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Preface to “Imaging: Sensors and Technologies”

This book contains high-quality works demonstrating significant achievements and advances in
imaging sensors, covering spectral electromagnetic and acoustic ranges. They are self-contained works
addressing different imaging-based procedures and applications in several areas, including 3D data
recovery; multispectral analysis; biometrics applications; computed tomography; surface defects;
indoor/outdoor systems; surveillance. Advanced imaging technologies and specific sensors are also
described on the electromagnetic spectrum (ultraviolet, visible, infrared), including airborne
calibration systems; selective change driven, multi-spectral systems; specific electronic devices
(CMOS, CCDs, CZT, X-Ray, and fluorescence); multi-camera systems; line sensors arrays; video
systems. Some technologies based on acoustic imaging are also provided, including acoustic planar
arrays of MEMS or linear arrays.

The reader will also find an excellent source of resources, when necessary, in the development
of his/her research, teaching or industrial activity, involving imaging and processing procedures.

This book describes worldwide developments and references on the covered topics—useful in
the contexts addressed.

Our society is demanding new technologies and methods related to images in order to take
immediate actions or to extract the underlying knowledge on the spot, with important contributions to
welfare or specific actions when required.

The international scientific and industrial communities worldwide also benefit indirectly.
Indeed, this book provides insights into and solutions for the different problems addressed. It also lays
the foundation for future advances toward new challenges. In this regard, new imaging sensors,
technologies and procedures contribute to the solution of existing problems; conversely, they
contribute where the need to resolve certain problems demands the development of new imaging
technologies and associated procedures.

We are grateful to all those involved in the edition of this book. Without the invaluable
contribution of the authors together with the excellent help of the reviewers, this book would not have
seen the light of day. More than 150 authors have contributed to this book.

Thanks to Sensors journal and the whole team involved in the edition and production of this
book for their support and encouragement.

Gonzalo Pajares Martinsanz
Guest Editor
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Abstract: Time-of-Flight (ToF) cameras, a technology which has developed rapidly in recent years,
are 3D imaging sensors providing a depth image as well as an amplitude image with a high frame rate.
As a ToF camera is limited by the imaging conditions and external environment, its captured data
are always subject to certain errors. This paper analyzes the influence of typical external distractions
including material, color, distance, lighting, etc. on the depth error of ToF cameras. Our experiments
indicated that factors such as lighting, color, material, and distance could cause different influences
on the depth error of ToF cameras. However, since the forms of errors are uncertain, it’s difficult to
summarize them in a unified law. To further improve the measurement accuracy, this paper proposes
an error correction method based on Particle Filter-Support Vector Machine (PF-SVM). Moreover,
the experiment results showed that this method can effectively reduce the depth error of ToF cameras
to 4.6 mm within its full measurement range (0.5-5 m).

Keywords: ToF camera; depth error; error modeling; error correction; particle filter; SVM

1. Introduction

ToF cameras, which have been developed rapidly in recent years, are a kind of 3D imaging sensor
providing a depth image as well as an amplitude image with a high frame rate. With its advantages of
small size, light weight, compact structure and low power consumption, this equipment has shown
great application potential in fields such as navigation of ground robots [1], pose estimation [2],
3D object reconstruction [3], identification and tracking of human organs [4] and so on. However,
limited by its imaging conditions and influenced by the interference of the external environment,
the data acquired by a ToF camera has certain errors, among which is the fact it has no unified correction
method for any non-systematic errors caused by the external environment. Therefore, different depth
errors must be analyzed, modeled and corrected case by case according to the different causes.

ToF camera errors can be divided into two categories: systematic errors, and non-systematic
errors. A systematic error is triggered not only by its intrinsic properties, but also by the imaging
conditions of the camera system. The main characteristic of this kind of error is that their form is
relatively fixed. These errors can be evaluated in advance, and the correction process is relatively
convenient. Systematic errors which can be reduced by calibration under normal circumstances [5]
and can be divided into five categories.

A non-systematic error is an error caused by the external environment and noise. The characteristic
of this kind of error is that the form is not fixed and random, and it is difficult to establish a unified

Sensors 2017, 17,92 1 www.mdpi.com/journal /sensors
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model to describe and correct such errors. Non-systematic errors are mainly divided into four
categories: signal-to-noise ratio, multiple light reception, light scattering and motion blurring [5].

Signal-to-noise ratio errors can be removed by the low amplitude filtering method [6], or an
optimized integration time can be decided by using a complex algorithm as per the area to be
optimized [7]. Other ways generally reduce the impact of noise by calculating the average of data to
determine whether it exceeds a fixed threshold [8-10].

Multiple light reception errors mainly exist at surface edges and depressions of the target object.
Usually, the errors in surface edges of the target object can be removed by comparing the incidence
angle of the adjacent pixels [7,11,12], but there is no efficient solution to remove the errors of depressions
in the target object.

Light scattering errors are only related to the position of a target object in the scene; the closer
it is to the target object, the stronger the interference will be [13]. In [14], a filter approach based
on amplitude and intensity on the basis of choosing an optimum integration time was proposed.
Measurements based on multiple frequencies [15,16] and the ToF encoding method [17] both belong
to the modeling category, which can solve the impact of sparse scattering. A direct light and global
separation method [18] can solve mutual scattering and sub-surface scattering among the target objects.

In [19], the authors proposed detecting transverse moving objects by the combination of a color
camera and a ToF camera. In [20], transverse and axial motion blurring were solved by an optical flow
method and axial motion estimation. In [21], the authors proposed a fuzzy detection method by using
a charge quantity relation so as to eliminate motion blurring.

In addition, some error correction methods cannot distinguish among error types, and uniformly
correct the depth errors of ToF cameras. In order to correct the depth error of ToF cameras, a fusion
method with a ToF camera and a color camera was also proposed in [22,23]. In [24], a 3D depth frame
interpolation and interpolative temporal filtering method was proposed to increase the accuracy of
ToF cameras.

Focusing on the non-systematic errors of ToF cameras, this paper starts with the analysis of the
impacts of varying external distractions on the depth errors of ToF cameras, such as materials, colors,
distances, and lighting. Moreover, based on the particle filter to select the parameters of a SVM error
model, an error modeling method based on PF-SVM is proposed, and the depth error correction of ToF
cameras is realized as well.

The reminder of the paper is organized as follows: Section 2 introduces the principle and
development of ToF cameras. Section 3 analyzes the influence of lighting, material properties, color and
distance on the depth errors of ToF cameras through four groups of experiments. In Section 4, a PF-SVM
method is adopted to model and correct the depth errors. In Section 5, we present our conclusions and
discuss possible future work.

2. Development and Principle of ToF Cameras

In a broad sense, ToF technology is a general term for determining distance by measuring the flight
time of light between sensors and the target object surface. According to the different measurement
methods of flight time, ToF technology can be classified into pulse/flash, continuous wave,
pseudo-random number and compressed sensing [25]. The continuous wave flight time system
is also called ToF camera.

ToF cameras were firstly invented at the Stanford Research Institute (SRI) in 1977 [26]. Limited by
the detector technology at that time, the technique wasn’t used widely. Fast sampling of receiving
light didn’t come true until the lock-in CCD technique was invented in the 1990s [27]. Then, in 1997
Schwarte, who was at the University of Siegen (Germany), put forward a method of measuring
the phases and/or magnitudes of electromagnetic waves based on the lock-in CCD technique [28].
With this technique, his team invented the first CCD-based ToF camera prototype [29]. Afterwards,
ToF cameras began to develop rapidly. A brief development history is shown in Figure 1.
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Figure 1. Development history of ToF cameras.

In Figure 2, the working principle of ToF cameras is illustrated. The signal is modulated on the
light source (usually LED) and emitted to the surface of the target object. Then, the phase shift between
the emitted and received signals is calculated by measuring the accumulated charge numbers of each
pixel on the sensor. Thereby, we can obtain the distance from the ToF camera to the target object.

Light source

UNDUII 104IU0T)

Figure 2. Principle of ToF cameras.

The received signal is sampled four times at equal intervals for every period (at 1/4 period).
From the four samples (9o, @1, ¢2, ¢3) of phase ¢, offset B and amplitude A can be calculated as follows:

Q= arctan(H), (1)
+ 1+ g2+
p= P91 4 P2+ @3 )

_ 2 _ 2
LV )+ (o) "

1/cAg
D=_-(—L], 4

2 (27‘[ f ) @)
where D is the distance from ToF camera to the target object, c is light speed and f is the modulation
frequency of the signal, Ag is phase difference. More details on the principle of ToF cameras can be
found in [5].

We list the exterior and parameters of several typical commercial ToF cameras on the market in

Table 1.

Distance D can be derived:
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Table 1. Parameters of typical commercial ToF cameras.

Maximum

ToF Camera Resolution M;:;z:m Measurement  Field of Accurac Weight/s Power/W
of Depth Rage/m View/® Y snt's (Typical/Maximum)
Rate/fps
Images
MESA-SR4000 176 x 144 50 0.1-5 69 x 55 +1cm 470 9.6/24
Microsoft-Kinect IT 512 x 424 30 0.5-4.5 70 x 60 +3 cm@2 m 550 16/32
PMD-Camcube 3.0 200 x 200 15 0.3-7.5 40 x 40  £3mm@4 m 1438

3. Analysis on Depth Errors of ToF Cameras

The external environment usually has a random and uncertain influence on ToF cameras, therefore,
it’s difficult to establish a unified model to describe and correct such errors. In this section, we take the
MESA SR4000 camera (Zurich, Switzerland, a camera with good performance [30], which has been
used in error analysis [31-33] and position estimation [34-36]) as an example to analyze the influence
of the external environment transformation on the depth error of ToF cameras. The data we get from
the experiments provide references for the correction of depth errors in the next step.

3.1. Influence of Lighting, Color and Distance on Depth Errors

During the measurement process of ToF cameras, it seems that the measured objects tend to have
different colors, different distances and may be under different lighting conditions. Then, the following
question arises: will the difference in lighting, distances and colors affect the measurement results?
To answer this question, we conduct the following experiments.

As we know, there are several natural indoor lighting conditions, such as light-sunlight,
indoor light-lamp light and no light. This experiment mainly considers the influence of these three
lighting conditions on the depth errors of the SR4000. Red, green and blue are three primary colors that
can be superimposed into any color. White is the color for measuring error [32,37,38], while reflective
papers (tin foil) can reflect all light. Therefore, this experiment mainly considers the influence of these
five conditions on the depth errors of the SR4000.

As the measurment target, the white wall is then covered by red, blue, green, white and reflective
papers, respectively, as examples of backgrounds with different colors. Since the wall is not completely
flat, laser scanners are used to build a wall model. Then we used a 25HSX laser scanner from Surphaser
(Redmond, WA, USA) to provide a reference value, because its accuracy is relatively high (0.3 mm).
The SR4000 camera is set on the right side of the bracket, while the 3D laser scanner is on the left.
The bracket is mounted in the middle of two tripods and the tripods are placed parallel to the white wall.
The distances between the tripods and the wall are measured with two parallel tapes. The experimental
scene is arranged as shown in Figure 3 below.

The distances from the tripods to the wall are set to 5, 4, 3, 2.5, 2, 1.5, 1, 0.5 m respectively. At each
position, we change the lighting conditions and obtain one frame with the laser scanner and 30 frames
with the SR4000 camera. To exclude the influence of the integral time, the SR_3D_View software of the
SR4000 camera is set to “Auto”.
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() (b)

Figure 3. Experimental scene. (a) Experimental scene; (b) Camera bracket.

In order to analyze the depth error, the acquired data are processed in MATLAB. Since the target
object can’t fill the image, we select the central region of 90 x 90 pixels of the SR4000 to be analyzed
for depth errors. The distance error is defined as:

n
it
hij=—— i ©®)
a b
Z1 ‘21 i
o
§=—— ®)

where ;; is the mean error of pixel ij, f is the frame number of the camera, m; ;; is the distance
measured at pixel i,j in Frame f, n = 30, tij is the real distance, a and b are the row and column number
of the selected region respectively and s is the total number of pixels. The real distance r;; is provided
by the laser scanner.

Figure 4 shows the effects of different lighting conditions on the depth error of the SR4000.
As shown in Figure 4, the depth error of the SR4000 is on slightly affected by the lighting conditions
(the maximum effect is 2 mm). The depth error increases approximately linearly with distance, and the
measurement error value complies with the error test of other Swiss Ranger cameras in [37-40]. Besides,
as seen in the figure, SR4000 is very robust against light changes, and can adapt to various indoor
lighting conditions for the lower accuracy requirements.
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Figure 4. Influence of lighting on depth errors.

Figure 5 shows the effects of various colors on the depth errors of the SR4000 camera. As shown
in Figure 5, the depth error of the SR4000 is affected by the color of the target object, and it increases
linearly with distance. The depth error curve under reflective conditions is quite different from the
others. When the distance is 1.5-2 m, the depth error is too large, while at 3-5 m, it is small. When the
distance is 5 m, the depth error is 15 mm less than when the color is blue. When the distance is 1.5 m,
the depth error when the color is white is 5 mm higher than when the color is green.
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I
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0020 . reflect |
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deviation[m]
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Figure 5. Influence of color on depth errors.

3.2. Influence of Material on Depth Errors

During the measurement process of ToF cameras, it seems that the measured objects tend to be of
different materials. Then, will this affect the measurement results? For this question, we conducted the
following experiments: to analyze the effects of different materials on the depth errors of the SR4000,
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we chose four common materials in the experiment: ABS plastic, stainless steel, wood and glass.
The tripods are arranged as shown in Figure 3 of Section 3.1, and the targets are four 5-cm-thick
boards of the different materials, as shown in Figure 6. The tripods are placed parallel to the
target and the distance is set to about 1 m, and the experiment is operated under natural light
conditions. To differentiate the boards on the depth image, we leave a certain distance between them.
Then we acquire one frame with the laser scanner and 30 consecutive frames with the SR4000 camera.
The integral time in the SR_3D_View software of the SR4000 camera is set to “Auto”.

Figure 6. Four boards made of different materials.

For the SR4000 and the laser scanner, we select the central regions of 120 x 100 pixels and
750 x 750 pixels, respectively. To calculate the mean thickness of the four boards, we need to measure
the distance between the wall and the tripods as well. Section 3.1 described the data processing method
and Figure 7 shows the mean errors of the four boards.

0.018

I Laser scanner
0.016 C___1SR-4000 1

0.014 - -

0.012 - B

0.01-
0.008 -
0.006 - -
0.004 - —
0.002 - m i ﬁ_‘ -
0 I I I I

wood plastic glass metal
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standard deviation/m

Figure 7. Depth data of two sensors.

As shown in Figure 7, the material affects both the depth errors of the SR4000 and the laser scanner.
When the material is wood, the absolute error of the ToF camera is minimal and only 1.5 mm. When the
target is the stainless steel board, the absolute error reaches its maximum value and the depth error is
13.4 mm, because, as the reflectivity of the target surface increases, the number of photons received by
the light receiver decreases, which leads to a higher measurement error.

3.3. Influence of a Single Scene on Depth Errors

The following experiments were conducted to determine the influence of a single scene on
depth errors. The tripods are placed as shown in Figure 3 of Section 3.1, and as shown in Figure 8,
the measuring target is a cone, 10 cm in diameter and 15 cm in height. The tripods are placed parallel
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to the axis of the cone and the distance is set to 1 m. The experiment is operated under natural light
conditions. We acquire one frame with the laser scanner and 30 consecutive frames with the SR4000
camera. The integral time in the SR_3D_View software of the SR4000 camera is set to “Auto”.

Figure 8. The measured cone.

As shown in Figure 9, we choose one of the 30 consecutive frames to analyze the errors,
extract point cloud data from the selected frame and compare it with the standard cone to calculate the
error. The right side in Figure 9 is a color belt of the error distribution, of which the unit is m. As shown
in Figure 9, the measurement accuracy of SR4000 is also higher, where the maximal depth error is
0.06 m. The depth errors of the SR4000 mainly locate in the rear profile of the cone. The measured
object deformation is small, but, compared with the laser scanner, its point cloud data are sparser.

Figure 9. Measurement errors of the cone.

3.4. Influence of a Complex Scene on Depth Errors

The following experiments were conducted in order to determine the influence of a complex
scene on depth errors. The tripods are placed as shown in Figure 3 of Section 3.1 and the measurement
target is a complex scene, as shown in Figure 10. The tripods are placed parallel to the wall, and the
distance is set to about 1 m. The experiment is operated under natural light conditions. We acquire
one frame with the laser scanner and 30 consecutive frames with the SR4000 camera. The integral time
in the SR_3D_View software of the SR4000 camera is set to “Auto”.
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Figure 10. Complex scene.

We then choose one of the 30 consecutive frames for analysis and, as shown in Figure 11, obtain the
point cloud data of the SR4000 and the laser scanner. As shown in Figure 11, there is a small amount
of deformation in the shape of the target object measured by the SR4000 compared to the laser
scanner, especially on the edge of the sensor where the measured object is clearly curved. However,
distortion exists on the border of the point cloud data and artifacts appear on the plant.

Figure 11. Depth images based on the point cloud of depth sensors.

3.5. Analysis of Depth Errors

From the above four groups of experiments, the depth errors of the SR4000 are weakly affected
by lighting conditions (2 mm maximum under the same conditions). The second factor is the target
object color. Under the same conditions, this affects the depth error by a maximum of 5 mm. On the
other hand, the material has a great influence on the depth errors of ToF cameras. The greater the
reflectivity of the measured object material, the greater the depth error, which increases approximately
linearly with the distance between the measured object and ToF camera. In a more complex scene,
the depth error of a ToF camera is greater. Above all, lighting, object color, material, distance and
complex backgrounds could cause different influences on the depth errors of ToF cameras, but it’s
difficult to summarize this in an error law, because the forms of these errors are uncertain.

4. Depth Error Correction for ToF Cameras

In the last section, four groups of experiments were conducted to analyze the influence of several
external factors on the depth errors of ToF cameras. The results of our experiments indicate that
different factors have different effects on the measurement results, and it is difficult to establish a unified
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model to describe and correct such errors. For a complex process that is difficult to model mechanically,
an inevitable choice is to use actual measurable input and output data to model. Machine learning is
proved to be an effective method to establish non-linear process models. It maps the input space to
the output space through a connection model, and the model can approximate a non-linear function
with any precision. SVM is a new generic learning method developed on the basis of a statistical
learning theory framework. It can seek the best compromise between the complexity of the model
and learning ability according to limited sample information so as to obtain the best generalization
performance [41,42]. Also in the last section of this paper, we learn and model the depth errors of ToF
cameras by using a LS-SVM [43] algorithm.

Better parameters generate better SVM recognition performance to build the LS-SVM model.
We need to determine the penalty parameter C and Gaussian kernel parameter y. Cross-validation [44]
is a common method which suffers from large computation demands and long running times.
A particle filter [45] can be used to approximate the probability distribution of parameters in the
parameter state space by spreading a large number of weighted discrete random variables, based on
which, this paper puts forward a parameter selection algorithm, which can fit the depth errors of
ToF cameras quickly and meet the requirements of correcting the errors. The process of the PF-SVM
algorithm is shown in Figure 12 below.

Initialize the particle
set: C. Y

Tt

Training sample

Measurement errors | _ro uat]ion & ‘
with ToF camera 9 + =

Observation

equation: Ls-sym |Number of
particles

Model evaluation Number of
iterations

Calculating weight

Weighting
normalization

Particle resampling

A

Particle filter C. vy
Calculate the
SVM model

Figure 12. Process of PF-SVM algorithm.

4.1. PF-SVM Algorithm

4.1.1. LS-SVM Algorithm

According to statistical theory, during the process of black-box modeling for non-linear systems,
training set {x;,y;}, i = 1,2, ... ,n is generally given and non-linear function f is established to minimize
Equation (8):

fx) =wlo(x)+0, @)

. 1 1 n
ming, p, 5] (w,d) = EwTw + ECZ 52, (8)
i=1

10
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where @(x) is a nonlinear function, and w is the weight. Moreover, Equation (8) satisfies the constraint:
yi=wlo(x)+b+d,i=12--n, 9)

where 6; > 0 is the relaxation factor, and C > 0 is the penalty parameter.
The following equation introduces the Lagrange function L to solve the optimization problem in
Equation (8):

1 1 & 1 R
L:§||IUH2+§CZ<51'2*Z“i(@(xi)'w+b+0i*yi)r (10)
= 3

where «; is a Lagrange multiplier.
Fori=1,2,... nby elimination of w and J, a linear equation can be obtained:

T —1 = , (11)
[ e GG'+C'I (1) x (nd1) w Y

where ¢ is an element of one n-dimensional column vector, and I is the n X n unit matrix:

T
G= o) o(x)" - 9], (12)
According to the Mercer conditions, the kernel function is defined as follows:
K(x;, xj) = ¢(x;) - (p(xj), (13)

We substitute Equations (12) and (13) into Equation (11) to get a linear equation from which «
and b can be determined by the least squares method. Then we can obtain the non-linear function
approximation of the training data set:

y(x) = i a;K(x, x;) + b, (14)
i=1

4.1.2. PF-SVM Algorithm

The depth errors of ToF cameras mentioned above are used as training sample sets
{xiyi},i=12,... n,where x; is the camera measurement distance, and y; is the camera measurement
error. Then the error correction becomes a black-box modeling problem of a nonlinear system. Our goal
is to determine the nonlinear model f and correct the measurement error with it.

The error model of ToF cameras obtained via the LS-SVM method is expressed in Equation (14).
In order to seek a group of optimal parameters for the SVM model to approximate the depth errors in
the training sample space, we put this model into a Particle Filter algorithm.

In this paper, the kernel function is:

e 12
k(x,y) = exp('éy}”), (15)

(1) Estimation state.

The estimated parameter state x at time k is represented as:
. . AT
h=[ch ] (16)

where x{] is j-th particle when k = 0, C is the penalty parameter and +y is the Gauss kernel parameter.

11
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(2) Estimation Model.

The relationship between parameter state x and parameter a,b in non-linear model y(x) can be
expressed by state equation z(a,b):

z(a,b) = F(7,C), 17)
-1
b 0 1 cee 1 0
a1 1 K(x1,x1) --- K(x1, x4) i
. . . . - (18)
&n 1 K(xp,x1) -+ K(xn,xn)+ % Yn

where Equation (17) is the deformation of Equation (11).
The relationship between parameter «,b and ToF camera error y(x) can be expressed by observation
equation f:

y(x) = f(a,b), (19)
n
y(x) =Y a;K(x,x;) +b, (20)
i=1
where Equation (20) is the non-linear model derived from LS-SVM algorithm.

(8) Description of observation target.

In this paper, we use y; of training set {x; y;} as the real description of the observation target,
namely the real value of the observation:

z={yi}, (1)
(4) The calculation of the characteristic and the weight of the particle observation.

This process is executed when each particle is under characteristic observation. Hence the error
values of the ToF camera are calculated according to the sampling of each particle in the parameter
state x:

7 (a/,yf) =F(v,0), (22)
7(x) = (@), (23)

Here we compute the similarity between the ToF camera error values and the observed target
camera values of each particle. The similarity evaluation RMS is defined as follows:

n 2

RMS — %i;(yf fyi> , (24)

where 7/ is the observation value of particle j and y; is the real error value. The weight value of each
particle is calculated according to the Equation (24):

w(j) = e, (25)
2no
Then the weight values are normalized:
) w!
w = - (26)
Y w
j=1

12
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(5) Resampling

Resampling of the particles is conducted according to the normalized weights. In this process,
not only the particles with great weights but also a small part of particles with small weights should
be kept down.

. . AT
(6) Outputting particle set xé = {Cé 'yé] . This particle set is the optimal LS-SVM parameter.

(7)  The measurement error model of ToF cameras can be obtained by introducing the parameter into
the LS-SVM model.

4.2. Experimental Results

We've performed three groups of experiments to verify the effectiveness of the algorithm.
In Experiment 1, the depth error model of ToF cameras was modeled with the experimental data in [32],
and the results were compared with the error correction results in the original text. In Experiment 2,
the depth error model of ToF cameras was modeled with the data in Section 3.1, and the error correction
results under different test conditions were compared. In Experiment 3, the error correction results
under different reflectivity and different texture conditions were compared.

4.2.1. Experiment 1

In this experiment, we used the depth error data of the ToF cameras which was obtained from
Section 3.2 of [32] as the training sample set. The training set consists of 81 sets of data, where x is
the distance measurement of the ToF camera and y is the depth error of the ToF camera, as shown
in Figure 13 by blue dots. In the figure, the solid green line represents the error modeling results by
using the polynomial given in [32]. It shows that the fitting effect is better when the distance is 1.5-4 m,
and the maximum absolute error is 8 mm. However, when the distance is less than 1.5 m or more
than 4 m, the error model deviated from the true error values. By using our algorithm, we can obtain
the results C = 736 and v = 0.003. By substituting these two parameters into the abovementioned
algorithm, we can also obtain the depth error model of the ToF camera as shown in the figure by the
red solid line. For this, it can be seen that the error model can match the real errors well.

0.015

T T T
e mean discrepancies

—e— distance error model

—e— distance error model in [32]

0.01}

0.005| | 3 4. SRR B f- o DN

mean discrepancies[m]

20,005 - - - Ao ool a1

-0.01

mean measured distance[m]

Figure 13. Depth error and error model.

In order to verify the validity of the error model, we use the ToF camera depth error data obtained
from Section 3.3 of [32] as a test sample set (the measurement conditions are the same as Section 3.2

13
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of [32]). The test sample set consists of 16 sets of data, as shown in Figure 14 by the blue line. In the
figure, the solid green line represents the error modeling results by using the polynomial in [32].
It shows that the fitting effect is better when the distance is 1.5-4 m, and the maximum absolute error is
8.6 mm. However, when the distance is less than 1.5 m or more than 4 m, the error model has deviated
from the true error value. The results agree with the fitting effect of the aforementioned error model.
The model correction results obtained by using our algorithm are shown by the red solid line in the
figure. It shows that the results of the error correction are better when the distance is in 0.5-4.5 m,
and the absolute maximum error is 4.6 mm. Table 2 gives the detailed performance comparison results
of these two error corrections. From Table 2, we can see that, while expanding the range of error
correction, this method can also improve the accuracy of the error correction.
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! ! ! —+— mean discrepancies before correction
: : : —e— mean discrepancies after correction in [32]
§ ! ! ! —e— mean discrepancies after correction
0.005 1\ ; | ;
— |
E |
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g
° 0005
3
£
-0.01
-0.015
0.5
mean measured distance[m]
Figure 14. Depth error correction results.
Table 2. Analysis of depth error correction results.
Comparison Maximal Error/mm  Average Error/mm Variance/mm Optimal  Running
Items 1.5-4 0.5-4.5 1.5-4 0545 15-4 0545 Range/m  Time/s
This paper’s 46 46 1.99 219 292 24518 0545 2
algorithm
Reference [32] = o 8.6 214 4375 534 29414 154 -
algorithm

4.2.2. Experiment 2

The ToF depth error data of Section 3.1 on the condition of blue background is selected as the
training sample set. As shown in Figure 15 by blue asterisks, the training set consists of eight sets of
data. The error model established by our algorithm is shown by the blue line in Figure 15. The model
can fit the error data well, but the training sample set should be as rich as possible in order to build
the accuracy of the model. To verify the applicability of the error model, we use white, green and
red background ToF depth error data as test samples, and the data after correction is shown in the
figure by the black, green and red lines. It can be seen from the figure that the absolute values of the
three groups of residual errors is less than the uncorrected error data after the application of the blue
distance error model. The figure also illustrates that this error model is very applicable to the error
correction of ToF cameras for different color backgrounds.

14
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Figure 15. Depth error correction results of various colors and error model.

4.2.3. Experiment 3

The experimental process similar to that of Section 3.1 hereof was adopted in order to verify the
validity of the error modeling method under different reflectivity and different texture conditions.
The sample set, including 91 groups of data, involved the depth errors obtained from the white wall
surfaces photographed with a ToF camera at different distances, as shown with the blue solid lines
in Figure 16. The error model established by use of the algorithm herein is shown with the red solid
lines in Figure 16. The figure indicates that this model fits the error data better. With a newspaper
fixed on the wall as the test target, the depth errors obtained with a ToF camera at different distances
are taken as the test data, as shown with the black solid lines in Figure 16, while the data corrected
through the error model created here are shown with the green solid lines in the same figure. It can be
seen from the figure that the absolute values of residual errors is less than the uncorrected error data
after the application of the distance error model. The figure also illustrates that this error model is very
applicable to the full measurement range of ToF cameras.

x10°
10 T 1 - T - \ =
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—— deviation after correction
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deviation[m]

measured distance[m]

Figure 16. Depth error correction results and error model.
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5. Conclusions

In this paper, we analyzed the influence of some typical external distractions, such as material
properties and color of the target object, distance, lighting and so on on the depth errors of ToF cameras.
Our experiments indicate that lighting, color, material and distance could cause different influences
on the depth errors of ToF cameras. As the distance becomes longer, the depth errors of ToF cameras
increase roughly linearly. To further improve the measurement accuracy of ToF cameras, this paper
puts forward an error correction method based on Particle Filter-Support Vector Machine (PE-SVM).
Then, the best parameters with particle filter algorithm on the basis of learning the depth errors of ToF
cameras are selected. The experimental results indicate that this method can reduce the depth error
from 8.6 mm to 4.6 mm within its full measurement range (0.5-5 m).
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Abstract: The introduction of RGB-Depth (RGB-D) sensors into the visually impaired people
(VIP)-assisting area has stirred great interest of many researchers. However, the detection range
of RGB-D sensors is limited by narrow depth field angle and sparse depth map in the distance,
which hampers broader and longer traversability awareness. This paper proposes an effective
approach to expand the detection of traversable area based on a RGB-D sensor, the Intel RealSense
R200, which is compatible with both indoor and outdoor environments. The depth image of RealSense
is enhanced with IR image large-scale matching and RGB image-guided filtering. Traversable area is
obtained with RANdom SAmple Consensus (RANSAC) segmentation and surface normal vector
estimation, preliminarily. A seeded growing region algorithm, combining the depth image and RGB
image, enlarges the preliminary traversable area greatly. This is critical not only for avoiding close
obstacles, but also for allowing superior path planning on navigation. The proposed approach has
been tested on a score of indoor and outdoor scenarios. Moreover, the approach has been integrated
into an assistance system, which consists of a wearable prototype and an audio interface. Furthermore,
the presented approach has been proved to be useful and reliable by a field test with eight visually
impaired volunteers.

Keywords: RGB-D sensor; RealSense; visually impaired people; traversable area detection

1. Introduction

According to the World Health Organization, 285 million people were estimated to be visually
impaired and 39 million of them are blind around the world in 2014 [1]. It is very difficult for
visually impaired people (VIP) to find their way through obstacles and wander in real-world scenarios.
Recently, RGB-Depth (RGB-D) sensors revolutionized the research field of VIP aiding because of
their versatility, portability, and cost-effectiveness. Compared with traditional assistive tools, such as
a white cane, RGB-D sensors provide a great deal of information to the VIP. Typical RGB-D sensors,
including light-coding sensors, time-of-flight sensors (ToF camera), and stereo cameras are able to
acquire color information and perceive the environment in three dimensions at video frame rates.
These depth-sensing technologies already have their mature commercial products, but each type of
them has its own set of limits and requires certain working environments to perform well, which brings
not only new opportunities but also challenges to overcome.

Light-coding sensors, such as PrimeSense [2] (developed by PrimeSense based in Tel Aviv, Israel),
Kinect [3] (developed by Microsoft based in Redmond, WA, USA), Xtion Pro [4] (developed by Asus
based in Taipei, Taiwan), MV4D [5] (developed by Mantis Vision based in Petach Tikva, Israel),
and the Structure Sensor [6] (developed by Occipital based in San Francisco, CA, USA) project
near-IR laser speckles to code the scene. Since the distortion of the speckles depends on the depth
of objects, an IR CMOS image sensor captures the distorted speckles and a depth map is generated
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Sensors 2016, 16, 1954

through triangulating algorithms. However, they fail to return an efficient depth map in sunny
environments because projected speckles are submerged by sunlight. As a result, approaches for VIP
with light-coding sensors are just proof-of-concepts or only feasible in indoor environments [7-15].

ToF cameras, such as CamCube [16] (developed by PMD Technologies based in Siegen, Germany),
DepthSense [17] (developed by SoftKinetic based in Brussels, Belgium), and SwissRanger (developed
by Heptagon based in Singapore) [18] resolve distance based on the known speed of light, measuring
the precise time of a light signal flight between the camera and the subject independently for each pixel
of the image sensor. However, they are susceptible to ambient light. As a result, ToF camera-based
approaches for VIP show poor performance in outdoor environments [19-21].

Stereo cameras, such as the Bumblebee [22] (developed by PointGrey based in Richmond, BC,
Canada), ZED [23] (developed by Stereolabs based in San Francisco, USA), and DUO [24] (developed
by DUO3D based in Henderson, NV, USA) estimates the depth map through stereo matching of
images from two or more lenses. Points on one image are correlated to another image and depth is
calculated via shift between a point on one image and another image. Stereo matching is a passive
and texture-dependent process. As a result, stereo cameras return sparse depth images in textureless
indoor scenes, such as a blank wall. This explains why solutions for VIP with stereo camera focus
mainly on highly-textured outdoor environments [25-28].

The RealSense R200 (developed by Intel based in Santa Clara, CA, USA) uses a combination
of active projecting and passive stereo matching [29]. IR laser projector projects static non-visible
near-IR patterns on the scene, which is then acquired by the left and right IR cameras. The image
processor generates a depth map through an embedded stereo-matching algorithm. In textureless
indoor environments, the projected patterns enrich textures. As shown in Figure 1b,c, the texture-less
white wall has been projected with many near-IR patterns which are beneficial for stereo matching
to generate depth information. In sunny outdoor environments, although projected patterns are
submerged by sunlight, the near-IR component of sunlight shines on the scene to form well-textured
IR images as shown in Figure 1g. With the contribution of abundant textures to robust stereo
matching, the combination allows the RealSense R200 to work under indoor and outdoor circumstances,
delivering depth images though it has many noise sources, mismatched pixels, and black holes.
In addition, it is possible to attain denser depth maps pending new algorithms. Illustrated in Figure 1,
the RealSense R200 is quite suitable for navigational assistance thanks not only to its environment
adaptability, but also its small size.

@
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Figure 1. (a) The RealSense R200; (b,f) color image captured by the RealSense R200; (c,g) IR image
captured by the right IR camera of the RealSense R200; (d,h) the original depth image from the
RealSense R200; and (e,i) the guided filtered depth image acquired in our work.
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However, the depth range of the RGB-D sensor is generally short. For the light-coding sensor,
the speckles in the distance are too dark to be sensed. For the ToF camera, light signals are overwhelmed
by ambient light in the distance. For stereo-cameras, since depth error increases with the increase
of the depth value, stereo-cameras are prone to be unreliable in the distance [30]. For the RealSense
R200, on the one hand, since the power of IR laser projector is limited, if the coded object is in the
distance, the speckles are too dark and sparse to enhance stereo matching. On the other hand, depth
information in the distance is much less accurate than that in the normal working distance ranging
from 650-2100 mm [31]. As shown in Figure 2, the original depth image is sparse a few meters
away. In addition, the depth field angle of RGB-D sensor is generally small. For the RealSense R200,
the horizontal field angle of IR camera is 59°. As we know, the depth image is generated through
stereo matching from overlapping field angles of two IR cameras. Illustrated in Figure 3, though red
and green light are within the horizontal field angle of the left IR camera, only green light is within
the overlapping field angle of two IR cameras. Thus, the efficient depth horizontal field angle is
smaller than 59°, which is the horizontal field angle of a single IR camera. Consequently, as depicted in
Figure 2, both the distance and the angle range of the ground plane detection with the original depth
image are small, which hampers longer and broader traversable area awareness for VIP.

(a) (b) (©

Figure 2. (a) Color image captured by the RealSense R200; (b) the original depth image captured by
the RealSense R200; (c) traversable area detection with original depth image of the RealSense R200,
which is limited to short range.

Figure 3. Horizontal field angle of IR cameras.

21



Sensors 2016, 16, 1954

In this paper, an effective approach to expand the traversable area detection is proposed. Since the
original depth image is poor and sparse, two IR images are large-scale matched to generate a dense
depth image. Additionally, the quality of the depth image is enhanced with the RGB image-guided
filtering, which is comprised of functions, such as de-noising, hole-filling, and can estimate the depth
map from the perspective of the RGB camera, whose horizontal field angle is wider than the depth
camera. The preliminary traversable area is obtained with RANdom SAmple Consensus (RANSAC)
segmentation [32]. In addition to the RealSense R200, an attitude sensor, InvenSense MPU6050 [33],
is employed to adjust the point cloud from the camera coordinate system to the world coordinate
system. This helps to eliminate sample errors in preliminary traversable area detection. Through
estimating surface normal vectors of depth image patches, salient parts are removed from preliminary
detection results. The highlighted process of the traversable area detection is to extend preliminary
results to broader and longer ranges, which fully combines depth and color images. On the one hand,
short-range depth information is enhanced with long-range RGB information. On the other hand,
depth information adds a dimension of restrictions to the expansion stage based on seeded region
growing algorithm [34]. The approach proposed in this paper is integrated with a wearable prototype,
containing a bone-conduction headphone, which provides a non-semantic stereophonic interface.
Different from most navigational assistance approaches, which are not tested by VIP, eight visually
impaired volunteers, three in whom are suffering from total blindness, have tried out our approach.

This paper is organized as follows: in Section 2, related work that has addressed both traversable
area detection and expansion are reviewed; in Section 3, the presented approach is elaborated in
detail; in Section 4, extensive tests on indoor and outdoor scenarios demonstrate its effectiveness
and robustness; in Section 5, the approach is validated by the user study, effected by real VIP; and in
Section 6, relevant conclusions are drawn and outlooks to future work are depicted.

2. Related Work

In the literature, a lot of approaches have been proposed with respect to ground plane
segmentation, access section detection, and traversable area awareness with RGB-D sensors.

In some approaches, ground plane segmentation is the first step of obstacle detection, which aims
to separate feasible ground area from hazardous obstacles. Wang adopted meanshift segmentation
to separate obstacles based on the depth image from a Kinect, in which planes are regarded as
feasible areas if two conditions are met: the angle between the normal vector of the fitting plane
and vertical direction of the camera coordinate system is less than a threshold; and the average
distance and the standard deviation of all 3D points to the fitting plane are less than thresholds [35].
Although the approach achieved good robustness under certain environment, the approach relies
a lot on thresholds and assumptions. Cheng put forward an algorithm to detect ground with a Kinect
based on seeded region growing [15]. Instead of focusing on growing thresholds, edges of the depth
image and boundaries of the region are adequately considered. However, the algorithm is unduly
dependent on the depth image, and the seed pixels are elected according to a random number, causing
fluctuations between frames, which is intolerable for assisting because unstable results would confuse
VIP. Rodriguez simply estimated outdoor ground plane based on RANSAC plus filtering techniques,
and used a polar grid representation to account for the potential obstacles [25]. The approach is one of
the few which have involved real VIP participation. However, the approach yields a ground plane
detection error in more than ten percent of the frames, which is resolvable in our work.

In some approaches, the problem of navigable ground detection is addressed in conjunction
with localization tasks. Perez-Yus used the RANSAC algorithm to segment planes in human-made
indoor scenarios pending dense 3D point clouds. The approach is able to extract not only the
ground but also ascending or descending stairs, and to determine the position and orientation
of the user with visual odometry [36]. Lee also incorporated visual odometry and feature-based
metri-topological simultaneous localization and mapping (SLAM) [37] to perform traversability
analysis [26,38]. The navigation system extracts ground plane to reduce drift imposed by the
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head-mounted RGB-D sensor and the paper demonstrated that the traversability map works more
robustly with a light-coding sensor than with a stereo pair in low-textured environments. As for
another indoor localization application, Sanchez detected floor and navigable areas to efficiently
reduce the search space and thereby yielded real-time performance of both place recognition and
tracking [39].

In some approaches, surface normal vectors on the depth map have been used to determine the
accessible section. Koester detected the accessible section by calculating the gradients and estimating
surface normal vector directions of real-world scene patches [40]. The approach allows for a fast
and effective accessible section detection, even in crowded scenes. However, it prevents practical
application for user studies with the overreliance on the quality of 3D reconstruction process and
adherence to constraints such as the area directly in front of the user is accessible. Bellone defined
a novel descriptor to measure the unevenness of a local surface based on the estimation of normal
vectors [41]. The index gives an enhanced description of the traversable area which takes into account
both the inclination and roughness of the local surface. It is possible to perform obstacle avoidance and
terrain traversability assessments simultaneously. However, the descriptor computation is complex
and also relies on the sensor to generate dense 3D point clouds. Chessa derived the normal vectors to
estimate surface orientation for collision avoidance and scene interpretation [42]. The framework uses
a disparity map as a powerful cue to validate the computation from optic flow, which suffers from the
drawback of being sensitive to errors in the estimates of optical flow.

In some approaches, range extension are concerned to tackle the limitations imposed by RGB-D
sensors. Muller presented a self-supervised learning process to accurately classify long-range terrain as
traversable or not [43]. It continuously receives images, generates supervisory labels, trains a classifier,
and classifies the long-range portion of the images, which complete one full cycle every half second.
Although the system classifies the traversable area of the image up to the horizon, the feature extraction
requires large, distant image patches within fifteen meters, limiting the utility in general applications
with commercial RGB-D sensors, which ranges mush closer. Reina proposed a self-learning framework
to automatically train a ground classifier with multi-baseline stereovision [44]. Two distinct classifiers
include one based on geometric data, which detects the broad class of ground, and one based on color
data, which further segments ground into subclasses. The approach makes predictions based on past
observations, and the only underlying assumption is that the sensor is initialized from an area free of
obstacles, which is typically violated in applications of VIP assisting. Milella features a radar-stereo
system to address terrain traversability assessment in the context of outdoor navigation [45,46].
The combination produces reliable results in the short range and trains a classifier operating on distant
scenes. Damen also presented an unsupervised approach towards automatic video-based guidance
in miniature and in fully-wearable form [47]. These self-learning strategies make feasible navigation
in long-range and long-duration applications, but they ignore the fact that most traversable pixels or
image patches are connected parts rather than detached, which is fully considered in our approach,
and also supports an expanded range of detection. Aladrén combines depth information with image
intensities, robustly expands the range-based indoor floor segmentation [9]. The overall diagram of
the method composes complex processes, running at approximately 0.3 frames per second, which fails
to assist VIP at normal walking speed.

Although plenty of related works have been done to analyze traversable area with RGB-D
sensors, most of them are overly dependent on the depth image or cause intolerable side effects in
navigational assistance for VIP. Compared with these works, the main advantages of our approach can
be summarized as follows:

e The 3D point cloud generated from the RealSense R200 is adjusted from the camera coordinate
system to the world coordinate system with a measured sensor attitude angle, such that the
sample errors are decreased to a great extent and the preliminary plane is segmented correctly.

e The seeded region, growing adequately, considers the traversable area as connected parts, and
expands the preliminary segmentation result to broader and longer ranges with RGB information.
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e The seeded region growing starts with preliminarily-segmented pixels other than according to the
random number, thus the expansion is inherently stable between frames, which means the output
will not fluctuate and confuse VIP. The seeded region growing is not reliant on a single threshold,
and edges of the RGB image and depth differences are also considered to restrict growing into
non-traversable area.

e The approach does not require the depth image from sensor to be accurate or dense in long-range
area, thus most consumer RGB-D sensors meet the requirements of the algorithm.

o The sensor outputs efficient IR image pairs under both indoor and outdoor circumstances,
ensuring practical usability of the approach.

3. Approach

In this section, the approach to expand traversable area detection with the RealSense sensor
is elaborated in detail. The flow chart of the approach is show in Figure 4. The approach is
described in terms of depth image enhancement, preliminary ground segmentation, and seeded
region expansion, accordingly.

Figure 4. The flowchart of the approach.

3.1. Depth Image Enhancement

The original depth image from the RealSense R200 is sparse and there are many holes, noises,
and mismatched pixels. Besides, the embedded stereo-matching algorithm in the processor is
fixed, which is unable to be altered. The embedded algorithm is based on local correspondences,
and parameters are fixed with the algorithm, such as the texture threshold and uniqueness ratio,
limiting the original depth map to be sparse. Typical original depth images are shown in Figure 1d,h.
Comparatively, IR images from the RealSense are large-scale matched in our work.

To yield a dense depth map with calibrated IR images, original efficient depth pixels are included
in the implementation of efficient large-scale stereo matching algorithm [48]. Support pixels are
denoted as pixels which can be robustly matched due to their textures and uniqueness. Sobel masks
with fixed size of 3 x 3 pixels and a large disparity search range are used to perform stereo matching
and obtain support pixels. As Sobel filter responses are good, but still insufficient, for stereo matching,
original depth image pixels are added to the support pixels. In addition, a multi-block-matching
principle [49] is employed to obtain more robust and sufficient support matches from real-world
textures. Given the resolution of IR images is 628 x 468, the best block sizes found with IR pairs are
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41 x 1,1 x 41,9 x 9,and 3 x 3. Then, the approach estimates the depth map by forming triangulation
on a set of support pixels and interpolating disparities. As shown in Figure 5, the large-scale matched
depth image is much denser than the original depth map, especially in less-textured scenarios, even
though these original depth images are the denser ones acquired with the sensor.

@) (b) (0) (d)
(e) ® (8) (h)
@) G (k) 0
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Figure 5. Comparison of depth maps under both indoor and outdoor environments. (a,e,i,m) Color
images captured by the RealSense sensor; (b,f,j,n) original depth image from the RealSense sensor;
(¢,8k,0) large-scale matched depth image; and (d,h,1,p) guided-filter depth image.

However, there are still many holes and noises in the large-scale depth image. Moreover,
the horizontal field view of the depth image is narrow, which hampers broad navigation. In order to
take advantage of available color images acquired with the RealSense R200 instead of filling invalid
regions in a visually plausible way using only depth information, we incorporate a color image
and apply the guided filter [50] to refine and estimate the depth of unknown areas. In this work,
we implement a RGB guided filter within the interface of enhanced photography algorithms [51] to
improve the depth image, which is to fill holes, de-noise and, foremost, estimate the depth map from
the field view of the RGB camera. The color image, depth image, and calibration data are input to the
post-process, within which the original depth image is replaced by a large-scale matched depth image.
Firstly, depth information from the perspective of one IR camera is projected onto the RGB image with
both IR cameras and the RGB camera calibration parameters. In this process, depth values are extracted
from the large-scale matched depth image instead of original depth image. Secondly, a color term is
introduced so that the weighting function in the guided filter is able to combine color information for
depth inpainting. This color-similarity term is based on an assumption that neighboring pixels with
similar color are likely to have similar depth values. In addition, there are filter terms which decide
that the contribution of depth values to an unknown pixel varies according to geometric distance and
direction. Additionally, the pixels near the edges of the color image are estimated later than the pixels
which are far away from them to preserve fine edges. Overall, the interface of enhanced photography
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algorithms is hardware accelerated with OpenCL, so it is computationally efficient to be used in the
approach to obtain smoother and denser depth images, which are beneficial for both the detection
and the expansion of the traversable area. Shown in Figure 5, the presented approach remarkably
smooths and improves the density of the original depth image from the RealSense sensor: firstly,
the horizontal field angle of depth image has increased from 59° to 70°, which is the field angle of
the color camera, allowing for broader detection; secondly, the filtered depth image has far less noise
and fewer mismatches than the original depth image; lastly, the guided filtered depth image achieves
100% density.

3.2. Preliminary Ground Segmentation

In order to detect the ground, a simple and effective technique is presented. Firstly, 3D coordinates
of the point cloud are calculated. Given the depth Z of pixel (u,v) in the depth image, the calibrated
focal length f, and (ug, vg) the principal point, the point cloud in the camera coordinate system can be
determined using Equations (1) and (2):

@
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On the strength of the attitude sensor, X, Y, and Z coordinates in the camera coordinate system
can be adjusted to world coordinates. Assume a point in the camera coordinate system is (X, Y, Z)
and the attitude angles acquired from the attitude sensor are (4, b, ¢). This means the point (X, Y, Z)
rotates about the x-axis by &« = a, then rotates about the y-axis by f = b and rotates about z-axis by
7 = cin the end. Shown in Equation (3), multiplying the point (X, Y, Z) by the rotation matrix, and
the point (Xq, Yu, Zy) in world coordinates is obtained:

Y =7x
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The ground plane detection is based on the RANdom SAmple Consensus (RANSAC)
algorithm [32]. By using the plane model, the RANSAC algorithm provides a robust estimation of the
dominant plane parameters, performing a random search to detect short-range ground preliminarily,
which is assumed to be the largest plane in the scenario. Although the assumption is violated in some
real-world scenes, attitude angles of the camera and real vertical heights are employed to restrict the
sampling process. The plane model is shown in Equation (4), and the inlier points of ground are
determined with Equation (5). Firstly, a set of 3D points are randomly chosen from the point cloud
to solve for the initial parameters A, B, C, and D. Secondly, the remaining 3D points are validated to
count the number of inliers. After m computations, the ground plane is determined, which is the plane
with the most inlier points. For the RANSAC algorithm, shown in Equation (6), if P is the probability
of not failing the computation of outliers, p is the dimension of the model (three in our case), and 7 is
the overall percentage of outliers, the number of computed solutions m can be selected to avoid overall
sampling error:

AXw + BYw + CZw +D =0 (4)
_ |AXw + BYyw 4+ CZy + D|
d(Xw/ Yo, Zw) = iR <T 5)
log (1—P)

" g (- (1)) ©
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Rather than generate ground plane segmentation with the original point cloud, points are adjusted
from the camera coordinate system to the world coordinate system in consideration of three respects:

e  The inclination angle 6 of the sampled plane can be calculated using Equation (7). This allows for
dismissing some sample errors described in [25]. For example, if inclination angle of a sampled
plane is abnormally high, the plane could not be the ground plane.

e  Since the incorrect sampled planes are dismissed directly, the validation of inlier 3D points can be
skipped to save much computing time.

e  Given points in the world coordinate system, we obtain a subset of 3D points which only contains
points whose real height is reasonable to be ground according to the position of the camera while
the prototype is worn. Points which could not be ground points, such as points in the upper
air are not included. As a result, 7 the percentage of outliers is decreased, so 1, the number of
computations, is decreased and, thereby, a great deal of processing time is saved.

|B|

Ny e
After initial ground segmentation, some salient parts, such as corners and little obstacles on the

ground may be included in ground plane. Salient parts should be wiped out of the ground for two
reasons: little obstacles may influence VIP; these parts may extend out of the ground area in the stage
of seeded region growing. In this work, salient parts are removed from the ground based on surface
normal vector estimation. Firstly, the depth image is separated into image patches; secondly, the surface
normal vector of each patch is estimated through principal component analysis, the details of which
are described in [14]; lastly, patches whose normal vector has a low component in the vertical direction
are discarded. In the sampling stage, the number of iterations m equals 25, and inclination angle
threshold of the ground plane is empirically set to 10°. Figure 6 depicts examples of short-range ground
plane segmentation in indoor and outdoor environments, both of them achieving good performance,
detecting the ground plane and dismissing salient parts correctly.

0 = arccos

@)

@ (b)

(0 (d)
Figure 6. Ground plane segmentation in indoor and outdoor environments. (a,c) Ground plane

detection based on the RANSAC algorithm; (b,d) salient parts in the ground plane are dismissed with
surface normal vector estimation.
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3.3. Seeded Region Growing

In order to expand traversable area to longer and broader range, a seeded region growing
algorithm is proposed, combining both color images and filtered depth images. Instead of attaching
importance to thresholds, edges of the color image are also adequately considered to restrict growth to
other obstacle regions.

Firstly, seeds are chosen according to preliminary ground detection. A pixel is set as a seed to
grow if two conditions are satisfied: the pixel is within the ground plane; four-connected neighbor
pixels are not all within the ground plane. The seeds are pushed into the stack.

Secondly, a seed is valid to grow when it meets two conditions: the seed has not been traversed
before, which means each seed will be processed only once; the seed does not belong to the edges of
the color image.

Thirdly, we assume the growing starts from pixel G, whose depth value is 4 and hue value
is v. One of the four-connected neighbors is Gi, whose depth value is d; and hue value is v;.
Whether Gi belongs to G’s region and be classified as traversable area depends on the following
four growing conditions:

e  Giisnotlocated at Canny edges of color image;

e Gihas not been traversed during the expansion stage;

e  Real height of Gi is reasonable to be included in traversable area; and
v —v;| < &y
|d —di| <oy
growing threshold, while J;, the height growing threshold, limits the expansion with only the
color image.

e |v—v| <éor , where 4; is the lower hue growing threshold, and d; is the higher

If all four conditions are true, Gi is qualified for the region grown from G, so Gi is classified as
a traversable area. Each qualified neighbor pixel is put into the stack. When all of G’s four-connected
pixels have been traversed, pop G out of the stack and let Gi be the new seed and repeat the above
process. When the stack is empty, the seeded growing course finishes. After the seeded growing
stage, the short-range ground plane has been enlarged to a longer and broader traversable area.
Figure 7 depicts examples of expansion based on seeded region growing under indoor and outdoor
situations, both expanding the traversable area to a great extent and preventing growth into other
non-ground areas.

@ (b) ()

(d) (e) ()

Figure 7. Traversable area expansion in indoor and outdoor environments. (a,d) Ground plane
detection based on the RANSAC algorithm; (b,e) salient parts in the ground plane are dismissed with
surface normal vector estimation; and (c,f) preliminary traversable area are expanded greatly with
seeded region growing.
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4. Experiment

In this section, experimental results are presented to validate our approach for traversable area
detection. The approach is tested on a score of indoor and outdoor scenarios including offices, corridors,
roads, playgrounds, and so on.

Figure 8 shows a number of traversable area detection results in the indoor environment.
Largely-expanded traversable area provides two superiorities: firstly, longer range allows high-level
path planning in advance; and, secondly, broader range allows precognition of various bends and
corners. For special situations, such as color image blurring and image under-exposing, the approach
still detects and expands the traversable area correctly, as shown in Figure 8gh. Additionally,
the approach is robust regardless of continuous movement of the cameras as the user wanders
in real-world scenes.

@ (b)

(9 (d)

(e) ®)

(8) (h)

Figure 8. Results of traversable area expansion in indoor environment. (a,b) Traversable area detection
in offices; (c—e) traversable detection in corridors; (f) traversable area detection in an open area;
(g) traversable area detection with color image blurring; abd (h) traversable area detection with color
image under-exposing.
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Figure 9 shows several traversable area detection results under outdoor circumstances. It can be
seen that traversable area has been enlarged greatly out to the horizon. Rather than the short-range
ground plane, the expanded traversable area frees the VIP to wander in the environment.

() (b) (©)

(d) (e) ®)

(® (h) (@)

Figure 9. Results of traversable area expansion in outdoor environment. (a-g) Traversable area
detection on roads; (h) traversable area detection on a platform; and (i) traversable area detection on
a playground.

To compare the performance of traversable area detection with respect to other works in the
literature, the results of several traversable detection approaches on a typical indoor scenario and
outdoor scenario are shown in Figure 10. Given the depth image, the approach proposed by Rodriguez
estimated the ground plane based on RANSAC plus filtering techniques [25]. Figure 10n is a correct
result of detecting the local ground, but the wall is wrongly detected as the ground plane in Figure 10e,
which is one type of sample error mentioned in the paper. This kind of error is dissolvable in our work
with consideration of the inclination angle of the plane. The approach proposed by Cheng detected
the ground with seeded region growing of depth information [15]. The approach in [15] projects RGB
information onto the valid pixels of depth map, so the detecting result shown in Figure 10f,0 has many
noises and black holes, and the detecting range is restricted since the depth information is discrete and
prone to inaccuracy in long range. However, the main problem of the algorithm lies in that the seed
pixels are elected randomly, thereby causes intolerable fluctuations to confuse VIP. In our previous
works, we only employed depth information delivered by the light-coding sensor of the Microsoft
Kinect [14,15]. However, the sensor outputs a dense 3D point cloud (ranges from 0.8 m to 5 m) indoors
and fails in sunny outdoor environments. As a result, the algorithms are unable to perform well
when the sensor could not generate a dense map. In Figure 10g,p, the idea of using surface normal
vectors to segment ground presented in [14,40] is able to segment the local ground plane but fails to
segment the long-range traversable area robustly as the estimation of normal vectors asks the sensor
to produce dense and accurate point clouds. In this paper, we fully combine RGB information and
depth information to expand the local ground plane segmentation to long range. In the process, IR
image large-scale matching and RGB image guided filtering are incorporated to enhance the depth
images. Although the computing time improves from 280 ms to 610 ms per frame on a 1.90 GHz
Intel Core Processor, within which the RGB image-guided filtering is hardware accelerated with the
HD4400 integrated graphics, the range of traversable detection has been expanded to a great extent
and the computing time contributed in this process endows VIPs to perceive traversability at long
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range and plan routes in advance so the traversing time eventually declines. Figure 10h,q shows the
results of traversable area detection without IR image large-scale matching and RGB image-guided
filtering. The seeded region growing process is unable to enlarge the local ground segmentation based
on RANSAC to long-range as the depth map is still discrete and sparse in the distance. Comparatively,
in Figure 10i,1, after IR image large-scale matching and RGB image-guided filtering, the segmented
local ground plane largely grows to a longer and broader traversable area. The set of our images is
available online at Kaiwei Wang Team [52].

Figure 10. Comparisons of results of different traversable area detection approaches. (a—d) The set of
images of a typical indoor scenario including color image, depth map, and calibrated IR pairs; (e-i) the
results of different approaches on the indoor scenario; (j—m) the set of images of a typical outdoor
scenario; and (n-r) the results of different approaches on the outdoor scenario.

Figure 11. An example of expansion error. The ground has been unexpectedly expanded to a part of
the car.

The approach creates a multithreaded program including a thread for image acquisition and
depth enhancement, a thread for traversable area detection and expansion, as well as a thread for
audio interface generation for the VIP. Together, the average processing time of a single frame is
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610 ms on a 1.90 GHz Intel Core 5 processor, making the refresh rate of the VIP audio feedback
1.6 times per second. In addition, detection rate and expansion error for indoor and outdoor scenarios
are presented to demonstrate the robustness and reliability of the approach. Indoor scenarios,
including a complicated office room and a corridor are analyzed, while outdoor scenarios, including
school roads and a playground, are evaluated. Typical results of the four scenarios are depicted in
Figures 8a,c and 9¢,i. As depicted in Figure 11, part of the car has been classified as traversable area,
which is a typical example of expansion error.

In order to provide a quantitative evaluation of the approach, given Equations (8) and (9), detection
rate (DR) is defined as the number of frames which ground has been detected correctly (GD) divided
by the number of frames with ground (G). Meanwhile, expansion error (EE) is defined as the number of
frames which traversable area has been expanded to non-ground areas (ENG) divided by the number
of frames with ground (G):

DR=GD/G (8)

EE = ENG/G ©)

Shown in Table 1, detection rates of the four scenarios are all above 90%, demonstrating the
robustness of the approach. For the scene of the corridor, it yields an expansion error of 15.9%. This is
mainly due to inadequate lighting on the corners in the corridor, so the edges of the color image are
fuzzy and the traversable area may be grown to the wall. Overall, the average expansion error is
7.8%, illustrating the reliability of the approach, which seldom recognizes hazardous obstacles as safe
traversable area.

Table 1. Detection rate and expansion error of the approach.

Scenario Frames with FRAMES Detected Detection Frames Expanded to Expansion
Ground (G)  Ground Correctly (GD)  Rate (DR)  Non-Ground Areas (ENG)  Error (EE)
An office 1361 1259 92.5% 44 3.2%
A corridor 633 614 97.0% 101 15.9%
School roads 837 797 95.2% 81 9.7%
A playground 231 228 98.7% 13 5.6%
All 3062 2898 94.4% 239 7.8%

Additionally, the average density of depth images of four different scenarios is calculated to prove
that IR image large-scale matching and RGB image guided filtering remarkably improve the density
of the original depth image from the RealSense sensor. The density of the depth image is defined as
the number of valid pixels divided by the resolution. As shown in Table 2, the average density of the
large-scale matched depth image is much higher than the original depth image and the guided-filtered
depth image achieves 100% density.

Table 2. Average density of depth images including the original depth image, large-scale matched
depth image and guided-filtered depth image.

Original Depth Image  Large Scale Mathced Depth Guided Filtered Depth

Scenario (Resolution: 293,904)  Image (Resolution: 293,904) Image (Resolution: 360,000)
An office 68.6% 89.4% 100%
A corridor 61.4% 84.5% 100%

School roads 76.2% 91.2% 100%

A playground 79.5% 92.0% 100%

5. User Study

In this section, a user study is elaborated in terms of assisting system overview, non-semantic
stereophonic interface, and assisting performance study.
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5.1. Assisting System Overview

The approach presented has been integrated in an assisting system. As shown in Figure 12,
the system is composed of a RGB-D RealSense R200sensor, an attitude sensor MPU6050, a 3D-printed
frame which holds the sensors, a processor Microsoft Surface Pro 3, as well as a bone-conducting
headphone AfterShokz BLUEZ 2S [53], which transfers non-semantic stereophonic feedback to the VIP.
Since the RealSense R200 only uses part of the USB 3.0 interface to transmit data, spare interfaces which
are compatible with USB 2.0 are employed to transmit attitude angles from the MPU6050. Additionally,
the processor communicates with the headphone through Bluetooth 4.0. Thereby, the system only
needs a USB 3.0 cord to transfer images and data from sensors to the processor. As we know, VIP rely
on voices from the environment great deal. For example, they use the sounds from cars to understand
the orientation of streets. The assisting prototype is not only wearable but also ears-free, because the
bone-conducting interface will not block VIP’s ears from hearing environmental sounds.

Figure 12. The assisting system consists a frame which holds the RealSense R200 and the attitude
sensor, a processor, and a bone-conducting headphone.

5.2. Non-Semantic Stereophonic Interface

The assisting system uses a non-semantic stereophonic interface to transfer traversable area
detection results to the VIP. The generation of the non-semantic stereophonic interface follows
rules below:

e Divide the detection result into five directions, since the horizontal field view has been enlarged
from 59° to 70°, so each direction corresponds to traversable area with a range of 14°.

e  Each direction of traversable area is represented by a musical instrument in 3D space.

e Ineach direction, the longer the traversable area, the greater the sound from the instrument.

e Ineach direction, the wider the traversable area, the higher the pitch of the instrument.

To sum up, the directions of traversable area are differentiated not only by sound source locations
in 3D space, but also by musical instruments, whose tone differs from each other. As shown in
Figure 13, five instruments, including trumpet, piano, gong, violin, and xylophone, produce sounds
simultaneously which last for 0.6 s, notifying the user the traversable area. Additionally, we also
implemented a simple obstacle detection method to warn against walking on the ground under
obstacles in the air (e.g., Figure 8g). The 3D points which are not within traversable area and are within
close range (1 m in our case) are counted in respectively five directions. If the number of points in one
direction exceeds a threshold, it means there is one obstacle in the close range. In this case, the audio
interface generates a friendly prompt to help VIP to be aware of close obstacles. Since that is not the
major topic of this paper, specific parameters of the audio feedback are not discussed here.
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Figure 13. Non-semantic stereophonic interface of the assisting system. Sounds of five directions of
traversable area are presented by five musical instruments in 3D space, including trumpet, piano, gong,
violin, and xylophone.

5.3. Assisting Performance Study

Eight visually impaired volunteers including three suffering from total blindness participated
in the user study. Figure 14 are the moments of the assisting study. During the assisting study,
participants first learned the audio feedback. The working pattern of the system and signals from the
headphone was introduced. Each one of them has ten minutes to learn, adapt to the audio interface,
and wander around casually. After that, participants were asked to traverse through obstacles without
collisions, and finally find the person standing at the end point. A contrary test is designed to compare
its performance under two conditions: the signal from the audio interface is generated according
to the original ground detection, and the audio interface is generated according to the traversable
area expansion.

(@) (b) (9 (d)

Figure 14. Eight visually impaired volunteers took part (a-d). The moments of the assisting study.
Participants’ faces are blurred for the protection of the privacy (we have gotten the approval to use the
assisting performance study for research work).

After the learning stage, eight visually impaired participants were required to travel through
obstacles. Shown in Figure 15, six different white boards including large columns were employed
as obstacles. Five different obstacle arrangements were generated by arranging the position of
obstacles differently. Firstly, they were asked to complete the course with traversable area expansion,
and a typical detection example is shown in Figure 7. Secondly, they were asked to complete the
course with original ground detection, which is shown in Figure 2. All visually impaired participants
completed the test and found the person standing at the end point. The average number of collisions,
average time and average number of steps to complete a single test were recorded. Collisions include
collisions with obstacles and walls. The timer starts when a participant is sent to the start region and
stops when the participant completes a single test. The distance between the start region and the end
point is the same for all tests. However, the number of steps to complete a single test varies. As shown
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in Table 3, average number of collisions to complete a single test with traversable area expansion is
78.6% less than that with original ground detection. Most of the collisions occurred when the user
did not know which direction to walk as the original ground detection is at short-range. Additionally,
the average time to complete a single test with traversable area expansion is 29.5% less than that
with original ground detection. Moreover, the number of average steps to complete a single test with
traversable area expansion is 43.4% less than that with original ground detection. It is the expansion
of traversable area which endows VIP the ability to plot routes farther ahead and, therefore, reduce
traversing time and the number of steps. Each participant completes the tests with different obstacle
arrangements in a random order. As a result, the participants have no idea about the arrangement of
obstacles each time. It is ruled out that the decrease of collisions and traversing time after traversable
area expansion is due to variation of familiarity with the prototype. Since the test was taken with
traversable area expansion first and the taken with original ground detection afterwards, if it was due
to the variation of familiarity, it would enhance rather than weaken the performance of navigational
assistance, such as the number of collisions and the traversing time taken with traversable expansion
would be more than with original ground detection. It can be proved convincingly that traversable
area expansion improves the performance dramatically. In other word, the safety and robustness

enhances navigation.
(b)

Figure 15. Obstacle arrangements. (a) An image of obstacle arrangement; (b) Four other

(@

obstacle arrangements.

Table 3. Number of collisions and time to complete tests in two conditions: the audio interface
transferred to the VIP is generated according to original ground detection or traversable area expansion.

. Total Average Number  Total Time  Average Time Average Number of
Detection Result L Total Number
Transfered to VIP Number of of Collisions of  to Complete  to Complete of Steps Steps to Complete
Collisions Each Time Tests a Single Test a Single Test
Original ground 103 2.58 733s 1833's 1850 4625
deteciton
Traversable area
22 0.55 517 s 1293 s 1047 26.18

expansion

After the test, eight participants were asked two simple questions including whether the prototype
is easy to wear and whether the system provides convenient assistance to travel in an unfamiliar
environment. Shown in the questionnaire (Table 4), all users answered that the system is useful and can
offer help in unknown or intricate environments. It not only gave us significant confidence, but also
demonstrated usefulness and reliability of the approach. In addition, some users gave some advice on
adding functions, such as face recognition or GPS navigation and a user hopes that the prototype be
designed in a hat.
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Table 4. A questionnaire. After the test, eight participants were asked two simple questions.

User  Total Blind or Partially Sighted  Easy to Wear?  Useful? Advice

User 1 Partially sighted Yes Yes

User 2 Partially sighted Yes Yes Add face recognition
User 3 Total blind Yes Yes Design the prototype in a hat
User 4 Partially sighted Yes Yes

User 5 Partially sighted No Yes Add GPS navigation
User 6 Total blind Yes Yes

User 7 Total blind No Yes

User 8 Partially sighted Yes Yes

6. Conclusions

RGB-D sensors are a ubiquitous choice to provide navigational assistance for visually impaired
people, with good portability, functional diversity, and cost-effectiveness. However, most assisting
solutions, such as traversable area awareness, suffer from the limitations imposed by RGB-D sensor
ranging, which is short, narrow, and prone to failure. In this paper, an effective approach is proposed
to expand ground detection results to a longer and broader range with a commercial RGB-D sensor,
the Intel RealSense R200, which is compatible with both indoor and outdoor environments. Firstly,
the depth image of the RealSense is enhanced with large scale matching and color guided filtering.
Secondly, preliminary ground segmentation is obtained by the RANSAC algorithm. The segmentation
is combined with an attitude sensor, which eliminates many sample errors and improves the robustness
of the preliminary result. Lastly, the preliminary ground detection is expanded with seeded region
growing, which fully combines depth, attitude, and color information. The horizontal field angle of the
traversable area has been increased from 59° to 70°. Additionally, the expansion endows VIP the ability
to predict traversability and plan paths in advance since the range has been enlarged greatly to a large
extent. The approach is able to see smoothly to the horizon, being acutely aware of the traversable
area at distances far beyond 10 m. Both indoor and outdoor empirical evidences are provided to
demonstrate the robustness of the approach, in terms of image processing results, detection rate,
and expansion error. In addition, a user study is described in detail, which proves the approach to be
usable and reliable.

In the future, we aim to incessantly enhance our navigational assistance approach for the visually
impaired. Especially, the implementation of the algorithm is not yet optimized, so we are looking
forward to speeding it up. Additionally, a cross-modal stereo-matching scheme between IR images
and RGB images would also be interesting and useful to inherently improve the detecting range and
ranging accuracy of the camera.
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Abstract: We propose a liquid crystal (LC)-based 3D optical surface profilometer that can utilize
multiple fringe patterns to extract an enhanced 3D surface depth profile. To avoid the optical phase
ambiguity and enhance the 3D depth extraction, 16 interference patterns were generated by the
LC-based dynamic fringe pattern generator (DFPG) using four-step phase shifting and four-step
spatial frequency varying schemes. The DFPG had one common slit with an electrically controllable
birefringence (ECB) LC mode and four switching slits with a twisted nematic LC mode. The spatial
frequency of the projected fringe pattern could be controlled by selecting one of the switching slits.
In addition, moving fringe patterns were obtainable by applying voltages to the ECB LC layer, which
varied the phase difference between the common and the selected switching slits. Notably, the DFPG
switching time required to project 16 fringe patterns was minimized by utilizing the dual-frequency
modulation of the driving waveform to switch the LC layers. We calculated the phase modulation
of the DFPG and reconstructed the depth profile of 3D objects using a discrete Fourier transform
method and geometric optical parameters.

Keywords: optical surface profilometry; interference; phase modulation; liquid crystal; dynamic
fringe pattern generator

1. Introduction

Recently, the demand for acquiring 3D information has increased, accompanied by improvements
in several 3D applications like 3D displays, 3D printing technologies, 3D medical or dental imaging
systems, and 3D vision modules for robot or vehicle applications [1-6]. For these applications, 3D depth
information together with conventional 2D images is critically needed, and cannot be obtained with
conventional 2D vision systems. Optical 3D vision systems can measure 3D information for an
object with a wide scope in a relatively short time because they obtain the 2D coordinate information
together with the depth information optically in parallel using a Charge-Coupled Device (CCD) or
Complementary Metal Oxide Semiconductor (CMOS) image sensor.

The optical 3D surface profilometer can optically measure the surface morphology of an object
and compute the depth information without direct contact. In general, optical surface profilometers,
which extract 3D depth information from distortions of the projected optical beam patterns, need
an optical beam pattern generator module to utilize several structured beam. To measure a surface
profile of 3D objects, N-bits of binary-coded stripe patterns could be projected [7], where the number
of the binary-coded projection beam patterns needed to be increased to improve the measurement
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resolution. By utilizing gray-level beam patterns, the number of projection patterns could be effectively
reduced [8], but this approach needs more complex spatial light modulators (SLMs) with a higher
pixel resolution and a larger pixel density to generate the gray-level patterns. To effectively reduce
the measurement time, a one-shot scanning method using periodic grid patterns was proposed [9].
Using a coherent light source, interference fringe patterns could be projected [10-14]. To avoid the
optical phase ambiguity from the fringe patterns distorted by the surface morphology, multiple sets of
interference patterns were needed, and phase unwrapping or geometrical parameter methods were
applied to reconstruct surface depth profiles. The depth extraction method based on the geometrical
parameters could provide the depth and position value informations in the absolute coordinate system
without the phase unwrapping process [10]. These optical techniques do not damage the surface
morphology of an object even for a soft surface.

In most cases of optical surface profilometries, to acquire more precise 3D depth information,
several sets of specific beam patterns are needed. These are generated by beam pattern projecting
modules such as mechanically moving wedge plates [15], tunable gratings [16], switchable gradient
index lenses [17], polymer dispersed liquid crystal (LC) techniques [18,19], and several types of phase
modulators using SLMs [20,21]. Recently, to obtain color information of an object in addition to the 3D
depth information, time-sequential projection of structured and RGB-colored beam patterns was also
proposed using fast switching digital light processing (DLP) projectors [22]. However, conventional
projection units based on commercial SLMs and DLP are too bulky and not cost-effective for industrial
field applications, especially dental imaging, which needs an elaborate and complex semiconductor
manufacturing process for the preparation of backplanes to control the 2D phase or intensity patterns
with matrix driving schemes [23-25].

In this study, we propose an LC-based dynamic fringe pattern generator (DFPG) for a more
compact 3D optical surface profilometer system, which can generate multiple fringe patterns to
enhance the 3D depth extraction and avoid the optical phase ambiguity in analyzing the 3D depth
profile from distorted fringe patterns induced by the surface morphologies. Sixteen interference
patterns are generated with four-step phase shifting and four-step spatial frequency varying schemes
by the proposed LC-based DFPG without a mechanically moving part. In our DFPG, the 16 sets of
fringe patterns can be generated by a single, compact LC cell, which has one common slit operated by
an electrically controllable birefringent (ECB) LC mode and four switching slits operated by a twisted
nematic (TN) LC mode. Four different moving fringe patterns are controlled by the phase value of
the ECB LC layer behind one common slit. The interferometric fringe patterns with four different
spatial frequencies are controlled by electrically selecting one of the switching slits operated by the TN
mode. The switching time of the DFPG module, required for projecting the 16 sets of fringe patterns,
is minimized by utilizing the dual-frequency-based LC switching scheme. We present the optical
and material design of the LC-based DFPG and its manufacturing process obtaining multiple sets of
fringe patterns using a compact module with a fast switching time. The electrical switching properties
of the phase modulation and the slit spacing controls for the interference patterns of the DFPG are
characterized and the 3D depth profile reconstruction from the distorted fringe patterns using the
discrete Fourier transform (DFT) method and geometric optical parameters is presented.

2. Operation Principle of the DFPG and the Theory of Depth Extraction
2.1. Schematic and Operation Principle of the DFPG

2.1.1. Schematic of the DFPG

In this study, the DFPG was designed to develop a 3D optical surface profilometer that can exhibit
multiple sets of interference fringe patterns with four steps of the spatial frequency and four steps of the
phase shifting properties without any mechanical translation stages. As shown in Figure 1, the DFPG
consists of a multi-directional LC alignment layer on the top substrate to provide the ECB LC and TN
LC modes for the phase-shifting common slit and four switching slits, respectively. On the other side
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of the multi-alignment layer of the top substrate, five Al slits were fabricated by the lift-off process.
The indium tin oxide (ITO) layer under the multi-directional alignment layer was also patterned
using photolithography to control one ECB LC layer and four TN LC layers individually by applying
appropriate voltages to them. The positions of the patterned ITO layer, patterned LC alignment layers,
and Al slits were precisely aligned with each other with alignment marks. The spacings between
one common slit with the ECB LC mode and the other switching slits with the TN LC modes were
Ag =200, 400, 600, and 800 pm. The widths of the Al slits and the patterned ITO electrodes were 52 and
50 pm, respectively. A uni-directionally rubbed LC alignment layer was prepared on the non-patterned
ITO glass substrate as the bottom substrate. Parallel polarizers were attached on both sides of the
two substrates.

Figure 1. Schematic of the LC-based dynamic fringe pattern generator for projecting multiple sets of
interference patterns with phase-shifting and spatial-frequency-varying properties.

The multi-spatial frequency properties of the interference fringe patterns were achieved by
applying a turn-on voltage on one of the switching slits prepared with the TN LC mode. The four-step
phase shifting properties were developed by controlling the applied voltage through the ECB LC
mode layer used for the common slit. As a result, the DFPG can generate 16 sets of the multiple fringe
patterns that exhibit four different spatial frequencies together with four-step phase-shifted fringe
patterns for each selected spatial frequency.

The DFPG was fabricated with a dual-frequency LC (MLC-2048, Merck Ltd., Seoul, Korea) to
enhance its switching response time required for generating the 16 sets of fringe patterns. The inversion
frequency of the dielectric anisotropy of MLC-2048 is 50 kHz. Its dielectric anisotropy values are
Ae = 3.2 at the low frequency AC driving of 1 kHz and Ae = —3.4 at the high frequency AC driving
of 100 kHz. The extraordinary refractive index of the dual-frequency LC is 1.7192, and the ordinary
refractive index is 1.4978. Therefore, the cell gap of the DFPG was calculated as 2.48 pum to realize
over 37/2 phase modulation of the LC layer. We dropped a mixture of an optical adhesive polymer
(NOA 65, Norland Products, Inc., Cranbury, NJ, USA) with ball spacers on the four edges of the
patterned ITO/ Al substrate, and the top substrate was covered with the bottom electrode substrate.
The ball spacers uniformly supported the cell gap of the DFPG required for reliable phase modulation.
In our DFPG, the cell gap was about 4 um. The empty DFPG cell was filled with MLC-2048 by the
capillary force over the nematic-isotropic phase transition temperature (Ty; = 106.2 °C) of the LC.
After slowly cooling the LC cell to room temperature, the LC layer was well aligned multi-directionally
along the patterned rubbing directions of the alignment layer of the top substrate, showing the two LC
domains of the ECB and TN LC modes.

2.1.2. Operation Principle of the DFPG

The operation principles of our DFPG and field-dependent LC orientations on each patterned slit
are shown in Figure 2, where the projected fringe patterns, which were measured under the far-field
interference conditions using a CCD camera, are co-plotted according to the applied voltage conditions.
As shown in Figure 2, the common slit is aligned with the ECB LC mode that can modulate the phase
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shifting and the four switching slits are aligned with the TN LC mode that can modulate the spatial
frequencies of the fringe pattern. Under the parallel polarizer condition, the LC alignment direction of
the bottom substrate is parallel with the transmission axes of the top and bottom polarizers. Therefore,
the incident polarization state after the bottom polarizer does not change irrespective of the applied
voltage within the ECB LC mode. The incident beam passing through the ECB LC layer always
transmits the top polarizer after passing though the common slit without intensity loss irrespective of
the applied voltage.

However, the polarization states of the incident beams passing through the TN LC layers, initially
polarized by the bottom polarizer, are rotated by 90° owing to the polarization rotating effect of the
twisted LC structure in the field-off state. Thus, the beams after four switching slits are blocked by the
second polarizer without an applied voltage in our parallel polarizer scheme. The dielectric anisotropy
of the LC used in our experiment is positive under low frequency AC driving conditions, and the
LCs are reoriented along the applied field direction. When a voltage sufficient to fully reorient the
LCs along the vertical field direction is applied to the TN LC layer under one of the switching slits
by the patterned ITO electrode, the LC molecules in the selected local area can be fully reoriented to
the vertically aligned geometry, as shown in Figure 2a,b. Thus, the beam passing through the selected
switching slit can be transmitted through the second polarizer. Therefore, depending on the applied
voltages of the patterned ITO electrodes under the four switching slits, the distance between two
interference slits can be controlled, which enables four different spatial frequencies of the projected
fringe patterns, as shown in Figure 2a,b. In Figure 2a,b, the fringe patterns measured under the shortest
and the longest slit distances in our DFPG are shown for the example cases of the lowest and the
highest spatial frequencies of the projected fringe patterns, respectively. By using these methods,
the multi-spatial frequency schemes were developed in the DFPG without any mechanical translation
stage part.

Figure 2. Operation principles of the DFPG switched by field-induced patterned LC orientations
and the resulting projected fringe patterns. (a,b) show the LC orientations and spatial frequency
variations of the projected fringe patterns by control of the selected switching slit with applied
voltages: (a) Ag =200 pm slit spacing and (b) Ag = 800 um slit spacing; (c,d) show the field-induced
LC orientations and the moving fringe patterns by control of the phase shifting at the common slit with
applied voltages under the fixed slit spacing condition (Ag = 200 pm slit spacing).
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Under the fixed spatial frequency attained by selecting the switching slit of one TN LC layer, the
four-step phase-shifting schemes can be achieved by applying voltages to the ECB LC layer of the
common slit for an appropriate phase difference with the phase of the selected switching slit. The phase
shift is decided by the optical path length difference between the ECB LC layer and the field-applied
TN LC layer under two slits of one common slit and the selected switching slit, respectively. Figure 2¢,d
show the initial and the relatively moved fringe patterns according to the applied voltages in the
ECB LC layer for the same selected switching slit condition, where the spatial frequencies of two
fringe patterns maintain each other. The effective refractive index of the ECB LC layer can be varied
by applying voltages because the incident polarization is parallel to the rubbing direction of the LC
alignment layer, and the LC layer operated with the ECB LC mode, which has a field-dependent
tilting redistribution of the LC layer, does not exhibit any LC twisting distortion irrespective of the
applied voltages. Thus, the optical path length passing though the common slit can be modulated
according to the voltage applied to the ECB LC layer. For 3D depth extraction from the projected fringe
patterns, which are distorted by an object, four-step phase shifting, especially over 37t/2 phase shifting,
is needed, and the thickness of the DFPG LC cell is designed considering the birefringence of the LC
used in our experiment.

2.1.3. Fabrication Process of the DFPG

To electrically control the spatial-frequencies and phase modulation of the fringe patterns,
the ITO electrodes were patterned by a photolithography and chemical etching process, as shown in
Figure 3a. The first step for developing the patterned ITO electrodes was the spin-coating of a positive
photoresistor (GXR-601, AZ Electronic Materials Co., Wiesbaden, Germany) on the ITO glass substrate.
The GXR-601 photoresistor was coated under the conditions of 2500 rpm for 5 s, 3500 rpm for 30 s, and
2500 rpm for 5 s. After the spin-coating process, the coated ITO glass was heated to 90 °C on a hotplate
for 90 s. Then, the coated photoresistor was projected through the photo-mask pattern by ultraviolet
light and was etched with the photoresistor developer (AZ300, AZ Electronic Materials Co.) for 18 s.

Figure 3. Fabrication process of the top substrate for the multiple slits and the aligned ITO patterns
of the LC-based DFPG device: (a) ITO electrode patterning and (b) Al slit array patterning using the
lift-off process.

The patterned photoresistor coated on the ITO glass was heated again on the hotplate at 120 °C
for 3 min. Finally, to define the ITO electrode pattern, the ITO electrode was etched by the ITO etchant
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(LCE-12K, Cyantek Co., Fort Worth, TX, USA) for 20 min and the photoresistor, which might have
remained on the substrate, was removed by an acetone cleaning process.

To generate the interference patterns, the Al slits were prepared on the backside of the patterned
ITO surface of the glass substrate. In this study, the Al slits were fabricated using the metal lift-off
method to avoid chemical damage on the ITO patterns during our Al slit manufacturing prepared at
the same substrate. For the Al slit patterning process, the patterned ITO glass substrate was turned
over and the photoresist was patterned with a photo-mask, as shown in Figure 3b. The Al slits must be
aligned precisely with the patterned ITO electrodes to control each slit independently. The positions
of the patterned ITO electrodes and the Al slits were aligned with the alignment marks. A negative
photoresist (AZ-5214, AZ Electronic Materials Co.) was used for the Al slit patterning, which was
suitable for the metal lift-off process. After the process of the negative photoresist pattering, the Al
layer was deposited using vacuum thermal evaporation equipment with a 500 nm thickness. The Al
slit patterns were defined clearly by removing the photoresist with acetone. To protect the Al slits from
a physical scratch damage, the SiO, layer was deposited on the patterned Al layer as a passivation
layer with a 500 nm thickness.

To realize the optical 3D surface profilometry system without any mechanical stage, we implemented
an orthogonally aligned LC sample, where the two LC alignment directions were precisely aligned
with two regions of the common slit and four switching slits. Those were also aligned with the
patterned ITO electrodes, as shown in Figures 1 and 4. As shown in Figure 4, the orthogonally aligned
LC sample was implemented using the multi-rubbing method on the patterned ITO/Al substrate.
After rubbing the LC alignment layer with a soft rubbing cloth attached on the roll-based rubbing
machine, the LC molecules can be unidirectionally aligned on the LC alignment surface along the
rubbing direction owing to the rubbing-induced surface morphology change and the alignment
effect of the LC-interactive side chains of the LC alignment surface material [26]. However, with this
conventional rubbing process, the multi-directional patterned LC alignment condition, required in our
DEFPG for coexisting two LC modes of the ECB LC mode and the TN LC mode in single LC cell, cannot
be obtained. To develop the DFPG with the multi-directional LC alignment, we suggested two steps of
the rubbing process supported by the photolithography process between each rubbing step. First,
the LC alignment layer (polyimide, PI, SE-5811, Nissan Chemical Industries Co., Tokyo, Japan) was
spin-coated on the patterned ITO electrode under the conditions of 1000 rpm for 5 s, 3000 rpm for 30's,
and 1000 rpm for 5 s.

Figure 4. Schematic of the multi-rubbing process for two domains of the initial LC alignments on
patterned ITO substrates to enable the ECB LC mode on the common slit for the phase changing of the
interference patterns and the TN LC mode on the switching slits for changing the spatial frequency of
the projected fringes: (a) spin-coating of the LC alignment layer; (b) the first rubbing process over the
whole area; (c) the second rubbing process after the formation of the patterned passivation layer with
photoresistor where the rubbing direction is orthogonal to the first rubbing direction; and (d) the final
multi-rubbed LC alignment layer for the top substrate of the DFPG device, prepared after removing
the passivation layer.
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The coated PI layer was baked at 230 °C for 30 min and then it was uni-directionally rubbed with
the roll-based rubbing machine at a roller speed of 300 rpm and a substrate speed of 10 mm/s in the
horizontal direction, as shown in Figure 4b. Before the second rubbing process, the rubbed PI layer was
protected by the photoresist (GXR-601) layer, and it was partially patterned by the photolithography
process using the photo-mask, as shown in Figure 4c, where the LC alignment layer prepared for the
ECB LC mode operation under the common slit was locally protected for the second rubbing process.
With the partially passivated PI layer, the uncovered PI surface was rubbed orthogonal to the first
rubbing direction, and then the residual GXR-601 layer was completely removed using acetone, as
shown in Figure 4d, which schematically shows the final LC alignment directions of the top substrate
of our DFPG, which has two orthogonal LC alignments for two LC domains of the ECB and TN LC
modes. For our two domains of LC alignment, the photoresist process and its removing process should
not physio-chemically degrade the LC alignment capability produced by the first rubbing process.
Thus, the types of photoresist and their etchants should be carefully chosen, as mentioned in our
experimental procedure.

Figure 5a,b show the photo-mask used for the ITO etching and the Al slit patterning process,
respectively. In Figure 5a, five wide ITO patterns, directly connected to each ITO line pattern, can
be seen, which were prepared for the wire-bonding process to control the electro-optic properties
of the common slit and five switching slits individually with the driving signals. Figure 5c shows
the finally implemented top substrate of the DFPG with the patterned ITO electrodes and the Al slit
arrays. The substrate size was 15 x 20 mm? in our sample implementation. The size of the actual area,
which optically acts as the DFPG, was almost 8 x 1 mm?.

(a) (b) (0

Figure 5. CAD images of photo-lithographic masks with the alignment marks for (a) ITO patterning
and (b) Al slit patterning; (c) Image of the fabricated DFPG device.

2.2. Theory of Depth Extraction

2.2.1. Calculation of the Phase Modulation

When using our four-step phase-shifting scheme for the 3D depth extraction, the phase-shifting
in our DFPG according to an applied voltage to the common slit needs to be precisely measured.
The optical set-up of the phase modulation measurement is shown in Figure 6a. The coherent light
source of a He-Ne laser (A = 632.8 nm) was used to generate interference fringe patterns and to measure
the field-dependent phase modulation of the LC layer operated by the ECB LC mode. The speckle
noise and high order fringe visibility could be minimized to be a negligible level as shown in Figures 2
and 6 because the coherence length of the He-Ne laser used in our experiment was 20 cm that was
much smaller than those of coherent light sources used for conventional holographic interference
experiments. The fringe visibility of the dynamic fringe patterns was about 0.9 in our system. This
fringe visibility was enough to obtain the 3D depth extraction with our four-step phase-shifting and
four steps of multi-spatial frequency scheme [21]. The beam from the He-Ne laser was expanded by
a beam expander and was passed through an iris to reduce the optical noise so that a suitable spot
size with a uniform beam intensity can cover all of the five Al slits. The light polarized with the x-axis
polarizer was passed through the DFPG. The DFPG generated fringe patterns from two slits and the
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fringe patterns expanded by a projection lens were projected on a flat-panel screen. The projected
fringe patterns on the flat-panel screen were captured by a CCD (FL2-14S3H, Pointgrey, Richmind, BC,
Canada) with 4.4 um pixel pitch and the field of view (FOV) of the CCD lens module was 12°.

We used the DFT method to measure the phase modulation. The fringe pattern by the DFPG
was calculated using the equation M, = angle[X(pN/ A + 1)], as explained in our previous study,
obtained using a mechanical moving slit system [21]. The values of the phase modulation were
repeatedly calculated depending on the change of the applied voltage with an increase of 0.01 V per
step. As shown in Figure 6b, the phase modulation over 37t/2 was achieved at 5.6 V. The voltage
values for the four-step phase modulation were measured as 2.1, 3.1, 3.8, and 5.6 V, each for the phase
shift of A =0, /2, 7, and 37/2, respectively, as shown in Figure 6b. For each step of increasing the
applied voltage to the common slit, the projected fringe patterns with the same spatial frequency were
moved spatially by a quarter of the periodicity of the fringe patterns, as shown in the inset picture of
Figure 6b.

(a) (b)

Figure 6. (a) Optical system for measuring phase modulation values of the common slit according to
an applied voltage and their moving fringe patterns; (b) Measured phase modulation curve according
to an applied voltage and the fringe patterns captured under A¢ =0, 7t/2, 7, and 371/2 conditions.

Figure 7 shows the time sequence of the driving waveforms applied to the common slit part and
four switching slit parts used for our DFPG. The driving waveforms for the common slit were changed
every 200 ms and the amount of the applied voltage was increased to 2.1V, 3.1V, 3.8V, and 5.6 V
at 1 kHz to achieve phase shifting of Ap =0, /2, 7, and 37/2, respectively, as shown in Figure 6.
At a given phase-shifting amount condition, four-step spatial-frequency-varying fringe patterns were
projected by applying dual-frequency-driving waveforms to the TN LC parts individually operated
by the four patterned ITO electrodes. The turn-on waveform for each TN LC part of the switching
slits was applied with 5 V of the applied voltage at 1 kHz for 50 ms, and then the turn-off waveform
was applied with 5 V of the applied voltage at 100 kHz for 150 ms. These frequency-modulating
AC waveforms were applied in sequence to the ITO electrode pattern of each switching slit every
50 ms to obtain four sets of fringe patterns with four different spatial frequencies. When applying
the turn-off waveform with high frequency AC driving to the switching slit IV, the voltage required
for the next step of the phase-shifting was applied to the ECB LC layer of the common slit and then,
frequency-modulating waveforms were sequentially applied to the four TN LC layers to select four
different spatial frequencies of the projected fringe patterns. In this manner, the whole scanning time
required for the four-step multi-spatial frequencies and four-step phase shifting schemes could be
completed in less than 800 ms. This means that the optical surface profilometry can capture 16 sets
of fringe patterns distorted by an object in less than 800 ms. Our profilometry using the DFPG can
exhibit quite fast scanning and capturing speeds suitable for hand-held dental applications, compared
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with our previous study of a 3D optical surface profilometry system constructed with a mechanically
moving optical element [21].

Figure 7. Driving waveforms of voltages applied to the LC layer on each slit of the DFPG utilizing
the dual-frequency modulation for projecting 16 fringe patterns with the four different multi-spatial
frequencies and the four-step phase shifting within the fast switching time.

2.2.2. Theory of 3D Depth Extraction

Figure 8a shows the optical setup used to reconstruct a 3D depth profile with the DFPG device.
The multiple sets of fringe patterns generated by the DFPG were projected though the projection lens
onto the surface of an object. The fringe patterns distorted by the object surface were captured by a
CCD. Figure 8b shows the geometrical parameters used to calculate the depth and position information
from the CCD images. The optical system is composed of the DFPG, projection lens, CCD camera,
and testing object. The DFPG and CCD are on the y-z plane. The center points of the projection lens,
CCD, and object are defined by (yam, zm), (yc, zc) and (ypor, zpor), respectively. The fringe patterns are
expanded through the projection lens, and the projected fringe patterns are distorted depending on the
surface profile of an object. The optical axis of the DFPG is parallel to the z-axis, and the optical axis of
the CCD is tilted at an angle of ¢¢ to the z-axis. A point of interest (POI) on the object is expressed
using geometrical parameters. As shown in Figure 8, a POI on the object is defined as (ypor, zpor)-
The line between the center of the projection lens and the POl is tilted at an angle of « with respect to
the optical axis of the DFPG. The line between the center of the CCD and the POl is tilted at an angle
of 0po; with respect to the optical axis of the CCD. In this case, the triangular method, defined by the
geometrical parameters, leads to the following relationships:

zpor — zc = — (ypor — Yc) cot (¢ — Opo;) and (1)
zpor — zm = (Yror — Ym) cota 2)
From Equations (1) and (2):

(yc —ym) — (zc — zm) tane

tana — tan (dc — Opoy) +zcand ®)

Zpor =
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(ZC — ZM) — (yC — yM) cotx
cotx + cot (pc — Opoy) tye @

are obtained. Finally, Equations (3) and (4) show the depth and position information of the object
calculated from the geometrical parameters [21].

Ypor =

Figure 8. (a) Optical set-up to reconstruct the depth profile of a 3D object with the DFPG device;
(b) Geometrical parameters of the 3D vision system used for 3D depth extraction.

3. Experimental Results and Discussion

3.1. Dynamic Phase Changing and Multiple Spatial Frequency Modulation Properties of the DFPG

In our DFPG for 3D optical surface profilometry, the transmission axes of the two polarizers and
the rubbing direction of the LC alignment layer of the bottom substrate are aligned to be parallel to
each other. In this device configuration, Figure 9a shows the polarization optical microscope (POM)
images of the DFPG cell measured with applying the turn-on voltage to one of the TN LC layers used
for switching the switching slits with varying the spacing for two beam interference, Ag = 200, 400, 600
and 800 um. As shown in Figure 9a, the beam transmitted through the common slit, which is used as
one beam spot for two-beam interference, is always under the turn-on state without intensity variation.
However, the spacing between the two slits for interference can be controlled by the applied voltage
conditions of the TN LC layers under the four switching slits. In all cases, three switching slit areas,
which were not selected by the turn-on voltage, showed a dark texture without light transmittance.

To observe the field-dependent birefringence change in the ECB LC layer under the common
slit, POM images of the DFPG cell were obtained between the crossed polarizers after detaching the
parallel polarizers from the DFPG cell, as shown in Figure 9b. In this measurement, the POM images
were captured by rotating the rubbing direction of the bottom substrate of the DFPG cell by 45° with
respect to the crossed polarizers. On the common slit area, light transmittance or a color change could
be observed owing to a variation of the phase modulation with increasing applied voltage to the ECB
LC layer.
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Figure 9. POM images depending on applied voltage conditions at each slit. (a) POM images
measured between the parallel polarizers with varying selected switching slits for interference, which
creates fringe patterns with four different spatial frequencies; (b) POM images showing the four-step
phase shifting of the LC layer on the common slit captured between the crossed polarizers to show
field-dependent birefringence variation.

It is important to obtain the fast response property of the DFPG required in projecting 16 sets of
multiple fringe patterns. The 3D depth profile is calculated from the 16 fringe pattern images distorted
by surface morphology. The fast response time of each LC slit is positively necessary to improve the
operating time of the 3D vision system. In this study, the dual-frequency LC was used to improve
the response time of the LC layer switching. A dual-frequency LC exhibits the frequency-dependent
dielectric anisotropy where Ae is positive under the low frequency operation and Ae is negative under
the high frequency operation. That means that the LC molecules are reoriented along the applied field
direction under the low frequency operation, whereas the LC molecules are reoriented perpendicular
to the applied field direction under the high frequency operation.

The response times of the DFPG were measured by electro-optic characterization equipment
(LCMS200, Sesim Photonics Technology Co. Ltd., Uiwang, Korea). The common slit was blocked to
measure the response times of the switching slits operated by the TN LC mode. Figure 10a shows
that the turn-on response time switched by the low Hz operation of 5 V at 1 kHz was about 1.6 ms,
sufficient for projecting multiple fringe patterns. However, the turn-off response time, measured by
the field-off condition, showed a relatively slow response with a value of about 36.1 ms, as shown
in Figure 10b. The natural field-off LC relaxation to the initial TN state is supported only by the LC
elastic property and the LC surface anchoring, which was too slow to be used in our optical surface
profilometry system. In our experiment, the turn-off response of the switching slit was improved
by applying the high frequency operating field to obtain the field-driven turn-off property instead
of the natural field-off LC relaxation. Figure 10c shows that the turn-off response was improved to
about 8.1 ms by applying a high frequency AC field of 5 V at 100 kHz. Consequentially, the total
response time of the TN slit was about 9.7 ms. As shown in Figure 7, the dual-frequency modulation
scheme was used to switch four switching slits in sequence at a given phase-shifting amount of the
common slit.
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Figure 10. On/Off response times of the LC layer of the DFPG. (a) Field-on response time; (b) Field-off
response time obtained by the natural relaxation of the LC layer due to the surface alignment effect
without applying any electric field; (c) Off response time obtained by applying a high frequency field
to the LC layer utilizing the frequency inversion effect of the LC dielectric anisotropy.

3.2. Depth Extraction from 3D Optical Profilometry

Figure 11a shows a the photographic image of the object used for the 3D depth extraction
with the presented 3D optical surface profilometry system, which was deliberately chosen to have a
continuously slanted surface together with an abrupt depth change discontinuity from the background
reference surface. The smallest height at the abrupt side edges of the slanted object was over 40 mm,
which was much higher than the optical wavelength used in our experiment. The regions marked with
the dotted red box were reconstructed after projecting multiple sets of fringe patterns with our DFPG.
Figure 11b shows the 16 sets of fringe patterns distorted on the slanted object. Four sets of laterally
moved fringe patterns were obtained by changing A¢ via the common slit control. At a given A¢
condition, multiple fringe patterns having four different spatial frequencies were sequentially projected
by selecting the Ag condition of the switching slits. Because there was a high depth discontinuity
between the slanted surface and the background surface, some bright (or dark) fringe lines on the
slanted surface were continuous with those on the background surface. This optical phase ambiguity
could be solved using the four-step phase shifting scheme during the depth reconstruction [21,27].

The upper image of Figure 12a shows the enlarged CCD image of one of the projected fringe
patterns, where we can observe some optical noises within the fringe patterns, which might be
produced by some particles from our optical components. However, the synthesized phase map
obtained after applying the four-step phase shifting algorithm, presented in the lower image of
Figure 12a, shows that this type of the background optical noise within the fringe patterns can be
successfully eliminated after the 3D depth reconstruction.
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Figure 11. (a) Photographic image of the slanted object used for the 3D depth extraction; (b) CCD
images of the distorted fringe patterns projected on the slanted object.

Figure 12. (a) Original fringe optical pattern image (upper image) projected on the slanted surface of
Figure 11a using the interference slit of Ag = 200 um and the synthesized phase map (lower image)
obtained using the four-step phase shifting algorithm; (b) Fictitious scanning pattern images generated
from two spatial frequencies (Ag = 200 and 800 um) of the projected fringe patterns (the upper images)
and four spatial frequencies (Ag = 200, 400, 600, and 800 um) of the projected multiple fringe patterns
(lower images).

In our depth reconstruction, the fictitious scanning pattern is generated through multiple spatial
frequencies of the interference fringes for the 3D depth reconstruction using the geometrical optical
parameters [21,27]. In Figure 12b, the upper and the lower images show the fictitious scanning patterns
generated from the two spatial frequencies of Ag = 200 and 800 pm and generated from full sets of four
spatial frequencies (Ag = 200, 400, 600, and 800 pm), respectively. Compared with the upper image,
the fictitious scanning pattern shown in the lower image can make much sharper peaks owing to more
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sinusoidal sets of the spatial frequencies used in the synthesis of the fictitious scanning pattern [21,27].
This could result in the enhanced depth resolution and precision after the 3D depth reconstruction.

Figure 13 shows the 3D depth profile reconstructed from the slanted object using the 16 sets of the
dynamic fringe patterns. Compared with conventional phase unwrapping methods [28], one of the
merits of the depth reconstruction based on the geometrical optical parameters used in our experiment
is that the absolute depth values together with the 2D positional values, not just the relative phase
values, can be obtained, as shown in Figure 13.

Figure 13. 3D depth profile reconstructed from the slanted object.

When the size of an object to be measured with projecting the dynamic fringe patterns and to be
reconstructed with the 3D depth extraction increases with approaching the values of the numerical
aperture (NA) of the projection lens and the FOV of the CCD lens module, the calibrations of the
fringe images captured by the CCD camera would be needed to reduce and to compensate the image
distortions which might become more severe especially in the captured image boundaries owing to
like the vignetting effect of the lens-based projection and imaging system. In our experiment, the NA
of the projection lens was 0.4 and the FOV of the CCD lens module was 12°. Considering the projection
distance of 1 m, the object size which can be measured in our experiment would be about 25 x 25 cm?.
However, our object size was limited under 20 x 20 cm? because we had a problem in enlarging the
detectable object size because of the highly weakened fringe intensity with increasing the fringe pattern
size as shown in Figures 2 and 11. In our projection system, the much parts of the incident optical
beams were blocked by the five slits and the intensity profiles projected by the projection lens decrease
from the center to the image edges. We expect that this problems would be solved by improving the
collimating projection lens part and by introducing the optical coupling module between the light
source and the individual slits in the future work. However, this nonuniform intensity profile did
not affect the depth extraction process in our four-step phase shifting and four steps of multi-spatial
frequency scheme as shown in Figure 12. In our experiment set-up, we used the surface-distorted
dynamic fringe patterns captured by the CCD lens module without the positional image calibration for
the 3D depth extraction process. We checked the effect of the image distortion by our lens system by
placing a grid pattern at the object plane, the image distortion was negligible under our experimental
conditions of the FOV and the measurement distance. In Figure 13, the measurement error in the
absolute value was less than 2 mm. This might originate from additional image distortions produced
during the depth reconstruction process based on the geometric parameters, which are dependent on
the perspective imaging condition expressed by the angle values of « and 8pp; of Equations (3) and (4).
We expect that the measurement accuracy can be further improved after calibration of these geometric
parameters by using the periodic test patterns and the size of the measurable object can be enlarged
after improving the projection parts and improving the CCD camera module.
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Figure 14a shows the CCD images of the distorted fringe patterns projected on a square
box object (80 x 80 x 80 mm?). The perspective view of the 3D depth profile obtained after
the 3D depth reconstruction is presented in Figure 14b with the absolute coordinate axis values.
For each x, y, and z coordinate axis, the measurement errors of the extracted 3D depth profile
were 1.6, 0.9, 1.2 mm, respectively, which were slightly different depending on the coordinate axis.
This coordinate-dependent measurement error might originated in the different perspective viewing
conditions between the projection lens part and the image-capturing CCD camera part in our optical
system as shown in Figure 8. In the previous approaches, most of the optical surface profilometry
systems are based on the phase unwrapping algorithm for the depth reconstruction [28-30] and
need more complex optical elements like the time-sequentially switching multi-wavelength light
sources [31,32], additional optical components [33,34], and a mechanical translation state [21,35] for
the projection to generate multi-spatial-frequency or/and phase-shifting fringe patterns. Our optical
surface profilometry system based on the electrically switching single DFPG cell can generate dynamic
fringe patterns in a fast switching time and can extract the depth and 2D positional information of a
3D object even for cases having large surface depth discontinuities.

Figure 14. (a) CCD images of the distorted fringe patterns projected on the square box object; (b) 3D
depth profile reconstructed from the square box object.

4. Conclusions

3D optical surface profilometry systems have been applied to measure the depth profile of a
3D object and their application fields are much growing recently. To enhance the accuracy of the
3D depth extraction and/or to avoid the phase ambiguity problem, multiple sets of fringe pattern
projections are essential in the optical surface profilometry system. We suggested a single LC cell DFPG
operated by a simple passive driving scheme, which can be fabricated into a compact optical module.
To project 16 sets of dynamic fringe patterns having the optical features of four-step phase shifting
and four different spatial frequencies without any mechanical parts and any complex and expensive
SLM parts, two types of LC modes—the ECB LC mode and the TN LC mode—were included in the
single LC cell by preparing two orthogonal LC alignments on one of the LC alignment layers. Five
optical slits were prepared using photolithography and aligned with the patterned LC alignment
layer, where one common slit with the ECB LC layer was used for the four-step phase-shifting control
and four switching slits with the TN LC layers were used for the generation of four different spatial
frequencies. Moreover, to improve the scanning time required for generating the 16 sets of dynamic
fringe patterns, dual-frequency switching LC was employed, where the switching time—including the
turn-on and the turn-off times—controlled by the frequency modulation increased four-fold about
four times compared with the switching time controlled by the conventional single frequency. As a
result, the 16 sets of fringe patterns could be projected and captured within 800 ms. For the depth
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reconstruction procedures, the phase shifting in the common slit of the DFPG according to the applied
voltages was accurately measured. The resolution of the depth reconstruction obtained by applying
the DFT method and the optical geometric parameters was improved by using the four different sets
of spatial frequencies of the dynamic fringe patterns. Our 3D optical surface profilometry system
yields 3D depth profiles with respect to the absolute value 3D coordinates, not just the relative phase
depth maps, even for objects with abruptly changing surface profiles. Owing to the compactness and
fast switching properties of the DFPG, we expect that the presented 3D optical surface profilometry
system can be applied to a hand-held 3D vision module, which can be widely used for several mobile
applications requiring 3D depth information.
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Abbreviations

The following abbreviations are used in this manuscript:

DFPG Dynamic Fringe Pattern Generator
LC Liquid Crystal

N Twisted Nematic

ECB electrically controlled birefringence
ITO indium thin oxide

He-Ne Laser Helium-Neon Laser

DFT Discrete Fourier Transform

POM Polarizing Optical Microscope
FOV Field of View
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Abstract: Depth image acquisition with structured light approaches in outdoor environments is
a challenging problem due to external factors, such as ambient sunlight, which commonly affect
the acquisition procedure. This paper presents a novel structured light sensor designed specifically
for operation in outdoor environments. The sensor exploits a modulated sequence of structured
light projected onto the target scene to counteract environmental factors and estimate a spatial
distortion map in a robust manner. The correspondence between the projected pattern and the
estimated distortion map is then established using a probabilistic framework based on graphical
models. Finally, the depth image of the target scene is reconstructed using a number of reference
frames recorded during the calibration process. We evaluate the proposed sensor on experimental
data in indoor and outdoor environments and present comparative experiments with other existing
methods, as well as commercial sensors.

Keywords: depth imaging; modulated acquisition; structured light; triangulation; probabilistic
graphical models; 3D reconstruction

1. Introduction

Over the last few years, we have witnessed the rapid growth of 3D imaging technologies in
various application areas, ranging from autonomous navigation of robots, drones or cars [1-3], medical
applications [4,5], consumer electronics [6] and surveillance systems [7,8] to object reconstruction [9,10],
biometrics [11-13], and others [14-16]. Especially, with the introduction of low-cost commercial 3D
imaging sensors, such as Microsoft’s Kinect (Microsoft, Redmond, WA, USA) [6], depth sensing has
become a popular research direction with new applications and use cases being presented on a regular
basis. Several major corporations have since introduced their own depth imaging technology (e.g., Intel
(Santa Clara, CA, USA) recently announced the Euclid sensor; Sony (Tokio, Japan) introduced the
PlayStation Camera with the PS4 console; and Infineon (Neubiberg, Germany) developed the Real3
sensor) with the goal of participating in this rapidly growing depth-sensor market.

Existing 3D imaging techniques can be divided into two main categories: (i) active and (ii) passive.
Active techniques utilize an active source of illumination to project a suitably-devised pattern of
structured light onto the target scene and then perform 3D reconstruction based on temporal or
spatial distortions of the projected pattern caused by interactions with the target scene. Examples of
active techniques include standard structured light approaches [17-19], time-of-flight methods [20,21]
or interferometry [22]. A comprehensive review of existing techniques from this group can be
found in [23,24]. Passive techniques, on the other hand, do not rely on active illumination, but
commonly require only a calibrated pair of cameras. Typical examples of passive techniques represent
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stereo-vision [25], shape-from-focus [26], shape-from-shading [27] and other related shape-from-X
approaches [28]. The reader is referred to [29] for more detailed coverage of this topic.

When applied in outdoor environments, 3D imaging techniques are expected to provide accurate
depth information regardless of the external lighting and atmospheric conditions, which are known
to negatively affect the existing range measurement techniques. This property is crucial for various
outdoor applications that require reliable depth information to function properly. This paper addresses
the problem of outdoor depth imaging with structured light approaches and presents a novel sensor
designed specifically for outdoor deployment [30]. The sensor exploits the recently-proposed concept
of modulated pattern projection, introduced by our group in [31], which facilitates the acquisition of
spatial distortion maps in real-world environments (even in the presence of strong incident sunlight),
where other existing approaches often fail or at least struggle with their performance. Correspondences
between the projected pattern and the acquired distortion map are established based on a novel
probabilistic approach relying on graphical models (inspired by [32,33]) and are used in conjunction
with prerecorded reference frames to compute the depth information for each point of the projected
structured light pattern. All components of the sensor presented are designed for outdoor deployment
and contribute to the overall performance, as demonstrated in the experimental section.

We make the following three contributions in this paper: (i) we present a novel 3D imaging sensor
that supports robust acquisition of spatial distortion maps and is able to generate accurate depth
maps in challenging outdoor environments; (ii) we describe the complete hardware and software
(algorithmic) design of the sensor; and (iii) we present a comprehensive experimental evaluation,
as well as comparative results with competing techniques and existing commercial sensors.

The paper is organized as follows: Section 2 presents the main components of the depth sensor
and outlines their characteristics. The individual components are discussed in Sections 3, 4 and 5.
Experimental results and comparative evaluations are described in detail in Section 6. The paper
concludes with some final remarks and directions for future work in Section 7.

2. Sensor Overview

This section presents a short overview of a novel sensor designed for depth image acquisition.
The sensor presented was developed as part of our research efforts with respect to an active
triangulation system (ATRIS) capable of capturing depth images in difficult settings; for example,
under exposure to strong incident sunlight. The sensor relies on the established concept of depth image
acquisition based on structured light, in which a light pattern is first projected onto a target scene, and
the shape (i.e., depth information) of the scene is then inferred based on the spatial distortions of the
projected pattern and the (known) geometrical properties of the prototype.

A schematic representation of the three key components of the ATRIS sensor is shown in Figure 1.

e  The image acquisition procedure uses specialized hardware (comprised of a laser projector and
a high-speed camera) to project a structured light pattern onto the target scene with the goal of
capturing an image of the distorted pattern (i.e., a spatial distortion map). The procedure is based
on the recently-introduced concept of modulated pattern projection [31,34], which ensures that
spatial distortion maps of good quality can be captured in challenging conditions; for example,
in the presence of strong incident sunlight or under mutual interference caused by other similar
sensors directed at the same scene.

e  The light plane-labeling procedure establishes the correspondence between all parts of the
projected light pattern and the detected pattern that has been distorted due to the interaction
with the target scene. The procedure uses loopy-belief-propagation inference over probabilistic
graphical models (PGMs) as proposed in [33] to solve the correspondence problem and, differently
from other existing techniques in the literature, exploits spatial relationships between parts
of the projected pattern, as well as temporal information from several consecutive frames to
establish correspondence.
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e The 3D reconstruction procedure reconstructs the depth image of the target scene based on (i) the
reference frames of the light pattern projected onto a planar surface at different distances from the
camera and (ii) the established correspondence between parts of the projected pattern and the
detected distortion map.

A detailed description of all three key ATRIS components is presented below.

Acquisition setup (i) Light plane labeling (ii) 3D reconstruction (iii)
o laser o probabilistic graphical models o« calibration
« high-speed camera o loopy belief propagation o interpolation
e modulation for robust LI\ ¢ temporal information LI o reconstruction
pattern detection C
o demodulation on FPGA | X [
oS

ATRIS Sensor

Figure 1. Schematic representation of our active triangulation system (ATRIS) sensor. The sensor
comprises three key components: (i) an image acquisition procedure, which captures an image of
the projected light pattern; (ii) a light plane labeling technique, which establishes the correspondence
between all parts of the projected and detected patterns; and (iii) a 3D reconstruction procedure, which
constructs a depth image from the detected light pattern.

3. The Acquisition Procedure

This section describes the modulated pattern acquisition procedure used in the ATRIS sensor.
The section starts by presenting the hardware setup used in the sensor and then proceeds by describing
the pattern acquisition procedure and its characteristics. Note that the underlying concept of the
acquisition procedure was originally introduced in [31].

The hardware setup (shown in Figure 2a) used in the ATRIS sensor comprises a high-speed
industrial camera with an integrated FPGA processing core and a modulable 650-nm LED laser.
The high-speed (Velociraptor [35]) camera (Optomotive, Ljubljana, Slovenia) is capable of operating at
a frame rate of 480 fps, which allows the ATRIS sensor to capture images of the structured light pattern
at a speed of several frames per second. The sensor can therefore be used with static or dynamic scenes.

To acquire one image (or better said, a single frame) of the projected light pattern, the camera first
captures a series of images of the target scene (we refer to these images as sub-frames). Every time an
image (sub-frame) is taken, the laser projector is turned either on or off depending on the current value
of the pseudo-random binary control/modulation sequence ¢ € {0,1} that is cyclically shifted in the
FPGA modulation register [31]. If the control/modulation sequence takes a value of ¢ = 1, the laser
projector is turned on, and the captured sub-frame contains a snapshot of the illuminated target scene.
Similarly, when the control/modulation sequence takes a value of ¢ = 0, the laser projector is turned
off, and the captured sub-frame contains a snapshot of the scene without the structured light pattern
(see Figure 2b). Based on these sub-frames, the final image of the projected pattern is generated as a
normalized superposition of all sub-frames captured during one cycle of the control sequence.

As illustrated in Figure 2b, all sub-frames captured during the on state of the laser are added to
the superposition, and all sub-frames captured during the off state are subtracted. This demodulation
procedure is implemented in FPGA and removes most information about the appearance of the
target scene from the generated image/frame, thus significantly emphasizing the projected pattern.
A thresholding step is ultimately applied to the demodulated image to remove all remaining
(scene-related) artifacts and to produce the final binary image of the projected pattern needed for the
light plane labeling.
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(a) Hardware setup (b) Ilustration of the acquisition procedure

Figure 2. The acquisition procedure. (a) Visual appearance of the hardware setup of the ATRIS
sensor. The left side of the image shows the casing of the sensor and the right side the arrangement
of the camera (above) and the laser projector (below) in the casing. (b) Illustration of the modulated
acquisition procedure.

The acquisition procedure presented exhibits several desirable characteristics that are also
experimentally validated in Section 6.1 (for a formal theoretical argumentation of the characteristics,
the reader is referred to [31]):

e Noise suppression: The modulated acquisition procedure is robust for various types of noise.
If information related to the visual appearance of the target scene is treated as “background
noise,” then the procedure presented obviously removes the background noise as long as the
control/modulation sequence employed in the FPGA register is balanced (a balanced modulation
sequence is defined as a sequence with an equal number of zero- and one-valued bits). Because
demodulation is a pixel-wise operation, the acquisition procedure presented also suppresses
sensor noise (typically assumed to be Gaussian) caused, for instance, by poor illumination or high
temperatures, where a simple pair-wise sub-frame subtraction would not suffice.

e Operation under exposure to incident sunlight: Even if the illumination of the target scene by
incident sunlight is relatively strong, the modulation sequence is capable of raising the level
of “signal” pixels sufficiently to recover a good-quality image of the projected pattern. This
characteristic is related to the noise suppression property discussed above, because incident sunlight
behaves very much like background noise under the assumption that the intensity level of the
sunlight is reasonably stable.

e Mutual interference compensation: With the modulated acquisition procedure, it is possible to
compensate for the mutual interference typically encountered when two or more similar sensors
operate on the same target scene. This can be done by constructing the control/modulation
sequences based on cyclic orthogonal (Walsh-Hadamard) codes, in which the cross-correlation
properties of the modulation codes are exploited to compensate the mutual interference (see [31] for
more information). Similar concepts are used in other areas, as well; for example, for synchronized
CDMA (code division multiple access) systems [36] or sensor networks [37], for which mutual
interference also represents a major problem.

It should be noted that in the current implementation of the ATRIS sensor, a diffractive optical
element (DOE) mounted in front of the laser is used to split the laser beam and produce a structured
light pattern comprising 11 parallel light planes (see Figure 3a). For the modulation sequence, a 16-bit
long modulation sequence is used, which results in a stable pattern acquisition rate of 30 fps given a
camera frame rate of 480 fps (i.e., 480 fps/16 = 30 fps).
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(a) Original structured light pattern (b) Sample target scene (c) Image of deformed pattern

Figure 3. The correspondence problem: (a) an illustrative image of the structured light pattern produced
by the ATRIS sensor, without distortions; (b) an example of a target scene illuminated by the light
pattern; (c) an example of the spatial distortion map captured with the sensor. To be able to reconstruct
a depth image of the target scene, each pixel comprising the light pattern in (c) needs to be assigned a
label corresponding to one of the light planes in the pattern shown in (a).

4. Light-Plane Labeling

The modulated acquisition procedure presented in the previous section results in a binary image
(or frame) of the projected pattern that forms the basis for depth image reconstruction. As pointed
out in Section 2, the depth image is computed based on the geometrical properties of the acquisition
setup and the distortions of the structured light pattern caused by projecting the light pattern onto
the target scene [33]. Although the geometrical properties of the acquisition setup are commonly
known in advance, the pattern distortions need to be quantified before a depth image can be
constructed. Typically, this is achieved by establishing the correspondence between all parts of
the original structured light pattern (Figure 3a) and all parts of the captured distortion map (Figure 3c).
Because solving this correspondence problem (illustrated in Figure 3) is crucial for the success of
the depth-image-construction step, an efficient procedure based on probabilistic graphical models
(PGMs) was developed for the ATRIS sensor. A detailed description of the procedure is given below in
this section.

4.1. Problem Statement

The binary distortion map captured with the ATRIS acquisition setup contains a large number
of binary regions. The 11 light planes that constitute the structured light pattern are usually not
detected as large connected binary regions in the captured image, but in the form of shorter, potentially
discontinuous line fragments (we refer to any connected binary region (using eight-adjacency) in the
image as a line fragment), as shown in Figure 4. In addition, small binary regions not corresponding to
any of the projected light planes can also appear in the captured image due to the presence of noise.

Pixel segments Line fragments

Figure 4. Visual illustration of some terminology used in this paper. Connected binary regions (using
eight-adjacency) are referred to as line fragments. Smaller parts of the line fragments of fixed width are
referred to as pixel segments.
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The structured light pattern used in the ATRIS sensor consists of 11 parallel light planes. Solving
the correspondence problem, therefore, amounts to finding the correct light plane label for each of the
connected binary regions in the captured binary distortion map [33]. Although this labeling problem
could be approached for each non-zero pixel individually, we group the non-zero pixels into pixel
segments (i.e., parts of the line fragments with a fixed width; see Figure 4) and try to assign each pixel
segment one of the light plane labels to reduce the computational burden of the labeling procedure.

The illustrated labeling problem can be formally defined as follows: assume that the detected
light pattern is represented in the form of the binary distortion map I, that the scene points illuminated
by the projected pattern are encoded with a pixel value of one and that all other pixels are encoded
with a value of zero. Furthermore, assume that the non-zero pixels that form the line fragments are
grouped into pixel segments of fixed width (i.e., spanning a predefined number of image columns).
Let us now denote the set of all pixel segments in the distortion map I as P = {p1,p2,..., PN},
where p; stands for the i-th pixel segment (for i = 1,2,...,,N) and N represents the number of all
pixel segments in I. Moreover, let us denote the set of indices of the light planes constituting our
patternas £ = {1,2,..., M}, where M stands for the number of light planes in the structured light
pattern (M = 11 in our case), and Index 1 represents the light plane that is closest to the bottom of
I. The correspondence (or labeling) problem can then be defined as the mapping i that assigns each
pixel segment from P an index (or label) from £:

Y:pi— L, for i=1,2,..,N. )

4.2. Labeling with Graphical Models

We follow the ideas presented in [32,33] and formulate the correspondence problem as an inference
problem over probabilistic graphical models (PGMs). The formalism associated with PGMs allows
us to break down complex problems into (smaller) simpler parts that can easily be modeled. For the
labeling problem in the ATRIS sensor, these simpler parts correspond to geometrical relationships
between pixel segments and their relative positions in a series of consecutive frames (captured by our
ATRIS sensor).

Graphical models G are defined by a set of vertices V and a set of edges £ connecting the vertices;
thatis, G = (V,&). To represent the labeling problem in the form of a graphical model, the pixel
segments in the detected pattern are represented as vertices v € V, and the dependencies between the
pixel segments are represented as edges e € £ of the graph. Each pixel segment (and in turn each vertex)
is associated with a discrete random variable X from X' = {X!, Xé, ey Xf\,}, where the set of all N
random variables X! is defined by the binary distortion map I taken at time instance t. Similarly, each
edge is associated with a factor that models the functional relationship between the vertices (random
variables) connected by the edge. Solving the labeling problem defined in Equation (1) amounts to
finding the most likely value (from £) for each random variable in X! given the dependencies (and
relationships) between the pixel segments.

The PGM-modeling procedure used for the ATRIS sensor is illustrated in Figure 5. Here, the left
side of Figure 5 depicts two sample frames, each containing two line fragments and a total of four pixel
segments. The two frames are assumed to have been captured at two consecutive time instances, t — 1
and ¢, and the color-coded pixel segments are assumed to be reasonably well aligned in the vertical
(v axis), horizontal (x axis) and “temporal” (f axis) directions. The right side of Figure 5 shows the
corresponding PGM constructed based on the two frames. As can be seen, the state (or value) of each
random variable (i.e., each pixel segment) depends on the state of its horizontal, vertical and temporal
neighbors. The dependencies between the neighboring pixel segments are defined by so-called factors
(illustrated by squares), which model the relationships/dependencies between random variables and
are for the case of horizontal, vertical and temporal neighbors denoted as ¢, ¢, and ¢, respectively.
So-called unary factors are also used in our modeling procedure to construct the graph. These factors
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act only on a single variable (vertex) at a time and, in our case, encode the prior knowledge about the
structure of the projected pattern [33]. They are denoted as ¢, in Figure 5.

t

I

(a) Sample frames (distortion maps) (b) Constructed PGM

Figure 5. Illustration of the probabilistic graphical model (PGM)-based modeling procedure:
(a) simplified distortion map; (b) corresponding PGM.

With the illustrated modeling approach, the joint probability distribution of the PGM used in the
ATRIS sensor can be written as a factor product:

_ 1 t / ’ t 7 ’ _ LN /
p(xLxh = IT en(xE.X0) TT ¢o(XE,xE) TT ¢e(X70 X0 TT ¢p(X), @
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(ij)€éy (ij)e&o i=1

NI

where Z denotes the partitioning function and the sets &, £, and &; correspond to subsets of all edges
&, over which the horizontal, vertical and temporal factors are defined, respectively. In the above
equation, N can in general also take different values at different time instances. The joint distribution is
defined only for the case of two consecutive frames (from time instances f and t — 1), but the extension
to a longer sequence is trivial [33].

Inference over the constructed model can be conducted using various inference algorithms
(e.g., [38] or [39]), where the goal is to find the most likely value (label) for each random variable in
the constructed graph. A detailed description of the inference algorithm used for the ATRIS sensor is
given in Section 4.2.3.

4.2.1. Graph Construction

Unlike the toy example in Figure 5, where all line fragments are more or less parallel and the
pixel segments are near perfectly aligned in all directions, building a PGM from real sensory data is a
more complex task. Because no specific topology (e.g., nodes arranged in a grid) is present in the light
pattern that is projected onto the target scene with the ATRIS sensor, it is necessary to formulate criteria
for identifying vertical, horizontal and temporal neighbors. Based on these criteria, dependencies
(i.e., factors) between neighboring pixel segments can be defined, and inference over the constructed
graph can be conducted.

For the ATRIS graph construction procedure, horizontal neighbors are defined as connected
pixel segments (here, eight-adjacency is used [40] to probe for the connectivity). On the left side of
Figure 6, where four pixel segments (labeled a, b, c and d) are presented, only segment pairs a-b
and d-b represent horizontal neighbors, whereas the segment pair b-c does not, because b and c are
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not connected. The main motivation for introducing horizontal neighbors in the PGM construction
procedure is to “encourage” horizontally-connected pixel segments to take the same label.

—— 4 ‘
N -1

Figure 6. Defining the neighbors: horizontal neighbors (left image), valid neighbors are a-b, d-b;
vertical neighbors (middle image), valid neighbors are a-e, b-e, b-d, b-f, c-f, d-f; (right image) temporal
neighbors, valid neighbors are a-c.

Vertical neighbors in the ATRIS sensor are defined as pairs of pixel segments that are not connected,
but share at least one pixel at the same x-coordinate (and different y-coordinates). In the middle image
of Figure 6, pixel-segment pairs a-e, b-e, b-d, b-f, c-f and d-f represent vertical neighbors according to
this definition. Note that a pixel segment can easily have several vertical neighbors. Vertical neighbors
are needed in the PGM to ensure that the detected light planes tend to be labeled consecutively.
Due to this fact, vertical dependencies between pixel segments are extremely important for the
modeling procedure.

Finally, temporal neighbors are defined as pixel segments belonging to detected patterns recorded
at two consecutive time instances, t — 1 and t, that share at least one non-zero pixel at the same spatial
coordinates. This definition requires no tracking of the pixel segments over time and is extremely
simple to implement. On the right side of Figure 6, only pixel segments a and ¢ represent temporal
neighbors, whereas all other segment pairs do not. Temporal neighbors are included in the graphical
model to exploit additional temporal information when labeling the light planes of the projected
pattern. As shown in the experimental section, the addition of temporal neighbors contributes to the
accuracy of the labeling procedure.

The definitions presented define the topology of the PGM (i.e., vertices and edges) constructed
from the given input image I. However, to be able to conduct inference on the graph, factors between
pairs of neighboring vertices (or on a single vertex) that model the dependencies between the random
variables associated with the vertices need to be defined, as well. The procedure for defining the
factors used in this paper is described in the next section.

4.2.2. Factor Definition

Factors represent functions of random variables. Typically, factors model the dependencies
(relationships, constraints) between neighboring vertices and, hence, represent functions of two
random variables. Alternatively, they relate only to a single vertex and act as functions of a single
random variable. In the modeling procedure used for the ATRIS sensor, factors are used to model the
relationships between horizontally-, vertically- and temporally-neighboring pixel segments, and unary
factors are added to include knowledge about the structure of the projected light pattern.

Horizontal factors ¢, describe the relationship between horizontally-neighboring pixel segments
and return a fitness score with respect to the labels assigned to the neighboring segments. The factor
returns a score of one when both pixel segments are assigned the same label and some small score f. if
they are assigned different labels. This definition reflects the structure of the projected pattern and
encourages horizontal neighbors to take the same light plane label [33]. The fitness score returned by
the horizontal factor is defined as:

1, k=K,
fe, else

on(Xf =k X[ =K) _{ 3)

64



Sensors 2016, 16, 1740

where k, k' € £ and f, (0 < fo < 1) denotes the fraction-cost parameter that penalizes horizontal
neighbors that are labeled differently.

Vertical factors ¢, are assigned between random variables identified as vertical neighbors.
The factor returns a high fitness score when the two vertically-neighboring pixel segments are
labeled in an ascending manner and a fitness score of zero otherwise. This definition encourages the
vertical neighbors to take consecutive light plane labels and prevents the assignment of labels in a
non-ascending order. The relationship between vertically-neighboring segments in the ATRIS sensor is
modeled as follows:
flk=K), k>¥K

0, else

¢o(X; =k, X; =) { , @)
where k, k' € £ and f denotes a linear function of the difference of two labels. The function f decreases
monotonically with the label difference:

®)

[ g1, 6#0
fo)= { oc, else

The parameter / defines the slope of the linear part of the function f; o. (overlap cost) stands
for a parameter that penalizes vertical neighbors with the same variable value; and the function g(.)
represents a function that truncates all negative values to zero.

Temporal factors ¢; are assigned between pixel segments identified as temporal neighbors in two
consecutive frames (of distortion maps). Under the assumption of a sufficiently high frame rate, the
spatial location of most pixel segments can be considered constant. Pixel segments originating from
two consecutive frames having approximately the same spatial location should therefore be assigned
the same light plane label. The temporal factors defined for our modeling approach are functions that
assign a fitness score of one if the pixel segments are assigned the same label and a fitness score of zero
if the labels differ; that is [33]:

1, k=K
0, else

p(XIT =k X =K) = { (6)
where k, k' € L.

Finally, the prior factors ¢, are assigned to all vertices and operate on a single random variable at a
time. They are used to incorporate prior knowledge about the spatial structure of the projected pattern
into the modeling procedure and in a sense carry information about the most likely range of values a
random variable can take with respect to the vertical position of the pixel-segments and the number of
its vertical neighbors above and below. The prior factors are computed based on the pseudo-procedure
presented in Algorithm 1. Below, we outline the algorithm for a single pixel segment based on the toy
example shown in Figure 7. However, the procedure is identical for all pixel segments.

Assume that our goal is to compute the prior factor for the red pixel segment and that all other
pixel segments in image I are shown in white and gray (Figure 7b). To compute the prior factor, we first
scan over all x-coordinates of the red segment and for each x-coordinate search for (at most M) line
fragments above and below the current x-position of the red segment. We then label the pixel segments
found at the current x-coordinate consecutively from the bottom of the image up and increase the
likelihood of the label assigned to the red-segment by some arbitrary constant 4. If we are able to find
M pixel segments at the given x-coordinate, only the likelihood of a single label is increased (shown
by the graph in Figure 7a), whereas the likelihood of several labels is increased if fewer than M pixel
segments were found (shown by the graph in Figure 7c). The procedure aggregates the likelihoods
over all x-coordinates of the red pixel segment and in the final step normalizes the likelihoods to
the unit L1 norm over all light plane labels to produce the final prior factor for the corresponding
random variable.
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Algorithm 1 Calculating prior factors

for all pixel-segments (i.e., random variables X;) in the image I do

Init: Initialize p as an M-dimensional vector of all zeros

1:

2

3: Result: Normalized distribution (prior factor) ¢, (X;)

4 for all x-coordinates of the pixel-segment corresponding to X; do
5

> find (at most) M biggest line fragments in I having a pixel segment at the current x-coordinate

6: > record the position, k, of the pixel-segment (corresponding to X;) among the found m line fragments
counting from the bottom of image I up
7: if the number of found line fragments m equals M then
8: > increase the k-th element of p by some positive constant g
9: else
10: > increase all elements of p from position k to k + (M — m) by some positive constant g
11: end if
12: end for
13: > normalize the vector p to unit L norm; ¢, (X;) = p
14: end for

|
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Figure 7. Computing prior factors: illustration of the procedure with a simple example (shown in (b)).
For each random variable, the prior factor represents a probability distribution over all light-plane labels.
Estimates of the probabilities are obtained by labeling the pixel segments and increasing the likelihood
(shown in (a) and (c)) of the label assigned to the observed pixel segment at each x-coordinate.

4.2.3. Inference

To solve the labeling problem using the constructed PGM, a value needs to be assigned to each
random variable (or vertex) constituting the graph, for which the range of possible values is given by
the set of light plane labels £ (see Equation (1)). The assignment is computed based on maximum a
posteriori probability (MAP) estimation:

At = argmax p(Xt1, 1), )
Xt

where p(X'~1, X!) is the joint probability distribution of the PGM defined by Equation (2) and X" is
the most likely configuration of random-variable assignments for the PGM at time instance ¢.
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MAP estimation can be conducted using different inference techniques; for example, [38,39,41].
In the case of acyclic graphs, an exact solution can be found; on the other hand, with cyclic graphs,
as in our case, the problem is NP hard and only an approximate solution can be computed. Thus, for
the ATRIS sensor, we use loopy-belief propagation for the inference on the PGM as described in [38].

5. Depth Image Reconstruction

In order to reconstruct a depth image of the target scene based on the labeled distortion map,
we use a simple processing approach involving reference frames of the projected pattern taken at
various distances from the camera.

To capture the reference frames, we start by placing a planar surface parallel to the XY plane of
the camera’s coordinate system (see Figure 8a) at some initial distance z; from the camera. We project
our light pattern onto the surface and capture the first reference frame, R, corresponding to the
distance z;. We then move the surface by some depth increment Az away from the camera and take
another reference frame, Ry, at the distance z; from the camera. We repeat the procedure for the entire
measurement range of our ATRIS sensor and thus generate a set of reference frames that are later used
for depth calculation. The procedure for capturing the reference frames is illustrated in Figure 8a, and
some sample frames are shown in Figure 8b. Here, the fourth and fifth light plane are labeled in each
frame to demonstrate how the position of the detected light planes changes in accordance with the
distance at which the reference frames are recorded.

—
projector
X
ese Z 5
4 5
Rs |[/R2 V'Ry 4 %
~ camera
5 1 ' R R Rs
(a) Reference frame acquisition procedure (b) Sample reference frames captured at three distances

Figure 8. Illustration of the reference frame acquisition procedure: (a) the setup; (b) sample reference
frames captured at distances zj, z, and z3. The reference frames are used to compute the depth value
of each pixel segment in the labeled distortion map.

Let us denote the distances at which the reference frames, Rs, were captured with:
zg =2z9+s-Az, fors=1,...,S, (8)

where z) denotes some minimum distance from the camera and the measurement range of the sensor
lies between z; and zs. The depth increment Az defines the depth resolution of the ATRIS sensor
and may be selected arbitrarily. Each reference frame, Rs, contains at most M line fragments fi(S> (for
i=1,...,m < M) with associated light plane labels kgs) eL.

Consider a non-zero pixel (note that depth calculation is conducted for each pixel separately
and not for the entire pixel segment at once) from the distortion map I located at image coordinates
p= [xpix,ypix]T and associated with some light plane label k € L assigned during the labeling
procedure. To compute the [x,y,z]T position of the pixel (in camera coordinates), we first find the
reference frame, Rg, that contains the line fragment (at the same x-coordinate, i.e., x;,) with the same
label as the given non-zero pixel and is closest in terms of its y coordinate; that is:

§ = argmin \yf‘(,..) — Ypiz|, subject to k = kl(s), )
S i
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where y £ stands for the y-coordinate of the i-th line fragment in the reference frame Rs. We then

assign the distance, at which the frame R; was taken, as the z-coordinate of the given pixel with respect
to the camera’s coordinate system:
z=2zy+8 Az (10)

The x and y coordinates of the pixel (in camera coordinates) are computed using the hardware’s
intrinsic parameters, which can be estimated with standard techniques [42]. The procedure presented
is applied to all non-zero pixels of the spatial distortion map I and results in a sparse depth map,
which is interpolated during the last processing step to fill in the missing values.

6. Experiments

This section describes the experiments conducted to demonstrate the merits of the developed
sensor and to evaluate its performance on experimental data using quantitative performance metrics.
We start the section by presenting experiments related to the characteristics of the sensor and the
proposed acquisition procedure, proceed by providing results on the performance of the proposed
light plane labeling technique and conclude the section with some examples of 3D reconstructions of
scenes generated with our ATRIS sensor.

6.1. Characteristics of the Acquisition Procedure

One of the main merits of our pattern acquisition procedure is the fact that it is possible to deploy
several depth sensors exploiting our procedure in the same environment. In fact, we demonstrated
in [31] that it is possible to completely compensate for the mutual interference usually encountered
when deploying several identical depth sensors in the same environment by constructing the
modulation sequence of our acquisition procedure based on cyclic orthogonal (Walsh-Hadamard)
codes. (A detailed discussion on the construction of the modulation sequence is beyond the scope of
this paper. The reader is referred to [31] for detailed coverage of this topic.) An illustrative example
of this characteristic is presented in Figure 9 on a simple indoor toy scene. Here, the images in the
upper row correspond to our ATRIS sensor, and the images in the lower row correspond to images
captured with the first generation Kinect sensor, which also exploits structured light [6]. The image in
the upper left corner presents a sample scene with two of our sensors directed at it; the second image
shows a demodulated image with non-cyclic orthogonal codes; and the last image in the upper right
shows the demodulated image based on cyclic orthogonal codes. Note how the projected pattern can
be recovered despite the presence of more than one active sensor operating on the same scene. In the
lower row, the left most image depicts the acquisition setup using a pair of Kinect sensors. The middle
image shows the depth map acquired when only one sensor is active, and the third image in the lower
row demonstrates the effect of two Kinects capturing depth images of the same target scene. In the
latter case, white areas appear in the image where depth information cannot be computed. This effect
demonstrates the effect of the mutual interference of the two Kinects and is not present with the ATRIS
sensor. As a consequence of the interaction of the Kinects” light patterns, the shape of the objects
comprising the scene is distorted, and part of the depth information is missing.

Another important aspect of the developed pattern acquisition procedure is its robustness to
ambient illumination and the presence of incident sunlight. To demonstrate this characteristic, we
again provide a few (qualitative) illustrative examples. We first present sample results for a simple
indoor scene imaged in three distinct illumination conditions: (i) under ambient lighting with no
additional illumination directed at it (first row of Figure 10), (ii) under ambient lighting and with
the room lights turned on (second row of Figure 10) and (iii) under ambient lighting, with room
lights turned on and with a flashlight directed at the scene (third row of Figure 10). The first and
third columns of Figure 10 show gray-scale images of the scene with the ATRIS prototype and Kinect
sensor (taken at the same time instance), respectively, and the second and fourth columns show the
corresponding distortion maps (for ATRIS) and depth images (for Kinect). Our acquisition procedure
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produces stable results with minor differences in the intensities of the distortion maps, but information
is missing from the depth images generated by Kinect when the imaging conditions become more
challenging. Note that missing information corresponds to white areas in the depth images.

Figure 9. An illustrative example of the behavior of the developed acquisition procedure when two
identical sensors are directed at the same scene and a comparison with a commercial sensor. Upper row:
a sample scene illuminated with two ATRIS sensors (left); the demodulated images with non-cyclic
orthogonal codes (middle); the demodulated images with cyclic orthogonal codes (right). Lower row:
acquisition setup with two Kinect (v1) sensors (left); captured depth image when one sensor is active
(middle); captured depth image when both sensors are active (right). Observe how the ATRIS sensor
is able to compensate for the mutual interference, to recover a spatial distortion map and is unaffected
by the pattern projected by the second ATRIS sensor.

Figure 10. Qualitative examples of the performance of the developed acquisition procedure under
various ambient lighting conditions. The first column shows a sample scene in different illumination
conditions (from top to bottom): no additional illumination (top), with room lights on (middle) and
with room lights on and a flashlight directed at the scene (bottom). The second column of images shows
the distortion maps captured with the ATRIS sensor for the different illumination conditions. The third
column depicts the same scene captured at the same time instance as the images in the first column,
but with the Kinect sensor (v1). The last column presents the corresponding depth images generated
by the Kinect sensor. Here, white areas indicate that no depth information could be computed.
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In our next experiment, we deploy our sensor outdoors and again provide comparative results
with the first-generation Kinect sensor that uses the same imaging technology (i.e., active structured
light) as our ATRIS sensor. The results of this experiment are shown in Figure 11. Here, the first column
shows images of our scene with the projection pattern barely visible due to the incident sunlight; the
second column shows images of the acquired distortion maps; and the third column shows images
taken with the Kinect sensor. The upper row of images was taken under moderate incident sunlight,
and the lower row of images was taken under relatively stronger sunlight. Note that the Kinect sensor
is unable to acquire a complete depth map of the observed scene due to deployment outdoors (white
areas in the output image of the Kinect sensor indicate that no data are available for that area), but our
acquisition procedure produces stable (though noisy) distortion maps that can be used with our light
plane labeling procedure. Although there are obvious differences in the number of pixels in which
the two sensors interact with the scene, it is clear from the images presented that the ATRIS sensor is
capable of operating outdoors in a robust manner.

Figure 11. Illustrative example of the behavior of the developed acquisition procedure when deployed
in outdoor environments. The first column shows gray-scale images of the target scene, the second
column shows the distortion maps captured with the ATRIS sensor; and the last column of images
presents the output of the Kinect sensor. The upper row presents images taken under exposure to
moderate sunlight, and the lower row shows images taken under exposure to strong incident sunlight.

For our third and last experiment with the acquisition procedure, we set up another outdoor scene
and compared the performance of our ATRIS sensor with the first and second generation Kinect sensor.
The second generation Kinect (v2) uses time of flight (ToF) technology and requires a full-fledged GPU
supporting DirectX 11 to produce depth maps. Due to the required computing resources and different
technology, Kinect v2 is not a direct competitor to our ATRIS sensor (which runs on a simple FPGA),
but is included in our comparison to demonstrate the performance of a state-of-the-art depth sensor.
The qualitative comparison is presented in Figure 12. Here, the first column of images represents the
outdoor scene and corresponding distortion map captured with the ATRIS sensor; the second column
depicts the scene and the depth image acquired with the first generation Kinect; and the third column
shows the scene and the depth map captured with the second generation Kinect. As can be seen, both
Kinect v2 and our ATRIS sensor produce solid, though noisy, results for all measured pixels, whereas
the first generation Kinect struggles with its performance outdoors.
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Figure 12. Qualitative comparison of the ATRIS sensor and both generations of the Kinect sensor on an
outdoor scene. The first column shows the scene and distortion map from the perspective of the ATRIS
sensor; the second column presents images from the first generation Kinect; and the last column of
images shows the results produced by the second generation Kinect. Note that the second generation
Kinect that uses time of flight technology, and our ATRIS sensor produces good results in all pixels
measured, whereas the first generation Kinect performs less well outdoors.

6.2. Characteristics of the Light-Plane Labeling Technique

The distortion maps (see Figures 9-12) acquired with our ATRIS sensor form the basis for the
light plane labeling procedure presented in Section 4. To evaluate the performance of the proposed
procedure, we construct two datasets of spatial distortion maps.

The first dataset serves as our development set and is used in the experiments for tuning the
open-hyper parameters of the labeling procedure (e.g., the values of o, f¢, I, etc.). In practice, it
is necessary to fix the open-hyper parameters in such a way that the labeling technique exhibits
the best possible performance. We therefore construct the first dataset from 152 images of a simple
indoor scene, which is suitable for our purposes, because images taken indoors contain very little
noise. The indoor scene comprises three objects positioned over a rotating table that change position
backwards, forward, left and right, thus creating different depth discontinuities. The second dataset
used for our experiments is a more realistic dataset of outdoor images. Here, we record 15 images of a
scene containing a moving vehicle and a person passing between the vehicle and our ATRIS sensor.
The images in this dataset contain objects with more complex geometry and are used to evaluate the
performance of the labeling technique with fixed hyper-parameters.

All images from the two datasets are manually annotated to provide the ground truth for our
experiments, in which we measure the accuracy of the labeling procedure using (what we refer to as)
the correct labeling rate (CLR):

¢
CLR = 7, 11
where 7, denotes the number of correctly-labeled non-zero pixels and N, stands for the number of all
non-zero pixels (the term “correctly” in this context stands for “being the same as the ground truth”).
The correct labeling rate (CLR), as defined above, measures the fraction of correctly-labeled pixels
among all pixels that have to be labeled. Note that the CLR in all graphs and tables presented below is
computed over all images of the given dataset.

A few sample images from both datasets and color-coded examples of the ground truth are shown
in Figure 13. The upper group of images presents sample images from the (first) indoor dataset, and
the lower group of images presents images from the (second) outdoor dataset. The imaging conditions
outdoors are more challenging than the conditions indoors, which results in a higher level of noise in
the demodulated images of the second dataset (observe the difference between the second and fourth
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row of images on the left). The images on the right side of Figure 13 represent annotated samples from
both datasets.

Figure 13. Sample images from the two datasets used in the experiments. The upper group of images
shows sample images from the indoor dataset, and the lower group of images shows samples from the
outdoor dataset. Both visible-spectrum and demodulated images are shown. The images on the right
show the color-coded ground truth (best viewed in color).

As indicated above, the goal of the first series of experiments is to examine the impact of various
hyper-parameters of the proposed techniques on the labeling accuracy. Towards this end, we first set
the values of all hyper-parameters to a default value, then change a single parameter at a time and
observe how the labeling accuracy changes with respect to the varying parameter. Even though the
hyper-parameters of the proposed labeling technique are generally not mutually independent, we can,
nevertheless, obtain a rough impression of the performance of the proposed method with respect to
the varying parameter. We only make use of the first, the indoor dataset, in this series of experiments.

Figure 14 shows that the fraction cost f. (see Equation (3)) and overlap cost o. (see Equation (5))
have only a little effect on the labeling accuracy (graphs in the top row), whereas the function drop
rate /i (see Equation (5)), on the other hand, has a significantly larger impact on the labeling accuracy
(graph in the lower left corner of Figure 14). These results suggest that the parameters f; and o,
can be selected over a wide range of values with no significant performance loss, whereas I needs
to be kept sufficiently small to ensure good performance. The most interesting observation of this
series of experiments, which supports our working hypothesis that temporal information can improve
labeling accuracy, can be made from the graph in the lower right corner of Figure 14. Note how the
accuracy of the labeling procedure improves when two consecutive images from a sequence are used
for constructing the PGM instead of only one. Adding additional images to the sequence further
improves the labeling performance, albeit to a lesser extent. The best labeling accuracy we manage to
achieve on the indoor dataset is a CLR of 0.9755 given a sequence length of five.

Based on the results of this series of experiments, the following parameter values are selected
for the subsequent experiments on the outdoor dataset: 0. = 1e7°, f, = 1le=> and & = 0.1. Note that
it is not our goal to find values of the hyper-parameters that result in the best possible performance
on the indoor dataset because this could lead to over-fitting and poor generalization abilities of the
final labeling approach. We therefore make no further effort to find a better set of parameters for our
technique and run a second series of experiments on the outdoor dataset with the hyper-parameter
values listed above.
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Figure 14. Impact of various hyper-parameters of the proposed technique on the labeling accuracy
(measured in terms of the CLR). The results were generated on the indoor dataset and, except for the
graph in the lower right corner, were computed using a sequence length of one. (a) impact of the
overlap-cost parameter o, (b) impact of fraction-cost parameter f, (c) impact of the function drop rate
h, (d) impact of the sequence length.

To gain insight into the characteristics of the proposed labeling approach and examine its behavior
on more challenging data, we run several tests in the second series of experiments. These tests are
conducted on the outdoor dataset and aim at: (i) examining the rationale behind defining the PGMs
using horizontal, vertical and prior factors, (ii) evaluating the importance of temporal information on
more challenging data and (iii) comparing the proposed technique to the existing labeling techniques.

To demonstrate the importance of each of the factors in the PGM, we conduct several tests. During
each test, we remove a single factor and keep the rest. (For example, we remove the horizontal factors
¢y, which pull horizontally-neighboring pixel segments towards the same label, and keep only the
vertical, prior and temporal factors. This case is denoted as “no ¢;,”. Other cases follow a similar
notation.) We run the tests two times, first with a single image of the scene (i.e., g = 1) and then with
two consecutive images (i.e., g = 2), to directly demonstrate the importance of the temporal factors,
as well. The results of these tests are shown in Figure 15a. Several observations can be made from the
results presented. First of all, the results indicate that prior factors are the most important component
of the PGM. If the information about the structure of the projected patterns encoded in the prior factors
is removed, the labeling accuracy drops significantly, to a value of CLR = 0.346 (in the case of a single
image), as shown by the graph labeled “no ¢,”. Without the prior information, the labeling accuracy
becomes even worse when a second image is added to the sequence; that is, when temporal factors
are introduced. However, when the prior factors are considered during the construction of the PGM,
temporal information always improves the labeling performance. Similarly, both the horizontal and
vertical factors also add to the overall labeling accuracy, as noticeable from the graphs labeled “no ¢”,
“no ¢,” and “all”. Here, “all” stands for the case when all four factor types are considered. All in all,
the results of these tests suggest that all factors are important for the labeling procedure and contribute
to the overall performance of the proposed labeling technique.
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Figure 15. Results obtained on the outdoor dataset: (a) the results illustrate the importance of the
selected structure of the PGM and (b) the impact of the sequence length on the correct labeling
rate (CLR).

The graphs in Figure 15b show how the number of consecutive images used for constructing
the PGM affects the labeling accuracy. As can be seen, the biggest increase in performance is
noticeable when two consecutive images are used during construction of the PGM instead of one.
The performance jump here is in fact a little larger than in the case of the indoor dataset, which can
be attributed to the fact that the acquired distortion maps from the outdoor dataset are noisier, and
hence, using more than one image from a sequence helps reduce the noise and determine the right
labels. Interestingly, using more than two images from a sequence does not increase the performance
further, but keeps it more or less stable. These results suggest that temporal information is useful for
the labeling technique.

Next, we demonstrate the performance of the proposed labeling technique in comparison with
other techniques that can be used for labeling the structured light pattern used in the ATRIS sensor.
The implemented reference techniques are related to other structured light approaches from the
literature that exploit light patterns comprised of parallel stripes (e.g., [43—46]), but, differently from
these techniques, do not rely on coding strategies (in terms of color, intensity, geometry or time; see [18]
for information on existing coding strategies) to solve the correspondence problem. Our comparison
is therefore limited to techniques capable of handling uncoded structured light. Specifically, we
implement the following reference techniques and include them in our comparison presented in
Table 1:

e The naive labeling approach (NLA), which assigns light plane labels to the detected non-zero pixels
in a consecutive manner. The first non-zero pixel at the given x-coordinate (looking from the bottom
of the image up) is assigned the label 1; the second detected non-zero pixel at the given x-coordinate
is assigned the label 2, and so on; until all 11 labels have been assigned.

e The labeling approach based on prior information (PR), which assigns light plane labels to the
detected non-zero pixels by constructing a PGM based on prior factors only. This approach
represents a refined version of the naive labeling technique introduced above.

o The reference approach from Ulusoy et al. (RUL) [32], which also exploits probabilistic graphical
models, but relies only on spatial information to assign light plane labels to the detected non-zero
pixels in the distortion map.
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Table 1. Quantitative comparison with other labeling techniques (higher is better; 1 indicates a perfect
score). NLA, naive labeling approach; PR, prior information approach; RUL, reference approach from
Ulusoy et al.

Outdoor Dataset (Noisy)
Method

NLA PR RUL Ours

CLR 0.888 0.912 0.950 0.989

Note that even the naive labeling approach results in a relatively high labeling accuracy with a
CLR of 0.888. This approach is expected to work well in simple conditions, where there is no noise
in the detected distortion maps and no large depth discontinuities are present in the scene. All other
techniques improve the performance of the NLA technique with the proposed approach resulting in a
CLR of 0.989.

All in all, the results of our experimental assessments suggest that exploiting spatio-temporal
information for determining light plane labels in our ATRIS sensor is a feasible approach that results
in state-of-the-art performance. The PGM approach is capable of assigning the correct label to most
pixel segments of the detected light pattern even if large depth discontinuities are present in the scene
observed. To visually demonstrate the efficacy of our approach, a few illustrative results of the labeling
procedure are presented in Figure 16. Here, the first row depicts sample images from the outdoor
dataset; the second row shows the color-coded ground truth; and the third row shows the color-coded
results of the labeling procedure. Note how most of the assigned labels correspond to the ground truth,
while there are, of course, a few errors, as well (right side of the image: the errors are marked with
arrows). These errors typically introduce artifacts in the reconstructed depth images, but can easily be
removed through simple post-processing of the depth images if they are not too frequent.

Figure 16. Visual examples of the results of the proposed light plane labeling procedure. The
first row shows sample images from the outdoor dataset; the second row shows the (color-coded)
manually-annotated ground truth; and the third row shows color-coded results of the labeling
procedure. The images on the right side show an example of a labeling error, which is highlighted by
arrows (best viewed in color).

6.3. Constructing Depth Maps: 3D Reconstruction

Once the light plane labels have been assigned to all parts of the detected light pattern, depth
images of the observed scene can be reconstructed using the procedure presented in Section 5.
To demonstrate the result of this process for our ATRIS sensor, we again present a couple of illustrative
examples. The first example, which is shown in Figure 17, shows a number of stones with relatively
simple geometry. The stones were placed on a street outdoors, and an image was captured using
a commercial camera (upper left corner of Figure 17), as well as our sensor. Note that, despite the
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exposure to relatively strong incident sunlight, the sensor was able to capture an image with the
projected pattern clearly visible (lower left corner of Figure 17) and reconstruct the depth images quite
well (right side of Figure 17).

Figure 17. A visual example of the 3D reconstruction capabilities of the developed sensor. The image
in the upper left corner shows a (visible light) image of the observed scene captured under strong
incident sunlight; the image in the lower left corner shows the image of the detected light pattern; and
the image on the right shows the reconstructed depth image from various angles.

The second example in Figure 18 shows a gray-scale image of a hand captured with a commercial
camera (upper left corner of Figure 18), the labeled spatial distortion map generated by our ATRIS
sensor (lower left corner of Figure 18) and the 3D reconstruction from various viewing angles (right
side of Figure 18). Note that, despite the more challenging geometry of the hand (compared to the
stones in the first example), our ATRIS sensor successfully captures all parts of the hand and recovers a
good-quality depth image. The results show that usable depth images can be obtained with our sensor
in difficult imaging conditions, as well as with relatively complex geometry of the target scene. This
makes the sensor applicable in outdoor applications that require reliable depth information regardless
of the external imaging conditions.

Figure 18. A visual example of the 3D reconstruction capabilities of the developed sensor. The image
in the upper left corner shows a (visible light) image of the observed scene (i.e., a hand); the image in
the lower left corner shows the labeled distortion map; and the image on the right shows the depth
image from our ATRIS sensor from various viewing angles.
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7. Conclusions and Future Work

We have presented and experimentally demonstrated the merits of a novel sensor for depth
image acquisition. The sensor presented is based on the recently-introduced concept of modulated
pattern projection [31], which ensures that the procedure of detecting the projected light pattern is
robust with respect to various factors, such as background noise, background illumination or the
mutual inference of similar systems operating on the same scene. The procedure for determining the
correspondence between the projected and detected light patterns, which forms the basis for depth
image reconstruction, is implemented with an approach based on probabilistic graphical models and,
in addition to spatial information, also exploits temporal information when solving the correspondence
problem. As demonstrated in the experimental section, the proposed procedure performs well even
when large depth discontinuities are present in the scene. The experimental results also show that the
sensor presented is capable of acquiring stable distortion maps when competing commercial systems
struggle with their performance.

As part of our future work, we plan to further improve the sensor presented. One of the main
drawbacks of the current implementation is the structure of the projected light pattern, which affects
the resolution and quality of the acquired depth image. To address this issue, we intend to explore
structured light patterns that can be used with the PGM-based labeling procedure presented. The goal
here is to devise a pattern that ensures an even better quality of the captured depth images compared
to what is possible with the current sensor. A possible way to achieve this is by using more lines in the
light pattern or combining the existing pattern with line scanning techniques capable of generating
dense depth maps.

The current implementation of the ATRIS sensor is suitable for outdoor applications, such
as collision avoidance or autonomous navigation, where approximate depth maps need to be
acquired as reliably as possible and the resolution of the depth maps is not of major concern.
Another application domain for our ATRIS sensor is computer vision applications exploiting action
recognition [47,48], pose estimation [49,50], facial expression recognition [51,52] or motion analysis
technology [53]. These applications are commonly deployed outdoors and could benefit from robust
depth imaging technology.
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Abstract: Nowadays, the creation of methodologies and tools for facilitating the 3D reproduction of
artworks and, contextually, to make their exploration possible and more meaningful for blind users is
becoming increasingly relevant in society. Accordingly, the creation of integrated systems including
both tactile media (e.g., bas-reliefs) and interfaces capable of providing the users with an experience
cognitively comparable to the one originally envisioned by the artist, may be considered the next
step for enhancing artworks exploration. In light of this, the present work provides a description
of a first-attempt system designed to aid blind people (BP) in the tactile exploration of bas-reliefs.
In detail, consistent hardware layout, comprising a hand-tracking system based on Kinect® sensor
and an audio device, together with a number of methodologies, algorithms and information related
to physical design are proposed. Moreover, according to experimental test on the developed system
related to the device position, some design alternatives are suggested so as to discuss pros and cons.

Keywords: hand-tracking system; Kinect sensor; 3D reconstruction; blind people

1. Introduction

Lack of sight affects blind people’s possibilities in many aspects of everyday life. Movements,
tasks and actions that are simple, or even trivial, to sighted people become really challenging for blind
people (BP). To support BP in a great number of situations, in the last decades many devices have
been designed all over the world. In most cases, research has been focused on developing systems for
assisting BP in their everyday activities such as walking [1], reading books, using computers [2] and
so on. However, there are other blind people needs that, although not essential for living, contribute
to the overall well-being of an individual. The possibility of enjoying artworks is probably one of
the most relevant one since it helps BP in taking part, on an equal basis with others, in cultural life.
Not surprisingly, some museums (e.g., the Omero Tactile Museum of Bologna or the Art Institute
of Chicago) have created tactile exhibitions dedicated to blind people. The majority of museums,
however, present touchable reproductions of sculptures or other 3D objects; tactile 3D reproductions
of pictures or other 2D artworks are very rare and only a few institutions have them at their disposal.
Usually, these models are handmade by artists thus offering artistic 3D interpretations of the 2D
original artwork. To increase and speed-up this “translation” process, in the last few years a few
computer aided approaches have been developed [3-5]. Recent studies [6,7] suggest that the mere
tactile exploration of 3D models (even in case these are optimally reproducing the original painting)
is not sufficient to fully understand, and enjoy, the artwork. Blind people understanding of the
original artwork is, in fact, subject to a lot of factors (e.g., sensitivity and personal ability of the person,
size and quality of the tactile model); for this reason a good quality verbal guidance is essential in
order to appreciate even the best possible artistic relief reproduction of a given painting. Such a verbal
description is usually provided by a sighted person (museum employee, accompanying person, etc.);
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this allows the blind person to build a complete mental image of the tactile model, and to not be
stopped by the lack of comprehension of a single element of the bas-relief. The presence of another
person, however, could be perceived as a limiting factor in enjoying the artwork since the blind
person is forced to discover in the perspective of someone else; art is through a language that requires
autonomy and freedom to be fully apprehended!

The introduction of an automatic verbal guide could increase the autonomy of the user during the
exploration, allowing him to lead the experience (e.g., autonomously establishing the time needed for
a full appreciation, moving the hands freely, taking time to think, etc.), achieving the same freedom of
sighted people. To fulfil this goal, the guide should not be merely automatic (e.g., audio-guide such as
the ones already available for sighted people), but rather “active” i.e., capable of following the user’s
movements so as to provide information in form of verbal descriptions [7].

This ambitious objective is still far to be accomplished in scientific literature, not only for technical
restrains: guiding a BP in the exploration of an artworks cannot be limited to a description of an
artwork scene and/or of touched areas, but is rather a gradual help to acquire information and to
organize it into a “mental scheme” that become progressively more and more complete and detailed.
However, the design of a first-attempt system able to automatically provide verbal information of
touched areas is still an advancement of the state of the art in this topic.

With this aim in mind, the authors of the present work presented a brief feasibility study [8] of a
system to improve blind people tactile exploration of bas-reliefs, where a possible methodology for
conceiving an active guide for BP was sketched.

Starting from such a preliminary work, the present paper provides a comprehensive description
of the design phases required to build a first-attempt cost-effective system able to properly guide BP
in exploring tactile paintings. Such a designed system consists of (1) a 3D Kinect® sensor + software
package to track the user hands; (2) a number of algorithms capable of detecting the position of the
bas-relief in the same reference frame defined by the acquisition sensor; (3) a number of algorithms
aiming at detecting the position and the distance of the user hand/finger with respect to the model;
(4) the complete knowledge of the digital 3D bas-relief model and (5) an appropriate verbal description
linked to relevant objects/subjects in the scene. The designed system, integrating latest methodologies
and algorithms, represents a first consistent step in building an assistive system (not obviously aimed
in completely replacing human assistance) to help BP in tactile exploration.

The remainder of the paper is as follows: in Section 2 a brief description of the state of the art for
most relevant previous works (related to the designed system) is provided. In Section 3 the system
hardware layout is described. In Section 4 methods and algorithms implemented and tested to build
the Kinect® sensor-based system are provided. In Section 5, physical layout alternatives of the system
are analyzed. Finally, conclusions and future works are discussed in Section 6.

2. Background

The bas-relief exploration system (BES) relies on the implementation of well-known pre-existing
methods to perform hand tracking, point cloud registration and 3D evaluation of the distance between
two point clouds. Therefore, it’s hereby presented a brief review of these techniques, focused on the
most promising approaches in literature for the considered application.

2.1. Hand Tracking

Hand tracking (HT) techniques aim at identifying, in real-time, the 3D position of a human
hand. This goal is tackled with various approaches in the state of the art, using different data inputs
and strategies. HT has been extensively applied in a number of fields: gestural interfaces, virtual
environments and videogames are only few examples of the areas where it is gradually becoming a
key-factor [9-12]. Application of HT techniques to help impaired people, including BP, in a number of
everyday life problems makes no exception [13-15]. Since for the present application the HT system
should not limit the user’s haptic sensitivity and his/her gestural freedom (allowing for a fulfilling
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tactile exploration), among all the different HT techniques available in literature, this state of the art
focuses on the vision-based ones. This class, in fact, uses only optical sensors (i.e., cameras, 3D optical
scanners and other unobtrusive devices) to obtain data. Vision-based techniques can be roughly
classified in two great groups: appearance-based [16-18] techniques and model-based ones [19].

Model-based approaches are the most interesting for the present application since provide a
full DOF hand pose estimation together with real-time 3D position of the hand. In detail, a digital
model of the hand, comprising all joints and articulations, is used. Usually, the solution is retrieved
performing a minimization of an objective function that describes (using data from a set of visual cues)
the discrepancy between observed data (real position of the hand) and the solution obtained using the
digital model. Accordingly, although computationally costly, model-based approaches are the best
candidates for this application where the hand position must be determined continuously and entirely.

A first approach to model-based tracking is presented in [20]; a 27 DOF hand modelled by quadrics
is used to generate the contours of the hand, which are then confronted with processed images of the
real hand. De La Gorce et al. [19] instead propose an approach that takes advantage of shading and
texture information as visual cues to compare the digital model and data observed from a single RGB
camera. One of the most promising works using model-based approach is the one proposed in [17]
where a Microsoft Kinect® is used to obtain 3D data from the scene.

The user hand in 2D and 3D is isolated from the background by means of a skin colour detection
followed by depth segmentation. The hand model (palm and five fingers) is described by geometric
primitives and parametrized encoding 26-DOF (i.e., is represented by 27 parameters). The optimization
procedure is carried out by means of a Particle Swarm Optimization technique [21]. The procedure
contemplates temporal continuity of subsequent frames, searching for a solution in the neighborhood
of the one found for the last frame analysed. The authors further developed their work in [22-24],
covering simultaneous tracking of two hands and tracking of a hand interacting with real objects.

2.2. Point Cloud Registration

As widely recognized [25-27], point cloud registration is a class of algorithms that perform
the alignment of two partially or entirely overlapping sets of points by means of a roto-traslation,
minimizing relative distances. Among the wide range of methods for point cloud registration,
the present work focuses on rigid techniques i.e., the ones that perform the alignment of the two sets
of point by means of a rigid transformation (without changing the relative position of the points
belonging to the transformed point cloud).

Rigid registration is usually performed by means of a two-step procedure: a first coarse
registration and a subsequent fine one. Coarse registration performs a rough alignment of the two point
sets, minimizing the distance between correspondences, such as points, curves or surfaces (or other
geometric entities) extracted from the dataset with different criteria [27]. A number of algorithms can
be used to perform coarse registration: Point Signature, Spin Image, RANdom SAmple Consensus
(RANSAC)-based, Principal Component Analysis (PCA) and genetic algorithms. Fine registration,
on the other hand, uses the result obtained by coarse registration as starting point and searches, in its
neighborhood, for a more refined solution.

Among the wide range of algorithms available in the scientific literature, the most relevant for the
present work are: the Iterative Closest Point (ICP) (which has been implemented in many different
ways in recent years), the Chen’s method (a variation of ICP), the signed distance fields and genetic
algorithms [28]. ICP and Chen’s methods are, by far, the most common and used: presented at the
beginning of 90s, such methods are now implemented in many software libraries.

The ICP method aims to obtain an accurate solution by minimizing the distance between
point-correspondences, known as closest point. When an initial estimation is known, all the points
are transformed to a reference system applying the Euclidean motion. Then, every point in the
first image is taken into consideration to search for its closest point in the second image, so that the
distance between these correspondences is minimized, and the process is iterated until convergence.
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Chen’s method is quite similar to ICP; the only difference is the use of point-to-plane distance instead
of point-to-point.

The minimization function is defined by the distances between points in the first image with
respect to tangent planes in the second. In other words, considering a point in the first image,
the intersection of the normal vector at this point with the second surface determines a second point in
which the tangent plane is computed. The algorithm is, in this formulation, usually less conditioned
by local minima and by the presence of non-overlapping regions [27].

2.3. Distance Evaluation

A number of methods coping with distance evaluation between sets of 3D points can be found in
the literature [29-32]. Specifically, this work deals with the so called nearest neighbour search (NNS)
problem, (also known as “proximity search”), which addresses the goal of finding the nearest point,
within a data set, to a given query point (and the consequent computation of its distance). Although
very simple in its definition, this issue becomes complicate either when the data set consists of a huge
number of points or when a high number of query points are provided. Due to its importance in a
number of computer vision problems, over the years the NNS problem has been tackled with several
different strategies, partially discussed in this section.

Basically, NNS methods exploit the construction of search trees among the inspected dataset (i.e.,
data structures that organize the information about points distribution in a convenient way), in order to
increase the efficiency of the nearest point search. In one of the most used methods, i.e., the “KD-Tree”
one [29] a k-dimensional tree-like structure is created by means of recursive binary partitions of the
dataset resulting from regions circumscribed by k-dimensional hyper-planes.

Another known method is the so called “Ball Tree” (also known as “Metric Tree”): in this case,
the dataset is described by a tree modelled using hyper-spheres; this kind of structure, although
computationally costly to build, guarantees a faster search, especially with high-dimension problems.

2

3. System Layout

As depicted in Figure 1, the layout of the designed BES consists of:

(1) A physical bas-relief to be explored by BP and its digital counterpart (e.g., a high-definition point
cloud/polygonal model describing it).
Even if, in principle, any kind of bas-relief could be used for developing the BES, in this
work the used tactile models are the ones created by using the procedure described in [33],
where shape from shading-based methods are devised to obtain both 3D polygonal models
(e.g., STL) and a physical prototype of such a digital model starting from a shaded picture
(for example a renaissance painting). In fact, by using such a procedure both the physical
and digital 3D information are directly available. In any case, the proposed procedure can
be applied to any kind of bas-relief (or in case the bas-relief is not allowed to be touched,
to a replica) since the required initial information (polygonal model) can be easily achieved using
a commercial 3D scanner.

(2) A 3D acquisition device capable of (i) tracking the user hands and (ii) detecting the position of
the physical bas-relief in its reference frame.
The device used to build the system is the Microsoft Kinect®. As widely known, it consists of
a projector-camera triangulation device furnished with a 43° vertical by 57° horizontal field of
view that covers, at 1 m distance a visible rectangle of 0.8 m x 1.1 m. Such a field of view, to be
considered as a plausible value for tracking according to [17], is required to cover the typical
dimension of tactile bas-reliefs.

(3) A PC workstation, in control of the whole BES.
This element is responsible for the hand tracking, the required calculations (point clouds
registration and distances computation, as previously described) and for the touch identification.
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The hardware needs to be equipped for GPU computing, and with hand tracking performances
comparable with [17], to assure satisfying results.
(4) An Audio system.

Since the final outcome of the BES is, as already mentioned above, a verbal description of the
scene and/or of touched objects or features, the system is equipped with headsets /headphones.
Of course, to locate headsets could be difficult for unaccompanied BP; unfortunately, since the
installation is specifically addressed to museum installations, the use of audio speakers could not
represent a valid option.

Figure 1. BES layout.

4. Materials and Methods

This section provides a step-by-step description of methods and algorithms implemented and
tested to build such a system. All necessary procedures were developed using Matlab® that offers a
number of embedded tools and algorithms useful for this application.

To help in understanding the devised system the overall method is described with reference to
the tactile reproduction of “Guarigione dello storpio e resurrezione di Tabita” by Masolino da Panicale
(see Figure 2). The physical model has size 900 x 420 x 80 mm while its digital counterpart is described
by 3.6 million points.

Figure 2. “Guarigione dello storpio e resurrezione di Tabita” by Masolino da Panicale: original artwork,
digital 3D model and 3D-printed bas-relief.

4.1. Hand Tracking

The first step of the entire procedure consists of detecting the position of the bas-relief to be
explored in the Kinect® reference frame and, contextually, to detect the areas touched by the user
(whose hand position has to be expressed in the same reference system). In fact the knowledge of the
position of the hand, together with the position of the tactile model, will allow to determine if the user
is touching the bas-relief and in which area. This information, however, must be known in the same
reference system.
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Accordingly, the very first step of the proposed procedure consists of tracking the user hand.
Among the several interesting works in literature exploring the use of the Kinect® sensor as a device for
hand tracking [10] the HT system used for building the proposed system is the one developed in [17].
Such a real time HT system, working using Microsoft Kinect® as optical sensor, is characterized by a
20 fps framerate when running on modern architecture PCs and moreover it does not require any visual
marker on the user’s hand. Moreover, the system is delivered with a convenient ready-to-use library
(developed by the Forth Institute in 2015). Accordingly, the use of the above mentioned HT system is
a straightforward method to know the fingertip position directly in the acquisition device reference
system. For the proposed application a high frame rate value is crucial. In fact, it directly affects the
quality of the solution provided by the system: with higher frame rate values rapid movements of the
hand are more easily registered. Moreover, a small time step between evaluated solutions increases
the soundness of the last-known position, used as reference value for the location of the hand.

For this reason, in the proposed system, the procedures accomplishing the HT (i.e., the HT library),
have been left free to run separately and independently to the rest of the algorithms (e.g., touch
identification), which could slow down the HT. In fact, two main cycles run simultaneously: a hand
tracking cycle (HTC), which evaluates continuously hand pose solutions and saves them, and a touch
identification cycle (TIC). TIC consists of a number of procedures (extensively described in next steps)
that rely on the latest hand pose solution stored in the system by the HTC to assess if and where the
user is touching the bas-relief.

Moreover, to reduce the complexity of tracking problem, hand tracking has been performed
with reference to a single fingertip (index). This choice is recommended for this application since the
proposed BES is only a prototypal version of a future automatic verbal guide system to be installed
into museum environments. Consequently, the final result obtained by using the HT system is to
detect the coordinates of the extreme point of the index fingertip in the Kinect® reference frame.

4.2. Bas-Relief Positioning

To retrieve the position of the tactile bas-relief in the Kinect® reference frame, the simplest way is
to use such a device as a sort of “traditional” 3D scanner; with a single placement a 3D scan of the
scene in the Kinect® field of view is accomplishable simply using Kinect® Fusion library.

However, the quality of the Kinect® 3D scan is not good enough to obtain detailed information
about the bas-relief or to identify the contact with the finger; especially with a single placement,
obtained 3D polygonal model have a low resolution and is affected by high noise. Moreover,
the Kinect® acquires the entire scene (not only the bas-relief), resulting in lot of undesired scan
points or polygons. Nonetheless, despite the device provides low-definition (LD) scans almost useless
for accurate reconstruction of the scene, the scanned points can be used as a provisional reference for
registering the (available) high-definition (HD) model as explained in the next procedural step.

4.3. Registration

Once the LD model (correctly referred to the device reference frame) is available, the original
high-definition model (HD) of the bas-relief is registered upon the LD one. With this strategy, a very
refined 3D model correctly referenced in the Kinect® frame can be obtained. The registration is
accomplished by using a two-steps procedure: first a coarse registration is performed to roughly align
and over-impose the HD onto the LD points (belonging to the point cloud or polygon vertices in case
polygonal models are used). Then, a fine registration, using the rough results obtained in the coarse
registration as initial guess, is made to increase the quality of points” alignment.

4.3.1. Coarse Registration

As described in the introductory session, several methods for coarse registration are available in
literature. However, in the present work, it is performed with an appositely devised interactive
procedure, taking advantage of the hand tracking system implemented to obtain the required
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initial rough alignment. In effect, traditionally coarse registration algorithms search for geometric
correspondences in the two point sets. This procedure, instead, imitates the common “point and
click” procedure for coarse registration that is usually implemented in reverse engineering software
(where the selection of correspondences is done by the user itself).

In detail an appositely developed point-and-click interface (Figure 3) is used to pick a number
N > 3 of non-aligned pairs of equivalent points in both the LD and HD clouds (or polygonal models).

Figure 3. Custom-made coarse registration GUL

To select the points in the LD model, the HT system is used as follows: first the user touches the
desired point using the tracked fingertip. Once the contact between finger and physical bas-relief is
established, the user click on the “acquire” pushbutton so that the coordinates of the fingertip are
stored in a matrix PLp (size N x 3) and a numbered tag is attached in the touched point. Subsequently,
the user is required to touch the correspondent point on the HD model, using the sequence defined by
the numbered tags. The coordinates of these points are finally stored in a matrix Pyp (size N x 3).

The P1p and Pyp matrices, whose elements are the coordinates of, roughly the same points in,
respectively, the reference frame of the LD and HD models, can be used for effectively registering the
HD model onto the LD ones.

In fact, the reciprocal alignment between the two mentioned reference frames consists of the
roto-translation described by the following equation:

Puyp =R X Pip+t 1)

where R is the rotation matrix and t is the translational vector. Since in Equation (1) both R and t

are unknown, a proper procedure for determining them is required. In particular, a singular value

decomposition (SVD)-based method (Besl and McKay, [34]), covering three steps has been used.
Firstly, the centroids of both sets of points Py p and Pyp are computed as follows:

18
centroid;p = N Y Pip ()
i=1
1Y
centroidyp = N E Php 3)
i=1

where P!, and Pl are the 1 x 3 vectors describing the coordinates of the ith point belonging,
respectively, to the set P;p and Pyp.
Once the centroids are evaluated, it is possible to build the matrix H as follows:

H=) ( iD — centroid; p)( iHD — centroidHD)T 4)

-

Il
—

1
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The widely known SVD procedure can now be applied to matrix H allowing to determine the
matrices U, W and V:
[U,W,V] = SVD(H) (5)

As a consequence, the rotation matrix R is easily evaluable as follows:
R =VvUT (6)
Once R is known, the translational vector can be evaluated using the following equation:
t = —R X centroid s + centroidg 7)

Finally, the knowledge of R and t allows to determine the rough alignment between HD model
and Kinect® acquired LD one, according to Equation (2); in other words, to find the whole set of
coordinates P'pyp of the HD model in the reference frame of the LD one (i.e., the Kinect® reference
frame) it is sufficient to apply Equation (1) as follows:

P'up = R X Pyp +t (8)

This procedure showed good results on the point registration, especially when the points chosen
by the user are well-separated and non-aligned.

4.3.2. Fine Registration

Fine registration is performed starting from the roughly aligned point sets resulted from
Section 4.3.1 (Coarse Registration). Among the already mentioned algorithms proposed in scientific
literature, ICP and Chen’s method were tested so as to find the best one suited for this application.

Both methods perform an iterative minimization of properly defined distance functions. Given the
two point sets P'pp and Prp to be aligned, ICP iteratively searches for each P’ lHD point of set P'yp the
nearest point P!, of set P p and apply to the original set P'yyp a proper roto-translation to minimize
the distance between the two points. At the end of iterations (reached when a proper cost function is
minimized) the set P” jp represents the best HD aligned model.

As mentioned in Section 2, Chen’s method is quite similar to the ICP one, with the difference of
using point-to-plane instead of point-to-point distances. Also using this algorithm, the final result is
the set P”yp describing the aligned HD model.

Both these methods, easily implementable in the Matlab® environment, are reliable and show
overall good results. Accordingly, ICP and Chen’s methods were tested on the registration of the
LD and HD scans and showed comparable results. Despite Chen’s method being considered in the
literature as the most reliable among the two analysed, for the proposed application tests demonstrated
that it exhibit more sensitivity to local minima during iterations. Given that fine registration needs to
be executed just once during the calibration of the models (i.e., before the bas-relief exploration starts),
solution stability was considered as the most important factor. ICP was therefore chosen as preferred
method to perform fine registration. Tests performed by authors demonstrated that the average time
for convergence of ICP is in the range of 5—8 min, with model dimensions in the order of 105 points
for the HD scan and 10° points for the LD scan (it has to be noticed that LD scans contains also points
that are not belonging to the bas-relief). Iterations usually stop with a RMS error between 2—3 mm,
value comparable with the Kinect® accuracy. A visual example of the final result obtained with this
method is depicted in Figure 4.
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Figure 4. HD and LD bas-relief models after coarse and fine registration (ICP algorithm).

It is important to remark that the whole registration procedure (coarse + fine) should be performed
only one time, before the exploration task starts, or at worst it has to be repeated in case the relative
position between the bas-relief and the sensor changes for any reason.

4.4. Touch Identification

As already said, thanks to the strategies presented in Section 4.1, Section 4.2 and Section 4.3,
the position of the index fingertip and of all the points composing the HD bas-relief model are known
in the same reference system. The next step consists of identifying if and where the contact between
the finger and the bas-relief occurs.

To perform touch identification, the most convenient method is to find, among all the points of the
3D model, the nearest to the fingertip. Moreover, the distance between such two points is compared
to a given threshold to decide whether the finger is in contact or not with the bas-relief. To find the
nearest point, the k-nearest neighbour algorithm method was tested against both the “N-D nearest
point search” method and the “brute force” method.

Though the proposed prototypal application is based on a single query point (i.e., the index
fingertip) algorithms were tested with up to 16 query points with the aim of simulating more complex
versions of the system (i.e., with more hand points processed by the system at the same time and/or
with more points taken in a single finger). In particular, tests were carried out increasing the number of
query points (1-2-4-8-16 points) and the dimension of the dataset (50-100-200-400-800-1600 k points).
K-nearest neighbour resulted as the best performing method in all the situations since its computing
time is lower than 0.1 s even in the most challenging condition. Such a value guarantees a frame rate
of approximately 10 fps and may be therefore considered acceptable for the touch identification task.

In Figure 5 the results of the test performed with one query point are presented. Computing time
value, equal to about 0.05 s in the worst conditions, confirms that the implemented k-nearest neighbour
algorithm performs perfectly for the considered application.

Accordingly, once the nearest point P € P” gp to the query point Q is evaluated using the k-nearest
neighbours (together with the distance value d) it is possible to identify the touching condition. In fact,
if d is smaller than the threshold value dyy, the finger is identified as in touch with the bas-relief;
conversely, the devised algorithm considers that no contact occurred between the finger and the HD
model. In this last case, the current touch identification cycle (TIC) is considered completed and the
touch identification task starts again.

On the basis of a number of tests performed using the whole system of Figure 6, the threshold
value diyych, Was set to 5 mm. This value showed the best compromise between false positive and
negative occurrences.
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Figure 5. Nearest point methods comparison, 1 query point.

Figure 6. Hardware for the test of touch identification.

A touch identification test was performed using the setup pictured in Figure 6 to evaluate the
performances of this phase. The Kinect® sensor was placed at a distance of 1 m from the test model
(a plausible value to obtain good hand tracking results, according to [17]). The test began with the
hand tracking calibration (required by the implemented method), which registered the hand model
upon the user hand. Once that the tracking was stable, the user approached the test model with his
hand, describing a roughly vertical movement, until his right index fingertip touched the tip of a
pyramidal shape (i.e., the target point of the test), as in Figure 6. The test results (Table 1) showed
74 positive touch identifications on a total of 100 runs. Eighteen false negatives (situations where the
touch condition was not recognized) occurred, partly caused by the complete loss of the tracking;
eight false positives were registered, characterized by the identification of touch between the finger
and the model that significantly anticipated the actual contact between the two.

Table 1. Touch identification test results.

Number of Tests Positive Touch Identifications False Negatives False Positives

100 74 18 8

These values, although promising for a first test, represent a significant limit to an actual
implementation of the whole system; this aspect, therefore, needs to be considered and addressed
during the study of a first BES functional prototype.
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4.5. 3D Segmentation and Region Identification

The last step to be performed consists on the identification of the touched bas-relief region (in such
a region, in the future, it will be possible to convey associated verbal description). Region identification
starts from a 3D segmentation of the HD digital bas-relief model. Different regions of the bas-relief are
identified considering their significance in the original artwork and according to the desired level of
detail. These m regions are easily segmentable using a reverse engineering software (e.g., Polyworks®);
for the proposed procedure each segment is individually stored as an STL file.

Of course each segmented region consists of a number of points of the set P” yp. As a consequence
it is possible to associate to each point of the 3D model a label (from 1 to m) identifying the region
containing the point itself. In other words, it is possible to build a matrix A (size m x 4) where the first
three columns are the coordinates xyz and the last column is the associated label.

Once the touch identification cycle identifies the touching condition, the corresponding touched
region is detected simply by searching in matrix A the label associated to the coordinates P.

4.6. Verbal Description

Each segmented region of the HD model can also be enriched by an audio file containing a
verbal description; by a way of example it is sufficient to associate to each region a single wav file.
Once the touched area is identified, such description can be transmitted to the user by means of a pair
of headphones, to guide him/her in the exploration so to allow a full-immersion experience. Until the
description is provided, the TIC is maintained in stand-by in order to avoid undesired interruptions
due to a different position of the finger.

5. Physical Layout Alternatives

To select the best physical layout of the devised prototypal system, the relative positions among
the user, the bas-relief and the Kinect® have to be investigated. In fact, the system should be capable of
providing the best possible accessibility to the tactile bas-relief thus maximizing the comfort during
the tactile exploration and, at the same time should guarantee the best system performances. To this
purpose, CAD models of the 50th percentile male and of the bas-relief to be explored have been realized
in order to get a first idea of the overall dimensions of the two elements (see Figure 7a).

Figure 7. (a) CAD model of the bas-relief and the user; (b) CAD model of the plausible region (green)
to host the Kinect®.

The bas-relief has been positioned at an approximate height of 1.2 m from the ground and with
an inclination toward the user of 45°. This position was determined to be the most comfortable for
the user, thanks to information gathered by the authors in tests performed together with a panel of
blind persons, within the T-VedO project [33]. Starting from this configuration, it has been possible to
determine the occlusions introduced in the scene by the users” hand (a key information to place the
visual sensor) and, therefore, to identify the areas suitable for housing other elements of the system.

Of course, the most important element to be positioned is the Kinect®; according to [17],
and supported by further tests performed by authors of the present work using the device library,
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an average distance of 1 m between the sensor and the user’s hand may be considered among the
best options to obtain good performances in terms of resolution and visibility. Moreover, besides the
possible obstruction of the scene provided by users” hand, it has to be taken into account that some
areas have to be left free for accessing the bas-relief. As a consequence a portion of spherical shell with
radius equal 1 m, centred in the barycentre of the bas-relief and with an angle of 60° (Figure 7b) has
been found as a plausible area to host the Kinect®.

The sensor position influences also the percentage of bas-relief directly visible by the acquisition
device due to the optical occlusions created by parts of the bas-relief itself. Since the system needs to
be functional independently from the specific bas-relief selected for exploration, it is not possible to
determine a sensor position for avoiding all possible self-occlusions. However, by studying a set of
representative case studies it is possible to select a position which is generally suitable though not
optimal for each single case. In detail, the percentage of bas-relief visible from a discrete set of points
taken on the previously defined spherical shell is evaluated. The results, depicted in Figure 8, show a
common central region that maximises the visibility percentage (with an average value near to 90%).

Figure 8. Visibility analysis for bas-reliefs; (a) “Madonna con Bambino e Angeli” by Niccold Gerini di
Pietro; (b) “Guarigione dello storpio e resurrezione di Tabita” by Masolino da Panicale; (c) “Pala di
Santa Lucia de” Magnoli” by Domenico Veneziano; (d) ”“ Annunciazione” by Beato Angelico.

To choose, among the set of positions that maximise the visibility of the bas-relief, the better
solution, it has to be considered that the HT precision strongly depends also by the portion of users’
hand acquired during the sensor acquisition. Test performed with different positions of the Kinect®
(in the points with maximum percentage of visibility) showed that the best performance is obtained
when the hand is placed perpendicular with respect to the line of sight of the Kinect® sensor (see the
red hand in Figure 9a). This is probably due to the fact that, in this position, the hand shows to the
sensor its most distinctive features (e.g., the silhouette shows all five fingers and the back of the hand
is clearly visible). Conversely, when the acquisition device line of sight is inclined with respect to the
hand (see the green hand in Figure 9a), it shows less features and accordingly the silhouette could be
lost or ignored during skin segmentation.
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Figure 9. (a) Views and silhouettes of the user hand as seen by the Kinect® with different elevation
angles; (b) Bas-relief reference frame for Kinect® positioning, where o is the azimuth angle and f the
elevation angle.

Since on the basis of the mentioned tests performed by authors in the T-VedO project, BP usually
explore bas-reliefs with palms placed approximately parallel to the explored surface, among the
possible configurations showing better visibility results, the preferable options are the ones where the
sensor is placed approximately perpendicular to the bas-relief. Finally, it is possible to state that the
best positioning option, referring to Figure 9b, corresponds to the angles o« = 90° (azimuth angle) and
B = 60° (elevation angle). In fact this configuration is the optimal compromise between bas-relief
visibility and hand features recognition.

On the basis of the above considerations, the final layout of the proposed prototype is the one
depicted in Figure 10 where a vertical structure, located directly under the bas-relief, is designed with
the aim of (1) containing the computer hardware and control devices; (2) sustaining the tactile model
in the desired position; (3) placing the acquisition sensor in the above mentioned optimal position.
The structure, moreover, has a lectern-like shape, suitable for museum exhibits.

Figure 10. Final layout of the BES prototype.

6. Discussion and Conclusions

In this work, a full description of a first-attempt tactile bas-relief exploration system to improve
blind people tactile exploration of artwork has been presented. The system, today in the form of
prototype, consists of a bas-relief, a 3D scanner (Microsoft Kinect®) tracking the user’s hands connected
toa PC, and an audio device providing the user verbal descriptions in response to the hand movements
relatively to the bas-relief.
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The system functionalities are of course limited, mainly due to the fact it tracks only a single finger
and the verbal guidance is only an embryonal idea. Moreover, the accuracy of the touch identification
needs to be carefully improved and assessed. The main drawback of the proposed system, up-to-date,
is related to the HT system; in fact while slow movements and limited hand rotations are excellently
tracked, the hand position is lost from time to time when movement speed increases. Accordingly,
at this time it is still premature to think of an implementation of the entire system at least until the
issues related to HT and touch identification are coped with. In other words, the answer to the question
posed at the beginning is: “probably not yet!”.

Fortunately, additional refinements of the work in [22-24] are now under further development
at the Forth Institute and the release of better HT algorithms is expected soon. Consequently,
such improvements will be tested with the proposed system. Furthermore, the use of the new version
of the Kinect® (Kinect® 2.0) with enhanced depth fidelity could improve the HT performance as well,
together with an expectable higher resolution provided by the sensor.

Future work will be addressed to the implementation of the HT system to detect more fingers
and even the two full hands. The introduction of multiple points, although challenging, could be
useful to refine the identification logic of the regions (e.g., interpretation of the full hand position
could resolve conflicts in the identification of two contiguous regions). Other issues that will be
investigated to improve the system performances are: (a) lighting condition on the scene, which
could affect skin segmentation performed by the HT system; (b) implementation of multiple visual
sensors, to increase the number of viewpoints and strengthen the HT; (c) study of multi-cue strategies
to increase the robustness of the hand identification by HT, appositely devised for this application and
its features (e.g., computer vision techniques like background subtraction). Moreover, despite the fact
the devised system is largely based on prior studies with a panel of BP, further studies will be assessed
by involving more BP to highlight strengths and weaknesses of the proposed system as well to find
possible improvements. Moreover, a detailed analysis of system performance on a panel of BP is still
required to assess the effectiveness of the designed solution.

The implementation of a gestural interface (i.e., conferring different meanings to specifics gestures
made by the user) could dramatically increase the autonomy of blind people, the interactivity of
the system and, therefore, its potentiality. Different positions of the hand during exploration could,
in effect, be interpreted to transmit different kind of information to the user (e.g., art-related, semantics
of the touched regions). This particular issue is not trivial and accordingly more work is required prior
to reach exploitable results. Issues such as cost of the entire system, industrial production feasibility,
optimization of procedures at industrial scale constitute further future studies to be confronted with
prior to effectively introduce the proposed system in museum environments.
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Abstract: Giving unmanned aerial vehicles (UAVs) the possibility to manipulate objects vastly
extends the range of possible applications. This applies to rotary wing UAVs in particular, where their
capability of hovering enables a suitable position for in-flight manipulation. Their manipulation skills
must be suitable for primarily natural, partially known environments, where UAVs mostly operate.
We have developed an on-board object extraction method that calculates information necessary for
autonomous grasping of objects, without the need to provide the model of the object’s shape. A local
map of the work-zone is generated using depth information, where object candidates are extracted
by detecting areas different to our floor model. Their image projections are then evaluated using
support vector machine (SVM) classification to recognize specific objects or reject bad candidates.
Our method builds a sparse cloud representation of each object and calculates the object’s centroid
and the dominant axis. This information is then passed to a grasping module. Our method works
under the assumption that objects are static and not clustered, have visual features and the floor
shape of the work-zone area is known. We used low cost cameras for creating depth information that
cause noisy point clouds, but our method has proved robust enough to process this data and return
accurate results.

Keywords: UAV; object detection; object recognition; SVM; manipulation

1. Introduction

Unmanned aerial vehicles (UAVs) have been the subject of much research [1] and attracted the
interest of the public in recent years. Not only do they offer cost reductions in deployment and
operation in a number of scenarios, but they also provide new capabilities in industrial and consumer
applications. In order to reduce their dependence on an operator, UAVs have also gained several
autonomous capabilities. They are able to autonomously plan paths, cooperate with each other,
and even avoid obstacles while flying [2—4]. More recently, the interest in developing manipulation
capabilities for UAVs has been spurred.

Such a robotic system, also called an aerial manipulator, merges the versatility of multirotor UAVs
with the precision of robotic arms. However, the coupling effects between the aerial vehicle and the
manipulator gives rise to several modeling and control problems. Several studies have focused on the
control of the arm and how it influences the dynamics of UAVs [5-10], with the goal of developing
a cooperative free-flying robot system for assembly structures. An extension of this idea is under way,
which aims to develop the first aerial robots in the world with multiple arms.

Nevertheless, manipulation involves more than the control of an aerial manipulator. In order
to grasp and manipulate objects, the robot must first be able to perceive them. The complementary
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required skill to aid manipulation is therefore object perception using arbitrary sensors. Methods using
different types of markers for detecting objects have been developed, e.g., radio markers [11] or visual
printed tags[11,12]. In this article, however, we focus on object detection methods that do not rely
on additional visual cues but solely on the object’s visual characteristics. Since drones are often
used for surveillance tasks, many methods of detecting and tracking objects have been proposed.
Some look for motion in images as a cue for object detection [13-16]. Others use color and intensity
information [17,18]. These methods apply for objects that are relatively far away from a high flying
drone. We want to solve the task of locating an object in close proximity to the drone, where it can
reach it. In order to attempt to grasp an object, the UAV has to acquire some three-dimensional (3D)
information about the scene; therefore, the methods mentioned above do not suffice.

Such 3D information is usually gathered in a map of an area. There are several approaches to
creating general 3D maps, usually simultaneously localizing the viewer in the scene (SLAM). Some of
these approaches use monocular systems [19-21], stereo cameras [19,22,23], depth cameras (or RGB-D
sensors) [24], or even laser sensors that return very accurate distances to objects in the scene [25]. The
task at hand, however, is not to accurately map a large area, but to return the objects pose relative to
the drone, so that the drone can use that shape information in order to grasp the object.

There are several methods to describe objects in order to obtain grasping data. For the sake
of the greater generality, we are interested in methods that do not require object CAD models (or
computer-aided drafting models) to initiate the grasping. Using sparse depth information about an
object a Gaussian processes can be used to describe its implicit surfaces [26,27]. The main advantage of
this approach is that it provides a guess of the surface of the object and also offers a measurement of
uncertainty of the shape, which can be used to decide where to further inspect the object. It has also
been shown that when dealing with novel objects, a reactive grasping mechanism can be used to grasp
objects using a humanoid robot by determining its dominant axis and centroid [28,29].

In this paper, we propose a method that extracts objects from a local map of the work-zone,
generated using depth information. Candidate objects are extracted from this map by detecting areas
different from our floor model. The candidates are then evaluated using their projections in the color
images, where the object classification is executed. Our method builds a sparse cloud representation of
each object and calculates the object’s centroid and dominant axis. This information can be passed to
a grasping module for a grasping attempt. Our code is suitable for on-board execution and ought to
be initiated after the drone has approached the work-zone. The principle of how the drone comes to
the actual pick-up location, within two meters of the objects, is beyond the scope of this paper. In our
implementation, we use extremely low cost USB cameras, as seen in Figure 1, which capture images
using a rolling shutter and do not have control over image triggering and focus. We show that our
system is robust enough to successfully tackle the effects produced by these affordable cameras.

(a) Drone with stereo system (b) Logitech ¢920

Figure 1. The UAV (a) used in the experiments with a stereo system comprised of low cost cameras;
(b) More information about the system is shown is Section 3.
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2. Methodology

2.1. System Description

The general principle of our method is best understood by following the flow chart in Figure 2.
The system is initialized once the drone is within two meters above the work-zone floor for our
cameras to return usable depth information. Our method requires input from the camera and the
inertial measurement unit (IMU) with integrated compass data as explained in Section 2.2. The robot
determines whether it is necessary to learn the floor appearance model as described in Section 2.4.
The robot then predicts its current position in the map, depending on its previous movement
(Section 2.6) and determines whether the images are blurry [30]. Due to motion blur or focus hunting,
the images might be useless, and, therefore, the robot does not waste time processing them and goes
straight to the Extended Kalman filter module to update the UAV’s current pose (Section 2.6). If the
images are in focus, the robot first excludes the floor from the images in case the floor appearance
model has been learned (Section 2.4). Afterwards, a point cloud is generated as explained in Section 2.3
and aligned to the map (Section2.5). The robot then extracts candidate objects from the map and
attempts to classify them using a support vector machine (SVM) classifier, as described in Sections 2.7
and 2.8, respectively. Lastly, at the end of each loop, the object data is returned for a grasping
attempt (Section 2.9).

Figure 2. System flow chart.

2.2. Data Acquisition

Our system requires information from two different sensors:

1. Stereo cameras.
2. Inercial measure unit (IMU) module with compass data (Accelerometer, Gyroscope).
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We focused on using cheap stereo cameras that do not have trigger control, which results in
unsynchronized stereo images. In the execution loop, the cameras are prompted to return new images
and the time difference between them can be anything up to 1/FPS. The drone moves rather slowly
above the objects while inspecting them, but larger time shifts are still noticeable and they result in
poor point clouds. In Section 2.5, we describe how we deal with noisy clouds, and it is possible to see
examples of good and bad clouds in Section 3. The IMU unit provides acceleration and orientation
information. The latter can be used directly to estimate the robot’s orientation, while the acceleration
data is corrected for gravity and fed into an Extended Kalman filter for the motion model (Section 2.6).

2.3. Point Cloud Generation

In order to satisfy a broad spectrum of applications, an affordable depth sensor is required to
gather 3D Rdata. Common off-the-shelf depth sensors, such as the Kinect, do not work well at short
distances under 1 m [31,32], which makes them difficult to use for manipulation by drones with short
arms. An alternative is to use stereoscopy to recover 3D information, while also acquiring 2D color
information. Our proposed method works with any method of acquiring depth information and color
images; however, we used low cost unsynchronized USB web cameras for the task.

In this implementation, the generation of the point clouds is divided into three steps:

1. Visual feature detection in the left image.
Template matching in the right image.
3. Triangulation.

N

Keypoints or visual features are distinctive points in an image that are invariant to small changes
in view. Keypoints extracted from one stereo image should therefore also be distinctive in the
other image. Our camera pair is calibrated, therefore we can use the constraints of epipolar geometry
to look for keypoint matches. A template window is slid across the epipolar line and compared to the
template of each corresponding keypoint. If the matching score is sufficient, a keypoint pair is then
triangulated (Figure 3). All the triangulated keypoints make up the point cloud.

Figure 3. Epipolar geometry.

There are several feature detectors to choose from and several metrics for template matching.
Often, features like scale invariant feature transform (SIFT)[33] or speeded up robust features
(SURF) [34] are used. These features were designed to be robust in order to track them reliably
over longer periods of time. However, we require features that are calculated quickly and we need
to detect many of them in order to create a more dense point cloud. For this purpose, we chose
the Shi-Tomasi corner detector [35] in combination with the squared sum of differences for template
matching, but an arbitrary detector can be applied.
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2.4. Floor Detection and Extraction

Floor extraction is analogous to the background subtraction problem, which is tackled frequently
in surveillance tasks. The initialization of the background model is crucial to ensure foreground
objects can be extracted effectively. Current state-of-the-art methods such as [36-39] propose different
algorithms for the initialization and maintenance of the background model. However, these approaches
assume static cameras. Some methods consider camera movement intrinsically as in [40,41]. Authors
in [42] introduce a Bayesian filter framework to estimate the motion and the appearance model of
background and foreground. Others like [43] tackle the problem using an optical flow algorithm to
segment the foreground objects. All mentioned methods require moving objects in order to extract
them from the background, which is not the case in our scenario, where a UAV tries to pick up a
static object.

Our method works under the assumption that the floor shape model is known in advance.
After the initial 3D map is generated from the point clouds, we use the random sample consensus
(RANSAC) algorithm to find the best match of the floor model in the map [44]. Extracting the floor is
very important, as it helps to segment the cloud into candidate objects. Only the floor shape model is
assumed, but the robot also learns a color and texture model in order to extract it from the images.
Floor extraction from the images is done due to the fact that visual features can appear overwhelmingly
only on the floor. Our method of point cloud generation relies on visual features appearing on the
objects in order to detect them. Distinctive keypoints appear predominantly on the floor, when it has
small repetitive patterns, e.g., a gravel floor or a pebble floor. Our method looks for the maximum
N best features for point cloud generation in order to satisfy the time constraints and the quality of
the floor features can completely overwhelm the object features. We consider the following scenarios
regarding the floor:

1.  The floor in the scene is uniform so it has few features on it.
2. The floor has a texture that can be modeled /learned.
3. The floor has a texture that cannot be learned.

The first scenario is the simplest. The feature detector will mostly find keypoints that correspond
to objects and will produce good and accurate 3D points. In this case, RANSAC will not detect a good
floor match, but the pipeline will continue to work flawlessly and extract candidate objects.

In the second scenario, the floor has some textures that produce keypoints. RANSAC is able to
detect the floor in this case and the robot tries to learn the floor appearance model. Repetitive small
patterns in particular cause a lot of problems. However, the good thing is that these patterns can be
learned and extracted from the images [45] before creating the 3D cloud. It is important to notice that
cropping the floor at this stage will speedup the system as fewer features are detected in the remaining
image, so the matching, triangulation and then aligning to the map takes less computational time.

Finally, the third scenario has the same problem with dominant features on the floor as the second.
In this case, it is not possible to learn the floor pattern for some reason. This is a less likely event, but if
a floor has great variance, it can occur and has to be considered. RANSAC extracts the floor model
from the map, but at least some keypoints on the objects have to be found for the system to be able
to extract objects. Since geometric parameters of floor are detected, we can exclude the points of the
map that belong to the floor and pass the result on to the procedure for candidate extraction. In this
scenario, the number of object keypoints will obviously be smaller due to most of them being part of
the excluded floor; however, as shown later in Section 3, our system can handle these types of scenarios
as well.

The system automatically detects whether the floor models can be learned in order to extract the
floor either from the images (second scenario) or in 3D (third scenario). In all other cases, the system
processes the entire map as in the first scenario. Figure 4 gives a the detailed flow chart of our floor
learning method with the starred block representing all the other processes in the loop.
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Figure 4. Floor detection and extraction flow chart.

2.5. Temporal Convolution Voxel Filtering for Map Generation

Point clouds generated by matching features from stereo cameras include noisy points due to
bad matches, triangulation and calibration errors, mistimed stereo images (Unsynchronized stereo
produces a delay between the captured frames), occasional rolling shutter effect because of vibrations,
and even some partially blurry images that get through to this point. For this reason, it is necessary
to process these clouds before adding them to the map. We developed a method that processes
sequential point clouds in both spatial and time dimensions before adding the result to the map.
Due to the movement of the UAV, sequential point clouds first need to be aligned properly using affine
transformations. Section 2.6 will explain how this transformation is obtained. After the alignment of
the point clouds, we filter out the bad points using our probabilistic map generation procedure based
on a sequence of the N previous point clouds.

As mentioned, the point clouds are filtered in two steps: (1) Spatial filtering: Isolated particles or
small clusters of particles are considered noise (using [46]) and the remaining points are transformed
into a grid of cubic volumes of equal size, also called voxels, where a voxel is occupied if at least one
point from the point cloud belongs to it [47]; (2) Time filtering: We propose a filtering method over
time using sequential voxel point clouds stored into memory, also called history. The occupancy of
each voxel is checked in each cloud in history, so that only voxels that have a higher probability of
being occupied by a real point will be kept. We call this method Temporal Convolution Voxel Filtering
(or TCVE).

Given a set of N consecutive point clouds PC;, the goal is to obtain a realistic representation of
the environment by filtering out incorrect points. The Algorithm 1 describes the process.

TCVF adds a new cloud to the history in each iteration and evaluates the clouds kept in the
history at that moment. The result of this operation is then added to the map. By discretizing the space,
the number of points for computation is reduced, which reduces the computational time. We use
an occupancy requirement of 100% throughout the entire history, making this calculation a simple
binary operation of occupancy check, which is very fast and is only evaluated on occupied voxels,
making this method computationally light. The number of operations is O(nk), with n the number
of occupied voxels in the smallest cloud in the history and k the history size. The voxel size is
predetermined and represents the resolution of our map. Figure 5 shows a schematic of a 2D example
using a history size of three.
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Algorithm 1 Probabilistic Map Generation.

MAP < empty
fori € [0,N] do

PCj « filter(PCy)
PCj « align(PCy)
PCj + voxel(PCy)
addToHistory(PCy)
end for
for point in PC; do
if point 3in PC; withi € [0, N] then
MAP add point

end if
end for

Figure 5. A 2D example of our Temporal Convolution Voxel Filtering for history size of 3. The method
checks the occupancy of each voxel through the history of point clouds and only voxels occupied in the
entire history are passed through the filter.

2.6. Drone Positioning and Cloud Alignment

At the start of the application, the drone acquires the first point cloud and initializes an empty
local map. Since we do not want noise in our map, we use our TCVF algorithm to add points to
the map. TCVF needs to first fill the entire history with sequential point clouds in order to determine
whether specific points exist. However, the drone is not static, so from the camera’s point of view, the
points might move, even though they represent the same actual static point. The camera origin of a
point cloud effectively represents the relative position of the drone to the detected scene. Obviously,
the sequential clouds must be aligned in order for TCVF to work. The effect of aligning sequential
clouds is also an assessment of the updated position of the drone. We use the iterative closest point
(ICP) algorithm, which minimizes the distances of pairs of closest points in an iterative fashion, to
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align point clouds. However, ICP algorithms have difficulties detecting the correct transformation
between two sequential point clouds if the change in pose between them is large.

This problem can be solved by using IMU data from the drone to provide an assessment of the
pose change and feed this to the ICP algorithm. Unfortunately, it is not possible to rely solely on the
IMU data for positioning in GPS-denied environments, because it tends to drift quickly. Luckily, the
ICP result gives us an estimation of the drone position, so we implemented an algorithm to fuse the
information from the IMU and the ICP result to estimate the position of the drone in the map.

Traditionally, an Extended Kalman Filter (EKF) is used to fuse the visual and inertial data.
The result of using an EKF is a smoothed pose estimation. There are several implementations of this
idea [48-51]. In particular, in [51], the effect of the biases in the IMU is studied and a solution provided.
Suppose that the system’s state is:

Xic = {x, xi, xf, 3%, 0, 3%, %, 2, 3, b, 0L b M

and the observation’s state:
Zy = {xi, xj, xf, &, 5, %) @

while the equations for the system and the observation are:

xf{ = x;;71 + Ata'cf(fl + %5&};71, i=xyz
® o= AtE_, i=xy,z
= e A ©
¥o=%_q, ‘ i=xY,z
bias{ = glybiasi |+ $5E(C1+C), i=xy,z
Xi=27, i=j=02
R )
Xi=27, i=02j=35

Introducing these equations into the EKF allows for predicting the current state of the system.
This information is used to locate the cameras in the environment. It is also used to provide a guess
in the next iteration of ICP, by taking the current state and assessing the drone’s position after At.
The orientation is taken directly from the IMU, since it is provided by the compass and does not drift.

Figure 2 shows the pipeline of the whole system and illustrates how the EKF information is used
for drone positioning and cloud alignment:

1. The previous state X;_1 is used to obtain X}, which is a rough estimation of the current position
of the robot.

2. If the stereo system has captured good images, a point cloud is generated and aligned with the
map using X; as the initial guess. The transformation result of the alignment is used as the true
position of the drone X;. The obtained transformation is compared to the provided guess and
discarded, if the difference exceeds a predefined threshold.

3. If the stereo system has not captured good images, it is assumed that X} is a good approximation
of the state, so X = X

4. The EKF merges the information from the ICP Xk, with the information from the IMU, )'A'(k,
and the resulting X is the current filtered state.

2.7. Candidate Selection

As the robot builds the representation of the environment in the map, the search for candidate
objects can be executed. The input cloud for this processing module has already had the floor points
removed or has very few floor features as described in Section 2.4. Candidate objects are extracted
from the cloud using a clustering algorithm based on Euclidean distances [52]. This clustering method
extends each cluster if a point appears closer than a predetermined threshold to any current point in
the cluster. An example of this procedure can be seen in Figure 6. Clusters that meet the minimum
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number of points requirement are selected as candidate objects. The idea behind this is that a tight
cluster of features that is not part of the floor could represent an object. Assuming the objects are
not cluttered, several candidate objects are extracted and passed to the object recognition module
for validation.

Figure 6. A visualization of the Euclidean cluster extraction [53].

2.8. Object Recognition

This is the final step of the object detection and recognition system. After the candidate extraction,
their point clouds are projected onto the images from the cameras. Due to the accurate cloud alignment
and drone positioning system described earlier, the projected points correspond well to their respective
objects as seen in Figure7. For each cluster of 2D points, a convex hull that envelops the object is
generated, and a patch is extracted for object classification.

Figure 7. Reprojection of the points belonging to candidate objects, surrounded by a convex hull.

The recognition system is based on the Bag of Visual Words (BoW) model [54]. Each object is
represented by a histogram of visual descriptors, computed by detecting features in the extracted
image patch. We used the Shi-Tomasi corner detector in combination with the SIFT descriptor [33] to
describe each object.

The BoW model requires a vocabulary, which is a set of representative descriptors that are used
as a reference to quantify features in the images. The vocabulary is generated during the offline
classifier training process, where the algorithm detects all features in the training input set and extracts
a representative set of words. During the training process, an SVM model is trained using positive
and negative object samples. The negative samples are used in order to reject false candidate objects,
for example if a big enough cluster appears in the map due to noise or a bad floor model. The resulting
object detection and recognition system returns the labels of the detected objects, which the drone
users can use if a specific object must be picked up or located.

The BoW model has been chosen due to another useful characteristic. It has been shown that it is
also good for learning more general representations, like object categories. By training the object to
recognize object categories, a novel object can also be classified.
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2.9. Grasping Data

Each object is represented by a cluster of points. The grasping module can process this
information arbitrarily. However, for purposes of illustration and evaluation, we provide the grasping
data in a similar form to that defined in [29]. A grasp is planned by calculating the mean position p
and the dominant principal axis a of the object. The dominant axis is used for the robot to grasp the
object on the narrow side and the centroid is the grasping approach target. Let x; = [x;,;, z;] be the
position of N cluster points:

1
N i

™=z

p= X; 6)

Il
—_

By calculating the principal axes of the object’s points, we estimate the object’s greatest extent in
each direction. First, the covariance matrix X is calculated as:

N
X =cov ({x1,X2,...xN}) = 7Z(Xi_P)(Xi_P)T ©)

Next, we calculate the three eigenvalues A1, A5, A3 and eigenvectors vy, v, v3 of the covariance
matrix X, which is done by solving the equation

(Z—AD)v=0 @)

The eigenvector associated with the biggest eigenvalue represents the dominant axis a of
the object.

3. Experimental Validation

We performed several experiments to evaluate our proposed method. A pair of Logitech
€920 cameras [55] were mounted on the bottom of a hexacopter as seen in Figurel. The drone is
equipped with a Pixhawk IMU [56] for the inertial measurements. The baseline of the cameras was
approximately 20 cm and they were facing towards the floor at an angle of 70° to the horizon. The
detailed specifications and parameters of the system can be found Appendix A. A human operator
controlled the drone during flights and the initialization of our method was triggered manually. An
Intel NUC [57] computer with a 5th generation i7 processor was on board for vision processing, and
our method was able to run at about five frames per second.

The experiments were executed in four different scenarios, summarized in Table 1. In all examples,
our floor model was a plane. The Laboratory scenario was executed on a white uniform floor with very
few visual features, where the drone was hand-held and moved manually. Due to the white floor,
this scenario does not trigger our floor extraction module, and there is no vibration from the motors to
cause image acquisition problems.

The Street 1 scenario was again hand-held, but executed outside on a gravel floor. This floor
was full of visual features, an example where features are detected predominantly on the floor as
described in Section 2.4. The floor extraction module detected the floor within the first three iterations
and learned its appearance, removing it from the images before creating point clouds.

In the Street 2 scenario (Figure 8), the drone was airborne, flown by an operator above a floor with
similar texture as in Street 1. This scenario represents an example, where vibrations are generated by
the motors and images may suffer from the rolling shutter effect. The effect results in bad point clouds.
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Table 1. Description of the testing scenarios.

Scenario  Location Movement Floor Type
Laboratory  indoor  hand-held white uniform
Street 1 outdoor  hand-held gray textured
Street 2 outdoor flight gray textured
Testbed indoor flight textured complex

Figure 8. The drone flying above the objects during an outdoor experiment.

Lastly, the scenario Testbed was executed in an indoor test facility for drones with a VICON [58]
measuring system. The drone flew above a complex textured floor, where the ground truth of all of the
objects’ positions and the drone motion was measured by VICON. This represents the most difficult
scenario for our method, where the floor has many visual features, but it is not possible to learn its
appearance and the motors are running and causing vibrations. Our method has to deal with bad
point clouds, where few visual features belong to actual objects.

Table 2 summarizes the results of our object extraction method after 15 s of flight. In our scenarios,
the number of total points in the local map stopped, increasing significantly after this point, meaning the
area had been mostly inspected and the results have converged. However, this is an empirically derived
value that depends on the diversity of the observed scene and the flight path the UAV takes to inspect it.

Table 2. Results of the object extraction method.

Categories Objects
Dataset Precision Recall F-Score Precision Recall F-Score
Laboratory 1 1 1 1 0.5 0.667
Street 1 0.429 0.6 0.6 0.333 0.4 0.36
Street 2 0.783 0.4 0.53 0.75 0.33 0.462
Testbed 0.429 0.5 0.462 0.2 0.167 0.182

The SVM classifier was trained using 16 individual objects, and, in the other case, the objects were
grouped by categories (Figure 9): cans; juice boxes; circuits; cars; boxes; Some of the objects were very
similar and hard to distinguish from certain angles, e.g., the original coke and generic copy, juice boxes
of the same brand but different flavors, since they possess intentionally similar appearance. In the
Laboratory scenario with a plain background, the results for individual object recognition were good
and perfect when the objects were grouped in categories. It should be noted that we used no color
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information for training and recognition, although it could improve recognition results of individual
objects. In the other scenarios, the recognition rates were lower, and we attribute this to our feature
extraction implementation. We used a square bounding box around the objects to extract features
instead of only the convex hull. In training, the background was plain, but for those examples with
a textured floor, a lot of the background is included in the bounding box, and it is very rich with visual
features. Still, we can see that the categories were detected better than the individual objects.

(a) Objects of category cans (b) Objects of category juice (c) Objects of category circuits

Figure 9. Our test objects were also grouped into categories. We see category examples belonging to
cans in (a); juice boxes in (b) and circuits in (c).

Because our system works with low-cost unsynchronized USB cameras with auto-focus,
some pairs of images are not useful. Blurring can occur due to motion or focus hunting, the timing
difference between the pair can be too big and occasionally even distortions appear due to the vibrations
producing the rolling shutter effect. There are two possible outcomes. If our blur detection module
registers a blurry image, we omit it and get a new pair. However, in low light, when the shutter speed
of the camera is decreased, motion blur can be present for a longer time. This poses a problem for the
ICP algorithm, which requires a good guess for successful alignment. If the position of the drone is
lost, the guess cannot be provided and the ICP fails. Our positioning system ensures that the position
of the drone is estimated in the EKF using IMU data. The ICP is then able to align a new cloud after
a longer period of blurry images and recover the drone’s true position. Due to drift, the IMU based
guess is not perfect, but, without using it, recovery is unlikely.

The other possible outcome is that the drone generates a point cloud from the bad images. In that
case, the quality of the cloud decreases drastically as shown in Figure 10. However, the TCVF is able to
handle such clouds and does not compromise the map with noisy data. A noisy point would have
to appear in the same voxel throughout the entire history of k for it to appear in the map. In our
experiments, we used empirically obtained parameters of history k = 3 and voxel size 5 mm.

(a) Sharpy picture (b) Good cloud (c) Blurry picture (d) Bad cloud

Figure 10. (a) shows a good input image. A point cloud generated from good images is shown in (b);
where the floor plane is clear with objects protruding out; (c) shows a blurry image that generates a
poor quality cloud (d); where the floor and objects are indistinguishable. A similarly bad cloud is also
generated when images are mistimed too much.

The positioning system of the drone relative to the objects is one of the key issues. Figure 11
shows how the fusion of ICP information and IMU information gives more robust and accurate results
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than using only IMU data or ICP results separately. The RGB dotted lines refer to the XYZ estimation
of position using only IMU information. As mentioned in Section 2.6, this tends to drift due to the
accumulation of errors. The RGB dashed lines are the XYZ positions using only ICP. These results are
initially good in so far as all the input clouds are confident. In iteration 120, the algorithm converges to
a wrong solution, and then it does not recover. The RGB solid lines are the XYZ positions of the drone
for the fusion algorithm. It returns stable and robust estimates of the position of the drone.

Figure 11. Comparison of drone positioning using the EKF with: only IMU data; only ICP results;
fused IMU data and ICP results. Using only IMU data, the position drifts away quickly. Using only
ICP results, the position has several bad discrete jumps and does not correspond to actual motion.
Using the fused data, the position corresponds to actual motion.

The progress of building the local map of the scene can be seen in Figure 12. The number of
features in the map grows and candidate objects appear defined by points of the same color. In order
to analyze the quality of the object localization, we compared the results to the ground truth acquired
using the dataset Testbed. Figure 13 shows the resulting position of the candidates in the scene after
approximately 15 s of inspection. Each colored cluster represents a candidate with a PCA defined
coordinate system of its pose in the center. The red circles represent the ground truth position of
the objects. Three objects were not detected in this dataset.

In order to evaluate the grasping information returned by our system, we calculated the error
between each candidate and the ground truth in position and orientation. Figure 14 shows how
these errors evolve over time for each object. The position error decreases or remains very stable.
When a candidate is first discovered, it has fewer features and might not contain features seen from
different angles, rendering its centroid less accurate. As the object is inspected from different angles,
this centroid improves accordingly. Similar behavior is noticeable with angles. When a complete
representation of the object is acquired, the accuracy of the centroid and orientation is very good.
Table 3 shows the average error and variance of the object centroids and orientation after observing
the scene for about 50 s. An example of an extracted object can be seen in Figure 15.
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Figure 12. The local map in different iterations. The size of the map is increasing (red points) and new
object candidates are discovered (seen in color).

Figure 13. Reconstruction of the objects in the scene (colored clusters) compared to ground truth
(red circles). The frame in each object represents the PCA (principal component analysis) results with
the red axis representing the dominant axis.

Figure 14. Error of extracted objects’ centroid (left) and orientation (right). The moment of object
discovery is aligned to zero on the abscissa. If an object disappears from the view, its plot ends but its
last pose is kept.

Table 3. Centroid and orientation error of the extracted objects.

Error Mean o

centroid (m) 0.0256 0.1356
angle (rad)  0.3831 0.4320
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(a) Top view of object’s cloud (b) Side view of object’s cloud (c) Actual object

Figure 15. Example of an extracted object. (a,b) show the point cloud from different angles; (c) is a
picture of the actual object.

4. Conclusions

We have developed an on-board object extraction method for rotary wing UAVs that calculates
the information necessary for autonomous grasping of objects, without the need of providing a model
of the object’s shape. An SVM classification procedure is used to recognize specific objects or reject
bad candidate objects in a work-zone populated with several objects. Our method works under the
assumption that the objects are static and not clustered, have visual features, and that floor shape
model of the work-zone area is known. The low cost cameras we have used for creating the depth
information occasionally cause very noisy point clouds, but our method for creating a local map has
proved robust enough to process this data and return accurate results.

There are several applications for our method to work under the previously mentioned assumptions,
particularly industrial applications in partially unknown environments. A drop-off/pick-up zone
for arbitrary objects can be selected and the drone ought to pick up objects autonomously without
requiring any information about the exact location and shape of the object in advance. A limitation
of our method is the time the UAV can handle without accurate point clouds due to either blurry
images, the rolling shutter effect or unsynchronized stereo. Blurry images are not used for point cloud
generation, while point clouds produced from mistimed or distorted images result in incorrect ICP
alignment results. The UAV discards bad ICP results as described in Section 2.6 and must rely solely
on the IMU data, causing a slow drift in position estimation. Eventually this drift is so large that the
position cannot be recovered anymore due to ICP failure. We can tackle this limitation by improving
the camera sensors, reducing the number of bad images, which improves the stability of the system for
observing the scene.

A particular advantage of our system is that we extract objects using a bottom-up approach,
where candidate objects are extracted from a stereo reconstructed local map of the scene and then
recognized using 2D information from the images. Our method is therefore also applicable to the
localization and grasping of completely novel objects, since no knowledge about the object is needed
for the generation of the candidate objects. The manipulation module can then work in unison with
our system to validate candidate objects with information acquired during grasping.

A lightweight arm must be designed and mounted on our UAV in order to test the grasping
module that uses the information returned using our proposed method. We plan to design a control
method for flying the UAV over objects in a way that will optimize building the local object map and
the recognition of the objects. Currently, an operator either flies the UAV manually or predetermines
a way-point flight plan. Ultimately, we want to enhance our method to handle mobile objects too,
which represents a significant challenge.
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Appendix Parameters of the System

Parameter Description Value
Camera Parameters
ROI Usable part of images due to distortion [~ 30, ~ 30, ~ 610, ~ 450]
Blur Threshold Max. value of blurriness (Section 2.2) 1.1-15
. . Min-max distances between pair of pixels.
Disparity Range This value determine the mirlj-max cfistances [~ 50, ~ 300] px = [~ 0.3, ~ 2] m
Template Square Size Size of the template for template matching 7-15
Max Template Score Max. allowed score of template matching 0.004-0.05
Map Generation Parameters
Voxel Size Size of voxel in 3D space grid 0.005-0.03
Outlier Mean K Outlier removal parameter 10-20
Outier Std Dev Outlier removal parameter 0.05-0.1
ICP max epsilon Max. allolwed ferrorA in transformation 0.001
between iterations in ICP
ICP max iterations Number of iterations of ICP 10-50
ICP max corresp. dist Max. initial distance for correspondences 0.1-0.2
ICP max fitting Score Max. score to reject ICP result 0.05-0.1
Max allowed Translation =~ Max. translation to reject ICP result 0.05-0.15
Max allowed rotation Max rotation to reject ICP result 10-20
History Size History size of TCVF 2-4
Cluster Affil. Max. Dist. ~ Minimal distance between objects 0.035
EKF Parameters
Acc Bias Calibration Bias data from IMU X,Y,Z —0.14, 0.051, 6.935
Acc Frequency Mean frequency of data 1KHz
Gyro Noise Average magnitude of noise 0.05rad/s
Gyro Frequency Mean frequency of data 30 KHz

Imu to cam Calibration
Q System cov. Mat.
R Observation cov. Mat.

Transformation between camera and IMU
Covariance of System state variables
Covariance of Data

Data from Calib
Data from Calib
Data from Calib

Recognition System

Training params
Detector Descriptor

Train parameters of SVM
Feature detector and descriptor used

SIFT
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Abstract: Depth estimation is a classical problem in computer vision, which typically relies on either
a depth sensor or stereo matching alone. The depth sensor provides real-time estimates in repetitive
and textureless regions where stereo matching is not effective. However, stereo matching can obtain
more accurate results in rich texture regions and object boundaries where the depth sensor often fails.
We fuse stereo matching and the depth sensor using their complementary characteristics to improve
the depth estimation. Here, texture information is incorporated as a constraint to restrict the pixel’s
scope of potential disparities and to reduce noise in repetitive and textureless regions. Furthermore, a
novel pseudo-two-layer model is used to represent the relationship between disparities in different
pixels and segments. It is more robust to luminance variation by treating information obtained from
a depth sensor as prior knowledge. Segmentation is viewed as a soft constraint to reduce ambiguities
caused by under- or over-segmentation. Compared to the average error rate 3.27% of the previous
state-of-the-art methods, our method provides an average error rate of 2.61% on the Middlebury
datasets, which shows that our method performs almost 20% better than other “fused” algorithms in
the aspect of precision.

Keywords: stereo matching; depth sensor; multiscale pseudo-two-layer model; segmentation; texture
constraint; fusion move

1. Introduction

Depth estimation is one of the most fundamental and challenging problems in computer vision.
For decades, it has been important for many advanced applications, such as 3D reconstruction [1],
robotic navigation [2], object recognition [3] and free viewpoint television [4]. Approaches for obtaining
3D depth estimation can be distinguished into two categories: passive and active. The goal of
passive methods like stereo matching is to estimate a high-resolution dense disparity map by finding
corresponding pixels in image sequences [5]. However, these methods heavily rely on how the
scene is presented and contain error matchings caused by the luminance variation. Passive methods
fail in textureless and repetitive regions where there is not enough visual information to obtain the
correspondence. On the contrary, active methods, like depth sensors (ASUS Xtion [6] and Microsoft
Kinect [7]), do not suffer from ambiguities in textureless and repetitive regions, because they emit
an infrared signal. Unfortunately, sensor errors and the properties of the object surfaces mean that
depth maps from a depth sensor are often noisy [8]. Additionally, their resolution is at least an
order of magnitude lower than common digital single-lens reflex (DSLR) cameras, which limits many
applications. Moreover, they cannot satisfactorily deal with object boundaries and a wide range of
distances. Therefore, fusing different kinds of methods using their complementary characteristics
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undoubtedly makes the obtained depth map more robust and improves the quality. Commonly-used
consumer DSLR cameras have higher resolution and can record better texture information than depth
sensors. Therefore, it is reasonable to fuse the depth sensor with DSLR cameras to yield a high
resolution depth map. Note that for notational clarity, all values mentioned here are disparities
(considering that depth values are inversely proportional to disparities).

Wireless Remote Xtion Depth Sensor
Controller —> l

/

DSLR Camera Adjustable Bracket

Figure 1. The system used in our method. It consists of two Cannon EOS 700D digital single-lens reflex
(DSLR) cameras and one Xtion depth sensor. All DSLR cameras are controlled by the wireless remote
controller. We used an adjustable bracket to change the angle and height of the Xtion depth sensor.

In this paper, we propose a novel disparity estimation method for the system shown in Figure 1.
It fuses the complementary characteristics of high resolution DSLR cameras and the Xtion depth sensor
to obtain an accurate disparity estimate. Compared to the average error rate 3.27% of the previous
state-of-the-art methods, our method provides an average error rate of 2.61% on the Middlebury
datasets. It is clear that our method performs almost 20% better than other “fused” algorithms in the
aspect of precision. The proposed method views a scene with complex geometric characteristics as a
set of segments in the disparity space. It assumes that the disparities of each segment have a compact
distribution, which strengthens the smooth variance of the disparities in each segment. Additionally,
we assume that each segment is biased towards being a 3D planar surface. The major contributions are
as follows:

1. We incorporated texture information as a constraint. The texture variance and gradient is used to
restrict the range of the potential disparities for each pixel. In textureless and repetitive regions
(which often cause ambiguities when stereo matching), we restrict the possible disparities for a
neighborhood centered on each pixel to a limited range around the values suggested by the Xtion.
This reduces the errors and strengthens the compact distribution of the disparities in a segment.

2. We propose the multiscale pseudo-two-layer image model (MPTL; Figure 2) to represent the
relationships between disparities at different pixels and segments. We consider the disparities
from the Xtion as the prior knowledge and use it to increase the robustness to luminance variance
and to strengthen the 3D planar surface bias. Furthermore, considering the spatial structures of
segments obtained from the depth sensor, we treat the segmentation as a soft constraint to reduce
matching ambiguities caused by under- and over-segmentation. Here, pixels with similar colors,
but on different objects are grouped into one segment, and pixels with different colors, but on the
same object are partitioned into different segments. Additionally, we only retain the disparity
discontinuities that align with object boundaries from geometrically-smooth, but strong color
gradient regions.
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Figure 2. The illustration of the multiscale pseudo-two-layer (MPTL) model. The rectified left (a)
and right (b) images from DLSRs, the segmentation; (c) as well as the depth map (d) from the depth
sensor are taken as our inputs; (e) The conceptual structure of our MPTL. The MPTL captures the
complementary characteristics of active and passive methods by allowing interactions between them.
All interactions are defined to act in the segment-level component, the pixel-level component and the
edges that connect them (Segment Pixel-edge, SP-edge). See Section 3.2 for the full details of the MPTL
model and Section 4 for further results.

The remainder of this paper is organized as follows. Section 2 gives a summary of various
methods used for disparity estimation. We present a pre-processing and some important notations
of our model in Section 3.1. We discuss the details of the MPTL image model in Section 3.2, the
optimization in Section 3.7 and the post-processing in Section 3.8. Section 4 contains our experiments,
and Section 5 presents some conclusions with suggestions for future work.

2. Previous Work

There are many approaches to obtaining disparity estimation. They can generally be categorized
into two major classes: passive and active. A passive method indirectly obtains the disparity map
using image sequences captured by cameras from different viewpoints. Among the plethora of passive
methods, stereo matching is probably the most well known and widely applied. Stereo matching
algorithms can be divided into two categories [9]: local and global methods. Local methods [10]
estimate disparity using color or intensity values in a support window centered on each pixel. However,
they often fail around disparity discontinuities and low-texture regions. Global methods [11] use a
Markov random field model to formulate the stereo matching as a maximum a posteriori probability
energy function with explicit smoothness priors. They can significantly minimize matching ambiguities
compared to local methods. However, the biggest disadvantage of them is the low computational
efficiency. Segmentation-based global approaches [12,13] encode the scene as a set of non-overlapping
homogeneous color segments. They are based on the hypothesis that the variance of the disparity
in each segment is smooth. In other words, the segment boundaries are forced to coincide with
object boundaries. Recently, the ground control point (GCP)-based methods [14] were used as prior
knowledge to encode rich information on the spatial structure of the scene. Although a significant
number of stereo matching methods have been proposed for obtaining dense disparity estimation,
they heavily rely on radiometric variations and assumptions regarding the presentation of the scene.
This means that stereo matching often fails in textureless and repetitive regions, where there is not
enough visual information to obtain a correspondence. Furthermore, their accuracy is relatively low.
Passive methods heavily rely on the luminance condition and how the scene is presented. They
often fail in textureless and repetitive regions where there is not enough visual information to obtain
the correspondence.
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On the contrary, active methods like depth sensors, do not suffer from ambiguities in textureless
and repetitive regions, because they emit an infrared signal. Three different kinds of equipments
are used in active methods: a laser scanner device, a time-of-flight (ToF) sensor and an infrared
single-based device (such as ASUS Xtion [6] and Microsoft Kinect [7]). The laser scanner device [15]
can provide extremely accurate and dense depth estimation, but it is too slow to use in real time and
too expensive for many applications. The ToF sensor and infrared single-based device can obtain
real-time depth estimation and have recently become available from companies, such as 3DV [16] and
PMD [17]. However, sensor errors and the properties of the object surfaces mean that depth maps
from them are often noisy [8]. Additionally, their resolution is at least an order of magnitude lower
than commonly-used DSLR cameras [18], which limits many applications. Moreover, they cannot
satisfactorily deal with object boundaries.

Itis clear that each disparity acquisition method is limited in some aspects where other approaches
may be effective. Joint optimization methods that combine active and passive sensors have been used
to make the obtained depth map more robust and to improve the quality. Zhu et al. please check
throughout [19,20] fused a ToF sensor and stereo cameras to obtain better disparity maps. They
improved the quality of the estimated maps for dynamic scenes by extending their fusion technology
to the temporal domain. Yang et al. [21] presented a fast depth sensing system that combined the
complementary properties of passive and active sensors in a synergistic framework. It relied on
stereo matching in rich textured regions, while using data from depth sensors in textureless regions.
Zhang et al. [22] proposed a system that addresses high resolution and high quality depth estimation by
fusing stereo matching and a Kinect. A pixel-wise weighted function was used to reflect the reliabilities
of the stereo camera and the Kinect. Wang et al. [23] presented a novel method that combined the initial
stereo matching result and the depth data from a Kinect. Their method also considers the visibilities
and pixel-wise noise of the depth data from a Kinect. Gowri et al. [24] proposed a global optimization
scheme that defines the data and smoothness costs using sensor confidences and the low resolution
geometry from a Kinect. They used a spatial search range to limit the scope of the potential disparities
at each pixel. The smoothness prior was based on the available low resolution depth data from the
Kinect, rather than the image color gradients.

Although existing disparity estimation methods have achieved remarkable results, they are
typically performed using pixel-level cues, such as the smoothness of neighboring pixels, and do not
consider the regional information (regarding, for example, 3D spatial structure, segmentation and
texture) as a cue for the disparity estimation, which is the largest distinction between their method and
ours. For example, occlusion cannot be precisely estimated using a single pixel, but a fitted plane-based
filling occlusion in a segment can give good results. Additionally, if the spatial structure of neighboring
segments is not known, matching ambiguities can arise at the boundaries of neighboring segments
that physically belong to the same object, but have different appearances. Without texture information,
we cannot be sure if the disparity from stereo matching is more confident than that from the depth
sensor in textureless and repetitive regions (where stereo matching usually fails and the depth sensor
performs well).

3. Method

The proposed method can be partitioned into four phases: pre-processing, problem definition,
optimization and post-processing. Each phase will be discussed in detail later.

3.1. Pre-Processing

There are three camera coordinates involved in our system (Figure 1): the Xtion coordinate, the
coordinates of the two DSLR cameras before the epipolar rectification and the DSLR camera coordinates
after the epipolar rectification. During the pre-processing step, in order to combine the data from the
Xtion and DSLR cameras, as shown in Figure 3, we firstly calibrated two DSLR cameras using the
checkerboard-based method [25] and calibrated the DSLR camera pair with the Xtion sensor using the
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planar surfaces-based method [26], respectively. After the calibration, the depth image obtained from
the Xtion is first transformed from the Xtion coordinate to the original DSLR cameras’ coordinates, then
rotated and up-sampled, so that it registers with the unrectified left image. Furthermore, according to
the theory of epipolar geometric constraints, the registered depth image and original left image, as
well as the original right image are rectified to be row-aligned, which means there are only horizontal
disparities in the row direction. We denote the seed image (IT) as the map with disparities transferred
from the rectified depth map. Each pixel p € ITis defined as a seed pixel when it is assigned a non-zero
disparity. The initial disparity maps (D and Dg) of the rectified left and right images (I; and Ig) are
computed using a local stereo matching method [27]. I} is partitioned into a set of segments using the
edge-aware filter-based segmentation algorithm [28].

Depth Sensor) (Right Camera
| | ]
1

| Calibration & Rectification |

\]

Rectified Left Image

Rectified Right Image

\
Segmentaion

Non-local cost aggregation

stereo matching
Color Segments

Left Initial Disparity Map Right Initial Disparity Map

Figure 3. Conceptual flow diagram for the calibration and rectification phase.

In addition, as shown in Figure 4, all pixels and segments are divided into different categories.
The occlusion judgment is used to find the occluded pixels with initial disparity maps (Dy and Dg of
I} and I, respectively) and to classify pixels into different categories: reliable and occluded. As we
known, how to find occluded pixels accurately is always the challenging problem, because it often
leads to error results that matching points might not even exist at all, especially in depth discontinuities.
Pixels are defined as occluded when they are only visible from the left rectified view (I), but not from
the right rectified view (I). Since image pairs have been rectified, we assume that occlusion only
occurs in the horizontal direction. In early algorithms, cross-consistency checking is often applied to
identify occluded pixels by enforcing a one-to-one correspondence between pixels. It is written as:

elp,qgel 1
1 otherwise P& g s IR @

O(p){ 0 |DL(p) - Dr(g)<1

Dy (p) and Dg(q) are the disparity of p and ¢, and 4 is the corresponding matching point of p. If p
does not meet the cross-consistency checking, then it will be regard as an occluded pixel (O(p) = 0);
otherwise, p is a reliable pixel (O(p) = 1). The cross-consistency checking states that a pixel of one
image corresponds to at most one pixel of the other image. However, because of different sampling, the
projection of a horizontal slant or a curved surface shows various lengths in the image pairs. Therefore,
conventional cross-consistency checking that often identifies occluded pixels by enforcing a one-to-one
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correspondence is only suitable for a frontal parallel surface and cannot be true for a horizontal slant
or curved surfaces. Considering the different sampling of image pairs, Bleyer et al. [29] proposed a
new visibility constraint by extending the asymmetric occlusion model [30] that allows a one-to-many
correspondence between pixels. Let pg and p; be neighboring pixels in the same horizontal line of I;.
Then, pg will be occluded by p; when they meet three conditions:

- po and p; have the same matching point in Iz under their current disparity value;

- Du(po) < Dr(p1);
- po and p; belong to different segments.

In this paper, for each pixel p of I, if there is only one matching point in I, the conventional
cross-checking is applied to obtain the occlusion Equation (1). Otherwise, if there are more than two
matching points in I, pixels in I}, are marked as either reliable (O(pg) = 0) or occluded (O(py) = 1),
which satisfy or do not satisfy the Bleyer’s asymmetric occlusion model. As shown in Figure 4,
each segment belongs to the reliable segment (R) if it contains a sufficient amount of reliable pixels;
otherwise, it belongs to the unreliable segment (R). Furthermore, each segment f; € R is denoted as a
stable segment (S) when it contains a sufficient number of seed pixels. Otherwise, f; belongs to the
unstable segment (S). We apply a RANSAC-based algorithm to approximate each stable segments; € S
as a fitted plane ¥, using the image coordinates and known disparities of all seed pixels belonging to

s;. Table 1 lists important notifications used in this paper.
Left Initialization Right Initialization .
Disparity Map Disparity Map Color Segmentation Seed Image
Stable Segment

Occlusion Judgment
Occlusion Pixels Plane Fitting

Figure 4. Conceptual flow diagram for the classification phase.

Reliable Segment

Table 1. Notations.

D: Disparity map D(p): Disparity value of pixel p 1L Seed image
Initial disparity map of Initial disparity map of

D rectified left image Dg: rectified right image Ii: Rectiffed left DSLR image
Ig: Rectified right DSLR image ~ R: Reliable segment R Unreliable segment
S: Stable segment St Unstable segment fit i-th segment
s i-th stable segment ¥, Fitted plane of stable F(p): Segment that contains pixel
segment s; p
fit i-th segment dp: Minimum disparity dy: maximum disparity
. Pixel’s potential minimum Pixel’s potential maximum
. p. p p. P
@: Segment boundary pixels At disparity Ay: disparity
. Minimum fitted disparity of . Minimum fitted disparity of
i the i-th stable segment i the i-th stable segment

3.2. Problem Formulation

In the problem formulation phase, we propose the MPTL model, which combines the
complementary characteristics of stereo matching and the Xtion sensor. As shown in Figure 2, the
MPTL model consists of three components:

- The pixel-level component, which improves the robustness against the luminance variance
(Section 3.3) and strengthens the smoothness of disparities between neighboring pixels and
segments (Section 3.4). Nodes at this level represent reliable pixels from stable and unstable
segments. The edges between reliable pixels represent different types of smoothness terms.
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- The edge that connects two level components (the SP-edge), which uses the texture variance and
gradient as a guide to restrict the scope of potential disparities (Section 3.5).

- The segment-level component, which incorporates the information from the Xtion as prior
knowledge to capture the spatial structure of each stable segment and to maintain the relationship
between neighboring stable segments (Section 3.6). Each node at this level represents a
stable segment.

Existing global methods have achieved remarkable results, but the capability of the traditional
Markov random field stereo model remains limited. To lessen the matching ambiguities, additional
information is required to formulate an accurate model. In this paper, the pixel-level improved
luminance consistency term (E;), the pixel-level hybrid smoothness term (Es) and the SP-edge
texture term (E;), as well as the segment-level 3D plane bias term (E,) are integrated as additional
regularization constraints to obtain a precise disparity estimation (D) for a scene with complex
geometric characteristics. According to Bayes’ rule, the posterior probability over D given [, s, t
and p is:
p(L.s,t,pID)p(D)

p(Ls,tp)

During each optimization process, P(l,s,t, p|D) is only dependent on /, s, t and p. Therefore,
P(D|l,s,t, p) can be rewritten as:

p(DlL st p) = )

p(DlLs,t,p) « p(I|D)p(s|D)p(t|D)p(p|D)p(D) ®)

Because maximizing this posterior is equivalent to minimizing its negative log likelihood, our
goal is to obtain the disparity map (D) that minimizes the following energy function:

E(D) = Ey(D) + Es(D) + E(D) + Ep(D) )
Each term will be discussed in detail in the following sections.

3.3. Improved Luminance Consistency Term

The conventional luminance consistency hypothesis is used to penalize the appearance
dissimilarity between corresponding pixels in I; and I, based on the hypothesis that the surface
of a 3D object is Lambertian. Because it refers to a perfectly-diffuse appearance in which pixels
originating from the same 3D object have similar appearances in different views, its accuracy is heavily
dependent on the lighting condition for which colors change substantially depending on the viewpoint.
Furthermore, an object may appear to have different colors because different views have different
sensor characteristics. In contrast, the Xtion sensor is more robust to the light condition and can be
used as prior knowledge to reduce ambiguities caused by the non-Lambertian surface. Thus, the
improved luminance consistency term is denoted as:

B = L Ar(1=0(p))- [ Cpra) + X ()] + O(p) )
pelL

where g is the matching pixel of p in the other image. O(p) is the asymmetric occlusion function
described in Section 3.1, and A, is a positive penalty used to avoid maximizing the number of
occluded pixels. C(p, q) is defined as the pixel-wise cost function from stereo matching to measure the
color dissimilarity.

Clpa) = a-(1—exp (- St gy 4 (1 gy (1 exp (- Py ©)

Tssd Tg
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where 7,5 and r¢ are constant values defined by our experience. « is the scalar weight from zero to
one. Cq(p,q) and C¢(p, q) are the color dissimilarity and gradient in three color channels as:

i=R,G,B

cssd<p,q>¢ Y (L) - (@)’ "

i=R,G,B

; ; 2
Colp.) :\/ ¥ (Vi) - VIi(@) ®
X(p, q) is the components from the Xtion sensor, which are defined as:

X(p,q) = min{|D(p) —II(p)|, T} )

Ty is the constant threshold, and D(p) is the disparity value assigned to pixel p in each
optimization. TI(p) is the disparity of pixel p € I1. wj and wé, are pixel-wise confidence weights that
are denoted as wy, =1 — wi,. They are derived from the reliabilities of disparities obtained from stereo
matching (mé,) and the Xtion (1m}) as:

"‘ll
v
wh={ ey PEH (10)
1 otherwise
where m;, is similar to the attainable maximum likelihood (AML) in [31], which models the cost for

each pixel using a Gaussian distribution centered at the minimum actually achieved cost value for
that pixel. The reliability of Xtion data m; is the inverse of the normalized standard deviation of the
random error [20]. The confidence of each depth value obtained from the depth sensor decreases with

the increasing of the normalized standard deviation.

3.4. Hybrid Smoothness Term

The hybrid smoothness term strengthens the segmentation-based assumption that the disparity
variance in each segment is smooth and reduces errors caused by under- and over-segmentation.
It consists of four terms: the smoothness term for neighboring reliable pixels belonging to the unstable
segment (Eg,), the smoothness term for neighboring reliable pixels in the same stable segment (E;, ), the
smoothness term for neighboring reliable pixels in different stable segments (Es,) and the smoothness
term for neighboring reliable pixels that belong to stable and unstable segments (Es;).

Because there is no prior knowledge about the spatial structure of unstable segments, we define
the smoothness term Eg, as the conventional second-order smoothness prior Equation (11), which can
produce better estimates for a scene with complex geometric characteristics [11].

VD (0
Eo= Y, A% {1 - wm(—(l)ﬂ {po,p1,p2} € D} 11

Dedd s
1

where 75 and A are the geometric proximity and the positive penalty. @ is the set of triple-cliques
consisting of consecutive reliable pixels belonging to unstable segment. VD (®Y) is the second
derivative of the disparity map as:

VD (@) = D(po) = 2D(p1) + D(p2){po, p1, p2} € ! (12)
Es, captures richer features of the local structure and permits planar surfaces without penalty

by setting VD (®?) = 0. However, E,, only considers disparity information when representing the
smoothness of neighboring pixels. This means that, in several cases, error matching can result in
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different disparity assignments, which correspond to the same second derivatives in the disparity
map (see Figure 5b—d). Meanwhile, each stable segment can be represented as a fitted plane using
the disparity data from the Xtion, which contains prior knowledge about the spatial structure of each
stable segment. We can incorporate the spatial similarity weight with the prior knowledge from the
Xtion into a conventional second-order smoothness prior. This term encourages constant disparity
gradients for pixels in a stable segment and local spatial structures that are similar to the fitted plane
of the stable segment. The smoothness term for neighboring reliable pixels in the same stable segment
is as follows.

VD(2;)

=) 13)

E, = Z Ag-[Z—&(CI)}) —exp (—
ol el

where ®! is the set of triple-cliques defined by all 3 x 1 and 1 x 3 consecutive reliable pixels along the
coordinate direction of the rectified image coordinate in each stable segment. A! is a positive value
penalty. As for the spatial 3D relationship shown in Figure 5, let s; be the stable segment containing ®!
and ¥, be its corresponding fitted plane. Then, the spatial similarity weight 5(®}) is denoted as:

0  I:pop1 # Pip2
0.25 11:pop1 = p1p2 and popa N'Ys, )
s(@l) = ’ ) € @] ”
< l) 0.5 TI:popr = p1pz and popa/ /¥ {po. p1, p2} i (14)
1 IV : popr = pap2 and popz € ¥,

- Case I: When popy # P1p2, the disparity gradients of pixels in ®! are not constant (VD (®}) # 0).
This case violates the basic segmentation assumptions that the disparity variance of neighboring
pixels is smooth, so a large penalty is added to prevent it from happening in our model (see
Figure 5a).

- Cases II, ITT and IV: When pop1 = p1p2, the disparity gradients of pixels in ®} are constant
(VD(CD}) = 0). This means that the variance of the disparities is smooth. Furthermore, our
model checks the relationship between all pixels in ®} and ¥, (see Figure 5b—d). 6 (®}) does not
penalize the disparity assignment if all pixels in } belong to ¥, (Case IV in Figure 5d), because
it is reasonable to assume that the local structure of @} is the same as the spatial structure of
¥s;. Note that we impose a larger penalty to Case II than to Case III to strengthen the similarity
between the spatial structure of ®} and ¥,

2 2 2 2
g = gl po g po
8 8 @ 0
a [a] a I ] p1
p2 p2
o Image Coordinates o Image Coordinates o Image Coordinates o Image Coordinates

(@ (b) (©) (d)

Figure 5. Smoothness term for pixels in the same stable segment (s;) with the spatial similarity weight
as the triple-clique <I>,1 = {po, p1, p2}, under different disparity assignments. Given ¥y, (blue line)
as the fitted plane of s;. Yellow nodes are the intersect points. (a) Case I, D(p0) # D(p1) # D(p2)
with VD (®}) # 0; (b) Case II, D(p0) = D(p1) = D(p2) with VD(®}) = 0; (c) Case III, D(p0) #
D(p1) # D(p2) with VD(®}) = 0; (d) Case IV, D(p0) # D(p1) # D(p2) with VD(®}) = 0. As
shown in Cases II, IIT and 1V, different disparity assignments correspond to the same second derivative

(VD(®}) = 0).
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In some segmentation-based algorithms [32], the segmentation is implemented as a hard constraint
by setting A? and A! to be positive infinity. This does not allow any large disparity variance within
a segment. In other words, each segment can only be represented as a single plane model, and the
boundaries of a 3D object must be exactly aligned with segment boundaries. Unfortunately, not all
segments can be accurately represented as a fitted plane, and not all 3D object boundaries coincide with
segment boundaries. The accuracy of the segmentation-based algorithms is easily affected by the initial
segmentation. On the one hand, the initial segmentation typically contains some under-segmented
regions (where pixels from different objects, but with similar colors are grouped into one segment). As a
direct consequence of under-segmentation, foreground and background boundaries are blended if they
have similar colors at disparity discontinuities. To avoid this, we use segmentation as a soft constraint
by setting A? and A! to be positive finite, so that each segment can contain arbitrary fitted planes.

On the other hand, pixels with different colors, but on the same object are over-segmented
into different segments in the initial segmentation, which causes computationally inefficiency
and ambiguities on segment boundaries. In this paper, we considered the spatial structure of
neighboring stable segments using disparities from the Xtion. Therefore, we apply the smoothness
term for neighboring pixels belonging to different stable segments (E;,) to avoid errors caused by
the over-segmentation. Let p and g be neighboring pixels belonging to stable segments s; and s,
respectively, Then, Es, can be expressed as:

0 I:Y # ¥sandD(p) # D(q)

AZ MY, # ¥sandD(p) = D(q)
AZ ML ¥, = ¥sandD(p) # D(q)
0 IV:¥, =Y andD( )= D(q)

Es, = (15)

As shown in Equation (15), for Cases I and II, if ¥y, is not equal to ‘I"s/., this means that s; and s i
have different spatial structures, and the 3D object boundary coincides with the boundary between
them. The disparity variance between p and g is allowed without any penalty (Case I); otherwise, a
constant penalty A2 is added (Case II). In contrast, for Cases IIT and IV, if Y, is equal to ‘Fsl., this means
that s; and s; have different appearances, but have similar spatial structures and belong to the same 3D
object. In these two cases, the disparity variance between p and g is not allowed by adding a penalty.
E, reduces the ambiguities caused by over-segmentation and retains only the disparity discontinuities
that are aligned with object boundaries from geometrically-smooth, but strong color gradient regions,
where pixels with different colors, but from the same object are partitioned into different segments.

Because unstable segments do not have sufficient disparity information from the Xtion to regard
their spatial plane models, the smoothness term for neighboring pixels that belong to the stable and
unstable segments (E,) encourages neighboring pixels to take the same disparity assignment. It takes
the form of a standard Potts model,

E53{0 blp)=D@) g, c5 (16)

Thus, let @ be the set of pixels belonging to segment boundaries, the hybrid smoothness term is:

Es, {po,p1,p2} € P and ®; €S and ;N0 =9
E. — Esl {po,pl,pz} e®d; and ;€S and ®;Nw =9 17)
* ) Es {popip2} € ®iand ®;N@ # @ and {po,p1,p2} €S

E53 {po,pl,pz} € o; and D, Nw 7& & and {po,pl} € S,{pz} €S

3.5. Texture Term

Stereo matching often fails in textureless and repetitive regions, because there is not enough visual
information to obtain a correspondence. However, the Xtion does not suffer from ambiguities in these
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regions. Therefore, the disparities from the Xtion are more reliable than those obtained from stereo
matching on textureless and repetitive regions and should be closer to the range of potential disparities
for pixels in these regions. In contrast, the disparities from the Xtion are susceptible to noise and
problems caused by rich texture regions and have poor performance in preserving object boundaries.
Therefore, the disparities obtained from stereo matching are more reliable than that of the Xtion and
should be used to define the scope of potential disparities of pixels in those regions. Considering the
complementary characteristics of stereo matching and the Xtion sensor, texture information can be
used as a useful guide for disparities.

@

Figure 6. Surrounding neighborhood patch, N), for: (a) pixel p and (b) its corresponding sub-regions.

The texture variance and gradient are used as a cue to restrict the scope of potential disparities
for pixels. This reduces errors caused by noise or outliers and makes the distribution of the disparity
more compact. To do this, we first define a surrounding neighborhood patch N, (with a radius of,
for example, 20 pixels) centered at each pixel p € I, as shown in Figure 6. Considering that the
annular spatial histogram is translation and rotation invariant [33], N, is evenly partitioned into four
annular sub-regions. For each sub-region N, (i = 0 - - 3), we compute its normalized intensity 16-bin

gray histogram H;, = {h;f’j ), j=0--- 15} to represent the annular distribution density of N, as a
64-dimensional feature vector.

Finally, let L, be a 1D line segment ranging from (p — 10) to (p + 10) in the same row of p in I..
The texture variance and gradient of p is determined by the texture dissimilarity I', Equation (18),
using the Hamming distance Equation (19) between the annular distribution densities of p and its
neighboring pixel g in L p- That is,

, 58 (i)
r, :mm(qdw#p)g‘ 0H<h,,/ i ) (18)
i=0 j=
H (1 ) = 1y — 1> Ty 19)
P 0 otherwise

Each pixel’s disparity variance buffer (€),) can be denoted as:

T
Q=1+ {1 fexp<f—p>}-§§ =0.2-(d, — d)) (20)
TH
d; and d, are the minimum and maximum disparities. I'y is small in the textureless and repetitive
regions and is large in the rich texture regions or object boundaries. The scope of each pixel’s potential

disparities [AF, Af ] is denoted as:

Y, = max { (Tlﬂp) - Q,,),d;)} 21)
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Y, = min { (‘F’f(p) + Qp),du) } 22)
max{ (®lp - Qp>,Y1} Xp > Taandf(p) € S
A =1y, Xp < Taandf(p) € S (23)
d, flp)es
min{ (@5 + Qp)rYu} Xp > Taandf(p) € S
A =1y, Xp < Taandf(p) € S (24)
dy flp)es

where @f and @©/] are the minimum and maximum disparities from the Xtion in the region centered at
pinIy. f(p) is the segment that contains p. ‘F}(p) and ‘Fjj(p) are the minimum and maximum fitted
disparities of f(p). xp is the number of seed pixels in the region centered at p. T, is a positive value.

As described in Equation (23), there are three cases for the definition of Af :

- When f(p) is a stable segment (f(p) € S) and contains sufficient seed pixels (x, > Ta), A/

is equal to max{ (@;7 — Qp), Y,}. In this case, there are enough seed pixels from the Xtion to
denote a guide for the variance of disparities of p. If p is in the textureless or repetitive region,
), is small. This indicates that stereo matching may fail in these regions, and a small search
range should be used around disparities from the Xtion. In contrast, if p is in the rich textured
region or object boundaries, ), is large. This indicates that disparities from the Xtion may be
susceptible to noise and problems caused by rich texture regions where disparities obtained from
stereo matching are more reliable. Then, a broader search range should be used, so that we can
extract better results not observed by the Xtion.

- When f(p) is a stable segment (f(p) € S), but there are not enough seed pixels around p
(xp < Ta), Af is equal to Y;. In this case, although there are some seed pixels from the Xtion,
they are not enough to represent the disparity variance around p. On the other hand, because
each stable segment is viewed as a 3D fitted plane, the search range for the potential disparities is
limited by the fitted disparity of f(p) and the disparity variance buffer (Q;).

- When f(p) is an unstable segment (f(p) € S), A} is the minimum disparity (d;).

Similarly, Af can be obtained in the same way. Then, the SP-edge term (which defines the scope
of pixel’s potential disparities) is:

(25)

£ _ ) 0 A<D <Al
"7 A otherwise

3.6. 3D Plane Bias Term

This 3D plane bias term focuses on strengthening the assumption that each stable segment has a
3D plane bias. It is denoted as:

Ep= ), Y Apmin{[D(p) — ¥si(p)

S;€ES PES;

T} (26)

where D(p) is the assigned value of pixel pin I;. ¥, (p) is the plane fitted value, and T}, is a threshold
value. Note that for notation clarity, the traditional 3D bias assumption is a hard constraint that forbids
any distinctive between D(p) and ¥, (p) by setting A, to be infinite. On the contrary, our 3D plane
bias term is a soft constraint that a certain distinctive between D(p) and ¥, (p) is allowed by setting
Ap to be a finite positive value.
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3.7. Optimization

The energy function defined in Equation (4) is a function of the real discrete disparity map. In
this section, we describe how to optimize Equation (4) using the fusion move algorithm to obtain the
disparity map D*:

D* = argminpE(D) (27)

The fusion move approach [34] is an extended approach of the a — expansion algorithm [35],
which allows arbitrary values for each pixel in the proposed disparity map. It generates a new result
by fusing the current and proposed disparity maps with the energy either decreasing or remaining
constant. Let D¢ and D¥ be the current and proposed disparity maps of I;. Our goal is to optimally
“fuse” D and DY to generate a new depth map D", so that the energy E(D") is lower than E(D°).
This fusion move is achieved by taking each pixel in D" from either D¢ or D?, according to a binary
indicator map B. B is the result of the graph cut-based fusion move Markov random field optimization
technique. During each optimization, each pixel either keeps its current disparity value (B(p) = 0) or
changes it to proposed disparity value (B(p) = 1). That s,

D" = (1—B)-D° 4 B-D” (28)

However, the fusion move is limited to optimizing the submodular binary fusion-energy functions
that consist of unary and pairwise potentials. Because of the hybrid smoothness term, our binary
fusion-energy functions are not submodular and cannot be directly solved using the fusion move [36].
Using the quadratic pseudo-Boolean optimization (QPBO) algorithm [37], we can obtain a partial
solution for the non-submodular binary fusion-energy function by assigning either zero or one to
partial pixels, and leaving the rest unassigned. The partial solution is a part of the global minimum
solution, and its energy is not higher than that of the original solution. Because of the given lowest
average number of unlabeled pixels, we used Quadratic Pseudo Boolean Optimization with Probing
(QPBO-P) [38] and Quadratic Pseudo Boolean Optimization with Improving (QPBO-I) [39] as our
fusion strategies. During the optimization, the pixel-level improved luminance consistency term (E;),
the SP-edge texture term (E;) and the segment-level 3D plane bias term (E) are expressed as unary
terms, respectively. We tackle the transformation problem of the pixel-level hybrid smoothness term
(Es) that contains triple-cliques using the decomposition method called Excludable Local Configuration
(ELC) [40]. The essence of the ELC method is a QPBO-based transformation of a general higher-order
Markov random field with binary labels into a first-order one that has the same minima as the
original. It combines a new reduction with the fusion move and QPBO to approximately minimize
higher-order multi-label energies. Furthermore, the new reduction technique is along the lines of
the Kolmogorov-Zabih reduction that can reduce any higher-order minimization problem of Markov
random fields with binary labels into an equivalent first-order problem. Each triple clique in E; is
decomposed into a set of unary or pairwise terms by ELC without introducing any new variables.

The choice of the proposed disparity maps in the fusion move approach is another crucial factor
for the successful use and efficiency of the fusion move. Because there is not an algorithm that can
be applied to all situations, our goal is to expect all proposed disparity maps to be correct in some
parts and under some parameter setting. Here, we use the following schemes to obtain all proposed
disparity maps:

- Proposal A: Uniform value-based proposal. All disparities in the proposal are assigned to a
discrete disparity, in the range of d; to d,,.

- Proposal B: The hierarchical belief propagation-based algorithm [41] is applied to generate
proposals with different segmentation maps.

- Proposal C: The joint disparity map and color consistency estimation method [42], which
combines mutual information, a SIFT descriptor and segment-based plane-fitting techniques.

128



Sensors 2015, 15, 2089420924

During each optimization, the result of the current fusion move is used as the initial disparity
map of the next iteration.

3.8. Post-Processing

The post-processing is composed of two steps: filling occlusions and refinement. Given that p is
a occluded pixel in I}, a two-step method is implemented to estimate disparities of occluded pixels.
If f(p) € S, the fitted plane value ¥, (p) is assigned as p’s disparity. Otherwise, the disparity of p is
the smaller disparity of its closet left and right seed pixels that belongs to the background.

After filling occlusions, in order to obtain an accurate disparity map and to remove ambiguities at
object boundaries, the weighted joint bilateral filter with the slope depth compensation filter [43] is
applied to refine the disparity map.

4. Results and Discussion

Here, a series of evaluations were performed to verify the effectiveness and accuracy of the
proposed method. Results were composed of qualitative and quantitative analyses. The segmentation
parameters for all experiment are the same: spatial bandwidth = 7, color bandwidth = 6.5, minimum
region = 20. Other parameters are presented in Table 2. They were kept constant for all experiments
and were typically empirically based.

Table 2. Parameter settings for all experiments.

Ty Ta To  Tp Y5 7 At Al Ao AT AL A2 A2 A
0.1 50 3 5 35 15 200 12 200 40 40 15 15 10

4.1. Qualitative Evaluation Using the Real-World Datasets

We performed qualitative analyses of the proposed method using real-world datasets. In
all evaluations, we captured the image pairs using the system in Figure 1 and regarded the left
DSLR cameras as the target to be estimated by the disparity map. Notice that all scenes contain
weakly-textured and repetitive regions, as well as a non-Lambertian surface.

In order to illustrate that our method combines the complementary characteristics of the various
disparity estimation methods and outperforms using the conventional stereo matching or depth sensor
alone, we evaluated the qualitative quality of the disparity estimates from three stereo matching
methods, the Xtion depth sensor and the proposed method using several complex indoor scenes in
Figure 7. As show in Figure 7c, although the local stereo matching with fast cost volume filtering
(FCVF [44]) performed well by recovering the object boundaries using a color image as a guide,
it was very fragile for noise and textureless regions (such as the uniformly-colored board in the
yellow rectangle of Figure 7a). In contrast, the depth values obtained from the active sensor are more
accurate (see the same regions in Figure 7f). Therefore, our method overcame these problems with the
improved luminance consistency term and texture term by incorporating the prior depth information
from the depth sensor. As shown in Figure 7d, segmentation-based global stereo matching with
second order smoothness prior (SOSP [11]) overcame some of the problems caused by the noise and
outliers, but did not solve the problems caused by the over-segmentation, which led to ambiguous
matching when segment boundaries did not correspond to object boundaries (green rectangle in
Figure 7a). Segment tree-based stereo matching (ST [13]) blended the foreground and background in
the under-segmented region (as shown in Figure 7e), where different objects with similar appearances
(such as the red rectangle in Figure 7b) were grouped into a segment. Comparing to our result and those
of segmentation-based methods, it is clear that the proposed hybrid smoothness term helps reduce
matching ambiguities causing by over-segmentation and under-segmentation with the indication
of the depth sensor. The raw data from the depth sensor were noisy and had poor performance in
preserving object boundaries (blue rectangle in Figure 7f); our result is more robust in this situation and
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can be used to improve the performance of the depth sensor by considering the color and segmentation
information from stereo matching. Based on the above, we can safely draw the conclusion that the
proposed method obtains accurate depth estimation by combining the complementary characteristics
of stereo matching and the depth sensor. We also tested the proposed method on other real-world
scenes to verify its robustness (see Figure 8).

[ ] L] [] [ ]

(©

(e)

Figure 7. Results of the different methods applied to the real-world scenes: Dragon, Book, Plant and
Tablecloth. Each column from up to down is: (a) the rectified left image; (b) the segmentation result,
(c) the disparity map of FCVF [44]; (d) the disparity map of SOSP [11]; (e) the disparity map of segment
tree (ST) [13]; (f) the seed image transformed from the Xtion data and (g) our result.
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Figure 8. Comparative results for different real-world scenes: (a) Board; (b) Box; (c) Kola; (d) Vase;
(e) Dragon and Kola; (f) Piggy. All scenes were approximately 0.5-1.5 m from the cameras, and the
maximum disparity was 107 pixels. Each scene from left to right contains the rectified left image and
its associated result of our method.

Furthermore, we implemented the post-processing processing introduced in Section 3.8 to assign
valid disparities to pixels in the black regions of seed images. The seed image after assignment can
be treated as the up-sampling disparity map of the target image captured by the Xtion alone. Then,
we evaluated the quality of the 3D reconstruction from our method and that using only Xtion data
(see Figure 9). The 3D point cloud reconstructions consist of the pixels” image coordinates and their
associated disparities in disparity space. The blue rectangles highlight some regions where our method
performed well. For example, the proposed method was more effective at retaining the boundaries
of Piggy and Plant (Figure 9a,c) and correctly recovered the top of the head and beard of the dragon
(Figure 9b). These comparisons illustrate that the stereo matching using the the depth sensor as the
prior knowledge is more effective and accurate than using stereo matching or the depth sensor alone.
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Figure 9. Comparative results for 3D reconstructions. (a) Book; (b) Dragon; (c) Plant; (d) Tablecloth;
(e) Box; (f) Piggy; (g) Vase; (h) Dragon and Kola. Each scene from top to bottom contains the
reconstruction using our method and the result using the up-sampled disparity map captured by
the Xtion depth sensor.

4.2. Quantitative Evaluation Using the Middlebury Datasets

To quantitatively illustrate the validity of the proposed method, we also conducted evaluations on
the Middlebury datasets [9,45] and focused on recovering the disparity map of the left image in each
dataset. The evaluation is made by third-size resolution Views 1 and 5 of all image pairs. However,
because there is nothing about the scanning depth information of this dataset, we used the method
described in [14] to simulate the seed image transformed from the Xtion projected to View 1. This
technique is based on a voting strategy and simply requires some disparity maps produced using
several stereo methods [46-48]. Each pixel was labeled as a seed if its disparity in different maps was
consistent (varied by less than a fixed threshold and was not near the intensity edge). Results on these
datasets and their corresponding errors (compared with the ground truth) in non-occlusion regions are
shown in Figure 10. As shown in Figure 11, our method ranks first among approximately 164 methods
listed on the website [49]. It performs especially well on the Tsukuba image pairs, with minimum
errors in non-occluded regions and near depth discontinuities.

On the other hand, as shown in Figure 12, we presented some evaluation results of the Middlebury
extension datasets [50,51] to illustrate the robustness of the proposed method. Meanwhile, we also
show the quality of 3D reconstruction of Middlebury datasets using the pixels’ image coordinate and
their corresponding disparities in disparity space (see Figure 13). The evaluation results in Figures 12
and 13 illustrate that our method is robust to different types of scenes and outperforms in slanted and
highly curved surfaces.
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Figure 10. Evaluation results on the Middlebury standard data. (a) Tsukuba; (b) Venus; (c) Teddy;
(d) Cones. Each row contains (from left to right): the left image, our results, the error map (error
matching pixels whose absolute disparity errors are larger than one in non-occlusion and occlusion
regions are marked in black and gray), the occlusion map (occluded pixels are marked black) and the
ground truth map.

Error Threshold =1 Sort by nonocc Sort by all Sort by disc
Error Threshold.... |Z| ' v v
Average Percent
Algorithm Tsukuba Venus Teddy Cones Sad Pixels
ground truth ground truth ground truth ground truth
all isc |nonocc  all isc |nonace all  disc |nonocc  all disc
YOUR METHOD 1214 4302|0107 02112 127534915 90431 10917| 2065 70518 5804
IGEM [158] 1 13713 605 0073 0174 1043 |40820 5988 11421[2140 6BIT1E 62735
TSGO 14 1131 4667|0111 02413 14713| 56142 8.0919 13836| 1673 6163 4953 -
LCU[155] 1343 55018| 0072 02615 1.032 |3.681 99537 10415 1632 6871 4822 [
JSOSP+GCP [150] 13410 3.981 .084 0161 1154 | 39615 10128 11.822| 22820 7.9135 674z -
ADCensus [82] 14820 57326 0.095 02516 1.154 | 41021 6225 10918| 2422 7.2521 6.9527 -_
CoopReaion [39] 1162 4618|0115 0215 154|51635 83123 1303027947 71820 80155-
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Figure 11. Middlebury results of our method. All numbers are the percentage of error pixels whose
absolute disparity error is larger than one. The blue number is the ranking in every column. Our
method outperforms the conventional stereo matching algorithms and ranks first among approximately
164 methods according to the average of the sum of the rankings in every column (up to 20 April 2015).

Besides, we also compared our results with those produced by other “fused” schemes [20,23,52-56],
and the compared results are listed in the Table 3. Our method provides an error rate of 2.61% on the
Middlebury datasets, compared to the average error rate 3.27% of the previous state-of-the-art “fused”
methods. It is clear that our method performs almost 20% better than other “fused” scheme-based
algorithms in the aspect of precision. Furthermore, As shown in Figures 14 and 15, our method
achieves comparable results in the following aspects:
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Noise and outliers are significantly reduced, mainly because of the improved luminance
consistency term and the texture term.

The method obtains precise disparities for slanted or highly-curved surfaces of objects with
complex geometric characteristics, mainly because of the 3D plane bias term.

Ambiguous matchings caused by over-segmentation or under-segmentation are overcome and
disparity variances become smoother, mainly because of the hybrid smoothness term.

Figure 12. Evaluation results on the Middlebury extension datasets. (a) Wood1; (b) Cloth4; (c) Reindeer;
(d) Dolls. Each row contains (left to right): the left image, our results, the error map (from top to bottom,
the percentages of error pixels with absolute disparity error larger than one in non-occlusion regions
are: 4.35%, 1.03%, 4.31%, 4.78%; error pixels are marked red), the occlusion map (occluded pixels are
marked black) and the ground truth map.

Table 3. The percentages of error pixels (absolute disparity error larger than 1 in non-occlusion
regions) of our method and other “fused” methods on the Middlebury datasets. “Averages” are the
average percentages of error pixels over all images. Compared to the average error rate 3.27% of the
previous state-of-the-art “fused” methods, our method provides a lower average error rate of 2.61%
on the Middlebury datasets. It performs almost 20% better than other “fused” methods in the aspect

of precision.
The Percentages of Error Pixels (%)
Tsukuba Venus Teddy Conse Woodl Colth4 Reimdeor Dools Averages
Zhu et al. [20] 1.16 0.14 2.83 3.47 5.38 3.74 5.83 5.46 3.50
Wang et al. [23] 0.89 0.12 6.39 2.14 4.05 3.81 3.55 271 2.96
Yang et al. [52] 0.94 0.26 5.65 7.18 1.76 2.60 443 4.13 3.37
Jaesik et al. [53,55] 2.38 0.56 5.59 6.28 3.72 2.88 4.04 4.69 3.77
James et al. [54] 2.90 0.29 212 2.83 2.74 2.32 5.02 4.02 2.78
Ours 0.79 0.10 3.49 2.06 4.35 1.03 4.31 4.78 2.61
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Figure 13. The results of 3D reconstructions. (a) Tsukuba; (b) Venus; (c) Teddy; (d) Cones; (e) Wood1;
(f) Cloth4; (g) Reindeer; (h) Dolls.

() (b) () (d)

Figure 14. Evaluation results with the state-of-the-art “fused” scheme-based algorithms on the
Middlebury datasets. (a) Tsukuba; (b) Venus; (c) Teddy; (d) Cones. Each column from top to bottom
is the results obtained from: Zhu ef al. [20], Wang et al. [23], Yang et al. [52], Jaesik et al. [53,55],
James et al. [54] and our method. Error pixels with absolute disparity error larger than one in
non-occlusion regions are marked red. The percentages of error pixels are listed in Table 3.
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() (b) () (d)

Figure 15. Evaluation results with the state-of-the-art “fused” scheme-based algorithms on the
Middlebury extension datasets. (a) Wood1; (b) Cloth4; (c) Reindeer; (d) Dolls. Each column from top to
bottom is the results obtained from: Zhu ef al. [20], Wang et al. [23], Yang et al. [52], Jaesik et al. [53,55],
James et al. [54] and our method. Error pixels with absolute disparity error larger than one in
non-occlusion regions are marked red. The percentages of error pixels are listed in Table 3.

4.3. Evaluation Results for Each Term

We conducted evaluations to analyze the effect of the individual terms in Equation (4). In each
experiment, one term was turned off and the others remained on. First, the texture term was turned
off, which meant that the range of the potential disparities for each pixel was no longer restricted by
the texture variance and gradient. Ambiguities occurred in textureless and repetitive texture regions
without the prior restriction from the data of the depth sensor (see the yellow rectangle in Figure 16b).
The average error rate of all images in non-occlusion regions sharply increased to 2.77%. Furthermore,
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the improved luminance consistency term was turned off by setting w;, := 0. Then, this term can be
viewed as the conventional one that is easily affected by light variation and causes error matching on
the non-Lambertian surface and rich texture regions (see the green rectangle regions in Figure 16c—e).
The corresponding average error rate of all images in the non-occlusion regions is 2.37%. Thirdly,
the hybrid smoothness term was turned out by replacing by the usual second-order smoothness
term [11]. Some artifacts in the red rectangle in Figure 16f were caused by over-segmentation and
under-segmentation. Its average error rate sharply increased to 3.02%. Finally, the 3D plane bias
term was turned off by setting A,:=0. In that case, all 3D object surfaces are assumed as the frontal
parallel ones, and the depth map is rather noisy, which makes it difficult to preserve the details at the
boundary of objects (see the blue rectangle region in Figure 16g). Its average error rate is 2.14%. The
corresponding error statistic analysis on the Middlebury datasets is listed in Table 4. It is clear that our
method can obtain the lowest average error rate when all terms turn on (average error rate of 1.61% in
non-occlusion regions).

(@) ) ®

(b) (©)

Figure 16. Evaluation results when turning off some terms. (a) Our result; (b) result without the texture
term; (c) result without the improved luminance consistency term; (d) the detail with an enlarged
scale in the green region of (c); (e) our result detail with enlarged scale in the same green region of
(c); (f) result without the hybrid smoothness term; (g) result without the 3D plane bias term. Nonocc:
non-occlusion regions.

Table 4. Error statistic for the Middlebury datasets with different constraint terms turned off.
“Averages” are the average percentages of error pixels over all images in different regions.

Tsukuba Venus Teddy Cones Averages

nonocc all disc nonocc all  disc nonocc all  disc nonocc all  disc nonocc all  disc
Texture term off 2.04 212 578 0.81 1.03 3.09 543 102 13.25 2.79 826 6.35 2.77 540 7.12
Luminance term off 1.01 165 478 0.11 025 1.54 5.49 11.20 14.92 2.88 847 7.74 2.37 539 7.25
Smoothness term off 1.39 214 494 0.85 0.93 2.02 6.57 13.01 14.80 3.28 7.50 7.13 3.02 590 7.22
Plane bias term off 0.88 149 486 0.23 0.65 227 4.53 9.30 10.63 2.90 7.96 8.96 214 4.76 6.68
All terms on 0.79 121 430 0.10 021 127 3.49 9.04 10.90 2.06 7.05 5.80 161 4.37 5.56

4.4. Computational Time Analyses

The proposed method was implemented on a PC with Core i5-2500 3.30 GHZ CPU and 4 GB RAM.
Tables 5 and 6 list the running time of the proposed method for all experiments. It is obvious that the
computational time is proportional to the image resolution and the scope of potential disparities. For
example, it took approximately 1-9 mins to obtain results on Middlebury data and 19-25 mins on the
real-world scene datasets. In the future, we aim to implement our method on a GPU to achieve a good
balance between accuracy and efficiency.

137



Sensors 2015, 15, 2089420924

Table 5. Running times for the real-world datasets. The disparity map resolution of all real-world
datasets is 1024 x 960. The corresponding maximum disparity is 107.

. Dragon
Dragon Book Plant  TableclotdBoard Box Kola Vase Piggy and Piggy
Running 515 2054 2216 2431 2151 2426 2343 2230  19.44 23.04
Time (m):
Table 6. Running times for the Middlebury datasets.
Tsukuba Venus Teddy Cones Wood1 Cloth4  Reindeer Dolls

Running 1.03 1.19 4.08 457 8.18 7.44 7.02 831

Time (m):

Disparity

Map 384 x 288 434 x 383 450 x 375 450 x 375 457 x 370 433 x 375 447 x 370 463 x 375

Resolution:

Maximum 15 19 59 59 71 69 67 73

Disparity:

5. Conclusions

In this paper, we present an accurate disparity estimation fusion model that “fused” the
advantages of the complementary nature of active and passive sensors. Our main contributions are
the texture information constraint and the multiscale pseudo two-layer image model. The comparison
results show that our method can reduce the error estimate caused by under- or over- segmentation
and has good performance in keeping object boundaries compared to using the conventional stereo
matching or the depth sensor alone. Furthermore, the proposed method provides an error rate
of 2.61% on the Middlebury datasets, compared to the average error rate 3.27% of the previous
state-of-the-art “fused” methods. It is clear that our method performs almost 20% better than other
“fused” scheme-based algorithms in the aspect of precision. In the future, we will investigate a more
accurate method for estimating the disparities of occluded pixels. We also intend to transform our
method to a parallel GPU implementation.
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Abstract: A MATLAB/SIMULINK software simulation model (structure and component blocks) has
been constructed in order to view and analyze the potential of the PSD (Position Sensitive Detector)
array concept technology before it is further expanded or developed. This simulation allows
changing most of its parameters, such as the number of elements in the PSD array, the direction
of vision, the viewing/scanning angle, the object rotation, translation, sample/scan/simulation
time, etc. In addition, results show for the first time the possibility of scanning an object in 3D
when using an a-Si:H thin film 128 PSD array sensor and hardware/software system. Moreover,
this sensor technology is able to perform these scans and render 3D objects at high speeds and
high resolutions when using a sheet-of-light laser within a triangulation platform. As shown by the
simulation, a substantial enhancement in 3D object profile image quality and realism can be achieved
by increasing the number of elements of the PSD array sensor as well as by achieving an optimal
position response from the sensor since clearly the definition of the 3D object profile depends on the
correct and accurate position response of each detector as well as on the size of the PSD array.

Keywords: three-dimensional sensing; arrays; three-dimensional image acquisition; optical sensing
and sensors; thin film devices and applications; three-dimensional image processing

1. Introduction

Sheet-of-light range imaging is an interesting technique that is used in a number of 3D object
rendering applications. Among the existing laser scanning techniques, a structured light triangulation
method is considered to be fastest when acquiring 3D data information from an object in real time [1].
Generally, sheet-of-light systems use digital sensors such as CCDs (Charged Coupled Devices) or
CMOS (Complementary Metal Oxide Semiconductors) [2], nevertheless, analog sensors such as
arrays of PSDs (position sensitive detectors) with reported sizes of up to a maximum of 128 have also
been employed [3,4]. The latter are fabricated using crystalline silicon, however, PSD arrays based on
amorphous silicon nip or pin structures also exist and have already been described elsewhere [5,6].
In this work, results show for the first time the possibility of scanning an object in 3D when using an
a-Si:H thin film 128 PSD array system and, in addition, a MATLAB/SIMULINK software simulation
has been constructed in order to view and analyze the potential of PSD array concept technology
before it is further expanded or developed. This study will enable the triangulation platform and
system to be further developed and enhanced for future needs identified during simulations. Inspired
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by the simulation, examples of improvements and future adaptations could be the inclusion of
suitable 360°rotation plates, faster translation tables, more precise optics and laser lines as well
as larger sensor arrays depending of course on the limitations imposed by such a scenario. This
simulation allows changing most of its parameters, such as the number of elements in the PSD
array. The existing 128 PSD array sensor system, when mounted in a triangulation platform, is able
to perform 3D object profile scans at high resolutions and speeds with a large number of frames,
and this experiment was already presented here. Our previous works describe the implementation,
characteristics and behavior of such 32/128 PSD array sensor systems, as well as the manner in which
the scanned 3D object profile image is constructed thereby presenting a high speed sheet-of-light 3D
object rendering platform [7] using as sensor an array of 32 amorphous silicon position sensitive
detectors [6]. In the most recent work [8], we also exploited the 3D scanning optical characteristics of
such an inspection system.

Analog versus Digital Technology

The foreseen PSD array technology roadmap proposes the use of amorphous silicon or other
more suitable materials such as nanocrystalline silicon (which does not degrade as much), for the
fabrication of analog 32/128/256/512/1024 PSD array sensors. The latter are used to scan and
represent 3D profiles of objects in real-time [8], preferably at a greater speed than digital CCD or
CMOS-based systems.

AT-Automation Technology GmbH [9], manufactures the most advanced CMOS sensor based
sheet-of-light laser triangulation 3D cameras. They use digital sensors such as CMOS sensors (e.g.,
1280 x 1024 pixels). The principle of application for these 3D sheet-of-light cameras is exactly the
same as the one used for the 3D PSD sensor system and thereby they are the most advanced direct
competitors in terms of speed, resolution and overall system performance, since they claim their
cameras are the fastest in the world. One of their cameras (C4-1280) reaches 40,000 profiles/frames
per second, when using 128 pixels and 128 rows of the sensors, representing only just a small part of
the whole sensor (1280 x 1024 pixels).

Amorphous or nanocrystalline 32/128/256/512/1024 PSD array 3D sensors would be an
alternative to these CMOS cameras in similar application scenarios. The overall performance
between both technologies will be similar when using the 128 PSD sensor, however, amorphous or
nanocrystalline 256/512/1024 PSD array 3D sensors are expected to outperform these 3D CMOS
cameras when used in high speed 3D scanning applications. The reason for this is that the analog
structure of the PSD sensor is different to the traditional discrete sensor and thereby it can process
data much faster than a pixel-based structure. The resolution of these 3D CMOS cameras is quite
good, depending on the application, and, in some applications, they claim to reach resolutions of
about 35 um or even 10 or 5 um [9].

Therefore, it seems 3D cameras with digital sensors are already quite advanced and relatively
cheap. A complete set generally includes a camera, laser and lens but not the software; nevertheless,
third party software is readily available.

2. 128 PSD Array System 3D Object Profile Scanning

As already described in our previous work [7], an array of 32 amorphous silicon position
sensitive detectors, was integrated inside a self-constructed machine vision system as the vision
sensor component and the response was analyzed for the required application. Such work proposed
the use of these sensors and relevant systems for 3D object profiling even at high speeds. A
photograph of an amorphous silicon 128 element PSD linear array developed at CEMOP/UNINOVA
is shown in Figure 1.
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Figure 1. Amorphous silicon 128 PSD array glued and wire bonded to a suitable chip carrier.

This device can also be regarded as a three-dimensional PSD, being simply an array of
one-dimensional PSDs mounted together in parallel to each other on a surface, where the separation
between them and the detector width defines the minimum discrimination in one direction (discrete),
while in the other (along the strip) it is continuous [6]. This type of structure has been specially
designed for sheet-of-light 3D shape measurement.

The experimental setup and procedure for obtaining 3D object profiles with the 32 PSD sensor
system were already described elsewhere [7,8] and these also apply for the 128 PSD sensor system.
Here, we show results for the detection of the same object when using the 128 PSD array sensor
system. The width of the rubber is small and it is only covered or detected by a few sensor channels.
In addition, in these trials, the translation table (and object) moved from one side to the other so that
the object (white color rubber), shown in Figure 2a, was scanned by the laser sheet-of-light system.

The object reflection was projected onto the active area of the 128 PSD sensor array. The
dimensions of the rubber object, as measured by an electronic ruler, were the following: Length,
41.90 mm; Width, 16.70 mm; and Height, 11.74 mm.

The total distance travelled by the translation table (object) or scanned distance was about
69.37 mm at a speed of about 0.197 cm/s. As already reported elsewhere [8], here the incident
scanning angle was fixed at 45° and the rate of acquisition was kept at 8 ms. The system integration
time was maintained at 1ms for all scans and for low noise purposes, results were acquired using
128 sub-samplings (128 sample average). The light intensity recorded on the active area of the 128 PSD
sensor array was 2.53 pW/cm?.

The results obtained when channel 75 of a 128 PSD sensor array detects the light reflected by
the white rubber as a function of the scanned distance are illustrated in Figure 2b. The response was
acquired at 65 frames per second leading to 2289 frames in total.

The maximum resolution that can be obtained with an acquisition time of 8 ms derives from
the number of maximum possible frames acquired in one second taking into account the lowest
possible scanning speed. Therefore, 1/0.008 s = 125 frames per second is the maximum possible
acquisition frame rate at present (WINDOWS limitation) for this particular system configuration.
Using the previously referred to acquisition time of 8ms and speed of 0.197 cm/s, a calculated
scanning resolution of around 15.76 um should be expected (0.00197/125 = 15.76 um). However,
in reality it takes more than 30 pm to acquire each frame, mainly due to software execution internal
timings, efc.

The response shown in Figure 2b corresponds fairly well to the measured length of the rubber
object being 41.90 mm as measured by an electronic ruler. Channel 75 of the sensor detects a signal
for about 41lmm. The difference in the position of the laser line reflected on the sensor active area [8]
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in Figure 2b (Y-axis) corresponds to the height of the rubber. The real measured height of the rubber
being 11.74 mm is equivalent to a height of about 3 mm (from 0 mm to 3 mm on the Y axis) measured
of course on the sensor active area after a lens reduction [8].

Figure 2. (a) Photograph of a white rubber object; (b) 3D object profile representation for the
individual detection of channel 75 from the 128 PSD array sensor.

The stability of the profile detected is acceptable, even though a slight flickering is observed,
which could be attributed to vibrations caused by the translation table during the scanning
procedures as well as to the noise of the sensor.

3. 3D Sensor MATLAB/SIMULINK Simulation

A MATLAB/SIMULINK model has been constructed in order to analyze and view the
possibilities of the PSD array sensor technology before it is further expanded or developed.

The simulation reads any “PLY” 3D data file located inside a predefined directory. In our case,
the file “teapot.ply” is used. This file contains the raw 3D cloud data of the object that is to be scanned
in 3D, and, in this case, it is a teapot; however any other predefined 3D object can be employed.

When the function “ply_read.m” is executed, the simulation reads the object. Two matrices,
“[Tri, Pts]”, are then recorded, one regarding the triangular connectivity information (triangle faces)
and another regarding the VERTEX information (vertex or 3D points) of the object to be scanned in
3D within the simulation.

Figure 3 shows the structure of the simulation model with all its component blocks. Relevant
blocks from this SIMULINK model are explained.
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3.1. Initial Rotation

The object can be rotated before starting the scan. Any angle of initial rotation can be defined,
e.g., (15°), however it should be entered/translated to radians (instead of degrees), so for 15° case,
the term 157t/180 should be inserted. The default value is 0.

3.2. Rotation Velocity

The velocity of rotation is defined as the speed in which the object rotates per second.
For example, a value of 36° per second could be inserted since the default value of the simulation is
10 s and this would result in the object rotating 360° in 10 s. The default value is 0. The value should
be inserted in radians per second, instead of degrees, so therefore it would be 367t/180 or 27t/10. If we
are only interested in rotating the object without translating, we can change the velocity of rotation
to 271/10 and change the translation velocity to 0 so that the object does not move. In addition, we
can set the initial position to 0 so that the object is right below the lens and a better scan would be
obtained in this particular case.
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Figure 3. Structure of the SIMULINK simulation model with all its component blocks.
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3.3. Translation Velocity

The translation velocity is defined as the speed in which the object translates, per second, in the
X direction (X-axis). For example, a value of 1 cm/s could be inserted. The default value is 1. Thus,
in order to rotate and translate the object at the same time, a value of rotation velocity of for example,
27t/10 can be inserted in combination with the default value of 1cm/s for the translation velocity and
the default value of initial position of —5 cm (see Section 3.4)).

3.4. Initial Position

This value determines the position (generally in the x-axis) where the object starts to be scanned
in relation to the 0, 0, 0 (x, y, z) point or center of the system, perpendicular to the lens and 3D sensor.
The default value is —5 cm in the X-axis, which is from where the object starts to be scanned along
the X-axis. The center position is at the value x = 0, right below the lens.

3.5. Object Points

This value refers to the “Pts” matrix of points or (x, y, z) array of points returned by the
ply_read.m function.

3.6. Object Faces

This value refers to the “Tri” matrix of faces or triangular order for the connectivity of the points
returned by the ply_read.m function.

3.7. Angle of Incidence

This is the viewing or scanning angle, which exists between the laser and the normal to the
lens/sensor system. A default value of 4571/180 has been set (45° in radians), however it can be
changed in order to scan the object at various other angles. For example, a viewing/scanning angle
of 15° will yield a different result to a 45° angle, since the laser would be projected differently and on
different parts/sides of the object.

3.8. Direction of Vision

This parameter indicates the direction in which the lens/sensor system is viewing the object.
This parameter is composed of three coordinates (x, y, z). The default value is [0, 0, —1], indicating
that the direction of vision is downwards in the —Z direction (negative Z-axis). In our system setup,
this value is currently fixed since the object is passing and is being scanned below the lens/sensor
system as it moves in the X-axis.

3.9. Displacement

This SIMULINK block calculates the displacement taking into account the parameters of
translation and rotation velocity. The displacement is calculated as the simulation runs on every
sample interval.

3.10. Focal Distance

This is the focal distance provided by the physical lens used in the real system setup, which, in
this case, is set to a default value of 5 cm. Of course, in this simulation, it can also be changed to
other values.

3.11. Lens Centre

This parameter defines where the center of the lens is located with reference to the 0,0, 0 (X, y, z)
point, which is located where the object meets the normal of the lens/sensor system. The default
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value is [0, 0, 24], so this means that the center of the lens is located 24 cm above the [0, 0, 0] reference
point, so 24 cm in the Z-axis (upwards). This corresponds to the reality, since in the real system setup,
the center of the lens is also located 24 cm above the [0, 0, 0] reference point.

3.12. Laser/Object Intersection Calculation and Visibility

This SIMULINK block considers the points of the object, the triangular object faces formed by
those points from the object, the direction of vision, the viewing/scanning angle of the laser and the
laser sheet of light itself in order to calculate the intersection of the object points/faces with the laser.
The visibility of those intersecting points is also determined.

For a 32 PSD sensor, the physical number of detectors on the sensor is 32 and thereby the
“numrays” variable defined in the code of the SIMULINK block is set to 32. This variable may be
changed by accessing the code in the MATLAB workspace and by simply modifying the value of
“numrays = 32” to any other value, taking into account that usually the physical number of detectors
in these kind of PSD array sensors should vary from 32 through to 128, 256, 512 or 1024. The higher
the number of detectors, the higher the resolution in the Y- axis.

Once the value is modified, the model should be “re-built” and thereafter updated using the icon
“Build Model” on the MATLAB menu bar. The SIMULINK model should now be ready to “RUN”"
with the new value.

3.13. Projection on the Sensor

This SIMULINK block calculates and performs the 2D projection of the scanned object points or
2D frames on the sensor active area at each sample interval as the simulation runs.

3.14. Triangulation

This SIMULINK block uses the triangulation formulae and its relevant parameters in order
to calculate the 3D coordinates (X, y, z) of each of the scanned points from the object at each
sample interval.

3.15. 3D Object Rendering/Reconstruction

This SIMULINK block uses the previously calculated 3D coordinates and 2D frames to
reconstruct or render the object shape in 3D. The 3D object mesh of points is plotted as a 3D map
at each sample interval as the simulation runs.

3.16. Points

The matrix or array of points is returned to the MATLAB workspace at each sample interval.

3.17. Visible

The matrix or array of visible points is returned to the MATLAB workspace at each
sample interval.

3.18. Running the Simulation

The simulation is compiled and run with the default parameters for each block; however, as
already described, most of these can be modified to suit the needs of the required 3D scan.

Figure 4 shows the simulation running when the default parameters were used and Figure 5
presents the simulation results at the end of the simulation.

In Figures 4 and 5 the teapot was scanned and rendered using a 0.2 s sample time at a 45°
scanning angle, a translation velocity of 1 cm/s, an initial position of -5 cm and no rotation velocity
(0). At the end of the simulation, the relevant scanned 3D object generated data can be exported
and, in that case, a file of “xyz” format called “puntos.xyz” is stored in a predefined directory. The
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file “puntos.xyz” can now be opened using a 3D mesh visualization program, such as MESHLAB.
Figure 6a shows the generated file “puntos.xyz” opened in MESHLAB. Here, the teapot (object),
which was scanned in the 3D sensor simulation, is illustrated and we can ZOOM IN, rotate and have
a closer look at the resulting mesh of 3D points. Figure 6b shows the best 3D scanning results obtained
when using a 32 PSD array sensor, starting at the default initial position of -5 cm, translating 1 cm/s,
rotating 360° 10 times in 10 s, while using a sample time of 1/360 s.

Figure 5. Simulation results at the end of the 3D object scan simulation.

(@) (b)

Figure 6. (a) Scanned teapot (3D point mesh) viewed in MESHLAB; (b) Best 3D scanning result
(3D point mesh) viewed in MESHLAB, obtained with a 32 PSD sensor array.
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3.19. Expansion of the PSD Array Size

As referred to in Section 3.12, the default number of simulated detectors on the sensor is 32 and
can be expanded to any desired value, although the proposed sizes are 128, 256, 512 and 1024. The
higher the number of detectors, the higher the resolution in the Y-axis and the higher the definition
and quality of the 3D scanned object. Such a fact is clearly noticeable in Figure 7a—e, where we can see
how the number of points or vertices of the scanned 3D object increases as we increase the number of
detectors in the PSD sensor array.

(@) (b)

(© (d)

(€)

Figure 7. Expansion of the simulated PSD array size: (a) 32 PSD; (b) 128 PSD; (c) 256 PSD; (d) 512 PSD;
and (e) 1024 PSD.
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3.20. Object Resolution

The “teapot.ply” object file used in this simulation has 279 vertices and 500 faces. A lower
resolution “teapot.ply” file does not affect the outcome of this research since the simulation calculates
the point of intersection of the laser line with the surface of the object at each time frame and so
it is scanning exactly what comes in the file. Even if the object’s resolution is lower or higher, the
simulation will still scan the object’s surface at the intersection points between the laser line and the
object. Therefore, the resolution does not depend on the number of vertices or faces and it will scan it
as it is.

Since “teapot.ply” is composed of polygon faces that do not exactly represent the 3D profile of a
real teapot composed of curved surfaces, a file with the highest possible resolution will of course best
mimic the object being 3D scanned /simulated and provide the most precise estimate of a real teapot.

4. Triangulation Platform Configuration and Formulae

The triangulation configuration sketch and formulae derived by Park and DeSouza (see Figure
6.4 in reference [10]) was used to construct the simulation depicted in Figures 6 and 7 which
corresponds to the real physical triangulation 3D sensor system scenario, which is being simulated in
this SIMULINK model.

The coordinates of each of the 3D scanned points are calculated in accordance to the properties
of similar triangles.

The Z-coordinate is calculated using the following expression [10]:

fb

Z=p+ftan6

@
where f is the focal length of the camera, p is the image coordinate of the illuminated point, 6 is the
incident/scanning angle, Xc and Zc (see Figure 6.4 in reference [10]) are two of the three principle
axes of the camera coordinate system, respectively, and b (baseline) is the distance between the focal
point and the laser along the Xc axis (see Figure 6.4 in reference [10]).

The X-coordinate is calculated using the following expression [10]:

x=b—ztanf 2)

The Y-coordinate is calculated using the following expression also from the principle of

similar triangles:
Yq
y=+ ®)

where y is the distance along individual detectors on the sensor measured from the middle point of
the sensor on the Y-axis on the sensor active area, Y is the distance measured from the middle point
of the translation table (where object is placed) along the Y-axis within the scanning area, q is the
distance between the sensor and the lens which is not the focal distance f, and z is the perpendicular
distance between the lens and the object or the Z coordinate.

The error in the Z-coordinate measurement, Az, is obtained by differentiating the equation of the
Z-coordinate (Equation (1)), and the resulting expression is illustrated below [10]:

2 2o002
z z“sec”d)
Az = —A
z I p+ b
where Ap and A0 are the measurement errors of p and 6, respectively.
The results obtained by the physical sensor system (e.g., Figure 2b) when measuring object
profiles in 3D conclude that the error of the sensor system when detecting objects in the existing

triangulation platform setup is of ~5% in the X-axis and of ~5.6% in the Z-axis, which could be

A 4)
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attributed to possible vibrations of the translation table (object) movement during the scanning
process as well as to sensor noise. Signal fluctuations (noise in the signal) on the scanned profile
define the object measurement error in the Z-axis and the maximum and minimum values of such
fluctuations define such error interval.

5. Conclusions and Future Work

It has been demonstrated that a-Si:H 128 PSD sensor arrays and their corresponding systems
work correctly and can be used as high speed and high resolution sheet-of-light 3D object scanning
systems. The constructed simulation shows a huge potential for the proposed 3D sensor technology,
which is clearly able to compete with the most advanced CMOS sensor-based sheet-of-light laser
triangulation 3D cameras. Improvements are needed in order to achieve 100% correct sensor position
response, especially for the 128 PSD array sensor and such a goal could be attained by fabricating
a sensor using a different material, such as nanocrystalline silicon, which hardly degrades the
overall position response of the structure over time. Other foreseen restrictions are expected when
miniaturizing the sensor, for example to 256, 512 or 1024 elements, now that even if the technology
for that purpose exists, problems may occur during material layer fabrication procedures, such as
possible short circuiting in sensor channels, etc. Other limitations exist within the triangulation
platform. Better optics and equipment can be used to improve the 3D detection setup overall.
Anti-vibration and sensor noise reduction measures could be introduced, too. However, system
hardware and software do not need to be enhanced.

The successful integration of amorphous silicon PSD array sensors into suitable sheet-of-light
3D object rendering systems is now possible and feasible. The quality and realism of the 3D object
profiles depends on the correct and accurate position response of each detector from the sensor as
well as on the size of the PSD array, meaning that the higher the number of PSDs integrated on the
array, the higher the 3D object profile resolution on the discrete sensor axis, and, subsequently, the
higher the number of total image 3D scan points.
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Abstract: This study proposes an obstacle detection method that uses depth information to allow the
visually impaired to avoid obstacles when they move in an unfamiliar environment. The system is
composed of three parts: scene detection, obstacle detection and a vocal announcement. This study
proposes a new method to remove the ground plane that overcomes the over-segmentation problem.
This system addresses the over-segmentation problem by removing the edge and the initial seed
position problem for the region growth method using the Connected Component Method (CCM).
This system can detect static and dynamic obstacles. The system is simple, robust and efficient. The
experimental results show that the proposed system is both robust and convenient.

Keywords: obstacle detection; Kinect; depth map; travel aid

1. Introduction

According to new statistics [1], there are 285 million visually impaired people relying on the guide
cane or guide dogs to move around freely in the world. However, not every visually impaired person
can easily pair successfully with guide dogs and there is often a long wait for an animal.

Most visually impaired people use a cane to touch an obstacle, to assess the position of the
obstacle and avoid it. Sometimes at the point when they touch the obstacle, the danger is unavoidable.
These two methods for travel are neither convenient nor safe. Using computer vision technology
reduces this problem. The efficient detection of obstacles is important. In recent years, there have
been many developments in computer vision for this field. Many studies have proposed obstacle
detection methods. In [2] Obstacle detection can be classified into three categories: Electronic travel
aids (ETAs), electronic orientation aids (EOAs) and position locator devices (PLDs). However, this
paper classifies obstacle detection into three categories. One uses non-depth information, a second
uses depth information and the third uses neither.

There are many proposed methods for the first category, such as [3-8]. Ma et al. [3] proposed an
object detection algorithm that uses edges and motion. The motion-information is used to determine
the dynamic obstacles and the edge-information is used to determine obstacles. This information is
combined with free space detection to determine the position of the obstacles. Zhang et al. [4] proposed
an obstacle detection algorithm that uses a single camera. This uses edge detection to segment objects.
However, these methods require a simple texture for the surface of the ground. Chen et al. [5] proposed
an obstacle detection method that uses a saliency map. This uses a threshold value to determine the
position of the obstacles. However, this method requires that there are few obstacles in the execution
environment. Ying et al. [6] proposed an obstacle detection method that uses a gray-scale image. This
method searches the region of interest (ROI) in the gray-scale image and then determines the location
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of obstacles. However, this method uses a gray-scale image, so it is easily affected by illumination.
These methods are very robust if there is sufficient light, but not if there is insufficient light. The
proposed system uses Kinect directly to capture the depth map, so it addresses these drawbacks.

The second category of methods for obstacle detection is been proposed in [9-24]. These methods
detect obstacles using depth information. This is obtained from various capture devices, such as
stereovision cameras, Leap Motion controllers [25], laser rangefinders [26], RealSense 3D Cameras [27]
or Kinect sensors. Zollner et al. [8] just given a proof-of-concept idea of a mobile navigational aid, but
the implementation of the proposed Kinect application was lacked. Filipe et al. [10] applied Neural
Network to extract the features from the depth information captured by Kinect sensor and the extracted
features are enabled to detect possible obstacles. In general, depth information of obstacles is really
similar to the surrounding floor (ground plane) and the trained NN may be hard to separate the
obstacles from the floor. Hotaka et al. [11] proposed Kinect cane system and tactile inform system, that
is different from ours. Above three papers don’t remove ground plane from depth map. However,
our proposed system resolves the over-segmentation problem by removing the edge and the initialize
seed position problem for the growth method (RGM) using the Connected Component Method (CCM).
The RGM concept is simple. We only need a certain numbers of seed point to represent the property
we want, then grow the region. The vocal inform system of our proposed system is more intuitive.
And we do not change cane of visually impaired people. Zhang et al. [12] proposed an obstacle
detection algorithm that uses a U-V disparity map analysis. This combines straight-line fitting and the
standard Hough Transform [28] to determine the location of obstacles. However, the U-V disparity
map is generated using two webcams, so the degree of illumination affects the performance of the
system. In [13], Gao ef al. use a 3D camera to obtain the depth map. This study combines straight-line
fitting, the standard Hough Transform and a U-V disparity map to determine the location of obstacles.
Choi et al. [14] used a Kinect sensor to obtain color images and depth maps (RGB-D images). This
study uses edge detection for both color images and depth maps and then processes these edge images
by morphology [29]. The results for the two images are then combined to determine the position of
obstacles. However, the color image used in this study is still affected by illumination and the ground
plane affects obstacle detection. The proposed system addresses these two problems.

For the third category of systems for obstacle detection, Brock et al. [30] used a vibrotactile belt
to convey the position and distance to an obstacle using the position and strength of the vibrations.
For more detail about a vibrotactile belt, please refer to [31]. The vOICe’s Glasses for the Blind [32]
are a wearable device that is equipped with a webcam and translates video data into a sound stream.
Mann et al. [33] presented a novel head-mounted navigational aid that uses Kinect and vibrotactile
devices built onto a helmet.

The method detailed in [34] does not process the ground, but segments object directly to calculate
the standard deviation using an object’s depth value and then determines whether it is an obstacle
using the scale of the object’s standard deviation. Although this detection method is simple, smaller
objects on the ground are not detected. The proposed system filters the ground out before obstacle
detection is begun, so this issue is eliminated. The system used in [35] is an autonomous navigation
system that uses a finite state machine that is taught by an Artificial Neural Network (ANN) in
an indoor environment. The system used in [36] uses machine learning for this field. The design
goals for the proposed system are cost-efficiency, robustness and convenience. The system must
address the ground plane problem, in order to detect rising stairs, descending stairs and static and
dynamic obstacles.

The remainder of the paper is organized as follows. Section 2 gives a system overview and the
details of the system. Section 3 gives the experimental results for different environments and the
experimental results for two blind subjects and ten blindfolded subjects. Finally, a conclusion and
details of future work are given in Section 4.
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2. Proposed Methods

2.1. System Architecture

The proposed system flowchart is shown in Figure 1. Firstly, the morphology is dilated and eroded
to remove the distracting noise of the depth map and the Least Squares Method (LSM) in a quadratic
polynomial is used to approximate ground curves and to determine the ground height threshold in
the V-disparity. The system then searches for dramatic changes in the depth value, depending on
the ground height threshold, to determine stair-edge points. The Hough Transform is then used to
determine the location of the drop line [37]. In order to strengthen the characteristics of the different
objects and to overcome the drawbacks of the region growth method [38], edge detection is used to
remove the edge. The ground height threshold and the features of the ground are then used to remove
ground plane. The system then uses the region growth method to label the tags on different objects
and analyzes each object to determine whether the object is a stair. Finally, the system allows users to
navigate and gives them a vocal message about the distance to the obstacle and the obstacle category
using Text To Speech (TTS).

Capture Image <

Depth map

V disparily map

image filter with
Ground curve TH2(>=15)

cquation with
LMS

\
Image filter with TH1 of ground Removal of the
TH3(>50) height ground
Object labeling

Hough with region
transform growing

Stairs
detection

Color Image

Yes
v

| Mark position
and distance

Figure 1. The system flowchart.
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2.2. Noise Reduction

Because of the limitations of the Kinect hardware, a depth map can be broken. In order to make
the depth map more complete, some simple morphology processing is used. This paper uses a closing
operation for morphology to repair the black broken areas. Figure 2 shows that the processed depth
maps are better than the original depth maps.

Figure 2. Noise Removal. (a) Original depth map; (b) Processing result; (¢) Original depth map;
(d) Processing result.

2.3. Ground Height Detection

A UV disparity map is composed of the U disparity map and the V disparity map from the depth
map. Figure 3 shows that the V-disparity [39] concept simplifies the process of separating obstacles
in an image, where “V” corresponds to the vertical coordinate in the (u, v) image coordinate system.
Similarly, the U-disparity concept simplifies the process of separating obstacles in an image, where “U”
corresponds to the vertical coordinate in the (u, v) image coordinate system.

A UV disparity map [40] is a statistical method that is similar to a histogram. However, the
statistical target is different. The proposed system only uses V-Disparity because the effect is better.
Figure 4a shows that this table is a depth map. The statistics for different depth values are gathered,
row-by-row, and the results are shown in Figure 4b. For example, there are 15 zeros in row one in
Figure 4a, so the position of Row 2 and Column 1 in Figure 4b records this value (15). This means that
the depth value, 0, has an image height of 15.

Figure 3. The relationship between the depth map and the V-disparity. (a) Depth map; (b) V-disparity.
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Figure 4. A schematic diagram of the V disparity map. (a) Depth map; (b) V disparity map.

The detection needs for subsequent steps require that noise must be removed from the captured
depth map this must be projected into the V disparity map, as shown in Figure 5. The Y-axis height of
the V disparity map corresponds to the Y-axis height of the depth maps, as shown in Figure 5, so the
vertical length of an image represents the height of the actual object in the image. If the object is closer
to the right side of the depth map, the distance between the object and the sensor is greater. The greater
the pixel value in the V disparity map, the bigger is the object in the image. The normalization equation
for the cumulative amount of depth is shown in the following equation. The cumulative value must
be between 0 and 255. The cumulative value is statistical value of depth value of the row of the V
disparity map image, and the Max cumulative value is image wide value of the depth map:

cumulative value

. _ ’
Depth cumulative value Vax cumulative value x 255 (1)

According to [11], the ground is a rising curve in a V disparity map. The LSM is used to determine
the equation of the curve, as shown in Figure 6 and Equation (2).

Figure 5. (a) The depth map with noise removed and (b) the V disparity map image.
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Figure 6. The ground curve in V disparity map. (a) Segment consisting of points (red); (b) The line of
the equation (red).

ay* + by +c=d 2

where a, b and c respectively represent the parameters of the equation, y is the image height and d is
the horizontal axis value (0 to 255) in the V-disparity map. However, we want to find out a quadratic
equation to closer ground curve strip, then use it to remove ground plane. The ground plane is not
only a simple line in the V-disparity map. Because pixels that are the same height in a depth map
can have a different depth value, the curve becomes a strip, so several approximation targets, such as
the minimum, the maximum, the mean and the specific value of every row of V-disparity map are
used (the rightmost value of the strip, the leftmost value of the strip, the middle value of the strip on
x-axis).When the obstacle is on the ground, these methods do not work. To address this problem, the
proposed method uses the quadratic offset equation, which is shown as Equation (3):

TH1 = ay? + by +c —of fset = d — of fset 3)

where TH1 is the shifted threshold depending on the ground height. The ground height threshold
value indicates a height in the depth map and the minimum value cannot be less than TH1. The
appropriate offset value is 35, which is obtained through experience. The offset value affects the
removal of the ground, so several offset values, such as the minimum, the maximum, the mean and
the specific value, are tried. The offset value controls the location of the approximation curve for
the disparity map. The quadratic offset equation is the fastest and simplest method. Comparing the
disparity map in Figure 7 with that in Figure 8, it is seen that the depth value of the ground plane
(background) is greater than the depth value of the obstacle (foreground) for the same height. Figure 9
shows that the mean method (no offset) does not completely remove the ground plane. Therefore,
the maximum method does not remove the ground plane either. In contrast, the minimum method
is perhaps the best, but the depth of the obstacle interferes with this method. Because the depth
value for the background is greater than the depth value for the foreground for the same height in the
V-disparity, the minimum method cannot be used directly. Using the LSM to subtract the specific value
is the best method, as shown in Figure 10. Figure 11 shows that Equation (3) improves the robustness
of the system.
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Figure 7. The scene without people. (a) Real scene; (b) V-disparity; (c) Depth map.

Figure 8. The scene with people. (a) Real scene; (b) V-disparity; (c) Depth map.

@ & @ 8]

Figure 9. No offset. (a) Real scene; (b) No LSM Curve; (c) LSM Curve without offset; (d) Depth map.

Figure 10. Offset value = 20. (a) Real scene; (b) No LSM Curve; (c¢) LSM Curve without offset;
(d) Depth map.
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Figure 11. The result of the offset. (a) Original depth map; (b) Result image before offset; (c) Result
image after offset.

2.4. Removal of the Edge

In the depth map, the depth represents the distance between the objects and the sensor. The
variation in depth demonstrates whether the obstacles are the same. Variations in depth are usually not
too significant for a specific object. If there are different objects, the relationship between the distances
causes a significant variation in the depth. In this paper, in order to clarify the characteristics of
different objects, the strong edge is removed. There are many edge detection methods, such as Roberts,
Prewitt, Sobel, Laplace and Canny. In this paper, a function to detect the edge uses the following
Equation (4):

0 L,if T [P(xwy)—P(x,y)| > TH2

P(x,y) = XnYn€Sn (4)
unchange , others

Figure 12. Removal of the edge. (a) Noiseless image; (b) Processing result; (c) Noiseless image;
(d) Processing result.

The processing result is shown in Figure 12. Here, P(+) represents the pixel value of the coordinates
(x,y) and TH2 represents the threshold. If P(x,, y) is P(x,y)’s neighboring pixel and S, is a set of
P(x,y)’s neighboring pixels and the image is traversed using Equation (4), then the edges in the
image can be detected. When all of the edges in the depth map are found, objects can be isolated, so
segmentation is accurate.
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2.5. The Detection of Descending Stairs

In this section, a method to search and record points that exhibit significant variation from the
noiseless image is proposed. In this study, the pixel values are larger than the setting threshold (50)
and are defined as significant variation. The ground height threshold (TH3) is then used to filter
out possible points, as shown in Figure 13a. These depth values of vertical adjacent point are very
difference. After filtering, they become a group of points. We call these points “possible points”. In
depth map, the Hough Transform technique transforms the possible points into edge line of descending
stairs. The Hough Transform technique then transforms the filtered points into a horizontal line, as
shown in Figure 13b.

Figure 13. The results for the detection of descending stairs. (a) Suspicious points of downstairs depth
map; (b) The results of the Hough transform.

2.6. Removal of the Ground

If connected component labeling or other labeling methods are directly used to label tags, it is
difficult to separate the obstacles from the ground, because the junctions between the ground and the
obstacles have the same depth value. Therefore, the information for the ground must be removed.
RANSAC plane fitting [35,37] is used to determine the ground plane in the 3D space. Because the
sensor cannot be fixed, the calculation of the ground information requires an iterative approach. In
order to improve the speed of the system, [38] and the following information are used to filter out
the ground: (1) The ground is usually relatively flat and (2) Using the information on depth, the
gray value varies from large to small (from far to near). (3) Only the large areas of the ground are
required, so Equation (5) is used. Using these features, the planes of interest meet three conditions.
The regions and the sizes of the different planes of interest are determined and then the ground plane
is removed using Equation (5), which has a large area. The processing result is shown in Figure 14.
These separated objects are label as different color in Figure 15. The least squares method (LSM) in a
quadratic polynomial is used to approximate the ground curves and to determine the ground height
threshold in the V-disparity:

0 , P(x,y) —P(x,y—n) >2
/\'fﬁ;P(x,y— i) —P(x,y—i—1) >0
i

AP(x,y) > TH1
unchanged ,others

Ground(x,y) = (5)

where P(-) and Ground(-) represent the pixel value of the coordinates (x,y), n determines the range
(n=10) and TH1 represents the threshold (TH1 = 35). These characteristics of ground plane in depth
map must meet the following three points: (1) Depth values of horizontally adjacent points of ground
plane are almost the same; (2) Depth values of vertically adjacent points of ground plane are gradient;
(3) Depth values must be greater than TH1.
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Figure 14. Removal of the ground. (a) Edge removed image 1; (b) Processing result of (a); (c) Edge
removed image 2; (d) Processing result of (c).

Figure 15. Labeling. (a) Ground removed image; (b) Labeling result; (¢) Ground removed image;
(d) Labeling result.

2.7. Labeling

The reason of using the labeling is easy to observe the experiment. After observations, we can stop
this function, and then the performance is better. The Connected Component Method (CCM) and the
region growth method [13,41] are the most common methods of labeling. The connected component
method is used for a 2-D binary image. It scans an image, pixel-by-pixel (from top to bottom and left
to right), in order to identify connected pixel regions, i.e., regions of adjacent pixels, that share the
same set of intensity values. CCM can be either 4-Connected Component or 8-Connected Component
for two dimensions. The Connected Component Method can be a 6-connected neighborhood, an
18-connected neighborhood, or a 26-connected neighborhood for three dimensions. The disadvantage
of the connected component method is that it is time-consuming.

A Region Growth Algorithm (RGA) is a simple, region-based image segmentation method. RGA
is suitable for a gradient image. A Seeded Region Growth Method (SRG) [42] is a type of RGA.
SRG is rapid, robust and allows free tuning of a parameter. SRG is faster than CCM, but it allows
over-segmentation there is a problem with the initial positions of seeds. We briefly conclude the
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advantages and disadvantages of region growing. The advantages of region growing are as follows:
(1) Region growing methods can correctly separate the regions that have the same properties we
define; (2) Region growing methods can provide the original images, which have clear edges the
good segmentation results; (3) The concept is simple. We only need a small numbers of seed point
to represent the property we want, then grow the region; (4) We can determine the seed point and
the criteria we want to make; (5) We can choose the multiple criteria at the same time; (6) It performs
well with respect to noise. The Disadvantage of region growing as following: Noise or variation of
intensity may result in holes or over-segmentation. We proposed system could solve this disadvantage
of region-growing techniques.

The sensing range of Kinect is 0.8 to 4.0 m. When the range is greater than the maximum distance,
it cannot determine the distance, so the distant information must be removed. In order to measure
distances accurately, the distance information for less than 3 m is retained.

Different tags are then placed on different objects. The general labeling methods use eight
connected component labeling and region growth, but tag harmonization for connected component
labeling requires much iteration, because of the complex shape of the connected area:

(i), if [(P(i=1,j—1)=0)
A(P(i,j—1) =0)
A(P(i+1,j—1)=0)
A(P(i—1,j) =0)

A(P(i, j) #0)]

not seed, others

S5(i,j) = (6)

Equation (6) is 8-connnected of image processing. According to neighbor state of P(i, ), to
determine P(i, j) belongs to which seed (classification). Here, S(i.j) represents the seed coordinate and
P(i, j) represents the pixel value at the coordinate (7, j).

In order to increase the efficiency of the system, Connected Component Region Growth is used.
Traditional region growth initially sprinkles some seeds in the image. If the distribution of the
sprinkled seeds is not appropriate, the growth results are imperfect, so the choice of the initial position
of the seeds is improved in the proposed system. Information about object edges is used. Because
the previous step removes the edge information for an object, each object is isolated by black color.
Equation (6) and the mask for the initial seed are used to select the coordinates of initial seeds, as
shown in Figure 16. These coordinates are then used to execute region growth. This ensures that each
object has an initial seed and that any growth is not been repeated. Therefore, a system to reduce the
amount of computation is proposed. The processing result is shown in Figure 17.

PG-1,;-1) | PGj-1) | PG+1,3-1)

P@-1,) P(i,j)

Figure 16. The mask for the initial seed.
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Figure 17. The results for obstacle detection. (a) Bright indoor; (b) Bright indoor; (c¢) Low-light indoor;
(d) Low-light indoor.

2.8. The Detection of Rising Stairs

The system then analyzes each of the tagged objects individually, to determine whether the
object is rising stairs because of a change in depth. The rising stairs depth value has a hierarchical
characteristic, from top to bottom and from large to small. When the obstacle fulfills these
characteristics, it is determined to be rising stairs. The detection results are shown in Figure 18.

Figure 18. The detection of rising stairs. (a) Satisfied conditions of a suspicious plane; (b) Upstairs
detection image.

2.9. The Labeling of Objects and Informing the User

This system labels objects with rectangle. It shows the information about detected objects on the
image and the distance of the obstacle or the staircase. The results are shown in Figure 19.

Finally, the system uses Text-To-Speech (TTS) software [43]. When the obstacle is in front of the
user, the system vocally informs the user of the distance to the obstacle and the obstacle category.
When the system detects stairs, it gives the direction and the distance to the stairs to the user to
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ensure the user’s safety. This vocal alarm is very short and focuses on concise information about the
closest obstacle.

Figure 19. The result of labeling.

3. Experimental Results

A Microsoft Kinect sensor is a tool that captures images, as shown in Figure 5 and Table 1. The
experimental platform is Windows 7. The programming language is Visual C++ 2010 with Opens
2.3, running on a notebook with an Intel(R) Core(TM) i5-3210M CPU@2.5GHz 8G 64 bits. The image
resolution is 640 x 480 and the depth map capture rate is 30 frames per second. The sensing range is
0.8 to 4.0 m.

A Kinect sensor uses structured light methods to give an accurate depth map of a scene. Both
the video and depth sensor cameras in the Kinect sensor have a 640 x 480-pixel resolution and run at
30 FPS (frames per second). There are two cameras and an IR projector. One camera is for color video
and the other one with the IR Projector is for the depth map. Currently, there are two categories of
SDK for Kinect: Open NI and Microsoft Kinect for Windows SDK.

Kinect configuration height and distance accuracy are related. If possible, the Kinect sensor keeps
horizontally that experiment results are better. The Kinect sensor configuration is as shown in Figure 20.
Our Kinect sensor is totally fixed on a helmet or chest and waist.

I
I

[PEEREN
@ ® ©)

Figure 20. The Schematic diagram of the Kinect configuration for different stature person. (a) A short
person; (b) A medium stature person; (c) A tall person.

Infrared rays are easily affected by sunlight [44]. The Kinect sensor depends on emitted infrared
rays to generate a depth map, so the Kinect sensor has some hardware limitations. The Kinect sensor
is easily affected by sunlight, so it can only be used for environments that lack sunlight, such as a
night scene, a cloudy day or indoors. It is worthy of note that the Kinect sensor is not totally useless
outdoors, but it cannot be used in sunny environments.

In this section, all of the experiment images are random images taken from the experiment.
The experiments are divided into two different environments: simple and complicated. A simple
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environment does not include stairs and a complicated environment has stairs. Both environments are
situated indoors and outdoors, with sufficient and insufficient light. The experiments use different
brightness values for the indoor and outdoor environments and for with stairs and without stairs.
Figure 17a,b shows the results for a bright indoor environment. Figure 17¢,d shows the results for a
low-light indoor environment. When obstacles are in front of the user, the system vocally informs the
user of the distance to the obstacle.

3.1. System Testing in a Simple Environment

This section details the success rate for obstacle detection in a simple environment without stairs.
In this study, an object that affects the path of a user is defined as an obstacle. If an obstacle is labeled,
the detection is successful. If not, there is a failure to detect.

3.2. An Indoor Environment under Sufficient Light

The detection success rate and the failure rate are shown in Table 1. As shown in Figure 21, indoor
ground is flatter than outdoor ground so the projection distribution of the ground in V-disparity is
more concentrated. The success rate is excellent when the ground in the depth map is removed using
the ground height threshold in the V-disparity. There are some failures due to the material nature of
objects, such as a large expanse of transparent glass or smooth metal.

Table 1. The success rate and the failure rate for the detection of obstacles.

Frame Amount (Total 2265 frames) Percentage (%)
Success 2201 97.17%
Failure 64 2.83%

Figure 21. The detection of an obstacle indoors under sufficient light. (a) Corridor 1; (b) Laboratory 1;
(c) Corridor 2; (d) Laboratory 2.
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3.3. An Indoor Environment under Insufficient Light

The detection success rate and the failure rate for obstacle detection are shown in Table 2. As
shown in Figure 22, the depth information is not affected by illumination because it is obtained from
the Kinect sensor. Indoor ground is flatter than outdoor ground so the projection distribution of the
ground in V-disparity is more concentrated. The success rate is excellent when the ground in depth
map is removed using the ground height threshold in the V-disparity. The nature of the material of an
object in the scene influences the success rate, for example, glass or metal.

Table 2. The success rate and the failure rate for obstacle detection.

Frame Amount (Total 213 frames) Percentage (%)
Success 206 96.71%
Failure 7 3.29%

Figure 22. The detection of an indoor obstacle under insufficient light. (a) Laboratory 1; (b) Laboratory
2; (c) Lobby; (d) Corridor.

3.4. System Testing in a Complicated ENVIRONMENT

If the test environment contains stairs, it is defined as a complicated environment. The basic
structure of the stairs is shown in Figure 23. This study focuses on rising and descending stair
structures. If the system identifies the obstacles and the stairs accurately, it is a successful detection.
If not, then it is a failure.
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Figure 23. The structure of the stair.

3.5. An Indoor Environment under Sufficient Light

The success rate and the failure rate for detection are shown in Table 3. The types of stairs are
simpler in the indoor environment, so there is no problem with detection. Figure 24 shows that if
the most of the stair structures are not obscured by person or objects, it is successfully detected. The
experimental results show that as long as most of the stair is not occluded, it is successfully detected.

Table 3. The success rate and the failure rate for obstacle detection.

Frame Amount (Total 262 frames) Percentage (%)
Success 245 93.5%
Failure 17 6.5%

Figure 24. The detection of an obstacle indoors under sufficient light. (a) Rising stairs; (b) Rising and
descending stairs; (c) Obstacle and descending stairs; (d) Obstacle and descending stairs.
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3.6. An Indoor Environment under Insufficient Light

The success rate and the failure rate for obstacle detection are shown in Table 4. The success rate
and failure rate for detection of descending stairs are shown in Table 5. To improve the accuracy and
the capturing of images, the system uses a Kinect sensor, so that stairs can be easily detected, even in
dimly lit environments as shown in Figure 25.

Table 4. The success rate and the failure rate for obstacle detection.

Frame Amount (Total 104 frames) Percentage (%)
Success 96 92.3%
Failure 8 7.7%

Table 5. The success rate and failure rate for detection of descending stairs.

Frame Amount (Total 592 frames) Percentage (%)
Success 498 84.12%
Failure 94 15.88%

Figure 25. The detection of an obstacle indoors under insufficient light. (a) Descending stairs 1;
(b) Descending stairs 2; (c) Rising stairs 1; (d) Rising stairs 2.

3.7. The Confusion Matrix for Experiment Results

The indoor experimental data is expressed using a confusion matrix, as shown in Table 6. If there
is a large size break in the depth map, the obstacle is not detected. When the remaining part in depth
map is calculated, it is so small as to be negligible. When rising stairs are to be detected, because there
are broken parts in the image depth, some blocks are mistaken for obstacles. In an indoor environment
there are fewer false assessments because the ground is uniform. The probability of a false assessment
is greater in an outdoor environment because the ground is diverse, such as where there is a rough
surface. The detection rate for an indoor obstacle reaches 97.40%.
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Table 6. The confusion matrix for the indoor experiment results.

Actual Output

Confusion Matrix

Obstacle Upstairs Downstairs  Barrier Free  Recognition Rate
Obstacle 1660 0 0 24 98.57%
Expected Upstairs 30 382 0 0 92.72%
output Downstairs 0 0 248 13 95.02%
Barrier free 8 0 0 524 98.50%
Accuracy rate 2814/2889 97.40%

3.8. The Detection of Static and Dynamic Obstacles

Our system detects static and dynamic obstacles simultaneously as shown in Figure 24d.
Figure 24a—c shows static obstacle detection. As illustrated in Figure 26, this testing is for dynamic
obstacle detection. The scenario is that one man walks from the left to the right in the scene.

Figure 26. The detection of static and dynamic obstacles. (a) Walking people walks from the left side;
(b) Walking people at the middle; (c) Walking people walks to the right side.

3.9. The Evaluation of the System by Blind and Blindfolded Participants

Three blind university students (as shown in Figure 27a,b) and thirty-eight blindfolded university
students were used to evaluate the system. The system is not meant to take the place of a cane or a
guide dog but to improve perception using a depth sensor-based sound system. A traditional cane,
which is the standard navigation tool for the blind, is difficult to replace because a cane is cheap, light
and can be folded.

(a) (b) (c)

Figure 27. Blind and blindfolded participants. (a) Blind participant 1; (b) Blind participant 2;
(c) Blind-folded participant.
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These experiments use a control experiment. There is an experimental group and a control group.
The experimental environment (as shown in Figure 28) includes rising stairs, descending stairs, static
obstacles and dynamic obstacles along a specific path. The participants consisted of three blind junior
students (Blind Participants: BP) and thirty-eight junior students (Blindfolded Participants: BFP).
The best and worst experimental results were removed. The distribution of the experimental data is
shown in Figure 29. Figure 30 shows that experimental results when only the proposed system is used
are similar to the experimental results when only a cane is used. However, using the system and a
cane together gives significantly improved experimental results that are closer experimental results of
normal people.

We calculate the p-value for the cane and proposed system with cane as shown in Table 7. The
calculating result of p-value is 0.001508556 (two-tail). In general, the significance level is 0.05 or 0.01.
In our case, the two-tailed p-value suggests rejecting the null hypothesis of no difference. The p-value
is less than 0.5 or 0.01, so the result is significant improvement.
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Figure 28. The experimental environment.

Figure 29. The statistical data of experiment.
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Figure 30. The distribution of the experimental data.

Table 7. t-Test: Paired Two Sample for Means.

Cane Cane and Proposed System
Mean 176.4615385 164.3846154
Variance 310.097166 213.5587045
Observations 39 39
Pearson Correlation 0
Hypothesized Mean Difference 74
t Stat 3.295836168
P (T < t) one-tail 0.000754278
T Critical: one-tail 1.665706893
P (T < t) two-tail 0.001508556
T Critical: two-tail 1.992543495

4. Conclusions

This paper proposes an obstacle detection method that uses depth information. Because the depth
information is obtained using an infrared sensor, the depth information is not affected by the degree
of illumination. The proposed system is effective in detecting obstacles in a low light environment.
The system addresses the problem of over-segmentation by removing the edge and eliminating the
problem of the initial seed position for the region growth method, using CCM. It can also detect static
and dynamic obstacles. These experimental results show that when only the proposed system is
used similar to the experimental results when only a cane is used. However, using the system and a
cane together gives significantly improved experimental results that are closer experimental results of
normal people. The system is simple, robust and efficient.

Three thresholds are used: TH1 = 35 for the removal of the ground plane, TH2 = 15 for the
removal of the obstacle edge and TH3 = 50 for the detection of descending stairs. The detection rate
for an indoor obstacle is as high as 97.40%. The experimental results show that the proposed system is
very robust, efficient and convenient in an indoor environment. The system can also detect rising stairs
and descending stairs and ensures that visually impaired people have the environmental information
that is required to avoid danger.

The system vocally informs the user of the distance of an obstacle and the category of the obstacle.
This voice alarm is very short and focuses on the most concise information about the closest obstacle.
The TTS voice is not a natural voice so it has a robotic sound. In the future, the system will be improved
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to support multiple languages. Image processing performance of our proposed system for ROI or
fully image is different, but they are small and almost the same. The most of calculations are based on
Kinect. To detect object in fully image is easier than in ROI. Our system detects complete object, not
just a part.

Acknowledgments: This work is supported in part by the Ministry of Science and Technology of the Republic of
China under grant number, MOST 103-2410-H-032-052. This support is gratefully acknowledged. The authors
wish to thank participants in the experiments and the reviewers for their valuable comments, which have improved
this paper considerably.

Author Contributions: Hsieh-Chang Huang and Ching-Tang Hsieh conceived and designed the experiments;
Ching-Tang Hsieh defined the research line. Hsieh-Chang Huang and Cheng-Hsiang Yeh performed the
experiments; Hsieh-Chang Huang and Ching-Tang Hsieh analyzed the data; Hsieh-Chang Huang wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. International Agency for Prevention of Blindness. Available online: http:/ /www.iapb.org/ (accessed on
5 January 2015).

2. Dakopoulos, D.; Bourbakis, N.G. Wearable Obstacle Avoidance Electronic Travel Aids for Blind: A Survey.
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 40, 25-35. [CrossRef]

3. Ma, G,; Dwivedi, M.; Li, R;; Sun, C.; Kummert, A. A Real-Time Rear View Camera Based Obstacle Detection.
In Proceedings of the 12th IEEE International Conference on Intelligent Transportation Systems, St. Louis,
MO, USA, 4-7 October 2009; pp. 1-6.

4. Zhang, Y.; Hong, C.; Weyrich, N. A single camera based rear obstacle detection system. In Proceedings of the
2011 IEEE Intelligent Vehicles Symposium, Baden-Baden, Germany, 5-9 June 2011; pp. 485-490.

5. Chen, L.; Guo, B.L.; Sun, W. Obstacle Detection System for Visually Impaired People Based on Stereo
Vision. In Proceedings of the 2010 Fourth International Conference on Genetic and Evolutionary Computing,
Shenzhen, China, 13-15 December 2010; pp. 723-726.

6.  Ying,].; Song, Y. Obstacle Detection of a Novel Travel Aid for Visual Impaired People. In Proceedings of
the 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC),
Nanchang, Jiangxi, China, 26-27 August 2012; pp. 362-364.

7. Guerrero, L.A.; Vasquez, F.; Ochoa, S.F. An Indoor Navigation System for the Visually Impaired. Sensors
2012, 12, 8236-8258. [CrossRef] [PubMed]

8. Lin, Q.; Han, Y. A Context-Aware-Based Audio Guidance System for Blind People Using a Multimodal
Profile Model. Sensors 2014, 14, 18670-18700. [CrossRef] [PubMed]

9.  Zollner, M.; Huber, S.; Jetter, H.C.; Reiterer, H. NAVI—A Proof-of-Concept of a Mobile Navigational Aid for
Visually Impaired Based on the Microsoft Kinect. In Proceedings of 13th IFIP TC 13 International Conference,
Lisbon, Portugal, 5-9 September 2011; pp. 584-587.

10. Filipe, V.; Fernandes, F.; Fernandes, H.; Sousa, A.; Paredes, H.; Barroso, J. Blind Navigation Support System
Based on Microsoft Kinect. In Proceedings of the 4th International Conference on Software Development for
Enhancing Accessibility and Fighting Info-Exclusion (DSAI 2012), Douro Region, Portugal, 19-22 July 2012;
pp- 94-101.

11. Takizawa, H.; Yamaguchi, S.; Aoyagi, M.; Ezaki, N.; Mizuno, S.; Cane, K. An Assistive System for the Visually
Impaired Based on the Concept of Object Recognition Aid. Pers. Ubiquitous Comput. 2015, 19, 955-965.
[CrossRef]

12. Zhang, M.; Liu, P; Zhao, X.; Zhao, X.; Zhang, Y. An Obstacle Detection Algorithm Based on U-V Disparity
Map Analysis. In Proceedings of the 2010 IEEE International Conference on Information Theory and
Information Security (ICITIS), Beijing, China, 17-19 December 2010; pp. 763-766.

13. Gao, Y.; Ai, X; Rarity, J.; Dahnoun, N. Obstacle Detection with 3D Camera Using U-V Disparity. In
Proceedings of the 2011 7th International Workshop on Systems, Signal Processing and their Applications
(WOSSPA), Tipaza, Algeria, 9-11 May 2011; pp. 239-242.

14.  Choi, J.; Kim, D.; Yoo, H.; Sohn, K. Rear Obstacle Detection System Based on Depth from Kinect. In
Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC),
Anchorage, AK, USA, 16-19 September 2012; pp. 98-101.

174



Sensors 2015, 15, 27116-27141

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Sales, D.O.; Correa, D.; Osério, ES.; Wolf, D.F. 3D Vision-Based Autonomous Navigation System Using
ANN and Kinect Sensor. In Proceedings of the 13th International Conference, EANN 2012, London, UK,
20-23 September 2012; Volume 311, pp. 305-314.

Wang, S.; Pan, H.; Zhang, C.; Tian, Y. RGB-D Image-based Detection of Stairs, Pedestrian Crosswalks and
Traffic Signs. . Vis. Commun. Image Represent. 2014, 25, 263-272. [CrossRef]

Rodriguez, A.; Bergasa, L.M.; Alcantarilla, P.F,; Yebes, J.; Cela, A. Obstacle Avoidance System for Assisting
Visually Impaired People. In Proceedings of the IEEE Intelligent Vehicles Symposium Workshops, Madrid,
Spain, 3 June 2012; pp. 1-6.

Kim, D.; Kim, K,; Lee, S. Stereo Camera Based Virtual Cane System with Identifiable Distance Tactile
Feedback for the Blind. Sensors 2014, 14, 10412-10431. [CrossRef] [PubMed]

Rodriguez, A.; Yebes, ].J.; Alcantarilla, P.F; Bergasa, L.M.; Almazdn, J.; Cela, A. Assisting the Visually
Impaired: Obstacle Detection and Warning System by Acoustic Feedback. Sensors 2012, 12, 17476-17496.
[CrossRef] [PubMed]

Saeid, F.; Hajar, M.D.; Payman, M. An Advanced Stereo Vision Based Obstacle Detection with a Robust
Shadow Removal Technique. World Acad. Sci. Eng. Technol. 2010, 4, 935-940.

Aladren, A.; Lopez-Nicolas, G.; Puig, L.; Guerrero, J.J. Navigation Assistance for the Visually Impaired Using
RGB-D Sensor With Range Expansion. IEEE Syst. ]. 2014, 1-11. [CrossRef]

Hub, A_; Hartter, T.; Ertl, T. Interactive tracking of movable objects for the blind on the basis of environment
models and perception-oriented object recognition methods. In Proceedings of the 8th International ACM
SIGACCESS Conference on Computers and Accessibility (Assets’06), Portland, OR, USA, 23-25 October
2006; pp. 111-118.

Skulimowski, P.; Strumitto, P. Obstacle Localization in 3d Scenes from Stereoscopic Sequences. In Proceedings
of the 15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, 3-7 September 2007;
pp- 2095-2099.

Hsieh, C.-T; Lai, W.-M.; Yeh, C.-H.; Huang, H.-C. An Obstacle Detection System Using Depth Information
and Region Growing for Blind. Res. Notes Inf. Sci. (RNIS) 2013, 14, 465-470.

Leap motion. Available online: https://www.leapmotion.com (accessed on 5 January 2015).

Hokuyo. Available online: http://www.acroname.com/products/index_Hokuyo.html (accessed on
5 January 2015).

Intel® RealSense™ Integrated 3D Camera. Available online: https:/ /software.intel.com/en-us/realsense/
home (accessed on 5 January 2015).

Duda, R.O.; Hart, PE. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Commun.
ACM 1972, 15, 11-15. [CrossRef]

McAndrew, A. Introduction to Digital Image Processing with Matlab; Asia Edition; Cengage Learning: Taipei,
Taiwan, 2010; pp. 267-302.

Brock, M. Kristensson Supporting blind navigation using depth sensing and sonification. In Proceedings
of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing (Ubicomp 2013),
Zurich, Switzerland, 8-12 September 2013; pp. 255-258.

Edwards, N.; Rosenthal, J.; Moberly, D.; Lindsay, J.; Blair, K.; Krishna, S.; McDaniel, T.; Panchanathan, S.
A pragmatic approach to the design and implementation of a vibrotactile belt and its applications.
In Proceedings of the IEEE International Workshop on Haptic Audio Visual Environments and Games, 2009
(HAVE 2009), Lecco, Italy, 7-8 November 2009; pp. 13-18.

vOICe’s Glasses for the Blind. Available online: http://www.artificialvision.com (accessed on
5 January 2015).

Mann, S.; Huang, J.; Janzen, R. Blind Navigation with a Wearable Range Camera and Vibrotactile Helmet. In
Proceedings of the 19th ACM International Conference on Multimedia, Scottsdale, AZ, USA, 28 November—1
December 2011; ACM: New York, NY, USA, 2011; pp. 1325-1328.

Lee, C.H.; Su, Y.C.; Chen, L.G. An intelligent depth-based obstacle detection system for visually-impaired
aid applications. In Proceedings of the 2012 13th International Workshop on Image Analysis for Multimedia
Interactive Services (WIAMIS), Dublin, Ireland, 23-25 May 2012; pp. 1-4.

Zheng, C.; Green, R. Feature Recognition and Obstacle Detection for Drive Assistance in Indoor Environments;
University of Canterbury: Christchurch, New Zealand, 2011.

175



Sensors 2015, 15, 27116-27141

36.

37.

38.

39.

40.

41.

42,

43.

44.

Bhowmick, A.; Prakash, S.; Bhagat, R.; Prasad, V.; Hazarika, S.M. IntelliNavi: Navigation for Blind Based on
Kinect and Machine Learning. Multi-Discip. Trends Artif. Intell. Lect. Notes Comput. Sci. 2014, 8875, 172-183.
Zheng, C. Richard Green Vision-based autonomous navigation in indoor environments. In Proceedings of the
IEEE 25th International Conference of Image and Vision Computing New Zealand (IVCNZ), Queenstown,
New Zealand, 8-9 November 2010; pp. 1-7.

Suzuki, S.; Abe, K. Topological structural analysis of digitized binary images by border following. Comput.
Vis. Graph. Image Process. 1985, 30, 32—46. [CrossRef]

Soquet, N.; Aubert, D.; Hautiere, N. Road segmentation supervised by an extended v-disparity algorithm for
autonomous navigation. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey,
13-15 June 2007; pp. 160-165.

Hu, Z.; Lamosa, E. Keiichi Uchimura a Complete U-V-Disparity Study for Stereovision Based 3D Driving
Environment Analysis; Kumamoto University: Kumamoto, Japan, 2005; pp. 204-211.

Region Growth. Available online: http://www.ijctee.org/files/VOLUME2ISSUE1/IJCTEE_0212_18.pdf
(accessed on 5 January 2015).

Adams, R.; Bischof, L. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 641-647.
[CrossRef]

TTS. Available online: http://msdn.microsoft.com/en-us/library /ms723627(v=vs.85).aspx (accessed on
5 January 2015).

Yu, H.; Zhu, J.; Wang, Y.; Jia, W.; Sun, M.; Tang, Y. Obstacle Classification and 3D Measurement in
Unstructured Environments Based on ToF Cameras. Sensors 2014, 14, 10753-10782. [CrossRef] [PubMed]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).

176



E sensors

Article
Target Detection over the Diurnal Cycle Using a
Multispectral Infrared Sensor

Huijie Zhao, Zheng Ji, Na Li *, Jianrong Gu and Yansong Li

School of Instrumentation Science & Opto-Electronics Engineering, Beihang University, 37 Xueyuan Road,
Haidian District, Beijing 100191, China; hjzhao@buaa.edu.cn (H.Z.); jizhengss1988@buaa.edu.cn (Z.].);
karon@buaa.edu.cn (J.G.); lysbuaa@buaa.edu.cn (Y.L.)

* Correspondence: lina_17@buaa.edu.cn; Tel.: +86-10-8231-5884

Academic Editor: Gonzalo Pajares Martinsanz

Received: 14 September 2016; Accepted: 26 December 2016; Published: 29 December 2016

Abstract: When detecting a target over the diurnal cycle, a conventional infrared thermal sensor
might lose the target due to the thermal crossover, which could happen at any time throughout the
day when the infrared image contrast between target and background in a scene is indistinguishable
due to the temperature variation. In this paper, the benefits of using a multispectral-based infrared
sensor over the diurnal cycle have been shown. Firstly, a brief theoretical analysis on how the thermal
crossover influences a conventional thermal sensor, within the conditions where the thermal crossover
would happen and why the mid-infrared (3~5 um) multispectral technology is effective, is presented.
Furthermore, the effectiveness of this technology is also described and we describe how the prototype
design and multispectral technology is employed to help solve the thermal crossover detection
problem. Thirdly, several targets are set up outside and imaged in the field experiment over a 24-h
period. The experimental results show that the multispectral infrared imaging system can enhance
the contrast of the detected images and effectively solve the failure of the conventional infrared sensor
during the diurnal cycle, which is of great significance for infrared surveillance applications.

Keywords: infrared sensor; multispectral; diurnal cycle; thermal crossover

1. Introduction

Infrared imaging detection systems are becoming more prevalent in numerous fields, including
remote sensing [1], medical monitoring [2], military surveillance [3], and scientific research [4,5].
These systems offer major advantages over visual detection systems, such as their continuous day and
night imaging capabilities, especially for target detection and acquisition [6].

When targets are aimed to be detected over the diurnal cycle using a conventional mid-infrared
(8~5 um) sensor, the results are generally affected by thermal crossover, where the infrared image
contrast from the target and the background is difficult to discriminate from each other as the target
would have integrated with the background and the radiation difference between the target and
background was too low to be sensed by the infrared thermal sensor. Moreover, this could cause
the targets to be blended into the background, lowering the detection accuracy, and even make the
thermal sensor lose the target. In addition, the thermal crossover may also occur at any point in the
day, because of solar loading, clouds, rain and fog. Therefore, it is critical to solve this problem for the
conventional mid-infrared thermal sensor, especially for the infrared surveillance system.

In the last few decades, research has focused on how to solve the problem of infrared detection
during thermal crossover periods and the thermal polarization technique, which is proposed as a
method to enhance conventional thermal imaging, has been employed. Felton et al. [7-9] compared
the crossover periods for mid-and long-wave infrared polarimetric and conventional thermal imagery.
The mid-infrared (3~5 um) imaging polarimeter they used was based on a division-of-aperture (DoA)
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lens technology developed by Polaris Sensor Technologies, which employed a 2 x 2 array of mini-lenses
followed by four linear polarizers at different orientations, forming four identical images of the scene
on four quadrants of the sensor focal plane array. The long-wave infrared (8~12 um) polarimeter
they used was a microbolometer-based rotating retarder imaging polarimeter developed by Polaris
Sensor Technologies, which could capture up to 12 images sequentially in time with each image at
a different orientation. Their experimental results showed that the polarimetric technology could
be used as a method to enhance the conventional infrared image contrast between the targets and
background during thermal crossover periods. However, their infrared image contrast improvement
was not direct but resulted from the calculation of Stokes vector formula, which might not be suitable
for the systems that requires high-performance of real-time processing. Still, as their work mainly
focused on polarimetric detection experiments, what the pictures are when the target integrated with
the background during the diurnal cycle and the theoretical analysis on how the thermal crossover
influences the conventional thermal sensor and why the polarimetric technology could be used to
solve the thermal crossover detection problem was also not mentioned. Based on Felton’s research,
Wilson et al. [10,11] used a single pixel scanning passive millimeter-wave polarimetric sensor, operating
at a frequency of 77 GHz with a noise equivalent temperature difference (NETD) of 0.5 K, to measure
the infrared image contrast during thermal crossover periods. As the passive millimeter-wave sensor
is designed with capabilities to measure two linear polarization states simultaneously, it breaks
the limitation that many of millimeter wave (mmW) sensors are only able to detect a single linear
polarization state and improve the detection accuracy. Additionally, Retief et al. [12] studied the
prediction method of thermal crossover based on imaging measurements under different weather
conditions over the diurnal cycle. They used a series of infrared background objects images as the
basis to establish the heat balance model and, on this basis, to predict when the thermal crossover
may occur. In addition to the thermal polarization technique, the infrared multispectral technology is
also considered as an important approach to solve the thermal crossover detection problem. The prior
studies [13-17] on infrared multispectral technology mainly showed the potential benefits of infrared
multispectral processing for clutter-limited ground target detection. However, due to constraints on
the spectral resolution, band coverage, and radiometric sensitivity of existing sensors at that time,
accurate measurement data and the real experimental image data were not available. Despite this, these
studies firstly made the infrared multispectral technology a potential method for target/background
identification. Furthermore, Schwartz and Eismann et al. [18-20] conducted a series of multispectral
field measurements at Redstone Arsenal using a Bomem-developed high-sensitivity infrared Fourier
Transform Spectrometer, which operates in the IR region (3-12 pm) with 8 cm~! spectral resolution
and noise equivalent spectral radiance (NESR, in nW/ cm?Zsr-cm ! units) 7.5@3.8 um, to enhance
the capabilities of passive infrared surveillance. With the instrument, the data of several test panels,
military vehicles and vegetated backgrounds at different times and under various environmental
condition were obtained, their analysis of the experimental results statistically showed that the thermal
sensor could detect the target hidden in vegetated and desert backgrounds with the use of multispectral
techniques. As their work mainly focused on post-collection data analyses of infrared hyperspectral
measurements and multispectral target detection algorithms, the design of the instrument, the real
experimental image data and how the multispectral technology could be employed as an effective
supplementary method for the conventional mid-infrared broadband thermal detection over the
diurnal cycle was not mentioned. Nevertheless, their research results showed the potential and
capacity of multispectral processing to detect low-contrast ground targets by providing valid estimates
of targets to the background spectral contrast.

Overall, from the abovementioned research results, although the polarization technique was
an effective solution to thermal crossover detection, there were still some disadvantages. Firstly,
the improvement of the infrared image contrast resulted from the calculation of Stokes vector formula,
which means that the contrast enhancement is not direct. Secondly, the time division imaging or
simultaneous imaging technique are usually used in polarization detection, which would increase
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image processing time or the system size and weight. In addition, the environmental factors could
affect the polarimetric contrast. Potential sources include vehicles, buildings, trees, clouds, water vapor,
etc., which are not necessarily visible within the scene but still illuminate the objects in the field of
view of the detector could be a reduction in the magnitude of polarimetric signature of a target.
Compared with the polarization technique, as the target’s infrared spectrum signature only differs
with materials, one or some characteristic wavelengths could be enough to reflect the difference
between the target and background without any redundant calculation. Thus, it would be faster
and more direct to distinguish the target from the background in a complex environment with the
multispectral technology if the characteristic wavelengths were acquired in advance according to prior
knowledge. In this paper, our goal is to discuss how the multispectral technology could be employed
to solve the problem of thermal crossover, design a fast, compact and light infrared multispectral
prototype with the known characteristic wavelengths according to the prior knowledge and conclude
that multispectral technology is capable of enhancing conventional thermal imaging.

Overview of Thermal Detection over the Diurnal Cycle

Thermal crossover is defined as a natural phenomenon that normally occurs twice daily, but may
occur at any time throughout the day when temperature conditions are such that there is a loss of
contrast between two adjacent objects on the infrared sensor. Figure 1 pictorially shows a schematic of
an infrared system measuring the target radiance L; and the background radiance Ly,. The infrared
system can be any conventional infrared sensor or camera and located at any arbitrary orientation.
The target can be any typical common objects, such as vehicles, and the background can be any natural
or artificial objects, such as grass, tree, or road. To simplify, without considering the scattering, the total
received radiance at the infrared system can be expressed by two components:

Lyg(A, 05,05, ) = ng()x, 00,05, ¢) + Lig(/\, 00,05, ¢, T) 1
Li(A, 00,05, 9) = L;(/\, 00,65, ) + Lf(/\, 00,65, 9,T)

where LZ < and L are the emissive radiance (the radiant flux emitted by a surface, per unit solid angle,
per unit projected area, per wavelength) of the background and target, L}, and L} are the reflection of
the solar irradiance on the background and the target, A is the wavelength of light, 6, is the viewing
zenith angle of the detection system, s is the solar zenith angle, and ¢ is the azimuth angle between 6,
and 6, T is the temperature. As DN = a - L + b, the DN difference between the targets and background
objects (represented by C) can be expressed as [21]:
C=|pN - DNhg‘ - ‘a(Lt - ng)‘ - a‘(Lf ~L§y) + (L — L) ?)
Furthermore, assuming that the reflectivity of the target and the background objects are p;
and py,, respectively, if ignoring the scattering and transmittance, the target and background objects’
absorptivity would be a; = 1 — p; and g = 1 — ppg. As the vast majority of objects in nature produce
diffuse reflection, the reflectivity p; and p,, should be replaced by the Bidirectional Reflectance
Distribution Function (BRDE, a function which defines the spectral and spatial reflection characteristic
of a surface and is the ratio of reflected radiance to incident irradiance at a particular wavelength [22])
to represent the anisotropic properties of solar radiation effects on the reflectivity of objects. Therefore,
Equation (2) can be rewritten as:

A:
22 [BRDF((), 64,60, ) — BRDFyg(A, 05,65, 9)] Lo(A)dA

C=a
+ J12 (1 — BRDFy(A, 65,05, @)]L{(A, T) — [1 — BRDFyg(A, 05,05, 9)] Li, (4, T) ) dA

®G)

where Ls(A) is the solar radiation and A1~A; is the working wavelength range of the infrared thermal
sensor. In the case that 6,, 6; and A are constant, BRDF only differs with the object’s material.
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Background Target Background

Figure 1. (a) Schematic of the infrared system measuring the radiance L; and the background radiance
th. (b) Description of 6, 65 and ¢.

As can be seen from Equation (3), in general, the thermal crossover over the diurnal cycle would
occur when C between the target and the background is zero or below the threshold value required to
execute a specific task by the conventional infrared thermal sensor. Specifically, we divide one day,
24 h, into five time zones, as shown in Figure 2.

Figure 2. Five time zones from over one day.
Time after midnight:

C=a

Ay
/A1 (1= BRDF(A, 85,60, )] L§(A, T) — [1 = BRDFyg (A, 65, 60, 9) | L (A, T))dA‘ 4
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provided that the target and background have different material; in this case, the thermal crossover
would not occur as C would not be zero.

First crossover period: in case of a sunny day, for the target with lower thermal inertia, such as
metal, thermal crossover would occur. In this case, the multispectral exploration technique can be
used to find the emissivity difference between the target and the background in AA to enhance the
contrast C. For the target with higher thermal inertia, such as water, thermal crossover might not occur.

Daytime: The circumstance is more complicated as Ls;(A) would have an effect on thermal
crossover. No matter whether the target has lower or higher thermal inertia, thermal crossover may
occur at any time, depending both on temperature differences and environmental factors, such as rain,
and fog. In this case, the multispectral exploration technology can still be used to find the emissivity
difference in AA to enhance the contrast C if thermal crossover occurs.

Second crossover period: similar to the “first crossover period”, for the target with lower thermal
inertia the thermal crossover would occur and the multispectral exploration technology can be used to
solve the problem of infrared detection during thermal crossover periods.

Sunset to midnight: similar to the “time after midnight”, provided that the target and background
have different materials C would not be zero and thermal crossover would not occur.

2. Materials and Methods

2.1. Why the Infrared Multispectral Technology Works

From the abovementioned discussion and Equation (3), it can be seen that it is the combined
impact of temperature difference, emissivity difference between the targets and background objects,
and reflected solar radiation that leads to the occurrence of thermal crossover. To simplify the problem
analysis, the single factor analysis of temperature and emissivity was specified in the following
two cases.

In the first case, we assume that the targets and background objects have the same emissivity
and use RRD(A, T) to represent the relative thermal radiation differences between the targets and
background objects, which is shown as Equation (5).
1k (oqu(/\, Th) — gLy (A, T2)>d/\

TJA

RRD(A,T) = ©®)

L2 g L (A, To)dA

Figure 3 shows the graphed outputs of Equation (5), provided that the ambient temperature was
300 K and the temperature difference between the targets and the background objects changes within
+5 K. As can be seen from Figure 3, between the 3.7 um—4.8 um region, which is also the typical
working wavelength range for a commercial infrared detector, RRD(A, T) changes within —20%—25%
In addition, with the decrease of wavelength, the curve RRD(A, T) becomes steeper and would be
more sensitive to the changes in temperature. Particularly, the calculation of Equation (5) in the whole
3.7 um—4.8 pm region was also made (not shown in Figure 3) and RRD(A, T) changes within a smaller
region, —15%-15%, which points out that, to a certain degree, for the traditional infrared broadband
thermal sensor, compared to the one with several narrow wavebands, the thermal crossover would be
more likely to happen and affect thermal detection for a longer time under the same conditions.

In the second case, we assume that the targets are grey plate and steel plate, and background
objects are road and sand, respectively, both of them have the same temperature, 300 K. With the
emissivity data obtained from the IR module using the software Sensors, the calculation results of
Equation (4) is shown as Figure 4. As can be seen from Figure 4, in the 3.7 um—4.8 um region, the
RRD(A, T) curve changes from 65% to 900%. Compared with RRD(A, T) in the first case, obviously,
the change of RRD(A, T) caused by emissivity presents a greater volatility and wider range than that
caused by temperature in Figure 3, which, in other words, indicates that the emissivity difference
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under characterized bands between the targets and background objects could be utilized to solve the
detection problem during the thermal crossover periods.

Figure 3. Relative thermal radiation differences Curve under the condition of the same emissivity in
3.7 um—4.8 pum region.

(b)

Figure 4. RRD curve under the condition of the same temperature in the 3.7 um-4.8 um region.
(a) RRD curve among the targets grey plate, steel plate, and the background objects road and sand;
(b) RRD curve among the target grey plate and the background objects road and sand.
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2.2. Design of the Multispectral Infrared Imaging System

In order to verify the effectiveness of the multispectral infrared technology in solving the thermal
crossover detection problem. A multispectral infrared imaging system prototype was designed and
employed to conduct field experiment. The prototype consists of the infrared optical system, which
is composed of the front infrared optical system and rear infrared optical system, a filter wheel with
five band-pass filters, and a mid-infrared detector, as shown in Figure 5. The infrared camera lens
has a focal length 100 mm. The mid-infrared detector is a France Sofradir Ltd. Model Mars 320 x 256
detector operating in region of 3.7—-4.8 um with a 5.5° x 4.4° field of view and up to 100 fps; this detector
has a geometrical resolution of 0.3 mrad and a minimum detectable temperature difference between
pixels of 0.03 °C and NETD of 9 mK. The five band-pass filters are produced by Sweden Spectrogon
Ltd. with central wavelengths of 3700 nm, 3800 nm, 4120 nm, 4420 nm, and 4720 nm, respectively,
and mounted on the filter wheel, which is driven by a stepper motor. In addition, the filter wheel
reserves a hole without any filters so that the image comparison between the traditional broadband
infrared image and narrowband infrared multispectral images can be conducted. Additionally, the cold
reflection impact on the image has been considered and reduced to the minimum. The mid-infrared
detector, filter wheel, and data acquisition and storage are controlled by a PC. The laboratory prototype
is shown in Figure 6.

No filter Filter Wheel

MWIR
Detector

Front Infrared Optical System Rear Infrared Optical System
Image
acquisition
and storage
Band-pass filter o
Control
\ D)

O

PC

Figure 5. Schematic of multispectral infrared imaging system.

Figure 6. Prototype of multispectral infrared imaging system.
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For the polarization technique used by Felton in [7-9], the MWIR imaging polarimeter employed
division-of-aperture lens technology and the infrared image contrast improvement resulted from
the calculation of Stokes vector formula. Thus, its image processing time, the system size and
the system weight were longer and larger, the three parameters were 87 fps, the system size was
420L x 90W x 210H and weight was 4.99 kg. However, for our designed multispectral imaging
system prototype, one or some characteristic wavelengths would be enough to reflect the difference
between target and background without any redundant sensors and calculation if the characteristic
wavelengths were acquired in advance according to the prior knowledge. Thus the prototype is
faster, more compact, lighter and less costly. The image processing time of our prototype was up to
100 fps, the system size was 200L x 180W x 135H and was 3 kg, making it more suitable for practical
applications. The specific specifications of the two sensors are listed in Table 1.

Table 1. Specifications of imaging polarimeter and multispectral infrared thermal sensor.

Parameter Value of Felton’s MWIR Imaging Polarimeter ~ Value of Our MWIR Imaging Spectrometer
Technological type Polarization technique with four polarizers Multispectral technique with five filters
FOV (%) 55 55 x 4.4
Focal Length (mm) 100 100
E/# 2.3 2
Total FPA pixels Four FPA arrays 640 x 512 (single 220 x 220) Single FPA 320 x 256
Pixel size (um) 24 x 24 30 x 30
Max Frame Rate (fps) 87 up to 100
Sensor Dimensions (mm) 420L x 90W x 210H 200L x 180W x 135H
Sensor weight (kg) 4.99 3
Central wavelength (nm) - 3700 nm, 3800 nm, 4120 nm, 4420 nm, 4720 nm
FWHM (nm) - 80~100 nm
Sensitivity 10-7 W/cm?sr 9 mK

Prior to the field experiment, the infrared multispectral imaging system is radiometrically
calibrated in the field laboratory through a calibration procedure developed by EOI Ltd. so that
the imaging capabilities of each wavelength can be assessed. The imaging capabilities measurement
results are summarized in Table 2.

Table 2. Noise equivalent temperature difference (NETD) Measurement Results.

Wavelength ~ NETD (Background 298 K, /2, Integration Time 6 ms)

3700 nm 476.6 mK
3800 nm 556.2 mK
4120 nm 533.9 mK
4420 nm 513.6 mK
4720 nm 490.1 mK

When conducting reconnaissance or surveillance tasks with the infrared multispectral imaging
system, the blank hole without any filters is initially rotated to the optical axis of the system and the
imaging system is just a conventional broadband infrared sensor under the initial state. With the change
of time and weather conditions around the observed area, thermal crossover may occur. Once the
observed target is hidden in the background caused by thermal crossover, the PC will rotate the filter
wheel and control the detector to acquire the images under different multispectral wavebands to find
the emissivity difference in the narrow wavebands between the targets and background objects and
solve the thermal crossover problem. Afterwards, in order to highlight the multispectral information
of the image and conform to the human eye’s visual acquity at the same time, the narrow-band
multispectral images and infrared broadband thermal image are blended to enhance the target
recognition and solve the thermal crossover problem by using an HSV fusion algorithm [23]. HSV is
one of the color systems that is used to pick a color from the color palette (H is hue, S is saturation and
V is Value) and it is closer to people’s experience and perception of color, compared with RGB.
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2.3. Consideration of Experiment Design

To test the validity of the prototype, the field experiment was performed at the New Main Building
at Beihang University. The infrared multispectral sensor was situated on the eighth floor of Tower B
of the New Main Building (approximately 40 m) looking out of the window in the direction towards
the target site, which was at approximately 100 m in distance. This open area was selected for the
purpose of long-period image acquisition. The targets consisted of three different plates, galvanized
sheet, steel sheet, and a wooden plate, and the natural backgrounds included grass, trees, and concrete
road, which are shown in Figure 7a,b.

(@

(b)

Figure 7. (a) Visible image of the target site consisting of three different plates and natural background;
(b) The visible image of the test scene obtained on 15 March 2016.

The wooden plate was selected to make comparative experiments in order to prove the thermal
radiation difference between the object with high inertia and one with low inertia over the diurnal cycle.
The galvanized sheet and steel sheet were selected to demonstrate the thermal radiation difference
under their characteristic wavebands and confirm the effectiveness of the multispectral technology.
As some environmental parameters, like ambient temperature, relative humidity, and solar irradiance,
may affect the experiment result, the experiment date was selected in advance according to the
weather forecast, and the environmental parameters with a large ambient temperature difference,
fewer clouds during the testing period, and relatively stable humidity, are advantageous to the
experiment. The environmental data was collected on 15 March 2016 and the image data and
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environmental parameters were acquired continuously between 00:00 on 15 March 2016 and 23:59 on
15 March 2016 with a speed of half a minute per image and half a minute per measurement, respectively.
The sunrise and sunset on 15 March 2016 occurred at roughly 06:25 and 18:21, respectively.

3. Results and Discussion

According to Figure 2, in which the 24 h day was divided into five time zones, the experimental
results were demonstrated similarly. The contrast ratio between the DN values of the target and the
background C" = DNigrget/ DNpg can be employed to reflect the contrast change of the regions of
interest (ROI). At the time, after midnight, due to the different materials and temperature among the
target galvanized sheet, steel sheet, and wooden plate, and the background road, C’ did not approach 1
and thermal crossover did not occur, as shown in Figure 8a. At the first crossover period, for the
wooden plate with higher thermal inertia, C’ was 0.837 and thermal crossover did not occur, while
for the galvanized sheet and steel sheet with lower thermal inertia, C’ was approximately 1 (the exact
number was 0.962 and 1.025, respectively) and thermal crossover did occur, as shown in Figure 8b.
During the daytime, as Ls(A) had an effect on thermal crossover, the temperature difference among
the background and the galvanized sheet and steel sheet increased gradually, C’' was significantly
greater than 1 and thermal crossover did not occur unless there was a rapid change in the weather
conditions, as shown in Figure 8c. At the second crossover period, for the galvanized sheet and steel
sheet with lower thermal inertia, C’ was 1.011 and 1.045, respectively, and thermal crossover did occur
again while, for the wooden plate, C’ was 0.924 and the thermal crossover still did not occur, as shown
in Figure 8d. From sunset to midnight, for each target C’ was far less than 1 and thermal crossover did
not occur, as shown in Figure 8e. Additionally, the average grey value of the image was larger than
Figure 8a at the time after midnight because of the higher temperature. The contrast values among the
three targets and the background in Figure 8 are listed in Table 3.

Figure 8. Infrared image obtained in each time zone. (a) Infrared image obtained at 03:00; (b) infrared
image obtained at 06:50; (c) infrared image obtained at 12:30; (d) infrared image obtained at 18:05;
and (e) infrared image obtained at 21:00.

Table 3. Contrast among the three targets and background in Figure 8.

Figure Number Wooden Plate Galvanized Sheet Steel Sheet

a 0.822 0.784 0.632
b 0.837 0.962 1.025
c 0.825 1.098 1.151
d 0.810 1.011 1.045
e 0.807 0.786 0.612
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In order to clarify the effectiveness of the multispectral technology to solve the thermal crossover
problem, the multispectral images under central wavelengths of 4120 nm, 4420 nm, and 4720 nm at
the first crossover period were obtained, and the results are presented in the form of image contrast
plots, calculated using C' = D Niarget / DNbg. Included with each of these plots are the corresponding
environmental data, as shown in Figure 9. Specifically, Figure 9b,c clearly show that the contrast
curve of the galvanized sheet and steel sheet varied more significantly than the wooden plate during
the 24-h test period and the contrast of the galvanized sheet and steel sheet was close to 1 during
two diurnal cycles, while the contrast of the wooden plate fluctuated between 1.0 and 1.16 throughout
the experiment time, proving the existence of thermal crossover for the objects with lower thermal
inertia once again. Figure 9d showed the multispectral images, which were obtained at the same
period with Figure 9b. As can be seen from Figure 9d, the multispectral technology was used to
find the emissivity difference between the target and the background at 3700 nm, 3800 nm, 4120 nm,
4420 nm, and 4720 nm to enhance the contrast among the galvanized sheet, steel sheet, and road.
Among the five wavebands the best contrast improvement was at 4720 nm, with 4420 nm following,
which presented a consistent trend in accordance with Figure 4a and indicated the effectiveness of
the multispectral technology in solving the thermal crossover problem. The contrast values among
the three targets and the background under different wavebands in Figure 9d are listed in Table 4.
Compared with the Figure 8, the image contrast enhancement in the target area is direct after employing
the narrow band-pass filters.
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Figure 9. (a) Ambient temperature during the 24-h test; (b) contrast curve among the three targets and
the background road; (c) images of the targets in the five time zones; and (d) images of the targets at
3700 nm, 3800 nm, 4120 nm, 4420 nm, and 4720 nm at the first diurnal cycle.

Figure 10 showed the pseudo-color image obtained by running the HSV image fusion algorithm
described in Section 3 with Figures 8b and 9d. Combining the infrared broadband image with the
infrared images under characteristic wavebands, the three targets were marked with different colors
and presented clearly, by which the multispectral technology employed an effective supplementary
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method for the conventional mid-infrared broadband thermal sensor to solve the thermal crossover
detection problem.

Further, it can be noted that the magnitude of contrast improvement is not as large as the
calculation results in Figure 4a because of the solar radiation effect, stray radiation caused by band-pass
filters, and the difference between the actual emissivity value and the real emissivity value. However,
this does not influence our experimental conclusions that multispectral technology can be employed
to solve the thermal crossover problem.

In order to further show the advantage of multispectral technology in solving the thermal
crossover problem, the same field experiment with polarization technique by using 0°, 45°, 90°,
135° four linear polarizers was also conducted and the four polarization state polarization images
obtained at 07:00 were shown in Figure 11.

Table 4. Contrast among the three targets and the background in Figure 9.

Wavebands Wooden Plate Galvanized Sheet Steel Sheet

3700 nm 1.019 1.073 1.079
3800 nm 1.034 1.128 1.137
4120 nm 1.083 1.252 1.274
4420 nm 1.133 1.232 1.311
4720 nm 1.161 1.218 1.362

Figure 10. Pseudo-color image fused by Figures 7b and 8d.

Figure 11. Infrared polarization images with four polarization states. (a) 0°; (b) 45°; (c) 90°; (d) 135°.
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As can be seen from Figure 11, for the wooden plate, thermal crossover still did not occur, while
for the galvanized sheet and steel sheet, the thermal crossover did occur, which was similar to the
results with multispectral technology. The contrast values between the galvanized sheet, steel sheet
and the background in Figure 11 are listed in Table 5.

Table 5. Contrast between galvanized sheet, steel sheet targets and background in Figure 11.

Figure Number  Galvanized Sheet  Steel Sheet

a 0.909 0.942
b 0.977 0.964
c 0.979 0.981
d 0.965 0.976

From Table 5, it can be found that, compared with the infrared multispectral images, without
further image processing, the image contrast enhancement in the target area in the infrared polarization
images with four polarization states were not obvious. Thus, the Stokes vectors, which completely
characterized the polarization states of targets from the scene need to be calculated. The data products
used in this experiment included Sy and S; Stokes parameter images where Sy is the horizontal (0°)
plus the vertical (90°) components of polarization and the S; Stokes parameter is the horizontal
minus the vertical components of polarization. The Sy and Sy Stokes parameter images are shown as
Figure 12a,b respectively.

Figure 12. Sy and S; Stokes parameter images (a) Sy image; (b) S; image; (c) Sy after contrast stretching.

The image contrast of the galvanized sheet and steel sheet in Figure 12a was 0.921 and 1.073,
respectively, which showed some extent of improvement compared with Figure 11. However the DN
difference between the galvanized sheet, steel sheet targets and background in Figure 12a were only
16 and 7. In Figure 12b, although the calculated image contrast, according to C' = DNiarget/ DNy,
was improved, it was meaningless as the DN of targets and background were too low to be sensed by
eyes. In fact, the DN difference between the galvanized sheet, steel sheet targets and background in
Figure 12b were only 3 and 2, respectively. In order to show the targets in Figure 12b relatively clearly,
the images were further processed with the contrast stretching algorithm, as shown in Figure 12c.
Through the data processing procedure, it could be found that even with the Stokes parameter
calculation, the difference between target and background had still not been improved significantly
so that further image processing procedures were required. The main reason for the polarization
detection experiment result was that the abundant geometry information contained in the background
weakened the polarization characteristics differences. Because the polarization technology achieves
distinction between target and background through the perception of their polarization characteristics
differences, the background information might have an influence on the target detection. However,
for the multispectral technology, as stated previously, compared with the polarization technique, as the
target’s infrared spectrum signature only differs with materials, it would be faster and more direct
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to distinguish the target from the background in the complex environment only if the characteristic
wavelengths of the targets and backgrounds were acquired in advance.

4. Conclusions

As the thermal crossover has great influence on the infrared sensors working in a single wide
range, it is significant to solve this problem for the conventional mid-infrared thermal sensor, especially
for the infrared surveillance system. In this study, we analyze theoretically how the thermal crossover
disables the conventional thermal sensor and under what conditions the thermal crossover would
happen. Furthermore, based on the analysis, a fast, compact and light optical prototype based on
infrared multispectral technology is designed with the known characteristic wavelengths according
to the prior knowledge. Then the experimental process has been optimized and more image data is
provided, especially regarding what the pictures are when the target integrated with the background
during the diurnal cycle. Then, the whole process of employing the multispectral technology to solve
the thermal crossover detection problem is clearly shown. In addition, a comparison experiment with
polarization technique is also conducted to further show the advantage of multispectral technology.

The field experiment with multispectral technology was conducted over a 24-h period with the
targets of galvanized sheet, steel sheet, and wooden plate, and the background road on a sunny day.
The results showed that, for the galvanized sheet and steel sheet targets, the thermal crossover could
affect a contrast for up to four hours at two diurnal cycles, jeopardizing the success of surveillance
missions. For the wooden plate target, although the image contrast reduced over the diurnal cycle,
it could still distinguish the targets from the background objects, which means that thermal crossover
might not always occur, or even possibly not exist at all over the diurnal cycle for the objects with higher
thermal inertia. Through employing the infrared narrow band-pass filters, thermal crossover in the first
diurnal cycle was relieved as the contrast was upgraded to the levels such that the metal targets could
be distinguished from the background objects. Furthermore, the experimental results provided us with
the information about what the characterized bands between the targets and background objects were,
which would be useful for system design in the future. In addition, the pseudo-colored image produced
by multi-spectral image fusion method showed the effectiveness of the multispectral technology for
contrast promotion of each target. Then, as a comparison, the same field experiment with polarization
technique by using 0°, 45°, 90°, 135° four linear polarizers was also conducted and the Sy and S;
Stokes parameter images showed that the image contrast showed some extent of improvement but no
obvious improvement, as the background weakened the polarization characteristics differences.

While promising, the field experiment should just be considered as very preliminary practical
application and the experimental results should also just be viewed as a proof-of-principle.
Nevertheless, the conclusion that the multispectral technology can be employed to solve the thermal
crossover problem is unambiguous. In future, it might be possible to further extend the range of
applications for the conventional thermal infrared broadband sensor into the thermal crossover periods
by exploiting the emissivity of infrared spectral signatures and fusing multispectral images from the
perspective of mid-infrared thermal detecting system design. Research focusing on the characterized
bands between different common targets and background objects and how the weather conditions
influence the thermal crossover will be undertaken.
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Abbreviations

The following abbreviations are used in this manuscript:

mmW Millimeter Wave

NESR Noise Equivalent Spectral Radiance

NETD Noise Equivalent Temperature Difference

DN Digital Number

BRDF Bidirectional Reflectance Distribution Function

RRD Relative thermal radiation differences

IR Infrared

PC Personal Computer
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Abstract: A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared
(NIR) filters is useful for various imaging applications with the advantages that it obtains color
information and NIR information simultaneously. Because the MSFA image sensor needs to acquire
invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the
IRCE, the color of the image is desaturated by the interference of the additional NIR component of
each RGB color channel. To overcome color degradation, a signal processing approach is required
to restore natural color by removing the unwanted NIR contribution to the RGB color channels
while the additional NIR information remains in the N channel. Thus, in this paper, we propose
a color restoration method for an imaging system based on the MSFA image sensor with RGBN
filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation
and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor.
The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue
and color saturation by decomposing the visible band component and the NIR band component in
each RGB color channel. The experimental results show that the proposed method effectively restores
natural color and minimizes angular errors.

Keywords: color restoration; infrared cut-off filter removal; multispectral imaging; spectral
estimation; spectral decomposition

1. Introduction

The near-infrared (NIR) is one of the regions closest in wavelength to the radiation detectable
by the human eye. Unlike human eyes, sensors based on silicon (5iO,) are sensitive to NIR up to
1100 nm, limited by the cut-off value of silicon. Due to the proximity of NIR to visible radiation, NIR
images share many properties with visible images. However, surface reflection in the NIR bands is
material dependent. For instance, most dyes and pigments used for material colorization are somewhat
transparent to NIR. This means that the difference in the NIR intensities is not only due to the particular
color of the material, but also to the absorption and reflectance of dyes. Therefore, the NIR intensity
provides the useful information pertinent to material classes rather than the color of that object [1].

Recently, there have been several attempts to use NIR band information. In remote sensing
applications [2,3], the multispectral images observed in a variety of spectrum bands have been used
where both the visible and NIR bands are included. As each spectral band provided different kinds of
information, the spectral bands were selectively used in the observation of the multispectral images.
In surveillance cameras [4] and night vision cameras [5], the NIR band is used especially under low
lighting conditions or invisible NIR lighting conditions. The NIR band is also used in biometric [6],
face matching [7] and face recognition [8] applications, which have been studied based on the intrinsic
reflectivity of the skin or eyes under NIR illumination. Since the reflection in NIR is material dependent,
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it is also used in material classification [1] and illuminant estimation [9]. NIR images can be used in
image enhancement applications, such as image dehazing [10].

To develop an NIR image acquisition system, Kise et al. designed a three-band spectral imaging
system composed of multiple cameras with a beam splitter [11]. This imaging system has been used
to acquire multispectral images in user-selected spectral bands simultaneously by utilizing three
interchangeable optical filters and various optical components. Similarly, Matsui ef al. implemented a
multispectral imaging system, where two infrared cut-off filter (IRCF)-removed cameras were used
to capture the color and NIR images independently [12]. In this system, the IRCF-removed cameras
were perpendicularly aligned, and the IRCF was used as a light splitter for the visible and NIR
bands. By managing the shutter of two cameras with a single controller, each spectral band image
pair was acquired, simultaneously. However, this imaging system requires a large space to attach
two or more cameras and to perform the alignment process. Due to the lack of portability of these
devices, multi camera-based imaging systems are not suitable for practical outdoor environments.
C. Fredembach [13] suggests another approach in which an IRCF-removed single camera with multiple
optical band pass filters can achieve smaller sizes than multi-camera systems. On the other hand, this
imaging system requires too much time to change the optical filters. Because of this weakness, some
artifacts, like motion blur and registration problems, can occur during the image acquisition process.

As an alternative approach, an IRCF-removed color filter array (CFA) image sensor, such as a
Bayer image sensor without an IRCF, can be used [13]. By using a single digital camera without an
IRCE, the spectral information of the visible bands and that of the NIR bands can be acquired at the
same time. Figure 1 shows a conventional camera system approach with an IRCF and a spectral
sensitivity of a complementary metal-oxide semiconductor (CMOS) imager integrated with traditional
RGB Bayer filters. By removing the IRCF, the NIR contribution to the RGB channel can reach the CMOS
imager. This additional NIR information can be used to allow for invisible monitoring in surveillance
applications.

Figure 1. (a) Conventional camera system based on a color filter array (CFA) image sensor with the IR
cut-off filter. (b) Spectral sensitivity of the camera system.

On the other hand, mixing color and NIR signals at the pixel level can result in extreme color
desaturation if the illumination contains sufficient amounts of NIR. Although it may be possible to
overcome the unwanted NIR contribution to the RGB color channel through the signal processing
technique, it is hard to estimate the NIR spectral energy in each RGB color channel, because there is no
way to detect the NIR band spectral characteristics.

As an improved system based on a single image sensor, an imaging system based on the
multispectral filter array (MSFA), which simultaneously obtains visible and NIR band images, can be
considered [14]. A pixel configuration of the RGB filters and another NIR pass filter, which transmits
NIR light only, is shown in Figure 2. In the following descriptions, we refer to the four channels
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as RGBN channels, where RGB represents the red, green and blue channels and N represents the
additional channel for the NIR band.

Figure 2. Infrared cut-off filter (IRCF): (a) typical imaging system using IRCF; (b) IRCF-removed
imaging system.

Because these sensors based on the RGBN filter array need to acquire invisible range information,
removing IRCF is necessary. Without IRCF, RGB and NIR signals can be obtained simultaneously.
Because of this advantage, imaging systems based on MSFA sensors can be applied to a wide variety
of applications. Under certain circumstances, especially low lighting conditions, this system can obtain
wide spectral information simultaneously. Furthermore, by applying fusion technology that uses NIR
band information, gaining additional sensitivity to colors that do not deviate considerably from the
human visual system is possible [15].

However, without IRCF, the additional NIR component penetrates through the color filter to
each R, G, B pixel. The unwanted NIR interference distorts the color information of each R, G, B
color channel. Figure 3 is an example of an imaging system based on the MSFA image sensor. Many
researchers studied the interpolation method, such as [15-17], to make a full resolution image in each
RGBN channel. Since the input RGB signals contain NIR, natural RGB color information needs to
be calculated by subtracting an NIR band component from the input RGB signals that have been
deteriorated with NIR interference. During the process, the NIR channel information in the N pixel
can be used to remove the unnecessary NIR contribution to the RGB channel. After restoring the
color information of the RGB channel from the input signal received through the MSFA image sensors
without an IRCF, a fusion method can be applied to generate the new blended images, which have not
only natural color information, but also additional NIR spectral information. To take advantage of this
benefit, it is necessary to restore natural color. As a result, the IRCF can be removed day and night
with color restoration process.

vis
RGB;; |
MSFA . Color .
image Interpolation Restoration Fusion
vis | sensor vis
% | Noir
-
New blended image with L
natural color & additional sensitivity N

Figure 3. Example of a multispectral filter array (MSFA)-based imaging system.
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In recent studies, researchers have proposed CFA for one-shot RGB and NIR capture in NIR
imaging. However, the studies do not consider color restoration [16,17]. Although [18] addresses both
crosstalk and demosaicing, it assumes crosstalk between the green and NIR channels only. Chen et al.
proposed a color correction pipeline [15], which is able to apply only specific NIR illumination. The
color correction method in [15] does not guarantee successful color correction results if the illumination
spectrum is widely distributed in an NIR range. Furthermore, in [19], NIR restoration was proposed;
however, the method does not consider crosstalk in a visible range in an NIR channel. The IR removal
method proposed by Martinello ef al. considers the crosstalk happening in the near IR range of 650 nm
to 810 nm. This method assumes that the contribution from the wavelengths in the visible range
(A <650 nm) to the IR channel can be ignored. On the contrary, the proposed color restoration method
divides the visible and NIR bands to estimate the color correction matrix. In the visible band, the
crosstalk in the N channel is estimated by using the linear regression of RGB channels by using the N
channel decomposition matrix. By removing the estimated crosstalk in the N channel, the N channel
information in the NIR band is obtained. The N channel information in the NIR band is used to
estimate the NIR contribution to the RGB channels by using the RGB channel decomposition matrix.
In this way, the proposed method copes with the different spectral responses of the visible and invisible
bands, respectively. Furthermore, the proposed method considers the crosstalk happening in the near
IR range from 650 nm to 1100 nm.

We proposed a brief idea to restore color information with an RGBN sensor [20]. However, since
we focused only on color restoration under generally bright illumination environments, our previous
work did not have good performance in low light conditions. In this paper, we proposes a color
restoration method that removes the NIR component in each RGB color channel with an imaging
system based on the IRCF-removed MSFA image sensor. To investigate the color restoration method
for various illumination environments, we analyze the change of the chromaticity feature obtained by
the additional NIR. In addition, the color restoration method for the low lighting condition based on
the spectral energy distribution analysis is proposed. Since color degradation caused by IRCF removal
is a huge limitation, the NIR contribution to each RGB color channel needs to be eliminated. To remove
unwanted NIR components in each RGB channel, the color restoration model was subdivided into two
parts of the spectral estimation and the spectral decomposition process.

The remainder of this paper is organized as follows: In Section 2, we discuss the problem that
arises when a color image is acquired with the IRCF-removed MSFA image sensor. In Section 3,
we analyze the color model of an IRCF-removed MSFA image sensor. In Section 4, we outline our
proposed color restoration method with spectral estimation and spectral decomposition. In Section 5,
we present our results and compare our solution to another state-of-the-art method. In Section 6, we
provide a conclusion.

2. Color Degradation

To analyze the change of the chromaticity feature by the additional NIR, the RGB color space was
converted to the HSI color space, as in [21]:

3l(R—G)+ (R~ B)]

_ -1
e O R e R e
s = 1;“ where a = min|(R, G, B)] 1)
| _ R+G+B
3

where min[(-)] represents the minimum value among three values. H, S and I represent the hue,
saturation and intensity, respectively.

In Figure 4, the NIR band is divided into two sub-bands: we define these sub-bands as a chromatic
NIR band (700 nm~800 nm) and an achromatic NIR band (800 nm~1100 nm), respectively. Figure 5
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shows that the responses of the achromatic NIR bands are identical. To obtain achromatic NIR band
information, we used an NIR band pass filter that passes a specific wavelength (800 nm~1100 nm).
The distribution of 96 color patch values in the Gretag color checker SG shows a linear response in
the achromatic NIR band with respect to the NIR channel. Based on this, we define these responses
as a constant at each pixel, such as Ryjr(acir) = Guir(achr) = Buir(achr) = 0+ The Ryir(achr)s Guir(achr) and
Byiir(achr) represent the achromatic colors of the image sensor beyond an 800-nm wavelength in each
channel. As a result, the RGB intensities at a pixel position are represented as:

R@,j) = Raw(i,j)+6(ij)
G@i,j) = Gawli,j)+6(i,)) @)
B(i,j) = Ban(i,j) +06(i,j)

where R, Gopyy, Bopyy represent the chromatic colors of the image sensor under an 800-nm wavelength.

Figure 4. Spectral response of the MSFA image sensor.

Figure 5. Correlation between the RGB channel and the N channel in the NIR band beyond 800 nm
(a) Nnir(achr) vs. Rnir(achr) (b) Nnir(aclzr) vs. Gnir(rzchr) (c) Nnir(achr) vs. Bniv(rzchr)'
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With the RGB color values with offset J, the intensity of the observed color is defined as follows:

I = [(Rchr + 5) + (Gchr + 6) + (Gchr + 5)] @)

3
= Ipm+9

where I.;, = (Rgyr + Geny + Bey ) /3 represents the intensity of the chromatic spectral band of the image

sensor. The intensity of the IRCF-removed MSFA image sensor is changed by the amount of the offset

value. The hue value in Equation (1) is redefined as:

3[(R=G) + (R~ B)]

H = cos’ 2 4
© ®—cp+®-B)G- BT @
%[(Rchr - Gchr) + (Rt:hr - Bc/l‘r)] }

[(Rchr - Gchr)2 + (Rchr - Bchr)(Gchr - Bchr)]l/2

= cos

Because the achromatic offset value 0 is removed during subtraction, an identical offset on the
RGB channels could not change the hue value. Finally, the saturation value is described as:

S - I_Ia _ Loy _1 Achr _ Ic% “Ser )
where S., = (Iepy — acir) / Ieny represents the saturation of the chromatic spectral band of the image
sensor and a.,, = min(Ryy, Gepy, Bepy). Since the range of I% is0 < IC% < 1, the saturation of the
image obtained by the IRCF-removed MSFA image sensor is degraded and becomes smaller than the
image obtained by the chromatic spectral band of the image sensor.

Figure 6 describes how NIR affects the RGB color images. The illuminance was 200 Ix, and
the exposure time was 0.03 s. When objects are illuminated by an incandescent lamp, an image
sensor with an IRCF obtains a yellowish hue due to the low color temperature of the illuminance.
After performing a white balance technique from the grey color patch, a white-balanced color image
was obtained as shown in Figure 6b. On the other hand, due to the additive NIR intensities included
in the RGB channels, Figure 6¢ appears brighter than Figure 6a, and low color saturation was observed
in Figure 6d.

Figure 6. Color observation of the MSFA image sensor under incandescent light. (a) Image captured
with IRCF; (b) (a) with white balance; (c) image captured with IRCF removal MSFA image sensor;
(d) (c) with white balance.
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To correct desaturated color from the input image acquired by the MSFA image sensor, several
conventional methods can be considered, as described in [22,23]. A straightforward method is to train
the matrix to reproduce a set of known reference colors. Given the observed color vector Y and the
visible band color vector with canonical illuminance X, the color correction method is represented in a
matrix form:

X =Ty (6)

where ® is a matrix whose component corresponds to the ratio between the canonical and the current
illuminance value of each channel. The illuminant color estimation was performed under unknown
lighting conditions where pre-knowledge based approaches, such as gamut mapping [24] or the color
correlation framework [25], were used.

However, color degradation caused by IRCF removal is not considered a multiplicative process,
but an additive process. Applying a conventional color correction approach to the RGBN images
yielded poor results, because it did not sufficiently remove the NIR contributions to the RGB channels.
The higher the energy in the NIR band relative to that in the visible band, the higher the color errors
caused by NIR contributions to the RGB signals. As a result, the conventional color correction method
restored visible band color in a limited way. Although each color was obtained under the same
illuminant conditions with and without an IRCF, respectively, the mixture of the exclusive NIR band
intensity to the visible band intensity resulted in severe color distortion.

Figure 7 shows the result of the conventional color correction method for an MSFA image.
In Figure 7c, the color correction matrix worked well for colors in the color chart with low reflectance
in the NIR band. However, despite the fact that the colors of the black paper and velvet paper were the
same in the visible band, the conventional color correction method could not restore the black color
with high reflectance in the NIR band (such as fabric substance).

Figure 7. Example of the conventional color correction method for the MSFA image. (a) MSFA image
without IRCF; (b) MSFA image with IRCF; (c) color correction result.

3. Color Model of an IRCF-Removed MSFA Image Sensor

A color image observed by a CMOS image sensor can be modeled as a spectral combination of
three major components: illuminant spectra E(A), sensor function R®) (1) and the surface spectra S(A).
The color image formation model in the visible band for channel k was defined as [26]:

c® = /7 E()RP(A)S(A)dA 7)

where w,;; represents the spectral range of the visible band between 400 nm and 700 nm. Since an
IRCF-removed MSFA image sensor can acquire the additional NIR band spectral energy beyond a
700-nm wavelength, the range of these three major components in Equation (7) had to be expanded
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to the NIR band. The observed camera response for channel k when using the IRCF-removed MSFA
image sensor is represented by the color image formation model Cx?s ra [19] from Equation (7):

ch /w . EQRP(Q)S(A)aA

/ EMRON)SA)dA+ [ EMRP(A)S(A)dA ®)

Whir

c® 4 o

vis nir

where wy;, represents the NIR band beyond 700 nm. C; (k ) and C( ) - represent the camera response
for channel k by using the IRCF-removed MSFA 1mage sensor in the visible band and the NIR
band, respectively. For an image sensor with RGBN filters, the intensities at each pixel position are
represented as,

R(i,j) = Rvie(lr]) + Rnir(irj)
(i) = Gas(i) + Gl o
B(i, ) = Buis(i, ) + Buir (i, )
N(i/j) = szs(lf]) +Nmr(1 ])

In Equation (9), each pixel contained additional NIR band information. Since this additional
information can be helpful to increase the sensitivity of the sensor, this feature can be useful under
low light condition. However, mixing color and NIR intensities can result in color degradation if
the illumination contains high amounts of NIR. To restore the RGB channels corrupted by NIR band
spectral energy, the additional NIR band components (R,;;, Gy, Byir) in the RGB channels have to
be removed:

Ryis = R — Ryiy
Gois = G — Gyjy (10)
Bvis =B- Bm‘r
Nyis = N — Nyr

Since the spectral response function of the RGBN filter is not defined only in the NIR band, we
used a signal processing approach to estimate the NIR band response. To decompose the spectral
information of the RGBN channel, the unknown value N or N,;, must be estimated. To cope
with the different characteristics of the correlation in the visible band, as well as the NIR band,
we set the correlation model in each sub-band, separately. In the visible band, the RGB channel
filters show different peak spectral responses, while the N channel filter covered all spectral ranges
without outstanding peaks. As a result, the N channel filter response function is modeled as a linear
combination of the others:

Nos = [ @MEWRDM)S(M)dr

+ [ wg(A)E(A)RE(A)S(A)dA (11)

+ ‘wh(A)E(/\)R(w(A)S(/\)dA

Wois

where w; (1), wg(A) and wy(A) represent the coefficients that show cross-correlation in the visible band.
Since the spectral response of the N channel in the visible band covers a wide spectral range without
an outstanding peak, those coefficients are constrained to be constant in terms of the wavelength [27].
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Using the constrained weights, the intensities of the N channel in the visible band are approximated
as follows:
Nvis(i/j) ~ Wy Rvis(i/f) +wg : Gvis(irj) +wp - Bvis(i/j) (12)

where wy, wg and wy, represent the visible band cross-correlation coefficients obtained by the linear
transformation model:

N = DC (13)

where D is a one by three matrix describing the mapping between the RGB to N channel values. The
transformation D is obtained by solving the following minimization function:

DT = argmingr||N — DTC||? (14)

where N and C are matrices whose components are the NIR and the RGB components. Each
cross-correlation coefficient could have been of any arbitrary form determined by the illuminance
change and the spectral response of the sensor. As a result, the function w depends not on the
spectrum A itself, but on the spectral response of the illuminance and the sensor. Figure 8 represents
the comparison between the optical filtered N channel image in visible band and estimated N channel
image in the visible band by using Equation (12).

Figure 8. Comparison between (a) the optical filtered N channel image and (b) the estimated N channel
image in visible bands.

In the NIR band, the cross-correlation is derived more intuitively, since the RGBN filters are all
pass filters where the filter responses are highly correlated in the NIR spectral range. Since there is
an energy difference between the two spectral ranges in the N filter response, the cross-correlation
coefficients in Equation (12) have to be modified. To cope with the different energy ratios in the visible
and the NIR bands, the response of the N channel in the NIR band is:

Nnir(irj) ~ ﬁv/rt : (wr . Rnir(irj) + "Jg . Gnir(irj) + wp - Bnir(irj)) (15)
where B, is the inter-spectral correlation coefficient that considers the visible band to the NIR band

energy balance. Figure 9 represents the comparison between the optical filtered N channel image in
the NIR band and the estimated N channel image in the NIR band by using Equation (15).
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Figure 9. Comparison between (a) the optical filtered N channel image and (b) the estimated N channel
image in NIR bands.

4. Proposed Methods

The purpose of the proposed method is to restore the original color in the visible bands from the
mixed wide band signal. However, the color restoration in the spectral domain is an underdetermined
problem, as described in Equation (9). Since MSFA image sensors have additional pixels whose
intensity was represented in Equation (9), we redefined this underdetermined problem with eight
unknown spectral values.

From Equation (8), the observed intensity vectors of the multispectral images are represented
as C(i,j) = [R(i,1), G(i,j), B(i,j), N(i,1)]". To focus on the color restoration at each pixel position, we
assumed that the spatially-subsampled MSFA image was already interpolated. As a result, there are
four different intensities at each RGBN pixel position.

In Figure 4, the spectral response of each channel is described with the corresponding RGB and N
values. The energy of the NIR band is obtained by the RGB color filters, as well as the N filter. Similarly,
a large amount of the energy in the visible band is obtained by the N channel. By considering the
observed multispectral intensity vector C, the spectral correlation between the channels in the visible
band and the NIR band resulted in a mixture of exclusive responses in each channel, as represented in
Equation (9).

From the sub-spectral band intensity mixture model, the color restoration problem is defined
to find the unknown visible band intensity values R,;s, Gyis, Byis from the observed intensity values
R, G, B and N, which contained the unknown NIR band intensity values and the unknown visible
intensity values.

4.1. Color Restoration Based on Spectral Decomposition
When we spectrally decompose the N channel to the visible and NIR bands, the given N channel is
represented by the RGB channel intensities in the visible and NIR bands from Equations (12) and (15):
N = Nyjs + Nuyir
= wy - (Ryis + Bon - Ruir) + Wy - (Guois (16)
+ ,Bv,n : Gnir) +wyp - (Bvis + ,Bv,n . Bnir)
In Equation (16), the observed N channel is described with unknown RGB values in the visible

bands and the NIR bands. Therefore, the decomposed N channel is obtained indirectly from
Equation (16). Corresponding to the spectral response of the N channel, we define the artificial N
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channel N'made by using the observed RGB channels and the visible band cross-correlation coefficients
in Equation (12):

N = w - R+twg-G+wy-B
= wr- (Ryjs + Ryir) + Wg * (Gois + Guir) (17)
+wp - (Bvis + Bnir)

Since the visible band cross-correlation coefficients are designed to fit the N channel in the visible
band, the estimated N value resembles the N channel filter responses in the visible band, but not in
the NIR band. By using the energy difference between N and N in the NIR band, the observed N
channel is decomposed into the two bands by subtracting the original N channel in Equation (16) and
the artificial N channel N in Equation (17):

N-N = (Ur‘(,Bv,nfl)‘R‘i’Wg‘(,Bv,nfl)'G
+wp- (Bon—1) B

= (;Bv/n - 1) . ((,Uy . Rnir + wg : Gnir + Wy + Bnir) (18)
-1 &
= ‘ng * Nuiy
1
= K- Nnir

where K = Ber=1 j5 4 scaling factor and Noir represents the artificial N channel in the NIR band from
Equation (15) Based on Equation (18), we decompose the spectral response of the N channel into
two different channels, the visible band and the NIR band. The N channel information in the NIR
band is recovered from the N channel that contained the energy of the entire spectrum of the MSFA
image sensor. As a result, the decomposed N channel intensities in the NIR band and the RGB channel
intensities in the NIR band are estimated from the result of Equation (18).

Figure 10 shows the relationship of the RGB channel intensities and the N channel intensity
of 96 color patches of the Gretag color checker SG in the NIR band. As described in Figure 10, they are
asymptotically linear in the NIR band. From this linear correlation, the decomposed RGB channel in
the NIR band is defined as follows:

2>

Ryir = ar - Niir

ir (19)

nir

Guir = &
Bir = ap -

DQ.
= :Z>

where &, &g and a;, represent the coefficients of the linear correlations between the RGB channels and
the N channel in the NIR band. From the equation, the intensities of the RGB channel in the NIR band
are estimated, and this color restoration model was processed with a single matrix transformation of:

(Ryis, Gois, Buis)" = M- (R, G, B,N)" (20)
where M is:

M=E+ %AW 1)
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where W is the N channel decomposition matrix, A is the RGB channel decomposition matrix and E is
a 3 x 4 matrix of zeros with ones along the leading diagonal. The N channel decomposition matrix W
is defined as:

wr wg w, —1
wr wg wy —1

W= 22
wr wg w, -1 @2)
wr wg wy —1
and the RGB channel decomposition matrix is defined as:
o 0 0 O
A=10 a 0 O (23)
0 0 a O
Based on Equation (21), the unified matrix M is:
R. apwr+K ArWe &r-wyp A R
N o I-<w- o aIJ< +K g W, o G
Cos | = | =5 sa ng < bK s 5 (24)
Buyis Spr ' th-u%th 7% N

where K = 57’27’71 is a scaling factor in Equation (18), w;, wg, wy are the coefficients for the linear
combination in Equation (11) and «;, ¢ and a;, are the coefficients that represent the linear correlation
between the RGB channels and the N channel in the NIR band in Equation (19). Because Equation (24)
is a combination of cascaded linear decomposition matrices W and A, the proposed color correction
matrix is more flexible than the simple 3 x 4 linear color correction model. Further, because the sensor
response function over the entire band is nonlinear, color correction error is inevitable when the linear
color correction method is employed. Moreover, there is an energy difference between the visible and
NIR bands. The spectral response of the local spectral band can be approximated to a linear model. On
the basis of linear model approximation of each local spectral band, the proposed method separates
the visible and NIR bands to estimate the color correction matrix and, thereby, obtain a more accurate
estimation of the NIR interference in each RGB channel. Using W, the proposed method decomposes
the N channel to the visible and NIR bands and uses the NIR band information obtained from W to
estimate the NIR contribution in the RGB channels. The correlation between the RGB and N channels
in the NIR band is estimated using A. Because the proposed method separates the visible and NIR
bands to estimate the color correction matrix (CCM), it is possible to estimate the correlation between
RGB and NIR in various illumination environments.

Figure 10. RGBN channel correlation in the NIR band: (a) Nyj vs. Ryi; (b) Nyip vs.  Gpirs
(€) Nyir vs. By

204



Sensors 2016, 16, 719

Figure 11 shows the experimental results obtained under an incandescent lamp with 300 Ix
illumination. Because the incandescent lamp emits an amount of spectral energy in the NIR band,
we selected this lamp to show the advantage of the proposed method. By comparing Figure 11b
and Figure 11c, the level of restoration of the overall colors of each color patch can be ascertained.
In Figure 11a, which is the target optical filtered image, it can be seen that some color patches are
slightly different. To investigate the color restoration accuracy, we calculated angular error. Table 1
shows the average angular error. From Table 1, it is clear that the proposed method restores color
better than the linear 3 x 4 color correction method.

Figure 11. Experimental results under an incandescent lamp (300 1x). (a) Optical filtered visible band
image; (b) 3 x 4 color correction method; (c) proposed method.

Table 1. Average angular error (x 10~2). CCM, color correction matrix.

3x4CCM Proposed Method

Incandescent (300 1x) 5.12 4.17

4.2. Low Light Conditions

Because of the additional NIR band information, an IRCF-removed MSFA image sensor has
advantages in low visible light conditions. From the perspective of color restoration, however, there
is no advantage, since the unnecessary NIR interference to the RGB color channel does not have any
visible band color information. Figure 12 represents the spectral energy distribution of an incandescent
lamp with a variety of illuminance values. The correlated color temperature of the lamp is 3000 K.
As illuminance decreased, the overall intensities of spectral energy decreased, too. In addition, the
energy ratio between the visible band and the NIR band varied as the illuminance decreased.

Table 2 shows that decreasing illuminance increases the portion of the NIR band spectral energy
under incandescent light. The numbers in Columns 2 and 3 represent the summation of the spectrum
values in Figure 12. This implies that 60% of the unwanted NIR contributions in each RGB channel
must be removed to obtain a natural color image under an incandescent lamp with 10 Ix. Because the
NIR contribution is greater than the color information in each RGB channel, it is important to estimate
the NIR band spectral information precisely to prevent false color generation.

205



Sensors 2016, 16, 719

Figure 12. Spectrum of an incandescent lamp under various kinds of illumination (3000 K).

Table 2. Relationships between illuminance and the portion of the NIR band spectral energy.

Illuminance Visible Band NIR Band Portion of the NIR Band (%)

250 Ix 57,978.6 45,337.7 43.8
150 1x 26,833.2 23,587.7 46.7
50 Ix 8045.7 8847.2 52.3
10 Ix 1347.9 2042.7 60.2

4.3. Two-Step Color Restoration

In general lighting situations, the proposed color restoration method based on Equation (24) can
decompose the NIR contribution in each RGB channel. However, as mentioned in Section 4.2, the
spectral energy distribution changed under low lighting conditions. Furthermore, the ratio between
the visible band and the NIR band changed. Therefore, the estimation of the N channel in the NIR
band is more important under low lighting conditions. The color restoration model in Equation (24) is
based on the assumption that the spectral response of the MSFA sensor in the NIR band correlated with
the spectral linearity between the RGB and N channels. However, in the 700 nm to 800 nm spectral
range, there was a lack of linear correlation between the channels, except for between the R and N
channels. If the spectral energy distribution of the light source shows strong energy between this
nonlinear range, the spectral decomposition error of the result will increase. Because the visible band
information is smaller than the NIR band under low lighting conditions, the spectral decomposition
error can produce a false color result.

To overcome this spectral nonlinearity problem, we used a two-step color restoration method that
divides the spectral range into two parts and removes the NIR band information sequentially. Figure 4
represents the two-step color restoration process. In the first step, the intensities of the RGB channel in
the NIR band with a spectral wavelength range greater than 800 nm were decomposed using the B
channel. In Figure 13, the ratio between the B channel and the N channel of 96 color patches of the
Gretag color checker SG is represented. Since the visible band information of the B channel is quite
small under low lighting conditions, there is a strong correlation between the B channel and the N
channel whose wavelength is above 800 nm, as described in Figure 13.
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Figure 13. Relationship between the B channel and the N channel (incandescent lamp, 1 1x): the ratio
between the B channel and the N channel in a wide spectral range (Top); the ratio between the B channel
beyond 800 nm and the N channel in a wide spectral range (Bottom).

The N channel whose wavelength is beyond 800 nm was approximated from the B channel
as follows:

NS0 =B (25)

nir
where 7y is the correlation coefficient between the B channel and the N channel above 800 nm. Figure 14
represents the result of Equation (25). Figure 14a is the image obtained with the optical filter, and
Figure 14b is the result of the proposed method after the first step of color restoration. By comparing
(a) to (b), the overall colors of the entire image were similar.

Figure 14. Result of the achromatic NIR band (above 800 nm) component removal (incandescent 5 1x).
(a) Optical filtered image; (b) first step of the proposed method.
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After the first step, the remaining NIR intensities in the RGB channel were removed through the
spectral decomposition method as proposed in Equation (24). Based on Equation (20), the two-step
color restoration model can be processed with a matrix equation as follows:

(vasr éviS/Bvis)T =M- (Rr G, B, N)T -P (26)

where P is defined as:
P= (7,7 m)" B (27)

The 7y, 74 and 7y}, values represent the correlation coefficient between the B channel and the N
channel whose wavelength was above 800 nm. The proposed two-step color restoration method was
applied to estimate the NIR component of the image obtained under particular illumination situations,
such as low light conditions, especially the illuminance of an incandescent lamp under 5 Ix. In this
paper, we use the proposed method with a two-step color restoration with Equation (26) when the
illuminance of the light source is under 5 Ix.

From Section 2, the achromatic NIR component ¢ did not affect the hue and saturation value of
the images. The achromatic NIR component is not an important part of restoring the color component.
Therefore, we estimated the spectral information of the chromatic NIR band precisely after removing
the achromatic NIR component é.

Figure 15 represents the result of the proposed method under an incandescent lamp with 5 Ix.

Figure 15. Comparison between proposed methods (incandescent, 5 Ix). (a) Multi-spectral image;
(b) optical filtered image; (c) proposed method without two-step color restoration; (d) proposed
method with two-step color restoration.

Figure 15a is the input image, the color of which is desaturated by additional NIR, and Figure 15b
is the optical filtered visible band image. Figure 15c is the result obtained using the proposed method in
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Equation (24) as given in Section 4.1, and Figure 15d is the result that was obtained using the two-step
color restoration described in Section 4.3. By comparing Figure 15c¢ to Figure 15d, the overall color
of Figure 15c is yellow-shifted, especially in red color patches. Since the spectral energy distribution
changed under low lighting conditions, the unified color restoration model M in Equation (24) was
limited in explaining the complicated nonlinear transformation. After removing the achromatic NIR
band information, the only concern was the chromatic NIR band used to restore the color information.
Since the unified color restoration model M handled the chromatic NIR band information, the color
was successfully restored as represented in Figure 15d.

5. Experimental Results

The proposed color restoration method was tested with images captured under different standard
illuminations: sunlight, incandescent lamp, sodium lamp and fluorescent lamp. Since the spectrum of
these light sources was spread over a wide range, we used these lights as the target illuminance values
as represented by Figure 16.
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Figure 16. Spectral distribution of a variety of light sources. (a) Incandescent lamp (3000 K);
(b) sunlight (6500 K); (c) fluorescent lamp (5000 K); (d) sodium lamp (2700 BK).

As the training set for the correlation coefficients, we used 96 standard colors of the Gretag
color checker SG. Because the color samples were distributed widely, these colors were used for the
training set. The input multispectral image was obtained by a camera system with an RGBN image
sensor without IRCF, and we used a target visible band image with an IRCF as a reference image. The
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96 patches were manually segmented, and we used the average RGB of each patch. The resulting
average RGB values in the input image and the reference image were used to derive a set of color
restoration models in Equation (24). We also measured the XYZ of each of the 96 patches using a
spectrophotometer. If an illuminance value was less than 5 Ix, we used an additional optical filter
that passes wavelengths beyond 800 nm to derive a set of color restoration models in Equation (27).
After setting a color restoration model, the proposed method was applied to an input multispectral
image without IRCE. As mentioned in Section 4.3, we used two-step color restoration when the
illuminance of the light source was darker than 5 Ix. In our experiment, we measured the illumination
level using an illuminometer. In practical situations, the light sensor commonly used to turn on the
flash light or changing to night shot mode must be installed to measure the luminance level of the
illumination. The light sensor performs the simple role of determining whether the luminance level
corresponds to dark or bright. When the illuminance of the light source is brighter than 5 Ix, we used
the color restoration model in Equation (24).

As an error criterion, the angular error was calculated. Considering the Z color sample entities in
the training set, the angular error for the z-th color was defined as:

m. -
0, = cos’l(zipz) (28)

|m_|p.|
where 6, is the angular error between the target color vector m; and the color restoration result p,.
‘" represents the inner product of two vectors, and |m| represents the magnitude of the vector m.

In addition, we measured the color difference AE of each color sample in the CIELAB color space
defined by:

AE}, = [(AL) + (Ad")? + (Ab")]/2 29)

We regarded the average of AE as the color correction error. To convert RGB to the CIELAB color space,
the RGB signals were transformed to CIE tristimulus values by using a spectrophotometer with a
standard illuminant, after which the CIELAB equation was applied [28]. The tristimulus values of the
illuminant were A, F and D65 with respect to the incandescent lamp, fluorescent lamp and sunlight,
respectively. We used a visible band image with IRCF as a reference image that was used to compare
to the input image and the result image. As comparative methods for the proposed color restoration
algorithm, we implemented the least squares-based color correction method [29] and the N-to-sRGB
mapping color correction method based on root-polynomial mapping [30].

Figure 17 depicts the experimental results under a fluorescent lamp with 350-Ix illumination.
Since the fluorescent lamp did not emit NIR, the input image in Figure 17a and the optical filtered
image in Figure 17b were almost similar. Our proposed method preserved the color of the input image
(Figure 17f) and the other color correction methods (Figure 17c to Figure 17e) because of the absence of
NIR color distortion in the input image.

Figure 18 shows the experimental result under sunlight, which has a wide range of spectral
distribution and abundant visible band information. In this case, it was sufficient to restore color
using the proposed method in Equation (24). Comparing Figure 18b and Figure 18c to Figure 18f, the
resulting image of the proposed method restored the distorted color well, especially the materials with
high reflectance in the NIR band. The root-polynomial mapping method in Figure 18e restored the
overall colors of each color patch and black materials well. The comparison of Figure 18b,e shows
that the saturation is slightly high. Since sunlight has plenty of spectral energy in visible bands, the
root-polynomial mapping restores color information as well as the proposed method. To investigate
color restoration accuracy, each method was compared in Tables 3 and 4.
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Figure 17. Experimental results under a fluorescent lamp (350 1x). (a) Input image; (b) optical filtered
visible band image; (c) 3 x 3 CCM; (d) 3 x 4 CCM; (e) root-polynomial mapping; (f) proposed method.

Figure 18. Experimental results under sunlight (400 Ix) (a) Input image (b) optical filtered visible band
image; (c) 3 x 3 CCM; (d) 3 x 4 CCM; (e) root-polynomial mapping; (f) proposed method.
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Another set was tested under an incandescent lamp, which emits much spectral energy in the NIR
band. Figure 19a represents the multispectral image obtained under the incandescent lamp. The color
channels were white balanced without considering the color degradation caused by the additional
NIR; therefore, the overall colors of the image show low saturation and blue hue over much of the
NIR band. Figure 19¢ shows the result of the conventional color correction method. When comparing
Figure 19¢ to Figure 19b, the overall colors of each color patch and object were close to the target image.
The comparison of Figure 19d to Figure 19f shows that the overall colors of each color patch and object
were close to the optical-filtered visible band image (Figure 19b). However, the color of the objects
with high reflectance in the NIR band, such as fabric, leaf, and so on, was slightly different. This means
that the accuracy of the NIR estimation was different. Figure 19f is much closer to the visible color in
Figure 19b because the proposed method separates the visible and NIR bands to estimate the color
correction matrix and, thereby, obtains a more accurate estimation of the NIR interference in each RGB
channel. The black colors of the fabric patch in the upper side of the image, as well as the doll’s cap
and clothes were restored to their original colors successfully.

Figure 19. Experimental results under an incandescent lamp (200 1x). (a) Input image; (b) optical filtered
visible band image; (c) 3 x 3 CCM; (d) 3 x 4 CCM; (e) root-polynomial mapping; (f) proposed method.

As discussed in Section 4.3, the proposed two-step color restoration method is useful under
particular illumination. Figure 20 represents a comparison with and without two-step color restoration
under an incandescent lamp at 1 Ix. Since the visible band information was less than that of the NIR
band in low lighting conditions, the spectral estimation error increased. As a result, Figure 20c shows
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a yellow image compared to Figure 20b. With the proposed two-step color restoration method, the
color of the image was successfully restored, as shown in Figure 20d. Based on this result, we tested
the proposed method under low lighting situations.

Figure 20. Two-step color restoration result comparison (1 Ix). (a) Input image; (b) optical filtered
visible band image; (c) proposed method without two-step color restoration; (d) proposed method
with two-step color restoration.

Figure 21 represents the experimental results under an incandescent lamp at 1 1x. This illumination
emits plenty of spectral energy in the NIR band. In Figure 16, the spectrum distribution of the
incandescent lamp is spread evenly over a wide range. In low lighting conditions, the lack of
visible band information makes the overall saturation of the images low. Figure 21c shows that
the 3 x 3 CCM-based method could not restore the overall color of the input image (Figure 21a). By
comparing Figure 21d to Figure 21f, the overall colors of each color patch and object were close to
the optical-filtered visible band image (b). However, the colors of black materials were not restored
correctly in Figure 21d,e. Since the spectral energy of the incandescent lamp under 550 nm and the
MSFA sensor response in the blue channel were low, blue information is lacking in the black area. As
a result, the blue intensity was boosted during the process of color constancy. Both root-polynomial
mapping and our proposed color restoration method are based on least-square linear mapping;
therefore, a large amount of NIR spectral energy in low-lighting condition (see Section 4.2) must be
considered. Compared to Figure 21d,e, Figure 21f shows that the proposed method restored colors
satisfactorily for both the patches and for materials with high NIR component.
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Figure 21. Experimental results under an incandescent lamp (1 1x) (a) Input image; (b) optical filtered
visible band image; (c) 3 x 3 CCM; (d) 3 x 4 CCM,; (e) root-polynomial mapping; (f) proposed method.

Figure 22 represents the experimental results under a sodium lamp at 1 Ix. Figure 22¢ shows
that the 3x3 CCM-based method could not restore the overall color of the input image (Figure 22a).
The spectrum distribution of the sodium lamp is concentrated at a particular wavelength at 830 nm,
as shown in Figure 16. In this case, the sensor spectral response of the local spectral band can be
approximated to a linear model. For this reason, the experimental results in Figure 22d to Figure 22f
show high restoration performance visually. To investigate the color restoration accuracy, each method
was compared in Tables 3 and 4.

Table 3. Average angular error.

Average Angular Error (x107?)
InputImage 3 x3CCM 3 x4CCM Root-Polynomial Proposed

fluorescent (350 1x) 0.77 0.80 0.77 0.78 0.77
sunlight (400 1x) 6.97 293 2.27 1.98 1.53
incandescent (200 1x) 28.73 7.79 5.31 5.05 4.53
incandescent (1 1x) 29.94 8.71 5.88 6.59 4.89
sodium (1 1x) 28.94 5.99 3.15 3.13 3.13
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Table 4. Average color difference, AE.

Average Color Difference AE

Input Image 3 x3CCM 3 x4CCM Root-Polynomial Proposed
fluorescent (350 1x) 0.98 1.12 1.06 1.04 1.04
sunlight (400 1x) 15.66 10.97 9.83 8.16 7.50
incandescent (200 1x) 20.32 8.62 4.98 4.55 4.19
incandescent (1 1x) 22.28 8.18 6.45 7.24 5.07

Figure 22. Experimental results under sodium lamp (1 Ix) (a) Input image; (b) optical filtered visible
band image; (c) 3 x 3 CCM; (d) 3 x 4 CCM; (e) root-polynomial mapping; (f) proposed method.

Tables 3 and 4 show the average angular error and the color difference with a variety of light
sources. The performance of the proposed method was confirmed visually for materials with high
reflectance in the NIR band. However, the performance of the proposed method for various colors
in the color chart and substances had to be measured. Table 3 shows the amount of angular error,
where our proposed method outperformed other methods. Since the color of the input image was
severely distorted, the angular error between the input image and the optical filtered image was
significantly high. After the application of color correction methods, the average angular errors
were reduced, and the performance of the proposed method was better than that of the conventional
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methods. Similarly, the color difference in Table 4 shows that the color correction results obtained with
the proposed method were better compared to the another methods.

In addition, to calculate the gain advantage provided with NIR information, we measured the
intensities of the image obtained in various illuminations with or without IRCF. Figure 23 represents
the sensitivity boosting provided by the NIR information. To measure the additional intensities, the
image is divided into 16 sections. After that, the intensities are averaged in each section. As shown
in Table 5 and Figure 23, the sensitivity was boosted by 10 dB without IRCF under an incandescent
lamp. On the contrary, because the fluorescent lamp does not emit an NIR component, there is no
gain advantage.

Figure 23. Sensitivity boosting provided by the NIR information.

Table 5. Average intensity value with or without IRCF in various illuminations.

Illumination With IRCF  Without IRCF  Sensitivity Gain (dB)

Incandescent 35.6 122.3 10.71 dB
Fluorescent 112.7 1125 0.01 dB

6. Conclusions

In this paper, a color restoration algorithm for an IRCF-removed MSFA image sensor in low
light conditions was proposed. In the proposed method, the color degradation caused by the
spectral composition of the visible and NIR band information was mainly considered. For the
spectrally-degraded color information with RGB channels, the spectral estimation and spectral
decomposition method were proposed to remove additional NIR band spectral information. Based
on the channel estimation when considering the nonlinearity of the spectral response function of the
MSFA sensor in low light conditions, the channel approximation using the B channel is for two-step
color restoration. Based on the filter correlation, the inter-channel correlation on the visible and NIR
band were assumed, respectively. When the N channel was decomposed into visible and NIR band
information, the RGB channel in the visible band was finally restored with spectral decomposition.
The experimental results show that the proposed method effectively restored the visible color from the
color-degraded images caused by IRCF removal.
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Abstract: The increasingly common application of the near-infrared (NIR) hyperspectral imaging
technique to the analysis of food powders has led to the need for optical characterization of
samples. This study was aimed at exploring the feasibility of quantifying penetration depth of NIR
hyperspectral imaging light for milk powder. Hyperspectral NIR reflectance images were collected
for eight different milk powder products that included five brands of non-fat milk powder and three
brands of whole milk powder. For each milk powder, five different powder depths ranging from
1 mm-5 mm were prepared on the top of a base layer of melamine, to test spectral-based detection
of the melamine through the milk. A relationship was established between the NIR reflectance
spectra (937.5-1653.7 nm) and the penetration depth was investigated by means of the partial least
squares-discriminant analysis (PLS-DA) technique to classify pixels as being milk-only or a mixture
of milk and melamine. With increasing milk depth, classification model accuracy was gradually
decreased. The results from the 1-mm, 2-mm and 3-mm models showed that the average classification
accuracy of the validation set for milk-melamine samples was reduced from 99.86% down to 94.93%
as the milk depth increased from 1 mm-3 mm. As the milk depth increased to 4 mm and 5 mm,
model performance deteriorated further to accuracies as low as 81.83% and 58.26%, respectively. The
results suggest that a 2-mm sample depth is recommended for the screening/evaluation of milk
powders using an online NIR hyperspectral imaging system similar to that used in this study.

Keywords: penetration depth; hyperspectral imaging; milk powder; PLS-DA

1. Introduction

Milk, both a nutritious food in itself and a functional ingredient in other food products, is a
complex fluid consisting of fats, proteins, minerals, vitamins, enzymes, carbohydrates and water.
However, fluid milk is difficult to transport and store. Therefore, milk powders are produced
using drying technologies to turn fluid milk into dry milk powder. Nonfat milk and whole milk
are the two most common milk powders and contribute nutritionally to many food formulations,
including reconstituted milk, dairy products, baked goods, confectionery, processed meat products,
nutritional beverages and prepared ready-to-eat foods. As an important food ingredient for human
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and animal food, milk powder safety is a worldwide concern. In recent years, incidents of milk
powder adulteration by melamine (2,4,6-triamino-1,3,5-triazine) to boost apparent protein content
caused illnesses and resulted in wide recognition of melamine contamination as a food safety problem.
Traditional methods of melamine detection in foods involve analytical techniques, such as mass
spectrometry and high performance liquid chromatography, are time consuming, expensive and require
complicated sample preparation procedures [1,2]. Visible (VIS) and near-infrared (NIR) spectroscopy
have been studied as non-destructive methods to detect melamine in milk by several research
groups [3,4]; however, spectroscopic assessments with relatively small point-source measurements
cannot provide information on the spatial distribution of melamine particles within a food sample.

As one of the most promising tools for non-destructive real-time evaluation of food quality
and safety in numerous applications, hyperspectral imaging combines features of both imaging
and spectroscopy, such that it is capable of not only directly assessing the presence of different
components simultaneously, but also locating the spatial distribution of those components in the
products under examination [5]. Hyperspectral imaging may be operated in either reflectance or
transmittance modes, although reflectance is more commonly used. Generally, transmittance mode
is used for thinly-prepared samples, allowing light to pass through the samples [6-9], while diffuse
reflectance is used for thicker samples in hyperspectral imaging measurements of whole or larger
portions of foods, such as apples [10], peach [11], mushrooms [12], cucumbers [13] and chickens [14].
Hyperspectral reflectance imaging has been used to detect defects and contaminants and to evaluate
quality attributes for fruits, vegetables, meats and dairy products. Implemented with automated
image processing and analysis algorithms, hyperspectral imaging has been demonstrated for effective
real-time assessment of the quality and safety attributes of poultry [14]. For reflectance imaging,
the NIR light must sufficiently penetrate the food material in order for the intensity of the remitted
radiation, as a function of wavelength (or frequency), to have been influenced by the chemical nature
of the absorbing compound.

Light penetration depth is defined as the depth in a sample material at which incident light
is reduced by 99% and will vary with the status of sample, the type of sample and the detection
wavelength [15]. Hyperspectral reflectance imaging is usually operated in the VIS-NIR (400-1000 nm)
or NIR (1000-1700 nm) range. Limited research exists for the investigation of the penetration depth
in the VIS and NIR ranges. Lammertyn ef al. [16] reported light penetration depth in apples to be
up to 4 mm in the 700-900-nm range and between 2 and 3 mm in the 900-1900-nm range. Qin and
Lu [15] found that the light penetration depth in fruit tissue varies depending on the type of fruit,
ranging from 7.1 mm for plums to 65.2 mm for zucchini. Most studies reporting light penetration
depths were conducted on fruits. Further research would provide not only helpful references for
thickness determination, but also valuable insight into appropriate sensing configurations, especially
for milk powder products [17,18]. Fu et al. [18] coupled the NIR hyperspectral imaging technique
(990-1700 nm) with spectral similarity analyses to detect melamine mixed into samples of dry milk
powder. Imaging allowed visualization of the distribution of melamine particles in the milk mixture
samples that were prepared at melamine concentrations ranging from 0.02%-1.00% and presented for
imaging in plastic Petri dishes. However, it was not examined exactly how many millimeters the NIR
hyperspectral imaging light could penetrate into the milk powder samples. The objective of this study
was to determine the penetration depth of NIR hyperspectral imaging light in milk powder for the
wavelengths between 937.5 nm and 1653.7 nm.

2. Experimental Section

2.1. Sample Preparation

Eight different milk powder products were purchased from commercial retailers, including
5 brands of nonfat milk powders (‘valley (N)’, Organic Valley, La Farge, WI, USA; ‘nestle (N)’, Nestle,
Solon, OH, USA; ‘hoosier (N)’, Hoosier Hill Farm, Fort Wayne, IN, USA; ‘now (N)’, Now Real Food,
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Blooming, IL, USA; ‘bob (N)’, Bob’s Red Mill, Pheasant Court Milwaukie, OR, USA) and three brands
of whole milk powders (‘hoosier (W)’, Hoosier Hill Farm, Fort Wayne, IN, USA; ‘nestle (W)’, Nestle,
Glendale, CA, USA; ‘peak (W), Peak, Friesland Campina, P. Stuyvesantwet 1, AC Leeuwarden,
Holland). Melamine powder (99% purity) was obtained from Sigma-Aldrich Company (M2659,
St. Louis, MO, USA). For detecting the light penetration depth of the hyperspectral imaging system,
different thicknesses (1 mm, 2 mm, 3 mm, 4 mm and 5 mm) of pure milk powders were layered on the
top of pure melamine. These milk-melamine samples were prepared in black electroplated aluminum
plates precisely machined with square wells (30-mm width and height, 10-mm depth). Each sample
was first prepared with a leveled layer of pure melamine in the bottom of the well, followed by a
leveled layer of pure milk powder on top of the melamine. The combined thicknesses of the melamine
and milk powder layers completely filled the 10-mm depth of each well, with the milk depth ranging
between 1 and 5 mm (i.e., 1 mm-thick milk layer over 9 mm of melamine, 2 mm-thick milk layer over
8 mm of melamine, and so on). Figure 1 illustrates the preparation of a sample containing 3 mm of
milk over 7 mm of melamine. For each kind of milk powder, three samples were prepared at each
of the five milk depths, as well as three samples of pure dry milk (10 mm of milk with no melamine
underneath) and one sample of pure melamine. With 19 plates prepared for each of the milk powder
products, a total of 152 samples were measured for the eight milk products used in this study.

3 mm Milk

T~

7 mm Melamine

Figure 1. Milk-melamine sample holder (e.g., 3 mm-thick milk and 7 mm-thick melamine layers). The
light grey area shows the sample surface (30 mm x 30 mm).

2.2. Instrument and Experiment

As shown in the schematic in Figure 2 and described in detail in Kim et al. [19], the line-scan
NIR hyperspectral imaging system consists of an InGaAs focal-plane-array (FPA) camera with
320 x 256 pixels (Xenics, Model Xeva-1.7-320, Leuven, Belgium), an imaging spectrograph (SWIR
Hyperspec, Headwall Photonics, MA, USA) and a 25-mm zoom lens (Optec, Model OB-SWIR25/2,
Parabiago, Italy), as well as a computer for controlling the camera and acquiring images, two 150-W
DC light sources with fiber optic bundles (Dolan Jenner, Model DC-950, Boxborough, MA, USA) and
a motorized uniaxial stage (Velmex, Model XN10-0180-M02-21, Bloomfield, NY, USA). The camera
array sensor consists of 150 usable pixels in the spectral dimension over a wavelength range of
937.5-1653.7 nm, with an average wavelength spacing of 4.8 nm. Except for the two 150-W quartz
tungsten halogen light sources, the system is entirely housed with an aluminum-framed enclosure. The
light is conveyed via the low-OH fiber optic bundles, with each bundle terminating in a 250 mm-long
line of fibers encased in a machined aluminum head. The angle of incidence from the line lights is 30°
(from surface normal), and the distance between line lights and sample surface is 20 mm. For each
light source, a mechanical iris was used to allow approximately 75% of 150-W light intensity to arrive
at the sample surface. The motorized stage moved the samples incrementally across the linear field of
view for step-by-step acquisition of line-scan images.
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Figure 2. Schematic of the NIR hyperspectral imaging system used to acquire reflectance images of
milk powders. FPA, focal-plane-array.

In this study, square imaging pixels were achieved by setting the incremental step size to 0.1 mm
to match the pixel-to-pixel distance along the imaging line, which included 320 pixels. The camera
exposure time was set at 2.5 ms, and a total of 360 scans were acquired in 1 min. The camera digitized
raw energy readings in 14-bit resolution. Finally, each sample’s spectral data were stored as a 16-bit
hyperspectral image cube of dimensions 320 x 360 x 150 containing spatial and spectral data. The
hypercube is a three-dimensional image, which represents a 2D spatial image with x-axis and y-axis
coordinate information and z-axis spectral information.

2.3. Hyperspectral Data Analysis

2.3.1. Image Preprocessing

In this study, dark current and white reference images were collected to correct the raw reflectance
images for wavelength-dependent system responses and heterogeneous dark current in the FPA
camera. The dark current image was captured while the lens was covered by a lens cap. An image
of an illuminated 99% diffuse reflectance standard (SpectralonTM, SRT-99-120, Labsphere, NH, USA)
was acquired for use as the white reference image. These images were used to calculate the relative
reflectance image of each sample, which was calculated by dividing the difference in energy readings
between sample and dark current by the difference in energy readings between the white reference
and dark current.

2.3.2. Spectral Preprocessing

The region of interest (ROI) for each sample was composed of a square region of 10,000 pixels
(100 %100 pixels around the image center), selected within the 30 mm x 30 mm sample area (shown in
Figure 1) so as to include only milk powder areas and exclude background (plate) regions for further
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analyses. Spectral preprocessing techniques were used prior to develop a calibration model in the
quest for improving the subsequent classification model. Common preprocessing methods for NIR
spectra were used, including Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC),
Extended MSC (EMSC), Normalized (NORMALIZED), the common (base 10) Logarithm (LOG10),
Savitzky-Golay Smooth (SMOOTH) and the Savitzky-Golay 1st (1ST) and the Savitzky—Golay 2nd
(2ND) derivative [20].

2.3.3. Development of the Classification Model

After spectral preprocessing, partial least squares discriminant analysis (PLS-DA) was used to
classify each pixel as belonging to either the pure milk class or the milk-melamine mixture class.
PLS-DA, an extension of PLS modeling, aims to find the variables and directions in a multivariate
space that discriminate the known classes in the calibration set. PLS components are computed under
the constraint of the maximization of covariance between inputs and outputs. Therefore, it can provide
a set of orthogonal factors that have the best predictive power from the combinations of different
methods with an increased number of variables [21-23].

Prior to model development, the triplicate samples (three samples imaged at each depth of milk
over melamine and three samples for each pure milk powder product) were divided into two groups,
with two samples (comprising 20,000 ROI pixels) assigned to a model development dataset and one
sample (comprising 10,000 ROI pixels) assigned to a validation dataset for use in evaluating model
performance. Model performance was compared based on classification accuracies, i.e., the percentage
of correctly-classified pixels over the total number of pixels. To better assess the performance of the
classification models, calibrations and validations for each depth were run three times [24]. For each of
the 5 different milk-melamine preparations, a separate PLS-DA model (1I-mm model, 2-mm model,
3-mm model, 4-mm model and 5-mm model) was developed. The number of components chosen for
the PLS-DA models was determined by a contiguous block cross-validation method, in which each
block contained the samples from one milk powder product.

Image processing, selection of the square ROI, the spectral preprocessing operation and model
development were performed in MATLAB (R2007b, MathWorks, Natick, MA, USA) equipped with the
PLS Toolbox (v. 7.5, Eigenvector Research, Manson, WA, USA).

3. Results and Discussion

3.1. Hyperspectral Spectra

Figure 3 shows representative mean absorption spectra (calculated from 10,000-pixel ROI) of
pure melamine and the eight pure milk products (including five nonfat and three whole) obtained
from the LOG10 preprocessing technique. Significant differences, absorption peaks related to the first
and second N-H functional group, can be clearly observed between melamine and milk spectra. The
mean melamine spectrum had peaks near 1523.9 and 1490.3 nm, corresponding to the first overtone of
N-H symmetric and anti-symmetric stretching vibration, respectively. The second overtone of N-H
stretching vibration is located near 985.6-1033.7 nm (centered at 1009.6 nm). The most significant
spectral difference between melamine and milk occurred near 1466.3 nm, which is attributed to
aromatic amine structures [3] and showed the highest absorption in the melamine spectrum. For the
nonfat milk spectra, the spectral patterns of the five different brands are similar, and another similar
spectral pattern was observed for the three brands of whole milk from Figure 3. The absorbance
of most nonfat milk spectra is lower than that of the whole milk spectra. For the visual difference
between the nonfat and whole milk pattern, whole milk spectra have an evident absorption peak
around 1211.5 nm, which is due to the second overtone of C-H stretching vibration constituted by
saturated fat structures [25].
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Figure 3. Representative mean spectra of pure nonfat (N) and whole (W) milk powders and pure
melamine, each calculated from a 10,000-pixel ROI.

Figure 4. Mean ROI spectra of samples prepared using (a) ‘valley’ (N) nonfat milk and (b) ‘peak’ (W)
whole milk, including pure milk samples and milk-melamine samples with milk depths from 1-5 mm
(thickness). Plots A and C show the full spectra, while Plots B and D show the enlarged view of the
mean spectra near the 1466.3-nm melamine peak.
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Figure 4 shows representative mean spectra for one nonfat milk and one whole milk, valley (nonfat
(N)) and peak (whole (W)), including milk-melamine samples for milk depths of 1-5 mm (thickness)
and for pure milk. Among the eight milk products used in this study, ‘peak’ (W) had the strongest
absorbance and ‘valley’ (N) had the weakest absorbance. The mean spectra of milk-melamine samples
are very similar to the mean spectrum of pure milk; all exhibit no obvious melamine absorption features.
This observation suggests that individual pixel-based spectral evaluations (instead of averaged spectra
across spatial image areas) may allow better detection of melamine to measure the penetration depth
of milk [18]. In the region of the 1466.3-nm melamine absorption peak, the mean absorbance notably
decreased as the milk depth increased from 1 mm-3 mm. For 3 mm-5 mm, the mean spectra were
nearly the same as that for pure milk. The same trends were observed for both nonfat milk ‘valley” and
whole milk ‘peak’.

3.2. Discriminant Models for Milk Depth Classification

The plots in Figure 5 compare the validation set classification results (average of three runs) for the
PLS-DA models coupled with specific spectral preprocessing algorithms, for milk-melamine at each of
the five different milk depths (1-mm-5-mm models). As shown in Figure 5, the different preprocessing
algorithms can have a great impact on model accuracy. Compared to the other spectra preprocessing
algorithms, the 2ND derivative consistently resulted in low classification accuracy. The reason may
be that it has a more prominent spectra shoulder after derivative transformation, but it affects the
component number selection of PLS-DA. The models coupled with the SNV and MSC algorithm gave
better, more robust performance than the NORMALIZED model (mean zero, unit variance), which is
due to reducing the scattering influence from particle size.

Since the classification accuracies of the calibration set were better than those of the validation sets,
only the classification results of the validation set for milk and milk-melamine samples are presented.
Table 1 shows the classification results of the validation set based on the PLS-DA model coupled with
the SNV preprocessing algorithm for the eight milk powders. The data show the classification accuracy
notably decreasing as the milk depth increases from 1 mm-5 mm. For the 1-mm model, 99.65%-100%
of milk samples (pixels) and 99.06%—-100.00% of milk-melamine samples were correctly classified, for
overall accuracies of 99.93% and 99.86% for milk and milk-melamine samples, respectively, across the
eight milk powders. The 2-mm model’s highest accuracy was the same as that for the 1-mm model,
while its lowest accuracies were lower at 95.53% for milk and 96.4% for milk-melamine samples. The
average misclassification rates were 1.39% for milk and 1.58% for milk-melamine samples across all
eight milk powders. Although the 3-mm model achieved an average accuracy 95.54% for milk and
94.93% for milk-melamine samples, the classification accuracies of nonfat milk ‘hoosier” and ‘nestle’
were lower than 90%, which is not suitable for melamine detection at lower concentrations. As the
milk depth increased to 4 mm and 5 mm, the nearly identical spectra for milk and for milk-melamine
(shown in Figure 3) resulted in deteriorated model performance. The average misclassification rate
of the 4-mm model was greater than 10%, while about 20% of the samples were misclassified by the
5-mm model for some of the milk powders. This means that the 4-mm and 5-mm models were invalid
for classification.
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Figure 5. Classification comparison of classification results for PLS-DA models coupled with specific
spectral preprocessing algorithms for milk-melamine samples at milk depths from 1 mm to 5 mm (a—e).
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Table 1. Classification results of the validation set for milk and milk-melamine samples from
a 1-mm-5-mm depth using PLS-DA coupled with the Standard Normal Variate (SNV) spectra
preprocessing algorithm.

Classification (%)

Depth 1 mm 2mm 3 mm 4 mm 5 mm

valley (N) 99.98 99.66 98.20 94.13 87.41

hoosier (N) 99.86 95.53 89.37 84.43 80.91

nestle (N) 100.00 98.72 92.08 91.39 74.26

bob (N) 99.65 96.51 94.49 92.70 90.52

Milk now (N) 99.97 98.80 95.86 89.56 78.50
nestle (W) 100.00 99.98 98.19 89.57 81.29

hoosier (W) 99.98 99.73 97.29 83.77 73.19

peak (W) 99.99 99.98 98.86 87.81 83.85

Average 99.93 98.61 95.54 89.17 81.24

valley (N) 99.91 98.56 94.81 83.94 78.60

hoosier (N) 99.96 96.43 90.21 82.47 78.62

nestle (N) 100.00 97.97 87.34 84.35 58.26

Milk- bob (N) 99.06 95.82 95.29 93.42 90.30
melamine now (N) 99.94 98.89 96.21 92.03 72.73
nestle (W) 100.00 100.00 98.27 92.32 87.42

hoosier (W) 99.98 99.70 97.66 81.83 62.43

peak (W) 99.99 99.99 99.70 95.76 92.92

Average 99.86 98.42 94.93 88.26 77.66

Figure 6 shows the classification results for two brands of nonfat and whole milk using the
PLS-DA model coupled with the SNV spectra preprocessing algorithm. For the same brand milk
powder, the classification results of whole milk were slightly higher than those of nonfat milk for
the 1-mm-3-mm valid models.

Figure 6. Comparison of the classification results for the same brand nonfat and whole milk using
the PLS-DA model coupled with the SNV spectral preprocessing algorithm for (a) milk and (b)
milk-melamine.

4. Conclusions

In this study, the penetration depth of near-infrared hyperspectral imaging light (937.5-1653.7 nm)
was investigated for milk powders. Five different depths of milk powder, from 1 mm-5 mm, were
investigated for the detection of melamine underneath the milk powder. Classification models were
developed using the PLS-DA technique for milk and milk-melamine samples prepared using five
brands of non-fat milk powder and three brands of whole milk powder. The classification results
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showed that the classification accuracy gradually decreased as the milk depth increased. For the
2-mm models, the classification accuracies were higher than 95% for both milk and milk-melamine
samples for all of the milk powders under investigation. It can be concluded that the use of a 2-mm
milk powder depth can be recommended for applying NIR hyperspectral imaging for the detection of
contaminants in milk powder. In addition, the method described can also be potentially applied to
other food powders for penetration depth measurement of NIR hyperspectral imaging system.
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Abstract: We apply the principles of atmospheric surface layer dynamics within a vineyard canopy to
demonstrate the use of forward-looking infrared cameras measuring surface brightness temperature
(spectrum bandwidth of 7.5 to 14 um) at a relatively high temporal rate of 10 s. The temporal surface
brightness signal over a few hours of the stable nighttime boundary layer, intermittently interrupted
by periods of turbulent heat flux surges, was shown to be related to the observed meteorological
measurements by an in situ eddy-covariance system, and reflected the above-canopy wind variability.
The infrared raster images were collected and the resultant self-organized spatial cluster provided the
meteorological context when compared to in situ data. The spatial brightness temperature pattern
was explained in terms of the presence or absence of nighttime cloud cover and down-welling
of long-wave radiation and the canopy turbulent heat flux. Time sequential thermography as
demonstrated in this research provides positive evidence behind the application of thermal infrared
cameras in the domain of micrometeorology, and to enhance our spatial understanding of turbulent
eddy interactions with the surface.

Keywords: time sequential thermography; micrometeorology; self-organizing maps; surface energy
balance; turbulence; microclimate; infrared camera

1. Introduction

There is great interest in using near-target remote sensing techniques such as time-sequential
thermography (TST) in precision agriculture, ecology [1] and phenomics [2]. Thermography techniques
have to address the thermal condition of the object of interest and the thermal and humidity conditions
of the intervening atmosphere. Near-surface atmospheric temperature is influenced by synoptic
weather patterns and their interaction with local topography at the smaller scale, which together
determines the nature of the air turbulence that envelops the plant and controls the rate of water vapor
and heat exchanges. On the other hand, plants are more than passive objects and employ stomata to
sense the surrounding environment and respond rapidly to abiotic stresses, such as the air temperature.
Their response is typically through stomatal conductance to water vapor and/or transpiration, which
are critical physiological controls. The plant’s surface temperature, or its brightness temperature as
sensed by a thermal infrared camera, is the result of the interaction of the air temperature and the
plant’s physiological response. Thus, to understand the plant’s microclimate through thermography
(or the environment that embodies the plant to a few orders of magnitude in spatial scale relative
to the plant’s volume), it is important to understand the brightness temperature signal (measured
by a infrared camera) as a function of near-surface meteorological parameters controlling the energy
exchanges happening across the plant-environment envelope.

Land surface temperatures are influenced by surface energy balance [3] especially when horizontal
advection processes are negligible. Surface temperature varies as a consequence of partitioning of
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net-all wave radiation (Q*, or the balance between solar and infrared radiation input and output to
the surface) into the subsurface conduction of heat (Qg) and changes in sensible (Qg) and latent heat
exchange (Qg) with the overlying atmosphere. On short time scales (less than an hour), radiative input
is relatively constant, unless clouds interfere or overlying plant canopy causes rapid changes (flickering)
in solar radiation [4]. Higher frequency (seconds to minutes) surface temperature fluctuations are
a response to the turbulent sensible and latent heat fluxes. Turbulence, caused by eddy motion, is
expected to control temperature fluctuations on the same length and time scales as the atmospheric
eddy motions.

The brightness temperatures of objects within the surface layer were not typically considered in
the atmospheric community as a proxy for near-surface turbulence, but as infrared cameras become
cheaper and are able to record data at high spatial and temporal resolutions, it is now feasible to study
turbulence through the acquisition of brightness temperature. One of the earlier studies to investigate
the coupling between coherent turbulent structures and surface temperature over an agricultural field
(maize canopy) employed a directional infrared thermometer (sampling at 10 Hz) in identifying ramp
structures in the surface temperature signal of the canopy with significant correlation with fluctuations
in the air temperature above the canopy [5]. Coherent structures were identified as temperature ramps
in the surface and air temperature time series, with the magnitude of surface temperature ramps
being significantly smaller than the air temperature ramps. Surface temperature ramps are caused by
turbulent eddies mixing warmer (or cooler) air with cool (warm) air from aloft. A similar study was
conducted over grass [3] and also found direct relationships between surface brightness temperatures
and independently measured surface-layer turbulence parameters.

Application of time-sequential thermography (TST) to calculate urban sensible heat fluxes
(from a building) was first demonstrated by Hoyano et al. [6], and was further developed conceptually
by Voogt [7] as a method for viewing the “footprint” of the coherent flow structures, and it was
later emphasized by Christen et al. [8] that brightness temperature fluctuations are largely controlled
by atmospheric turbulence while the level of fluctuation becomes modulated by surface properties,
especially its thermal admittance. The application of TST to detect large temperature fluctuations in
the unstable surface layer to understand the turbulence structure has shown great promise in field
experiments [9], and was successful in deriving surface wind velocities over simple grass areas [10]
via the principle of turbulent eddy interaction with surface brightness temperatures.

As forward-looking infrared cameras become more affordable, TST will become an attractive
method to measure the energy and moisture exchanges between the surface and overlying atmosphere.
This research utilizes spatial brightness temperature data from infrared cameras looking onto a
vineyard canopy. The canopy is also instrumented with an eddy covariance system measuring in situ
turbulent and radiation fluxes and near-ground thermistor-based temperature sensors. The brightness
temperature fluctuations (sampled sequentially over a nighttime period at a high frequency) are
then used to interpret the spatial variability of the turbulent nature of the site using a combination
of in situ metrological measurements and a pattern recognition algorithm (or self-organizing maps,
SOM) applied to the acquired brightness temperature data. The SOM approach allows for clustering
self-similar images into groups that could then be analyzed according to their unique meteorological
context. This research highlights the significance and relevance of the methodology in terms of relating
the brightness temperature variability to atmospheric turbulence, which also highlights the local
meteorology. This approach is not only limited to vineyard applications and could be applied and
assessed over various other crop types or surfaces.

2. Methods

2.1. Study Site and Instrumentation

The experimental site is located in Marlborough, situated in the South Island of New Zealand,
renowned for abundance of vineyards and a major wine-producing region. The experimental site
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was chosen to be at the Lions Back vineyard in Seddon (41°41'51.5"’S, 174°05'13.6"'E) (Figure 1).
This vineyard is ideal for the purpose of this experiment as it is easy to access and a nearby-elevated
escarpment provides an ideal platform for placement of the infrared cameras overlooking most of
the vineyard. Within the field of view of the cameras we have placed an eddy covariance system
containing a 3D sonic anemometer, water vapor analyzer, measurements of all-wave radiation, and near
surface air and soil temperature loggers in the same measurement area (Table 1). All measurements
were controlled through data logging devices and/or monitored manually throughout the sampling
period. The meteorological variables measured by the eddy covariance system (surface energy balance
measurement system), climate station (standard meteorological parameters), and the near surface
temperature logger (thermistor-based temperature sensing) were taken from 17 May 2014 12 a.m.
up until 18 May 2014 9 p.m. While the thermography data was collected during the evening of the
17 May 2014 between 5 p.m. and 9 p.m. local standard time, which is also highlighted with a black
rectangular box in Figure 2a.

(a) (b)

Figure 1. (a) The vineyard site covering most of the field of view of the two longwave infrared cameras
shown on tripods in the foreground. The near-ground Hobo temperature logger is shown in the small
figure inset; (b) A close up on the eddy covariance system (or EC-station in left panel) placed in the
center of the camera’s field of view.

Table 1. Instrumentation specifications and measured variables.

Instrument Description Measured Variable Range and Accuracy Sampling
Frequency
R 51
Campbgll Three-dimensional Cartesian components of velocity +65m-s ,il 0.08 m-s~"foru, v
Scientific ultrasonic anemometer and sonic temperature (u, v, w, Ts) +0.04m-s™7 for w, and —30 to 20 Hz
CSAT3 P v 50 °C +0.01°C for Ts
Open path infrared H,O -
LICOR-7500 analyzer (situated 30 cm below Specific humidity 0to60 Pal‘fop : T trtllhon (PP 20 Hz
the sonic anemometer) O PP
Kipp and . Incident and reflected long- and o
Zonen CNR1 Net radiometer short-wave radiation components +10% over 24 h 1Hz
Vaisala Temperature and relative Air temperature, soil surface —40to +60 °C £ 0.3 at 0 °C 1 Hz
HMP45C humidity probe temperature, and relative humidity 0t090% =+ 2%
HOBO U23 Radiation shielded Air temperature at 35 cm above —40't0 470 °C + 0.2 °C 0.1Hz
temperature sensor ground level or AGL
Brightness temperature on a raster —40t0150°C £2°C
FLIR A644sc Uncooled infrared camera 8 P N Spectral range 7.5 to 14 um 50 Hz
of 640 x 480 pixels e
Thermal sensitivity 30 mK
Brightness temperature on raster of ~20t0900 °C £ 2°C
Optris Pi 640 Uncooled infrared camera & P ¢ Spectral range 7.5 to 13 um 0.1Hz

640 x 480 pixels

Thermal sensitivity 75 mK
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Figure 2. (a) Air temperature and relative humidity from within and above the vineyard canopy.
The climate station data was collected from a low escarpment around 5 m above the canopy’s horizon.
The black box shows the time period of the operation of the infrared cameras; (b) Wind speed (line)
and direction (dotted) from within (blue) and above (black) the canopy; (c) The surface radiation and
turbulent energy budget from the eddy covariance system inside the canopy.

2.2. Self-Organizing Maps, SOMs

The SOMs algorithm for the pattern recognition used in this analysis is SOM_PAK, found at
Helsinki University of Technology website [11]. SOM iterates through the input dataset while matching
each input to the SOM node that is closest in terms of its Euclidean distance, and then adjusts the node
and its neighbors to incorporate the input data. A learning rate parameter controls the rate at which
the SOM absorbs the information from the input data while a neighborhood radius determines which
other nodes, are affected by the input data. The learning rate decreases to zero and the neighborhood
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radius decreases to one as the algorithm iterates through the dataset. Several matrix sizes (representing
the number of maps or patterns) were tested, and for each matrix size the number of iterations and
learning rate function types were adjusted, with the aim of reducing the quantization error, or the
mean Euclidean distance between the input data and the SOM; bigger matrices generally exhibit lower
errors. When the change in the error is minimal, the process can be considered complete. Criterion
referred to as the “Sammon Map” is used to inspect whether each node of the SOM has more in
common with its neighboring nodes, than non-neighboring. If not, the SOM algorithm was rerun
with adjusted parameters. For examples on using SOM for various sources of meteorological data
see [12-18].

The brightness temperatures (180 x 180 pixels) extracted as a spatial subset from the total infrared
camera image (640 x 480 pixels) were used as input data for the SOM algorithm. First the pixel-wise
data was normalized so that all pixel variables have a variance of 1, this allows for a more effective
way in extracting patterns without biasing regions towards extreme values. Before executing the
SOM algorithm the infrared brightness temperature perturbations (Tb’) were calculated based on
the deviation of every sample (at 10 s interval) from the 10 min average. The de-trended Tb’ were
then related to the turbulence and/or radiation forcing measured by the eddy covariance unit. The
number of nodes (or pattern groups) was chosen to be a 3 x 3 matrix arrangement after testing with
several other arrangements and an optimization between the size of the matrix and the detail of output
was reached. After constructing the SOM, the non-clustered data was then matched with its most
representative node (or spatial pattern), and then a number count was found to compare the relative
population of each node with the original or non-clustered data. As a result, all 9 nodes had best
matching units between 60 and 120, which suggests that the nodes were relatively well populated.

3. Results

3.1. Micrometeorological Context

The experiment extends between midnight of 17 May 2014 up until the early evening of
18 May 2014. During this period the region was synoptically quiescent, which limited surface wind
speeds to less than 3 m-s~!, and the diurnal temperature ranged between just below freezing level and
20 °C (Figure 2). The air temperatures measured from within the vineyard canopy (EC station), near
the surface air (Hobo north) and from a nearby climate station (Figure 2a) all show similar diurnal
temperature variations within the experimental domain. The first morning period (17 May 12 a.m. to
8 a.m.) was colder by 5 to 10 °C than the following morning period (18 May 12 a.m. to 8 a.m.), mainly
due to the more stable atmosphere maintained by weak surface wind speeds and the surface radiation
cooling process. The following early morning wind speeds measured at 6 m above ground level (AGL)
at the nearby climate station site increased up to 6 m-s~!, causing higher levels of turbulence within
the canopy as registered by the increase in the sonic wind speed (Figure 2b) and the increase in the
latent heat flux during the period between 12 a.m. and 8 a.m.) on 18 May. The relative humidity during
this period (70%) was also lower than the night before (90%, Figure 2b), and the wind direction was
from the northwest sector which blows relatively dryer air from the elevated mountainous regions.

3.2. Brightness and Air Temperature Relationship

In this section we aim to present a direct comparison between the measured brightness
temperatures as seen by both of the long-wave infrared cameras and in situ air temperatures measured
from within the canopy and from the surface at the northern edge of the canopy. The method we
have used relies on averaging the brightness temperature over a 25 m? area and a larger field of view
area (see boxes (1), (2) and (3) in Figure 3a). Figure 3a shows a snapshot from the Optris camera of
the entire field of view taken at 7:28 p.m. on 17 May 2014 local standard time. The color scale in
Figure 3a represents the brightness temperature and a clear depiction of the warmer vegetated canopy
(around 7 °C) rows running north to south and a cooler grass surface between the canopy rows with a
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brightness temperature of around 4 °C. Figure 3b is a derived image that represents the brightness
temperature perturbation calculated by de-trending each sampled pixel from the temporal mean over
a 10 min period. This statistical quantity represents a perturbation value that clearly shows pixels
and regions that are either warmer (positive) or cooler (negative) than their neighbors. The resulting
image highlights clouds in the upper sky section of the image that were invisible in Figure 3a, and
warmer structures over the canopy. Figure 3¢ presents a time series of the area-averaged brightness
temperature measured by the FLIR and Optris cameras over regions (2) and (3). A time series of the air
temperature as measured by the EC-station and the HOBO temperature logger is also added to the
figure to relate the brightness temperature to the air temperature as a function of the height of the air
temperature measurement and location with respect to the vegetated canopy.

(© | —TousECareaavg. ()12 * ECVS Optiis (R %, RMSE=096,0.27) | _
ab T s NODO nOTth area avg. - EC VS FLIR (0.95, 0.23)
T 1.5mAGL - EC station Hobo north VS Optris (0.95, 0.35)
1l air 10| - Hobo north VS FLIR (0.98, 0.25)

,,Tair 0.35 m AGL - Hobo north

T, hobo EC area avg.

7T'Iir hobo north area avg.
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O05/1 7-17:00 18:00 19:00 20:00 21:00 0 2 4 6 8 10 12
T” FOV area average (°C)

ir
N

Figure 3. (a) A sample snapshot in time of the brightness temperature measured by the Optris camera.
Regions (1), (2) and (3) represent the areas from which the mean was calculated from some of the
analysis; (b) The same snapshot in time as in (a) but for the derived perturbation brightness temperature
calculated from the deviation of each of the 10 s samples from the 10 min mean. Positive values show
areas of increasing temperature in time; (c) Time series comparison of brightness temperature from two
cameras, air temperature from the eddy covariance station and near-surface Hobo temperature logger;
(d) Scatter plot of brightness temperature and in situ air temperatures.

3.3. Brightness Temperature and Turbulent Heat Flux

The horizontal and vertical kinematic heat flux components were calculated from the covariance
of the horizontal (U, V) and vertical (W) velocity components and the sonic temperature recorded by
the sonic anemometer. In Figure 4a the kinematic heat flux is sampled at 10 s periods from collected
data at 20 Hz; the results show turbulent horizontal and vertical heat advection over the few hours
of the evening when the brightness temperature was sampled via the infrared cameras. Figure 4a
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shows an initial period of moderate to little turbulent heat flux (5 p.m. to 6:30 p.m.), with an increase
of heat flux over the rest of the evening. This result is also supported by an increase in above-canopy
wind speeds after 6 p.m. as depicted by the climate station wind speed data in Figure 2b. Figure 4b
shows the area-averaged (area (2) in Figure 3a) de-trended brightness temperature from the FLIR and
Optris cameras around the EC-station, and the corresponding de-trended air temperatures form the
EC-station in the green line.

a —

(a) 0.05 —SoT)

— _ Cov(VT)

< ; |

T 0.025[ — Cov(WT) f

(2]

E

x

>

[ of i
°Q

T

£

2 0.025 ‘ N

-0.05 17:00 17:30 18:00 18:30 19:00 19:30  20:00
(b) 7T”ir @ EC-station
__T . @ EC-station
optris

8 15 W _Topms@ EC-station 2 min Avg. |~
> N ‘} ‘ ___T @ EC-station

= 1 ‘/V air b
5 N |

2 05f M e 1
@ ‘ My A

<4 ‘ I | I N

2 0 | W I ﬂ J “r‘ ~ B
g AT

2-05 MR T ‘ 1
£ \

o ]

-1.5

17:00 17:30 18:00 18:30 19:00 19:30  20:00

Figure 4. (a) Turbulent kinematic heat flux in the three Cartesian directions (U for east-west, V for
north-south, and W in the vertical). Statistically, the heat flux was calculated based on the covariance
of the velocity and sonic temperature; (b) Time series of brightness and air temperature at the eddy
covariance area-averaged site.

3.4. Self-Organizing Maps (SOMSs) of Brightness Temperature

In this section we relate the spatial pattern of the brightness temperature to the meteorological
conditions observed at the center of the image via the eddy covariance system. An unsupervised
pattern recognition algorithm (SOM: see descriptions in the Methods section) was used to cluster
the brightness temperature field into nine different nodes. This method allows us to interpret the
brightness temperature field within the right meteorological context when other parameters (such as
data from the eddy covariance system) are composited as a function of individual clusters. Figure 5 is
the resulting SOM of all of the nearly 1000 images that were taken at a 10 s sampling interval from the
Optris infrared camera; the sky brightness temperatures (appearing as a white mask at the top half of
the nodes) were not used in the clustering but used as a derived composite variable for further analysis.
The variables, which appear in parentheses in Figure 5 and are illustrated in Equations (1) and (2),
represent the (A) mean sky brightness temperature perturbation, and the (B) ratio of the mean sky
brightness temperature perturbation to the mean of the absolute sum of the three kinematic turbulence
heat flux components derived earlier for Figure 4a.
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", Tb _sky

A (per node) = o

@
where n is the number of images per node.

Tb' _sky is the spatial average of the de-trended sky brightness temperature Tb’_sky = Tb_sky —
Tb_sky, where Tb_sky is the instantaneous pixel-based value and Tb_sky is the 10 min average.

_ A (per node)
B (per node) = |cov(UTs)| + |[cov(VTs)| + |cov(WTs)| @

Figure 5. SOM nodes derived from the perturbation brightness temperature. Positive or red values
or colors indicate an increase in Tir and negative or blue values or colors indicate a decrease in Tir or
surface cooling. The numbers (A, B) on the top of each node are derived from the best matching units
of that specific node and are perturbations of (A = average sky brightness perturbation temperature,
B = average of the ratio of A by the absolute sum of the three kinematic turbulent heat flux components
that were used in Figure 4a).

4. Discussion

The results comparing the brightness temperature measured by the Optris infrared camera and in
situ air temperatures show a very good match for the canopy height air temperature measurement
and a warm bias for the air temperature measurement at the near-ground level (Figure 3c). The FLIR
camera results show a systematic cold bias, with larger temperature oscillations when compared with
the Optris, which could be explained by the automatic focusing method employed by the FLIR camera,
which tends to periodically auto-sharpen the image, but also could be explained by the need for a
camera calibration. Figure 3d shows a correlation diagram between the brightness temperature and
the in situ air temperature measurement between the smaller area-averaged regions (1) and (2) and the
larger field of view region (3). The results show a good linear correlation and a low value of root mean
square error; they also show the cold bias offset previously revealed by the FLIR camera. This results
also shows that the one-to-one relationship between the brightness temperature and the in situ air
temperature is still preserved while spatially up-scaling the image over a homogenous terrain.
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The brightness temperature signal of the Optris camera when compared to the direct
measurements of turbulent heat flux (shown in red in Figure 4b) follows the air temperature trend and
responds to the cooling and warming period suggested by the heat flux advection. The brightness
temperature oscillation range also scales to the ranges shown by the air temperature record. The FLIR
brightness temperature trend (shown in blue in Figure 4b) generally follows the initial cooling and then
warming cycle but tends to overestimate the range with around five relatively large peaks. These peaks
are linked to the automatic focusing of this specific infrared camera. Between 5 p.m. and 6:30 p.m. the
brightness and air temperature trend did not exhibit either a positive or negative trend in comparison
with the negative (cooling) or warming (positive) trends outside this period. This period also reflects a
period of quiescence and little to no turbulent heat flux as shown in Figure 4a.

The unsupervised clustering carried out by the SOM technique in Figure 5 was successful in
distinguishing nine clusters that have a meteorological context when compared to in situ measurements.
The color in Figure 5 represents the brightness temperature perturbation (red being a warming trend
and blue a cooling trend). The SOM shows distinct features that are relatively different among nodes.
For example, node 1 shows a field-wide warming trend, while node 9 a field-wide cooling trend.
Nodes 4 and 6 show the same extremes but with lower magnitudes, while nodes 3 and 7 show a north
to south cooling or warming gradient and appear to represent an opposite brightness temperature
gradient. In order to link the SOM patterns to a meteorological context we have composited two
different variables (A and B in Figure 5 and Equations (1) and (2)) from the un-clustered data behind
the construction of each of the node patterns. The mean sky brightness temperature perturbations, or
A (varying between —0.17 and 0.17), correlate well with the brightness temperature trends. Positive
values of quantity A (such as in nodes 1 and 4 for example) indicate a warming sky brightness
temperature that relates to nocturnal cloud cover, which reradiates long-wave radiation back onto the
surface, creating a homogenous spatial brightness temperature positive trend. The opposite applies
for clear sky conditions (for example nodes 6 and 9). This result does not apply for nodes 2, 3, 5, 7, and
8 which show an order of magnitude lower mean sky brightness temperature perturbation and higher
values of turbulent heat flux, which clearly creates localized and distinct warming and cooling trends
within the brightness temperature spatial pattern. The particular patterns shown by nodes 3 and 7 are
intriguing, as one could hypothesize that these opposite patterns are related to turbulent advection or
mixing events that are happening within this local topographic catchment, especially as these patterns
only exist during high turbulent heat flux periods (see quantity B for these nodes in comparison to
quantity A for the other nodes).

5. Conclusions

We have demonstrated the use of forward-looking infrared cameras measuring the surface
brightness temperature over a vineyard in the spectrum bandwidth of 7.5 to 14 um at a relatively high
temporal rate of 10 s for the application of vineyard-scale micrometeorology. Our results show that
this technique, when applied for interpreting the micrometeorology as a function of cloud cover and
within-canopy turbulence, could become a useful tool for up-scaling point measurements to spatially
wide footprints. The temporal surface brightness signal over a few hours of the stable nighttime
boundary layer intermittently interrupted by periods of turbulent heat advection was shown to be
related to the atmospheric surface-layer dynamics observed by the eddy-covariance measurements,
and reflects the temporal evolution of above-canopy wind variability.

The analysis also introduced the SOM of the spatio-temporal brightness temperature data to
reduce the dimensionality of this large dataset, but more importantly to highlight the physical dynamics
of nighttime surface brightness temperature over a complex canopy measured by an infrared camera.
The resultant spatial clusters were self-organized and compared to the meteorological context they
reflected, and the spatial brightness temperature pattern was explained in terms of the presence or
absence of nighttime cloud cover and down-welling of long-wave radiation and the canopy turbulence
heat flux. Time sequential thermography as demonstrated in this research provides positive evidence
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behind the application of thermal infrared cameras in the domain of micrometeorology. The results of
this experiment could then be used in accordance with the surface renewal theory (which assumes that
surface-atmospheric turbulence exchanges are driven by ramp-like structures within the temperature
time series), which will eventually allow for a spatial pixel-based derivation of sensible and latent heat
flux which are essential for the canopy’s water balance during daytime periods [19-22].

There are a couple of limitations to this study that need to be considered when it is applied for more
complex terrain. The first limitation comes from the potential effect of air temperature and humidity
fluctuations along the camera’s line of sight on the interpretation of surface brightness fluctuations.
This effect is usually addressed by simple one-dimensional radiative transfer modeling, which
delineates the role of infrared signal attenuation. Both of these effects have been previously found to
be less than 10% (for atmospheric temperature) and less than 3% (for atmospheric humidity) [8] for an
urban setting and results may vary for other applications. The other limitation is the variable image
pixel resolution as a function of depth. So the pixels furthest away from the camera have a different
pixel resolution than pixels close to the camera. This could be only fixed with ortho-rectification when
a high-resolution digital elevation map (DEM) for the site is available. A DEM was not available for
this study, and given that the focus of this study was not to study atmospheric turbulence as a function
of length scale, we considered that not affecting our major conclusions in this study.
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Abstract: For many practical applications of image sensors, how to extend the depth-of-field (DoF) is
an important research topic; if successfully implemented, it could be beneficial in various applications,
from photography to biometrics. In this work, we want to examine the feasibility and practicability
of a well-known “extended DoF” (EDoF) technique, or “wavefront coding,” by building real-time
long-range iris recognition and performing large-scale iris recognition. The key to the success of
long-range iris recognition includes long DoF and image quality invariance toward various object
distance, which is strict and harsh enough to test the practicality and feasibility of EDoF-empowered
image sensors. Besides image sensor modification, we also explored the possibility of varying
enrollment/testing pairs. With 512 iris images from 32 Asian people as the database, 400-mm focal
length and F/6.3 optics over 3 m working distance, our results prove that a sophisticated coding
design scheme plus homogeneous enrollment/ testing setups can effectively overcome the blurring
caused by phase modulation and omit Wiener-based restoration. In our experiments, which are based
on 3328 iris images in total, the EDOF factor can achieve a result 3.71 times better than the original
system without a loss of recognition accuracy.

Keywords: wavefront coding; extended depth of field; iris recognition; biometrics

1. Introduction

Biometric recognition has been applied to many practical uses, including homeland security,
e-commerce or other authentication management purposes. Basically, the personal attributes used for
authentication were classified into two parts: (1) physiological attributes, such as DNA, facial features,
retinal vasculature, fingerprint, hand geometry, iris texture and so on; and (2) individual behavior
features, such as signature, keystroke, voice, and gait style [1]. Among these features, iris texture is
one of the most attractive modalities because of its inherent distinctiveness, high stability over time
and low risk of circumvention [2].

An iris recognition system consists of modules of the imaging optics unit, the image processing
unit and the feature matching unit, as shown in Figure 1. The optical system, involving the camera and
the irradiance, is used to capture a distant iris image with the highest fidelity possible. The captured
images are subsequently processed through many steps. Firstly, the iris images are segmented by
determining the centers and radii of the pupillary and limbic boundaries. A conventional segmentation
method, such as an integro-differential operator [2-4] or Hough transform [4,5], can be applied. Then
the iris images are normalized by transforming the coordinates from Cartesian to Polar accordingly.
The prominent features of the iris texture are extracted using Gabor filters. Finally, the features are
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thresholded into binary codes (called iris codes) for the recognition algorithm [2—4]. Matching two
iris codes using the bit-wise XOR operation generates a distance score. The distance score, Hamming
Distance (HD), is employed to measure the distance between two iris codes. An appropriate threshold
value of HD is determined so that a decision of acceptance or rejection can be made. For example,
two iris images are said to be independent if their HD is above a certain threshold, which is about
0.33 according to Daugman’s algorithm [6]. Otherwise they are assumed to be a match.

Figure 1. An iris recognition system is composed of the imaging optics unit, the iris image processing
unit and the feature matching unit, respectively.

For the practical scenario in iris recognition, the acquisition volume, which is defined as the depth
of field (DoF), should be large enough to preserve the high reliability and robustness of the system.
Imaging optics with sufficient DoF while preserving satisfactory spatial resolution is highly desirable.
The conventional approach to increase the DoF is to increase the F-number, which corresponds to
using a smaller aperture or longer focal length. However, both scenarios have a side effect. A smaller
aperture would lead to a poor optical throughput, and thus a low signal-to-noise ratio; a longer focal
length would reduce the field-of-view (FoV), thereby adversely affecting the resolution of the system.
Computational imaging proposed by Dowski and Cathey engineered the pupil function to resolve this
dilemma in a successful way. After that, many studies applied the coded image for iris recognition and
extended the acquisition volume without loss of recognition accuracy [7-11]. To our understanding,
numerous previous studies were addressed by the simulation, where the phase mask is assumed to be
on the pupil plane exactly. However, for most practical uses, the pupil plane is unreachable by end
users because it is hidden inside a complex optomechanical layout. Meanwhile, imperfect irradiances
such as glare reflection, non-uniform distribution and brightness level should be considered as well.

In this paper, we implemented the wavefront coded iris recognition system starting from the
acquisition optics to the final score-matching stage. We experimentally compared the recognition
performance with different enrollment/testing schemes. The results offer some insight for utilizing
the wavefront coding image to provide maximal allowable DoF while maintaining the high
recognition accuracy.

The remainder of this paper is organized as follows. Section 2 introduces the optical consideration
and the corresponding terminologies. In Section 3, an extended depth of field (EDoF) system for iris
recognition is implemented [12]. In Section 4, the experimental results are examined in terms of various
figure of merits, including equal error rate (EER) and HD distributions. In Section 5, discussions on
homogeneous or heterogeneous iris recognition are carried out to explore the performance difference
between different setups. Section 6 concludes the paper.
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2. Optical Consideration

2.1. Tradeoff between Resolution and Field-of-View

The major challenge of a prime lens for iris recognition lies in a constant acquisition volume
(which can be expressed as resolution x FoV). The iris images need sufficient sampling resolution
to ensure recognition performance. At the same time, the FoV should be wide enough to cover the
entire ocular region and localize the facial landmarks. ISO/IEC 19794-6 suggests that the sampling rate
across the iris region should exceed at least 150 pixels so as to contain sufficient features [13]. For an
image sensor with a pixel size d, the minimum width of iris images D] is given by:

D} =150 x d, )]

With average width of an adult’s iris D1 = 12 mm [14], the magnification m of the camera can be
obtained as: D
m=P1s 150 x d )
D, 12
The effective focal length f of a camera is related to the magnification m and object distance
S, [15]:

@)

m

=—35
f 14+m

For the sensor pixel size d = 8 pm in our case, by Equations (2) and (3), the magnification m > 0.1

and focal length f > 0.09 S,, which defines the lower bound in terms of resolution. As shown in

Figure 2, in case of S, = 3 m working distance, the available focal length should be larger than 272 mm.

or ®)

Figure 2. The focal length f is constrained by two boundaries for the resolution and the field of view.
For object distance S, = 3 m, the available focal length is in range of f = 272-499 mm. In this study, the
focal length is set to 400 mm and illustrated as the orange point in this figure.

On the other hand, another boundary of focal length was defined by the FoV, which is given by:

D L
-1 ( D2, 1
FoV = 2tan (250 ) 2tan (251- > , 4)
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where D is the width of full ocular region. The ratio of D, /S, in object space is equivalent to the L/S;
is image space, where L is the full size of an image sensor and S; is the image distance. For the distant
imaging, the paraxial approximation holds that S; ~ f, Equation (4) can be rewritten as:

L

f = sto/ (5)

Since the FoV should be large enough to encompass the entire ocular region, with typical size of
an adult’s ocular region D, = 100 mm and the available sensor diameter L = 16.64 mm, Equation (5)
defines the upper boundary, f = 0.16S,, as shown in Figure 2. For the object distance S, = 3 m, the
available focal length should be smaller than 499 mm accordingly. Taking both resolution and FoV into
account, we employed a commercial telephoto lens, Sigma APO, with 400-mm effective focal length.
Detailed specifications of the image sensor and lens set are listed in Table 1.

Table 1. Specification of image sensor and telephoto lens set.

MV1-D2080 IR Sensor Sigma APO 150-500 mm
Optical Format 23.5 mm Field of View 5-16 degrees
Resolution 2080 x 2080 Minimum Distance 220 cm
Pixel Size 8 um Maximum Mag. 1:5.2

Dark current 0.65 fA /pixel Caliber Diameter 86 mm

2.2. Depth of Field

Figure 3 illustrates the concept of DoF, which is marked as dotted zone on the left. When the
subject is out of DoF, the point spread functions (PSFs) of the imaging system would increase by the
path-length error. The most common merit to evaluate the defocus extent is the circle of confusion
(CoC), which is defined as the largest blur PSFs indistinguishable from two distant point sources.
For computational imaging with the aid of post-processing, currently there is no universal definition for
CoC in optics. In our work, we defined CoC as the maximally allowable iris blurring with acceptable
recognition performance [7]. Under the paraxial approximation, the imaging condition at the near and
far limits of the DoF (D) and Dp) can be described as:

1,1_1 6

557 ®)
1 1

+ =_, 7

S+ %) "S=Dy 7 @)
1 1 1

®)

+ =,
Si(1+p$e) So+Dp  f

where P and C are the diameter of the pupil and CoC, respectively. According to Equations (6)—(8), the
DoF of an imaging system can be obtained as:

— CSO(SO 7f)
ON = Fp (s, f) ©)
_ CSS—f)
R Ok o
DoF = Dy + Dr = 2C5 1n

fP/(So—=f) = C3(So = f)/fP’
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Figure 3. Schematic illustration of the DoF (dotted zone) in an imaging system. DoF is determined by
four factors: circle of confusion C, exit pupil P, object distance S, and focal length f, respectively.

In our case with P = 86 mm, f =400 mm and C = 0.136 mm, the DoF is merely 60 mm, which is
too shallow to be operated in a robust way. Motion blur inevitably occurs if users are allowed to move
or walk, like the use case reported in [12]. One scheme is to increase the shutter speed or F-number by
sacrificing the image brightness, which degrades the image quality with a low signal-to-noise ratio.
In this study, we resort to the computational image, which cleverly enlarges the acquisition volume
without any possible thermal hazard or glare reflection by strong irradiance.

2.3. Irradiation Condition

The performance of an iris recognition system depends greatly on captured image quality. Without
cooperation of the subject, image quality is subject to many factors like the low contrast, the inconsistent
illumination or the specular reflection. The low contrast is due to the reason that human iris has lower
reflectance under visible light but higher reflectance under near infrared (NIR) light [16]. To overcome
this issue, we equipped two LED illuminators (BE-IR80L, BlueEyes Technology, TW), which have
850 nm central wavelength and 50 nm full width at half maximum (FWHM). The average irradiance in
continuous mode is about 13 mW /cm? to acquire enough information. We set the ISO value of the
camera so that the iris image is dark when the NIR LEDs were in off state. Therefore, no NIR pass
filter is needed. To take the specular reflection into consideration, we set the incident angle from the
illuminators to 35 degrees. When the subject is at 70 cm from the illuminators, such geometry can
avoid strong specular reflection even when the subjects wear glasses. An adequate irradiance setup
can enhance the probability of the correctness of iris segmentation [17].

3. Method to Extend the Depth-of-Field

As the preceding discussion (Section 2.2) states, an iris image with insufficient DoF would
inevitably cause motion blur and reduce recognition accuracy. Although decreasing the aperture size is
the easiest way to alleviate the phase degradation which is quadratically proportional to the pupil size,
smaller apertures will be accompanied by insulfficient irradiance and low signal-to-noise ratio. In order
to overcome this issue, we applied computational imaging techniques to extend DoF. Computational
imaging integrating optics with post signal processing can keep the PSF more robust toward defocusing.
Two issues are addressed about the coding scheme. One is to find the appropriate function of the phase
mask on the basis of merit. The other is about the coding strength of the phase mask. In addition to
coding strategy, decoding is a counterpart issue about the performance of recognition. The intermediate
iris image with blurriness undergoes an approximately linear transformation, which ideally can be
reversed by a linear reconstruction. A matched filter thus can fully restore the original iris texture.
However, noise prevents the reconstruction from being perfect in practical case. In the second part of
this section, we examine the decoding scheme coupled with matching algorithm. The following issues
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are addressed in this section: function of phase modulation with respect to optical transfer function
(OTF) analysis; optimal coding strength, which is a tradeoff between increasing defocus insensitivity
and loss of information; and the restoration process with optimal matched filter design parameters.

3.1. Wavefront Coding

Generally, there are two strategic approaches for phase modulation. One is to use a free-form
phase plate, whose distribution is expressed as a polynomial expansion [18]:

9(5,y) = Loy (L Com™y" ™), (12)

where C;,;; are a set of coefficients that will be determined by the optimization algorithm to balance
the factor of EDoF and zero nulls over a broad band range of DoF. Such free-form phase masks have
circular symmetric OTFs. The major challenge for the free-form phase plate lies in its fabrication
tolerance. More than 10 dominant coefficients in shape formulation would result in difficulties with
fabrication [19]. Meanwhile, tilt or alignment error would drastically reduce the performance in an
unexpected way. In contrast, the more popular scheme in phase coding is to use a separable function
like the cubic phase form P (x, y) in the rectangle coordinate [20]:

P(x,y) =exp [izx(xa +y3)}, (13)

where x and y are the normalized pupil coordinates. The phase coding strength, «, is determined by
the numerical evaluation. In our study, we chose cubic phase form to be our candidate because the
mask is easier to be fabricated and implemented in an iris recognition system.

We utilized the optical software Zemax™ to compromise the coding strength of the cubic phase
mask and a quadratic defocus term Wy (x2 + yz) [20]. Unlike the conventional approach which finds
the coding strength based on diffraction-limited OTF in simulation, we set the PSF similarity as the
merit function and find its mean-square-error (MSE) through the focus range. With different coding
strengths, the PSF similarity and its derivative with respect to defocus provide insight into the optical
layout that we could conduct in optical design. It should be noticed that the OTF of the coded system
cannot cross zero, because the null point in the OTF will lead to permanent loss of information which
cannot be restored by post-processing [20—22]. The worse situation is that when the strong coding is
imposed, the negative value (contrast reversal) occurred. In order to keep the system within a safe
margin, we allow OTF threshold at the Nyquist frequency to be larger than 0.169, which ensures
most information is above the noise floor and thus well recoverable [23,24]. With an off-the-shelf
telephoto lens system with focal length f = 400 mm (F/6.3), the maximum value of « is 42, which
enables a three-fold DoF. The feasibility of EDoF was convincingly demonstrated in our simulation
which coincides with the prior literatures [25-27].

3.2. Restoration Decoding Process

The coded PSFs are restored by the Wiener filter, which is one of the best known approaches
to linear image restoration [28,29]. The Wiener filter expressed in Fourier domain (1, v are spatial
frequencies in x and y direction, respectively) can be formulated as:

1 |H(u,)*
H(u,0) |H(u,v)[* + Sy (1,0)/Sf(u,0)

E(u,0) = G(u,v), (14)

where H(u,v) is the coded transfer function, G(u,v) is the intermediate iris image. The ratio
Sy(u,v)/Ss(u,v) is the noise-to-signal ratio (NSR) of the imaging system, where Sy (1, v) and S¢(u, v)
is the power spectrum of the noise and the ideal image, respectively. Generally, the NSR of an imaging
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system is unknown, and it can only be obtained empirically. We conducted a preliminary test to
fine-tune the NSR parameter (denoted as R) used in Wiener filtering.

Iris images of 64 subjects are collected and inversely filtered by Wiener filtering with different
R values. Then those iris images are used as probe images to match with the iris images in gallery
(iris images captured at on-focus position). In principle, Wiener filtering should not affect the inter-class
iris matching scores since they are intrinsically different. For the purpose of decreasing computational
complexity, we only consider the intra-class comparisons. By accumulating all HD of intra-class
comparisons, we obtained the relation between the averaged HD and parameter R, as shown in
Figure 4. Since HD indicates the distance of two iris images, by locating the minimum of the curve,
we are able to estimate the optimal parameter R that leads to the best inverse filtering performance.
The optimal R is found near 0.15 in our case.

Figure 4. Hamming distance (HD) with different parametric estimation R in the Wiener filter, where
the HD are averaged based on 64 intra-class comparisons. The optimal R is about 0.15.

4. Laboratory Experimentation

4.1. Optical Quality

We embedded a cubic phase mask with optimized coding strength a = 42 into the off-the-shelf
telephoto camera, as shown in Figure 5, where the phase mask was fabricated by the diamond turning
process. We implemented wavefront coding by putting the cubic phase mask at the rear space of the
system. The influence of mask displacement away from the focus has been examined by a series of
testing in our past research work. Interested readers can refer to our previous research [30]. Figure 6
shows the PSFs across a range of object distances from —18 to 18 cm. It is apparent that the cubic mask
helps to reduce the spreading of PSFs. When the FWHM of PSF is comparable to the size of CoC, the
object defocus corresponds to —30 mm and +40 mm, which is very close to the theoretical prediction
of 60 mm in Section 2.2.
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Figure 5. Cubic phase mask with optimized coding strength o = 42 was imbedded into the off-the-shelf
telephoto camera, where the mask was placed at the rear space of the system. (a) The off-the shelf
telephoto lens; (b) the mask holder; (c) the cubic phase mask.

Figure 6. PSFs with different defocus position for top row: conventional, and bottom row: EDoF.
Compared with conventional optics whose PSFs are quadratically broadened by defocus, EDoF enables
PSFs to be more robust against the defocus.

4.2. Image Quality

Figure 7 shows a series of iris images captured with respect to different object distances. Compared
with the conventional image (left column), wavefront coding with (middle column) or without
(right column) Wiener filtering effectively kept the iris image insensitive to the defocus effect. From the
right column of Figure 7, EDoF with Wiener filter restoration manifested the detailed texture of iris
image. However, the fidelity of the restored image was deteriorated by the artificial and ringing effect,
respectively. The artificial effect was due to the wavefront error caused by the cubic phase mask. In an
imaging optics, it is obvious that slight rotation and displacement of the phase components in a real
system would induce the changes of phase error with respect to the focus [30].

The second factor is the ringing effect caused by Wiener filtering itself. As a phenomenon already
presented in the literature [31,32], when images were restored by either the inverse linear filtering
or the Wiener filtering, there would be a certain amount of noticeable edge error. For the inverse
linear filtering, coded transfer function occurring to be zeros at high frequency caused singularities.
For the Wiener filtering, though the above problem was solved by replacing the singularities of the
inverse filter at zeros, there also existed edge error, as discussed in [30]. An optimization process on
parameter R of the Wiener filtering may adequately reduce the edge error to some degree, but it is
virtually impossible to remove all of it. In addition, even when the R value has been fine-tuned, the
Wiener filtering could still cause a smearing effect near the center of the restored frequency spectrum,
resulting in a reduction of the image’s resolution. Such a problem can be lessened or solved by further
modification of the Wiener filtering, for example, using the method proposed in [32]. However, in
order to restrict ourselves to focus on the main topic of this paper, we did not perform further analysis
in this research direction. Detailed features were further examined on normalized iris image and iris
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code, as shown in Figure 8. The dissimilar iris code after Wiener filtering (bottom row) revealed that
the restoration process was vulnerable to artificial noise and leads to increasing HDs.

Figure 7. Iris image (640 x 480p) captured with different scenarios. From left to right: (a) conventional;
(b) EDoF; and (c) EDoF with Wiener filtering. From top to bottom, the object distances are set to:
(1) —15 cm; (2) on focus; and (3) +15 cm, respectively.

Figure 8. The intermediate images in stage of iris normalization and feature extraction (of images
shown in Figure 7). The HD increased when wavefront coded image was used. The HD further
increased when the wavefront coded image is restored using Wiener filtering.

4.3. Database

We collected iris images from 64 subjects (32 persons x 2 eyes) in National Chiao Tung University,
Taiwan. Each subject stood at the on-focus position eight times, where the on-focus raw images and
wavefront coded images were used as the different enrollment data. The total number of enrollment
images was 512. Each subject stood at 11 defocus positions (from —15 to +15 cm, at 3-cm intervals)
and was captured by both conventional and wavefront coded system. The total number of both
conventional and wavefront coded probe images was 2816. The iris images were manually segmented
and iris masks were also manually created. We used Libor Masek’s iris recognition toolbox written
in Matlab for iris feature extraction [33], which used 1D Log-Gabor filters for iris feature extraction.
After the iris codes were extracted, we computed normalized HD as described in Section 1. Each testing
iris code was compared with the enrollment data. After all the possible combination comparison
finished, we plotted the HD distributions for evaluation.

4.4. EDoF Performance Evaluation Method

Because we aimed to extend the DoF without compromising the iris recognition performance,
the extension factor of DoF was defined as the longest object distance that can be achieved under
the same error rate (i.e., accuracy invariance). Four error rates were used to examine the recognition
performance: (1) false acceptance rate (FAR): the probability of falsely accepting an impostor as
an authentic sample; (2) false rejection rate (FRR): the probability of falsely rejecting an authentic
sample as an impostor sample; (3) equal error rate (EER): the value when FAR is equivalent to FRR;
and (4) sensitivity index (SI): a measure to describe the separability between scores of authentic and
impostor distributions. Sensitivity index is represented as follows.
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S1= (i, —m,) /) (0, — o) /2 (1)

where m and ¢ are the mean and standard deviation, respectively. Afterward, we chose EER as the
evaluation metric with different enrollment/testing schemes because EER is less sensitive to outliers.

4.5. Different Enrollment/Testing Schemes

The conventional scheme of an iris recognition system is to use the clear (on-focus) iris raw image
as the enrollment data. During the testing stage, wavefront coded iris images were used as testing data.
Such a scheme can be called heterogeneous matching. In this study, we would like to design a series of
enrollment/testing pairs to test the feasibility of the combination of homogeneous and heterogeneous
matching. A total of six approaches were carried out to inspect two issues: (1) whether the DoF of
the iris recognition system can be effectively increased by employing the wavefront coded images as
the enrollment data; and (2) among the various approaches, which (homogeneous or heterogeneous
matching) approach is the best to balance the recognition accuracy and extended the DoF.

4.5.1. Approach 1: Raw/Raw Pair

Approach 1 is the conventional imaging, where both enrollment and testing are not coded.
The gallery images (i.e., enrollment) were iris images captured at on-focus position, while the probe
images (i.e., testing) were iris images captured with various object distances. It can be considered a
practice of “homogeneous matching”. Figure 9a shows the HD distribution when the subject stood
on focus, where SI was 4.3, FRR was 4.7% when FAR was 0.1%, and EER was 1.0%. Blue and red
bars represent the distribution of the HD of the authentic and impostor matching results, respectively.
Such results were reasonable based on the small number of test subjects. For example, in the result of
the Multiple Biometric Grand Challenge (MBGC) 2009 version 2, it reports that the best four groups
had FRR ranging from roughly 10% when FAR was set to 0.1% [34]. Such great results were computed
based on a dataset which consists of 4789 right iris and 4792 left iris images of 136 subjects. With much
less iris data, our recognition rate outperformed theirs. In this way, the quality of our iris recognizer
was assured, since our recognition results were comparable to the best four groups from the MBGC
2009 version 2.
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Figure 9. Experimental results, where the iris database (gallery images) is enrolled by the conventional
optics, with testing images (probe images) captured by different schemes. Top row: HD Histogram
distribution at on-focus: (a) conventional (Approach 1); (¢) EDoF (Approach 2); and (e) EDoF with
Wiener filtering (Approach 3). Bottom row: HD distribution (shown as the multiple boxplots colored
in red and blue) and EER (shown as the black dotted curve) with different defocus: (b) Approach 1;
(d) Approach 2; and (f) Approach 3. When EER was set to 5.2% as the baseline, Approach 2 extends the
depth of field about 3.07-fold, whereas no improvement by Wiener filtering (Approach 3).
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Figure 9b shows HD versus defocus. The boxplot represents the first quartile to third quartile of
the data, while the five error bars from the top to the bottom represent the maximum, 99%, median,
1 percent and minimum values of the data. The HD of authentic matching rapidly increased as the
subject was out of DoF, whereas the impostor matching was kept at a high value. The increasing
authentic HD was due to the quality heterogeneity of iris images with defocus effect. The trend of EER
was in close agreement with the theoretical prediction in Section 2.2. If we set +30-mm as the DoF, the
EER = 5.2% was defined as the baseline for the following comparison.

4.5.2. Approach 2: Raw/EDOoF Pair

Approach 2 was the case where the wavefront coded images were captured as probe images.
The gallery images were the same as Approach 1. It can be considered = a practice of “heterogeneous
matching”. Figure 9c shows the authentic and impostor HD histogram when the subjects were on
focus. The SI was 4.5, FRR was 17.5% when FAR was 0.1%, and EER was 2.9%. As expected, the
performance of recognition at the best focus was poorer than the conventional one due to a prior
phase modulation.

Figure 9d shows the authentic and imposter HD with defocus. Compared to conventional imaging
(Approach 1), EERs were increasing less rapidly with respect to increasing defocus. With the same
merit in terms of EER was 5.2%, the DoF by wavefront coding was extended by a factor of 3.07.
Such results validated the feasibility of DoF theory in Section 2.2, where the extended factor could be
higher if the lower F-number optics were used.

4.5.3. Approach 3: Raw/Wiener Pair

In this approach, we aimed to examine the performance of restoration of coded iris images (probe
images). The gallery images were the same as Approach 1, and the probe images were coded iris
images after Wiener filtering. It can be considered another practice of “heterogeneous matching”.
Figure 9e shows the authentic and impostor HD histograms. The SI was reduced to 3.3, FRR was 53.3%
when FAR was 0.1%, and EER was 7.0%. The large amount of overlapping would prevent the practical
use of the system in most recognition requests.

Figure 9f shows that high EER over the capture zone causing the system to be highly unstable.
Some of the literature claimed that a perfect digital filter had the capacity to restore the coded iris image
over an extended DoF without adversely affecting the recognition accuracy. Unfortunately, in this
study, no improvement was observed compared to the conventional iris imaging system (Approach 1)
as well as wavefront coding image without the restoration (Approach 2).

4.5.4. Approach 4: EDoF/EDoF Pair

Iris recognition relies heavily on the correct feature matching of the iris codes between enrollment
and test images. The failure of Approach 3 inspired us to investigate the performance of recognition
with a new EDoF enrollment. In this approach, both the gallery images and the probe images were iris
images acquired by a wavefront coded image without any restoration process. The difference between
them lies in that gallery images were captured in focus, while the probe images were captured at
various defocus positions. It can be considered another practice of “homogeneous matching”.

Figure 10a shows the authentic and impostor HD histogram on focus. The SI was 4.0, FRR
was 23.0% when FAR was 0.1%, and EER was 3.0%. Figure 10b shows authentic and impostor HD
versus defocus range. With the same baseline (EER = 5.2%), the DoF was extended by a factor of
3.71. Surprisingly, the extended factor was higher than Approach 2. Compared with different types of
the gallery and the probe images (i.e., heterogeneous pair) in Approach 2, the recognition rate was
improved by the same types of gallery and the probe images (i.e., homogeneous pair).
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Figure 10. Experimental results, where the iris database (gallery images) is enrolled by the EDoF
image (Approach 4 and 5); and EDoF+Wiener image (Approach 6), respectively; For different
enrollment/testing pairs, the homogeneous imaging pairs (Approaches 4 and 6) is superior to
heterogeneous one (Approach 5) in terms of recognition rate. Top row: HD Histogram distribution
at on-focus: (a) EDoF/EDoF (Approach 4); (c) EDoF/Wiener (Approach 5); and (e) Wiener/Wiener
(Approach 6). Bottom row: HD distribution (shown as the multiple boxplots colored in red and blue)
and EER (shown as the black dotted curve) with different defocus: (b) Approach 4; (d) Approach 5;
and (f) Approach 6. Compared to the conventional optics with EER was set to 5.2%, the DoF was
extended by a factor of 3.71 (Approach 4) and 3.10 (Approach 6), respectively.

4.5.5. Approach 5: EDoF/Wiener Pair

For the sake of completeness of this study, we also examined the recognition performance through
the Wiener filtering with EDoF enrollment. In this approach, the gallery images were the same as in
Approach 4, while the probe images were coded iris images with restoration by Wiener filtering. It can
be considered as another practice of “heterogeneous matching”. Figure 10c shows the authentic and
impostor HD histogram. The SI was 2.8, FRR was 18.3% when FAR was 0.1%, and EER was 3.3%.
High EERs showed that the iris codes were dramatically changed by the noticeable artifacts from
Wiener filtering. Therefore, Approach 5 was not suggested for the purpose of iris recognition.

4.5.6. Approach 6: Wiener/Wiener Pair

In the last scheme, both the gallery and the probe images were coded iris images restored by
Wiener filtering. It can be considered another practice of “homogeneous matching”. We aimed to check
whether the homogeneous acquisition scheme (EDoF with Wiener filtering) in both enrollment and
testing would alleviate the side effects caused by the Wiener filtering. Figure 10e shows the authentic
and impostor HD histogram. The SI was 3.9, FRR was 23.3% when FAR was 0.1%, and EER was 3.3%.
Figure 10f shows authentic and impostor HD versus defocus range.

For wavefront coded image, the performance of homogeneous pairs (Approaches 4 and 6) were
better that of heterogeneous pairs (Approach 5). Compared to Approach 4, the global distribution
of the HD in Approach 6 showed a decreasing trend, as could be observed for both authentic and
imposter HD distributions. Such property reveals that after performing image restoration using the
Wiener filtering, the induced artifacts would make images of different classes look more similar to each
other, causing a decreased HD for inter-class comparison. For the purpose of biometric identification,
such a phenomenon was not desirable and should be avoided.
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5. Discussion

In this paper, six enrollment/ testing system configurations were carried out for the iris recognition
system. These configurations can be divided into homogeneous pairs (Approaches 1, 4 and 6) and
heterogeneous pairs (Approaches 2, 3 and 5). Based on the statistical results summarized in Table 2, the
DoF of the wavefront coding image was significantly extended. Taking the best scheme (Approach 4),
the factor was 3.71 based on the criteria EER = 5.2%. For optimal system in operation, we suggest
using the homogeneous optics (Approach 1, 4 or 6) to achieve a more satisfactory recognition rate.
However, if we consider the power of the EDoF capability as one of the core objective functions from
the experimental results, Approach 4 is the best approach with a 3.71 EDoF factor.

Table 2. The results of six experimental approaches.

Test Enrollment Conventional EDoF EdoF with Wiener
DoF =6 cm DoF =18.4 cm DoF =0cm
C . 1 SI=43 SI=45 SI=33
onventiona FRR = 4.7% FRR = 17.5% FRR = 53.3%
EER =1.0% EER =2.9% EER =7.0%
DoF =222 cm DoF =4.5cm
SI=4.0 SI=238
EdoF FRR = 23.0% FRR = 18.3%
EER =3.3% EER =3.3%
DoF =18.6 cm
. . SI=39
EdoF with Wiener FRR = 23.3%
EER =3.3%

One lesson we learned from the experiment is how to design an imaging system for the purpose
of pattern recognition. In order to achieve the highest recognition rate, one should make sure to
put into the gallery set those images which were processed in exactly the same procedure as the test
images. Otherwise, the heterogeneity caused by the hardware mismatch would degrade the accuracy.
From the perspective of pattern recognition theory, it is better that the gallery image set involves the
largest possible amount of variations which could possibly be observed in the probe image set. In such
conditions, pattern recognition or machine learning algorithms could estimate the density of the image
sample distribution correctly. During the testing stage the learned decision boundary can be robust
enough to achieve higher recognition rate.

Another question we can ask ourselves is, given the aforementioned principle, why is the
performance of Approach 4 better than 6? As discussed in Section 4.2, using Wiener filtering for
image restoration may introduce additional artifacts, which may degrade the image and modify
the detailed textural structures in iris images. Iris recognition relies heavily on the correct pattern
matching of the iris code between training and test images. If the detailed textural components of an
iris image are changed by some unpredictable factor, the iris code changes dramatically. That is the
reason why the recognition performance of Approach 6 is worse than 4. Such experimental results also
coincide with the practice proposed in [11], which shows that such methodology is supported by two
independent research groups.

The comparison between the proposed method in the best scheme and existing works is
summarized in Table 3 [7-11]. Compared to other works, the desired distance is set to 300 cm
for a long range iris recognition system. As it is strict and harsh enough to test the practicality and
feasibility of the EDoF-empowered image sensors, the database is abundantly captured. Due to the
difficulty of long range image acquisition, the optics, sensor and wavefront coding technique are
systematically designed and integrated into our laboratory. Finally, the EDoF factor reached 3.71 times
that of the original system without loss of recognition accuracy.
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Table 3. Comparison between existing works and this study.

Proposal Gracht [7] Narayanswamy [8] Smith [9] Barwick [10] Boddeti [11]
Scheme Experiment Experiment Simulation Simulation Simulation Simulation
Laboratory Laboratory Laboratory ICE UPOL ICE
Database 3328 images - 44 images 150 images 168 images 1061 images
64 classes one class two classes 50 classes 56 classes 61 classes
Distance 300 cm 50 cm 55 cm 50 cm 55 cm -
f =400 mm f =57 mm f=50 mm f=53 mm f=50 mm
Optics F/6.3 F/8 F/3.5 F/2 F/2.85 -
A =850 nm A =830 nm A =780 nm A =760 nm A =768 nm
S 2080 x 2080 1300 x 1300 1024 x 768 - - B
Ensor 8 um 6.7 pm - 5.134 pm 3 um
Cubic Cubic Cubic Cubic Cubic-pentic Cubic
Wav;front (16,71,
coding x=42 «=11 «=156 «=30 —265,370, «=60
267)
Restoration without with with without without without
Error bars of the
Mer'lt Acculjacy HD =0.32 Iris score ! set to 0.3 HD =0.33 SI=5 'authentlc and
function invariant impostor scores
do not overlap
Extended 371 over 2 over 3.3 28 22 48
factor

! Tris score: using exclusive-NOR operator for bit comparison. The values 1 and 0 represents the match and
mismatch bit pairs, respectively.

6. Conclusions

In this paper, we examine a number of EDoF approaches for the purpose of a distant iris
recognition system. Unlike prior studies that mostly addressed this in a simulation, we experimentally
overhauled the entire computational imaging flow via an EDoF imagery and verified the ultimate
performance with different homo- and hetero-enrollment/testing image pairs.

On the basis of experimental results, the DoF of the wavefront coding system is significantly
increased in comparison with the conventional imaging. Taking the best scheme (Approach 4) as
the benchmark, the EDoF factor was 3.71 under the constraint EER = 5.2%. For optimal system
configurations of testing and enrollment image sets, we suggest using the homogeneous pair
(Approaches 1, 4 and 6) to achieve a more satisfactory recognition rate.

The EDoF function via pupil engineering is validated based on the assumption that the pupil
mask should be in place of the pupil or equivalent in the imaging system. For practical use, different
positions of the phase mask would lead to diverse coding effects with respect to field of view. As a
result, the fidelity of the restored image is difficult to keep constant within a wide acquisition volume.
To keep the uniform phase coding satisfying the linear shift invariant, the position of the aperture stop
in the system layout should be further examined in future work.
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Abstract: Biometrics is a technology that enables an individual person to be identified based on
human physiological and behavioral characteristics. Among biometrics technologies, face recognition
has been widely used because of its advantages in terms of convenience and non-contact operation.
However, its performance is affected by factors such as variation in the illumination, facial expression,
and head pose. Therefore, fingerprint and iris recognitions are preferred alternatives. However,
the performance of the former can be adversely affected by the skin condition, including scarring
and dryness. In addition, the latter has the disadvantages of high cost, large system size, and
inconvenience to the user, who has to align their eyes with the iris camera. In an attempt to
overcome these problems, finger-vein recognition has been vigorously researched, but an analysis of
its accuracies according to various factors has not received much attention. Therefore, we propose a
nonintrusive finger-vein recognition system using a near infrared (NIR) image sensor and analyze
its accuracies considering various factors. The experimental results obtained with three databases
showed that our system can be operated in real applications with high accuracy; and the dissimilarity
of the finger-veins of different people is larger than that of the finger types and hands.

Keywords: nonintrusive finger-vein capturing device using NIR image sensor; misalignment of
finger-vein image; multiple images for enrollment; score-level fusion

1. Introduction

Recent developments have led to the widespread use of biometric technologies, such as face,
fingerprint, vein, iris, and voice recognition, in a variety of applications in access control, financial
transactions on mobile devices, and automatic teller machines (ATMs) [1-4]. Among them, finger-vein
recognition has been highlighted because it can overcome several drawbacks of other biometric
technologies, such as the effect of sweat, skin distortions, and scars in fingerprint recognition, or
the effect of poses and illumination changes in face recognition. Moreover, a finger-vein recognition
system is cost effective in comparison, and offers high accuracy together with the advantages of fake
detection and a bio-cryptography system [5]. Finger-vein recognition uses the vascular patterns inside
human fingers to uniquely identify individuals. Vein imaging technology relies on the use of near
infrared (NIR) illuminators at a wavelength longer than about 750 nm, because the deoxyhemoglobin
in veins absorbs light in this range [6,7]. Previous work on finger-vein recognition include research
aimed at enhancing vein image quality, increasing recognition accuracy by various feature extraction
methods, considering finger veins as a factor for individual recognition in multimodal systems,
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as well as detecting fake finger veins. The research on finger-vein image enhancement, which is
based on a software algorithm, can be classified into restoration-based and non-restoration-based
methods [7,8]. The restoration-based methods proposed by Yang et al. [9-11] were able to produce
enhanced finger-vein images by considering the effect of the layered structure of skin and restored the
images by using a point-spread function (PSF) model [10], and a biological optical model (BOM) [11].
In the non-restoration-based approaches, Gabor filtering was popularly used [6-8,12,13]. Yang et al.
introduced an enhancement method that uses multi-channel even-symmetric Gabor filters with four
directions to strengthen the vein information in different orientations [6]. A study by Park et al. [8] led
to the proposal of an image enhancement method using an optimal Gabor filter based on the directions
and thickness of the vein line. An adaptive version of the Gabor filter was used in the research of
Cho et al. [12] to enhance the distinctiveness of the finger-vein region in the original image. The Gabor
filter was also used in combination with a Retinex filter, by using fuzzy rules in the method proposed
by Shin et al. [7]. Zhang et al. proposed gray-level grouping (GLG) for the enhancement of image
contrast, and a circular Gabor filter (CGF) for the enhancement of finger-vein images [13].

Pi et al. proposed a quality improvement method based on edge-preserving and elliptical
high-pass filters capable of maintaining the edges and removing blur [14]. In addition, Yu et al.
proposed a fuzzy-based multi-threshold algorithm considering the characteristics of the vein patterns
and skin region [15].

Work has also been conducted on extracting and combining various features from finger-vein
images to increase the quality of the recognition results [16-19]. In [16], they used both the global
feature of the moment-invariants method and Gabor filter-based local features. In the method proposed
by Lu et al. [17], eight-channel Gabor features were extracted and analyzed prior to application to
score-level fusion to obtain the final matching score. Qian et al. [18] proposed a finger-vein recognition
algorithm based on the fusion of score level moment invariants by the weighted-average method.
In [19], Yang et al. proposed a binary feature for finger-vein matching, termed personalized best bit
map (PBBM), which was extracted based on the consistent bits in local binary pattern (LBP) codes.
Finger-vein recognition was also considered as a sub-system in multimodal biometric systems [20-23]
along with other individual recognition methods to compensate for the drawbacks of each of the
recognition methods. The results of finger-vein and fingerprint recognitions were matched and
combined by using various methods, such as decision level fusion of “AND” or “OR” rules as in [20],
a support vector machine (SVM) as in [21], or score level fusion as in [22]. He ef al. [23] proposed a
multimodal biometric system by considering the three biometric characteristics of fingerprint, face,
and finger-vein, and evaluated the performance of the system with the use of sum rule-based and
SVM-based score level fusion. The research on finger-vein recognition has also taken counterfeit
vein information into account, as in [24,25]. In the anti-spoofing system for vein identification in [24],
live fingers were detected by continuously capturing successive heart-rate-based images and then
examining the details in the series of images. Nguyen ef al. [25] proposed an image-analysis method
for fake finger-vein detection based on Fourier transform and wavelet transforms.

A number of research efforts on finger-vein recognition have considered the quality of the
preprocessed images, as well as the effectiveness of the matching features. However, the evaluation of
the discriminant factors on finger-vein information, such as the differences between people, left and
right hands, and the type of finger, has not received much attention. In our research, we propose a
nonintrusive finger-vein capturing device.
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Table 1. Comparison of the proposed method with previous methods.

Category

Methods

Strengths

Weaknesses

Accuracy evaluation
without considering the
various factors of people,
hands, finger types, and
the number of images

EER or ROC curve-based
evaluation of finger-vein
recognition with the
assumption that the
veins from different
hands or finger types are
different classes without
comparing the
dissimilarity of
finger-vein among
people, hands, and finger
types [7-9,11,16-23,25]

New methods for
enhancing finger-vein
images with feature
extraction or score
fusions for enhancing the
recognition accuracy are
proposed

Assuming the veins from
different hands or finger
types are different
classes without any
theoretical or
experimental ground

Accuracy evaluation
according to people,
hands, finger types, and
the number of images

The dissimilarity of
finger-veins among
people, hands, and finger
types are quantitatively
evaluated (Proposed
method)

Providing the
experimental ground for
the dissimilarity of
finger-veins among
people, hands, and finger
types

Not providing the
experimental ground for
the dissimilarity of
palm-veins or hand
dorsal veins among
people and hands

Our research is novel in the following three ways compared to previous work.

We propose a nonintrusive finger-vein capturing device using a small-sized web-camera and NIR
light-emitting diodes. To reduce the misalignment of captured images while ensuring minimal
user inconvenience, two guiding bars for positioning the fingertip and side of the finger were
attached to the device.

The accuracies of recognition were compared by assuming that images from the same person,
the same hand, and the same finger types form the same classes. Based on the receiver
operational characteristic curve, equal error rate, authentic and imposter matching distributions,
and d-prime value, the dissimilarity of finger-veins among people, hands, and finger types are
quantitatively evaluated.

The accuracies of recognition are compared according to the number of finger-vein images
combined by score-level fusion for recognition, and the number of images for enrollment.

Table 1 presents a comparison of the proposed method with previous methods.

The remainder of this paper is organized as follows. Section 2, explains the details of the proposed
method and Section 3, shows the experimental results and discussions. Finally, the conclusions and
opportunities for future work are given in Section 4.

2. Finger-Vein Recognition and Evaluation Method

2.1. Overview of the Finger-Vein Recognition System

An overview of the proposed method is shown in Figure 1. Because the input finger-vein image
consists of two parts, i.e., the finger region containing the finger-vein information and the background
region, the method to detect the finger region is first applied in order to remove the background, which
contains unnecessary information. In the next step, based on the detected upper and lower finger
boundaries detected in the previous step, the segmented finger region is stretched into a rectangular
form in the normalization step. The processing time is reduced by obtaining a sub-sample of the
stretched finger-vein image to reduce the size of the image. Before the recognition features are extracted,
the quality of the finger-vein image is enhanced by using Gabor filtering, subsequent to which the
preprocessed image is applied to the feature extraction step using the local binary pattern (LBP)
method. In the next step, the hamming distance (HD) is calculated to determine the matching distance
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between the extracted code features of the input finger-vein image and the enrolled image. The input
finger-vein image is then classified as either being genuine or being that of an imposter by using the
enrolled data based on the matching distance.

Figure 1. Flowchart of the experimental procedure of our research.

2.2. Finger Region Detection and Normalization

As shown in Figure 2, a captured finger-vein image consists of the background surrounding the
finger region, which contains the vein pattern, which is used for recognition purposes, and which
has higher gray levels than the background. The background is removed from the captured image
by detecting the four boundaries of the finger region consisting of the left and right boundaries in
the horizontal direction, and upper and lower boundaries in the vertical direction, based on previous
research [7]. In the images from the three databases, the left and right finger region boundaries are
restricted by the size of the hole in the device for capturing the finger-vein image. Detailed explanations
of the three databases and the device are provided in Section 3. As such, the values of X; and X,
which determine the left and right boundaries, as shown in Figure 2, are experimentally defined for
the three databases. In the case of the good-quality database with 640 x 480 pixel images, the values of
X and Xg are 180 and 480 pixels, respectively. For the mid-quality database with the same image size,
the values of X; and Xy are 220 and 470 pixels, respectively. The third (open) database, which consists
of images with a size of 320 x 240 pixels, X; and Xy are 20 and 268 pixels, respectively.

The 1st (Figure 2a) and 2nd database (Figure 2c) are collected by our lab-made devices (see
Section 3). In our devices, each person puts his or her finger on the hole of the upper-part of device,
and the size of the hole in the device for capturing the finger-vein image is fixed and limited in order
to remove the effect by the environmental light into the captured image. Therefore, the part of the
finger area can be acquired in the image, and the positions of left and right finger boundaries are
restricted and same in all the captured images as shown in Figure 2a,c. Therefore, in order to enhance
the processing speed of segmenting the finger area from the image, we use the pre-determined X} and
Xp values as the horizontal (X) position of the left and right boundary of the finger area, respectively.

In case of the 3rd database (Figure 2e), although the whole finger area can be acquired in the
image, the left and right-most areas of finger are so dark (caused by the insufficient illumination of NIR
light) that these areas are difficult to be used for finger-vein recognition. Therefore, we use the part of
finger area by removing these left and right-most areas, based on pre-determined X; and X values.
The positions of the left and right boundaries can be automatically segmented with the 3rd database,
but these positions can be different from each other among images, according to the performance of
the segmentation algorithm of the finger area. The main goal of our research is not focused on the
segmentation algorithm but on comparing the accuracies of recognition by assuming that images
from the same person, the same hand, and the same finger types form the same classes. In additio