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Abstract: Microwave radar imaging plays a key role in several civilian and defense applications,
such as security, surveillance, diagnostics and monitoring in civil engineering and cultural heritage,
environment observation, with particular emphasis on disasters and crisis management, where it is
required to remotely sense the area of interest in a timely, safe and effective way. To address these
constraints, a technological opportunity is offered by radar systems mounted onboard smart and
flexible platforms, such as ground-based ones, airplanes, helicopters, drones, unmanned aerial and
ground vehicles (UAV and UGV). For this reason, radar imaging based on data collected by such
platforms is gaining interest in the remote sensing community. However, a full exploitation of smart
and flexible radar systems requires the development and use of image formation techniques and
reconstruction approaches able to exploit and properly deal with non-conventional data acquisition
configurations. The other main issue is related to the need to operate in challenging environments,
and still deliver high target detection, localization and tracking. These environments include through
the wall imaging, rugged terrain and rough surface/subsurface. In these cases, one seeks mitigation
of the adverse effects of clutter and multipath via the implementation of effective signal processing
strategies and electromagnetic modeling.

This Special Issue (SI) is aimed at providing an overview of recent scientific and technological
advances in the field of radar imaging from smart and flexible platforms, in terms of hardware,
modeling and data processing.

The contributions of the SI can be generally classified into two groups.
The papers belonging to the first group [1–6] provide the description of the capabilities of newborn

imaging radar systems designed to operate in challenging scenarios [1] or using smart and flexible
aerial platforms, such as small airplanes [2], drones [3–5] or helicopters [6]. Overall, these contributions
provide an interesting survey of the potential of lightweight and compact imaging radar sensors. The
described systems cover a very wide range of the microwave spectrum, including the VHF band, up to
the X-band. The papers under this group [5] provide a good survey of the radar hardware as well as
the corresponding processing chain applied to the acquired data.

The contributions belonging to the second group [7–10] are focused on the description of novel
data processing techniques aimed at achieving accurate radar imaging under complex acquisition
geometries, such as in the case of airborne Synthetic Aperture Radar (SAR) [6–8], or in challenging
scenarios, as in the case of Forward-Looking Ground-Penetrating Radar (FL-GPR) [9] or Lunar
Penetrating Radar (LPR) [10].

Remote Sens. 2020, 12, 1272; doi:10.3390/rs12081272 www.mdpi.com/journal/remotesensing1
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As for the papers belonging to the first group, in [1], a newborn Ultra Wideband
(UWB) Multiple-Input Multiple-Output (MIMO) radar system exploiting the Stepped-Frequency
Continuous-Wave (SFCW) technology to detect human targets beyond the obstacle, is presented.
More specifically, the design, as well as manufacturing processes leading to the realization of the
overall radar system, which also includes a novel miniaturized Vivaldi antenna with 0.5–2.5 GHz
bandwidth, are described. The radar system is successfully used for through-wall imaging applications
by exploiting a data-processing algorithm based on the Cross-Correlation Time Domain Back Projection
(CC-TDBP) technique.

In [2–4], two newborn SAR systems mounted onboard aerial platforms are presented. In particular,
in [2], the imaging and topographic capabilities of a novel Italian airborne X-band SAR system, named
AXIS, are discussed. The system is based on the Frequency-Modulated Continuous-Wave (FMCW)
technology and is equipped with a single-pass interferometric layout. In this work, the description of
the developed radar system is given along with a quantitative assessment of the quality of the SLC
(Single Look Complex) SAR images and the interferometric products achievable through the system.

In [3,4], a novel Brazilian drone-borne SAR system operating in three different frequency bands,
namely the C-, L- and P-band, is presented. The system is capable of exploiting a single-pass
interferometric configuration at C-band, and full-polarimetric configurations at the L- and P-band.
In [3], the description of the system and a quantitative assessment of the results achieved by applying
the Differential SAR Interferometry (DInSAR) technique to the L-band data is presented. The work
in [4] is focused on an interesting precision farming application scenario enabled by the exploitation
of the drone-borne SAR system. More specifically, a novel methodology for obtaining growth deficit
maps with an accuracy down to 5 cm and a spatial resolution of 1 m is presented. The proposed
methodology is based on the DInSAR technique.

Another light and compact imaging radar system mounted onboard a small Multicopter-
Unmanned Aerial Vehicle (M-UAV) is presented in [5]. In this case, the radar operates with 1.7
GHz bandwidth centered at 3.95 GHz, and the flight positions are obtained through the Carrier-Phase
Differential GPS (CDGPS) technique. In particular, the work describes the overall radar imaging system
in terms of both hardware devices and data processing strategy. The system is validated by collecting
and processing a dataset through a single flight track to provide focused images of on surface targets.

In [6], a helicopter-borne integrated Sounder/SAR system operating in the UHF and VHF frequency
bands is described. More specifically, the Sounder operates at 165 MHz, whereas the full-polarimetric
SAR could operate either at 450 MHz or at 860 MHz. The system is developed under the auspices of
a contract between the Italian Space Agency (ASI) and different private and public Italian Research
Institutes and Universities. In this work, the first results relevant to a set of Sounder and SAR data,
acquired during a campaign conducted in 2018 over a desert area in Erfoud, Morocco, are presented.

As for the papers belonging to the second group, they address the processing of three kinds of
imaging radar data, namely, airborne SAR [7,8], FL-GPR [9] and LPR [10] data. For airborne SAR
processing, exploitation of small and flexible aerial platforms to mount the radar systems makes the
issues related to motion errors (that is, the attitude and position instabilities of the platform during the
acquisition) coupled to the topographic variations of the observed scene even more critical; therefore,
ad-hoc data processing strategies capable to properly account for these problems are needed.

In [7], the spatial variations induced on airborne SAR images by the motion errors are decomposed
into three main parts: range, azimuth and cross-coupling terms. The cross-coupling variations are then
corrected by means of a polynomial phase filter, whereas the range and azimuth terms are removed
through Stolt mapping.

In [8], an extended back-projection approach is proposed to take into account the topography
variations during the airborne SAR image formation process. In particular, the algorithm applies a
time–frequency rotation operation to pursue high accuracy, while reducing the computational burden,
typically required by standard back-projection algorithms operating entirely in the time-domain.
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The FL-GPR allows fast scanning of large areas for real-time target detection, unlike its
ground-coupled or near-ground down-looking GPR (DL-GPR) counterparts. This capability, however,
comes at the expense of energy backscattered from the illuminated targets and limited image spatial
resolution. Furthermore, the rough ground surface generates clutter that may obscure the buried targets,
rendering target detection very challenging. In this respect, the work in [9] presents an enhanced
imaging procedure for the suppression of the rough surface clutter arising in FL-GPR applications. The
procedure is based on a matched filtering formulation of microwave tomographic imaging enhanced
by a coherence factor (CF) scheme for clutter suppression.

The work in [10] is framed in the context of the planetary exploration and deals with the Lunar
Penetrating Radar mounted onboard the Yutu lunar rover to detect the lunar regolith and the shallower
subsurface geologic structures of the Moon. In particular, it is aimed at improving the capability
of identifying response signals caused by discrete reflectors (such as meteorites, basalt and debris)
beneath the lunar surface. To this end, a compressive sensing (CS)-based approach is proposed to
estimate the amplitudes and time delays of the radar signals from LPR data.

In conclusion, this informative Special Issue would not have been possible without the hard work
of all authors and reviewers. We also would like to extend our sincere appreciation to the Editorial
Office of Remote Sensing for their professional and excellent management work.

Author Contributions: The authors contribute equally to write this Editorial. All authors have read and agreed
to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The ultra-wideband (UWB) multi-input multi-output (MIMO) radar technique is playing
a more and more important role in the application of through-wall detection because of its high
resolution, lower antenna requirements, and efficient data capturing ability. This paper develops
a novel UWB MIMO radar system using a stepped-frequency continuous-wave (SFCW) signal,
which is designed to detect human targets behind the regular brick and concrete wall. In order to
balance high range resolution and wall-penetration depth, a novel miniaturized Vivaldi antenna
with desired bandwidth of 0.5–2.5 GHz was designed, simulated, manufactured, and successfully
used in through-wall imaging. To suppress the artifacts in the focused image and reduce the
computing complexity, the cross-correlation-based time domain back projection (CC-TDBP) algorithm
was developed. In addition, a through-wall imaging model was established, based on which the
effects of the wall on the refraction of electromagnetic (EM) waves and the reduction of velocity are
compensated. Finally, different experiments were conducted for multiple stationary targets utilizing
the designed radar system, and the improved BP-based algorithms are applied to focus the targets
behind the wall more accurately. The reconstructed two-dimensional (2D) images illustrate that the
designed MIMO radar system can successfully detect and image human targets in the air and behind
the wall.

Keywords: MIMO radar; through-wall imaging; ultrawideband signal; SFCW; sparse array; back
projection algorithm; Vivaldi antenna

1. Introduction

Ultra-wideband (UWB) through-wall radar (TWR), as an emerging technology, is used to detect
targets blocked by obstacles. It has wide application prospects in military and civil fields, such as
urban combat, antiterrorism, vigilance, security inspection, disaster rescue, and so on [1–6]. According
to the working mode, TWR can be divided into synthetic aperture radar (SAR) systems and MIMO
radar systems [7–13]. Conventionally, to get a high azimuth resolution, the synthetic aperture method
(SAR) is extensively used. The transceiver of a SAR system is sequentially sled on a rail to provide
synthetic aperture scanning imaging. However, this method requires long data acquisition times and
its azimuth resolution is limited by the length of the rail. In addition, the TWR of the SAR mode has the
disadvantage of large scale and high cost [10–13]. In this case, the MIMO radar technology provides a
new platform to solve the above problems [7–9,14–20].

Remote Sens. 2019, 11, 1867; doi:10.3390/rs11161867 www.mdpi.com/journal/remotesensing4
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The MIMO radar technology was proposed in 2003 and 2004 [14,15]. It uses multiple transmitting
and receiving antennas and transmits orthogonal waveforms, which can expand the aperture of the
actual array elements and confer a better spatial sampling ability. In addition, the sparse MIMO array
design of switched antenna can also meet the requirements of high scanning speed and detection
ability in the practical application of through-wall imaging. Therefore, the switched antenna array
radar is often considered as the MIMO radar. In recent years, the MIMO radar system has received
extensive attention of scholars. Amin et al. [1,4] proposed the ‘co-array’. The azimuth resolution
of the imaging is improved by expanding the aperture of the virtual array which is formed by the
transceiver array. Zhuge et al. [18,19] studied the equivalence of a UWB MIMO array using the point
spread function (PSF). It is pointed out that the equivalent array is the spatial convolution of the PSF
of the transmitting array and the receiving array in the far field. Based on this, a linear array design
was proposed. Feng et al. [20] developed a MIMO array-based radar system using a SFCW signal,
which can effectively improve the data sampling speed, maintain the azimuth resolution, and reduce
the hardware costs. However, due to the high frequency range of the antenna used, the penetration
depth of the radar system is too shallow for through-wall imaging. Yılmaz et al. [6] designed and
manufactured a uniform array radar system to detect and image targets behind a wall with a monostatic
configuration controlled by a switcher. However, the effect of the wall on the refraction of EM waves,
which produces a position shift of the targets behind the wall, was ignored.

Based on the advantages and limitations of the above research results, a UWB MIMO sparse
array radar system with eight pairs of transmitting and receiving miniaturized Vivaldi antennas is
studied in this paper and is mainly used for 2D imaging of multiple targets behind a wall. The UWB
MIMO system combines UWB technology with MIMO technology. On one hand, UWB technology
can improve range resolution [21,22]. On the other hand, the sparse topology of the MIMO system
can obtain larger array aperture and smaller element spacing by using fewer antennas. Moreover,
higher azimuth resolution and better main/side lobe control are obtained. Therefore, the MIMO radar
system only needs a few physical elements to achieve the same imaging effect as SAR. In this way,
the number of array elements and the system cost are greatly reduced, while the aperture length is
maintained. In addition, the electronic switching mode used in the MIMO radar system can improve
the data acquisition speed.

In the MIMO radar system, the antenna is of great importance as it radiates power to the wall and
detects the signals of the targets. UWB signals are suitable for the radar system while the through-wall
penetration losses for general wall materials increase with frequency. On the other hand, lower working
frequency band for antennas can provide better through-wall penetration but this also implies a larger
size of the antenna [23]. Hence, the antenna working frequency range of 0.5–2.5 GHz is considered to
balance good resolution and strong penetration even for thick walls. In this paper, we apply Vivaldi
antennas in a MIMO radar system for through-wall detection because of its many advantages, such as
high gain, wide band, steady radiation patterns, simple structure, and simplicity of processing [24].
The low-frequency characteristic of antennas generally results in larger size. Inspired by [25,26], we use
a slotted approach to change the surface current distribution to optimize performance throughout the
band, expand the low frequency bandwidth, and reduce its size. Finally, the low-frequency UWB
miniaturized Vivaldi antenna was designed and fabricated with dimensions of 250 mm × 200 mm
× 1.6 mm, and a working band (the S11 is less than—10 dB) of 0.5–2.5 GHz, good end-fire radiation
behavior, and acceptable gain. The Vivaldi antenna designed in this paper is one of the contributions
to the imaging research of through-wall radar technology. The proposed antenna is simple, easy to
fabricate, and is made of inexpensive FR4 substrate. The experiments show that the designed antenna
has good through-wall penetration ability and resolution.

2D imaging is one of the most important signal processing steps for a through-wall MIMO
radar system. The small imaging area is located in the near field of the radar. At the same time,
EM waves produce reflections, attenuations, and velocity changes when they penetrate the wall.
Therefore, the back projection (BP) imaging algorithm [9,20], which has no requirement for the array
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configuration, is one of the most practical through-wall imaging methods due to its convenience and
robustness. However, reconstructed images of targets by the BP method may have some artifacts.
In this paper, the cross-correlation-based time-domain BP algorithm (CC-TDBP) is applied to suppress
artifacts [27,28]. Moreover, considering the effect of walls on the refraction and velocity of EM waves,
an improved BP-based algorithm is proposed in Section 3. The experimental results validate that the
designed MIMO radar system with the proposed BP-based algorithm can accurately reconstruct the
human locations behind the wall.

The structure of the paper is organized as follows: In Section 2, the design process of the UWB
MIMO array radar system is described. The imaging signal model and CC-TDBP algorithm are
reviewed. The topology, array pattern of the designed MIMO array, and the 2D simulation imaging
results are given. Moreover, the design methods of the miniaturized Vivaldi antenna are introduced.
Finally, the prototype of the MIMO radar system is presented. In Section 3, the through-wall imaging
model is constructed and the improved CC-TDBP algorithm, considering the effect of the wall,
is illustrated. In Section 4, three experiments are conducted to assess the effectiveness of the developed
MIMO radar system and imaging methods. To summarize, Sections 5 and 6 give discussion and
conclusions, respectively.

2. UWB MIMO Radar System

The block diagram of the designed UWB MIMO radar system is shown in Figure 1. The system
includes: a PC, a two-port VNA (Agilent N9925A, working from 30 kHz to 9 GHz), two 1–8 radio
frequency (RF) switchers with one microcontroller, a 16-Vivaldi-antenna MIMO array with about 1.1
m aperture. As the master controller, the PC connects the VNA and microcontroller. A set of RF
cables and two switchers connect eight transmitting antennas and eight receiving antennas to the VNA.
The eight transmitting antennas are fixed in the middle of the array, and the eight receiving antennas
are separately fixed on the upper and lower sides of the array (shown in Figure 1).

 
Figure 1. Block diagram of the designed ultra-wideband multi-input multi-output (UWB MIMO)
radar system.

The working principle of the designed radar system is briefly explained here: the VNA is
responsible for sending and receiving SFCW signals. The PC is not only used to save and process
the received data, but also to remotely operate the microcontroller and VNA. During one period of
every S12 measurement by the VNA, only one pair of transmitting and receiving antennas collects
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data, corresponding to two paths of switcher system staying open and all other paths turning off. By
switching on and off the switchers to control the data acquisition, the total amount of data obtained in
one sampling period is 64 channels.

2.1. SFCW Signal Model and Conventional BP Algorithm

For the SFCW based radar system, the range resolution is determined by the frequency bandwidth.
The UWB signal can be used to obtain higher range resolution with a low hardware requirement.
Therefore, we utilize the UWB SFCW signal model in this paper.

Figure 2 shows a linear MIMO sparse array with an SFCW signal, which contains M transmitters
and N receivers. Assuming the m-th transmitter and n-th receiver are located at (xm,0) and (xn,0),
where m = 1, 2, . . . , M and n = 1, 2, . . . , N. Given a point target located at (x0,y0), the average distance
between the target and the l-th pair of transmitter and receiver (l-th sampling point) is given by

Rl = (Rm + Rn)/2 =

[√
(xm − x0)

2 + y2
0 +

√
(xn − x0)

2 + y2
0

]/
2 (1)

where l = (m− 1)N + n = 1, 2, . . . , MN.
Then, we assume that the whole imaging scene is discretized by I grids in the x axis and J grids in

the y axis. There are a set of targets and each one is located at a given grid in the x-y coordinate. For
the l-th sampling point and the q-th frequency fq = f0 + (q− 1)Δ f the demodulated received signal
can be expressed as

S(l, q) =
I∑

i=1

J∑
j=1

α(xi, yj) exp(− j2kqRl(xi, yj)) + n(l, q) (2)

where kq = 2πfq/c is the wavenumber, Rl(xi,yi) is the average distance between the grid at (xi,yj) and the
l-th sampling point; f 0 is the start frequency, Δf is the frequency step, α(xi,yj) is the reflection coefficient
of target, c is the velocity of light, and n(l,q) is the noise.

Figure 2. The signal model of the UWB SFCW radar with a MIMO array.

The traditional BP algorithm is applied in the case of free space or uniform medium, and the
target echo delay directly corresponds to the linear distance between the target and the antenna. One
of the typical BP methods is the frequency-domain back projection (FDBP) method. It coherently sums
the received signals from all the frequencies and sampling points to estimate the reflection coefficients
of targets. With the received signal S(l,q), the reflection coefficient of a point (xi,yj) is estimated by
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α̃(xi, yj) =
1

QL

Q∑
q=1

L∑
l=1

S(l, q) exp(+j2kqRl(xi, yj)) (3)

In practice, the time-domain implementation of BP method (TDBP) [9,20] is most commonly used
in the highly suboptimal aperture length case for its simplicity. It can significantly save computing
time. The formulation of TDBP can be written as

α̃(xi, yj) =
1
L

L∑
l=1

St(l, 2Rl(xi, yj)/c) (4)

where

St(l, 2Rl(xi, yj)/c) =
1
Q

Q∑
q=1

S(l, q) exp(+j2kqRl(xi, yj)) (5)

Equations (4) and (5) are the range compressed signal of the l-th sampling point, which can be
easily obtained by the inverse fast Fourier transformation (IFFT) and interpolation process.

Although TDBP imaging methods are simple and convenient to implement, their imaging results
may have high-level artifacts. Strong artifacts make weak targets undetectable and artifacts of many
targets produce spurious peaks, leading to negative effects on 2D imaging. In order to effectively
suppress artifacts, the cross-correlation-based TDBP (CC-TDBP) algorithm is applied [27,28], which can
be expressed as

α̃(xi, yj) =
MN−1∑
l1=1

MN∑
l2=l1+1

St(l1, τ(l1, xi, yj))St(l2, τ(l2, xi, yj)) (6)

where τ(l1, xi, yj) = 2Rl1(xi, yj)/c and τ(l2, xi, yj) = 2Rl2(xi, yj)/c.

2.2. MIMO Array Topology Design

The design of the MIMO array is related to the complexity and cost of the radar system and
directly affects the imaging quality. In designing MIMO array configurations, sparse array designs are
often used to reduce system complexity and the number of antenna elements. In order to simplify the
design of MIMO arrays, we first discuss the design factors from the following aspects.

Firstly, the azimuth resolution is determined by the aperture length of the array. Therefore,
the azimuth resolution can be improved by properly increasing the aperture length of the array.

Secondly, after increasing the length of the array aperture, in order to satisfy the ideal imaging
performance, the spacing and total number of antenna elements will also change. Specifically, due
to the sparsity of the MIMO array, grating lobes and sidelobes may be generated in the imaging
results, which seriously affect the quality of radar imaging. According to Nyquist sampling theory,
the element spacing should be less than half of the radar wavelength in order to prevent unwanted
grating lobes. On the other hand, with the decrease of the element spacing and the increase of the
number of antennas, the direct coupling among the antennas will become stronger and high-level
sidelobes will occur [29,30]. Therefore, considering the above factors, the antennas should keep a
certain distance and the number of antennas should not be too large.

Finally, the imaging performance of UWB MIMO radar is related not only to the array configuration
and number of elements, but also to the form of transmitted signals and application scenes. In this paper,
a UWB SFCW signal is used to detect the short-range targets behind the wall. Therefore, it is necessary to
consider the applicability of near-field conditions in through-wall detection. Generally, the longitudinal
distance from the target to the MIMO array is much larger than the lateral distance between the
target and the array elements. According to the verification results of [20,29–32], the focused SAR
imaging and PSF results of MIMO sparse arrays and monostatic uniform arrays have almost the same
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performance in near-field conditions. Therefore, as for the MIMO through-wall radar system in this
paper, the virtual array theory is applied to simplify the design and analysis of the MIMO sparse array.

For a bistatic MIMO sparse array which contains M transmitters and N receivers, according to the
theory of displaced phase center (DPC) approximation [18,33], two paths of the m-th transmitter at
the xm-th position and the n-th receiver at xn-th position are switched on, while all the other paths
are switched off. This is equivalent (in far field) to transmitting and receiving with one single ‘virtual’
antenna in the median position (xm + xn)/2 of the axis. The midpoints of each transmit and receive
element are regarded as virtual elements for a linear equivalent monostatic array. Hence, for each
combination of the m-th and n-th antennas, a specific pattern along the median axis is defined. As a
result, we can first obtain an equivalent uniform array with MN (MN =M×N) monostatic transceivers,
which has expected resolution and low-level grating/side lobes. Then, corresponding to the reverse
thinking process mentioned above, the MIMO sparse array can be designed by factorization. In this
case, a synthetic aperture imaging algorithm, such as the BP-based imaging algorithm, can be directly
used to image the targets.

Based on the above analysis, the design steps of the MIMO array, which are illustrated in
Figure 3, are as follows: Firstly, we begin with designing a linear monostatic uniform equivalent array.
The effective aperture size L relative to the wavelength of the center frequency is determined by the
required cross-range resolution δa = λR0/2L, where λ is wavelength, L is equivalent uniform array
length, and R0 represents the potential distance of the target. Then, the required ideal sidelobe level
(SL) is limited by the lower bound SL = −20 log(K) (dB) [21], which helps to derive the minimal
number of the virtual elements K =MN required within the effective aperture, where K refers to the
channels of the radar array. The next step is to determine the configuration of MIMO array, which is the
factorization of a desired equivalent uniform array into topologies of transmitting and receiving MIMO
arrays. The number of transmitting and receiving antennas can be obtained from the relation K =M ×N
(the total number of antenna elements is Num =M + N). The total number of antennas is minimized by
selecting an equal or as close as possible number of elements in both transmitting and receiving arrays.
For example, the number of virtual elements in the paper is 64; therefore, four different combinations
of transmitting and receiving antenna element numbers can be obtained, which are: 1 × 64, 2 × 32,
4 × 16, and 8 × 8. The result with the minimal number of antennas is eight transmitters and eight
receivers (8 × 8). At last, based on the polynomial factorization (PF) method in our previous research
work [20], a MIMO array with eight pairs of transmitters and receivers was achieved, which satisfies
the desired resolution and sidelobe level. The length of aperture is about 1.1 m. The operational center
frequency is 1.5 GHz. The array possesses 6.8 cm range resolution and 5.8 rad azimuth resolution,
with an equivalent aperture length of 1 m.

Figure 3. Schematic diagram of the polynomial factorization (PF) method.

The designed MIMO array with 16 antennas can be used to collect 64 channels of raw data by
switching on and off all antennas in a sampling period. This array design method can bring about great
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reduction in the total number of antenna elements and improve aperture efficiency while maintaining
the aperture size. The topology of the designed MIMO array is shown in Figure 4. To assess the
capacity of the designed MIMO array, given a point target located at (0,5), the point spread function
(PSF) [20] of a sparse array in the azimuth direction is calculated, as given in Figure 5. We can see that
the designed MIMO array can achieve low sidelobe level.

 
Figure 4. Topology of the designed MIMO sparse array.

Figure 5. Point spread function (PSF) of the designed MIMO sparse array in the azimuth direction.

In order to assess the imaging quality of the above array design results and imaging methods,
simple numerical simulations were carried out. The simulation parameters (Table 1) are consistent
with the setting parameters of the actual system. Three targets located at different positions, which are
(−1,3), (0,1) and (1.5,5), were simulated. Figure 6 shows the 2D imaging performance of the TDBP
algorithm and the CC-TDBP algorithm from the designed layout of the MIMO array, respectively. It
can be seen that the targets can be well focused. The artifacts in Figure 6b are suppressed compared
with those in Figure 6a.

Table 1. System parameters.

Parameters Value

Start frequency 0.4 GHz
Stop frequency 2.6 GHz

Number of frequencies 256
Number of transmitters/receivers 8/8

Range resolution 0.068 m
Azimuth resolution 5.8 rad

Maximum range 17.4 m
Length of aperture 1.1 m
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(a) (b) 

Figure 6. Simulations for the MIMO sparse array by: (a) the time domain back projection (TDBP)
algorithm; (b) the cross-correlation-based time domain back projection (CC-TDBP) algorithm.

2.3. Low-Frequency UWB Miniaturized Vivaldi Antenna

The Vivaldi antenna is a kind of UWB tapered slot antenna. It has the advantages of wide
bandwidth, symmetrical pattern, stable gain, simple structure, low profile, and easy integration [23,24].
Generally speaking, the size of antenna is determined by its working wavelength, and the wavelength
λ can be obtained from the relationship (λ = c/ f ) between the wave velocity c and frequency f in
free space. Therefore, it can be clearly seen from the above relationship that the lower the operating
frequency of the antenna, the larger the size of the antenna required. According to the needs of some
specific applications, such as a portable MIMO antenna array for TWR imaging in this paper, we plan
to use the UWB Vivaldi antenna with low frequency characteristics, so it is necessary to study the
miniaturization of Vivaldi antenna. Through a series of studies and discussions [23–26,34–36], it can
be concluded that most antenna sizes are reduced but many aspects of performance will be affected,
such as narrowing of the working frequency band and decreasing of gain. As a result, the research on
antenna miniaturization is to ensure that the performance of the antenna is minimally changed.

A miniaturization technique commonly used with Vivaldi antennas is to etch shorting slots with
different shapes on the nonradiative sides of the metal patch [25,26,34,35]. Firstly, according to the
structural analysis of the conventional tapered slot Vivaldi antenna, the radiation mechanism consists
of current flowing effectively along the edge of the mid-tapered slot line and radiating outward.
However, surface current and edge current also exist in the nonradiating metal areas on both sides of
the antenna, which will affect the antenna gain and directivity. Then, some regular rectangle slots are
etched on the nonradiative sides and the direction of the rectangle slot is perpendicular to the direction
of the current. In this case, the flow path of the current is significantly increased. The rectangle slot
edge structure on both sides of the antenna has infinite impedance for surface waves. It can effectively
suppress the radiation of surface waves at the nonradiation sides so that the current flows along the
mid-tapered slot line. As a result, the operating frequency of the antenna can be lowered without
changing the size of the antenna and the operating mode.

Above all, the final dimensions of optimized Vivaldi antenna structure in the results simulated by
HFSS 15.0 are 250 mm × 200 mm × 1.6 mm, which is designed to work across the desired bandwidth
of 0.5–2.5 GHz. Figure 7 shows the final design and fabrication result of the Vivaldi antenna. It is
made of the low-cost FR4 substrate for which the dielectric constant is about 4.6. The feeding of the
antenna is achieved by a subminiature version A (SMA) connector. Figure 8 plots both the E-plane
and H-plane radiation patterns of the designed antenna at 0.5 GHz, 1.5 GHz, and 2.5 GHz, which are
simulated using HFSS 15.0. It can be seen that the proposed Vivaldi antenna has good end fire radiation
behavior and acceptable directivity in bandwidth of 0.5–2.5 GHz. Then, the antenna is measured by
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vector network analyzer (VNA) FieldFox N9925A. A comparison between the measured S11 with
shorting slots and simulated S11 with and without shorting slots for the antenna is shown in Figure 9a.
The −10 dB frequency bandwidth of 0.5–2.5 GHz is apparent. The measured result agrees well with
the designed wideband except for the slight degradation of the low frequency starting band and the
band near 2.0 GHz, where the S11 parameter rises to be a slightly higher than −10 dB. To see the tailing
effect of the antennas for the time domain signal, we placed two identical Vivaldi antennas at the
same altitude in parallel and face to face in the air, and then collected data once in the VNA’s S12
measurement mode. After simple IFFT processing, the single channel time domain wavelet is obtained.
Figure 9b shows the one-channel wavelet pulse signal of the designed antenna in the time domain.
Figure 10 shows the simulated total gain in the direction of the maximum radiation as a function of
frequency for the designed Vivaldi antenna. We can see that the gain of the designed antenna increases
as the frequency gets higher and it varies between 5.1 dB and 10.1 dB across the desired 0.5 to 2.5 GHz
bandwidth. Compared with the UWB antennas for similar applications in [23], higher values of gain
are provided in this paper (5–10 dB versus 2–7 dB).

(a) 

 
(b) 

Figure 7. (a) Configurations of the designed Vivaldi antenna; (b) Top and bottom view of the
manufactured Vivaldi antenna.
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(a) 0.5 GHz (b) 1.5 GHz 

 
(c) 2.5 GHz 

Figure 8. Simulated E-plane and H-plane radiation patterns of the designed Vivaldi antenna. (a)
0.5 GHz, (b) 1.5 GHz, and (c) 2.5 GHz.

 

(a) 

 
(b) 

Figure 9. (a) The measured S11 of designed Vivaldi antenna with shorting slots and the simulated S11
of the proposed Vivaldi antenna with and without shorting slots; (b) The measured result of S12 in
time domain of the designed Vivaldi antenna with slots.
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Figure 10. Total gain as a function of frequency of the designed Vivaldi antenna.

2.4. Radar Prototyping Result

According to the above antenna design method, 16 identical Vivaldi antennas were fabricated.
Then, the array was assembled by the proposed design method. All antenna elements were connected
to each terminal of the RF switch through SMA connectors and RF cables. For the switch at the center
frequency of 1.5 GHz, the insertion loss was about 1.8 dB, and the isolation was greater than 48 dB.
The control and the synchronization of VNA and the RF switch were realized by a microcontroller
with the help of the PC. Finally, a MIMO radar system for through-wall detection was manufactured.
Corresponding to the radar design block diagram in Figure 1, Figure 11 displays the photography of
the designed MIMO radar system.

 
Figure 11. Photograph of designed MIMO radar prototype.

The time delay and phase difference among the 64 (8 × 8) channels of the designed MIMO
array radar system were compensated by using mechanical calibration of the VNA. To avoid further
calibration procedures, all the paths between each antenna and the VNA were of the same EM length.
Therefore, only one path required calibration. The designed parameters of the TWR system are given
in Table 1.

3. Through-Wall Imaging Method with the Improved BP-Based Algorithm

The traditional cross-correlation based TDBP algorithm is simple and practical in free space.
However, when considering the existence of a concrete wall with 22.5 cm thickness, the imaging results
focused directly by the BP imaging algorithm will cause errors between the imaged positions and the
true positions.

Generally speaking, the influence of the wall on the location of target imaging is mainly due to
the following two reasons: firstly, the slow propagation of EM waves in the wall produce additional
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time delay. This causes the targets’ positions in the imaging results to be farther from than their actual
positions. Secondly, the refraction and scattering of EM waves inside and outside the wall mean that
the original propagation path is not a straight line. These errors are mainly affected by the relative
dielectric constant of the wall. The above two points are briefly illustrated in Figure 12. In this paper,
we propose an improved TDBP algorithm to reconstruct target locations behind the wall from MIMO
sparse array radar data.

 
Figure 12. Imaging geometry for through-wall radar (TWR) with the designed MIMO array.

In the TDBP algorithm, the travel time for the wave field to propagate from the transmitter to
the target and scatter back to the receiver must be known. In [37], we used ray tracing methods to
efficiently calculate travel time in the TDBP algorithm for SIMO radar data. Assume that there are M
paths passing through the wall from one antenna. The point p in the imaging area is a pixel on the m-th
path. The incident angle is α1. The refraction angle is α2. The average propagation velocity of an EM
wave inside the wall is vw. The relative dielectric constant of the wall is εw. The thickness of the wall is
d2. The distance from the equivalent phase center of MIMO antenna array to the surface of the wall is
d3. The distance from the point p to the wall is d1. According to Snell’s law, we can obtain

sinα1

sinα2
=

c
vw

(7)

where vw = c
√

1/εw.
The travel time from the one antenna to the point p is

Tp =

(
d1 + d3

cosα1
+

d2
√
εw

cosα2

)
1
c

(8)

Then, the one-way travel time of all M propagation paths can be calculated in the same way,
and the travel time of any point behind the wall can be obtained by interpolation from the M paths.
The one-way travel time of any antenna can be computed similarly. Considering that there may be a
large number of antennas in a MIMO array (16 in this paper), we designed a parallel algorithm on the
MATLAB platform to improve the computational efficiency of one-way travel time (Figure 13, Part I).
Assume the one-way travel time in the imaging area from the transmitter Tx1 is Tt1 and the receiver
Rx1 is Tr1. For a pair of transmitting and receiving antennas, Tx1 and Rx1, the whole travel time behind
the wall can be obtained by T1 = Tr1 + Tt1. According to the designed sparse MIMO array, we can
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obtain the whole travel time from all transmitters and receivers (at the pair of Tx1-Rx2, Rx3, . . . Rx8 to
Tx8 − Rx8) to the imaging area behind the wall (Figure 13, Part II).

 

Figure 13. Flow chart of the improved TDBP algorithm. Part I: One-way travel time calculation
based on the parallel algorithm; Part II: the whole travel time for the MIMO sparse array; Part III:
TDBP imaging.

Finally, the TDBP algorithm can be directly applied to focus the data received from the MIMO
antennas and reconstruct the target location (Figure 13, Part III). In this paper, M = 501 ray paths for
every antenna are constructed, and the imaging range does not include the wall.

4. Experiment Results

In this section, three experiments are conducted to illustrate the performance and effectiveness of
the designed MIMO radar system for 2D imaging. All parameters used in the experiments are the
same as given in Table 1. The frequency range B of the radar system is 0.4–2.6 GHz, which results
in the range resolution of δr = c/(2B) = 6.8 cm. The number of frequencies is 256, which causes
the unambiguous range to be 17.4 m. The S12 measurement mode for the Agilent N9925a VNA
is selected. The imaging method is mainly based on the BP algorithm. In order to suppress the
artifacts, the CC-TDBP method is also applied for comparison with the traditional TDBP algorithm.
To make the target imaging clearer, background subtraction and direct coupling subtraction are also
conducted for the real experimental data before applying the imaging algorithm. The direct coupling
wave signal is obtained by collecting data while facing the MIMO array towards the open sky in an
open area. Therefore, the received signal only contains the direct coupling component between the
antenna elements. In general, the direct coupling data of one measurement result can be directly
subtracted and applied to most 2D imaging of experimental scenes. The method of obtaining the
background component is to measure the data without the real targets (human or corner reflector) in
the experimental scene. Then, we can simply subtract the saved signal containing the background
when we do the real measurement. This background removal method can eliminate the reflections of
the wall, other stationary clutter, and the direct coupling between the antenna elements. It is relatively
complicated and may be limited by the actual imaging situation. Because the background data are
different for each specific imaging scene, the background data of each new experimental scene needs
to be measured.

4.1. Preliminary Experimental Tests

In order to test the actual target imaging ability of the designed MIMO radar system,
the experiments were preliminarily carried out in the air. In the first experiment, two small dihedral
corner reflectors (DCR) were used as the targets in an open space. The positions of the two dihedral
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corner reflectors were approximately about 3 m and 5 m away from the equivalent phase-center of the
radar system. The experimental setup is shown in Figure 14 and the imaging results are shown in
Figure 15. It can be observed that the two targets can be focused in 2D imaging. Compared to the
results obtained by background removal (Figure 15c,d), it is obvious that the method of removing
the presampled direct coupling (Figure 15a,b) is simple and can roughly distinguish the positions of
the DCR targets. However, due to the influence of clutter signals, such as ground reflection, there
are more noise points and artifacts in the direct coupling removed images. It is worth noting that
after utilizing the CC-TDBP algorithm, the imaging results can further suppress the artifacts and
clearly distinguish the exact locations of the DCR targets, no matter the methods of removing direct
coupling or background, which are shown in Figure 15) and Figure 15d, respectively. In conclusion,
the CC-TDBP algorithm can significantly improve image quality and suppress artifacts.

 

Figure 14. Experiment setup for dihedral corner reflector imaging.

 
(a) (b) 

 
(c) (d) 

Figure 15. Imaging results of two corner reflectors by: (a) the TDBP algorithm with direct coupling
removal; (b) the CC-TDBP algorithm with direct coupling removal; (c) the TDBP algorithm with
background removal; (d) the CC-TDBP algorithm with background removal.
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In the second experiment, to validate the human imaging performance of the designed radar
system, two humans acted as targets in the near range, as shown in Figure 16. In this case, only the
CC-TDBP algorithm was used, and the imaging results are shown in Figure 17. We can see that the
two human targets marked by the red circle are clearly focused. In this preliminary experiment, even
if the direct wave is removed (Figure 17a), the designed MIMO radar system can clearly detect the
human targets in the air.

 
Figure 16. Experiment setup for human imaging.

 
(a) (b) 

Figure 17. Imaging results obtained by the CC-TDBP algorithm with: (a) direct coupling removal;
(b) background removal.

4.2. Through-Wall Experiment Results

In the third experiment, to assess the through-wall performance of the designed MIMO radar
system and the proposed improved BP algorithms, the scene consisted of two humans hidden behind
a solid wall with thickness of 22.5 cm. The walls are made of brick and concrete. After preliminary
measurement (a former reflection test on the wall was conducted, which estimated that the speed
of electromagnetic waves is 0.137 m/ns, gives a dielectric constant of 4.795 for the wall), the relative
dielectric constant of the wall is about 4.8. The experimental setup is shown in Figure 18. The MIMO
array was placed parallel along the azimuth direction on the side of the wall. The equivalent phase
center line of the array was measured about 15 cm away from the surface of the wall. The original point
of the coordinate system of the imaging region was the midpoint of the equivalent phase center line.
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Figure 18. Experimental setup for the through-wall scene.

First of all, we directly utilized the CC-TDBP algorithm proposed in Section 2.1 to focus the echo
data regardless of the wall effect. Background subtraction was applied to filter the reflections from
the wall and the direct coupling among the antennas. It can be observed that the two targets in 2D
imaging (Figure 19a) can be easily reconstructed and distinguished. The locations of the targets are
marked by the red circle in Figure 19a, which verifies the imaging and detection performance of the
designed MIMO radar system after the EM wave is attenuated due to the wall. However, it is worth
noting that the wall effects, such as refraction dispersion and change of the EM wave speed, will
impact the aforementioned data processing, generating an extra time delay and shifting of the targets.
The intersection of white lines in Figure 19a is the real positions of the targets. It is obvious that the
targets appear more distant compared to the intersection points.

Then, the improved BP imaging algorithm mentioned in Section 3 was applied, which considers
the existence of the wall. The experimental result was improved and the corrected 2D imaging result is
shown in Figure 19b. It can be observed that the positions of the targets in the image basically coincides
with the intersection positions of the white lines. The reconstructed locations of the two human targets
were much closer to the actual positions, which demonstrates the effectiveness of the improved BP
algorithm for more accurate location of human targets behind the wall.

 

(a) (b) 

Figure 19. 2D through-wall imaging results for two humans behind a wall: (a) Imaging directly by
the CC-TDBP algorithm with background removal; (b) Imaging by improved the CC-TDBP algorithm
considering the presence of the wall.
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5. Discussion

In this paper, a linear sparse MIMO radar system which can be used for through-wall detection
was designed and analyzed. The array design methods can reduce the number of antennas while
maintaining the azimuth resolution. The traditional Vivaldi antenna was improved by antenna
miniaturization technology, so that the characteristics of high gain, ultra-wideband, and low frequency
were realized. This miniaturization approach may also be utilized to improve the bandwidth
characteristics of other similar printed antennas. Concerning the imaging, the TDBP imaging algorithm
based on cross correlation was presented in detail. The experimental results in Figures 15 and 16 show
that the proposed CC-TDBP algorithm can suppress artifacts better than the traditional TDBP algorithm.
In addition, we considered the effect of the wall on the refraction of EM waves and the changes of
velocity in the through-wall detection experiment (Section 4.2). Based on the principle of Snell’s law
and ray tracing, a new through-wall imaging model is established in Figure 12. The improved BP
algorithm with cross-correlation compensates for the wall’s influence and effectively focuses the targets
behind the wall. Figure 19 shows that the targets’ locations are closer to the real positions measured by
meter stick. Finally, the significance and characteristics of this research are discussed in the following
four points.

(1). The direct significance of the MIMO radar system studied in this paper is to improve
traditional synthetic aperture methods. The designed radar system with optimized UWB Vivaldi
antennas has the characteristics of fast data acquisition speed, required azimuth resolution, low cost,
and can be applied to through-wall detection. The Vivaldi antenna has been designed, simulated,
manufactured, and successfully used in through-wall imaging, which is one of the contributions to the
through-wall radar technology. The period data (64 channels data) acquisition time of the MIMO radar
system is approximately 35 s. However, this relatively long sampling time is due to the specific VNA
that operated as the transceiver. It is an old model (Agilent N9925a) which is not designed for fast
acquisition. In fact, the MIMO radar does not have mechanical moving parts, so it can acquire data
much faster than synthetic aperture radar (SAR) based on the movement of the transceiver along a
rail [17]. In addition, compared with the current research [9,37] which is limited to simulation and
validation, we developed the actual radar system to carry out experimental verification, which is more
conducive to illustrate the effectiveness of the proposed system design and imaging algorithm.

(2). Generally, the dielectric constant of the wall is larger than that of the air. The transmitted EM
waves have to pass the wall twice to reach the radar receivers, which further reduces the energy of the
received target signal. In terms of amplitude attenuation, the first reflection from the front wall is the
strongest and the higher-order reflection can be neglected. The signal information of the targets hidden
behind walls, such as back walls and human targets, are mainly conveyed by the first transmission. It is
worth noting that the reflection of the human body is relatively low compared with wall reflection and
the direct coupling between the antennas. Moreover, the attenuation of the wall makes the collected
human target signal weaker, which certainly increases the difficulty of through-wall imaging [38].
Therefore, in the third experiment, background removal is used to improve the imaging performance.

(3). Based on the VNA platform, the system is more flexible. For example, we can properly change
the operating frequency range and frequency points of the system according to the specific application
scenario. Thus, the range resolution and maximum ambiguity range can be improved. In particular,
when the wall is thicker, the low-frequency UWB range can be chosen to improve the penetration of
EM waves.

(4). As the detection distance increases, the energy received by the radar system will inevitably
be attenuated. As shown in Figures 15 and 19, when multiple targets are distributed at different
distances in the imaging scene, the relatively weak energy of distant targets may be concealed in clutter.
Therefore, we still need to study an effective way to solve this problem, such as adding amplifiers or
shielding devices to the radar system to improve energy in the next step.

In future research, the application of MIMO through-wall radar to extract vital signs (such as
breathing, heartbeat, arm swing) or human micro-Doppler [39,40] will be explored. In addition,
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compressive sensing technology can also be applied to through-wall detection of sparse arrays to
reduce the sampling time and improve the resolution [41]. Moreover, it is worth mentioning that the
existence of multiple walls, the detection of moving targets, real-time positioning imaging, and even
three-dimensional imaging will also be challenging research tasks in our future work.

6. Conclusions

This paper develops a UWB MIMO radar system for through-wall imaging by the cross-
correlation-based TDBP algorithm. Low-frequency UWB miniaturized Vivaldi antennas were designed
and realized to ensure good system performance of wall penetration. The designed antenna, which is
one of this paper’s contributions, has acceptable through-wall imaging performance and is small in
size, low in cost, and easy to manufacture. The system’s working frequency is from 0.4 GHz to 2.6 GHz,
conferring a range resolution of 6.8 cm. The aperture length of the designed MIMO array is about 1.1
m, resulting in an angle resolution of 5.8 rad. It is worth noting that the wall effects, such as refraction
dispersion and change of the EM wave speed, are not ignored for the data processing. The through-wall
imaging model is proposed and human targets were reconstructed more accurately in through-wall
experiments. The results of the experiments demonstrate that, both in range and azimuth direction,
the proposed imaging methods can effectively suppress artifacts and focus the different targets, and
the designed MIMO radar system can detect and localize human targets behind a wall.
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Abstract: Airborne Synthetic Aperture Radar (SAR) systems are gaining increasing interest within
the remote sensing community due to their operational flexibility and observation capabilities.
Among these systems, those exploiting the Frequency-Modulated Continuous-Wave (FMCW)
technology are compact, lightweight, and comparatively low cost. For these reasons, they are
becoming very attractive, since they can be easily mounted onboard ever-smaller and highly flexible
aerial platforms, like helicopters or unmanned aerial vehicles (UAVs). In this work, we present
the imaging and topographic capabilities of a novel Italian airborne SAR system developed in the
frame of cooperation between a public research institute (IREA-CNR) and a private company
(Elettra Microwave S.r.l.). The system, which is named AXIS (standing for Airborne X-band
Interferometric SAR), is based on FMCW technology and is equipped with a single-pass interferometric
layout. In the work we first provide a description of the AXIS system. Then, we describe the acquisition
campaign carried out in April 2018, just after the system completion. Finally, we perform an analysis
of the radar data acquired during the campaign, by presenting a quantitative assessment of the
quality of the SLC (Single Look Complex) SAR images and the interferometric products achievable
through the system. The overall analysis aims at providing first reference values for future research
and operational activities that will be conducted with this sensor.

Keywords: Synthetic Aperture Radar (SAR); Airborne SAR; SAR Interferometry; Digital Elevation
Model (DEM); Frequency-Modulated Continuous-Wave (FMCW)

1. Introduction

Synthetic Aperture Radar (SAR) systems are microwave remote sensors that are mounted on
board moving platforms in order to obtain high spatial resolution in the along-track direction by
emulating the acquisition mechanism of large-aperture antennas [1,2]. Very common platforms used
to mount SAR systems are satellites [1–6] (spaceborne systems), airplanes [7–10], helicopters [11],
and, more recently, drones [12,13] (aerial systems). Due to their peculiarities, spaceborne and aerial
SAR systems are, to some extent, complementary.

Spaceborne systems guarantee very wide spatial coverage. However, they are forced to follow
polar orbits, thus flying practically only along the South–North (or North–South) direction. This poses
some limitations to the full exploitation of those techniques, such as Differential SAR Interferometry
(DInSAR) or Along Track Interferometry (ATI), which allow us to measure only the Line of Sight (LoS)
component of the remotely sensed phenomenon. Moreover, with the currently operative spaceborne
SAR constellations [3,4], the revisiting time, that is, the time interval elapsing between subsequent
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observations of the same area, is on the order of several days. This makes it impossible on the one hand
to illuminate the area of interest in a timely way in case of emergencies, and on the other hand to
monitor the evolution of the remotely sensed phenomenon through daily or hourly observations.

On the contrary, aerial systems guarantee narrow spatial coverage. However, they can fly in
any direction and, at least in principle, whenever required. Accordingly, they allow us to reach the
area to observe in a timely way, and to reduce the revisiting time to a few minutes. Furthermore,
aerial systems can use antennas much smaller than those installed on spaceborne platforms, due to
the significantly reduced distance from the observed targets. This ensures a geometrical resolution in
the along-track direction higher than that achievable with the spaceborne systems [1,2]. In addition,
when high-frequency bands (like Ka, Ku, X, and C) are employed, aerial platforms allow us to
easily obtain effective single-pass InSAR configurations [8–10,12,14–19]. Indeed, considering the
usual flight altitudes of aerial platforms, for wavelengths on the order of a few centimeters (or less),
the interferometric height of ambiguity [1,2] can be kept sufficiently low with baselines [1,2] as small as
required by the geometrical constraints imposed by small aerial platforms. In this regard, it is recalled
that aerial single-pass InSAR configurations are particularly attractive for two reasons. First, because
(like any single-pass configuration) they allow for circumventing temporal decorrelation effects [1,2].
Second, because they allow us to strongly mitigate in the interferometric products the influence of
the so-called residual errors which are typical of aerial SAR focused images due to the unavoidable
inaccuracies of the navigation data used during the image formation procedure [20].

The complementary peculiarities of spaceborne and aerial SAR systems have led in the last years to
two contrasting trends, which have somehow driven the technological development of these systems.

The first trend answers to the requirement of illuminating larger and larger areas. To do this,
spaceborne SAR systems are appropriate. In this case, the technological challenge to face consists of
the implementation of advanced acquisition modes, such as ScanSAR [1,2,21,22], TOPS [2,5,22,23],
and/or advanced optimization strategies, such as the digital beam-forming on receive technique [24],
which are aimed at widening the across-track (XT) coverage achievable with the more conventional
Stripmap mode [1,2]. This trend, of course, enables the growth of novel methods of data reduction and
analysis by artificial intelligence (AI), due to the sharply increasing spaceborne SAR data volume [25–28].

The second trend instead follows the need for guaranteeing fast and flexible monitoring, possibly
at high resolution, of confined areas. For this purpose, aerial systems are appropriate. In this case,
the technological challenge to face consists of the reduction of the size, weight, and realization
costs of the developed SAR system. In this frame, beside the conventional pulse radar systems,
Frequency-Modulated Continuous-Wave (FMCW) [29,30] is emerging as a very attractive solution.
Indeed, unlike the pulse radar systems, which require high peak transmission power, the FMCW
systems operate with constant low transmission power. In addition, the sampling frequency of the
Analog-to-Digital Converter (ADC) of the FMCW SAR systems can be significantly smaller than
the bandwidth of the transmitted signal. On the other hand, the operating principle of the FMCW
SAR limits the maximum detectable sensor-to-target distance to a few kilometers, which is safely
acceptable for the acquisition geometry of several aerial platforms, especially for the small-sized ones,
which typically fly at very low altitudes. Summing up, the FMCW SAR systems are particularly
tailored to small aerial platforms, since their architecture complexity, which is lower than that of the
pulse SAR systems, involves a reduction of size, weight, and realization costs.

In this frame, the Institute for the Electromagnetic Sensing of the Environment (IREA) of the
National Italian Research Council (CNR) has recently signed an agreement with “Elettra Microwave”,
which is a small Italian company, for the scientific use of a novel single-pass interferometric airborne
FMCW SAR prototype realized by the company. The system is named AXIS, which stands for
Airborne X-band Interferometric System. Like any conventional FMCW radar, it operates in a bistatic
configuration. Therefore, to obtain a single-pass interferometric layout, it mounts three radar antennas:
one transmitting (Tx) and two receiving (Rx).
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In this work, we present a first assessment of the imaging and topographic mapping capabilities
of the AXIS system. To do this, we show the results relevant to the acquisition campaign carried out
over the Salerno area, South of Italy, in 2018 just after system completion. In particular, during the
campaign, a number of Corner Reflectors (CRs) were deployed within the area illuminated by the radar,
and very accurate measurement of their positions through the Differential Global Positioning System
(D-GPS) technique was carried out to provide a set of sound reference ground points. This allowed
a first assessment of the quality of the focused SAR images and the Interferometric SAR (InSAR)
products achieved with the AXIS system. More specifically, in correspondence with this set of reference
points, the geometric resolution and the planar positioning accuracy of the focused AXIS images were
measured. Then, a comparison between the DGPS measurements of the CRs’ positions and the Digital
Elevation Model (DEM) generated with the single-pass InSAR AXIS data was carried out.

The presented analysis aims at providing first reference values for future research and operational
activities that will be conducted with this sensor.

The work is organized as follows. In Section 2 we provide a brief description of the system.
The acquisition campaign, the processing chain applied to the SAR data, and the achieved results are
described in Section 3. The concluding remarks are reported in Section 4.

2. System Description

The AXIS system basically consists of a radar module (accommodated in a rack), which embeds
an accurate navigation unit, and three different radar antennas. The system is currently mounted on
board a Cessna 172 aircraft, whose main parameters are collected in Table 1.

Table 1. Airplane parameters.

Model Cessna 172
Propulsion 1 Lycoming IO-360-L2A

Velocity up to 228 km/h
Endurance 5 h

The description of the main modules of the system is provided in the following subsections.

2.1. Navigation Unit

In order to limit the effects of the residual errors which are typical of airborne SAR data [20],
the AXIS system uses a very precise navigation unit, namely, the Applanix POS-AV510, which contains
a Global Navigation Satellite System (GNSS) and an Inertial Measurement Unit (IMU), which is directly
connected to the radar module and accommodated on the top of the rack. The system was originally
mounted on board the InSAS4 airborne SAR [9]. As clarified in [9], the use of this navigation
unit, coupled to proper postflight processing techniques, guarantees very precise flight parameter
measurability, as reported in Table 2.

Table 2. Absolute Accuracy Specifications (RMS) + of the Inertial Measurement Unit (IMU) *.

Position 0.05 m
Velocity 0.005 m/s

Roll and Pitch 0.005◦
True Heading 0.008◦

+ Root Mean Square. * after post-processing integration with GNSS data.
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2.2. Antennas

The AXIS system mounts three X-Band commercial off-the-shelf VV polarized microstrip antennas.
They are very compact and light: each of them is mounted in a 24.6 × 12.6 × 1.5 cm radome with
an overall weight of 420 g.

The antenna parameters were measured in the anechoic chamber of the Università degli Studi di
Napoli “Parthenope”. They are practically the same for the three antennas. As an example, we report
in Figure 1 the elevation and azimuth cuts of the (normalized) radiation pattern relevant to one of the
three antennas, namely that with serial number MAA-935985-V. In this case, the measured gain [31] is
24.7 dB; the measured half power beamwidth [31] is equal to 19.2◦ in elevation and 7.4◦ in azimuth.
When considering the squared pattern (to account for the two-way signal path), these values decrease
to 14◦ and 5.4◦, respectively.

Figure 1. Elevation (left) and azimuth (right) normalized radiation patterns of one of the three radar
antennas of the AXIS (Airborne X-band Interferometric Synthetic Aperture Radar (SAR)) system.

It is finally remarked that in the anechoic chamber was also carried out a very accurate measurement
of the phase center position of each radar antenna, see [32].

2.3. Interferometric Layout

The AXIS system is equipped with a single-pass interferometric layout. As remarked above,
like any conventional FMCW system, AXIS is a bistatic radar; that is, the Tx antenna is not also used to
receive. Accordingly, three radar antennas, one Tx and two Rx, are necessary to obtain a single-pass
interferometric configuration.

As specified above, the system is currently mounted on board a Cessna 172 aircraft. For this airplane,
the three antennas are mounted on the strut of the right wing by means of customized camera mounts;
see Figure 2. By doing so, the antennas exhibit a pointing angle in the elevation plane equal to 45 degrees;
moreover, the interferometric baseline between the two Rx devices is equal to 1.75 m. For flight altitudes
of 1 Km, 2 Km, and 3 Km, which are typical of comparatively small aircrafts, this baseline leads to the
height of ambiguity values [1] reported in Figure 3.

The lever arms, namely, the distances between the antennas’ phase centers and the reference center
of the navigation unit, were measured using the theodolite technique before the airborne mission [9,33].

Some considerations on the strategy adopted to obtain the AXIS interferometric layout are
now in order.

First of all, we underline that one of the reasons why we chose to mount the antennas on the
wing strut is that this is one of the least flexible structures of the aircraft. This allows us to limit the
problems related to the presence of small deformations unavoidably occurring on the aircraft body
during flight. We are thus quite confident that the difference between the in-flight and measured
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lever arms is negligible; in any case, this difference is reasonably within the accuracy of the adopted
theodolite measurement equipment.

 
Figure 2. Interferometric layout of the AXIS system. The light blue arrow points to the transmitting
radar antenna, whereas the red arrows point to the two receiving radar antennas.

 
Figure 3. Height of ambiguity of the AXIS system versus the look angle for three different flight altitudes.

Second, we remark that the three camera mounts shown in Figure 2 are fixed separately.
Accordingly, the solution adopted to install the three antennas could not ensure sufficiently accurate
(that is, within the accuracy of the adopted theodolite measurement equipment) repeatability of
the overall obtained antenna layout (that is, the relative positions of the antennas as well as their
orientations in azimuth and elevation). For this reason, with the architectural solution shown in
Figure 2 it is preferable to repeat the measurement of the lever arms for each acquisition campaign.
This, of course, may represent a strong limitation on the flexible use of the radar, especially if we intend
to mount it on board the aircraft only when required. Indeed, in an operative crisis scenario, in which
fast data acquisition and processing could be requested, the lever arms measurement operation
could dramatically delay the beginning of the flight mission and data processing (we recall that
precise knowledge of the lever arms is necessary to ensure accurate airborne SAR data focusing [20]).
To overcome this limitation, for future missions, a rigid mechanical framework embedding the three
antennas (and tailored to any Cessna 172 model) was designed and built. In this way, at worst a constant
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(and reasonably small) bias between the overall antennas’ frame and the IMU reference center will
occur when re-installing the antennas before each mission. We are quite confident that this will make it
unnecessary to measure the lever arms after each antenna installation. In any case, a deeper analysis of
these kinds of issues is a matter of current investigation.

2.4. Radar

The AXIS radar exploits FMCW technology, which allows for operating in a high-resolution mode
though exploiting the comparatively low ADC sampling frequency and low data rate. The main radar
parameters are collected in Table 3. Note in particular that, following the notation largely used in
the literature [29,30], in the table we have used some terms (Pulse repetition interval, Pulse duration,
Pulse repetition frequency) borrowed from pulse radar jargon. The meaning of these terms for FMCW
radar is clarified in Figure 4, which shows the temporal behavior of the frequency of the signal
continuously transmitted by such kinds of radars. In this regard, note in particular that the pulse
repetition frequency is equal to the inverse of the pulse repetition interval. In the specific case of the
AXIS system, the recording data time is 605 μs, while the frequency sweep rate, accurately measured
following the procedure in [34], is 3.336 × 1011 s−2, which leads to a maximum range distance of about
5615 m recordable by the radar. Moreover, the sampling rate is 25 MHz, while the bandwidth of the
transmitted signal is 200 MHz, leading to a slant range resolution of about 0.75 m [30].

Table 3. Radar parameters.

Radar technology FMCW
Transmitted power 5 W
Carrier frequency 9.55 GHz

Bandwidth 200 MHz
Pulse repetition frequency 1200 Hz

Pulse repetition interval 833.33 μs
Pulse duration 600.184 μs

Recording data time 605.00 μs
Sampling rate 25 MHz

Frequency sweep rate 3.336 × 1011 s−2

Range pixel spacing 0.74 m
Maximum recordable range 5615 m

Number of antennas 3
Polarization VV

 
Figure 4. Operating principle of a FMCW SAR.
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The Noise Equivalent Sigma Zero (NESZ) [29] of the system was computed according to the antenna
gain measurements carried out in the laboratory (see previous section) and the radar components’
specifications. The behavior of the NESZ versus the radar look angle is reported in Figure 5 for different
flight altitudes.

 
Figure 5. AXIS Noise Equivalent Sigma Zero (NESZ) as a function of the look angle for different
flight altitudes.

A block diagram of the radar module is shown in Figure 6. As can be seen in the figure,
it consists of three main blocks, namely, the Radar Digital Unit (RDU), the Radio Frequency Unit
(RFU), which is connected to the three antennas, and the Power Supply Unit (PSU). In particular,
the RDU is fully programmable and allows for setting the acquisition parameters, the generation
timing, and the data handling. It also includes the ADC and the data storage unit. The RFU includes
the frequency generation unit (which generates all the synchronization and radio frequency signals)
and the chirp generator unit (which generates the low-frequency modulated chirp signal by means
of digital direct synthesis technology). The RFU also includes the power amplifier, the Up/Down
converter, and an antenna front-end. The PSU provides the power supply to the whole system by
24–28 V DC internal power. It is completely autonomous and does not affect the aircraft DC bus
power. The navigation system is directly connected to the RDU by means of a specific interface;
all the navigation data are synchronized with the radar pulses and embedded in the output data.
The radar module has a weight of approximately 30 kg (comprising the PSU), and it is accommodated
in a rack whose size is about 50 cm × 50 cm × 65 cm. Due to the comparatively low weight and
compactness of the radar module, the AXIS system can be mounted on board small aircraft and
helicopters. As specified above, the system is currently mounted on board a Cessna 172 aircraft.
In particular, the rack that includes the radar module and the navigation system is installed in the
aircraft cabin, in place of the two rear passenger seats.
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Figure 6. Block diagram of the AXIS system.

3. Experimental Results

In this section, we present the results relevant to the SAR data acquisition campaign carried out
using the AXIS system over the Salerno area, Italy, in April 2018. More specifically, a flight campaign
consisting of six overlapping flight circuits was scheduled, each of them containing two antiparallel
linear tracks of about 20 km. In other words, we planned to collect SAR data from 12 flight tracks:
6 overlapping tracks from southeast (SE) to northwest (NW) and 6 overlapping tracks from NW to SE.
In Figure 7, which shows an optical image of the test area, the actually flown circuits (obtained through
the navigation data recorded during the overall campaign) are depicted with yellow lines.

 

Figure 7. The flight circuits (yellow lines) flown over the Salerno area, Italy, during the AXIS
acquisition campaign.
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Besides the flight campaign, we also performed a ground campaign aimed first of all at measuring
the antennas’ lever arms, in order to provide the information necessary to accurately process the radar
data [35,36]. As specified above, such measurements were carried out very precisely through a Total
Station Theodolite. The ground campaign was also aimed at providing a number of sound ground
control points to assess the quality of the obtained SAR images and interferometric products. To do this,
10 CRs (5 for the NW–SE and 5 for the SE–NW flight tracks) were deployed over the area illuminated
by the radar, and their positions were accurately measured by means of D-GPS surveys.

The main SAR acquisition parameters are summarized in Table 4. We recall that the minimum
recordable range for an FMCW system is 0 m. In our case, we focused only a range portion of the
overall acquired data by setting a near (slant) range equal to about 2478 m, corresponding to a (mean)
look angle of about 20 degrees.

Table 4. SAR acquisition parameters.

Flight altitude 2500 m
Mean platform velocity 48 m/s
Azimuth pixel spacing * 0.04 m

* Raw data.

In Figure 8, a block diagram of the adopted InSAR processing chain is depicted. In particular,
the range compression of FMCW SAR data simply requires a Fourier transform of each range
line [30]. The azimuth compression step was carried out through a time-domain Back Projection (BP)
strategy [35,36] by exploiting the information provided by the measured antennas’ phase centers and
lever arms, the navigation data and an external DEM, namely the SRTM one [37], of the observed area.
The adopted processing strategy allowed us to avoid application of the approximations [38] necessary
to implement frequency-domain focusing approaches with integrated motion compensation [39,40].
This, of course, involves an increase of the computational burden, but this can be managed by means
of parallel computing strategies that, for the time-domain approaches, are very easy to implement.
Moreover, like all the time-domain focusing algorithms based on BP approaches, our processing
strategy allowed us to focus all the SAR images in a common output grid, thus avoiding the need to
apply the co-registration step [1] to generate the SAR interferograms. Except for this latter processing
step, standard InSAR processing [1] was applied for the generation of the interferometric products.
Hereafter, we focus our attention on a single-pass interferometric dataset related to a flight track flown
from SE to NW. More specifically, we first analyze the obtained amplitude SAR images and then the
interferometric products.

Figure 9 shows the amplitude of the multi-look complex (MLC) SAR image relevant to the whole
track. The image is focused in an output grid coincident with the radar one (that is, slant range
and azimuth). Note that in the right vertical axis of the figure is specified the (mean) look angle
corresponding to the range coordinate reported in the left vertical axis. We remark that in the figure,
a 10 range × 10 azimuth pixel averaging window was applied for visualization purposes, obtaining
15 m × 16 m pixel spacing. The details of the main processing parameters are reported in Table 5.
From the figure we note amplitude decay for small values (approximately less than 25 degrees) and
high values (approximately greater than 60 degrees) of the (mean) look angle. This is in agreement
with the NESZ curves of Figure 5 (we recall that for the considered flight altitude, the region of our
interest in Figure 5 lies between the red and yellow curves).

Figure 9b instead reports a multi-look amplitude SAR image of a small area around Salerno’s
airport (see the light blue box in Figure 9a), which was processed at a higher resolution (see again Table 5).
Note, in particular, that a 2 range × 10 azimuth pixel averaging window was applied in the figure for
visualization purposes, obtaining 1.5 m × 1.6 m pixel spacing. All the five deployed CRs relevant to
the SE–NW track are present in this area; they are highlighted in the figure with red circles.
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Figure 8. Block diagram of the adopted airborne InSAR processing chain.

 
Figure 9. (a) Multi-look amplitude SAR images relevant to the acquired data. A 10 range × 10 azimuth
pixel averaging window was applied, obtaining 15 m × 16 m pixel spacing. (b) Multi-look amplitude
image of a patch of the entire acquired strip. A 2 range × 10 azimuth pixel averaging window was
applied, obtaining 1.5 m× 1.6 m pixel spacing. Red circles indicate the Corner Reflectors’ (CRs’) positions.
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Table 5. SAR data processing parameters relevant to the results collected in Figure 9a,b.

Parameters Figure 9a Figure 9b

Azimuth sampling (output grid) 1.6 m 0.16 m
Azimuth resolution 1.75 m 0.33 m

Azimuth resolution (MLC) 16 m 1.6 m
Range sampling (output grid) 1.5 m 0.75 m

Range resolution 1.5 m 0.75 m
Range resolution (MLC) 15 m 1.5 m

Processing parameters relevant to both images are listed in Table 5. For both images, the output
grid coincides with the radar one (range–azimuth). Starting from the single-pass data pair focused
with the processing parameters of Figure 9a, we obtained the wrapped interferogram and the
corresponding coherence map shown in Figures 10a and 11a, respectively. Note that, as in Figure 9a,
a 10 range × 10 azimuth pixel averaging window was applied to generate these two maps. Figures 10b
and 11b instead report the interferogram and the corresponding coherence map obtained starting
from the single-pass data pair focused with the processing parameters of Figure 9b. As in Figure 9b,
a 2 range × 10 azimuth pixel averaging window was applied to generate these two maps. It is stressed
that to obtain the interferometric products shown in Figures 10 and 11, besides the averaging window
described above, we did not apply any additional filter aimed at limiting the noise effects. It is finally
noted that in all the interferograms shown, we removed the topographic component provided by the
external SRTM DEM used during the focusing step.

Figure 10. (a) Multi-look interferogram obtained from the single-pass data pair focused with the
processing parameters of Figure 9a. A 10 range × 10 azimuth pixel averaging window was applied,
obtaining 15 m × 16 m pixel spacing. (b) Multi-look interferogram obtained from the single-pass data
pair focused with the processing parameters of Figure 9b. A 2 range × 10 azimuth pixel averaging
window was applied, obtaining 1.5 m × 1.6 m pixel spacing.
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Figure 11. (a) Coherence map relevant to the interferogram of Figure 10a. (b) Coherence map relevant
to the interferogram of Figure 10b.

Starting from the wrapped interferograms of Figure 10, we applied the phase unwrapping
procedure from [41,42]. Then, we estimated the resulting unknown phase offset present in the
unwrapped interferograms by applying the Phase-Based Estimate (PBE) procedure detailed in [33,43,44]
and exploiting the D-GPS measurements relevant to the CRs. Thereafter, we carried out the
phase-to-height conversion [1] to generate the InSAR DEM. The result relevant to the low-resolution
interferogram of Figure 10a is displayed in Figure 12 on a geographic grid and superimposed upon an
optical image of the overall test area.

 

Figure 12. InSAR DEM obtained starting from the low-resolution interferogram considered in Figure 10a.
The DEM was geocoded and superimposed over a Google Earth image.
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A quantitative assessment of the presented SAR products was performed by exploiting the five
CRs shown in Figure 9b, along with the in situ D-GPS measurements relevant to their positions.
More specifically, we carried out three different experiments by exploiting the high-resolution SAR
image and interferogram generated with the processing parameters considered in Figures 9b and 10b.

In the first experiment, we measured the geometric resolution of the Single Look Complex (SLC)
image in correspondence with the five CRs. The achieved results are listed in Table 6. We recall that the
expected values are 0.33 m in azimuth and 0.75 m in range (see Table 5). In particular, we measured
a mean azimuth resolution of 0.36 m with a standard deviation of 0.008 m, and a mean range resolution
of 0.74 m with a standard deviation of 0.04 m. Note that no filtering (such as Hamming [1]) aimed
at reducing the side lobe level of the point spread function (PSF) was applied. It is evident from
Table 6 that the measured resolutions are very close to the expected theoretical ones. Moreover,
it can also be noted that in most cases (with the exception of CR3) the measured range resolution is
finer than the expected theoretical one. This is due to the fact that we chose the output geometry
of the focused image according to the mean antenna pointing direction along the azimuth direction.
Accordingly, the output geometry (also named processing geometry in the literature [45]) may be
different from the acquisition geometry dictated by the actual antenna pointing direction within the
azimuth aperture from which a generic target is illuminated. When this happens, the two-dimensional
PSF relevant to the target is rotated with respect to the output grid [45]. As a consequence, measuring
the resolution of the two-dimensional PSF along the azimuth and range directions of the output grid
leads to an apparent improvement of the lower resolution (in our case, the range one; see Table 5) and
an apparent impairment of the higher resolution (in our case, the azimuth one; see Table 5).

Table 6. Measurements on CRs.

Azimuth Resolution Range Resolution Azimuth Misalignment Range Misalignment Height Error

[m] [m] [m] [m] [m]

CR 1 0.36 0.72 0.32 0.21 −0.14
CR 2 0.36 0.74 0.43 0.27 0.66
CR 3 0.36 0.80 0.42 0.26 −0.15
CR 4 0.38 0.74 0.37 0.42 0.65
CR 5 0.36 0.70 0.41 0.15 0.01
μ 0.36 0.74 0.39 0.26 0.20
σ 0.008 0.04 0.04 0.10 0.41

μ and σ indicate the mean and the standard deviation, respectively, of the achieved results.

As a second experiment, we measured the planar (that is, in the azimuth and range directions)
positioning accuracy of the Single Look Complex (SLC) image in correspondence with the five CRs.
To do this, we applied the backward geocoding procedure [1] to the D-GPS positions of the CRs,
thus calculating their expected azimuth and range coordinates in the considered SAR image output
grid. Then, we compared these coordinates with those of the CRs imaged in the SLC image. The range
and azimuth misalignments measured for all the CRs are listed in Table 6. In particular, we measured
a mean azimuth misalignment of 0.39 m with a standard deviation of 0.04 m, and a mean range
misalignment of 0.26 m with a standard deviation of 0.10 m. It is noted that in the range direction
the measured mean misalignment is lower than the resolution, whereas in the azimuth direction it is
comparable to the resolution.

As a third experiment, we provided a first estimate of the vertical accuracy of the AXIS InSAR
DEM. To do this, we compared the height values achieved on the AXIS InSAR DEM, in correspondence
with the CR positions, with the D-GPS ones. The results are again collected in Table 6. In particular,
we measured a mean vertical error of 0.20 m with a standard deviation of 0.41 m.

4. Discussion

A discussion concerning the presented results is now addressed.
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In the previous section, to carry out the analysis of the AXIS performances, we have exploited
five CRs properly deployed within the illuminated area and the D-GPS surveys of their positions.
In this way, we have obtained a number of ground measurements that may be considered with good
approximation as the ground truth.

In correspondence with this set of ground reference points we first measured the geometric
resolution of the focused AXIS images. In particular, for the SLC image we have obtained mean
geometric resolutions of 0.36 m (azimuth) × 0.74 m (range), with standard deviations of 0.008 m
(azimuth) and 0.04 m (range). These values turned out to be practically the same as the expected
theoretical ones.

Then, we measured the planar (that is, in the azimuth and range directions) positioning accuracy
of the focused AXIS images, obtaining for the SLC image a mean positioning misalignment of 0.39 m
(azimuth) × 0.26 m (range) with standard deviations of 0.04 m (azimuth) and 0.10 m (range). Finally,
we compared the D-GPS measurements of the positions of the CRs with the height values of the
single-pass InSAR AXIS DEM in correspondence with the imaged CRs, obtaining a mean vertical error
of 0.20 m with a standard deviation of 0.41 m. From these results it turns out that some systematic
errors seem to affect the obtained measurements. These errors are, however, tolerable, since the mean
range misalignment (0.26 m) is less than the range resolution and spacing (0.75 m) of the system;
the mean azimuth misalignment (0.39 m) is comparable to the azimuth resolution (0.33 m) of the
system; and the mean vertical error is just 0.20 m. It is likely that these three systematic effects are
somehow related. Given the amount of the mean range bias, one possible explanation could be the
presence of an uncompensated internal radar delay. In any case, further investigations on this issue are
a matter of current work.

Summing up, the measured imaging and topographic mapping capabilities of the overall AXIS
infrastructure (which consists of the radar system along with the complete data processing chain that
leads from the acquired raw data to the generated SAR and InSAR products) well match the theoretical,
expected ones.

Moreover, the imaging and topographic mapping capabilities of this low cost, compact and
flexible FMCW system are comparable to those achieved using well-assessed, although more expensive,
pulsed airborne X-band SAR systems, like, for instance, InSAeS4 [9]. Indeed, in [9], starting from
an analysis similar to that addressed in this work for the AXIS system, it was measured for InSAeS4
a mean geometric resolution of 0.14 m (azimuth) × 0.49 m (range), a mean positioning misalignment of
0.08 m (azimuth) × 0.04 m (range) with a standard deviation of 0.07 m (azimuth) and 0.08 m (range),
and a mean height error (of the obtained single-pass InSAR DEM) of −0.08 m with a standard deviation
of 0.51 m.

5. Conclusions

In this work, we presented a first assessment of the imaging and topographic mapping capabilities
of the AXIS system, which is a newborn single-pass interferometric airborne FMCW SAR system
developed in the frame of cooperation between a public research institute (IREA-CNR) and a private
company (Elettra Microwave S.r.l.).

In particular, we showed results relevant to an acquisition campaign carried out over the Salerno
area, South of Italy, in 2018, just after the system completion. More specifically, we provided a first
quantitative assessment of the quality of the focused SAR images and InSAR products achieved
using the AXIS system. To do this, we exploited a number of CRs properly deployed within the area
illuminated by the radar and D-GPS surveys of their positions.

More specifically, in correspondence with this set of ground reference points we measured the
geometric resolution and the positioning misalignment of the focused AXIS images, obtaining for the
SLC image, mean geometric resolutions practically equal to the expected theoretical ones, a mean
range misalignment smaller than the resolution and a mean azimuth misalignment comparable to the
resolution. Moreover, we compared the D-GPS measurements of the positions of the CRs with the
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height values of the single-pass InSAR AXIS DEM in correspondence with the imaged CRs, obtaining
a vertical error on the order of dozens of centimeters.

The presented results, aimed at providing first reference values for future research and operational
activities that will be conducted with this system, already show that the imaging and topographic
mapping capabilities of the AXIS system well match the theoretical, expected ones. Moreover, they are
comparable to those achievable using well-assessed, although typically more expensive, pulsed SAR
systems. More generally, the presented results show that the AXIS infrastructure (which consists of
the radar system along with the complete data processing chain from the acquired raw data to the
generated InSAR products) may represent an appealing monitoring solution for those applications
that require the use of high-resolution InSAR products.
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Abstract: Differential synthetic aperture radar interferometry (DInSAR) has been widely applied
since the pioneering space-borne experiment in 1989, and subsequently with the launch of the ERS-1
program in 1992. The DInSAR technique is well assessed in the case of space-borne SAR data,
whereas in the case of data acquired from aerial platforms, such as airplanes, helicopters, and drones,
the effective application of this technique is still a challenging task, mainly due to the limited accuracy
of the information provided by the navigation systems mounted onboard the platforms. The first
airborne DInSAR results for measuring ground displacement appeared in 2003 using L- and X-bands.
DInSAR displacement results with long correlation time in P-band were published in 2011. This letter
presents a SAR system and, to the best of our knowledge, the first accuracy assessment of the DInSAR
technique using a drone-borne SAR in L-band. A deformation map is shown, and the accuracy and
resolution of the methodology are presented and discussed. In particular, we have obtained an
accuracy better than 1 cm for the measurement of the observed ground displacement. It is in the
same order as that achieved with space-borne systems in C- and X-bands and the airborne systems in
X-band. However, compared to these systems, we use here a much longer wavelength. Moreover,
compared to the satellite experiments available in the literature and aimed at assessing the accuracy
of the DInSAR technique, we use only two flight tracks with low time decorrelation effects and not a
big data stack, which helps in reducing the atmospheric effects.

Keywords: differential interferometry; DInSAR; drone-borne radar; range-Doppler processor;
corner reflector

1. Introduction

Differential synthetic aperture radar interferometry (DInSAR) became popular after the launch of
the ERS-1 satellite in 1991. Relevant satellite-borne DInSAR results already appeared in 1989 when
Gabriel et al. [1] made two interferograms from three SAR images, taken from the same area at different
times. They produced a double-difference interferogram to remove phase shifts caused by topography
and to retain phase changes due to surface motion; they were able to measure surface motions of up
to 1 cm with a 10-m resolution over 50 km swaths. Since then, a large number of deformation maps,
generated from satellite-borne DInSAR data, have been supporting many geological and engineering
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monitoring tasks and studies. Nonetheless, satellite-borne DInSAR systems present an operational
limitation due to the fixed orbits of the satellites, as DInSAR only measures displacement in the
line-of-sight direction, and to retrieve a 3-D deformation map, information from at least three viewing
angles is required. Some methods accomplish this by acquiring quasi-simultaneous SAR images
with different squint angles [2,3]. Other methods use multi-interferograms from more than three
directions [4] or the multiple aperture interferometry technique [5,6], which measures displacement in
the along-track direction.

Airborne DInSAR for displacement measurements was first presented in 2003 using L-band [7],
in 2004 using X-band [8], and in 2011 using P-band [9]. The first report of a controlled accuracy
measurement using corner reflectors and distributed targets on the ground was published in 2008 [10].
Since aircraft have flexible flight patterns, surveying the area in three different directions is not
a complicated task; therefore, generating 3-D deformation maps with airborne DInSAR is more
straightforward than with satellite-borne systems. Moreover, brief revisit periods with high spatial
resolution can be achieved. The airborne DInSAR solution has been implemented with limitation due to
the high survey costs and the smaller illumination swath width, compared with satellite-borne systems.
Additionally, aircraft movement caused by air turbulence is a hindrance to accurately executing
airborne DInSAR, and hence many motion compensation techniques have been applied. Instead, Cao
et al. [11] used the time-domain back-projection algorithm for SAR processing, which is intrinsically
able to balance out platform motion. They demonstrated that it is possible to measure deformation
with centimeter accuracy.

A novel drone-borne SAR system operating in the P-, L-, and C-bands and optimized for the
DInSAR operation was presented in 2019 [12]. This new SAR system has a much smaller swath
width when compared with airborne DInSAR systems and can cover areas of about tens of square
kilometers. Thus, small-size drone-borne DInSAR systems are suitable for applications never attended
by satellite and airborne DInSAR. A first DInSAR demonstration is introduced in [12], which had an
RMS displacement measurement error of 0.045 m in L-band.

Deformation maps accurate to the order of a few millimeters are very useful as input to early
warning systems for landslide and dam failure processes, or emergency management systems after
earthquakes. The five most important features for having good differential interferometry results are
high signal-to-noise ratio, low time decorrelation between the revisits, high radar and processing phase
stability, interference-free antennae environment, and precise motion data. Each of these points will be
quantitatively addressed.

This letter reports the first results of the drone-borne DInSAR obtained from a controlled experiment
with a set of corner reflectors. During each of three subsequent flights, one of the corner reflectors
was displaced, while the others remained fixed. The displacement measurement was six times more
accurate than that presented in [12].

2. Materials and Methods

The radar prototype described in [12] operates in three bands: P, L, and C. Also, five channels are
available: two C-band antennae for cross-track interferometry, two L-band antennae for polarimetry,
and one P-band antenna. The results presented in this letter focus on the L-band HH-polarization for
the DInSAR, in which the radar transmits and receives horizontally polarized waves. Table 1 shows
the main radar acquisition parameters.

The digital surface model (DSM) is determined by using the cross-track interferometry information
provided by the two C-band antennae. Then, the DSM is applied in the DInSAR calculation. The nominal
height accuracy is better than 1 m RMS with a spatial resolution of 2 m.

The motion sensing system (MSS) is integrated into the radar, as shown in [12], and it consists of
a single channel GNSS receiver and an inertial measurement unit (IMU). One ground station with a
single channel GNSS receiver is also utilized to allow differential GNSS processing. Table 2 shows the
MSS requirements [12].
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Table 1. Main radar acquisition parameters.

Radar Parameters Value

Carrier Wavelength 22.84 cm
Bandwidth 150 MHz
Polarization HH
Peak Power 100 mW
Mean Power 1 mW

PRF 10 kHz
Incidence Angle 45 deg.

Mean Drone Height 120 m
Mean Drone Velocity 2 m/s

Motion Sensing System (MSS) D-GNSS+IMU
Range Resolution 1 m

Azimuth Resolution 0.1 m
Processed Azimuth Bandwidth 20 Hz

Processed Aperture at 45 deg. Incidence Angle 196 m
SLC Range Sampling 0.61 m

SLC Azimuth Sampling 0.05 m

Table 2. Accuracy specifications of the adopted motion sensing system (MSS) [12].

MSS Accuracy Specifications Value

Position, Absolute 0.015 m
Position, Relative <0.01 m

Roll and Pitch 0.1 deg.
True Heading 2 deg.

IMU Run Bias Stability 2 deg./h
IMU Angular Random Walk 0.1 deg./square root hour

This letter shows the tests and the results of an L-band drone-borne DInSAR survey carried
out at the University of Campinas, UNICAMP, Campinas, Brazil. Three trihedral corner reflectors
with square sides and an edge length of 0.6 m were used as a ground reference. The resulting radar
cross-section is 20 dB. Considering a 1-square-meter resolution cell, the respective sigma zero is 20 dB
as the ground reflectivity has a sigma zero of about −5 dB.

The experiment with the drone-borne system, shown in Figure 1a, took place on 19 December
2018 at the UNICAMP test site, as follows.

• The GNSS ground station was placed close to the starting position of the drone, and the GNSS
recording was initiated.

• Three flights were carried out, each consisting of the following successive steps: turning on the
drone and the radar; waiting 15 min for simultaneous and stationary recording of ground station
and radar GNSS data; take-off; executing the same west-east flight track; landing; waiting 15 min
for simultaneous and stationary recording of ground station and radar GNSS data; turning-off the
radar and the drone.

• The three corner reflectors were positioned at the UNICAMP test site at different radar incidence
angles, between 36 and 60 degrees, as shown in Figure 2. Corner reflector 1, in the nearest range,
had an incidence angle of 36 degrees. Corner reflector 2, in the middle range between 1 and 3,
had an incidence angle of 52 degrees. Corner reflector 3, in far range, had an incidence angle of
60 degrees. Corner 2 was lifted differently during the second and third flights to validate the
displacement measurement methodology.

• During the first flight, all three corner reflectors were placed horizontally on the ground,
looking north.
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• During the second flight, only the corner reflector number 2 was lifted 4 cm off the ground, as
shown in Figure 1b. Corner reflectors 1 and 3 remained at ground level.

• During the third flight, only the corner reflector number 2 was lifted 2 cm off the ground. Corner
reflectors 1 and 3 were still at ground level.

• The GNSS ground station and the drone were dismounted. The acquired data were downloaded
for processing.

(a) (b)

Figure 1. Experiment components. (a) Drone-borne differential synthetic aperture radar interferometry
(DInSAR) system [12] including one L-band antenna with H and V dipoles; two interferometric
C-band antennae attached to the radar electronics; one P-band antenna with an H dipole. (b) Corner
reflector 2, which was lifted 4 cm off the ground during the second flight and 2 cm during the third
flight. Displacement is positive (dh > 0) when terrain height decreases with time.

(a) (b) (c)

Figure 2. Test area at UNICAMP, Campinas Brazil. (a) Geocoded L-band SAR image of the first flight,
with the indication of the position of the three corner reflectors: corner 1 in the nearest range, corner
2 in the middle range, and corner 3 in the far range. Flight track on the top of the image, from west
to east (left to right), looking south (downward). (b) Overlay of SAR and optical images to show the
target’s position. (c) Optical image taken on the same day.

After the three flights, the data were processed as follows:

1. Perform the differential GNSS processing of ground station and radar GNSS receivers.
2. Generate position and antennae orientation history with IMU and differential GNSS data fusion.
3. Process the raw radar data for each of the three flight paths mentioned above (raw data 1, 2, and

3) according to the processing chain described in [10] and shown in Figure 3: range and azimuth
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compression with motion compensation; recording of the three resulting single-look complex
(SLC) images; interferometry (SLC 1 with SLC 2, generating the interferogram 1 and 2, and SLC 1
with SLC 3, producing the interferogram 1 and 3); topography subtraction and phase to height
conversion; and complex filtering. The output consists of two deformation maps, plus the three
SLCs, all in slant range geometry. Each interferogram is calculated from the SLCs with 0.1-m
resolution in azimuth and 1 m resolution in the slant range. Complex filtering results on a final
spatial resolution of 3 m in both slant range and azimuth directions for each deformation map.

4. Check the absolute position of the corner reflectors by searching their maximum power positions
on the three slant range SLC images.

5. Use the azimuth and slant range coordinates found in step 4 to read the displacement for each
corner reflector on the deformation maps. Compare the displacement with the expected results:

a. Null differential height offsets for corner reflectors 1 and 3 on both deformation maps, since
they were always at ground level;

b. A 4 cm lift for corner reflector 2 on the deformation map of interferogram 1 and 2;
c. A 2 cm lift for corner reflector 2 on the deformation map of interferogram 1 and 3.

6. Geocode the two deformation maps.
7. Generate the multi-look images from the SLCs with 1 m × 1 m resolution in slant range and

geocode them, as shown in Figure 2a.

Figure 3. Simplified flow chart of the processing chain. The complete version is in [10]. I12 is the
interferogram 1 and 2, and I13 is the interferogram 1 and 3.

The chosen processing chain [10] was originally applied to an airborne DInSAR experiment.
Nevertheless, it can be extended to this case thanks to the stability of the drone, which will be addressed
in the next section. In particular, azimuth compression can be done at Zero Doppler, and motion
compensation algorithms can be as effective as in the case of airborne DInSAR. The processing algorithm
described in [12] was not used for this experiment because, unlike the processing chain reported in [10],
it does not consider the topography subtraction step and does not deal with residual motion errors,
which cause phase errors in the slant range SLC images.

3. Results

The drone performed three stable flights presenting an orientation error of less than 1-degree RMS
and a position error of less than 0.2 m RMS. This behavior represented the majority of the research
flights and was a positive surprise: well-stabilized hexacopter drones can repeat the same track within
a 50 cm diameter tube and can hold the heading very close to the course direction. Figure 4 presents
the deformation map derived from the first and the second flights, and Figure 5 shows the deformation
map derived from the first and the third flights. Both Figures 4 and 5 are geocoded and overlaid on an
optical image. The displacement was measured according to steps 4 and 5 of the last section.
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Figure 4. Deformation map of the interferogram 1 and 2—from the first and the second flights.
Displacement is positive (dh > 0) when terrain height decreases with time. The coherence threshold is
0.6. Corner reflector 2 was lifted 4 cm in the second flight. The measured displacement was −45 mm.

Figure 5. Deformation map of the interferogram 1 and 3—from the first and the third flights.
Displacement is positive (dh > 0) when terrain height decreases with time. The coherence threshold is
0.75. Corner reflector 2 was lifted 2 cm in the second flight. The measured displacement was −15 mm.
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Table 3 shows the results overview of the two deformation maps. The displacement measurement
error range is about 10 mm. The overall standard deviation of the displacement measurement is
7.4 mm, calculated with the six height difference values from the three corner reflectors and both
deformation maps. It is six times better than the 45 mm error reported in [12]. Also, surfaces with
a coherence better than 0.6, excluding the area of the corner reflector 2, show a standard deviation
between 4 and 6 mm, as presented in Table 4.

Table 3. Results overview of the two deformation maps.

Corner Reflectors
Deformation Map of 1 and 2 [mm] Deformation Map 1 and 3 [mm]

Ideal Measured Difference Ideal Measured Difference

1 0 11 11 0 5 5
2 −40 −45 −5 −20 −15 5
3 0 −6 −6 0 −10 −10

Table 4. Deformation map error overview, considering both deformation maps—right column: standard
deviation of the deformation map error.

Targets Standard Deviation [mm]

Corner Reflectors 7.4
Areas with Coherence Better than 0.6 4–6

The analysis of the results aforementioned is structured in the following five aspects mentioned in
Section 1:

1. signal-to-noise ratio;
2. time decorrelation between the revisits;
3. radar and processing phase stability;
4. antennae environment;
5. motion data.

3.1. Signal-to-Noise Ratio

The measured signal-to-noise ratio (SNR) of the corner reflectors is 32 dB, and their reflectivity is
20 dB. The SNR and the reflectivity of the surrounding grass area are 7 dB and −5 dB, respectively.
The SNR of the neighboring bare soil is 3 dB, and the reflectivity is −9 dB, as shown in Table 5.
The expected coherence, the unfiltered interferometric phase noise, the filtered phase noise, and the
standard deviation of the displacement error are calculated according to [13]. This standard deviation
is caused exclusively by the SNR. The filtered phase has a resolution of 3 m by 3 m, starting from the
unfiltered phase with 1 m resolution in range and 0.1-m resolution in azimuth. The resulting standard
deviation of the displacement measurement error is 0.13 mm for the corner reflectors, 1.6 mm for the
grass or distributed targets with an average reflectivity of −5 dB, and 2.2 mm for bare soil or distributed
targets with an average reflectivity of −9 dB.

Table 5. DInSAR parameters calculated considering the reflectivity and signal-to-noise ratio (SNR) of
the corner reflector and the grass surface.

Targets
Reflectivity

[dB]
SNR
[dB]

Coherence
[0–1]

Unfiltered
Phase Noise

[deg.]

Filtered
Phase Noise

[deg.]

Standard Deviation of the
Displacement

Measurement Error [mm]

Corner reflectors 20 32 ~1 4 0.4 0.13
Grass −5 7 0.8 52 5.2 1.6

Bare soil −9 3 0.6 70 7 2.2
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3.2. Time Decorrelation Between the Revisits

As the radar operates in the L-band, the decorrelation within a day is negligible [7]. The high
coherence of the interferograms 1 and 2 and 1 and 3 also shows that the contribution of hours of the revisit
time does not have any influence on the degradation of the deformation map accuracy. The measured
coherence is compatible with the measured SNR and does not contribute the time decorrelation.

3.3. Radar and Processing Phase Stability

The phase errors caused by the radar and the processing chain are less than 1 degree. The resulting
error has a standard deviation at the deformation map of less than 0.4 mm.

3.4. Antennae Environment

Airborne SAR systems have considerable phase errors caused by secondary reflections of the pulse
transmission and backscatter signal reflections at the fuselage and wings. Thus, several corrections and
considerations are required. Fortunately, this was not a great issue for the drone-borne DInSAR system,
shown in Figure 1a, since the influence of the class 3 drone on the radar was negligible. No changes in
the antenna diagram, no variation in the antenna gain, and no secondary reflections were observed.

3.5. Motion Data

Considering Table 2, the major contribution for the MSS error is from the differential GNSS
calculation as the orientation errors are negligible due to the small lever arms between the MSS and
the L-band antenna. For the DInSAR, only the relative position accuracy is relevant, as the absolute
position error can be compensated by taking a ground reference target. A precise differential GNSS
calculation with a fixed phase solution was obtained because the ground station was always closer
than 2 km to the drone, and the integration time before and after each flight was greater than 10 min.
The IMU/D-GNSS fusion program delivers only a rough estimation of the relative position accuracy.
Here, a relative position accuracy was estimated at 5 mm.

4. Discussion

Table 6 presents an overview of the deformation map error sources. The total measured error
corresponds to the geometric average of all five contributions mentioned in Sections 3.1–3.5, as all these
sources are statistically uncorrelated. The error contributions from SNR, time decorrelation, radar and
processing phase stability, and antenna environment can be neglected when compared to the motion
data error contribution. The MSS processing error, estimated at 5 mm, is by far the main source of
error for the deformation map accuracy since it is approximately equal to the total deformation map
error of about 4–7.4 mm. Regarding the SNR, the breakdown of Table 5 shows that all three target
types—the corner reflectors and the grass and bare soil areas—contribute less than the motion data
error to the total measured error. Both distributed and point targets have the same relation between
coherence and phase noise in the interferogram, due to the short revisit time that causes a negligible
time decorrelation.

Table 6. Error source budget of the deformation map. There are five sources and a total measured error
of about 4–7.4 mm.

Error Sources Standard Deviation [mm]

SNR <2.2
Time Decorrelation ~0

Radar and Processing Phase Stability <0.4
Antenna Environment ~0

Motion Data ~5

Total Measured RMS Error 4–7.4
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The coherence thresholds of Figures 4 and 5 are 0.6 and 0.75, respectively. If both deformation
maps had the same threshold value, the two figures would be nearly identical, except for the area
related to corner reflector 2. A comparison between them shows that the most appropriate coherence
threshold for these interferograms is 0.6 since the use of 0.75 would discard much useful information.
This is why all the quantitative results were presented for a coherence threshold of 0.6.

5. Conclusions

The drone-borne DInSAR system introduced in [12] was operated to perform the experiment
presented in this work and was able to generate deformation maps with 4–7.4 mm accuracy. Ground
deformation maps with such high accuracy are valuable for monitoring areas and constructions in
early warning and emergency management systems for disaster mitigation. Furthermore, the easy
transportability of the drone-borne DInSAR system can allow quick and low-cost monitoring of small
areas like dams and mining sites.

An overview of the accuracy assessments of deformation maps can be summarized as follows.

1. The accuracy assessment in L-band presented here is, as far as we know, novel;
2. C- and X-band satellite-borne systems reported in [14–16] and the airborne system published

in [10] have similar accuracy.

The achievement of a high and stable deformation map accuracy with only two flight tracks and
with low time decorrelation effects reported here is, to the best of our knowledge, unique.

In future works, multiple frequency differential GNSS shall improve accuracy. However, the
improvement will not be very significant as the range between the GNSS ground station and the
drone will always be less than a few kilometers. Additionally, P- and C-bands deformation maps shall
be explored and merged with the L-band one. A three-band deformation map will have improved
accuracy and a decorrelation time of several years due to the P-band [9]. Additionally, we have been
working with the time-domain back-projection algorithm and expect to publish DInSAR results in the
near future.
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Abstract: Accurate, high-resolution maps of for crop growth monitoring are strongly needed by
precision agriculture. The information source for such maps has been supplied by satellite-borne
radars and optical sensors, and airborne and drone-borne optical sensors. This article presents a
novel methodology for obtaining growth deficit maps with an accuracy down to 5 cm and a spatial
resolution of 1 m, using differential synthetic aperture radar interferometry (DInSAR). Results are
presented with measurements of a drone-borne DInSAR operating in three bands—P, L and C. The
decorrelation time of L-band for coffee, sugar cane and corn, and the feasibility for growth deficit
maps generation are discussed. A model is presented for evaluating the growth deficit of a corn crop
in L-band, starting with 50 cm height. This work shows that the drone-borne DInSAR has potential
as a complementary tool for precision agriculture.

Keywords: differential interferometry; DInSAR; precision agriculture; drone-borne radar; crop
growth deficit map

1. Introduction

Agriculture has a vital role in the economic stability and social development of a country. Effective
agricultural management is essential to reduce costs and increase production. The monitoring of crop
growth shall be done continuously for accurate support of decision-making [1]. Remote sensing has
been an important tool for soil and crop monitoring. Optical remote sensing is widely used; nonetheless,
synthetic aperture radar (SAR) remote sensing does not depend on weather conditions or sunlight.
Moreover, the radar wavelength is approximately one million times greater than the wavelength of
optical systems and provides complementary information about the agriculture parameters.

Several studies have shown the SAR remote sensing capabilities in growth monitoring of various
crops [2,3] and crop classification [4–6]. Crop growth monitoring has been explored by using
techniques based on statistical analysis between radar backscattering and crop height [2,3,7], with the
use of techniques like interferometric SAR (InSAR) [8], polarimetric decomposition [9], polarimetric
interferometric SAR (Pol-InSAR) [10] and differential SAR Interferometry (DInSAR) [10]. The DInSAR
methodology presents high accuracy and spatial resolution, as it takes advantage of the phase difference
between images. The most popular application of the DInSAR is the estimation of subsidence maps
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with millimetric accuracy. Relevant DInSAR works using satellites appeared in 1989, in 2003, using
aircraft, and in 2019, employing drone-borne systems [11].

This article reports a first-stage crop growth estimation based on SAR experimental data from
several circular flight surveys carried out over a test area of the School of Agricultural Engineering of
the University of Campinas (UNICAMP) in Campinas, Brazil. It also proposes a model to estimate
the corn crop growth, considering different stages of crop phenology. The types of flight surveys are
discussed, and a growth map for a corn crop is presented. The drone-borne system presented in [12]
was chosen to carry out the DInSAR procedures here reported, due to the following reasons:

1. Crop growth monitoring requires spatial resolution of 1 m or less, a growth measurement accuracy
of centimeters, short revisit time and an adequate radar wavelength. The drone-borne solution
easily fulfills these requirements.

2. Satellite-based DInSAR cannot satisfy all the requirements mentioned above.
3. Aircraft-based DInSAR can meet those conditions; however, the survey costs are not economically

feasible for both the research work and the operational case.

This paper is divided as follows. Section 2 presents the drone-borne SAR system; the basics of
SAR imaging; a summary of the DInSAR theory; the proposed model for estimating corn crop growth,
considering backscattering contribution; a brief description of the experimental site; an outline of the
field measurement process; the data acquisition plan for the drone-borne SAR; and the procedures
for data processing. Section 3 shows the experimental results, consisting of acquired drone-borne
SAR images, and both qualitative and quantitative validations of the attained growth maps. Section 4
discusses those results, and Section 5 presents the authors’ conclusions.

2. Materials and Methods

2.1. Drone-Borne SAR System

The radar prototype, described in [12] and shown in Figure 1, operates in three bands—P, L and
C—with five channels: two interferometric C-band antennas, two polarimetric L-band antennas and
one P-band antenna. This work only shows results for the DInSAR with the L-band HH-polarization,
which corresponds to the transmission and reception of signals with horizontal polarization. The two
interferometric C-band antennas are used for calculating the digital surface model, DSM, which is then
used in the DInSAR calculation. Nominal height accuracy is better than 1 m RMS with a spatial resolution
of 2 m. Table 1 shows the main parameters of radar acquisition for the L-band HH-polarization.

 

Figure 1. Image of the drone-borne SAR with the L-band, the P-band and the two C-band antennas.
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Table 1. Main parameters of radar acquisition.

Radar Parameters Value

Carrier wavelength 22.84 cm
Bandwidth 150 MHz
Polarization HH
Peak Power 100 mW
Mean Power 1 mW

Pulse Repetition Frequency 10 kHz
Incidence angle 45 deg

Mean drone height 120 m
Mean drone velocity 2 m/s

Maximum acquisition time 20 min
Motion Sensing System, MSS D-GNSS + IMU

DInSAR accuracy 6 mm
Range resolution 1 m

Azimuth resolution 10 cm
Processed azimuth bandwidth 20 Hz

Processed aperture at 45 deg. incidence angle 196 m
Single-look-complex range sampling 61 cm

Single-look-complex azimuth sampling 5 cm

The Motion Sensing System (MSS), which includes a single channel GNSS receiver and an inertial
measurement unit (IMU), is integrated into the radar, as shown in [12]. There is also a ground station
with a single channel GNSS, to provide differential GNSS processing.

2.2. SAR Imaging

A circular flight pattern was chosen for generating the growth maps presented in this work. This
flight geometry provides images with high resolution, which is given by the following [13]:

δ ≈ 1.2c
π cos(θe) fc

, (1)

where c is the speed of light, fc is the signal’s central frequency andθe is the depression angle. Expression
(1) is valid for both directions of the ground plane. Additionally, the circular flight pattern helps to
reduce shadow effects in the processed image, since it can provide full aspect coverage of the targets of
interest [14].

The images were processed by using a time-domain back-projection algorithm, which is a method
that is easily applied to nonlinear flight patterns. Let

→
r l be a radar position along the flight track,

and let
→
p mn be the location of a particular pixel on the image sample grid. The back-projected signal is

calculated as follows [15]:
s
(→

p mn

)
=
∑

l

g
(→

r l, Rlmn
)
exp( j2kcRlmn), (2)

where kc is the central wavenumber, and Rlmn = |→r l −→p mn|.
2.3. DInSAR Theory Description

DInSAR is a type of interferometry that provides information on the terrain height displacement
between two flights, at different times, following the same flight path. In the DInSAR case, there is no
interferometric baseline, so a topographic map is not possible. However, a terrain height displacement
over time is perceptible [16]. In the present case, the analyzed terrain is a crop area.

Figure 2 presents a circular flight pattern over a crop field. The first survey is carried out at a time
t1. The second survey follows the same circular flight pattern of the first flight and occurs at a time t2.
Due to drone instability and weather conditions, the flight patterns are not identical but very similar.
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Figure 2. DInSAR circular flight pattern and illumination geometry.

In this example, consider that a first flight is performed on time t1, during which the crop height
is H1, corresponding to a range R1 from the radar. Then, on time t2, another flight is executed, when
the crop height is now H2, and is at a range R2 from the radar. Let ΔR = R2 −R1 be the difference in
radar range, and let ΔH = H2 −H1 be the growth of the corn crop between these two surveys. It is
possible to establish a relationship between these quantities, as shown in Figure 3.

Figure 3. Interaction between radar signal and crop height.

The relationship between height and range is given by the following:

ΔH =
ΔR

sinθe
, (3)

where θe is the depression angle. As the drone navigation system performs flight tracks with a position
accuracy of about 20 cm at 120 m height, the flight tracks on different dates are assumed to be identical
and, therefore, θe is virtually the same for any flight. The relationship between the radar range, ΔR,
and the phase, Δ∅, can be described as follows [17]:

ΔR =
λ

4π
Δ∅. (4)

54



Remote Sens. 2020, 12, 615

For every point of interest in the image sample grid, the mean value of θe is calculated from the
contributions of the depression angles at each drone position along the flight track. If the radar antenna
does not illuminate the point of interest at a given drone position, the corresponding contribution
is not taken into account. This assessment is based on the antenna aperture angles in azimuth and
elevation, considering a circular flight path.

In order to calculate the phase difference between both radar images, it is necessary to determine
the phase corresponding to a null vertical displacement or “zero-movement” [16]. That is, it is required
to find the phase corresponding to an object within the image for which there was certainly no
displacement between the acquisition flights. The zero-movement phase is then subtracted from the
phase difference information. Figure 4 shows the scheme used for processing the phase data obtained
from two radar images.

 
Figure 4. Block diagram for DInSAR processing.

After performing back-projection processing, two images were acquired that have amplitude
and phase information. The information of interest is the phase difference between them, calculated
as follows:

V(i, j) = C1(i, j) ×C∗2(i, j), (5)

where C1(i, j) and C2(i, j) represent the two images, and V(i, j) is the image containing the phase
difference information. Then, the real and imaginary components of V(i, j) are filtered, and so the
phase information V∅ is obtained. The next step is to get V∅uw from V∅ by using a technique known
as phase unwrapping [18]. After that, the zero-movement phase is subtracted. Finally, the resultant
value is multiplied by a factor based on Equations (3) and (4), to obtain the vertical displacement or
interferometric height difference, ΔH.

2.4. Estimation Model for Corn Crop Growth

Using the DInSAR model described above to retrieve the height difference from the phase
information, and taking into account the reflectivity of the corn crop and the soil with weed plants
around it, a model for estimating the growth of a corn crop between two dates is proposed, considering
the reflectivity contribution at different development stages of the crop. This model is briefly described
in Figure 5.

 

Figure 5. Block diagram for the estimation model for corn crop growth.

The reflectivity data obtained from the input images can be decomposed as follows [2]:

σT = σcorn + σwp + σdb, (6)
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where σT is the total reflectivity measured by the radar, σcorn represents the corn reflectivity, σwp is
the reflectivity of the soil with weed plants that can be measured in an adjacent area to the corn crop
and σdb is the reflectivity of the double-bounce between the crop stem and the soil, as illustrated in
Figure 6. At different stages of the crop growth, the proportions of these reflectivities vary. In early
stage growth, shown in Figure 6a, the portion due to double bounce is the most significant, while in
late-stage growth, pictured in Figure 6b, the contribution of the corn crop is dominant.

 
(a) 

 
(b) 

Figure 6. Representation of reflectivity in the corn crop at different growth stages. (a) Early stage
growth. (b) Late-stage growth.

Consider that σwp can be estimated from the reflectivity of areas close to the crop so that it can be
subtracted from Equation (6); thus, the resulting reflectivity, σR, is as follows:

σR = σT − σwp = σcorn + σdb. (7)

Assuming that σcorn is proportional to σR by a contribution factor KR ∈ [0, 1], then:

σcorn = KRσR. (8)

Also, the double-bounce contribution can be estimated from KR and σR as follows:

σdb = (1−KR)σR. (9)
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As the presence of stems and branches is dominant during the early stages of crop growth,
the contribution factor, KR, is negligible and, from Equation (9), σdb ≈ σR. On the other hand, in late
stages of crop growth, the double-bounce contribution decreases drastically due to the presence of
leaves; thus, the contribution factor KR ≈ 1 and, from Equation (8), σcorn ≈ σR.

To calculate the height difference measured between two different days, consider the two different
stages of crop growth shown in Figure 7.

  
(a) (b) 

Figure 7. Crop in two different stages. (a) Day 1. (b) Day 2.

Assume that, on Day 1, the height of the crop is Hcorn(1), the height of the weed plants is
Hwp(1) and the difference between them is H(1) = Hcorn(1) −Hwp(1). Similarly, for Day 2, consider
that H(2) = Hcorn(2) −Hwp(2). Then, the total estimated height variation, ΔH = H(2) −H(1), can be
calculated as:

ΔH = ΔHcorn − ΔHwp, (10)

where ΔHcorn = Hcorn(2) −Hcorn(1) is the height variation corresponding to the crop and ΔHwp =

Hwp(2) −Hwp(1) is the height variation due to the growth of weed plants. Equation (10) is only valid
when contributions can be measured separately.

The radar measures a sum of complex contributions. The amplitude of the return signal is
proportional to

√
σT, and the interferometric phase is proportional to ΔH, as seen in Equations (3)

and (4). As the ratio σcorn/σT approaches unity, ΔHcorn becomes the major contribution in Equation
(10). The same reasoning can be made for σwp and ΔHwp. In that way, a simple solution is to correct
Equation (10) by weighting each contribution by its respective reflectivity.

First, let Equation (7) can be rewritten as follows:

1 =
σcorn

σT
+
σdb
σT

+
σwp

σT
= K2

corn + K2
db + K2

wp, (11)

where

Kcorn =

√
σcorn

σT
=
√

KR

√
σR

σT
, (12)

Kdb =

√
σdb
σT

, (13)

Kwp =

√
σwp

σT
, (14)

are the corn, weed and double-bounce contributing factors, respectively.
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Now, assuming that each contribution can be weighted by its respective contributing factor, the
difference in height measure by the radar between two consecutive days can be expressed by the
following:

ΔH = ΔHcornKcorn − ΔHwpKwp. (15)

Then, from Expressions (12), (14) and (15) comes the following:

ΔHcorn =
1√
KR

√
σT

σR

(
ΔH + ΔHwp Kwp

)
. (16)

Next, a new correction factor K = 1/
√

KR is defined based on field measurement data as follows:

K =
ΔHcorn( f m)√

σT
σR

(
ΔH + ΔHwpKwp

) , (17)

where ΔHcorn( f m) represents the height difference data measured on the crop. This new correction
factor (K) is only valid for the corn model.

Finally, the estimated growth between two dates in a corn crop can be described as follows:

ΔHcorn−est = K
√
σT

σR

(
ΔHT + HwpKwp

)
. (18)

2.5. Experimental Site

The experimental site covers an area of 300 m × 300 m, located at the School of Agricultural
Engineering of the University of Campinas (UNICAMP), as shown in Figure 8. The survey flights
occurred on the following dates: 11 December 2018; and 17 April, 2 July, 17 July and 22 August 2019.

 
Figure 8. Overview of the experimental site at UNICAMP. (a) Aerial View with fields 01 and 02 at the
bottom and the coffee crop at the top, on 22 August 2019. Field 01 was bare. (b) Ground photo of the
coffee crop. (c) Ground photo of the corn crop on field 02.
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2.6. Field Measurements

Height measurements of coffee and corn crops, depicted in Figure 8b,c, respectively, were carried
out over nine months. In this period, the corn reached the maturity stage in December 2018, and a new
crop was set in July 2019. Coffee reached the maturity stage in March 2019. The corn crop is structured
with 14 rows, where 20 height measurements were made per row. The heights were measured from
the soil to the top of the corn crop. The following measurements were taken on the same days of the
flight surveys: 2 July, 17 July and 22 August 2019. The field measurements of the corn crop height are
subjected to the natural variability of visual measurement errors.

During the survey period, corn was sown in two areas: field 01 and 02, as shown in Figure 8a.
Hereafter, fields 01 and 02 will be labeled as C1 and C2, respectively, where “C” denotes the corn culture.

2.7. Drone-Borne SAR Data Acquisition

Three trihedral corner reflectors with square sides and an edge length of 0.6 m were used as a
ground and radiometric calibration reference. The resulting radar cross-section is 20 dBsm.

On each acquisition date, the experiment with the drone-borne system was executed as follows:

• Mount three corner reflectors on the test site, for planimetric and radiometric calibration purposes;
• Place the GNSS ground station close to the initial position of the drone and start the GNSS recording;
• Perform each flight over the experimental site, following the subsequent procedure: turn on the

drone and the radar, wait 15 min for simultaneous and stationary recording of ground station
and radar GNSS data, take-off, perform the same circular flight track, land, wait 15 min for
simultaneous and stationary recording of ground station and radar GNSS data, and turn-off the
radar and the drone;

• Dismount the GNSS ground station and the drone. Download the acquired data for processing.

2.8. Drone-Borne SAR Data Processing

The collected data were processed as follows:

• Differential GNSS processing of the ground station and the radar GNSS receivers;
• IMU and differential GNSS data fusion for generating position and antenna orientation history;
• Radar data processing at each acquisition date, according to Section 2.2: range compression and

back-projection for the azimuth compression. The output is a geocoded single-look-complex
(SLC) image;

• Verification of the absolute position of the corner reflectors in the geocoded SLC images;
• Differential interferometric processing with data from previous acquisitions, as defined in

Section 2.3;
• Production of the crop growth map, as described in Section 2.4;
• Generation of the corresponding multi-look images with 30 cm × 30 cm sampling.

3. Results

3.1. Drone-Borne SAR Images

The circular flights over the experimental site were carried out by following the path shown in
Figure 9. Figure 10 displays the SAR images acquired with circular flights on different acquisition
dates. Each image depicts an area of 300 m × 300 m, with 30 cm sampling in both directions.

Figure 10b shows the area C2 with the corn crop in a mature stage. The new seeding of area C2
took place in July 2019, shown in Figure 10d, and this area presents increasing reflectivity through
Figure 10e,f, until reaching its maturity.
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Figure 9. Description of the circular flight. In black, the circular flight track, and in yellow, the study
area of 300 m × 300 m.

3.2. Qualitative Validation of Growth Deficit Maps

DInSAR technique was applied to the campaigns of 5 December and 11 December 2018, and 17
April 2019, on coffee, sugar cane and corn crops. According to the field data, the corn crop was present
only on the first two dates mentioned, and the other crops had an insignificant height variation between
the three campaign dates. DInSAR provided a compatible result for these crops, showing a negligible
height variation during those dates.

The first trial for a crop growth map was performed with the coffee crop, presented in Figure 8.
No field measurement of the crop height variation was determined. However, a rough growth estimate
of about 10 cm was expected, as the coffee crop was quite mature in December. Because of a small
morphology alteration in the crop due to its maturity, the interferogram had a low but acceptable
coherence of 0.2.

A growth map corresponding to a coffee crop of approximately 1700 m2 is shown in Figure 11.
The mean height growth between those dates with DInSAR is 11 cm, with a standard deviation of 6 cm.
The south area of the coffee crop presented less growth than the north area. A mask was used to discard
all targets that do not correspond to the coffee crop. Moreover, a 15 × 15 moving average filter was
used over the interferogram, with a pixel spacing of 30 cm × 30 cm. Only data with a coherence greater
than 0.1 were considered valid data. This result has motivated a more in-depth study of DInSAR for
growth maps.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 10. Temporal comparison between (a) optical image from Google Earth and drone-borne SAR
images of the circular flight tracks, acquired on (b) 11 December 2018; (c) 17 April 2019; (d) 2 July 2019;
(e) 17 July 2019; and (f) 22 August 2019. Field C2 has a yellow border in (a).
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Figure 11. Growth map of the coffee crop from 11 December 2018, to 17 April 2019.

Figure 12 shows the corresponding SAR images for the acquisition dates of 11 December 2018,
and 17 April 2019, where the yellow squares represent the coffee crop for which the growth map of
Figure 11 was produced.

 

(a) 

Figure 12. Cont.
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(b) 

Figure 12. SAR images of coffee crop acquired on (a) 11 December 2018; and (b) 17 April 2019.

3.3. Quantitative Validation of Growth Deficit Maps

SLC images of circular flight tracks were used to validate the growth estimation model considering
the reflectivity contribution. The high resolution allows a much easier analysis, as the cornfield C2 is
rather small.

To obtain the phase reference, known as the zero-movement phase, an object that would remain
static during all flights was searched. Initially, it was thought to use the dihedral corner reflectors.
However, it would not be possible to leave the dihedral corner reflectors at all times in the study area,
because other daily activities are carried out there. Besides, a dihedral corner reflector can only be
observed during a small portion of the circular track. Therefore, a metal fence near the crop area was
chosen as a reference, as it is a fixed object and can be observed during the entire flight (see Figure 13).

 

(a) 

Figure 13. Cont.
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(b) 

 

(c) 

Figure 13. (a) Optical image of the metal fence; (b) radar image of the metal fence; and (c) unwrapped
interferogram corresponding to the metal fence.

To obtain the zero-movement phase, profiles were drawn for the interferogram over the area
corresponding to the metal fence, Figure 13c. The profiles are shown in Figure 14a,b. The zero-movement
phase was calculated by using the average of the profiles, which, in this example, resulted in 0.76 rad.

(a) (b) 

Figure 14. (a) Right and left side profiles of the fence phase; (b) top and bottom side profiles of the
fence phase.

Then, the height growth of the cornfield C2 was monitored, as shown in Table 2. These data,
together with the reflectivity data for the corn crop and a neighboring area (see Figure 6), were used to
estimate the correction factor, K, of Equation (17), which varies along with the phenological life of the
corn crop.
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Table 2. Corn crop field measurements.

Height Measurement Date Days after Planting Corn Height

2 July 2019 48 68 cm
17 July 2019 67 99 cm

22 August 2019 99 125 cm

Figure 15 displays three values for the correction factor, K, estimated by using the available radar
data and field measurement data from the three different periods presented in Table 2. Figure 15 also
shows the fitted curve (blue line) for the correction factor, K, as a function of the corn phenology stage.

Figure 15. Correction factor (K) as a function of the corn phenology stage.

Due to the small amount of data, there is some flexibility when choosing the type of equation that
best fits the experimental data. An exponential fitting curve was chosen, and the resultant expression
is as follows:

K = 20.75 exp(−0.03617d), (19)

where d represents the average number of days after planting, calculated over each data collection
period, as displayed in Table 3. Equation (19) is a first attempt to find an expression for K, using the
few available data, and it is calculated with MATLAB Curve Fitting Toolbox [19].

Table 3 also shows the height-difference data between two dates obtained by field measurements
in the corn crop and estimates from the proposed model, using the radar data together with the
correction factor, K.

Table 3. Comparison between field measurement data and estimated radar data in the corn crop for
height difference information.

Data Collection Period d Height Difference
(Field Measurement Data)

Height Difference
(Estimated Radar Data)

2 July 2019–17 July 2019 57 days 31 cm 36 cm
2 July 2019–22 August 2019 73 days 57 cm 42 cm
17 July 2019–22 August 2019 83 days 26 cm 28 cm

Figure 16 presents the crop growth maps derived from the same acquisition intervals displayed
in Figure 15. Rapid growth can be seen from 2 July to 17 July, though growth is noticeably slower
between 17 July and 22 August.
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(a) (b) 

  
(c) (d) 

Figure 16. Crop growth maps derived from three acquisition intervals: (a) optical reference image from
corn crop (b) from 2 July to 17 July 2019; (c) from 2 July to 22 August 2019; and (d) from 17 July to 22
August 2019.

4. Discussion

Determining the zero-movement phase is an essential step for estimating crop growth. The
zero-movement phase is not null due to external factors such as the system’s thermal noise, the difference
between flight paths from distinct dates and internal changes of the radar system between different
flights [16]. The chosen reference object was a metal fence because it is always fixed, thus providing
more robust results than moving objects, for which precise positioning between separate flights is not
guaranteed. Moreover, it can be seen from all directions in a circular flight track, and it is typically
found near crop fields.

Corner reflectors are not practical reference points for DInSAR, as they should be well fixed
and kept clean during the DInSAR observation period. The authors intend to continue using corner
reflectors, only for purposes of planimetric accuracy and height calibration. Luneburg lenses could
also be used to better calibrate the back-projection processor [20].

No other publications were found that use the DInSAR technique on a corn crop to estimate
growth, but some similar works are noteworthy. Erten et al. [10] used the DInSAR technique, with the
TANDEM-X satellite, over a rice cultivation area, and were able to estimate growth with an RMSE of
18 cm. Cao et al. [21] used an airborne L-band radar system to measure landslide with a precision of a
few centimeters.
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In this work, a first attempt to monitor growth was carried out with a coffee crop, as described in
Section 3.2. The coffee had a barely noticeable height variation between 11 December 2018, and 17
April 2019. However, using DInSAR, it was possible to measure an 11 cm growth, with a standard
deviation of 6 cm. No model will estimate the growth of a crop that hardly grows.

As for the corn crop growth using correction factor K, the errors obtained from 2 July to 17 July
2019, and from 17 July to 22 August 2019, were 5 cm and 2 cm, respectively, while from 2 July to 22
August 2019, the error was 15 cm. Therefore, the longest period between data acquisitions produces the
largest error, whereas shorter acquisition periods provide more accurate results. Therefore, to achieve
a more accurate growth model oriented to the corn crop, it is necessary to retrieve a better estimation
of the variable K, and thus more flights are required. Another way to develop this model would be to
use the two interferometric C-band antennas to estimate crop height [22].

The corn crop was chosen due to its rapid growth. Nevertheless, this work could be extended to
other crops, such as sugar cane or coffee. The case of sugar cane, which grows slower than corn, is of
particular interest to the authors; therefore, more campaigns will be needed over time.

5. Conclusions

This work proposes a novel method for estimating the growth of different crops by executing
circular flight paths with a drone-borne DInSAR operating in the L-band with HH polarization. First
tests on late-stage coffee, corn and sugar cane crops have shown that it is possible to reliably estimate
small height variations. In the case of coffee, the growth within approximately four months was
estimated at 11 cm, with a standard deviation of 6 cm. Such a growth rate is difficult to perceive
visually or to measure with conventional tools.

Furthermore, a method is proposed to estimate the growth of a corn crop, taking into account
its phenological development. Although more campaigns on the area of interest are still necessary,
these first-stage results show a strong agreement with the measured field data. The largest error was
15 cm, corresponding to the longest period between data acquisitions, for which the crop growth was
approximately 55 cm. In contrast, errors of up to 5 cm were obtained for shorter acquisition periods.

The images obtained from the circular flights were processed with the back-projection algorithm
using a 30 cm × 30 cm sampling. In future work, a more accurate growth estimation is expected since
back-projection images shall be processed with a 5 cm × 5 cm sampling.

The authors are motivated to continue with this line of research, taking as a starting point the
methods and first-stage results obtained so far. More consistent results are expected in the near future,
when more data will be available.

Author Contributions: Conceptualization, G.O. and H.E.H.-F.; investigation, methodology, software and
validation, G.O., M.S.A., J.A.G., V.C., L.S.B. and F.C.; validation, J.Y. and D.L.; formal analysis and writing,
G.O., M.S.A., J.A.G., L.P.O., V.C., F.C. and L.F.M.; supervision, review and funding acquisition, L.P.O., B.T., D.L.,
L.H.G. and H.E.H.-F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by government agencies CAPES and CNPq and the São Paulo State agency
FAPESP, under the contracts PITE 2017/19416-3 and PIPE 2018/00601-8.

Acknowledgments: We thank the teams of the schools of Electrical and Computer Engineering and of Agricultural
Engineering of the University of Campinas, UNICAMP, for the given support.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Liu, C.-A.; Chen, Z.-X.; Shao, Y.; Chen, J.-S.; Hasi, T.; Pan, H.-Z. Research advances of SAR remote sensing for
agriculture applications: A review. J. Integr. Agric. 2019, 18, 506–525. [CrossRef]

2. Lin, H.; Chen, J.; Pei, Z.; Zhang, S.; Hu, X. Monitoring Sugarcane Growth Using ENVISAT ASAR Data.
IEEE Trans. Geosci. Remote Sens. 2009, 47, 2572–2580. [CrossRef]

3. Baghdadi, N.; Cresson, R.; Todoroff, P.; Moinet, S. Multitemporal Observations of Sugarcane by TerraSAR-X
images. Sensors 2010, 10, 8899–8919. [CrossRef] [PubMed]

67



Remote Sens. 2020, 12, 615

4. Skriver, H. Crop Classification by Multitemporal C- and L-Band Single- and Dual-Polarization and Fully
Polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2138–2149. [CrossRef]

5. Liu, X.; Jiao, L.; Tang, X.; Sun, Q.; Zhang, D. Polarimetric Convolutional Network for PolSAR Image
Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3040–3054. [CrossRef]

6. Lin, K.-F.; Perissin, D. Single-Polarized SAR Classification Based on a Multi-Temporal Image Stack.
Remote Sens. 2018, 10, 1087. [CrossRef]

7. Intarat, T.; Rakwatin, P.; Srestasathien, P.; Triwong, P.; Tangsiriworakul, C.; Noivum, S. Potential of Sugar
cane monitoring using Synthetic Aperture Radar in Central Thailand. In Proceedings of the 36th Asian
Conference of Remote Sensing, Quezon City, Philippines, 19–23 October 2015.

8. Rossi, C.; Erten, E. Paddy Rice Monitoring Using TanDEM-X. IEEE Trans. Geosci. Remote Sens. 2015, 53,
900–910. [CrossRef]

9. Wang, H.; Magagi, R.; Goita, K. Polarimetric Decomposition for Monitoring Crop Growth Status. IEEE Geosci.
Remote Sens. Lett. 2016, 13, 870–874. [CrossRef]

10. Erten, E.; Lopez-Sanchez, J.; Yuzugullu, O.; Hajnsek, I. Retrieval of agricultural crop height from space: A
comparison of SAR techniques. Remote Sens. Environ. 2016, 187, 130–144. [CrossRef]

11. Frey, O.; Werner, C.L.; Coscione, R. Car-borne and UAV-borne mobile mapping of surface displacements
with a compact repeat-pass interferometric SAR system at L-band. In Proceedings of the IGARSS 2019—2019
IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019;
pp. 274–277.

12. Moreira, L.; Castro, F.; Góes, J.A.; Bins, L.; Teruel, B.; Fracarolli, J.; Castro, V.; Alcântara, M.; Oré, G.;
Luebeck, D.; et al. A Drone-borne Multiband DInSAR and Applications. In Proceedings of the 2019 IEEE
Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6.

13. Ishimaru, A.; Chan, T.-K.; Kuga, Y. An imaging technique using confocal circular synthetic aperture radar.
IEEE Trans. Geosci. Remote Sens. 1998, 36, 1524–1530. [CrossRef]

14. Palm, S.; Sommer, R.; Pohl, N.; Stilla, U. Airborne SAR on Circular Trajectories to Reduce Layover and Shadow
Effects of Urban Scenes; International Society for Optics and Photonics: Edinburgh, UK, 2016; p. 100080N.

15. Doerry, A.W.; Bishop, E.E.; Miller, J.A. Basics of Backprojection Algorithm for Processing Synthetic Aperture Radar
Images; Sandia National Laboratories: Albuquerque, NM, USA, 2016; pp. 1–57.

16. Richards, J.A. Remote Sensing with Imaging Radar; Signals and Communication Technology; Springer:
Heidelberg, Germany, 2009; ISBN 9783642020193.

17. Hanssen, R.F. Radar Interferometry Data Interpretation and Error Analysis; Remote Sensing and Digital Image
Processing; Kluwer Academic: Dordrecht, The Netherlands, 2001; ISBN 9780792369455.

18. Giglia, D.C.; Romero, L.A. Robust two-dimensional weighted and unweighted phase unwrapping that uses
fast transforms and iterative methods. J. Opt. Soc. Am. 1994, 11, 107–117. [CrossRef]

19. Curve Fitting Toolbox; The Math Works: Natick, MA, USA, 2018.
20. Ponce, O.; Prats-Iraola, P.; Scheiber, R.; Reigber, A.; Moreira, A. First Airborne Demonstration of Holographic

SAR Tomography with Fully Polarimetric Multicircular Acquisitions at L-Band. IEEE Trans. Geosci.
Remote Sens. 2016, 54, 6170–6196. [CrossRef]

21. Cao, N.; Lee, H.; Zaugg, E.; Shrestha, R.; Carter, W.; Glennie, C.; Wang, G.; Lu, Z.; Fernandez-Diaz, J.C.
Airborne DInSAR Results Using Time-Domain Backprojection Algorithm: A Case Study Over the Slumgullion
Landslide in Colorado With Validation Using Spaceborne SAR, Airborne LiDAR, and Ground-Based
Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4987–5000. [CrossRef]

22. Duerch, M. Backprojection for Synthetic Aperture Radar. Ph.D. Thesis, Brigham Young University, Provo,
UT, USA, 2013.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

68



remote sensing 

Article

Small Multicopter-UAV-Based Radar Imaging:
Performance Assessment for a Single Flight Track

Ilaria Catapano 1,*, Gianluca Gennarelli 1, Giovanni Ludeno 1, Carlo Noviello 1,

Giuseppe Esposito 1,2, Alfredo Renga 2, Giancarmine Fasano 2 and Francesco Soldovieri 1

1 Institute for Electromagnetic Sensing of Environment (IREA), National Research Council (CNR), 80124
Napoli, Italy; gennarelli.g@irea.cnr.it (G.G.); ludeno.g@irea.cnr.it (G.L.); noviello.c@irea.cnr.it (C.N.);
esposito.g@irea.cnr.it (G.E.); soldovieri.f@irea.cnr.it (F.S.)

2 Department of Industrial Engineering (DII) University of Naples “Federico II” via Claudio 21, 80124, Naples,
Italy; alfredo.renga@unina.it (A.R.); g.fasano@unina.it (G.F.)

* Correspondence: catapano.i@irea.cnr.it; Tel.: +39-0817620656

Received: 18 December 2019; Accepted: 27 February 2020; Published: 29 February 2020

Abstract: This paper deals with a feasibility study assessing the reconstruction capabilities of a
small Multicopter-Unmanned Aerial Vehicle (M-UAV) based radar system, whose flight positions are
determined by using the Carrier-Phase Differential GPS (CDGPS) technique. The paper describes the
overall radar imaging system in terms of both hardware devices and data processing strategy for
the case of a single flight track. The data processing is cast as the solution of an inverse scattering
problem and is able to provide focused images of on surface targets. In particular, the reconstruction
is approached through the adjoint of the functional operator linking the unknown contrast function to
the scattered field data, which is computed by taking into account the actual flight positions provided
by the CDGPS technique. For this inverse problem, we provide an analysis of the reconstruction
capabilities by showing the effect of the radar parameters, the flight altitude and the spatial offset
between target and flight path on the resolution limits. A measurement campaign is carried out to
demonstrate the imaging capabilities in controlled conditions. Experimental results referred to two
surveys performed on the same scene but at two different UAV altitudes verify the consistency of
these results with the theoretical resolution analysis.

Keywords: radar imaging; unmanned aerial vehicle; inverse scattering; linear scattering models;
global positioning systems

1. Introduction

Radar imaging performed by UAV platforms [1], and more in detail by M-UAV platforms [2],
is attracting huge attention in remote sensing community as a cost-effective solution to cover wide
and/or not easily accessible regions, with high operative flexibility [3]. Indeed, M-UAVs have vertical
lift capability, allow take-off and landing from very small areas without the need for long runways
or dedicated launch and recovery systems, and are able to move in all directions. These peculiar
features allow their use at any location [3] and under different flight modes, thus introducing new
possibilities in radar imaging measurements [4]. For instance, M-UAV vertical lift capability can be
exploited to perform vertical apertures and implement high-resolution vertical tomography, which
is useful in structural monitoring [5]. On the other hand, circular flights are suitable to generate
holographic and tomographic radar images [6]. Furthermore, M-UAVs allow waypoint flights in
autopilot mode and pre-programmed flights with auto-triggering. This introduces the possibility of
designing sophisticated flight strategies, such as specific grid acquisitions devoted to investigating the
area of interest or repeat-pass tracks aimed at performing interferometric acquisitions [7].

Remote Sens. 2020, 12, 774; doi:10.3390/rs12050774 www.mdpi.com/journal/remotesensing69
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UAV-based radar imaging receives huge attention in several military and civilian applications,
such as surveillance, security, diagnostics, monitoring in civil engineering, cultural heritage and
earth observation, with particular emphasis on natural disasters, which should be safely and timely
monitored [8]. At the state-of-the-art, radar imaging performed by M-UAVs has been proposed
for precision farming [9], forest mapping [10] and glaciology [11]. In addition, M-UAVs have been
exploited to perform Synthetic Aperture Radar (SAR), avoiding large platforms when monitoring
small areas. In this frame, the first experimentation concerning interferometric P and X band SAR
systems onboard UAV platforms has been reported in [12], while a UAV polarimetric SAR imaging
system has been proposed in [13]. UAVs have been also exploited in the field of landmine detection as
platforms equipped with Ground Penetrating Radar (GPR) systems [14,15].

Despite these promising examples, the development of radar systems onboard M-UAV is at an
early stage and M-UAV radar imaging still represents a scientific challenge, especially when small
and light M-UAV platforms are deployed. Indeed, the full exploitation of smart and flexible M-UAV
imaging radar systems requires the development of reconstruction approaches able to deal with
non-conventional data acquisition configurations, where data are not collected along a straight linear
trajectory due to environmental conditions or presence of obstacles. In this respect, it is worth pointing
out that radar imaging, i.e., the possibility to obtain a focused image of the investigated region, strongly
depends on the accurate knowledge of platform position and orientation during the flight. Indeed,
platform-positioning errors, comparable with the wavelength of the electromagnetic signal emitted
by the radar and not properly compensated, distort the resulting image severely [16]. Moreover, the
capability of small M-UAVs to follow straight linear trajectories is limited. Therefore, in order to
avoid detrimental effects on radar imaging performance, the compensation of three-dimensional (3D)
deviations, with respect to the ideal flight track, represents a key issue requiring accurate knowledge of
the UAV platform position and velocity. However, the quality of such information strongly depends on
the accuracy of both the embarked navigation sensors and the deployed ground-based tracking devices.

The most popular navigation sensors include the Inertial Measurement Unit (IMU) with gyroscopes
and accelerometers, magnetometers and Global Navigation Satellite System (GNSS) receivers (GPS and
multi-constellation receivers). These information sources are typically fused together, with the final
positioning accuracy that is driven by GNSS and can reach centimeter-level in carrier-phase differential
architectures. An additional constraint for small M-UAVs is related to the maximum payload mass
that can be embarked limiting the number and typology of onboard electronic devices. In addition, as
pointed out in [17], the standalone GPS technology does not allow the positioning accuracy required
for high-resolution radar imaging, especially as far as the platform height is concerned. To face this
issue, the authors proposed in [17] an edge detection procedure for estimating the flight height with
centimeter-level accuracy from radar data, by making the assumption that the terrain is flat and
that extended objects on the ground are absent. An alternative approach is the use of ground-based
tracking devices, e.g., radars and laser scanners led by a Robotic Total Station (RTS) [18]. These
ground-based systems allow trajectory accuracy at the millimeter scale, but only in fully controlled
lab-like conditions or in the presence of multiple tracking devices located all around the operative
area. A further approach for the correction of the trajectory errors has been proposed in [19] based on
SAR imaging autofocus. The SAR imaging autofocusing technique performs the 3D GPS positioning
correction by minimizing the Shannon entropy of the scattering function of the volumetric scene
under test, where the targets are imaged, by using a back-projection approach [19]. However, the
performance of the autofocusing algorithm is affected by the presence of noise and clutter disturbance,
which degrade the autofocusing capability.

As a contribution to this issue, in this paper, we present an improved version of the M-UAV radar
system in [17] where the accuracy about the position and velocity of M-UAV is enabled by the use of
the (single-frequency) Carrier-Phase Differential GPS (CDGPS) technique [20]. This is made possible
with the use of an additional ground-based GPS receiver, which allows the offline implementation of
the CDGPS technique by exploiting the RTKlib software [21]. Differently from the exploitation of an
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RTS, the CDGPS technique can achieve centimeter accuracy even in harsh operation scenarios where
an unobstructed line of sight (LOS) between the ground-based GPS receivers and the flying platform
may occur [20].

Once an accurate estimate of the 3D flight path has been obtained, a high-resolution radar imaging
algorithm is proposed for the case of a single flight track. The radar imaging approach is able to
account for the spatial coordinates of the measurement points provided by the CDGPS technique and
states the radar imaging as an electromagnetic inverse scattering problem. The inverse problem is
linearized by resorting to the Born approximation [22] and the inversion is carried out by means of
the adjoint operator [23]. The reconstruction capabilities of the proposed radar imaging system are
investigated in terms of resolution limits by a theoretical/numerical analysis, which makes it possible to
foresee how the measurement parameters (location of the measurement points and working frequency
band) affect the reconstruction performance [24]. Finally, a measurement campaign carried out at an
authorized site for amateur UAV testing flights in Acerra, a small town on the outskirts of Naples
(Italy), is presented as an experimental assessment of the integrated use of the CDGPS positioning
procedure and the adopted imaging approach. The experimental results provide a proof of concept of
the imaging performance of the proposed small M-UAV-based radar imaging system.

The paper is organized as follows. Section 2 describes the small M-UAV-based radar imaging
system and the strategy adopted to estimate the actual flight path. Section 3 deals with data processing
and presents the reconstruction performance analysis. Section 4 reports the experimental validation of
the small M-UAV-based radar imaging system. A final discussion on the system performance and the
achieved results is reported in Section 5 and conclusions end the paper in Section 6.

2. Imaging System

The small M-UAV imaging system already presented in [17] is improved with a second
ground-based GPS station in order to exploit the CDGPS technique (see Figure 1). The system
has the following main components, which are briefly described (see [17] for more details):

• Small M-UAV platform: DJI F550 hexacopter able to fly at very low speeds (about 1 m/s), thus
ensuring a small spatial sampling step and the ability to take-off and land from a very small area;

• Radar system: Pulson P440 radar is a light and compact time-domain device transmitting
ultra-wideband pulses (about 1.7 GHz bandwidth centered at the carrier frequency of 3.95 GHz)
with a low power consumption [25]. The radar system is mounted rigidly on the UAV body
(strapdown installation) and no gimbal is adopted. The limited altitude dynamics experienced
during flights (very low ground speed and wind speed conditions resulting in small and almost
constant roll/pitch angles), the relatively large radar antenna lobes and the limited baseline
between the radar antenna and the drone center of mass are such that altitude/pointing knowledge
does not play a significant role;

• GPS receivers/antennas: two single-frequency Ublox LEA-6T devices are chosen, one mounted
onboard the UAV and the other one used as a ground-based station. Both are connected to an
active patch antenna. The antenna is directly placed on the ground (Figure 1b) in order to get
from CDGPS a direct estimate of the height above ground for the antenna mounted on the drone;

• CPU controller: Linux-based Odroid XU4 is devoted to managing the data acquisition for both
radar system and onboard GPS receiver, while assuring their time synchronization.

The possibility to estimate the trajectory of the UAV platform depends on the quality of the
embarked navigation sensors. By using a standalone onboard GPS receiver, the achievable absolute
positioning accuracy is given into a global reference frame, such as WGS84 (World Geodetic System
1984), and is defined according to the specifications provided by the US Department of Defense [26].
Absolute GPS localization errors are estimated as the product of the User Equivalent Range Error
(UERE), which is the effective accuracy of the localization errors along the pseudo-range direction, the
Horizontal Dilution of Precision (HDOP) and Vertical Dilution of Precision (VDOP). These latter are
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dimensionless quantities expressing the effect of satellites-receiver geometry. Representative values of
UERE, HDOP and VDOP, for good GPS visibility conditions, are, respectively, 3.5 m and 6.6 m [27].

 
(a) (b) 

Figure 1. M-UAV radar imaging system: (a) hexacopter with onboard equipment; (b) ground-based
GPS station.

When reasonably short time flights are considered, several error sources (i.e., broadcast clock,
broadcast ephemeris, group delay, ionospheric delay and tropospheric delay) are strongly correlated
both in space and time [20] and introduce a positioning error, which is an almost constant but unknown
bias. In addition, the use of a proper processing strategy, such as carrier-smoothing [20], allows a
reduction of the measurement noise [28], thus improving the standalone GPS performance.

As shown in [17], in the frame of radar imaging, it is important to have accurate knowledge of the
relative positions of the UAV radar system with respect to the investigated spatial region. Therefore,
the constant and unknown bias affecting the horizontal positions provided by a standalone GPS does
not play any role in focusing the targets (which, however, will not be reliably localized in the WGS84
reference system), whereas the bias occurring into the vertical position (UAV height) may prejudice
satisfactory radar imaging performance.

In this paper, we exploit a strategy based on the use of a CDGPS, which is a method for improving
the positioning or timing performance of GPS by exploiting at least one motionless GPS receiver
working as a reference station. Here, the CDGPS method is implemented by using two GPS receivers
(one mounted onboard the UAV and the other one used at reference ground station), which store the
data into a local hard drive.

Each receiver collects single-frequency observables, which is a pseudo-range and a carrier-phase
measure for any tracked GPS satellite. It is well-known that carrier-phase measures show significantly
reduced measurement noise (in the order of 1/100 of signal wavelength, i.e., mm scale) with respect
to pseudo-range ones, but ambiguities appear, so carrier-phase are biased measurements [28,29]. If
one is able to resolve the ambiguity, very high accuracy positioning is enabled. This can be achieved
by differential techniques, i.e., CDGPS, where differences between the measurements collected by
two relatively close receivers are computed. Such differential measures are not affected by common
errors between the receivers, due to ionosphere, troposphere and clock errors, so suitable processing is
implemented to filter out pseudo-range noise thus deriving an estimate of carrier-phase ambiguities. If
a connection through a radio link is established between the UAV and the ground station, CDGPS
processing can be performed in real-time, which is defined as “Real-Time Kinematic” (RTK). Offline
CDGPS processing is, instead, used in this work, which is typically referred to as “Post-Processing
Kinematic” (PPK).

Depending on the working environment, platform dynamics and receiver quality, two different
types of CDGPS solutions can be obtained, i.e., fixed or float solutions [30]. The former is the most
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accurate one, being able to guarantee up to sub-cm accuracy in the determination of the relative
position between the receivers, exploiting the property of carrier-phase ambiguities to become, under
suitable measurement combinations and for properly designed receivers, integer numbers. The fixed
solution can be robustly generated by processing multi-frequency GPS data and can be obtained,
although with reduced time availability, by using single-frequency receivers, which typically rely
on the float solution, i.e., they consider carrier-phase ambiguities as real numbers. This is the case
of the presented system architecture. Hence, for most of the time epochs, a realistic estimate of the
carrier-phase ambiguities can be robustly generated by the adopted single-frequency receivers and the
achieved accuracy thus degrades to the order of 10 cm. The error is reduced to a very few cm when
fixed solutions are available.

Herein, CDGPS processing is carried out by using the open-source software RTKlib [21]. In
particular, the post-processing analysis tool RTKPOST is used, which inputs RINEX observation data
and navigation message files (from GPS, GLONASS, Galileo, QZSS, BeiDou and SBAS), and can
compute the positioning solutions by various processing modes (such as Single-Point, DGPS/DGNSS,
Kinematic, Static, PPP-Kinematic and PPP-Static). In this regard, the “Kinematic” positioning mode is
chosen, which corresponds to PPK, with integer ambiguity resolution set to “Fix and hold”. RTKPOST
outputs the E/N/U coordinates of the flying receiver with respect to the base-station, together with a
flag relevant to the solution type (float/fixed). This flag, and the processing residuals, can be used as an
estimate of the achieved positioning accuracy.

3. Radar Signal Processing

This section describes the signal processing strategy adopted to process the data collected by
the radar system. The various stages of the data processing are summarized in the block diagram of
Figure 2. According to this scheme, the input information is the raw radargram (B-scan) collected by
the radar, which represents the received radar signal collected at each measurement position (along
the flight path) versus the fast-time (i.e., the wave travel time). The final output of the reconstruction
procedure is a focused and easily interpretable image depicting the scene under test.

Figure 2. Radar signal processing chain.

As a first stage of the overall reconstruction procedure, a time-domain pre-processing of the
radargram is performed by applying the following operations [31–33]:

• Zero-timing;
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• Background removal;
• Time-gating.

The zero-timing consists of setting the starting instant of the fast-time axis in such a way that
the range of the signal reflected by the air–soil interface at the first measurement point of the flight
trajectory is coincident with the UAV flight height estimated by the CDGPS processing.

The background removal is a filtering procedure that allows mitigating the effects of the strong
coupling between the transmitting and receiving radar antennas, which is a spatially constant signal.
This filter replaces each single radar trace (A-scan) of the radargram with the difference between it and
the average of all the traces of the radargram collected along the flight trajectory.

The time-gating procedure selects the interval (along the fast-time) of the radargram, where
signals scattered from targets of interest occur. This allows a reduction of environmental clutter and
noise effects. Herein, the UAV altitude is exploited to define a suitable time window around the time
where reflection of the air–soil interface occurs.

After the time-domain pre-processing stage, each trace in the radargram is transformed into the
frequency domain by using the Fast Fourier Transform (FFT) algorithm. Then, the frequency-domain
data are processed according to the radar imaging approach detailed in the next subsection.

3.1. Radar Imaging Approach

Let us refer to the 3D scenario sketched in Figure 3. The ultra-wideband radar transceiver
onboard the UAV illuminates the scene with transmitting and receiving antennas pointed at nadir
(down-looking mode), i.e., at a zero incidence angle with respect to the normal to the air–soil interface.
The radar can be considered operating in monostatic mode, since transmitting and receiving antennas
have negligible offset in terms of the probing wavelength. At each measurement point along the flight
trajectory Γ, the transceiver records the signals scattered from the targets over the angular frequency
range Ω = [ωmin, ωmax]. Therefore, multimonostatic and multifrequency data are collected.

Figure 3. UAV-borne radar imaging scenario.

The trajectory Γ has an arbitrary shape in space and each measurement point is described by
the position vector rm = xmx̂ + ymŷ + zmẑ. The targets are supposed to be located into the planar
investigation domain D, which is coincident with the air–soil interface assumed at z = 0. The time
dependence ejωt is assumed and dropped.

The radar signal model is based on the following assumptions: (i) the antennas have a broad
radiation pattern; (ii) the targets are in the far-field region with respect to the radar antennas; (iii) a
linear model of the scattering phenomenon is assumed, hence the mutual interactions between the
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targets are neglected [22]. Accordingly, the scattered signal at each measurement point rm is expressed
by the following linear integral equation [16,34]:

Es(rm,ω) = I(ω)
�
D

e− j2k0 |rm−r|

|rm − r|2 σ(r)dr = Lσ (1)

where I(ω) is the spectrum of the transmitted pulse, σ(r) is the unknown reflectivity function at a
point r = xx̂ + yŷ in D, k0 = ω/c0 is the propagation constant in free-space (c0 � 3·108 [m/s] is the
speed of light) and |rm − r| is the distance between the measurement point and the generic point of the
investigation domain D. It is worth noting that the spectrum I(ω) may be assumed unitary within the
system bandwidth and therefore, for notation simplicity, it will be omitted.

The linear operatorLmaps the space of the unknown object function (reflectivity of the scene) into
the space of data (measured scattered field). The reflectivity function σ(r) accounts for the difference
between the electromagnetic properties of the targets (dielectric permittivity, electrical conductivity)
and the free space ones. Accordingly, the targets are searched for as anomalies with respect to the
free-space scenario and appear in the “focused image” as the regions where the modulus of the
reflectivity function is different from zero.

The radar imaging is faced as the inversion of the linear integral Equation (1) and this is performed
by computing the adjoint of the forward scattering operator L [23]:

σ̃(r) = L+Es =

∫
Γ

∫
Ω

Es(rm,ω)
ej2k0 |rm−r|

|rm − r|2 drm dω (2)

where L+ is the adjoint operator of L.
The adjoint inversion scheme given by Equation (2) is also referred as frequency-domain

back-projection [35], since the measured signal is back projected to the point where it is generated and
the image is formed as the coherent summation of these contributions.

The numerical implementation of the inversion is performed by discretizing Equation (2) by
applying the Method of Moments [36]. The scattered field is discretized by M ×N data, where M
is the number of measurement points (xm, ym, zm), m = 1, 2 . . . , M and N is the number of angular
frequencies ωn, n = 1, 2 . . .N sampling the work frequency bandwidth Ω. The domain D is discretized
by P×Q pixels

(
xp, yq

)
, where p = 1, 2 . . .P, and = 1, 2 . . .Q (see Figure 4). After removing unessential

constants, the inversion scheme in Equation (2) is rewritten in discrete form as:

σ̃(xp, yq) =
M∑

m=1

N∑
n=1

Es(xm, ym, zm,ωm)
e j2ωn

c0
(xp − xm)2 + (yq − ym)2 + z2

m

(xp − xm)2 + (yq − ym)2 + z2
m

p = 1 . . .P,
q = 1 . . .Q

(3)

According to the assumption of antennas having a broad radiation pattern, Equation (3) sums
coherently the multi-frequency data collected along the whole trajectory Γ for each pixel in D. Therefore,
the radar image is obtained by computing Equation (3) for all pixels in D and plotting the magnitude
of the retrieved reflectivity values normalized with respect to their maximum value.

In this process, the precise measurement positions of the UAV obtained with the CDGPS processing
are considered. The exploitation of the positioning information allows accurate images, as already
pointed out in the airborne radar imaging context [24,37].
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Figure 4. Discretization of the radar imaging problem.

3.2. Resolution Analysis

This subsection aims at investigating the spatial resolution limits of the proposed M-UAV radar
imaging system. The analysis covers the effect of the measurement parameters on the resolution limits
in the image plane D. To achieve this goal, we compute the point spread function (PSF) of the system,
i.e., the reconstruction of a point-like target [23]. For a point-like target located at rt = xtx̂ + yt ŷ and
having unitary reflectivity, the related scattered field is expressed, according to Equation (1), as:

Es(rm,ω) =
e− j2k0 |rm−rt |

|rm − rt|2
(4)

After plugging Equation (4) in the adjoint inversion formula Equation (2), we get the following
expression for the PSF

PSF(r; rt) =

∫
Γ

∫
Ω

e− j2k0(|rm−rt |−|rm−r|)

|rm − rt|2|rm − r|2 drm dω (5)

allowing the evaluation of the resolution as a function of the system parameters and the flight trajectory.
Hence, Equation (5) is useful, on one hand, for planning the measurement campaign according to
the requirements of the applicative context of interest and, on the other side, for investigating how
deviations, with respect to the nominal flight path, affect the achievable imaging performance.

Before proceeding further, it is worth recalling the resolution formulas holding for an ideal
rectilinear flight path. These formulas provide useful insight into radar imaging also under non-ideal
motion and allow foreseeing, at least in a qualitative way, the effect of the main measurement parameters.

Let us consider the geometry sketched in Figure 5, where the UAV moves at a fixed height h
following a rectilinear trajectory directed along the x-axis. The along-track resolution Δx is determined
by the central frequency fc of the radar and the maximum view angle θ fixed by half-length of the
synthetic aperture [32]:

Δx =
c0

4 fc sinθ
(6)

that in the small angle approximation rewrites as [38]:

Δx =
c0

4 fcθ
(7)

The range resolution is related to the radar system bandwidth B by the classical formula [39]:

Δr =
c0

2B
(8)

76



Remote Sens. 2020, 12, 774

The across-track resolution Δy is evaluated from the projection of the 3D target reconstruction over
the image plane (see Figure 5b). If r denotes the target range with respect to the antenna, then the 3D
target reconstruction is the cylindrical shell having its axis coincident with the measurement line and
its inner and outer radius equal to r− Δr and r + Δr, respectively. Note that only a part of the shell is
shown in Figure 5b, for sake of clarity. The across-track resolution Δy is calculated as the intersection
of the cylindrical shell with the image plane z = 0 and is given by

Δy =

√
d2 + Δ2

r + 2Δr

√
h2 + d2 − d (9)

where d is the across-track distance between the fight trajectory and the target (see Figure 5a,b).
According to Equation (9), the across-track resolution gets worse when the UAV flies at a higher
altitude h and, when the target is illuminated at nadir (d = 0), it turns out that:

Δy = Δr

√
1 +

2h
Δr

(10)

i.e., the across-track resolution is finite and larger than the range resolution Δr.

 
(a) 

 
(b) 

Figure 5. Radar imaging with an ideal rectilinear flight path: (a) 3D view; (b) view in the y–z plane.

Equation (9) also reveals that, for a fixed value of h and Δr, Δy improves as long as the target moves
away from the measurement line. Most notably, the asymptotic value of the across-track resolution is
found as d approaches to infinity:

Δy = lim
d→∞

√
d2 + Δ2

r + 2Δr

√
h2 + d2 − d = Δr (11)
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Based on the results in the Equations (10) and (11), the following inequality holds:

Δr ≤ Δy ≤ Δr

√
1 +

2h
Δr

(12)

Note that if the system bandwidth B goes to zero, the range resolution Δr becomes infinite and
it is no longer possible to resolve targets along the direction perpendicular to the track, as already
noticed in [24].

Figure 6 depicts the across-track resolution Δy as a function of the target offset d and the flight
altitude h. The contour plot has been produced by applying Equation (9) and considering the bandwidth
of the radar system (i.e., B = 1.7 GHz) introduced in Section 2.

 
Figure 6. Contour plot of the across-track resolution Δy versus d and h, expressed in meters, in the case
of a rectilinear flight trajectory.

As previously pointed out, the resolution degrades when increasing the flight altitude h for a
fixed value of d or when reducing d for a fixed value of h.

Figure 7 provides an example of the PSF computed according to Equation (5) by considering an
investigation domain D = [−3, 3] × [−3, 3] m2, which is discretized by square image pixels with size
0.01 m, and two different values of the target offset d (i.e., d = 0 m and d = 2 m). The scattered field
data are sampled evenly with 0.01 m step along the trajectory Γ at a flight altitude h = 5 m.

Figure 7a,b reports the PSF reconstruction for the case of a rectilinear trajectory covering the
interval [−3, 3] along x.

Figure 7c,f considers the effect of a non-rectilinear UAV flight trajectory; specifically, the x-directed
rectilinear trajectory of Figure 7a,b is perturbed in the x− y plane and modified in accordance with the
co-sinusoidal function

y = ±0.15 cos
(
πx
12

)
(13)

Equation (13) defines a curved trajectory over the interval [−3, 3] m with a maximum deviation of
0.15 m along y with respect to the rectilinear trajectory.
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 7. Point spread function (PSF) amplitude for a flight altitude h = 5 m: ideal rectilinear trajectory
and point like target with offset: (a) d = 0 m, (b) d = 2 m. Curved trajectory as described by
Equation (13) and point-like target located with offset: (c,e) d = 0 m, (d,f) d = 2 m. The white dashed
line represents the trajectory and the white circle denotes the target.

Figure 7a,b shows that a focused spot along and across the track is obtained in correspondence of
the target position and the along-track resolution does not change when the target is located at the
radar nadir (d = 0 m) or at the point (0, 2) m. Conversely, the across-track resolution improves when
the target is far from the nadir, as predicted by Equation (9). However, in this latter case, a false target
appears at the specular position with respect to the flight trajectory, i.e., at (0,−2) m. This phenomenon
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is the so-called left–right ambiguity [40] and is due to the radar’s inability to discriminate left (y > 0)
and right (y < 0) targets located at the same distance with respect to the measurement line.

In addition, Figure 7c,f shows that, as expected, even with a slight trajectory deviation with respect
to the rectilinear path, the PSF is no longer symmetric with respect to the trajectory. Most notably,
when the target is placed at (0, 2) m (see Figure 7d,f), the false target due to the left–right ambiguity
appears distorted and with a lower intensity, with respect to Figure 7b. Indeed, when the trajectory is
not rigorously rectilinear, the left and right targets are in some way discriminated by the radar because
their echoes have different propagation delays at each measurement point. However, the beneficial
effect provided by the trajectory curvature in mitigating the false target becomes less relevant when
the flight altitude h increases, since left and right targets produce scattering signals with “more similar”
propagation delays. This statement is corroborated by the images in Figure 8a,b, which are analogous
to Figure 7c,d but for the altitude that is h = 10 m. As expected, by increasing flight altitude, the
resolution across-track degrades regardless of the position of the target and the left–right ambiguity
problem turns out to be more evident. The amplitude of the false target seen in Figure 8b is, indeed,
stronger compared to the one observed in Figure 7d,f.

(a) (b) 

Figure 8. PSF amplitude for h = 10 m and a curved trajectory: (a) point like target at d = 0; (b) point
like target at d = 2. The white dashed line shows the trajectory; the white circle denotes the target.

The along- and across-track resolution values referred to the considered numerical examples are
summarized in Table 1.

Table 1. Along- and across-track resolution values.

Along-Track
Resolution (m)

Across-Track
Resolution (m)

Rectilinear path, target offset d = 0 m, flight altitude h = 5 m 0.04 0.95
Rectilinear path, target offset d = 2 m, flight altitude h = 5 m 0.04 0.25

Path y = 0.15 cos
(
πx
12

)
, target offset d = 0 m, flight altitude h = 5 m 0.04 0.95

Path y = 0.15 cos
(
πx
12

)
, target offset d = 2 m, flight altitude h = 5 m 0.04 0.25

Path y = −0.15 cos
(
πx
12

)
, target offset d = 0 m, flight altitude h = 5 m 0.04 0.95

Path y = −0.15 cos
(
πx
12

)
, target offset d = 2 m, flight altitude h = 5 m 0.04 0.25

Path y = 0.15 cos
(
πx
12

)
, target offset d = 0 m, flight altitude h = 10 m 0.07 1.30

Path y = 0.15 cos
(
πx
12

)
, target offset d = 2 m, flight altitude h = 10 m 0.07 0.47

4. Experimental Results

The M-UAV radar imaging system has been experimentally tested at an authorized site for
amateur UAV testing flights in Acerra, Naples, Italy. The experiment aimed at testing the ability of the
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CDGPS technique to estimate the UAV position with the accuracy required for target imaging and,
thus, to verify the capability of the overall radar imaging system. The experiment was carried out
during a sunny day with a weak wind state. Two metallic trihedral corner reflectors, having a size
D = 0.40 m× 0.40 m× 0.57 m and referred as Target 1 and Target 2, were used as on-ground targets
placed at a relative distance of 10 m one from the other along the flight direction; one of them (i.e.,
Target 2) was covered with a cardboard box (see Figure 9).

 
Figure 9. The UAV-borne radar imaging scenario.

The UAV was manually piloted and two surveys at different altitudes, in the following referred
to as Track 1 and Track 2, were carried out. Both tracks were performed on the same scenario by
positioning the UAV nearly at the same starting point (x, y). Track 1 had a duration of 17.5 s and
covered a path 31.4 m long at an average altitude h = 4 m; along this track, data were gathered at
251 unevenly spaced measurement points. Track 2 had a duration of 21.7 s and covered a 33 m long
path at an average altitude h = 10 m; along this track, data were gathered at 331 unevenly spaced
measurement points. The radar parameters set for the data acquisition are summarized in Table 2. Note
that we considered flight altitude values in the range 5–10 m to operate with a suitable signal-to-noise
ratio. Indeed, a major constraint in our system is the limited transmit power of the radar, whose
maximum level is declared to be approximately –13 dBm by the manufacturer.

Table 2. Radar system parameters.

Parameters Specification

Carrier Frequency 3.95 GHz
Frequency Band 1.7 GHz

Maximum Emitted Power –13 dBm
Maximum Dynamic Range 75 dB
Pulse Repetition Frequency 14.28 Hz

Received Signal Sampling Frequency 16 GHz

The raw radargrams, i.e., the data collected during the two surveys, are depicted in Figure 10a,b
while the filtered radargrams (after the time domain pre-processing stage) are given in Figure 11a,b.
It is worth pointing out that the horizontal axis shows the slow-time, i.e., the duration of the flight in
seconds, while the vertical axis is the fast-time, i.e., the observation time window during which the
data are gathered for each radar position, once that the time-zero correction has been performed. The
fast-time is expressed in nanoseconds. The white dotted line represents the air/soil interface achieved
by converting the variable UAV flight altitude h estimated by the CDGPS into an equivalent travel
time th by using the formula th = 2h/c0.
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(a) 

(b) 

Figure 10. Raw radargrams: (a) Track 1; (b) Track 2. The white dotted line represents the variable UAV
flight altitude h estimated by the Carrier-Phase Differential GPS (CDGPS) and transformed into the
equivalent travel time by: th = 2h/c0.

From Figures 10 and 11, one can observe that the CDGPS provides an accurate estimation of the
flight altitudes and the targets’ responses are visible as hyperbolas whose apex occurs at the fast-time
where nadir surface reflection is observed. Moreover, Figure 10a,b shows that clutter signals, due to
metallic awnings located on the entry side of the flight site, appear at fast-times greater than 70 ns in
Figure 10a and 90 ns in Figure 10b. These undesired signals, as well as the mutual coupling between
transmitting and receiving antennas, are removed by a time-domain pre-processing (see Figure 11a,b).
The filtered radargrams have been obtained by performing the background removal and setting as
fast-time gating window the portion occurring 6 ns before and 24 ns after the air–soil interface response
seen at nadir. The filtered data have been transformed into the frequency domain by sampling the
radar bandwidth [3.1, 4.8] GHz into 341 evenly spaced frequency samples and have been processed
according to the inversion procedure described in Section 3.1.

Before showing the focused radar images, we provide quantitative data about the positioning
accuracy of the UAV. Specifically, Table 3 summarizes the maximum positioning errors achieved with
the CDGPS technique along Tracks 1 and 2. These errors are the standard deviations provided by
the RTKlib tool, which measure the positioning errors along the three coordinate axes based on a
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priori error models and error parameters [21]. The maximum errors in the horizontal plane are always
smaller than the error along z, which is 9.4 cm in the worst case (Track 2).

(a) 

(b) 

Figure 11. Filtered radargrams: (a) Track 1; (b) Track 2. The white dotted line represents the variable
UAV flight altitude h estimated by the CDGPS and transformed in the equivalent travel time by:
th = 2h/c0.

Table 3. Maximum errors of the CDGPS technique.

Errors (cm) x y z

Track 1 4.3 4.6 9.4
Track 2 0.6 0.8 1.5

The focused images of the surveyed scenario are depicted in Figure 12a,b for Track 1 and Track 2,
respectively. These images have been obtained by considering a square planar investigation domain D
at z = 0 m, whose origin corresponds to the starting point of the UAV tracks into the x–y plane and
whose side is 18 m. The domain D has been evenly discretized by pixels having side 0.01 m.
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(a) 

(b) 

Figure 12. Focused image of the scenario under test: (a) Track 1; (b) Track 2. The dotted white line
represents the flight path as projected onto the investigated domain.
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In Figure 12a,b, the dotted white line represents the M-UAV trajectory as estimated by the CDGPS
and projected onto the investigated domain. According to the analysis presented in Section 3.2,
Figure 12a shows that when the targets are illuminated at nadir, i.e., when the distance d approaches
to zero, single spots appear and no ambiguities occur. Conversely, false targets due to the left–right
ambiguity problem appear when the UAV flight path does not cover the targets (see Figure 12b).
However, coherently with the PSFs shown in Figure 8b, the false targets appear slightly distorted and
with lower intensity compared to the real target reconstructions owing to the trajectory curvature. As a
result, it is possible to discriminate the actual targets from the ambiguous ones. Table 4 reports the
experimental along- and across-track resolution values as estimated by Figure 12a,b for both targets.
For comparison, the table reports the theoretical resolution values referred to a rectilinear flight path at
the average altitudes h = 4 m and h = 10 m. The experimental and theoretical resolution values are quite
consistent. Notably, the experimental along-track resolution decreases slightly when the flight altitude
increases and the target offset d is not null, while the across-track one improves when d increases. It is
worth pointing out that the corner reflectors emphasize the radar echoes but they are not actually ideal
point targets. Consequently, some discrepancies on resolution values are expected and this outcome is
confirmed by the comparison between the experimental and theoretical data reported in Table 4.

Table 4. Along- and across-track resolution values.

Experimental
Along-Track

Resolution (m)

Theoretical
Along-Track

Resolution (m)

Experimental
Across-Track

Resolution (m)

Theoretical
Across-Track

Resolution (m)

Track 11
Target 1 0.05 0.02 1.15 0.85
Target 2 0.04 0.02 0.99 0.85

Track 22
Target 1 0.07 0.03 0.51 0.41
Target 2 0.09 0.03 0.50 0.41

1 h = 4m, d = 0m; 2 h = 10m, d = 2m

5. Discussion

This work deals with a feasibility study on small UAV-based radar imaging when the scene
under investigation is probed with a single measurement line and the imaging domain is a plane at a
fixed altitude. The considered acquisition geometry is the simplest one and its achievable imaging
capabilities have been studied in Section 4. Regarding the along-track resolution, this parameter is
influenced by the maximum illumination angle, which in turn depends on the flight altitude and
the length of the synthetic aperture. The flight height and the horizontal displacement between the
target and the UAV, instead, influence the across-track resolution. Targets far from the radar nadir
are generally better resolved across-track than those seen at nadir; however, an inherent limitation in
the imaging arises due to the left–right ambiguity problem. This phenomenon is partially mitigated
in the presence of horizontal deviations of the UAV with respect to the ideal rectilinear trajectory.
Additionally, flying at a higher altitude can be convenient to enlarge the area of coverage but such
choice generally produces a worsening of the spatial resolution both along- and across-track.

A further point worth to be discussed concerns the inability of the present imaging configuration
to provide unambiguous and high-resolution 3D target reconstructions. To clarify this point, it is useful
to refer to Figure 13 showing how the reconstruction of the target changes when the image plane is not
the correct one. In particular, in Figure 13, we show how a point target located on the plane D0 at z = 0
is imaged on three planes D0, D1, D2 placed at different altitudes, i.e., z = 0, z = z1, and z = z2.
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Figure 13. Reconstruction of a point target on image planes at different elevations. The true target (black
triangle) is illuminated at the radar nadir and its reconstruction is represented by the red rectangles.

If the image plane coincides with the plane where the target is located, i.e., D0, the target is
reconstructed at the correct position. When the image plane is different from D0, i.e., D1 or D2, due to
the cylindrical symmetry of the 3D target reconstruction, the target is imaged at a position different
from the true one in the considered plane. The position of the reconstructed target is equal to the
intersection point between the 3D reconstruction and the plane where the imaging is carried out.
Furthermore, due to the left–right ambiguity, two specular targets appear on both sides of the track
(see red rectangles on planes D1 or D2). The spatial offset d̃ in the x–y plane between the true target and
the reconstructed one for an image plane at a height z can be derived after straightforward geometrical
considerations and is given by

d̃ =
√

d2 + 2hz− z2 − d. (14)

This last formula holds also in the more general case when the target is not illuminated at the
radar nadir, as in Figure 13, and d is the horizontal distance between the target and the track.

The geometry in Figure 13 also reveals that the target can be detected (but not correctly localized)
when the imaging plane is placed at a higher elevation with respect to the target. Indeed, in this case, it
is still possible to find two intersection points between the 3D target reconstruction and the image
plane. Conversely, the target cannot be identified at all when it is located above the image plane since
this last no longer intersects the 3D target reconstruction.

A numerical example showing the effect of the elevation of the image plane is presented in
the case of a multi-target scenario. Specifically, the example refers to the rectilinear trajectory and
simulation parameters already considered in Section 3.2. The scene comprises three point targets T1,
T2, T3 aligned along the flight track and located at coordinates: (−2, 0, 0) m, (0, 0, 0.2) m, (2, 0, 0.4) m.
The reconstructions results achieved on three images planes at z = 0, 0.2 and 0.4 m are displayed in
Figure 14a–c, respectively. As can be observed in Figure 14a, only the target T1 is imaged and correctly
localized in the plane z = 0 m while the targets T2 and T3 are not detected because they are located
above the image plane. When the image plane is fixed at z = 0.2 m, the target T2 is the only one to
be correctly localized while T1 is imaged a different location with a spatial offset with respect to the
true position. The target T3 is still not detectable because its elevation is greater than the height of the
image plane. Finally, Figure 14c shows the reconstruction in the plane z = 0.4m. In this case, all targets
are detected but only T3 is correctly localized.
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(a)                                       (b) 

 
(c) 

Figure 14. Reconstruction results in a three-target scenario (a) image plane at z = 0 m; (b) image plane
at z = 0.2 m; (c) image plane at z = 0.4 m.

Table 5 reported below compares the true and reconstructed targets’ positions achieved in each
image plane. The maximum of each spot in the images of Figure 14a–c is considered as the estimate of
the targets’ positions. Note that the ± sign appears in the presence of the left–right ambiguity problem.

Table 5. Estimated and true target positions for different imaging planes.

True Target Position Retrieved Target Positions Versus Height of Image Plane

z = 0 m z = 0.2 m z = 0.4 m

T1 (−2, 0, 0) m (−2, 0, 0) m (−2, ±1.4, 0.2) (−2, ±1.99, 0.4) m
T2 (0, 0, 0.2) m - (0, 0, 0.2) (0, ±1.4, 0.4) m
T3 (2, 0, 0.4) m - - (2, 0, 0.4) m

An improvement of the approach in terms of resolution and left–right ambiguity suppression
toward a high-resolution 3D imaging can be achieved by collecting wideband scattered field data
along multiple (parallel) measurement tracks. A similar measurement configuration has been recently
studied in the single-frequency case [24]. The theoretical and experimental assessment of such a
configuration in the multifrequency case will be the subject of future research.
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As a further upgrade of the radar imaging system, the possibility of using a gimbal, as suggested
in [41,42], will be considered to achieve major flexibility in the data acquisition.

6. Conclusions

A proof of concept of a Multicopter Unmanned Aerial Vehicle (M-UAV) radar imaging system has
been developed by integrating a miniaturized and commercial radar system onboard a small M-UAV.
The imaging system has been equipped with two Global Positioning System (GPS) receivers, the first
one located onboard the M-UAV platform, and, the second one used as a ground-based station with
the aim of exploiting the Carrier-Phase-Based Differential GPS (CDGPS) technique. This latter allows
estimating the 3D M-UAV flight path with centimeter accuracy. Moreover, an advanced imaging
approach, based on the adjoint inverse scattering problem, has been adopted to obtain focused images
of on surface targets in the case of a single flight track. This approach exploits the 3D M-UAV trajectory
estimate provided by the CDGPS into the reconstruction stage.

A theoretical/numerical analysis has been preliminary conducted to evaluate the effect of the
overall system and measurement configuration parameters on the imaging system performance. In
addition, a proof of concept measurement campaign has been performed. The flight tests have been
carried out by manually piloting the UAV at an authorized site for amateur and the experimental results
have demonstrated the capability of the system to obtain very good imaging results, comparable to
those foreseen with the theoretical analysis. This was possible thanks to the accurate UAV positioning
estimation, which means an accurate knowledge of the measurement points, that is a key factor for
a reliable focusing of the targets. It is worth noting that, despite the simple and light radar system
adopted in this work, the necessity of dealing with high frequency a working band and centimetric
probing wavelength (7.5 cm at the frequency of 4 GHz) has made significantly challenging the necessity
to have an accurate UAV positioning estimate. This was necessary for a reliable focusing procedure
requiring knowledge of the location of the measurement points along the flight trajectory with an
accuracy comparable with the probing wavelength.

A final comment is dedicated to future developments. Indeed, to overcome the ambiguity effects
caused by the nadir antenna pointing, non-rectilinear trajectory, such as circular or slanting flights are
worth being considered. The planning of a measurement campaign involving this kind of flight is the
subject of current work. In addition, further flight tests will be conducted to assess the subsurface
imaging system capability. Moreover, waypoint following and grid surveys will be exploited to
regularly sample the area of interest, and multi-constellation/multi-frequency GNSS will be tested. In
this frame, more sophisticated flight/navigation modes and 3D tomographic imaging approaches based
on multiple measurement lines will be exploited, in order to open novel remote sensing perspectives
in structural monitoring and cultural heritage contexts.
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Abstract: This work is aimed at showing the present capabilities and future potentialities of an
imaging radar system that can be mounted onboard flexible aerial platforms, such as helicopters or
small airplanes, and may operate in the UHF and VHF frequency bands as Sounder and as Synthetic
Aperture Radar (SAR). More specifically, the Sounder operates at 165 MHz, whereas the SAR may
operate either at 450 MHz or at 860 MHz. In the work, we present the first results relevant to a set
of Sounder and SAR data collected by the radar during a helicopter-borne campaign conducted
in 2018 over a desert area in Erfoud, Morocco, just after the conclusion of a system upgrading
procedure. In particular, a first analysis of the focusing capabilities of the Sounder mode and of the
polarimetric and interferometric capabilities of the SAR mode is conducted. The overall system,
originally developed by CO.RI.S.T.A. according to a ASI funding set up in 2010, has been upgraded in
the frame of a contract signed in 2015 between ASI and different private and public Italian Research
Institutes and Universities, namely CO.RI.S.T.A., IREA-CNR, Politecnico di Milano and University
of Trento.

Keywords: Synthetic Aperture Radar (SAR); Airborne SAR; Sounder; P-Band; helicopter-borne radar;
UHF and VHF bands

1. Introduction

Radar imaging [1] represents a powerful tool in several applications, such as security, surveillance,
and environmental monitoring, with particular emphasis on disasters and crisis management [2–4].
In this frame, radar systems mounted onboard aerial platforms, such as airplanes [5–8], helicopters
and drones [9], are gaining increasing interest due to their features allowing to overcome several
limitations of radar systems mounted onboard terrestrial vehicles (carts, cars, ground track rails) [10,11]
or spaceborne platforms [12–14].

More specifically, if compared to the terrestrial imaging radar systems, such as the conventional
Ground Penetrating Radar (GPR) [10] or the Ground Based (GB) Synthetic Aperture Radar (SAR) [11],
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the aerial imaging radar systems are flexible and able to ensure a wider spatial coverage. Furthermore,
in critical scenarios, as the ones induced for instance by natural disasters (Earthquakes, volcanoes’
eruptions, flooding, rapid landslides), ungentle climatic conditions (cryosphere monitoring) or
anthropic actions (ordnance deployment), they allow safe monitoring of areas that would be difficult
to reach (if not unreachable) through terrestrial systems.

On the other side, in contrast to the satellite platforms [12–14], the aerial ones allow to timely
reach the area of interest, to fly practically along any direction, and to keep very short the so called
revisiting time, that is, the time interval elapsing between subsequent observations of the same area.

In addition, the aerial radar systems are relatively cheap, thus offering the appealing opportunity
of assessing the potentialities of novel technologies and/or measurement modalities, before these are
made operative on expensive spaceborne missions.

In this regard, the increasing interest registered in the last years toward aerial radar systems
operating at low frequencies has been in some extent driven by the ongoing or future spaceborne
missions. Indeed, the exploitation of GPR systems for the ongoing planetary exploration
missions [15–19] has certainly taken benefit from the results obtained through the several experimental
campaigns carried out in the last years with aerial penetrating radar (usually named Sounder) systems
operating in the HF, UHF and VHF bands [20–33]. For the same reason, in anticipation of the
forthcoming spaceborne ESA-Biomass mission [34], increasing of the number of aerial P-Band SAR
missions is registered in the last years [35–46].

In this context, the Italian Space Agency (ASI) has recently funded the development of an aerial
multi-mode pulsed imaging radar system operating in a multi-frequency modality in the UHF and
VHF bands. In particular, the system is able to work either as Sounder or as full polarimetric SAR.
The development of this system is aimed at making available to the Italian community of researchers
and end-users an aerial imaging radar system with several attractive features. First, it grows the
relatively small family of available aerial SAR [35–58] and Sounder [23,24,26,59] systems operating in
the UHF and VHF bands. Secondly, the system allows to easily collect over the same area radar data
characterized by different scattering mechanisms (since it may work either as SAR or as Sounder), at
different carrier frequencies and (for the SAR modes) with a diversity in the polarization.

The overall system has been originally developed by CO.RI.S.T.A. [47] according to an ASI funding
set up in 2010. After, the first version of the system has been upgraded, again by CO.RI.S.T.A., in the
frame of a contract signed in 2015 between ASI, CO.RI.S.T.A. and different public Italian Research
Institutes and Universities, namely IREA-CNR, Politecnico di Milano and University of Trento, which
have been entrusted with the processing of the data acquired by the radar. In particular, they have
designed ad-hoc strategies to process the both Sounder and SAR data. These strategies exploit the
navigation information acquired during the flight and adopt model-based procedures, which are the
microwave tomographic imaging for the Sounder and the back-projection procedure for the SAR.

With the aim of obtaining a first assessment of the performances of this radar system, a
helicopter-borne campaign has been conducted in 2018 over a desert area in Erfoud, Morocco.
During the campaign, several tracks have been flown exploiting all the three different operational
modes of the system. In this work, we present first results relevant to a small subset picked up from
the huge dataset collected by the system during this campaign.

The work is organized as follows. In Section 2 we provide a brief description of the system.
The acquisition campaign is described in Section 3. The processing chain applied to the Sounder
data is illustrated in Section 4 along with some first results. Similarly, the SAR data processing
chain is described in Section 5 along with the corresponding first results. Section 6 is devoted to the
concluding remarks.

2. System Description

The radar system exploits the pulsed radar technology and can operate at different carrier
frequencies as Sounder and Synthetic Aperture Radar (SAR). More specifically, the Sounder operates at
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165 MHz, whereas the SAR may operate either at 450 MHz (SAR-Low mode) or at 860 MHz (SAR-High
mode). Summing up, three operational modes are enabled, namely, Sounder, SAR-Low and SAR-High,
each working at a different frequency.

The bandwidth of the transmitted (chirp) pulses is 40 MHz, leading to a (slant) range resolution
of 3.75 m (in air). Moreover, in the SAR-High mode, through the stepped chirp technology [60], an
overall bandwidth of 80 MHz can be reached, that is, a (slant) range resolution of 1.87 m. The SAR
system is full polarimetric thanks to two separate receiving channels.

The overall system basically consists of a radar module along with three different antennas, one
for each operational mode.

The radar module consists of three main blocks, namely, the Radar Digital Unit (RDU), the Radio
Frequency Unit (RFU) and the Power Supply Unit (PSU). In particular, the RDU is fully programmable
and allows the parameters setting, the timing generation and the data handling. It also includes
the Analog to Digital Converter (ADC) and the data storage unit. The RFU embeds the frequency
generation unit (which generates all the synchronization and radio frequency signals) and the chirp
generator unit (which generates the low frequency modulated chirp signal by means of the digital
direct synthesis technology). RFU also includes the high power amplification unit, which is based
on the solid state technology, and an antenna front-end that allows the correct switching among the
transmitted and received signals and among the different polarizations of the SAR mode. The PSU
provides the power supply to whole system by an external 28 V DC voltage.

The system is completely stand-alone: the power supply connector is the only electrical interface.
Most radar modules are shared by the three different operational modes of the system. In particular,
base band signal generation, base band data sampling and data handling are common to the Sounder
and the SAR modes.

As noted above, different antennas are used for the three different operational modes of the
system. In particular, for the Sounder mode, a low-gain log-periodic antenna is deployed; the antenna
points to the nadir and radiates the main beam with Half Power Beam Width (HPBW) [61] of 68◦
and 50◦ in the range and azimuth directions, respectively, and with a (maximum) gain [61] of 7dBi[1].
Exploitation of the overall azimuth aperture thus can lead to an azimuth resolution of about 1m [62,63].
Two different side-looking arrays of micro-strip antennas are instead employed for the two different
SAR modes [64]. In particular, these two SAR antennas have the same shape and size, to allow an
easier swap when they cannot be installed simultaneously on the airplane/helicopter. More specifically,
the array used for the SAR-Low mode consists of 4 patches deployed along the azimuth direction:
its (maximum) gain is 11 dBi and its HPBWs are 75◦ and 20◦ in the range and azimuth directions,
respectively. Exploitation of the overall azimuth aperture thus leads to an azimuth resolution of about
1m [62,63]. For the SAR-High mode (which operates at a carrier wavelength scaled about of a factor
two respect to the SAR-Low mode), a planar array antenna of 8 × 2 patches is deployed, with the
same overall dimensions of the array used for the SAR-Low mode. The corresponding HPBWs are
thus reduced of a factor two (in both directions) with respect to the SAR-Low mode. This allows
increasing the (maximum) antenna gain of 6 dBi, retaining practically the same achievable azimuth
resolution obtainable with the SAR-Low mode. Both SAR antennas are dual-polarized, to enable the
full polarimetric capability of the SAR modes.

Currently, during the flight the user can select manually one of the three operational modes of the
system. At present, the different operational modes cannot be used simultaneously; development of a
synchronization solution aimed at circumventing this limitation is however straightforward and is
matter of current activities.

In order to achieve accurate flight information, necessary for the reliable processing of both
Sounder and SAR data, the radar encompasses a navigation unit consisting of an Inertial Navigation
System (INS) that embeds a Global Positioning System (GPS). In particular, the INS is a MTi model of
Xsense Technologies B.V., which is an inertial measurement unit with integrated 3D magnetometers
(3D compass), with an embedded processor capable of calculating roll, pitch and yaw in real time,
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as well as outputting calibrated 3D linear acceleration, rate of turn (gyro) and (Earth) magnetic field
data. The INS device integrates a GPS receiver and the related information, position, velocity and
time (PVT). The navigation unit is directly connected to the radar central unit by means of an USB
interface; all the navigation data are synchronized with the radar pulses and embedded in its output
data. Furthermore, two additional GPS devices have been added to allow differential processing of the
positioning data. The two GPS receivers are based on M8T chip series of U-blox, one installed onboard,
close to the SAR antenna, and the other on the ground in the range of some kilometers from the flying
radar. During the calibration campaigns of the radar, differential processing of the positioning data,
carried out with the RTKLIB library, allowed a centimetric positioning accuracy.

The overall system is easy to be transported and installed onboard relatively small airplanes or
helicopters. Indeed, the radar module is stowed in a rack, which is quite compact and with dimensions
of 50 cm × 50 cm × 65 cm, for a weight of about 30 kg.

During the campaign, the radar system was installed on an Eurocopter AS-350 series helicopter
(see Figure 1a). In particular, the radar electronics rack was accommodated in the helicopter cabin, in
place of the two rear passenger seats (see Figure 1b). The sounder antenna is installed on the helicopter
nose (see Figure 1c) through the mechanical framework normally used for handling the rear-view
mirror; moreover, it is fixed to the front glass and to the fuselage by means of a standard adapter.
The SAR antennas are installed through a certified framework normally used for side-looking cameras
and by using a honeycomb panel and some brackets (see Figure 1d, where just one SAR antenna
is shown).

Figure 1. (a) The system ready to flight, (b) radar electronics rack inside the cabin, (c) Sounder antenna,
(d) SAR antenna.

Table 1 reports the main electrical, mechanical and geometrical parameters of the system.
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Table 1. System parameters.

Parameters Sounder SAR-Low SAR-High

Carrier frequency 165 MHz 450 MHz 860 MHz
Bandwidth 40 MHz 40 MHz 80 MHz

Frequency steps 1 1 2–3
PRF 500 Hz 1000 Hz 2000–3000 Hz

Pulse width 2 μs 2 μs 2 μs
Mode Pulsed Pulsed Pulsed

Antenna type Log Periodic array of microstrip
antennas

array of microstrip
antennas

Antenna gain 7 dBi * 11 dBi * 17 dBi *
Antenna dimension 8 × 58 × 107 cm 10 × 45 × 165 cm 10 × 45 × 165 cm

Antenna weight 2 Kg 15 Kg 15 Kg
Nominal elevation pointing Nadir 45◦ 45◦
Nominal azimuth pointing Nadir 0◦ 0◦

Range aperture 68◦ 75◦ 37◦
Azimuth aperture 50◦ 20◦ 10◦
Range resolution 3.8 m (free sp.) 3.8 m 1.9 m

Azimuth resolution 1 m 1 m 1 m

ADC Sampling frequency 200 MHz
Peak power 200 W

Power consumption 500 W
Rack Weight 30 Kg

Rack Dimension 50 × 50 × 65 cm

* dBi measures the gain of an antenna with respect to an isotropic radiator.

3. Campaign Description

The flight campaign was carried out in May 2018 over an arid region located in southeastern
Morocco, around the city of Erfoud at the northern edge of the Sahara Desert. Several tracks, covering
different test sites, have been flown by exploiting all the three available radar acquisition modes.
As observed above (see again Figure 1), the radar system was installed onboard an Eurocopter AS-350
series helicopter, and it was possible to embark onboard simultaneously the Sounder antenna and only
one SAR antenna. Exploitation of the two different SAR modes has thus required during the mission
the swap of the two different SAR antennas.

In order to minimize the effects of structural vibration noise, during the campaign the INS has
been placed inside the helicopter cabin (as close as possible to the SAR antenna) on the floor, by using
vibration absorbers.

Figure 2 shows all the tracks flown during the campaign, superimposed to an optical image of the
overall test area. In particular, the red, green and blue tracks are relevant to the acquisitions carried out
with the Sounder, SAR-Low and SAR-High modes, respectively. As can be seen, the flight tracks were
flown basically over four different test sites that in the following are named TS1, TS2, TS3 and TS4,
respectively. More specifically, the test site TS1, which is located in proximity of the cities of Errachidia
and Erfoud, covers an aquifer located in cretaceous rocks at a depth ranging approximatively between
100 m and 200 m. The test sites TS2 and TS3 are both located in proximity of the city of Rissani.
In particular, TS2, which belongs to the great Basin Ziz-Rheris, is an almost flat region characterized by
alluvial sediments with the presence of aquifers at depth varying approximatively between 20 m and
40 m, whereas TS3 includes the archeological area of Sijilmasa. The test site TS4 is located in proximity
of the Erg Chebbi and is characterized by the presence of several dunes and covers an aquifer located
at a depth ranging approximatively between 150 m and 200 m.
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Figure 2. Erfoud area, southeastern Morocco. The red, green and blue lines represent the projections
on the ground of the flight tracks relevant to the acquisitions carried out with the Sounder, SAR-Low
and SAR-High modes, respectively.

4. Data Processing and Experimental Results: Sounder Mode

Sounder raw data acquired during the campaign have been delivered by CO.RI.S.T.A. and
processed by IREA-CNR and University of Trento.

4.1. Data Processing

Like any penetrating radar, the Sounder data collected onboard, usually named raw-data, are
arranged in a two-dimensional matrix representing the radar echoes as a function of the fast time and
the slow time, which are related to the two-way sensor-to-target distance (range) and the position of
the sensor along the flight trajectory (azimuth), respectively. The main rationale of the processing chain
applied to focus these raw data is shown in Figure 3 and consists of the cascade of four steps.

Figure 3. Sounder data processing.

The first step is an azimuth pre-summing aimed at improving the signal-to-noise ratio. In this
regard, it is noted that the Sounder PRF (500 Hz, see Table 1) leads to a spectral window significantly
larger than the Doppler bandwidth (about 40 Hz) achievable with the available azimuth beam (50◦, see
again Table 1) and the platform velocity (on the order of 40 m/s). Accordingly, the pre-summing factor
can be safely set on the order of 10 or even more. In the cases at hand, a factor of 20 has been applied
along with a proper anti-aliasing filtering procedure.
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The second processing step (see again Figure 3) is the chirp pulse compression [65], which
includes also the application of a spectral windowing procedure (in the case at hand, we use Hamming
window) aimed at reducing the level of the secondary lobes of the impulse response relevant to the
range-focused image.

Following this step, the data are still not focused along the azimuth direction: they are thus
generally characterized by the presence of diffraction hyperbolas that can make very difficult the
interpretation of the radar image. The data interpretation is further complicated by the fact that the
Sounder acquisition is typically corrupted by the so called motion errors, that is, the deviations of the
flown flight track with respect to an ideal rectilinear path. Indeed, the motion errors, if not properly
accounted for, produce distortion effects on the final radar image. For instance, in the presence of
altitude variations, a flat surface (for instance a lake) is imaged in the Sounder data as a curve specular
to the flight path instead of being seen as flat [66]. Application of a proper data processing step
aimed at reducing all these effects is thus needed at this stage. In our case, the azimuth focusing
procedure, including the compensation of the motion errors, is carried out in the frequency domain.
In particular, following the application of a Fast Fourier Transform (FFT) algorithm along the range
direction (see again the processing chain of Figure 3), the microwave tomography algorithm described
below is applied.

To this aim, let us consider the two-dimensional Sounder acquisition geometry shown in Figure 4.
Γ is the flight path that, as observed above, is typically not a straight line, that is, the flight altitude with
respect to the ground is variable. rm represents the generic measurement position, that is, the antenna
phase center position at a generic azimuth time, say tm. Let D be the 2D domain of investigation within
which we assume the targets of interest are present and let r be the position of a generic point in D.
The applied tomographic reconstruction approach is based on the following assumptions:

• the scene under investigation is invariant along the direction perpendicular to the plane defined
by the normal to the ground and the (nominal) flight direction (2D geometry);

• the radar antenna is located in the far zone with respect to the investigated area. Moreover, the
transmitting antenna is modeled as an electrical line source perpendicular to the survey plane;

• the propagation in the soil is negligible because the flight altitude is much greater than the depth of
the target of interest. This approximation is acceptable when the goal is to locate shallow targets;

• the measurement configuration is multimonostatic/multifrequency so that, at each measurement
point rm, the radar illuminates the scene at nadir and collects the field scattered by the targets at
the same measurement point rm, within the frequency band of the transmitted signal;

• a linearized model of the electromagnetic scattering equations is exploited [67].

According to the above assumptions, the electromagnetic scattering phenomenon is governed by
the integral equation [67]:

Es
(
rm,ω

)
= k2

0

�
D

g
(
rm, r
)
Einc(r)χ(r)dr = Aχ (1)

where Es is the co-polar component of the field scattered by the target (data) and received by the
antenna in rm at the frequency ω, k0 is the propagation constant in free-space, Einc is the incident
electric field in D, χ is the so called contrast function, which is different from zero in the target regions
and zero elsewhere. Moreover,A is a linear operator that maps the space of the unknowns in the data
space and

g
(
rm, r
)
≈ e− jk|r−rm |∣∣∣r− rm

∣∣∣ (2)

accounts for the scalar Green’s function in free-space [67]. The inverse problem defined by the Equation
(1) is ill posed; adoption of a regularization scheme is thus necessary to obtain a stable and robust
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solution with respect to the data noise [68]. A simple inversion scheme that provides a regularized
solution to the inverse problem is that based on the adjoint operatorA+ [68]:

χ(r) = A+Es =
� (

g
(
rm, r
)
Einc(r)

)∗
Es
(
rm,ω

)
drmdω (3)

where the symbol ‘*’ denotes the conjugation operator. The module of the contrast function
∣∣∣χ(r)∣∣∣,

obtained through the Equation (3), represents the focused tomographic image I to be used for the
subsequent analysis and interpretation. It is worth stressing that, despite the adjoint inversion scheme
defined by Equation (3) is computationally efficient, the computational resources required are in any
case high for the imaging problem at hand since large-scale (in terms of probing wavelength) data
have to be processed. For this reason, we decided to adopt a shifting zoom approach [69], whose
main steps are shown in Figure 5. More specifically, the measurement domain Γ and the survey area
D are first partitioned into N partially overlapping subdomains, say Γi and Di, i = 1, . . . ,N. Then,
for each subdomain Di the reconstruction Ii is obtained by the adjoint inversion. The tomographic
image relevant to the whole survey area D is finally obtained by combining the reconstructions Ii
relating to the subdomains Di. Note that splitting the data processing domain in partially overlapping
subintervals reduces the computational burden and in particular the memory occupation. In our case,
the dimension of the azimuth partitioning has been chosen in the interval [150, 200] m.

Figure 4. Sounder acquisition geometry.

Figure 5. Shifting zoom imaging approach.

Note also that the inversion procedure described above makes it possible to process the data
acquired in the presence of arbitrary flight paths, provided that the measurement positions rm are
known. In this regard, it is remarked that the accurate position of the measurement points is provided
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by the embedded INS-GPS device mounted onboard the platform. It is also stressed that, similarly to
the SAR case, accounting for the actual flight track leads to an increase in the computational complexity
with respect to the focusing procedures that are based upon the assumption of straight-line flight
trajectories [70,71].

4.2. First Results

As shown in Figure 2 (red tracks), the sites TS1, TS2 and TS4 were inspected with the Sounder
mode. In particular, for each test site, repeated passages of the helicopter have been flown and among
the overall acquired dataset, we report in the following some representative reconstruction results.

Figure 6 reports (right panel) the amplitude of the focused Sounder image relevant to a track
flown over the site TS1. The left panel reports the Google Earth ortophoto including the observed area.
The red line represents the flight track projected on the ground. The focused radar image is arranged in
a 2D grid: the vertical axis reports the range coordinate (measured in m); the horizontal axis represents
the azimuth coordinate (expressed in latitude). In order to check the accuracy of the focusing procedure
in the presence of motion errors, the focused image is compared to the Sounder-to-ground distance
(red line) evaluated as the difference between the sensor altitude (provided by the navigation unit
mounted onboard the helicopter) and the terrain elevation (provided by the external SRTM Digital
Elevation Model). As can be observed in the figure, the red curve is in good agreement with the
surface topography. A similar agreement has been observed for all the other datasets, confirming
that the instrument, which includes the radar and the navigation unit, is able to accurately reproduce
the surface topography variations. Figure 6 also highlights different subsurface returns at apparent
depths ranging from a few tens to a few hundred meters. However, their nature is still subject of
investigation and interpretation also aided by electromagnetic simulations of surface clutter. Indeed,
such simulations account for the true surface tomography provided by the external DEM and can help
to avoid interpreting off-nadir surface reflections as nadir subsurface echoes.

Similar considerations hold also for all the tomographic reconstructions achieved over the different
test sites inspected with the Sounder mode. Figures 7 and 8 are two representative images (relevant to
two tracks flown over the sites TS2 and TS4, respectively), which clearly highlight how the surface
clutter due to surface tomography variations and noise can make very challenging the interpretation
of Sounder data in realistic scenarios. By the way, the Sounder results shown in the right panels of
Figures 6–8, do not allow the detection of subsurface water-bearing structures, which were expected at
a depth of 100 m on the basis of a priori information about the geological setting of the site. However,
they show several localized subsurface reflections, which are not related to surface clutter according to
the electromagnetic scattering simulations that we carried out. The interpretation of these subsurface
reflections is currently under investigation and will be subject of a future work.

Figure 6. Sounder results relevant to one flight track on TS1. Left panel: Google Earth ortophoto
including the observed area. Right panel: Corresponding tomographic reconstruction. Mean flight
velocity: 45 m/s. Mean flight altitude: 2132 m. Mean terrain height: 930 m.
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Figure 7. As for Figure 6, but for TS2. Mean flight velocity: 36 m/sec. Mean flight altitude: 2104 m.
Mean terrain height: 770 m.

Figure 8. As for Figures 6 and 7, but for TS4. Mean flight velocity: 45 m/sec. Mean flight altitude: 2081
m. Mean terrain height: 745 m.

5. Data Processing and Experimental Results: SAR Mode

SAR raw data acquired during the campaign have been delivered by CO.RI.S.T.A. and processed
by IREA-CNR and Politecnico di Milano.

5.1. Data Processing

The SAR data collected onboard, typically named raw-data, are arranged, as in the Sounder
case, in a two-dimensional matrix representing the radar echoes as a function of the range and
azimuth coordinates.

The main rationale of the processing chain applied to focus these raw data is shown in Figure 9.
It basically consists of the cascade of three steps. The first step is the same as that described for the
Sounder case, that is, an azimuth pre-summing aimed at improving the signal-to-noise ratio. In this
regard, it is noted that the Doppler bandwidth achievable with the available azimuth beam (20◦ and
10◦ for the SAR-Low and SAR-High modes, respectively, see Table 1) and the platform velocity (on the
order of 40 m/s) is, for both the SAR operational modes, on the order of 40 Hz, that is, significantly
smaller than the PRF (which, according to Table 1, becomes 500 Hz when considering each separate
polarimetric channel). Accordingly, the pre-summing factor can be safely set on the order of 10 or even
more. In the cases at hand, a factor of 8 has been applied.

Figure 9. SAR data processing.

Also the second processing step is the same as that of the Sounder processing chain (see
again Figure 9): it carries out the range focusing of the data through the chirp pulse compression
procedure [62,63], which may include also the application of a spectral windowing aimed at reducing
the level of the secondary lobes of the impulse response relevant to the range-focused image. In the case
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at hand, the Hamming filtering has been applied. Moreover, for the SAR-Low mode data, application of
an additional band pass filtering procedure was necessary to cut strong interference contributions well
concentrated around the lower frequencies of the bandwidth of the transmitted pulse. In particular, a
25% reduction of the 40 MHz pulse bandwidth has been applied, which has led to a range resolution of
about 5 m.

Following this step, azimuth focusing of the data, which includes the correction of the range cell
migration effect [63], has been applied. For each target of the considered scene, this procedure basically
consists in the compensation of the phase terms that depend on the so-called range history, i.e., the
distance between the target and the phase center of the moving radar antenna. In this regard, we
note that when the SAR sensor moves along a rectilinear trajectory, as it happens in the spaceborne
case (at least theoretically, within a synthetic azimuth length [63]), for all the observed targets the
range history is independent of the terrain topography [63]. Differently, when deviations from an ideal
straight trajectory occur, as it always happens for aerial platforms (due to the unavoidable presence of
atmospheric turbulences), the range history relevant to the observed targets becomes dependent on
both the trajectory deviations and the terrain topography [72,73]. Thus, in the latter case, exploitation
of external Digital Elevation Models (DEMs) of the observed area, as well as the flight data recorded
by the navigation system mounted onboard [72,73], is necessary to precisely compensate the range
history of the observed targets. In the last decades a number of accurate and computationally efficient
algorithms, which operate in the spectral domain, have been originally devised to focus spaceborne
SAR data [63,74] and subsequently modified in order to deal with aerial SAR data as well, through
the inclusion of the so-called MOtion COmpensation (MOCO) procedures [72,73]. However, such
MOCO procedures involve some approximations [75] necessary to preserve the high computational
efficiency of the spectral domain focusing algorithms. In particular, these approximations become
unsuitable in the presence of large trajectory deviations or steep topographic variations [73,75] thus
impairing the accuracy of the overall focusing procedure [76]. To circumvent these kinds of problems,
Back Projection (BP) focusing algorithms [77], which operate in the time domain, are more appropriate,
since they do not carry out any approximation, at expenses of a computational efficiency lower than
that ensured by the spectral domain focusing algorithms.

In the case at hand, considering the strong track deviations affecting the SAR acquisitions, we
applied the BP focusing strategy (see again Figure 9) by exploiting the information provided by the
INS-GPS data and the SRTM DEM of the observed area.

5.2. First Results

As shown in Figure 2 (green and blue tracks), all the sites (TS1, TS2, TS3 and TS4) were inspected
with the SAR modes. In particular, over the TS1 and TS4 sites, a number of repeat pass interferometric
acquisitions were carried out. Accordingly, different full polarimetric as well as interferometric datasets
were collected. Among the overall acquired dataset, we report in the following some representative
results relevant to the SAR-Low mode data acquired over the TS2 and TS4 sites.

To show the potentialities of this full-polarimetric SAR system, we consider one radar acquisition
carried out over the TS2 site.

Application of the processing chain depicted in Figure 9 has led to the generation of four focused
Single Look Complex (SLC) data, one for each polarimetric channel. Table 2 reports main data
processing parameters. Figure 10 shows, in radar grid (that is, range-azimuth), the amplitude of the
corresponding Multi Look Complex (MLC) data relevant to the VV channel. In the right vertical axis
of the figure it is specified the (mean) look-angle corresponding to the range coordinate reported in
the left vertical axis. The observed scene has an extension of about 9 Km in azimuth and 2.5 Km in
range. Figure 11 shows the SAR image of Figure 10 in geographic grid and superimposed to a Google
Earth orthophoto. The green line represents the flight track projected on the ground. As can be seen
in the orthophoto reported in the left panel, the area exhibits an overall flat topography and it can
substantially be considered as a rough bare soil.
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Table 2. SAR data processing parameters relevant to the results collected in Figures 10–13.

Parameter Value Parameter Value

Azimuth spacing (SLC) 0.64 m Range spacing (SLC) 1.5 m
Azimuth resolution (SLC) 1 m Range resolution (SLC) 5 m
Azimuth spacing (MLC) 0.64 m Range spacing (MLC) 1.5 m

Azimuth resolution (MLC) 7.5 m Range resolution (MLC) 12.8 m

Figure 10. SAR results, relevant to one flight track on TS2. VV channel. SAR-Low mode. Amplitude of
the SAR MLC, in radar grid. Mean flight velocity: 40 m/sec. Mean flight altitude: 1664 m. Mean terrain
height: 815 m.

Figure 11. Left panel: Google Earth ortophoto including the observed area. Right panel: As Figure 10,
but represented in geographic grid and superimposed to the Google Earth orthophoto of the left panel.

The amplitude and phase of the correlation coefficients between the polarimetric channels
are depicted in Figure 12. In particular, see Figure 12a, the amplitude of the co-polar (HH-VV)
correlation coefficient assumes quite high values (greater than 0.6) up to a range distance of about 3 Km,
corresponding to a mean look-angle of about 70◦, while the average phase difference between these
channels is very small (approximately π/8), see Figure 12b. From Figure 12a it can be also observed
that the amplitude of the average normalized cross-products between the co-polar (HH and VV)
and cross-polar (HV and VH) channels is very low, as it happens when the observed targets exhibit
reflection symmetry [78]. These results are thus compatible with the scattering behavior expected in
the presence of rough bare soil. The presence of rough bare soil, whose dominant scattering mechanism
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is the surface scattering contribution [78,79], is confirmed also by the results of the obtained Pauli
decomposition [78], which is depicted in Figure 13, where the class of the odd-bounce scattering events
(the greenish pixels) is strongly dominant up to distances of about 3 Km. Beyond this range, the
transmitted waves impinge the surface at grazing incidence (look angles greater than 70◦), thus leading
to a non-negligible diffuse scattering contribution (the reddish pixels in Figure 13), and to HH and VV
returns which are almost completely uncorrelated, see Figure 12a.

Figure 12. Relevant to the SAR data-set collected by the flight track considered in Figure 10. Correlation
coefficients between polarimetric channels: Amplitudes (a) and phases (b).

Exceptions to the above considerations are represented by some isolated man-made targets which
are present in the scene (see, the targets highlighted with the yellow ellipses in Figures 10 and 13).
In this case indeed the average phase difference between the HH and VV channels is nearly π, see
Figure 12b, and the even-bounce component (the blueish pixels in Figure 13) represents the dominant
contribution to the scattering mechanism.
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Figure 13. SAR results relevant to the data-set of Figure 12. Pauli decomposition of the considered
scene (red: Volume, green: Surface, blue: Double-bounce).

To show the interferometric potentialities of this SAR system, we consider three repeat pass
acquisitions carried out over the TS4 site. Few minutes elapsed between the different acquisitions.

Application of the processing chain depicted in Figure 9 has led to the generation of twelve focused
SLC, one for each track and polarimetric channel. Table 3 reports main data processing parameters.
As an example, Figure 14 shows, in the ground range-azimuth grid, the amplitude of the corresponding
MLC relevant to the HH channel. The observed scene has an extension of about 14 Km in azimuth and
3 Km in (ground) range. Figure 15 shows the SAR image of the top panel of Figure 14 in geographic
grid and superimposed to a Google Earth orthophoto.

For all the interferometric data pairs achievable with the different polarimetric channels, we
have carried out a first interferometric analysis, by using the processing parameters listed in Table 4.
In particular, Figure 16 shows the interferometric coherence relevant to the VV channels, which turned
out to be on average the highest one with respect to that achievable with the other combinations of
polarimetric channels. As can be seen, in most of the observed area the obtained coherence is quite
good. Coherence losses are however observed in near range and in some well confined azimuth strips,
due to the spatial decorrelation effects induced by the large spatial baselines generated by the severe
track deviations of the helicopter during the radar acquisitions. This is confirmed by the height of
ambiguity maps reported in Figure 17 and relevant to the same data pairs considered in Figure 16.
As can be seen, in the low coherence regions of Figure 16 the height of ambiguity reported in Figure 17
reaches very low (absolute) values. Note in particular, that the color scale in Figure 17 is set between
(−15 m, 15 m) to highlight that trajectories are crossing, causing the interferometric baseline to go to 0.
Accordingly, at some locations the height of ambiguity becomes infinite (hence all the saturated areas),
and then returns in the interval (−15, 15) with opposite sign.

Table 3. SAR data processing parameters relevant to the results collected in Figures 14 and 15.

Parameter Value Parameter Value

Azimuth spacing (SLC) 0.7 m Ground range spacing (SLC) 5 m
Azimuth resolution (SLC) 1 m Ground range resolution (SLC) 6.25 m
Azimuth spacing (MLC) 0.7 m Ground range spacing (MLC) 5 m

Azimuth resolution (MLC) 7 m Ground range resolution (MLC) 6.25 m
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Figure 14. SAR results relevant to three repeat pass flight tracks on TS4. HH channel, SAR-Low mode:
Amplitude of the SAR MLCs in ground range-azimuth grid. Acquisition date: 15 May 2018. Mean
flight velocity: 50 m/sec. Mean flight altitude: 1600 m. Mean terrain height: 730 m. From the top to the
bottom panel the acquisition start time is: 14:21:32, 14:38:31, 14:58:13.

Figure 15. As the top panel of Figure 10 but represented in geographic grid and superimposed to a
Google Earth orthophoto.

Table 4. SAR data processing parameters relevant to the InSAR results collected in Figures 16–18.

Parameter Value Parameter Value

Azimuth spacing 4 m Ground range spacing 6.25 m
Azimuth resolution 15 m Ground range resolution 15 m
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Figure 16. Relevant to the repeat pass interferometric SAR data-set collected by the flight tracks
considered in Figure 14. Coherence maps relevant to the VV channels.

Figure 17. Height of ambiguity maps relevant to the data pairs considered in Figure 16.

Figure 18. Interferograms relevant to the data pairs considered in Figures 16 and 17.
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Note also that in some confined range strips (see for instance the central azimuth portion of the
14:58:13–14:38:31 and 14:21:32–14:58:13 interferograms) the coherence is low from near to far range
although the (absolute) value of the height of ambiguity is very high (greater than 15 m) between mid
and far range, approximately. This is due to the strong attitude variations of the helicopter during the
acquisitions. In some portions of the flown tracks it is indeed likely that these effects were significantly
different for the different acquisitions, thus reducing the overlapping between the Doppler spectra of
the different interferometric channels.

By the way, in the high coherence regions, which represent the large part of the observed area,
interferometric fringes are well visible, as it can be seen in Figure 18, where the interferograms relevant
to the same data pairs considered in Figure 16 are shown.

6. Conclusions and Further Developments

In this work, we have presented a recently developed aerial imaging radar system operating in
the UHF and VHF bands as Sounder and as full polarimetric Synthetic Aperture Radar (SAR). More
specifically, three operational modes are possible: Sounder, SAR-Low and SAR-High, each working at
a different frequency.

To obtain a first evaluation of the potentialities of the system, a helicopter-borne campaign has
been conducted in May 2018 over an arid region located in southeastern Morocco, around the city
of Erfoud at the northern edge of the Sahara Desert. Several tracks, covering four different test
sites (denoted as TS1, TS2, TS3 and TS4), have been flown by exploiting all the three available radar
acquisition modes. From the huge dataset collected during the campaign, we have processed a small
subset and presented first results.

In particular, to show the potentialities of the Sounder system, we have presented some
representative results relevant to the TS1, TS2 and TS4 sites. To focus the data, we have applied a
tomographic reconstruction approach capable to deal with the actually flown flight tracks by exploiting
the information provided by the INS-GPS system mounted onboard the helicopter. To check the
accuracy of the obtained results, the focused images have been compared to the Sounder-to-ground
distance evaluated by exploiting the INS-GPS system and the external SRTM DEM. A good agreement
between expected and obtained results has been achieved.

To show the potentialities of the SAR system, we have shown some representative results relevant
to the SAR-Low mode data acquired over the TS2 and TS4 sites. More specifically, to focus the data,
we have applied a Back Projection approach operating in time domain and capable of exploiting the
information provided by the INS-GPS system mounted onboard the helicopter and the external SRTM
DEM of the observed area. To show the potentialities of the system related to its full-polarimetric
capability, we have considered one radar acquisition carried out over the TS2 site and shown the
correlation coefficients between the polarimetric channels as well as the obtained Pauli decomposition.
It has been shown that these polarimetric products well match the scattering behavior expected for the
observed area (which can substantially be considered as a rough bare soil in the presence of a limited
number of well confined man-made targets). To show the interferometric potentialities of the system,
we have considered three repeat pass acquisitions carried out over the TS4 site and shown the obtained
interferograms along with the corresponding coherence maps. In particular, it has been shown that the
obtained interferometric coherence is quite good, but for the near range areas and some well confined
azimuth strips, due to the spatial decorrelation effects induced by the large spatial baselines generated
by the severe track deviations of the helicopter during the radar acquisitions. By the way, in the high
coherence regions, which represent the large part of the observed area, interferometric fringes are
well visible.

Summing up, first results relevant to both the Sounder and the SAR modes are promising. Of
course, further activities aimed at assessing the full capabilities of the system are planned for the
next months.
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In particular, full exploitation of the available SAR polarimetric channels in order to obtain added
value products such as soil moisture as well as surface roughness maps [80] is matter of current
investigation. Beside, acquisition of massive repeat pass interferometric data-sets is planned for
the very near future, in order to fully exploit the capabilities of the UHF and VHF bands for the
retrieval of the terrain topography below dense forests [81] or the subsurface structure over areas
covered by snow/ice [42] through advanced tomographic SAR processing techniques. Moreover, deep
interpretation of the nature of subsurface returns visible in the focused Sounder images is subject of
investigation and interpretation also aided by electromagnetic simulations of surface clutter. In the
meantime, processing of the entire dataset acquired during the Morocco campaign is matter of current
study and future work.
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Abstract: Maneuvers provide flexibility for high-resolution highly-squinted (HRHS) airborne
synthetic aperture radar (SAR) imaging and also mean complex signal properties in the echoes.
In this paper, considering the curved path described by the fifth-order motion parameter model,
effects of the third- and higher-order motion parameters on imaging are analyzed. The results indicate
that the spatial variations distributed in range, azimuth, and height directions, have great impacts on
imaging qualities, and they should be eliminated when designing the focusing approach. In order to
deal with this problem, the spatial variations are decomposed into three main parts: range, azimuth,
and cross-coupling terms. The cross-coupling variations are corrected by polynomial phase filter,
whereas the range and azimuth terms are removed via Stolt mapping. Different from the traditional
focusing methods, the cross-coupling variations can be removed greatly by the proposed approach.
Implementation considerations are also included. Simulation results prove the effectiveness of the
proposed approach.

Keywords: high-resolution; highly-squinted; maneuvers; fifth-order motion parameter model;
spatial variation

1. Introduction

In recent years, there have been tremendous studies on synthetic aperture radar (SAR). As an
active sensor, SAR is able to work day and night under all weather conditions [1–3]. In addition,
SAR can operate at different frequencies and view angles in different polarimetric modes. This feature
makes the SAR a flexible and effective tool for information retrieval [4–6]. With the advancement
of SAR, high resolution and highly squint angle have potential to provide more information about
the surface structure. Moreover, the SAR platform is capable of flying along a curved path to realize
different applications, to the extent that the model assumption of the rectilinear path no longer
holds. This scenario occurs in SAR systems on aircraft platforms because of various factors such
as rugged topography, atmospheric turbulence, and intended maneuvers [7–10]. Characteristics of
a curved path differ from those of a uniform linear motion. Major peculiarities exist in its motion
parameters, non-uniform spatial-intervals, and three-dimensional (3-D) spatial geometric model. Thus,
the traditional imaging algorithms based on straight trajectory and hyperbolic range model (HRM) may
be invalid. In order to guarantee the imaging qualities, both the range model and the imaging algorithm
may need to change. In addition, the maneuvers will greatly affect the spatial variations in both the
range and azimuth directions, particularly for the high-resolution highly-squinted (HRHS) SAR.

In the literature, the fourth-order Doppler range model (FORM) [11–13], modified equivalent
squint range model (MESRM) [14], advanced hyperbolic range equation (AHRE) [15], equivalent
range model (ERM) [16], and modified ERM (MERM) [17] for spaceborne or airborne SAR have been
proposed to describe the curved path. Compared with the conventional HRM, these models introduce

Remote Sens. 2018, 10, 862; doi:10.3390/rs10060862 www.mdpi.com/journal/remotesensing113



Remote Sens. 2018, 10, 862

acceleration into the range model, which makes the descriptions of characteristics, including Doppler
bandwidth, cross-coupling phase, and two-dimensional (2-D) spatial variations, of the raw-data more
accurate. However, they only consider the acceleration term and ignore the higher-order motion
parameters, which limit their applications for high-accuracy imaging. In reality, the maneuvers
cannot always be controlled only by constant velocity and acceleration, thus the higher-order motion
parameters are needed [18]. If this problem cannot be well solved, it may strongly impair the final
image quality in terms of geometric distortion and radiometric resolution losses for HRHS SAR [5].
Thus, profound research on the geometrical model is still necessary.

Concerning the focusing algorithm for the SAR with maneuvers, methods performed in the
frequency domain include the range-Doppler algorithm (RDA) [19], chirp scaling algorithm (CSA) [20],
omega-K algorithm (OKA) [21], and their extensions [11–13,22–25]. Eldhuset [11,12] suggests a
fourth-order processing algorithm by 2-D exact transfer function (ETF) for spaceborne SAR with curved
orbit. However, this work ignores the 2-D spatial variation of the azimuth modulation phase and results
in defocusing in the azimuth edge regions. Luo et al. [13] and Wang et al. [14] respectively propose a
modified RDA and a modified CSA, which can greatly remove the cross-coupling terms brought by the
curved path. However, the spatial variations of the acceleration have not been considered. Li et al. [23]
propose a frequency-domain algorithm (FDA) for the small-aperture highly-squinted airborne SAR
with maneuvers. With expanding the azimuth time in a small aperture, the azimuth spatial variation
of the stripmap SAR can be eliminated. However, the residual errors increase greatly with the
aperture (resolution). Moreover, the neglected range and vertical spatial variations of the azimuth
modulation phase cannot be ignored for the HRHS SAR with maneuvers. The wavenumber domain
algorithm [17] and OKA [22] for the HRHS SAR with curved path are proposed based on different
modified equivalent range models, which can avoid using the method of series reversion (MSR) to
achieve the 2-D spectrum. However, the residual spatial variations caused by approximations would
lead to deteriorations in the final image. The 2-D keystone transform algorithms (KTAs) are developed
in [26] based on the 2-D Taylor series expansion and they can greatly remove the spatial variations of the
high-resolution spaceborne SAR. The errors introduced by the 2-D Taylor expansion can be ignored for
the spaceborne SAR but not for the HRHS SAR. Generally, the 2-D spatial variations are not eliminated
entirely by [11–24] performed in frequency domain and have great impacts on the final image result.
Wu et al. [27] propose a hybrid correlation algorithm (HCA) for the curved flight path, which treats
the 2-D correlation by a combination of frequency-domain fast correlation in azimuth dimension and
time-domain convolution in the range dimension. Furthermore, back projection algorithm (BPA) and
fast factorized BPA (FFBPA) [28–31] have been suggested. However, in terms of computational burden,
the HCA and BPA are not always the best choices compared with the frequency-domain algorithms.
The polar format algorithm (PFA) [5,32] can be used for the three-dimensional (3-D) acceleration cases.
However, the depth of field is seriously affected by the wavefront curvature, and it must be extended
by subaperture technique for the quadratic phase error (QPE) compensation. Thus, further studies are
still required for the HRHS SAR with maneuvers.

In this paper, the fifth-order motion parameter model is introduced and the problems are discussed
for the HRHS SAR with maneuvers, which are the important factors that demand attention in
imaging design. Our analyses suggest that the spatial variations in arbitrary direction brought
by the third- and higher-order motion parameters cannot be ignored. Employing the Taylor series
expansions with multi-variables, we decompose the spatial variations into three parts—i.e., range,
azimuth, and cross-coupling terms—with a high accuracy. Then, according to the properties of
decomposed phases, the polynomial phase filter and Stolt mapping with interpolations are performed
to remove the cross-coupling and range/azimuth spatial variations, respectively. Unlike the traditional
focusing algorithms [11–15,23,24], the cross-coupling spatial variations, which are always ignored in
low-resolution case, are corrected for the HRHS SAR with maneuvers. Implementation considerations,
including simplified processing and constraint on scene extent are also studied.
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The rest of this paper is organized as follows. The signal model of HRHS SAR with maneuvers
is investigated and the confronting problems are presented in Section 2. In Section 3, our imaging
approach is presented. Implementation considerations are provided in Section 4. Numerical simulation
results are given to validate the proposed approach in Section 5. Conclusions are drawn in Section 6.

2. Modeling and Motivation

2.1. Modeling

Figure 1 shows the geometric model of the HRHS SAR with maneuvers. The projection of radar
location on the ground is assumed to be the origin of Cartesian coordinates O-XYZ. Assuming that
points C and A are respectively the central reference point (CRP) and an arbitrary point on the scene,
l is the flight path of the platform, point Q is the position of the platform at the aperture center moment
(ACM), and rc and rA are respectively the position vectors of platform to points C and A at ACM.

Figure 1. HRHS SAR imaging geometry with maneuvers.

According to the imaging geometry shown in Figure 1 and the kinematics equation of the platform,
the instantaneous slant range history |r(η)| corresponding to arbitrary point A can be expressed as

|r(η)| =
∣∣∣rA − vη − aη2/2 − bη3/6 − cη2/24 − dη2/120

∣∣∣ (1)

where | · | is the symbol of absolute value, v is the velocity vector, and a is the acceleration vector, while
b, c, and d are the third-, fourth-, and fifth- order motion parameter vectors in the motion Equation (1),
respectively. It is obvious that the range history |r(η)| is an equation with higher-order terms shown
as a flat-top shape. It is difficult to derive the 2-D spectrum directly using Equation (1) based on the
principle of stationary point (POSP); therefore, the traditional SAR processing methods cannot be
applied directly. One way to treat the complex fifth-order motion parameter model (FMPM) is to
expand it into a power series in azimuth time as

|r(η)| = ∑
0

1
n!

μnηn (2)

where the first six coefficients are
μ0 =

√
〈rA, rA〉 (3)

μ1 = μ−1
0 · [−〈rA, v〉] (4)

μ2 = μ−1
0 ·
[
(−〈rA, a〉+ 〈v, v〉)− μ2

1

]
(5)

μ3 = μ−1
0 · [(−〈rA, b〉+ 3〈v, a〉)− 3μ1μ2] (6)
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μ4 = μ−1
0 ·
[
(−〈rA, c〉+ 4〈v, b〉+ 3〈a, a〉)− 3μ2

2 − 4μ1μ3

]
(7)

μ5 = μ−1
0 · [(−〈rA, d〉+ 5〈v, c〉+ 10〈a, b〉)− 10μ2μ3 − 5μ1μ4] (8)

In Equation (1), μ0, μ1, and μ2 are respectively the slant range, Doppler centroid, and Doppler
frequency modulation (FM) of the point A. μ3, μ4, and μ5 are the higher-order terms which have great
impact on the final image qualities and cannot be ignored.

By using the range history expressed in Equation (1), we obtain the received echo as

S0(tr, η) = ε0wr(tr)wa(η) exp(−j4π fc|r(η)|/c) exp
(

jπγ[tr − 2|r(η)|/c]2
)

(9)

where tr is the range fast time, c is the speed of light, fc and γ are the carrier frequency and FM rate of
the transmitted signal respectively, ε0 is the complex scattering coefficient, and wr(·) and wa(·) are the
range and azimuth windows in time domain.

Based on Equation (2), Equation (9) is transformed into the range frequency domain using the
POSP after range compression, i.e.,

S1( fr, η) = ε0ωr( fr)wa(η) exp
(
−j

4π( fc + fr)

c
|r(η)|

)
(10)

where fr is the range frequency and ωr(·) is the range window in frequency domain.

2.2. Motivation

(1) Error Analysis of FMPM: Traditionally, v and a are always taken into consideration for the SAR
with maneuvers. However, in the case of HRHS SAR, this second-order motion parameter equation is
insufficient and it will greatly deteriorate the final image results and limit the scene size. In this work,
the higher-order motion parameter vectors, namely, b, c, and d are exploited to improve the accuracy
of the flight path description.

Employing the parameters listed in Table 1, Figure 2a,b respectively show the phase errors and
spatially variant errors caused by the motion parameter vectors b, c, and d. The unit of the contour
maps is π. Note that spatially variant errors brought by d can be ignored, whereas both the phase
errors by b, c, and d and the spatially variant errors by b and c cannot. Figure 3a,b respectively show
the spatially variant errors with different azimuth resolutions in range and azimuth directions. Clearly,
the effects of b and c must be taken into consideration for the high-resolution cases whereas that of d
is negligible. Figure 4a,b respectively show the spatially variant errors with different squint angles
in range and azimuth directions. The maximum errors at large squint angles are far larger than π/4
introduced by b and c. The impacts brought by d are still small enough and can be ignored. According
to the above analyses, the spatial variations brought by the motion parameter vectors b and c should
be considered.

Table 1. Parameter settings.

Motion Parameter Value System Parameter Value

Radar Position at ACM (0, 0, 10) km Carrier Frequency 17 GHz
Reference Position (12.68, 26, 0) km Pulse Bandwidth 500 MHz

Velocity v (0, 170, −10) m/s Sampling Frequency 620 MHz
Acceleration a (1.2, 1.73, −1.4) m/s2 Squint Angle 60◦

Third-order Parameter b (−0.09, 0.11, −0.14) m/s3 Azimuth Resolution 0.242 m

Fourth-order Parameter c (0.005, 0.007, 0.003) m/s4 Scene Size
(Range×Azimuth) 1.6 × 1.6 km
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(a) 

  
(b) 

Figure 2. Impacts of motion parameter vectors b , c, and d on imaging results. (a) Phase errors and (b)
spatially variant errors.

  
(a) 

  
(b) 

Figure 3. Spatial variations brought by motion parameter vectors, b , c, and d. (a) Range spatial
variations with respect to range distance and resolution. (b) Azimuth spatially variant errors with
respect to range distance and resolution.

(2) Irregularly Spatial Variation Distributions: As analyzed in the above part, the spatial variation
should be taken into consideration for the HRHS SAR with maneuvers to achieve a high quality image
and it exists in all the targets, with different range curvatures, with respect to the reference one on the
scene. To better understand the existing spatial variations of the targets on the scene, an illustration is
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provided in Figure 5, where T0 is the reference point, T1 and T2 are the targets that respectively have
the same azimuth and range cells as those of T0, and T3 is the target that has different position as that
of T0. Basically, there are three kinds of spatial variations irregularly distributed in the ground scene:
range, azimuth, and 2-D cross-coupling spatial variations, as shown in Figure 5a. The range or azimuth
spatial variations are traditionally processed whereas the 2-D cross-coupling one, which is irregularly
distributed on the ground scene as shown in Figure 2b, is ignored. Moreover, the spatial variations
exist in both azimuth time and azimuth frequency domains, as shown in Figure 5b. The curved
non-parallel time-frequency diagrams (TFDs) indicate that spatial variations of range cell migration
(RCM) and secondary range cell (SRC) in either azimuth time or azimuth frequency domains should
be compensated when designing the focusing algorithm.

  
(a) 

  
(b) 

Figure 4. Spatial variations brought by motion parameter vectors b , c, and d. (a) Range spatial
variations with respect to range distance and squint angle. (b) Azimuth spatially variant errors with
respect to range distance and squint angle.

 
(a) (b) 

Figure 5. Spatial variations distribution. (a) Spatial variations distributed in ground scene. (b) TFDs of
targets T0, T1, T2, and T3.
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3. Imaging Approach

We propose an imaging approach that combines polynomial phase filter and Stolt mapping.
The first step is to eliminate the cross-coupling spatial variations in the second-, third-, and fourth-order
phases via polynomial phase filtering. The second step is to correct the spatial variations in range and
azimuth directions through the Stolt mapping.

3.1. 2-D Cross-Coupling Spatial Variation Elimination

We first construct a polynomial phase filter to eliminate the second-, third-, and fourth-order
cross-coupling spatially variant terms corresponding to the Doppler centroid μ1, which is a key
function for the whole imaging approach

H1(η) = exp
{

j
4π( fr + fc)

c

∣∣∣rre f (η)
∣∣∣} exp

{
−j

4π( fr + fc)

c

4

∑
n=2

1
n!

χnηn

}
(11)

where the coefficients χ2, χ3, and χ4 are to be determined.
∣∣∣rre f (η)

∣∣∣ is the range history of the reference
point and the subscript ‘ref ’ denotes the reference target. The first phase term is used for the bulk
compensation and it can greatly decrease the impacts brought by the high squint angle and spatially
invariant terms. The second term, i.e., polynomial phase filter, aims to eliminate the cross-coupling
spatial variation.

Multiplying Equation (11) by Equation (10) and transforming the result into 2-D frequency domain
by using POSP, we can then obtain (see Appendix A)

S2
(

fr, fη

) ≈ ε0ωr( fr)ωa
(

fη

)
exp
{

jπ
4( fr + fc)

c

(
k0 + k1 fk + k2 f 2

k + k3 f 3
k + k4 f 4

k

)}
(12)

where fk = fηc/[2( fr + fc)], with fη being the azimuth frequency, ωa(·) is the azimuth window in
frequency domain, while k0 and k1 are respectively the range and azimuth position terms and they
have no impact on the imaging results. Thus, we decompose the higher-order spatially variant phase
terms corresponding to k2, k3, and k4 into four parts: range, azimuth, and cross-coupling spatially
variant terms, as well as spatially invariant term, i.e.,

S3
(

fr, fη

) ≈ ε0ωr( fr)ωa
(

fη

)
exp
{

j
[
ϕran
(

fr, fη

)
+ ϕazi

(
fr, fη

)
+ ϕcou

(
fr, fη

)
+ ϕcon

(
fr, fη

)]}
(13)

where ϕran
(

fr, fη

)
, ϕazi

(
fr, fη

)
, and ϕcou

(
fr, fη

)
are respectively the range, azimuth, and cross-coupling

spatially variant terms, and ϕcon
(

fr, fη

)
is the spatially invariant term (see Appendix B)

ϕran
(

fr, fη

)
=

4π( fr + fc)

c

(
1 +

4

∑
i=2

pi(χ2, χ3, χ4) f i
k

)
· k0 (14)

ϕazi
(

fr, fη

)
=

4π( fr + fc)

c

(
fk +

4

∑
i=2

qi(χ2, χ3, χ4) f i
k

)
· k1 (15)

ϕcou
(

fr, fη

)
= 4π( fr+ fc)

c

{
l2(χ2, χ3, χ4)

(
μ1 − μ

re f
1

)
· f 2

k

+l3(χ2, χ3, χ4)
(

μ1 − μ
re f
1

)2 · f 2
k

+l4(χ2, χ3, χ4)
(

μ1 − μ
re f
1

)
· f 3

k

} (16)

ϕcon
(

fr, fη

)
=

4π( fr + fc)

c

4

∑
i=2

zi(χ2, χ3, χ4) f i
k (17)
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where all pi(χ2, χ3, χ4), qi(χ2, χ3, χ4), li(χ2, χ3, χ4), and zi(χ2, χ3, χ4) (i = 2, 3, 4) are spatially invariant
coefficients which are derived by phase decompositions with the use of the gradient method [33] in the
3-D geographical space. The Taylor series expansion with multi-variables employed in Appendix B
has higher accuracy than that with one variable [33,34], which avoids deterioration in the final
imaging result.

To remove the cross-coupling spatial variations brought by μ1, the coefficients li(χ2, χ3, χ4)

(i = 2, 3, 4) in Equation (16) should be set to zero. Thus, one can get the following three equations with
three unknowns, i.e., ⎧⎪⎨

⎪⎩
l2(χ2, χ3, χ4) = 0
l3(χ2, χ3, χ4) = 0
l4(χ2, χ3, χ4) = 0

(18)

The solving process of Equation (18) for χ2, χ3, and χ4 is also provided in Appendix B.
Substituting the solutions of χ2, χ3, and χ4 into pi(χ2, χ3, χ4), qi(χ2, χ3, χ4), and zi(χ2, χ3, χ4)

(i = 2, 3, 4) respectively in Equations (14), (15), and (17), accurate expressions of ϕran
(

fr, fη

)
,

ϕazi
(

fr, fη

)
, and ϕcon

(
fr, fη

)
are obtained.

Illustration of the processing scheme is provided in Figure 6 to better understand the whole
procedure. The TFDs of the cross-coupling spatial variations are shown in Figure 6a. After bulk
compensation, the cross-coupling spatial variations are greatly weakened as shown in Figure 6b.
Then, the TFD of the polynomial phase filter, presented in Figure 6c, is applied. The cross-coupling
spatial variations are corrected in the 2-D frequency domain and the result is shown in Figure 6d. It is
worth noting that the polynomial phase filter is more like a perturbation function in the traditional
azimuth nonlinear CS (ANLCS) with similar solving process [23,24,35,36]. The difference is that the
perturbation function in ANLCS only eliminates the azimuth spatially variant phase brought by
range walk correction in stripmap mode whereas the polynomial phase filter can greatly remove the
cross-coupling one which is ignored in traditional ANLCS. Moreover, the polynomial phase filter can
also process the height spatial variations due to the topography variations.

fη

η fη

η

fη

ηfη

η

Figure 6. Illustration of cross-coupling spatial variation elimination by TFDs of three targets with
different positions. (a,b) TFDs before and after bulk compensation, respectively; (c,d) TFDs before and
after polynomial phase filtering.

3.2. Range and Azimuth Spatial Variation Elimination

After polynomial phase filtering, the possible azimuth spectrum aliasing should be taken into
consideration. Noting two main aspects: (1) the azimuth bandwidth is greatly affected by the motion
parameters; (2) the Doppler FM becomes μ2 + χ2 after polynomial phase filtering, which means that
the azimuth bandwidth may have a big change, aliasing should be eliminated before the azimuth
Fourier transform (FT) of the signal. The corresponding solution has been discussed in [16] and one
can use it for efficient data preprocessing. It is worth mentioning that the expressions of the 2-D
spectrum before and after the preprocessing are similar except for azimuth frequency variable fη in
Equation (13).

120



Remote Sens. 2018, 10, 862

After the cross-coupling spatial variation elimination, the echo signal is expressed as

S4
(

fr, fη

) ≈ ε0ωr( fr)ωa
(

fη

)
exp
{

j
[
ϕran
(

fr, fη

)
+ ϕazi

(
fr, fη

)
+ ϕcon

(
fr, fη

)]}
(19)

In Equation (19), the spatially invariant phase term can be compensated by

H2
(

fr, fη

)
= exp

(−jϕcon
(

fr, fη

))
(20)

The first- and second-terms in Equation (19) are respectively the range and azimuth modulation
phases, which determine the range and azimuth positions. In this case, the ideal solution is to perform
separable interpolation respectively in the range and azimuth directions to remove the corresponding
spatial variations. The formulas of the interpolation are expressed as

4π( fr + fc)

c

(
1 +

4

∑
i=2

pi(χ2, χ3, χ4) f i
k

)
→ 4π

(
f ′r + fc

)
/c (21)

4π( fr + fc)

c

(
fk +

4

∑
i=2

qi(χ2, χ3, χ4) f i
k

)
→ 2π f ′η (22)

where f ′r and f ′η are, respectively, the new range and azimuth frequencies after interpolations.

These substitutions are viewed as a Stolt mapping of
(

fr, fη

)
into
(

f ′r , f ′η
)

; thus, the echo signal becomes

S5

(
f ′r , f ′η

)
= ε0ωr

(
f ′r
)
ωa

(
f ′η
)

exp
{

j
[
4π
(

f ′r + fc
)
/c · k0 + 2π f ′η · k1

]}
(23)

Clearly, a 2-D inverse FT (IFT) can be applied with Equation (23) to obtain a focused result, i.e.,

S6(tr, η) = ε0GrGasinc{Br[tr − 2k0/c]} · sinc{Δ fa[η − k1]} (24)

where Gr and Ga denote, respectively, the range and azimuth compression gains, Br is the bandwidth
of the transmitted signal, and Δ fa is the azimuth bandwidth.

To illustrate the proposed algorithm, we consider a simple highly squinted flight geometry
shown in Figure 1, with point target A. Figure 7 shows the results of the proposed algorithm by 2-D
spectra of a target and the impulse response after compression. The solid lines in the first two rows
represent phase contours. Figure 7a–c respectively show the support areas of 2-D cross-coupling,
range, and azimuth spatially variant spectra after phase decomposition. RCM and SRC are generally
very small, compared to the range bandwidth, but are exaggerated here to illustrate the effect of a
target away from the reference point. The slightly curved phase contours indicate that the target is not
properly focused. In Figure 7d, the phase is completely independent of range and azimuth frequencies
after the polynomial phase filtering, which means that the 2-D cross-coupling spatially variant terms
are eliminated entirely. The Stolt mappings of Figure 7b,c produce noticeable changes in phase
contours, of which the lines are equally spaced and parallel as shown in Figure 7e,f. The echo data are
well focused in range and azimuth directions respectively shown in Figure 7g,h after corresponding
spatial variations being eliminated. Figure 7i shows the 2-D contour result of target.

3.3. Flowchart of Imaging Algorithm

The flowchart of the imaging approach is shown in Figure 8. By using the proposed approach,
spatial variations including the range, azimuth, and height spatially variant phases are greatly removed
for the HRHS SAR with maneuvers. It should be noted that the range history in (1) is not a general
model. When the maximum phase error between the polynomials in (1) and the real supporting points
is less than π/4, it has no impact on the imaging results. On the other hand, if the maximum phase
error is larger than π/4, the final image would be deteriorated. One solution is to take higher-order
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motion parameters into consideration in the proposed approach to decrease the errors. The residual
phase errors can also be compensated by using the autofocus techniques which have been clearly
discussed in [37,38].

Figure 7. Illustration of proposed algorithm by 2-D spectra of a target and impulse response after
compression. (a–c) in top row are 2-D spectra after phase decomposition, while (d–f) in the second row
illustrate 2-D spectra after corresponding processing, and (g–i) in the bottom row are imaging results.
The solid lines in the first two rows represent phase contours.

1H

2H

 
Figure 8. Flowchart of the proposed algorithm.
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4. Implementation and Discussion

4.1. Simplified Processing

According to the mapping functions in Section 3.2, if the terms

4π( fr + fc)

(
1 +

4
∑

i=2
pi(χ2, χ3, χ4) f i

k

)
/c in Equation (21) and 4π( fr + fc)

(
fk +

4
∑

i=2
qi(χ2, χ3, χ4) f i

k

)
/c

in Equation (22) are sufficiently small, we can omit the corresponding interpolation to decrease the
computational load of the whole imaging algorithm. In this subsection, a simplified processing
method is suggested. In order to avoid the interpolation operation and to retain the image quality,
the following two conditions must be satisfied

max

{∣∣∣∣∣4π( fr + fc)

(
1 +

4

∑
i=2

pi(χ2, χ3, χ4) f i
k

)
/c

∣∣∣∣∣
}

< π/4 (25)

max

{∣∣∣∣∣4π( fr + fc)

(
fk +

4

∑
i=2

qi(χ2, χ3, χ4) f i
k

)
/c

∣∣∣∣∣
}

< π/4 (26)

and thus the impacts on the final image could be ignored. With simulation parameters in Table 1,
the maximum phase errors of Equations (25) and (26) are 0.02 π and 0.7 π, respectively. Clearly,
the azimuth interpolation is still necessary whereas the range one is not in this case. However,
the results may not be generalizable. Thus, a judgment is added in the processes to determine whether
the interpolation is necessary or not according to Equations (25) and (26). The judgment flowchart is
given in Figure 9.

 

Figure 9. Judgment flowchart of the interpolation.

4.2. Constraint on Scene Extent

The scene extent is analyzed in this subsection. The scene size is mainly determined by the
accuracy of the proposed approach. In the focusing step, approximations only occur in the phase
decomposition. According to Equation (13), the phase error is derived as

Φres =
4π( fr + fc)

c

(
4

∑
i=2

ki f i
k − k0

4

∑
i=2

pi f i
k − k1

4

∑
i=2

qi f i
k

)
(27)

To ensure the image quality, Φres should be less than π/4. By computing the Taylor series
expansion ki(i = 0, 1, · · · , 4) with respect to s and ignore the higher-order terms, i.e., ki = kre f

i +〈
∇kre f

i , s
〉

, Φres can be rewritten as

Φres ≈ 4π( fr + fc)

c

(
4

∑
i=2

〈
∇kre f

i , s
〉

f i
k −
〈
∇kre f

0 , s
〉 4

∑
i=2

pi f i
k −
〈
∇kre f

1 , s
〉 4

∑
i=2

qi f i
k

)
(28)

where kre f
i = 0. As Φres < π/4, we obtain the scene sizes, i.e., 2s, in both the horizontal and vertical

directions. According to Equation (28), the decomposed errors increase with the focus depths in range,

123



Remote Sens. 2018, 10, 862

azimuth, and height directions. These phase errors could have negative effects on the SAR image
formation when they are larger than π/4.

Utilizing airborne SAR simulation parameters in Table 1, Figure 10 shows the phase errors
introduced by phase decompositions in range/azimuth, range/height, and azimuth/height planes.
Clearly, the maximum phase errors in Figure 10a–c are all less than π/4, which means that the residual
spatial variations in range, azimuth, and height directions after focusing are small enough and thus
have negligible impact on the imaging qualities.

  
(a) (b) (c) 

Figure 10. Phase errors in (a) range and azimuth, (b) range and height, and (c) azimuth and
height planes.

5. Simulation Results

To prove the effectiveness of the proposed approach, simulation results are presented in
this section.

5.1. Experiment 1

In this subsection, a spotlight mode SAR is simulated with a 3 × 3 dot-matrix being arranged in
the simulation scene. The geometry of the scene is presented in Figure 11. The parameters are listed in
Table 1.

R
an

ge

Azimuth

PT1 PT2 PT3

PT4 PT5 PT6

PT7 PT8 PT9

Figure 11. Ground scene for simulation.

Case 1: The motion parameters a, b, and c in this case are listed in Table 1. Simulation results
without considering b and c are respectively used for comparisons. Moreover, the results by the
FDA [16] are included. Figure 12 shows the comparative results of targets PT1, PT5, and PT9. Clearly,
considering the higher-order motion parameters b and c, the impulse responses of targets PT1, PT5,
and PT9 with different range and azimuth positions are visibly well focused by the proposed method.
However, neglecting the motion parameters b and c, the impulse responses of targets PT1, PT5, and PT9
using the proposed method have deterioration with different degrees. The neglected parameter c can
degrade the near-sidelobe levels with asymmetry distortions, which means that there are deteriorations
in the peak sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR), and the neglected parameter b
can degrade both the 3 dB width of the main lobe (i.e., the resolution) and the near-sidelobe levels,
as shown in Figure 12. The impulse responses of targets PT1 and PT9 on the scene edges using
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FDA have deteriorations. The neglected azimuth and cross-coupling spatial variations brought by
acceleration are the main causes of the problem and they increase with resolutions and scene sizes.

  
(a) 

  
(b) 

  
(c) 

  
(d) 

PT1

PT1

PT9PT5 

PT5 PT9

PT9

PT1 PT5 PT9

PT5PT1

Figure 12. Comparative results of target PT1, PT5, and PT9. (a) Proposed method, (b) c not considered,
(c) b not considered, and (d) FDA.

To quantify the precision of the proposed method, IRW, PSLR, and ISLR are used as performance
measures. The results are listed in Table 2. Both the contour plots and image quality parameters
demonstrate the effectiveness of the proposed method.

Table 2. Image quality parameters.

Range Azimuth

Method Target IRW (m) PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB)

Proposed
PT1 0.266 −13.21 −9.99 0.247 −13.17 −9.92
PT5 0.265 −13.23 −10.01 0.243 −13.22 −10.03
PT9 0.266 −13.19 −9.98 0.241 −13.15 −9.95

FDA
PT1 0.266 −13.24 −9.96 0.893 −6.02 −4.49
PT5 0.266 −13.25 −10.09 0.242 −13.23 −10.07
PT9 0.267 −13.17 −10.01 1.302 −4.74 −3.56
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Case 2: In this case, a, b, and c are set to larger values compared with those in Case 1,
a = (3.2, 4.1,−2.7) m/s2, b = (0.32,−0.56,−0.17) m/s3, and c = (−0.032,−0.037, 0.024) m/s4.
The ideal azimuth resolution is 0.364 m, the height of target PT9 is set to 300 m with respect to
the reference target PT5, and other simulation parameters are listed in Table 1.

By performing the focusing method, simulation result of targets PT1, PT5, and PT9 is shown in
Figure 13. The wavenumber domain algorithm [17] and BPA [29] are used for comparisons. Clearly,
the results using the BPA and proposed method are visibly well focused, whereas the results on the
edges achieved by [17] are not because the spatial variations introduced by the motion parameters a, b,
and c are not considered. Moreover, the target height of PT9 leads to a greater deterioration on the
focused result compared with that of the flat one.

(a) (b) (c) 

Figure 13. Comparative results of azimuth point impulse responses processed by proposed method [17],
and BPA. (a) Target PT1. (b) Target PT5. (c) Target PT9.

The quality parameters of azimuth point impulse responses are listed in Table 3. It is worth
noting that the quality parameters of the proposed method are close to those of the BPA. In particular,
the computational load of the proposed approach is much lower than that of the BPA. All these indicate
that the proposed method can be well applied to the HRHS SAR with maneuvers.

Table 3. Image quality parameters.

Method Target IRW (m) PSLR (dB) ISLR (dB)

Proposed
PT1 0.367 −13.16 −9.87
PT5 0.365 −13.21 −10.02
PT9 0.362 −13.14 −9.94

[17]
PT1 1.031 −6.11 −4.56
PT5 0.364 −13.24 −10.06
PT9 1.135 −5.78 −4.12

BPA
PT1 0.365 −13.24 −10.04
PT5 0.364 −13.27 −10.08
PT9 0.361 −13.25 −10.05

5.2. Experiment 2

In the following, a comparison of the proposed approach and [17] is made. Since the
highly-squinted SAR data with maneuvers are not available, a HRHS airborne SAR raw signal
simulation through time domain echo generation method is performed in this subsection. The data
set contains curved flight path. The carrier frequency is 35 GHz, the bandwidth of the transmitted
signal is 400 MHz, reference range is 26 km, and squint angle is 63◦. The scene size in range and
azimuth directions are respectively 1.4 km and 1 km, and the azimuth resolution is 0.428 m. The motion
parameters—namely, the velocity v, acceleration a, and higher-order motion parameters b and c are
listed in Table 4. The data are focused by using the proposed approach. Moreover, a comparative
focusing result of [17] is provided to demonstrate the superiority of the proposed method.
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Table 4. Motion parameter settings.

Motion Parameter Value

Velocity v (0, 110, −10) m/s
Acceleration a (1.21, 1.43, −0.74) m/s2

3rd-order Paramater b (−0.1, 0.2, 0.2) m/s3

4th-order Paramater c (0.007, −0.015, 0.004) m/s4

Figure 14 shows the comparative results. Clearly, the entire scene is well focused by the proposed
approach, including the edge regions, as shown in Figure 14a. However, the imaging result in
Figure 14b has a great deterioration in the edge regions, which are noted from the zoom-in version of
the dot-line rectangle area. It is because [17] ignores the spatial variations introduced by a, b, and c.

(a) (b) 

Figure 14. Imaging results (a) by proposed approach and (b) [17].

Figure 15 shows the zoom-in version of TFDs of the highlighted elliptic areas in Figure 14.
The TFDs of the proposed method have a good energy aggregation, however, the TFDs of [17] have
great energy dispersion. Moreover, the time-frequency resolution (TFR) of the proposed approach
is higher than that of [17], which is seen from the dot-line rectangle area. It is also observed that the
TFDs of the proposed approach are vertical curves while that of [17] have slight slopes. The azimuth
profiles of the point in the highlighted elliptic areas are shown in Figure 16. It is evident that serious
distortion and smearing occur in [17], while the proposed method provides well-focused performance.
According to the above analyses, it is concluded that the proposed approach can perform well in
HRHS airborne SAR with maneuvers.

(a) (b) 

Figure 15. TFDs of rectangular domain in Figure 14. (a) Using the proposed approach. (b) Using [17].
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Figure 16. Comparison of azimuth pulse response.

6. Conclusions

SAR has been widely applied for remote sensing. However, the problems caused by the maneuvers
affect the performance of traditional focusing method for the HRHS cases. In this paper, a FMPM is
introduced to describe the curved path. Considering the third- and higher-order motion parameters,
our analyses indicate that the spatial variations in range, azimuth, and height directions will severely
impair the image quality if they are not properly accounted for during the processing. To solve
this problem, we have developed a polynomial phase filter to remove the cross-coupling variations
and a Stolt mapping function to the range and azimuth terms. The proposed approach is efficient,
easy to implement, and can process the HRHS SAR data with maneuvers. Moreover, implementation
considerations are provided. Validity and applicability are studied through theoretical analyses and
numerical experiments.

Author Contributions: S.T. conceived the main idea; L.Z. and H.C.S. conceived and designed the experiments;
S.T. and H.C.S. analyzed the data and wrote the paper.

Acknowledgments: This work was supported in part by the National Natural Science Foundation of China under
grants 61601343 and 61671361, in part by China Postdoctoral Science Foundation Funded Project under grant
2016M600768, in part by the National Defense Foundation of China, and in part by the Fund for Foreign Scholars
in University Research and Teaching Programs (the 111 project) under grant No. B18039.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In order to obtain the 2-D spectrum of Equation (11), we use the POSP and have

4

∑
n=1

1
(n − 1)!

(
μn − μ

re f
n

)
ηn−1 +

4

∑
n=2

1
(n − 1)!

χnηn−1 = − fk (29)

where fk= c fη/2( fc + fr). By using MSR [39–41], the stationary point η∗ is derived as

η∗ = −g1

(
fk + μ1 − μ

re f
1

)
+ g2

(
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re f
1

)2 − g3

(
fk + μ1 − μ
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)3
(30)

where the coefficients are
g1 =

1
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(31)
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2
(
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re f
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)3 (32)
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g3 =
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(
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)5 −
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4 + χ4

)
6
(
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)4 (33)

According to Equation (30), the 2-D spectrum is derived as
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, and k4 = β4, with βn being the Doppler parameters of the range

history, all of which are spatially variant terms. They are calculated as β0 = −
(

μ0 − μ
re f
0

)
, β1 = 0,

β2 = g1/2, β3 = −g2/3, and β4 = g3/4.

Appendix B

For the second-order coefficient k2 in Equation (34), we expand β2, β3, and β4 using the
Taylor series
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re f
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(35)
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re f
1 = 2β
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2 . ai(i = 1, · · · , 5) are the Taylor expansion

coefficients. Substituting Equations (35)–(37) into k2 leads to

k2 = p2(χ2, χ3, χ4) · k0 + q2(χ2, χ3, χ4) · k1
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re f
1

)
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(38)

where p2(χ2, χ3, χ4) = a3, q2(χ2, χ3, χ4) = 3a5, l2(χ2, χ3, χ4) = a1 + 3β
re f
3 − 6a5β

re f
2 ,

l3(χ2, χ3, χ4) =a2 + 3a4 + 6β
re f
4 , and z2(χ2, χ3, χ4) = β
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For the third-order coefficient k3 in Equation (34), β3 is re-expanded using Taylor series with
different variables as those of Equation (36)
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re f
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0

)
(39)

where bi(i = 1, 2) are the Taylor expansion coefficients. Substituting Equation (39) into k3, we obtain

k3 = p3(χ2, χ3, χ4) · k0 + q3(χ2, χ3, χ4) · k1

+l4(χ2, χ3, χ4) ·
(

μ1 − μ
re f
1

)
+ z3(χ2, χ3, χ4)

(40)

where p3(χ2, χ3, χ4) = b2, q3(χ2, χ3, χ4) = 0, l4(χ2, χ3, χ4) = b1 + 4β
re f
4 , and z3(χ2, χ3, χ4) = β

re f
3 .

For the fourth-order coefficient k4 in Equation (34), we substitute Equation (37) into k4 to yield

k4 = p4(χ2, χ3, χ4) · k0 + q4(χ2, χ3, χ4) · k1 + z4(χ2, χ3, χ4) (41)
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where p4(χ2, χ3, χ4) = 0, q4(χ2, χ3, χ4) = 0, and z4(χ2, χ3, χ4) = β
re f
4 .

Substituting Equations (38), (40), and (41) into Equation (34), we obtain the 2-D spectrum in (13).
According to phase decomposition, the equations in Equation (18) are rewritten as

⎧⎪⎨
⎪⎩

a1 + 3β
re f
3 − 6a5β

re f
2 = 0

a2 + 3a4 + 6β
re f
4 = 0

b1 + 4β
re f
4 = 0

(42)

Their solutions are
χ2 = −

(
C3 + C2

1

)
/C2 (43)

χ3 = −
(

C3C1 + C3
1

)
/C2 (44)

χ4 = C2
3 − C3C2

1/C2 (45)

where C1 = ∂μ2/∂μ1|re f , C2 = ∂2μ2/∂μ2
1

∣∣
re f , and C3 = ∂μ3/∂μ1|re f .
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Abstract: With the increasing requirement for resolution, the negligence of topography variations
causes serious phase errors, which leads to the degradation of the focusing quality of the synthetic
aperture (SAR) imagery, and geometric distortion. Hence, a precise and fast algorithm is necessary
for high-resolution airborne SAR. In this paper, an extended back-projection (EBP) algorithm is
proposed to compensate the phase errors caused by topography variations. Three-dimensional (3D)
variation will be processed in the time-domain for high-resolution airborne SAR. Firstly, the quadratic
phase error (QPE) brought by topography variations is analyzed in detail for high-resolution
airborne SAR. Then, the key operation, a time-frequency rotation operation, is applied to decrease
the samplings in the azimuth time-domain. Just like the time-frequency rotation of the conventional
two-step approach, this key operation can compress data in an azimuth time-domain and it reduces
the computational burden of the conventional back-projection algorithm, which is applied lastly in
the time-domain processing. The results of the simulations validate that the proposed algorithm,
including frequency-domain processing and time-domain processing can obtain good focusing
performance. At the same time, it has strong practicability with a small amount of computation,
compared with the conventional algorithm.

Keywords: frequency-domain processing; extended back-projection algorithm; topography variations;
computational burden; high resolution

1. Introduction

Over the past few decades, airborne synthetic aperture radar (SAR) has been widely adopted
in remote sensing areas to produce a two-dimensional (2-D) high-resolution microwave imagery of
observed scenes under all-weather and all-day conditions [1–3]. The SAR technology is important in
object detection, localization, and deformation monitoring [4–6]. A variety of airborne SAR systems
have been applied in practical applications, such as PAMIR, CARABAS-II, and unmanned aerial vehicle
(UAV) SAR. The airborne SAR systems nowadays can illuminate the observed area at different angles,
based on the SAR usually being divided into side-board SAR and squint SAR [7]. As an effective
sensor, high squint SAR can also provide information about the surface structure, and can increase the
flexibility to obtain the imagery of the desired district within a single pass of the airplane. Many efficient
algorithms have been proposed to resolve the problems, i.e., range cell migration, azimuth spectrum
aliasing, and 2-D spatial-variant Doppler frequency modulation rate [8–10]. The topography of
observed scenes is also usually neglected in these conventional airborne SAR algorithms, which means
that the ground is assumed to be a flat surface [11–13]. However, the assumption of these algorithms
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will be invalid, especially with increasing resolution nowadays [14]. The negligence of topography
variations will cause two main problems: degradation of the focusing quality of imagery, and geometric
distortion. Therefore, to satisfy the increasing demand for the high-resolution of airborne SAR
systems (such as millimeter-wave SAR systems), a precise focusing algorithm for high-resolution
highly squinted airborne SAR is unquestionably necessary to solve problems that are caused by
topography variations.

SAR image formation for high-resolution SAR basically consists of a phase-corrected integration
of the raw data samples. The different processing algorithms deviate from each other in terms
of how accurately and efficiently they implement the spatially adaptive summation. In principle,
the algorithms can be mainly divided into two categories: frequency-domain [15–24] and time-domain
algorithms [25–28]. The former ones are aimed at raising the efficiency of the processor, but they have
the limitations of integration time, flight track, and topography, which restricts the application of
frequency-domain algorithms. The most general frequency-domain algorithm is the range Doppler
algorithm (RDA), which decouples the range and azimuth processing with the sacrifice of focusing
accuracy. Frequency-domain algorithms also include the chirp scaling (CS) algorithm [15], the Omega-k
algorithm [16], and their extended forms for squinted airborne SAR. They are usually based on the
assumption of a strictly straight trajectory. The nonlinear chirp scaling (NLCS) algorithm [17] and
its extension [18–22] are the common algorithms that are used to deal with the spatial variance,
especially the azimuth variance. These frequency-domain algorithms are developed by scholars before
the graphics processing unit was applied. In general, these aforementioned algorithms have not taken
the topography into account. The precise topography and aperture dependent (PTA) algorithms [25]
are proposed to realize the motion compensation based on block processing. To avoid discontinuities
at block borders, it usually takes a 50% overlap, which results in a relatively high computational
burden. The subaperture topography- and aperture- dependent (SATA) algorithm [26] is another
typical algorithm that increases the accuracy of the topography variants. This uses the short time
Fourier transform in subaperture along the azimuthal direction.

The typical time-domain algorithm is the time-domain back-projection (BP) algorithm, which has
been widely accepted as a precise algorithm for all SAR reconstructions [29,30]. In principle,
BP algorithm is a process of pulse-by-pulse and pixel-by-pixel. Thus, it can be applied in almost
every SAR mode, configuration, and terrain. At the same time, the digital elevation model (DEM)
has been a mature technology in the remote sensing field [31–33]. The combination of the BP
algorithm and DEM can perfectly realize the topography-dependent motion compensation. Due to the
pixel-by-pixel character, the biggest disadvantage of the BP algorithm is the computational burden.
Usually, the computation of the time-domain BP algorithm is proportional for a desired image with,
and azimuth sampling points. Compared with frequency-domain algorithms, the time-domain BP
algorithm provides lower adaptability and practicability. To improve the computational efficiency for
time-domain algorithms, two major approaches have been developed: parallel computing platforms
and incremental modifications of the BP algorithm. Many methods have been proposed to improve the
operational efficiency of the BP algorithm. The representative ones are the fast back projection (FBP)
algorithm [34] and the fast factorized back projection (FFBP) algorithm [35]. The FBP algorithm and
FFBP algorithm both consist of a number of processing stages, and combine the subaperture technology
with polar grids processing. To a certain degree, they both reduce the computational burden, while keep
most of the advantages of the original BP algorithm. The extensions of the FBP algorithm and the
FFBP algorithm were applied in different SAR scenes [36–43]. However, the subaperture will introduce
problems of subaperture division and sub-image mosaic [44]. Also, topography variations are taken
in account, which will cause image distortion. In general, for high-resolution airborne SAR systems,
it becomes very difficult for the methods mentioned above, to realize the focusing of the observed
scene, with the increase in resolution, squint angle, and scene coverage. A fast focus algorithm based
on full-aperture processing is necessary, especially when topography variations cannot be ignored.
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However, some overlap between the blocks is considered, to reduce the appearance of sidelobe in the
SATA algorithm.

In this paper, we proposed an extended back-projection (EBP) algorithm for the squinted
high-resolution airborne SAR, with the consideration of topography variations. To avoid subaperture
division and image mosaic, the proposed algorithm will be based on full-aperture processing,
rather than partitioned processing. The range domain data or azimuth domain data is processed as a
bulk. This proposed algorithm applies a time-frequency rotation operation, which is similar to the
two-steps approach in certain extent. Compared with the conventional time-domain BP algorithm,
the proposed EBP algorithm needs lesser amounts of computation. At the same time, it remains
high-resolution performance for high-resolution airborne SAR systems with topography variations.

The paper is organized as follows. Section 2 is dedicated to the model of high-resolution
airborne SAR with topography variations and analysis of phase errors without consideration, and the
derivation of corresponding expressions are given. The details of the proposed EBP algorithm, i.e.,
the frequency-domain processing and time-domain processing, are explained in Section 3. Then,
several simulation results of the performance of the proposed algorithm are provided in Section 4.
Section 5 discusses the problems about parameter selection and the computational burden for the
proposed EBP algorithm. The final conclusion is given in Section 6.

2. Modeling and Analysis

2.1. Modeling of Airborne SAR

Traditionally, the movement of airborne SAR is assumed as a linear uniform motion in a straight
line, with the ground scene being flat. It was reasonable for the short integration time, low-resolution
airborne SAR. The hyperbolic range model, neglecting the impacts of topography variations on the
imaging results, would introduce significant phase errors with the increasing resolution for airborne
SAR systems. During the acquisition interval, neither the motion error effects, nor the topography
variations could be ignored. A general geometry of high-resolution airborne SAR is shown in Figure 1.

Actual trajectory
P

O

spot

A

V

Y

X

Z

C
refR
R

h

 

Figure 1. Geometrical model of high-resolution airborne synthetic aperture (SAR).

It is noted that point P is the reference position of the fight path at the aperture center moment
(ACM), and points C and A are respectively the reference and arbitrary targets on the ground scene,
h is the height of the point A, Rre f and R0 are respectively the slant range vectors from P to C, and P
to A at ACM, and V is the velocity vector of the platform. With reference to the imaging geometry,
the slant range history of point A is expressed as:

r(η; A) = ri(η; A) + re(η; A) + rt(η; A) (1)
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where η is the slow time, ri(η; A), re(η; A), and rt(η; A) are respectively the range history, motion errors,
and the topography variations of target A, and ri(η; A) are expressed as:

ri(η; A) = |R0 − V · η| (2)

where |·| denotes the norm operation. In this general model, re(η; A) and rt(η; A) cannot be ignored in
the case of high-resolution.

According to Equation (1), the received echo of point A is expressed as:

S0(tr, η) = ε0ωr(tr − 2r(η; A)/c)ωa(η − η0)

· exp(−j4π fcr(η; A)/c) · exp
(

jπγ[tr − 2r(η; A)/c]2
) (3)

where tr is the range fast time, fc and γ are the carrier frequency and the frequency modulation (FM)
rate of the transmitted signal, respectively, ε0 is the complex scattering coefficient, ωr(·) and ωa(·) are
respectively the range and azimuth envelopes in the time-domain, and η0 denotes the Doppler center
time of the point target [45,46].

2.2. Problem

In conventional SAR imaging processing, the phase error brought about by topography variation
was not considered, which would greatly deteriorate the final image and limit the ground scene
size. In this subsection, the quadratic phase error (QPE) brought by topography variation rt(η; A)

was analyzed for high-resolution airborne SAR, according to Equations (1) and (2). Utilizing the
parameters listed in Table 1, Figure 2 shows the absolute QPEs with different variables, i.e., resolution,
squint angle, and scene size. The unit of the figures was π. Figure 2a,b is respectively, the simulation
results in the range/height and azimuth/height domains with azimuth resolution and the squinted
angle, respectively being 0.25 m and 60◦. Figure 2c,d is the simulation results in the resolution/height
and squint angle/height domains, respectively. Clearly, the maximum QPE in each domain was far
larger than π/4, which could not be accepted in the high-resolution airborne SAR imaging. Moreover,
the QPE increased with the scene coverage, azimuth resolutions, and the squint angles, as shown
in Figure 2. It was concluded that the effects that were brought by topography variations cannot
be ignored in the case of high-resolution, large-swath, and high squint angles. Figure 3 shows the
absolute position errors (PEs) that were introduced by topography variations. The unit of the figures
was impulse-response width (IRW). It was seen that the PEs were all generally larger than one IRW in
each height cell, and that they would greatly distort the final focused image.

Table 1. Parameter settings.

Parameters Value

Carrier frequency 9.65 GHz
Pulse duration 2.5 μs

Pulse Bandwidth 300 MHz
Sampling frequency 420 MHz

Reference slant range 25.0 km
Altitude 8.0 km

Velocity vector (0, 120, 0) m/s

Simulation results provide a visually view of the impact brought by topography variations.
It is noted that the large QPEs and PEs were eliminated for high-resolution airborne SAR imaging.
The focusing approach was a rigorous one in this work, compared with those for the conventional
cases which assume that the ground scene is flat.
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Figure 2. Quadratic phase errors (QPEs) introduced by topography variations in different domains:
(a) QPEs introduced by topography variations in range/height domain; (b) QPEs introduced by
topography variations in azimuth/height domain; (c) QPEs introduced by topography variations
in the resolution/height domain; (d) QPEs introduced by topography variations in the squint
angle/height domain.

Figure 3. PEs introduced by topography variations in different domains: (a) PEs introduced by
topography variations in the range/height domain; (b) PEs introduced by topography variations in the
azimuth/height domain.

For the high-resolution airborne SAR, two main aspects should be considered:

(1) Three-dimensional (3-D) variations in time-domain. Clearly, the general range history in Equation (1)
was a vector variable function, which means that one should consider the changes in range,
azimuth, and height directions, when designing the focusing approach in the time-domain.
An accurate equation indicates the good performance of the proposed focusing method, or it
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would lead to a great deterioration in the final imaging result, including the IRW, the peak
side-lobe ratio (PSLR), and the integration side-lobe ratio (ISLR).

(2) 3-D variations in the frequency-domain. Because of the complex composition terms in
Equation (1), it is difficult to derive the 2-D spectrum, even when using the method of the
series reversion (MSR). Moreover, with the complex range history, the focused approach designed
in the 2-D frequency-domain would be more complicated than those in the time-domain. Thus,
the process directly applied in frequency-domain was not the best choice for an efficient algorithm
design for high-resolution airborne SAR in this work.

3. Imaging Algorithm

For the high-resolution airborne SAR, the complex range history in Equation (1) greatly increased
the difficulty in imaging, because the 3-D variations that were distributed on the ground scene were
difficult to eliminate, especially in the height direction. To solve these problems, a novel focusing
algorithm was presented in this section. The proposed EBP algorithm took into account the topography
variations, and had the advantages of accuracy and efficiency. The imaging algorithm could be divided
into two steps. The first step, i.e., the frequency-domain processing, was used to greatly decrease
the virtual aperture length by applying the equivalent time-frequency rotation operations in the
frequency-domain. The second step, i.e., the time-domain processing, was to remove the 3-D spatial
variations, including the 2-D spatial variations in the horizontal plane, and the spatial variation
was brought by topography variations in the vertical plane by performing BP in the time-domain.
The specific implementation of these two parts: frequency-domain processing and time-domain
processing, was presented as following.

3.1. Frequency-Domain Processing

The defect of the conventional BP algorithm was poor computational efficiency. The reduction
of the computational burden would be the key point to improving the imaging efficiency. In this section,
a frequency-domain approach was presented to compress the data in an azimuth time-domain for the
BP algorithm. The essential of the frequency-domain processing in this work was an equivalent
time-frequency rotation operation to change the support area (aperture length) in the azimuth
time-domain, which was similar to that of the traditional two-step approach proposed in [47–49].
The difference was that the traditional two-step approach was used to change the equivalent azimuth
bandwidth, to avoid spectrum aliasing, whereas the proposed one was to decrease the virtual aperture
length, to reduce the computational burden of the BP algorithm. Moreover, they performed in different
domains. For instance, the first step of the frequency-domain processing was implemented in the
azimuth frequency, while one of the traditional two-step approaches was implemented in the azimuth
time-domain. So we first transformed Equation (3) into the range/Doppler domain, i.e., S1

(
tr, fη

)
,

where fη was the azimuth frequency. Similar to that of the two-step approach [47], the reference
function was constructed as:

H1
(

fη

)
= exp

(
−jπα0 f 2

η

)
(4)

where α0 is the scaling factor and it determines the sampling interval in the time-domain after
frequency-domain processing. Convoluting the range/Doppler signal S1

(
tr, fη

)
of point A with

the reference function expressed in Equation (4) yields:

S2

(
f ′η
)

= S1

(
tr, f ′η

)
⊗az H1

(
f ′η
)

= exp
(
−jπα0 f

′2
η

)
Residual Phase

· ∫ S1
(
tr, fη

)
exp
(
−jπα0 f 2

η

)
deramping

· exp
(

j2πα0 fη f ′η
)

IFT Kernel

d fη
(5)

where ⊗az denotes the azimuth convolution in the frequency-domain. It is clearly that the convolution
can be achieved by three operations, i.e., the deramping operation, the inverse Fourier transform
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(IFT) with new IFT kernel, and the residual phase compensation, as marked in Equation (5).
The frequency-domain processing had the same principle as that of the azimuth preprocessing [49]
that was applied in the time-domain, which could be regarded as the ‘time-frequency rotation’ [48].
According to the new IFT kernel, one can obtain that:

{
η′ = α0 fη

η = α0 f ′η
(6)

where η′ and f ′η are the new azimuth time and frequency variables, respectively. The residual phase
compensation was expressed as:

H2

(
f ′η
)
= exp

{
−jπα0 f

′2
η

}
(7)

The convolution in Equation (5) performed in the frequency-domain could be rewritten as a
product in the time-domain, i.e.,:

S2
(
tr, η′) = S1

(
tr, η′) · H1

(
η′) (8)

where H1(η
′) is the time-domain form of H1

(
f ′η
)

, and S2(tr, η′) is the form of S2

(
f ′η
)

in the 2-D

time domain. To acquire S2(tr, η′), one needs to compensate the second term on the right side of
Equation (8), and the compensation function can be constructed as

H3
(
η′) = exp

(
−jπη

′2/α0

)
(9)

Multiplying Equation (9) with Equation (8), one finally obtains the 2-D time-domain expression
which has a form that is similar to that of the original echoes, except for different azimuth time variable
η′. According to Equation (6), it is noted that the scaling factor α0 can be selected to decrease support
area (virtual aperture length) to reduce the computational burden of the time-domain processing in
the next step. Thus, the frequency-domain processing was a key part in this work.

In order to explain the kernel of the frequency-domain processing, the diagram for frequency-
domain processing is graphically shown in Figure 4. Four targets are distinguished in the azimuth
dimension. The time-frequency diagrams (TFDs) of received raw signal and reference function H1

are shown in Figure 4a. As shown in Figure 4b, the received signal obtained the new supporting
area after the deramping operation, in part of Equation (5). At this step, the echo signal is multiplied
with Equation (4) in the azimuth frequency-domain. Then, an equivalent IFT operation with a new
IFT kernel in the azimuth from η and fη to η′ and f ′η was implemented, and Figure 4c shows the
results of the equivalent IFT operation. At the last step, the compensation was implemented by using
Equations (7) and (8) in different domains, and the renovated echo signal was obtained, as shown in
Figure 4d. After the operation above, the virtual aperture length of the new echo signal was smaller
than the one of original echo signal. This meant that the computational burden of the following
algorithm could be decreased, if the data of processed echo signal was selected properly.
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Figure 4. Steps of the frequency-domain processing using the time-frequency diagrams (TFDs). (a) Echo
signal and reference function H1 in the range/Doppler domain; (b) signal after deramping; (c) signal
after inverse Fourier transform (IFT) with new IFT kernel and residual phase compensation function
H2; (d) signal after the residual phase compensation.

3.2. Time-Domain Processing

The time-domain algorithms are mainly the back projection algorithm (BPA) and its extensions [30–35].
They implement the phase-corrected integration for each imaged point separately, by taking into
account the individual propagation delay. So the application of the BPA, and its extensions can
easily adapt to airborne SAR with topography variations. However, in terms of computational
burden, the BPA is not always the best choice, compared with those of the frequency-domain
algorithms. To avoid the heavy computational burden, the combination of the conventional BPA
and the frequency-domain processing in Section 3.1 was applied in this work, to improve the efficiency
of the imaging algorithm.

After the frequency-domain processing, the echo signal was transformed into the range
frequency-domain as:

S3
(

fr, η′) = ε0ωr( fr)ωa
(
η′) exp

(
−jπ

f 2
r

γ

)
exp
(
−j

4π( fc + fr)

c
r
(
η′; A

))
(10)

Performing the range compression, the compression factor was expressed as:

H4( fr) = exp
(

jπ
f 2
r

γ

)
(11)

Then, multiplying Equation (11) with Equation (10), one can get:

S4( fr, η′) = S3( fr, η′) · H4( fr)

= ε0ωr( fr)ωa(η′) exp
(
−j 4π( fc+ fr)

c r(η′; A)
) (12)

Transforming Equation (12) into 2-D time-domain yields:

S5
(
tr, η′) = ε0GrGηsinc

[
Δ fr
(
tr − 2r

(
η′; A

)
/c
)]

exp
(
−j

4π

λ
r
(
η′; A

))
(13)

where Δ fr is the bandwidth of the transmitted signal, Gr and Gη represent the range and the azimuth
envelope gain in the frequency-domain respectively, and λ is the wavelength of the transmitted signal.

Based on the new azimuth time η′, the BPA was applied in Equation (13) to achieve the focused
image. It should be noted that the sampling number in azimuth time-domain can be significantly
decreased by selecting properly scaling factor α0, which can greatly reduce the computational burden
with slight deterioration of imaging quality. This was the main reason that we performed the
frequency-domain processing first in this work.
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Figure 5 shows the illustration of the proposed algorithm. The first step is frequency-domain
processing. It was seen that both the virtual aperture length and the new sampling interval were
smaller than the original ones, which was decided by the selection of α0. The length of the original
aperture was reduced greatly, and the sampling interval became smaller than the original one. So,
some of the positions in the flight path became redundant. In the new aperture, the green spots
represented the chosen sampling points, while the red ones represented the redundant sampling
points. Thus, a lesser number of positions could be selected for the BPA to reduce the computational
burden, as shown in Figure 5. Then, the time-domain processing, i.e., BPA, was applied in the 2-D
time-domain. It was important to note that the DEM data should be known to achieve the accurate
range history.

Figure 5. Illustration of proposed algorithm.

3.3. Flowchart of the EBP Algorithm

Based on the aforementioned discussion, Figure 6 presents the flowchart of the EBP algorithm. H1,
H2, H3, and H4 were respectively expressed as Equations (4), (7), (9) and (11). Clearly, the proposed
EBP algorithm included two parts: frequency-domain processing was used to reduce the length of
the virtual aperture of the received signal and the computational burden of the following algorithm;
time-domain processing solves the problems that are caused by topography variations, with the
combination of the selection of the sampling points, the DEM data, and the back-projection algorithm.
The processing procedure of the proposed algorithm was practically denoted as follows:

1. Azimuth Fourier transform (FT). Apply an azimuth FT on the raw data;
2. Deramping processing; the first step of the frequency-domain processing. Modulate the raw data

with Equation (4);
3. Equivalent Azimuth IFT; the second step of the frequency-domain processing. Apply the

transformation in the data from the η and fη coordinate, to the η′ and f ′η coordinate;

4. Residual phase compensation; the final step of the frequency-domain processing. Compensate the
data with Equation (7) in the new azimuth frequency-domain;

5. Azimuth IFT. Transform the data from the f ′η domain to η′ domain;

6. Second phase compensation. Compensate the data with Equation (9) in the new
azimuth time-domain;

7. Range FT. Apply a range of FT on the renovated data. Then, the range compression will be
implemented in the range frequency-domain;

8. Range compression. Compress the data in the range frequency-domain with Equation (11);
9. Range IFT. Transform the data from the tr domain to fr domain;
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10. Selection of samples. The important sampling points are selected appropriately, and the premise
is that the echo signal will not alias the azimuth frequency-domain. In this way, the computational
burden of the BP algorithm will be reduced;

11. BP processing. Calculate the accurate slant range from each azimuth position to the targets,
with the combination of the airborne acquisition scenarios and the DEM data. The other substeps
in this step are similar to those of the classical BP processing.

For the purpose of simplicity and clarity, the work mode of the high-resolution airborne SAR
system is designed as a spotlight SAR in the previous discussion of the proposed algorithm. Meanwhile,
it is assumed that the airborne SAR flies along the linear trajectory. Actually, the proposed EBP
algorithm can be also applied in other work modes, such as the stripmap SAR, terrain observation
by progressive scans (TOPS) SAR, or the sliding spotlight SAR. These modes are distinguished,
based on the variation of the antenna beam direction, and they are all called beam steering SAR for
simplicity [50]. It is well known that the time-domain back-projection algorithm can be considered as
a linear transformation from radar echo data to the SAR scene; thus, the proposed algorithm based on
the BP algorithm could be applied in SAR, with the above-mentioned modes. Furthermore, the EBP
algorithm was also applicable to the other SAR system (including the airborne SAR and spaceborne
SAR), flying along the curve trajectory.

Figure 6. The flowchart of the EBP algorithm. In this flowchart, frequency-domain processing and
time-domain processing are included.

4. Simulation Results

In this section, to prove the efficiency of EBP algorithm, spot matrix simulation results and SAR
scene simulation results are respectively presented.

4.1. Spot Matrix Simulation Results

In this subsection, the performance of the proposed EBP algorithm is evaluated in the cases
without, and with consideration of the motion errors. The parameters for the simulation are listed in
Table 1.

Figure 7 is the distribution of the targets in the illuminated spot matrix. The scene size
(range × azimuth) is about 1.2 km × 1.2 km. The targets in the different location of the scene was at
different altitudes.
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Figure 7. Distribution of targets in the illuminated spot matrix which contained nine-point targets.

Case I

In this experiment, simulation results without considering the topography variations were used
for comparisons. The airborne SAR worked in the spotlight mode. The motion errors were not
added in this case. The heights of targets PT1 and PT9 were respectively set as −120.0 and 180.0 m,
with respect to the reference point PT5, the squint angle was 30◦, and the azimuth resolution was
0.681 m. The traditional chirp scaling algorithm (CSA) (e.g., [15]) was used for comparison.

Figure 8 shows the comparative results by the proposed algorithm and CSA. From Figure 8, we see
that the topography variations in the vertical direction were greatly decreased, and the targets with
different range and azimuth positions by the proposed approach were visually well-focused. However,
for the CSA without considering the topography variations in the vertical direction, although the
reference target in the scene center could be well-focused, the targets on the edges remained highly
defocused for the reason, that the errors introduced by the target heights cannot be ignored in the
high-resolution case.

Figure 8. Comparative results by proposed algorithm and CSA. (Left to right) Targets PT1, PT5,
and PT9, respectively. (a) Contour plot of targets (PT1, PT5, and PT9) processed by the EBP algorithm;
(b) Contour plot of targets (PT1, PT5, and PT9) processed by CSA.
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To acquire the further comparison of the focusing performance, a quantitative analysis with IRW,
PSLR, and ISLR was used as criteria. The corresponding imaging performances of the targets PT1,
PT5, and PT9 are calculated, and the results of proposed algorithm, and the CSA were listed in Table 2.
Both the contour results and imaging quality parameters of the proposed algorithm approach the
theoretical values of IRW (0.681 m), PSLR (−13.26 dB), and ISLR (−9.8 dB), which indicated that
the proposed algorithm could be well-applied to the high-resolution airborne SAR with topography
variations. On the other hand, the corresponding parameters that were obtained by the CSA were
relatively worse, especially for the targets in the edge of the scene, which were much less than the
theoretical values. It means that the CSA was inferior to the proposed algorithm.

Table 2. Imaging quality parameters in Simulation Case I.

Method Target IRW (m) PSLR (dB) ISLR (dB)

Proposed algorithm
PT1 0.687 −13.22 −10.03
PT5 0.681 −13.27 −10.05
PT9 0.679 −13.24 −10.02

CSA
PT1 0.795 −7.23 −6.65
PT5 0.682 −13.25 −10.06
PT9 0.813 −7.14 −6.37

Case II

In this experiment, the heights of targets PT1 and PT9 were respectively 452.5 and −231.1 m,
with respect to target PT5, which was set as the reference point in Figure 7. The squint angle was 60◦,
and azimuth resolution was 0.472 m. The PTA-MoComp approach (PMA) [25] was performed for
comparisons. Figure 9a is the motion errors extracted from the airborne inertial navigation system.
Figure 9b shows the focused result of the simulation spot matrix. It is well-noted that the positions of
targets PT1 and PT9 were well-located without distortions in the image.

Figure 9. Motion errors and simulation results: (a) motion errors extracted from the airborne inertial
navigation system; (b) focused result of the simulation spot matrix by the proposed algorithm.

Figure 10 shows the comparative results of the azimuth profiles focused by PMA and the proposed
algorithm. It was well-noted that the targets were visually well-focused, with a relatively clear
separation of the main lobes and the first and subsequential sidelobe, by the proposed algorithm.
Since there was no extra windowing operation, the theoretical values of PSLR were about −13 dB.
Clearly, the proposed algorithm had a good performance (red dashed lines in figures). For the
traditional method of PMA, the reference target could be well focused; however, the edge targets
had great degradations because the post azimuth-matched filter was sensitive to azimuth-dependent
motion errors. The imaging quality parameters were listed in Table 3. Imaging quality parameters of the
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proposed algorithm were obviously close to the theoretical values of IRW (0.472 m), PSLR (−13.26 dB),
and ISLR (−9.8 dB), while the ones of the PMA were relatively worse. Our algorithm was noted to
be generally superior to the PMA. Consequently, with the incorporation of the frequency-domain
processing into the time-domain processing, promising results were obtained for high-resolution
airborne SAR.

Figure 10. Simulation results: (a) comparative results of azimuth profiles of PT1 by PMA and the
proposed algorithm; (b) comparative results of azimuth profiles of PT5 by PMA and the proposed
algorithm; (c) comparative results of azimuth profiles of PT9 by PMA and the proposed algorithm.

Table 3. Imaging quality parameters in Simulation Case II.

Method Target IRW (m) PSLR (dB) ISLR (dB)

Proposed algorithm
PT1 0.474 −13.27 −10.07
PT5 0.472 −13.31 −10.04
PT9 0.471 −13.30 −10.01

PMA
PT1 0.613 −4.93 −4.64
PT5 0.423 −13.32 −10.06
PT9 0.546 −10.35 −7.58

4.2. Scene Simulation Results

Corresponding to the experiment of the spot matrix simulation, the scene simulation results were
presented in this subsection. The echo data of the scene was obtained by the time-domain simulation
method, with motion errors as shown in Figure 9a. The imaging results of the echo data validated
the efficiency of the proposed EBP algorithm. Here, it was assumed that the data of an X-band
SAR with the squinted spotlight mode was used to demonstrate the performance of the proposed
algorithm. The center squint angle was about 60◦, and the velocity was about 120 m/s. The whole
scene was about 1.2 km in the cross-range, and 1.5 km in the range. Figure 11 showed the focusing
results, which were processed by traditional BPA, the proposed algorithm, and PMA, respectively.
Particularly, the topography variations were added into the dotted line rectangular region in Figure 11.
The difference between the highest and the lowest points in the topography variations was 310.36 m.

The entire scene was well focused, with the proposed algorithm in Figure 11b, including the edge
regions. In order to obtain a clear and detailed comparison, the local enlargements of the solid line
rectangular regions of each image were displayed respectively in the dashed line rectangular regions.
It was evident that the imaging quality in Figure 11b was as good as the one in Figure 11a, and it was
better than the one in Figure 11c. Therefore, the proposed algorithm could handle the effects of the
topography variations well, for high-resolution airborne SAR.
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Figure 11. Scene simulation data results processed by different algorithms. (a) Scene simulation data
results processed by traditional BPA. (b) Scene simulation data results processed by the EBP algorithm.
(c) Scene simulation data results processed by the reference algorithm.

5. Discussion

5.1. Parameter Selection

In the Section 3.1, the echo signal may have aliasing after the frequency-domain processing,
if the scaling factor α0 was selected improperly. To weaken the signal aliasing, the zero padding
operation was taken in some literatures. However, the zero padding would increase the computation
burden of the whole algorithm, which was the opposite of the purpose of the proposed algorithm.
Therefore, proper selection for the parameter α0 without zero padding operation was necessary for
frequency-domain processing. As has been discussed in [51], the two-step processing could be regarded
as a special case of two Fractional Fourier transform (FrFT) operations. Similarly, the frequency-domain
processing could also be implemented by two FrFT operations with parameters, χ and κ. We obtained
the relation between the parameters as:

χ + κ =
π

2
(14)

cot χ = −πα0 (15)

After frequency-domain processing, the whole bandwidth of the echo signal should be less
than the pulse repetition frequency (PRF), in the case of the phenomenon of frequency aliasing.
It means that:

Ta|cot η0 + tan χ|+ 2πBs ≤ 2πPRF (16)

Ta|cot η0|+ 2πBs ≤ m′

m
Ta|tan χ| (17)

where η0 is the original slant angle of a point target in the time-frequency distribution, Bs is the
instantaneous bandwidth of the echo signal in the receiving terminal, m and m′ denote the numbers of
sampling points in the original azimuth time-domain and the new azimuth time-domain, respectively.

The selection of parameter α0 is usually obtained through the Equations (14)–(17). In general,
the parameter should be selected, with the guarantee that the supporting area of the rotated signal
should be in its available area.

5.2. Computational Burden

It is well-known that the BPA can precisely manage the problems caused by the curved path
model. However, the BPA has a much heavier computational burden than that of the frequency-domain
algorithms. In essence, the proposed algorithm in this paper was an improved BP algorithm, so it
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was necessary to make discussion about the computational burden of the proposed algorithm here.
For simplification and without loss of generality, the computational burden of the traditional CS was
compared as the standard.

The frequency-domain processing in this work was essentially a frequency-domain algorithm.
In the frequency-domain processing, three azimuth fast Fourier transforms (FFTs), and three
multiplications are utilized. Therefore, the total computational burden of the frequency-domain
processing could be expressed as:

OF = 1.5NM log2 M + 3NM (18)

where M is the number of the azimuth samples, and N is the number of the range samples.
Moreover, the computational burden of time-domain processing presented in Section 3.2 is
discussed. Considering the focusing algorithm, i.e., two range FFTs, one multiplication, and BPA,
the computational burden of the time-domain processing can be derived as:

OT = MN + NM log2 N + μintM2N (19)

where μint denotes the proportional factor of the computational burden of the post-processing, which is
determined by the rotation factor. Thus, with Equations (18) and (19), the total computational burden
of the EBP algorithm was expressed as:

Os = 1.5NM log2 M + 4NM + NM log2 N + μintM2N (20)

In comparison, of the BPA (e.g., [52]), for each pixel in the final image, a signal vector with a length
M was extracted from the range-compressed data, multiplied with a phase function, and summed;
thus, the total computational burden could be expressed as:

OB = M2N (21)

In a standard CSA, two range FFTs, one azimuth FFT, and three multiplications are used. Therefore,
the computational burden of the standard CSA can be expressed as:

OC = MN log2 N + NM log2 M + 3NM (22)

The results of the comparison mentioned above with specific parameters, are shown in Table 4,
based on Equations (20)–(22). As listed in Table 4, ratios at five sample sizes were computed to
quantify the comparison. Clearly, the computational burden of the BPA was much larger than that of
the proposed algorithm, which meant that our method could greatly improve the operation speed.
Even the computational burden of the proposed algorithm was slightly larger than that of the CSA,
but there was wide application in the high-resolution airborne SAR, with topography variations.

Table 4. Computational load analysis using CSA as references.

Data Size in Azimuth (×103) 1 2 4 8 16

BPA/CSA 150.30 290.11 560.73 1084.92 2101.48
Proposed/CSA 12.07 22.15 41.64 79.39 152.59

6. Conclusions

The requirement for the resolution for remote sensing has become higher and higher. When the
resolution is at the decimeter level, topography variations were ignored in conventional airborne
SAR would cause serious phase errors. For the high-resolution airborne SARs with topography
variations, 3-D variations in time or frequency-domains were difficult to eliminate with the traditional
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algorithms. Especially for the topography variations, the expression of the received echo data in
the frequency-domain was difficult to derive. In this paper, based on the precise physical model of
airborne SAR considering the topography variations, phase errors caused by topography variations
are analyzed in different domains first.

The proposed EBP algorithm includes two main parts: frequency-domain processing and
time-domain processing. The frequency-domain processing is essentially an operation of time-
frequency rotation to reduce the virtual aperture length greatly, by selecting a suitable rotation factor.
The computational burden can be decreased by removing the redundant position in the flight track.
Then the accurate range history is obtained with DEM data in the time-domain processing. The BP
algorithm can be applied directly in the 2-D time-domain with an accurate range history. In the
simulation, the spot matrix simulation results and the scene simulation data validated the performance
of the EBP algorithm. Finally, the computational burden of EBP algorithm was compared with those of
other algorithms. It was obvious that our algorithm can greatly improve the operation speed compared
with the traditional BPA.
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Abstract: We present an enhanced imaging procedure for suppression of the rough surface clutter
arising in forward-looking ground-penetrating radar (FL-GPR) applications. The procedure is based
on a matched filtering formulation of microwave tomographic imaging, and employs coherence factor
(CF) for clutter suppression. After tomographic reconstruction, the CF is first applied to generate a
“coherence map” of the region in front of the FL-GPR system illuminated by the transmitting antennas.
A pixel-by-pixel multiplication of the tomographic image with the coherence map is then performed
to generate the clutter-suppressed image. The effectiveness of the CF approach is demonstrated
both qualitatively and quantitatively using electromagnetic modeled data of metallic and plastic
shallow-buried targets.

Keywords: forward-looking GPR; surface clutter; near-field; antenna arrays; microwave imaging;
coherence factor

1. Introduction

Microwave imaging has undergone significant advances in the last two decades, owing to its increased
adoption and broad application in a variety of disciplines, including applied geophysics, planetary
exploration, and emerging radar technologies [1–7]. Forward-looking ground penetrating radar (FL-GPR)
is one such technology that employs microwave imaging for detection of targets buried at shallow depths in
the ground. Unlike its ground-coupled or near-ground down-looking ground penetrating radar (DL-GPR)
counterparts, FL-GPR provides standoff sensing capability, which allows fast scanning of large areas
for real-time target detection. This capability, however, comes at the expense of energy backscattered
from the illuminated targets and limited image spatial resolution [8–15]. Further, the rough ground
surface generates clutter that tends to obscure the buried targets, rendering target detection difficult and
challenging [12–14].
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Rough surface clutter suppression for array-based FL-GPR imaging was addressed in [11,14,16–24].
In [16], an ambiguity function based detector was proposed which exploits time-frequency characterization
of target and clutter scattering for performance enhancement. Frequency subband processing was
exploited in [11] to obtain the best contrast between target and clutter signals, whereas recursive
side-lobe minimization algorithm for reconstructing FL-GPR images with reduced clutter was proposed
in [17]. Coherent integration of measurements corresponding to multiple radar platform positions was
demonstrated in [18] for rough surface clutter suppression, whereas a nonlinear combining approach
that exploits a similarity measure was developed in [19] to adaptively mitigate imaging artifacts. In [20],
localized clutter outside of the region of interest was suppressed prior to sparse reconstruction. A real-time
three-dimensional (3-D) model of the rough surface scattering was proposed in [21], which can be
subtracted from the FL-GPR measurements to reduce the clutter. A multi-view approach based on
the likelihood ratio tests (LRT) detector was proposed in [14] and its adaptive counterpart was presented
in [22] for effective detection of low-signature targets in the presence of rough surface clutter. A robust LRT
was designed in [23] based on the least favorable target and clutter densities to maximize the worst-case
detection performance over all feasible target and clutter models in FL-GPR images. In [24], infrared
imagery was used to eliminate false alarms in FL-GPR.

On the other hand, a variety of image formation approaches have been considered in the
context of array-based FL-GPR imaging. The most commonly used algorithms are back-projection,
frequency-wavenumber migration, and scalar inverse scattering [12,25,26]. These algorithms rely on a
scalar representation of the electromagnetic field, for which the relevant Green’s function is simplified
by assuming a free-space propagation model. Within the framework of linear inverse scattering,
a two-dimensional imaging algorithm for bistatic FL-GPR systems was recently proposed in [15], whereas
an inverse processing scheme that exploits the intrinsic multi-aperture nature of the FL-GPR geometry was
designed in [14]. Data-adaptive approaches for FL-GPR have also been proposed in the literature [10,13].
Amplitude and phase estimation and rank-deficient robust Capon beamforming were presented in [10],
while an iterative hyperparameter-free maximum a posteriori probability algorithm was proposed in [13].

In this paper, we present an FL-GPR image enhancement procedure that employs tomographic
imaging and coherence-factor (CF) based masking operation for rough surface clutter suppression. More
specifically, we first employ a matched-filtering (MF) based tomographic imaging approach for image
formation, which exploits the vectorial nature of the incident and scattered electric fields, in conjunction
with coherent combining of multiple measurements from different aperture positions. This approach
builds on the MF formulation of [27] for DL-GPR imaging. Following image reconstruction, we perform
a masking operation with a coherence map of the scene for clutter suppression. The coherence map is
generated using the CF, which represents a measure of the relative coherence of the received signals
across all antennas. We consider three variants of the CF, namely, the amplitude CF (ACF), the phase
CF (PCF), and the sign CF (SCF) [28–30]. The capability of the proposed procedure to significantly
suppress the clutter generated by the backscattering from a rough surface is demonstrated using near-field
electromagnetic modeled numerical data corresponding to a scene with both plastic and metallic targets
buried at shallow depths below a rough interface [31]. The improvements achievable are quantified
in terms of the image-domain signal-to-clutter ratio (SCR), starting with the preliminary investigation
reported in [32]. We show that all variants of the CF successfully suppress the rough surface clutter with
comparable SCR values, and the hybrid MF-based imaging and CF-based masking procedure outperforms
the case when CF masking is used in conjunction with standard back-projection (BP). It is noted that
two-dimensional (2D) versions of the CF, recently proposed in [33] for sidelobe suppression in radar
imaging, can also be employed in the proposed scheme. However, as our objective is to demonstrate
the offerings of the hybrid procedure and not specifically identify an optimal method for coherence map
generation, we will not consider the 2D versions in this paper.
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The remainder of this paper is organized as follows. The various methods considered in this paper
are presented in Section 2. More specifically, the MF-based tomographic imaging algorithm is described in
Section 2.1, while the BP algorithm is briefly discussed in Section 2.2. The CF-based image enhancement
method is presented in Section 2.3, wherein the three variants of CF and the SCR in the image domain are
defined. In Section 3, we describe the considered FL-GPR configuration and simulation set up, and provide
both the imaging and CF-based enhanced results. BP-based results are also presented for comparison
therein. Insights into the performance of the proposed scheme are provided in Section 4. Conclusion
follows in Section 5.

2. Methods

2.1. Matched-Filtering-Based Near-Field Tomographic Imaging

We consider an FL-GPR system consisting of an NT-element linear transmit array and an NR-element
linear receive array. The transmit and receive antennas are oriented parallel to the y-axis in the yz-plane and
mounted on top of a vehicle at different heights (z-coordinates). The investigation domain is located on the
ground in front of the vehicle along the x-axis (see Figure 1). The transmitters are assumed to be activated
sequentially, with simultaneous reception at all receivers, as the vehicle moves forward. For convenience,
we assume that a single transmitter is active for each platform position. Thus, a full-aperture measurement
set comprises NT NR observations from NT consecutive platform positions. The frequency band of
operation extends from ωL to ωH .

Figure 1. Side-view of the forward-looking ground-penetrating radar (FL-GPR) configuration and data
collection geometry.

Considering a 3-D version of the well-known scattering equation, a linear scattering model can be
established under the Born approximation for the near-field imaging conditions of the considered scenario
as [34].

Es(rrn, rtm, ω) = k2
b

∫∫
D

G(r, rrn, ω) · Einc(r, rtm, ω)O(r)dr. (1)

This model represents the relationship between the scattered field Es from the investigation domain
D, recorded at the n-th receive location rrn with the m-th active transmitter at rtm, and the unknown scene
reflectivity O(r) for angular frequency ω. In (1), G is the dyadic Green’s function of the problem, Einc is
the incident field, which under the Born approximation represents the total field inside the domain D,
k0 = ω

√
(ε0μ0) is the free-space wavenumber, kb =

√
εrk0 is the wavenumber of the subsurface medium,

and r represents a generic point in the domain D. The vectors r, rtm, and rrn are defined as

rtm = xtmx0 + ytmy0 + ztmz0

rrn = xrnx0 + yrny0 + zrnz0

r = xx0 + yy0 + zz0,

(2)
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with x0, y0, and z0 denoting the unit vectors along the x, y, and z directions, respectively. The operator
(·) in (1) represents the dyadic product and is implemented as the typical matrix-vector product between
the 3 × 3 matrix Green’s function G and the 3 × 1 vector incident field Einc. Equation (1) accounts for the
dyadic nature of the interaction between the electric field and the probed scene.

Modeling the transmitting elements as Hertzian electric dipoles oriented along z0, the incident electric
field can be expressed as

Einc(r, rtm, ω) = −jωμ0 I0lG(r, rtm, ω) · z0, (3)

where I0l is the current moment associated with the short dipole directed along z0 and is assumed to be
equal to 1 A·m. Therefore, (1) can be rewritten as

Es(rrn, rtm, ω) = −jωμ0k2
b

∫∫
D

G(r; rrn, ω) · [G(r; rtm, ω) · z0]O(r)dr. (4)

Under the assumptions that (i) the separation in height between the transmit and receive elements is
negligible, and (ii) the targets are either on the ground surface or buried at shallow depths, the dyadic
Green’s function and, subsequently, the incident field can be approximated as those modeling propagation
in a homogeneous medium having the electromagnetic properties of free-space [34]. That is,

G(r, rs, ω) =

[
I +

∇∇
k2

0

]
e−jk0|r−rs |

4π|r − rs| , (5)

where I is the unit dyad and s = rn or tm.
Dividing the domain D into a finite number of pixels, say Q, we assume only one point scatterer

exists per pixel. Ignoring the mutual interactions between scatterers, the point target at the q-th pixel can
be modeled as an impulse located at the considered pixel, whose position vector is denoted by rq. As a
result, the scattered field from the q-th image pixel recorded by the n-th receiver with the m-th transmitter
active and directed along z0 is given by

Es(rrn, rtm, ω) = −jωμ0k2
0
[
G(rq, rrn, ω)

] · [G(rq; rtm, ω) · z0
]
O(rq). (6)

If only the z-component of the electric field is measured by the receiving antenna (i.e., through a linear
polarized receiving antenna modeled as a short dipole oriented along z0), we can express the recorded
electric field Esz as

Esz(rrn, rtm, ω) = z0 · Es(rrn, rtm, ω) = − jωμ0k2
0
(
GzxGxz + GzyGyz + GzzGzz

)
O(rq), (7)

where the Green’s functions components, Gij, with i and j representing the Cartesian coordinates x, y, z,
can be derived from (5) [5].

With both transmitting and receiving antennas linearly polarized along the z-axis, we define the
frequency response Hzz(rrn, rtm, rq, ω) of a filter matched to a point scatterer with unit reflectivity at pixel
rq, when the m-th antenna is transmitting and the n-th antenna is receiving, using (7) as

Hzz(rrn, rtm, rq, ω) =
{
− jωμ0k2

0
(
GzxGxz + GzyGyz + GzzGzz

) }∗
, (8)
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with ‘∗’ denoting complex conjugation. The reflectivity estimate Ônm(rq) of the q-th pixel is obtained by
applying the matched filter to the recorded measurements by the n-th receiver when the m-th antenna is
transmitting over the bandwidth of interest as

Ônm(rq) =
∫ ωH

ωL

Hzz(rq, rtm, rrn, ω)Esz(rrn, rtm, ω)dω. (9)

Note that (9) provides the reflectivity estimate for each pixel as a function of the transmitter and
receiver locations. The reflectivity estimate for the pixel at rq , corresponding to all NT transmitting and
NR receiving z-polarized antennas, can be obtained by exploiting (8) and (9) as,

Ô(rq) =
NR

∑
n=1

NT

∑
m=1

Ônm(rq)

= jωμ0k2
0

NR

∑
n=1

NT

∑
m=1

∫ ωH

ωL

(
GzxGxz + GzyGyz + GzzGzz

)∗Esz(rrn, rtm, ω)dω.

(10)

The spatial map, Ô(rq) of the scene reflectivity is the desired image of the investigated domain D
and is the final outcome of the MF-based imaging algorithm. It is noted that coherent integration of
measurements corresponding to multiple full apertures, resulting from radar platform motion, can also be
employed within the MF imaging framework to reduce artifacts and rough surface clutter prior to the
CF-based masking operation [14,18].

2.2. Back-Projection Algorithm

An alternative approach to generating FL-GPR images is the BP algorithm, which is based on scalar
wave theory [1]. The mathematical formulation for the BP-based image formation method can be essentially
derived by simplifying the dyadic Green’s function in (5) to a scalar model. Thus, the reflectivity estimate
at pixel location rq, assuming a free-space propagation model, is achieved as

ÔBP(rq)=
NR

∑
n=1

NT

∑
m=1

ÔBP
nm(rq)=

NR

∑
n=1

NT

∑
m=1

∫ ωH

ωL

ejk0 | rq−rtm | ejk0 | rq−rrn | Esz(rrn, rtm, ω)dω. (11)

The spatial map, ÔBP(rq), of the scene reflectivity represents the BP-based image of the investigated
domain D.

2.3. Coherence-Factor-Based Image Enhancement

In this section, we present the CF-based processing for the enhancement of cluttered FL-GPR images.
We consider the following three variants of the CF: the amplitude CF (ACF), the phase CF (PCF), and the
sign CF (SCF).

The ACF is defined as the ratio of the total coherent power received by the antenna array (generated
by the presence of targets in the domain under investigation) to the total incoherent power (produced by
the rough surface clutter for the case under consideration). Mathematically, it can be expressed as [32]

ACF(rq) =

∣∣∣∣∣
NR
∑

n=1

NT
∑

m=1
Ônm(rq)

∣∣∣∣∣
2

NRNT
NR
∑

n=1

NT
∑

m=1

∣∣Ônm(rq)
∣∣2 , (12)
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with Ônm given by (9) and NRNT representing the total number of receive channels in the full aperture.
From (12), it follows that the ACF varies from zero to unity. It assumes small values for low-coherence
image regions corresponding to rough surface clutter and high values for target regions. As such,
the coherence map of the scene, generated by computing (12) for all Q pixels, can be used to perform a
corrective action on the MF-based image, Ô(·), as

ÔCF(rq) = ACF(rq)Ô(rq). (13)

That is, the enhanced image is the pixel-by-pixel multiplication of the coherence map, defined by (12),
times the output of the MF-based tomographic algorithm in (10). Clearly, low-coherence rough surface
clutter will be suppressed or significantly attenuated.

Unlike the ACF, the PCF exploits the phase disparity across the antenna array [35,36]. It is defined as

PCF(rq) = 1 − std(ej∠Ô(rq)), (14)

where ∠Ô(rq) = {∠Ônm(rq), n = 1, . . . , NR, m = 1, . . . , NT} and “std” denotes the standard deviation of
the complex exponential term. The PCF corrected image is obtained through (13) by simply replacing
ACF(rq) with PCF(rq) defined by (14).

The SCF can be derived from the PCF by introducing a sign bit as follows [37]. The pixel phase
∠Ônm is quantized with a single bit, thereby splitting the interval [−π, π] in two sub-intervals, namely,
(−π/2, π/2] and [−π,−π/2] ∪ (π/2, π], and the sign bit bnm is obtained as,

bnm(rq) =

{
−1, real(Ônm(rq)) < 0

+1 real(Ônm(rq) ≥ 0
. (15)

The SCF can then be defined as,

SCF(rq) = 1 − std(bq), (16)

where bq = {bnm(rq), n = 1, . . . , NR, m = 1, . . . , NT}. Again, the SCF corrected image is obtained using
(13) by substituting CF(rq) with SCF(rq).

We note that the CF-based correction, proposed for enhancing images obtained with the MF-based
tomographic algorithm, can also be applied to images generated using the BP algorithm in (11);
the coherence map, generated using any variant of the CF, will also then be based on the BP approach.
That is, the pixel values Ônm(rq) in (12)–(16) will be replaced with the corresponding values of the
back-projected image. It is important to note that applying the definitions of the ACF, PCF, and SCF,
as presented in (12)–(16), to MF-based imaging provides enhanced imaging compared to the case when
these coherence factors are applied to the BP-based imaging. The former exploits the vector nature of
the scattering mechanism unlike the latter. Thus, the proposed hybrid MF-based imaging and CF-based
masking provides a two-fold advantage in terms of modeling accuracy over its BP-based counterpart.

In order to obtain a quantitative assessment of the image enhancements offered by the CF-based
procedure, we employ the image-domain SCR as a metric [29,38]. The SCR is defined as the ratio of the
average amplitude of the pixels associated with the targets in the enhanced image to the average of those
related to clutter. That is,

SCR = 10log10

⎡
⎢⎢⎣

1
N ∑

rq∈Rt

∣∣ÔCF(rq)
∣∣2

1
M ∑

rq∈Rc

∣∣ÔCF(rq)
∣∣2
⎤
⎥⎥⎦ , (17)
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where N and M denote the respective number of pixels in the target region Rt and the clutter region Rc.
A region growing algorithm can be used to isolate the targets comprising Rt [39], and the remainder of the
image constitutes Rc.

3. Results

In this section, we describe the electromagnetic simulation set up and then present CF-based image
enhancement results which demonstrate the capability of the proposed procedure to suppress rough
surface clutter in FL-GPR images.

3.1. Radar Configuration

A stepped-frequency multi-antenna FL-GPR, mounted on top of a vehicle, is modeled in AFDTD,
which is a full-wave near-field electromagnetic software based on a finite-difference time-domain (FDTD)
algorithm [18,31]. The radar system operates over the 0.3–1.5 GHz frequency band, with a forward-looking
coverage angle spanning approximately 5◦–20◦ with respect to the horizon. Two transverse electromagnetic
horn antennas are used as transmitters, whose near-field configuration is represented by an equivalent
current distribution. In between the two transmitters are the 16 uniformly-spaced receiving short-dipole
antennas. Both the transmit and receive antennas are distributed over a 2-m wide aperture and are placed
2 m and 1.9 m above the rough ground surface, respectively. The radar system parameters are summarized
in Table 1.

Table 1. Main characteristics of the radar system and the investigation area.

Investigation area Size: 10 × 16 m εr = 6; σd = 10 hrms 1.8 cm , l = 14.26 cm

Antenna height Tx antennas: 1.9 m Rx antennas: 2 m

Linear antenna array Aperture extent: 2 m Rx antennas: 16 Tx antennas: 2

System parameters Frequency: 0.3–1.5 GHz Coverage angle: 5◦–20◦

For each position of the moving platform, only one of the two transmitters is activated. By alternating
between the left and right antennas from one platform position to the next, a full aperture comprising 32
receive channels is obtained from two consecutive platform positions or scans. The first position of the
system on the surface is at x = −12 m and the last one at x = 11 m, as shown in Figure 2. Since the system
radiates and collects data along the x-direction with a discretized step of δx = 0.33 m, we have a total of 70
scans (represented in Figure 2 with black vertical lines). The ground is modeled as a non-dispersive and
non-magnetic homogeneous medium with effective relative dielectric constant εr = 6 and conductivity
σd = 10 mS/m. A rough profile for the interface separating the upper and lower dielectric half-spaces is
introduced and a statistical model is exploited to provide a realistic representation in the numerical code.
The model is described by two functions [18]: the probability density function of the height variations and
the surface autocorrelation function. For the numerical data considered in this paper, a 2-D zero-mean
surface profile represented by Gaussian statistics (described by two parameters: the rms height hrms and
the correlation length lc) is assumed. Thus, the scattered electric field is considered to be a random process
and evaluated by means of a Monte Carlo simulation [18,40].
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Figure 2. Top view of the numerical simulation geometry. Six different full-aperture measurements have
been highlighted in blue, which are used in coherent combining for the first image segment indicated in
green (the positions of transmitters and receivers are not drawn to scale within the image frame).

The investigation area (indicated by a black dashed rectangle in Figure 2 has dimensions of
10 m × 16 m along y and x directions, respectively, and is populated by a total of nine targets at distinct
locations. The target characteristics are summarized in Table 2.

Table 2. Target characteristics.

Target No. Type State Size

1 Metallic anti-personnel landmine Buried Diameter: 100 mm; Height: 55 mm

2 Plastic anti-personnel landmine On surface Diameter: 100 mm; Height: 55 mm

3 Metallic artillery shell Buried Diameter: 155 mm; Length: 585 mm

4 Metallic anti-tank landmine Buried Diameter: 300 mm; Height: 125 mm

5 Metallic anti-tank landmine On surface Diameter: 300 mm; Height: 125 mm

6 Metallic artillery shell Buried Diameter: 155 mm; Length: 585 mm

7 Metallic artillery shell Buried Diameter: 155 mm; Length: 585 mm

8 Plastic anti-personnel landmine On surface Diameter: 100 mm; Height: 55 mm

9 Plastic anti-tank landmine Buried Diameter: 300 mm; Height: 125 mm

Buried targets are positioned 3 cm below the surface. The plastic targets have a relative dielectric
constant εr = 3.1 and conductivity σ = 2 mS/m. For the rough ground surface, hrms = 1.6 cm and
lc = 14.26 cm. The characteristics of the investigation area are summarized in Table 1.
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3.2. Image Formation Results

In order to maintain a similar cross-range resolution over the entire image, the investigation area is
divided into four segments, each of dimension 10 m × 4 m. The first segment is highlighted in Figure 2
with a green rectangle. Since coherent integration has been shown to reduce clutter [31], we coherently
add multiple images of each segment generated with measurements from a set of full apertures using
the MF-based tomographic algorithm detailed in Section 2.1. The CF-based processing of Section 2.3
is then applied to the resulting composite image. The set of apertures for each segment are selected so
that the standoff distances are the same across all the image segments. Instead of choosing consecutive
apertures for each segment, we opt for a set of apertures wherein any two neighboring apertures are
separated by 4δx = 4(0.33) = 1.32 m, with the aperture closest to the segment at a standoff distance of
1 m. Figures 2 and 3 depict the respective sets of full apertures used for the first and the last segments
(indicated as blue dashed vertical lines). Such a choice provides a larger variation of the clutter across the
various images being combined. For more details on the coherent combining procedure, see [14].

Figure 3. The last image segment is highlighted in green and the relevant full aperture measurements to be
exploited in coherent combining are indicated in blue (the positions of transmitters and receivers are not
drawn to scale within the image frame).

In Figure 4, we present the MF-based composite image corresponding to two full apertures (ones
closest to each segment), whereas that corresponding to six full apertures is depicted in Figure 5. These
results and all subsequent images in this paper are plotted on a 40 dB dynamic range, unless otherwise
stated, with the maximum intensity value in each image normalized to 0 dB. The target positions are
indicated with white crosses in both Figures 4 and 5. The clutter generated by the rough surface dominates
the image in Figure 4 and obscures the low-signature targets. Owing to the integration of a larger number
of apertures permitted by the considered FL-GPR configuration, the clutter in Figure 5 is reduced as
compared to Figure 4. Nonetheless, there is still substantial residual clutter in Figure 5, which would
render target detection challenging. This demonstrates the need for further enhancements via the proposed
CF procedure.
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Figure 4. Image obtained by integrating two apertures for the scene containing nine targets and a rough
surface (hrms = 1.6 cm). The true position of targets is indicated with a white cross.

Figure 5. Image obtained by integrating six apertures for the same scene as in Figure 4.

For comparison, we provide in Figures 6 and 7 the images obtained by exploiting the same apertures
as in Figures 4 and 5, but with a BP algorithm [1]. As expected, the coherent combining of six full
apertures allows for higher clutter suppression. Comparing the MF-based images with their respective BP
counterparts, the improvements offered by the more accurate vector model adopted by the MF tomographic
algorithm over the scalar-model-based BP algorithm are clearly visible in the central part of the images,
where the clutter manifests itself as relatively weaker in strength. These qualitative observations are also
validated by the corresponding SCR values, listed in Table 3. More specifically, the MF algorithm provides
an improvement of 1.3 dB and 2.9 dB over the BP algorithm for the 2- and 6-apertures cases, respectively.

160



Remote Sens. 2020, 12, 857

Figure 6. Image as in Figure 4, but generated through the back-projection (BP) algorithm.

Figure 7. Image as in Figure 5, but obtained by means of the BP algorithm.

Table 3. Signal-to-clutter ratio (SCR) for back-projected and matched-filtering (MF)-based tomographic images.

Figure Number SCR (dB)

MF 2 apertures Figure 4 −7.4

MF 6 apertures Figure 5 −0.4

BP 2 apertures Figure 6 −8.7

BP 6 apertures Figure 7 −3.3

3.3. CF Enhanced Results

We first apply the enhancement procedure based on ACF to both MF and BP images, and demonstrate
the superior clutter suppression capability yielded by the MF-based ACF over that defined using the
scalar-model-based BP algorithm.

Figure 8 depicts the image obtained by means of the ACF-based masking operation applied to
the two-aperture MF image of Figure 4. The image enhancements in terms of clutter mitigation are
clearly visible with respect to the original. Figure 9 shows the two-aperture BP image of Figure 6 after
the BP-based ACF masking operation was applied. Comparing Figures 8 and 9, we observe that the
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MF-based enhancement procedure provides a higher degree of clutter suppression. The six-aperture MF
and BP images after application of the ACF-based correction are shown in Figures 10 and 11, respectively.
As expected, more clutter has been suppressed with respect to the two-aperture configuration for both
cases. Similar to the two-apertures case, the MF-based definition of the ACF provides a cleaner image,
which would lead to an improved detection performance.

Figure 8. MF based image of Figure 4 after application of the ACF-based enhancement procedure. The target
position and type are indicated with a white cross and number.

Figure 9. BP image of Figure 6 after application of the amplitude coherence factor (ACF)-based enhancement
procedure. The target position and type are indicated with a white cross and number.
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Figure 10. MF image of Figure 5 after ACF based enhancement.

Figure 11. BP image of Figure 7 after ACF based enhancement.

Having demonstrated the superiority of the MF-based proposed procedure over the BP-based
enhancement, we next compare and contrast the performance of the CF-based scheme when ACF, PCF,
and SCF are individually used to generate the coherence maps for clutter suppression in MF images.
We consider the MF image of Figure 5 (six-aperture case) for this purpose. Figures 12 and 13 present the
resulting images after application of the clutter suppression procedure via PCF and SCF, respectively.
Comparing Figure 12 and Figure 13 with the ACF corrected image of Figure 10, we observe that the
different coherence map definitions provide comparable degree of clutter suppression. This is also
demonstrated by the corresponding SCR values, provided in Table 4. More specifically, all three variants
of CF provide SCR improvements of 7 to 8 dB over the original image of Figure 5. Similar results were
obtained when the three variants of the CF were applied to the MF image obtained through the coherent
combining of two apertures.
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Figure 12. MF Image of Figure 5 corrected via phase coherence factor (PCF).

Figure 13. MF image of Figure 5 corrected via sign coherence factor (SCF).

Table 4. SCR for six-aperture images after CF-based enhancement.

Figure Number SCR (dB)

ACF MF Figure 10 6.7

ACF BP Figure 11 5.6

PCF MF Figure 12 7.0

SCF MF Figure 13 7.6

4. Discussion

The qualitative and quantitative results of Section 3 clearly demonstrated the superior performance
of the CF clutter suppression approach based on MF image formation over its BP-based counterpart.
This superiority is attributed to the high-accuracy vector model employed by the MF algorithm over
the scalar-model-based BP algorithm. Further, coherent integration of measurements from multiple full
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apertures should be employed, whenever possible, in conjunction with the CF-based approach for a higher
degree of clutter suppression. Furthermore, performance evaluation of different coherence map definitions,
namely, ACF, PCF, and SCF, showed that all three variants of CF provide comparable levels of clutter
suppression. In terms of the impact of the CF-based processing on the target regions, we observed that
both ACF and PCF had a minimal effect, as evident from Figures 10 and 12. However, each target region in
the SCF-corrected image split up into multiple lobes, as evident in Figure 13, which may be problematic for
subsequent target detection schemes. Finally, we note that target 9 did not survive the clutter suppression
process and was missing from all CF-corrected results reported in Section 3. This is because the target in
question is the only plastic target buried in the ground. Buried plastic targets are especially hard to detect
due to (i) the limited dielectric contrast between the target and the soil background, and (ii) interference
from rough surface scattering. This observation is consistent with what has been previously reported in
the literature [31].

5. Conclusions

In this paper, we proposed a matched filtering formulation of tomographic near-field imaging and
presented a coherence-factor-based rough surface clutter mitigation technique for FL-GPR imaging. The CF
was used to generate a coherence map, which was then applied as a correction mask to the microwave
image. Improvements achievable, in terms of reduction of the incoherent component produced by the
rough surface with respect to coherent scattering from targets, were assessed using numerical data of
metallic and plastic targets both on-surface and buried at shallow depths. The performance of the proposed
scheme was also quantified by evaluating the improvements in image-domain SCR and contrasted with
that obtained using a standard back-projection imaging algorithm. The proposed approach was shown
to outperform the back-projection-based scheme. Different definitions of the CF were considered and
compared. It was shown that the three variants of the CF all yielded comparable but excellent SCR
enhancements. While the SCF generated some artifacts by splitting each target into multiple lobes, both
the ACF and PCF exhibited minimal impact on the weak target signatures.
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Abstract: Lunar Penetrating Radar (LPR) is one of the important scientific systems onboard the Yutu
lunar rover for the purpose of detecting the lunar regolith and the subsurface geologic structures
of the lunar regolith, providing the opportunity to map the subsurface structure and vertical
distribution of the lunar regolith with a high resolution. In this paper, in order to improve the
capability of identifying response signals caused by discrete reflectors (such as meteorites, basalt
debris, etc.) beneath the lunar surface, we propose a compressive sensing (CS)-based approach
to estimate the amplitudes and time delays of the radar signals from LPR data. In this approach,
the total-variation (TV) norm was used to estimate the signal parameters by a set of Fourier series
coefficients. For this, we chose a nonconsecutive and random set of Fourier series coefficients to
increase the resolution of the underlying target signal. After a numerical analysis of the performance
of the CS algorithm, a complicated numerical example using a 2D lunar regolith model with clipped
Gaussian random permittivity was established to verify the validity of the CS algorithm for LPR
data. Finally, the compressive sensing-based approach was applied to process 500-MHz LPR data
and reconstruct the target signal’s amplitudes and time delays. In the resulting image, it is clear that
the CS-based approach can improve the identification of the target’s response signal in a complex
lunar environment.

Keywords: lunar penetrating radar; lunar exploration; compressive sensing; lunar regolith modeling;
signal processing

1. Introduction

The capability of ground-penetrating radar (GPR) to penetrate different materials makes it an
effective and nondestructive geophysical tool for mapping the subsurface stratigraphy of the Moon
to a given depth, which depends on the radar frequency and dielectric property of the lunar surface
materials [1,2]. For example, the Lunar Radar Sounder (LRS) onboard Kaguya was used to detect
the geological structure at depths of 4–5 km under the lunar surface [3,4]; the Apollo Lunar Sounder
Experiment (ALSE) on the Apollo 17 spacecraft obtained a large amount of geological data from depths
of 1–2 km below the surface of Moon [4,5]; and the dual-frequency Lunar Penetrating Radar (LPR)
on the Yutu lunar rover, part of China’s Chang’E-3 (CE-3) lunar mission, focuses on mapping the
near-surface stratigraphic structure of the lunar regolith to a depth of several tens of meters [2,4,6–8].

The lunar regolith is formed by continuous meteoroid impacts on the lunar surface [9], resulting in
the expulsion of surficial materials in the form of ejecta deposits, which are then comminuted, welded,
overturned, mixed, altered, and homogenized by subsequent impacting and space weathering events
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[6]. The composition and structure of the lunar regolith hold vital clues about the geology and impact
history of the Moon. Those clues are critical for quantifying potential resources for future lunar
exploration and determining the engineering constraints for human outposts [6,10–12]. The LPR of the
CE-3 mission provides the opportunity to explore the subsurface structure and vertical distribution
of the lunar regolith with a high resolution. LPR has two channels with center frequencies at 60
and 500 MHz [4]. Compared to the LRS (frequency of 5 MHz [3]) and ALSE(frequencies of 5, 15,
and 150 MHz [5]), LPR can map the composition and structure of the regolith at shallower depths
and with a higher range of resolution due to the higher frequencies used, especially the channel
with a frequency at 500 MHz [6,13]. To date, many studies have focused on this 500-MHz LPR
data. Fa et al. [6] and Lai et al. [2] estimated the near-surface structure with four major stratigraphic
zones using the 500-MHz LPR data. Dong et al. [14] calculated the lunar surface regolith parameters
in the CE-3 landing area, including its permittivity, density, conductivity, and FeO + TiO2 content
based on the 500-MHz LPR data. Feng et al. [15] derived the regolith’s permittivity distribution
laterally and vertically by processing the 500-MHz LPR data. In the analysis and evaluation of LPR
data, the response signal caused by discrete reflectors beneath the lunar surface provides very useful
information [4,6,7,14–16]. For example, the hyperbolic signatures produced by these targets are small
with respect to radar wavelength, whose axes and vertices are functions of their position and relative
dielectric characteristics [16,17]. In the lunar regolith, the most common subsurface materials are
fine-grained regolith and basalt debris [1,4], and the layered reflection is not obvious [7]. Moreover,
there is extensive clutter and noise in LPR data images [15], such as the coupling between antennas
and the lunar surface, electromagnetic interference, etc. [4,14], and these can partially or totally hide
or distort the response signal of discrete reflectors in the regolith [18]. Although many corrections
have been applied to LPR data, such as background removal [14], amplitude compensation [14,15],
band-pass filtering [13], and bi-dimensional empirical mode decomposition filtering [7], only a few
reflections can be clearly identified [7,14,15]. Therefore, improving the capability to identify response
signals of the discrete reflectors from LPR data is necessary.

The emerging compressive sensing (CS) theory maintains that sparse signals can be reconstructed
from a small set of non-adaptive linear measurements by solving a convex problem with
high probability [18–20]. The CS theory has already been used in radar signal denoising and
imaging [18,21,22]. With basic information [19], CS has strong anti-interference ability. It can still
perfectly reconstruct a radar signal if some elements are lost or polluted by noise [21]. In this paper,
we propose a processing approach based on the CS theory to improve the capabilities of target
signal extraction from the 500-MHz LPR data. First, we sparsed the LPR data in the frequency
domain [23–25]. Then, we randomly selected a set of Fourier series in the proper frequency band
to estimate the amplitudes and time delays using atomic norm minimization and total-variation
(TV) norm minimization. In our approach, any one element in the LPR data is important, or rather,
unimportant. This randomness greatly improves the target response signal extraction capability.

Numerical analyses of the CS algorithm’s performance were performed, including denoising
performance analysis, computational stability analysis, and computation complexity analysis.
The result of a numerical example using a complex 2D lunar regolith model with clipped Gaussian
random permittivity verifies the validity of the CS algorithm for LPR data. Finally, the compressive
sensing-based approach was applied to estimate the signal amplitudes and time delays from the
500-MHz LPR data. The amplitude is the impedance contrast at the interface, or reflection coefficient,
and the time delay indicates the detected target’s depth. By studying the amplitudes and time delays,
the position and shape of response signals caused by discrete reflectors beneath the lunar surface can
be extracted.

This paper is structured as follows. In Section 2, an introduction to the compressive sensing-based
approach and some numerical analyses are given. Section 3 describes a complex 2D lunar regolith
numerical simulation model with clipped Gaussian random permittivity, which was established to
verify the CS algorithm. In Section 4, we present our application of the compressive sensing-based
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approach to estimate the amplitudes and time delays from the 500-MHz LPR data. Finally, in Section 5,
we draw some conclusions.

2. Methodology and Preliminary Numerical Tests

2.1. Signal model

The basic principle of GPR is the transmission of an electromagnetic (EM) radar pulse to image
the subsurface targets or geological layers. The received signal x(t) can be written as [19]:

x(t) =
L

∑
j=1

ajg(t − τj), (1)

where L is the number of reflected waves in the received signal. It should be larger than the number
of scatterers and layers considering multiple reflection phenomena.

{
τj
}L

j=1 is the total trip delay

from the transmitting antenna to the target/layer j and back to the receiving antenna;
{

aj
}L

j=1 is the
amplitude, which is proportional to the target’s radar cross-section (RCS), dispersion attenuation,
and spreading losses throughout propagation; and g(t) is the transmitted pulse. Thus, the received
signal is essentially a time delay and a scaled version of the transmitted pulse. If the amplitudes and
time delays are known, we can reconstruct the reflection signal.

2.2. CS Algorithm Using Random Fourier Series

Since the received signal x(t) is confined to the interval [0, τ), we can extend x(t) in a Fourier
series as:

x (t) = ∑ X [k] ei 2π
τ kt, t ⊂ [0, τ) , (2)

where:
X [k] =

1
τ

∫ τ

0
x (t) e−i 2π

τ ktdt, (3)

Substituting Equation (1) into Equation (3), we get:

X [k] =
1
τ

G
(

2π

τ
k
) L

∑
j=1

aje
−i 2π

τ kτj (4)

where G (ω) denotes the continuous time Fourier transformation of g(t).
For a set κ of K indices for which G

( 2π
τ k
) �= 0,∀k ∈ κ, such an integer subset exists for a UWB

(ultra-wideband) radar transmitted pulse due to its very large relative bandwidth. Equation (4) can be
rewritten as:

Y [k] =
X[k]

1
τ G
( 2π

τ k
) = L

∑
j=1

aje
−i 2π

τ kτj (5)

V(t) denotes the k × L Vandermonde matrix given by e−i 2π
τ kτj , where t = {τ1, · · · , τL, } is the

vector of the unknown time delays. In addition, let α = {a1, · · · , aL}T and y = {Y1, · · · , Yk}T .
The formulation of the relationship between the signal’s Fourier series coefficients (y) and its unknown
parameters (amplitudes and time delays) is obtained [24] as follows:

y = V(t)α, (6)

Given vector y, the total-variation (TV) norm is the continuous Fourier series version that is
used to estimate the amplitudes and time delays [19,26], which can be interpreted as finding the
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shortest linear combination of elements taken from a continuous and infinite dictionary. The TV norm
minimization problem in Equation (6) is expressed as:

min ‖α‖TV

subject to ‖Vα − y‖2 ≤ δ
(7)

where δ is the noise level, and α can be recovered with a precision inversely proportional to δ [26].
This is a convex optimization problem that can be solved efficiently by many different algorithms.

In this paper, in order to make the selected δ widely adaptable, we fixed it with the data noise level by
the following formula:

δ =
‖y‖2
2Ny

. (8)

where Ny is the length of vector y.
To acquire the Fourier series coefficients, we employed the Xampling scheme (described in the

papers [19,25,27]), which enables the extraction of the necessary samples of Fourier series coefficients
at a sub-Nyquist rate. Consecutive Fourier series coefficients can be easily obtained but, here,
we used a nonconsecutive set of Fourier series coefficients that we randomly selected in a distributed
manner from wide frequency aperture, which greatly increases the resolution of the underlying
signal [28]. In other words, any Fourier series is important, or any Fourier series is not important.
Tang et al. [28] proposed an atomic norm minimization approach, similar to the total-variation (TV)
norm minimization, to recover the missing Fourier series coefficients. Assume that a subset of entries
κ are selected at random and form the set {yk, k ⊂ κ} of consecutive Fourier coefficients, as prescribed
in the paper [28]; then, a natural algorithm for estimating the missing samples from a sparse sum of
complex exponentials is the atomic norm minimization problem:

min ‖ỹ‖A∣∣ỹj − yj
∣∣ < δ, j ∈ κ,

(9)

where ‖ỹ‖A is the atomic norm of Aassociated with conv(A) (the convex hull of A), defined by:

‖ỹ‖A = in f {t > 0|ỹ ∈ tconv (A)} , (10)

Equation (9) is equivalent to the following semi-definite program (SDF):

min trace (Toep (u)) + t

subject to

[
Toep (u) y

y∗ t

]
≥ 0

∣∣ỹj − yj
∣∣ < δ, j ∈ κ,

(11)

where Toep (u) denotes the Toeplitz matrix, whose first column is equal to u; uk = ∑ cjc̄j−k and c are
Fourier series coefficients. By solving Equation (11), the whole set {yk, k ⊂ κ} of consecutive Fourier
series coefficients can be estimated. Then, the amplitudes and time delays can be estimated by the TV
norm [19].

2.3. Numerical Analysis

In this subsection, we present the performance analysis of the estimated parameters of the
LPR data using the CS algorithm. In order to get x(t), one calculates the LPR response of a 1D
simple lunar regolith model (Figure 1a) using the finite-difference time-domain (FDTD) algorithm [29].
The simulation parameter settings are consistent with CE-3 Channel 2 [30] (Table 1). The time step of
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the LPR is 0.3125 ns. Therefore, we need to sparse the simulation LPR data from 0.03125–0.3125 ns.
The simulated amplitudes (

{
aj
}L

j=1) and time delays (
{

τj
}L

j=1) are listed in Table 2.

Figure 1. (a) The 1D lunar regolith model (Rx: receive antenna; Tx: transmitting antenna) and (b) the
LPR response signal of the 1D lunar regolith model with the direct waves removed (x(t)).

Table 1. Simulation parameters.

Parameter Value Direction

Height of antenna 0.3 m d2 in Figure 1a
Offset of Tx and Rx 0.32 m d1 in Figure 1a

Transmitted Waveform Ricker g(t)
Center frequency 500 MHz

Absorbing boundary C-PML
Thickness of absorbing boundary 0.1 m 10 PML layers

Discrete grid 0.01 × 0.01 m the size of the grid cells
Time step 0.03125 ns

Time window 70 ns

Table 2. Amplitudes and time delays of x(t).

Amplitude (a) Value Time Delay (τ) Value (ns)

a1 0.9421 τ1 3.7500
a2 0.2546 τ2 26.5625
a3 −0.0092 τ3 49.6875

Figure 2a is the continuous time Fourier transformation (G(ω)) of a 500-MHz Ricker. Obviously,
LPR is a kind of ultra-wideband radar (UWB) [4] and has a large bandwidth (>1 GHz). In [19], Xia et al.
stated that one can reconstruct radar signals in a larger subset of entries κ. In this study, we limited the
bandwidth to improve the operational efficiency and increase the signal resolution from the noise.

For the first numerical experiment, we chose three subsets (Bandwidth 1 (B1), B2, B3; Figure 2a)
of κ and randomly selected 30 random Fourier series. The B1 bandwidth is from 400–600 MHz with
G
( 2π

τ k
) �= 0; the B2 bandwidth is from 800–1000 MHz with G

( 2π
τ k
) �= 0; and the B3 bandwidth is

from 1200–1400 MHz with G
( 2π

τ k
)
= 0.

As this CS algorithm involves the random choice of parameters (Fourier coefficients), even if we
set the same frequency band and number of Fourier coefficients, the estimated amplitudes and time
delays will be different in each calculation (Figure 3). Therefore, in order to evaluate the performance
of the CS algorithm accurately, for the final value in the numerical experiment, we used the average
value obtained by executing the algorithm 60 times, selected by checking the convergence of its results.
The standard deviation information is given to describe the stability of the algorithm. In Figure 3,
the average value (AVG) is 0.2553 and the standard deviation (σ) is 0.0025. Obviously, this CS
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algorithm is stable. To account for the possibility of processing data collected over a larger spatial
scale, we recorded the time cost of the numerical experiments. The parameters of the computer used
to execute the numerical experiment are listed in Table 3.

Figure 2. The results of the first numerical experiment. (a) The continuous time Fourier transformation
of g(t). (b) Estimated parameters by the CS algorithm in Bandwidth 1 (B1). (c) Estimated parameters
by the CS algorithm in B2. (d) Estimated parameters by the CS algorithm in B3.

0 10 20 30 40 50 60

Count

0.25

0.255

0.26

a
2

Real value

Estimated value by CS

Figure 3. Estimated value of a2 from B1 obtained by executing the CS algorithm 60 times for numerical
experiments. The average value (AVG) is 0.2553, and the standard deviation (σ) is 0.0025.

Table 3. The parameters of the computer used to execute the numerical experiment.

Type Laptop
Operating system Microsoft Windows 10

CPU Intel(R) Core(TM) i7-6820HQ
RAM 16 GB

Figure 2 shows the results of parameter estimation in different bandwidth subsets. The estimated
amplitudes

{
aj
}L

j=1 and time delays
{

τj
}L

j=1 are listed in Table 4. The relative error between the
estimated value and the simulated value (Table 2) is defined as err_rel (%).
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Table 4. Estimated parameter value statistics table of the first numerical experiment.

Frequency Band Amplitudes (a),
Value err_rel (%)

Standard
Time Cost (s)

(MHz) Time Delays (τ) Deviation (σ)

B1[400–600]

a1 0.9421 0 0.0006

160

a2 0.2553 0.3 0.0025
a3 0 ∼ ∼
τ1 3.7500 ns 0 0
τ2 26.5625 ns 0 0
τ3 ∼ ∼ ∼

B2[800–1000]

a1 0.9420 0.1 0.004

159

a2 0.2570 1.0 0.0045
a3 0 ∼ ∼
τ1 3.7500 ns 0 0
τ2 26.5625 ns 0 0
τ3 ∼ ∼ ∼

B3[1200–1400]

a1 0.8325 11.63 0.2

160

a2 0 ∼ ∼
a3 0 ∼ ∼
τ1 6.0 ns 60 3
τ2 ∼ ∼ ∼
τ3 ∼ ∼ ∼

According to the results, both B1 and B2 can estimate amplitudes and time delays very well,
and the amplitudes calculated by B1 have more accurate results. However, in B3, as mentioned
in the theorysection, since the smaller value of the Fourier series coefficients and a part of G

( 2π
τ k
)

approximate to zero, the CS algorithm cannot accurately estimate the parameters. Considering that
the center frequency of g(t) (500 MHz) is included in B1 ([400–600] MHz), we recognize that the
CS algorithm can obtain an accurate estimation of the signal parameters from the LPR data using a
random Fourier series subset within a limited bandwidth around the center frequency. To gain a better
understanding of the performance and reliability of the algorithm and to identify the best settings (the
number of Fourier series coefficients and the bandwidth extension), we conducted a second and third
numerical experiment with a focus on controlling the variables.

In the second numerical experiment, the number of Fourier series was fixed to 30, and the
frequency bandwidths were set at 30% (B4[425–575] MHz), 50% (B5[375–625] MHz), and 60%
(B6[350–650] MHz) of the central frequency, with centering on the central frequency (500 MHz).
The results are listed in Table 5. From those results, the accuracy and reliability of the CS algorithm
are satisfactory for the three frequency bands. When the frequency range is extended from B1–B5
MHz, there is a rather significant change of the algorithm performance: the error becomes higher
and similar to the error obtained in B2. In order to achieve a better estimated accuracy over a larger
bandwidth, the number of Fourier coefficients needs to be increased. In other words, the number
of Fourier series needs to meet a certain density in the frequency band. However, the increase of
Fourier series density reduces the randomness of the algorithm. In our CS algorithm, a random Fourier
series can increase the resolution of the underlying signal in actual LPR data. We also noticed that,
although a larger bandwidth can provide increased randomness in Fourier series selection, time costs
and estimation errors increase: when the bandwidth increases from 150 to 300 MHz, the time cost
increases by 2.5 times.
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Table 5. Estimated parameter value statistics table of the second numerical experiment.

Frequency Band Amplitudes (a),
Value err_rel (%)

Standard
Time Cost (s)

(MHz) Time Delays (τ) Deviation (σ)

B4[425–575]

a1 0.9421 0 0.0002

113

a2 0.2550 0.3 0.0015
a3 0 ∼ ∼
τ1 3.7500 ns 0 0
τ2 26.5625 ns 0 0
τ3 ∼ ∼ ∼

B5[375–625]

a1 0.9420 0.1 0.004

265

a2 0.2565 0.9 0.0036
a3 0 ∼ ∼
τ1 3.7500 ns 0 0
τ2 26.5625 ns 0 0
τ3 ∼ ∼ ∼

B6[350–650]

a1 0.9420 0.1 0.005

402

a2 0.2568 0.9 0.0062
a3 0 ∼ ∼
τ1 3.7500 ns 0 0
τ2 26.5625 ns 0 0
τ3 ∼ ∼ ∼

In the third numerical experiment, the frequency range was fixed to B1[400–600] MHz, and the
number of Fourier series was set at 10 or 60. The results are listed in Table 6. In this numerical
experiment, we cannot accurately estimate the amplitude and time delay using a random Fourier
series subset with 10 coefficients. The CS algorithm requires a sufficient number of Fourier series
coefficients to ensure reliability. By doubling the number of Fourier coefficients (from 30 to 60),
a higher stability of the algorithm can be achieved (in terms of smaller standard deviation) at a limited
additional computational cost (only 20% longer execution time). Although we decided to work with 30
coefficients in this paper, in some future scenarios, it may be useful to use more coefficients. However,
an increase in the number of Fourier series, such as the 60 Fourier series in Table 6, means an increase
in time cost and a decrease in randomness.

Therefore, considering the estimation error, randomness, and time cost, a random Fourier series
subset with 30 coefficients chosen within 400–600 MHz is one of the best settings for 500-MHz LPR
data processing. The CS algorithm can be executed on a personal computer. Single trace data can
be processed in a few minutes. However, if, in some cases, we need to increase the frequency range
and the number of Fourier series, the increase in time cost is inevitable. In addition, the time cost
limitations of this CS algorithm are also possible when dealing with larger scale problems.

In order to assess the anti-interference ability and robustness of the CS algorithm, we designed
the fourth and fifth numerical experiments with noise.

In the fourth numerical experiment, we added two sine interferences to x(t) using Equation (12)
(Figure 4).

x(t) = x(t) + sin(2π ∗ M1 ∗ t) ∗ 0.1 + sin(2π ∗ M2 ∗ t) ∗ 0.2 (12)

where (M1, M2) is the frequency of the sine interference and was set at (200 MHz, 800 MHz) and
(450 MHz, 550 MHz). The parameter values were estimated by the CS algorithm using 30 random
Fourier series in B1(400–600 MHz). The results are listed in Table 7. The accuracy of the CS algorithm
is satisfactory. Since the Fourier series in our CS algorithm is discontinuous and random, although 450
and 550 MHz are included in the frequency range (400∼600 MHz), we can still accurately estimate the
amplitude and time delays.
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Table 6. Estimated parameter value statistics table of the third numerical experiment.

Number of Amplitudes (a),
Value

err_rel (%) Standard
Time Cost (s)

Fourier Series Time Delays (τ) Deviation (σ)

10

a1 0.9323 1 0.1049

152

a2 0.2050 20.1 0.0473
a3 0 ∼ ∼
τ1 3.7500 ns 0 0.01
τ2 26.5625 ns 0 0.01
τ3 ∼ ∼ ∼

60

a1 0.9421 0 0.0001

192

a2 0.2550 0.1 0.0002
a3 0 ∼ ∼
τ1 3.7500 ns 0 0
τ2 26.5625 ns 0 0
τ3 ∼ ∼ ∼

Figure 4. LPR data with periodic noise and parameters estimated by the CS algorithm. (a) The
frequencies of the sine interference are 200 and 800 MHz; (b) the frequencies of the sine interference are
450 and 550 MHz).

Table 7. Estimated parameter value statistics table of the fourth numerical experiment.

Frequency of Amplitudes (a),
Value err_rel (%)

Standard
Time Cost (s)

Sine Wave (MHz) Time Delays (τ) Deviation (σ)

200,800

a1 0.9749 3 0.001

162

a2 0.2414 5 0.001
a3 0 ∼ ∼
τ1 3.7500 ns 0 0
τ2 26.5625 ns 0 0
τ3 ∼ ∼ ∼

450,550

a1 0.98531 5 0.05

169

a2 0.2358 7 0.03
a3 0 ∼ ∼
τ1 3.7500 ns 0 0
τ2 26.5625 ns 0 0
τ3 ∼ ∼ ∼

In the fifth numerical experiment, we added −30, −20, and −10 dB of additive white Gaussian
noise (AWGN) to x(t) (Figure 5). The noise level is defined by the following formula:
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AWGN_dB = 10log10
P_n
P_s

, (13)

where P_n is the noise signal power and P_s is the original signal power.
The parameter values were determined by the CS algorithm using 30 random Fourier series in

B1(400–600 MHz). The results are listed in Table 8.

Figure 5. LPR data with Gaussian noise and the parameters estimated by the CS algorithm. (a) Noise
level: −30 dB; (b) noise level: −20 dB; (c) noise level: −10 dB.

Table 8. Estimated parameter value statistics table of the fifth numerical experiment.

AWGN Noise Amplitudes (a),
Value err_rel (%)

Standard
Time Cost (s)

Level (dB) Time Delays (τ) Deviation (σ)

30

a1 0.8802 7 0.002

169

a2 0.2450 0.3 0.003
a3 0 ∼ ∼
τ1 3.7500 ns 0 0
τ2 26.5625 ns 0 0
τ3 ∼ ∼ ∼

20

a1 1.125 20 0.05

170

a2 0.2315 9 0.06
a3 0 ∼ ∼
τ1 3.2500 ns 12 0
τ2 26.5625 ns 0 0
τ3 ∼ ∼ ∼

10

a1 1.022 0.8 0.2

165

a2 ∼ ∼ ∼
a3 ∼ ∼ ∼
τ1 3.7500 ns 0 ∼
τ2 ∼ ∼ ∼
τ3 ∼ ∼ ∼
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Obviously, the signal parameters can be accurately estimated from signals with noise in general
(Figure 5a,b). Due to the wide frequency range of the AWGN, when the noise level is 10 dB (Figure 5c),
the CS algorithm cannot distinguish between the reflection signal and the false waveform generated
by the AWGN. This requires researchers to apply their judgment in practical applications.

These numerical experiments indicate that the CS algorithm used with a random Fourier series
can estimate a target’s signal parameters from noisy LPR data. This CS algorithm can reconstruct the
amplitudes and time delays with high efficiency and high precision under an appropriate bandwidth
and Fourier series.

3. Algorithm Verification Using 2D the Random Regolith Model

In order to verify that the CS algorithm is effective for LPR data, we built a complex lunar regolith
model (Figure 6) and calculated the LPR response using the 2D FDTD algorithm [29]. We set the
numerical simulation parameters to be the same as those in the numerical experiment described in
Section 2.3; the parameters are presented in Table 1 in Section 2. The LPR moving route was from
1–9 m in distance, and the sampling interval on the moving route was 0.05 m.

Figure 6. (a) The 2D random regolith model. (b) Permittivity trend at 5 m (black dotted line in (a)).

The model size was 10 m in the horizontal direction and 6 m in the vertical direction. To make the
model structure similar to real lunar regolith, the following settings were applied.

(1) The relative permittivity is proportional to the depth. The average relative permittivity of the
lunar regolith is 3.0. Therefore, we improved the formula of the relationship between relative
permittivity and depth [31,32] as follows:

εr = 1.9191.92 z+12.2
z+18 + 0.4 (14)

(2) A Gaussian random field was used to model the regolith. A great deal of natural science data
display marked Gaussian characteristics [33–35]. We built the lunar regolith relative permittivity
model with clipped Gaussian random field theory [36]. A relative permittivity that is set from
2.5–3.5 satisfies the Gaussian random distribution.

(3) The formation of lunar regolith indicates the existence of detritus [6]. In the LPR data, most
reflections are formed by basalt debris [7]. Three strongly-reflecting debris materials (A: a square
with a side length of 0.1 m; B: a circle with a radius of 0.1 m; C: a square with a side length of
0.2 m; Figure 6a) were incorporated into the 2D regolith model with the same relative permittivity
as basalt (εb = 6).

Figure 7a is a snapshot of a radar wave in 28.8 ns at 5 m. The distortion of electromagnetic
waves passing through random inhomogeneous media is clearly visible. Figure 7b shows the forward
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simulation result with direct waves removed. In the simulated LPR data image, the response of
the strongly-reflecting debris is mixed with the response of weak reflectors in a random medium.
The parameter values were estimated by the CS algorithm using 30 random Fourier series in B1
(400–600 MHz). Figure 8a is a single trace at 5 m (red line in Figure 7b) and the amplitudes and the
time delays estimated by the CS algorithm. The CS algorithm not only accurately estimates the time
delays (

{
τj
}L

j=1) of a strong reflection response, but also restores the amplitudes (
{

aj
}L

j=1). Figure 8b is

the color image of absolute amplitudes (| {aj
}L

j=1 |). Compared to the original LPR image (Figure 7b),
responsive recognition is greatly improved. According to the amplitude’s absolute value, the reflected
response signal can be located and identified. Moreover, some LPR responses of small debris in
random inhomogeneous media are available. One can identify some complete weak responses based
on the continuity of the amplitude to enrich the interpretation process.

Figure 7. (a) A snapshot of a radar wave in 28.8 ns at 5 m. (b) Simulation results of the 2D regolith model.

Figure 8. (a) A single trace in 5 m (red line in Figure 7b) and the parameters estimated by the CS
algorithm. (b) Image of the estimated absolute amplitudes of the simulated LPR profile.

4. Processing and Analyzing LPR Data

4.1. Preprocessing

LPR is one of the important scientific systems onboard the Yutu lunar rover in the scope of
China’s Chang’E-3 lunar mission. The CE-3 landing site is in northern Mare Imbrium at 44.1213◦N,
19.5115◦W at an elevation of −2.627 km [6]. The Yutu lunar rover’s route is shown in Figure 9.
The raw LPR data are archived and distributed by the National Astronomical Observatories, Chinese
Academy of Sciences (NAOC) (http://moon.bao.ac.cn/) [13]. In this paper, we focus on the data
collected by the 500-MHz Level 2C data (a band-pass filter based on fast Fourier transform (FFT)
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filtering was done [7,13]) from C to D (Figure 9). The distance of the CD route is 10 m.Considering the
unique characteristics of LPR data acquisition, we performed a longitudinal displacement correction,
removing the repeating paths and velocity interpolation to extract the LPR data (Figure 10a) from
the raw data [7]. Although the LPR data were successfully extracted, it is difficult to strip the direct
waves from the original data. According to calibration tests that were performed by the Institute of
Electronics, Chinese Academy of Sciences, the time delay of the radar echo signal transmitted from
the lunar surface is 28.203 ns for Channel 2; thus, the lunar surface is characterized by a 28.203-ns
time delay correction [30]. Then, we applied an automatic gain control (AGC) method to recover the
amplitude loss from spreading and scattering [2] and removed the background using a median filter,
as is usually used for GPR data for Earth-based applications. Since most of the effective information of
the 500-MHz LPR data are concentrated within 100 ns [6,7], we only processed the data between 0 and
100 ns.

Figure 9. Yutu lunar rover’s route [6,16]. The red line from C to D is the research route (10 m). We added
a distance coordinate system, with the lander as the coordinate origin (0, 0).

4.2. Parameter Estimation Using the CS Algorithm

Based on the numerical experiments’ results in the theoretical part of this study, we randomly
selected 30 Fourier series coefficients from 200–600 MHz to estimate the amplitudes and time delays
using the CS algorithm. Figure 11 is a single trace of the LPR data and the parameters estimated by the
CS-based approach. From Figure 11, we can see that the estimated parameters are quite consistent with
the preprocessed LPR data (Figure 11b). The aliased waveform image was converted to clear discrete
reflection amplitudes and time delays. Figure 12 shows the CD LPR profile data overlaid with the
processing results. In Figure 12, due to the time delay correction and the removal of the background,
the surface reflection signal is missing. Time delays were distributed between 10 and 70 ns. Below
70 ns, although the sporadic reflected signals could be identified, the amplitude was smaller and
discontinuous. In order to highlight the response of a reflector in the regolith, we provide a color
image of the absolute amplitude (Figure 13) with a threshold (| {aj

}L
j=1 |> 1.5). Compared with the

continuous waveforms in raw data, the CS algorithm more easily locates and extracts reflections caused
by buried targets. By analyzing the continuity of the time delays and the values of the amplitudes,
we can reconstruct and identify response signals caused by discrete reflectors beneath the lunar surface
(Figure 14).
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Figure 10. (a) The original LPR data extracted from the raw data, (b) the preprocessed LPR data, (c) a
signal trace of the LPR data at 7.5 m (black line), and (d) a signal trace of the preprocessed LPR data at
7.5 m.
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Figure 11. A single trace of LPR data at 6 m and parameters estimated by the CS-based approach.
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Figure 12. The LPR profile overlaid with the CS-based approach processing results.

Figure 13. Absolute amplitude image of LPR data.

4.3. Results

When combining the forming mechanism of the regolith in the study area with the result of the
CS-based approach, a further interpretation of the LPR data was revealed (Figure 14). A dielectric
permittivity of 3.0 + i0.03 was used to calculate the depth. In the LPR data image, a three-layer structure
could be clearly delimited as follows.

• The top layer (depth < 1 m) cannot extract reflection parameters at all. This is the fine-grained
regolith part of the lunar regolith. In [6], this part was interpreted as a reworked zone. Even
though the fine-grained regolith was composed of numerous layers, the layer thickness was
typically on the order of several centimeters [37], which is much smaller than the LPR range
resolution [4]. Therefore, it is difficult to extract the reflected signal from this layer.

• The middle layer (buried from 1–7 m) had the most signal reflectors beneath the lunar surface.
It is the paleoregolith of mare basalt with much debris. After the processing step in the CS-based
approach, the reflective response signal, which is difficult to extract from the original LPR data,
became clear (Figure 13). The size of the reflection curve is often proportional to the volume of
the debris [7]. On the basis of the continuity and the absolute value of the estimated amplitude,
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some reflection response signals are marked by a red curve in Figure 14. Obviously, this is a good
improvement for evaluating the LPR data.

• The last part is the basalt base. Since there is no obvious reflective interface between the regolith
and mare basalt, one can distinguish this region by the distribution of a strong reflection response
signal. Obviously, from Figure 13, there were no reflection signals (| {aj

}L
j=1 |> 1.5). The estimated

reflection response at [I] (Figure 13) is a false reflection, considering the unusually persistent
periodicity of this part of the LPR data.

Figure 14. Interpretation of the LPR data from C to D (Figure 9).

4.4. Discussion

In the 2D random regolith model, a strong interface between the regolith and basalt is present.
However, in the measured 500-MHz LPR data, there is no obvious reflective interface between the
regolith and mare basalt. It is possible that there is a smooth variation in the permittivity on the
interface. The overall reflection generated by a gradual interface has a different shape than the
transmitted pulse [38], whereas a sudden permittivity change generates a reflection having a different
amplitude, but the same shape as the transmitted pulse. This is a challenge for the CS algorithm.
We hope to study this scenario in future work.

When the CS-based approach is applied to LPR data, there is an improvement in classifying
the stratigraphic structure of the lunar regolith. The stratification result is consistent with previous
studies [6,7,16], and we located the debris in the regolith. Moreover, the improvement in LPR data
interpretation is not limited to this. It can provide a relatively accurate initial model for standard
focusing methods (migration, beamforming, diffraction tomography, etc.). Accurate amplitudes and
time delays also can significantly refine the accuracy of estimated lunar regolith parameters, such as
permittivity and iron–titanium content [2,16]. It is critical to quantify potential resources for lunar
exploration and for the engineering of human outposts.

5. Conclusions

In this paper, we propose a compressive sensing-based approach to reconstruct the amplitudes
and the time delays of radar data. Numerical analysis of the CS-based approach performance was
conducted and is herein discussed. The simulation results show that the approach is effective and
stable. Then, successful estimations of the amplitudes and the time delays of the 500-MHz LPR
data using the compressive sensing-based approach were achieved. The final result shows that the
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CS-based approach can improve the capability of extracting a target’s response signal from a complex
lunar environment. In addition, these results provide valuable information about the lunar regolith
structure and estimated parameters, such as the electrical parameters and the iron–titaniumcontent of
the regolith.
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Abbreviations

The following abbreviations are used in this manuscript:

LPR lunar penetrating radar
CS compressive sensing
GPR ground-penetrating radar
LRS Lunar Radar Sounder
ALSE Apollo Lunar Sounder Experiment
CE-3 Chang’E-3
UWB ultra-wideband
NAOC National Astronomical Observatories, Chinese Academy of Sciences
AGC automatic gain control
TV total-variation
SDF semidefinite program
FDTD finite-difference time-domain
AWGN additive white Gaussian noise
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