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La Rochelle University

France

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Energies (ISSN 1996-1073) (available at: https://www.mdpi.com/journal/energies/special issues/

DESD SODS).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03936-366-7 (Hbk) 
ISBN 978-3-03936-367-4 (PDF)

c© 2020 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Special Issue Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”District Energy System Design” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Bram van der Heijde, Annelies Vandermeulen, Robbe Salenbien and Lieve Helsen

Integrated Optimal Design and Control of Fourth Generation District Heating Networks with
Thermal Energy Storage
Reprinted from: Energies 2019, 12, 2766, doi:10.3390/en12142766 . . . . . . . . . . . . . . . . . . . 1

Camille Pajot, Nils Artiges, Benoit Delinchant, Simon Rouchier, Frédéric Wurtz,

Yves Maréchal
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Preface to ”District Energy System Design”

The integration of energy efficiency into the urban planning process is paramount in view of

the current context of energy and environmental transition. However, reducing the energy footprint

at the district level is a new approach that must be complemented by specific developments. Thus,

the contributions related to the research of the best energy concepts cover three main topics: the

simulation, the optimization procedure and finally the decision-making method. Towards this end,

dynamic simulation tools based on physical models (occupant, building, production, networks,

etc.) at the urban scale must be developed in order to represent the behavior of all energy

flows of a district integrated in its environment. Then, specific characteristics of the problem

complexity should be studied by means of a multi-objective and multi-stage optimization procedure.

This cross-cutting approach could combine energy, economic and environmental aspects in order

to create configurations that guarantee the best overall performance. Lastly, the selection of the

preferential action could be achieved by the use of multi-criteria analysis methods that provide

the planners with all the data that they need, enabling them to make the choice that best meets

their expectations. This Special Issue includes five articles focused on these topics. The subjects

covered are related to demand-side management, thermal flexibility, distribution network planning,

multi-criteria decision-making, optimization of meshed distribution network, multi-carrier energy

systems, combined optimal design, seasonal thermal energy storage, generation district heating

networks, thermal energy storage and vehicle-to-grid for peak shaving, among others. All the papers

in this Special Issue have been peer reviewed and subjected to the editorial standards of Energies.

All our warmest and most sincere thanks go to all the authors for their timely response and careful

revisions. They have produced very valuable contributions and provided high-quality materials for

this Special Issue. Finally, we would like to sincerely thank the anonymous referees for their voluntary

work and expert review.

Christian Inard, Jérôme Le Dréau

Special Issue Editors
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Abstract: In the quest to increase the share of renewable and residual energy sources in our energy
system, and to reduce its greenhouse gas emissions, district heating networks and seasonal thermal
energy storage have the potential to play a key role. Different studies prove the techno-economic
potential of these technologies but, due to the added complexity, it is challenging to design and
control such systems. This paper describes an integrated optimal design and control algorithm,
which is applied to the design of a district heating network with solar thermal collectors, seasonal
thermal energy storage and excess heat injection. The focus is mostly on the choice of the size and
location of these technologies and less on the network layout optimisation. The algorithm uses a
two-layer program, namely with a design optimisation layer implemented as a genetic algorithm and
an optimal control evaluation layer implemented using the Python optimal control problem toolbox
called modesto. This optimisation strategy is applied to the fictional district energy system case of
the city of Genk in Belgium. We show that this algorithm can find optimal designs with respect to
multiple objective functions and that even in the cheaper, less renewable solutions, seasonal thermal
energy storage systems are installed in large quantities.

Keywords: optimal design; optimal control; district heating; district energy systems;
genetic algorithm; seasonal thermal energy storage; renewable energy

1. Introduction

Our energy system is one of the main contributors to the ever-increasing greenhouse gas (GHG)
emissions, which calls for the identification of solutions within this sector. In particular, heating and
cooling in residential and service buildings contribute to no less than 40% of the total final energy
requirements in Europe [1]. Currently, 75% of the heating and cooling demand in buildings in the
European Union (EU) (including industrial processes) is met by purely fossil resources [2], while of the
remaining fraction 11% is provided by bio-mass, although these are usually polluting wood-stoves.
Another 7% uses nuclear energy as a source through electricity and only the remaining 7% of heating
and cooling come from ‘truly’ renewable sources, such as hydro, wind, solar and geothermal power.
This makes the heating and cooling sector an ideal candidate to tackle the problem of both energy
demand and GHG emissions in an efficient way. An often suggested solution is that of district heating
and cooling systems to provide the heat and cold demand using centralised production with a large
potential for reusing residual heat sources. Moreover, the most modern district heating and cooling
systems (of the so-called fourth generation) allow for the inclusion of many low-temperature sources,
thermal energy storage (TES) and prosumers that inject heat or cold surpluses back into the network [3].

Energies 2019, 12, 2766; doi:10.3390/en12142766 www.mdpi.com/journal/energies1
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Dahash et al. [4] provided a comprehensive overview of large-scale thermal energy storage systems,
concluding that although not necessarily the most cost-effective, tank and pit storage systems are often
the most practical to install. They also found a clear gap in the research towards system integration of
these seasonal storage systems in terms of modelling both accurately and in reasonable time.

In particular, Paardekooper et al. [5] calculated that switching to a large share of district heating
in the European energy system—including only established technologies—enables a reduction by 86%
of the CO2 emissions compared to the levels of 1990 but also that district heating can cost-effectively
provide at least half of the heating demand in 2050 in the 14 countries that are studied in the Heat
Roadmap Europe projects. This reduction is the result of a switch to renewable and residual energy
sources (R2ES), enabled by the heat transport provided by district heating. Moreover, according to
Lund et al. [6], (seasonal) energy storage will be needed in a highly interconnected energy system,
namely to bridge the fluctuations in the availability of renewable energy sources. They calculated that
thermal energy and fuel storage are by far cheaper technologies than electrical (battery) storage.

Although it is important to know the potential of district heating and cooling systems, particularly
in combination with TES systems, these previous studies only describe fourth generation district energy
networks in general terms. Hence, to realise these innovative energy networks, three challenges need
to be overcome. Firstly, the design of systems with large shares of fluctuating renewable energy sources
will be much more complicated than that of present thermal networks. Secondly, identifying and
implementing the right control strategy for a given network will be harder as well, due to fluctuating
energy sources and large shares of energy storing components in the network, including energy
flexibility. The third challenge follows from the first and second, namely the fact that the choice of
control strategy will influence the optimal design and vice versa. This calls for an integrated strategy
in which control and design are concurrently optimised.

1.1. Previous Studies on District Energy System Design

Söderman and Pettersson [7,8] made a topology optimisation algorithm for district energy
systems (DES). The algorithm was based on a mixed integer linear program (MILP) for a district
including thermal and an electric grid. Thermal energy storage was included in the optimisation, too.
They limited the problem to eight representative time instances, namely typical daily and nightly
operation conditions in the four seasons. Weber [9] integrated the optimisation of both design and
control of poly-generation systems in DES with different energy carriers, but without considering TES.
Again, the temporal detail remained limited. Weber used a bi-level solution strategy, where a master
optimisation (evolutionary algorithm) chose the type, size and location of technologies to be installed
in the network. The slave optimisation (mixed integer non-linear program) decides the layout of the
network and the operational strategy.

Fazlollahi et al. [10] presented a multi-objective, non-linear optimisation strategy for DES
including district heating and poly-generation, but without considering large-scale TES systems.
They used a problem subdivision similar to that of Weber, where a master evolutionary algorithm varies
the design parameters, and the proposed designs are evaluated by an MILP, which optimises the energy
flows during 8 typical periods. Fazlollahi implemented an additional layer for the thermo-economic
optimisation, and a post-processing step to assess the emissions of the proposed designs. The optimal
results were summarised in Pareto-fronts according to system efficiency, total annual system cost and
CO2 emissions. In this study, the district heating supply and return temperatures were varied as a
function of the ambient temperature.

Other studies combine the entire optimisation in a single mathematical problem, often an MILP.
Dorfner and Hamacher [11] used this strategy to find the optimal lay-out and pipe size of district
heating networks in Germany. This study omitted the operational aspect, instead only considering
peak loads. Morvaj et al. [12] presented a single optimisation problem integrating design, operation
and network layout for an urban energy system with 12 buildings. They considered one representative
day for each month, averaging the electric and heat load profiles for a whole year. Falke et al. [13]
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presented a similar multi-objective optimisation problem as Fazlollahi and Weber, but they considered
a rule-based control flow for the operational layer, as opposed to an optimal control strategy.

In a wider energy system context, Patteeuw and Helsen [14] presented an integrated control and
design optimisation algorithm for the design of the space heating and domestic hot water production
system for residential buildings in the Belgian energy system, assuming a number of scenarios for the
composition of the future electricity system. They used a single-layer MILP optimisation algorithm
with representative weeks to reduce the temporal complexity of the optimisation problem. However,
they found that this approach is very slow. They suggest that a scenario-based optimisation is more
efficient than a full optimisation problem in which the scenario parameters are included as decision
variables. This suggestion clearly points in the direction of a two-layered optimisation approach.

Lund and Mohammadi [15] presented a methodology to optimise the choice of insulation standard
for pipes in thermal networks. Their method is split in two calculation tools: one to calculate different
scenarios of heat loss behaviour in the thermal network, and the other where the energy flows in the
larger system are optimised using EnergyPlan. An evolutionary design algorithm was coupled to
EnergyPlan as the evaluation problem by Prina et al. [16]. Their focus was on the operation of regional
energy systems to find both techno-economically feasible, as well as sustainable energy system designs.
In a later step [17], they accounted for the long-term investment planning problem, considering the
evolution of the price for different technologies and the remaining value of previously installed systems
as they are replaced by more modern technologies.

Bornatico et al. [18] used a particle swarm optimisation (PSO) algorithm to optimise the thermal
system of a Swiss single residential building (hence no DES or thermal network was considered).
They aimed to optimise the size of a solar heating system, including a solar collector, storage tank and
auxiliary power unit. In this study, the system was simulated in Polysun, coupled to MATLAB for the
PSO implementation. Whether Polysun implements a heuristic or optimal control was not specified.
The results of the PSO were compared to a genetic algorithm and the results were found to be similar.
Ghaem Sigarchian et al. [19] optimised a hybrid microgrid including solar photovoltaic panels and
concentrated solar power collectors, an organic Rankine cycle to convert heat to electricity, electric and
thermal energy storage and a gas-fired backup generator. Both design variables (in the PSO) and a
variable operation (in HOMER) were considered. The objective function was the energy tariff to be paid
by the consumers in the network, which had to be minimised. The fitness evaluation function seems to
be an optimal control problem implemented in HOMER, although this is not clearly explained.

In conclusion of the previous work, a clear pattern is that the optimisation algorithm is subdivided
in two layers, where one layer is aimed at evaluating the operational aspect of a particular design—the
lower layer or slave algorithm—and the other focusses on the exploration of the design parameter
space—the upper layer or master algorithm. While there are subtle variations where for instance the
slave algorithm also optimises part of the design variables, this general structure holds for most of the
above discussed references. Still, a smaller number of studies use a completely integrated control and
design algorithm, with a single layer that optimises both operational variables and design parameters.
Clearly, this approach represents only a minority in the discussed studies and is only suited for design
problems with a limited size and (temporal) complexity.

1.2. Novelty and Contribution

The aim of this paper is to develop an integrated design and control optimisation algorithm
for future district heating systems with large shares of R2ES and seasonal thermal energy storage.
This algorithm is illustrated in a fictitious district heating system for an existing city in Belgium and the
design results from the optimisation are studied in detail. Note that the focus is on the methodological
contribution, rather than on the absolute numbers resulting from the case study.

Compared to pre-existing studies, this paper uses a two-layer approach, focussing on the
integration of a higher-resolution full-year optimal control problem (OCP) as the lower-level
optimisation layer, with particular attention paid to the high operation variability of future energy
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systems with distributed energy resources. In order to do so, a Python toolbox called modesto
(see Vandermeulen et al. [20]) is used to set up these OCPs. We use an optimal selection of representative
days compatible with seasonal thermal energy storage systems to reduce the calculation time. To our
knowledge, this is also the first study in which a concurrent design of TES volumes, pipe diameters
and heat generation systems is considered, together with a more detailed model of the district
heating system.

2. Methodology

The optimisation framework is conceived as a two-layer integrated optimal design and control
algorithm. In Section 2.1, the heat demand for space heating and domestic hot water is calculated
deterministically and used as a fixed boundary condition for the algorithm. The slave optimisation is
a linear optimisation which determines the optimal energy flows in the network for a given design,
including the TES charging behaviour, implemented in modesto. This layer of the algorithm is
explained in Section 2.2. The master optimisation is a genetic algorithm which looks for the optimal
combination of design parameters, based on a number of objective functions. This layer is described in
Section 2.3. Apart from the implementation, this section also summarises the available design choices
for the chosen case study, as well as the considered scenarios.

2.1. Case Study

The optimisation algorithm is illustrated by means of a fictitious DES for the city of Genk in
Belgium, called GenkNet. Spread over 9 neighbourhoods, 7775 building models were constructed
based on geometric data for single family residential buildings. Although the network configuration
and the choice of the connected neighbourhoods are hypothetical, the data with which the building
models were constructed are real.

The building models are equivalent resistance-capacitance models based on the TEASER
FourElement structure (see Remmen et al. [21]). Assumptions on the building materials and wall
thicknesses were based on the building age, which was assumed fixed for all buildings belonging
to one neighbourhood. The workflow to derive the building model parameters was developed by
De Jaeger et al. [22]. The heat demand resulting from space heating and domestic hot water (DHW)
production was simulated using a typical meteorological year for Belgium and stochastic occupant
profiles as boundary conditions. The occupant profiles contain the space heating temperature set
point and the DHW draw-off for every individual building and were derived using the StROBe
toolbox (see Baetens and Saelens [23]). An ideal building heating system (neglecting the effects of the
heating system temperatures on the heat injection in the building) was assumed. All buildings were
simulated during a full year with a 900 s time step using a minimum energy objective (assuming a
fixed cost for heat), after which the heat demand of all buildings belonging to one neighbourhood
was summed and modelled as a single demand node in the network. The heat distribution network
on the neighbourhood level is omitted, which means an underestimation of the total heat losses in
the network. Instead, the neighbourhood is represented as a single node, connected to the backbone
network through a single service pipe.

The resulting heat demand for the 7775 buildings amounts to 430.5 GWh per year, with an average
energy use intensity of 210.8 kWh/m2 per year. Cooling and electricity demand were not considered
in this study.

The neighbourhoods were located alongside a central thermal network backbone, as indicated
in Figure 1.
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Excess heat

Geothermal heat

Large heat pump

Figure 1. Network layout for the fictitious case study in Genk, Belgium. The heat demand of
9 neighbourhoods alongside a central backbone connection was aggregated per neighbourhood.
Two additional nodes without heat demand, but with the option to install heat sources and/or thermal
energy storage (TES) systems are situated at both ends of the backbone.

2.2. Operational Optimisation

We have chosen for a full-year OCP with a 2 h time-step for the evaluation of the DES performance
with respect to a number of objective functions (see Section 2.3). The OCP optimises heat and mass
flows in the network, the operation of the heat production systems and the charging behaviour of
the TES systems in order to satisfy the heat demand of the neighbourhoods. This optimisation has
a single objective function to minimise the operational cost. The choice for a minimal operation
cost objective is based on the habit of operating real systems to maximise their profit. Except for a
limited number of experimental systems, systems are seldom operated to minimise energy use or CO2

emissions, unless this is linked to additional economic incentives. The choice for an optimal control
strategy as opposed to a simulation based evaluation or a rule-based control strategy is justified by the
quantification of the maximum potential of every design. This potential is always reached when we
assume an optimal control strategy exists and can be implemented, whereas heuristic control strategies
might penalise designs that are harder to control. As such, we arrive at a fair comparison of designs.

This OCP is implemented using the Python toolbox modesto (see Vandermeulen et al. [20]).
This toolbox is built on top of Pyomo [24] and implements a library of linear optimisation models for
common DES components and communicates with an optimisation solver to find the optimal operation
strategy. More details about the used component models can be found in Appendix A. All models
were either derived from literature or verified by the authors. The optimisation variables considered
in the operational layer are the magnitude of heat and mass flows in all components, the thermal
output of heating systems, possible curtailment of heat from the solar thermal collectors and the state
of charge of the TES systems.

The solution time of the OCP is reduced by using representative days. Van der Heijde et al. [25]
have developed a method to optimally select representative days and to restore the chronology such

5



Energies 2019, 12, 2766

that the original data is approximated as closely as possible. This method is applied here. Based on
a number of input time series, specified by the user, an optimal set of representative days is chosen,
after which the algorithm determines for each day of the year which representative day it will be
represented by. In this work, the chosen input time series were the aggregated heat demand for all
neighbourhoods, the solar radiation on a unit surface area, the ambient temperature and the hourly
electricity price. This method furthermore makes sure that seasonal effects in the TES systems are
modelled accurately. We have limited the representative day selection to 12 days as this was shown to
be sufficient to represent the full-year OCP with acceptable accuracy, see the conclusion made by van
der Heijde et al. [25].

2.3. Design Optimisation

The design parameter values are varied in the upper layer. While we attempted to keep the slave
optimisation linear, both to guarantee a global optimum and to limit the calculation time, non-linear
effects do appear in the master optimisation problem. These non-linearities include: investment costs,
which can vary with the size of the installed system; discrete decision variables, such as pipe diameters;
and the calculation of the state-dependent heat loss from thermal storage tanks. This last phenomenon
is caused by the use of a TES model in which the heat loss depends on the actual state of charge. On the
other hand, this loss fraction also depends on the size of the TES system, which would render the
optimisation problem bi-linear (see the derivation by Vandewalle and D’haeseleer [26]). To avoid this
extra non-linearity, the design variable (namely the size of the TES systems) is treated as a constant
parameter in the OCP and it is varied in the master optimisation.

We implemented the design optimisation algorithm as a genetic algorithm in Python using the
DEAP (Distributed Evolutionary Algorithms in Python) toolbox [27]. The algorithm uses the NSGA-II
(Non-dominated Sorting Genetic Algorithm II) selection operator [28]. Crossovers are handled by
a simulated binary crossover operator, and for mutation, a polynomial bounded operator is used.
Moreover, the genetic algorithm features a small probability of entirely reinitialising some parameters,
which is a variation on the mutation operator. The Pareto-optimal solutions of all generations are
stored in a Hall of Fame. Every new generation is initialised based on all non-dominated individuals,
taken over all previous generations. As such, previous optimal solutions cannot be lost in the course of
the evolution. A single optimisation run features 100 generations with 60 individuals. Each newly
generated individual has a 95% mutation probability and a 70% crossover probability.

Every candidate design is evaluated as an instance of modesto with a minimal cost objective
(see Section 2.2). Infeasible optimisation problems result in a high penalty objective value, such that
these designs are not selected in the next generation. With modesto, the optimal control trajectory for
all energy and mass flows in the network during one year is computed, such that the operational cost
is minimal. The workflow of this genetic algorithm is illustrated in Figure 2.
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Figure 2. Flow chart illustrating the different steps in the genetic algorithm.

2.3.1. Objective Functions

The design was evaluated for optimality based on three objectives, namely the annual primary
energy imported from outside the district energy system—used for the heat pumps, geothermal
heating plant, possibly auxiliary heating needed for the production of DHW and network pumping
power—, the total annualised costs and the CO2 emissions. The total annualised cost ca consists of the
annual operation cost cop, a as calculated by modesto, increased by the annualised investment Ia and
fixed annual maintenance cost cmaint, a :

ca = Ia + cop, a + cmaint, a. (1)

The annualised investment cost Ia is calculated using the capital recovery factor:

Ia = Itot
(1 + i)τ i

(1 + i)τ − 1
, (2)

where Itot stands for the total investment, and Ia for the annualised investment. τ denotes the economic
lifetime of the technology and i is the interest rate, taken as 3%, assuming a public investment on a
long term. This is in line with multiple studies, such as that of Möller and Werner [29], Nussbaumer
and Thalmann [30] and Steinbach and Staniaszek [31]. The annualisation calculation using the capital
recovery factor assumes that every component is replaced by an identical system at the end of its
lifetime, and at the same investment. As such, variations in technology prices over time are neglected.

For maintenance (cmaint, a), the annual contribution is estimated to be a fixed fraction of the
initial investment. This fraction, as well as the typical economic life time of various technologies,
were derived from the EnergyPlan Cost Database [32]. All economic input data for the different
technologies considered in this work is summarised in Appendix B.

In order to get a better grasp of the orders of magnitude of the objective functions—that is,
annualised total costs, primary energy import and CO2 emissions—we scale them with respect to the
total annual heat demand of all neighbourhoods for space heating and DHW. This total heat demand
amounts to 430.5 GWh per year. The resulting scaled variables are called the levelised cost of heat

7



Energies 2019, 12, 2766

(LCOH, expressed in EUR/kWh), the primary energy import share (PEIS, in %) and the CO2 intensity
(in kg CO2/kWh).

2.3.2. Design Choices

The GenkNet case has a total of 9 neighbourhoods, 1 industrial node and 1 node with additional
heat generation systems but no demand. The design exercise is left very open; the optimiser has to
choose how many renewable resources for heat generation are installed at every node, where the
TES systems are installed and how large they should be, and how much backup power is needed.
The available design choices for the TES systems are listed in Table 1, the solar thermal collector (STC)
arrays in Table 2, and the backup heat pumps and geothermal heating plant in Table 3. The maximum
volume corresponds to the largest pit and tank TES systems currently found in literature. The maximum
STC area corresponds to the available south-oriented roof area of the buildings in the neighbourhoods,
however without accounting for previously installed systems, such as PV panels. At node ThorPark,
a larger area is assumed to be available for the installation of an STC array.

Table 1. Available design choices for TES systems at the different nodes in GenkNet. All numbers are
expressed in m3.

Node Component Min Max (×103)

Boxbergheide PTES 0 200
OudWinterslag PTES 0 200

TermienEast PTES 0 200
ThorPark TTES 0 12.5

WaterscheiGarden PTES 0 200
Winterslag PTES 0 200

ZwartbergNEast PTES 0 200
ZwartbergNWest PTES 0 200
ZwartbergSouth PTES 0 200

Table 2. Available design choices for the installed STC array area per node. All nodes except
ThorPark consider the total available South-oriented rooftop area of the considered buildings in that
neighbourhood. All numbers are expressed in m2.

Node Min Max (×103)

Boxbergheide 0 78.5
OudWinterslag 0 15.5

TermienEast 0 12.9
TermienWest 0 16.3

ThorPark 0 100.0
WaterscheiGarden 0 49.9

Winterslag 0 37.8
ZwartbergNEast 0 12.7
ZwartbergNWest 0 17.0
ZwartbergSouth 0 33.3

Table 3. Design choices for the nominal power of the central heat generation systems. The power is
expressed in MW. The abbreviations “geo” and “hp” stand for geothermal heating plant and air source
heat pump, respectively.

Node Component Min Max

ThorPark geo 0 40.0
Winterslag hp 0 80.0

ZwartbergNWest hp 0 80.0

8



Energies 2019, 12, 2766

In addition, the pipe diameters are also design decision variables. For the available diameters,
the reader is referred to Tables A2 and A3. The smaller diameter pipes are implemented as twin
pipes (up to DN 200), the larger pipe diameters as compound pipes. The investment costs for these
pipes are discussed in Appendix B.3. The available diameters were derived from IsoPlus [33]. It is
also an option to install no pipe at all at a specific network edge; this choice is represented by a 0 m
diameter pipe.

All scenarios share the same network layout, as shown in Figure 1. Whereas the choice for the
size of the heat pumps and the geothermal heating plant is handled by the optimisation algorithm,
the availability of excess heat is fixed at 10 MW, constantly available throughout the year. Whether
this resource is utilised or not is a question of the decision of the district heating connection between
the node GenkZuid and the rest of the network, that is, is it worth the investment to make a connection
to the industrial area from the city or not.

2.3.3. Scenarios

While most of the boundary conditions are fixed for the design algorithm, two of them are varied
discretely and deterministically to establish their influence on the results, leading to a number of
scenarios. The first boundary condition is the nominal temperature level in the network. Four options
are available:

• 45–25 ◦C,
• 55–35 ◦C (base scenario),
• 65–45 ◦C and
• 75–35 ◦C.

Hence, most scenarios use a 20 K nominal ΔT with rather low supply temperatures, whereas the
last scenario uses medium-high temperatures with a 40 K nominal ΔT.

The second scenario parameter is the cost of heat from the industrial excess heat source in the
most southern node of the network. The heat prices considered are:

• 5 EUR/MWh,
• 10 EUR/MWh,
• 15 EUR/MWh (base scenario) and
• 20 EUR/MWh.

These excess heat costs are substantially higher than the ones discussed by Doračić et al. [34],
but they are chosen to be in line with the expected cost for an industrial company that needs to invest
in a connection of its processes to a district heating system.

The different combinations of the two scenario parameters lead to a total of 16 optimisation
runs to be performed. However, the focus will be on how the scenarios deviate from the reference
scenario—55/35 ◦C with 15 EUR/MWh excess heat cost—leading to a total of 7 scenarios to be
studied in detail.

3. Results

The emphasis of this paper is on the methodological contribution, namely the integrated design
and control optimisation algorithm. The results presented in this section should mostly be interpreted
as a proof of concept, rather than in absolute numbers.

3.1. Reference Case Results

As mentioned before, the case with a 55/35 ◦C temperature regime and an excess heat cost of
15 EUR/MWh is chosen as the reference case. This section shows a selection of visualisations of
the optimal design results in order to make more sense out of the large amounts of output data.
Firstly, we focus on the higher level, using only design parameters and yearly aggregated outcomes,
but in a later stage we will also zoom in on the results on smaller time scales.
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Genetic Algorithm Outcome

The solutions resulting from the genetic design algorithm, ranked by the objectives of LCOH
and PEIS are shown in Figure 3. On the one hand, this figure shows the spread of all considered
designs that turned out to be feasible in terms of their LCOH and PEIS values. The blue dots show
the Pareto-optimal solutions, that is, the solutions that dominate the solution space. The three black
markers respectively show the solutions with the lowest PEIS, the one with an approximately average
PEIS measured over all non-dominated solutions and the one with the maximal PEIS. These three
specific solutions will be treated in more detail in the next subsection. Note that the minimal and
maximal PEIS solutions also represent the respective maximal and minimal LCOH solutions.

Figure 3. Scatter plot of all genetic design algorithm solutions for the reference design case.

Zooming in on the Pareto-optimal solutions only, we can plot the contributions of operational
costs, investment and maintenance costs to the LCOH. This cost breakdown is presented in Figure 4,
where we see that the contribution of the annualised investment takes up the largest share of the total
annual costs of the system. As expected, as a larger amount of energy is imported from outside the
network, the operational costs (representing in this case the cost of electricity use) increase linearly.
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Figure 4. Different contributions to the total annual LCOH for the reference case, namely that of annual
maintenance, operational cost and annualised investment cost. The annualised investment has the
largest contribution.

The contribution of the different technologies is shown in Figure 5, showing indeed that the
higher investment for the lower PEIS solutions is largely caused by a larger installed amount of TES
and STC systems. The bar chart furthermore shows that the investment in auxiliary heating plants
(i.e., the heat pumps and the geothermal plant) combined remains more or less constant. This does
not mean that the installed auxiliary power remains constant as well, given the different prices per
unit of thermal power for the two technologies. Finally, Figure 5 shows that the investment in the
transport pipes remains more or less constant, too. On closer inspection (not shown here), we find that
the lower PEIS solutions have marginally larger investments in the network, corresponding to wider
pipes on average.

Figure 5. Bar chart showing the contribution of different technologies to the levelised annualised
investment costs. The cost of the auxiliary domestic hot water (DHW) boilers has been omitted since it
is the same for all solutions shown.
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Figure 6 shows the distribution of the chosen sizes for the STC and TES systems in the network,
split by network node and energy range. The energy range is a categorisation of the Pareto-optimal
solutions based on their PEIS. The range of PEIS values for all Pareto-optimal solutions is split in
three equal parts, denoting high, mid and low energy import. The plot shows three violin plots per
neighbourhood and parameter, indicating the approximate distribution, as if the design parameters
were distributed following some probability function. The plot gets wider where there is a denser
distribution of observations for that parameter. The actual parameter values are indicated by the black
dots inside the violin plots, which shows that the distribution is in fact very sparse, with a few dense
spots here and there.

Figure 6. Distribution of solar and storage systems per network node. The Pareto-optimal solutions
are split into high, mid and low energy import solutions. The left graph shows the maximum STC area
per neighbourhood as the grey diamond.

The solutions with lower PEIS are expected to have a larger share of solar energy, which is only
possible if enough STC area is installed, as well as TES volume. For example, Boxbergheide, ThorPark,
WaterscheiGarden and ZwartbergNEast show this evolution of decreasing STC area with increasing
imported energy. For the other neighbourhoods, the spread stays largely the same, although in most
cases the average shifts to lower values. Only for OudWinterslag, no such shift can be distinguished.
Another interesting observation is that more often than not, almost the maximum available area is
exploited for the installation of STC systems.

Looking at the TES volumes, such a trend is not so easy to find. In the case of OudWinterslag,
TermienWest, WaterscheiGarden, Winterslag and ZwartbergSouth, we can see that at least the low energy
range has the largest storage volumes. However, if we compare this graph with the map (Figure 1),
one interesting trend is that larger storage tanks tend to be installed as close as possible to locations
where auxiliary heating plants (i.e., heat pumps and geothermal) are available. This is more obvious
for the neighbourhoods of ZwartbergNWest and Winterslag-Boxbergheide. ZwartbergNEast seems to act as
the storage hub for ThorPark, given the smaller distance between these nodes than the distance between
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Waterschei Garden and ThorPark. The reason for the predominantly large volume at ZwartbergNEast can
be explained by the limited storage potential at the ThorPark node.

When the distribution of the nominal power of the production systems is plotted per
neighbourhood, we find that the variety in the solutions is rather low. Figure 7 shows that the
size of the heat pump in ZwartbergNWest is positively correlated with the energy import range and the
opposite is true for the geothermal heating plant. The heat pump at Winterslag has an almost constant
nominal power.

Figure 7. Spread of the nominal power of the chosen production systems, again subdivided according
to the range of the energy import from outside the network. The heat pump at Winterslag is nearly
always the same size, at ZwartbergNWest the size increases with the range of energy import and the
geothermal heating plant decreases with increasing energy range.

A final plot of interest is the spread of the sum of all storage volumes compared to the total STC
area in the network. This graph is shown in Figure 8, and a sigmoid distribution appears clearly.
For lower STC areas, the storage volume appears to increase linearly with the STC area, until around
150 × 103 m2, where the storage volume starts increasing very rapidly. As soon as the maximum
storage volume is reached, the STC area can still increase, but mostly at a higher cost without much
reduction in terms of import share.

Figure 8. Distribution of total STC area compared to the total storage volume. The scatter points are
coloured according to the LCOH, with darker values representing a lower LCOH than the lighter
values. The larger the dot, the larger the import share (and thus the larger the grid dependence of the
network). Note that the axes are limited by the minimum and maximum allowed design sizes.
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3.2. Detailed Study of Highlighted Reference Solutions

In Figure 3, three particular solutions are indicated with a black marker. Two solutions respectively
at the upper and lower end of the Pareto front were chosen, and one solution that is closest to the
average PEIS of all Pareto-optimal solutions. For these designs, we investigate the heat sources in the
network and the energy storage levels in more detail.

3.2.1. Maximum LCOH, Minimum PEIS

The first highlighted solution is the one with the lowest primary energy import from outside the
network, but the highest LCOH. In the graph of the heat flow rates (the upper subplot in Figure 9),
the black line indicates the part of the heat demand of the neighbourhoods which is supplied by the
district heating network. We see that the excess heat production is used as a base load throughout most
of the year, except for the Summer period, where most of the heat demand is met by a combination of
solar thermal power and discharging of the TES systems.

Figure 9. Full year time series for minimum PEIS design.

The geothermal plant is runner-up after the excess heat injection. Its operation is fixed by the
installed nominal heating power and the fixed operation schedule throughout the year. Additional
gaps are filled mostly by the heat pumps and by discharging the storage systems. The STC panels
inject heat whenever they can, and surpluses are stored for later use. This is visible from the part below
the zero power level, which indicates the charging behaviour of all tanks combined.

When the net power graph is studied in a shorter time range (see Figure 9), we can clearly see
that power exceeding the neighbourhood heat demand is stored in the TES systems.

Around 40 GWh of TES is installed, and a clear seasonal charging pattern is obvious from the
lower subplot in Figure 9. At the start of March, the storage tanks are completely empty, and during
Spring and Summer they are gradually charged with energy until the maximum storage level is
reached in November. Then, the storage is quickly depleted until the cycle repeats. A result of the
genetic algorithms optimisation is that the full storage volume is used. Solutions where the charged
energy profile does not use the full available range are dominated by more efficient designs.

An interesting result is that most storage tanks are used with a more or less similar charging
pattern, witnessed by the evenly spread contributions of different systems. Only the smaller ThorPark
TTES system is overshadowed by the other systems.
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Figure 10 zooms in on a winter, spring and summer week to show a more detailed image of the
heating power flows in the system. In the winter week, we see that the geothermal plant is working
continuously, largely assisted by the heat pumps at their full power.

Figure 10. Detailed heating power plot of the minimum PEIS design for a winter, spring and
summer week.

The remaining heat demand is met by discharging the TES systems. During the spring week,
we see the intermittent behaviour of the geothermal plant (which is fixed by the off- and on-periods
as determined by the user), but also the high power coming from the STC systems. Note that the
TES tanks are mostly charging and only limited TES discharge is needed to fill some gaps in the heat
demand. The heat pump is only on for higher demand levels. Note that the maximum amount of
excess heat is being injected during both weeks (winter and spring). Finally, the summer week shows
a very low heat demand, and while all “auxiliary” conversion systems are off, the demand is met
by discharging the storage and power from the STC systems. Note how the surplus of solar heat is
charged to the TES systems.

3.2.2. Intermediate LCOH and PEIS

The intermediate solution (see Figure 11) shows a rather different picture: whereas the previous
solution was characterised by heat flow rate peaks over 200 MW, here the peak powers are more
limited. The positive peaks do not exceed the maximum heat demand, which seems to suggest that
the network has been designed to accommodate the maximum heat demand and not more. A slightly
smaller geothermal system seems to be suggested by the power graph, but this is compensated by
larger heat pumps. The lower positive peaks show that a smaller STC area has been installed.
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Figure 11. Full year time series for intermediate PEIS design.

The size of the TES systems is also considerably smaller, peaking at energy levels of 15 GWh.
The seasonal behaviour is still apparent, but the charging behaviour is more gradual than that of the
minimum PEIS solution. In addition, the faster charging and discharging cycles on top of the seasonal
behaviour suggest that in this system, weekly and diurnal storage cycles have a more important role to
play, contributing to the lower operational cost of this system. Finally, only four large storage systems
are installed here, with the other TES systems playing only a marginal role. Further study will have
to prove whether these TES systems will be completely removed if we leave the genetic algorithm to
search even more generations with larger populations, or they are actually needed and worth investing
in. Whereas the previous solution was characterised by similar charging patterns, the large storage
tanks’ storage behaviour is clearly shifted in time. To illustrate this, Boxbergheide and TermienEast only
start charging in June, whereas ZwartbergNEast already starts filling up in March and remains at a
more or less constant level from May until end of December.

Figure 12 again shows a more detailed picture of the heat flows. The behaviour looks largely the
same as in Figure 10, the difference being in the scale of the graphs, which shows that the maximum
power peaks are considerably lower than those in the minimum PEIS design. This is a result of the
smaller STC systems installed here.

Figure 12. Detailed heating power plot of the intermediate PEIS design for a winter, spring and
summer week.
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3.2.3. Minimum LCOH, Maximum PEIS

The final highlighted design is that with a minimal LCOH (see Figure 13), but with the largest
demand for primary energy from outside the network. Again, there are clear differences with regard
to the previously discussed solutions: in this case, the excess heat injection is almost continuously
at the maximum power level, whereas it was pushed out by solar power in the previous solutions.
In this case, the installed STC area is very limited, which is witnessed by the absence of large positive
power peaks.

Figure 13. Full year time series for maximum PEIS design.

However, the TES volume is hardly smaller than that of the intermediate solution. It appears
that a combination of the almost constant excess heat supply with the limited solar power injection
makes it economically interesting to still have a decent amount of storage available in the network.
In comparison to the intermediate solution, the average SoC is lower, which means smaller heat losses
from the storage systems. Again, even though there is a clear seasonal charging pattern, there is an
emphasis on shorter charging cycles to minimise operational costs.

Figure 14 shows the behaviour of the maximum PEIS system on a smaller time scale. Note the
substantially lower solar thermal peaks compared to Figures 10 and 12. Another evident difference is
the continuous injection of excess heat into the system, even during summer. Finally, we see that the
heat pump is used more often during the spring week and even during the summer week.
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Figure 14. Detailed heating power plot of the maximum PEIS design for a winter, spring and
summer week.

3.2.4. Comparison of Aggregated Results

To conclude this section on the three highlighted design solutions, Figure 15 summarises the heat
delivery by the different heat sources in the network and compares these number to the total demand
and storage losses. The difference between those two columns (sources vs. demand and losses) only
differ by the amount of heat lost in the network. This figure makes clear that these network heat losses
only make up a very limited fraction of the total heat balance. Although this result seems alarming at
first, it can be explained by the fact that only the transmission network is modelled and the distribution
network is omitted. Typically, these transmission pipes are much more efficient because of their wider
diameter and the relatively low loss surface compared to the high mass flow rates that flow through
these pipes. In addition, further analysis of the charging and discharging behaviour in these three
highlighted solutions shows that an annual round-trip efficiency between 83% and 90% is achieved
with the current storage model.

Figure 15. Summary of heat delivery for the three highlighted solutions.

3.3. Influence of Network Temperatures

This section compares the results of different temperature scenarios to the reference scenario with
a 55/35 ◦C temperature regime. Figure 16 shows the differences between the resulting Pareto-optimal
solutions with respect to the LCOH and PEIS objective functions.
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Figure 16. Comparison of the Pareto-optimal solutions for the different temperature scenarios.
The excess heat cost is fixed at 15 EUR/MWh.

There is an obvious shift on the PEIS-axis, correlated with the average network temperature.
This shift can most probably be mainly attributed to an increase in the COP (Coefficient of Performance)
of the heat pumps and the geothermal plant with lower average network temperatures. The heat losses
will also diminish with lower average temperatures, but given the limited influence of these losses,
even more so with regard to the primary energy import into the network, it is expected that their role
in the PEIS shift is of minor importance.

The 75/35 ◦C case is the only scenario with a 40 ◦C temperature difference, and this translates
into a lower average LCOH. This is a result of the smaller pipes required for the same heating power
transport compared to a system with a lower temperature difference, and by a more efficient utilisation
of the same TES volume or STC area. The 20 ◦C ΔT scenarios are characterised by very similar LCOH
ranges, but greatly differ in PEIS, where the reduced heat loss from the network and the increased
COP of heat pump-based conversion systems are thought to be the main reason for these differences.

Considering the gas price in Belgium is currently between 0.036 and 0.039 EUR/kWh depending
on the type of customer (Belgian Commission for Electricity and Gas Regulation CREG [35])—including
the commodity price and the network cost, excluding taxes and levies, and disregarding the costs for a
gas boiler or the loss of efficiency of a realistic heating system—we see that the current business as
usual situation is already close to the LCOHs encountered in the future DES design. Compared to
those numbers alone, already many of the proposed DES designs are actually cheaper than individual
gas-based heating. At least, the system costs are clearly in the same order of magnitude. To make
an honest comparison, the cost of the distribution networks (not considered in this study), but also
the investment and maintenance of gas boilers would have to be included in the analysis. Hence,
these results need to be interpreted carefully.

Figure 17 shows the Pareto fronts in terms of CO2 intensity and LCOH for the different
temperature scenarios. The carbon intensities for the network vary between 0.02 and 0.045 kg/kWh.
For comparison, the specific CO2 emissions for combustion of natural gas is 0.2 kg/kWh [36]. Even
without accounting for the efficiency of a natural gas boiler, it can be seen that the CO2 emissions of
the studied designs are considerably lower. Clearly, Figure 17 is almost identical to Figure 16, except
for the different x-axis. We refer to Appendix A.2.5 for a description of the time variation of the CO2

intensity of the electricity consumption. Another important cost to include would be the current
carbon tax. Moreover, this type of analysis could be used to determine which carbon tax levels would
be needed to push the market towards more renewable technologies.
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Figure 17. CO2 intensity versus LCOH Pareto fronts for different temperature scenarios.

Figure 18 shows the relationships between the installed TES and STC sizes and their influence
on LCOH and PEIS. In this figure, we see a more or less linear correlation for all temperature levels
except the reference scenario. The 75/35 ◦C scenario has a slightly smaller TES volume distribution,
but the spread on the STC area is more or less the same.

Figure 18. Correlation plot between total TES volume and STC area for GenkNet for different network
temperatures. All plots have a fixed excess heat cost of 15 EUR/MWh.

3.4. Influence of Cost of Excess Heat

The differences in the Pareto fronts of scenarios with different excess heat cost—but with fixed
network temperatures of 55/35 ◦C—are shown in Figure 19. The differences between the fronts are
very subtle, and on the first sight they seem to be mostly coinciding. On closer inspection, the front
with 20 EUR/MWh for excess heat is usually on top, indicating a slightly higher LCOH for the same
PEIS, although in the higher LCOH range this is not always the case. In addition, the Pareto front of
this highest excess heat cost stretches out further to the lower right than the other fronts. This means
that lower cost solutions can be reached by importing more energy when the excess heat cost is higher,
however the differences are very small.
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Figure 19. Comparison of the Pareto-optimal solutions for the different excess heat cost scenarios.
The network temperatures are fixed at 55/35 ◦C.

These results suggest that the excess heat cost is of minor importance to the solution, at least for
the cost range studied here. Indeed, the cost of excess heat is small compared to the total levelised
costs encountered in the solution space. We expect to see larger differences when the excess heat cost
approaches or exceeds the current system LCOHs. Moreover, the importance of the investment to
connect the industrial excess heat sources is not to be forgotten. Because the availability of excess heat
requires a district heating connection with a substantial investment cost, we expect that the point at
which excess heat is no longer included in the optimal design will be already encountered at a lower
excess heat price than the current system LCOH levels. Currently this tipping point at which excess
heat is no longer chosen as a source of heat has not been encountered yet.

The main investment cost consideration influenced by the price of excess heat is the investment
in the connection between the backbone and the node GenkZuid at which the excess heat is available.
Therefore, we study the chosen diameter of this connection. Figure 20 shows the diameter for different
energy ranges and excess heat costs, and it is clear that for the highest excess heat cost, the installed
diameters are substantially smaller. Furthermore we see that the low energy import solutions always
have a wider connection with the excess heat node than the ones with a higher energy range. Strangely,
again we see an increasing trend in the diameters of the excess heat connection for the three lowest
excess heat prices, which appears to be contradictory to the intuition that one would invest less to get
access to a more expensive commodity, however also operational costs play.
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Figure 20. Influence of the excess heat cost on the diameter of the connection between the excess heat
injection node and the rest of the network.

In summary, the cost of excess heat does not have a very clear influence on the design choices,
except for the diameter of the excess heat node connection.

3.5. Calculation Times

For the seven calculated scenarios, the average calculation time for an entire genetic algorithm run
(with 100 generations of 60 individuals) took 17.7 h. The algorithm was run on a Dell Precision 7920
Tower workstation with two Intel Xeon Silver 4116 processors (2.1 GHz–3.0 GHz Turbo, 12 cores) and
64 GB 2666 MHz DDR4 RAM. Hence, the average operational optimisation (a single evaluation) took
127.4 s, incorporating the fact that 12 processes were run simultaneously. Because the solver usually
identifies an infeasible design much quicker, the average modesto calculation time for a feasible design
is expected to be higher. However, a large spread on the calculation times was observed, where the
problem was typically harder to solve as the system design got closer to its feasibility boundaries—that
is, when the components were less oversized.

The fastest genetic algorithm run was performed in 12.0 h, the slowest in 24.9 h.

4. Discussion

The results have mostly shown that the genetic algorithm is able to select optimised designs using
modesto as the evaluation core to calculate the objective function values and using representative days
to reduce the calculation time. However, finding generalisable conclusions or rules of thumb based on
these results is difficult. Even if we could find general rules based on the presented results, more data
for different kinds of networks and additional scenarios would be needed in order to really generalise.
Moreover, because of the heuristic nature of a genetic algorithm, we cannot prove the optimality of the
results. Nonetheless, the convergence of the Pareto-optimal solutions is an indication that at least a
local, and in the best case a global optimum is approached.

In addition, further study would be needed to increase the level of detail of the optimisation
problem; for example, currently we don’t account for the efficiency of substations that deliver the heat
from the network to the end-users. Also the distribution networks in the separate neighbourhoods are
not modelled at this moment; this means the investment is considerably underestimated, and also the
heat demand might increase due to extra heat losses.

The omission of the building thermal flexibility from the model is expected to have a smaller
influence, given the presence of seasonality in all storage SoC profiles, even for the solution with the
highest share of primary energy import. Still, it would be interesting to see if the possibility of using
the already available sources of energy flexibility (see Vandermeulen et al. [37,38] for a comprehensive
discussion of this topic) in thermal networks would influence the design choices made.

One of the objectives of this thesis was to optimise the location of TES systems in a network.
From the highlighted solutions and the distribution of the storage sizes, a possible conclusion would be
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that TES systems are preferably installed as close as possible to the heat sources in the network—that
is, the heat pumps and geothermal plant. Of course, this result is biased since the STC systems also
inject heat. But in general, the conclusion that heat should be stored as close as possible to where it
will be generated is intuitive as it minimises transport losses.

The simultaneous optimisation of the network pipe diameters adds an interesting dimension to
the results. Whereas smaller diameters are mentioned as one of the advantages of future, smart thermal
networks (see Lund et al. [3]), the design results with maximal renewable and residual energy shares
show that the pipe diameters actually become larger to enable large peak flow due to the redistribution
of stored energy in the network and due to the high power injection by the solar thermal collectors.

A final remark must be made about the convergence of the genetic algorithm. The comparison of
the solutions with different excess heat cost showed some counter-intuitive results, which could be
explained by a possible incomplete convergence of the genetic algorithm. Upon closer investigation
of the evolution of the hypervolume indicator (not included in the results of this paper), we see that
the increase of the indicator flattens, indicating (near) convergence of the algorithm. Still, sometimes
a sudden jump in the indicator—usually because of an accompanying jump in the Pareto front—is
observed. Hence, it is possible that the most optimal Pareto front has not been reached yet. To be sure
of the convergence, the genetic algorithm should be run with an even higher number of generations.
On the other hand, the trade-off must be made between the optimality of the outcome, compared to
the additional computation time needed to reach it. A similar trade-off is seen in the solution of MILPs,
where an optimality gap is allowed to greatly reduce the solution time, at the expense of a slightly
weaker certainty about the optimality of the solution.

5. Conclusions and Further Recommendations

This paper describes and illustrates an integrated design and control optimisation algorithm.
For the evaluation of a single design, a Python toolbox named modesto, which implements a full
year linear optimal control problem is used, in conjunction with an optimised representative days
method to reduce the temporal complexity of the evaluations. By comparing designs using an optimal
control problem, they can be compared objectively with regard to their maximum potential, and the
comparison becomes independent of the efficiency of chosen control strategies. This optimal control
problem is used as the evaluation core of a genetic algorithm, in which the design parameters are
varied. As such, a two-layer design optimisation algorithm is constructed, where the lower layer
optimises the operational aspect of the proposed networks, whereas the upper layer varies the design
parameters in order to find the optimum with respect to a number of predefined objective functions.

This optimisation algorithm is applied to a fictive district heating network for the city of Genk in
Belgium, and the influence of the network temperatures and the excess heat cost is investigated using
a number of scenarios. It is shown that the design algorithm is able to efficiently find optimal solutions
with respect to multiple simultaneous objectives, and that the proposed systems are competitive with
individual natural gas-based heating systems in terms of levelised cost of heating, and even outperform
this gas-based non-collective reference in terms of CO2 emissions. However, we were unable to derive
clear rules of thumb as to where the thermal energy storage must be installed. A clear result, though,
is that seasonal energy storage will be crucial for future energy systems, as ample storage volumes are
selected even for the cheapest solutions with the highest primary energy import into the network.

Suggestions for further research would be to add more modelling detail, for example by
modelling the heat losses in the neighbourhood distribution networks explicitly (currently, only the
transport pipes are modelled without considering the additional heat losses and investment in the
neighbourhood distribution grids). Modelling the entire distribution network in detail however
would probably result in very complex optimisation problems. Therefore, further study of how
a homogeneous distribution network with distributed injection of renewable heat (STC panels on
the rooftops of every building) could be aggregated, is required. Secondly, the modesto framework
allows for easy addition of more energy conversion and thermal energy storage models. As such,
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the connection between different energy carriers (i.e., natural gas and electricity) could be strengthened
with the addition of for example cobined heat and power (CHP) systems. This would also add a larger
variation on the CO2 objective, which is currently very strongly linked to the primary energy import
into the network. As a last improvement to the optimisation toolbox, also the network temperatures
could be varied, but in a deterministic way. The supply temperature could be varied as a function of
the ambient temperature (heating curve), and as a pre-processing step this would maintain the linearity
of the optimisation problem. However, this would require a modification of the energy storage models,
which currently rely on fixed high and low temperature levels.
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Nomenclature

ΔT Nominal network temperature difference [K]
Ẇ Mechanical power [W]
dq̇ Heat loss rate per unit length [W/m]
ṁ Mass flow rate [kg/s]
Q̇ Heat flow rate [W]
τ Economic lifetime
γ Allowed variation on the nominal network temperature difference
A Solar thermal collector area
cmaint, a Annual maintenance cost
cop, a Annual operation cost
ca Total annualised cost
cp Specific heat of water [J/(kg K)]
i Interest rate
Itot Total investment cost
Ia Annualised investment cost
L Pipe length [m]
Rs Symmetrical thermal pipe resistance [Km/W]
Ta Ambient temperature [K]
Tm Average solar thermal collector panel temperature
Tr Network return temperature [K]
Tv Network supply temperature [K]
COP Coefficient of Performance
DES District Energy System
DHW Domestic Hot Water
GHG Greenhouse Gas Emissions
LCOH Levelised Cost of Heating
MILP Mixed Integer Linear Program
OCP Optimal Control Problem
PEF Primary Energy Factor
PEIS Primary Energy Import Share
PSO Particle Swarm Optimisation
PTES Pit Thermal Energy Storage
R2ES Renewable and Residual Energy Sources
STC Solar Thermal Collector
TES Thermal Energy Storage
TTES Tank Thermal Energy Storage
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Appendix A. Operational Optimisation Models

This section provides a summary of model equations used. Because of the modular structure and
the complex problems considered, giving a comprehensive overview of all optimisation variables and
constraints is not possible.

Appendix A.1. Network Models

The heat losses from the district heating network are calculated (see van der Heijde et al. [39])
based on a nominal supply and return temperature. These nominal temperatures are also used by all
other components in the DES, such as TES and conversion systems. To maintain the model’s linearity
on the one hand, and to avoid infinite temperature differences at low mass flow rates (in the case of
nearly mass flow-independent heat losses) on the other, the heat losses from the pipes are made a
linear function of the mass flow rate. The nominal heat loss level is reached around the mass flow rate
that corresponds to a pressure gradient of 80–100 Pa/m.

Pumping losses in the network are modelled with a set of linear inequality constraints. These linear
segments interpolate between equidistant points on the actual pumping power curve (third-degree
function of mass flow rate). Because of the inequality constraints, only branched networks can be
currently modelled, and the pumping energy must be represented in the operational objective function,
such that high deviations from the inequality constraints are penalised. In this case, the (nonnegative)
cost for the electricity to drive the pumps is a part of the operational cost.

As such, the following model equations can be written for a pipe model:

Q̇in = Ldq̇ + Q̇out (A1)

ṁcpΔT ≤ Q̇in ≤ ṁcp(1 + γ)ΔT (A2)

ṁcpΔT ≤ Q̇out ≤ ṁcp(1 + γ)ΔT, (A3)

where γ denotes the allowed variation on the temperature difference in the network to allow heat
losses without violating the energy balance. We limit γ to 5%, but the user can specify this parameter
as needed. Q̇in and Q̇out are the respective heat flow rates at the inlet side and outlet side of the pipe
system. ΔT is the design temperature difference between the supply and return side, neglecting any
temperature differences between the in- and outlet side. L is the length of the modelled segment. Note
that Q̇ is defined positive when heat is transported from the inlet to the outlet of the pipe, and vice
versa. Heat losses dq̇ are positive when heat is lost from the pipe to the surrounding.

The linearised heat loss model is implemented as:

dq̇(ṁ) = dq̇nom
|ṁ|

0.7233ṁmax
, (A4)

where
dq̇nom =

Tv + Tr − 2Ta

Rs
. (A5)

The value of Rs is listed in Tables A2 and A3. 0.7233 is a factor that influences the slope of the heat
loss curve, such that the nominal heat losses occur in the region around a pressure drop of 100 Pa/m.

Appendix A.2. Thermal Energy Conversion Components

The energy conversion units models are based on the Energy Hub concept (see Geidl et al. [40,41]
or Evins et al. [42]). The conversion of one energy form to another is modelled using a predetermined
efficiency factor. While the nominal network supply and return temperature to calculate transport heat
losses are fixed, a variation on the temperature difference between supply and return γ is allowed to be
able to account for heat losses in the network. This implies that also at the production side, the relation
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between the design temperature difference, mass flow and heat flow rates cannot be imposed strictly,
to avoid non-linear equations.

Hence, the following inequality constraints on the mass flow rate and the temperature difference
form a general representation of an energy conversion system in the thermal network:

ṁcpΔT ≤ Q̇ ≤ ṁcp(1 + γ)ΔT, (A6)

where ṁ is the mass flow rate injected into the district heating system’s supply and extracted from the
return side by the heat generating system and Q̇ is the thermal power injected into the network by the
conversion system. This mass flow rate is heated by at least ΔT, and at most (1 + γ) · ΔT. These two
inequalities make sure that the conversion unit is not able to inject heat into the network at zero mass
flow rate, which would imply an infinite temperature difference. In addition, the maximum heat
injection is limited to the nominal power of the conversion system, which is a design parameter:

Q̇ ≤ Q̇max (A7)

This means that even if a larger temperature difference than the nominal ΔT is used, the thermal
output of the unit cannot be higher than its nominal power. There is no explicit bound on the mass
flow rate, other than that following out of Equation (A6) and out of the mass flow rate limits of the
pipes connected to the network node in which the conversion system is embedded. All conversion
systems are assumed to be able to modulate their output 100%, unless stated differently.

Appendix A.2.1. Heat Pumps

The heat pumps considered in this study are large air source heat pumps. Its COP (Coefficient of
Performance) is pre-calculated based on the variation of the ambient temperature, and based on the
network temperatures:

COP =
Q̇
Ẇ

= ηC
Tv

Tv − Ta
, (A8)

assuming a non-ideal Carnot cycle with a relative efficiency ηC = 0.6 (compared to the ideal Carnot
cycle). In this equation, Ẇ is the mechanical power supplied to the heat pump in the form of electricity,
and Tv and Ta are the respective supply and ambient temperature. The Carnot efficiency, although
seemingly optimistic, was chosen in line with data from the Danish Energy Agency [43] for large
heat pumps.

Appendix A.2.2. Solar Thermal Collectors

The STC model assumes a steady-state heat delivery as a function of the mass flow rate and the
solar irradiance only, and was derived from norm EN 12975-2 [44]:

Q̇out(t) = A ·
(

η0Q̇sol(t)− a1 (Tm − Ta(t))− a2 (Tm − Ta(t))
2
)

(A9)

In this equation, Q̇out and Q̇sol represent the heat output and the solar irradiance on the unit
surface respectively. The collector surface area is represented by A. η0 is the base efficiency and a1

and a2 are temperature dependence parameters. Manufacturers of STC panels measure these values
according to the norm mentioned before. This paper assumes Arcon Sunmark HT-SolarBoost 35/10
flat-plate collectors with an η0 base efficiency of 0.839, an a1 value of 2.46 W/(m2 K) and an a2 factor
of 0.0197 W/(m2 K2) [45]. Ta is the ambient temperature, whereas Tm represents the mean panel
temperature. We assume Tm to be the average of the supply and return temperature of the network,
which would correspond with a linear temperature increase along the collector pipe. When the heat
output would become negative according to Equation (A9), it is set to be exactly 0 W.
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Solar panels are assumed to be oriented South at a 40◦ tilt angle. The solar panels studied in the
design optimisation are either installed in an empty field in rows (no shading effects accounted for),
or mounted on the south-oriented parts of the roof of the buildings in the selected neighbourhoods.
The incident solar radiation on a tilted unit area was simulated in Dymola [46] using typical
meteorological year data for Brussels. The effect of the incidence angle of solar radiation on the
panel on the transmission and reflection of the solar irradiance is neglected for simplicity.

Appendix A.2.3. Geothermal Heating Plant

The Danish Energy Agency [43] considers a geothermal plant for district heating in combination
with an electric heat pump that assists in extracting as much heat as possible from the ground.
The water is pumped up from the ground extraction well and passes through a heat exchanger to
preheat the water from the return side of the district heating system. The water in the geothermal
loop is then cooled by the heat pump evaporator before it is pumped back into the injection well.
The heat pump condenser in its turn injects heat into the district heating loop until to the desired
supply temperature is reached.

A geothermal well is designed to be operated continuously and therefore it can hardly change the
output power. We predetermine the period during which the geothermal plant is (in)active, usually in
the summer months, in this case the plant is shut down from the end of May until the end of September
(day 150 and 270 of the year).

The coefficient of performance of the system is determined based on the temperatures of the
geothermal well doublet, combined with the design temperatures of the network and a pinch
temperature difference of 5 K in the heat exchanger. This leads to a non-linear system of equations,
which is solved as a pre-processing step and the resulting COP is used in modesto. We will not treat the
non-linear system of equations in further detail here, as they can be derived from the system lay-out in
Reference [43].

Appendix A.2.4. Industrial Excess Heat

Industrial excess heat is treated as a simple heat source with a fixed cost per unit of energy. It is
assumed that the industry suppliers cover the entire investment and pumping costs and that these
expenses are reflected in the excess heat price. Furthermore, we assume a constant availability of the
nominal heating power, without the obligation to buy all of it. Down-periods for maintenance of the
industrial processes are not accounted for.

Appendix A.2.5. Electricity Considerations

The electricity used by the heat pump components is assumed to be extracted from the electricity
grid. We are using Belgian electricity grid data, namely the BELPEX day-ahead prices for the year
2014. The primary energy factor (PEF) and CO2 intensity for the Belgian grid have been calculated by
Vandermeulen and Vandeplas [47]. We have calculated the hourly average profile as a representation
and assume the same profile is valid for every day of the year. The time series of these profiles (CO2

intensity, PEF and electricity price) have been summarised in Figure A1. Note that the electricity price
is incorporated in the representative days selection algorithm and hence the hourly average profile
is not used in the optimisation framework. The reason for this choice is that the electricity cost has a
large influence on the operational objective function of the optimisation, here the real yearly variation
has been chosen instead of a daily aggregated version.
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Figure A1. Time series and hourly average of PEF, CO2 intensity and electricity cost.

The fact that these time series are not realistically correlated with the weather data is
disregarded here.

Appendix A.3. Thermal Energy Storage

This paper considers two types of TES, namely tank and pit thermal energy storage (TTES and
PTES). Both are modelled in line with the model used by Vandewalle and D’haeseleer [26], namely a
perfectly stratified model (using the network supply and return temperature as the respective high
and low TES temperatures), including state-dependent heat losses to the surroundings. The state of
charge must be between 0% and 100%, and the (dis)charge heat flow is unconstrained.

Appendix A.3.1. Tank TES Systems

TTES systems have the advantage of better insulation over PTES systems, but due to their
construction they are limited in size. In addition, the heat losses can be reduced even further by
choosing an advantageous tank aspect ratio, minimising the tank surface with respect to the volume.
We assume that the tank is constructed with a 0.5 m thick concrete shell, surrounded by 0.3 m of
insulating material [48]. The concrete has a thermal conductivity of 1.63 W/(m K) and foam glass
gravel is chosen as insulation, with a thermal conductivity of 0.095 W/(m K). Also, we assume that
the wall and insulation thickness are the same for all of the tank walls. For TTES, we simply assume a
cylindrical shape. Hence, the dependence of the heat losses is perfectly linear in the SoC. To minimise
the surface area of the cylinder, we choose the aspect ratio h/D = 1.

Seasonal TTES systems are generally partly buried (or bermed) underground, which leads us to
assume the average of the ambient and ground temperature as the boundary condition for the side
walls of the tank. The bottom only sees the undisturbed ground temperature as a boundary condition,
whereas the top of the tank is exposed to the ambient temperature.
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Appendix A.3.2. Pit TES Systems

A comprehensive description about design of PTES systems can be found in Sørensen et al. [49].
Sorknæs [50] suggests a pit side and bottom wall conductivity of 0.5 W/(m·K) in case of sand, with an
equivalent soil layer thickness of 2 m before the soil reaches the undisturbed ground temperature.
The top insulation has a thickness of 0.24 m with a thermal conductivity of 0.104 W/(m·K). Because of
the width variation at different depths, the relation between the SoC and the heat losses is no longer
perfectly linear. However, it can be assumed to be linear without too large deviations. This is the
result of the trapezoidal cross-section of the pit, where the base is narrower than the top edge. In this
paper, a fixed shape of the storage pit is assumed, where the top width is 9 times the height, and the
inclination of the sides is exactly 1 in 2 (or 26.57◦), such that the bottom width becomes 5 times the
height. Assuming a square top and bottom surface, the maximum considered pit volume of 200,000 m3

has a height of approximately 16 m, whereas the top and bottom width are 144 m and 80 m respectively.
For the boundary temperature at the bottom of the pit, the undisturbed ground temperature Tg is

used. The walls of the pit are assumed to be exposed to the average of the ground temperature and the
outside air temperature, given the rather limited depth, including the part of the pit above the ground.
The top cover is exposed to the ambient temperature only.

Appendix B. Techno-Economic Data

This section summarises data about costs, efficiency and lifetime of the used technologies.

Appendix B.1. Thermal Energy Conversion Systems

Table A1 summarises the used unit prices and investment analysis characteristics for the integrated
optimal design and control algorithm. Note that cost figures per nominal power are always expressed
considering the thermal power output.

Table A1. Characteristics of used conversion technologies.

Name Investment
Fixed Maint. Lifetime Ref.

[% inv./y] [y]

Heat pump 790 EUR/kW 0.60 20 [32,43]
Solar thermal collector 250 EUR/m2 0.13 30 [32,51]

Geothermal heating 1600 EUR/kW 2.50 25 [52]

Appendix B.2. Thermal Energy Storage Systems

The unit cost of large storage systems varies with their size, hence the used cost data is represented
graphically in Figure A2. The data points are derived from Schmidt and Miedaner [53]. The economic
lifetime of TES systems is assumed to be 20 y, the fixed maintenance cost is 0.70 %/y with respect
to the initial investment cost [32]. The economic lifetime and maintenance cost are the same for
PTES and TTES.
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Figure A2. Cost evolution in function of volume for TES tanks and TES pits, using a linear interpolation
between known investment costs for real systems. Data derived from Schmidt and Miedaner [53].
Note that the lower graph is representing the same data as the upper plot, but focussing on the lower
volume range of the TES tank data.

Appendix B.3. Thermal Network Pipes

The available sizes of thermal network pipes and their dimensions are summarised in
Tables A2 and A3. For the explanation of the different radii r and their respective accompanying
diameters d, see Figure A3. The symmetric thermal resistance Rs is calculated using the derivation by
Wallentén [54] and using the conclusions of van der Heijde et al. [39].

2D

Air
Ground

Hrc
ri

dcc

(a) Compound pipes

H

2D

rc

ri

dcc

(b) Twin pipes
Figure A3. Schematic representation of the types of double pipes considered in this study with
clarification of the dimensions used to calculate the thermal resistance of compound and twin pipes.
The grey shaded area indicates insulation material, the red and blue shaded areas represent the water
in the supply and return pipes, respectively.
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Table A2. Dimensions of twin pipes and resulting symmetrical thermal resistance. All distances are
expressed in m, the thermal resistance per unit length R in K m/W. All data has been retrieved from
Isoplus catalogues [33].

DN dc di do dcc s Rs

20 0.125 0.0217 0.0269 0.019 0.0026 12.259
25 0.140 0.0273 0.0337 0.019 0.0032 11.321
32 0.160 0.0360 0.0424 0.019 0.0032 10.208
40 0.160 0.0419 0.0483 0.019 0.0032 8.591
50 0.200 0.0539 0.0603 0.020 0.0032 8.623
65 0.225 0.0697 0.0761 0.020 0.0032 7.195
80 0.250 0.0825 0.0889 0.025 0.0032 6.277

100 0.315 0.1071 0.1143 0.025 0.0036 6.199
125 0.400 0.1325 0.1397 0.030 0.0036 6.629
150 0.450 0.1603 0.1683 0.040 0.0040 5.470
200 0.560 0.2101 0.2191 0.045 0.0045 4.878

do represents the outer diameter of the pipe wall, inside the insulation. dcc is the distance between the walls of the
two pipes, such that D = dcc+do

2 . s is the pipe wall thickness.

Table A3. Dimensions of compound single pipes and resulting symmetrical thermal resistance.
All distances are expressed in m, the thermal resistance per unit length R in K m/W. All data has been
retrieved from Isoplus catalogues [33].

DN dc di do dcc s Rs

250 0.40 0.2630 0.2730 0.4 0.0050 2.773
300 0.45 0.3127 0.3239 0.4 0.0056 2.437
350 0.50 0.3444 0.3556 0.4 0.0056 2.480
400 0.56 0.3938 0.4064 0.5 0.0063 2.340
450 0.63 0.4446 0.4572 0.5 0.0063 2.311
500 0.67 0.4954 0.5080 0.6 0.0063 2.024
600 0.80 0.5958 0.6100 0.7 0.0071 1.964
700 0.90 0.6950 0.7110 0.7 0.0080 1.744
800 1.00 0.7954 0.8130 0.8 0.0088 1.559
900 1.10 0.8940 0.9140 0.8 0.0100 1.426
1000 1.20 0.9940 1.0160 0.9 0.0110 1.306

For compound pipes, dcc is the distance between the outer edge of the insulation jackets of the separate pipes,
or D = dc+dcc

2 .

In the study of Ahlgren et al. [55], a distinction is made between inner and outer city areas.
Netterberg et al. [56] seem to have consulted a similar data source. They found a linear investment
cost regression:

Iinner = 2.18 · dDN + 308.46 [EUR/m] (A10)

Iouter = 1.8596 · dDN + 230.5 [EUR/m] , (A11)

where Iinner and Iouter denote the respective investment cost per unit length for inner and outer city
areas and dDN is the nominal diameter of the pipe in mm.
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Abstract: Energy planning at the neighborhood level is a major development axis for the energy
transition. This scale allows the pooling of production and storage equipment, as well as new
possibilities for demand-side management such as flexibility. To manage this growing complexity,
one needs two tools. The first concerns modeling, allowing exhaustive simulation analyses of
buildings and their energy systems. The second concerns optimization, making it possible to decide
on the sizing or control of energy systems. In this article, we analyze, in the case of an existing
residential neighborhood, the ability to study by modeling and optimization tools two scenarios
of energy flexibility of indoor heating. We propose in particular a method allowing to rely on a
varied set of data available to build the various models necessary for optimization tools or dynamic
simulation. A study was conducted to identify the neighborhood’s flexibility potential in minimizing
CO2 emissions, through shared physical storage, or storage in the building envelope. The results
of this optimization study were then compared to their application to the virtual neighborhood
by simulation.

Keywords: district scale; demand-side management; flexibility; MILP; CO2 emissions; heat pump;
ETL; data management

1. Introduction

1.1. Energy Planning and Flexibility at the District Scale: Solutions and Issues

To fight climate change, many energy transition policies are emerging around the world [1].
With the ambition to achieve a successful transition from fossil fuels to low-carbon production,
the share of renewable energies into the energy mix increases. It is well known that buildings represent
more than a third of global energy consumption, 40% of CO2 emissions, and much more in urban
areas [2]. Besides, the integration of diverse renewable energy sources in cities is a major step to
achieve sustainability objectives [3]. This diversity of solutions increases the complexity of urban
planning, both for design and retrofit, when one has economical and energy efficiency in mind.

To cope with the energy landscape complexity, several works of research led to software
developments towards energy planning. Theses energy planning tools target different time scales
(time step and range) and space scales (local to global). Among them, we can cite for example:

• MODEST: The MODEST Energy System Optimisation Model aims to compute how energy
demand should be covered at the lowest possible cost, using a model of energy networks suitable
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at regional and national scales [4]. MODEST uses linear programming (LP) to minimize capital
and operation costs. The methodology uses a flexible time division to provide simulation results
on both short and long time ranges.

• OSeMOSYS: Open Source Energy Modelling System is a generator of LP systems optimization
models for long-term energy planning, from continent to village scale [5,6] with intra-annual
resolution and 10–100-year time horizon. It relies on model blocks defining fuel inputs, regions,
operative modes and usages, technologies, etc.

• MESSAGE: Model for Energy Supply Strategy Alternatives and their General Environmental
Impact [7]. This LP model takes into account several energy generation technologies as well as
carbon sequestration, with 5–10-year time step and up to 120 years of simulation range. It targets
global and international scales.

• TIMES: The Integrated MARKAL-EFOM System (MARKet ALlocation-Energy Flow Optimization
Model) is a LP/MIP (Mixed Integer Programming) model to evaluate several energy scenarios,
combining a technical engineering approach and an economic approach, over medium- to
long-term time horizons [8,9].

• POLES: Prospective Outlook on Long-term Energy Systems is a partial equilibrium energy and
economic simulation model at the world scale [10,11]. It can model greenhouse gas emissions and
final user demand as well as upstream production. It provides a yearly resolution and simulations
up to 2050, with a Partial Equilibrium methodology.

All these models are great for testing and validating energy policies, energy landscape
modifications at a wide scale, as well as studying medium- or long-term associated ecological and
economic impacts. However, deep integration of intermittent renewable energies in the electrical
network induces variability at the production side which could jeopardize the energy systems
stability [12]. This phenomenon could be avoided by increasing the flexibility of consumption
through demand-side management strategies, i.e., synchronizing the consumption with power
production [13,14]. This area is more and more studied and especially applied to buildings whose
consumption represents more than 55% of global electricity demand [2]. This raises a need for energy
planning tools more suitable at a regional and medium scale (i.e., cities and districts). Many tools exist
for this purpose. The reader can refer to the following reviews for an extensive overview: [15–17].
Among these, one can cite:

• HOMER: A commercial tool to help the design and the planning of micropower systems based
on techno-economic analysis [18]. It provides simulation models with a minute resolution and
several year time range.

• REopt: A commercial platform for energy planning with multiple technologies integration and
techno-economic decision support [19].

• Artelys Crystal Energy Planner: A commercial software for the optimization and operational
management of energy production assets in short- and medium-term [20].

• Ehub Modeling Tool: An open-source software package for preliminary design optimization of
district energy systems based on Matlab [21].

• DER-CAM: A free decision support tool to help find optimal distributed energy resource
investments [22]. Two main fields are investigated: buildings or multi-energy microgrids. It uses
a MIP methodology, hourly and minute time step with up to 20-year time horizon.

• Oemof-Solph: A recent open-source modeling framework providing a toolbox to build energy
systems models [23], with a MILP (Mixed-Integer Linear Programming) methodology and second
to year time resolution.

• Ficus: An open-source software providing LP optimization models for capacity-expansion
planning and unit commitment for local energy systems [24].
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Generally, one can observe that such energy planning tools can be differentiated by the following
criteria (see [25] for an extensive tools review):

• Purpose: The tool can be dedicated to the choice of investments, operation decisions or provide
systems analysis.

• Methodology: All tools present simulation and/or optimization features. Many methodologies
can be used. For optimization, LP (Linear Programming) is the most frequent methodology. MIP
(Mixed Integer Programming) is also quite frequently used to handle discrete variables or Boolean.

• Temporal resolution: Each tool can feature a different time step range, from seconds to years.
• Modeling temporal horizon: As for temporal resolution, the maximum modeling temporal

horizon is not the same for each tool and can go from a year to decades.
• Geographical coverage: According to the tool’s objectives, geographical coverage ranges are

different and can go from regional to global scales.

Besides, two types of strategies are mainly investigated for demand-side management: electrical
appliances that can be shifted [26,27] and thermal loads that can be modulated (with or without
storage system) [28]. The principle of heating load modulation without any storage system consists
of using the internal mass of buildings as energy storage. Thus, a building can be over-heated when
consumption is needed and under-heated when production is lower. To describe this behavior, Panão
et al. introduced the concept of Building as Battery (BaB) and illustrated it on residential buildings
with photovoltaic panels [29]. Although many studies only focus on the BaB, some others address the
challenge of modulating the heating load with Thermal Energy Storage (TES) [30]. The evaluation of
the flexibility is often realized thanks to simulation results [28,31].

Therefore, to tackle thermal flexibility at a district scale, the tool to use must be characterized by
the following:

• Target system analysis for a good insight into technological choices and operation effects.
• Have MILP (Mixed-Integer Linear Programming) models and optimization strategy. Indeed,

linearity is interesting for the scalability of optimization problems (and then convenient for
city-scale studies). Furthermore, many systems present finite states (such as the storage system
we use in this study), thus the optimizer must also support problems with integers.

• Provide dynamic thermal models of buildings and storage systems.
• Feature a time resolution compatible with building simulation models. Ten minutes is common in

most building energy simulation software.
• Provide a regional geographical scale (district and city) with at least a decade of time horizon.
• Open sourcing can also be a relevant criterion since it fosters model and code sharing inside

the community.

From our current knowledge, only Oemof-Solph and the open-source tool OMEGAlpes
(Optimization ModEls Generation As Linear Programming for Energy Systems) we are developing in
our team seem to comply with such requirements.

OMEGAlpes is dedicated to the generation of linear optimization problems for energy systems [32].
It allows quickly building Mixed-Integer Linear Programs (MILP) to design and manage multi-carrier
energy systems. OMEGAlpes models are based on energy flows and energy units allowing to quickly
study numerous cases by setting and gathering elementary models. Big optimization problems
(hundreds of decision variables) can be quickly solved at the district scale due to linear models.

Oemof is more oriented towards interfaces between complementary tools and is currently
less complete than OMEGAlpes on the model side, which led us to pursue our developments on
OMEGAlpes for our studies on thermal flexibility in districts.

A final issue in the process of a flexibility study is the good choice of (building) models and their
parameter values. This aspect is a key point in the field of Urban District Energy Modeling (UBEM)
and is discussed below.
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1.2. Objectives and Paper Structure

In this study, we aim to present a methodology to study the flexibility potential of a district that
can be obtained by the heating modulation. In this study case, heating systems are decoupled from the
domestic hot water because of different temperature levels. Thus, only heating load modulation is
addressed. We show:

• How a MILP modeler such OMEGAlpes can be used to evaluate flexibility scenarios on
a specific case.

• How one can use UBEM generation tools alongside existing data to produce the district MILP
energy model.

The methodology is illustrated for a new residential district heated by a groundwater source.
Located in Grenoble (France), the district is composed of 16 buildings outside-insulated with 11
floors on average. All buildings construction were initiated after 2010 and are designed according
to the French energy policy for buildings (RT2012)—30% energy performance objective (30% more
efficient than the RT2012, corresponding here to 50 kWh·m−2·year−1 primary energy consumption). A
simplified representation of the district is shown in Figure 1 and an overview in Figure 2. More details
on geometric and physical parameters are given further in Section 2.3 Table 1.

Figure 1. Illustration of the district thermal fed by a groundwater source.

Figure 2. Grenoble “Cambridge Eco-district” overview.

The goal of the study case is to quantify the reduction of CO2 emissions that can be obtained
through flexibility on the district heating load. First, we present how one can use existing data to
produce a suitable district model in OMEGAlpes. Then, we describe models used in OMEGAlpes
and how one can use this tool to study two thermal flexibility scenarios. The heating load modulation
thanks to thermal energy storage is addressed and then compared to the Building as a Battery (BaB)
concept. Finally, results obtained by optimization are confronted with simulation results obtained with
simulation models.
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2. Eco-District Modeling Based on Available Data

The first step in our methodology is to build a dynamic thermal model of our district suitable for
MILP optimization. In this section, we explain why proper data management is important for district
model generation and how a data management tool can be used alongside UBEM tools. Then, we
describe the data used and the models generated for OMEGAlpes.

2.1. Data Variability and Heterogeneity

Contemporary cities, and particularly since the development of the concept of “smart cities”,
expose more and more data for various users and applications. The data exposition is fostered by
various actors, with corresponding privacy levels. For example, one can access city-related data
through the following sources:

• Open Data City Portal: Many cities expose today open data to their citizens through dedicated web
platforms. For example, the city of Grenoble, France, delivers data on the portal [33]. The released
data are highly dependent on the city’s policy. One can find there infrastructure data, land registries,
traffic and pollution metrics, monthly global electrical consumption, immigration rates, etc.

• Cartography data, from sources such as OpenStreetMap, satellite imagery, etc.
• Buildings databases, from general indicators [34] (EU buildings database: global aggregated

indicators on buildings stocks, building construction dates, and consumption), to individual
descriptions [35] (PSS—Archi: community-driven inventory of European buildings—addresses,
GPS coordinates, height, usage, etc.), through statistical databases [36] (TABULA database, for
statistical information about materials, usages, construction types, etc.).

• Energy certification/energy rating files: These files are dependent on a country’s legislation, and
generally produced before construction or during real estate transactions. For example, in France,
the Thermal Regulation policy imposes the production of a “RSET” file for each new building
containing structural, thermal and energy data used in a dedicated performance simulation
software. They are most of the time produced by specialized engineering offices and not publicly
available (one needs special inquiries to access them).

• BIM files (Building Information Models): These files are commonly created by engineering offices
during building design. Similar to energy certification files, they are rarely freely available.

• On-site surveys: For specific projects, one can mandate surveys to recover buildings heights,
number of floors, etc.

• Consumption data: Energy providers as customers have access to different aggregated
consumption data according to standard privacy levels. Some data exchanges with energy
providers are possible.

The main difficulties encountered by the engineer in obtaining city-scale data are as follows:

• Data accessibility and variability, due to the diversity of potential providers and inherent
confidentiality policies.

• Data heterogeneity, due to the many various forms such data can hold.

Since data accessibility is more relevant to organizational problems and policies, the scientific
challenge in exploiting these data is more related to their variability and heterogeneity. Indeed,
four main axes of heterogeneity are observed: quantity, granularity, structure and semantics (see
Figure 3). Therefore, to use these data for modeling purposes, one needs to apply appropriate tools
and techniques to handle this heterogeneity.

The problem of data management is commonly encountered in the IT industry. In numerous
application fields (online sales, social networks, advertising, etc.), developers have to handle various
and sometimes unreliable data, encoded in different formats and databases. Generally, data are stored
in different and specific databases (data warehouses) and not exploitable as is. One must then develop
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a middleware layer to extract the data, transform them and load them to client databases and interfaces
to comply with clients’ needs.

Our problem here is quite similar: we want to extract district-related data from various origins
and encoded on various files, pre-treat these data and store them in models able to perform simulation
and/or optimization tasks. Consequently, this approach of Extraction–Transformation–Loading (ETL)
seems well adapted to the problem of district modeling from existing data. The reader can find general
information about ETL techniques in [37].

Hierarchical
Relational, non-relational

Underlying model (structural representations…)

Aggregation
Level of detail

Formatting (.csv, .json, …)
Naming (roof, rooftop…)

data can be 
missing, redundant, 

or unreliable

Figure 3. Data heterogeneity in districts.

2.2. District Buildings Modeling

Detailed dynamic thermal modeling of districts is more encountered in UBEM simulators tools
such as CitySim [38], City Energy Analyst [39], TEASER [40] or CityBES [41], than in energy planning
tools. The reader can refer to [42] for an extensive review. Considering the complexity to model a whole
district, the amount of data potentially required and the nature of available data, some simplifying
strategies are often used:

• Building thermal models simplification. Using low order RC models is a common approach.
• Definition of Archetypes/Prototypes models. Building types are categorized and a standard

default model is defined for each category.
• Usage of BIM (Building Information Models) or dedicated city information models such as

CityGML files.
• Individual parameters are often missing and then generated using statistical databases.

Among UBEM tools, TEASER is particularly adapted to the generation of low order models
with few input data. This Python package developed at the University of Aachen can generate a
simple “archetype” model of a building with a minimum of five parameters and can involve statistical
databases for data enrichment. The generated models are Python objects translated in Modelica using
IBPSA annex 60 or Aixlib libraries [40].

We build here “four walls elements (i.e., interior walls, exterior walls, floor plate, and roof)
SingleFamilyDwelling” archetypes models using TEASER according to the IWU (Institut Wohnen und
Umwelt—Institute for Housing and Environment) topology issued from the EPISCOPE project [36].
“SingleFamilyDwelling” corresponds to the archetype’s data enrichment method. At the moment,
TEASER mostly supports archetypes issued from studies of the German stock. This is not an issue here
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since we only test our methodology, but the implementation of French archetypes should be necessary
for more accurate results. The resulting model is a RC reduced-order thermal model corresponding
to the “AixLib.ThermalZones.ReducedOrder.RC.FourElements” component of the AixLib Modelica
Library [43], as depicted in Figure 4. The corresponding Modelica simulation is further used as
a reference for the virtual district.
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Figure 4. Four elements building model generated by TEASER [43].

A second model is required to perform optimizations. Thus, we developed a simpler linear
building model in OMEGAlpes. Furthermore, too many model parameters can be counterproductive
for an early-stage study. Therefore, we implemented a simplified RC-model of the Swiss SIA2044 norm
in OMEGAlpes meeting our main needs: it can be easily built with few data, all the equations are
linear (described Figure 5), and the Swiss building structure is very similar to the French one.

Figure 5. RC model according to SIA 2044.

This RC-model is composed of a thermal capacity Cm and five thermal resistances:

• H_EA: Heat transfer coefficient between the air node (a) and outdoor (e)
• H_EC: Heat transfer coefficient between the central node (c) and outdoor (e)
• H_EM: Heat transfer coefficient between the building mass node (m) and outdoor (e)
• H_AC: Heat transfer coefficient between the air node (a) and the central node (c)
• H_MC: Heat transfer coefficient between the building mass node (m) and the central node (c)
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Parameters in TEASER models are translated to the OMEGAlpes model such that global thermal
transfer coefficient (U) values and thermal capacitance are preserved.

2.3. Generation of the Building Stock Model from Existing Data

In our residential district study case, the following data are available:

• RSET files for eight buildings: These files stand for “Récapitulatif Standardisé d’Étude Thermique”
(Standard Report of Thermal Study) and are mandatory in France for the construction of each new
building since the application of the French thermal policy RT2012. Each of these files is an XML
document containing relevant data such as U values, areas, structural information, HVAC devices
description, and thermal performance coefficients.

• Grenoble city land registry: GeoJson file containing all building’s footprints. This file is issued
from the Grenoble Open data portal [33].

• A spreadsheet issued from engineering studies gathering general information on district buildings
(addresses, dates of construction, heights, and number of floors).

• A meteorological file of one year of data.
• Various documentation issued from engineering offices involved in the district construction

(electrical network map, heat pumps datasheets, etc.)

For OMEGAlpes building models, we need the following data:

• U values and areas of ground floors, roofs, walls and windows
• Absorbtivity and emissivity of walls, roofs, and windows
• Transmittance of windows
• Surfaces areas
• Net leased area
• Number of floors
• Building height
• Building type (small, medium or heavy)

All the data required for OMEGAlpes building models can be deduced from generated TEASER
models. Then, the UBEM generation is processed according with the workflow summarized in Figure 6.

Figure 6. Workflow for district model generation.

In this workflow, one parses all the data files first. For buildings with RSET files, all the required
parameters to build TEASER and OMEGAlpes models, except for emissivity, absorbtivity, and
transmittance, are present. For other buildings, there are only enough data to generate TEASER
archetypes. For some of them, the floor area is not directly available and one has to find corresponding
polygons in the land registry file to estimate them. To complete missing data for OMEGAlpes models,
one can extract parameters generated by TEASER in archetypes. For each parameter parsing, injection
or extraction, one has to deal with different formulations and units. The generated dataset used to
build all OMEGAlpes building models is summarized in Table 1.
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Table 1. District main input parameters statistics for OMEGAlpes.

Mean Value Standard Deviation

Footprint/Roof area—m2 322.6 119.7
Windows area—m2 623 343.6
Ext. walls area—m2 1875.9 993

U basement—W·m−2·K−1 0.76 no variation
U roof—W·m−2·K−1 0.17 0.025

U windows—W·m−2·K−1 1.61 0.31
U ext. walls—W·m−2·K−1 0.43 0.18

Walls emissivity 0.9 no variation
Roof emissivity 0.94 no variation

Windows emissivity 0.89 no variation
Walls absorbtivity 0.5 no variation
Roof absorbtivity 0.6 no variation

Windows transmissivity 1 no variation
Number of floors 10.56 3.01

To apply this workflow, we developed a specific Python package to ease file parsing, data
manipulation (with an intermediate SQLite database) and district model generation, with modularity
in mind (for further data integration). The architecture of this tool is summarized in Figure 7.

RSET

land registry

BIM les

CityGML

Energy data...

Intermediate database

data manipulation tools

Extract

Extract

Load

Transform

data sources Energy modelers

TEASER

OMEGAlpesp

DIMOSIMDIMOSIM

CitySim...

Figure 7. Python software architecture for data handling and model generation.

Such an approach is close to the ETL methodology. As ETL processes are well suitable for
UML modeling [44], the choice of an Object-Oriented Programming language such as Python is
appropriate. Besides, the support of Python by the scientific community eases the development of the
“Transform” part.

3. Modeling of the Optimal Planning Problem

3.1. Optimal Planning of the District Heating Systems with OMEGAlpes

As already mentioned, two flexibility approaches to manage the district heating systems are
addressed through the study case:

• The first one consists in designing an energy system composed of a heat pump and thermal energy
storage to minimize the CO2 emissions of a fixed district heating load.
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• The second study case also aims to minimize the CO2 emissions of the buildings’ heating load, but
thanks to flexibility through building envelopes. In this case, specific building models dedicated
to the optimization should be used to estimate how the load can be modulated.

In both studies, we aim to estimate the possibility to decrease the CO2 emissions by designing
and operating the system. The studies were conducted during two weeks in January, which usually
represent the coldest period and are critical for the power system. Thus, the design of the system can
be significant for the entire heating period. It is important to notice here that our goal is not to predict
energy needs and CO2 emissions for an entire year, but to be closer to the operation. Therefore, focusing
on two weeks allows us to anticipate the possibility to pursue our work with a model predictive control
approach thereafter.

To define the OMEGAlpes optimization models, a graphical formalism was defined to represent
the energy units and power flows (see Figure 8).

Figure 8. OMEGAlpes formalism for energy system modeling.

Let us introduce Study Cases 1 and 2; the results are detailed in Section 4.

3.2. Study Case 1: Flexibility through Thermal Energy Storage (TES)

The first study case deals with energy flexibility provided by a Thermal Energy Storage (TES)
to minimize the CO2 emissions of the district heating load. The energy system studied is composed
of the district heated by geothermal groundwater through a heat pump and thermal energy storage
to provide demand-side management. The goal of this study case is to design the whole supplying
system (heat pump and storage). To do so, we used three OMEGAlpes units to model the energy
system: the district heating load, the heat pump, and the thermal energy storage, as shown in Figure 9.

Figure 9. Modeling of the energy system of the first study case (heat pump, district heating load and
thermal energy storage) according to OMEGAlpes formalism.

3.2.1. Estimation of the District Heating Load

In this first study case, only the flexibility provided by the storage energy system is addressed so
that the district heating load cannot be modulated and is thus an input of our optimization problem.
To estimate the thermal needs of the district, we relied on results from a first optimization obtained
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with OMEGAlpes which can be considered as a temperature regulation simulation. All buildings were
modeled as described in the previous section and set with standard occupancy schedules obtained by
TEASER and a temperature set-point of 20 ◦C. The objective of the optimization is to minimize the
sum of the over-heating and the result (see Figure 10) is taken as the dynamic thermal consumption of
the district Pdist(t). In this figure, we can notice that, during the days, the district heating load is very
low. This could be explained by the high insulation of the buildings which require low consumption
and thus can benefit from occupancy and solar gains to cover their needs.

Figure 10. District heating load during a two-week period in January obtained by optimization.

3.2.2. Modeling of Heat Pump

Composed of new residential buildings, the district can be heated by low temperatures around
35 ◦C. With a groundwater temperature around 15 ◦C, this specificity allows the heat pump to reach
a high Coefficient Of Performance (COP) of 5. Moreover, the temperature of the groundwater is
assumed to be invariant so that we can consider the COP to be a constant equal to 5. Therefore, the heat
pump is modeled by the relations between the thermal power provided by the groundwater Pthermin

(t),
the electrical power consumed by the heat pump Pelec(t), the thermal power delivered Pthermout(t) and
the COP, as described in Equation (1).

{
Pthermin

(t) + Pelec(t) = Pthermout(t)

Pthermout(t) = COP ∗ Pelec(t) Where: COP = 5
(1)

In this study case, a trade-off was chosen between different levels of accuracy of the whole energy
system modeling according to the uncertainties relating to the occupants’ behaviors. Indeed, as we
aim to estimate orders of magnitude of the CO2 emissions reduction obtained by heating flexibility,
the modeling of the heating systems is very simplified. For further studies, a deeper level of modeling
could be needed to provide a more accurate estimation.

3.2.3. Modeling of Thermal Energy Storage (TES)

Multiple types of thermal energy storage systems are used in the literature to smooth building
thermal needs. However, the most widespread technology used remains water tanks for their simplicity
and low costs.

The power stored to the TES Pstor(t) is defined as the difference between the charging power Pc(t)
and the discharging power Pd(t) as described by Equation (2).⎧⎪⎪⎨

⎪⎪⎩
Pstor(t) = Pc(t)− Pd(t)

Pc(t) ≥ 0

Pd(t) ≥ 0

(2)
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Moreover, the relation between the energy contained in the water tank e(t) and the charging and
discharging powers is defined by Equation (3). The storage capacity Cstor is defined as the maximal
value of e(t).

⎧⎪⎪⎨
⎪⎪⎩

e(t + dt) = e(t) ∗ (1 − αsd) + (Pc ∗ ηc − Pd
ηd
) ∗ dt

e(t0) = e(t f )

e(t) ≤ Cstor

(3)

where

• αsd is the coefficient of self-discharge of the storage system (depending on the storage design).
Here, the coefficient is a percentage per time step (dt = 10 min).

• ηc/ηd is the charging/discharging efficiency (standard value of 95% corresponding to actual TES).
• t0/t f is the starting/ending time step of the period.
• dt is the time step (10 min).

In this study, a stratified storage system is considered called thermocline storage whose
management is more complex than traditional storage (more details can be found in [45]). Indeed,
in our case, we assumed that the storage has to be fully charged at least once per five days to optimally
operate. The first step to model this constraint is to define a variable to indicate if the storage is fully
charged. To do so, a binary variable was introduced: is_soc_max(t) which equals 0 when the state of
charge is lower than 100% and 1 when the storage is fully charged. The definition of this indicator was
realized thanks to Equation (4), where Cstor is the storage capacity, estor(t) is the energy contained in
the storage at the time t and ε is taken equal to 10−3.

{
Cstor ∗ (1 + is_soc_max(t)− ε) ≥ estor(t)

Cstor ∗ is_soc_max(t) ≤ estor(t)
(4)

Then, our constraint can be expressed thanks to a sliding window including five days. Let tcycl be
the time step corresponding to the end of the first five-day period; the constraint of at least one full
charge during five days is defined by Equation (5).

∀t ∈ [tcycl ; t f ] ,
t

∑
k=t−tcycl

is_soc_max(k) ≤ 1 (5)

3.2.4. Modeling of CO2 Emissions of the District Heating Load

In this study case, the CO2 emissions of the district heating load (EmCO2 ) come from the electrical
consumption of the heat pump. Fed by the French power system, the heat pump emissions vary
dynamically according to the French grid CO2 emissions rate (emCO2,rate(t), see Figure 11).

Thus, the CO2 emissions of the district heating load can be calculated by Equation (6), so that
changing the heat pump operation could lead to CO2 reduction, which we tried to achieve thanks to
thermal energy storage in this study case.

EmCO2 =

t=t f

∑
t=t0

Pelec(t) ∗ emCO2,rate(t) (6)

46



Energies 2019, 12, 3632

Figure 11. CO2 emissions rate of the French power system during a two-week period in January 2018.

3.2.5. Energy System Design Parameters

As explained above, the objective is to minimize the CO2 emissions of the district heating load.
To do so, we considered a groundwater source heat pump coupled with the thermal energy storage
that we aim to design. Three parameters are optimized:

• The storage capacity (Cstor): Increasing the storage capacity allows more energy to be stored and
thus the possibility to provide the thermal needs with the TES during high-CO2 periods. However,
big storage capacities induce higher costs and volume. In this study, we considered TES with
capacity from 100 kWh to 48 MWh.

• The storage insulation, defined by the self-discharge coefficient (αsd): An important factor in the
storage design is the possibility to shift the energy in the medium term (several hours to days).
This essentially depends on the self-discharge coefficient. If it is too high, too many losses will
appear and it would be less efficient to shift the energy in the medium-term. In this study, we
compared the influence of three values of αsd: 0.125%, 0.25% and 0.5%, each ten minutes.

• The maximal electrical power consumed by the heat pump (Pmax
elec ): Increasing the power that can

be consumed by the heat pump leads to higher thermal power delivered at a low-CO2 period.
Nevertheless, it induces high consumption peaks that are usually harmful to the power grid. In
this study, we went from no over-sizing of the heat pump (300 kW) to 2500 kW.

3.3. Study Case 2: Flexibility through Heating Loads Modulation (BaB)

In this second study case, thermal flexibility is provided by the building envelopes. Each building
is modeled individually so that the district load can be deduced by the addition of each building
heating load. Thus, the thermal load of the district can be directly modulated without any external
thermal energy storage (see Figure 12).

Figure 12. Modeling of the energy system of the second study case (16 buildings and 16 heat pumps)
according to OMEGAlpes formalism.

3.3.1. Estimation of the District Heating Load

To guarantee the occupants’ thermal comfort, the operative temperature is constrained to be
higher or equal to 20 ◦C. Thus, the building can be over-heated by moments to store heat into the
buildings while keeping thermal comfort.
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The heating load can be calculated for each time step according to the thermal RC model available
in OMEGAlpes and presented in the previous section. Besides constraining the operative temperature,
the boundaries conditions are the same as before. These internal gains (from occupancy and weather)
are applied to the nodes a, c and m (see Figure 5). More details about the model can be found in [46].

3.3.2. Modeling of Heat Pumps and CO2 Emissions of the District Heating Load

The configuration of the district is slightly changed since each building is fed by its heat pump.
Each heat pump is designed with an over-sizing (around +66%) according to the reference heating
need of being able to use flexibility. The total maximal electrical consumption allowed to feed all the
heat pumps was set to 500 kW.

The modeling of the CO2 emissions is similar to the previous study so that each heat pump
emits according to its electrical consumption. However, the objective to minimize the CO2 emissions
is global.

In this study case, the energy system is designed before running the optimization. Therefore, the
minimization of the CO2 emissions is based on finding an optimal operation of all the heat pumps of
the districts.

4. Results

This section is divided into two main subsections:

• Optimization: Presentation of the optimization results for the two study cases aiming to reduce
the CO2 emissions of the district heating load. Here, reduced building models are used to predict
heating thermal needs.

• Simulation: A reference scenario is compared to the simulation results obtained by setting the
temperature profile according to optimization results with flexibility.

4.1. Optimization

The study cases presented in this paper are realized for a time step of 10 min for two weeks in
January. For the first one, each optimization problem generated is composed of 38k variables (28k
continuous and 10k binaries) for 61k constraints. The resolution was launched on an Intel bicore i5
2.4 GHz CPU with the Gurobi solver so that the optimization problem was solved within less than 10 s
on average for 192 optimizations. The corresponding results are detailed Section 4.1.2.

The second study case consists of a single resolution since only one configuration is studied.
The associated optimization problem is composed of 1211k variables (1100k continuous and 111k
binaries) for 1263k constraints. The resolution was launched on the same Intel bicore i5 2.4 GHz CPU
with the Gurobi solver and the optimization problem was solved within 23 min. The dynamic results
are detailed Section 4.1.3.

4.1.1. Flexibility Potential

To evaluate the gains obtained by optimization, the first step is to estimate the maximal reduction
in CO2 emissions that can be achieved. A simple way to evaluate this maximum is to allow shifting
each 10-min power slot of the load curve to minimize the CO2 while consuming the same energy
during the two weeks. In this case, the CO2 emissions can be reduced to a maximum of 22% keeping
the current heat pump maximal power consumption (300 kW). Of course, in this case, the building
comfort (internal temperature) is not guaranteed. This potential of 22% CO2 savings is used to compare
the next results.

The dynamic result of this naive estimation is shown Figure 13. We can notice that some
CO2 emissions reduction can be obtained by anticipating or removing the consumption for a few
hours (short-term flexibility), but the longer-term variation of the CO2 levels lead to a need for
longer-term flexibility.
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Figure 13. Theoretical maximal flexibility to minimize CO2 emissions by shifting 10-min values from
the reference profile.

4.1.2. Study Case 1: Flexibility through Thermal Energy Storage (TES)

In this study case, three elements were designed: the storage capacity (Cstor), the storage
self-discharge coefficient (αsd) and the maximal electrical power consumed by the heat pump (Pmax

elec ).
Results are shown in Figure 14 for the three self-discharge coefficients studied (0.125%, 0.25% and
0.5%). The CO2 emissions reduction obtained in each configuration is drawn according to the storage
capacity and the maximal electrical power consumed by the heat pump.

Regarding the storage capacity, we can notice that 100 kWh is too small to reduce the CO2

emissions regardless of the two other parameters. For larger capacities (≥1 MWh), the impact on the
CO2 emissions reduction begins to be noticeable and is strongly correlated with the self-discharge
coefficient and the maximal power consumed by the heat pump.

For a storage capacity under 2 MWh, we can notice that the reduction in CO2 emissions are lower
than 3.5% for all designs. However, in the case of a TES of 48 MWh with 0.125% of self-discharge
and a maximal electrical power of the heat pump of 2500 MW, we manage to reach 20% reduction in
CO2 emissions of the district heating load. Knowing that the average daily heating consumption of
the district during the period is 8 MWh, a 4 MWh storage corresponds to 12 h of consumption while
a capacity of 48 MWh corresponds to six days.

Figure 14. CO2 emissions reduction according to the design of the heat pump and energy storage system.
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Two phenomena happen when designing the energy system to use flexibility to reduce
CO2 emissions:

• The ability to store in the long-run: defined by the storage capacity and by the self-discharge
coefficient. Indeed, with relatively poor insulation (αsd = 0.5%), increasing the storage capacity
beyond 8 MWh has no significant effect because of the importance of losses for long-term storage.
However for a higher quality of insulation (αsd = 0.125%), increasing the capacity until 48 MWh is
always beneficial from an environmental point of view.

• The possibility to store a lot of energy during low-CO2 periods: defined by the charging power
of the storage and by the maximal power that can be consumed by the heat pump. In the case
of a TES with a 48 MWh capacity and a 0.5% self-discharge coefficient, increasing the maximal
power consumed by the heat pump from 300 kW to 2500 kW saves from 3.9% to 6.2%. Indeed,
with higher electrical consumption, the heat pump can provide more low-CO2 thermal power to
the storage.

Although it seems reachable to have a strong impact on the CO2 emissions of the district heating
load with a big TES and a heat pump with high electrical power needs, this design choice leads to
other problems. Indeed, choosing the kind of heat pumps means to increase the electrical power
peaks and could report CO2 emissions decreases from the heating side to increases at the electrical
one. Over-sizing the heat pump should thus be carefully considered taking this effect in mind.
Moreover, a 48 MWh water tank is expensive and takes a lot of space so that it is not an ideal solution.
Nevertheless, it could be very interesting to deeply consider the level of insulation that can have an
important impact.

Finally, using a building’s envelope as storage should be investigated.

4.1.3. Study Case 2: Flexibility through Heating Loads Modulation

In this case, the CO2 reduction is low (0.5%). Although the flexibility potential was previously
estimated to 22%, it mainly relies on medium- and long-term flexibility. However, with the Building as
Battery (BaB) concept, the flexibility addressed in our case can be defined as short term. Indeed, we can
notice on the optimization results (Figure 15) that no energy is shifted for more than one day. High
consumption peaks allow profiting from low-CO2 rate periods but the energy cannot be stored in the
long run. Indeed, with external wall insulation systems (EWIS), buildings envelopes form a relatively
small storage capacity, while the CO2 variability is more long-term in this case.

Moreover, over-heating the buildings leads to an increase in district energy consumption (0.9%),
so that the environmental gain due to shifting the heating load is reduced. However, the mean
operative temperature goes from 20.3 ◦C to 20.4 ◦C, i.e., an increase of 0.1 ◦C (0.4%). Therefore,
the increase of the consumption induces a better thermal comfort while reducing CO2 emissions. Many
studies achieve a greater reduction by allowing over- and under-heating [47], i.e., by using both energy
flexibility and sobriety, while we choose to focus on the impact of flexibility only.

50



Energies 2019, 12, 3632

Figure 15. Optimal flexibility to minimize CO2 emissions by allowing over-heating.

With a maximal electrical consumption of heat pumps of 500 kW, this scenario can be compared
to those with a single 500 kW heat pump. The reduction of CO2 emissions obtained by buildings as
storage is similar to results with a TES with a capacity between 100 kWh and 1 MWh, whatever the
self-discharge coefficient.

Finally, the reference scenario is the result of an optimization problem by providing minimal
energy to maintain thermal comfort. Thus, when over-heating is not compensated by the CO2

diminution, the CO2 emissions minimization corresponds to the energy minimization.
For this reason, we need to compare a simulation reference profile to the flexible scenario to see

if the improvement is preserved with a standard controller. Besides, comparing OMEGAlpes results
with simulation can lead to investigating optimal control robustness during application.

4.2. Simulation

Experimenting flexibility scenarios computed by OMEGAlpes directly on the real district is
a complex task. Before performing these tests, we started simulation studies to validate our approach
and/or identify the main issues towards implementation. Since we used TEASER as an intermediate
for building OMEGAlpes models, Modelica models are also ready to simulate for each building. First,
we can compare heating needs and operative temperature profiles (defined as a mean between air and
radiant temperatures) for both modeling approaches. To do so, we used two specific control scenarios:

• Constant temperature setp oint: In this case, we want to achieve a constant operative temperature
of 20 ◦C inside each building. With Modelica models, it consists in inserting an operative
temperature sensor and regulating the injected heat power with a PI controller. In the case
of OMEGAlpes models, the heat demand is computed to minimize the discrepancy between
buildings operative temperatures and the 20 ◦C set point.

• Flexibility scenario: In the optimization case presented above, OMEGAlpes has reduced energy
consumption and CO2 emissions while preserving thermal comfort constraints. To reproduce
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computed power shifts on Modelica models, we applied the operative temperatures computed
for the flexibility scenario as a new setp oint profile.

In the first case of constant temperature set point, we obtained the results presented in Figure 16
(buildings mean operative temperatures and the sum of all buildings consumption).
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Figure 16. Comparison between Modelica and OMEGAlpes—Constant temperature set point scenario.

The first obvious difference stands in energy needs. Modelica models generated by TEASER have
a more important consumption for the same comfort criteria and are therefore probably less insulated.
Besides, temperature peaks are shifted between models. These shifts can be due to the differences in
control strategies, and/or in computed internal gains despite using the same scenarios and weather
files. Consequently, even with the same data sources, it appears hard to obtain identical dynamic
behaviors between different modelers. Further effort must be invested to preserve global building
characteristics during model translating (in our case, model simplification). Besides, this also suggests
the use of a model calibration phase before implementing any model-based control strategy.

If we consider the application of the flexibility scenario in Figure 17, the consumption differences
between both models are visually less important, except for higher spikes for Modelica models, but
dynamics of operative temperature are sill very present (more inertia to go down for Modelica models).

We also compared performance results between constant temperature set point and computed
flexibility temperatures on Modelica models only, to see if it also leads to improvement despite
model discrepancies (see Figure 18).

Here, the dynamics induced by the flexibility scenario are very noticeable. As for OMEGAlpes
results, we observe power shifts and spikes inducing heat storage in buildings envelopes. Unfortunately,
performance is not preserved, since both energy consumption and CO2 emissions are worsened (Table 2).

This implies that the flexibility command computed here is not robust to the model discrepancies
we are facing. Therefore, the robustness of flexibility scenarios towards modeling uncertainties is
certainly a key research topic before real-life integration if we do not want optimized scenarios to be
counterproductive. This is also true during the early stage of design where low order models are used
to investigate energy scenarios.
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Figure 17. Comparison between Modelica and OMEGAlpes—flexibility scenario.
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Figure 18. Modelica simulations—comparison between control scenarios.

Table 2. Performance indices with flexibility scenario to optimize CO2 emissions against constant
temperature setpoint.

Energy Consumption CO2 Emissions

Improvement with OMEGAlpes model −0.78% 0.41%
Improvement with Modelica model −2.28% −0.63%
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5. Conclusions

Based on an ETL (Extract–Transform–Load) method, we have initiated a tool based on the
heterogeneous available data of buildings at the district scale, which can generate the necessary data
for optimization and simulation models. In particular, we have applied this method to the case of
data available on a new residential district composed of 16 residential buildings. This work makes it
possible to identify the important parameters for different modeling tools at the neighborhood scale,
to extract them from available data, or to estimate them when they are not available.

We then carried out two flexibility studies, based on the OMEGAlpes tool, which requires
modeling in MILP formulation. The first study analyzed the design of a heat pump (nominal power)
and storage (capacity and self-discharge factor) to desynchronize the production of heat and use to
heat buildings. It appears that a large investment is necessary to try to reach the maximum potential
(estimated at 22%), which relies in particular on long-term flexibility (more than a week). The second
study relied on thermal storage via the building envelope. This zero investment solution is, therefore,
a potential alternative to the previous case. However, the results obtained below 1% show that the low
storage capacity of these residential buildings does not allow addressing flexibility considering a CO2

variability during several days.
Finally, the tool we developed for data processing at the neighborhood scale allowed us to easily

set up a validation process. Thus, we have transmitted the flexibility results in the simulation model
using the Modelica AixLib library. The results show a predicted performance degradation compared
with optimization results. On very small gains (<1%) obtained by the upward flexibility (temperature >
20 ◦C), it even presents negative performance in energy and CO2. This lack of robustness to modeling
assumptions reinforces the idea that a tool to generate different levels of modeling based on available
data will be indispensable for future studies related to robustness in optimization.
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Abstract: Innovations in today’s energy grids are mainly driven by the need to reduce carbon
emissions and the necessary integration of decentralized renewable energy sources. In this context,
a transition towards hybrid distribution systems, which effectively couple thermal and electrical
networks, promises to exploit hitherto unused synergies for increasing efficiency and flexibility.
However, this transition poses practical challenges, starting already in the design phase where
established design optimization approaches struggle to capture the technical details of control and
operation of such systems. This work addresses these obstacles by introducing a design approach that
enables the analysis and optimization of hybrid thermal-electrical distribution systems with explicit
consideration of control. Based on a set of key prerequisites and modeling requirements, co-simulation
is identified as the most appropriate method to facilitate the detailed analysis of such systems.
Furthermore, a methodology is presented that links the design process with the implementation
of different operational strategies. The approach is then successfully applied to two real-world
applications, proving its suitability for design optimization under realistic conditions. This provides
a significant extension of established tools for the design optimization of multi-energy systems.

Keywords: design optimization; control and operation; multi-carrier energy systems; co-simulation

1. Introduction

The joint design and integrated operation of electrical distribution grids and district heating
systems promises to exploit hitherto unused synergies for increasing efficiency and flexibility.
The envisaged goal is to achieve an increase of the hosting capability of electrical distribution networks
for renewable energy sources (RES), while simultaneously reducing greenhouse gas emissions
and primary energy use of district heating systems. For instance, in electrical distribution grids,
the integration of photovoltaic (PV) and wind generation into the existing infrastructure has severe
consequences on the power quality. At the same time, district heating networks struggle to replace
carbon intensive heat plants with economically feasible combined heat and power plants and other
renewable heat sources. In case network planning and operation are done appropriately, the diverse
storage technologies, the different time constants and the diverse constraints regarding demand and
generation can complement each other.

However, there is a lack of tools and methods for designing such integrated energy systems,
especially in view of a detailed validation of proposed control and operation schemes. The work
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presented here introduces a design approach that addresses the technical challenges of both
domains at the same time, including their dynamic interaction at network level as well as local
and high-level control (see Figure 1). This enables the exploitation of synergies in the operation of
hybrid thermal-electrical distribution system in an optimal way. The presented approach relies on
co-simulation, which enables the coupling of domain-specific simulators and multi-purpose tools in a
way that allows to combine multi-physics simulations and optimization procedures. This approach is
motivated by the criteria established in Section 2, and backed up by reviewing the available tools and
methods according to the state-of-the-art for simulation and optimization (Section 3). A description of
the modeling approach and the utilized simulation tools is presented in Section 4. Based on this, a novel
methodology is presented in Section 5 that links design constraints to suitable operational strategies
and optimization methods. Finally, the applicability of the presented approach is demonstrated in two
real-world applications in Section 6.

dynamically coupled
network models

control and
opera on

design
op miza on

proposed
design

approach

Figure 1. Scope of the design approach proposed in this work.

Scope and Main Contributions

This paper aims at developing an integrated optimal design and control framework for coupled
district heating and electrical distribution networks, extending the scope of traditional design tools for
multi-energy systems. The simulation and optimization framework is illustrated for designing storage
and thermal-electric appliances in two case studies, i.e., an industrial and a rural area. Note that
the focus of this work lies on the methodological contribution rather than on the case study results.
Compared to existing studies, this work explicitly includes detailed models for the district heating
network, the electric distribution grid as well as low- and high-level control implementations already in
the design stage. Thus, the method considers the impact of different levels of control and operation on
the optimal system design. The coupling of heterogeneous modeling paradigms and tools is established
via a co-simulation approach and the design optimization relies on the use of meta-heuristics.

This work addresses experts with backgrounds in district heating, electric distribution,
energy storage deployment, control theory, design optimization and (co-)simulation alike.
The multi-disciplinary nature of the proposed design approach (see also Figure 1) requires a
comprehensive introduction and presentation of the work to make it understandable and useful
for readers and experts coming from these different fields.

In summary, this paper contributes to the research field by presenting a simulation-based design
optimization approach that: (i) is based on a fully dynamic thermal-hydraulic district heating and
electrical distribution network model; and (ii) explicitly includes closed-loop control implementations
and, thus, leads to the optimal design being dependent on operational aspects. The method is used
in two case studies that exhibit different control complexities, i.e., model predictive and rule-based,
and design spaces, i.e., a finite set of allowed solutions and an infinite set of possible designs.
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2. Prerequisites for the Design Optimization of Hybrid Distribution Systems

2.1. Determining Factors of Hybrid Distribution Systems

Hybrid networks are realized through the physical interconnection and joint operation of electrical
and thermal distribution grids. From a technical perspective, this is accomplished with the help of
coupling points, i.e., devices which directly or indirectly enable the exchange of energy across carrier
domains. For the proposed design approach, a (preliminary) technical system layout for both the
electrical network and the thermal network topology is required from the domain experts, which
already includes the type and position of the coupling point(s). The considered degrees of freedom in
this work are typically related to the sizing of components (e.g., storage capacities or power ratings)
or controller set-points (e.g., gains or thresholds). A specific technical system layout together with a
specific set of numerical values for theses degrees of freedom is referred to as system configuration in
this work.

The proposed design optimization approach explicitly considers operational and control aspects
at different levels. In general, there are control systems at the process level (e.g., for heat pumps or
transformers) that are designed to ensure that objectives are achieved locally (e.g., valve positions
and tap changer). However, the complexity of control schemes increases drastically when individual
processes are combined to larger systems and new (common) control/optimization targets are defined.
In such a case, a higher-level control instance—referred to as operational strategy in this work—is
required that governs the local processes in compliance with relevant system constraints (compare
with Figure 2).

thermal/electrical network

operational strategy

consumersdistribution
gridproducers

local
controller

local
controller

local
controller

Figure 2. Overview of local control (process level) versus operational strategy (system level).

2.2. Key Prerequisites and Modeling Requirements

This work focuses on the optimization of technical design aspects, assessing the impact of
system configurations and operational strategies on the system’s performance. This requires not only
the quantification of performance indicators on the system level, but also validation down to the
component level, in order to avoid infeasible results. Hence, any valid design approach for hybrid
thermal-electrical distribution networks has to fulfill the key prerequisites (KP) presented in Table 1.

In general, the most viable approaches in this context are simulation-based methods, as they allow
the qualitative and quantitative examination of new concepts in a comparably fast and inexpensive
way before deployment. However, the accurate and detailed modeling of all involved networks
including their coupling points and control is of utmost importance. When deployed in a joint
simulation, the (sub-)models representing the individual domains have to comply with the modeling
requirements (MR) presented in Table 1.

It should be noted that some of the criteria defined above do not necessarily apply for design
optimization approaches focusing on socioeconomic goals, especially regarding the required level of
detail (spatial and temporal).
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Table 1. Key prerequisites and modeling requirements for the assessment of hybrid networks.

Key Prerequisites

KP1 A method for analyzing coupled thermal and electrical distribution systems on a network level
is required, which allows a technical assessment with reasonably high spatial and temporal
resolution.

KP2 Given a system layout with certain degrees of freedom and a design criterion represented by a
(scalar) objective function, a suitable method is needed to optimize this layout by minimizing
this objective function.

KP3 The tools and methods used for analysis and optimization must enable domain experts to actively
participate in the design process.

Modeling Requirements

MR1 When combined, the (sub-)models need to capture the dynamic interactions between the domains,
i.e., electric, thermal and control, on the system level. This is the prerequisite for enabling the
design of new coupling concepts and operational strategies for hybrid distribution systems.

MR2 At the same time, they have to enable the detailed study of the impact on the individual domains,
from the network down to the component level. This is required to check the feasibility of any
coupling concept and/or operational strategy from the technical perspective of the respective
domains.

MR3 In addition, the proper representation of local controls at process level and overall operational
strategies is required. Their proper interaction with the models of the physical processes is
fundamental for a complete system representation and can come in various forms, e.g., from
simple PID to model predictive control.

3. State of the Art Regarding the Simulation and Optimization of Hybrid Distribution Systems

3.1. Simulation of Coupled Heat and Power Networks

Previous work on multi-carrier energy systems was mainly focused on determining an optimal
mix of energy sources as well as conversion and storage technologies. Comprehensive overviews
were given by Mancarella et al. [1] and van Beuzekom et al. [2], who independently concluded that
existing approaches are not suited for detailed technical assessments that are required for network
infrastructure planning and operation. Consequently, they argued that there is a need for new tools
and methods in this regard. One of the main reasons is that established tools for system design, such as
EnergyPLAN [3] or HOMER [4], do not offer models that are detailed enough to evaluate the effects of
local controls on the process level, thus disagreeing with KP1, MR2 and MR3. Unfortunately, simulation
tools that focus on the technical evaluation of energy systems on the process level are by themselves
also not suited in this context [5], as they are typically concerned with just a single energy-related
domain. Anything outside their direct focus is usually taken into account only implicitly or using
simplified models, thus disagreeing with KP1, MR1, MR2 and MR3.

A potential solution is provided by multi-domain modeling languages. For instance, there exist
several libraries for the Modelica [6] language that target energy-related domains, such as power
systems [7,8] or buildings [9], which in combination allow the modeling of hybrid thermal-electrical
distribution systems (and thus satisfying KP1 and MR1). It has also been demonstrated how such
models can be utilized for standard optimization approaches (satisfying KP2), see for instance [10].
However, domain experts (thermal, electrical, controls) are often not trained to use such tools, which is
complicating compliance with KP3. Furthermore, since Modelica focuses on modeling physical
systems, the implementation of controls and operational strategies with a high algorithmic effort,
e.g., model predictive control, can become difficult, thus complicating compliance with MR3. Most of the
above arguments are also valid for similar languages and tools, e.g., MATLAB/Simulink/Simscape [11].
Hence, in the context of simulating hybrid thermal-electrical distribution networks, the usability of
approaches relying exclusively on multi-domain modeling languages is in practice (still) limited, or at
least the associated effort is (still) considerably high.

An alternative solution is offered by co-simulation approaches, which overcome these limitations
by enabling the coupling of domain-specific simulators and multi-purpose tools (thus satisfying MR2
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and MR3). This allows domain experts to use the most appropriate tools according to the
state of the art for their respective domain, including advanced optimal control schemes.
On the one hand, this guarantees an adequate and precise representation of the individual
domains (thus satisfying KP1 and MR1) [12]. On the other hand, it facilitates the participation of and
interaction between experts from different domains, whose expertise is often closely linked to specific
tools (thus satisfying KP3). This advantage has led to various research activities in many energy-related
domains, e.g., buildings [13,14], power systems [15–18] and hybrid distribution networks [12,19].

Given these considerations, co-simulation has been chosen to analyze systems according to the
criteria defined in Section 2 for the work presented here. Even though other approaches—and especially
approaches based on multi-domain modeling languages—are expected to become mature and flexible
enough in the future, the advantages of coupling domain-specific simulators and multi-purpose tools
in a co-simulation still prevail.

Within this context, established tools for the design and optimization of multi-energy systems
can be considered as important guides for an overall design process, as their results should be used as
starting point for a detailed technical evaluation.

3.2. Design Optimization of Coupled Heat and Power Networks

Available literature on design optimization of hybrid thermal-electric networks is mainly based on
the energy hub concept introduced by Geidl et al. [20]. Related work focuses on determining optimal
design of energy hubs such as selection and sizing of coupling units and storages [21]. However,
applied models rely on many simplifications and are not able to cover technical aspects relevant in
power networks (e.g., voltages and reactive power), in district heating (e.g., temperature propagation
and pressures), and also in individual components (e.g., temperature stratification in thermal storages).
Thus, such an approach contradicts the identified modeling requirements MR2 as well as MR3.

One possible solution, targeted in this paper, is to utilize detailed (co-)simulation setups for design
optimization. Even though simulations are very well suited to characterize a given system design
using a system performance measure, their application in the context of design optimization is more
challenging. From a mathematical programming point-of-view, the simulation-based design leads to
objective functions that must, in general, be considered non-linear, multi-modal and discontinuous [22].
To make matters more complicated, the evaluation of the objective function is computationally
expensive (minutes to hours or even days per evaluation), depending on the complexity of the
simulation model. With the number of possible design variables being high and the range of
corresponding input parameter values being huge or even infinite, it becomes infeasible to perform
this search by hand or by brute-force. Thus, this problem class requires to either reduce the allowed
solution space and/or to use efficient black-box optimization algorithms, where finding a global
optimum within finite time is not guaranteed [23].

Nevertheless, simulation-based design optimization is a frequently used technique as it allows
the use of detailed models. The possibility to use high-fidelity models for optimization is especially
relevant when targeting systems-of-systems, such as hybrid thermal-electric networks in this work,
and, thus, satisfies KP2. In energy-related research, applications to building design are most
frequent. The dynamic simulation tool IDA ICE together with a multi-objective optimization was
used to find cost-optimal energy performance renovation measures for educational buildings by
Niemela et al. [24]. Delgarm et al. [25] used the building energy simulation program EnergyPlus
and a multi-objective particle swarm optimization to find the building specifications that minimize
annual energy consumption. Many more similar studies exist and Nguyen et al. [26] provided an
extensive summary of building related simulation-based optimization methods. Recent work uses
simulation-based optimization in the context of district heating system design. Wang et al. [27]
optimized the hydraulic design of variable-speed pumps in multi-source district heating networks
using static hydraulic simulation and a genetic optimizer. Van der Heijde et al. [28] tried to find
the cost optimal location and size of thermal storage tanks in district heating networks using
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dynamic thermal-hydraulic simulation combined with optimal control and a genetic multi-objective
optimization algorithm.

3.3. Summary and Conclusion Regarding the Relevant State of the Art

Based on the review of the relevant state of the art above, it follows that established
optimization models do not provide the level of detail required for assessing hybrid thermal-electrical
distribution grids, especially in view of closed-loop control and operation. In practice, currently
only the co-simulation of domain-specific technical models can provide the desired degree of
accuracy. However, even though these technical models are commonly used by domain experts
for detailed assessments, they are typically not designed nor intended to be used for optimization.
The literature gives examples of how co-simulation and this class of technical models can be used for
optimization, but there exists—to best knowledge of the authors—no general methodology to support
this process.

In this context, this work is the first to introduce simulation-based optimization for coupled
district heating and electric network simulation combined with closed-loop control. A methodology to
assist the co-simulation-based design of coupled heat and power networks is presented by providing
conceptual guidance and a proof-of-concept implementation to the above mentioned problem setting.
The focus lies on the utilized technical models (see Section 4) and their integration into suitable
optimization approaches (see Section 5), not on the formulation of specific optimization algorithms.

Table 2 summarizes this situation in terms of the KPs and MRs identified above (+, full compliance;
◦, compliance with effort; −, insufficient compliance).

Table 2. Comparison of modeling and simulation approaches in view of key prerequisites and
modeling requirements.

KP1 KP2 KP3 MR1 MR2 MR3

established design optimization tools − + ◦ + − −
domain-specific tools − ◦ + − − −

multi-domain languages + ◦ ◦ + + −
proposed approach (based on co-simulation) + ◦ + + + +

4. Simulation Approach for Hybrid Networks

This section presents the approach used in this work for the detailed simulation of coupled heat
and power networks including control. The overall model is highly complex, exhibits non-linear
behavior and has no closed algebraic formulation. On the one hand, this rules out the utilization of the
most commonly used optimization approaches (e.g., LP or MILP). On the other hand, this additional
complexity is unavoidable for analyzing the technical details of control and operation in such networks.
In view of the general optimization methodology presented in Section 5, the presented approach can
be regarded as a representative example of co-simulation approaches used for technical assessments.
As such, it highlights the differences between the class of simulation models targeted by this work and
the class of models typically used for optimization.

4.1. Co-Simulation Environment

A co-simulation approach enables the coupling of the different modeling paradigms,
i.e., a transient thermal-hydraulic model, a quasi-static power flow model and time-discrete advanced
control models. Thus, the influence of time-discrete advanced control systems, e.g., using rule-based
control or model predictive control (MPC), on the dynamic physical system, i.e., the electric and the
district heating (DH) network including supplies, coupling units and consumers, can be studied.
This enables the assessment of hybrid thermal-electrical distribution grids with appropriate spatial
and temporal resolution for relevant use cases [12].
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The modeling activities and environments used in this work are split into the control model
and the physical system model, with the latter only including low-level control, e.g., PID controllers.
The assessment method is based on modeling tools according to the state of the art for each domain
that are presented in more detail in the following sections.

Within the context of this work, the FUMOLA environment [29] has been used as co-simulation
environment. FUMOLA is specifically designed to support the features offered by the Functional
Mock-up Interface (FMI) specification [30], which defines a standardized application programming
interface (API) and model description for both co-simulation and model exchange. FMI was selected
as it is a mature, non-proprietary specification, developed by both academia and industry. The FMI
standard enables the exchange and extension of tools and methods for the different domains and,
thus, makes the approach highly versatile and extensible, especially in selecting the most appropriate
method for advanced control system implementation.

4.2. District Heating Network Model

Thermal networks (including producers, network, thermal storages and consumers) are modeled
in Modelica/Dymola [6,31] with the help of the DisHeatLib library [32] that is built upon the IBPSA
library [33]. These open-source libraries include models for the most relevant components of district
heating networks, considering bi-directional mass flows, heat transport delays, detailed substation
and storage models and other thermo-hydraulic aspects that are highly relevant in heat networks.
In addition, it provides models of local controllers and interfaces to electric networks. In summary, this
modeling approach captures transient thermal and quasi-static hydraulic network behavior. The most
relevant models are shortly presented in the following.

All DH pipes are modeled using a plug flow approach. The outlet temperature Tout and, thus,
the heat loss of a fluid parcel passing a pipe is described as:

Tout = Tg +
(
Tin − Tg

)
e−

τ
R·C (1)

It depends only on the initial temperature Tin, residence time τ, undisturbed ground temperature
Tg calculated using the Kusuda equation [34], thermal resistance of the pipe R and heat capacity of the
water in the pipe C. The pressure drop mass flow correlation along the pipe is given by

ṁ = sgn(Δp)k
√
|Δp| (2)

where k is the constant flow coefficient calculated for nominal conditions using the Colebrook equation
for turbulent flow in rough pipes [35]. Details about implementation and experimental validation can
be found in [36]. Heat exchangers in the DH substations are modeled with a variable effectiveness
using a number of transfer units approach [37]. Valves are modeled using the above pressure drop and
flow rate correlation with the flow coefficient k depending on the opening control signal.

Thermal energy storages are modeled using a vertically discretized multi-node approach to
account for stratification and buoyancy [38]. Heat pumps are modeled using a Carnot-efficiency-based
approach, electric heaters use a constant efficiency and gas and biomass boilers as well as combined heat
and powers (CHPs) use heat generation dependent efficiencies. The main district heating supply unit
is modeled as an ideal heat and differential pressure source and with no limits on maximum/minimum
power or ramp rate. A fixed supply temperature is assumed for all generators.

A full list of model formulations and implementations can be found in the open-source Modelica
libraries DisHeatLib and IBPSA.

4.3. Electrical Distribution Grid Model

Electrical distribution grids (including producers and consumers) are modeled with DIgSILENT
PowerFactory [39], an engineering tool targeting primarily professional users. The quasi-static
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assessment of the electrical networks covers the most important features, such as voltage fluctuations
and time-varying loads and generation. DIgSILENT PowerFactory’s simulation interface has been
extended to enable a series of consecutive power flow calculations in a co-simulation [40].

The power flow equations for node a in an N-node system are given in complex form:

S∗
a

V∗
a
=

N

∑
b=1

YabVb (3)

where S∗
a and V∗

a denote the complex conjugate apparent power and voltage at node a, respectively,
Yab denotes the bus admittance matrix and Vb denotes the complex voltage at node b. This results to
2n equations for the 4n unknowns, i.e., voltage, active/reactive power and voltage angle.

Coupling units are modeled as PQ buses, where active and reactive power is known,
using the average power consumption/generation from the dynamic DH network model over
the synchronization interval Δtqs as input. Transformer units connect the low-voltage electrical
networks to an external grid, i.e., modeled as a slack bus that determines the voltage and phase at the
connection point.

4.4. Operation and Control Models

General-purpose tools such as MATLAB or Python can be integrated into the co-simulation
with the help of FMI-compliant interfaces [41,42]. After each synchronization interval Δtctrl, they are
called with the latest simulation outputs (measurement data), based on which they calculate and
return new control setpoints that are then fed back to the physical models (feedback loop). This
facilitates the implementation of a potentially large range of different types of algorithmic approaches
for system-level controllers, including rule-based or model-predictive control schemes (see below).
Local controllers on the process level are implemented within their respective subsystem models.

4.4.1. Rule-Based Operational Strategies

Rule-based control generally relies on a list of i deterministic rules formulated as logical and/or
algebraic expressions, e.g., a hysteresis controller that issues on/off signals. These rules constitute the
knowledge base to determine a control action ψi for a set of inputs (measurement data) corresponding
to a certain system state φi.

(φ1 → ψ1) ∧ ... ∧ (φi → ψi) (4)

Constructing this list of rules relies on expert knowledge. The reasoning depends on the specified
operational goals and is often highly case-specific.

4.4.2. Model-Based Operational Strategies

Model-based control algorithms, in comparison, rely on knowledge about the dynamic system
behavior ẋ(t) and the impact of control actions u ∈ U to govern the overall system along an optimal
trajectory. The model can be used within an optimal control scheme to determine the control action
that satisfies all system dynamics and yields an optimal performance metric J:

min
u∈U

J =
∫ t f

ts
L(x(t), u(t))dt

s.t. ẋ(t) = f (x(t), u(t))
(5)

where L is a cost function, ts is the start and t f is the final time of the control horizon. The continuous
time optimal control problem is often transformed into a time discrete version where the dynamics are
represented by a (linear) state-space system. At runtime, feedback from the system (measurement data)
and predictions of disturbances can be used to provide safe operation and optimal performance with
respect to the operational goals. The use of model-based optimal control schemes is often labor intense,
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especially if model identification is not automated, requires a suitable optimization algorithm and
solving the mathematical programming problem might be time consuming.

5. Design Optimization and Control of Hybrid Networks

This section describes the proposed design optimization framework for hybrid thermal-electrical
distribution networks, focusing on the technical assessment of such systems for the purpose of network
planning and operation. It is based on a simulation-based optimization approach that utilizes the
detailed coupled heat and power network simulation including closed-loop control, presented in the
previous section. The general resulting design optimization problem is given by

z∗ = argmin
z∈Ω

c (g(z)) (6)

where the function g(z) involves one (co-)simulation run for a specific system configuration z and Ω

describes the solution space, i.e., the set of all possible and allowed system configurations. The goal of
the design optimization process is to find the system configuration z∗ that minimizes the objective
function. Due to the high computational burden involved in executing one call of g(·), it is important
to a priori reduce the number of possible system configurations. Hence, the proposed design approach
assumes that most basic design decisions have already been reached using either expert know-how
and/or established design optimization tools, e.g., the choice of conversion and storage technologies
has been made employing mixed-integer linear programming techniques.

The objective function c(·) relates results from one simulation run g(z) for a specific system
configuration z to the optimization criterion, such as costs or technical key-performance indicators.
Thus, the objective function maps certain technical and/or economical aspects of the overall system to
a numerical (scalar) value. In the case of multi-carrier energy systems, objective functions typically
relate aspects of the overall system that are traditionally treated by separate engineering domains, e.g,
total energy imports for both heat and power. Furthermore, objective functions may evaluate effects
that result from dynamic interactions between the subsystems, especially synergies among production,
consumption and storage and their impact on network operation.

5.1. Influence of Operational Strategies on Optimal Design

The objective function of a given system configuration is highly dependent on the performance
of the respective operational strategy and implemented control. Hence, to yield a small value
for the objective function, the operational goals (e.g., the use of local PV generation for heat pump
operation) should be in-line with the design optimization targets (e.g., sizing of heat pump to increase
PV self-consumption). To this end, the operational goals and design optimization targets need to be
translated into an appropriate control implementation.

In this work, two categories of control schemes, i.e., rule-based and model-based, are considered
in more detail in Section 4.4. From the point of view of design optimization, these two categories of
operational strategies serve very different purposes:

• The evaluation of a system configuration with the help of a rule-based operational strategy
provides by itself little or no information about how this specific configuration could be
improved. Improvements could be potentially achieved by changing either the design or the
operational strategy.

• In contrast, the evaluation of a system configuration with the help of a model-based optimal
operational strategy yields a measure for the best possible performance for this specific system
configuration.

This difference comes from the fact that model-based optimal operational strategies are—by
design—able to guide the system evolution in accordance to the defined optimization targets.
In contrast, a rule-based approach is always heuristic, such that there is a priori no such guarantee.
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In this case, both a different set of rules or a different system configuration could yield a performance
improvement with respect to the objective function.

5.2. Design Optimization Approaches

The design process needs to adapt to the specific circumstances of any given project, especially
constraints regarding available design options. For instance, there may be economical or legal
restrictions or technical constraints (especially due to already existing infrastructure). In practice,
this has a strong influence on the number of possible system configurations (see, for instance, the
applications in Section 6). Hence, the following two complementary approaches are introduced,
taking into account the size of the solution space and the implemented control scheme:

• Optimal Control Scan (OCS): In case only a very limited number of possible system configurations
needs to be considered (e.g., due to specific design constraints), the evaluation of all these options
with the help of an optimal control strategy determines the best possible design candidate.

• Heuristic Parameter Scan (HPS): In case the number of possible system configurations is large
and the evaluation of all possible options is unfeasible due to the associated computational load,
a metaheuristic optimization algorithm on top of a rule-based heuristic operational strategy can
be utilized to determine the best possible design candidate.

In considerations of the above, the choice between OCS and HPS represents a trade-off among
implementation effort, computational complexity and usability of the operational strategies for
design optimization. Figure 3 visualizes this trade-off in terms of the size of the solution space,
the computational complexity of the utilized operational strategy and the implementation effort for the
associated sub-tasks (i.e., controller development and candidate selection). A combination of OCS and
HPS, i.e., metaheuristic design optimization on top of an optimal control scheme, for a large number
of possible system configurations, although preferable and theoretically possible, is not considered
due to the high computational effort involved.

Figure 4 visualizes the different optimization approaches of OCS and HPS. In OCS, the optimizer
is an integral part of the operational strategy implementation, guiding the system evolution towards
optimal operational performance. In HPS, the optimizer is separated from the co-simulation and
design optimization is achieved by repeatedly executing the co-simulation with different parameters.
In this context, another benefit of using co-simulation becomes apparent, because the choice between
both approaches has virtually no impact on the modeling of the thermal and electrical domain,
as long as the operational strategy is implemented as an individual and exchangeable component in
the co-simulation.
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Figure 4. Schematic view of the relation between co-simulation and optimizer for: (a) the Optimal
Control Scan (OCS); and (b) the Heuristic Parameter Scan (HPS).

5.3. Optimization Algorithms, Decision Variables and Objective Functions

The choice between OCS and HPS is first and foremost conceptual, providing a guideline for
implementing the actual optimization. For both cases, a large variety of optimization algorithms
exists that can be applied, thanks to the flexibility of co-simulation approaches. In the case of HPS,
any metaheuristic population-based optimization algorithm can be applied that can take the results
from individual co-simulation runs as black-box input, such as PSO [43], Differential Evolution [44]
or PSwarm [45]. In the case of OCS, the co-simulation approach enables for instance the integration
of existing toolboxes for model-predictive control, LP or MILP for MATLAB or Python. For example
implementations—without loss of generality—refer to Section 6.

Using co-simulation of domain-specific models as basis for system assessment allows including
more detailed technical information for decision variables compared to traditional optimization
approaches. However, the choice between OCS and HPS does have practical implications for the
selection of decision variables and objective functions. In the case of HPS, the decision variables used
by the optimal control instance have to be based on the measurement data of the current and previous
simulation time steps. For HPS, in contrast, the optimizer has not only access to all measurement
data but also the full set of results of each completed co-simulation run. This means that overall key
performance indicators (e.g., total energy saving or yearly local self-consumption) can be included
in the objective function. This distinction is key for understanding the conceptual and qualitative
difference regarding the optimality of results in OCS and HPS. Nevertheless, from a quantitative and
practical point of view, both approaches yield (near) optimal results.
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6. Proof-of-Concept Applications

The applicability and usefulness of the proposed design approach is demonstrated with the
help of two real-world applications. Both applications focus on the design optimization of hybrid
thermal-electrical grids from a technical perspective, aiming at exploiting synergies between the
networks by mutual support during operation. Hence, no monetary optimizations are applied,
i.e., neither investment nor operational costs are considered.

Both application examples aim at local consumption of excess PV generation using heat pumps
or electric boilers. However, the proposed design approach is not limited to this kind of applications
and could also be applied to applications with a focus on short-term and/or long-term storage,
peak shaving, or others.

6.1. OCS Example Application: Suburban Industrial Area

6.1.1. Technical System Layout

The system is located in a suburban industrial park area, comprising multiple office buildings and
industrial facilities at four adjacent sites, with a total yearly electrical demand of 1 GWhel and a total
yearly thermal demand of 2.3 GWhth. Figure 5 presents a schematic of the technical system layout.

Figure 5. Schematic overview of the hybrid system layout for the suburban industrial area (GB, gas
boiler; BB, biomass boiler; GWHP, ground water heat pump; WWHP, waste water heat pump; PV,
photovoltaic module; CHP, combined heat and power plant). The components targeted by the design
optimization process are highlighted in orange.

The on-site low voltage network consists of 0.6 km of cables and 0.6 km of overhead lines, and has
five medium-size PV systems with a total installed capacity of 272 kWpel connected to it. The heat
network connects the thermal generators and demand sites, which makes it possible to share heat
between them. Three of the sites use previously installed gas boilers (GBs) with a total nominal
capacity of 2.44 MWth, whereas the fourth site uses a CHP plant with a nominal capacity of 950 kWth,
all four connected to thermal buffer tanks. Moreover, a biomass boiler (BB) with 950 kWth nominal
capacity is feeding the heat network.

The main task in this application was to add and size a ground water heat pump (GWHP) and a
waste water heat pump (WWHP), representing the degrees of freedom in the design process. These heat
pumps and the CHP are the system’s coupling points between the networks.
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6.1.2. Operational Strategy

The foremost goal of the operational strategy is to maintain an operational temperature between
80 and 95 ◦C in all thermal buffers, in order to guarantee that the thermal demand can be fulfilled at
all times at an admissible temperature level. At the same time, the following optimization targets should
be considered:

• The local consumption of on-site PV production for thermal production should be maximized.
• On-site CO2 emissions and electricity imported from the external grid should be minimized.

These operational targets can be translated into an operational strategy, which was implemented
as model-based optimal control (compare with Section 4.4.2), based on a linear optimization problem
formulation. It prioritizes the heat sources according to the following scheme:

1. In case there is sufficient PV production, heat pumps are given priority over all other heat producers
in order to maximize the consumption of on-site PV production.

2. In case the heat pumps cannot provide sufficient generation, the BB is used.
3. In case heat pumps and the BB combined cannot provide sufficient generation, the CHP is used.
4. In case the demand is still not met, the GBs are fired.

At the same time, the controller keeps track of all operational constraints (matching of generation
and demand, production thresholds, network constraints, etc.). This guarantees the optimal operation
for a given system configuration.

6.1.3. Design Optimization Strategy

For optimizing the system design, the heating capacities of the two heat pumps are the degrees of
freedom. However, only a limited number of realistic sizing options has been identified beforehand
by the owner, based on experience and expertise from domain experts as well as spatial and budget
constraints. For instance, since WWHPs are more efficient than GWHPs, operation of the WWHP is
prioritized, whereas the GWHP is only turned on if even more electricity from PV is available and
heat is needed. Therefore, all selected configurations foresee a bigger WWHP in combination with
a smaller GWHP. Furthermore, given the operational strategy explained above, which also aims at
a minimization of the electricity consumption from the external grid, the maximal practical size of
the heat pumps is limited by the maximal PV production. These considerations led to three potential
system configurations (see Table 3), which differ in the sizing of the heat pumps.

Table 3. Considered system configurations.

Configuration Name WWHP Size (kWel) GWHP Size (kWel)

A 100 50
B 150 50
C 200 50

With the limited number of system configurations and the possibility to translate the operational
strategy into an optimal controller scheme, the OCS is the natural choice of optimization approach for
this application (see Figure 6).

69



Energies 2020, 13, 1945

op
m

al
 co

nt
ro

l m
od

el

for each tctrl

setpoints

dynamic thermo-
hydraulic simula on

SILENT

D
IG

steady state power 
ow calcula on

ph
ys

ica
l m

od
el

s
for each tqs

receive measurements

update control setpoints

execute op mal
control model

feedback

select set of system con gura on candidates       based on know-how of domain experts

co
-s

im
ul

a
on

analyze objec ve           of all system con gura on candidates

select best system con gura on candidate       based on objec ve func on 

for each system con gura on candidate

Figure 6. Schematic overview of the OCS workflow applied to the system design of the suburban
industrial area.

6.1.4. Results

As expected, the operational strategy is affected by the seasonal variations (temperature, solar
irradiance), effectively resulting in seasonal operational modes that prefer different sources at different
times of the year. These significant differences necessitate the evaluation of the system performance on
a yearly basis, in order to provide a good basis for the choice of the optimal design.

Figure 7 summarizes the performance of the three considered system configurations in terms of
yearly total energy production for the heat pumps (EHP

tot ), the biomass boiler (Ebio
tot ) and the CHP (ECHP

tot ).
In all three cases, the thermal energy production of the gas boilers is around 230 MWhth/a. The figure
shows that Configuration C—which has the largest WWHP—fails to exploit the full potential of the
PV generation, resulting in the smallest total energy production of all configurations. This is due to
the fact that the heat pump must not be operated below 80% of its maximum capacity, which in turn
leads to a high threshold for turning it on in Configuration C. Configuration A—with the smallest
WWHP—slightly falls behind Configuration B, which provides in this regard the best compromise
as it exhibits the largest total generation from the heat pumps. Furthermore, in Configuration C,
the WWHP’s high operational threshold causes not only an increase of biomass-based generation,
but actually leads to an overcompensation at the cost of the CHP-based thermal generation compared
to the other configurations.

Analysis of the detailed results from the co-simulation shows that Configuration B has the most
favorable impact on the electrical system in view of integrating the on-site PV production. For instance,
it shows the most significant improvement of the voltage band usage compared to non-hybrid system
layouts by reducing the time and amount the maximum voltage band exceeds the 10% threshold.

In conclusion, even though the improvements from the system level point of view are limited
due to the actual available PV generation and other practical constraints (e.g., economical aspects of
increasing the CHP capacity), Configuration B shows overall the best thermal and electrical system
performance. It optimally exploits the on-site PV generation via the heat pumps (EHP

tot = 225 MWhth/a)
while at the same time providing a modest reduction of fuel-based generation from the CHP and the
biomass boiler (ΔEfuel

tot = −211 MWhth/a). Furthermore, the design goal of minimizing on-site CO2 is
successfully met through the preference for the heat pumps, the biomass boiler and the CHP over the
gas boiler (see Figure 8).
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Figure 7. Comparison of the yearly thermal energy production of heat pumps, biomass boiler and CHP
for the three considered system configurations (Configuration A, Configuration B and Configuration C).

Figure 8. Yearly load duration curve.

6.2. HPS Example Application: Rural Residential Area

6.2.1. Technical System Layout

The system comprises a rural low-voltage electric grid with a total cable length of about 6.5 km.
This network connects residential, commercial and agricultural customers, summing up to a total
number of around 110 customers with a total annual power demand of around 775 MWhel and PV
systems that are feeding a total of 384 MWhel per year.

The district heating network structure is typical for rural areas with low heat demand
density (linear density of about 520 kWhth/a/m and peak load demand of about 2.0 MWth).
An outdoor-temperature dependent heating curve is used to set the supply temperature between 90
(winter) and 70 ◦C (summer). Return and supply pipes connect around 60% of the buildings in the
area with a base heat generation plant responsible to keep the differential pressures at the consumer
substations above a minimum.

Additionally, three electric boilers, i.e., electric heaters combined with thermal storage tanks, are
installed as coupling points between the networks. Adequate locations for the boilers were identified
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using a simulation-based sensitivity analysis in an early planning phase. These locations are especially
prone to over voltage problems resulting from PV generation, an issue that might be eased by the active
conversion of excess power generation. The volume of the thermal storage tanks and the capacities
of the electric heaters are chosen as degrees of freedom of this system. The system layout is illustrated
in Figure 9.

PV
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PV
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Figure 9. Schematic overview of the hybrid system layout for the rural residential area, depicting the
electrical distribution network and the district heating network (EH, electric heater; TES, thermal energy
storage). The components targeted by the design optimization process are highlighted in orange.

6.2.2. Operational Strategy

Decentralized electricity generation from PV systems of local prosumers pose challenges to the
electrical distribution grid. Especially in times when PV production is high and electrical consumption
is low, the upper voltage limit in the network can be exceeded and lines or transformers can be
overloaded. To mitigate some of these problems, the operational strategy foresees to utilize excess
power from PV overproduction. The local power grid is regarded as virtual power plant (VPP) and a
supervisory controller tries to use as much of the excess power, i.e., negative residual load, locally via
the installed electric heaters. Based on these ideas, a suitable operational strategy was implemented in
Python using the following rule-based scheme (compare with Section 4.4.1):

1. In case the VPP generates excess power, the electric heaters are set to utilize this power and store it
in the respective storage tanks as long as their temperatures are below 95 ◦C.

2. The thermal storage tanks are discharged as long as the temperatures in their top layers are above
the current district heating supply temperature and only if there is enough district heating demand.

6.2.3. Design Optimization Strategy

The high number of possible system configurations and the use of a rule-based operational
strategy makes HPS the most appropriate optimization approach for this application. Figure 10 illustrates
the overall simulation-based optimization procedure.

The design optimization of the coupling units, i.e., finding optimal sizes for the defined degrees of
freedom, rests upon the following optimization targets:

• Reducing heat generation from the main supply unit in the district heating network is rewarded.
• Costs for storage tanks and electric heater capacities linearly increase depending on size.
• Potentially increased power imports into the electric network introduced by the electric heaters

are penalized.

These targets are combined into a single objective function using appropriate weighting factors.
The six-dimensional solution space is reduced by introducing bound constraints for the degrees of
freedom, avoiding extremely high and low tank volumes and electric heater capacities.

The implementation relies on the use of a dedicated open-source tool for simulation-based
optimization [46], which allows parallelization on multiple machines and the use of optimization
algorithms specialized for efficient black-box optimization. In this case, the freely available PSwarm
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solver [45] is used that combines particle swarm optimization and pattern search for efficient global
optimization. The pattern search relies on a coordinate search method that is responsible for local
convergence, whereas the population-based particle swarm algorithm performs a global search
enabling the exploration of the whole design space. The stopping criterion is based on a maximum
number of co-simulation runs, i.e., objective function calls.
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Figure 10. Schematic overview of the HPS workflow applied to the system design of the rural residential area.

6.2.4. Results

The convergence of the objective function value over the number of co-simulation runs,
i.e., assessed system configurations, is shown in Figure 11. The objective function values are shown
relative to a reference solution reflecting the current status quo, i.e., without any active coupling
between the networks using the electric heaters. The optimization algorithm is able to outperform the
reference scenario within only a few simulation runs. After around 450 runs, the algorithm converges to
a minimum and stops after it exceeds the maximum number of objective function calls. Although this
might only be a local minimum, the found minimum objective function is around 5.7% lower compared
to the uncoupled case. The corresponding optimal system configuration exhibits electric heaters with
a total capacity of 260 kWel and thermal storage tanks with a total volume of 20 m2.

The impact on the two networks for the uncoupled case and the optimal design case in terms
of load duration curves is shown in Figure 12. A total of around 220 MWh electricity is converted
in the optimal design case using electric boilers, illustrated by the colored areas. It can be seen that
electric heaters in combination with thermal storage tanks are able to use a significant share of the
excess power generation from PV by converting it into heat that is fed to the district heating network.
Due to the seasonality of PV generation, district heating is mainly affected in low heat demand times,
i.e., summer.
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Figure 11. Convergence of objective function shown relative to the reference scenario without coupling
between the networks, i.e., no electric boilers.

(a) Electric network (b) District heating

Figure 12. Load duration curves for the electric network (a) and the district heating network (b) for the
uncoupled and the optimal design system configurations.

7. Conclusions

This work presents a simulation-based design approach for hybrid thermal-electrical distribution
grids. The approach addresses the technical challenges of both domains while at the same time
emphasizing their mutual control and operation, in order to exploit hitherto unused synergies in
production, storage and consumption. As such, this approach is a significant extension of established
tools for the design optimization of multi-energy systems.

Co-simulation is recommended for the technical assessment as a means to bridge the gap between
single-domain simulation tools and the multi-domain target of investigation, providing a viable and
practical approach to involve experts from different domains. A novel methodology is presented that
links complementary design approaches to suitable operational strategies and optimization methods
according to the state of the art. This enables the exploitation of synergies in the control and operation
of hybrid thermal-electrical distribution systems in an optimal way. Furthermore, an implementation
of the proposed approach based on state-of-the-art tools is presented. Finally, the applicability of the
presented approach is demonstrated in two real-world applications.

Future work could apply this approach to other network-related multi-energy applications,
such as design of short-term and long-term storage, peak shaving and others. A method for
representative days selection for coupled heat and power networks could avoid the need for full-year
simulations and, thus, reduce computational time. The use of computationally efficient model-based
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optimal control models or faster models for the physical system could enable the combination with
meta-heuristic design optimization in a tolerable run time.
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Abbreviations

The following abbreviations are used in this manuscript:

API application programming interface
BB biomass boiler
CHP combined heat and power
DH district heating
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
GB gas boiler
GWHP ground water heat pump
MPC model predictive control
PV photovoltaic
RES renewable energy sources
VPP virtual power plant
WWHP waste water heat pump
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Abstract: The city of Stockholm is close to hitting the capacity limits of its power grid. As an
additional challenge, electricity has been identified as a key resource to help the city to meet its
environmental targets. This has pushed citizens to prefer power-based technologies, like heat pumps
and electric vehicles, thus endangering the stability of the grid. The focus of this paper is on the
district of Hammarby Sjöstad. Here, plans are set to switch from district heating to heat pumps.
A previous study verified that this choice will cause overloadings on the electricity distribution grid.
The present paper tackles this problem by proposing a new energy storage option. By considering
the increasing share of electric vehicles, the potential of using the electricity stored in their batteries to
support the grid is explored through technical performance simulations. The objective was to enable a
bi-directional flow and use the electric vehicles’ (EVs)’ discharging to shave the peak demand caused
by the heat pumps. It was found that this solution can eliminate overloadings up to 50%, with a 100%
EV penetration. To overcome the mismatch between the availability of EVs and the overloadings’
occurrence, the minimum state of charge for discharging should be lower than 70%.

Keywords: vehicle-to-grid; heat pumps; integrated energy systems

1. Introduction

Sweden has adopted the ambitious goal of becoming a zero carbon emission society by 2045 [1].
Within this context, the energy sector has attracted a special attention because it accounts for more than
70% (including transport) of total greenhouse gas emissions [2]. When looking at the internal electricity
mix of this country [3,4], electricity is promoted as a clean resource and thus a promising option to
achieve the 2045 target. As a consequence, in Stockholm, citizen-driven initiatives work to promote the
installation of distributed residential heat pumps (HPs) and the adoption of electric vehicles (EVs) [5].
A real example is represented by Hammarby Sjöstad, which is a residential neighborhood constituted
by multi-apartment buildings. This district is currently connected to the city’s district heating (DH)
network, but projects are already approved for some customers to switch to their own domestic HP.

On an opposite side, this electrification trend is challenged by a structural problem that impacts
the power grid system in Stockholm. In fact, the electricity transmission to the city is close to its
maximum power capacity. This means that the distribution system operators (DSOs) are being forced
to impose power limits on the distribution grid [6]. Thus, the connection of new loads, like HPs
and EVs, could soon be impossible. If capacity expansion investments are to be avoided or delayed,
alternative solutions should be quickly found.

A promising option is offered by energy storage [7]. This technology can shift loads in time by
charging when surplus energy supply is available and discharging during periods of peak demand.
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This can be done on both the heat and on the electricity sides, depending on the type of energy storage
technology used.

For this paper, the focus was set on the electric power side by considering the electricity storage
potential in the batteries of EVs. In this context, an EV is regarded not only as a load to the power
grid but also as an extended capacity for supply. This is based on the vehicle-to-grid (V2G) concept.
V2G technology enables a bi-directional flow between an EV’s battery and the grid [8–11]. Thus,
both the charging and discharging of electrical energy are allowed.

The background of this study was linked to a real initiative called “Charge at Home” (“Ladda
Hemma” in the original Swedish). Within this context, several housing associations in Hammarby
Sjöstad were encouraged and assisted in the process of installing EV charging infrastructures in their
buildings. The study presented in this paper explores the potential of enabling a V2G bi-directional
flow at these stations. By assuming that distributed domestic HPs are installed in Hammarby Sjöstad,
the objective was to use the electricity stored in the EVs’ batteries to cover the peak power demand
generated by these HPs. The main challenges were the availability of EVs parked at the stations and
the level of charge of their batteries.

The importance of this study was stressed by a previous assessment that the installation of
distributed HPs in Hammarby Sjöstad will cause overloadings on the local electricity distribution
grid [12]. This was found by assuming that DSOs would impose a maximum loading limit equal
to 100% for each grid’s cable. The possibility of using the thermal mass of the buildings as thermal
energy storage (TES) by controlling the thermostats of the apartments was also studied. Despite
the implementation of this solution, grid overloadings were still detected. The present work builds
on this last outcome by verifying how much V2G technology can further contribute to balance
grid overloadings.

Several papers have analyzed the possibility of using V2G for peak shaving and avoiding grid
upgrades. Most of them [13–18] proposed optimal control algorithms by looking at costs and emissions.
Some of them also took battery degradation [19,20], market composition [21], and incentives [22] into
account. The studies of [23,24] combined the capacity provision market with the spinning reserve. The
authors of [25] showed the advantage of combining a V2G peak shaving strategy with a domestic
battery and a photovoltaic (PV) system.

Despite the broad perspective, none of these papers considered the potential synergies and impacts
between the power, transport, and heating sectors.

The authors of [26] implemented V2G with a time-of-use tariff. This study also showed the
impact of considering the indoor temperature of buildings as a constraint on the supply dispatch of a
micro-grid. However, their perspective was limited to one building.

The energy hub presented in [27] included the heating and cooling demands of a residential
community. How the implementation of V2G can impact electricity and cooling prices was
shown. However, impact and synergies among these energy carries were not considered from
a technical standpoint.

Given these literature gaps, one objective of this paper was to propose a district-level perspective
on potential synergies among the heating, electricity, and transport sectors. To approach this
sector-coupling problem, the co-simulations of dedicated models [12,28] and stochastic profiles were
combined. Thus, the technical performances of technologies belonging to these different sectors
were linked.

Here, the focus was on the case of a multi-apartments neighborhood located in Stockholm,
Hammarby Sjöstad. By taking into account that distributed HPs can overload the local grid (reference
scenario from [12] as a main objective, this paper aimed at estimating the potential of V2G to alleviate
this problem (V2G integration scenario). This was done by using the energy stored in the EV’s batteries
to shave the HPs’ peak power demand.
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The remainder of the paper is as follows. Firstly, the case study is presented in Section 2.
Secondly, the two scenarios and the corresponding simulation models are described in Sections 3 and 4,
respectively. Finally, the results are discussed in Section 5.

2. Case Study

The case study presented in this paper corresponded to a specific area in Hammarby Sjöstad,
as shown in Figure 1. All the buildings in this area are connected to a single medium-to-low voltage
transformer substation. The conceptual illustration of the case study area in Figure 1 sketches the
current type of energy infrastructure in the neighborhood. The multi-apartment buildings are connected
to a DH network for space heating and domestic hot water purposes. The installed capacity is about
1.2 MW for a total of 94,555 m2 of heated area. Electricity is provided by a low voltage distribution
grid (400 V) that covers a capacity of about 1.6 MW.

 

Figure 1. The case study area: a conceptual illustration and a satellite view BB: building block; DH:
district heating.

Within the scope of the scenarios later described in Section 3, the buildings are grouped in 22
building blocks (BB) according to the energy declaration documents of the corresponding housing
associations [29]. As reported in Table 1, the BBs are identified through their heated area.

Table 1. Square meters of heated area for each BB.

BB1 BB2 BB3 BB4 BB5 BB6 BB7 BB8 BB9 BB10 BB11

4576 4054 919 3258 4889 8405 1613 1613 2831 1031 3138

BB12 BB13 BB14 BB15 BB16 BB17 BB18 BB19 BB20 BB21 BB22

1718 1931 3340 5021 15,060 3466 10,699 3632 3560 3560 6241

The choice of a limited area was motivated by the focus of the study, which was to show the
potential of peak power demand management by using V2G technology. This could be easily replicated
to show the impact on the whole neighborhood (or beyond).

3. Scenarios

3.1. Reference Scenario

The reference scenario for the present work was taken from a previous study presented in [12].
Given the interest of a few housing associations (Section 1), the focus was to assess the technical
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feasibility of replacing a DH network with domestic-distributed HPs. Since the sole installation of
the distributed HPs was shown to cause overloadings on the electricity distribution grid, a demand
response solution was further assessed. The thermal mass of the buildings was used as TES to alleviate
the grid from the overloadings caused by the HPs. A positive contribution was shown with a reduction
of the heat demand dependence from a DH of 6%, compared to the case without the thermal mass
control. Furthermore, up to 50% fewer overloadings were detected at the HP level. However, it was
also highlighted that a full disconnection from the DH network was not possible given the current
infrastructure capacity. These outcomes [12] represented the reference scenario for the present study.

3.2. V2G Integration Scenario

In the present paper, the reference scenario was extended by assessing the potential of V2G
technology as a way to further support the electricity distribution grid. A simplified illustration of this
concept is shown in Figure 2. For the sake of simplicity, a BB is represented as one building, though it
can also correspond to a group of buildings. The V2G charging/discharging station is located upstream
of each HP installation. The EVs’ charging/discharging patterns were based on stochastic profiles.
These were generated according to the assumptions described in Section 4.

 

Figure 2. Conceptual illustration of the case study within the vehicle-to-grid (V2G) scenario. HP: heat
pump; EV: electric vehicle.

The EVs’ parking stations are located in the BBs, in line with the “Charge at Home” initiative
(Section 1). In this scenario, as illustrated in Figure 2, both charging and discharging processes—and
thus V2G—were enabled in each BB. The aim was to cover the grid overloadings by performing peak
shaving with the electricity stored in the EVs’ batteries. This study considered a 100% penetration of
the EVs. Furthermore, the EVs’ charging was assumed to happen overnight with no overloadings.
More specific assumptions are described in Section 4.

4. Models

Different combinations of models were used to represent the two scenarios described in Section 2.
These models are discussed in detail in the following sub-sections.
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4.1. Models for the Reference Scenario

This sub-section briefly highlights that, from a modeling and simulation perspective,
a co-simulation method [28,30] was used to assess the interaction between the loading of the electricity
distribution grid, the heat supply from HPs and a DH network, and the indoor temperature of
residential buildings. Figure 3 sums up the modeling tools that were used for each system involved in
the scenarios. The scheme also shows the main heat (red lines), power flows (black lines), and control
signals (blue dashed lines).

 

 

Figure 3. Co-simulation scheme for the reference scenario (EB: electrical backup; TH: thermostat).

The co-simulation environment allowed us to capture two feedback loop signals. On one
hand, the loading status of the grid was checked to decide whether the HPs could be operated.
An overloading signal was generated when 100% of the capacity was reached. On the other hand, the
indoor temperature of the BBs was monitored to decide if the thermostat set point could be changed to
load/unload the thermal mass. In this case, the indoor temperature was to be maintained within the
range of 20 ± 0.5 ◦C.

The following models were implemented for this reference scenario:

• A power flow model for the electricity distribution grid. An open source tool called Pandapower [31]
was used for this purpose.

• A reduced order model for the thermal demand of the BBs. This model is part of the Modelica
Buildings library [32], maintained by the International Building Performance Association (IBPSA).

• A Python model based on a coefficient of performance formula [33] for the HPs.
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• Python models based on energy balance equations for the DH, the TES, and the electrical
backup units.

• A Python in-house operation logic for the control of the heating supply.

These models were used within a one year simulation with an hourly time step. A detailed
explanation, parameters, variables, and assumptions for all the models are provided in [12].

4.2. Models for the V2G Integration Scenario

Concerning the V2G integration scenarios, two models were combined:

• The grid overloading power profiles generated as a result of the reference scenario for the
critical cables.

• Stochastic driving patterns for the EVs owned by the inhabitants of Hammarby Sjöstad, assuming
a 100% penetration of this technology.

Regarding the first model, a critical day was selected (10th January) from the reference scenario,
together with the identified critical cables. With reference to this day, the overloading power for each
critical cable was obtained by subtracting the power corresponding to a 100% loading of each critical
cable from the actual loading. For the hours that did not present overloadings, the overloading power
was set to zero.

In this study, the analysis was extended to all cables, including the parallel ones. Figure 4 shows
the one-line diagram of the electricity distribution grid of the case study. The four red-highlighted
cables are the ones that were identified as critical in the reference scenario. Two of these cables
corresponded to bundled parallel cables. The corresponding labels are listed as the following:

• Cable 1—LU 1
• Cable 2—Llugnw24, Llugnw26, Llugnw27
• Cable 3—Luddnw3
• Cable 4—Llugnw6, Llugnw7

 

Figure 4. One-line diagram of the case study 400 V grid.
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The stochastic driving patterns of the EVs were generated by means of an in-house, Python-based
model. Table 2 summarizes the main inputs to the model, with the related references for the assumptions.
These values were considered valid for the selected location. The number of cars per person referred to
statistical data of a typical Stockholm neighborhood. To determine the density of inhabitants, it was
reasonably assumed that two people could live in 48 m2. The level of penetration of EVs was related to
a future case, in line with the current trend of an increasing EV market share [34]. These three inputs
were used by the model to determine the number of EVs per each BB.

Table 2. Inputs to the in-house EVs’ driving profile model. Soc: state of charge.

Inputs Value Unit Reference

Number of cars per person 0.377 # [35]
Number of people per heated m2 0.042 # [12]

Share of EVs in the area 100 % arbitrary
Travel distance boundaries 6–45 km [36]

Speed boundaries 40–55 km/h [36]
Power exchange 3.68 kVA [37]
SoC boundaries 50–90 % arbitrary

Minimum SoC for discharging 80 % arbitrary
Number of power exchange stations 5 # arbitrary

Number of trips per day 2 # arbitrary

From further statistical data, it was possible to assume average driving kilometers and speeds.
The state of charge (SoC) of an EV, which refers to the charge level of its battery, was constrained by
charging and discharging limits. An EV had to be charged if its SoC was below 50%, while charging
was prevented if its SoC was over 90%. This is mainly due to technical performance reasons of the
battery. Discharging to the grid was enabled when an EV’s SoC was over 80%. Since this represented
a key parameter for the present study, a sensitivity analysis was performed for values between 70%
and 90% of the minimum SoC for discharging. The number of charging stations for each BB and the
number of trips per day referred to the context of a residential neighborhood. This was also in line
with the initiative “Charge at Home,” presented in Section 1. Thus, the two trips represented a way to
work and a way back to home. The potential charging/discharging of an EV could happen after these
two trips were completed each day.

Assumed initial hourly profiles for the share of cars starting a trip at a certain hour were taken as
a further input to the model. These profiles were randomized using the parameters’ ranges presented
in Table 2.

Given all these inputs (Table 2), the in-house Python model performed three main steps:

• The total number of vehicles was allocated to each BB proportionally to the number of inhabitants
and to the number of cars per person.

• The starting times for the cars’ trips were randomized around an initial value defined per each
hour of the day [36]. The “random” Python module was used for this purpose.

• The daily trips for each car were simulated by assigning, on a random basis (“random” module),
the travel distances, the speed boundaries, and the initial SoC.

The main outputs of the model were:

• The number of cars per each station (or BB).
• The share of each cars’ brand per each station (or BB).
• The starting and ending times of each trip per each car.
• The end-of-the-day SoC per each car.
• The available power hourly profile per each car per each station (or BB).
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Finally, the EVs’ available power profiles were combined with the overloading power profiles
taken from the reference scenario. The objective was to estimate the potential of V2G to alleviate the
grid overloadings caused by the installation of the distributed HPs. Thus, a peak power shaving
strategy was implemented by using the electricity stored in the EV’s batteries. This was done by
overlapping the two hourly profiles along the selected critical day. In particular, a V2G discharging
service was activated when the following combination of events occurred:

• A potential overloading was detected on an upstream cable.
• One or more EVs were parked with an SoC over 80% at a corresponding charging/

discharging station.

The validity of the results was bound to the assumption that the EV’s driving patterns did not
present large differences from one day to the other. This was considered reasonable for a residential
district, like Hammarby Sjöstad.

Since it was expected that the assumption for the minimum SoC for discharging played a relevant
role, a sensitivity analysis was conducted for minimum SoC values equal to 70%, 75%, 80%, 85%,
and 90%.

5. Results

Within the scope of the present paper, the results are presented and discussed in Figure 4 and in
the remainder of this section.

Figure 4 highlights the cables that were found to be still critical within the reference scenario.
This means that, despite the utilization of the thermal mass of the BBs as a TES device, not all the
grid overloadings, caused by the HPs, could be compensated for [12]. This was mainly due to the
constraints in terms of thermal mass capacity of each BB and indoor temperature comfort. The latter
was assumed to 20 ± 0.5 ◦C. By introducing V2G technology, according to the models discussed in
Section 4.2, the objective was to explore the technical potential of EVs’ batteries to provide further
capacity to the grid. In this way, it could be shown how V2G can help covering these remaining
overloadings generated by the HPs’ demand peak.

Concerning the V2G integration scenario, Table 3 shows the number of EVs that were assigned
to each BB. This outcome was based on the parameters presented in Table 2, regarding the number
of cars per person, the number of people per BB’s heated square meters, and the share of EVs in the
studied area.

Table 3. Number of EVs per each BB.

BB Number of EVs

BB6 130
BB16 233
BB19 58
BB20 57
BB21 57

In terms of electricity discharging to the grid, the number of EVs reported in Table 3 shows the
total availability of EVs when no constraints about trips and SoC were considered. However, within
the V2G integration scenario, the EVs were firstly required to be parked at their BBs’ stations after
completing two daily trips (to and from work). Secondly, their SoC had to be above 80%. Based on
these constraints, Figure 5 illustrates the EVs’ availability when back from work, i.e., after the second
daily trip. When looking at the number of EVs parked (top graph in Figure 5), it could be verified
that the cars were driven back from work along the day, and, around 6 p.m., most of them were
parked at home. However, since an SoC higher than 80% was also required, the actual, much lower,
EVs’ availability is shown in the bottom graph of Figure 5. For example, at the charging station of
BB16, at 6 p.m., only 25% of the parked EVs could discharge electricity to the grid.
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Figure 5. EVs’ availability at each BB station during the selected critical day.

Figure 6 illustrates the impact of the EVs’ availability for V2G on the grid’s overloadings. In this
figure, the reference scenario (without V2G integration) and the V2G integration scenario are compared
over the selected critical day. The comparison is done by showing the percentage overloading
performance for each critical cable. The loading performance below 100% is not shown in order to set
the focus on the overloadings only.

Figure 6. Cont.

87



Energies 2020, 13, 1705

Figure 6. Cables overloading performance day before and after the integration of V2G.

As it can be noticed in Figure 6, the overloadings were concentrated during the late afternoon and
during the evening. This is reasonable since the studied area is mainly a residential one, so people are
at work during the day hours.

The integration of V2G helped to alleviate the overloadings by shaving the peak demand generated
by the HPs. All the cables, except Llugnw6 and Llugnw7, fully benefited from this new system with
no overloadings left. The other cables remained critical, especially before 6 p.m., when most of the cars
were still away from the parking stations. This means that, with a 100% level of EV penetration in the
neighborhood, the discharge of electricity from EVs’ batteries could cover the amplitudes of the critical
power peaks. The time matching between overloadings and the EVs’ availability remained a challenge.

From the perspective of the main objective of the case study, Figure 7 shows the relation between
the cables and each BB and, thus, each distributed HP unit. Considering that this analysis was related
to a critical day (representative according to the assumption in Section 4.2), it can be concluded that the
integration of V2G has the potential to fully enable the installation of HPs in BB6, BB19, BB20, and BB21.
Concerning the other BBs, further measures should be implemented. For example, if a grid upgrade is
to be either avoided or delayed, a different V2G operation logic should be tested. The implementation
of smart control devices based on forecasting methods is a suggestion for future work.

 

Figure 7. Cables overloadings over the selected critical day.
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Finally, in order to assess the relevance of the assumption for the minimum SoC for discharging,
a sensitivity analysis is presented for values equal to 70%, 75%, 80%, 85%, and 90%. It was found that the
availability of cars with a minimum SoC of 70% allowed for the covering of all the overloadings during
the selected critical day. However, this is expected to increase the following charging requirements,
which should be further tested. On the opposite side, no cars were available when the minimum SoC
was set to 90%, so none of the overloadings could be balanced. As an example, Figure 8 shows the
results of this sensitivity analysis at 5 p.m. during the selected day for all the critical cables. At this
specific hour, a minimum SoC of 75% already solved the overall criticality. However, the cable Llgnw7
was still overloaded by about 8% at 1 p.m.

Figure 8. Cables’ overloadings at 5 p.m. for different minimum SoC values for discharging.

As a more general conclusion, it can be stated that the approach presented in this paper can
play a relevant role as a decision support tool for city planners, energy utilities, and engaged citizens.
A district-level perspective linked to a sector-coupling approach (heating, electricity, and transport)
can unlock the implementation of innovative technologies like active thermal mass and V2G.

6. Conclusions

In this paper, a district level perspective was applied on an integrated energy infrastructure
problem where the electricity, heating, and transport sectors were interconnected.

Hammarby Sjöstad, a residential neighborhood in Stockholm, was selected as a relevant case.
A previous study assessed that the plan of installing distributed domestic HPs will overload the local
electricity distribution grid. The criticality of this situation can be improved, but not be solved, by using
the thermal mass of the buildings as TES.

In the present work, V2G was presented as a new solution to further support the grid.
This technology enables a bi-directional flow of electricity between the EVs’ batteries and the grid.
The aim was to explore the potential of V2G to perform peak power demand shaving by discharging
electricity to the grid. The objective was to compensate for the overloadings caused by the HPs.

The technical performance simulation over a representative critical day demonstrated that,
with a 100% penetration of EVs, the available power for discharging could cover all the overloadings’
amplitudes. However, because of the time mismatch between the cars’ availability and the need
for balancing, only some cables could be completely relieved. This means that only the buildings
connected to these cables could install residential HPs.

This conclusion is strongly dependent on the minimum SoC set for discharging. The study was
conducted with a minimum SoC value of 80%. It was further shown that lowering this parameter to
70% could help solving the overall overloading problem. However, this is expected to have an impact
on the following charging requirements, which should be further studied.
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As future research, a model predictive control logic should be investigated in order to solve the
time mismatch challenge. Furthermore, the validity of the results should be tested against potential
daily EVs’ driving patterns variations. A sensitivity analysis regarding the penetration level of EVs
and their SoC boundaries for charging is also suggested.

Finally, the approach used in this study shows that city planners, energy utilities, and engaged
citizen can benefit from taking a district-to-city level perspective on integrated energy systems.
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Abstract: The modern distribution networks under the smart grid paradigm have been considered
both interconnected and reliable. In grid modernization concepts, the optimal asset optimization
across a certain planning horizon is of core importance. Modern planning problems are more inclined
towards a feasible solution amongst conflicting criteria. In this paper, an integrated decision-making
planning (IDMP) approach is proposed. The proposed methodology includes voltage stability
assessment indices linked with loss minimization condition-based approach, and is integrated with
different multi-criteria decision-making methodologies (MCDM), followed by unanimous decision
making (UDM). The proposed IDMP approach aims at optimal assets sitting and sizing in a meshed
distribution network to find a trade-off solution with various asset types across normal and load
growth horizons. An initial evaluation is carried out with assets such as distributed generation
(DG), photovoltaic (PV)-based renewable DG, and distributed static compensator (D-STATCOM)
units. The solutions for various cases of asset optimization and respective alternatives focusing on
technical only, economic only, and techno-economic objectives across the planning horizon have
been evaluated. Later, various prominent MCDM methodologies are applied to find a trade-off
solution across different cases and scenarios of assets optimization. Finally, UDM is applied to find
trade-off solutions amongst various MCDM methodologies across normal and load growth levels. The
proposed approach is carried out across a 33-bus meshed configured distribution network. Findings
from the proposed IDMP approach are compared with available works reported in the literature. The
numerical results achieved have validated the effectiveness of the proposed planning approach in
terms of better performance and an effective trade-off solution across various asset types.

Keywords: distributed generation; distribution network; distribution network planning; distributed
static compensator; losses minimizations; mesh distribution network; multi-criteria decision making;
unanimous decision making; voltage stability assessment index

1. Introduction

The global load demand for electricity has increased significantly, pushing the distribution network
(DN) to their operational limits results in issues i.e., voltage stability and system losses. Also, the
distribution grid is more susceptible to technical, cost-economic, environmental, and social issues,
especially from the perspective of meeting growing demand [1]. Conventionally, the traditional
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distribution grid paradigm was deterministically designed and planned to retain unidirectional
power flow under radial topology, particularly considering simple protection schemes and easy
control. Moreover, the traditional planning tools usually applied for distribution network planning
problems (DNPP) might not remain feasible to mitigate the concerned issues by replication the existing
infrastructure, which is certainly not a cost-effective solution [2]. The DNPP needs the support of
various optimization tools of different genres aiming for futuristic scenarios.

Practically, DNPP aims realistically towards achieving a trade-off solution under multiple
conflicting criteria subjected to various non-linear system constraints. The topology constraint in
most of the DNPP studies has considered radial topology rather than interconnected configuration [3].
Similarly, distributed generation (DG) incorporation was neither considered in the planning stage nor
assisted in the operational stage of the radial-structured distribution network (RDN) in the traditional
grid paradigm. However, the addition of DG in DN has transformed the passive nature of the system
into an active one and hence also transformed into an active distribution network (ADN) [4]. The
RDN along with optimal DG placement (ODGP) can either remain in reconfigured configuration or
be transformed into interconnected topologies i.e., loop DN (LDN) or mesh DN (MDN) on the basis
of changing the state of normally open (NO) and tie-switches (TS). The interconnected arrangement
is more suitable for densely inhabited urban centers and is feasible due to the cost-effectiveness of
existing infrastructure employment [5,6].

In the recent literature studies, DNPP considering asset optimization has been considered as one of
the core research dimensions to strengthen DN with various types of objectives subjected to constraints,
with various methods applied at various system models. Plenty of techniques and methodologies
of the different genres have been proposed for assets optimization studies (predominately DG)
aiming at various single and multiple objectives (or criteria), which are usually conflicting in nature,
under numerous constraints [7–10]. Among the main efforts to solve the aforementioned planning
problems, the DN planners and utility operators consider optimal assets placement, dominated by DG
units, in distribution mechanisms on the basis of size, location, quantity, capacity, type, and topology.
The most sorted out solutions include cost-economic, technical, and environmental benefits, aiming at
the achievement of trade-off solutions among multiple objectives [11]. The DNPP with DGs and
associated assets have been considered a worthy solution, particularly enabling utilities to improve
power quality and inducing deferral in DN up-gradation during load growth across the planning
horizon, which usually spread across one year to several [12].

The methods addressing ODGP problems have been accredited to various objectives, primarily
from the viewpoint of voltage (profile) maximization (VM) and system loss minimizations (LM).
Moreover, technical advantages include DG penetration in DN, power quality (at utilities and consumers
end), system stability, reliability, improved (bidirectional) power flows, and short-circuit-current (SCC)
levels [7,8]. The other associated objectives concerned include the cost of active/reactive power losses,
initial capital, operational, maintenance, and running cost. The environmentally feasible solutions with
social acceptability concerning technology acceptance and consumer comfort are also amongst the
addressed goals [9–11]. Besides DG, assets like reactive power compensation devices are also utilized
for optimal operation of the DNPP, such as capacitors and flexible ac transmission system (FACTS)
devices [6,12,13]. Furthermore, the application of distributed static compensators (D-STATCOMs)
with DGs have been mostly reviewed in RDN [14]. In addition, normally open tie-switches (TS),
normally closed sectionalize switches, concerned conductor replacements, and substation capacity
enhancements are considered in asset optimization in DN. Furthermore, reconfiguration of a network
to modified radial or to an interconnected topology has also been considered as a key component in
the asset optimization of DN, from the viewpoint of DNPP [15,16].

In all of the above-mentioned works [6–16], the assets mostly used are DG, reactive power
compensating devices, grid reinforcement with associated devices, and change of DN topology. The
most significant asset optimization approaches aiming at optimal sitting and sizing under system
constraints include classical techniques like analytical, deterministic, numerical, and exhaustive search.
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The heuristic, meta-heuristic, artificial intelligence-based algorithms include nature-, society-, or
population-inspired methodologies. However, these algorithms can result in local optima in various
cases. This particular limitation is usually bridged with hybrid algorithms aiming at global optima.
Besides that, multi-criteria (also known as multi-attribute) decision-making (MCDM) techniques are
employed to sort out a trade-off solution among various concerned criteria/objectives of contradictory
nature. Such methods can be priori optimized with assigning weights (subjectively or objectively) to
each criterion (priori methods) or applied later (posteri methods) on a various number of solutions
obtained from inner optimization. Besides that, commercial solvers are also employed for planning
purposes such as the general algebraic modeling system (GAMS) [15,16].

From the perspective of DN, consideration of radiality constraint has dominated in most of the
above-mentioned reviewed works, aiming at ODGP. However, the interconnected DN such as LDN and
MDN are not as prevalent as their radial counterparts and need consideration from the viewpoint of
planning [17]. LDN and MDN have been assessed from the perspective of various analytical/numerical
and hybrid techniques from the perspective of various types of objectives such as loss minimization
(LM) [18–20], voltage stabilization (VS) [19,20], DG penetration [19,20], reliability, and cost-related
indices [20,21]. The LDN/MD-based infrastructure optimization has considered various assets such
as the number of TS [22,23] and its influence on different load levels and evaluation across load
growth [20,24,25]. Moreover, the replacement of TS with fault current limiter (FCL) [26], reinforcement
versus looping/meshing [27,28], and optimal utilization of D-STATCOMs only in interconnected DN
have also been considered [29]. In the recent works reported in [30,31], two different variants of an
integrated planning approach incorporating improved voltage stability assessment indices (VSAI)
along with loss minimization condition (LMC) have been employed for optimal asset optimization
in MDN such as DG only and DG with D-STATCOM for VS, LM, and cost-related objectives under
normal load.

The optimal planning of D-STATCOM is accredited with increasing penetration of renewable
generation (REG)-based DGs, VS, LM, and minimizing associated cost objectives. Like most of the
ODGP-based DNPP, D-STATCOM integration has mostly been considered radiality constraint [14]. It is
also found that D-STATCOM has been utilized in mostly RDN for the achievement of core objectives
such as system losses reduction, voltage curve improvement, and reduction of concerned costs. The
work in [32] was aimed towards cost reduction along with the attainment of technical objectives.
The D-STATCOM on the basis of asset placement on the same or different buses along with DGs or
separately have been reported in [33–35], supported by relevant technical performance evaluations.
The D-STATCOM placement on different load levels [36] and multiple asset sets (DG and D-STATCOM)
on different buses [29–34] and the same buses [37] have been evaluated from various objectives. It is
also important to mention that the works reported in [14,32–37] have mostly aimed at RDN, centered
on a single branch (two buses) model and cannot encompass the core dynamic of LDN and MDN that
is usually fed by more than on sending end.

From the viewpoint of MCDM, hybrid methodologies have been put forward to achieve multiple
objectives or evaluation under various criteria. In the research works [38–41], the prominent MCDM
methods employed are weighted sum method (WSM), weighted product method (WPM), technique
for order preference by similarity to ideal solution (TOPSIS), preference ranking organization method
for enrichment of evaluations (PROMETHEE), and RDN is reconfigured in terms of asset optimization
to achieve objects such as active power losses, reliability, and average energy not served (AENS). Also,
the heuristic and meta-heuristic methods in combination with MCDM have been utilized in various
asset planning works to achieve a suitable solution. In [42], genetic algorithm (GA) and TOPSIS have
been employed for optimal sitting and sizing of DG and remote terminal units (RTUs). In [43], DN is
radially reconfigured with non-dominated GA-II (NSGA-II) and a combination of MCDM techniques
to achieve an optimal solution with fewer energy losses, an optimum level of energy not served (ENS),
and load balancing, respectively.
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The particle swarm optimization (PSO) along with the analytical hierarchal process (AHP)
in [44] have been utilized to achieve multi-objective solutions across technical, environmental, and
economic-based criteria, with DGs in radially reconfigured DN. In [45], teaching–learning-based
optimization is employed for multi-objectivity using penalty factors for a DG-only solution and an
improved variant in [46] is used to achieve a solution under multiple assets (DGs and capacitors).
The multi-objective, opposition-based, chaotic differential Equation-based method in [47] is used for
techno-economic analysis of only DGs and to avoid premature convergence in the above-mentioned
meta-heuristic methods. The research works in [48,49] have considered DG and renewable DG (REG)
penetration along with various indices to offer a simple solution aiming at voltage stability and
loss minimizations. The load growth has been briefly discussed for DGs only from the viewpoint
of technical objectives considering MCDM in [50] and voltage stability index with MCDM-based
methodology in LDN in [51,52].

As aforementioned, RDN was not planned to integrate DGs and nearly every DNPP with any
sort of asset is aimed credibly towards achieving multiple conflicting objectives under any topology,
abiding nonlinear system constraints. Thus, the modernization of DS in planning and operation with
several DGs types and transformations to an ADN has become a noticeable research dimension. Hence,
DN modernization with efficient asset optimization and interconnected topology can be considered
as a prominent research dimension in the area of the smart distribution network (SDN) under the
smart grid (SG) paradigm from the perspective of planning, scheduling, and operation, respectively.
Moreover, the SDN under the SG paradigm is expected to be reliable from interconnected topology and
multi-criteria attainment oriented with conflicting nature. The planning tools also need to be updated
and evaluated across load growth considering multi-dimensional evaluation, since technically efficient
solution might not be cost-effective. Hence, a composite asset planning problem with multi-criteria
optimization needs research consideration, supported with multi-dimensional performance evaluation
across load growth. Although reviewed works have partially addressed the aforementioned issues
from various perspectives, bridging the limitations offered in reviewed literature is the motivating
force for research and serves as the impetus of this paper.

In this paper, VSAI interrelated with LMC-based approach is integrated with various MCDM
methodologies, followed by unanimous decision making (UDM), and is given the name integrated
decision-making planning (IDMP). The MCDM methodologies employed in IDMP include WSM,
WPM, TOPSIS, and PROMETHEE. The proposed IDMP approach aims at bridging the research gap in
the reviewed literature by optimal asset optimizations in MDN for a trade-off solution amongst various
alternatives across normal and load growth horizons. The 33-bus distribution system is configured
to MDN as the precedence of ADN unlike their radial counterparts. The VSAI indices used in this
approach are specifically designed and based on the multi-branch model and encompass the dynamics
of an interconnected DN i.e., MDN, unlike radial counterparts based on a single branch model. The
assets involved in IDMP have DG operating at various lagging power factors (LPF) contributing both
active and reactive power, and renewable DG such as photovoltaic (PV) system contributes active
power only and D-STATCOM units providing reactive power only. The approach provides alternatives
across various axis such as technical only, economic only, and techno-economic objectives across
the planning horizon. The MCDM methodologies provide a wide range of alternatives as solutions.
In addition, unanimous decision making (UDM) across various MCDM methodologies in terms of
their respective scores are offered. Moreover, the proposed IDMP approach can serve as a tool for
future planning of interconnected ADN, particularly supporting planning engineers and researchers
from the perspective of the SG paradigm. The main contributions of the proposed work are as follows.

(i) Integrated decision-making planning approach (IDMP) for optimal asset optimization.
(ii) Evaluation of the offered approach under various multiple assets (sitting and sizing) with LPF.
(iii) Evaluation of offered approach under various techno-economic performance metrics.
(iv) Detailed evaluation of alternatives across normal load and load growth horizons.
(v) Detailed evaluation of alternatives across four MCDM methodologies.
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(vi) Offering a unanimous decision making (UDM) score as per rank of alternatives.
(vii) Numerical evaluations of the proposed approach on 33-Bus test DN.
(viii) Validations of achieved results with the findings reported in the available literature.

This paper is organized in the following sections. Section 2 offers the proposed IDMP approach
along with concerned mathematical expressions. Section 3 offers a computation procedure for the IDMP
approach, setup for simulations, and performance evaluation indicators. In Section 4, the attained
numerical results regarding the effectiveness of the proposed approach is evaluated with multiple
DG operating at various LPF, REG, and D-STATCOM sets, on the basis of optimal assets sitting and
sizing perspective, evaluated under various performance metrics, demonstrated on 33-bus test MDN.
The MCDM evaluations followed by UDM scores amongst various alternatives are presented in this
section. The comparison of the proposed IDMP approach with existing research work is validated by
comparison with existing works in Section 5. The paper concludes in Section 6.

2. Proposed Integrated Decision-Making Planning Approach

2.1. Voltage Stability Assessment Index_A (VSAI_A) for Mesh Distribution Network

The electrical equivalent MDN model in Figure 1 consists of three branches that represent DN
feeders and two tie-line (TL) for in between linkage. The TS are closed to convert the DN into MDN.
The voltages from sending end buses/nodes (n1b, n3b and n5b) have been considered to exhibit the
same magnitude and phase angle (δ), and is represented as one source node n1b, respectively. The
receiving end buses/nodes (n2b, n4b, and n6b) are connected via two TB (with insignificant impedance)
via respective TS. Also, the loads S2b, S4b, and S6b, at n2b, n4b, and n6b are considered as lumped load
at bus/node m2b with a voltage magnitude of V2b, as shown in Figure 1, respectively.

 
Figure 1. Electrical equivalent diagram of mesh distribution network [30,31].

In this paper, two of the VSAI indices formulated and reported in our previous publications [30,31]
have been employed along with LMC aiming at pinpointing possible alternatives in terms of asset
sitting as sizing with various decision variables. Later, various MCDM techniques are further applied
for sorting out the best alternatives amongst available solutions. The VSAI reported in [30] is designated
as VSAI_A and the other one reported in [31] is designated as VSAI_B, aiming at an optimal sitting of
the asset. The procedure of LMC remains the same in both VSAIs as per their integrated planning
approach. The VSAI_A along with feasible solution V_A are shown in Equations (1) and (2), where the
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variables are separately shown in Equations (3)–(6). The threshold value of VSAI_A value is between 0
(instability) and 1 (stable).
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2.2. Voltage Stability Assessment Index_B (VSAI_B) for Mesh Distribution Network

The expression for VSAI_B is illustrated in Equation (7) and it is considered that unlike VSAI_A
under normal conditions, the numerical value of VSAI_B is close to zero. During unstable conditions,
the expression exceeds the numerical threshold of 1. The expression for VSAI_B and its feasible solution
V_B are shown in Equations (7) and (8) with respective variables shown separately in Equations
(9)–(10), respectively.

VSAI_B = 4n2

[
E
∑nl

s=1

(Vsb
n

)2
+
(

F
n

)2]
∑nl

s=1

(Vsb
n

)4 ≤ 1 (7)

V_B =
1√
2

√√√√√⎡⎢⎢⎢⎢⎢⎣
nl∑

s=1

(Vsb
n

)2
− 2E

n

⎤⎥⎥⎥⎥⎥⎦+
√√√ nl∑

s=1

(Vsb
n

)4
− 4E

n2

nl∑
s=1

(Vsb
n

)2
− 4 F2

n4
(8)

where

E = [abs
{
(P2bR1r + P4bR2r + P6bR3r ) + (Q2bX1x + Q4bX2x + Q6bX3x)

}
+ ΔY]; ΔY = 0.001 (9)

F = [abs
{
(P2bX1x + P4bX2x + P6bX3x) − (Q2bR1r + Q4bR2r + Q6bR3r )

}
+ ΔY]; ΔY = 0.001 (10)

2.3. Loss Minimization Condition (LMC) for Mesh Distribution Network

The LMC for VSAI_A and VSAI_B is the same at its optimal sizing of an asset at which the loop
current across the tie-line is zero [30,31]. Figure 2 shows the electrical equivalent model of an equivalent
MDN aiming at LMC. The loading at bus m2b is considered at a normal load S2b, fed by two TS ends (n4b
and n6b) via tie-line currents (ITB1 and ITB2), besides dedicated serving source (n1b), respectively. The
optimal sizing of assets that reduces ITB1 and ITB2 to zero indicates the optimal sizing of the respective
asset. The LMC relations for base cases shown for apparent power (LMC_S) is shown in Equation (11).
The optimal asset size at which ILP1 and ILP2 are zero represents the best case at which both active (P)

98



Energies 2020, 13, 1444

and reactive (Q) power losses are minimized and indicated as the LMC_P and LMC_Q in Equation (12),
respectively [30,31].

LMC_S =
[(

I2B
′ + ILp1

)2
Z2B +

(
I1B
′ + ILp1 + ILp2

)2
Z1B +

(
I3B
′ + ILp2

)2
Z3B

]
(11)

LMC_P + jLMC_Q =
[
(I1B_P

′)2R1r + (I2B_P
′)2R2r + (I3B_P

′)2R3r
]
+ j
[(

I1B_Q
′)2X1x +

(
I2B_Q

′)2X2x +
(
I3B_Q

′)2X3x

]
≥ 0 (12)

Figure 2. Equivalent mesh distribution network (MDN) model with tie and loop currents reduction
aiming at loss minimization condition (LMC) [30,31].

2.4. Decision-Making (DM) Methodologies

The decision-making (DM) problems addressing multiple-attributes can be broadly classified
among two types of classifications [38,41]. In the first type, referred to as the priori methods, weights are
assigned (subjectively or objectively) to each criterion in case of predetermined solutions (also called
alternatives). Such a method is also referred to as multi-attribute or multi-criteria decision-making.
The second type refers to the posteri methods-based applications in which several solutions are initially
obtained from inner optimization and, later, a best trade-off solution is acquired with any second-stage
DM methodology. The methodologies related to this class have been utilized in the proposed IDMP
approach. The generic decision matrix in MCDM is shown in Table 1.

Table 1. Generic decision matrix in multiple attribute decision-making (MCDM) methodologies.

Alternatives/Solutions
Weighted Attributes

C1*w1 C2*w2 C3*w3 . . . CY*wY

A1 S11 S12 S13 . . . S1y
A2 S21 S22 S23 . . . . S2y
A3 S31 S32 S33 . . . S3y
. . . . . . . . . . . . . . . . . .
AX SX1 SX2 SX3 . . . SXY

2.4.1. Weighted Sum Method (WSM)

The WSM is amongst the most used techniques for calculating the rank aiming at the achievement
of the best solution among multiple solutions (also called alternatives) in terms of the highest score. For
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that purpose, the following equation finds the highest score solution as the optimum one considering
m alternatives evaluated across n criteria.

SWSM =
m∑
i

si jwj (13)

where i = 1,2, . . . m, SWSM indicates the weighted sum score, sij is the normalized score of i-th
alternative/solution from the reference of j-th criterion and wj is the weight associated with j-th criterion.
Later on, the consequential cardinal scores for every alternative/solution can be utilized to rank or
choose the best alternative. As aforementioned, the solution with the maximum score is considered as
the best alternative amongst rest.

2.4.2. Weighted Product Method (WPM)

The WPM compares alternatives Akj and Alj across n criteria and the optimal solution is obtained
by multiplication aiming at calculating ranks of alternatives rather than addition, as shown in WSM.
The optimum solution in a pairwise comparison is the one that exhibits the highest score as shown in
the Equation below.

SWPM =
m∏

j=1

(Akj

Alj

)wj

=
m∏

j=1

(
sij
)wj (14)

where i = 1,2, . . . m, as previously, Sij is the normalized score of the i-th alternative from the reference
of j-th criterion and wj is the weight associated with j-th criterion.

2.4.3. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

After defining n criteria and m alternatives, the normalized decision matrix is established. The
normalized value nij is calculated from Equation (15), where cij is the i-th criterion value for alternative
Aj (j = 1 . . . m and i = 1, . . . , n).

nij =
cij√∑m
j=1 c2

i j

(15)

The normalized weighted values sij in the decision matrix are calculated as per Equation (16):

sij = nijwj (16)

The positive ideal A+ and negative ideal solution A− are derived as shown below, where I′ and I′′

are related to the benefit and cost criteria (positive and negative variables), as shown in Equation (17)
as follows.

A+ =
{
s+1 , . . . , s+1 } =

{(
MAXjsij

∣∣∣i ∈ I′),
(
MINjsij

∣∣∣i ∈ I′′ )
}

A_ =
{
s_

1, . . . , s_
1} =

{(
MINjsij

∣∣∣i ∈ I′),
(
MAXjsij

∣∣∣i ∈ I′′ )
} (17)

From the n-dimensional Euclidean distance, Dj
+ is calculated in the given equation as the

separation of every alternative from the ideal solution. The separation from the negative ideal solution
is shown in a relationship indicated in Equation (18).

D+
j =

√∑n

i=1

(
si j− s+i

)2
; D_

j =

√∑n

i=1

(
vij− v_

i

)2
(18)

The relative closeness Cj to the ideal solution of each alternative is calculated from Equation (19):

Cj =
D_

j(
D+

j + D_
j

) (19)
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After sorting the Cj values, the maximum value corresponds to the best solution to the problem.

2.4.4. Preference Ranking Organization Method for Enrichment of Evaluations-II (PROMETHEE-II)

The procedure of PROMETHEE II is indicated as follows.
Step 1: Normalize the decision matrix using the following Equation:

Kij =
{
Lij −min

(
Lij
)}

/
{
max(Lij) −min

(
Lij
)
(i = 1, 2, . . . , n , j = 1, 2, . . . , m) (20)

where Xij is the performance measure of i-th alternative with respect to j-th criterion. For non-beneficial
criteria, Equation (20) can be rewritten as follows:

Kij =
{
max(Lij) −

(
Lij
)}

/
{
max(Lij) −min

(
Lij
)

(21)

Step 2: Calculate the evaluative differences of i-th alternative with respect to other alternatives.
This step involves the calculation of differences in criteria values between different alternatives pairwise.

Step 3: Calculate the preference function, Pj(i, i′).

Mj(i, i′) = 0 i f Kij ≤ Ki′ jMj(i, i′) =
(
Kij −Ki′ j

)
i f Kij ≥ Ki′ j (22)

Step 4: Calculate the aggregated preference function taking into account the criteria weights.
The aggregated preference function is shown in Equation (23) as follows, where wj is the relative
importance (weight) of j-th criterion is.

π(i, i′) =

⎡⎢⎢⎢⎢⎢⎢⎣
m∑

j=1

wjMj(i, i′)

⎤⎥⎥⎥⎥⎥⎥⎦/
m∑

j=1

wj (23)

Step 5: Determine the leaving and entering outranking flows, such as the leaving (or positive)
flow for i-th alternative as indicated in Equation (23) and entering (or negative) flow for i-th alternative
as shown in Equation (25), respectively; where n is the number of alternatives.

ϕ+(i) =
1

n− 1

n∑
i′=1

π(i, i′), (i � i′) (24)

ϕ_(i) =
1

n− 1

n∑
i′=1

π(i′, i), (i � i′) (25)

Step 6: Calculate the net outranking flow for each alternative as per Equation (26).

ϕ(i) = ϕ+(i) −ϕ_(i) (26)

Step 7: Determine the ranking of all the considered alternatives depending on the values of ϕ(i).
When the value of ϕ(i) is higher, the alternative is preferred in terms of the best solution.

2.5. Unanimous Decision Making (UDM) and Unanimous Decision Making Score (UDS)

The trade-off solution via aforementioned MCDM techniques results in multiple best solutions
across various cases of assets placement with respective scenarios. To find a unanimous best solution
amongst the abovementioned MCDM techniques, unanimous decision making (UDM) is applied.
Initially, the achieved rank is arranged as per the highest to the lowest best solution and is designated
by AR. Similarly, each arranged rank is given a score designated by AS, such as the highest rank for
example 1 will have the highest score like N, as shown in Table 2.
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Table 2. Initial rank and score allocation for unanimous decision making (UDM).

Alternatives Rank (AR) (Highest to Lowest)
Alternatives Score (AS)

(Highest to Lowest)

A1R = 1 N
A2R = 2 N-1
A3R = 3 N-2
. . . . . .

AXR = N 1

The unanimous decision-making score (UDS) can be found via the following relationship as shown
in Equation (27), across the finding of each MCDM technique. Since four techniques are considered,
the solution will run across these techniques across all alternatives, terminating at a UDS. This UDS
will determine the highest rank on the basis of the highest numerical value and is designated here as a
unanimous decision-making rank (UDR). In this case, two UDR scores are equal, and the one with at
least one of the highest alternatives will be given preference over others.

UDS =
n=4∑

MCDM=1

(
AR × AS

AR

)
=

n=4∑
MCDM=1

(AS) (27)

3. Proposed Integrated Decision-Making Planning (IDMP) Approach, Computation Procedure,
Constraints, Simulation Setup, and Performance Evaluation Indicators

3.1. Proposed Integrated Decision Making Planning (IDMP) Approach

It is one of the core responsibilities of power utility companies to supply sustained voltage levels
with a feasible level of power quality to consumers via DN at each branch. Usually, the core aim
is to achieve a win–win situation in favor of both utilities and consumers across a certain planning
horizon. The load difference among distribution branches across various planning horizons can
increase system losses in a DN. The actual planning problem is also aimed towards the attainment of
objectives rather than a single one. The objectives usually aimed at a DN are inclined towards technical
and cost-economic ones; whereas the cost of planning and operation is a vital factor in the distribution
of power to respective load centers.

The flow chart of the proposed IDMP approach is illustrated in Figure 3. The reason for utilizing
VSAIs in [30,31] for MDN for the proposed planning approach is that the planning problems associated
with interconnected networks such as LDN and MDN do not have unique solutions like RDN. Also,
these VSAIs are particularly designed to encompass all the prerequisites of an actual MDN, where there
are usually more sending ends supplying the load. The LMC in both [30,31] is the same, aiming at the
reduction of tie-line current and maintaining equal voltage across respective tie-switches, which are
closed to transform an RDN into MDN. The consideration of MDN is also considered valid since it
closely corresponds to the future ADN that is considered both interconnected and reliable. The main
aim of each MCDM strategy utilized late, is to find the feasible planning solution, capable of achieving
maximum relevant goals. Due to different solutions via each MCDM methodologies, a unanimous
decision to follow becomes a necessity as a tool for following a solution that is best across technical,
cost economic, and overall dimensions.
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Figure 3. Flow chart of proposed integrated decision-making planning (IDMP) approach.

In the proposed IDMP approach, initially in stage 1, two different VSAIs (VSAI_A and VSAI_B)
with respective LMC aims at optimal sitting and sizing of assets in terms of finding suitable alternatives,
as per Equations (1)–(11), respectively. The assumptions for both VSAI_A and VSAI_B are the same
and can be found for normal load only in [30,31]. Later in stage 2, four different MCDM approaches are
individually applied on the attainment of best alternative amongst technical criteria only, cost-economic
criteria only, and overall (techno-economic) criteria across various cases of asset optimization, as per
Equations (12)–(24).

In Figure 3, it is shown that the performance is assessed on the basis of technical
performance evaluation (TPE), cost-economic performance evaluation (CPE), and overall combined
(techno-economic) performance evaluation (OPE). Finally, in stage 3, UDM is applied and the best
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solution amongst multiple MCDM is sorted out on the basis of their respective UDM scores (UDS) of
each case as per Section 2.4, particularly Equation (25). The achieved UDS will define new UDR of
alternatives across multiple MCDM methodologies. The weights throughout each MCDM methods
have been considered as equal or unbiased weighting since such weight is mostly utilized in most
of the planning problems involving conflicting criteria. All the predetermined alternatives and the
trade-off final solution achieved are subjected to practical system constraints.

3.2. Computation Procedure of Proposed IDMP Approach for Alternatives Selection and Case Studies

The overall computation method for VSAI_A and VSAI_B reported in [30,31] is essentially the
same with a little difference. The LMC approach integrated with each VSAI is the same. The decision
variables (DV) for optimal asset placement are based on type, size, and the number of assets. In [30],
two variants of the planning approach were based on VSAI_A and LMC, whereas in [31], a single
approach was presented based on VSAI_B and LMC. The assets are considered on the basis of numbers
achieved in the previous publications [30,31]. The alternatives with DG were evaluated across normal
load levels in [30], whereas the alternatives with DG only and asset sets (REG + D-STATCOM) were
evaluated across normal load levels [31]. However, the abovementioned assets (DG only and REG +
D-STATCOM) were evaluated across load growth levels for this study. The alternatives were achieved
as follows:

1. Alternate 1 (A1): 1×DG [30] or 1×asset set (REG + D-STATCOM) with VSAI_A and LMC.
2. Alternate 2 (A2): 1×DG or 1×asset set (REG + D-STATCOM) with VSAI_B and LMC [31].
3. Alternate 3 (A3): 2×DG [30] or 2×asset sets (REG + D-STATCOM) with VSAI_A and LMC.
4. Alternate 4 (A4): 2×DG or 2×asset sets (REG + D-STATCOM) with VSAI_B and LMC [31].
5. Alternate 5 (A5): 3×DG [30] or 3×asset sets (REG + D-STATCOM) with VSAI_A and LMC.
6. Alternate 6 (A6): 3×DG [30] or 3×asset sets (REG + D-STATCOM) with VSAI_A and LMC.
7. Alternate 7 (A7): 3×DG or 3×asset sets (REG + D-STATCOM) with VSAI_B and LMC [31].

All of the above seven alternatives have been evaluated in four cases across four MCDM
methodologies under normal load (NL), load growth (LG) across five years, and optimal load growth
(OLG) across five years, respectively. In NL, the current load is considered, and all the cases are
evaluated. In LG, a 7.5% increment in load per annum is considered across five years, and asset
sizing obtained during NL is retained as constant. In OLG, optimal asset sizing is considered across
incremented load across five years. The OLG corresponds to the reinforcement required to maintain a
solution after a planning horizon is over. The cases for evaluation with respective scenarios are TPE
across technical criteria, CPE across cost-related criteria, and OPE across combined techno-economic
criteria, respectively. The nomenclature of considered cases with respective scenarios for overall
evaluation in this paper is presented as follows.

Case 1: DGs only assets placements in MDN operating at 0.90 lagging power factor (LPF).
Case 2: DGs only assets placements in MDN operating at 0.85 LPF.
Case 3: Asset set (REG + D-STATCOM) placements in MDN equal to 0.90 LPF.
Case 4: Asset set (REG + D-STATCOM) placements in MDN equal to 0.85 LPF.

In all of the above-mentioned four cases with respective designations, each case (C#) has
been evaluated across the following scenarios of MCDM evaluations under various load levels as
presented below.

Scenario 1 (NL):

Case 1 (C1_NL): TPE, CPE and OPE with WSM under NL.
Case 2 (C2_NL): TPE, CPE and OPE with WPM under NL.
Case 3 (C3_NL): TPE, CPE and OPE with TOPSIS under NL.
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Case 4 (C4_NL): TPE, CPE and OPE with PROMETHEE under NL.

Scenario 2 (LG):

Case 1 (C1_LG): TPE, CPE and OPE with WSM under LG.
Case 2 (C2_LG): TPE, CPE and OPE with WPM under LG.
Case 3 (C3_LG): TPE, CPE and OPE with TOPSIS under LG.
Case 4 (C4_LG): TPE, CPE and OPE with PROMETHEE under LG.

Scenario 3 (OLG):

Case 1 (C1_OLG): TPE, CPE and OPE with WSM under OLG.
Case 2 (C2_OLG): TPE, CPE and OPE with WPM under OLG.
Case 3 (C3_OLG): TPE, CPE, and OPE with TOPSIS under OLG.
Case 4 (C4_OLG): TPE, CPE and OPE with PROMETHEE under OLG.

Later, UDM is applied across all cases under all the above-mentioned cases with respective
scenarios for a unanimous solution via UDS and the result attained in terms of UDR. The highest UDS
value refers to the best solution with the highest UDR.

3.3. Constraints Considered in Simulations

The following main constraints [30,31] have been considered in this study. It was ensured that
the simulations do not result in a solution that results in reverse power flow towards substation. It is
considered that active and reactive power contribution from substation (PSS, QSS) and DG or other
asset units (PDG, QDG) must have a balance that is equal to active and reactive power load consumption
(PLD, QLD) along with associated active and reactive power losses (PLoss, QLoss) in MDN.

(PSS + QSS) + (PDG + QDG) = (PLD + QLD) + (PLoss + QLoss) (28)

The magnitude of the voltage at each node/bus “n” in MDN must not exceed the specified limit of
0.95 P.U to 1.05 P.U.

0.95 ≤ Vn ≤ 1.05; n = 1, 2, 3, 4 . . . m (29)

The LPF of DG is kept within limits considering an allowable variation of ±3%.

PFDG, i,min ≤ PFDG,i ≤ PFDG,i,max (30)

3.4. Simulation Setup

The proposed IDMP approach is tested on the 33-bus test distribution network (TDN), as displayed
in Figure 4. The PLD and QLD in the 33-bus TDN account for 3715 KW and 2300 KVAR, whereas PLoss
and QLoss account for 210.9 KW and 143.02 KVAR during a base case under normal load, respectively.
In the case of load growth, The P and Q loads are 5333.363 KW and 3301.95 KVAR, respectively. The P
and Q losses during load growth account for 450.65 KW and 305.17 KVAR, respectively.

The test MDN consists of four branches and five TSs. The 33-bus TDN is converted into a
multiple-loop configured MDN by closing TS4 and TS5 (highlighted in green solid line) and results
in two loop currents (ILp1 and ILp2) across two TB, respectively. The load or power flow analysis
regarding the 33-bus TDN is obtained in terms of numerical values from equivalent models and has
been implemented on MATLAB R2018a. The test setup is developed in SIMULINK and numerical
values are called in m-files where the proposed approach is evaluated into achieved results. Initially,
the assets are placed on designated locations given by VSAIs in [30,31]. The base case model is made
in SIMULINK and values are called in m-file that indicate the weakest nodes as shown in [30,31].
Later, the numerical values were obtained from simulation setup in SIMULINK and are run until the
condition where loop currents across TB are near zero and voltages across the respective nodes are
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equal with the optimal sizing of assets considering termination criteria of 1%. Finally, on termination,
the achieved values are called in a program made of m-files (MATLAB 2018a), where the proposed
IDMP approach is evaluated with various matrices and is represented in the following Section 3.5.

 
Figure 4. 33-bus (meshed configured) test distribution system.

The proposed IDMP approach is evaluated across various load and generation levels in terms of
snapshot analysis. Although the IDMP approach seems dynamic, the snapshot analysis considering NL,
LG, and OLG is evaluated in terms of steady-state analysis. The approach simplifies the requirement
of dynamic analysis and gives a big picture in terms of steady-state analysis.

The asset sitting and sizing cases are evaluated across NL, where optimal sizing of assets is
achieved in terms of performance evaluations. In LG, the generation from NL cases is kept constant
and an increase in load after five years is considered for evaluation of the assets performance across the
planning horizon. In OLG, the assets reinforcements required for optimal performance after planning
horizon are evaluated.

3.5. Performance Evaluation Indicators (PEI)

The technical and cost-economic indices for performance evaluation are illustrated in Tables 3
and 4 and all relations have been taken from our previous publications in [30,31].

106



Energies 2020, 13, 1444

Table 3. Technical indices for performance evaluation (designated as technical performance evaluation (TPE)).

S# Performance Indices
Performance Indices

Relationships
Units Objective

1 Active Power Loss (PLoss)
PLMC′ =

min
∑ml−1

i=1 PLoss
TDS +

∑
PTB

KW Decrease

2 Reactive Power
Loss (QLoss)

QLMC′ =min∑ml−1
i=1 QLoss

TDS +
∑

QTB
KVAR Decrease

3 Active Power Loss
Minimization (PLM) PLM =

[P_LNo_DG−P_LM_DG
P_LNo_DG

]
× 100 % Increase

4 Reactive Power Loss
Minimization (QLM) QLM =

[Q_LNo_DG−Q_LM_DG
Q_LNo_DG

]
× 100 % Increase

5 DG Penetration by
percentage (DGPP)

PDG =(
M∑

a=1
PDG/

N∑
b=1

PLD

)
× 100 % Increase

6
Capacity Release of Active

Power from
Substation (PSSR)

PSSR = PSS − PDG ≥ 0 KW Decrease

7
Capacity Release of

Reactive Power from
Substation (QSSR)

QSSR = QSS − QDG ≥ 0 KVAR Decrease

8 Voltage Level V = 1.0 P.U P.U Decrease

Table 4. Cost-economic indices for performance evaluation (designated as cost-economic performance
evaluation (CPE)).

S#: Performance
Indices/Ref

Performance Indices Relationships Units Objective

1 Cost of active
power loss (PLC) PLC = [P_L× EU × TY (8760 hrs)] M$ Decrease

2 Active power loss
saving (PLS) PLS =

PLCNo_DG−PLCM_DG
PLCNo_DG

× 100 M$ Increase

3 Cost of DG for PDG
(CPDG)

C(PDG) = a × PDG
2 + b× PDG + c

where: a = 0, b = 20, c = 0.25
$/MWh Decrease

4 Cost of DG for
QDG (CQDG)

C(QDG) =[
C(SDG_M) −C

(√
(SDG_M

2 − PDG
2)
)]
× k

where: SDGM =
PDGM
cosθ = 1.1×PDG

cosθ ; k = 0.5− 1

$/MVArh Decrease

5
Annual Investment

Cost (AIC)
AIC

(
Million US$

Year

)
MDG∑
k=1

AFC ×CUC ×DGCmax;

Where : AFc =
( Ct

100 )(1+ Ct
100 )

T

(1+ Ct
100 )

T−1

Millions
USD (M$) Decrease

6
Annual Cost of
D-STATCOM

(ACD)

IC =
[
(1+C)nD×C
(1+C)nD−C

]
;

where: IC = 50$/KVAR;
C = Rate of Assets return = 0.1;

nD (in years) = 5

Millions
USD (M$) Decrease

4. Results and Discussions

The IDMP approach is applied in three stages as aforementioned in Sections 3.1 and 3.2. The first
stage is employed for the layout (sitting and sizing) of numerous assets such as DG and D-STATCOM
units in the MDN. The proposed integrated approach consists of two parts; VSAIs [30,31] are applied
for potential assets (DG and REG + DSTATCOM) locations for sitting and LMC for optimal asset sizing.

In total, seven alternatives were shortlisted encapsulating four cases of assets sitting and sizing,
across NL, LG, and OLG, respectively. Case 1 covers DGs operating at 0.90 LPF, case 2 covers DG
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operating at 0.85 LPF, and case 3 covers renewable DG such as PV system that contributes active power
(P) only and reactive component (Q) comes from D-STATCOM. The contribution from the set of these
two assets i.e., the P and Q contributions, is equal to 0.90 PF. In case 4, P and Q contributions are equal
to that of one DG contributing at 0.85 LPF. Cases 1–2 are different than cases 3–4 in such a manner that
DG only cases can be subjected to reactive power instability whereas in later cases, the power sources
are decoupled. So, a comparative analysis is justified in terms of performance analysis.

In the second stage, four MCDM methodologies are applied to find out the best solution amongst
the sorted alternatives. In the third stage, unanimous decision making (UDM) is applied to find out a
common best solution in the achieved solutions that may vary on the basis of MCDM techniques.

The proposed IDMP approach is evaluated across technical, cost-economic, and combined
techno-economic criteria of conflicting nature. Since the cost-related criteria may differ from various
asset types, for the sake of composite evaluation, separated P and Q injections are considered.

4.1. Case 1 under Normal Load (C1_NL): DGs Only Placements in MDN Operating at 0.90 LPF

4.1.1. Initial Evaluation of Alternatives in Case 1 under Normal Load (C1_NL)

The initial evaluation of C1_NL for each alternative is shown in terms of TPE and CPE are shown
in Table 5. The numerical values refer to evaluated indices values as potential criteria results obtained
for seven alternatives referring to DG only asset placement operating at 0.90 LPF under NL. The reason
being such a PF is favored by utilities.
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The four considered MCDM techniques have evaluated across each alternative in TPE and CPE
separately. In the case of OPE, all criteria except substation capacity are utilized in further evaluation
with MCDM techniques. It is worth mentioning that in the all calculations of CPE and OPE cases,
values of AIC were considered as achieved in [31].

4.1.2. MCDM Evaluation of Alternatives in Case 1 Under Normal Load (C1_NL)

The MCDM evaluations for C1_NL are illustrated in Figure 5a–d. The detailed numerical
evaluations can be found in the supplementary file. Here, only the preference scores were illustrated
in the figures to sort out a best alternative on the basis of TPE, CPE, and OPE evaluation per MCDM
technique against each respective scenario. Refer to Table 5 for respective TPE and CPE in terms of
numerical details without normalization. The rank of the alternatives in C1_NL are shown in Table 6.

    

(a) (b) (c) (d) 

Figure 5. MCDM evaluations for C1_NL in 33-bus MDN: (a) weighted sum method (WSM) scores;
(b) weighted product method (WPM) scores; (c) technique for order preference by similarity to ideal
solution (TOPSIS) scores; (d) preference ranking organization method for enrichment of evaluations
(PROMETHEE) scores.

As per the results, initially, the best alternative in TPE and OPE based evaluations is A7 as
highlighted in Table 6, whereas in CPE there is no unanimous optimal solution. It is also observed that
change of rank is more visible in CPE based evaluations with every MCDM approach.

After applying UDM with respective score and resulting alternative rank, the unanimous best
solution utilizing various MCDM methodologies across TPE, CPE, and OPE are A7 (UDS=28 and
UDR=1), A4 (UDS=22 and UDR=1), and A7 (UDS=28 and UDR=1); respectively. The UDM with UDS
and UDR across TPE, CPE and OPE in C1_NL have highlighted in bold text as shown in Table 6.

4.2. Case 2 Under Normal Load (C2_NL): DGs Only Assets Placements in MDN Operating at 0.85 LPF

4.2.1. Initial Evaluation of Alternatives in Case 2 Under Normal Load (C2_NL)

The initial evaluation of case 2 (C2_NL) for each alternative is shown in terms of TPE and CPE is
shown in Table 6. The numerical results were evaluated for seven alternatives using DG only asset
placement operating at 0.85 LPF under NL.

The MCDM techniques were evaluated across each alternative in TPE and CPE in the same
manner as in C1. The main reason for considering the 0.85 LPF of DG is close to that of DN is that it
provides more reactive power support at load centers compared to those DGs operating at 0.90 LPF. It
is advocated in various publications that such an arrangement results in achieving a better system LM
with considerably better VP.

4.2.2. MCDM Evaluation of Alternatives in Case 2 under Normal Load (C2_NL)

The MCDM evaluations for case 2 (C2_NL) are illustrated in Figure 6a–d. The evaluation in terms
of best and worst alternative with respective scores are shown below.
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(a) (b) (c) (d) 

Figure 6. MCDM evaluations for C2_NL in 33-bus MDN: (a) WSM scores; (b) WPM scores; (c) TOPSIS
scores; (d) PROMETHEE scores.

Refer to Table 7 for respective TPE and CPE in terms of numerical details without normalization.
The rank of the alternatives in C2_NL is shown in Table 8. As per MCDM results, the best alternative in
TPE is A7, whereas no unanimous solution is obtained in CPE and OPE. However, they are dominated
by A7. After applying UDM with the best solution in TPE, CPE, and OPE are A7 (UDS=28 and UDR=1),
A3 (UDS=23 and UDR=1), and A7 (UDS=27 and UDR=1); respectively. The UDM with UDS and UDR
across TPE, CPE and OPE in C2_NL have highlighted in bold text as shown in Table 8.
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4.3. Case 3 Under Normal Load (C3_NL): Asset Set (REG +D-STATCOM) Placements Equivalent to 0.90 LPF

4.3.1. Initial Evaluation of Alternatives in Case 3 under Normal Load (C3_NL)

The initial evaluation of case 3 (C3_NL) for each alternative in terms of TPE and CPE is shown
in Table 9. The numerical values refer to evaluated indices values for seven alternatives utilizing an
asset set of REG (i.e., PV) and D-STATCOM for providing active and reactive power source, which is
equal to single DG operating at 0.90 LPF under NL. The MCDM techniques were evaluated across
each alternative is in the same manner as previous cases.
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4.3.2. MCDM Evaluation of Alternatives in Case 3 Under Normal Load (C3_NL)

The MCDM evaluations for case 3 (C3_NL) are illustrated in Figure 7a–d. Refer to Table 9
for respective TPE and CPE in terms of numerical details without normalization. The rank of the
alternatives in C3_NL is shown in Table 10.
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As per the results, the best alternative is A5 in OPE only. After applying UDM, the best solutions
in TPE, CPE, and OPE were A5 (UDS=28 and UDR=1), A3 (UDS=23 and UDR=1), and A5 (UDS=26
and UDR=1); respectively. The UDM with UDS and UDR across TPE, CPE and OPE in C3_NL have
highlighted in bold text as shown in Table 10.

4.4. Case 4 Under Normal Load (C4_NL): Asset Set (REG +D-STATCOM) Placements Equivalent to 0.85 LPF

4.4.1. Initial Evaluation of Alternatives in Case 4 under Normal Load (C4_NL)

The initial evaluation of case 4 (C4_NL) for each alternative is shown in terms of TPE and CPE is
shown in Table 11. The numerical values were evaluated for seven alternatives utilizing an asset set
of renewable DG i.e., PV and D-STATCOM for providing active and reactive power source, which is
equal to single DG operating at 0.85 LPF under NL.

The MCDM techniques were evaluated across each alternative in the same manner as previous
cases as illustrated in Figure 8a–d.
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4.4.2. MCDM Evaluation of Alternatives in Case 4 Under Normal Load (C4_NL)

The MCDM evaluations for case 4 are illustrated in Figure 8a–d. Refer to Table 11 for respective
TPE and CPE in terms of numerical details without normalization.

The rank of the alternatives in C4_NL is shown in Table 12. As per the results, the best alternative
is A7 in TPE and A5 in OPE. After applying UDM, the best solutions in TPE, CPE, and OPE were A7
(UDS=28 and UDR=1), A3 (UDS=24 and UDR=1), and A5 (UDS=28 and UDR=1); respectively. The
UDM with UDS and UDR across TPE, CPE and OPE in C4_NL have highlighted in bold text as shown
in Table 12.
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4.5. Case 1 Under Load Growth (C1_LG): DGs Only Assets Placements in MDN Operating at 0.90 LPF

4.5.1. Initial Evaluation of Alternatives in Case 1 Under Load Growth (C1_LG)

The initial evaluation from the perspective of TPE and CPE, of C1_LG, is shown in Table 13. The
case of load growth refers to the condition, in which asset sitting and sizing achieved during normal
load is kept constant across a planning horizon and load is incremented annually at a rate of 7.5%.
The main aim of this evaluation is to find the change in the rank of alternatives initially evaluated as
optimal ones.

The MCDM evaluation under LG shows a dip in achieved preference score, as well as a change
in the ranks of the alternatives. This analysis indicates the change of rank and respective impacts on
the active MDN across the LG. Also, the initially optimal solution may not remain feasible and the
sub-optimal one may become a better choice, after a certain planning horizon.
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4.5.2. MCDM Evaluation of Alternatives in Case 1 under Load Growth (C1_LG)

The MCDM evaluations for case 1 are illustrated in Figure 9a–d. The rank of the alternatives
in C1_LG is shown in Table 14. As per the results, the best alternative in TPE is A6, whereas there
is not a unanimous solution in CPE and OPE, respectively. After applying UDM, the best solutions
in TPE, CPE, and OPE are A6 (UDS=28 and UDR=1), A3 (UDS=23 and UDR=1), and A6 (UDS=26
and UDR=1); respectively. The UDM with UDS and UDR across TPE, CPE and OPE in C1_LG have
highlighted in bold text as shown in Table 14.
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4.6. Case 2 under Load Growth (C2_LG): DGs Only Assets Placements in MDN Operating at 0.85 LPF

4.6.1. Initial Evaluation of Alternatives in Case 2 under Load Growth (C2_LG)

The initial evaluation of case 2 (C2_LG) for each alternative under load growth in terms of TPE
and CPE is shown in Table 15.
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4.6.2. MCDM Evaluation of Alternatives in Case 2 under Load Growth (C2_LG)

The MCDM evaluations for case 2 (C2) under load growth are illustrated in Figure 10a–d. The
rank of the alternatives in C2 under LG (C2_LG) is shown in Table 16. As per the results, the best
alternative in TPE is A7, whereas no unanimous solution is obtained in CPE and OPE. After applying
UDM, the best solutions in TPE, CPE, and OPE are A7 (UDS=28 and UDR=1), A3 (UDS=24 and
UDR=1), and A5 (UDS=25 and UDR=1); respectively. The UDM with UDS and UDR across TPE, CPE
and OPE in C2_LG have highlighted in bold text as shown in Table 16.
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4.7. Case 3 Under Load Growth: Asset Set (REG +D-STATCOM) Placements Equivalent to 0.90 LPF (C3_LG)

4.7.1. Initial Evaluation of Alternatives in Case 3 under Normal Load (C3_LG)

The initial evaluation of C3_LG for each alternative in terms of TPE and CPE is shown in Table 11.

4.7.2. MCDM Evaluation of Alternatives in Case 3 under Load Growth (C3_LG)

The MCDM evaluations for C3_LG are illustrated in Figure 11a–d. Refer to Table 17 for respective
TPE and CPE in terms of numerical details without normalization. The rank of the alternatives in C3
under LG is shown in Table 18. As per the results, the best alternative in TPE is A6, whereas there
are no unanimous solutions in CPE and OPE, respectively. After applying UDM, the best solutions
in TPE, CPE, and OPE are A6 (UDS=28 and UDR=1), A3 (UDS=23 and UDR=1), and A6 (UDS=26
and UDR=1), respectively. The UDM with UDS and UDR across TPE, CPE and OPE in C3_LG have
highlighted in bold text as shown in Table 18.

    

(a) (b) (c) (d) 

Figure 11. MCDM evaluations for C3_LG in 33-bus MDN: (a) WSM scores; (b) WPM scores; (c) TOPSIS
scores; (d) PROMETHEE scores.
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4.8. Case 4 Under Load Growth: Assets (DG + D-STATCOM) Placements Equivalent to 0.85 LPF (C4_LG)

4.8.1. Initial Evaluation of Alternatives in Case 4 Under Load Growth (C4_LG)

The initial evaluation of case 4 (C4_LG) for each alternative under LG in terms of TPE and CPE is
shown in Table 19.
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4.8.2. MCDM evaluation of alternatives in Case 4 under load growth (C4_LG)

The MCDM evaluations for C4_LG are illustrated in Figure 12a–d. The rank of the alternatives in
C4_LG is shown in Table 20.

As per the results in Figure 12a–d and Table 20, the best alternative in TPE is A7, whereas there
are no unanimous solutions in CPE and in OPE. After applying UDM, the best solutions in TPE, CPE,
and OPE are A7 (UDS=28 and UDR=1), A3 (UDS=26 and UDR=1), and A5 (UDS=26 and UDR=1),
respectively. The UDM with UDS and UDR across TPE, CPE and OPE in C4_LG have highlighted in
bold text as shown in Table 20.
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4.9. Case 1 Under Optimal Load Growth: DGs Only Assets Placements Operating at 0.90 LPF (C1_OLG)

4.9.1. Initial Evaluation of Alternatives in Case 1 Under Optimal Load Growth (C1_OLG)

The initial evaluation of C1_OLG is shown in Table 21, from the perspective of TPE and CPE.
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4.9.2. MCDM Evaluation of Alternatives in Case 1 Under Optimal Load Growth (C1_OLG)

The MCDM evaluations for case 1 are illustrated in Figure 13a–d. The rank of the alternatives
in C1_OLG is shown in Table 22. As per the results, the best alternative in OPE is A5, whereas there
is not a unanimous solution in TPE and CPE, respectively. After applying UDM, the best solutions
in TPE, CPE, and OPE are A5 (UDS=24 and UDR=1), A3 (UDS=23 and UDR=1), and A5 (UDS=26
and UDR=1); respectively. The UDM with UDS and UDR across TPE, CPE and OPE in C1_OLG have
highlighted in bold text as shown in Table 22.
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4.10. Case 2 under Optimal Load Growth: Dgs Only Assets Placements Operating at 0.85 LPF (C2_OLG)

4.10.1. Initial Evaluation of Alternatives in Case 2 under Optimal Load Growth (C2_OLG)

The initial evaluation of case 2 (C2_OLG) under OLG for each alternative in terms of TPE and
CPE is shown in Table 23.
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4.10.2. MCDM Evaluation of Alternatives in Case 2 under Optimal Load Growth (C2_OLG)

The MCDM evaluations for case 2 (C2_OLG) under optimal load growth are illustrated in
Figure 14a–d. The rank of the alternatives in C2_OLG is shown in Table 24. As per the results, the best
alternative in OPE is A5, whereas no unanimous solution is obtained in CPE and OPE. After applying
UDM, the best solutions in TPE, CPE, and OPE are A5 (UDS=26 and UDR=1), A5 (UDS=23 and
UDR=1), and A5 (UDS=28 and UDR=1), respectively.

It can be seen in Table 24 from CPE (C2_OLG) that the UDS score of A1 and A3 is the same
(UDS=22). As per the aforementioned rules devised for UDM in Section 2.5, the solution with the
highest number of highest priority ranks will be given preference. Hence, alternative A1 (UDR=2)
is given preference over A3 (UDR=3) for the second-best alternative despite having the same score
from the viewpoint of UDS. The UDM with UDS and UDR across TPE, CPE and OPE in C2_OLG have
highlighted in bold text as shown in Table 24.
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4.11. Case 3 under Optimal Load Growth: Assets (REG + D-STATCOM) Placements Equal to 0.90 LPF
(C3_OLG)

4.11.1. Initial Evaluation of Alternatives in Case 3 under Optimal Normal Load (C3_OLG)

The initial evaluation of C3_OLG for each alternative in terms of TPE and CPE under OLG is
shown in Table 25.

143



Energies 2020, 13, 1444

T
a

b
le

2
5

.
Te

ch
no

-e
co

no
m

ic
ev

al
ua

ti
on

an
al

ys
is

in
ca

se
3

(C
3_

O
LG

)f
or

33
-b

us
M

D
N

.

S
#
:

T
e
ch

n
ic

a
l

P
a
ra

m
e
te

rs
E

v
a
lu

a
ti

o
n

s
(T

P
E

)
C

o
st

(E
co

n
o

m
ic

s
R

e
la

te
d

)
P

a
ra

m
e
te

rs
E

v
a
lu

a
ti

o
n

s
(C

P
E

)

C
a
se

(N
o

.)
/

A
lt

.
(N

o
).

D
G

S
iz

e
(K

V
A

)
@

B
u

s
L

o
c.

P
Lo

ss
(K

W
)

Q
Lo

ss
(K

V
A

R
)

P
LM (%

)
Q

LM (%
)

D
G

P
P

(%
)

V
M

in
(P

.U
)

P
SS

R
+

j
Q

SS
R

(K
W

)
+

j(
K

V
A

R
)

P
LC

(M
$
)

P
LS

(M
$
)

C
P

D
G

($
/M

W
h

)
C

Q
D

G
($
/M

V
A

rh
)

A
IC

(M
$
)

A
C

D
(M

$
)

C
3/

A
1

S1
:2

18
7
+

j1
05

7
@

15
17

9.
6

10
5.

58
60

.1
4

65
.4

38
.7

4
0.

95
94

33
25

.6
+

j2
35

0.
58

0.
09

44
0.

91
02

43
.9

9
4.

35
73

0.
41

31
0.

01
39

41

C
3/

A
2

S1
:3

55
8
+

j1
72

3
@

30
99

.2
60

.6
7

77
.9

9
80

.1
2

66
.0

3
0.

96
56

18
74

.2
+

j1
63

9.
67

0.
05

21
0.

95
24

71
.3

5
7.

18
52

0.
67

21
0.

02
27

13

C
3/

A
3

S1
:1

26
9
+

j6
22

@
15

58
.8

3
34

.3
9

86
.9

5
88

.7
3

66
.2

3
0.

98
13

18
99

.8
3
+

j1
63

4.
39

0.
03

09
0.

97
37

70
.0

9
7.

08
1

0.
65

96
0.

02
24

49
S2

:2
22

3
+

j1
08

0
@

30

C
3/

A
4

S1
:3

15
0
+

j1
52

5
@

30
88

.5
3

55
.1

3
80

.3
6

81
.9

3
65

.1
9

0.
96

57
17

40
.5

3
+

j1
57

5.
03

0.
04

65
0.

95
81

73
.8

7
7.

35
23

0.
69

53
0.

02
34

97
S2

:5
31
+

j2
57

.1
@

25

C
3/

A
5

S1
:8

82
.7

3
+

j4
27

@
15

36
.2

6
22

.3
7

91
.9

5
92

.6
6

77
.9

9
0.

98
98

11
06

.5
3
+

j1
26

0.
35

0.
01

91
0.

98
55

85
.5

3
8.

55
78

0.
80

52
0.

02
72

76
S2

:2
01

1
+

j9
74

@
30

S3
:1

36
9
+

j6
63

.0
2

@
7

C
3/

A
6

S1
:1

03
2
+

j5
00

@
15

40
.3

7
25

.0
4

91
.0

4
91

.7
9

81
.8

4
0.

98
42

12
89

.3
7
+

j1
34

8.
74

0.
02

12
0.

98
34

81
.9

4
8.

16
17

0.
77

14
0.

02
60

75
S2

:1
90

7
+

j9
23

.8
@

30
S3

:1
14

5
+

j5
54

.5
@

25

C
3/

A
7

S1
:2

60
1
+

j1
26

0
@

30
47

.0
3

28
.6

3
89

.5
6

89
.5

6
72

.9
2

0.
97

90
12

67
.0

3
+

j1
33

8.
43

0.
02

47
0.

97
99

82
.5

1
8.

32
15

0.
77

69
0.

02
62

55
S2

:5
31
+

j2
57

.1
@

25
S3

:9
81
+

j4
75

.1
@

8

144



Energies 2020, 13, 1444

4.11.2. MCDM Evaluation of Alternatives in Case 3 Under Optimal Load Growth (C3_OLG)

The MCDM evaluations for C3_OLG are illustrated in Figure 15a–d. Refer to Table 25 for respective
TPE and CPE in terms of numerical details without normalization. The rank of the alternatives in
C3_OLG is shown in Table 26. As per the results, the best alternative in TPE is A5, whereas there are no
unanimous solutions in CPE and OPE. After applying UDM, the best solutions in TPE, CPE, and OPE
are A5 (UDS=28 and UDR=1), A3 (UDS=23 and UDR=1), and A5 (UDS=26 and UDR=1); respectively.
The UDM with UDS and UDR across TPE, CPE and OPE in C3_OLG have highlighted in bold text as
shown in Table 26.
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4.12. Case 4 Under Optimal Load Growth: Asset REG + D-STATCOM Placements Equal to 0.85 LPF
(C4_OLG)

4.12.1. Initial Evaluation of Alternatives in Case 4 under Optimal Load Growth (C4_OLG)

The initial evaluation of case 4 (C4_OLG) for each alternative under LG in terms of TPE and CPE
is shown in Table 27.
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4.12.2. MCDM Evaluation of Alternatives in Case 4 under Optimal Load growth (C4_OLG)

The MCDM Evaluations for Case 4 (C4_OLG) under OLG Are Illustrated in Figure 16a–d. The
rank of the alternatives in C4_OLG is shown in Table 28. As per the results, the best alternative in
TPE and CPE is A5, whereas there are no unanimous solutions in CPE. After applying UDM, the best
solutions in TPE, CPE, and OPE are A5 (UDS=28 and UDR=1), A5 (UDS=23 and UDR=1), and A5
(UDS=28 and UDR=1); respectively. The UDM with UDS and UDR across TPE, CPE and OPE in
C4_OLG have highlighted in bold text as shown in Table 28.

In all the cases of the proposed IDMP approach above, it is found that the TPE of each respective
case has less variance compared to other cases. The OPE shows the maximum variance while the CPE
shows the maximum variance when evaluated across various MCDM methodologies.
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5. Comparison and Validation Analysis

The proposed IDMP approach aimed at (multiple-loop configured) MDN is evaluated on 33-bus
TDN and validated via comparative analysis of achieved results with the findings in the available
literature, respectively. The comparison section consists of two sub-sections. In the first section,
achieved results are compared with each other along with the change of rank in different cases of asset
sitting and sizing. In the following case, the achieved results are compared with the results reported in
the reviewed literature.

5.1. Results Comparison with Achieved Results

The achieved results for self-comparison are presented in Table 29. In Table 29, an overview
of performance evaluation in the proposed IDMP approach across technical, cost, and overall
(techno-economic) criteria were evaluated under various load and generation conditions in 33-bus TDS.

In case 1 (C1), from the perspective of technical evaluation, the TPE across NL, LG, and OLG
as designated by TPE_NL, TPE_LG, and TPE_OLG are presented after applying UDM. The relative
comparison from the viewpoint of rank changed (RC) designated by RC1, between respective cases of
NL and LG, reveals that in C1, all ranks are changed under TPE except A7. The RC2 among NL and
OLG reveals the same. However, in RC3, the only ranks changed amongst solutions are A1–A3.

In C1, from the perspective of cost-economic evaluation, the CPE across NL, LG, and OLG as
designated by CPE_NL, CPE_LG, and CPE_OLG are presented after applying UDM. The results
indicate that in RC1 and RC2, all the ranks of possible solutions (alternatives) have changed. However,
in RC3, the ranks changed in the achieved solutions are A1–A4, respectively.

In C1, from the perspective of overall (techno-economic) performance evaluation, the OPE across
NL, LG, and OLG as designated by OPE_NL, OPE_LG, and OPE_OLG are presented after applying
UDM. The achieved results indicate that in RC1 and RC2, all the ranks of alternatives have changed
except A7. However, in RC3, the ranks changed in the achieved solutions are A1–A2.

In C2, in terms of TPE, RC1 shows the rank change in A5, A6, and A7. In RC2, the change of ranks
is found in A1–A2, A4–A6. In RC3, the change of rank is found in A1 and A2. In terms of CPE, in RC1,
change of ranks is observed in A1–A2. In RC2, ranks change is observed in all alternatives. In RC3,
change of rank is observed in A1–A2 and A4. From the viewpoint of OPE, in RC1, change of rank is
observed in all alternatives except A7. In RC2, rank change is observed in all except A2 and A7. In
RC3, rank change is observed in solutions designated by A2–A4.

It is also observed that in C1–C2, DG can be subjected to reactive power support limit whereas
in C3–C4, when REG and D-STATCOM are decoupled, overall better performance is achieved as
mentioned throughout the paper, as demonstrated in the results and discussion section.

In C3, in terms of TPE, RC1 shows the rank change in A1–A3. In RC2, no change of ranks is found.
In RC3, the change of rank is found in A1–A3. In terms of CPE, in RC1, change of ranks is observed in
A1–A4. In RC2, ranks change is observed in all alternatives except A3 and A5. In RC3, change of rank
is observed in A3–A4 and A6–A7. From the viewpoint of OPE, in RC1, change of rank is observed
in all alternatives except A1–A2. In RC2, in respective comparison, all ranks changed. In RC3, rank
change is observed in solutions designated by A1–A2.

In C4, in terms of TPE, RC1 shows no change of rank amongst stated alternatives. In RC2, change
of ranks is found in A1–A3. In RC3, the change of rank is found in A1–A3. In terms of CPE, in RC1,
change of ranks is observed in A2–A4. In RC2, ranks change is observed in alternatives A1–A4. In RC3,
change of rank is observed in A1–A3. From the viewpoint of OPE, in RC1, change of rank is observed
in A2–A3. In RC2, in respective comparison, no ranks have changed. In RC3, rank change is observed
in solutions designated by A2–A3.
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5.2. Results Comparison with Reported Results

The proposed IDMP approach aims at MDN is evaluated on the 33-bus TDS and validated via
comparative analysis of achieved results with the findings in the available literature, respectively. The
achieved results are compared on the basis of best-achieved solutions obtained in each case (C1–C4)
via proposed approach across NL, LG, and OLG via each TPE, CPE, and OPE, respectively.

5.2.1. Evaluated Results Comparison of C1_NL for DGs Operating at 0.90 LPF

The evaluation comparison of case 1 (C1_NL) for each alternative in terms of TPE, CPE, and
OPE are shown in Table 30. The achieved results are compared with multi-objective hybrid GA and
TOPSIS approach in [42] and the multi-objective centric hybrid sensitivity-based approach in [53].
It is observed that the proposed alternative A7 in IDMP during C1_NL is best from the viewpoint
of TPE and OPE, whereas A4 outperforms on the basis of CPE. Note that the achieved results that
outperformed the compared works are shown in bold text, throughout this section.

Table 30. Comparisons of results with C1_NL for 33-bus TDN (DG@LPF = 0.90).

Performance
Evaluation

Indicators (PEIs)
[42] [42] [53]

A4 [31,31]
TPE (C1_NL)
OPE (C1_NL)

DG Size (KVA)
@DG Site (Bus)

773 @ 14
378 @ 25
847 @ 30

700 @ 15
430 @ 18
870 @ 28

2074.56@6
615.25@15

540@25
2357@30

1957@30
500 @25
760@8

PLoss (KW) 28.83 39.76 65.8435 32.99 18.870

QLoss (KVAR) - - 51.94 25.491 13.327

PLM (%) 86.33 81.15 68.8 84.37 91.06

QLM (%) - - 63.7 82.17 90.68

DG Capacity
(KVA)

1998 2000 2689.81 2897 3217

DGPP (%) 45.73 45.77 61.56 66.303 73.63

PSSR + j QSSR - - 1347.9 + j
836.34

1140.7 + j
1062.72

838.570 +
j911.07

VMin (P.U) 0.9756@30 0.9796@25 0.97567 0.9773@13 0.9857@14

PLC (Million-$) - - 0.03461 0.01261 0.00992

PLS (Million-$) - - 0.07629 0.09829 0.1010

CPDG ($/MWh) - - - 52.396 58.156

CQDG ($/MVArh) - - - 5.2141 5.7938

AIC (Million-$) - - - 0.5235 0.5813

Note: The outperformed results in comparative study are shown in bold text.

5.2.2. Evaluated Results Comparison of C2_NL for DGs Operating at 0.85 LPF

The evaluation comparison of case 2 (C2_NL) for each alternative under NL is shown in terms
of TPE, CPE, and OPE are shown in Table 31. The best-achieved alternatives are compared with the
multi-objective hybrid GA and TOPSIS approach in [42], loss sensitivity factor (LSF) and simulated
annealing (SA)-based hybrid method in [54], heuristic-based krill herd algorithm in [55], and ant
colony optimization (ACO) and artificial bee colony (ABC) as reported in [56], respectively. It is worth
mentioning that the reported studies are more focused on technical evaluation, and comparison with
CPE in the reported work is only presented for reference. It is observed that the proposed alternative
A7 in IDMP during C2_NL is best from the viewpoint of TPE and OPE, whereas A3 outperforms on
the basis of CPE. The outperformed results have shown in bold text for comparative analysis.
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Table 31. Comparisons of results with C2_NL for 33-bus TDN (DG@LPF = 0.85).

Performance
Evaluation

Indicators (PEIs)
[42] [54] [55] [56]

A3 [30]
CPE (C2_NL)

A7 [31]
TPE (C2_NL)
OPE (C2_NL)

DG Size (KVA)
@DG Site (Bus)

807@8
347@17
845@30

1382@6
550@18

1062@30

853@13
900@24
899@30

1014@12
960@25

1363@30

950@15
1633@30

1422.1@30
1045.4 @25

933.4@8

PLoss (KW) 24.98 26.72 19.57 15.91 38.3 13.85

QLoss (KVAR) - - - - 28.1 11.50

PLM (%) 88.16 87.34 90.725 92.46 81.85 94.44

QLM (%) - - - - 80.35 91.96

DG Capacity
(KVA)

1999 2994 2652 2880 2583 3400.9

DGPP (%) 45.75 68.523 60.70 65.91 59.12 77.834

PSSR + j QSSR - - - - 1557.8 + j 967.42 838.085 + j 519.965

VMin (P.U) - - - - 0.9719 0.9880@15

PLC (Million-$) - - - - 0.0201 0.00728

PLS (Million-$) - - - - 0.0908 0.10362

CPDG ($/MWh) - - - - 44.161 58.0651

CQDG ($/MVArh) - - - - 6.94 9.1375

AIC (Million-$) - - - - 0.46673 0.6145

Note: The outperformed results in comparative study are shown in bold text.

5.2.3. Evaluated Results Comparison of C3_NL and C4_NL for REG + D-STATCOM

The evaluation comparison of C3_NL and C4_NL for each alternative in terms of TPE, CPE, and
OPE are shown in Tables 32 and 33 respectively.

The best-achieved alternatives in C3_NL are compared in Table 18 with well-established approaches
such as the best-achieved alternatives and compared with well-established methods such as hybrid
fuzzy ant colony optimization approach in [34], multiple attribute decision-making (MCDM) methods
such as TOPSIS and PROMETHEE in [35], and sensitivity-based approach in [57]. It is found that A3
in [30] amongst other alternatives in the C3_NL of the proposed IDMP method provides a big picture
on the basis of CPE. Moreover, on the basis of TPE and OPE, the findings of the A7 solution are in close
agreement with the reported works, hence validating the proposed approach under NL.

The findings of C4_NL are compared in Table 18 with reported works such as hybrid fuzzy ant
colony optimization method in [34] and cuckoo search algorithm (CSA) in [37]. The reported work
is in close agreement with solution A7 in [37] on the basis of TPE, A3 [30] and A5 [30] on the basis
of CPE and OPE, which indicates the validity of proposed approach with assets such as REG and
DSTATCOM, respectively.

Table 32. Comparisons of results with C3_NL for 33-bus TDN (REG + D-STATCOM@LPF = 0.9).

Performance
Evaluation Indicators

(PEIs)
[34] [57] [35]

A3 [30]
CPE (C3_NL)

A5 [30]
TPE (C3_NL)
OPE (C3_NL)

DG (KW) @ Bus #
D-STATCOM (KVAR)

@ Bus #

1316@9
740@10

2491 @ 6
1230@30

750 @ 14
420 @ 14

1100 @ 24
460 @ 24
1000 @ 8
970 @ 8

869.2 @ 15
421.2 @ 15
1604 @ 30

777.04 @ 30

620.5 @ 15
300 @ 15

1442 @ 30
698.3 @ 30
637.5 @ 7

308.73 @ 7

PLoss (KW) 48.73 58 15.07 27.89 19.40

QLoss (KVAR) - - - 16.20 11.09

PLM (%) 76.9 72.51 92.56 86.52 90.63
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Table 32. Cont.

QLM (%) - - - 88.44 92.09

DG Capacity (KW) 1316 2491 2460 2473.2 2700

D-STATCOM
Capacity (KVAR)

740 1230 1600 1198.24 1307.03

DGPP (%) 34.56 67 67.2 67.56 73.77

PSSR + j QSSR - - - 1770+j 1118 1034 + j 1004.1

VMin (P.U) - - 0.9584 0.9874 0.9900

PLC (Million-$) - - - 0.0147 0.0102

PLS (Million-$) - - - 0.0962 0.1007

CPDG ($/MWh) - 50.1 - 49.71 54.25

CQDG ($/MVArh) - 5.2 - 4.9558 5.3593

AIC (Million-$) - - - 0.4672 0.5099

ACD (Million-$) - - - 0.01589 0.01718

Note: The outperformed results in comparative study are shown in bold text.

Table 33. Comparisons of results with C4_NL for 33-bus TDN (REG + D-STATCOM@LPF = 0.85).

Performance
Evaluation

Indicators (PEIs)
[34] [37] A7 [31]

TPE (C4_NL)
A3 [30]

CPE (C4_NL)
A5 [30]

OPE (C4_NL)

DG (KW) @ Bus #
D-STATCOM

(KVAR) @ Bus #

1309 @ 7
720 @ 23

850 @ 12
400 @ 12
750 @ 25
350 @ 25
860 @ 8
850 @ 8

1210 @ 30
750 @ 30
890 @ 25

551.2 @ 25
793.7 @ 8
492 @ 8

807.5 @ 15
485 @ 15

1388 @ 30
893 @ 30

547 @ 15
338.8 @ 15
1397 @ 30
866 @ 30
606.3 @ 7
376 @ 7

PLoss (KW) 69.15 12 16.3 27.39 17.33

QLoss (KVAR) - - 12.6 17.98 11.37

PLM (%) 67.23 94.31 92.27 86.77 91.62

QLM (%) - - 91.19 87.18 91.89

DG Capacity (KW) 1309 2850 2893.7 2195.5 2550.3

D-STATCOM
Capacity (KVAR)

720 1850 1793.2 1378 1580.8

DGPP (%) 34.19 76.72 77.89 60 68.67

PSSR + j QSSR - - 838.06 + j 519.4 1547 + j940 1182 + j730.6

VMin (P.U) - 0.9862 0.9878 0.9859 0.9901

PLC (Million-$) - - 0.0086 0.0144 0.0091

PLS (Million-$) - - 0.1023 0.0965 0.1018

CPDG ($/MWh) - - 58.07 44.16 51.25

CQDG ($/MVArh) - - 9.1760 7.1574 8.0011

AIC (Million-$) - - 0.64653 0.4147 0.4817

ACD (Million-$) - - 0.02368 0.01821 0.02077

Note: The outperformed results in comparative study are shown in bold text.

5.2.4. Evaluated Results Comparison of C1_LG-C4_LG

The evaluation comparison of all four cases under load growth is compared with the results of the
sensitivity-based approach reported in [57]. The results are compared for the cases C1_LG and C2_LG
in Table 34 for the assets considering DG only case operating at 0.90 LPF and 0.85 LPF, respectively.
The assets in both cases, such as DGs only, are capable of contributing both active and reactive power.
The case for LG is presented for the reason that the LG impact from the perspective of assets considered
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has to be evaluated and relative impacts from the techno-economic perspective must be assessed. From
the viewpoint of C1_LG, it is found that solution A3 via CPE and A6 via TPE and OPE is the best that
even outperforms the results in [57]. From the standpoint of C2_LG, A7 (in TPE), A3 (in CPE), and A5
in OPE outperform the results stated in [57].

Table 34. Comparisons of results with C1_LG and C2_LG for 33-bus TDN (DG@LPF = 0.90, 0.85).

Performance
Evaluation

Indicators (PEIs)
[57]

A3 CPE
(C1_LG)

A6 TPE, OPE
(C1_LG)

A7 TPE
(C2_LG)

A3 CPE
(C2_LG)

A5 OPE
(C2_LG)

DG Size (KVA)
@DG Site (Bus)

4441 @ 6 971 @ 15
1783 @ 30

894.6 @ 15
1386 @ 30
822.6 @ 25

1422 @ 30
1045 @ 25
933.4 @ 8

950 @ 15
1633 @ 30

828.3 @ 15
1644 @ 30
727.8 @ 7

PLoss (KW) 146 95.35 77.621 71.17 101.56 81.44

QLoss (KVAR) - 53.664 44.204 46.64 65 51.93

PLM (%) 68.94 78.842 82.776 84.21 77.44 81.93

QLM (%) - 82.42 85.51 84.72 78.69 82.98

DG Capacity
(KVA)

4441 2754 3103.2 3400.4 2583 3200.1

DGPP (%) 70.81 43.802 49.131 54.22 41.18 47.83

PSSR + j QSSR - 2950 + j2155 2618 + j1994 2514 + j1557 3239 + j2006 2694 + j1669

VMin (P.U) - 0.9641 0.9652 0.9597 0.9624 0.9641

PLC (Million-$) - 0.1762 0.1361 0.1243 0.1792 0.1349

PLS (Million-$) - 0.8284 0.8684 0.8802 0.8254 0.8697

CPDG ($/MWh) 73.6 48.80 55.77 58.07 44.16 51.26

CQDG
($/MVArh)

13.7 4.8567 5.4988 9.1375 7.1279 8.0612

AIC (Million-$) - 0.4965 0.5569 0.6145 0.4667 0.5421

Note: The outperformed results in comparative study are shown in bold text.

The results are compared for the cases C3_LG and C4_LG in Table 35 for the assets such as REG
and D-STATCOM, which are decoupled in comparison with DG only cases reported in C1_LG and
C2_LG. However, they contribute active and reactive power that is equal to one DG supplying P and Q
either at 0.90 or 0.85 LPF. The P contributes via REG and Q support is provided by D-STATCOM. It is
found that the achieved results outperform reported works on the basis of TPE, CPE, and OPE.

Table 35. Comparisons of results with C3_LG and C4_LG for 33-bus TDN (REG + D-STATCOM).

Performance
Evaluation

Indicators (PEIs)
[57]

A3 CPE
(C3_LG)

A6 TPE, OPE
(C3_LG)

A7 TPE
(C4_LG)

A3 CPE
(C4_LG)

A5 OPE
(C4_LG)

DG (KW) @ Bus #
D-STATCOM

(KVAR) @ Bus #

3670 @ 6
1770@30

869.2 @ 15
421.5 @ 15
1604 @ 30
777.4 @ 30

789 @ 15
380.7 @ 15
1247 @ 30
586.2 @ 30
739.6 @ 25
372 @ 25

1210 @ 30
750 @ 30
890 @ 25

551.2 @ 25
793.7 @ 8
492 @ 8

807.5 @ 15
485.0 @ 15
1388 @ 30
893 @ 30

547 @ 15
338.8 @ 15
1397 @ 30
866 @ 30
606.3 @ 7
376 @ 7

PLoss (KW) 126 96.74 78.98 72.69 102.66 82.85

QLoss (KVAR) - 54.28 44.87 47.27 65.38 53.07

PLM (%) 73.19 78.53 82.47 83.87 77.22 81.69

QLM (%) - 82.21 85.29 84.51 78.58 82.61

DG Capacity
(KVA)

3670 2473.2 2775.6 2893.7 2195.5 2550.3

DGPP (%) 68.82 43.81 49.21 54.22 41.39 47.82

PSSR + j QSSR - 2957 + j 2158 2636+j2008 2512+j1556 3240 + j1989 2866 + j1774

VMin (P.U) - 0.9640 0.9651 0.9595 0.9623 0.9638
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Table 35. Cont.

PLC (Million-$) - 0.1789 0.1398 0.1289 0.1848 0.1373

PLS (Million-$) - 0.8256 0.8648 0.8757 0.8198 0.8673

CPDG ($/MWh) 73.6 49.71 55.76 58.07 44.16 51.25

CQDG ($/MVArh) 7.3 4.948 5.6037 9.145 7.2153 8.0446

AIC (Million-$) - 0.4672 0.5243 0.5466 0.4147 0.4817

ACD (Million-$) - 0.01579 0.01781 0.023616 0.01828 0.020826

Note: The outperformed results in comparative study are shown in bold text.

5.2.5. Evaluated Results Comparison of C1_OLG-C4_OLG

The evaluation comparison of achieved results in C1_OLG and C2_OLG are shown in Table 36,
the multi-aspect results outperform the reported results in [57].

Table 36. Comparisons of results with C1-C2 under OLG for 33-bus TDS (DG@LPF = 0.90, 0.85).

Performance
Evaluation

Indicators (PEIs)
[57]

A3, CPE
(C1_OLG)

A5, TPE, OPE
(C1_OLG)

A5, TPE, CPE,
OPE (C2_OLG)

DG Size (KVA)
@DG Site (Bus)

4441 @ 6 1500 @ 15
2300 @ 30

980 @ 15
2235 @ 30
1521 @ 7

980 @ 15
2235 @ 30
1177 @ 7

PLoss (KW) 146 60.34 34.99 34.63

QLoss (KVAR) - 35.29 21.80 23.32

PLM (%) 68.94 86.62 92.23 92.31

QLM (%) - 88.43 92.86 92.36

DG Capacity
(KVA)

4441 3800 4736 4392

DGPP (%) 70.81 60.58 75.52 70.04

PSSR + j QSSR - 1973 + j1681 1106 + j1259 1634 + j1012

VMin (P.U) - 0.9811 0.9899 0.9878

PLC (Million-$) - 0.0317 0.0184 0.0182

PLS (Million-$) - 0.9729 0.9862 0.9864

CPDG ($/MWh) 73.6 68.65 85.51 74.94

CQDG ($/MVArh) 13.7 6.8440 8.5309 11.804

AIC (Million-$) - 0.6867 0.8559 0.7938

Note: The outperformed results in comparative study are shown in bold text.

The evaluation results of C3_OLG and C4_OLG are compared in Table 37 with hybrid particle
swarm optimization (PSO) and GAMS in [36], and sensitivity-based approach in [57]. The results from
the proposed work outperforms the reported works from the perspective of better performance and
optimal sizing assets, as shown in bold text shown throughout this section.
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Table 37. Comparisons of results with C4-C4 under OLG for 33-bus TDS (REG + D-STATCOM).

Performance
Evaluation

Indicators (PEIs)
[57] [36] [36]

A3 CPE
(C3_OLG)

A5 TPE, OPE
(C3_OLG)

A5 OPE
(C4_OLG)

DG (KW) @ Bus #
D-STATCOM

(KVAR) @ Bus #

3670 @ 6
1770@30

1777.2@30
1123.5 @ 8

1829.7@30
689.3 @ 8

1269 @ 15
622.0 @ 15
2223 @ 30
1080 @ 30

882.73 @ 15
427 @ 15
2011 @ 30
974 @ 30

1369 @ 25
663.02 @ 25

833.7 @ 15
516 @ 15

1899 @ 30
1177 @ 30
1000 @ 7
620.2 @ 7

PLoss (KW) 126 233.73 235.7 58.83 36.26 36.64

QLoss (KVAR) - - - 34.39 22.37 24.02

PLM (%) 73.19 30.35 29.94 86.95 91.95 91.87

QLM (%) - - - 88.73 92.66 92.13

DG Capacity
(KVA)

3670 0 0 3492 4262.73 3732.7

D-STATCOM Size
(KVAR)

1770 2900.7 2519 1702 2064.02 2312.2

DGPP (%) 68.82 0 0 66.23 77.99 81.82

PSSR + j QSSR - - - 1900+j1634 1107 + j1260 1367+ j1013

VMin (P.U) - 0.9447 0.94305 0.9813 0.9898 0.9877

PLC (Million-$) - 0.122849 0.123884 0.0309 0.0191 0.0193

PLS (Million-$) - 0.038616 0.0396 0.9737 0.9855 0.9853

CPDG ($/MWh) 73.6 - - 70.09 85.53 74.94

CQDG ($/MVArh) 7.3 - - 7.081 8.5578 11.759

AIC (Million-$) - 0.161464 0.16349 0.6596 0.8052 0.7051

ACD (Million-$) - 0.015374 0.01335 0.02245 0.02728 0.030473

Note: The outperformed results in comparative study are shown in bold text.

6. Conclusions

The active meshed distribution network is considered as a model of future smart distribution
networks, which are anticipated to exhibit better performance and reliability through interconnection.
Practical planning problems must be capable of encapsulating solutions that must satisfy conflicting
criteria across the planning horizon. Thus, this works offers an IDMP approach aimed at various types of
asset sitting and sizing across the normal load and load growth levels in a meshed distribution network.
The assets considered in this study are synchronous generators operating at various lagging power
factors (LPF) and capable of giving active and reactive powers and renewable DGs like photovoltaic
(PV) system (contributes active power only) and D-STATCOM (contributes reactive power only). The
methodology consists of an initial evaluation of alternatives with the voltage stability assessment
indices-loss minimization condition (VSAI-LMC)-based method with single and multiple assets. Later,
four MCDM methodologies are applied to sort out the best solution amongst the achieved alternatives.
Finally, unanimous decision-making (UDM) is applied to find out one trade-off solution amongst
achieved ranks of various MCDM methods. The methodology is applied across technical only (TPE),
cost-economic only (CPE), and overall techno-economic (OPE) performance evaluations across four
cases of assets sitting and sizing. All four cases are evaluated across the normal load, load growth,
and optimal load growth. The detailed performance analysis is applied across the meshed configured
33-bus test distribution network. The achieved results across all cases after comparison with the credible
results reported in the literature have both outperformed and displayed close agreement, resulting
in the validation of the proposed IDMP approach. The proposed approach with techno-economic
performance evaluation among conflicting criteria across the time scale reduces the need for sensitivity
analysis and provides a range of trade-off solutions across various performance metrics. The overall
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approach in this paper aims to offer decision-makers a wide variety of optimal solutions among
conflicting criteria considering various cases of asset optimization.
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Abbreviations

The following abbreviations have used in this paper.
ACD Annual cost of D-STATCOM
ADN Active distribution Network
AIC Annual investment cost
AFc Annualized factor (of cost) in USD $
C (#) Case (No. = 1, 2, 3, 4)
Ct Annual cost based on interest-rate
CPDG Cost of active power from DG
CPE Cost-economic performance evaluation
CQDG Cost of reactive power from DG
CUc Cost related to DG unit (USD/KVA)
DG Distributed generation units
DGPP DG penetration by percentage in TDN
DM Decision-making
DN Distribution network
DNPP Distribution network planning problems
D-STATCOM Distributed static compensator
DS/DSt D-STATCOM
DGCmax Maximum capacities of DG units in (KVA)
Eqn. (No) Equation. (Number)
EU Rate of electricity unit
GA Genetic algorithm
IDMP Integrated decision making planning
LDN Loop distribution network
LG Load growth
LM Loss minimization
LMC Loss minimization condition
LPF Lagging power factor
LSF Loss sensitivity factor
MCDM Multi criteria decision making
MDN Meshed distribution network
M$ Millions of USD ($)
NL Normal load
NO Normally open
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NSGA-II Non dominated GA-II
ODGP Optimal DG placement
ODGP Optimal DG Unit Placement
OLG Optimal load growth
OPE Overall (techno-economic) performance evaluation.
P Active Power
PEI Performance evaluation indicator
Pss/PDG P contribution from substation & DG
PF/pf Power factor
PLoss Active Power loss in KW
PLC Cost of PLoss (in million USD)
PLS Active power loss saving in Million $
PSSR P Capacity Release from Substation
P.U Per unit system values (or p.u)

PRO/PROMETHEE
Preference ranking organization method for
enrichment of evaluation

PSO Particle swarm optimization
PV Photovoltaic systems
Q Reactive Power
QDG Q contribution from substation
QLoss Reactive Power loss in KVAR
QLM QLoss minimization (by percentage)
QSSR Q Capacity Release from Substation
RB Receiving end (load) bus
RC Rank changed
RDN Radial-structured distribution network
PLM PLoss minimization (by percentage)
REG Renewable energy generation
RSS Relief-in-substation (P and Q) capacity
RTUs Remote terminal units
S (#) Set (No. = 1, 2, 3, 4) of assets
SA Simulated annealing
SB Sending end (feeding) bus
SCC Short circuit current
SG Smart grid
SS Substation
TB Tie-line branch
TDN Test distribution Network

TOP/TOPSIS
Technique for order preference by similarity to ideal
solution

TPE Technical performance evaluation
TS/TS# Tie-Switch (normally open switch)/TS.No.
TY Time in a year = 8760 Hours
U_Max Voltage maximization
UDM Unanimous decision making
UDR Unanimous decision making rank
UDS Unanimous decision making score
V Voltage magnitude
Vmin Minimum voltage magnitude
VM Voltage maximization
VP/VS Voltage profile/Voltage stabilization
VSI/VSAI Voltage stability assessment indices
WPM Weighted product method
WSM Weighted sum method
V_A Feasible voltage solution via VSAI_A
V_B Feasible voltage solution via VSAI_B
A+, A− Positive and Negative ideal solution
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