fitting result. Red cross is the center.

Table 1. Compare Circle Approximation Method with Hough Transform in moon fitting.

Method
Min

Radius/pixel
Max

Radius/pixel
Center

Step Size of
Angle/rad

Step Aize of
Radius/pixel

Time/s

Hough Transform 150 250 Null 0.1 1 5.6623
CAM 150 250 Image center 0.006 0.5 0.1189

Like other circle detection methods, our method can detect solid circles and arcs. But it can also
detect virtual circles such as gear spline circle, inscribed circle and circumscribed circle of a polygon.
Figure 12 shows the fitting results of spline virtual circles on gear F6 by our method.

 
(a) 

 
(b) 

Figure 12. Fitting the spline circles by CAM: (a) Image of spline; (b) Detection results of inscribed and
circumscribed circles of spline (denoted by green circles).

3.3. Fast Rotation-Position

In order to carry out accurate inspection of the bevel gear, the position of the workpiece should be
determined quickly after loading. It includes horizontal, vertical and rotational position. This system
uses a mechanical device to realize the horizontal and vertical position. Due to the complex gear
structure and the short feeding time, it is difficult to achieve effective rotary position by hardware.
We solve this problem by image processing method. Taking into account the center rotary symmetry
of the bevel gear, the rotation position is divided into three steps which are center positioning, image
acquisition of tooth surface and the rotary angle calculation:

443



Sensors 2016, 16, 1364

(1) Center positioning. To cut out the image of the inner circle, first segment the top camera image
with a certain threshold, then remove interference of impurity and inherent defects by foreground
and background area filting. The circle center and diameter are extracted by area statistics and
coordinates averaging. Figure 13a–c show this process.

(2) Teeth-end image extraction. Segment Figure 13a again with a smaller threshold value and cut out
the entire teeth-end image. Remove interference of impurity and inherent defects by foreground
and background area filtering. Then draw two circles with the center calculated above and proper
radiuses, extract only the teeth-end surface, as shown in Figure 13d–f.

(3) Calculate the rotation angle. In order to implement template matching algorithm in defect
detection, the original image of the bevel gear should be transformed to a standard position to
extract the matched temple. The following shows how to calculate the rotary angle α.

For example, bevel gear A4 has 13 teeth, which are distributed evenly. The angle between two teeth
is 360◦/13 = 27.69◦, as shown in Figure 14. O is the center of the gear and Pi is the geometric center of
a tooth. The angle between x-axis and line OPi is defined as αi. For each tooth, αi is converted into the
first quadrant and within 0◦–27.69◦. For gear A4, αi = α1, α1, . . . , α13. We eliminate any αi that has great
difference with others, and calculate the mean of the rest, which is defined as the rotation angle α of the
gear to be detected. Experiments show that the rotation-position method provides excellent accuracy.
The error is about 0.005◦, which can meet the requirements of the gear position determination.

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 13. The image preprocess of FRP method: (a) Top surface image; (b) Segmentation for inner
circle (with a larger threshold); (c) Inner circle detected; (d) Segmentation for teeth end (with a smaller
threshold); (e) Result of area filting; (f) Teeth end image.

 

Figure 14. Calculation of gear rotation angle.
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3.4. Template Matching and Collection

In machine vision, we often compare an input image with a standard image to find the difference
or target, which is called template matching. It’s fast and efficient. In this system we use template
matching a lot to extract the area to be detected, eliminating the interference of non-inspection areas
and improving the inspection speed.

Figure 15a is the top surface image of bevel gear A4 and Figure 15b is the matching template.
In Figure 15b, the value of background and edge of the gear are set to 150, which means they are
a non-inspection area. Black, white and some other gray colors indicate different parts to be detected.

The templates are collected from a standard and perfect gear. Here is the acquisition process of
top surface template. First extract the gear’s center and rotation angle, and then divide target pixels
into different parts according to their distance to the center and mark with different colors, remove
background pixels completely. The templates are numbered and saved in order of rotation angle.

 
(a) 

 
(b) 

Figure 15. (a) Top surface of gear A4; (b) The matching template.

The lateral template is collected by the aid of a special gear painted with black and white matted
coating, shown in Figure 16a. This ensures that a perfect template can be extracted through a simple
image processing, shown in Figure 16b. Figure 16c is an original lateral image and Figure 16d is the
extracted teeth surface by template matching.

(a) (b) (c) (d) 

Figure 16. The collection and use of bevel gear lateral template. (a) Lateral image of template gear;
(b) Extracted template; (c) Lateral image to be detected; (d) Extracted image by template matching.

In this system the templates collection and processing are completed automatically without
artificial participation. Templates are automatically numbered and saved in order of rotation angle
and camera. After a template is collected, the gear is rotated to another angle by the step-motor and
the next collection begins. The angle interval is about 0.01◦–0.02◦. The total template image size is as
large as 25 GB, that is to say, the system achieves ideal inspection speed by sacrificing storage space.

4. Inspection Results

The inspection tasks and methods are different for bevel gears vary in structure. Figure 17a,b are
bottom surfaces of gear F6 and A4 respectively. F6 is flat and defects are obvious in the image. It is
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easy to detect. A4 is spherical and the image is dark and weak in contrast. The defects are hard to be
found in the image, especially for dints. The inspection algorithm of A4 is much more complicated.

 
(a) 

 
(b) 

Figure 17. Bottom images of F6 and A4: (a) Bottom of F6; (b) Bottom of A4.

4.1. Example of Defect Detection and Dimension Measurement

In this section, we illustrate how the system works through a practical example, the inspection of
bottom surface of bevel gear A4.

4.1.1. Inspection of Top-Circle on Bottom Surface

The top of back surface is a standard sharp ring in the image of a perfect A4 gear. But it is fragile
and easily to be damaged in production process. Defects are shown as broken ring, burr or uneven
color in the image. The system will detect and mark the defects as shown in Figure 18. The following
illustrate the detail inspection process.

 

Figure 18. Inspection of bottom surface of gear A4, red boxes mark defects and green circle marks
circumcircle.

Step 1: Extract the ring and its neighborhood by threshold segmentation, and then remove small
noise around the ring by area filter, the result is shown in Figure 19a.

Step 2: Fitting the ring boundaries. Generally the bevel gear is centrosymmetric, figure out the
approximate center by average coordinate. Fit the inner and outer boundary circles of the
ring by CAM. Red circles in Figure 19b are the fitting result. This is preparatory work for
Step 3 and the following dimension measurement.

Step 3: Defect detection. The pixels of the top ring are highlighted for a qualified gear, so the
dark pixels between two red circles are marked as defects. For the inside and outside
neighborhood of the ring, defects are located by the combination of fixed and dynamic
threshold segmentation. The merged result is shown as the white pixel groups in Figure 19c.
Then eliminate additional arc by image open-operation and extract bigger defects by area
filtering, as shown in Figure 19d. The end result is marked by red boxes in Figure 18.
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(a) (b) (c) (d) 

Figure 19. Defect detection of top ring on bottom surface: (a) Top ring extraction; (b) Top ring fitting
(red circles); (c) Result of defect detection; (d) Defects after open-operation.

4.1.2. Inspection of Spherical Surface

The defects on spherical surface are not obvious in the top camera image and should be detected
from lateral camera images. Figure 20a shows such an image. The region just facing the camera is
highly lit and both sides are darker and darker. Experiments show that defects in the transition region
are the most obvious, so the main inspection area is between the high light and the darkest regions.

To extract the target region fast, the system creates a template for each lateral camera, as shown
in Figure 20b. Gray indicates the inspection region and black/white is the non-inspection region.
The white stripe is used for device calibration and avoiding erroneous inspections. The whole sphere
surface cannot be covered by seven cameras at a time. To ensure the defects can be detected at any
angle, the gear is rotated 3 to 5 times by a stepper motor.

 
(a) 

 
(b) 

Figure 20. (a) The lateral image of sphere surface; (b) The template of sphere surface.

The motor rotation is time-consuming. The motor begins to rotate just at the end of a single
image acquisition. The rotation completes when the image processing finishes, then the next image
acquisition begins. Inspection time is saved greatly by this process. The defects are detected by the
NAD method. Figure 21a shows an image with defects in it and Figure 21b shows the inspection result.

 
(a) 

 
(b) 

Figure 21. (a) A lateral image of the sphere surface; (b) Inspection result of Figure 21a.
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4.1.3. Measurement of End Rabbet Diameter

Size measurement includes the diameters of large and small circumcircles and end rabbets.
The two circumcircles are relatively easy to fit by threshold segmentation and CAM. The fitting results
are shown as green circles in Figure 22a. The end rabbet is a shallow circular groove on the gear.
Figure 22b shows its location and 22c is an amplified image. The division of two regions of different
gray values in Figure 22c is the rabbet circle. It is dark in the image and hard to identify.

Because the rabbet circle is not distinct in the image, fixed or dynamic thresholding such as
the Otsu algorithm or the interactive method are not applicable [20–22]. Figure 23a shows the gray
histogram of the rabbet circle and its nearby pixels. We find that the pixels on the rabbet circle are the
darkest. They are the left part of the histogram, about 3000–5000 pixels. We extract these pixels and
then get the outline of the rabbet circle, as shown in Figure 23b.

We use CAM to fit the rabbet circle in Figure 23b. The result is shown as the red circle in Figure 22a.
We prove again that our method is much faster than the Hough Transform and least-squares method
while ensuring the accuracy.

 
(a) 

 
(b)

 
(c) 

Figure 22. Size measurement of circumcircles and end rabbet: (a) Green circles are circumcircles and
red is end rabbet circle. (b) Location of end rabbet; (c) Extracted rabbet and its amplified image.

 
(a) 

 
(b) 

Figure 23. (a) Histogram of End rabbet and nearby pixels; (b) Extract the outline of rabbet circle.

4.2. Statistical Results of Bevel Gear Inspection

Using the inspection system developed in this paper, 84 bevel gears of type A4 and 84 of type
F6 are tested. Tables 2–4 are the inspection results of A4. Tables 5–7 are the inspection results of F6.
The data shows that size measurement of our system is 100% accurate under the current requirements.
Measurement accuracy is about 45 μm and repeated error is no more than 90 μm. The minimum
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detectable defect is 0.4 mm × 0.4 mm. Inspection time of one surface is less than 1.3 s. Both the
accuracy and the speed are suitable for the real-time on-line inspection in automatic production lines.

Table 2. Top surface inspection of gear A4.

Results
Top Circle Teeth Surface Teeth Edge

Connected Fault Knock Dent Knock Insufficient Filling Knock Insufficient Filling

Number of defects 1 7 10 15 1 13 10
Detected defects 1 7 10 12 1 11 10

Accuracy/% 100 100 100 80 100 84.6 100

Table 3. Lateral surface inspection of gear A4.

Results Knock Scratch Dent Gibbosity Roughness Peeling off

Number of defects 30 23 18 1 6 1
Detected defects 28 19 16 1 6 1

Accuracy/% 93.3 82.6 88.9 100 100 100

Table 4. Bottom surface inspection of gear A4.

Results
Bottom Ring Spherical Surface Spline

Knock Scratch Knock Scratch Dent Duplicated Broaching

Number of defects 41 12 15 23 19 6
Detected defects 39 12 15 22 19 6

Accuracy/% 95.1 100 100 95.6 100 100

Table 5. Top surface inspection of gear F6.

Results
Top Ring Top Teeth Surface Teeth Edge

Chamfer Lack Knock Dent Knock Dent Knock Insufficient Filling

Number of defects 2 7 8 17 9 34 18
Detected defects 2 7 8 16 9 30 18

Accuracy/% 100 100 100 94.1 100 88.2 100

Table 6. Lateral surface inspection of gear F6.

Results
Lateral Teeth Surface Lateral Teeth Small Surface

Knock Dent Scratch Insufficient Filling Knock Dent Scratch

Number of defects 42 8 11 3 13 5 4
Detected defects 37 8 8 3 11 5 3

Accuracy/% 88.1 100 72.7 100 84.6 100 75

Table 7. Bottom surface inspection of gear F6.

Results
Bottom Ring Mounting Surface Spline

Knock Rough Knock Scratch Size Error Duplicated Broaching

Number of defects 3 3 2 5 4 3
Detected defects 3 3 2 4 4 3

Accuracy/% 100 100 100 80 100 100

5. Discussion

The presented multi-camera automobile bevel gear quality inspection system adopts advanced
machine vision technology. It solves the problem of difficult inspection of complicated gears at high
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speed and with high precision. The research shows that machine vision can substitute most manual
work in bevel gear inspection, improving the efficiency of production and the degree of automation.

The prototype of this system has been realized and applied in bevel gear production. There are
still some technical problems to be solved. The edge of the gear is a non-detectable area in our system
and some defects in low contrast images cannot be detected reliably. We are seeking better illumination
schemes and new inspection ideas to solve these problems.
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Abstract: Flexible active matrix display technology has been adapted to create new flexible
photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of
amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges
associated with the intrinsic film stress of amorphous silicon. This paper examines how altering
device structuring and diode passivation layers can greatly improve the electrical performance and
the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN
diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction
photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum
efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer
passivation structure on a 20 μm-thick polyimide substrate.

Keywords: flexible electronics; flexible displays; flexible X-ray detectors; amorphous silicon PIN
diodes; passivation

1. Introduction

1.1. Flexible Electronics

Flexible electronics are becoming more prevalent as previously developed flexible active matrix
display technology is being implemented to produce a wide variety of photo-based biomedical sensing
devices [1,2], including flexible X-ray detectors [3]. The primary immediate benefit of switching
from conventional display glass to flexible substrates in digital radiography is the cost savings
associated with the elimination of the significant ruggedization that must be incorporated to limit
detector breakage.

Portable radiography has seen expansive growth into non-medical markets, such as security
imaging and non-destructive testing for integrity analysis (i.e., looking for cracks in pipelines or
inspection of aircraft structures). Though some portable X-ray panels do exist, they are comprised
of glass thin film transistor (TFT) panels, and are rather bulky due to the ruggedization required to
protect the costly panel from breakage. Given the cost of these panels, it would be advantageous to
have a more rugged system that would be less prone to breakage and be much lighter for mobile users
to carry.

Along with being both portable and lightweight, a digital X-ray panel with some degree of
flexibility or bendability is also an appealing medical diagnostic or industrial imaging tool, especially
if the overall digital X-ray detector thickness can be also minimized. A paramedic would be able to
easily slide a thin and slightly flexible digital X-ray detector panel directly underneath the victim of
a car accident at the scene, or an inspector could wrap the X-ray detector around a possibly cracked
oil pipeline.
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The relatively rapid development of flexible X-ray detectors and imagers has been enabled by
the fact that existing active matrix thin film transistor flexible display technology can be easily ported
to amorphous silicon (a-Si)-based indirect digital X-ray detectors, which have a similar underlying
platform structure to liquid crystal displays (LCD). The principal new challenge to be addressed is
flex-compatible fabrication of photodiodes in series with the thin film transistor at each pixel.

1.2. X-ray Source and Detector Structure and Operation

An X-ray source typically consists of a vacuum tube in which high voltage (i.e., 30–150 kV)
electrons are accelerated into a metallic anode. The accelerated electrons pass close to the nuclei of the
target material, or strike an inner shell electron in some cases, and produce an X-ray as the electron
is slowed considerably by the opposing charge of the nucleus [4]. In the event of an inner electron
shell collision, an electron from the outer shell moves into the vacancy in the inner shell and gives
off an X-ray with energy that is characteristic of the anode material. The energy of the X-rays can
be attenuated by a filter (which can be aluminum or carbon), producing a target energy range of
70–80 keV.

X-rays from the source pass through the patient or device under examination, with some of the
X-rays attenuated by the nuclei of the intervening material. At the kilovolt energies typically employed
by medical X-ray detectors, attenuation is usually the result of photoelectric absorption or Compton
scattering. Photoelectric absorption produces meaningful data because an X-ray photon is absorbed
and releases an electron from the absorbing atom. The X-ray absorption is proportional to the atomic
number, the density, and the thickness of the absorbing media [5]. As an example, bone—which has
a higher effective atomic number and is relatively dense—will absorb more X-rays than soft tissue,
which results in a contrast difference in the completed radiograph. X-rays that do pass through the
patient are absorbed by the detector.

A flat panel digital X-ray detector is usually classified as direct conversion or indirect conversion,
depending on the process for converting the incident X-rays into charge. Direct conversion detectors
utilize a photoconductive layer of amorphous selenium, which absorb the X-ray and produce an
electron/hole pair. When a bias is applied across the selenium, the generated charge carriers are pulled
towards the electrodes. When an X-ray is absorbed and generates an electron/hole pair, the charge
carrier is drawn to the opposing electrode with limited scattering in comparison to indirect detection
techniques [6]. However, the amorphous selenium has a smaller capture cross-section in comparison
to the cesium iodide (CsI) screens used in indirect conversion, thus requiring the patient to be exposed
to a higher dosage of X-rays to achieve the same resolution. In addition, the selenium film is usually
0.25–1.0 mm thick, requiring a large voltage on the order of 10 kV across the selenium to provide a
sufficient electric field to extract the incident X-ray-generated charge carriers [6].

The basic components of an indirect digital X-ray detector include a scintillator phosphor
conversion film that converts the incident X-rays into visible photons, a photodiode—usually
amorphous silicon with organic photodiodes as an emerging competing technology—that detects
the light emitted from the X-ray phosphor conversion film and converts the light into an electric
charge, and a thin film transistor (TFT) that acts as a switch for the readout of the charge stored in the
photodiode in between readout. In that sense, the operation of a digital X-ray detector can be compared
to a large digital camera. The scintillator is typically composed of high capture cross section materials
like cesium or the rare earth elements doped with a phosphor whose peak emission is in the visible
spectrum usually between 500 and 550 nm for detectors manufactured with a-Si photodiodes. The a-Si
photodiode is operated under reverse bias between ´2 and ´5 V so that the photocurrent dominates
the total current flowing through the photodiode. The a-Si is grown to a thickness of 1.0 to 1.2 μm,
which is more than adequate to capture most of the incident green light produced by the scintillator.
The TFTs are laid out in a grid similar to an LCD display, where the gate lines are scanned sequentially
and the charge stored on the source line is read out at the edge of the array.
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1.3. Flexible Indirect X-ray Detectors

The simplest photodiode fabrication approach is to pattern the n-Si layer of the photodiode at each
pixel, and to blanket deposit the i-Si, p-Si, and transparent conductor top metal contact continuously
over the entire array. A major advantage of this full fill factor approach is that the entire pixel is covered
by the i-Si absorption layer, thus eliminating any “dead” spots in the pixel where photon strikes will
not be detected. This full fill factor approach also produces the smallest pixel size (and hence highest
resolution) for a given set of design rules. For example, for X-ray detectors currently fabricated at the
Flexible Electronics and Display Center, we produce 50 ppi full fill factor arrays, compared to much
larger 83 ppi for pixelated diode arrays.

There are some significant processing drawbacks to the full fill factor design that are exacerbated
by the use of polyethylene naphthalate (PEN) as a flexible substrate. Since there is a large coefficient
of thermal expansion (CTE), mismatch between PEN and amorphous silicon (13 ppm/˝C versus
3 ppm/˝C), coupled with the high intrinsic compressive film stress of the i-Si layer detectors, arrays
fabricated with the full fill factor approach have a tendency to curl significantly after post-fabrication
debonding of the flexible substrate. In addition, the deposition process for the amorphous silicon diode
layers takes place at 200 ˝C, which is near the melting temperature of the PEN (240 ˝C), and can take
upwards of one hour to deposit the requisite 1.2 μm-thick film. The extended exposure at the elevated
temperature of the PECVD (plasma enhanced chemical vapor deposition) process risks embrittling
the PEN and ruining the detector. In spite of these drawbacks, full fill factor X-ray detectors on PEN
substrates have been successfully demonstrated by multiple groups [3,7,8]. Previous results from the
Flexible Electronics and Display Center are shared below in Figure 1. If the i-Si deposition process is
not tightly controlled, stress-related failure, as shown in Figure 1, may occur.

 

Figure 1. Full fill factor digital X-ray detector backplane showing stress related failure due to high
intrinsic film stress in the i-Si layer.

In spite of these drawbacks, amorphous silicon photodiodes are more desirable for large area
detectors than direct conversion amorphous selenium detectors because the amorphous silicon is
significantly thinner (1.2 μm [3] vs. 100 μm [7]), enabling a tighter bending radius. Moreover, PECVD
amorphous silicon can be deposited with better uniformity over large areas than the thermally
evaporated amorphous selenium. Amorphous silicon photodiodes are preferable over organic
photodiodes due to the air and moisture instability of organic photodiodes under irradiation, which
requires a sufficiently robust moisture and oxidation barrier to prolong the life of the detector [9].
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Another method for alleviating stress in the entire film stack is to use a flexible substrate whose
coefficient of thermal expansion is a closer match to that of the deposited thin films. Polyimides are
a class of flexible substrate materials receiving considerable attention because of their compatible
thermal properties. The main advantages of polyimides over PEN as a substrate are that the coefficient
of thermal expansion for polyimide is roughly four times smaller than PEN, while the safe operating
temperature is roughly 200 ˝C higher. A comparison of the thermal properties of HD Microsystems PI
2611 [10], a polyimide, DuPont Teonex Q51 [11], and silicon [12,13] are shown below in Table 1.

Table 1. Comparison of structural, thermal, and electrical properties of polyimide, polyethylene
naphthalate (PEN), and silicon.

HD Microsystems
PI 2611

DuPont Teonex
Q51 PEN

Silicon Units

Tensile Strength 350 274.6 7000 MPa
Glass Transition Temperature 360 121 - ˝C

Continuous Operation
Temperature - 180 - ˝C

Melting Temperature 620 (decomposes) 269 1415 ˝C
Coefficient of Thermal

Expansion 3 13 2.6 ppm/˝C

Dielectric Constant 2.9 3 11.9

The increased operating temperature of the polyimide would allow for safe processing of a-Si
at temperatures above 275 ˝C, which is a typical deposition temperature for high quality TFT and
PIN diode a-Si films, without the risk of significant thermal damage to the substrate. In addition, the
coefficient of thermal expansion of the PI 2611 is within 0.4 ppm/˝C of silicon, meaning that it is less
likely that intrinsic stress associated with a-Si deposition will cause polyimide substrates to physically
curl once they are debonded from the carrier.

2. Materials and Methods

2.1. Substrate Preparation: Polyethylene Naphthalate (PEN) Bond/Debond

The bond/debond (or temporary bonding process) allows the processing of a flexible substrate
bonded temporarily to a rigid carrier in conventional semiconductor or flat panel display (FPD) process
tools that are built to handle rigid Si or glass substrates. The basic process flow for the bond process
is shown in Figure 2a [14], where it is compared to the polyimide cast and debond process, which is
described in the next sub-section. A temporary adhesive is spin-coated on to a rigid carrier. If the
adhesive is thermally cured, a bake usually follows the spin process. The flexible substrate, in this case
polyethylene naphthlate (PEN), is then mounted to the adhesive-coated carrier using a roll laminator.
The adhesive is cured either by UV exposure, by baking, or with a combination of both.

The rigid carrier suppresses the bowing of the flexible substrate during processing to provide the
requisite dimensional stability during device fabrication. Following device fabrication, the flexible
substrate can be debonded from the rigid carrier to yield a flexible electronics device (display, sensor
array, detector).

The main advantage of the bond/debond process is that the process requires little additional
investment to an already existing display or semiconductor fabrication facility and is scalable to
larger area substrates without significant alterations to the process. The main disadvantage of the
bond/debond process is related to controlling substrate deformation (i.e., warp and bow), which
can cause wafer handling and pattern alignment issues, substrate distortion, and in extreme cases
delamination of the flexible substrate during processing. However, Haq, et al. have demonstrated a
suitable distortion-free bond/debond process with controlled warp/bow that is capable of effective
processing up to 200 ˝C [15].
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Figure 2. Bond/debond and polyimide coat/debond process flow. TFT: thin film transistor.

2.2. Substrate Preparation: Polyimide Cast and Debond Process

The polyimide cast and debond process is an attractive alternative to the EPLaR (Electronics on
Plastic by Laser Release) [16] process, where slot die coating is used to cast polyimide as the base
substrate onto a display glass substrate, as shown in Figure 2b. The adhesion strength of the polyimide
is selectively modified at the edge of the carrier by applying an adhesion promoter such as VM652 from
HD Microsystems. The increased adhesion strength at the edge significantly reduces edge-initiated
debonding. However, the polyimide-to-glass adhesion strength has been tailored to be significantly
smaller than adhesion strength of the polyimide to the adhesion promoter, thus eliminating the
need for excimer laser melting of an interfacial layer to release polyimide, as in the EPLaR process.
After the polyimide is cured at 375 ˝C in an inert atmosphere, a PECVD silicon nitride (SiN) barrier
film is applied to protect the polyimide from future processing steps and to reduce the water vapor
transmission rate (WVTR) of the polyimide. The TFT and PIN diode processing steps can proceed
once the barrier is deposited.

After the device layers are fabricated, the backplane is cut inside the adhesion promotion layer
picture frame and is removed manually. The adhesion promotion layer remains bonded to the glass
carrier substrate along with a polyimide picture frame, which can now be reclaimed if desired. The curl
of the polyimide substrate after debond depends on the formulation of the polyimide spin/spray
casting solution and adhesion layer. The control of the post-debond curl is the biggest challenge of the
polyimide process.

2.3. PIN Diode Processing and Device Structure

Figure 3 is a cross-sectional schematic that illustrates the basic full fill factor pixel design. The grey
dashed line box highlights the PIN diode layers. The current full fill factor design places the PIN diode
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over the top of the TFT and uses an indium tin oxide (Siommon electrode for the Vbias connection
on the p-doped side of the PIN diode. The i-Si, p-Si, and ITO blanket the entire X-ray detector array,
and are etched outside the array in the field and over the driver connections. Processing of the full fill
factor design was described previously [3,17]. The maximum processing temperature for the device
is 200 ˝C.

 

Figure 3. Full fill factor PIN photodiode connected in series to a TFT. The interlayer dielectric (ILD) is a
combination of SU-8 (MicroChem) and SiN. The active layer is amorphous Si and the gate dielectric,
mesa passivation, and intermetal dielectric (IMD) are SiN.

Although the full fill factor design provides a smaller-area, higher resolution pixel when subjected
to the same design rules as alternative pixelated structures [18], there are some potential disadvantages
as well. For example, since the i-Si is blanket deposited across the array, it imparts more stress on the
substrate system than if the i-Si layer were patterned. In addition, there is also potential for crosstalk
between the elements in the arrays, since photons absorbed physically over a certain pixel could
instead be read out by a neighboring pixel because the i-Si film is continuous over the entire array.

Figure 4 is a cross-sectional schematic that illustrates the basic design for the alternative pixelated
diode approach. The grey dashed line box again highlights the PIN diode layers. Pixelating the
photodiode requires the Vbias connection to the p-doped side of the diode to be made using a
subsequently deposited metal deposition. The readout lines can also be moved to this subsequent
deposition step and then connected down to the TFT through a via at each pixel. This modification
enables the maximum separation between the gate lines and the readout lines, which reduces the
parasitic capacitance (noise) between the two. The separation of the diode and the TFT reduces the area
available for detection by approximately 15% in a detector with a 207 μm by 207 μm pixel compared to
the full fill factor design present in Figure 3 with the same pixel area.

The patterned PIN diode structure replaces the ITO Vbias connection with any opaque metal
of choice. If a sputtered aluminum/1 wt% silicon alloy is used, the resistivity difference between
the sputtered aluminum/silicon alloy and ITO is over a factor of 100 (4.1 μΩ-cm vs. 528 μΩ-cm),
which should provide an immediate benefit by reducing the series resistance in the device. The ITO
thickness and thus the sheet resistance is governed by optical constraints as well as electrical constraints.
Specifically, the ITO layer needs to act as an anti-reflection coating at the target wavelength for the
detection of incident light. In the case of a digital X-ray detector using a CsI scintillator, the target
light wavelength for detection is the peak emission wavelength of the scintillator (roughly 525 nm).
The ideal ITO thickness to produce minimum reflection at this wavelength is approximately 65 nm
thick, as calculated from Snell’s Law. However, the Vbias connection in the pixelated PIN diode
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structure depicted in Figure 4 does not have such optical constraints because the layer is so thick
that it is sufficiently opaque to most visible light and only covers a small portion of the photodiode.
This feature allows the separate control of the electrical and optical properties of the Vbias connection.

 

Figure 4. Patterned PIN photodiode connected in series to a TFT.

By using the aluminum/silicon alloy as the Vbias connection over ITO, the series resistance can
be significantly reduced while still maintaining the optical properties necessary to maximize photon
absorption in the photodiode. Series resistance is a parasitic, power consuming parameter whose
effect on the diode performance is illustrated by equation (1), which is a modification of the ideal
diode model:

ID “ IS

ˆ
e

qpVbias´ID Rsq
nkT ´ 1

˙
(1)

where ID is the diode current, IS is the reverse saturation current, q is the charge of an electron, Vbias
is the voltage applied across the diode, Rs is the series resistance, n is the diode ideality factor, k is
Boltzmann’s constant, and T is the temperature. The main contribution to series resistance comes from
the diode contact resistance, bulk resistance of the diode layers, and the sheet resistance of the top
metal layer [19]. The deleterious effects of series resistances are most noticeable at voltages near the
open circuit voltage of the photodiode [20] as a deviation in the slope of the I–V curve from the vertical
affecting the quantum efficiency in extreme cases [19].

2.4. PIN Diode Test Setup

2.4.1. L-I-V Sweeps of 1 mm2 Diodes

PIN diode test structures with an area of 1 mm2 were separately fabricated side-by-side with the
main arrays to test and monitor the performance of the full fill factor and pixelated PIN diodes. A probe
station fitted with a Keithley 4200 Semiconductor Characterization System was used to characterize
the diode performance. The probe card on the probe station is fitted with a green LED illuminator
(peak emission wavelength of 520 nm), which generates an irradiance 102 W/m2 at the device surface.
The diode is swept from ´5 V to +1 V in the dark and again with the illuminator set to maximum
current. The fill factor, open circuit voltage (VOC), and short circuit current (ISC) are extracted from the
irradiated curve. The dark characteristics are fitted to the ideal diode equation, which yields the diode
saturation current and the ideality factor. In addition, the minimum dark current, the dark current
at ´5 V, and the dark current at +1 V are extracted to indirectly track the shunt resistance and series
resistance, as well as the magnitude of the dark current. After the sweeps are completed, the diode is
held at ´5 V in the dark as the prober continues to read the current an additional 120 times, with each
reading commencing once the previous reading has collected sufficient charge to be safely above the
noise floor threshold of the tester.
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2.4.2. Diode Array Testing

A custom-built array test system with readout chips was built in-house to test the arrays. The tester
was customizable so that arrays as small as 128 by 240 pixels or as large as 1024 by 720 pixels could be
tested. The gate on time was set to 20 μs to allow for sufficient discharge of the photodiodes and the
charge collected was recorded to an image with 12 bit range greyscale.

3. Results

3.1. L-I-V Sweep Comparison between Blanket and Pixelated Photodiodes

Figure 5A compares dark I-V characteristics of 1 mm2 diodes fabricated with a blanket PIN diode
structure with ITO top contact and no passivation (structure shown in Figure 3), with the characteristic
behavior of diodes that are passivated and utilizing a metal strap as the top Vbias contact (structure
shown in Figure 4). The passivated, pixelated PIN diode performs better than the blanket structure
under both forward bias and reverse bias. The superior performance under forward bias is likely
attributable to the reduced series resistance, which is expected to dominate the I-V characteristic as the
voltage increases above 0.5 V. The primary advantage to decreasing the series resistance is to reduce
the image lag and prevent inverse shadowing. A lower resistance allows charge to be drained faster
and prevents the applied bias voltage from being pulled down when reading highly charged pixels.

  

Figure 5. (A) Forward and (B) Reverse dark I-V sweep comparison between blanket and pixelated
PIN diodes.

Under reverse bias operation—under which a photodiode will spend most of its operating
lifetime—the leakage current for the pixelated diode is lower than the blanket coated diode and stays
relatively flat with increasingly negative applied voltage (Figure 5B).

When irradiated with green light at an irradiance of 102 W/m2, the quantum efficiency is
calculated to be 78% for the blanket device and 74% for the pixelated device. The reduced quantum
efficiency of the pixelated device is due to reflection at the passivation interfaces.

3.2. Effect of the Photodiode Passivation Layer

3.2.1. Dark Current vs. Time Stability

The nature of the passivation layer(s) affects the final dark current characteristics. When no
passivation is used, the diodes are so leaky that it is difficult to consider them “diodes”. In the example
presented in Figure 5, the passivation is a two-layer stack comprising 2.0 μm of spin on SU-8 polymer
and 300 nm of PECVD-deposited SiN. If only the SU-8 polymer is applied as the passivation layer, the
initial dark current behavior is greatly improved. However, the dark current begins to degrade during
continuous operation under reverse bias, as shown in Figure 6.

Figure 6 further shows that if only SiN is used as the passivation material, the initial dark current is
significantly larger (~10 times) than the initial dark current for SU-8-coated diodes. However, the dark
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current exhibits a monotonically-decreasing current with time (eventually leveling off to a near constant
value), consistent with thermally generated leakage associated with the depopulation of defects/traps
in the i-Si [21]. This time-dependent behavior suggests that the PECVD SiN film deposition process
may damage the exposed PIN diode layers, potentially increasing the number of surface trap sites.
If only SU-8 is used as the passivation, the dark current increases with time, suggesting that SU-8
by itself may be an inadequate atmospheric contaminant barrier, and that atmospheric contaminants
diffuse to the i-Si surface and react. The best results are observed when SU-8 is coated first to avoid
photodiode damage, followed by SiN deposition.
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Figure 6. Dark current vs. test number for three different photodiode passivation schemes. The time
interval between tests was not consistent due to the low current of the diodes and the charge integration
time required to measure the current.

3.2.2. Effect of Diode Shape

The effect of surface generation/recombination can be explored by looking at the performance
of photodiodes with the same detection area (i.e., the surface area of the side of the diode facing the
incident light), but with a different perimeter. Square diodes have the minimum perimeter possible
for a given area and thus have the smallest surface area of i-Si sidewalls exposed. Diodes with a
rectangular shape have a larger area for potential surface recombination and generation to occur and
thus should have a higher dark current than a square diode. To illustrate this point, two different diode
geometries were investigated. Square Diode A has a 1 mm by 1 mm square cross-section exposed to
the incident light, while rectangular Diode B has a 2 mm by 0.5 mm rectangular cross-section exposed
to the incident light. Both diodes have the same capture area (1 mm2).

A t-test reveals a small but statistically significant difference in the logarithm of the dark current,
with the rectangular diodes having greater than two times the dark current of the square diodes.

3.2.3. Effect of a Backside Guard Ring on Humidity Sensitivity

The effect of the diode edge can also be illustrated by testing a structure where there is a diode
completely surrounded by another diode as a protective backside guard ring, as shown schematically
in Figure 7. The backside guard ring reduces the electric field at the edge of the device and prevents
the depletion region from reaching the edge of the diode, thus mitigating surface leakage and enabling
the capture of carriers generated outside of the active area [22]. The beneficial effects of the guard ring
can be enhanced by grounding the n side of the diode, as opposed to having it float.

Figure 8 compares dark sweeps from diodes with and without guard rings, and clearly shows that
the devices with the guard ring demonstrate a substantial reduction in the dark current. In addition,
devices with the guard ring are less sensitive to environmental conditions, specifically humidity.
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Figure 7. Top-down drawing comparing an unguarded PIN diode with only N and P terminals
(Left); and guarded PIN diode structure with added guard ring (G) in addition to the N and P
terminals (Right).
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Figure 8. Comparison of the dark current vs. relative humidity for guarded and unguarded PIN diodes.

3.2.4. Array Performance

An advantage of the pixelated PIN diode approach is that the i-Si absorbing layer is not continuous
over the entire array, making it extremely difficult for photons absorbed over one pixel to be read out
by a neighboring pixel. This reduction in cross-talk between neighboring pixels results in increased
contrast and improved resolution. Figure 9 shows a comparison between an array with a blanket
i-Si layer and a pixel patterned i-Si when exposed to the same irradiance and with the same gate on
time for the TFT array. The pixel patterned array demonstrates a notably higher contrast, thereby
suggesting that it operates with a lower detection threshold.

Figure 9. Full fill factor blanket i-Si photodiode array (Left) compared to pixel pattern photodiode
array (Right).
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3.2.5. PIN Diode Film Cracking

The pixelated PIN diode structure relieves the overall film stress of the entire device. With the
blanket photodiode structure, the PIN diode layers have a tendency to crack and peel when the detector
array is curled. Arrays with both the full fill factor blanket photodiode structure and the pixelated PIN
diode structure were curled around a 3/8” stainless steel pipe, as shown in Figure 10.

 

Figure 10. Flexible photodiode array wrapped around a 3/8” stainless steel pipe (left), microscope
image of pixelated PIN diode structure (center), and full fill factor PIN diode structure (right) after
wrapping around 3/8” stainless pipe.

Of the 24 arrays mechanically tested with the pixelated photodiode structure, none demonstrated
any physical damage other than the embedding of particles from the pipe and manual handling of the
arrays. Of the 24 arrays tested with the full fill factor PIN diode structure, 17 demonstrated significant
cracking and flaking of the PIN diode layers, as shown in Figure 10.

3.2.6. Effect of the Substrate: PEN vs. Polyimide

Significant stress can be imparted on the polyimide if the peel strength is above 80 g/inch,
resulting in the elongation or stretching of the polyimide. The polyimide monomer formulation is a
factor in the coefficient of thermal expansion for the final film. If the peel strength is too high or the
coefficient of thermal expansion is significantly different from the thin films deposited, significant curl
will be present in the debonded polyimide, rendering the flexible X-ray detector unusable. Using HD
microsystems 2611 series polyimide with an appropriate adhesion promotor at the edge of the rigid
carrier substrate can yield a flexible substrate that is easily debonded post process and does not exhibit
significant curl. The curl of the 2611 series polyimide is lower than PEN. A comparison of a debonded
PEN X-ray detector, a debonded polyimide X-ray detector with large peel strength, and a debonded
polyimide X-ray detector with appropriate peel strength and minimal coefficient of thermal expansion
mismatch is shown in Figure 11.

Once the polyimide substrate is debonded, the user can be quite rough with the substrate and not
be concerned with film cracking or peeling. One must be very cautious and slow while debonding the
PEN, as perturbations during the debond process can cause the inorganic PIN diode layers to buckle
under the sudden change in applied peeling force as the residual stress in the PEN is released.

The maximum processing temperature of the TFT and PIN diode processing is 200 ˝C, which
is 20 ˝C above the recommended continuous operation temperature, but 69 ˝C below the melting
temperature listed in Table 1. However, at 210 ˝C and above, the PEN crystallizes, leading to significant
shrinkage, and is prone to fracture during the debond process [23]. In this dynamic situation, even
minor perturbations in the temperature of the TFT and PIN diode thin film deposition processes could
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significantly affect the structure of the bonded PEN, potentially leading to film buckling during the
debond process.

 

Figure 11. Curl comparison of low coefficient of thermal expansion (CTE) polyimide (Left),
PEN (Middle), and high CTE polyimide (Right) debonded.

In addition to the reduced curl and the improved film adhesion post debond, another advantage
of using polyimide over PEN is the significantly higher glass transition temperature of the polyimide
(360 ˝C vs. 121 ˝C, respectively). The higher glass transition temperature allows for a higher deposition
temperature during the PECVD steps. The added degree of freedom allows for a higher quality finished
product, as the higher deposition temperature can lead to a lower dark current, higher quantum
efficiency, and higher fill factor for the PIN diode films.

Simply increasing the deposition temperature of the PIN diode films from 200 ˝C to 250 ˝C,
without making any other changes to the other deposition parameters, results in a significant increase
in the quantum efficiency of the photodiodes at 520 nm from 57.8% to 61.8% when using a green LED
light source with measured irradiance of 100 W/m2. The increased deposition temperature of the
PIN diode layers results in a denser, higher quality film that has fewer trap sites available to grab
photogenerated electrons and holes before leaving the diode.

4. Conclusions

The benefits of a pixelated PIN diode structure were evaluated in comparison to full fill factor
diodes with respect to flexible X-ray detectors. In addition to demonstrating lower dark current that
is more stable with time and having less cross-talk between pixels, the pixelated structure is more
robust with respect to flexing and bending of the substrate. The pixelated structure does not require
additional masks in comparison to the blanket diode structure, but enables the passivation of the
diode, allowing for the mitigation of surface edge-related leakage and reduction of the overall dark
current of the device. The biggest downside to the structure is the extra layout spacing necessary to
place the PIN diode next to the TFT, as opposed to on top of the TFT. However, this layout concern is
only an issue with flexible detectors that must have a resolution less than 83 dpi.

Further benefits can be realized by utilizing polyimide as a substrate. HD Microsystems 2600 series
polyimide has the right combination of low coefficient of thermal expansion and moderate adhesion
strength to glass to enable a successful, low stress debond with minimal curl in the polyimide.
In addition, the higher melting temperature of the polyimide allows for higher temperature PIN
diode processing, leading to improved diode performance.
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Abstract: This article presents our most recent advances in synchronous fluorescence (SF)
methodology for biomedical diagnostics. The SF method is characterized by simultaneously scanning
both the excitation and emission wavelengths while keeping a constant wavelength interval between
them. Compared to conventional fluorescence spectroscopy, the SF method simplifies the emission
spectrum while enabling greater selectivity, and has been successfully used to detect subtle differences
in the fluorescence emission signatures of biochemical species in cells and tissues. The SF method can
be used in imaging to analyze dysplastic cells in vitro and tissue in vivo. Based on the SF method, here
we demonstrate the feasibility of a time-resolved synchronous fluorescence (TRSF) method, which
incorporates the intrinsic fluorescent decay characteristics of the fluorophores. Our prototype TRSF
system has clearly shown its advantage in spectro-temporal separation of the fluorophores that were
otherwise difficult to spectrally separate in SF spectroscopy. We envision that our previously-tested
SF imaging and the newly-developed TRSF methods will combine their proven diagnostic potentials
in cancer diagnosis to further improve the efficacy of SF-based biomedical diagnostics.

Keywords: synchronous fluorescence; ultrafast; time-resolved; imaging; cancer diagnosis

1. Introduction

1.1. Synchronous Fluorescence

Optical technologies for rapid diagnosis of cancer and dysplasia are highly beneficial in early
detection and timely treatment. In conventional diagnostics, a biopsy sample typically represents only
a very limited area of the suspected tissue; and laboratory results using histopathology examinations
are generally time-consuming. Fluorescence spectroscopy is a powerful technique that can be used
to noninvasively analyze the fluorescent signatures of tissue. Autofluorescence of neoplastic and
normal tissues using fixed-wavelength laser-induced fluorescence (LIF) have been investigated and
used for cancer diagnosis in our laboratory as well as other laboratories [1–7]. Although studies have
demonstrated reasonably good specificity and sensitivity in sample classification, fixed-wavelength
excitation typically produces fluorescence spectra exhibiting featureless profiles or broad-band
peaks, which do not fully exploit the diagnostic potentials of fluorescence spectroscopy. We have
previously developed the theoretical foundations of the synchronous fluorescence (SF) method,
which was characterized by simultaneously scanning both the excitation and emission wavelengths,
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while maintaining a constant wavelength interval [8,9]. The SF method has been coupled with
multi-component analysis algorithms to obtain spectral signatures of environmental samples and to
enhance selectivity in analyzing complex chemical and biological samples [9–14].

The SF method not only simplifies the emission spectrum, but is also less affected by Rayleigh and
Raman scattering, compared to the conventional excitation-emission matrix fluorescence (EEMF) [15].
The SF methodology provides a simple way to rapidly measure fluorescence signals and spectral
signatures of complex biological samples. Conventional fluorescence spectroscopy uses either a
fixed-wavelength excitation (λex) to produce an emission spectrum or a fixed-wavelength emission
(λem) to record an excitation spectrum. With synchronous spectroscopy, the fluorescence signal
is recorded while both λem and λex are scanned simultaneously. A constant wavelength interval
Δλ is maintained between the excitation and emission wavelengths throughout the spectrum, as
expressed by:

λem = λex + Δλ (1)

As a result, the intensity of synchronous signal Is, can be written as the product of three
functions [8,9]:

Is(λex, λem) = k c Ex(λex)Fe(λex, λem)Em(λem) (2)

where k is a constant dependent on the measurement geometry; c is the fluorophore concentration; Ex is
the excitation absorption spectrum; Em is the fluorescence emission spectrum; and Fe is the fluorescence
efficiency describing the ratio of excitation light converted to fluorescence. If the wavelength interval
Δλ is chosen properly, the resulting SF spectrum will show one or a few features that are much more
resolvable than those in the conventional fluorescence emission spectrum.

For a single molecular species, the observed SF signal intensity Is is simplified (often to a single
peak) and the bandwidth is narrower than in a conventional fluorescence emission spectrum. This
feature significantly reduces spectral overlapping in multicomponent samples. This advantage can be
well-demonstrated by the SF spectrum of a sample consisting of structurally-similar compounds:
naphthalene, phenanthrene, anthracene, perylene, and tetracene, (Figure 1) [8], in which each
compound gives practically only one “peak”, similar to a chromatogram (i.e., a spectrogram).

The SF method has found numerous applications in spectral analysis of complex samples, e.g.,
in environmental protection [16–18], food science [19–21], biological assays [22–28], and medical
diagnosis [29–31]. In our laboratory, the SF method has been the basis for development of various
instruments, including a portable field monitor [10] and an acousto-optic tunable filter (AOTF)
system [11]. Most of the early applications of the SF method were focused on examining in vitro
samples, e.g., analyzing air particulates [32], screening metabolites of a carcinogenic compound,
benzo[a]pyrene, characterizing animal and human urine [12], determining carcinogen-macromolecular
adducts [33,34], measuring cellular mitochondrial uptake of Rhodamine 123 [35], differentiating
normal and neoplastic cells [36], investigating lysozyme-chitobioside interactions [37], studying
non-calcium interactions of Fura-2 sensing dye [38], and detecting multiple fluorescent probes in
DNA-sequencing [39]. Recently, the SF method has received increased interest in optical diagnosis
of cancer. Several other research groups have carried out SF spectroscopy on ex vivo tissue samples,
such as the cornea [40]. SF has been used to analyze normal and abnormal cervical tissues [41],
and three-dimensional, total synchronous luminescence spectroscopy criteria for discrimination
between normal and malignant breast tissue [42]. Moreover, the SF method has been used to
characterize DMBA-TPA-induced squamous cell carcinoma in mice in vivo [43]. Data from total
synchronous fluorescence spectroscopy measurements of normal and malignant breast tissue samples
were introduced in supervised self-organizing maps, a type of artificial neural network, to obtain
diagnosis [30]. Synchronous fluorescence spectroscopy was used for the detection and characterization
of cervical cancers in vitro [31]. The SF technique has been applied on a variety types of skin tissue to
show its narrow-band features and selectivity for in vivo analysis [44], and has been applied to both
in vitro and in vivo imaging for cancer detection and diagnostics [30,31,41,45–47]. The recent surge
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of applications has highlighted the unique advantages of the SF method that offers a simple, yet
effective, way to capture the fluorescent signatures of complex biochemical compounds in tissue for
medical diagnostics.

Figure 1. Conventional fixed-excitation fluorescence of a five-component mixture (upper curve, 258 nm
excitation) and the SF spectrum of the same mixture showing improved spectral component separation
(lower curve, 3 nm wavelength interval). Adapted from [8].

1.2. Synchronous Fluorescence Imaging

We have previously developed a synchronous fluorescence imaging (SFI) system to combine
the great diagnostic potentials of the SF method and the large field-of-view of imaging in cancer
diagnosis [45,46]. The SFI system can be incorporated into an endoscope for gastrointestinal cancer
detection, as schematically shown in Figure 2.

A discriminant analysis and a multivariate statistical method were developed to differentiate
pixels containing malignant and normal tissue. MATLAB (MathWorks, Natick, Massachusetts)
programs were implemented to allow manual selection of the training pixels for a chosen classifier.
The trained classifier would subsequently generate a diagnostic image indicating the condition of
each pixel. Both the SF images and the whole set of fluorescence images were analyzed using these
two methods. The specificity and sensitivity of the diagnostic image derived from the synchronous
data were calculated, using the diagnostic image computed from the full spectral data as the gold
standard. Classification results based on the SF data achieved good accuracy compared to the results
based on the full spectra when the wavelength interval was chosen appropriately. We emphasize that
an attractive advantage of SFI is that a much smaller data set is acquired without losing analytical
specificity. Furthermore, the contrast between fluorescence peaks and background in the spectrum is
significantly enhanced, which will benefit classification that relies on the subtle spectral differences
between malignant and normal tissues. The SFI method, thus, dramatically reduces data acquisition
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time while maintaining a high classification accuracy, with diagnostic sensitivity from 82% to 97%,
depending on the experimental conditions [45,46].

 

Figure 2. Schematic of the synchronous fluorescence imaging system. Adapted from [45].

2. Methods

2.1. Time-Resolved Synchronous Fluorescence

Despite its proven success in comparison to conventional fluorescent methods, the SF method still
encounters difficulties in analyzing highly-complex fluorescent samples, where spectral overlapping
of multiple fluorophores is severe. This limitation is especially detrimental when both absorption
and emission spectra of the fluorophores are closely located. We propose to solve this problem
by adding an additional dimension of measurement to the SF method: i.e., using the time-domain
information to further separate spectrally-similar fluorophores. The time-domain information of
fluorophores is obtained by measuring time-resolved fluorescence decay, which is characteristic to the
fluorophores, and, more importantly, is practically uncoupled to the spectral domain information. In
our previous work, using an analog time-gating device, we showed improved spectral separation of
complex samples [48]. The proposed method significantly improves spectral separation by obtaining
the complete time-domain data in just one acquisition cycle.

Time-resolved photo-detection can be achieved using either analog or photon-counting methods.
The analog method uses a photo-sensitive device to convert the photon flux to an electric current
or voltage, which is subsequently quantized by an analog-digital convertor. Representative analog
photodetectors are alkaline-metal photomultiplier tubes and semiconductor photodiodes. The analog
method is easy to implement and has been widely used in many applications. However, it has
notable limitations in detection sensitivity, response time, output linearity, and device aging. The
photon-counting method is established on a completely different principle: it detects the arrival time
of individual photons, also known as photon-tagging, and builds the temporal response curve by
repeating the photon-tagging operation for a large number of times to create a histogram of the
accumulated events of single-photon detection. In this method, the gain of the photosensor is set to a
very high level disregarding the linearity range of the device. By doing so, it achieves single-photon
sensitivity. The photon-tagging module determines the arrival time of photons with respect to the
reference signal fed directly from the pulsed laser source. Compared to the analog method, the
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photon-counting method dramatically mitigates the limitations on detection sensitivity, response time,
output linearity, and device aging.

In the present work, we used the photon-counting method with the single-photon avalanche
diodes (SPADs) as the photosensors. With single-photon sensitivity, this configuration was well suited
for low-light photodetection. Another important advantage of the photon-counting method is that its
temporal resolution is no longer limited by the response time of the photosensor because the temporal
response curve is the statistic of the arrival time of the photons, i.e., the electric signal pulses generated
by the photosensor in response to the incoming photons. Therefore, the delay due to response time of
the photosensor is constant and can be subtracted from the final result collectively with other sources of
delay, e.g., optical and electric transmission. Since the significant event is the arrival of photons, it is the
timing and number of pulses, rather than the amplitude, that determine the output in photon-counting.
Therefore, the linearity range of the photosensor is no longer a concern. In addition, the output linearity
is highly stable compared to the analog method and do not require any calibration by the users. Finally,
device aging would have virtually no impact on the performance of the photon-counting method
because the photosensor produces binary signals whose amplitude is insignificant for the downstream
photon-counter. It should be noted that a common limitation of the photon-counting method is the
so-called “photon pile-up” effect, which is negligible under the low-light condition.

2.2. System Configuration

Here we report the first prototype system for a TRSF spectroscopy study. The system is
schematically shown in Figure 3. A pulsed supercontinuum laser (SC400-2, Fianium, Southampton,
UK) was used as a broadband light source: Laser emission between 400 and 2400 nm with an average
power density of ~1 mW/nm with a beam diameter of ~1.5 mm in the visible range of 400–700 nm, at
a repetition rate of 20 MHz and a typical pulse width of 10 ps. For fluorescence excitation, a short-pass
filter (cutoff at 850 nm) was inserted to prevent infrared sample heating. A monochromator (DMC1-03,
Optometrics, Littleton, MA, USA) was used to adjust the excitation wavelength. On the emission side,
a liquid-crystal tunable filter (LCTF, VariSpec VIS-20, PerkinElmer, Waltham, MA, USA) was used
as a band-pass filter tunable between 400 and 720 nm. Time-resolved photodetection was achieved
using a time-correlated single-photon counting (TCSPC) module (SPC-150, Becker and Hickl, Berlin,
Germany) coupled with an SPAD (Micro Photon Devices, Bolzano, Italy).

 

Figure 3. Schematic of the time-resolved synchronous fluorescence (TRSF) system.

It is noteworthy that the proposed TRSF methodology can be easily translated to imaging
applications, for example, by coupling the photodetector to a wide-field imaging lens and performing
raster scans in the imaging plane of the lens.

3. Results and Discussion

To demonstrate the proposed TRSF system, we used a sample consisting of methylene blue and
oxazine 170 (both 10 μM) in deionized water. Methylene blue is frequently used as a dye to stain
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certain types of tissue during surgery, and can be used as an injectable to treat methemoglobinemia [49].
Oxazine 170 is an important laser dye and has recently been demonstrated in a feasibility study as a
nerve-specific marker for neurosurgery [50]. These two fluorophores have substantially overlapping
absorption and emission spectra that render SF spectral separation ineffective, shown in Figure 4,
which were acquired using a commercially available spectrometer (Jobin Yvon FluoroMax 3, Horiba
Scientific, Edison, NJ) with both excitation and emission slit widths set to 1 nm. The spectral sweeping
step size was 5 nm for fluorescence (Figure 4a,c) and 1 nm for SF (Figure 4b,d). The wavelength interval
of the SF scans was 20 nm.
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Figure 4. Fluorescence and standard SF spectra of methylene blue, oxazine 170, and their mixture.
(a) conventional fluorescence emission spectra of methylene blue (blue solid line) and oxazine 170 (red
broken line); (b) standard SF spectra of methylene blue (blue solid line) and oxazine 170 (red broken
line); (c) conventional fluorescence spectra of the mixture of methylene blue and oxazine 170, excited at
614 nm (blue solid line) and 655 nm (red broken line); and (d) standard SF spectrum of the mixture of
methylene blue and oxazine 170 (wavelength interval of 20 nm).

It is apparent in Figure 4c,d that spectral separation of methylene blue and oxazine 170 in the
SF spectrum is significantly better than in conventional fluorescence spectrum. Nonetheless, we
emphasize that the SF spectrum was acquired with a slit width of 1 nm and a sweeping step of 1 nm,
which may be impractical in many applications, e.g., multispectral imaging or fast acquisition, when
the spectral pass-band widths and sweeping step are significantly broader (typically 10 nm or higher).
Under these circumstances, spectral separation may become unsatisfactory, which is shown below.

Using our newly-developed prototype system, we obtained both SF and TRSF spectra of the same
set of samples consisting of methylene blue and oxazine 170 (freshly prepared). The excitation and
emission wavelengths were adjusted by tuning the monochromator and the LCTF simultaneously
between consecutive data acquisitions with a wavelength interval of 40 nm. We chose this wavelength
interval because the optical density of this particular LCTF is the smallest at 40 nm within the range of
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typical interval values (20–60 nm). Note that the bandwidths of the LCTF and monochromator were
20 and 10 nm, respectively, limiting the smallest allowable wavelength interval for this configuration
to 15 nm. Considering the transition bandwidth of the devices, the minimal practical value of the
wavelength interval would be ~20 nm.

The TRSF and SF spectra acquired by the new system are shown in Figure 5. The TRSF spectra
(Figure 5a–c) were acquired by plotting the photon count with respect to the photodetection/emission
wavelength (the x-axis) and the photon time-tag (the y-axis). The SF spectra (Figure 5d–f) were obtained
by disregarding the photon time-tag (i.e., collapsing the y-axis). The spectral range (excitation) was
400–680 nm, which was jointly defined by the laser spectrum (400–850 nm) and the tuning range of
LCTF (400–720 nm). The corresponding spectral range of the TRSF and SF scans was 440–720 nm.
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Figure 5. SF and TRSF spectra acquired using the TRSF system: linear contour plots of the TRSF spectra
of (a) methylene blue (MB); (b) oxazine 170 (O170); (c) their mixture (MB + O170); and (d–f) SF spectra
derived from the same data sets, respectively.

It was apparent that, using the SF method, methylene blue and oxazine 170 could not be
spectrally resolved with the given excitation/emission configuration, Figure 5f. This was mainly
because of peak-broadening due to differences in system configuration and device specifications,
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comparing Figures 4d and 5f. The difference in fluorescence quantum efficiency is another complicating
factor, referring to the spectra obtained by the same instrument shown in Figure 5d–f. Both of
these factors have made effective spectral separation of the two fluorophores impractical. With the
time-resolved data shown in Figure 5c, however, clear distinction between the two fluorescent species
is evident, comparing Figure 5c to Figure 5a,b. Specifically, single-component samples exhibit highly
symmetric patterns (Figure 5a,b) because of the symmetric fluorescent emission peaks of the individual
fluorophores. In contrast, the two-component sample produced a highly asymmetric pattern (Figure 5c)
because fluorescence lifetime constants of the constituent fluorophores are different. In other words,
one observes a shifting fluorescent emission peak at different time points of fluorescence decay, which
can be better illustrated by plotting the SF spectra of the set of samples at different time points, Figure 6.
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Figure 6. Time-delayed SF (“Delayed SF”) plots derived from the TRSF data set of (a) methylene blue
(MB); (b) oxazine 170 (O170); and (c) the mixture of the two fluorophores (MB + O170).

The existence of shifting peak wavelength in the “delayed SF” spectra can be used as a quantitative
indicator in automatic multi-component fluorophore identification. With the additional time-resolved
information, the lifetime constants of the fluorophores can be used in spectro-temporal analysis. Similar
to the extension of the SF method to SFI, the concept of TRSF can also potentially be extended to
biomedical imaging. Note that the TCSPC acquisition method is based on photon-counting and that
it does not perform additional scans (e.g., time-binning) in the time-domain. For this reason, TRSF
imaging will not increase acquisition time except for the intrinsic signal-to-noise limit. Furthermore, in
analyzing complex biomedical specimens, high-dimensional analysis that involves spectral, temporal,
and spatial information will likely give more robust classification results than low-dimensional analysis
does. We are currently working toward TRSF imaging instrumentation and multi-dimensional data
analysis algorithms for biomedical applications.

4. Conclusions

Synchronous fluorescence (SF) is a fast and information-rich spectroscopy method. It has
unique advantages compared to the conventional fixed-excitation fluorescence spectroscopy. Based
on the SF method, we demonstrated the feasibility of a new time-resolved SF (TRSF) method
and instrument. This method is a significant advancement from our previous work that revealed
differences in spectral data with different acquisition time-delay. In the present work, a complete
dimension in the time-domain is added to the spectral data, which is conveniently obtained in one
acquisition cycle. Compared to the standard SF method and the previous method, the proposed
TRSF method better captures the full characteristics of fluorophores in complex samples. Using
a two-fluorophore liquid sample as an example, our prototype TRSF system clearly showed its
advantage in spectro-temporal separation of the fluorophores that were otherwise difficult to resolve
with conventional SF spectroscopy. Although application of the proposed method on actual biological
samples is beyond the scope of the present work, we envision that our previously-tested SFI and
the newly-developed TRSF methods can combine the impressive diagnostic potentials of the SF
spectroscopy, wide-field imaging, and the new ultrafast time-resolved acquisition, and that the new
technologies will further improve the selectivity of fluorescence-based analysis and diagnostics. Lastly,
we would like to emphasize that SF is a methodology for rapid data acquisition, which can be
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potentially applied to a number of analytical and imaging technologies to achieve superior performance
that were previously unattainable.
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Abstract: An algorithm for recognizing banknotes is required in many fields, such as
banknote-counting machines and automatic teller machines (ATM). Due to the size and cost
limitations of banknote-counting machines and ATMs, the banknote image is usually captured
by a one-dimensional (line) sensor instead of a conventional two-dimensional (area) sensor. Because
the banknote image is captured by the line sensor while it is moved at fast speed through the rollers
inside the banknote-counting machine or ATM, misalignment, geometric distortion, and non-uniform
illumination of the captured images frequently occur, which degrades the banknote recognition
accuracy. To overcome these problems, we propose a new method for recognizing banknotes. The
experimental results using two-fold cross-validation for 61,240 United States dollar (USD) images
show that the pre-classification error rate is 0%, and the average error rate for the final recognition of
the USD banknotes is 0.114%.

Keywords: banknote recognition; one-dimensional (line) sensor; pre-classification; USD banknote

1. Introduction

Functionality for detecting counterfeit banknotes and recognizing banknotes are required in
various machines, such as banknote-counting machines and automatic teller machines (ATMs).
Banknote recognition is defined as the recognition of the type of banknote (e.g., $1, $2, and $5),
the direction of the banknote, and the date of issue of the banknote (e.g., least recent, recent, and
most recent). Furthermore, banknote recognition facilitates the detection of counterfeit banknotes
and allows the condition of banknotes to be monitored. Thus, research on banknote recognition has
developed rapidly [1–8].

In general, a banknote’s obverse and reverse image differ. Hence, a banknote is constituted by
four different patterns (obverse-forward, obverse-backward, reverse-forward, and reverse-backward)
according to the direction of the banknote received by the machine. This increases the number of
banknote classes four-fold. Therefore, the complexity of banknote recognition increases accordingly,
which, in turn, increases the processing time and the banknote recognition error rate.

Previous studies can be divided into those that address the recognition of a banknote’s
orientation [9] and those concerned with banknote recognition [10–17]. Wu et al. proposed a
banknote-orientation recognition method using a back-propagation (BP) network [9]. They classified
the input direction of banknotes by using a three-layer BP network. The performance of their
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method is high, however, they used only one type of banknote—viz., renminbi (RMB) 100 Yuan—in
their experiment.

Kagehiro et al. proposed a hierarchical classification method for United States Dollar (USD)
banknotes. Their method consists of three stages, using a generalized learning-vector quantization
(GLVQ) algorithm to achieve high-speed processing with a high degree of accuracy [10]. The
performance of their method was such that 99% of the banknotes were correctly recognized.
Hasanuzzaman et al. proposed a banknote-recognition method based on speeded-up robust features
(SURF) features [11]. Because it uses SURF features, their method is robust to illumination and
scaling changes, as well as image rotation. At two seconds, however, the processing time required
for a 3 GHz CPU computer is excessively long. Gai et al. proposed a feature-extraction method
based on the quaternion wavelet transform (QWT) and generalized Gaussian distribution (GGD)
for banknote classification [12]. With their method, USD banknotes are classified using a BP neural
network. Ahmadi et al. and Omatu et al. proposed a banknote-classification method using principal
component analysis (PCA), self-organizing map (SOM) clustering, and a learning-vector quantization
(LVQ) classifier [13–17]. They presented a method to improve the reliability of banknote classification
using local PCA [13–17] for data-feature extraction.

In other research [18], Yeh et al. proposed a method for detecting counterfeit banknotes based on
multiple-kernel support vector machines (SVMs). They segmented a banknote into partitions, and
took the luminance histograms of the partitions (with its own kernels) as the inputs to the system.
In order to fuse the multiple kernels, they used semi-definite programming (SDP) learning. Unlike
our research, their method is not concerned with recognizing the type of USD banknote. Rather, it
is designed to detect counterfeit Taiwanese banknotes. This is the central difference between their
research and ours. Two classes are needed with their method [18]: genuine and counterfeit banknotes.
Our research, however, requires 64 classes: four directions and 16 banknote types ($1, $2, $5, recent $5,
most recent $5, $10, recent $10, most recent $10, $20, recent $20, most recent $20, $50, recent $50, most
recent $50, $100, and recent $100).

In previous research [19,20], Bruna et al. proposed a method to detect various types of counterfeit
Euro banknotes. They used a near-infrared (NIR) light illuminator and a camera to capture the
banknote image. This differs from our method, which uses a visible-light USD image. In order to
discriminate counterfeit from genuine banknotes, they used a percentage of the pixels that satisfy
predetermined conditions inside predefined regions. In addition, they used a correlation measure
between the patches learned at the training stage and the corresponding pixels in the searching regions
to recognize of the banknote type.

Hasanuzzaman et al. proposed a method for recognizing banknotes for the visually impaired
based on SURF and the spatial relationship of matched SURF features [21]. Although they obtained a
correct-recognition rate of 100% with USD banknotes, the number of classes and images for testing, at
seven and 140, respectively, was too small. As noted above, by contrast, our experiments involved 64
classes and 61,240 images, as shown in Table 2.

In previous studies on banknote recognition, each banknote type was considered as constituted
by four classes (obverse-forward, obverse-backward, reverse-forward, and reverse-backward), rather
than a single class. Consequently, the number of banknote classes is considerably large. To overcome
these problems, we propose a new method for recognizing banknotes. When compared with previous
studies, the proposed method is novel in the following four ways:

(1) The region-of-interest (ROI) area on the captured banknote image is located by corner detection
algorithm, but there still exist the effect of the misalignment, geometric distortion, and
non-uniform illumination on the ROI image. Therefore, a sub-sampled image of 32 × 6 pixels
was used in our research in order to extract features more efficiently by reducing this effect.

(2) In order to further reduce this effect on the recognition accuracy, we propose the feature extraction
method by PCA with the sub-sampled image.
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(3) Pre-classification is performed hierarchically: the first classification demarcates the obverse
and reverse side, and the second demarcates the forward and backward direction. This
pre-classification process reduces classification errors.

(4) Pre-classification is performed using a SVM based on the optimal feature vector extracted using
PCA on the sub-sampled image. Then, the final type of banknote is recognized using the classifier
based on a K-means algorithm.

Table 1 compares the methods proposed in previous studies with ours. The remainder of our
paper is organized as follows: we describe the proposed method in Section 2. In addition, we present
experimental results, discussions, and concluding remarks in Sections 3–5, respectively.

2. Proposed Method

2.1. Overall Procedure

An overview of our pre-classification method for the recognition of USD banknotes is provided in
Figure 1. We defined four directions in our study: the obverse side in a forward direction is “Direction
A”, the obverse side in a backward direction is “Direction B”, the reverse side in a forward direction is
“Direction C”, and the reverse side in a backward direction is “Direction D”.

Table 1. Comparison of the proposed method with previous methods.

Category Methods Strengths Weakness

Non-pre-classification-
based method

-Using GLVQ [10]

Additional processing time
for pre-classification is not
required

Accuracy enhancement is
limited because of the large
number of classes of
banknotes, including two
sides (obverse and reverse)
and two directions (forward
and backward)

-Using SURF features [11]

-Using QWT, generalized
Gaussian distribution, and BP
neural network [12]

-Using local PCA, SOM, and LVQ
[13–17]

-Using correlation measure [19,20]

-Using SURF and the spatial
relationship of matched SURF
features [21]

Pre-classification-
based method

-Using BP neural network [9] The number of classes of
banknotes can be reduced
four-fold, because of the
pre-classification of the two
sides and two directions

The classification accuracy of
banknote type is not
presented

-Using SVM classifier with PCA
features (proposed method)

Additional processing time
is required for
pre-classification

As shown in the figure, our method consists of four steps. First, to reduce the processing time, the
input image is sub-sampled to yield a single image that is 32 × 6 pixels in size. Second, the optimal
feature vector is extracted using PCA to classify the side of the banknote. Third, the side of the input
image is determined as either obverse or reverse using an SVM. Fourth, the optimal feature vector for
classifying the banknote’s direction is extracted using PCA. Finally, the forward or backward direction
is determined using the SVM. Then, the final kind of banknote is determined by K-means algorithm of
16 classes using the PCA features of the sub-sampled image.

2.2. Image Acquisition and Pre-Processing

In this study, the banknote image was captured using a commercial banknote-counting machine.
Due to the size and cost limitation of the banknote-counting machine, the banknote image of visible
light is captured by one-dimensional (line) sensor instead of conventional two-dimensional (area)
sensor. That is, one line (row) image is acquired instead of a space (row by column) image at each
time. The line image is acquired with visible light emitting diode (LED) while the input banknote
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is moving through the roller inside the banknote-counting machine at fast speed. The resolution of
one line image is 1584 pixels, and 464 line images are acquired by this system. Based on this, the
two-dimensional 1584 × 464 pixels image of the banknote is finally acquired by sequentially combining
the 464 line images.

Because the banknote image is captured by the line sensor while it is moved through the roller at
fast speed misalignment, geometric distortion, and non-uniform illumination effects frequently occur
in the captured images, as shown in Figure 2, and the images with these effects are included in our
database for experiments.

 

Figure 1. Overview of the proposed method.

To overcome these problems, the ROI area on the banknote is located by corner detection algorithm,
but there still exist the positional variations on the ROI image as shown in Figure 3. In addition,
the image resolution for the ROI area on banknote is as high as 1212 × 246 pixels, which leads to
considerable processing time and the inclusion of noise and redundant data. Therefore, a sub-sampled
image of 32 × 6 pixels was used in our research in order to extract features more efficiently by reducing
the processing time and any unnecessary data without the positional variations, as shown in Figure 3.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Examples of misalignment, geometric distortion, and non-uniform illumination on the captured
images: the cases of (a); (b) misalignment; (c) geometric distortion; and (d) non-uniform illumination.
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(a) 

(b) 

Figure 3. Examples of sub-sampled images: (a) original ROI areas of the banknote; (b) sub-sampled images.

The images of the 1st row of Figure 3b are the sub-sampled ones of the 1st row of Figure 3a. Like
this, the images of the 2nd, and 3rd rows of Figure 3b are the sub-sampled ones of the 2nd, and 3rd
rows of Figure 3a, respectively. If we show the sub-sampled image as its actual size (32 × 6 pixels), it is
difficult for readers to discriminate the image because the size of sub-sampled image is much smaller
than that (1212 × 246 pixels) of original ROI area of Figure 3a. Therefore, we show the magnified
sub-sampled images whose size is larger than actual one (32 × 6 pixels) for higher visibility to readers
in Figure 3b. Even with the sub-sampled image, there still exist the positional variations as shown in
Figure 3b. Therefore, we propose the feature extraction method by PCA in order to reduce this effect
on the recognition performance, and detail explanations are shown in the next section.

2.3. Feature Extraction by PCA, and Classification with an SVM

In general, as the dimensionality of data increases, feature extraction and pattern classification
require much processing. In addition, an increase in the dimensionality can degrade the classification
accuracy. PCA is a popular stochastic method that facilitates the analysis of high-dimensional data
by dimensionality reduction [13,22]. This characteristic in PCA allows it to analyze the patterns of
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data more easily by reducing the dimensions of the data with minimal data loss. The procedure for
conducting PCA is as follows. First, the covariance matrix Σ of the data is calculated:

Σ =
1
N

N

∑
n=1

(xn − μ)(xn − μ)T (1)

where N is the amount of data, μ is the mean of xn, and xn is the input data. Then, the eigenvalues and
eigenvectors for the covariance matrix are calculated. In this study, the data represented by PCA is
used as a feature vector for the classification of the banknote’s direction (“Direction A”, “Direction B”,
“Direction C” and “Direction D” in Figure 1).

To classify the direction of the banknote, we used an SVM. In general, the decision function of an
SVM is defined as [22,23]:

f (x) = sgn

(
l

∑
1

yiαiK(x, xi) + b

)
(2)

where l is the amount of data and yi ∈ [1, −1] is the indicator vector. In our study, the value “1” is
assigned to the correct class and the value “−1” to the incorrect class. αi and b are the weight value
to K(x, xi) and off-set used in the decision function of SVM, respectively [22,23]. K(x, xi) is a kernel
function. In our experiments, LibSVM software [24] was used to determine the optimal parameters.
This software provides various kernel functions. Using training data to experiment, the linear kernel
was selected as the optimal kernel for classifying the banknote’s direction. The classification step
using the SVM classifier consists of two sub-steps, as shown in Figure 1. The first sub-step involves
classifying the group of obverse sides (Direction A or B) and the group of reverse sides (Direction C
or D). Finally, the direction of the banknote is determined in the second sub-step. For example, if the
result of the first sub-step is that the banknote is determined to belong in the obverse-sided group, the
direction of the banknote is determined as either Direction A or B in the second sub-step, as shown in
Figure 1.

3. Experimental Results

We collected a database consisting of 61,240 USD banknote images for our experiments. The
images in the database consisted of the four directions for the 16 types of banknotes ($1, $2, $5, recent
$5, most recent $5, $10, recent $10, most recent $10, $20, recent $20, most recent $20, $50, recent $50,
most recent $50, $100, recent $100). As shown in Table 2, the number of images used in our study is
similar to that of [10], but much larger than in most previous studies [11–17]. In addition, our study
uses more classes than any previous study [10–17]. Because there is no open database of USD banknote
images, it is difficult to compare the performance of our method with those of previous researches on
same condition. Therefore, we show that the number and classes of banknote images in our experiment
are comparatively larger than those of previous researches in Table 2.

Table 2. Comparison of the number of images and classes used in previous studies with that of
our study.

Method The Number of Images
The Number of Classes (Including

Two Sides and Two Directions)

[10] 65,700 48
[11] 140 28
[12] 15,000 24

[13,16] 2400 24
[14,15] 3600 24

[17] 3570 24
Our study 61,240 64
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Figure 4 shows example images of a $1 banknote. In this study, the database of 61,240 images was
randomly divided into two subsets, Group 1 and Group 2, for training and testing, respectively, as
shown in Table 3.

(a) (b) 

(c) (d) 

Figure 4. Examples of images: (a) Direction A; (b) Direction B; (c) Direction C; and (d) Direction D.

Table 3. Number of images in each group and direction.

Category Group 1 Group 2 Total Number

Direction A 7692 7689 15,381
Direction B 7618 7621 15,239
Direction C 7692 7689 15,381
Direction D 7618 7621 15,239

Total 30,620 30,620 61,240

On the basis of a two-fold cross-validation scheme, the experiments were performed with Groups
1 and 2 from Table 3. First, we used Group 1 for the training process, and Group 2 for testing. Then, the
training and testing processes were performed repeatedly, alternating between Group 1 and Group 2.

In this study, we used PCA to extract features, as explained in Section 2.3. The classification
performance is affected by the number of PCA dimensions. Therefore, the optimal PCA dimensionality
that produces the best classification accuracy is obtained by experimentation with the training database.
This involves measuring the classification accuracy with various numbers of PCA dimensions. Figure 5
shows the experimental classification results for Group 1 and 2 using a Bayesian classifier with various
PCA dimensions. The classification error is calculated as the summed value of Type-1 and -2 errors.
A Type-1 error means that the obverse side (or forward direction) was incorrectly determined as
the reverse side (or backward direction). A Type-2 error means that the reverse side (or backward
direction) was incorrectly determined as the obverse side (or forward direction).

In our research, we defined four directions in our study: the obverse side in a forward direction is
“Direction A,” the obverse side in a backward direction is “Direction B,” the reverse side in a forward
direction is “Direction C,” and the reverse side in a backward direction is “Direction D.” Therefore,
“Direction AB” means the obverse side in a forward or backward direction in Figure 5. “Direction CD”
means the reverse side in a forward or backward direction.
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(a) 

(b) 

Figure 5. Classification accuracy of PCA according to number of PCA dimensions: (a) Group 1;
(b) Group 2.

For comparison, we also measured the classification accuracy using linear-discriminant analysis
(LDA) instead of PCA. The classification results from using the training data are shown in Figure 6.

Table 4 shows the respective classification results from PCA and LDA using the testing data. As
shown in Table 4, although LDA outperforms PCA for classifying Direction A and Direction C, the
average classification accuracy for the four directions with PCA is higher than it is with LDA.

Table 4. Average error rate from two testing sub-databases using LDA and PCA (unit: %).

Method Direction A Direction B Direction C Direction D Average Error

LDA 0.241 3.012 1.138 3.708 2.025
PCA 0.689 0.564 1.931 1.352 1.134
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(a) 

(b) 

Figure 6. Classification accuracy of LDA according to number of LDA dimensions: (a) Group 1;
(b) Group 2.

To improve the pre-classification performance, we used an SVM classifier instead of a Bayesian
classifier for testing by implementing the PCA features with the optimal PCA dimensionality obtained
with the training data. In this paper, four SVM kernels were considered: Linear, Polynomial, RBF, and
Sigmoid. Using the SVM classifier, the classification accuracy for all four kernels was 100% when using
the training database. Therefore, we used the linear kernel in our proposed method because it required
processing time is shorter than that of the other kernels. Table 5 and Figure 7 show the results from
using the testing database. In Figure 7, equal error rate (EER) means the error rate when the difference
between Type-1 and Type-2 errors is minimized.

When using PCA with the SVM classifier, the pre-classification error is 0%. This indicates that
no misclassification occurred when our proposed method was applied using the testing database.
In addition, the classification accuracy of the SVM is higher than that of the Bayesian classifier using
the PCA features. As shown in Table 5 and Figure 7, we compared the accuracy from using Bayesian
classifiers with both LDA and PCA. The latter (PCA with Bayesian classifiers) is demonstrably superior
to the former (LDA with Bayesian classifiers). As a result, we can confirm that the usability of PCA
is higher than LDA. In addition, PCA with an SVM is superior to PCA with Bayesian classifiers, as
shown in Table 5 and Figure 7. Hence, we can confirm that the usability of an SVM is higher than that
of the Bayesian method. Table 5 and Figure 7 show that PCA with an SVM is superior to merely using
an SVM, and we can confirm that the usability of PCA with an SVM is higher than that of an SVM
without PCA.
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(a) 

 
(b) 

Figure 7. Cont.
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Figure 7. ROC curve from the pre-classification stage using two testing sub-databases (In each figure,
PCA+SVM is the proposed method): (a) the average classification results for the obverse side (Direction
A or B) and the reverse side (Direction C or D); (b) the average classification results for Direction A and
Direction B; and (c) the average classification results for Direction C and Direction D.

Table 5. Average error rates during pre-classification using two testing sub-databases (unit: %).

Method Direction A Direction B Direction C Direction D Average Error

LDA + Bayesian 0.241 3.012 1.138 3.708 2.025
PCA + Bayesian 0.689 0.564 1.931 1.352 1.134

SVM 0.419 0.579 0.325 0.441 0.441
PCA + SVM

(proposed method)
0 0 0 0 0

In addition, we performed banknote recognition using a K-means algorithm after the
pre-classification of the banknote’s direction. The features for K-means were extracted using PCA.
For banknote recognition, the optimal dimensionality of the PCA was experimentally obtained in
the same way as it was during the pre-classification step. Thus, the optimal dimensionality was
determined to be that which produces the smallest recognition error among various possible numbers
of PCA dimensions. Here, the recognition error was calculated at a 100% correct-classification rate.
Correct classification means that the input banknote was correctly recognized in its corresponding
class—That is, a $1 banknote was correctly recognized as belonging to the $1 class. The recognition
results for the training data according to PCA dimensionality are shown in Figure 8. Using the optimal
PCA dimensionality for each direction class, the image features were extracted and classified using
the K-means method. As shown in Figures 5 and 8, we apply PCA at the three stages such as the
pre-classification of obverse (AB) and reverse (CD) sides, that of forward and backward directions
(A and B, or C and D), and the banknote recognition by K-means algorithm. The optimal numbers of
dimension of the feature vectors after applying PCA are different according to the PCA application for
the three stages as shown in Figures 5 and 8.
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(a)

 
(b) 

Figure 8. Recognition results for training data using the K-means method: (a) Group 1; (b) Group 2.

Table 6 presents the average banknote-recognition results obtained using K-means with the two
testing sub-databases. As shown in Table 6, the error rate for Directions A and B is lower than that of
Directions C and D. This is because the reverse side of a USD banknote is less easily discriminated than
the obverse, as shown in Figures 9 and 10. On average, the recognition error for the four directions is
approximately 0.114%.

Because there is no open source for banknote recognition, it is difficult to compare our method
with previous ones. However, because one previous method [12] measured its accuracy with the USD
database like our research, we compared the accuracy of [12] to that of our method, as shown in Table 7.
In [12], feature extraction is done with QWT and GGD. In our paper, feature extraction is done with
PCA. In [12], the classifier used is a BP neural network without pre-classification, while in our paper
SVM is used instead.

Table 6. Results from performing banknote recognition after pre-classifying the banknote’s direction
(unit: %).

Method Direction A Direction B Direction C Direction D Average Error

K-means 0.091 0.052 0.176 0.138 0.114

In Table 7, the false-recognition rate refers to the frequency of one banknote image being
recognized as an incorrect banknote—e.g., a $10 bill in Direction A recognized as a $10 bill in Direction
B, or a $20 bill in Direction A recognized as a $50 bill in Direction A. The reject rate refers to the
frequency with which either the type or the class of a banknote is indeterminate. As shown in Table 7,
we can confirm that the accuracy of our method is higher than that of previous methods [12] for a
greater number of classes and images. Our dataset consists of 61,240 USD banknote images. There was
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no mistreated banknote included in the dataset. As shown in Table 7, the false recognition rate was
0.114% with the rejection rate of 0% with all the images of 61,240 by our method. Therefore, the correct
recognition rate was 99.886%.

Table 7. Comparison of the accuracy of the proposed method with previous methods.

Category Previous Methods [12] Proposed Method

Number of classes 24 64
Number of USD images 15,000 61,240

False recognition rate (%) 0.12 0.114
Reject rate (%) 0.58 0

Figure 9 illustrates cases where a banknote was correctly recognized with our method. In each
pair of images, the lower image is the image sub-sampled at 32 × 6 pixels.

 
(a) 

 
(b) 

 
(c) 

Figure 9. Cont.
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(d) 

Figure 9. Accurately recognized banknotes and their sub-sampled images: (a) Direction A with $100;
(b) Direction B with recent $50; (c) Direction C with recent $100; and (d) Direction D with recent $10.

As explained in Section 2.2, the four corner positions of the ROI area on the banknote are detected
by corner detection algorithm. Then, the ROI area defined by these four corner positions is segmented
from the original input image, and this area is rotated based on the left-upper corner position. From
that, the rotation compensated area is obtained as shown in the middle images of Figure 10a–c,
respectively. Then, the sub-sampled image of 32 × 6 pixels is acquired based on this area as shown
in the bottom images of Figure 10a-c, respectively. Therefore, the image rotation (the top images of
Figure 10a-c) does not affect the correct acquisition of the ROI area and sub-sampled image, and the
consequent accuracy of banknote recognition is not affected by the image rotation.

Figure 11 illustrates cases where a banknote was incorrectly recognized with our method. In the
image pairs, the lower image is the image sub-sampled at 32 × 6 pixels. Each image in the left column
was falsely recognized as belonging to the class in the right column. For example, the image in the
first row ($100, Direction A) was falsely recognized as belonging the class in the right column ($5,
Direction A). As shown in Figure 11, incorrect recognitions occurred when some part of the banknote
was damaged (e.g., in the $50-Direction-B image from the second row in the left column) or when
a contaminant was present in the upper or lower part of the banknote (e.g., the images in the other
rows of the left columns). In particular, as seen in the images from the first, third, and fourth rows of
Figure 11, the banknote was falsely recognized because the upper and lower parts of banknote were
stained with dark ink. Thus, these cases illustrate a contaminated banknote. In addition, banknotes are
falsely recognized when thick vertical lines of discontinuity appear in the mid part of the banknote as
a result of being folded, as shown in the images from the second row in Figure 11. This case illustrates
a damaged banknote.

In the next experiment, we measured the processing time for our method using a desktop
computer (a 3.5 GHz CPU with 8 GB RAM). Most previous research on banknote recognition does not
measure the processing time, focusing exclusively on the recognition accuracy instead [9,10,12–17].
Therefore, it is difficult to compare the processing time of our method with others. In addition, one
extant method measured the processing time during testing but not training [11]. Therefore, we
measured only the processing time for our method during testing. As shown in Table 8, our method
recognizes a banknote image at approximately 172 images/sec (1000/5.83). The method that measured
the processing time [11] required as much as two seconds with a 3 GHz CPU desktop computer and is
therefore much slower than our method.
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(a) 

(b) 

(c) 

Figure 10. Examples of rotated banknote, the corresponding ROI area, and sub-sampled images.
In (a)–(c), top, middle, and bottom figures are the original input, ROI area, and sub-sampled images,
respectively: (a) the 1st example; (b) the 2nd example; and (c) the 3rd example.
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(a)  (b) 

Figure 11. Cases of incorrect banknote recognition: (a) input images; (b) falsely recognized classes.

Table 8. Processing time of the proposed method on PC (unit: ms).

Image
Sub-Sampling

Obverse/Reverse Side
Classification

Forward/Backward
Direction Classification

K-Means
Matching Total

Feature Vector
Extraction

Side
Classification

Feature Vector
Extraction

Direction
Classification

2.06 1.27 0.06 1.95 0.04 0.45 5.83

In addition, we measured the processing time on TI DSP. As shown in Table 9, the total processing
time is about 15.6 ms and our method recognizes a banknote image at approximately 64 images/sec
(1000/15.6) on banknote counting machine.

Table 9. Processing time of the proposed method on banknote counting machine (unit: ms).

Image
Sub-Sampling

Obverse/Reverse Side
Classification

Forward/Backward
Direction Classification

K-Means
Matching Total

Feature Vector
Extraction

Side
Classification

Feature Vector
Extraction

Direction
Classification

4.21 3.24 1.89 3.31 1.91 1.04 15.6

In addition, we measured the total memory usage on banknote counting machine. The total
memory usage is about 1.6 MB. It is a total of 734,976 Bytes (1584 × 464) for original input image, 298,152
Bytes (1212 × 246) for the ROI image, 192 Bytes (32 × 6) for the sub-sampled image, 442,368 Bytes
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(192 × 192 × 3 × 4 (float number type)) for the PCA transform matrix, 2304 Bytes (192 × 3 × 4 (float
number type)) for the PCA eigenvalues, 124,716 Bytes for the SVM models, and 49,152 Bytes (192 × 16
(class centers) × 4 (directions of A, B, C, D) × 4 (float number type)) for the K-means algorithm.

4. Discussions of Experimental Results

For our research, we obtained the global features from the sub-sampled 32 × 6-pixel image. When
comparing the sub-sampled images (of different directions and banknote types) in Figures 3 and 9, we
found that each sub-sampled image can be discriminated. As a result, it is clear that the global features
(useful for discriminating Directions A–D and classifying the 16 classes, as shown in Figure 1) still
remain in the sub-sampled image despite losing the detailed (local) texture patterns. This is confirmed
by the accuracy in pre-classification and the recognition rates in Tables 5 and 7. In addition, using the
sub-sampled image enables real-time processing, as shown in Table 8 (172 images/sec (1000/5.83)),
with lower memory usage. In general, the misalignment of a banknote often occurs because banknotes
are cut inconsistently during production, and this issue is aggravated by variations in the capturing
position of the banknote image in banknote-counting machines and ATMs. Misalignment degrades
the recognition accuracy, but by using the sub-sampled image, the recognition accuracy is affected less
by a misaligned banknote image.

As shown in Figures 3b and 9, the texture components are so blurred in the sub-sampled image
that its features are difficult to be extracted by gradient-direction method or Gabor filtering. In addition,
because of the limitations to the processing time in a banknote-counting machine or an ATM with low
processing power, Gabor filtering—which requires high processing time—is difficult to implement
with our method. Therefore, we used the method of extracting features with PCA, and its performance
is validated by the results in Table 5, Table 7, and Table 8.

As shown in Table 5 and Figure 7, we compared the accuracy of both LDA and PCA with Bayesian
classifiers, and PCA with an SVM for pre-classification. The accuracy from using LDA and PCA with
Bayesian classifiers did not reach 100% (the error rates for the former and latter were 2.025% and
1.134%, respectively). In addition, we measured the accuracy of an SVM without PCA, and it did not
reach 100%, either, as shown in Table 5 and Figure 7. Based on these results, we are assured that this
problem is not simple, and that the usability of PCA with an SVM is higher than in other methods.
Because the experiments were done on such a large classes and numbers of USD banknotes compared
with previous research (as shown in Table 2), we expect that these results are sufficiently validated.

In our research, we aim at developing an algorithm that can be applied to actual
banknote-counting machines and ATMs with low processing power. Therefore, more sophisticated
algorithms with higher processing times are unfeasible for these machines due to the limited
processing time.

In our research, the final classification of the banknote into 16 classes is also based on PCA features.
By using a K-means clustering algorithm, 16 class centers (vectors) are obtained in each Direction A–D,
as illustrated in Figure 1. The class mean (center) for each class can be estimated by calculating the
average positions (geometric centers) of the data (in each class) in each axis of dimension. However,
the accuracy of this method can be affected by the outliers (the error data whose position are far from
the center of the class). That is, if the number of the outliers is large, the center of the class is calculated
as that close to the outliers, and the incorrect center position can be obtained consequently. However,
K-means algorithm is the unsupervised (iterative) learning method which can group the K classes data
automatically based on the minimum distance between each sample data and class center. Therefore,
its consequent accuracy of determining the correct class center is less affected by the outlier data than
that by calculating the geometric center.

With the extracted PCA features from the inputted banknote image, the Euclidean distance
between these PCA features and each center (vector) of the 16 classes (which are determined by
K-means method) is calculated after pre-classification, and one class center (with the smallest Euclidean
distance) is selected as the final class for the banknote (nearest class mean (NCM) method).
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In our method, an SVM is used to pre-classify the four classes (Directions A–D) in a hierarchical
manner, and a K-means method is used to recognize the banknote from the 16 classes, as illustrated in
Figure 1. Because a conventional SVM has been used to discriminate between two classes, and because
accurate banknote recognition ultimately requires 16 classes, the SVM was not used for banknote
recognition. In order to adopt the SVM for banknote recognition in 16 classes, either a multi-class SVM
would be necessary or the conventional SVM would need to be applied repeatedly in a hierarchical way.
Both options require too much processing time for use in a banknote-counting machine or an ATM
with low processing power. Therefore, we used the K-means method for the banknote recognition
in 16 classes. In other words, we performed banknote recognition based on the minimum Euclidean
distance with the class center by a K-means clustering method. In addition, because an SVM is usually
superior to the K-means method or others for discriminating between two classes (as shown in Table 5),
we used the SVM hierarchically to pre-classify the four classes (Direction A–D).

If the ROI area on banknote of 1212 × 246 pixels is used for PCA training, it is difficult to obtain the
covariance matrix for PCA training because the size of covariance matrix is so high as 298,152(1212 ×
246) × 298,152(1212 × 246) (which requires the memory usage larger than 88 GBs). PCA usually has
the functionalities of both dimension reduction and acquisition of optimal features. Therefore, as
shown in Figure 7 and Table 5, the average error by PCA + SVM is smaller than that by SVM without
PCA. In addition, as shown in Figure 5a, the dimensionality reduction is large (from 192 to 140) in case
of the second trial of training when exchanging the training and testing data based on two-fold cross
validation. Therefore, although the dimensionality reduction in some cases (Figure 5b) is minimal, the
PCA transform with the sub-sampled images is necessary in our research.

Our method can recognize the kind of banknote through the pre-classification of obverse (AB) and
reverse (CD) sides, and forward and backward directions (A and B, or C and D) only with the visible
light image. Our method cannot identify counterfeits because the detection of counterfeit requires
additional information such as magnetic, infrared sensors, et al., in addition to the visible light sensor.

5. Conclusions

We propose in this paper a novel method for pre-classifying banknotes’ direction for
implementation in banknote-recognition systems. The results of our experiments showed that the
error rate for the proposed pre-classification method was lower than that of other methods. In
addition, the banknote-recognition error rate after pre-classifying the banknote’s direction was as low
as 0.114%. However, incorrect recognition occurred when part of the banknote was damaged or when
contaminants were present in the upper or lower region of the banknote.

Although banknote images with a limited degree of mistreatment are included in our database,
those including tears or hand written notes are not included in our database. As the future work,
we would propose to test these images and research a method of enhancing the recognition accuracy
with these kinds of poor quality images. In addition, we intend to study an algorithm for rejecting
poor-quality banknote images based on a quality measure or the confidence level of the matching score
and we plan to apply our method for pre-classifying the banknote’s direction to other currencies, and
to compare the accuracy of the method according to the banknote type.
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Abstract: This paper focuses on flood-region detection using monitoring images. However, adverse
weather affects the outcome of image segmentation methods. In this paper, we present an
experimental comparison of an outdoor visual sensing system using region-growing methods with
two different growing rules—namely, GrowCut and RegGro. For each growing rule, several tests
on adverse weather and lens-stained scenes were performed, taking into account and analyzing
different weather conditions with the outdoor visual sensing system. The influence of several weather
conditions was analyzed, highlighting their effect on the outdoor visual sensing system with different
growing rules. Furthermore, experimental errors and uncertainties obtained with the growing rules
were compared. The segmentation accuracy of flood regions yielded by the GrowCut, RegGro, and
hybrid methods was 75%, 85%, and 87.7%, respectively.

Keywords: vision application; outdoor imaging; visual sensing; flood detection

1. Introduction

In the summer and during typhoon season, the western coast of Taiwan is particularly vulnerable
to flooding, especially during the period between May and October. Every year, abundant rainfall
causes numerous deaths and serious damage to the economy [1–7]. One of the most challenging
problems with regard to flood response is the precise localization of flood risk. This task is performed
by early warning systems (EWSs) for flood prevention and disaster management. EWSs are extensively
applied to mitigate flood risk, and they work by detecting abnormalities and predicting the onset
of flooding with remote sensors. They can also provide real-time information during floods [8–11].
Traditionally, EWSs monitor flooding with remote sensing technology such as satellite imaging and
electronic sensors installed nearby rivers and seaports. Satellite images cover hundreds of kilometers,
generally providing only the broadest outlines of potential risk. On the other hand, using electronic
sensors to measure water levels remains unfeasible, owing to the sheer number of sensors needed.
These devices have a limited geographic range and extensive power requirements. Moreover, they
incur massive costs in installation and maintenance. Therefore, the development of a long-term
sustainable EWS with the ability to precisely localize areas of risk is crucial to the field of flood
monitoring and early warning.
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Visual sensing techniques are widely employed in various fields for vision applications such as
inspection, surveillance, and monitoring. Unlike active sensors, vision sensing techniques indirectly
measure physical information from captured images and video. Such systems record particular
behavior, activity, and other changes in the field scene. The use of a visual sensing system to perform
an indirect estimate of the region, position, velocity, and attitude of a monitored object is well known.
However, the influence of weather phenomena on visual sensing systems remains an open research
issue with many unanswered questions [12,13]. Conventional imaging systems are designed to capture
scenes in ideal atmospheric conditions, such as indoors. However, outdoor vision applications must
be capable of capturing images even in adverse weather conditions [14,15]. Such conditions limit the
accuracy of the estimated attitude of a monitored object [16–19].

Fog and stained lenses are the most pernicious phenomena for outdoor vision systems. The image
intensity, color, and shape are altered by interactions between light and the atmosphere. First, fog
results from suspended particles, mist, raindrops, rain streaks, and heavy spray rain. Another major
source with fog are raindrop streaks. Consider a camera system capturing the volume of raindrops;
this volume comprises randomly-distributed and high-velocity raindrops. Raindrop streaks are
projected in non-uniform stripes onto the scene. They produce sharp changes to the intensity during
image acquisition. Subsequent imaging processes are also affected by concentrated rain streaks.
Relevant research regarding raindrop detection and removal can be found in [20–24].

Second, raindrop stains tend to adhere to the lens of imaging devices. Each stain refracts and
reflects light, generating shape and intensity changes in images. Figure 1a,b shows an example of
a stain on a camera lens, and Figure 1c,d shows the detection result of a time-varying flood region.
In imaging systems, the projections of a raindrop stain on an image are a non-uniform refraction
mask on pixels. Due to the composite raindrop stains, the image intensity is randomly nebulized.
However, the effects of raindrop stains on camera lenses have not been thoroughly investigated.
This study also focused on rain stains, which are a common atmospheric condition in vision systems.

 
(a) Small rain stain (b) Flat stain

 
(c) Input image 295 (d) Segmented water region 

Figure 1. Two stain types: (a) a small stain and (b) a flat stain overlapping the camera lens. The effect
of stains when applied to flood detection for (c) a stained outdoor image and (d) the concave region
affected by stains on an image. Image 295’s flood region segmented with RegGro is represented by
a red contour. The blue contour represents the ground truth, and the green dot is the location of the
seed used with RegGro. (Note: The Traditional Chinese in header of (a) and (b–d) are represented the
location in the Dianbao River and the Changed Bridge, respectively).

To recover clear images in adverse weather, associative restoration techniques should be
introduced. Fog removal techniques can be applied during preprocessing, before visual sensing
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applications. Fog removal (or image dehazing) techniques restore image clarity by eliminating the
medium effects of fog. The basic principle behind recovering fog-free images involves estimating
the transmission of light in the medium of fog scenes, and then eliminating the scattered light
caused by the medium, in order to provide a clear image. This topic has been discussed in previous
literature [25–29]. However, in long-term video sequencing, image dehazing remains challenging,
because it is independent from the atmospheric changes in each frame. Variations in luminosity, the
fog level, fog distribution, and light scattering randomly affect video sequencing. A single image
clarification filter with constant parameters is insufficient for estimating entire video sequences.

To understand the influence of adverse weather conditions, an image segmentation application has
been employed to manipulate videos of rainy conditions captured using an outdoor imaging system.
The vision application scenario involved flood-tide detection. Flood regions must be segmented into
precise shapes in order to determine hazard levels and provide automatic flood warnings to support
EWSs [14].

The remainder of this paper is organized as follows: Section 2 reviews the interactive segmentation
problem and the advantages of region-based segmentation. Section 3 describes the two region-based
rules and the image set in detail. The experimental results are given in Section 4. Finally, a discussion
and conclusions are provided respectively in Sections 5 and 6.

2. Image Segmentation in Environmental Application

This paper focuses on flood detection using small-scale monitoring images to identify the part of
flow in a water region, surrounding buildings, and geographic background. However, interference
introduced from elements—such as variance to the water region, raindrops on the camera screen,
blurred scenes from water atomization, and fierce wind—negatively affects traditional image
segmentation methods, such as background subtraction, thresholding, and watershed processing.

Image segmentation has been widely applied in industry and medicine. More recently,
the process has been used in environmental object analysis [30–34]. For outdoor images, simple
segmentation process parameters, such as threshold values, cannot be established for precise flood
region segmentation [35–40]. This is because region colors, region shapes, scene illumination, fog
distribution, rain, and other atmospheric conditions vary over time. Visual information is somewhat
independent between frames in video sequences comprised in a single shot.

Interactive image segmentation schemes with a few simple user inputs provide a better solution
for natural images than fully-automatic schemes [41]. First, users indicate the location of the object
and background using strokes as markers or seeds. Then, images are initially over-segmented into
several small contiguous and perceptually similar regions (or superpixels), using mean shift [42],
Bayesian flooding [43], graph-based [44,45], or contour-based [46] methods, among others. Finally, the
region-merging stage automatically merges the initial regions with constraints to the boundary,
shape, region, and topology [43]. The object is obtained from the background following a merging
task. However, most interactive schemes require pre-segmentation to divide the image into small
regions. Furthermore, most such schemes require the user to draw the specific shape of the
initial markers, in order to fit the location, boundary, and features of the object and background.
For flood detection, however, the location, boundary, and features of objects are time-varying.
By comparison, both region-based segmentation methods analyzed in this paper do not require
pre-segmentation; rather, the user roughly places a few seeds on the flow surface without deliberate
selection. Region-based segmentation involves selecting seed points in the region of interest and
using an algorithm to grow the region from the seed point according to the seed-pixel intensity and
previously set criteria. The seed intensity depends on the pixels in each frame, rather than constrained
values. This facilitates the successful deployment of the growing process in various frames with
differing intensities. Therefore, region-based segmentation is suitable for time-varying intensity and
shape conditions.
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Based on the above reasons, region-based image segmentation was selected as the most suitable
method for identifying flood regions and estimating the degree of hazard. In addition, region-based
image segmentation exhibits properties that increase coupling to the seed location, rather than limit
the set intensity. Therefore, temporal shape transformations and size variations to the flood regions
can be traced.

3. Material and Methods

Region-based segmentation involves the assumption that the pixels within a region possess similar
properties, such as color, intensity (gray level), and texture. Based on this, criteria for a similarity
test were designed to determine whether neighboring pixels in a region are similar. If a similarity
criterion is satisfied, neighboring pixels can be inferred to belong to the same growing region as their
neighbors. Similarity criteria are crucial factors that shape growing patterns and result in differing
final regions. In this study, we used two region-based algorithms to trace flood regions: RegGro (a
modified region-growing algorithm), and GrowCut. The criteria used in the growing process differ
between these algorithms. Details for these algorithms are provided in the following sections.

3.1. RegGro Method

The purpose of RegGro is to group pixels into meaningful regions, starting from a specific
seed pixel and spreading to neighbors that satisfy the growing rule [40]. The growing rule is
a set of criteria used to determine whether neighboring pixels should be added to the region.
The fundamental disadvantage to intensity-based region segmentation is that the intensity provides no
spatial information. The established threshold is a single value or a set gray level. Hence, to implement
the growing rule, RegGro uses the dynamic mean intensity with a threshold window (where the
window size is ˘ the intensity distance). The dynamic mean intensity is the sum mean intensity of all
pixels that belong to a specific region. This mean intensity is updated each time a new pixel is added
to the region. Specifically, the mean intensity is a dynamic statistic that depends on the current region,
rather than the established intensity of the initial seed pixel. Thus, the mean intensity is more suitable
for spreading over the blurred boundary when the region and background have not been determined.
The RegGro rule pseudocode can be described as follows (Algorithm 1):

Algorithm 1: RegGro rule pseudocode.

//For each pixel p
for all p in image A

//Copy previous state of p and the mean intensity of all q
labels_new=labels; Mean_Intensity(q);
//All current q try to spread to neighbors p
for all neighbors of p

i f pIntensity ppq P Mean_Intensity pqqq
//Successful growth spreads out to the current p.

labels_new(p)=labels(q)
end if

end for
end for

Here, p represents the set of background pixels. Before segmentation, then, p denotes all of the
pixels in an image. The image segmentation process can be understood as a process that partitions
p into two subregions: the foreground and the background. Initially, all p in the image are labeled as the
background region, where q—the pixels belonging to the foreground—are seeded pixels. Initially, the
mean intensity of all q, Mean_Intensity(q), is the intensity of only one seeded pixel. This seeded pixel
is the first q. Then, q attempts to spread to the neighbors (8-connected pixels). The region-growing
process involves labeling a neighboring pixel p as the foreground in a larger region when intensity(p)
falls within the Mean_Intensity(q), as shown in Figure 2a. The region-growing or spreading rule of
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the foreground region’s pixel q and neighbors p, hereafter referred to as the δ function, is defined
as follows:

p px, yq “
#

Foreground i f Intensity ppq P Window xMean_Intensity pqqy
Background otherwise

(1)

where the intensity of pixel p is the V-channel value of an image in the HSV color space.
The Mean_Intensity is the pixel mean intensity of q with a window of the intensity distance. This is
dynamically updated with each new pixel added to q. The constant intensity distance is a window of
the Mean_Intensity set to 0.065, because all images are converted to a floating format ranging between
0 and 1, as shown in Figure 2b.

(a) (b)

Figure 2. (a) Region-growing process from q to 8-connected neighbors p that satisfy the δ function;
and (b) threshold for the window of intensity. The center of the window is the value of Mean_Intensity,
and the window size is ˘ the intensity distance (˘0.065).

3.2. GrowCut Method

GrowCut provides an alternative to region-based methods. GrowCut applies cellular automation
as the region-growing rule [47]. In automata evolution models, each pixel is treated as a cell that grows
and struggles with other cells. Region growing begins from the seed pixels, spreads outward, and
attempts to occupy the entire image. Here, the region growth criteria are called the local transition
function, known as the δ function. This function defines the rule for calculating the state of a current
cell coupled with the state of neighboring cells. Moreover, unlike traditional region growing in
only one direction, the state of the region pixels can reverse-grow with neighboring pixels. Thus, the
automation evolution can grow the region bi-directionally until all criteria have been satisfied (Figure 3).
The pseudocode of the automata evolution rule is described as follows (Algorithm 2):

Algorithm 2: GrowCut rule pseudocode.

//For each cell p
for all p in image A

//Copy the previous state of p
lt`1
p “ lt

p; θt`1
p “ θt

p;
//All current cells q try to attack p
for all neighbors p

if g
ˆ

||
á
Cp ´ á

Cq||
˙

¨ θt
q ą θt

p

//Successful attacks spread to neighbors p

lt`1
p “ lt

q; θt`1
p “ g

ˆ
||

á
Cp ´ á

Cq||
˙

¨ θt
q;

end if
end for

end for

503



Sensors 2016, 16, 1125

where the label lq denotes a foreground pixel, label lp denotes a background pixel, θ is

the strength of the pixels, and θ P r0, 1s. Here,
á
C is the intensity of the pixel, and

g
ˆ

||
á
Cp ´ á

Cq||
˙

is the absolute difference between p and q. In the initial states, all q are set

to lq “ 0 p0 “ background, 1 “ f oregroundq , θq “ 0,
á
Cq “ Seed px, yq. The growing rule for

GrowCut—i.e., the δ function—is defined as follows:

p px, yq “
$&
% Foreground i f g

ˆ
||

á
Cp ´ á

Cq||
˙

¨ θt
q ą θt

p

Background Otherwise
(2)

 
(a) (b)

Figure 3. (a) Region-growing process from cell q to its neighbors or reverse-growing from its neighbors,
with the δ function; and (b) the strength threshold for the growing rule. The region grows when θq ą θp;
otherwise the region reverse-grows.

3.3. Hybrid RegGro and GrowCut

We proposed a hybrid RgGc that employs a neural network model in order to combine these
two growing methods. The hybrid RgGc applies a neural network to classify the input image as fog,
stained, or normal scenes. Then, RegGro and GrowCut were applied to process fog and stain images,
respectively. The GrowCut method has also been used to segment images of normal scenes.

Detecting fog and stain scenes is a difficult task for image recognition. It is also unclear how the
properties of fog and stain should be described. Currently, neural networks have been central to the
largest advances in image recognition performance in recent years. The network model learns what
distinguishes images, rather than relying on manually-specified differences. To automatically recognize
the fog and stain images, a neural network model is presented as a classifier. This model is trained using
TensorFlow [48]. Following the training instruction [49], the model is trained with the Typhoon Image
Set, as described in Section 3.4, to distinguish between three labels (viz., fog, stained, and normal).
This model uses 4000 training steps. Each step chooses ten random images from the Typhoon Image
Set, and feeds them into the final layer in order to derive predictions. Those predictions were then
compared to the actual labels in order to update the final layer's weights through the back-propagation
process. This test evaluation is the best estimate of how the trained model will perform with regard to
the classification task. Model evaluations were performed using a running average of the parameters
computed over time. After the model was fully trained, its accuracy was approximately 99%.

Figure 4 shows the workflow of the training model. The trained model classifies an input image.
A decision is made regarding whether an input image is foggy, stained, or normal. The hybrid
RgGc then automatically switches to the RegGro and GrowCut methods to process fog and stained
images separately.
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Figure 4. Flowchart of the training model and classification input images. During the training process,
the training images are labeled as fog, stained, or normal. The hybrid RgGc method classifies input
images and then pipes to different growing methods. (Note: The Traditional Chinese in header of all
images is represented the location in the Changed Bridge).

3.4. Image Set and Ground Truth

3.4.1. Typhoon Image Set

In this case study, two region-based segmentation algorithms were employed to identify flood
regions. Historical outdoor images were recorded during a typhoon-induced rainstorm that occurred
in September 2010 in Taiwan. The capture period was between 12:00 p.m. and 5:50 p.m., 19 September
2010. The outdoor imaging system replayed real-time videos streamed to Internet applications. For our
evaluation, we extracted one image each minute, for a total of 350 images in the test image set.
The video stream was decomposed to a spatial resolution of 352 ˆ 288 in JPEG format. Part of the test
image set is shown as thumbnails in Figure 5. The images were captured between noon (when the
raining began) and nightfall (at the flood tide).

 
(a) Foggy image (b) Stained image

Figure 5. Image set and weather conditions. The image set was captured in adverse weather conditions.
The selected sample images show fog (a) and stained (b) patterns. (Note: The Traditional Chinese in
header of all images is represented the location in the Changed Bridge).

3.4.2. Ground Truth of Flood Segments

To evaluate the segmentation results of previous algorithms, a ground truth that yields accurate
segmentation results is needed. The ground truth also provides a statistical basis for evaluating
region segmentation and boundary detection, as shown in Figure 6. Therefore, flood regions in
450 outdoor images were labeled manually. Examples of these manually-labeled flood regions are
shown in Figure 7, where the red boundaries represent the flood region coverage in the original images.
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The “true detection” and “false detection” of detected flood segments in each image are described
as follows:

i f tprT ą 70% o f g.t.q && prO ă 30% o f g.t.q && prU ă 30% o f g.t.qu ;
True Detection else Fault Detection

(3)

where, g.t. denotes the pixels of the ground truth, rT is the resulting region pixel of the algorithm that
matches the g.t., rO denotes over-segmenting that grows to non-g.t., and rU denotes under-segmenting
that misses the g.t.

The algorithms’ respective accuracy for the whole image set is derived as follows:

Algorithms1 Accuracy “
ˆř

TrueO f Detectionř
ImageSet

˙
ˆ 100% (4)

 
(a) Definition of segments (b) Outcome segments 

Figure 6. Accuracy determined according to the ground truth. (a) the resulting region pixels of the
algorithm in the image plane are classified as: rT, matching the ground truth; rO, over-segmented;
and rU, under-segmented; (b) the outcome segments produced with algorithm and ground truth.

 

Figure 7. Part of the ground truth of the image set. The red boundaries are manually-labeled segments
of flood regions. (Note: The Traditional Chinese in header of all images is represented the location in
the Changed Bridge).
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4. Results

RegGro and GrowCut were employed to determine flood regions in outdoor images. Various
seed-location and image-filtering settings were tested to determine the optimal set that resulted in
superior flood regions. The results of flood segments were evaluated according to the ground truth.

4.1. Performance of RegGro

The accuracy of the flood regions identified with RegGro is shown in Figure 8. The intensity
distance ranged from 0.025 to 0.15. The highest accuracy achieved using RegGro was 85.7%, with
an intensity distance of 0.065. Images without flooding were excluded to avoid the problem
of selecting seed points in non-object regions. The remaining 335 valid images were used to
evaluate the segmentation algorithms. In a prior experiment, we found that image filtering cannot
substantially improve the segmentation accuracy of the RegGro algorithm. We examined several
image filters, including the mean, median, bottom-hat, and histogram equalization. However, the
maximum accuracy of RegGro was achieved using non-filtered images. To thoroughly understand
the segmentation performance, the comparison results of image sequences are presented in
Figure 9. The data in Figure 9 show the flood region accuracy evaluated within a time series.
This process is crucial for an EWS in order to trace flood variations precisely during the tide
process. Inconsistent segments were set as False (1), and consistent segments were set as True (0).
This clearly indicates that the segmentation accuracy for the initial period of rain was insufficient.
Specifically, before Image 40, the majority of flood segments were not consistent with the ground truth.
The remaining flood segments exhibited accurate regions, excluding a few failures in subsequent
images. The results of the flood-region segmentation are partially shown in Figure 10 with a step of
10 frames.

 

Figure 8. RegGro accuracy. The accuracy was determined according to the ground truth. Each
horizontal bar shows the accuracy with a different intensity distance, ranging from 0.025 (RegGro_025)
to 0.15 (RegGto_150). The highest accuracy was 85.7% with an intensity distance of 0.065.

507



Sensors 2016, 16, 1125

 

Figure 9. Segmentation success or failure with RegGro. True (0) indicates success, and False (1)
indicates failure. Most false detections occurred in the first 40 images with heavy rain and fog.

 

Figure 10. Part of RegGro’s results with red segments from growing methods. The blue line is the
ground truth, and the green marker is the initial seed for the growing methods. There were few
flood segmentation failures in heavy rain and fog. Some failures occurred with raindrop stains on the
CCTV screen. (Note: The Traditional Chinese in header of all images is represented the location in the
Changed Bridge).
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4.2. Performance of GrowCut

The accuracy of flood regions identified with GrowCut is shown in Figure 11. Unlike RegGro,
some image filters in GrowCut can improve flood detection in various segments. The maximum
accuracy was 75.2% when using the mean filter with 16 ˆ 16 or 18 ˆ 18 masks. After testing several
image filters, the experimental results showed that the mean filter is superior for enhancing the
outcome provided by GrowCut. Specifically, the mean filter increased the accuracy of the GrowCut
algorithm from 68.1% to 75.2%. To thoroughly understand the segmenting performance, a comparison
of image sequences is shown in Figure 12. The data in Figure 12 indicate the flood region accuracy
evaluated within a time series. Inconsistent segments were set to False (1), and consistent segments
were set to True (0). This clearly indicates that the segmenting accuracy for the initial rain period
failed during two periods of rain. The first period was the same as that using RegGro. That is, before
Image 40, most flood segments were not consistent with the ground truth. The second period was
between Images 70 and 100, and exhibited more failed segments than RegGro. In the remaining
flood segments, however, GrowCut yielded only a few failures in subsequent images. In other words,
GrowCut provided nearly perfect segmentation from Image 100 onward. The results of flood region
segmentation are partially shown in Figure 13 with a step of 10 frames.

 

Figure 11. GrowCut accuracy. The accuracy was determined according to the ground truth.
Each horizontal bar shows the accuracy with a different filter: viz., the mean, imadjust, histeqadapt,
histeq, and filter-free GrowCut. The highest accuracy is 75.2% with the mean filter and both 18 ˆ 18
and 16 ˆ 16 masks.

 

Figure 12. Segmentation success or failure with GrowCut. True (0) indicates success, and False (1)
indicates failure. Most false detections occurred between Images 0–40 and Images 70–100 with heavy
rain and fog. However, GrowCut was more robust to raindrop stains on the CCTV screen (after
Image 100).

509



Sensors 2016, 16, 1125

 

Figure 13. Part GrowCut’s results with red segments from growing methods. The blue line is the ground
truth, and the green marker is the initial seed for the growing methods. Most flood segmentation
failures occurred during heavy rain and fog. GrowCut is robust to raindrop stains on the CCTV
screen. (Note: The Traditional Chinese in header of all images is represented the location in the
Changed Bridge).

4.3. Performance of Hybrid RegGro and GrowCut

When combining RegGro and GrowCut, the hybrid RgGc was 87.7% accurate. The accuracy of
the flood regions identified with the hybrid RgGc is shown in Figure 14. To thoroughly understand
the segmentation performance, the comparison results of image sequences are presented in Figure 14.
The data in Figure 15 show the flood region accuracy evaluated within a time series. Inconsistent
segments were set as False (1), and consistent segments were set as True (0). This result also clearly
indicates that both RegGro and GrowCut failed to segment the flood regions as well as the hybrid
RgGc during the initial period of heavy rain and fog. The results are consistent with the previous
observations in Sections 4.2 and 4.3. The hybrid RgGc exploited the strength of both growing methods,
with more accurate detections than GrowCut for Images 65~100, and RegGro for Images 110–150.
The results of the flood-region segmentation, ground truth, and seed marker are partially shown in
Figure 16.
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Figure 14. Hybrid RgGc accuracy. The accuracy was determined according to the ground truth.
Each horizontal bar shows the accuracy with a different growing method. Outperforming both RegGro
and GrowCut, the hybrid RgGc was 87.7% accurate.

 

Figure 15. Segmentation success or failure with the hybrid RgGc. True (0) indicates success and False
(1) indicates failure. Most false detections occurred in the first 40 images with heavy rain and fog.
Both methods failed to segment the flood regions as well as the hybrid RgGc.

Figure 16. Cont.
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Figure 16. Hybrid RgGc results with red segments from growing methods. The blue line is the ground
truth, and the green marker is the initial seed for the growing methods. This figure only shows Images
0, 35, 70, 105, 140, 175, 210, 245, and 280 from the image set, in order to clearly show the contours
and seeded marker. The text in the upper-right corner distinguishes between images processed with
RegGro (Rg) and GrowCut (Gc). (Note: The Traditional Chinese in header of all images is represented
the location in the Changed Bridge).

5. Discussion

In this section, we discuss how poor atmospheric conditions affect segmentation outcomes and
ground-truth proceedings. As stated in the introduction, fog and stains are the primary factors that
affect the outcome. Moreover, the ground truth also serves as a crucial evaluation factor.

5.1. Influence of Fog and Heavy Rainfall

Fog and haze are the main factors that disturb light reflection in scenes, causing unexpected
variations in image intensity. In our image set, fog and haze occurred for only a short period when
the rainstorms began—specifically, the period between Images 0 and 40. Since rainstorms involve
suspended particles, mist, raindrops, raindrop streaks, and heavy rain spray, they render scenes
extremely unclear. An image of the fog that formed before the initial rainstorm at noon is shown
in Figure 17. The resulting blurry image was difficult to segment using the proposed region-based
method. We enhanced the image using filters and equalization to improve the histogram distribution.
However, this enhancement procedure also affected the remaining images, causing the region-based
segmentation method to tend toward overestimations and underestimations. Both algorithms failed to
segment the initial period of torrential rainfall. Therefore, we infer that the presence of fog and haze
influence the final outcome of flood segmentation. Furthermore, during heavy rainfall, CCTV cameras
that rely exclusively on visible light are more easily blocked by raindrops and fog. Multispectral image
sensors should be used to address this issue [50]. For example, infrared cameras use infrared light to
capture scenes. Infrared light has a longer wavelength than visible light, and it can penetrate heavy
fog and rainfall to form clearer images.

 

Figure 17. Fog example. Fog and haze regress pixel intensity. (Note: The Traditional Chinese in header
of all images is represented the location in the Changed Bridge).
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5.2. Influence of Stains on Lenses

Various stains on the camera lens also exert critical effects on image processing. Figure 18 shows
an example of the differing outcomes of these algorithms with these effects. Briefly, image segmentation
is a process that involves segmenting objects of interest from the background. Although extracted
segments have discriminatory boundaries, they are sensitive to minor foreground and background
boundaries. However, the presence of stains on the camera lens directly disturbs the overall image
intensity. Occasionally, the segmentation process stalls on stained areas (see Image 270 in Figure 18b).
This is the reason why RegGro yielded numerous segmentation failures from Images 100–350 (see
Figure 9). GrowCut exhibited a superior ability to resist rain stains on the camera lens during the
specific period between Images 100 and 350 (Figure 12). We compared crucial periods, at the start
(Image 152) and middle (Image 270). Although RegGro provided superior segmentation accuracy
during the initial period, the effects of stained areas stalled region growth. By contrast, GrowCut
exhibited superior resistance to stains on the camera lens (see Image 270 in Figure 18a), yet it tended to
overestimate flood regions at the start (see Image 152 in Figure 18a). Thus, GrowCut primarily yielded
segmentation failures before Image 100 (see Figure 12).

 
(a) GrowCut case (b) RegGro case 

Figure 18. Comparison of the two algorithms with example images from the start (Image 152) and
middle (Image 270). (a) GrowCut covering the stains (Image 152) and overestimating them (Image 270);
(b) RegGro identifying the flood region (Image 152) and affected by stains (Image 270). (Note: The
Traditional Chinese in header of all images is represented the location in the Changed Bridge).

5.3. Ground Truth

We also inquired as to whether a ground truth is the only method for estimating the performance
of an algorithm. However, it must be asked whether the ground truth exactly represents the flood
region. In Figure 19, compared with the ground truth segment, the RegGro segment determines
segmentation failure. In this case, the RegGro segment is not considered a flood region, ostensibly
leading to a false detection. In fact, this RegGro segment can be treated as an assembly of various
flood regions. Moreover, manually-labeled flood regions are sometimes underestimated, because the
subjects sedulously avoid solid boundaries in order to ensure that segments remain isolated from the
background. Thus, the manually-labeled region might be smaller than the actual region. To evaluate
the performance success or failure, an intelligent and flexible evaluation of the ground truth should be
conducted in future studies.
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(a) (b) (c) 

Figure 19. Example of a failed identification. The RegGro region (in red) overlaps with the ground
truth (in blue). (a) ground truth; (b) RegGro region; and (c) comparison of regions.

6. Conclusions and Future Work

Vision systems are used for various image applications, such as feature detection, stereo
vision, segmentation, recognition, and tracking. These image processes are affected by weather
conditions, particularly fog and stains that occur on lenses. However, such visual effects barely
affect human vision, because the original scene behind the stain can, nevertheless, be approximated.
In most image processing applications—particularly processes that use the pixel intensity and graph
information—stained regions belong to neither the foreground nor the background. Therefore, outdoor
imaging and monitoring applications are limited by the visual effects generated by adverse weather
conditions. This was the primary motivation for this study. We aimed to understand not only the
influence of adverse weather on outdoor imaging, but also how the performance of image applications
can be improved.

In this study, two region-based segmentation algorithms and a hybrid method that combines
both algorithms were applied to flood detection in adverse weather. A case study was presented
to demonstrate the performance of these algorithms and their bottleneck for low-cost vision-based
flood monitoring. The experimental results indicate the advantages and disadvantages of both
algorithms, and the effects that poor atmospheric conditions have on segmentation outcomes.
Both methods have unique advantages and disadvantages for fog and stained conditions, respectively.
The segmentation accuracy of flood regions yielded by GrowCut and RegGro was 75% and 85%,
respectively. Although RegGro was more accurate, it was inadequate for stained images. If the ability
to resist stains were incorporated into RegGro, it could achieve more accurate results (see Figure 15
for the hybrid’s results). Thus, we have combined the advantages of both RegGro and GrowCut into
a hybrid RgGc with a network classifier. In doing so, we improved the results by approximately
2.7%. Moreover, we shall investigate the feasibility of multispectral cameras in terms of improving the
accuracy of image segmentation and preserving visual information in outdoor images with scenes
of fog.
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Abstract: This paper presents an object occlusion detection algorithm using object depth information
that is estimated by automatic camera calibration. The object occlusion problem is a major factor
to degrade the performance of object tracking and recognition. To detect an object occlusion,
the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving
objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions.
The proposed algorithm estimates the depth of the object without extra sensors but with a generic
red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the
performance of object tracking and object recognition algorithms for video surveillance systems.

Keywords: occlusion detection; automatic camera calibration; depth estimation; moving object
detection; video surveillance system

1. Introduction

Recently, the demand for object tracking and recognition algorithms is increasing due to video
surveillance. An object occlusion is a major factor for the performance degradation of a video
surveillance system. For this reason, various object occlusion detection and handling methods
were studied.

Mei et al. proposed an object tracking with consideration of occlusion that is detected using the
occlusion map [1]. Since this method uses a target template to obtain the occlusion map, it is difficult
to detect the object occlusion when the target template is unavailable. Zitnick et al. generated a depth
map using a stereo camera and detected object occlusion regions [2]. However, this method needs
two cameras for stereo matching to generate the depth map. Sun et al. proposed an optimization
approach using the visibility constraint for the stereo matching and then generated the depth map by
minimizing the energy function [3]. Since a stereo camera-based occlusion detection method needs an
additional camera, it is not easy to implement in an already installed wide-area surveillance system.

To solve this problem, single camera based depth map estimation methods were proposed.
Matyunin et al. estimated the depth using an infrared sensor [4]. However, this method cannot work
in the outdoor scene since an infrared sensor is interrupted by sunlight. Im et al. proposed a single
red, green, and blue (RGB) camera-based object depth estimation method using multiple color-filter
apertures (MCA) [5]. However, this method needs a special aperture for the object depth estimation,
and produces color distortion at boundary of the out-focused objects. Zonglei et al. used a patterned
box for semi-automatic camera calibration [6]. Lin et al. estimated vanishing points using traffic lanes,
and estimated the distance of a frontal vehicle using a single RGB camera for a collision warning
system [7]. Since this method uses the traffic lane for vanishing point estimation, distance estimation
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is impossible when an input image does not contain a traffic lane. Song et al. detected features from a
moving object, and automatically calibrated the camera [8]. However, Song’s method cannot avoid the
camera calibration error when feature points change while the object is moving.

To solve these problems, the proposed method first performs automatic camera calibration using
both moving objects and background structures to estimate camera parameters. Given the camera
parameters, the proposed algorithm estimates the object depth with regard to a reference plane, and
then detects the object occlusion. To estimate vanishing points and lines, the proposed algorithm
detects parallel lines in the input image. Bo et al. detected straight lines from background structures
using the one-dimensional (1D) Hough transform for automatic camera calibration [9]. Since this
method uses only a single image, it is impossible to automatically calibrate the camera when the
background does not have line components. Moreover, accuracy of the camera calibration is degraded
by with non-parallel lines. Lv et al. detected human foot and head points for automatic camera
calibration [10]. However, if the estimated foot and head points are not sufficiently accurate or if
the object motion is linear, the camera calibration is impossible. Moreover, accuracy of the camera
calibration result depends on the object detection results. To solve these problems, the proposed
algorithm combines the background structure lines with human foot and head information to estimate
vanishing points and lines.

This paper is organized as follows: Section 2 describes background theory of the camera geometry,
and Section 3 presents the proposed object occlusion detection algorithm. Experimental results of the
proposed algorithm are shown in Section 4, and Section 5 concludes the paper.

2. Theoretical Background of Camera Geometry

Estimation of the depth needs a 3D space information. To obtain the projective relationship
between the 2D image and 3D space information, a camera geometry is used with camera parameter
that describe camera sensor, lens, optical axis, and a position of the camera in the world coordinate.
In the pin-hole camera model [11], a point in the 3D space is projected onto a point in the 2D image as
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where s represents the scale, [ x y 1 ]T a point in the 2D image, matrix A consists of intrinsic camera
parameters, fx and fy focal length in the x- and y-axis focal length, respectively, skew the skewness,
a the aspect ratio, camera rotation matrix R consists of camera rotation parameters rij, [ t1 t2 t3 ]T

the camera translation vector, and [ X Y Z 1 ]T a point in the 3D space.
To simplify the description without loss of generality, we assume that the focal lengths fx and fy

are equivalent, the principal point is at the image center, the skewness is equal to zero, and the aspect
ratio is equal to 1. In the same manner, we also assume that the camera rotation angle with regard to
the Z-axis is equal to zero, and the camera translation with regard to both X- and Y-axis is equal to
zero to calculate the extrinsic matrix [R|t] as

[R|t] = [RZ(ρ)RX(θ)T(0, 0, hc)] (2)

where RZ represents the rotation matrix with regard to the Z-axis, RX the rotation matrix with regard
to the X-axis, T the transformation for a translation, hc the camera height.

The 2D image is generated by the light that is reflected by an object and than arrives at the
camera sensor. In this process, a single object is projected onto the 2D image plane with different sizes
according to the distance from the camera as shown in Figure 1. For this reason, parallel lines in the
3D space are projected on the 2D image plane as non-parallel lines depending on the depth. Using the
apparent non-parallel lines in the image, the vanishing points can be estimated as a intersected points
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of those lines. Since the projective camera transformation model projects a point in the 3D space onto
the camera sensor, the camera parameters can be estimated using vanishing points.

Figure 1. Projective model of the camera.

The point in the 3D space is projected onto a camera sensor corresponding to a point in the 2D
image using a projective transform. However, a point in the 2D image cannot be inversely projected
onto a unique point in the 3D space since the camera projection transform is not a one-to-one function.
On the other hand, if there is a reference plane, a point in the 2D image can be inversely projected
onto a point on the reference plane that is defined in the 3D space. As a result, the proposed algorithm
estimates the object depth using the 2D image based on a pre-specified reference plane.

3. Automatic Calibration-Based Occlusion Detection

The proposed object occlusion detection algorithm consists of three steps: (i) automatic camera
calibration; (ii) object depth estimation; and (iii) occlusion detection. Figure 2 shows the block diagram
of the proposed algorithm, where Ik represents the k-th input frame, L represents the extracted lines,
P represents the projective matrix, D represents the object depth information, and O represents the
detected region of an occluded object.

Figure 2. Block diagram of the proposed occlusion detection algorithm.

3.1. Automatic Camera Calibration

The proposed algorithm estimates the camera parameters for the object depth estimation followed
by object occlusion detection. Since semi-automatic camera calibration is the simplest way to estimate
parameters using a synthetic calibration pattern [6], its performance is highly dependent on the
experience of a user. To solve this problem, the proposed algorithm uses an automatic camera
calibration method that extracts lines from the image, and then estimates vanishing points and
lines [12].

To detect human foot and head points, the proposed algorithm detects the foreground by modeling
the background using the Gaussian mixture model (GMM) [13]. The object region is then detected by
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labeling a sufficiently large object. Given an object region, the vertically highest point is determined as
the head point. On the other hand, the average of the bottom 20 percent points is determined as the
foot point.

A pair of parallel lines that connect head points and foot points are used to detect vanishing
points and lines. Since the lines connecting head points and foot points are non-parallel when the
height of an object changes while walking, the proposed algorithm detects the uniform height of the
object only when pedestrian’s legs are crossing as

1
n

n

∑
i=1

(pi − p f )
2 < TC (3)

where pi represents the candidate foot points, n the number of candidate foot points, p f the detected
foot point, and TC the threshold value.

To combine object foot and head information with the background structure lines, the proposed
algorithm detects edges that are used to detect vanishing points and lines [14]. The detected foot and
head points and background structure lines are shown in Figure 3.

(a) (b)

Figure 3. Results of the line detection: (a) foot-to-head line and (b) background structure lines.

The vanishing points and lines are estimated using the detected foot-to-head line and background
structure lines. For the robust vanishing points and lines estimation, a sufficient number of foot and
head points are required. For that reason, the proposed algorithm estimates the vanishing points
and lines depending on the number of the human foot and head points according to the following
three cases:

Theoretically, homography estimation for camera calibration requires four 2D coordinates that
can solve eight linear equations. However, a practical random sample consensus (RANSAC) based
robust camera calibration needs at least eight points such that the calibration error is minimized as
shown in Figure 4.
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Figure 4. Focal length estimation error depending on the number of foot-head data sets with
30% outliers.

Case 1. If the number of detected foot and head point sets is less than N, the vanishing points
and lines are estimated using background structure lines. More specifically, three vanishing points
are selected from background lines intersecting points using the RANSAC algorithm. Among three
vanishing points, the lowest one is determined as the vertical vanishing point. The line connecting the
remaining two vanishing point is determined as the horizontal vanishing line.

Case 2. If the number of detected foot and head sets is more than N but the object motion is linear,
the vertical vanishing point can be estimated only using the object foot and head points. The vertical
vanishing point is determined at the intersected point of foot-to-head lines as shown in Figure 5.
However, if the object moves linearly, estimation of a horizontal vanishing line is impossible since
only one horizontal vanishing point is estimated. In this case, the vanishing line is estimated using
background structure lines.

Case 3. If the number of detected foot and head sets is more than N and object motion is not
linear, vanishing points and lines can be estimated using foot and head points. A foot-to-foot line
that connects two foot points and the corresponding head-to-head line that connects two head points
are used to estimate the horizontal vanishing points. As a result, the horizontal vanishing line can be
estimated using the two horizontal vanishing points as shown in Figure 5.

Figure 5. Definition of vanishing points and the horizontal vanishing line.
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Camera parameters are calculated using the estimated vertical vanishing point and the horizontal
vanishing line as [15]

f =
√
(a3/a2 − py)(vy − py)

ρ = atan(−vx/vy)

θ = atan(−
√

v2
x + v2

y/ f )

hc = ho/(1 − d(oh ,vl)‖o f −v‖
d(o f ,vl)‖oh−v‖ )

(4)

where f represents the focal length, ρ the roll angle, θ the tilt angle, hc the camera height, vl the
horizontal vanishing line a1x + a2y + a3 = 0, v = [ vx vy ]T the vertical vanishing point, ho the
object height, o f the object foot point, oh the object head point, and d(A, B) the distance between a
point A and a line B.

3.2. Object Depth Estimation and Occluded Region Detection

The proposed algorithm uses object depth information to detect an occluded region.
To estimate the depth of an object, the 2D image coordinate is projected onto the reference plane
in the 3D space using a projective matrix. Since the object foot points should be on the ground plane,
the proposed algorithm uses the ground plane as the reference plane, which means that the ground
plane is considered as the XY plane because the camera height is calculated as the distance between
the ground plane and the camera. Using an object foot point in the 2D image, the object foot point on
the ground plane in the 3D space can be calculated. To detect the foot point in the 3D space, a foot
point in the 2D image is inversely projected onto the 3D space using a projective matrix as

X =
(

PTP
)−1

PTx f (5)

where x f represents the foot point in the 2D image, matrix P the projective matrix, and X the inversely
projected coordinate of x f . Inversely projected coordinate X is normalized by the Z-axis value to detect
the foot point in the 3D space as

X f =
X
Z

(6)

where Z represents the Z-axis value of X, and X f the foot point on the ground plane in the 3D space.
An object depth is estimated by computing the distance between the object and camera.

However, the foot point appears in the finite position in the input image. For this reason, the proposed
algorithm uses the nearest foot point as a pivot point for the object depth estimation. The estimated
depth is then normalized using the farthest distance. If an object is far enough from the camera, depth
of the object foot point is assumed to be the Y-axis coordinate since the camera pan angle is equal to
zero and the pivot point is on the ground plane. If the object depth is equal to the object foot point
depth, the object depth is calculated as

d =

∣∣∣Yf − Yp

∣∣∣
dF

(7)

where d represents the object depth, Yp the Y-axis value of the pivot point, Yf the object foot point,
and dF the farthest distance. Figure 6 shows the proposed object depth estimation model, where dN
represents the nearest distance, (Xp, Yp, Zp) the pivot point, and (X f , Yf , Zf ) the object foot point.
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Figure 6. The proposed object depth estimation model.

The proposed algorithm detects the object occlusion using the estimated object depth. The depth
of the same object in adjacent frames slowly changes. On the other hand, if the object is occluded,
the estimated depth of the object rapidly changes. Based on the observation, object occlusion is
detected as

O =

{
true, if |dt−1 − dt| ≥ TO

false, otherwise
(8)

where O represents the object occlusion detection result, dt the depth of the object at time t, and TO the
threshold value for the object occlusion detection. We can only estimate depth from standing human
objects whose feet lie on the reference plane assuming that each object has a uniform depth.

4. Experimental Results

This section shows the results of the proposed automatic camera calibration and object occlusion
detection algorithms. For the experiment, test video sequences of resolution 1280 × 720 were acquired
using a camera installed at 2.2 to 7.2 m high. In addition to the in-house test sets, Vision and
Autonomous System Center’s (VASC) stereo dataset is also used to compare the performance of
the proposed method with existing stereo matching-based methods [16].

Figure 7 shows the result of three different methods for automatic camera calibration. A ground
plane is drawn on the image using grid lines with a 0.5 m interval to show the accuracy of the camera
calibration. The background structure-based method makes a poor calibration result because of
insufficient, non-parallel line segments and random textures of natural objects as shown in Figure 7a.
The moving object-based method degrades the calibration performance because of the incompletely
detected moving object and only linear motion of the object as shown in Figure 7b. On the other hand,
the proposed method significantly improves the accuracy of camera calibration because it uses neither
incomplete background structures nor multiple object positions in the same line as shown in Figure 7c.

Figure 8 shows the result of object depth estimation using the proposed method. Figure 8b shows
the calibration result with the superimposed ground plane. The estimated depths of moving objects
are shown in Figure 8c.

Figure 9 compares depth estimation results using the stereo matching-based and the proposed
methods. Figure 9a,b respectively show the left and right images of the “Toy” in the VASC stereo
dataset. Figure 9c shows the stereo matching-based depth estimation result. Figure 9d shows guidelines
to detect an region, where red lines represent the objects bottom boundary and blue lines the object’s
top boundary. Figure 9e shows the superimposed grid of the reference plane that is the camera
calibration result. The calibration result using the proposed object depth estimation method is shown
in Figure 9f. Although the stereo matching-based method generated many holes in textureless regions
without features, the proposed method successfully estimated the continuous depth map.
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(a)

(b)

(c)

Figure 7. Results of three different method for camera calibration: (a) background structure-based
method; (b) moving object-based method; and (c) the proposed camera calibration method.

(a) (b) (c)

Figure 8. The results of the proposed object depth estimation: (a) input image; (b) calibration result in
the form of the superimposed grid representing the ground plane; and (c) the depth estimation result.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Comparison of depth estimation results using the stereo-based and the proposed methods:
(a) the left stereo image; (b) the right stereo image; (c) estimated depth map using the stereo
matching-based method; (d) guide lines of the left image; (e) estimated ground plane of the left
image; and (f) estimated depth map of the left image using the proposed method.

Figure 10 shows the detection result of an occluded object using the proposed occlusion detection
algorithm with the threshold distance of 1.0 m. Figure 10a shows the detection result of the occluded
object by a background structure. Figure 10b shows the detection result of the occluded object by
another object, and Figure 10c shows the detection result in a different test video. The proposed
method can successively detect occlusion in various test videos. As shown in Figure 10d detection of
the y-axis value of an object foot position may results in erroneous detection of occlusion. However, the
proposed method can correctly detect occlusion in the scene-invariant manner since it uses the depth
in formation in the 3D space.

(a)

(b)

Figure 10. Cont.
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(c)

(d)

Figure 10. Results of occlusion detection three selected frames in each video: (a) occlusion by
background; (b) occlusion by another object; (c) result of occlusion detection detection in another
video and (d) result occlusion detection without depth information.

5. Conclusions

In this paper, we presented a fully automatic object occlusion detection method by estimating
the object depth from a single uncalibrated camera. The proposed algorithm can robustly calibrate
a camera by combining the background structure line components and moving object information.
In addition, object depth is estimated using a single RGB camera. As a result, the object occlusion is
successfully detected by analyzing the object depth information. The proposed method can be applied
to object detection and tracking in a multiple-view surveillance system.

The fundamental assumption of the proposed occlusion detection algorithm is that there is a
single, flat ground on which all objects move around. If the ground is not flat or slanted, the estimated
depth becomes inaccurate, and as a result, object detection may fail. In that case, the nonflat ground can
be approximated by piece-wise flat one, and the slanting ground can be taken care of in the calibration
process. In spite of the restrictions, the proposed method is suitable for a wide range of surveillance
applications, such as multiple camera video tracking with object handover and normalized metadata
generation-based video indexing and retrieval because of its economical implementation.
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Abstract: Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more
common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal
attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent
advances in charge-coupled device (CCD) technologies and the processing speed of smartphones,
indoor positioning using the optical camera on a smartphone has become an attractive research topic;
however, the major challenge is its high computational complexity; as a result, real-time positioning
cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via
an optical camera and orientation sensor on a smartphone to address these issues. First, we use
Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN) algorithm to make a coarse
estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features
and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a
crowd-sourcing approach is utilized to update and supplement the positioning database. We perform
several experiments comparing our approach with other positioning algorithms on a common
smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the
results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and
applicability of positioning.

Keywords: fingerprint localization; optical camera; image processing; orientation sensor;
crowd-sourcing; smartphone

1. Introduction

As the demands on location-based services (LBSs) increase, developing positioning systems (PSs)
has generated great concern over the last decade; in particular, location information is an important
basic feature in LBSs, and it is of great significance to get access to the users’ location information
anytime and anywhere; in addition, users are more and more concerned about the performance of PSs,
such as accuracy and stability. Outdoors, the Global Navigation Satellite System (GNSS), including
GPS, GLONASS, Galileo, and BDS, which works well in most outdoor applications, is a major way to
get users’ location information, and the accuracy is adequate for civilian use. Unfortunately, when
users are in indoor environments, there exist some limitations, for example, lack of line of sight
and multiple paths, both of which will cause satellite signal attenuation, so GNSS is not capable of
providing services with sufficient positioning accuracy. At the same time, the widespread use and
popularity of mobile devices have spurred extensive demands on indoor LBSs in recent years, which
have greatly promoted the rapid development of entertainment, health, business, and other sectors,
for example, users can easily get local information from the LBS when they are arriving at a place
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that is totally unfamiliar to them; likewise, when consumers want to go shopping in a big mall, when
they arrive on-site equipment could send electronic coupons to them for advertising, two applications
that without doubt, need to be based on precise indoor location information. To this end, indoor
positioning systems have been widely developed, including Assisted GNSS (AGNSS) [1,2], Difference
GNSS (DGNSS) [3,4], radio frequency identification (RFID) [5–7], WLANs [8–10], WSNs [11–13],
optical sensors [14–16], and cooperative localization [17,18]. On the whole, no system exists that can
adapt to the changing environment to meet different demands for localization due to their particular
advantages and disadvantages.

With their great international popularity and embedded hardware sensors, smartphones have
become the ideal personal and mobile navigator used to implement indoor positioning due to their low
cost and self-contained properties. Meanwhile, Wi-Fi infrastructures are more and more generalized,
indoor positioning systems based on Wi-Fi fingerprint and smartphones are widely applied, which
includes the offline acquisition and online positioning stages. In the offline acquisition stage, the
radio signal strength of reference points (RPs) is sampled to build a database, which is always time
consuming and laborious; in the online positioning stage, the real-time received radio signal strength
is used to locate with methods such as K-nearest neighbors (KNN) [19], K-weighted nearest neighbors
(KWNN) [20], Bayesian [21,22], or artificial neural network (ANN) [23]. However, a Wi-Fi signal
fluctuates because it is influenced by the complex indoor environment, which results in a low accuracy;
besides, if the database of the Wi-Fi fingerprint cannot be updated in time, that is, the stored data
cannot remain consistent with the actual signal, this will reduce the positioning accuracy.

Researchers have compared Wi-Fi fingerprint positioning with data from the built-in
microelectronic mechanical systems (MEMSs) in smartphones, e.g., accelerometer, gyroscope,
magnetometer, to improve Wi-Fi fingerprint positioning accuracy; these algorithms are well known as
pedestrian dead reckoning (PDR) methods [20,24]. However, this technique has two drawbacks: on
the one hand, it is only able to provide accurate data for a limited time because of the sensor errors
arising from bias and noise, especially for the low-cost inertial sensors found in mobile phones, so the
accumulating errors grow rapidly with the walking distance of pedestrians, on the other hand, we
have tested a common smartphone and found that those sensors’ output is unstable and low accuracy,
which will influence the positioning performance. Other researchers have also proposed positioning
approaches combining Wi-Fi fingerprints and image matching [25–28]; these approaches can solve the
problems mentioned above, however, a large-scale images database is required for those approaches,
and the image processing and matching task is so time consuming that the required instantaneity is
hard to guarantee in general.

Taking those advantages and disadvantages of stand-alone Wi-Fi fingerprints and stand-alone
image matching positioning into account, this paper proposes a crowd-sourcing indoor localization
algorithm via an optical camera on a smartphone to improve accuracy and instantaneity. First, we use
the Wi-Fi signal fingerprint based on the KWNN algorithm to get the K nearest neighbors to make
a coarse estimation, Second, we adopt a mean-weighted exponent algorithm with image features
extracted by the Scale-Invariant Feature Transform (SIFT) operator and orientation sensor, whose
output will constraint random images choice for a mobile node on a smartphone to refine the results
based on a multithread mechanism. Compared with the stand-alone SIFT-based image matching
positioning method, the proposed algorithm can reduce the search space of images and reduce the
position estimation time. Compared with stand-alone Wi-Fi fingerprint positioning, the proposed
algorithm can improve the accuracy, moreover, to prove effect of proposed algorithm further, we
compare it with the visual positioning system based on the Speed-up Robust Feature (SURF) and
KWNN algorithms used in literature [25]. Equally important, we utilize a crowd-sourcing method to
update and supplement the database, which will retain consistency with the actual signal and obviously
improve the stability of the positioning system. Experimental results show that the proposed algorithm
could significantly overcome the disadvantages of stand-alone Wi-Fi fingerprint and stand-alone
SIFT-based image matching positioning, and is more effective than SURF combined with KWNN

530



Sensors 2016, 16, 410

positioning with respect to accuracy and stability. The proposed algorithm has been realized on an
Android operating system smartphone, which has good research and application prospects.

The rest of the paper is organized as follows: Section 2 will review recent related works
and summarize our contributions. In Section 3, we will present an overview of the proposed
sensors-calibrated positioning system, including the offline acquisition and online positioning stages,
then the proposed sensors-calibrated algorithm will be introduced in detail in Section 4, and the
experimental results and evaluations will be shown in Section 5. Section 6 summarizes the whole
paper, then provides our conclusions and an outlook of future work.

2. Related Works

Indoor positioning plays an important role in providing the location of people and objects.
There are three principles used in indoor positioning: triangulation, scene analysis, and proximity.
Triangulation locates the target point’s coordinates by using distances and angles between the target
point and three other points with known coordinates, this principle includes Time of Arrival (TOA),
Time Difference of Arrival (TDOA), Angle of Arrival (AOA), and Time of Flight (TOF). Scene analysis
is a principle of positioning by analyzing the characteristics of the measured values, for example,
received signal strength indicator (RSSI) is a popular scene analysis method to realize localization;
available signals include Wi-Fi, radio frequency, geomagnetic, visible light, and so on. The proximity
principle is mainly used in radio frequency-based positioning systems; in this technique, for a grid of
antennas with fixed locations within a building, when a mobile node is detected, the closest antenna
or the one receiving the strongest signal is selected to calculate the mobile node’s location [29], for
example, cellular localization based on Cell-ID is one of the popular applications.

To meet the demanded high accuracy, some researchers have used hardware-based solutions
to get a precise distance to locate objects accurately, which is a range-based method. For instance,
Seybold [30] calculated the true distances between router and smartphone with a logarithmic-distance
path-loss model. Zou [31] applied a weighted path-loss model to RFID signals to implement indoor
positioning, on the basis of Zou, Chen [32] adopted a Kalman filter algorithm fusing received strength
of Wi-Fi fingerprints, PDR, and landmarks to locate the position indoors. Fidan [33] used a geometric
cooperative technique and path-loss model to estimate in real time the time-consuming coefficient of
path-loss in ranging sensors, the simulation results indicated that the proposed approach can effectively
adapt to uncertainty of the loss factor in signal propagation. Yang [34] and Kotaru [35] measured the
phase–distance relationship of the radio signal to locate position, the experimental results show that
those methods could reach an accuracy of decimeter level.

However, all of the mentioned solutions based on hardware above have some disadvantages and
limitations from the aspect of practicability on a smartphone, for example, it is hard to synchronize
the clocks between many common measuring devices, and the outputs of sensors on smartphones
have low accuracy and stability in general, which will directly influence positioning performance.
Finally, high-quality equipment will lead to increased cost, it is obviously not suitable for a smartphone.

In contrast, other researchers, including Google, Microsoft, Apple, etc. used software-based
solutions to improve positioning performance, whose advantages are more flexibility, high accuracy,
low cost, and short development cycle, and have developed some software-based positioning systems.
Among those, Wi-Fi fingerprint is a common range-free way with great popularity, and various
methods and theories about it have been researched to solve those issues and limitations mentioned in
the Introduction. Schussel [36] and Li [37] used the actual signal and Gaussian distribution process
to generate some fingerprints to fill the whole database. Through this approach, the positioning
problem in different densities and environments was solved. To reduce computational complexity
and positioning accuracy on the online stage, clustering theory has been used; Liu [38] proposed a
dynamic constraint KNN algorithm by using indoor layout geometry information to cluster, however,
the proposed algorithm required the extraction of features of the specific indoor area, so it is hard to
promote its use. Saha [39] used the relative size of RSSI as a metric for clustering the fingerprint and
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tried to solve the equipment diversity issue in crowd- sourcing. The proposed algorithm can achieve
a higher accuracy, but its processing involving clustering is also complicated. Lee [40] proposed
a support vector machine-based clustering approach and used the margin between two canonical
hyperplanes for classification; it reserved the fingerprint distribution property and obtained a superior
decision boundary, but did not take instantaneity into consideration. In addition, the drawback of a
time-consuming and laborious database prebuilding in the offline stage also needs to be overcome, the
accuracy will decrease if the database is not being updated in time, thus, some researchers proposed a
crowd-sourcing mechanism [41,42] to update and supplement the database.

To reduce development cost for the positioning system and increase its practicability, researchers
have used smartphones’ built-in sensors to locate cooperatively. Keller [43] focused on the gyroscope
and barometer in current smartphone to realize the indoor navigation with storey detection, because
of their work, a position in three dimensions could be interpolated by the determination of a change
of detected height with the knowledge of the relative motion distance or a prior known gradient of
the stairs/ramp. Chen [32] utilized a Kalman filter to fuse Wi-Fi and sensors integrated in a phone
as well as landmarks to finish locating; Galván-Tejada [44] adopted microphone, magnetometer, and
light sensor to locate cooperatively; Shin [45] used Wi-Fi fingerprint and PDR to develop SmartSLAM,
which locates pedestrians and constructs an indoor map at the same time. By using off-the-shelf
smartphones and the methods mentioned above, they have realized indoor positioning, however, we
have tested the output of sensors in common smartphones and found that the output values have low
accuracy; even if we put the phone in a stationary state, the output fluctuated, therefore, we think that
its low accuracy and stability will influence the performance of positioning systems.

Recent advances in charge-coupled device (CCD) sensor technologies have been applied to
positioning and several visual positioning systems have been developed. Considering Wi-Fi fingerprint
may have shadow areas where the Wi-Fi signal is weak, Song [46] proposed a new positioning
technique by which captured images’ features and their coordinate information are stored to form a
fingerprint, then they used the SURF algorithm along with Random Sample Consensus (RANSAC) to
realize image similarity comparisons. Their method worked both indoors and outdoors, including
the shadow areas where Wi-Fi fingerprint signals are weak. However, the time consumption was
not discussed. Kawaji [47] utilized omnidirectional panoramic images and a PCA–SIFT algorithm to
locate, with the proposed confidence factor locality sensitive hashing; this could improve the image
matching performance and speed up image retrieval, however, the method required omnidirectional
image acquisition and a higher performance processor, and could not be implemented on a mobile
phone. Considering positioning accuracy, time consumption, automation and scalability, Levchev [28]
proposed a simultaneous fingerprinting and mapping system, which used a particle filtering algorithm
to fuse data sampled from sensors in smart mobile devices. Its Android application could achieve an
average localization error of under 2 m, but its map and database generation process was complex
and time-consuming; Further, a so-called Mobile Visual Indoor Positioning System (MoVIPS) using
smartphone cameras was proposed by Werner [26] in 2011 and extended in 2014 [27]. MoVIPS used a
dead reckoning approach and estimated orientation factors from smartphone compasses to reduce the
amount of images, then quantized and clustered the SURF feature points, and used a transformation
matrix to improve the distance estimation, a making it therefore faster, more precise and more efficient.

Visual positioning systems with image matching theories can improve the accuracy, unfortunately,
it is generally necessary to construct an image database to be recognized, and the matching process is
always time-consuming; in particular, these algorithms should be improved for use on a smartphone
with ideal accuracy and instantaneity. Inspired by the researched literature, we propose our algorithm
with the following contributions:

(1) In the preliminary positioning stage, we use a KWNN-based Wi-Fi fingerprint positioning
algorithm to make a coarse estimation, then select K images corresponding to K-nearest neighbors
as retrievable images to reduce the time spent in retrieving images.
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(2) After Wi-Fi fingerprint positioning, we introduce an orientation matching factor calculated using
a three-dimensional orientation sensor on a smartphone to constrain random images choice for a
coarse estimated location, then, we use the SIFT operator to extract image features to calculate
the image matching factor on a multithread mechanism.

(3) We propose a mean-weighted exponent algorithm to improve accuracy by fusing the KWNN
algorithm, orientation matching factor, and image matching factor.

(4) We use crowd-sourcing to update the database; users can upload their positioning results to a
server, which can aids others’ positioning the next time if the database has not recorded some
RPs information in the offline stage.

(5) Our algorithm has been realized in an Android operating system smartphone, and is easy to
implement and apply. There is no need to use additional hardware assistance and the costs are
greatly reduced.

3. Overview of the Proposed Sensors-Calibrated Positioning System

We propose a crowd-sourcing indoor localization algorithm via an optical camera and orientation
sensor on a smartphone, with the purpose of simplifying indoor localization with high accuracy
through the use of a Wi-Fi module and camera as well as the orientation sensor in the smartphone, and
it does not need to be assisted by other hardware. The proposed system includes two stages: offline
acquisition and online positioning stages. In the offline stage, the smartphone will scan available
access points (APs) at different RPs, then record the RP’s coordinates, AP’s MAC address, and its RSSI
values, while recording the front image of RPs and output values of the three-dimensional orientation
sensor. In this paper, we use a relational database whose format is shown in Table 1 to store those
data, and those images will be preprocessed in a server using the SIFT operator and extracting the
features vector.

Table 1. Storage format of the database.

Coordinate
AP

Number
AP1 AP2 ... APm Image

Orientation
Sensor Data

(x1,y1) m1
MACm1 =

RSSIm1

MACm1 =
RSSIm1

... MACm1 =
RSSIm1

1 {θx1,θy1,θz1}

(x2,y2) m2
MACm2 =

RSSIm2

MACm2 =
RSSIm2

... MACm2 =
RSSIm2

2 {θx2,θy2,θz2}

(x3,y3) m3
MACm3 =

RSSIm3

MACm3 =
RSSIm3

... MACm3 =
RSSIm3

3 {θx3,θy3,θz3}

...
...

...
...

...
...

...
...

(xn,yn) mn
MACmn =

RSSImn

MACmn =
RSSImn

... MACmn =
RSSImn

n {θxn,θyn,θzn}

In the online positioning stage, users open the Wi-Fi and scan accessible APs, record the MAC
address and RSSI values in the cache of the phone, then users can choose to use Wi-Fi fingerprint
positioning based on the KWNN algorithm to perform rough localization. In order to achieve
higher accuracy, we use the built-in sensor to calibrate the positioning result of Wi-Fi fingerprint.
The framework of this approach is shown in Figure 1. Users can open the camera to take a
picture, and the three-dimensional orientation values will be recorded in the cache simultaneously.
The features vector are extracted from the captured images and recorded temporarily in the phone
cache. The orientation values will be used to calculate the orientation factor, which can restrain random
image choices at a position. The temporary features vector and stored features vector corresponding
to the K nearest neighbors are used to calculate the image matching factor, then the mean-weighted
exponent algorithm will fuse KWNN, orientation matching, and image matching results to improve
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the accuracy further. At the same time, the users can upload the results and those temporarily stored
data including MAC address, RSSI, image feature, and orientation values into a server to update the
database and aid better location estimate of others the next time.

K RPs according to
KWNN

Stored images with
different heading, roll,

pitch

Optical camera and
orientation sensor in

smartphone

Captured orientation
data (x , y , z)

Searching and
matching

heading,
roll, pitch

Selected images with
approximate heading,

roll, pitch
Captured optical image

Searching and
matching

Refine the
positioning result

image
feature

heading, roll, pitch

image feature

 

Figure 1. Framework of positioning calibration using built-in sensors in a smartphone.

Table 1 shows the recording format of RPs’ coordinates, Wi-Fi fingerprint, captured image
sequence number, and output values of the orientation sensor. The coordinates are specified by
the user when building the database in the offline stage, but when using crowd-sourcing to update,
they are calculated by our proposed algorithm. The AP number means the total number of available
APs when users scan Wi-Fi, it is worth noting that the AP number of different RPs are not all equal
because of the changing environment at different places, thus, m1, m2, ..., mn in Table 1 are not all
equal. AP1–APm record the received APs’ MAC and RSSI; when making a coarse estimation, the
KWNN algorithm only calculates the distance of RSSI with the same MAC address. Image sequence
number is recorded for 1 to n, and the image features are stored in another data table named as the
corresponding sequence number of images. Because of the random direction when users take a picture,
namely, it is likely that users take pictures at the same place but the direction of the image is different,
so in this paper we use orientation factor to restrain this case of randomness.

4. Crowd-Sourcing Localization Assisted by Wi-Fi Fingerprints

4.1. Wi-Fi Fingerprint Positioning Based on KWNN

K-weighted nearest neighbors is a version of the K-nearest neighbors (KNN) algorithm improved
by introducing a weighted distance factor. If the RPs’ distribution is sparse or non-uniform, after
calculating the distances and selecting K nearest neighbors, the classification result of KNN is worse
than that of KWNN. Torres-Sospedra’s [8] extensive experimental results showed that Euclidean
distance is not the optimal choice to describe the similarity between fingerprints. On the contrary,
the Sorensen distance function can achieve a better accuracy than Euclidean distance. Therefore, in
this paper, we choose the Sorensen function for the KWNN algorithm. The definition of the Sorensen
distance function is:

Lpd,iq “
řn

i“1

ˇ̌̌
RSSIpi,nq

MN ´ RSSIpi,nq
RP

ˇ̌̌
řn

i“1

ˇ̌̌
RSSIpi,nq

MN ` RSSIpi,nq
RP

ˇ̌̌ (1)

where i is a sequence of RPs, n denotes the number of APs with the same MAC between mobile node
and RPs, MN denotes mobile node, RP denotes a reference point, then, the K-nearest distance will be
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selected as the nearest neighbors. Finally, the distances corresponding to the K neighbors are used to
calculate the normalized weights using [20]:

ωi “
1{Lpd,iq

Kř
i“1

p1{Lpd,iqq
(2)

According to the normalized weight and RPs’ coordinates, a coarse estimation using the
KWNN-based Wi-Fi fingerprint can use the following formula [20]:

Pipx, yqKWNN “
#

Kÿ
i“1

xi ¨ ωi,
Kÿ

i“1

yi ¨ ωi

+
(3)

In KWNN, it is well known that K is a critical parameter that will directly influence the positioning
accuracy, so we have explored that and the results are shown in Figure 2. Each K was simulated
1000 times to calculate the mean error of positioning; we can see from Figure 2 that K = 3 is the optimal
choice whose mean error is about 1.59 m, so we set K as 3 in this paper, which will determine the
number of retrievable images.

 
Figure 2. The K value’s impact on positioning.

4.2. Precise Localization Calibrated with Built-in Sensors on a Smartphone

At the image matching positioning stage, the images and three-dimensional orientation sensor
data captured via the user’s smartphone will be matched with the stored data according to the K
nearest neighbors. This process can be described like this: first, we calculate the angle difference
between real-time obtained orientation values and stored values, and the results are expressed as
orientation matching factors, afterwards, the captured image will be processed to calculate the image
matching factor. It is worth noting that the orientation matching factors are three-dimensional vectors,
but the image matching factors are 1 ˆ K vectors, where K is the parameter in the KWNN algorithm.
Finally, we will utilize the mean-weighted exponent algorithm to correct further the estimated results
of the Wi-Fi fingerprint. More pertinent details will be introduced in the following sections.

4.2.1. Three-Dimensional Orientation Matching

The orientation sensor is used to detect motion pose such as azimuth, pitch and roll. We show
the 3D model of orientation sensor in Figure 3, it is software-based and derives its three-dimensional
floating data from the accelerometer sensor and the geomagnetic field sensor using rotation matrix.
Since this whole process has been packaged into the Android API, we can use it directly.
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Figure 3. 3D model of an orientation sensor.

We use the orientation sensor in a smartphone to improve the image matching performance, so
we should know its coordinate system shown in Figure 4a, where the z-axis represents azimuth or
heading. When the phone rotates around the z-axis, the first element in the three-dimensional floating
data, whose range is 0–360˝, indicates the angle between the geomagnetic field and the phone’s y-axis,
so if the value is equal to 0˝, 90˝, 180˝, or 270˝, it means the heading is north, east, south, or west,
respectively, and we show this case in Figure 4b. The x-axis represents pitch. When the phone rotates
around the x-axis, the second element in the three-dimensional floating data, whose range is ´180˝ to
+180˝ indicates the angle between the geomagnetic field and the phone’s z-axis, specifically, when the
top of the phone is up, the angle changes from 0˝ to ´180˝, when the bottom of the phone is up, the
value changes from 0˝ to 180˝. This case is shown in Figure 4c. The x-axis represents roll. When the
phone rotates around the y-axis, the second element in the three-dimensional float data, whose range
is ´90˝ to +90˝ indicates the angle between the geomagnetic field and the phone’s x-axis, specifically,
when the left of the phone is up, the angle changes from 0˝ to ´90˝, when the right of phone is up, the
value changes from 0˝ to +90˝. This case is shown in Figure 4d.

North

Heading

z

Pitch

y

Roll
x

z
xy

(a) (b)

(c) (d)

y

x

Figure 4. (a) The coordinate system in a smartphone; (b) heading indication of a smartphone; (c) pitch
indication of a smartphone; (d) roll indication of a smartphone.
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In our algorithm, when the user takes a picture, the output values of the orientation sensor
and the image will be recorded into the database simultaneously. The angle difference between
real-time obtained orientation values and stored values can improve the stability of image matching
performance, namely, the values are used to constrain random image choices for a coarse estimated
location. A smaller angle difference indicates that the direction of the user and the pose of the
smartphone are closer to the corresponding RPs. In this paper, we define the orientation matching
factor to measure the closeness as follows: assume that the real-time obtained three-dimensional
orientation values are represented as {θx, θy, θ z}, the stored values acquired from the K nearest nodes
are denoted as {}, then, the angle difference can be calculated using the following formula:

Δθi “
b

pθx ´ θxiq2 ` pθy ´ θyiq2 ` pθz ´ θziq2 (4)

Finally, the orientation matching factor is the normalized weights of the reciprocal value of the
angle differences:

ζi “ 1{Δθi
Kř

i“1
p1{Δθiq

(5)

where i = 1, 2, . . . , K indicates the sequence of RPs in Equations (4) and (5).

4.2.2. Image Feature Matching by an Optical Camera

Image feature matching has been researched for indoor localization for years, and image features
can be extracted with many algorithms, for example, SIFT, PCA-SIFT, SURF. Niu [25] and Luo [48]
compared SIFT and SURF from the perspective of time, scale, rotation, blur, illumination and affine.
We have tested this in our experiments and it proves that SURF is more than three times faster than SIFT,
however, it is not optimal to handle scale changes, rotation transformation and blur; a performance
comparison of those three changes is shown in Figure 5.

   
(a) (b) (c) 

Figure 5. (a) the impact of scale changes on image matching factor; (b) the impact of rotation on image
matching factor; (c) the impact of blur on image matching factor.

Considering that there exists scale, rotation and blur changes when users take photos in
many cases, thus, we choose the SIFT algorithm proposed by Lowe [49] to extract image features.
Extracted features can be expressed as N ˆ 128-dimensional feature vectors and stored in a database,
where N denotes the total number of obtained feature points. The image captured on a smartphone by
users is processed by the same algorithm, then we calculate one by one the Sorensen distances between
the stored feature vectors and the real-time captured ones, we calculate the ratio by comparing the
distance of the closest neighbor to that of the second-closest neighbor as the metric for similarity of
images. Lowe demonstrated that a metric threshold of “feature distance” between 0.4 and 0.6 is optimal
when the two matching images change with scaling change and rotation transformation [49], further,
we have found in our many experiments that when the threshold is equal to 0.55, the positioning mean
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error is smallest, the result is shown in Section 5.2.1. The process of image matching is as follows: it is
based on the condition that we have obtained K images after coarse positioning with the KWNN-based
Wi-Fi fingerprint, where K is the number of nearest neighbors. As mentioned above, the amount of
database images in the candidate set has been reduced and the randomness of images choice have been
restricted with the orientation sensor. To decrease the computational time, K images will be processed
in a multithread mechanism.

Those K images corresponding to K nearest neighbors in the database can be expressed as IpDB,iq
(i = 1, 2, ..., K), and feature vectors are indicated as FpDB,iq (i = 1, 2, ..., K), the image captured by users is
represented as Is and its corresponding feature vectors can be donated as Fs, then we use the following
formula to calculate the common feature vectors Fc between the captured image and stored images:

Fc “ pFpDB,iq X Fsq P r0, minpFpDB,iq, Fsqs (6)

where i = 1, 2, ..., K. After that, two ratios between those images can be calculated, there are
(pFpDB , iq X Fsq{FpDB , iq) and (pFpDB , iq X Fsq{FS). Accordingly, we use the two ratios to calculate the
image matching factor. This factor can be defined as:

ηi ñ arg maxp FpDB,iq X Fs
FpDB,iq

` FpDB,iq X Fs
Fs

q (7)

where i = 1, 2, 3 denotes the index of the selected images. The image in the database that should be
picked up if it maximizes the image matching factor, as we can see, if the two images don’t contain
common feature points, the η is 0, if the two images match totally, the η is 2, so the range of η values is
between 0.0 ď η ď 2.0, and a larger η indicates a greater similarity between two images.

4.2.3. Precise Localization Using Mean-Weighted Exponent Algorithm

In this section we will introduce our fusion method, which we name the mean-weighted exponent
algorithm, to calibrate the estimated location through the KWNN algorithm. The reason why we chose
an exponent function is due to its nonlinearity, namely, an exponent function has a more significant
change rate compared with a linear function.

According to the selected K RPs, we have calculated the distance factor ω by KWNN, and the
orientation matching factor ξ as well as image matching factor η through the proposed algorithm. With
those critical parameters, we fuse them by calculating the sum, which will be used as the power of the
exponent function. Similar to the previous principle, the normalized correction factor after fusion is
represented as:

ξ1
i “ epωi`ληi`γζiq

Kř
i“1

epωi`ληi`γζiq
(8)

where K is the number of nearest neighbors, i = 1, 2, . . . , K, λ and γ denote adjustment parameters.
In this paper, we set both λ and γ to 1. Finally, the location of the user improved by the camera
and orientation sensor on the smartphone is estimated by utilizing the following formula, similar to
Equation (3):

Pipx, yqFianl “
#

Kÿ
i“1

xi ¨ ξ1
i,

Kÿ
i“1

yi ¨ ξ1
i

+
(9)

Equally important, after calculating the orientation matching and image matching factors, it
should be noted that the orientation matching factors are three-dimensional vectors, but the image
matching factors are 1 ˆ K vectors, where K is the parameter in the KWNN algorithm. Then, we first
set thresholds to judge the maximum value of those factors, if the maximum values are both greater
than the two thresholds, this indicates that the location of the reference point corresponding to that
maximum value can be used as the final location of the user. In this paper, they are equal to 1.8 and 0.8.
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4.3. Updating the Database by Crowd-Sourcing

One of the disadvantages of existing Wi-Fi fingerprint positioning is the very high costs in time
and manpower during the offline acquisition and calibration phases. To overcome these limitations,
our proposed algorithm supports users in uploadiang their scanned Wi-Fi data and captured images
into a server to update the database, that is, crowd-sourcing, Estelles-Arolas [50] overviewed this and
defined the idea as “a new online distributed production model in which people collaborate and may
be rewarded to complete tasks” [51], in our design, we always assume the users are willing to upload
the right results into the database. Apart from the fact that it can greatly reduce the complexity of
building the database, we can find other advantages from our experiment in that the accuracy of both
the Wi-Fi fingerprint and proposed sensors-calibrated system positioning results are higher and more
stable as the amount of data in the database increases, as the results in Section 5.2.3 show, so users
contributing to crowd-sourcing can get a more precise and stable results. Moreover, it can aid others to
locate the next time if the database has not recorded some RPs information in the offline stage, in this
way, it also decreases the manpower cost.

5. Experimental Results and Evaluation

5.1. Experimental Setup

To validate our proposed algorithm, we have developed an application on an Android smartphone.
Our experiment was performed on the fourth floor at the College of Information System and
Management of NUDT, with an area of around 1250 m2 containing six fixed APs, the layout of
floor and RPs installation are shown in Figure 6. During the experiment, we scan the Wi-Fi signal
RSSI and record the captured front images and three-dimensional orientation values to build the
database shown in Figure 7. We did our best to try to capture fixed icons, such as signs, house numbers,
etc. We collected 150 RPs’ information in the offline stage in the first round. In our experiment, our
experimental hardware included: a TP-link router, ThinkPad E420 with Win 7 64-bit operating system,
Intel(R) i3-2310M CPU 2.10 GHz 4 cores and 4 G memory. The smartphone is a Huawei Honor 6
(H60-L01) mobile 4G, 16 G ROM whose sensors parameters are listed in Tables 2 and 3 moreover, we
used a Kingston 8 GB micro SD memory card to store data in the phone. We developed our software
using Android Developer Tools v 21.1.0.

1.2 m

21
.2

m

11
m

29 m

43 m

8 m

24
.4

m

AP1

AP2 AP3

AP4
AP5

AP6

Figure 6. Layout and RPs.
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(a) (b) 

Figure 7. Scanning WiFi fingerprint (a) and capturing images (b).

Table 2. Parameters for the 3D orientation sensor in the Huawei Honor 6.

Name Supplier Resolution
Heading Pitch Roll

Range Accuracy Range Accuracy Range Accuracy

Inemo STmicroelectronics 0.01˝ 0~360˝ 0.1˝ ´90˝~+90˝ 0.1˝ ´180˝~+180˝ 0.1˝

Table 3. Parameters for the optical camera in the Huawei Honor 6.

Type Orientation Focal Length View Angle Size

BSI CMOS 90˝ 3.79 mm 63˝ 1920 ˆ 1080

The simple interface of the app and positioning result are displayed in Figure 8. The red point
represents the current location, and a prompt message is at the top.

 

Figure 8. Display interface and positioning result.
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Four buttons are shown in the bottom, from left to right, their function is: exit, Wi-Fi positioning,
image matching positioning, and upload data to the server. Clicking the Wi-Fi positioning button
uses the KWNN algorithm to estimate the position for users, After the KWNN algorithm implements
the positioning, clicking the image matching positioning opens the camera automatically and further
corrects the roughly estimated result using our proposed algorithm. Clicking the upload data button
uploads the data and the refined localization in the phone cache into the database. Clicking exit exits
our positioning application software. Initially, the user can point to a location on the map and upload
the current data into the server to build a database.

5.2. Experimental Results and Performance Evaluation

5.2.1. Image Matching Evaluation

An experiment is conducted in the meeting room shown in Figure 9, in which we display the
captured image and matched images (a), (b), and (c) through KWNN, as well as corresponding
orientation vectors. The red pentagram indicates the current position and its captured image, scanned
APs’ RSSI value are {´63,´44,´85,´94,´89,´86}, the other three RSSI values stored in the database
are {´67,´46,´90,´80,´81,´86}, {´73,´38,´85,´80,´83,´80}, and {´75,´45,´88,´82,´88,´81}.
The captured orientation sensor data is {25.62,´70.69,´1.69}, the other three stored in the database are
{29.18,´65.32,´3.98}, {68.61,´84.61,´0.51} and {347.52,´81.46,0.2}. In our experiment, we compressed
all images with the size of 1034 ˆ 731, the image captured by the user at the online stage is processed
with the SIFT operator and the number of extracted features Fs = 714. We list the other three images’
features and common features in Table 4, meanwhile, we calculate those factors using the methodology
described in Section 4.

Matched Image (c)
Orientation Vector:
{347.52,-81.46,0.2}

Matched Image (b)
Orientation Vector:

{68.61,-84.61,-0.51}

Matched Image (a)
Orientation Vector:

{29.18,-65.32,-3.98}

Captured Image
Orientation Vector:

{25.62,-70.69,-1.69}

Figure 9. Comparison of image and orientation matching.
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Table 4. Feature number and matching factors.

index F(DB,i) Fc ηi ζi

(a)
(b)
(c)

659
643
628

647
563
489

1.888
1.664
1.464

0.853
0.128
0.018

It is well known that Lowe demonstrated that a metric threshold for Euclidean distance between
0.4 and 0.6 is optimal [49,52]. In this case the probability density functions for correct matches
are obviously higher than for incorrect matches. In our experiment, we have explored the metric
threshold’s impact on the positioning accuracy of SURF and SIFT algorithm, it worth noting that
“Wi-Fi+SURF” means the method using Wi-Fi fingerprint to make a coarse estimation and SURF-based
image matching algorithm to refine the positioning results, which was used in [25], “Wi-Fi+SURF” is
the proposed algorithm in our paper. The results are shown in Figure 10, where we selected 150 RPs
in the database, and located each group 200 times with different thresholds. As we can see clearly,
the mean error is lowest when the threshold is set to 0.55 both of the two algorithm, however, the
mean error increases significantly when the threshold is greater than 0.75, the accuracy becomes worse,
consequently, we set the threshold to 0.55 when using feature vector to match images and realize
positioning in the online stage.

 
Figure 10. Different thresholds’ impact on positioning accuracy.

5.2.2. Positioning Evaluation

To validate the accuracy and correctness of the proposed algorithm with calibrated sensors, we
have performed an experiment with 150 RPs in the database. The Cumulative Distribution Function
(CDF) and root mean square error (RMSE) of the stand-alone KWNN-based Wi-Fi fingerprint algorithm,
stand-alone SIFT-based positioning algorithm, SURF combined with Wi-Fi positioning algorithm and
proposed sensors-calibrated algorithm are shown in Figure 11. In Figure 11a, we count the errors
of 200 positioning events and we can see that positioning accuracy could be greatly improved by
the sensors-calibrated algorithm compared with other approaches, for example, the error probability
distribution of the KWNN-based algorithm under 1 m is about 12%, under 2 m is about 53.5%, these
results demonstrate that the accuracy of the KWNN-based algorithm is not high enough. However,
with correction of optical image and orientation sensor matching, this probability distribution increases
to 43%, the probability under 2 m is about 80%. The stand-alone SIFT-based algorithm also has a high
error probability distribution, and these results demonstrate that the accuracy of the KWNN-based
algorithm is improved by visual positioning algorithm obviously (i.e., the sensors-calibrated algorithm).
Significantly, the correctness of the KWNN directly impacts the accuracy of the sensors-calibrated
algorithm. The RMSEs of different algorithms are shown in Figure 11b, where the RMSE of the
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sensors-calibrated algorithm is between 1.2 m and 1.5 m, less than the RMSE of the other three
positioning algorithms. The stand-alone SIFT-based and “SURF+Wi-Fi” method have close RMSE
results, while the stand-alone KWNN-based algorithm is worse, ranging from 2.1 to 2.4. We can
conclude that our proposed sensors-calibrated algorithm has better performance than the others and
the estimated results are closer to the true location after calibration.

  
(a) (b) 

Figure 11. Performance comparison of our sensors-calibrated algorithm with other approaches.

5.2.3. Performance of Crowd-Sourcing for Positioning

We use the error CDF and accuracy as the standard to evaluate the performance of crowd-sourcing.
In our small-scale experiment, five people participated in uploading data on the fourth floor at the
College of Information System and Management of NUDT. We assume users participate actively,
uploading positioning results freely and honestly, that is, there is no unreliable data in the experiment.
In this section, we select compare the performance of the stand-alone KWNN algorithm and our
proposed algorithm. The number of items in the database is set to 50, 100, 150, 200, 250, 300, and 350 to
simulate the increase in the database size through crowd-sourcing. The results are shown in Figure 12.

  
(a) (b) 

Figure 12. Performance comparison of crowd-sourcing.

Figure 12a,b show the error CDF of the KWNN-based and the proposed sensors-calibrated
algorithm, respectively. From Figure 12 we can conclude that:

(1) As the number of RPs in the database increases, the accuracy of the KWNN-based and our
sensors-calibrated algorithm are both improved.
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(2) The sensors-calibrated algorithm has a better performance. For example, when the number of
RPs is equal to 350, the mean error under 1 m of KWNN-based algorithm is about 20%, but, the
mean error under 1 m of the proposed algorithm is about 46%, an obvious improvement.

(3) For the same database, if the estimated results of the KWNN-based algorithm are more precise
and more stable, which will choose better nearest neighbors, so finally, the accuracy of our
sensors-calibrated algorithm will be better.

The RMSE and mean error of the stand-alone KWNN-based Wi-Fi fingerprint algorithm,
stand-alone SIFT-based positioning algorithm, SURF combined with Wi-Fi positioning algorithm
and proposed sensors-calibrated algorithm are shown in Figure 13, where the mean error indicates the
closeness between the average value of a number of measurements and an accepted reference value,
namely, trueness.

  
(a) (b) 

Figure 13. RMSE and mean error comparison of crowd-sourcing with different algorithms.

The RMSE indicates a measure of the system’s combined trueness and precision, namely, accuracy.
Each group was performed 200 times. Figure 13a compares the RMSE of these four algorithms,
Figure 13b compares the mean errors of these four algorithms. We can conclude the following from the
shown results: as the number of RPs increases, the RMSE of the KWNN-based algorithm decreases
from 2.8 m to 1.6 m, reducing by 42.9%. The sensors-calibrated algorithm decreases from 2.7 m to
1.02 m, reducing by 62%, stand-alone SIFT image matching algorithm and SURF combinated with
Wi-Fi algorithm decrease 54.2% and 57.9%, respectively.

The RMSE of the sensors-calibrated algorithm is less than that of the other three algorithms,
which means the position from the sensors-calibrated algorithm is closer to the true location, while the
stand-alone SIFT-based algorithm and SURF combined with Wi-Fi algorithm results are approximate.

From Figure 13b, we can see that the mean error of visual positioning algorithm is less than
that of KWNN-based Wi-Fi fingerprint positioning, and with the coarse estimation by stand-alone
KWNN-based algorithm, the proposed sensors-calibrated algorithm is less than those of the other three
algorithms as the number of RPs increases, and the rate of increase of the proposed algorithm is larger
than that of the others, which indicates the sensors-calibrated algorithm has a better performance.

We can use data variance to evaluate the stability of positioning. Positioning variance comparisons
of the different algorithms are shown in Figure 14. As we can see, when the number of RPs
increase, the variance of the four algorithms decreases, however, the positioning variance of the
proposed sensors-calibrated algorithm is less than the variance of other algorithms, stand-alone
SIFT-based algorithm and SURF combined with Wi-Fi algorithm are approximate, therefore, the results
demonstrate that the proposed algorithm is more stable than KWNN.
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Figure 14. Positioning variance comparison.

5.2.4. Performance Comparison of Time Consume for Positioning

Time consumption is an important aspect for positioning systems, and it’s well known that the
SURF algorithm is faster than the SIFT algorithm. In our proposed sensors-calibrated algorithm, we
use a multithread mechanism to extract features of the K stored images corresponding to the K nearest
neighbors in parallel by using the SIFT operator, so the proposed algorithm’s time consumption for
estimating positions of is not worse than SURF, but the time consumption of a stand-alone SIFT-based
algorithm is almost three times that of our proposed sensors-calibrated algorithm, and the position
estimation time increases greatly as the image database increases in size, thus, we show the results of
stand-alone KWNN-based, SURF combined with Wi-Fi algorithm and the proposed algorithm (i.e.,
SURF+Wi-Fi) in Table 5.

Table 5. Time-consuming comparison of different algorithms.

Method 1 2 3 4 5 6 7 8

KWNN-based/ms 18.33 16.14 22.57 25.44 28.16 27.29 28.19 24.18
SURF + Wi-Fi/ms 1834.23 1898.58 1833.12 1777.30 1747.72 1716.91 1747.72 1908.65

Proposed/ms 1739.45 1734.18 1731.09 1699.88 1702.02 1691.47 1688.45 1743.09

As we can see, the time consumption of the KWNN-based algorithm is the least; the average
is 23.79 ms. As we put more emphasis on the time consumption of image matching positioning
after coarse estimation by the KWNN-based algorithm, with the help of the multithread mechanism,
the average time consumed by our proposed algorithm is 1716.20 ms. At the same time, the time
consumption of the image matching approach based on SURF is 1808.03 ms, so the results demonstrate
that high computational cost of image matching positioning have been reduced greatly by our
sensors-calibrated algorithm.

6. Conclusions

Aiming at solving the imprecise and time-consuming outcomes in Wi-Fi fingerprint and image
matching positioning, respectively, in this paper we propose a crowd-sourcing indoor localization
algorithm via the optical camera and orientation sensor in a smartphone. Real-case experimental
results of different methods demonstrate that the sensors-calibrated algorithm has a better accuracy
and stability performance, compared with three other algorithms (i.e., stand-alone KWNN-based
positioning, stand-alone SIFT image matching positioning and SURF combined with Wi-Fi positioning).
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In summary, the proposed sensors-calibrated crowd-sourcing indoor localization algorithm via the
optical camera and orientation sensor on a smartphone has three innovative aspects:

(1) We explore the impact of SIFT and SURF thresholds on positioning when we choose the SIFT
operator to extract image features. We conclude from our experiments that the positioning error
is the least when the threshold is set as 0.55 in both the SIFT and SURF algorithms.

(2) We propose a mean-weighted exponent algorithm to fuse the output of the built-in sensors in a
smartphone. Small scale real-case scenarios results demonstrate that the proposed algorithm has
a better performance because of its nonlinearity to calibrate the positioning accuracy.

(3) We use crowd-sourcing to update and supplement the database. We also explored its influence
on positioning. The experimental results show that the accuracy and stability of both algorithms
have been improved, and the sensors-calibrated algorithm is obviously better than other three
algorithms in this paper.

Compared with the other positioning systems, the proposed system has the following advantages:

(1) Higher performance. We apply the mean-weighted exponent algorithm to calculate the correction
factors based on the output of the camera and orientation sensor. These factors will improve the
performance of positioning system greatly in accuracy, stability, and applicability.

(2) Easier usage. All required hardware is widely available in common smartphones. It is unnecessary
to use deploy additional installations and users can use their smartphones for positioning in
two modes: if high accuracy is unnecessary, they can choose Wi-Fi fingerprint positioning,
otherwise, they can open the camera to improve the positioning results through the proposed
sensors-calibrated algorithm.

(3) Lower cost. The proposed algorithm can be implemented on a smartphone. Firstly, we use the
smartphone to locate, and on the other hand, we adopt crowd-sourcing via the smartphone to
update the database. Equally important, we do not need to preset tags for image identification in
the indoor scenario. However, if we do preset tags for image identification, it will be better for
our algorithm.

For indoor positioning systems, it is ideal to achieve the optimal performance with the simplest
equipment or method; however, there are many issues to be solved. Our proposed algorithm still has
some shortcomings; fortunately, those shortcomings will be addressed in our future work:

Firstly, we should consider combining other built-in sensors in the smartphone. We have
performed experiments under the assumption that the light is stable in indoor environments.
In practice, the light might change as the weather changes. Smartphone cameras are sensitive to
lighting and susceptible to this lowering the quality of the images. We will handle this aspect in the
future by combining other sensors or other methods such as MoVIPS [26,27].

Secondly, the influence of equipment diversity should be considered. It is well known that the
same built-in sensors in different smartphones have different performances, such as accuracy and
stability, which will influence the positioning performance. We have tested the output value of the
orientation sensor on the Huawei Honor 6 mobile phone and Motorola Moto X Pro mobile phone.
The stability of the sensors in these two devices is obviously different. For simplification, we have done
all experiments with the same brand of smartphone. Exploring the influence of equipment diversity
for positioning will be a part of our future work.

Finally, the crowd-sourcing selection mechanism should also be considered. Crowd-sourcing is a
suitable method to build a database for positioning. On the one hand, it can reduce the time needed
to build the database. On the other hand, it can improve positioning performance as demonstrated
by our experiments. However, the thing we should take into account is how can we filter out the
unreliable data from all the uploaded data. At the same time, we will explore the quality control and
management of crowd-sourcing to select better and more useful data to realize localization.
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Abstract: This paper presents a parallax-robust video stitching technique for timely synchronized
surveillance video. An efficient two-stage video stitching procedure is proposed in this paper
to build wide Field-of-View (FOV) videos for surveillance applications. In the stitching model
calculation stage, we develop a layered warping algorithm to align the background scenes, which is
location-dependent and turned out to be more robust to parallax than the traditional global projective
warping methods. On the selective seam updating stage, we propose a change-detection based
optimal seam selection approach to avert ghosting and artifacts caused by moving foregrounds.
Experimental results demonstrate that our procedure can efficiently stitch multi-view videos into a
wide FOV video output without ghosting and noticeable seams.

Keywords: video stitching; video surveillance; layered warping; parallax

1. Introduction

Image stitching, also called image mosaicing or panorama stitching, has received a great deal of
attention in computer vision [1–8]. After decades of development, the fundamentals of image stitching
are well studied and relatively mature now. There are many research works on image stitching [1–8],
and it is typically solved by estimating a global 2D projective warp to align the input images. A 2D
projective warp uses a homography parameterized by 3× 3 matrices [1–3,9], which can preserve global
image structures, but cannot handle parallax. It is correct only if the scene is planar or if the views differ
purely by rotation. However, in practice, such conditions are usually hard to satisfy, thus ghosting
and seams yield (see Figure 1). If there is parallax in input images, no global homograhpy exists that
can be used to align these images. When a global warp is used to stitch these images, ghosting like
Figure 1a would appear. Some advanced image composition techniques such as seam cutting [10–12]
can be used to relieve these artifacts. However, if there are moving objects across the seams, another
kind of ghosting like Figure 1b would yield.

Previous research indicates that one of the most challenging problems to create seamless and
drift-free panoramas is performing a correct image alignment rather than using a simple global
projective model and then fix the alignment error [6,8,9]. Thus, some recent image stitching methods
focus on using spatially-varying warping algorithms to align the images [6–8], these methods can
handle parallax and allow for local deviation to some extent but require more computation.

With wide applications in robotics, industrial inspection, surveillance and navigation, video
stitching faces all the problems as image stitching does and can be more challenging due to moving
objects in videos. Some researchers tried to build panoramic images by aligning video sequences [13,14],
which is panoramic image generation rather than expansion of the FOV of dynamic videos. Other
works focus on freely moving devices [15–18], especially mobile devices, which include techniques
such as efficient computation of temporal varying homography [15], optimal seam selection for
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blending [16], and so on. However, due to complex computation and low resolution, they may not be
suitable for surveillance application.

(a)

(b)

Figure 1. The main reason for ghosting comes from misalignment error. Here we show two types of
ghosting in red boxes: (a) ghosting caused by using a global projective warping; (b) ghosting caused
by persons moving across seams.

Input Videos Initialized?

Background 
Modeling

Feature Extraction 
& 

Layered Warping

Initial Optimal
Seam Searching

Pixel Mapping 
Table

Optimal Seam 
Updating Image BlendingChange 

Occurred?
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Initial Stitching Model Calculation Stage

Selective Seam Updating Stage

Figure 2. Outline of the proposed video stitching procedure. Our method consists of two stages: initial
stitching model calculation stage and selective seam updating stage. In the initial stitching model
calculation stage, we first use background modeling algorithm to generate still background of each
input source video, then utilize layered warping algorithm to align background images, finally, we
perform optimal seam searching and image blending to generate panorama backgrounds. The resulting
stitching model is a mapping table in which each entry indicates the correspondence between the pixel
index of source images and that of panorama image. To relieve the ghosting effect caused by moving
objects, at selective seam updating stage, we perform seam updating according to whether there are
objects moving across previous seams or not. Our method reaches a balance between suppressing
ghosting artifacts and real-time requirement.

In this paper, we present an efficient parallax-robust surveillance video stitching procedure
that combines layered warping and the change-detection based seam updating approach. As
the alignment validity of video stitching is still crucial as it is in seamless image stitching, we
use a layered warping method for video registration instead of a simple global projective warp.
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Xiao et al. [19] provides a similar layer-based video registration algorithm, but it aims at aligning a
single mission video sequence to the reference image via layer mosaics and region expansion, rather
than building a dynamic panoramic video for motion monitoring. Through dividing matched feature
pairs into multiple layers (or planes) and local alignment based on these layers, the layered warping
method seems to be more robust to parallax. Moreover, the warping data for fixed surveillance videos
are stored in an index table for “recycling-use” in subsequent frames to avoid repeated registration
and interpolations. This index table is referred to as the initial stitching model in this paper. Aside
from layered warping, a local change-detection based seam updating method for overlapping regions
is performed to disambiguate the ghosting caused by moving foregrounds. Figure 2 shows the video
stitching process presented in this paper.

2. Related Works

Recently, video stitching has drawn a lot of attentions [11,20,21] due to its wide usage in public
security. Generally speaking, surveillance video stitching can be regarded as image stitching for
every individual frame since the camera positions are always fixed. Different from image stitching
technologies, video stitching requires more strict real-time processing ability, and large parallax and
dynamic foregrounds must be carefully considered to obtain consistent wide field of view videos.
Image stitching is relatively a well studied problem in computer vision [1,9,22]. Several freewares and
commercial softwares are also available for performing image stitching, like AutoStitch [23], Microsoft’s
Image Compositing Editor [24], and Adobe’s Photoshop CS5 [25] mosaicing feature. However, these
approaches all work under the assumption that the input images contains little or no parallax, which
implies that the scene is either sufficiently far away from the camera to be considered planar, or that the
images have been taken from a camera carefully rotated about its center of projection. This assumption
is too strict to be satisfied in real surveillance scenarios. Thus, misalignment artifacts like ghosting or
broken image structures will make the final panorama visually unacceptable (see Figure 1).

Some advanced image composition techniques, such as seam cutting [10–12] and
blending [26,27], have been employed to reduce the artifacts. However, these methods alone still
cannot handle significant parallax. In this paper, we also use seam cutting and blending as the final
steps to suppress artifacts. Recent studies on spatially-varying warping are another way out [6,7,28].
As-projective-as-possible (APAP) warps [7] employed local projective warps within the overlapping
regions and performed moving direct linear transformation [29] to smoothly extrapolate local projective
warps into the non-overlapping regions. Shape-Preserving Half-Projective (SPHP) warp [28] spatially
combines a projective transformation and a similarity transformation and has the strengths of both.
However, instead of improving alignment accuracy, its main concern is to decrease distortion of
non-overlapping area caused by the projective transformation. So even if it introduces APAP [7] into
their warp, they cannot solve the problem of structure distortion in the overlapping area in APAP [7].
Gao et al. [6] proposed to uses a dual homography warp (DHW) algorithm for scenes containing two
dominant planes (ground plane and distant plane). While it performs well if the required setting is true,
it may fail when there are more than two planes in the source images. Inspired by DHW [6], we propose
to use a layered warping algorithm to align the background scenes, which is location-dependent and
turned out to be more robust to parallax than the traditional global projective warping methods and
more flexible than DHW [6] which can only process images with two planes.

Apart from parallax, moving foregrounds are another reason for ghosting in video stitching.
Although we propose to use layered warping to align images as accurate as possible and to utilize
seam cutting to composite source images, some artifacts may still exist when objects move across the
seam. Liu et al. [20] only used the stitching model calculated with first few frames to stitch following
frames and didn’t consider the moving foregrounds. In contrast, Tennoe et al. [30] and Hu et al. [11]
update the seam in every frame, which is very time-consuming. To balance between suppressing
the artifacts and the real-time requirement, we propose to first detect changes around the previous
seams, and only perform seam update when there are moving objects across seams. Since the price of
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change detection around seams is much lower than that of updating seams, artifacts caused by moving
foregrounds can be suppressed with acceptable time consumption by our method.

3. Initial Stitching Model Calculation

Since our focus is on improving image alignment accuracy and reducing artifacts caused by
moving objects, we do not change the conventional pipeline [9] of image stitching with different
number of input sources. For ease of illustration, in the following text, we only describe the layered
warping algorithm and selective seam updating algorithm with two input videos. In the experiment
section, we provide stitching results with both two and more than two input videos.

3.1. Background Image Generation and Feature Extraction

For fixed surveillance cameras, we only perform alignment at the stitching model calculation stage
because the computation of temporal varying homography may result in palpable jitter of background
scenes in the panoramic video. Background modeling is essential to avoid volatile foreground [31,32].
We take the first Ngmm frames of input videos to establish the background frame utilizing the Gaussian
Mixture Model (GMM) [33]. SIFT [3,34] features of the background frame is extracted and matched
into pairs through Best-Bin-First (BBF) algorithm [35].

3.2. Layered Warping

Inspired by DHW [6], we assume that different objects in a scene usually lie in different depth
layers, the objects in the same layer (plane) shall be consistent with each other in spatial transformation.
Compared to warping using a global homography or warping using dual homography, layered
warping may be more adequate and robust for abundant scenes.

Layer registration. We denote the input images as I1 and I2 respectively, and the matching feature
pairs as F = {(p1

i , p2
i )}N

i=1, where pk
i is the coordinate of the i-th matching point from Ik (k = 1, 2).

Given the matching feature pairs, we first utilize Random Sample Consensus (RANSAC) algorithm [36]
to robustly group the feature pairs into different layers, then estimate the homography for each layer.
Denote the consistent matching feature pairs of layer k as Lk, the number of matches in Lk as |Lk| and its
corresponding homography as Hk. To guarantee the grouped layer to be representative, we introduce a
threshold Nmin which denotes the minimum number of matching pairs in |Lk|. Layers whose number
of matching pairs is smaller than Nmin are simply dropped. The detailed layer registration process is
presented in Algorithm 1.

Algorithm 1 Layer registration utilizing multiple-layer RANSAC

Input: Initial pair set F1 = F , threshold Nmin and iteration index k = 0;
Output: Each layer’s matching pair set Lk and its corresponding homography Hk;

repeat
k ← k + 1
RANSAC in pair set Fk for model p1

kn
× Hp2

kn
= 0, where (p1

kn
, p2

kn
) ∈ Fk;

Divide outliers Vout and inliers Vin according to H;
if |Vin| ≥ Nmin then

Set matching pair set of the k-th layer as Lk = Vin;
Set homography of the k-th layer as Hk = H;

end if

Set the pair set of next iteration as Fk+1 = Vout;
until |Fk+1| < Nmin

Through the layer registration process, we divide the matched feature pairs to multiple layers,
each of which contains a set of feature pairs that are consistent with a common homography. Figure 3
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shows two examples of layer registration, in which feature points are illustrated as circles and points
with the same color are from the same layer. From Figure 3 we can see that the grouped matching
pairs of the same layer are almost from the same plane or with the same depth, which is in accordance
with our expectation.

(a)

(b)

Figure 3. Examples of matched feature points in multiple layers, different color indicate different layers:
(a) multiple-layer matched feature pairs of images with large parallax; (b) multiple-layer matched
feature pairs of images with a distant plane and ground plane

Local alignment. To simplify calculations of local alignment, the source image is divided into
M × N grids. Since a feature point is not usually coincident with any grid vertex, we use the distances
between the grid center and its nearest neighbors in different layers to vote on the warp of the due
grid. A grid gj is represented by its center point cj. The homography of the grid gj, denoted by H∗

j , is

computed by fusing Hk of multiple layers using a weight wj
k by Equation (1)

H∗
j = ∑

k
wj

kHk (1)

where wj
k = aj

k/ ∑
i

aj
i and aj

k is a position dependent Gaussian weight:

aj
k = exp(−||cj − p∗

k ||2
σ2 ) (2)

Here p∗
k denotes the nearest neighboring feature point of cj in layer k and σ is a scale constant.

After deriving the local homography for each grid, the target pixel position p′ in the reference
image for the source pixel at position p in grid gj can be easily obtained by Equation (3):

p′ = H∗
j p (3)

This process is referred to as forward mapping [9]. To accelerate the computation, we only
perform forward mapping once, and store the correspondence between source pixel positions and
target pixel positions in the pixel mapping table. This pixel mapping table is exactly the stitching
model. The index tables are stored so that the warped image can be obtained by looking up each
corresponding pixel in the source image instead of repeated transformation when new frames arrive.
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Figure 4a,b shows the panorama images with global projective warp and layered warp respectively. It
is clear that the building in Figure 4b is better aligned than that in Figure 4a.

(a) (b)

(c) (d)

Figure 4. Examples of panoramas with (a) global projective warp and (b) layered warp, and seam
selection results in (c). (d) is the final fused image according to selected seam in (c). The seam selection
result (c) is based on stitched image (b) with layered warp.

3.3. Optimal Seam Cutting

Though layered warping is parallax-robust, it is applied only in the stitching model calculation
stage on the extracted background scene. We perform the seam selection method to disambiguate the
ghosting caused by the moving foreground.

Optimal seam searching method, also called optimal seam selection [5] or seam cutting, is to
search for an optimal seam path which is a pixel-formed continuous curve in the overlapping area to
connect pairwise warped images.

The seam should neither introduce inconsistent scene elements nor intensity differences.
Therefore, two criteria are applied in this paper to form the difference map of overlaps: the intensity
energy EC

ij and gradient energy Eg
ij which are defined as:

{
EC

ij = ||IA(i,j)−IB(i,j)||
max(IA(i,j),IB(i,j))

Eg
ij = ||∇IA(i, j)−∇IB(i, j)||2 (4)

Here IA(i, j), IB(i, j), ∇IA(i, j) and ∇IB(i, j) are the intensity and gradient of pixel (i, j) in image
A and B respectively. Finding the optimal stitching seam is an energy minimization problem (see
Equation (5)) and can be converted to a binary Markov Random Field (MRF) labeling problem [37]:

arg min
ij

∑ij (EC
ij + λEg

ij) (5)
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To accelerate the computing process, the warped images and background images are down
sampled before seam selection and restored to the original size after seam selection in our procedure.
Figure 4c and d show an example of seam selection. From Figure 4c we can see, the selected seam
mainly crosses flat areas with little gradients or intensity differences, thus the resulted panorama is
visually consistent with no noticeable ghosting.

4. Selective Seam Updating

After initial stitching model calculation, the videos are overall pre-aligned. However, for moving
foregrounds, the previous seam may lose its optimality or even miss information. Since the seam
cutting algorithm requires complex computation even on the down-sampled frames, it is difficult to be
used to update video frames in real-time. So we perform a change detection based seam updating
method instead of real-time seam selection.

4.1. Change Detection around Previous Seams

First of all, we resize the new warped frames to a smaller scale as we did in the optimal seam
selection section. Even if the images have been scaled down, direct calculation of the gradient of the
two images and evaluation of the change may be expensive. However, we observed that compared
with changes in non-overlapping area, those in the overlapping area are more likely to violate the
optimal seam. Furthermore, only changes across the optimal seam may result in the failure of it
(see Figure 5), which cam be measured by gradient difference.

(a) (b) (c)

Figure 5. (a) The original aligned frame with a stitching line; (b) newly aligned frame with changes not
cross the line; (c) frame with changes cross the line.

As an optimal seam is searched, the original gradient value set G̃0 of the seam is stored. We set
g̃i0 as the original gradient of pixel pi in the present seam, and g̃it as the gradient in time t. To calculate
the number of pixels that have large gradient variations, we use the following rule to judge if changes
occured at pixel pi or not:

Ct = {pi| g̃it − g̃i0
g̃i0

> δ} (6)

If the total pixel number in Ct is bigger than Ncd, we consider that there are new moving objects
in the overlapping area and the optimal seam shall be updated. In Equation (6), δ is a constant chosen
empirically, whereas Ncd depends on Ñ, which is the total pixel number of the seam. We set it as 0.3Ñ
in our experiments.
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4.2. Seam Updating

For each new warped frame, change detection, as described in the previous section, is performed
to see if an alteration of the seam is needed, if so, we select a new seam by the seam selection algorithm
presented in Section 3.3, otherwise, we continue to use the previous seam and move on to the image
blending process.

4.3. Blending

Seam cutting can eliminate ghosting, but it provides images without overlaps which may result
in noticeable seams. We expand the seamed image with a spherical dilating kernel, and use a simple
weighted linear blending method [9] to blend the images.

5. Experiments

To evaluate the performance of our video stitching procedure, we conduct some experiments on
both still images with parallax and actual surveillance videos.

5.1. Experimental Settings

There are several empirical parameters which should be manually tuned for different cases. At the
background modeling stage, we use the initial 20 frames to construct a GMM model with 5 components
for each pixel. The frame number may be set larger if the scenes are more cluttered. In our experiment,
Nmin is set as 12, which is the minimum number of matching pairs for each layer, and the source 720P
image is divided into 80 × 45 grids for layered warping. We provide stitching results with both two,
three and four channels as input.

5.2. Stitching Still Images

To evaluate the proposed layered warp algorithm, we first conduct experiments on still images
with parallax and compare our results with other image stitching methods in Figures 6 and 7.

Figure 6. Comparisons among dual homography warp (DHW) [6], as-projective-as-possible
(APAP) [18], Shape-Preserving Half-Projective (SPHP) [28] and Our algorithm, Red circles
highlight errors.
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DHW [6] only considers two layers (a distant plane and a ground plane), so it fails when the scene
has multiple depth layers or contains complex objects. Our algorithm is more adequate and robust
than DHW for abundant scenes (see Figure 6). Figure 7 shows the comparison among our algorithm
and some state-of-art algorithms on a tough scene from [8]. As APAP tries to align two images over
the whole overlapping region, it distorts the salient image structure, such as the pillar indicated by the
red rectangle. SPHP also fails when the overlapping area covers most of the image and there is large
parallax in it (see Figure 7c). From Figures 6 and 7 we can see, the stitching results of our algorithm
contain no noticeable distortions and are more visually acceptable than other methods.

(a) AutoStitch (b) APAP

(c) SPHP (d) Ours

Figure 7. Comparisons among various stitching methods. colored rectangles and their zoom-in
rectangles illustrate the false misalignment.

5.3. Stitching Fixed Surveillance Videos

To evaluate the effectiveness of selective seam updating strategy, we perform extensive
experiments on fixed surveillance videos, and compare our results with that of without seam updating.
The results are shown in Figure 8, from which we can see, when we do not perform seam updating in
the video stitching stage, some obvious artifacts caused by moving objects would make the stitched
video visually unacceptable. The comparison results indicate that the change detection based seam
updating approach is rather helpful to avert ghosting and mis-alignments caused by moving targets,
especially when there are moving objects across previous seams.

(a1) (a2) 

(b1) (b2) 

(c1) (c2) 

(d1) (d2) 

Figure 8. Frames taken from the output Field-of-View (FOV) videos: (a1–d1) are taken from the
output videos using initialized seam without updating. (a2–d2) are taken from the output video using
change-detection based seam updating approach. (a1), (a2), (b1) and (b2) are the stitching results of
two channels of 720P videos. (c1) and (c2) are the stitching results of three channels of 720P videos.
While for (d1) and (d2), they are the stitching results of four 720P videos.
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5.4. Time Analysis

Apart from surpressing ghosting caused by parallax and moving targets, the real-time requirement
of video stitching task should also be seriously considered when developing algorithms. To evaluate
the speed of the proposed method, we take two videos as input and test the time consumption for
different video resolutions. To make a fair comparison, the speed of stitching with temporal varying
homography, layered warping without selective seam updating and layered warping with selective
seam updating are all listed in Table 1. These experiments are all conducted on a PC with Intel Core i3
2.33 GHz CPU with two cores and 2GB RAM. All tested algorithms are implemented with C++.

From Table 1 we can see, as the index table has already been established according to the
registration result in the stitching model calculation stage, frames can be projected to the panoramic
frame by directly indexing instead of alignment and mapping for every new frame, thus the stitching
efficiency of the proposed method is greatly improved. Table 1 also shows that the selective seam
updating process slows down the frame stitching process to some extent.

Table 1. Comparisons of the speed among different video stitching methods on input-videos with
different resolutions.

Resolution
Stitching with Temporal

Varying Homography
Proposed Algorithm

without Seam Updating
Proposed Algorithm
with Seam Updating

720p: 1280 × 720 4.764 s 0.051 s 0.083 s
480P: 720 × 480 2.326 s 0.035 s 0.045 s
CIF: 352 × 288 1.025 s 0.021 s 0.032 s

6. Conclusions

This paper presents an efficient parallax-robust stitching algorithm for fixed surveillance videos.
The proposed method consists of two parts: alignment work done at the stitching model calculation
stage and change detection based frame updating at the video stitching stage. The algorithm uses
layered warping method to pre-align the background scene which is robust to scene parallax. As
for each new frame, an efficient change detection based seam updating method is adopted to avert
ghosting and artifacts caused by moving foregrounds. Thus, the algorithm can provide good stitching
performance with no ghosting and artifacts for dynamic scenes efficiently.
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Abstract: This paper presents a method for detecting and controlling the autonomous hovering of
a miniature flying ball (MFB) based on monocular vision. A camera is employed to estimate the
three-dimensional position of the vehicle relative to the ground without auxiliary sensors, such
as inertial measurement units (IMUs). An image of the ground captured by the camera mounted
directly under the miniature flying ball is set as a reference. The position variations between the
subsequent frames and the reference image are calculated by comparing their correspondence points.
The Kalman filter is used to predict the position of the miniature flying ball to handle situations, such
as a lost or wrong frame. Finally, a PID controller is designed, and the performance of the entire
system is tested experimentally. The results show that the proposed method can keep the aircraft in a
stable hover.

Keywords: monocular-vision sensor; vision measurement; flying height detecting; MAVs; hovering

1. Introduction

The problem of hovering for a micro air vehicle (MAV) is considered here. It would sense
the environment based on the information of the vision sensor, breaking the dependence on the
Global Navigation Satellite Systems (GNSS), such as GPS and GLONASS, which will be selectively
unavailable and will be disabled in cluttered or indoor environments. The commonly-used range
measuring technologies to control the height in hovering, such as radar or laser range finder, are
simply impractical for MAVs, because of the size and the weight barriers [1]. In addition to the small
volume and light weight, the vision system also has advantages of passive illumination, low power
consumption and low cost.

Many research works have been done on controlling the hovering of a vehicle based on vision.
In the early years, helicopters were used in experiments because the MAV had not been widely
studied. For example, a 67-kg Yamaha R-50 helicopter used a combination of stereo vision and feature
tracking to control the hovering [2], and a fly-by-wire helicopter ATTHeS (Advanced Technology
Testing Helicopter System) used the camera to track a two-dimensional template of a priori unknown
features [3]. Both of them have the advantages of the sufficient space and carrying capacity of
the helicopter. MAVs are characterized as small volume and limited payloads, so it is difficult to
miniaturize the equipment for use on MAVs, such as the stereo vision needing a minimum baseline
between two cameras.

Vision combined with structured environments has been applied successfully in hovering
control [4–6]. For instance, an autonomous quadrotor aircraft can perform stable hovering above
a pattern glyph with a data-fusion algorithm using both visual system measurements and inertial
sensors [6]. However, the vision system relied on the pattern glyph, which is specially designed to
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align the aircraft with the glyph. Hence, these methods are still restrained by artificially structured
environments in practical applications.

How to sense the height of MAVs by vision for hovering control using natural terrain is also
a challenge. In Cherian’s work, height is measured by the machine learning to analyze the texture
of the image captured by a downwards looking camera [7]. The reliance on the sufficient texture of
images limits the application of this method. Optical flow can be used in several movement-control
situations, such as terrain following [8], flight in the vicinity of obstacles or over flat terrain [9] and
obstacle avoidance [10,11]. As for the control of hovering, optic flow is difficult with respect to
measuring the height because it cannot produce a range unless there is a significant motion that goes
against the objective of staying at a near perfect hover. Vision has achieved impressive results for
the hovering of MAVs, which is fused with other sensors, especially the inertial measurement units
(IMUs) [12–14]. These data fusion techniques are usually computationally complex, and the detecting
reliability depends on several sensors.

While most of reviewed works have been done using vision assisted with other sensors, the
vision-based hovering control proposed in this paper uses only one vision sensor. The MAV does not
have any other sensors to measure its position or posture. Our method is inspired by honey bees,
which utilize a stored snapshot as a visual marker and keep stable by the disparity between the current
retinal image and the snapshot [15,16]. A camera is mounted directly under the MAV, and it takes
an image of the ground underneath the MAV as a reference position. An error between the current
positions and given reference position in the image plane is computed. When the height of the MFB
changes, the distance of two points on the ground is invariable, but the distance of imaging points
in the camera changes correspondingly. There is a negative correlation between these two distances.
Therefore, we can achieve hovering control of the MFB by maintaining the distance variation near zero.

2. Vision-Based Position Estimation

For the purpose of achieving stable hovering, the positon of the MAV, which is relative to an
external reference, such as the ground, should be determined at first. We estimate the position of the
MAV based on visual information. In addition, a high-speed image processing algorithm also plays an
important role to control the performance. Therefore, the image processing algorithm should be as fast
as possible.

In this paper, we present an embedded MAV that uses information extracted from real-time
images for hovering control. The ball-shaped outer shell of the MFB is lifted and propelled by the
coaxial contra rotating twin rotors, which are mounted at the top of the ball (Figure 1). Four control
surfaces at the button of the ball are used to control the motion direction of the ball freely. Therefore,
the MFB almost has no restraints on its movement and can fly omnidirectionally. For the control of
the hovering, the aircraft just needs the thrust of the coaxial contra rotating twin rotors, owing to its
special power distribution, and it will always keep straight down to the ground.

 

Figure 1. Miniature flying ball.
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2.1. Monocular Vision Analysis

The camera is mounted directly under the MFB. In the camera coordinate system, the optical
center of the camera is set as the origin, and the Z axis is parallel to the optical axis. The X and Y axes
are parallel to the image plane, as shown in Figure 2a. A perspective projection model of a pinhole
camera allows the position in a 2D image plane to be inferred from the 3D position [17]. The model
projects an arbitrary point A = (xw, yw, zw)

T on the ground to point a = (u, v)T on the image plane
(the camera image) expressed by Equation (1):
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where Zc is an arbitrary positive scalar. The six intrinsic parameters ( f , dx, dy, θ, u0, v0) can be derived
from the calibration of the camera. The extrinsic parameters, the R and T metrics, denote the rotation
and translation of the camera. For the control of hovering, the aircraft just needs the thrust upward.
It will always keep nearly straight down to the ground, and the image plane of the camera will keep
approximately parallel to the ground. Therefore, the extrinsic parameters can be simplified as:
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where h denotes the height of the camera. Then, we can get Equation (3):

u − u0 =
f xw

h
, v − v0 =

f yw

h
(3)

Consider the situation of a line AB on the ground and the corresponding line ab on the image
plane. When the height of the MFB changes into h′, as shown in Figure 2b, ab on the image plane will
change into a′b′:

h =
f •lAB

lab
, h′ = f •lAB

la′b′
(4)

From Equation (4), the measurement formula is obtained:

h
h′ =

la′b′

lab
(5)

The essential problem of the system is to achieve stable hovering of the MFB by maintaining
h′ = h. According to Equation (5), this condition can be transferred into keeping la′b′ nearly equal to lab.
Therefore, the problem of controlling the height of the MFB is turned into finding the corresponding
points ab and a′b′.

2.2. Measurement from Images

In order to reduce computing requirements, it is desirable to keep the detection region of images
as small as possible. This also indicates that not all of the visual angles in the field of view have the
same relationship for flight control. Visual angles pointing at the margin of images correspond to
regions that may disappear during flight and, thus, do not require computation. For visual angles close
to zero (i.e., close to the center of the visual field), the measurable magnitude tends to be zero. These
two limits suggest that the region of interest lies around the middle (Figure 3), where measurements
are both reliable and relevant for controlling the aircraft.
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(a) (b) 

Figure 2. The monocular vision model and coordinate system used.

 

Figure 3. (Left) An image captured from a downwards looking camera of the miniature flying ball
(MFB); (Right) Representation of the regions where measurements are both reliable and relevant.

2.2.1. Feature Extraction

The camera was calibrated to get the intrinsic parameters before use. Then, we can use the
parameters to remove the geometrical distortion of the camera and obtain the accurate distances on
the image plane.

In the follow-up process, we should find out the corresponding points between subsequence
frames and the reference frame. The first step is to extract the features in the frames. There are some
common features, such as point, region and contour. Generally speaking, feature point extractions,
such as Harris, SUSAN (Smallest Univalue Segment Assimilating Nucleus) and DOG (Difference of
Gaussian), are relatively easy in their calculation and are invariable against the rotation, translation
and illumination variation.

In the application of our system, the sequence images may change not only in the rotation,
translation and illumination variation, but also in the scale and the viewpoint. Therefore, we adopt
the SIFT algorithm proposed by Lowe [18], which can deal with these situations. However, the
algorithm of SIFT is too time-consuming and is impractical in our system. Therefore, we use the SURF

565



Sensors 2015, 15, 13270–13287

algorithm [19], the improved version of SIFT, to achieve quicker speed and more feature points. The
extraction result of SURF is shown in Figure 4.

Figure 4. Feature extraction results of the reference frame (Left) and one of sequence frames (Right).

2.2.2. Feature Matching

After feature extraction, the corresponding points between frames should be matched.
Conventional techniques include the correlation coefficient method, the Hausdorff distance method,
measurements of similarity, etc. We can obtain a multitude of information, such as position, scale,
principal orientation and feature vector, about the points when the feature extraction is executed. The
feature vectors contain the neighborhood information of the feature points, so we can use the nearest
neighbor method to find out the potential matching points to achieve a faster processing speed. The
calculation formula can be expressed as follows:

D =

⎧⎨
⎩ min

j=1,2,...,N2

√√√√ k

∑
i=1

(
fik − f jk

)2

∣∣∣∣∣∣i = 1, 2, ..., N1

⎫⎬
⎭ (6)

where N1 and N2 are the number of feature points extracted from two frames, respectively. In order to
get a robust matching result, we pick out two minimal candidates denoted as dij and dij

′. If dij ≤ α · dij
′

(α is set as 0.7 in the experiment), then dij is considered as the optimal matching point, and the wrong
matching can be rejected effectively. The matching results are shown in Figure 5.

Figure 5. The matching result of two frames. The lines connect the match points between two frames.
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2.2.3. Distance of Frames

In order to reduce measurement errors and get accurate data, we use the statistical method to
calculate the distance between frames. Assume that we have found N pairs of matching points, and
then, we can get the height and x, y variations between two frames from:

⎧⎪⎪⎨
⎪⎪⎩

Δx = ∑n
i=1 xi

n − ∑n
i=1 x′i

n

Δy = ∑n
i=1 yi
n − ∑n

i=1 y′i
n

h
h′ =

∑n
i=1 a′b′i

∑n
i=1 abi

(7)

where (xi, yi) is the coordinate of the feature on the image plane at the target height and
(

x′i , y′i
)

is the
coordinate at other moments. a′b′i and abi denote the Euclidean distances of each of the two features
on the image plane of two moments. Then, we can get the variable (Δx, Δy) in the x and y directions
and variable h

h′ in the z direction.
From Equation (7), we can figure out that the position estimation of the MFB depends on the

feature position on the image plane, but is unrelated to the intrinsic parameters of the camera. This is
because the position parameters we consider here are relatively variable. The intrinsic parameters of
the camera have been eliminated during the calculation. Thus, our method can avoid the measurement
error introduced by the calibration error of the camera.

2.3. Kalman Filter

A Kalman filter can utilize the basic physics model of the MFB to estimate a dot from its previous
position when it is not sensed correctly by the vision system. The Kalman filter will smooth the
sensing results and prevent drastic changes in the control commands, which will cause the MFB to
become unstable.

In the implementation, when a datum is considered as an outlier, the Kalman filter will respond
by modifying the measurement update covariance matrix in order to reduce the confidence in that
data. The state vector (Tj) of the Kalman filter is composed of h and the x and y position variations of
the frames, which are being filtered (Equation (8)). The measurement input (Zj) of the filter is also h
and the x and y position variations of each frame, which make the H matrix of the update equations in
the basic Kalman filter equations the identity matrix.

Tj =

⎡
⎢⎣ h

x
y

⎤
⎥⎦ (8)

Three variations are independent of each other, so the equations can be even further transformed,
as shown in Equation (10). The equations are then simplified by breaking all matrix operations into
single element operations.

û(k)j = z(k)j − t̂(k)j|j+1
ŝ(k)j = p(k, k)j|j−1 + r(k)j

k(k)j = p(k, k)j|j−1s(k)−1
j

t̂j|j = t̂(k)j|j−1 + k(k)jû(k)j
p(k, k)j|j = p(k, k)j|j−1 − k(k)j p(k, k)j|j−1
k = 1, 2, 3.

(9)
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2.4. Controller Design

In order to achieve the desired position, three variables h, x and y of the MFB should be controlled
with a specific controller. Couplings between the three channels are ignored for simplification. The h
(height) and the x and y variations are controlled by three off-board PID controllers independently.

For the position x/y of the MFB, the two controllers are similar. P gain is limited to ensure the
stability due to the latency of the system. The I term is used to reduce the steady-state errors. The
vision data are used to calculate the D terms, since there are no other sensors to measure the speed.
Because the field of view (FOV) of the camera is limited, it is necessary to set a threshold value as the
output of the PID controller. Otherwise, the corresponding feature points will be out of the FOV, and
then, the MFB will be uncontrollable.

For the h-controller, the processing method is basically the same as with x/y. The main difference
is that the I term is adjusted to provide enough thrust for the hovering MFB according to different
payloads and changing battery status.

3. Materials

To validate the proposed hovering control strategy, we ran a series of experiments in a real flying
platform developed in our laboratory (Figure 1). In this section, we describe the hardware and software
architecture that we used.

3.1. Hardware Description

The whole system (Figure 6) consists of two parts: the MFB aircraft, consisting of coaxial contra
rotating twin rotors, control surfaces, an onboard controller and sensors, such as the camera and IMUs;
and the ground station, which receives and processes sensor data, computes the pose of the aircraft,
performs the controller strategy and sends the control commands back to the aircraft.

 

Figure 6. System overview.

3.1.1. MFB Aircraft

The MFB can perform at 200-Hz control frequency to drive the high-torque DC brushless motors,
which enables rapid reaction to changes in the environment. A pair of coaxial rotors spin clockwise and
anticlockwise, respectively, which counteracts the rotors’ torque and provide thrust. This is different
from similar works, such as the flying robot in [20] and the gimball in [21]. For them, the control
surfaces are needed to balance the rotors torque, and this will cause the aircrafts to tilt toward the
ground. Our aircraft just needs the thrust of the coaxial contra rotating twin rotors, and it will always
keep straight down to the ground during hovering.
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The IMU on the MFB aircraft consists of three gyroscopes sensing the angular velocity of each
rotation axis and three accelerometers sensing the acceleration of each translation axis. It is used to
provide the reference pose of the MFB. Limited by the space and payloads of the MFB, a miniature
camera is used in the vision system. The specification of the camera will be discussed in more detail
later in the article.

3.1.2. Ground Station

To avoid putting a heavy and powerful computer on the aircraft, images are wirelessly transmitted
to a personal computer (PC), through our custom software. An off-board PC (Intel i5, 2 GB RAM) is
used for data processing, pose estimation and performing the controller strategy in our system. The
aircraft is equipped with the wireless image transmission subsystem and the command transmission
subsystem modules, which can transmit image data and control commands at a rate of 20 Hz wirelessly.

3.2. Software Architecture

The main software on the ground station consists of two major parts: vision-based position
estimation and a controller. Besides, there are two minor blocks in the entire software structure:
the GUI block and the communication block. As shown in Figure 7, the GUI block can provide the
interface between the entire system and the user for sensory data displaying, parameter controlling
and parameter tuning. The communication block is used to integrate the hardware and software
between the aircraft and the ground station.

Data Bus

Attitude 
algorithm:
Pose of MFB

GUI

Controller
Image 

processing:
Feature detect , 

matching, distance 
calculation ...

Kalman filter:
parameter prediction

IMU Image 
Data

Thrust, Pitch
Yaw, Roll

Velocity 
Acceleration

Pitch, Yaw
Roll

Image 
Data

Position of MFB Position of MFB

Thrust
Pitch
Yaw
Roll

OperationDisplay

Figure 7. Software architecture.

4. Experiments

The performance of the vision-based hovering method is demonstrated using the MFB described
in the previous sections. The diameter of the platform is 42 cm, and the total mass is 625 g. The
parameters of the selected camera are as follows: the focus length is 8 × 10−3 m; the resolution of
CCD is 640 × 480; the size of the CCD is 1/3′′ ; all algorithm development is in C++, which utilizes the
OpenCV library for feature extraction. The experiment environment is a football field shown in Figure 8.
The entire system was evaluated in four parts: (1) evaluating the solution of the system; (2) evaluating
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the static measurement precision of the system; (3) testing the dynamic hovering precision of the MFB;
and (4) testing the robustness of the system.

 

Figure 8. The flying test on the football field.

4.1. Evaluating the Solution of the System

Through the derivation of Equation (4) with respect to the length on the image plane, we can get:

Δh = − f · l
x2 · Δx = − h2

f · l
· Δx (10)

where Δh represents the height resolution according to the resolution of the CCD Δx. This means that
we can sense the minimum change Δh with a specific CCD. Here, assume the height of MFB is set as
3 m. The parameters are substituted into Equation (10), and we can get the relation of the resolution
(Δh) with the distance (l) from the center. As can be seen from Figure 9, the resolution near the center
(less than 0.8 m) is too coarse, and it will become stable after a certain distance (large than 1.4 m). We
can choose the appropriate distance and resolution as we need.

In Equation (10), the − h·Δx
f ·l is constant for the system. Therefore, the height resolution Δh is

linearly related to the height h. This means that the higher the aircraft hover, the lower the detection
precision will be. Therefore, our method is better applicable within a proper altitude according to the
sensitivity of the detector.

Figure 9. The relation of the resolution with the distance from the center.
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4.2. Static Measurement Precision of the Vision System of MFB

In this part, we designed experiments to show the validity of our measurement method. The
MFB was hung up by a rope, and its height can be accurately measured by measuring tape. The initial
height of the MFB was set at 2 m, and the height could be moved up and down freely. The camera on
the MFB looked straight down to the ground, and it took several pictures every time when the height
of the MFB changed as planned. According to the schematic diagram presented in Figure 4 and the
basic Equation (7), we can get the relationship of h

h′ and the actual distance variation (Figure 10).

Figure 10. The relation of actual displacement and the measured variation.

The graph’s horizontal axis shows the actual distance variation from the hovering positon, and
the vertical axis shows the h

h′ calculated by Equation (7). Therefore, in the actual flight, we can figure
out the actual distance variation from the hovering positon by h

h′ , which we get from monocular vision.
For example, when the h

h′ equal to 1, this means that the actual positon is at the hovering positon.
When the h

h′ is less than 1, this shows that the actual positon is above the hovering positon. Otherwise,
the actual positon is beneath the hovering positon. Therefore, we can maintain the value of h

h′ equal
to 1 by controlling the motion of the MFB to achieve stable hovering.

4.3. Dynamic Hovering Precision of MFB

When hovering, the quadrotor is very stable. The 6 DOF of the MFB can be traced by an optical
tracking system from NDI Polaris, which uses precise marks to track. The 6 DOF pose of the system
obtained by NDI Polaris is used as the standard to inspect the hovering accuracy of the MFB. It
can work at a speed of 60 frames per second and recover the position with a precision of around
0.3 mm RMS.

The main experimental processes are as follows: Firstly, the MFB is controlled by the remote
control handle to an arbitrary height. Then enable the proposed hovering method is enabled to keep
the MFB stable. During the hovering control, NDI Polaris is used to record the trajectory of the MFB.
In Figure 11, the height was set at 3 m, and the flight path for a 60-s hover can be recorded and
displayed. Overall, the position error during 60 s of hovering has an RMS value of 1.54 cm in the X
position, 1.04 cm in the Y position and 0.92 cm in Z position, which yields an absolute RMS error value
of 1.36 cm, as shown in Figure 12.
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Figure 11. Position error while hovering during 60 s. The RMS value of the position error is 1.54 cm in
X, 1.04 cm in Y and 0.92 cm in Z.

Figure 12. Position error in the X, Y and Z positions. The value remains ±4 cm. The Z position is more
accurate than the X and Y positions.

4.4. Testing the Robustness of the System

We conduct this experiment to demonstrate the method’s feasibility when the system is affected
by a strong disturbance; that is to demonstrate if the MFB can go back to the original hovering
altitude when it suffers a sudden change in height, so as to verify the robustness of the system. The
experimental setup is the same as that of the previous experiments in Section 4.3. The only difference
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here is that a sudden height change is employed. To be specific, after the MFB is hovering for a while,
we pull it down to certain height (24 cm in this trial) and observe the MFB’s position variation.

The recorded data are shown in Figure 13. The blue line shows the height of the MFB; the red
line is the desired height; and the black bars present the corresponding output of the vision system
with the proposed method. Note that the outputs are too small to display, so they have been magnified
100-times here. In the experiment, during the first 37 s, the MFB was kept hovering at the expected
position with a small deviation. Right at 38 s, it was pulled 24 cm down promptly and released soon.
The output of the vision system reached the maximum at this moment. Note that a threshold is set to
prevent drastic changes of the output, which will cause the MFB to become unstable. Then, during 38
to 48 s, the MFB returned back to the original height, as expected. In this process, the output decreases
with the rising height of the MFB. After 48 s, the ball was hovering around the original height again.
The graph above shows that our proposed vision system can always detect the MFB’s orientation and
distance and generate negative feedback to control the MFB hovering at the required height.

Figure 13. The response to the sudden height change.

4.5. Discussion

The experiments are based on the assumption that the MFB can always keep straight down to the
ground, so that the image planes are completely parallel to each other. Of course, it is impossible to
keep the image plane completely parallel without error during the flight. Here, we discuss the error
caused by the vibration of the MFB.

Figure 14 shows the altitude variation recorded by the IMU of the MFB during one flight with
coaxial rotors operating only. At the stage of preparing for taking off, the MFB was kept straight
downward, and three Euler angles were initialized to 0. During the flight, the pitch and roll in the
horizontal direction varied slightly and kept within a range of less than 1.5◦. The yaw in the vertical
direction deflected with small angles. When landed, the MFB rolled and bounced to slow down until
stopping. This caused the three Euler angles to change drastically. After stopping, the three Euler
angles kept steady.
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Figure 14. IMU data during one flight.

Figure 15. Inclined model of the MFB.

The schematic of the inclined image plane is shown in Figure 15. The relative error caused by the
inclined angle to the measurement result can be expressed as:

δ =
((tan(arctan(l/h) + Δα)) + (tan(arctan(l/h)− Δα)))− 2l/h

2l/h
× 100% (11)

where l is the distance of the feature to the center on the ground, h is the height of the MFB, Δα is the
inclined angle and δ is the relative error. Plugging in the conventional value (l = 1 m, h = 3 m), then
we can get the relationship of the relative error δ and the inclined angle Δα, as shown in Figure 16.
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Figure 16. The relationship of the inclined angle with the relative error.

In Figure 16, we find that the pitch and roll in the horizontal direction keep within a range of less
than 1.5◦ during normal flight. Then, the relative error caused by the inclined angle will not exceed
0.076%. Therefore, the effect of the inclined angle caused by the tilt of the MFB during flight has little
impact on the measurement results. In some other cases, the MFB may be unstable with a great tilt
angle caused by the wind or other unpredictable events.

5. Conclusions and Future Work

An onboard camera is utilized to measure the position of an MFB to maintain a stable hover.
The position variation between the subsequent frames and the reference image can be acquired from
analyzing their correspondence points. Then, the measurement is processed by the Kalman filter and
sent to the PID controller to control the MFB. The experimental results show that the visual method
is able to estimate the aircraft’s positon in unknown environments and to guide the MFB to achieve
stable hovering.

Several improvements will be made in the future work. First, we will develop a robust control
algorithm, which allows the aircraft to adapt itself to the uncertainty state estimate. Secondly, our
work in this paper lacks consideration of bad weather, especially wind, so we plan to expand the
functionality of the system by visual techniques in order to adapt to more applications. Thirdly, from
Figure 14, we can figure out that the maximum rotation of the MFB is about 10.6◦ during the 30-s flight.
Although this has no effect on our hovering control method, we can derive the rotation of the system
from Equation (7) and apply it in the precise control of the MFB in future work.
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Abstract: Driver distraction, defined as the diversion of attention away from activities critical for safe
driving toward a competing activity, is increasingly recognized as a significant source of injuries and
fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information
systems is critical because they induce visual, biomechanical and cognitive distraction and may affect
driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred
for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers
and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected
types in video-based algorithms. Many distraction detection systems only use a single visual cue and
therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover,
the combination of these visual cues is a key and challenging aspect in the development of robust
distraction detection systems. These visual cues can be extracted mainly by using face monitoring
systems but they should be completed with more visual cues (e.g., hands or body information)
or even, distraction detection from specific actions (e.g., phone usage). Additionally, these algorithms
should be included in an embedded device or system inside a car. This is not a trivial task and several
requirements must be taken into account: reliability, real-time performance, low cost, small size,
low power consumption, flexibility and short time-to-market. The key points for the development and
implementation of sensors to carry out the detection of distraction will also be reviewed. This paper
shows a review of the role of computer vision technology applied to the development of monitoring
systems to detect distraction. Some key points considered as both future work and challenges ahead
yet to be solved will also be addressed.

Keywords: driver distraction detection; visual-based sensors; image processing

1. Introduction

According to the most recent published World Health Organization (WHO) report, it was
estimated that, in 2013, 1.25 million people were killed on the roads worldwide, making road traffic
injuries a leading cause of death globally [1]. Most of these deaths happened in low- and middle-income
countries, where rapid economic growth has been accompanied by an increased motorization and
therefore, road traffic injuries. In addition to deaths on the roads, up to 50 million people incur
non-fatal injuries each year as a result of road traffic crashes, while there are additional indirect health
consequences associated with this growing epidemic. Road traffic injuries are currently estimated to
be the ninth leading cause of death across all age groups globally, and are predicted to become the
seventh leading cause of death by 2030 [1].

Distracted driving is a serious and growing threat to road safety [1]. Collisions caused by
distracted driving have captured the attention of the US Government and professional medical
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organizations during the last years [2]. The prevalence and identification as a contributing factor
in crashes is seen as an epidemic of American roadways, in words of Ray LaHood, when he was US
Secretary of Transportation in 2012 [3]. There is not an exact figure regarding statistics about accidents
caused by inattention (and its subtypes) since studies are made in different places, different time
frames and therefore, different conditions. The studies referenced below show both the different
statistics about inattention in general and those recorded when produced by distraction and fatigue
in particular. These authors have estimated that distraction and inattention account for somewhere
between 25% and 75% of all crashes and near crashes [4–8].

The trend towards increasing the use of in-vehicle information systems (IVISs) is critical [9]
because they induce visual, manual and cognitive distraction [10] and may affect driving performance
in qualitatively different ways [11]. Additionally, the advancement and prevalence of personal
communication devices has exacerbated the problem during these last years [12]. All these factors
can lead to the increment of the number of tasks subordinate to driving activity. These tasks,
namely secondary tasks, which may lead to distraction [13], include eating, drinking, the act of taking
something or tuning the radio or the use of cell phones and other technologies. The secondary tasks that
take drivers’ eyes off the forward roadway [14,15] reduce visual scan [16] and increase cognitive load
may be particularly dangerous [13]. For example, the use of cell phones while driving, according to
naturalistic studies [17], causes thousands of fatalities in the United States every year [18,19].

The purpose of this paper is the analysis of the state-of-the-art regarding the detection of drivers’
distraction. The scope of the paper can be seen in Figure 1 and is commented as follows. The main
methods for face detection, face tracking and detection of facial landmarks are summarized in
Section 2 because they are a key component in many of the video-based inattention monitoring
systems. In Sections 3–5, the main algorithms for biomechanical, visual and cognitive distraction
detection are reviewed, respectively. Additionally, in Section 6, there are some algorithms detecting
mixed types of distraction and, hence, are also reviewed. The relationship between facial expressions
and distraction is also explored in Section 7. The key points for the development and implementation
of sensors to carry out the detection of distraction will be considered in Section 8. In Section 9, the key
ones to test and train driving monitoring systems are summarized. Privacy issues related to camera
sensors are commented in Section 10. Lastly, conclusions, future aspects and challenges ahead will be
considered in Section 11.

With the objective of introducing the scope and limitations of this review, some key aspects have
been briefly introduced as follows. Driver distraction is just one form of inattention, which occurs
when drivers divert their attention away from the driving task to focus on another activity. Therefore,
a “complete” solution should consider all aspects of inattention. At least, the system should detect
both distraction and drowsiness as the main contributing factors in crashes and near-crashes. As stated
before, in this work, only distraction algorithms are summarized but one must not forget that
other forms of inattention should be taken into account. Moreover, the use of on-board sensors
already available in the vehicle to analyze driver behaviour is a low-cost and powerful alternative
to the vision-based monitoring systems [20,21]. However, these systems should not be treated like
different alternatives, because they can be used together (fusioned) in order to obtain indicators for
monitoring [22]. Hence, for the sake of completeness, in this paper review only “purely” vision-based
monitoring systems have been reviewed.

One of the challenges in decreasing the prevalence of distracted drivers is that many of them report
that they believe they can drive safely while distracted [23]. However, for example, in connection
with the use of mobile phones while driving, there is a great deal of evidence interacting with
mobile devices, such as sending messages or engaging in conversations, which can impair driving
performance because this interaction can create distraction. Moreover, a recent research showed that
phone notifications alone significantly disrupted performance, even when drivers did not directly
interact with a mobile device during the task [24]. Another study suggests that people in general
can reduce both inattention and hyperactivity symptoms simply by silencing the smartphones and
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avoiding notifications [25]. Therefore, it is clear that drivers should not use and notice the presence
of the smartphones inside the car while driving. It should be pointed out that distraction generation
is a very complex process and is scarcely addressed here. We recommend some research papers that
focused on driver distraction generation: Angell et al. [26] focused on the process of cognitive load
in naturalistic driving; Liang et al. [27] addressed the adaptive behaviour of the driver under task
engagement and their results on visual, cognitive and combined distraction; Caird analyzed the effects
of texting on driving [28]. In the context of intelligent vehicles, Ohn et al. [29] highlights the role of
humans by means of computer vision techniques.

Figure 1. Scope of the present work.

1.1. Taxonomy

Both distraction and inattention have been inconsistently defined and the relationship between
them remains unclear [30]. The use of different, and sometimes inconsistent, definitions of driver
distraction can create a number of problems for researchers and road safety professionals [31].
Inconsistent definitions across studies can make the comparison of research findings difficult or
impossible, can also lead to different interpretations of crash data and, therefore, to conclude
different estimates of the role of distraction in crashes. This problem can be further seen in these
recent works [32–35]. Many definitions have been proposed in order to define distraction [5,7,8,31].
Regan et al. [35] proposed a taxonomy of both driver distraction and inattention in which distraction
is conceptualized as just one of several factors that may give rise to inattention. They concluded that
driver inattention means “insufficient or no attention to activities critical for safe driving”. They defined
driver distraction as “the diversion of attention away from activities critical for safe driving toward a competing
activity, which may result in insufficient or no attention to activities critical for safe driving”. The definition
proposed here is almost identical to that coined for driver distraction by Lee et al. [31].

It is acknowledged that the taxonomy proposed by Reagan et al. [35] suffers from “hindsight bias”,
that is, the forms of driver inattention proposed are derived from studies of crashes and critical
incidents in which judgements have been made after the fact about whether or not a driver was
attentive to an activity critical for safe driving [35]. Driving consists of a variety of sub-tasks and it
may not be possible to attend to all at the same time. Determining which sub-task is more important
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(and the driver, thus, should attend to) can often only be determined after the fact (i.e., after a
crash or incident occurred) and, hence, this attribution of inattention is somewhat arbitrary [36].
Additionally, the dynamics of distraction [37], which identifies breakdowns on interruption as an
important contributor to distraction should also be considered as part of this taxonomy, and hence,
timing and context have implications on the algorithm design that should be taken into account.

1.2. Methodology

Papers addressed in this review are within the topic of distraction detection using vision-based
systems. The search and review strategy is described below. A comprehensive review of the English
language scientific literature was performed. It encompassed the period from 1 January 1980 to
31 August 2016. The following databases were used: EBSCO, ResearchGate, ScienceDirect, Scopus,
Pubmed, Google Scholar and Web of Knowledge. Search terms related to driver distraction
were employed combining all of them: driver, visual, cognitive, manual, biomechanicall, vision,
vision-based, impairment, distraction, distractions, review, task, tasks, inattention, performance, phone,
sms, vehicle, problem, looking, face, head, pose, glasses, illumination, self-driving, tracking, sensors,
image, traffic, safety, facts, privacy, issues, porting, taxonomy. Many items were returned from the
search criteria shown before. These were, then, reviewed using the following criteria. Exclusion criteria
were obviously non-relevant papers or from medical, electronic, networking, marketing and patent
topics. Only publications from peer-reviewed English language journals were considered for inclusion.
Additionally, reviewed papers were ordered by the number of references in order to include all
relevant papers. Finally, in order to get the latest published papers, search filters were applied for this
purpose. Search filters were applied to get publications only from years 2015 and 2016. References and
bibliographies from the selected papers identified were examined to determine potentially additional
papers. A total of approximately 1500 publications were revised in the review process.

2. Face and Facial Landmarks Detection

A common face processing scheme in many inattention monitoring systems, which can be seen in
Figure 2, includes the following steps:

• Face detection and head tracking. In many cases a face detection algorithm is used as a face
tracking one. In other cases, a face detection algorithm is used as an input for a more robust face
tracking algorithm. When the tracking is lost, a face detection call is usually involved (that is why
in Figure 2 these steps are placed inside the same external orange box).

• Localization of facial features (e.g., eyes). Facial landmarks localization is usually performed,
but it should be noted that, in some cases, no specific landmarks are localized. So, in such
cases, estimation of specific cues are extracted based on anthropometric measures from both face
and head.

Face detection Face tracking Facial landmarks
localization

Further
processing to

detect distraction

Figure 2. Common steps in most distraction monitoring systems.

2.1. Face Detection

Viola-Jones [38] have made object detection practically feasible in real world applications,
which contains three main ideas that make possible to build and run in real time: the integral image,
classifier learning with AdaBoost, and the attentional cascade structure [39]. This framework is used
to create state-of-the-art detectors (e.g., face detector [40]), available, for example, in Opencv library.
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However, this framework turned out to be really time-consuming [41]. Moreover, cascade detectors
work well on frontal faces but sometimes, they fail to detect profile or partially occluded faces.

One possible solution is to use the standard approach for human detection [42], which can also be
used for face detection [39]. This approach is based on the Histogram of Oriented Gradients (HOG),
which is a feature descriptor used in computer vision and image processing for the purpose of object
detection. This approach can be trained with less images and faster [43]. Deep Learning approaches
can also be used for face detection. For example, in [44], a deep learning approach, called DP2MFD,
is used. DP2MFD detects faces at multiples scales, poses and occlusion by integrating deep pyramid
features with Deformable Parts Models (DPMs). Experiments were carried out on four publicly
available unconstrained face detection datasets, which demonstrated the effectiveness of the approach.
However, this face detector was tested on a machine with 4 cores, 12 GB RAM, 1.6 GHz processing
speed and it took about 26 s. Consequently, complex features may provide better discrimination power
than Haar-like features for the face detection task. However, they generally increase the computational
cost [44].

Some modifications to the Viola-Jones algorithm have been proposed [45,46] to speed up the
algorithm. For example, in [45], different optimization techniques to speed up the Viola-Jones detector
for embedded smart camera applications have been discussed. In their paper, skin colour information
is integrated with the Viola-Jones detector in order to reduce the computation time. PICO (Pixel
Intensity Comparison-based Object detection) is another modification of the standard Viola-Jones
object detection framework, which scans the image with a cascade of binary classifiers at all reasonable
positions and scales [46]. This algorithm can achieve competitive results at high processing speed. This
is especially evident on devices with limited hardware support for floating point operations. PICO
outperforms the other two OpenCV detectors in terms of accuracy and processing speed.

Since driver face monitoring system should work in all light conditions, lighting and camera
selection is one of the most important stage in the design of the system. Lighting devices not only
should provide enough light in environment, but they also should not hurt his/her eyes. For example,
learning-based methods (e.g., Viola-Jones algorithm or PICO) can also be used for face detection in
Infrared (IR) images [47].

Position of the camera inside the car is another key factor in the detection rate. For example,
in [48], if the camera is installed under the front mirror of the car, face detection has 85% accuracy.
But if it is installed on the dashboard, face detection reaches up to 93%. This is because they used the
Viola-Jones face detector, which is trained to distinguish faces that are tilted up to about 45◦ out of
plane (towards a profile view) and up to about 15◦ in plane. Therefore, if the camera is installed on
the dashboard, the captured images will contain frontal or near-frontal faces. In [49], the camera was
placed over the steering wheel column for two reasons: a) it facilitates the estimation of gaze angles,
such as pitch, which is relevant for detecting distraction, and b) from a production point of view, it is
convenient to integrate a camera into the dashboard. On the downside, when the wheel is turning,
there will be some frames in which the drivers face may be occluded by the steering wheel. However,
the driver is seldom very sleepy or inattentive to traffic while turning the steering wheel.

2.2. Face Tracking

Head pose estimation can be defined as the ability to infer the orientation of a person’s head
relative to the view of a camera and different studies have reported statistics showing consistent range
of head motion [50], which (see Figure 3) can be decomposed in:

• Saggital flexion/extension, i.e., forward to backward movement of the neck usually from −60◦ to
70◦, which can be characterized by pitch angle.

• Axial rotation, i.e., right to left rotation of the head usually from −80◦ to 75◦, which can be
characterized by yaw angle.

• Lateral bending, i.e., right to left bending of the neck usually from −41◦ to 36◦, which can be
characterized by roll angle.
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pitchroll

yaw

Figure 3. Head pose can be decomposed in pitch, yaw and roll angles.

Many vision-based algorithms for pose estimation have shown good performance when the
head is near frontal, which is 95% of the time. But it is during those 5% of the time when interesting
events, which are critical for safety, will occur [51]. Furthermore, as face orientation while driving is
normally frontal, if the driver faces in other directions for a long period of time, this is probably due to
fatigue or inattention [52]. Hence, a key component for a monitoring system based on face tracking
is the ability to robustly and continuously operate even during large head movements. However,
face tracking remains a challenging vision problem and, hence, a system for a continuous estimation
of head movement is needed. On the other hand, as many head tracking algorithms have shown good
performance when the head is near frontal, it can be concluded that the driver is looking away when
tracking is unavailable. This information could be an alternative approach instead of adding more
cameras to increase the range of the tracker.

Accordingly, numerous research works and publications have been trying to perform face tracking
using a single camera and they are discussed as follows. Head pose estimation methods based on
geometric approach using facial landmark and its 3D correspondences [49,53–56] can provide a good
estimation and operate in real-time. For example, in [53], 3D pose estimation is achieved based on
the position of the eyes and the mouth. A similar approach is proposed in [54], where only three
points (eye centers and the middle point between the nostrils) are used to estimate continuous head
orientation and gaze direction. Very closed to this approach, in [55], at least four prominent facial
features are extracted from the face. After that, their correspondence on a 3D generic-face model is
used to estimate head orientation. Oyini et al. [56] proposed the visual analysis of head position using
a single camera aligning and scaling the 3D head model of the face according to the position and
distance between the two eyes of the face in the 2D image. Another interesting approach recently
published is [49], where a 3D head pose estimation system is proposed. This system is based on the
49 tracked 2D facial landmarks from Supervised Descent Method (SDM) tracker [57].

Other options include the combination of information [58–60], using for example,
several classifiers [58,59] or combining 2D and 3D algorithms [60]. Asthana et al. [58] developed a
system able to handle 3D pose variations up to ±45◦ in yaw and ±30◦ in pitch angles combining
four different face detectors based on Viola-Jones framework. The drawback of this approach is that
it requires four classifiers in order to track the face so it increases the execution time and memory
requirements. In [59], the system consists of three interconnected modules, which detects drivers’
head, provides initial estimates of head pose, and continuously tracks its position and orientation
in six degrees of freedom. Pelaez et al. [60], combined 2D and 3D algorithms to provide head pose
estimation and regions of interest identification based on 3D information from a range imaging camera.
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Alternatively, more than a camera can be used to implement the tracking [51,61–63], that is,
a distributed camera system is commonly used, where two or more cameras can be located inside the
car cockpit. Following this line of research, in [61], they proposed a distributed camera framework
for gaze estimation using head pose dynamics based on the algorithm proposed in [51]. They predict
three gaze zones: right, front and left. In [51], a continuous head movement estimator (CoHMEt) is
proposed, which independently tracks the head in each camera, and their outputs are further analyzed
to choose the best perspective and corresponding head pose. When tracking is lost, due to either the
loss of facial point detection or the rejection of the estimated points, reinitialization is performed using
a scoring criterion. In [62], they also used a two-camera system to overcome challenges in head pose
estimation, which allows for continuous tracking even under large head movements, as proposed
in [51]. Therefore, following the setup of [51] , a two-camera system can provide a simple solution in
order to improve tracking during large head movements. Two cameras are also used in [63] for head
pose estimation. Head pose is tracked over a wide operational range in the yaw rotation angle using
both camera perspectives.

For a quantitative evaluation over the algorithms the Mean Absolute Error (MAE) is commonly
used. Best results for the different algorithms can be seen in Table 1, where different databases are
used. For example, in [49,56] the public database of Boston University (BU) is used to evaluate the
performance of the proposed head pose estimation scheme. Some other algorithms used naturalistic
on-road data set [59]. Moreover, some algorithms achieving good performance did not indicate any
database [60]. LISA-P Head Pose database [55] introduces head pose data from on-road daytime and
nighttime drivers of different age, race and gender, with continuous ground truth measurements
and manual annotation of facial features. Therefore, this database can be used to compare head
pose algorithms and head behaviour studies. The LISA-P Head Pose Database consists of 14 video
sequences of drivers in on-road driving environment in natural and spontaneous conditions. The video
sequences were collected at a frame rate of 30 frames per second, with a 640 × 480 pixel resolution.

Table 1. Mean Absolute Error (MAE) (in degrees) of face tracking algorithms comparison working in an
automobile environment.

Algorithm Roll(◦) Yaw(◦) Pitch(◦)

La Cascia et al. [64] 9.8 4.7 2.4
Oyini et al. [56] average results 1 camera 5.3 3.9 5.2

Oyini et al. [56] uniform illumination 1 camera 4.8 3.8 3.9
Oyini et al. [56] varying illumination 1 camera 5.3 5.1 6.3

Vicente et al. [49] 1 camera 3.2 4.3 6.2
Pelaez et al. [60] 1 Kinect device 2.7 3.8 2.5

Murphy et al. [59] 1 camera 2.4 4.7 3.4
Tawari et al. [51] (MPS + POS) 1 camera 3.0 8.2 7.6
Tawari et al. [51] (MPS + POS) 2 cameras 3.8 7.0 8.6
Tawari et al. [51] (MPS + POS) 3 cameras 3.5 5.9 9.0
Tawari et al. [51] (CLM + POS) 1 camera 3.4 6.9 9.3
Tawari et al. [51] (CLM + POS) 2 cameras 3.6 5.7 8.8
Tawari et al. [51] (CLM + POS) 3 cameras 2.7 5.5 8.5

Based on the results from Table 1, in [56], the MAE decreased by an average of 1.3◦ due to
illumination variations. In [51], the best performance of 3.9% failure rate, which is the percentage of
the time that the system output is unreliable, is achieved with the three-camera view compared with
that of over 15% for the single view, which is a significant improvement.

2.3. Location of Facial Features

The detection of facial features (also called landmarks) is an essential part of many face monitoring
systems. The problem of the precise and robust detection of facial landmarks has drawn a lot of
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attention during this decade. State-of-the-art methods include tree models [65,66], DPM [67], SDM [57],
explicit shape regression [68] or learning local binary features [69]. A comprehensive survey of facial
feature point detection can be seen here [70]. All the above listed research suffers more or less from a
lack of verification and performance analysis with a realistic variation in lighting conditions. Therefore,
further research should be performed in order to adapt these algorithms to the traffic research in
general and to the drivers’ monitoring systems in particular. Difficulties for proper detection of drivers’
facial features are mainly due to the non-uniformity of light sources, asymmetric shades on their face
and eye regions, or rapid changes in light intensity during real-world driving due to shadows caused
by buildings, bridges, trees, or, for example, when entering or leaving a tunnel [71].

Eyes, as one of the most salient facial features reflecting individuals’ affective states and focus
of attention [72], have become one of the most remarkable information sources in face analysis.
Eye tracking serves as the first step in order to get glance behaviour, which is of most interest because
it is a good indicator of the direction of the driver’s attention [73]. Glance behaviour can be used to
detect both visual and cognitive distraction [74]. It has also been used by many studies as an indicator
of distraction while driving [75] and has been evaluated in numerous ways [73]. Therefore, both eye
detection and tracking form the basis for further analysis to get glance behaviour, which can be used
for both cognitive and visual distraction.

Eye tracking data is typically captured through the use of a vehicle instrumented with an in-vehicle
eye tracker system. On one hand, complex systems consist of single or multiple cameras directed
at the driver’s face. As the number of face cameras increases, so does the ability of the system to
capture larger and more dramatic head movements of the driver. On the other hand, simpler systems
consisting of one or two cameras are usually less expensive and easier to install than more complex
systems. For example, in [76], a comparison of eye tracking systems with one and three cameras using
Smart Eye technology [77] is performed. The system uses a single standard camera of VGA resolution
together with IR flash illuminators. The three-camera system used is the Smart Eye Pro [77], which has
similar properties as the one-camera system, but it also facilitates gaze direction in full 3D.

Eye detection is required before eye region processing. Eye detection methods can be divided into
two general categories: (1) methods based on imaging in IR spectrum; and (2) feature-based methods.
A literature survey on robust and efficient eye localization in real-life scenarios can be seen in [72],
and a review on eye localization in car environment can be seen in [78].

Methods based on imaging in IR spectrum, which are commonly called “hardware-based”
approaches, rely on IR illuminators to generate the bright pupil effect to driver head pose and gaze
estimation. These methods use two ring-type IR light-emitting diodes: one located near the camera
optical axis and the other located far from it. This approach is often used to detect visual distraction.
In contrast to these methods, in [79], the authors use a progressive camera and only one on-axis
lighting source [80]. In this situation, the camera always produces images with bright pupils and image
processing techniques are applied to detect pupils. Based on thresholding techniques, the possible
pupils can be selected. An appearance model, trained using Principal Component Analysis (PCA)
and Support Vector Machine (SVM), is exploited to verify the final pupils. To increase the robustness
against eyeglasses, the Generalized Symmetry Transform (GST) is incorporated achieving a recognition
rate of 99.4% and 88.3% for users not wearing and wearing eyeglasses, respectively.

Regarding feature-based methods, different techniques are commonly applied. Image binarization [81],
projection [82,83], face anthropometric properties of the face [84], individual classifiers [85] or particle
filtering [86] can be used to detect driver’s eyes. For example, in [86], an algorithm for eyes tracking
based on particle filtering is proposed. Their method works with a low-cost IR camera device at a
low frame rate. They used a single particle filter to track both eyes at the same time. Evaluation was
carried out in a driving simulator with five users achieving an average accuracy of 93.25%. In [85],
two individual classifiers based on Haar-like features, one for the head and another for both eyes,
were used. They tested face and eye detection in their research vehicle in daylight conditions achieving
a hit rate of 97.2% for eye detection and a false alarmn of 4.6%.
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All in all, the task of accurate eye localization is challenging due to the high degree of eyes
appearance variability: facial expression variations, occlusion, pose, lighting and other imaging
conditions and quality [72], are frequently encountered in car environments. Another problem that is
scarcely addressed in the literature is that, in strong sunlight, the driver tends to squint, which makes,
even more difficult to track the eyes. To mitigate these deficiencies, different approaches can be adopted.
Sigari et al. [82] proposed to extract symptoms of hypo-vigilance based on eye-region processing but
without explicit eye detection stage. Flores et al. [84] proposed a combination of algorithms in order to
deal with illumination conditions for both day and night. Rezaei et al. [71] used a methodology to
enhance the accuracy, performance and effectiveness of Haar-like classifiers, especially for complicated
lighting conditions. These authors also proposed ASSAM [87], which is based on the asymmetric
properties of the driver’s face due to illumination variations. A good solution is also to use a “divide
and conquer” strategy to handle different variations at different stages [72].

3. Biomechanical Distraction

In connection with biomechanical detection and recognition using computer vision techniques,
we can find two approaches. The first one involves hands secondary tasks recognition involving hands
action, while the second one is based on hands tracking and information.

3.1. Secondary Tasks Involving Biomechanical Distraction

Zhao et al. [88–91] proposed different maching learning approaches to detect predefined
driving postures, where four predefined postures were considered: (1) grasping the steering wheel;
(2) operating the shift lever; (3) eating; and (4) talking on a cellular phone, which are recorded from the
passenger seat, that is, from the right profile view of the driver. Yan et al. [92] proposed a combination
of the Motion History Image (MHI) and POHG, and the application of Random Forest (RF) classifier for
driving actions recognition. Trying to improve the accuracy of the aforementioned approach, the same
authors included a Convolutional Neural Network (CNN) [93], which was tested over three datasets
covering four driving postures: (1) normal driving; (2) responding to a cell phone call; (3) eating;
and (4) smoking. For fair comparison, Yan et al. [93] re-implemented aforementioned state-of-the-art
approaches [88–91] and carried out experiments on other two popular vision descriptor approaches
(PHOG [94] and SIFT [95]). Classification accuracy of all of these methods can be seen in Table 2
evaluated on the Southeast University (SEU) driving posture dataset [88].

In connection with secondary tasks recognition, different computer vision algorithms have been
proposed in order to detect cell phone usage of the driver while driving [96–100]. High recognition
rates are usually obtained (from 86.19% to 95%) using very different approaches. Computer vision
techniques seem to be the best approach for this task, whose results can be seen in Table 3, compared to
other non-computer vision algorithms relying on inertial sensors of the mobile phone [101]. Best results
are obtained by the algorithm proposed by Xu et al. [99], which consists of two stages: first, the frontal
windshield region localization using DPM; next, they utilized Fisher vectors (FV) representation to
classify the driver’s side of the windshield into cell phone usage violation and non-violation classes.
The proposed method achieved about 95% accuracy with a dataset of more than 100 images with
drivers in a variety of challenging poses with or without cell phones.

It can be concluded that many different computer vision and machine learning techniques
can be used to recognize predefined postures involving hand gestures. The CNN model offered
a better performance than other approaches but with some limitations. The algorithm needs high
computational resources making difficult to be applied in some conditions with common hardware
architecture (e.g., embedded systems). Moreover, training a CNN needs a large amount of data,
which is also difficult to obtain in some scenarios.
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Table 2. Classification accuracy evaluated on the Southeast University (SEU) driving posture
dataset [88].

Algorithm Features Classifier Average Accuracy (%)

Zhao et al. [88]
Homomorphic filtering,

skin-like regions segmentation
and Contourlet Transform (CT)

RF 90.63

Zhao et al. [89]
Geronimo-Hardin-Massopust

(GHM) multiwavelet transform Multiwavelet Transform 89.23

Zhao et al. [90]

Histogram-based feature
description by Pyramid

Histogram of Oriented Gradients
(PHOG) and spatial scale-based

feature description

Perceptron classifiers 94.20

Zhao et al. [91]

Homomorphic filter, skin-like
regions segmentation, canny

edge detection, connected regions
detection, small connected

regions deletion and spatial
scale ratio calculation

Bayes classifier 95.11

Bosch et al. approach [94] PHOG SVM 91.56

Lowe et al. approach [95] SIFT SVM 96.12

Yan et al. [93] CNN 99.78

Table 3. Computer vision algorithms to detect cell phone usage. High recognition rates are usually
obtained using very different approaches.

Algorithm Features Classifier Recognition Rate (%)

Zhang et al. [96]
Features from the

driver’s face,
mouth and hand

Hidden Conditional Random
Fields (HCRF) 91.20

Artan et al. [97]

Image descriptors
extracted from a
region of interest
around the face

SVM 86.19

Berri et al. [98]
Percentage of the

Hand and Moment
of Inertia

FV 91.57

Xu et al. [99] DPM FV 95

Seshadri et al. [100]
Raw pixels and
HOG features

Real AdaBoost,
SVM, RF 93.86

3.2. Hands Information

Hand detection is a challenging problem as human hands are highly deformable and are also
exposed to different illumination conditions [102]. One approach for object detection relies on a
sliding-window, where a model is learned based on positive samples (i.e., hands in different poses)
of fixed size and negative samples with no hands. A classifier is then used to learn a classification rule.
In order to detect hands at different scales, this scheme can be applied on hand images at different
sizes. But a sliding window-based approach trained on hand instances was shown to be prone to false
positive detection rates [103]. A recent common approach to improve the results is the assumption
that hands can only be found in a small and predefined set of regions [103,104].

As opposed to training a model for hand shape or appearance and running a sliding window
detector, two different approaches are analyzed in [103] taking into account three activity classes:
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(1) two hands on the wheel; (2) hands on the instrument panel and (3) hand on the gear shift.
The motion-cue-based hand approach uses temporal accumulated edges in order to maintain the
most reliable and relevant information motion and then, it is fitted with ellipses in order to produce
the location of the hands. The static-cue-based approach uses features in each frame in order to learn
a hand presence model for each of the three regions and a second-stage classifier (SVM) produces
the final activity classification. Martin et al. [104] also constraint the problem of hands detection to
a number of regions of interest. They used HOG at different scales. Afterwards, a SVM is used to
learn a hand presence in each of the three regions and ‘two hands on the wheel’ model for the wheel
region. A similar approach is proposed in [102], training a linear SVM model for each region using a
different set of descriptors.Ohn et al. [62] incorporated hand gestures in order to study preparatory
motions before a maneuver had been performed, training a hand detector using fast feature pyramids.
Gradient and colour channels are extracted for each patch image. They used CIE-LUV colour channels
because they worked better compared to RGB and HSV. Afterwards, an AdaBoost classifier was
applied in order to learn the features from the hands and finally, they trained a SVM-based detector
using HOG features to differentiate the left hand from the right one. Later on, Ohn et al. [105] also
explored the use of a pyramidal representation for each region of interest using HOG finding that edge
features are particularly successful in the task of hands detection.

In order to compare these algorithms, a dataset of synchronized RGB and depth videos collected
in an operating vehicle was proposed [106]. The CVRR-HANDS 3D dataset was designed in order to
study natural human activity under difficult settings (background, illumination, occlusion) containing
three subsets: (1) hand localization; (2) hand and objects localization; and (3) 19 hand gestures for
occupant-vehicle interaction. Five regions of interest were considered: (1) wheel; (2) lap; (3) hand rest;
(4) gear; and (5) instrument panel. Recognition rates from some of these previous algorithms using
this database can be seen in Table 4.

Table 4. Hands recognition in different regions inside the car using CVRR-HANDS 3D dataset [106].

Algorithm Features Classifier Regions Recognition Rate (%)

Ohn et al. [106] RGB data SVM 5 52.1
Ohn et al. [106] RGB combined with depth data SVM 5 69.4

Martin et al. [104] Hands cues SVM 3 83
Martin et al. [104] Hands and head cues SVM 3 91

Ohn et al. [105] Hands cues SVM 3 90
Ohn et al. [105] Hands and head cues SVM 3 94

Summarizing, a common approach is to recognize if the hands are positioned in one of the
established areas (wheel, gearbox and so on) and to track them over time. It could be considered that
the steering wheel is the critical area because it is where hands should remain most of the time while
driving. If hands remained in a non-critical zone for a certain period of time, which could be different
for each of the non-critical areas, an alarm would be created to warn drivers to lay their hands in the
correct position.

Hand Disambiguation

There is another interesting problem to solve related to hands detection that needs further research:
hand disambiguation [107]. Once hands are detected, it is crucial to ensure that the hands belong to
the driver. Both hand disambiguation and hand activity detection should be studied and considered
together in order to infer final, clear and unambiguous results.

4. Visual Distraction

Visual distraction is often related to the on-board presence of electronic devices such as mobile
phones, navigation or multimedia systems, requiring active control from the driver. It can also be
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related to the presence of salient visual information away from the road causing spontaneous off-road
eye glances and momentary rotation of the head. A 2006 report on the results of a 100-car field
experiment [4] showed that almost 80% of all crashes and 65% of all near-crashes involved drivers
looking away from the forward roadway just prior to the incident.

Engagements in visually distracting activities divert drivers’ attention from the road and cause
occasional lapses, such as imprecise control of the vehicle [108], missed events [28], and increasing
reaction times [108]. Visual time sharing between the driving task and a secondary task reveals that the
glance frequency to in-car devices is correlated to the task duration, but the average glance duration
does not change with task time or glance frequency [109]. Drivers do not usually increase the glance
duration for more difficult or longer tasks but rather increase the accumulated visual time sharing
duration by increasing the number of glances away from the road [110]. As both single long glances
and accumulated glance duration have been found to be detrimental for safety [110–112], a driver
distraction detection algorithm based on visual behaviour should take both glance duration and
repeated glances into account [113].

One one hand, high-resolution cameras placed throughout the cabin are needed to view the
driver’s eyes from all head positions and at all times. Several economic and technical challenges
of integrating and calibrating multiple cameras should be tackled to achieve this. Technically,
eye orientation cannot always be measured in vehicular environments because eye region can be
occluded by (1) sunlight reflections on eyeglasses; (2) the eye blink of the driver; (3) a large head
rotation; (4) sunglasses; (5) wearing some kind of mascaras; (6) direct sunlight; (7) hats, caps, scarves;
or (8) varying real world illumination conditions.

On the other hand, many security systems do not require such detailed gaze direction but they
need coarse gaze direction to reduce false warnings [114,115]. For example, forward collision warning
(FCW) systems need not only exterior observations but interior observations of the driver’s attention
as well to reduce false warnings (distracting and bothering the driver), that is, coarse gaze direction
can be used in order to control the timing of warning emission when the system detects that the driver
is not facing forwards.

Taking into account that errors in facial feature detection greatly affect gaze estimation [116],
many researchers have measured coarse gaze direction by using only head orientation with the
assumption that coarse gaze direction can be approximated by head orientation [117]. Head pose
is a strong indicator of a driver’s field of view and his/her focus of attention [59]. It is intrinsically
linked to visual gaze estimation, which is the ability to characterize the direction in which a person
is looking [118]. However, it also should be noted that drivers use a time-sharing strategy when
engaged in a visual-manual task where the gaze is constantly shifted between the secondary task
and the driving scene for short intervals of time [119] and often position the head in between the two
involved gaze targets and only uses the eyes to quickly move between the two targets. In this situation,
a face tracking algorithm would recognize this as a distracted situation based on head position, but the
driver is constantly looking the road ahead. Therefore, in an ideal situation, both driver gaze tracking
and eyes-off-road should be detected together [49].

In short, visual distraction can be categorized into two main approaches as it can be seen in
Figure 4. In the first approach, which can be called “coarse”, researchers measured the coarse gaze
direction and the focus of attention by using only head orientation with the assumption that the coarse
gaze direction can be approximated by the head orientation. In the second approach, which can be
called “fine”, researchers considered both head and eye orientation in order to estimate detailed and
local gaze direction.

Moreover, considering its operating principles, visual distraction systems can be grouped in two
main categories: hardware- and software-based methods. Additionally, some systems can combine
these two approaches and therefore, a third category can also be considered, as seen in Figure 4.
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Figure 4. Visual distraction algorithms categorization.

4.1. Hardware-Based Methods to Extract Gaze Direction

Hardware-based approaches to head pose and gaze estimation rely on Near Infrared (NIR)
illuminators to generate the bright pupil effect. These methods use two ring-type IR light-emitting
diodes: one located near the camera’s optical axis and the other located far from it [120–126]. The light
source near the camera optical axis makes a bright pupil image caused by the red-eye effect, and the
other light source makes a normal dark pupil image. The pupil was, then, easily localized by using
the difference between bright and dark pupil images. Ji et al. used the size, shape, and intensity
of pupils, as well as the distance between the left and right pupil, to estimate the head orientation.
Specifically, the authors used the pupil-glint displacement to estimate nine discrete gaze zones [121,122],
a geometric disposition of the IR LEDs similar to that of Morimoto et al. [120] and two Charge Coupled
Device (CCD) cameras embedded on the dashboard of the vehicle. In connection with the CCD
cameras, the first one is a narrow angle camera, focusing on the driver’s eyes to monitor eyelid
movement while the second one is a wide angle camera focusing on his/her head to track and monitor
head movement. Based on this work, Gu et al. [124] proposed a combination of the Kalman filtering
with the head motion to predict the features localization and used Gabor wavelet in order to detect
the eyes constrained to the vicinity of predicted location. Another existent approach proposed by
Batista et al. used dual Purkinje images to estimate a driver’s discrete gaze direction [125]. A rough
estimation of the head-eye gaze was described based on the position of the pupils. The shape of the
face is modeled with an ellipse and the 3D face pose is recovered from a single image assuming a
ratio of the major and minor axes obtained through anthropometric face statistics. In this method,
further research is necessary in order to improve the accuracy of the face orientation estimation,
which is highly dependent on the image face ellipse detection.

The aforementioned NIR illumination systems work particularly well at night. The major
advantage of these methods is the exact and rapid localization of the pupil. However, performance can
drop dramatically due to the contamination introduced by external light sources [126,127]. In addition,
during daytime, sunlight is usually far stronger than NIR light sources and hence, the red-eye effect
may not occur. Moreover, these methods could not work with drivers wearing glasses because the
lenses create large specular reflections and scatter NIR illumination [127–129]. While the contamination
due to artificial lights can easily be filtered with a narrow band pass filter, sunlight contamination will
still exist [126]. Furthermore, such systems are vulnerable to eye occlusion caused by head rotation
and blinking [114].
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4.2. Software-Based Methods to Extract Gaze Direction

Combining facial feature locations with statistical elliptical face modelling, Batista et al. [83]
presented a framework to determine the gaze of a driver. To determine the gaze of the face, an elliptical
face modelling was used taking the eye’s pupil locations to constraint the shape, size and location
of the ellipse. The proposed solution can measure yaw head rotation over [−30◦, +30◦] interval and
pitch head rotation over [−20◦, +20◦] interval.

Furthermore, despite the technical challenges of integrating multiple cameras, Bergasa et al. [130]
proposed a a subspace-based tracker based on head pose estimation using two cameras. More specifically,
the initialization phase was performed using the Viola and Jones algorithm [40] and a 3D model of the
face was constructed and tracked. In this work, head pose algorithm, which was the base for visual
distraction estimation, could track the face correctly up to [−40◦, +40◦].

A limitation of the software-based methods is the fact that they cannot often be applied at
night [126,131]. This has motivated some researchers to use active illumination based on IR LEDs,
exploiting the bright pupil effect, which constitutes the basis of these systems [126,131] (explained in
previous section), or combine both methods, which can be seen in the next section.

4.3. Hardware- and Software-Based Methods to Extract Gaze Direction

Lee et al. [114] proposed a system for both day and night conditions. A vision-based real-time gaze
zone estimator based on a driver’s head orientation composed of yaw and pitch is proposed. The authors
focused on estimating a driver’s gaze zone on the basis of his/her head orientation, which is essential
in determining a driver’s inattention level. For night conditions, additional illumination to capture the
driver’s facial image was provided. The face detection rate was higher than 99% for both daytime
and nightime.

The use of face salient points to track the head was introduced by Jimenez et al. [132], instead of
attempting to directly find the eyes using object recognition methods or the analysis of image intensities
around the eyes. The camera was modified to include an 850 nm band-pass filter lens covering both the
image sensor and the IR LEDs in order: (a) to improve the rejection of external sources of IR radiation
and reduce changes in illumination and (b) to facilitate the detection of the pupils, because the retina is
highly reflective of the NIR illumination of the LEDs. An advantage of salient points tracking is that
the approach is more robust to the eyes occlusion whenever they occur, due to the driver’s head or
body motion.

Later on, the same authors extended their prior work in order to improve non-invasive systems
for sensing a driver’s state of alert [133]. They used a kinematic model of the driver’s motion and a
grid of salient points tracked using the Lukas-Kanade optical flow method [132]. The advantage of
this approach is that it does not require one to directly detect the eyes, and therefore, if the eyes are
occluded or not visible from the camera when the head turns, the system does not loose the tracking of
the eyes or the face, because it relies on the grid of salient points and the knowledge of the driver’s
motion model. Experiments involving fifteen people showed the effectiveness of the approach with
a correct eyes detection rate of 99.41% on average. It should be noted that this work is focused on
sensing the drivers’ state of alert, which is calculated measuring the percentage of eyelid closure over
time (PERCLOS), and it is not focused on distraction detection.

Eyes Off the Road (EOR) detection system is proposed in [49]. The system collects videos from
a CCD camera installed on the steering wheel column and tracks facial features. Using a 3D head
model, the system estimates the head pose and gaze direction. For night time operation, the system
requires an IR illumination. The proposed system does not suffer from the common drawbacks of
NIR based systems [121,122,125], because it does not rely on the bright pupil effect. The system works
reliably with drivers of different ethnicities wearing different types of glasses. However, if the driver
is wearing sunglasses, it is not possible to robustly detect the pupil. Thus, to produce a reliable EOR
estimation in this situation, only head pose angles are taken into account.
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Cyganek et al. [134] proposed a setup of two cameras operating in the visible and near infra-red
spectra for monitoring inattention. In each case (visible and IR) two cascade of classifiers are used.
The first one is used for the detection of the eye regions and the other for the verification stage.

Murphy-Chutorian et al. used Local Gradient Orientation (LGO) and Support Vector Regression
(SVR) to estimate the driver’s continuous yaw and pitch [135]. They used head pose information
extracted from a LGO and SVR to recognize drivers’ awareness. The algorithm was further developed
in [59] by introducing a head tracking module built upon 3D motion estimation and a mesh model of
the driver’s head. There is a general weakness here as the tracking module may easily diverge from
face shapes that are highly different to the given mesh model.

4.4. Driver Distraction Algorithms Based on Gaze Direction

In these previous Sections 4.1–4.3, gaze direction is extracted using different methods. The next
step is to detect distraction using gaze direction regardless of the type of method used to extract this
information, and hence, is commented as follows.

Many software-based methods have been proposed in order to detect visual distraction, many
of which, rely on “course” information extracted from visual cues [114,136–139]. Hattori et al. [136]
introduced a FCW system using drivers’ behavioural information. Their system determines distraction
when it detects that the driver is not looking straight ahead. Following this approximation, an Android
app [137] has been developed to detect and alert drivers of dangerous driving conditions and
behaviour. Images from the front camera of the mobile phone are scanned to find the relative position
of the driver’s face. By means of a trained model [38] four face related categories were detected:
(1) no face is present; (2) facing forwards, towards the road; (3) facing to the left and (4) facing to the
right. Another related system is proposed by Flores et al. [138] where, in order to detect distraction,
if the system detects that the face position is not frontal, an alarm cue is issued to alert the driver
of a danger situation. Lee et al. [114] proposed a vision-based real-time gaze zone estimator based
on a driver’s head orientation composed of yaw and pitch. This algorithm is based on normalized
histograms of horizontal and vertical edge projections combined with an ellipsoidal face model and
a SVM classifier for gaze estimation. In the same research line but in a more elaborated fashion,
Yuging et al. [139] used machine vision techniques to monitor the driver’s state. The face detection
algorithm is based on detection of facial parts. Afterwards, the facial rotation angle is calculated based
on the analysis of the driver’s head rotation angles. When the angle of facial orientation is not in a
reasonable range and lasts for a relatively long time, it can be thought that the driver is distracted and
warning information will be provided.

Additionally, other software-based approaches rely on “fine” information considering both head
and eye orientation in order to estimate distraction [83,130,140,141]. Pohl et al. [140] focused on
estimating the driver’s visual distraction level using head pose and eye gaze information with the
assumption that the visual distraction level is non-linear: visual distraction increased with time
(the driver looked away from the road scene) but nearly instantaneously decreased (the driver
re-focused on the road scene). Based on the pose and eye signals, they established their algorithm
for visual distraction detection. Firstly, they used a Distraction Calculation (DC) to compute the
instantaneous distraction level. Secondly, a Distraction Decision-Maker (DDM) determined whether
the current distraction level represented a potentially distracted driver. However, to increase the
robustness of the method, also the robustness of the eye and head tracking device to adverse lighting
conditions has to be improved.

Bergasa et al. [126] presented a hardware- and software-based approach for monitoring driver
vigilance. It is based on a hardware system, for real time acquisition of driver’s images using an active
IR illuminator and a software implementation for real time pupil tracking, ocular measures and face
pose estimation is proposed. Finally, driver’s vigilance level is determined from the fusion of the
measured parameters into a fuzzy system. The authors yielded an accuracy percentage close to 100%
both at night and for users not wearing glasses. However, the performance of the system decreases
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during daytime, especially in bright days, and at the moment, the system does not work with drivers
wearing glasses [126].

Recently, Lee et al. [141] evaluated four different vision-based algorithms for distraction under
different driving conditions. These algorithms were chosen for their ability to distinguish between
distracted and non-distracted states using eye-tracking data [141]. The resulting four algorithms,
summarized in Table 5, are commented next:

1. Eyes off forward roadway (EOFR) estimates distraction based on the cumulative glances away
from the road within a 6-s window [7].

2. Risky Visual Scanning Pattern (RVSP) estimates distraction by combining the current glance and
the cumulative glance durations [142].

3. “AttenD” estimates distraction associated with three categories of glances (glances to the forward
roadway, glances necessary for safe driving (i.e., at the speedometer or mirrors), and glances not
related to driving), and it uses a buffer to represent the amount of road information the driver
possesses [143–145].

4. Multi distraction detection (MDD) estimates both visual distraction using the percent of glances
to the middle of the road and long glances away from the road, and cognitive distraction by
means of the concentration of the gaze on the middle of the road. The implemented algorithm
was modified from Victor et al. [146] to include additional sensor inputs (head and seat sensors)
and adjust the thresholds for the algorithm variables to improve robustness with potential loss
of tracking.

Table 5. AUC comparisons by algorithm across tasks.

Task
Algorithm

RVSP EOFR AttenD MDD

Arrows 0.67 0.75 0.71 0.87
Bug 0.78 0.87 0.80 0.86

Considering the results of the ROC curves, AUC values, accuracy and precision, it is apparent that
a trade-off exists between ensuring distraction detection and avoiding false alarms, which complicates
determining the most promising algorithm. More specifically, the MDD algorithm showed the best
performance across all evaluation metrics (accuracy, precision, AUC). Although the EOFR algorithm
had promising AUC values, the AttenD algorithm often yielded better accuracy and precision.
Additionally, the RVSP algorithm consistently yielded the lowest values for both accuracy and
precision, but yielded a slightly higher AUC value than AttenD. All of the algorithms succeeded
in detecting distraction well above chance detection (AUC = 0.5). The performance of the algorithms
varied by task, with little difference in performance for the looking and reaching task (bug) but more
stark differences for the looking and touching (arrows). The AUC for each task for each algorithm is
provided in Table 5.

5. Cognitive Distraction

Cognitive distraction is a critical area of concern with regard to driver distraction, particularly
as related to tasks of listening and conversing, but also, as related to spontaneously occurring
processes like daydreaming or becoming lost in thought, which may occur really often on long
drives. The term “cognitive load” can be defined as any workload imposed on a driver’s cognitive
processes [26]. There are several types (and subtypes) of scenarios where cognitive load may occur
during (see Figure 5), and therefore, affect driving. For further information, the reader may refer to [26].
These include:
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1. Cognitive load imposed by secondary tasks undertaken while driving.
2. Cognitive load associated with the driver’s internal activity.
3. Cognitive load arising from the driving task itself.

Cognitive load from
secondary tasks

Cognitive load from
activity internal to

the driver

Cognitive load from
driving task

Language-
generation

tasks

Language-
comprehension

tasks

Memory tasks

Other tasks

Daydreaming or
mind-wandering

Thinking or
being lost in

thought

Planning
activities

Mentally solving
daily life
problems

Planning a
route or stops

on a trip

Situation
awareness

(road & traffic)

Resolving
response
conflicts

Attention
shifting

Figure 5. Classification of main types and subtypes of cognitive load while driving.

5.1. Behavioral and Physiological Indicators of Cognitive Load

The research literature documents several types of measures associated with periods of cognitive
load. Secondary tasks imposing cognitive load lead to: (1) a high percentage of glances on the forward
road and; (2) unusually long glances on the forward road. These two metrics together have been found
to be uniquely indicative of cognitive loads [110,147]. Moreover, a narrowing of the spatial extent of
scanning [147] is also produced, which is reflected in slightly fewer glances to locations where the
mirrors, the speedometer and the areas peripheral to the road centre are located [26,148]. As a result,
cognitive load may cause an increasing gaze concentration towards the middle of the road [11].

An eye-gaze pattern could be used to differentiate the action of only driving from driving under
the influence of any cognitive task [147]. Drivers under cognitive distraction had fewer saccades per
unit time, which was consistent with less exploration of the driving environment [149]. Saccades may
be a valuable index of mental workload [150]. In fact, the standard deviations of both eye and head
movement could be suitable for detecting cognitive distraction causing gaze concentration and slow
saccades when drivers are looking forward [151]. A higher blink rate and a shrink in visual searching
range were observed when the driver was cognitively distracted [152]. Kircher et al. [144] indicated
the percentage of time the driver spent observing the road ahead, which is called the percentage road
center (PRC) of gaze direction, was more than 92% under cognitive distraction in a field study.

Therefore, both glance and blink measures can be used to detect cognitive distraction. For example,
He et al. [153] have observed that mind-wandering has effects on glance patterns and blink rates
similar to those observed in periods of cognitive secondary task load. During mind-wandering, there is
also an increasing concentration of gaze on the forward road with concomitant narrowing of scanning,
longer glances on the forward road, and changes in blink rate [26]. Results from [154] suggested
that performance data and oculomotor scanning behavior may allow the detection of drivers’ mind
wandering episodes before they are recognized by the driver himself/herself, potentially providing
interventions to detect inattentiveness and alert drivers. Blink rate seems to be a promising indicator of
cognitive processing [27]. However, there are measurement issues that may affect how successfully it
can be applied in discriminating different types of task loading during driving. For example, there are
some questions left about whether it offers sufficient sensitivity when extracted from real world data
acquired from a complex task like driving wherein there are inherent temporal variations in driving
task load [26,27].
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Physiological measures can also be used to detect cognitive load. The average value of pupil
diameter is suitably used as a physiological feature for detection of cognitive distraction [155].
When cognitive loads such as arithmetic or conversation were imposed to the subjects, dilation of
pupils occurred by acceleration of the sympathetic nerve, resulting in an increase of diameter of
pupils [156]. The average value of pupil diameter caused by cognitive loads, such as arithmetic,
increased by 13.1% compared with ordinary driving [156]. The tests were performed in a driver
simulator in controlled settings. Further experiments are required in a naturalistic setting. Moreover,
additional works highlighted the difficulty in estimating cognitive load using pupil diameter during a
dialogue task [157] or in different lighting conditions [158].

The same limitation applies to other physiological measures, as Heart Rate (HR), which tends
to increase as cognitive task load raises [159]. The traditional method to quantify these physiological
measures is by wearing physiological sensors. However, HR measurements can be acquired using
computer vision techniques, and consequently, special care has been taken reviewing HR information.
Additionally, it is considered a good indicator of fatigue, stress and cognitive load.

By means of the use of HR information the cognitive state of a driver can be monitored [160]
in controlled settings. Changes in HR have been noted during certain driving tasks [161]. Similarly,
Apparies et al. [162] showed that HR and Heart Rate Variability (HRV) may serve as early indicators of
fatigue. In general, HRV specifically measures mental workload, while HR measures physical one [163].
HRV analysis is a strong indicator of mental stress or workload caused by driving tasks [162,164,165].
Experiments carried out in a driving simulator by Zhao et al. [166] found that human heart rates
violently fluctuate during a mental stress situation. Ostlund et al. [167] and Miller et al. [165] identified
both HR and HRV as promising indicators of the driver’s stress level, by increasing HR and decreasing
HRV [165,167]. Physiological measures, such as HR and skin conductance level, tend to increase as
cognitive task load increases [159].

There are some research works able to extract HR and HRV from face video images in real time
from human faces [168–170]. Eulerian Video Magnification framework [171] can be also used to obtain
human pulse from a video sequence [172]. In [173], the authors described an approach offering a
non-invasive, non-contact means of cardiac monitoring. Once the HRV time series are extracted,
feature generation, feature selection and classification should be performed. The conventional method
that uses Fast Fourier Transform (FFT) analysis on HRV is 2-min long. In [174], a new method
developed by using wavelet-based feature and SVM for classification uses only 1-min HRV signals.
Moreover, this method increases accuracy, sensitivity and specificity compared to FFT-based results.

Therefore, concerning cardiovascular measures, they have been reported to be sensitive to mental
workload changes and both HR and HRV are widely adopted mental workload measures because
they are easy to use and provide fundamental information about the autonomic nervous system [175].
Most methods [168–170] enable low-cost, non-contact cardiovascular activity monitoring using regular
RGB cameras by analyzing minute skin color changes caused by periodic blood flow. Nevertheless,
for automotive applications, these methods can encounter difficulties under different illumination
conditions [176]. In [176], the authors proposed an artifact reduction method, which is caused by
lighting variation. Another option is to use an IR-based camera system suitable for automotive
applications [177].

To conclude this section, the use of physiological parameters can be used to monitor the cognitive
state of the driver. Many of these parameters have been described in controlled settings, but further
experiments are required to validate their capability in naturalistic conditions. The main algorithms in
this matter are included in the next section.

5.2. Algorithms

Zhang et al. [178] used a decision tree approach to estimate drivers’ cognitive workload from
eye gaze-related features and driving performance. Liang, Reyes, et al. [179] showed that the SVM
models can also detect cognitive distraction. The model’s accuracy and sensitivity increased with
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window size, suggesting that using longer periods to summarize the data made the distraction
signal easier for the models to detect. The conclusion was that the best models were obtained using
40-s window size. Additionally, Liang, Lee, et al. [180] also used Bayesian Network (BN) models
and found that they could identify cognitive load reliably for simulator data, and also found that
Dynamic Bayesian Networks (DBNs), which considered time dependencies of driver’s behaviour,
gave a better performance than static BN models. This fact suggests that time-dependent relationship
is critical in estimating the cognitive state of the driver. However, to train DBN models, longer training
sequences are necessary to obtain more accurate and sensitive models. The results obtained in [180]
using BNs, which stated that window size did not affect model performance, clearly conflict with
those of Liang et al. [179], which found that larger window sizes improved the detection of cognitive
distraction, although another data mining method, SVM, was applied in that study. An additional
work from Liang et al. [181] compared SVMs, SBNs, and DBNs in detecting cognitive distraction
using the best parameter settings from the same dataset used in the previous two studies [179,180].
DBNs produced the most accurate and sensitive models compared to SBN and SVM. Based on
the comparisons of SVMs and BNs, Liang et al. [27,182,183] used a hierarchical layered algorithm,
which incorporated both a DBN and a supervised clustering algorithm, to identify feature behaviors
when drivers were in different cognitive states. This layered algorithm includes a DBN algorithm
at the higher level to model the time-dependent relationship of driver behavior and a supervised
clustering algorithm at the lower level to identify feature behaviors. The layered algorithm overcomes
the disadvantages of DBNs and significantly improves computational efficiency in training and
prediction. Miyaji et al. [184] proposed an approach to detect eye and head movement tracked via
standard deviation and categorized features for pattern recognition by using AdaBoost method to
detect distraction. The authors compared the performance achieved by both SVM and AdaBoost in
estimating cognitive workload, finding that AdaBoost could achieve higher accuracy. Additionally,
Miyaji et al. [156] introduced a mixed method by applying a SVM and an AdaBoost classifier for
three parameters: (1) heart rate; (2) visual information (standard deviation of both gaze and head
rotation angles) and (3) pupil diameter to assess the level of the driver’s vigilance. Recently, a new
machine learning tool, Extreme Learning Machine (ELM) [185,186]), has gained much attention due
to its simple structure, high generalization capability, and fast computational speed. For example,
in [187], ELM and SVM were applied to detect drivers’ workload using eye movement, as well as eye
movement combined with driving performance data. The results suggested that both methods can
detect drivers’ workload at high accuracy, but ELM outperformed SVM in most cases.

The results of all the works mentioned so far can be summarized in Table 6. Common features
include the use of eye gaze-related features, driving performance, pupil diameter features and HR.
It should also be noted that very good results can be obtained using only eye gaze-related features.
Additionally, many supervised machine learning techniques have been proposed so far: decision trees,
SVM, BN, DBN, AdaBoost or ELM.

All these distraction detection systems are based on supervised learning, meaning that the training
of such systems need to be “supervised” by human experts by providing a target set for training
data containing distraction status. The supervised learning paradigm is only suitable for early stage
research and may not be suitable for implementation in real driving cases because of the huge cost and
difficulty of creating a target distraction status set, which would require additional subjective ratings
by the driver [115], post-processing by the experimentalists [56], or additional computation based
on data from other sources [179]. For example, in a recent study [188], labeling drivers’ distraction
state involves the development of Graphical User Interface (GUI), the training of external evaluators,
and the actual labeling time, which is approximately 21.5 h of manpower (43 min per one of the
30 evaluator) to label the entire video segments. For naturalistic driving, where the driver voluntarily
decides which tasks to perform at any time, the labeling process can become infeasible. On the other
hand, data without known distraction states (unlabeled data) can be collected readily, e.g., from drivers’
naturalistic driving records.
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Table 6. Supervised algorithms for cognitive distraction detection.

Algorithm Features Classifier Accuracy (%)

Zhang et al. [178]
Eye gaze-related features
and driving performance Decistion Tree 81

Zhang et al. [178] Eye gaze-related features Decistion Tree 80

Zhang et al. [178] Pupil-diameter features Decistion Tree 61

Zhang et al. [178] Driving performance Decistion Tree 60

Liang, Reyes, et al. [179]
Eye gaze-related features
and driving performance SVM 83.15

Liang, Reyes, et al. [179] Eye gaze-related features SVM 81.38

Liang, Reyes, et al. [179] driving performance SVM 54.37

Liang, Lee, et al. [180]
Eye gaze-related features

and driving performance data DBNs 80.1

Miyaji et al. [156]
Heart rate, Eye gaze-related
features and pupil diameter AdaBoost 91.5

Miyaji et al. [156] Eye gaze-related features SVM 77.1 (arithmetic task)

Miyaji et al. [156] Eye gaze-related features SVM 84.2 (conversation task)

Miyaji et al. [156] Eye gaze-related features AdaBoost 81.6 (arithmetic task)

Miyaji et al. [156] Eye gaze-related features AdaBoost 86.1 (conversation task)

Yang et al. [187]
Eye gaze-related features

and driving performance data ELM 87.0

Yang et al. [187]
Eye gaze-related features

and driving performance data SVM 82.9

With the purpose of tackle these deficiencies, Unsupervised and Semi-Supervised algorithms can
be used. For example, in [12], Semi-Supervised Extreme Learning Machine (SS-ELM) is proposed for
drivers’ distraction detection. SS-ELM outperformed supervised ELM in both accuracy and model
sensitivity, suggesting that the proposed semi-supervised detection system can extract information
from unlabeled data effectively to improve the performance. SS-ELM based detection system has the
potential of improving accuracy and alleviating the cost of adapting distraction detection systems to
new drivers, and thus, more promising for real world applications. However, several points are unclear
from these preliminary results [12] further explored in [189], where the Semi-Supervised Learning
(SSL) paradigm is introduced to real time detection of distraction based on eye and head movements.

In [189], two graph-based SSL methods were compared with supervised learning methods.
These algorithms are detailed as follows. Laplacian Support Vector Machine (LapSVM), which is an
extension of SVMs to SSL under manifold regularization framework [190], and SS-ELM were compared
with three supervised learning methods (static BN with Supervised Clustering (SBN-SC) [180,183],
ELM and SVM) and one low-density-separation-based method (Transductive SVM (TSVM) [191]).
To capture realistic eye and head movements patterns, data from an on-road experiment were used.
By utilizing unlabeled data, the graph-based semi-supervised methods reduced the labeling cost and
improved the detection accuracy. The highest accuracy of 97.2% and G-mean of 0.959 were achieved by
SS-ELM. The benefits of using SSL methods increased with the size of unlabeled data set showing that
by exploring the data structure without actually labeling them, extra information to improve models
performance can be obtained.

It is worth noting that cognitive distraction detection is only performed in “laboratory settings”
and not in real conditions. In real life situations, when the driver is under cognitive load
(e.g., mind wandering): (1) he is alone and does not interact with anybody; (2) he is also the only
one who can decide whether or not to activate the attentional processing of distractive thoughts [192];
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and (3) drivers are likely to be performing multiple tasks at the same time (e.g., talking on the mobile
phone and listening to music). Moreover, there are two main limitations intrinsic to laboratory-based
studies. First of all, most of these studies require that the execution of predefined tasks last for no
more than some minutes. In our opinion, such experiments make it very difficult, if not impossible,
to infer, for instance, the long-term effectiveness of for example, warning signals, monotonous driving
(in general, real driving), on the basis of the results of experiments that are typically so short;
And secondly, the drivers are abnormally vigilant to the driving task because they are being
observed [193]. In connection with this point, the use of physiological parameters, which form
the basis for cognitive distraction detection, have also been extracted in controlled settings and not in
real conditions.

6. Mixing Types of Distraction

There are some algorithms trying to detect mixing types of distraction, whose results can be seen
in Table 7. In [194], facial features are extracted to detect both visual and cognitive distractions.
Binary classifiers (normal vs distracted) are built for visual and cognitive distraction detection.
Gaze and Action Units (AU) features are useful in order to detect visual distractions, while AU features
are particularly important for cognitive distractions. It should be pointed out that the cognitive tasks
considered in this study are closely related to talking activities.

Table 7. Mixing types of distraction detection algorithms.

Algorithm Features Classifier Average Accuracy (%)

Li et al. [194] AU and head pose
LDC (visual distraction) and
SVM (cognitive distraction) 80.8 (LDC), 73.8 (SVM)

Craye et al. [195]

eye behaviour, arm position,
head orientation and facial

expressions using both
color and depth images

Adaboot and HMM 89.84 (Adaboot), 89.64 (HMM)

Liu et al. [196] Head and eye movements SVM, ELM and CR-ELM
85.65 (SVM), 85.98 (ELM),

86.95 (CR-ELM)

Ragab et al. [197]

arm position, eye closure,
eye gaze, facial expressions

and head orientation
using depth images

Adaboost, HMM, RF,
SVM, CRF, NN

82.9 (RF—type of
distraction detection),

90 (RF—distraction detection)

Liu et al. [196] applied Cluster Regularized Extreme Learning Machine (CR-ELM) for detecting
mixing types of distraction. Compared with the traditional ELM, CR-ELM introduces an additional
regularization term penalizing large covariance of training data within the same clusters in the output
space. CR-ELM, ELM and SVM were compared to predict mixing types of distraction. They simulated
the mixing types of distraction by combining two types of distracting driving activities (a visual task
and a cognitive one). CR-ELM showed lower error rate on most of the 11 subjects (see Table 7).

There are other approaches trying to merge both RGB and depth images to get the features
to be used by the algorithms [195,197]. Craye et al. [195] extracted features from face and body
using both color and depth images in order to build a distraction system, which is composed of four
sub-modules: eye behaviour (gaze and blinking), arm position, head orientation and facial expressions.
The information from these modules are merged together using two different classification techniques:
Adaboost classifier and Hidden Markov Model (HMM). A set of video sequences was collected to test
the system. Five distractive tasks were recorded and manually labelled for training and evaluation.
HMM outperforms Adaboost for most drivers. Finally, a vision-based driver distraction is investigated
using several machine learning techniques in [197]. IR and Kinect cameras were used in this system,
where five visual cues were calculated: arm position, eye closure, eye gaze, facial expressions and
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head orientation. These cues were fed into a classifier, such as Adaboost, HMM, RF, SVM, Conditional
Random Field (CRF) or NN, in order to detect and recognize the type of distraction.

7. The Relationship between Facial Expressions and Distraction

Facial expressions can be described at different levels [198]. A widely used description is Facial
Action Coding System (FACS) [199], which is a human-observer-based system developed to capture
subtle changes in facial expressions. With FACS, these expressions are decomposed into one or more
AUs [200]. AU recognition and detection have attracted much attention recently [201]. Meanwhile,
psychophysical studies indicate that basic emotions have corresponding universal facial expressions
across all cultures [202]. This is reflected by most current facial expression recognition systems
attempting to recognize a set of prototypic emotional expressions including disgust, fear, joy, surprise,
sadness and anger [201], which can be helpful in predicting driving behaviour [203].

Therefore, in this work, main facial expression works in the driving environment are described in
accordance with the two aforementioned levels (FACS and prototypic emotional expressions) and how
they are related with distraction.

On one hand, in connection with FACS and distraction while driving, the reference work is the
one proposed by Li et al. [194]. The authors performed the analysis of driver’s facial features under
cognitive and visual distractions. In addition to the obvious facial movement associated with secondary
tasks such as talking, they hypothesized that facial expression can play an important role in cognitive
distraction detection. They studied the top five features (from a total of 186 features) to predict both
cognitive and visual distraction. For cognitive distraction, the most important features to consider
are: (1) head yaw; (2) Lip Corner Depressor (AU15); (3) Lip Puckerer (AU18); (4) Lip Tightener (AU23)
and (5) head roll. For visual distraction, the most important features to consider are: (1) Lip Tightener
(AU23); (2) jaw drop (AU26); (3) head yaw; (4) Lip Suck (AU28) and (5) Blink (AU45). The results
indicated that gaze and AU features are useful for detecting visual distractions, while AU features
are particularly important for cognitive distractions. It should be pointed out that since the cognitive
tasks considered in this study are closely related to talking activities, their future work will include the
analysis of other cognitive tasks (e.g., thinking or solving math problems).

On the other hand, in connection with prototypic emotional expressions, there are some works
trying to study how these emotions affect behaviour.

The relationship between emotion and cognition is complex, but it is widely accepted that
human performance is altered when a person is in any emotional state. It is really important to fully
understand the impact of emotion on driving performance because, for example, roadways are lined
with billboard advertisements and messages containing a lot of different emotional information.
Moreover, the distracting effects of emotions may come in other forms, such as cell phone,
passenger conversations, radio information or texting information [204]. For example, Chan et al. [204]
conducted a study to examine the potential for distraction from emotional information presented on
roadside billboards. The findings in this study showed that emotional distraction: (a) can seriously
modulate attention and decision-making abilities and have adverse impacts on driving behavior
for several reasons and (b) can impact driving performance by reorienting attention away from the
primary driving task towards the emotional content and negatively influence the decision-making
process. In another study with a similar line of work, Chan et al. [205] showed that emotion-related
auditory distraction can modulate attention to differentially influence driving performance. Specifically,
negative distractions reduced lateral control and slowed driving speeds compared to positive and
neutral distractions.

Some studies have shown that drivers who are more likely to become angry (e.g., those with high
trait anger rates) tend to engage in more aggressive behavior on the road, which can result in negative
outcomes such as crashes [206]. Moreover, anger negatively influences several driving performance
and risky behaviors such as infractions, lane deviations, speed, and collisions [207].
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In conclusion, aggressiveness and anger are emotional states that extremely influence driving
behaviour and increase the risk of accident. However, a too low level of activation (e.g., resulting from
emotional states like sadness) also leads to reduced attention and distraction as well as prolonged
reaction time and, therefore, lowers driving performance [208]. On this basis, research and experience
have demonstrated that being in a good mood is the best precondition for safe driving and that
happy drivers produce fewer accidents [209]. In other words, happy drivers are better drivers [208,210].
Facial expression and emotion recognition can be used in advanced car safety systems, which, on one
hand, can identify hazardous emotional drivers’ states that can lead to distraction and, on the other,
can provide tailored (according to each state and associated hazards) suggestions and warnings to the
driver [211].

8. Sensors

Once the algorithms for distraction detection have been designed and implemented, the next step
is to port them to an embedded device or system to be executed inside the car. However, porting a
vision-based algorithm is not a straightforward step and some key factors should be taken into account.
Furthermore, there is not a standard implementation platform, so different alternatives have been
proposed by both the scientific community and the industry.

8.1. Porting a Vision Algorithm to an Embedded Automotive System

The implementation of computer vision applications in automotive environments is not
straightforward because several requirements must be taken into account: reliability [212,213],
real-time performance [213–215], low-cost [216–219], spatial constraints [217,219], low power
consumption [220], flexibility [219], rapid prototyping [215,221], design requirements [217] and
short time to market [217]. Therefore, there must be a trade-off among these design requisites [217].
Moreover, there is not a commonly accepted hardware and software platform, so different solutions
have been proposed by the industry and the scientific community. Last but not least, some driver
distraction guidelines and test procedures for all applications to be used while driving should be
considered [222], and so should ADAs.

One approach can rely on the use of microprocessors, which incorporates the functions
of a computer’s central processing unit (CPU) on a single integrated circuit (IC). For example,
in [223], a vision-based system for monitoring the loss of attention, tested under day and night
driving conditions, is proposed. The algorithm was cross-validated using brain signals and finally,
implemented on a Single Board Computer (SBC). Another example is presented in [224], where a
vehicle was equipped with a USB camera connected to the system in order to track the driver’s eyes
for fatigue detection.

A similar approach is the use of digital signal processors (DSPs) [225], which can perform
multiplications and additions in a single cycle and have parallel processing capabilities. DSPs have
been used in image and audio signal processing when the use of microcontrollers was not
enough. These processors were used in [215], where an optimized vision library approach for
embedded systems was presented. VLIB is a software library that accelerates computer vision
applications for high-performance embedded systems. By significantly speeding up pixel-intensive
operations, the library provides more headroom for innovative algorithms, and enables processing
of more channels at higher resolutions. Authors optimized the library for the Texas Instruments
C64x/C64x+ DSP cores. Karuppusamy et al. [226] proposed an embedded implementation of facial
landmarks detection based on both Viola-Jones face detector and facial landmarks detection using
extended Active Shape Model (ASM) [227]. However, DSPs imply a much higher cost compared with
other options such as field-programmable gate arrays (FPGAs) [228].

Another option is to use hardware implementation, since it can achieve a much better
computational performance, where two types are commonly used namely, FPGA and ASIC. A FPGA
is an integrated circuit designed to be configured by a customer or a designer after manufacture.
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FPGAs take advantage of high speed operations, especially for parallelizable operations achieving
good performance in face monitoring applications [229–232]. For example, several well-known
algorithms have been used and optimized for this field of application, such as: (a) spatial and temporal
filtering, motion detection and optical flow analysis [229] or (b) gray scale projection, edge detection
with Prewitt operator and complexity functions [230]. Additionally, the use of Application-Specific
Integrated Circuits (ASIC), which is an IC customized for a particular use rather than intended for
general-purpose use, has also been considered [233]. FPGAs have an important advantage over ASICs:
they are reconfigurable, which gives them some of the flexibility of software. ASICs are only used for
high volume manufacturing and long series due to higher initial engineering cost.

Developing the whole application in hardware is a cumbersome task, so hybrid solutions have
appeared combining both software and hardware implementations. The work in [234] describes a
System on a Chip (SOC) designed to support a family of vision algorithms. However, this system
uses an ASIC, so it cannot be completely reconfigured. This important drawback makes impossible
to update the device. A generic embedded hardware and software architecture was proposed to
design and evaluate ADAS vision applications [221]. Although the system is useful to test some vision
applications, the performance obtained in the case study showed that the system is not powerful
enough to run more complex applications including I/Os management, vehicle communications or
more demanding vision applications. In [219], a reconfigurable embedded vision system reaching the
requirements of ADAS applications is presented. A SOC, which is formed by an FPGA with a dual core
ARM, is prepared to be easily reconfigured. A lane departure warning system was implemented in the
case study obtaining a good computational performance. The obtained computational time allows the
system to include another more complex vision algorithm running in parallel. In [235], they proposed
an approach to predict performances of image processing algorithms on different computing units of a
given heterogeneous SOC.

Despite the fact that in recent years some authors have been trying to propose some architectures
in order to achieve some key factors in embedded ADAS systems inside a vehicle [219,221,235],
these efforts do not seem to be sufficient to reach the requirements stated before. The use of
microprocessors in embedded computer vision-based systems has experienced a significant growth
in recent years. Moreover, current premium cars implement more than 90 Electronic Control Units
(ECU) with close to 1 Gigabyte embedded software code [236]. In 2018, 30% of the overall vehicle
cost is predicted to stem from vehicle electronics [237]. The independence of different applications
(with different criticality levels) running on the same platform must be made evident. Therefore,
the development of embedded automotive systems has become quite complex. To that end, the use of
standards and frameworks is indispensable.

8.2. Commercial Sensors

8.2.1. Smart Eye

The Smart Eye [77] system is a well-suited head and gaze tracking method for the demanding
environment of a vehicle cabin and flexible to cope with most research projects. It consists of a
multi-camera system running on a single PC and on a single algorithm. The system is scalable
from 2 up to 8 cameras allowing 360◦ head and eye tracking. A typical configuration inside a vehicle
cabin is composed of four cameras with two IR lightings, located on the dashboard on either side
of the steering wheel. Smart Eye offers a sampling rate of 60 Hz (up to 8 cameras) or 120 Hz (up to
4 cameras). The field of view, depending on the number of cameras, is in the range of 90◦–360◦.
The data output includes over 145 values covering, among others, gaze, eyelid, pupilometry and head
tracking, raw and filtered gaze, blinks, fixations and saccades. Smart Eye has been used in several
driver assistance and inattention systems, such as [76,143–145,238].
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8.2.2. EyeAlert

EyeAlert [239], cited in several publications [128,240], has been conceived to detect driver
inattention using computer vision and to generate a warning signal in case of dangerous situation.
The EyeAlert system focuses entirely on the driver’s alertness levels or inattention to the road ahead,
regardless of the time of the day or the weather conditions. Three models are available:

• EyeAlert EA410 detects both distracted and fatigue driving. The EA410 has a highly integrated IR
camera, a computer, an image processing unit and an alarm. The EA410 technology is protected
by over ten patents. The system will also respond in case the driver does not focus on driving.

• EyeAlert EA430 with GPS detects both distracted and fatigue driving. Moreover, a minimum speed
threshold is programmed into the internal GPS to prevent false alarms in urban environments.

• EyeAlert EA450 with Data detects both distracted and fatigue driving. Additionally, minimum speed
threshold, sensitivity, volume and data can be remotely programmed. The minimum speed and
sensitivity controls allow the reduction of false alarms in highway and urban environments.

8.2.3. Seeing Machines

Seeing Machines [241] builds image-processing technology that tracks the movement of a person’s
eyes, face, head, and facial expressions. It monitors fatigue and distraction events in real-time and uses
IR technology to provide fatigue and distraction monitoring at any time of the day. The system can
also combine multiple camera sensors to detect a wider range of movements. The Seeing Machines’
system continuously measures operator eye and eyelid behaviour to determine the onset of fatigue and
micro sleeps and delivers real-time detection and alerts.The system has been used in many different
driver assistance and inattention systems [11,142,151,156,242–244].

8.2.4. Visage Technologies AB

Visage Technologies AB [245] provides a state-of-the-art commercial head tracker based on
feature-point detection and tracking of the nose boundary and eye regions. Visage SDK finds and
tracks the face and facial features, including gaze direction, in video sequences in real time. It provides
pupil coordinates, 3D gaze direction as well as (with a calibration step) screen-space gaze point.
Visage Technologies also features support for embedded systems like FPGA and IR light tracking for
poor lighting conditions.

8.2.5. Delphi Electronics Driver Status Monitor

Delphi Electronics, a major automotive electronics manufacturer, developed a single camera
Driver Status Monitor (DSM) [246]. By detecting and tracking the driver’s facial features, the system
analyzes eye-closures and head pose to infer his/her fatigue or distraction. This information is used to
warn the driver and to modulate the actions of other safety systems. The system includes the use of
NIR illumination, an embedded processing unit, as well as the camera (resolution of 640 × 480 pixels).

8.2.6. Tobii Technologies

Tobii Technologies develops Tobii’s eye-tracking technology for integration into volume products
such as computers, computer games, virtual reality and cars. The Tobii platform consists of two-camera
sensors, placed at different angles, and operating at IR frequencies to eliminate interference from
external light. The system can distinguish whether the driver’s eyes are open or closed or if the driver
has turned his/her head. The sensors work even when the driver is wearing glasses or sunglasses.
By observing the specifics of eyelid closure, in combination with eye gaze patterns, an active safety
system powered by Tobii’s eye tracking sensor can reliably detect if a driver is falling asleep and warns
him/her properly. Moreover, Tobbi Technologies provides the Tobii EyeChip, which is a dedicated eye
tracking SOC ASIC.

601



Sensors 2016, 16, 1805

8.2.7. SensoMotoric Instruments

SensoMotoric Instruments GmbH (SMI) [247] is a German company, whose eye tracking solutions
can measure head position and orientation, gaze direction, eyelid opening, and pupil position and
diameter. Eye trackers use a sampling rate of 120 Hz for head pose and gaze measurement, 120 Hz
for eyelid closure and blink measurement, and 60 Hz for combined gaze, head pose, and eyelid
measurement. It also provides PERCLOS information for drowsiness detection. It is a computer-based
system and needs user calibration. In [248], SensoMotoric was used to recognize the pupil in each
image in order to measure horizontal and vertical eye movements.

8.2.8. Automobile Manufacturers

Nissan introduces its new Driver Attention Alert system with the 2016 Nissan Maxima, which was
unveiled at the New York International Auto Show [249]. The automaker has highlighted that
the new system will be able to detect drowsy and inattentive driving and it will alert the driver
about the situation by giving visual and audible warning. Ford’s Driver Alert [250] seems only to
detect drowsiness but not distraction. The Driver Alert system comprises a small forward-facing
camera connected to an on-board computer. The camera is mounted on the back of the rear view
mirror and is trained to identify lane markings on both sides of the vehicle. When the vehicle is on
the move, the computer looks at the road ahead and predicts where the car should be positioned
relative to the lane markings. Then, it measures where the vehicle actually is and, if the difference
is significant, the system issues a warning. The Saab Driver Attention Warning System [251] detects
visual inattention and drowsy driving. The system uses two miniature IR cameras integrated with
Smart Eye technology [77] to accurately estimate head pose, gaze, and eyelid status. When a driver’s
gaze is not located inside the primary attention zone (which covers the central part of the frontal
windshield) for a predefined period, an alarm is triggered. Toyota has equipped their luxury Lexus
models with their Driver Monitoring System [252]. The system permanently monitors the movement
of the driver’s head when looking from side to side using a NIR camera installed at the top of the
steering wheel column. The system is integrated into Toyota’s pre-crash system, which warns the
driver when a collision is likely to happen. In 2007, Volvo Cars introduced Driver Alert Control to alert
tired and non-concentrating drivers [253,254]. Based on the idea that the technology for monitoring
eyes is not yet sufficiently mature and human behavior varies from one person to another, Volvo Cars
developed the system based on car progress on the road. It is reported that Driver Alert Control
monitors the car movements and assesses whether the vehicle is driven in a controlled or uncontrolled
way. More recently, a Hyundai concept car (the Hyundai HCD-14) incorporates Tobbi Technologies to
track the eyes [255].

9. Simulated vs. Real Environment to Test and Train Driving Monitoring Systems

The development of the computer vision algorithm only represents one part of all the cycle of
the product design. One of the hardest tasks is to validate the whole system with the wide variety of
driving scenarios [256]. In order to complete the whole “process development” of the vision-based
ADAS, some key points are presented.

In order to monitor both the driver and his/her driving behaviour, several hardware and software
algorithms are being developed, but they are tested mostly in simulated environments instead of in
real driving ones. This is due to the danger of testing inattention in real driving environments [21].
Experimental control, efficiency, safety, and ease of data collection are the main advantages of using
simulators [257,258]. Some researches have validated that driving simulators can create driving
environment relatively similar to road experiments [259–261]. However, some considerations should
be taken into account since simulators can produce inconsistent, contradictory and conflicting
results. For example, low-fidelity simulators may evoke unrealistic driving behavior and, therefore,
produce invalid research outcomes. One common issue is that real danger and the real consequences
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of actions do not occur in a driving simulator, giving rise to a false sense of safety, responsibility,
or competence [262]. Moreover, simulator sickness symptoms may undermine training effectiveness
and negatively affect the usability of simulators [262].

A study on distraction in both simulated and real environment was conducted in [11] and it was
found out that the driver’s physiological activity showed significant difference. Engstorm et al. [11]
stated that physiological workload and steering activity were both higher under real driving conditions
compared to simulated environments. In [257], the authors compared the impact of a narrower lane
using both a simulator and real data, showing that the speed was higher in the simulated roads,
consistent with other studies. In [263], controlled driving yielded more frequent and longer eye glances
than the simulated driving setting, while driving errors were more common in simulated driving.
In [167], the driver’s heart rate changed significantly while performing the visual task in real-word
driving relative to a baseline condition, suggesting that visual task performance in real driving was
more stressful.

After the system is properly validated in a driver simulator, it should be validated in real
conditions as well, because various factors including light variations and noise can also affect the
driver’s attention. The application on a real moving vehicle presents new challenges like changing
backgrounds and sudden variations of lighting [264]. Moreover, a useful system should guarantee
real time performance and quick adaptability to a variable set of users and to natural movements
performed during driving [264]. Thus, it is necessary to make simulated environments appear more
realistic [203].

To conclude, in most previous studies, independent evaluations using different equipment
and conditions (mainly simulated environments) resulted in time-consuming and redundant efforts.
Moreover, inconsistency in the algorithm performance metrics makes it difficult to compare algorithms.
Hence, the only way to compare most algorithms and systems is the metrics provided by each author
when comparing their values, but with scarce information about the used images and conditions.
Public data sets covering simulated and real driving environments should be released in the near
future, as stated by some authors previously [203].

10. Privacy Issues Related to Camera Sensors

Although there is a widespread agreement for intelligent vehicles to improve safety, the study
of driver behaviour to design and evaluate intelligent vehicles requires large amounts of naturalistic
driving data [265]. However, in current literature, there is a lack of publicly available naturalistic
driving data largely due to concerns over individual privacy. It also should be noted that a
real-time visual-based distraction detection system does not have to save the video stream. Therefore,
privacy issues are mostly relevant in research works were video feed is collected and stored to be
studied at a later stage, for example in the large naturalistic studies conducted in the US.

Typical protection of the individuals’ privacy in a video sequence is commonly referred as
“de-identification” [266]. Although this fact will help protect the identities of individual drivers,
it impedes the purpose of sensorizing vehicles to control both drivers and their behaviour. In an ideal
situation, a de-identification algorithm would protect the identity of drivers while preserving sufficient
details to infer their behaviour (e.g., eye gaze, head pose or hand activity) [265].

Martin et al. [265,267] proposed the use of de-identification filters to protect the privacy of drivers
while preserving sufficient details to infer their behaviour. Following this idea, a de-identification filter
preserving only the mouth region can be used for monitoring yawning or talking and a de-identification
filter preserving eye regions can be used for detecting fatigue or gaze direction, which is precisely
proposed by Martin et al. [265,267]. More specifically, the authors implemented and compared
de-identification filters made up of a combination of preserving eye regions for fine gaze estimation,
superimposing head pose encoded face masks for providing spatial context and replacing background
with black pixels for ensuring privacy protection. A two-part study revealed that human facial
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recognition experiment had a success rate well below the chance while gaze zone estimation accuracy
disclosed 65%, 71% and 85% for One-Eye, Two-Eyes and Mask with Two-Eyes, respectively.

Fernando et al. [268] proposed to use video de-identification in the automobile environment using
personalized Facial Action Transfer (FAT), which has recently attracted a lot of attention in computer
vision due to its diverse applications in the movie industry, computer games, and privacy protection.
The goal of FAT is to “clone” the facial actions from the videos of a person (source) to another one
(target) following a two-step approach. In the first step, their method transfers the shape of the source
person to the target subject using the triangle-based deformation transfer method.In the second step,
it generates the appearance of the target person using a personalized mapping from shape changes
to appearance changes. In this approach video de-identification is used to pursue two objectives:
(1) to remove person-specific facial features and (2) to preserve head pose, gaze and facial expression.

11. General Discussion and Challenges Ahead

The main visual-based approaches reviewed in this paper are summarized in Table 8 according to
some key factors.

A major finding emerging from two recent research works reveals that just-driving baselines may,
in fact, not be “just driving” [26,269], containing a considerable amount of cognitive activity in the form
of daydreaming and lost-in-thought activity. Moreover, eye-gaze patterns are somewhat idiosyncratic
when visual scanning is disrupted by cognitive workload [27]. Additionally, “look-but-failed-to-see”
impairment under cognitive workload is an obvious detriment to traffic safety. For example,
Strayer et al. [270] found that recognition memory for objects in the driving environment was reduced
by 50% when the driver was talking on a handsfree cell phone, inducing failures of visual attention
during driving. Indeed, visual, manual and cognitive distraction often occur simultaneously while
driving (e.g., texting while driving and other cell-phone reading and writing activities). Therefore,
the estimates of crash risk based on comparisons of activities to just-driving baselines may need to be
reconsidered in light of the possible finding that just-driving baselines may contain the aforementioned
frequent cognitive activity. As a result, for example, secondary tasks effects while driving should be
revised [269]. Accordingly, as detecting driver distraction depends on how distraction changes his/her
behavior compared to normal driving without distraction, periods with minimal or no cognitive
activity should be identified in order to train the distraction detection algorithms.

Additionally, computer vision techniques can be used, not only for extracting information
inside the car, but also for extracting information outside the car, such as traffic, road hazards,
external conditions of the road ahead, intersections, or even position regarding other cars. The final
step should be the correlation between the driver’s understanding and the traffic context. One of
the first works trying to fuse “out” information (visual lane analysis) and “in” information (driver
monitoring) is the one proposed by Apostoloff et al. [271], pointing out the benefits of this
approach. Indeed, visual lane analysis can be used for “higher-order tasks”, which are defined by
interacting with other modules in a complex driver assistance system (e.g., understanding the driver’s
attentiveness—distraction—to the lane-keeping task [272]). Hirayama et al [273] focused on temporal
relationships between the driver’s eye gaze and the peripheral vehicles behaviour. In particular,
they concluded that the timing when a driver gazes towards the overtaking event under cognitive
distraction is later than that under the neutral state. Therefore, they showed that the temporal
factor, that is, timing, of a reaction is important for understanding the state by focusing on cognitive
distraction in a car-driving situation. Additionally, Rezaei et al. [87] proposed a system correlating
the driver’s head pose to road hazards (vehicle detection and distance estimation) by analyzing both
simultaneously. Ohn et al. [274] proposed a framework for early detection of driving maneuvers using
cues from the driver, the environment and the vehicle. Tawari et al. [275] provided early detection of
driver distraction by continuously monitoring driver and surround traffic situation. Martin et al. [276]
focused on intersections and studied the interaction of head, eyes and hands as the driver approaches
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a stop-controlled intersection. In this line work of research, Jain et al. [277] deal with the problem of
anticipating driving maneuvers a few seconds before the driver performs them.

Table 8. Summary of visual-based approaches to detect different types of driver distraction.

Approach
Distraction Detection Approaches

Real Conditions
Operation

Manual Visual Cognitive Daytime Nighttime

Zhao et al. [88] � � � � � �

Zhao et al. [89] � � � � � �

Zhao et al. [90] � � � � � �

Zhao et al. [91] � � � � � �

Bosch et al. [94] � � � � � �

Lowe et al. [95] � � � � � �

Yan et al. [92] � � � � � �

Yan et al. [93] � � � � � �

Zhang et al. [96] � � � � � �

Artan et al. [97] � � � � � �

Berri et al. [98] � � � � � �

Xu et al. [99] � � � � � �

Seshadri et al. [100] � � � � � �

Ohn et al. [106] � � � � � �

Martin et al. [104] � � � � � �

Ohn et al. [105] � � � � � �

Morimoto et al. [120] � � � � � �

Ji et al. [121] � � � � � �

Ji et al. [122] � � � � � �

Ji et al. [123] � � � � � �

Gu et al. [124] � � � � � �

Batista el al. [125] � � � � � �

Bergasa et al. [126] � � � � � �

Lee et al. [114] � � � � � �

Vicente et al. [49] � � � � � �

Cyganek et al. [134] � � � � � �

Donmez et al. [142] � � � � � �

Klauer et al. [7] � � � � � �

Kircher et al. [143] � � � � � �

Kircher et al. [144] � � � � � �

Kircher et al. [145] � � � � � �

Victor et al. [146] � � � � � �

Zhang et al. [178] � � � � � �

Liang et al. [179] � � � � � �

Liang et al. [180] � � � � � �

Liang et al. [181] � � � � � �

Liang et al. [27] � � � � � �

Liang et al. [182] � � � � � �

Liang et al. [183] � � � � � �

Miyaji et al. [184] � � � � � �

Miyaji et al. [156] � � � � � �

Yang et al. [187] � � � � � �

Li et al. [194] � � � � � �

Craye et al. [195] � � � � � �

Liu et al. [196] � � � � � �

Ragab et al. [197] � � � � � �

There are many factors that can modulate distraction. For example, as discussed in Section 7,
emotional information can modulate attention and decision-making abilities. Additionally, numerous studies
link highly aroused stress states with impaired decision-making capabilities [278], decreased situational
awareness [279], and degraded performance, which could impair driving ability [280]. Another driver
state, often responsible for traffic violations and even road accidents that can lead to distraction,
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is confusion or irritation, as it is related to loss of self-control and, therefore, loss of vehicle control,
which can be provoked by non-intuitive user interfaces or defective navigation systems as well as
by complex traffic conditions, mistakable signs and complicated routing. Moreover, the amount
of information that needs to be processed simultaneously during driving is a source of confusion
especially for older people [281], who have slower perception and reaction times. Just like stress,
confusion or irritation leads to impairment of driving capabilities including driver’s perception,
attention, decision making, and strategic planning. Nervousness corresponds to a level of arousal
above the “normal” one, which best suits to the driving task [211]. It is an affective state with negative
impact both on decision-making process and strategic planning. Nervousness can be induced by a
variety of reasons either directly related to the driving task like novice drivers or by other factors like
personal/physical conditions [211].

The system should be validated, firstly, in a driver simulator and afterwards, in real
conditions, where various factors including variations in lighting and noise can also affect both
the driver’s attention and the performance of the developed algorithms. Therefore, public data sets
covering simulated and real driving environments should be released. The driver’s physiological
responses could be different in a driver simulator from those in real conditions [11,167,257,263].
Hence, while developing an inattention detection system, the simulated environment must be a
perfect replica of the real environment. However, they are normally used in research and simulated
scenarios, but not in real ones, due to the problems of vision systems working in outdoor environments
(lighting changes, sudden movements, etc.). Moreover, they do not work properly with users wearing
glasses and may need high computational requirements.

Data-driven applications will require large amount of labeled images for both training and testing
the system. Both manual data reduction and labeling of data are time-consuming and they are also
subject to interpretation of the reductionist. Therefore, to deal with this problem, two approaches
are emerging from the literature: (1) unsupervised or semi-supervised learning and (2) automatic
data reduction. For example, in connection with the first approach, Liu et al. [189] commented the
benefits of SSL methods. Specifically, the explained the benefits of using SSL increased with the size
of unlabeled data set showing that by exploring the data structure without actually labeling them,
extra information to improve models performance can be obtained. On the other hand, there has been
a hype in data reduction using vehicle dynamics and looking outside on large scale naturalistic driving
data [282–284], and looking in at the driver [285].

In many distraction detection systems, the use of commercial sensors is usually
performed [77,239,241,245–247]. We understand that the reason from this is twofold: these systems
are well-established solutions offering both head and gaze tracking in the car environment and the
efforts of the investigation can be focused to detect and predict distraction from the outputs from these
commercial sensors instead of developing a new sensor from the very beginning. These commercial
sensors can operate using one camera [239,245–247], two cameras [241] or even up to 8 cameras [77]
placed all over the vehicle cabin. What we find missing is some research works trying to compare
these commercial sensors in order to highlight the pros and cons of each one. Also, missing from the
literature is the comparison between a new sensor and a commercial one trying to offer a competitive
solution from the sake of the research community.
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