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Álvaro Presno Vélez, Antonio Bernardo Sánchez, Marta Menéndez Fernández and

Zulima Fernández Muñiz
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Preface to ”Predicting the Future—Big Data and

Machine Learning”

This Special Issue of Energies “Predicting the Future—Big Data and Machine Learning” deals

with interesting and new topics in the field of energy related to recent advances in machine and deep

learning. Two of the papers, “Crude Oil Prices Forecasting: An Approach of Using CEEMDAN-Based

Multi-Layer Gated Recurrent Unit Networks” and “Optimizing Predictor Variables in Artificial

Neural Networks When Forecasting Raw Material Prices for Energy Production” deal with the topic

of price forecasting. Another two, “Short-Term Load Forecasting for CCHP Systems Considering the

Correlation between Heating, Gas and Electrical Loads Based on Deep Learning” and “Non-Intrusive

Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques” explore

demand management and forecasting. Machine learning methodologies have also proven useful

in the management of energy systems. This Special Issue has an article related to this topic, “Energy

Multiphase Model for Biocoal Conversion Systems by Means of a Nodal Network”. There are another

two articles that deal with the interesting topics of the use of energy in industrial applications

“Multivariate Analysis to Relate CTOD Values with Material Properties in Steel Welded Joints for

the Offshore Wind Power Industry” and the health and safety problems of the workers in this

field “Prediction of Health-Related Leave Days among Workers in the Energy Sector by Means of

Genetic Algorithms”. Finally, the Special Issue contains another study in which the impact of energy

applications on the environment is considered “Understanding and Modeling Climate Impacts on

Photosynthetic Dynamics with FLUXNET Data and Neural Networks”.

Fernando Sánchez Lasheras

Editor
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Abstract: Combined cooling, heating, and power (CCHP) systems is a distributed energy system that
uses the power station or heat engine to generate electricity and useful heat simultaneously. Due to its
wide range of advantages including efficiency, ecological, and financial, the CCHP will be the main
direction of the integrated system. The accurate prediction of heating, gas, and electrical loads plays an
essential role in energy management in CCHP systems. This paper combined long short-term memory
(LSTM) network and convolutional neural network (CNN) to design a novel hybrid neural network
for short-term loads forecasting considering their correlation. Pearson correlation coefficient will be
utilized to measure the temporal correlation between current load and historical loads, and analyze
the coupling between heating, gas and electrical loads. The dropout technique is proposed to solve
the over-fitting of the network due to the lack of data diversity and network parameter redundancy.
The case study shows that considering the coupling between heating, gas and electrical loads can
effectively improve the forecasting accuracy, the performance of the proposed approach is better than
that of the traditional methods.

Keywords: short-term loads forecasting; CCHP systems; convolutional neural network; short-term
memory network; dropout layer

1. Introduction

With the rapid development of industry, the consumption of energy and other natural resources
has increased substantially. How to rationally utilize energy resources and improve the efficiency of
energy utilization has become a common concern of all countries in the world. The combined cooling
heating, and power system is one of the distributed energy systems, which uses a power station or
heat engine to generate useful heat and electricity at the same time. It is arranged near the users on a
small scale, decentralized, and targeted manner, and delivers heating energy and electric energy to
nearby users according to the users’ different needs [1,2]. Compared with conventional centralized
power systems, the combined cooling, heating, and power (CCHP) system has lower energy costs,
higher energy efficiency, and higher energy availability. Therefore, the CCHP system will become the
main form of the integrated energy system [3].

The traditional power system, heating system, and natural gas system are independent of each
other, which greatly limits the operating efficiency of these three energy systems. The CCHP system
uses gas as an energy source and recycles hot water and high-temperature exhaust gas to improve
the comprehensive utilization efficiency of energy [4]. In this case, the power system, heating system,
and natural gas system will have a strong correlation, which requires the intelligent control of these
three systems at the same time. Accurate prediction of heating, gas, and electrical loads is the basic
premise of energy management in CCHP systems and has important theoretical and practical value.

Energies 2019, 12, 3308; doi:10.3390/en12173308 www.mdpi.com/journal/energies1
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Conventionally, heating, gas and electrical loads forecasting are conducted separately, and this is
not suitable for CCHP system where the heating, gas, and electrical loads have strong correlations.
Therefore, it is necessary to propose a novel load forecasting approach for the CCHP system that
accounts for the correlation of these three loads.

Recently, as an important branch of the field of artificial intelligence, the deep learning
technology, has been applied to all popular artificial intelligence areas, including speech recognition,
image recognition, big data analysis, etc. [5–7]. Especially, the convolutional neural network (CNN),
which is well-known for its strong ability to extract features, has gained enormous attention in the
field of image classification and image recognition. The CNN with global spatial information was
designed to divide white matter hyperintensities in [8]. To realize image classification, the CNN
with five convolutional layers and three fully connected layers was designed to improve the accuracy
in [9]. The phase-functioned network, a maximum posteriori framework and a local regression model
were proposed respectively to control real-time data-driven character such as human locomotion
in [10–12]. Heungil et al. combined the hidden Markov model and automatic encoder to model the
underlying functional dynamics inherent in rs-fMRI [13]. At present, the application of CNN on the
regression task is very limited. In addition, the long short-term memory network is often used to
process time series, for it can establish the correlation between the previous information and the current
circumstances [14,15]. To the best of our knowledge, there is no report about combining CNN and
LSTM network to predict heating, gas, and electrical loads while considering their correlation.

In this paper, we aim to forecast heating, gas, and electrical loads by combining CNN and LSTM
network. Firstly, the Pearson correlation coefficient will be utilized to analyze the temporal correlation
between historical loads and current loads, which give the reason for using the LSTM network. Then,
a deep learning method composed of CNN and LSTM network could be designed. In addition,
the dropout layer is proposed to handle the over-fitting. Finally, the real-world data of CCHP system
is used to test the performance of our proposed approaches.

The rest of this paper is organized as follows. Section 2 provides the background of load forecasting.
Section 3 analyzes the temporal correlation of the three loads and the coupling between them, and then
explains why LSTM should be added to the proposed network. Section 4 introduces the Conv1D,
MaxPooling1D, dropout and LSTM layers for load forecasting. Section 5 tests the performance of our
proposed approaches and analyses results. Section 6 summaries the conclusions.

2. Literature Review

Heating, gas, and electrical loads forecasting are essential to CCHP systems planning and
operations. In respect of time horizons, the loads forecasting can be roughly split into long-term load
forecasting, medium-term load forecasting, short-term load forecasting, and very short-term load
forecasting, among which the predicted time horizon cut-offs are years, months, hours, and minutes,
respectively. This section will provide a brief review of short-term load forecasting.

In the previous literature, several forecasting approaches were proposed for predicting heating,
gas, and electrical loads. The conventional methods mainly include autoregressive integrated moving
average (ARIMA), model support vector machine (SVM), regression analysis, grey theory (i.e., GM (1,1))
and artificial neural network (ANN).

The current state of heating, gas, and electrical loads is not only related to the surrounding
environmental factors but also influenced by past events. The ARIMA and GM (1,1) models predict
current load according to historical time series, which can fully consider the trend and transient state.
However, they ignore environmental factors. Therefore, when the surrounding environment changes
dramatically, the historical trend of the load is not smooth, and the error of these methods may become
very large [16,17].

Regression analysis fits the given mathematical formula based on historical data, but it has the
drawback that the relationship between loads and features is difficult to be accurately described by
a mathematical formula [18]. In the field of computer science, SVM is a supervised learning model,
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which is often utilized for the task of classification and regression analysis. It is good at solving a large
number of complex problems, such as nonlinear, over-fitting, high dimension, and local minimum
point. However, the SVM has a slow speed of training large-scale samples [19,20]. As a “black-box”
that relies on data and prior knowledge, the traditional ANN can fit complex nonlinear relationships,
whereas the traditional ANN also has defects of over-fitting and easy to fall into local optimum [21,22].
In addition, the above methods only account for the impact of the environmental factors on the current
loads, ignoring the role of past events.

Recently, the deep learning network has been applied to forecast heating, gas and electrical loads.
The deep belief network is designed to forecast day-ahead electricity consumption in [23]. The study
cases show that the proposed approach is suitable for short-term electrical load forecasting. In addition,
it offers better results than traditional methods. Indeed, the LSTM is good at dealing with time series
with long time spans, which is suitable for forecasting short-time loads. Kuan Lu et al. proposed a
concatenated LSTM architecture for forecasting heating loads [24]. In order to solve the forecasting
problem for the strong fluctuating household load, Weicong Kong et al. improved the household
prediction framework with automatic hyper parameter tuning based on LSTM network [14]. The CNN
is a neural network designed to process input data that has an intrinsic relationship. Generally,
the input data to CNN will have a natural structure to it such that nearby entries are correlated [25,26].
For example, this type of data includes 1-D load time series and 2-D images. The current research
mainly focuses on 2-D image recognition. The literature about using CNN to extract the features of time
series for forecasting loads is relatively limited. In order to improve the performance of the network,
researchers try to combine CNN with LSTM to form a hybrid network. A CNN-LSTM neural network
is proposed to extract temporal and spatial features to improve the forecasting accuracy of household
load in [27]. Jianfeng et al., designed a hybrid network consisting of the CNN and LSTM to improve
the performance of recognizing speech emotion [28]. Similarly, The CNN and LSTM are utilized to
automatically detect diabetes in [29]. At present, there is no report on the use of hybrid network
consisting of the CNN and LSTM to predict heating, gas, and electrical loads while considering the
correlation of these three loads for integrated energy systems.

In addition, previous studies show that the performance of multi-layer is better than that of
single-layer for all of the above deep learning models. However, some scholars have found that
over-fitting occurs as the number of layers increases. [30,31]. Therefore, it is necessary to find a way
that can increase the number of layers without over-fitting.

Taking the above analysis into consideration, it is clear that though the predecessors have made
great achievements in heating, gas and electrical loads forecasting, there are still some problems to be
solved. For example, how to combine CNN and LSTM to design a hybrid network, which can not only
extract the inherent features of the input but also consider the temporal correlation of loads? How to
solve the over-fitting? How does the coupling between heating, gas, and electrical loads affect the
forecasting results?

To solve these problems for heating, gas, and electrical loads forecasting, a new framework based
on deep learning is proposed. The key contributions of this paper can be summarized as follows:

(1) The heating, gas, and electrical loads of the CCHP system are highly coupled. Although there is a
lot of literature focusing on load forecasting, the prediction of multiple loads considering their
coupling has not been found in the literature. This is the first time to design a network to forecast
loads, considering the coupling between them.

(2) Pearson correlation coefficient will be utilized to measure the temporal correlation between
historical loads and current loads, to give the reason for using the LSTM network.

(3) The Conv1D layer and MaxPooling1D layer are utilized to inherent features that affect heating,
gas, and electrical loads. To prevent over-fitting, the dropout is added between LSTM layers.
The LSTM network which could take the influence of previous information into account is
adopted to forecast these loads.

3
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3. Analysis of Temporal Correlation

As we all know, loads have temporal correlations, especially electrical loads. For example, if the
air conditioner is turned on at the moment, the air conditioning load will continue for some time in the
future. Furthermore, there are many methods, such as the GM (1,1) model, that predict next loads based
on the trend of historical load series. In the past, heating, gas, and electrical loads systems operated
independently and their coupling was not strong. Therefore, few people study the temporal correlation
between multiple loads. The heating, gas, and electrical loads can be converted in real-time through
related devices in CCHP systems, which lead to a strong temporal correlation of these three loads.

Pearson correlation coefficient whose value ranges from −1 to +1 is able to measure the linear
correlation of two variables. In this paper, the Pearson coefficient will be utilized to evaluate the
temporal correlation of these three loads. The Pearson correlation coefficient can be expressed as
follows [32]:

rxy =

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1
(xi − x)2

√
n∑

i=1
(yi − y)2

(1)

where x stands for the mean of x and y stands for the mean of y.
In this study, the dataset comes from a hospital in Beijing, China, which contains hourly data

from 1 January, 2015 to 31 December, 2015. The main features include environmental factors, such as
moisture content, humidifying capacity, dry bulb temperature, and total radiation. The Pearson
coefficient is used to analyze the relationship between current heating, gas, and electrical load (loads at
time t) and their historical loads (loads from t-24 to t-1). The results are shown in Figure 1.

 

(a) 
 

(b) 
 

(c) 

Figure 1. The temporal correlation of heating, gas and electrical loads. (a) Heating load, (b) gas load,
(c) electrical load.

On one hand, the Pearson coefficient between the current heating loads and the historical
heating loads is large, i.e., the heating load itself has a strong temporal correlation. In addition,
the Pearson coefficients between the heating loads and the electrical loads and the gas loads are small,
which indicates that there is weak coupling between heating loads and the other two kinds of loads.
On the other hand, both the gas load and the electrical load have strong coupling with themselves.
Besides, there is a strong coupling between the current gas load and the historical electrical load which
ranges from t-1 to t-5. Electrical loads also have a similar conclusion that there is a strong coupling
between the current electrical load and the historical gas load which ranges from t-1 to t-4.

As can be seen from the above simulation, the heating, gas, and electrical loads have strong
temporal correlation and coupling, which requires the deep learning network to consider these factors.
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4. Deep Learning Framework for Forecast Short-Term Loads

4.1. Conv1D Layer and MaxPooling1D Layer

CNN is a neural network designed for processing input data that has an intrinsic relationship.
For example, a time series can be thought of as a one-dimensional grid sampled at fixed time intervals,
and image data can be viewed as a two-dimensional grid of pixels [33]. CNN has been widely used
in image recognition tasks with good performance. As the name implies, the main mathematical
operation of convolution neural networks is convolution that is a special linear operation. The matrix
multiplication is replaced by convolution layers in CNN.

As is known to all, the convolution is a mathematical operation on two functions of a real-valued
argument. The convolution operation can be described as follows:

s = x ∗w (2)

where w stands for the weighting function which is called kernel in CNN. x stands for the input function.
The output of convolution can be marked as s, which will be called the feature map. ∗ represents the
operation of convolution.

In practical problems such as load forecasting, the data of input is a multiple dimensional
vector, and the kernel is also a multiply dimensional vector of parameters which are determined by
learning method. In this case, the operation of convolution will be applied to multiple dimensions
since the kernels and inputs are multiple dimensional. Therefore, the operation of convolution for
two-dimensional inputs can be described as follows:

s(i, j) = (I ∗K)(i, j) =
∑

l

∑
m

I(l, m)K(i + l, j + m) (3)

where I is the two-dimensional data of input, and K is the two-dimensional kernel. S represents the
feature map after the operation of convolution.

As shown in Figure 2, a typical CNN consists of a set of layers. The input layer is composed
of environmental factors and historical loads. Assuming that the dimension of the input layer
is 28, five feature maps are generated after convolution operation. The pooling layers are often
inserted between the Conv1D layers. It effectively alleviates over-fitting by reducing the parameters
between layers. According to the conclusion from the literature [24], the computationally efficient
max pooling showed better results than other candidates, including average pooling and min pooling.
The MaxPooling1D layer resizes it spatially and operates on every depth slice of the data.

Generally speaking, the neural network includes one or more Conv1D and MaxPooling1D layers.
After extracting features by using Conv1D and MaxPooling1D layers, the outputs will be sent to
LSTM layers.

Figure 2. The structure of convolutional neural network.
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4.2. LSTM Layer

The recurrent neural network (RNN) is a typical artificial neural network that establishes the
temporal correlations between the current circumstances and previous information [34]. Unlike
traditional feed forward neural network, the RNN can use their internal memory to process time series
of input data. Such characteristic of RNN makes it applicable to load forecasting, because the heating,
gas, and electrical loads are affected by environmental features and historical loads.

The common training approaches for RNN mainly include real-time recurrent learning (RTTL)
and back propagation through time (BPTT). Compared with RTRL, The BPTT algorithm has a
shorter computation time [35]. Therefore, BPTT is often used to train RNN. Because the problems of
gradient vanishing and gradient exploding, learning long-range dependencies with RNN is difficult.
These problems limit the ability to learn temporal correlations of long-term time series. The long
short-term memory (LSTM) was proposed by Hochreiter to solve these problems in 1997 [36]. Broadly
speaking, LSTM is one of the RNNs. It not only has memory and forgetting patterns to learn the
features of time series flexibly, but also solves the problem of gradient exploding and gradient
vanishing. Recently, LSTM networks have achieved great success in numerous sequence prediction
tasks, which include speech prediction, handwritten text prediction, etc. Figure 3 shows the block
structure of LSTM at a single time step.

Figure 3. The block structure of long short-term memory (LSTM).

The cell state vector ct is read and modified through the control of forget gate ft, input gate it and
output gates ot during the whole life cycle, which is the most important structure of the LSTM layer.
The current cell state vector ct will be determined by operating the output vector ht−1, input vector xt

and previous cell state vector ct−1 according to the present time steps and the outputs of the previous
time step. The formula for the relationship between the variables is as follows:

ft = σg(W f xt + U f ht−1 + b f ) (4)

it = σg(Wixt + Uiht−1 + bi) (5)

ot = σg(Woxt + Uoht−1 + bo) (6)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (7)

ht = ot ◦ σc(ct) (8)

where W ∈ Rn×d are the weight matrices. U ∈ Rn×n are bias vector parameters. The superscripts n is
the number of hidden units and d is the number of input features. σc is hyperbolic tangent functions
and σg is the sigmoid function.

The hyperparameter of the hidden unit n should be specified to train the LSTM network. Therefore,
the output vector ht and cell state vector ct are n-dimensional vectors, which are equal to 0 at the initial
time. The LSTM has three sigmoid functions whose output data range from 0 to 1. They are usually

6
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regarded as "soft" switches to determine which data should pass through the gate. The signal will be
blocked by the gate when the gate is equal to 0. The states of input gate it, output gate ot and forget gate
ft all rely on previous output ht−1 and the current input xt. The signal of forget gate determines what
to forget of the previous state ct−1, and the input gate decides what will be preserved in the internal
state ct. After updating the internal state, the output data of LSTM will be determined by the internal
state. Similarly, this process will be repeated for the next time steps. In general, the LSTM output of
the next time steps can be affected by the information of the previous time steps through this block
structure of LSTM.

4.3. Dropout Layer

Previous studies have shown that increasing the number of layers in the neural network does not
effectively improve forecasting accuracy. The number of internal parameters of the network increases
exponentially when the number of network layers increases. It is prone to over-fitting. After training
the network, the network will be created perfectly, but just for the training set. Dropout is a technique
that addresses over-fitting [37,38]. As shown in Figure 4, some units are selected randomly and their
incoming and outgoing connections are discarded from the network. At each training phase, each unit
"exits" the network with a probability p to reduce the parameters of the network. Only the reduced
network will be trained in the stage, and the removed units will be reinserted into the network with
their original weights.

The probability of discarding hidden units is set to 0.5. In term of input units, the probability
should be much lower because if the input units are ignored, the information will be lost directly.
By avoiding training all units of the network, the dropout layer can decrease over-fitting. Especially
for deep neural networks, dropout technique can significantly shorten the training time.

 
(a)  

 
(b)  

Figure 4. Dropout neural network. (a) A classical neural net with two hidden layers. (b) An example
of sparse networks with dropout on the left.

4.4. Framework for Multiple Loads Forecasting Based Deep Learning

Figure 5 shows the framework of short-term loads forecasting based on deep learning. The process
of load forecasting is as follows:

(1) The input data include historical loads and environmental factors such as moisture content,
humidifying capacity, dry bulb temperature, and total radiation. The min-max normalization is
used to bring all input data into the range from 0 to 1.

(2) Next step is to determine the structure of network and parameters, such as the number of LSTM
layer, the number of unit in each LSTM layer, the number of CNN layer, the size of kernel weight,
the size of pooling, epochs and the size of each batch.

(3) The input data will be sent to Conv1D layers. The MaxPooling1D layer is added between the two
Conv1D layers. It extracts the maximum value of the filters and provides useful features while
reducing computational cost thanks to data reduction.

7
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(4) In the LSTM layer, the time steps are sent to relevant LSTM block. The number of LSTM layers
can be revised arbitrarily because of the sequential character of the output of the LSTM layer.

The output data of the LSTM layer are used as input of the full connection layer, and the predicted
load is output by the full connection layer.

 

Figure 5. The framework of short-term loads forecasting based on deep learning.

After designing the structure of the neural network, it is necessary to determine the training
method. Now, the main training methods of recurrent neural networks, such as LSTM, include real-time
recurrent learning (RTRL) and back propagation through time (BPTT). Compared with BPTT, RTRL has
lower computational efficiency and longer computing time [33]. Hence, the proposed network will be
trained by BPTT. Moreover, previous research suggests Adam approach can achieve better performance
than other optimizers, such as Adagrad, Adadelta, RMSProp, and SGD [34]. Therefore, the optimizer
for the training proposed approach is Adam. The loss function is MAE.

The main steps of the proposed method can be summarized as follows: (1) Define the CNN-LSTM
network, (2) compile the CNN-LSTM network, (3) fit the CNN-LSTM network, (4) predict the loads.
The part of the code for the proposed method is shown in Table 1.

Table 1. The code for the proposed method.

Program: A part of codes for building the CNN-LSTM network

#1 Define the CNN-LSTM Network
model = Sequential()
model.add(Conv1D(filters=10, kernel_size=3, padding=’same’, strides=1, activation=’relu’,input_shape=(1,
Input_num)));
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(rate=0.25))
model.add(Conv1D(filters=20, kernel_size=3, padding=’same’, strides=1, activation=’relu’))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(rate=0.25))
model.add(LSTM(units=24,return_sequences=True))
model.add(LSTM(units=16,return_sequences=True))
model.add(LSTM(units=32,return_sequences=True))
model.add(LSTM(units=16,return_sequences=True))
model.add(LSTM(units=16,return_sequences=True))
model.add(LSTM(units=16))
model.add(Dense(units=1, kernel_initializer=’normal’,activation=’sigmoid’))
#2 Compile the CNN-LSTM network
model.compile(loss=’mae’, optimizer=’adam’)
#3 Fit the CNN-LSTM network
history =model.fit(trainX,trainY, epochs=100, batch_size=50,validation_data=(valid3DX, validY), verbose=2,
shuffle=False)
#4 Predict the loads
Predicted_Load =model.predict(testX)

8
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4.5. Indicators for Evaluating Result

To measure the predictive effect from various perspectives, mean absolute percentage error
(MAPE) will be adopted in this paper. The mathematical formula is as follows:

MAPE =
1
n

n∑
i=1

∣∣∣∣∣ ŷi − yi

yi

∣∣∣∣∣ (9)

where n stands for the number of test sets. ŷi is the forecasting load and yi is the real load.

5. Case Study

5.1. Experimental Environment and Parameters

The dataset comes from a hospital in Beijing, China, which contains 8760 samples from 1 January
2015 to 31 December 2015. The sample interval was one hour. The loads and corresponding features
from 1 January 2015 to 19 October 2015 were used for the training set and the data from 20 October
2015 to 25 November 2015 were used for the validation set. The other data were considered as testing
data. The equipment of the integrated energy system mainly included gas boiler, gas-combustion
generator, waste-heat recovery system, electric refrigeration unit, lithium bromide refrigeration unit,
storage battery and heat storage system. All the proposed methods were conducted using Keras on a
notebook computer equipped with Intel (R) Core (TM) i5-6500 CPU @ 3.20 GHz processor and 8 GB
of RAM.

In order to verify the validity of the proposed algorithm, the proposed algorithm was compared
with the traditional methods (BP network, ARIMA, SVM, LSTM, CNN). The parameters of each
algorithm were tested several times in order to achieve optimal performance. However, not all results
will be shown here. After many trials, the optimal structure and parameters of each algorithm arweree
set as follows:

BP network: The epochs were set to 100. The middle layer consisted of two fully connected layers
with 10 and 15 neurons respectively.

ARIMA: The degree of difference was two and the number of autoregressive terms was four.
The number of lagged forecast errors was four.

SVM: The kernel function of SVM used the radial basis function (RBF).
LSTM: The neurons’ number in the input layer equaled the number of features, and the neurons’

number in the output layer was 1. After many trials, the best choice was to use six LSTM layers.
The neurons’ number in each layer was 32, 16, 32, 16, 16, and 8, respectively.

CNN: After many trials, the best solution of CNN was to use two Conv1D layer and MaxPooling1D
layer. The filters were 10 and kernel size was three in the first Conv1D layer. The filters were 20 and
kernel size was three in the second Conv1D layer. Both pool sizes of MaxPooling1D were equal to two.

CNN-LSTM: After many trials, the best solution of CNN was to use two Conv1D layer and
MaxPooling1D layer. The filters were 10 and kernel size was three in the first Conv1D layer. The filters
were 20 and kernel size was threw in the second Conv1D layer. Both pool sizes of MaxPooling1D were
equal to two. The best choice was to use six LSTM layers. The neurons’ number in each layer was 24,
16, 32, 16, 16, and 16, respectively. Both rates of the dropout were set to 0.25.

This section mainly consists of the following four points: (1) The performance for forecasting
heating, gas, and electrical loads was tested in different time steps, (2) the influence of the coupling
of heating, gas, and electrical loads on the accuracy of prediction was analyzed, (3) the relationship
between the forecasting results and the layers’ number of the network is explored, and the influence
of the dropout layer on the forecasting accuracy were analyzed, (4) the performance of proposed
approaches is compared to traditional methods to validate the efficacy.

9
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5.2. Performance in Different Time Steps

The LSTM network forecasts the loads by using the environmental factors and historical load
series whose length can be changed arbitrarily theoretically. If the time steps of power load are too
short, it may lead to the insufficiency of learning historical trend. In contrast, if the time steps of power
load are too long, it may aggravate the complexity of the proposed methods, which may make the
accuracy worse.

To explore how many historical load series are applied to LSTM network for forecasting loads,
multiple cases with different time steps which range from 0 to 10 were tested. The average MAPE was
calculated by testing the data set 50 times independently. Figures 6–8 show the result of MAPE in
different time steps.

As the time steps increase, the overall trend of the heating load of MAPE decreases.
This phenomenon suggests that there is a strong temporal correlation between the current heat
load and the historical heat load from t-1 to t-10, which is consistent with the conclusions drawn in
Figure 1 above. The current gas and electrical loads also have a strong temporal correlation with
historical loads from t-1 to t-2, and a weak temporal with historical loads from t-3 to t-10. In this data
set, two look-back time steps can achieve the best accuracy for forecasting gas and electrical loads.

When time steps are equal to 0, the MAPE of the heating, gas, and electrical loads are equal to
0.145, 0.158, and 0.143, respectively. In general, considering historical load series can significantly
reduce the error for predicting heating, gas, and electrical loads. It shows the need to find a network
that can account for temporal correlations to predict heating, gas, and electrical loads, which explains
why the LSTM layer is used in the proposed approach.

Figure 6. Mean absolute percentage error (MAPE) of heating loads in different time steps.

Figure 7. MAPE of gas loads in different time steps.
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Figure 8. MAPE of electrical loads in time steps.

5.3. The Influence of the Coupling of Heating, Gas and Electrical Loads on the Results

To analyze the impact of the coupling of heating, gas and electrical loads on the forecasting results,
eight cases, as shown in Table 2, were designed for simulation. Each case ran 50 times independently
to obtain the average MAPE, and the result is shown in Tables 3–5.

The results in Tables 3–5 indicate that:

(1) In terms of heating loads, it is obvious that the forecasting accuracy of Case 2 is higher than
that of Case 1, which reveals that the heating loads have a strong temporal correlation and
considering temporal correlation helps improve the accuracy of the prediction. By comparing
the MAPE of Case 1 and Case 2, it is found that taking the gas load as input will reduce the
accuracy for forecasting heating load. Similarly, the conclusion is the same for heating load and
electrical load. This is because the coupling between the heating load and the other loads is weak,
which is consistent with the conclusions of the previous analysis. The addition of the gas load
and the electrical load will interfere with features of the input, which makes the accuracy of the
prediction worse.

(2) As far as gas load is concerned, it can be found from Case 3 that the gas load also has a strong
temporal correlation. Compared with Case 3 and Case 5, it is evident that the correlation between
gas load and heating load is very weak. The input of heating load will lead to a decrease in
forecasting accuracy of gas load. On the contrary, the coupling between gas load and electrical
load is very strong. Adding electrical load as input is helpful to improve accuracy.

(3) The result of Case 4 from Table 4 shows that there is a strong temporal of electrical load. The input
of heating load will lead to a decrease in forecasting accuracy of electrical load. The addition of
gas load helps to improve the forecasting accuracy of the electrical load. In general, the best input
for forecasting electrical load includes environmental factors, gas and electrical loads.

Table 2. Different case for simulation.

Scenes Input of Network

Case 1 Environmental features
Case 2 Environmental Feature, heating loads
Case 3 Environmental features, gas loads
Case 4 Environmental features, electrical loads
Case 5 Environmental feature heating and gas loads
Case 6 Environmental features heating and electrical loads
Case 7 Environmental features gas and electrical loads
Case 8 Environmental features heating, gas and electrical loads

11



Energies 2019, 12, 3308

Table 3. The average MAPE of heating loads.

Scenes Case 1 Case 2 Case 5 Case 6 Case 8

MAPE 0.145 0.057 0.065 0.062 0.073

Table 4. The average MAPE of gas loads.

Scenes Case 1 Case 3 Case 5 Case 7 Case 8

MAPE 0.158 0.060 0.772 0.055 0.064

Table 5. The average MAPE of electrical loads.

Scenes Case 1 Case 4 Case 6 Case 7 Case 8

MAPE 0.143 0.086 0.092 0.083 0.085

5.4. The Performance of the Dropout Layers

To analyze the relationship between forecasting results and network depth, a sensitive analysis
was performed. The number of LSTM layers was increased in turn and the other parameters were
kept consistent. Each case ran 50 times independently to obtain the average MAPE, and the results are
shown in Figures 9–11.

 

Figure 9. MAPE of heating loads at different network depth.

Figure 10. MAPE of gas loads at different network depth.
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Figure 11. MAPE of electrical loads at different network depth.

As can be seen from the above figures, if there is no dropout layer, the network will achieve the
best performance when the number of LSTM layers is three or four. If the number of LSTM layers is
further increased, there will be an over-fitting and the MAPE of the loads decreases as the number of
LSTM layers increases. The reason for over-fitting is that parameter redundancy of the network rises as
the number of LSTM layers increases. In addition, the lack of data diversity also leads to over-fitting.

To tackle the phenomenon of over-fitting, the proposed dropout layers were inlaid to the network.
Obviously, when the dropout layers were inlaid to the network, the MAPE of the heating loads and
the electrical loads decreased further with the increase of the LSTM layers, which indicates that the
dropout layer has the effect of avoiding the over-fitting. Unfortunately, Figure 10 shows that the effect
of dropout layers is limited, and it does not completely solve the phenomenon of over-fitting.

5.5. Benchmarking of Short-Term Load Forecasting Methods

To validate the effectiveness of the proposed CNN-LSTM, five loads forecasting methods, including
BP network, SVM, ARIMA, CNN, and LSTM were taken as a comparison and assessed under preceding
mentioned benchmark (MAPE). Each method ran 50 times independently to obtain the average MAPE
of the test set, and the results are shown in Figures 12–14 and Table 6.

Table 6. The MAPE of different algorithms.

Algorithms Heating Load Gas Load Electrical Load

BP 0.067 0.064 0.099
SVM 0.065 0.062 0.096

ARIMA 0.071 0.067 0.131
CNN 0.062 0.060 0.092
LSTM 0.060 0.057 0.088

CNN-LSTM 0.056 0.055 0.082

 
Figure 12. The unfolded topological graph of heating loads.
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Figure 13. The unfolded topological graph of gas loads.

 
Figure 14. The unfolded topological graph of electrical loads.

The results in figures and Table 6 indicate that:

(1) The MAPE of the electrical load is greater than that of the heating and gas load, implying that the
electrical load has relatively strong volatility compared with other loads. The heating and gas load
are more regular and easier to predict. In this data set, the MAPE of heating, gas, and electrical
load is 5.6%, 5.5%, and 8.2%, respectively.

(2) ARIMA has the worst performance because it predicts the load based on the trend of the
historical series, without considering the influence of environmental factors. Especially when
the environment changes drastically, the forecasting accuracy at the inflection point is very
poor. The forecasting accuracy of BP network and SVM is low because of the limitations of
their models that make it impossible to pre-learn complex data through unsupervised training.
Compared with the deep learning network such as CNN and LSTM, the performance of BP
network and SVM is relatively poor. CNN can effectively extract the characteristics of input data,
and the forecasting accuracy is higher than that of BP network and SVM. However, CNN cannot
deal with the temporal correlation of heating, gas, and electrical loads, which leads to the
limitation of forecasting accuracy. Combining CNN and LSTM to construct a hybrid model, it can
not only effectively extract the features of input data, but also take into account the temporal
correlation of loads. Compared with other traditional methods, CNN-LSTM has the highest
forecasting accuracy.

(3) Figures 12–14 demonstrate the real loads and forecasted loads by different methods on a random
day, 11 December 2015. As shown in the figures, the proposed approach has a good performance
at spikes and troughs. Taking heating load as an example, during peak and trough periods,
the heating load has strong volatility and uncertainty, which makes traditional algorithms unable
to accurately predict the load during these periods. However, the morning peak at 7:00 a.m. and
afternoon valley at 4:00 p.m. are accurately captured by the proposed approach, which further
reflects the superiority of the proposed approach.
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6. Conclusions

This paper tries to explore the performance of the CNN-LSTM network for load forecasting
considering the coupling of heating, gas, and electrical loads. A novel dropout layer is proposed
to successfully solve the phenomenon of over-fitting due to the lack of data diversity and network
parameter redundancy. The proposed approach can not only effectively extract the features of input
data, but also take temporal correlation of heating, gas, and electrical loads into account. The case
study provides the following conclusions:

(1) For heating, gas, and electrical loads, there is a strong temporal correlation between the current
loads and historical loads. The case study shows that considering historical load series can reduce
the error for predicting heating, gas, and electrical loads.

(2) The coupling between the heating loads and the other loads is weak. Taking the gas loads and
the electrical loads as input will make the accuracy of the heating loads worse. The coupling
between gas loads and electrical loads is very strong. Adding electrical load as input is helpful to
improve the accuracy of gas loads. Similarly, adding gas loads to input data is helpful to improve
the forecasting accuracy of electrical loads.

(3) The dropout layer can avoid over-fitting to a certain extent, as well as improve the accuracy
for predicting heating, gas, and electrical loads. The dropout layer cannot completely solve the
over-fitting where the number of network layers is too large.

(4) Compared with other algorithms (BP network, SVM, ARIMA, CNN, and LSTM), the proposed
approach has higher forecasting accuracy and can accurately predict the load during peak and
trough periods.

For future work, we can try to expand the work of this article from the following three directions:

(1) We could try to find a technique that can completely solve the over-fitting.
(2) The other deep learning frameworks such as generative adversarial networks (GAN) [39], restricted

Boltzmann machines (RBM) [40–42], hidden Markov models [43], dilated convolutional neural
network [44,45] and graphical models [46], are also used to forecast heating, gas, and electrical
loads. These frameworks are widely used in image recognition, signal processing, and image
generation. How to apply these frameworks to load forecasting needs further research. Generally
speaking, the function of CNN is to extract the features of input data. Different tasks can be
accomplished by using the extracted features as input data of classifiers, predictors, and generators.
For example, the GAN’s generator consisting of convolution layers can model the power load
profiles, and the GAN’s discriminator consisting of convolution layers can classify the power load.

(3) Due to the limitations of the data set, this paper only considers the influence of environmental
factors and historical data on prediction accuracy. The multimedia features can be taken into
account in the future [47,48].
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Abstract: The increasingly mechanical requirements of offshore structures have established the
relevance of fracture mechanics-based quality control in welded joints. For this purpose, crack tip
opening displacement (CTOD) at a given distance from the crack tip has been considered one of
the most suited parameters for modeling and control of crack growth, and it is broadly used at the
industrial level. We have modeled, through multivariate analysis techniques, the relationships among
CTOD values and other material properties (such as hardness, chemical composition, toughness, and
microstructural morphology) in high-thickness offshore steel welded joints. In order to create this
model, hundreds of tests were done on 72 real samples, which were welded with a wide range of real
industrial parameters. The obtained results were processed and evaluated with different multivariate
techniques, and we established the significance of all the chosen explanatory variables and the good
predictive capability of the CTOD tests within the limits of the experimental variation. By establishing
the use of this model, significant savings can be achieved in the manufacturing of wind generators,
as CTOD tests are more expensive and complex than the proposed alternatives. Additionally, this
model allows for some technical conclusions.

Keywords: crack tip opening displacement; steels; welded or bonded joints; multivariate regression
model; marine structures

1. Introduction

As the burgeoning offshore wind power industry grows, so too do the technical demands on the
metal frames and primary structures that sustain them. These structures are under enormous dynamic
stresses due to the effects of their moving parts, wind, currents, tides, and waves. Within this sector,
the quality control of the welded joints of these structures is of the utmost importance, considering that
welding defects are widely considered as potential spots for structural failure initiation [1]. The study
based on fracture mechanics of parameters such as CTOD, in the context of crack nucleation and fatigue
crack growth, has become essential for manufacturers, designers, classification societies, and inspectors.
The fatigue life calculation occupies a prominent place in codes, standards, and rules [2–4]. Such
fatigue analysis is based on “rule-based” methods or direct calculation based on Stress-Cycles data
models, determined by fatigue testing of the considered welded details and linear damage hypothesis.

As this approach is rarely possible (due to the full fatigue test required for the welded details),
the fatigue analysis may alternatively be based on fracture mechanics. The classification societies’
crack growth models use the classic formulation of the Paris–Erdogan law, with developments for the
classical plastic hinge models (firstly developed by the British Standards Institution and published
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in 1979). According to the vast work of Zhu and Joyce [5], the stress intensity factor K [6], the crack
tip opening displacement (CTOD) [7], the J-integral [8], and the crack tip opening angle (CTOA)
(developed for thin-walled materials) are the most relevant parameters used in fracture mechanics. Out
of these various parameters of the interaction of the materials with the formation and propagation of
cracks or defects, the critical crack tip opening displacement (CTOD) at a given distance from the crack
tip is the most suited for modeling stable crack growth and instability during the fracture process [9].
Currently, the tests are carried out by discarding the plastic hinge model and adopting the J-conversion,
using recognized standards such as the (British Standard) BS-7910, (American Petroleum Institute)
API-579, and (American Society for Testing and Materials) ASTM E1290.

CTOD testing requires the preparation of a notch with a specific geometry that promotes the
nucleation of a stable and uniform crack in a delimited area [10]. The crack grows under the action
of dynamic mechanical forces that are generally transmitted with huge oleo-hydraulic equipment
and controlled by precision extensometers. The uncertainty of the test methods, as well as the
sensitivity to any internal defect, make it necessary to carry out several of these tests to guarantee
representative values.

The CTOD tests are expensive, as they require significant investments in testing machinery,
software, expertise, and outsourcing of services [11]. The destruction of large quantities of ad hoc
welded material is also required (ASTM E1290-08e1c (2008) [12]). Additionally, deadlines offered by the
testing laboratories exceed the average for other quality control tests in welded unions. Considering
the case of welded joints, in addition to the properties of the base material, dozens of other variables
related to the welding process could affect the features of the final welded material. Therefore, if the
CTOD test result does not fulfil the requirements, it is very difficult for technicians to infer which
changes in the variables could lead to an improvement of the CTOD results.

The aim of the present work is to evaluate the possibility of using multivariate mathematical
models to correlate the CTOD parameter with other test results that are simpler and cheaper to measure,
and also well known by the parties involved.

2. Selection of Input Variables and Experimental Phase

The multivariate analysis consists of a series of appropriate statistical methods (such as multiple
regression, logistic regression, analysis of variance (ANOVA), or cluster analysis, to name a few) used
when numerous observations are performed on the same object in one or several samples. Those
methods allow the creation of formal hypothesis tests when given a structure of input–output data.
Expressing a variable as a function of a set of underlying intercorrelated variables is among the possible
hypotheses [13].

2.1. Selection of Input Variables

The selection of these so-called explanatory variables was done considering the industrial approach
of this research work. Among the numerous variables with proven effects on the material properties (see
Table 1 for a non-exhaustive selection proposed by Dunne et al. [14] and Haque and Sudhakar [15]), the
following ones were selected due to their widespread use in the industry, relatively cheap measurement,
and possibility to be determined in modest-quality control laboratories. Also, the chosen variables
are part of the testing process required by the design codes, rules, and standards for the design,
qualification, and control of welded joints. Therefore, these values are usually available (or easy to
gather), there are clear acceptance criteria, and their effects on the CTOD and on welded joints are
widely recognized.
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Table 1. Non-exhaustive selection of variables with proven influence on material properties.

Variables

Carbon (wt %) Plate thickness (mm)
Manganese (wt %) Post Welding Heat Treatment (PWHT) holding time

Silicon (wt %) PWH cooling rate/method
Sulphur (wt %) Test piece orientation

Phosphorus (wt %) Test temperature
Aluminum (wt %) Yield Strength (MPa)

Boron (wt %) Ultimate Tensile Strength (MPa)
Molybdenum (wt %) Charpy toughness (J)

Oxygen (wt %) Grain boundaries and orientation
Nitrogen (wt %) Hardness

V% fraction of reaustenized region Grain boundary ferrite
V% fraction of double-reheated zone Intragranular polygonal ferrite

Grain refined subzone Grain coarsened subzone
Non-metallic inclusions Mean 3D diameter of inclusions

2.1.1. Microstructure

The microstructure of the material in the area in which the CTOD value is to be determined will
be considered one of the input variables. Some authors [16–23] have studied the relation between
microstructure characteristics and fracture mechanics properties and supports, and the influence of
grain size, angle of grain boundaries, orientation, and inclusions on the nucleation and propagation
of cracks. The average size of the metallic grains in the area of interest was determined according to
ASTM E112 (2013) [24] (determined by optical microscopy) to represent this variable. The specimens
were polished and prepared according to the recommendation of E3-11 (Guide for Preparation of
Metallographic Specimens) [25] for Al2O3 abrasive (1200 American National Standards Institute grit
number), with rotation and etching reagent no. 77 (E407-07 Standard Practice for Microteaching Metals
and Alloys) [26].

The limitation in obtaining samples with different surface orientations (see Figure 1) appropriate
for eventual non-equiaxed grain shapes was corrected with the implementation of an arbitrary
multiplication factor, depending on the grain contour. Any possible heterogeneity in the area of interest
is expected to be statistically covered by the experimental design. Having considered the industrial
approach, other well-known techniques that require specific equipment, such as scanning electron
microscope (SEM), were not used. Also, as failure types are not considered as study variables, the
critical grain size for brittle fracture was not considered.

Figure 1. Sampling position. Color zones mark targeted areas for microstructural, hardness, and
chemical analysis (red, green and blue).
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2.1.2. Chemical Composition

The chemical composition of the material is a well-known factor that exerts influence on the
mechanical properties [27–29].

Samples were analyzed by optical emission spectrometry and X-ray diffraction using a Niton ® XL2
analyzer and a Spectromax metal analyzer. Results were statistically processed to offer the best-weighted
average estimator considering the different uncertainties of the testing method and for the following
elements: C, Mn, Si, Cr, Ni, Mo, and V. Both the test procedure and the uncertainty calculation used
were approved by the testing laboratory. For the implementation of the chemical composition into the
mathematical model, we considered the influence of the different elements using the carbon equivalent
(CE) index, expressed in Equation (1). Among the numerous CE formulae available in the bibliography,
we chose American Welding Society (AWS) D1.1 [30], which was cited in [29] and is also known as the
International Institute of Welding (IIW) carbon equivalent.

This expression was selected considering its precision for mechanical and microstructural
properties [27]:

CEindex = C +
(Mn + Si)

6
+

(Cr + Mo + V)

5
+

(Ni + Cu)
15

(1)

where all values involved represent the mass percentage composition [w/w%]. Therefore, the result is
a non-dimensional continuous variable.

2.1.3. Mechanical Strength

The mechanical resistance plays a fundamental role, and forms a constitutive part, in fracture
mechanics [31]. Also, the determination and control of its value is a fundamental part of the quality
control of the material properties (for structural materials). Tensile test results were discarded due to
the impossibility to take measurements exclusively in the small area of interest, as all the subsized
specimens proposed by the standards exceed the capability of the testing machine (too small) or
destroy valuable testing material (too big). Nevertheless, according to numerous publications (e.g.,
ASM Handbook for carbon steel), there is a consistent and almost linear relation between ultimate
tensile strength (UTS) and hardness. Therefore, hardness measurements according to ASTM E92
(Hardness Vickers 10) (2017) [32] were taken from the samples to estimate the mechanical resistance of
the material. Standardized Vickers indenters (Class B) were used with a load of 98.7 N (HV 10) and an
optical indentation measurement. The average value of a set of three indentations (considering 2 mm
of space between tests) were examined for each sample.

2.1.4. Toughness

Previous studies [15,16,33,34] support the relation between impact testing results (measured as
Charpy V-notch (CVN) energy values) and fracture toughness. Some correlations have been adopted
by the standards ASME Boiler and Pressure Vessel Code (BPVC) XI (2017) [35] and API 579 [3].

CVN tests, according to ASTM E23 (2018) [36], were performed on the samples. Subsize Charpy
simple-beam V-notch impact test specimens were used (2.5 mm, according to Figure A3.1 from ASTM
E-23), with the notch aligned with the future CTOD sample notch [10]. All tests were performed at
room temperature (between 20 and 25 ◦C) with a 300 J pendulum device. Three specimens (instead
of two) were used for each toughness characterization to ensure representative values (see Figure 1),
due to the sample size limitation. Measurement of lateral expansion or the fracture region size was
not considered.

2.2. Experimental Design

For a multivariate statistical study (with a suitable uncertainty), it is required to reach a determined
critical mass of input data. This number is undetermined, and it will be verified after the modeling [17].
In addition, a wide range that covers the industrial interest is required for the explanatory variables.
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It is expected that the heterogeneities on the physical properties of the welded joints and the
uncontrolled variables were arbitrarily distributed among the observations, according to the random
principle [37]. Nevertheless, the sampling and test position was designed to minimize the effect of
these heterogeneities (see Figure 1) by reducing, as much as possible, the area from where the results
are obtained.

The first approximation of the complete number of tests was estimated considering the guide of
factorial experimental design, computed for four variables, each with two levels, and one replication.
A total of 72 complete sets of data were obtained through testing campaigns.

The welded coupons (from where the specimens were extracted for testing) were kindly transferred
from manufacturing companies. This guarantees the reproducibility with respect to real welding
designs and manufacturing processes, and also the applicability of the ranges used. Nevertheless, it
also limits the number of available samples, and as the authors cannot control the range of variability
of the study variables, experimental designs with surface analysis or complex factorial designs cannot
be used. These limitations of the used experimental set may affect the accuracy of future models
(by not gathering the critical amount of data for multivariate models) and prevent the use of more
explanatory variables.

2.3. Samples

All the samples were extracted from 36 welded coupons of at least 400 mm length in the direction
of the weld. Those coupons were welded for real Welding Procedure Qualification records following
real Welding Procedure Specifications, then kindly transferred from manufacturing companies for this
project. The thickness of the coupons varied between 20–75 mm and were considered representative of
offshore manufacturing. K and V-bevels were used, and the base materials and consumables were
standard within the manufacturing sector. Several different consumables and four base materials
classified according to EN 10225 [38] (low-alloy steels S355 G5 + M, S355 G10 + M, S420 G2 + M,
and S460G2 +M together) were used, together with two structural steels from EN 10025:2010 [39]
(low-carbon steels S275 J2 and S355 K2). The following table (Table 2) summarizes the range of different
relevant variables during the welding process that may have an influence on the properties of the
welding coupons. These ranges are considered as representative of the structural welding processes of
the offshore wind power industry.

Table 2. The range for different variables of the test coupons.

Variables Min. Max. Variables Min. Max.

Wire diameter 1.2 mm 2.8 mm Material base S275 S460
Intensity 80 A 230 A No. of welding processes 1 2
Polarity DC AC Voltage 10 V 30 V
Speed 40 mm/min 240 mm/min Use of backup No Yes

Heat input 0.6 KJ/mm 4.2 KJ/mm Welding thickness 20 mm 75 mm
Pre-heating No 150 ◦C W. position PA PF

Gas flux 10 l/min 25 l/min Bevel angle 35◦ 90◦

Abbreviations: minimum =Min.; maximum =Max.

All the welded coupons were subjected to extend non-destructive tests, according to EN 17637 [40],
EN 17638 [41], and EN ISO 17640 [42]. A total of 14 small indications were found, and consequently
the zone was marked and discarded for destructive tests.

2.4. CTOD Test

All 72 CTOD tests were done according to ASTM E1290-08e1c (2008) [12] with standard specimens
(single-edge notched bend SE(B) specimen with square B × B cross-section) and the recommended
notch [43]. The apparatus used was an oleo-hydraulic dynamic machine (model UFIB-200E-MD5W)
configured for a 3-point bending setup and using clip-gauges as the crack growth measuring system.

23



Energies 2019, 12, 4001

The testing temperature was in the range of 20–25 ◦C. As Figure 1 shows, the notch was aligned 1 mm
from the fusion line.

The chosen testing method, ASTM E1290-08e1, calculate the CTOD value with the following
expression:

δ =
1

mσY

⎡⎢⎢⎢⎢⎢⎢⎣K2
(
1− ν2

)
E

+
ηCMODApl

CMOD

B(W − a0){1 + Z/(0.8a0 + 0.2W)}

⎤⎥⎥⎥⎥⎥⎥⎦ (2)

where Z is the distance of the front face of the SE(B) specimens to the knife-edge measurement point,
Apl

CMOD is the plastic area under load from the plastic CMOD curve, and the expression of m is:

m = A0 −A1

(
σYS
σts

)
+ A2

(
σYS
σts

)2
−A3

(
σYS
σts

)3
(3)

where

A0 = 3.18− 0.22
( a0

W

)
, A1 = 4.32− 2.23

( a0

W

)
, A2 = 4.44− 2.29

( a0

W

)
, A4 = 2.05− 1.06

( a0

W

)
(4)

and

ηCMOD = 3.667− 2.199
( a0

W

)
+ 0.437

( a0

W

)2
, (5)

Alternatives calculations, formulas, and predictions were studied by [33,44–48].
All the tests were performed in the private laboratory testing facilities of the TAM group

(accreditation no. 808/LE1532).

2.5. Results

The data obtained were processed according to the respective test procedures. Finally, for each
of the 72 test samples, the results were collected for the explanatory and objective variables. In the
Table 3 the results of the testing process are summarized and expressed as the minimum (Min.) and
maximum (Max.), giving the range, the average value (Avg.), standard deviation (SD), and coefficient
of variation (CV).

Table 3. Experimental phase results summary.

Param. CTOD [mm]
Mechanical

Strength
[HV10]

Toughness [J]
Microstructure

[μm.
Correction]

Chemical
Composition

[CE]

Min. 0.10 165 76 101 0.22
Max. 2.45 375 278 354 0.53
Avg. 1.24 224.4 183.4 177.0 0.39
SD 0.59 41.87 51.84 55.44 0.05

CV [%] 47.3 18.7 28.3 31.3 14.1

Abbreviations: parameters = Param.; minimum = Min.; maximum = Max.; average value = Avg.;
standard deviation = SD; coefficient of variation = CV; crack tip opening displacement = CTOD.

3. Modeling

We observed a set of K variables X1, X2, . . . , XK in a set of n elements of a population and wanted
to summarize the values of the variables and describe their dependency structure. Each of these K
variables is called a scalar or univariate variable and the set of these K variables form a vector or
multivariate variable. All these values can be represented in a matrix, X, of dimensions n× p, called a
data matrix, where each row represents the values of the K variables over the individual i, and each
column represents the corresponding scalar variable measured in the n elements of the population. In
the element xij, i denotes the individual and j is the variable.
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Next, we proceed to the multivariate analysis of the observations. To do this, we calculate the
vector of means X =

[
X1 X2 · · · XK

]
of dimension p, whose components are the means of each

of the p variables and the covariance matrix. From the matrix of centered data X̃,

X̃ = X −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦X, (6)

the symmetric and positive semidefinite matrix of covariance S = 1
n X̃TX̃ is calculated.

The objective of describing multivariate data is to understand the dependence between the
objective variable and the explanatory variables. For this we studied:

1. The relationship between pairs of variables;
2. Dependence between the objective variable and all the explanatory variables;
3. Dependence between the objective variable and the explanatory ones, but eliminating the effect

of some of them.

The pairwise dependence between the variables is measured by the symmetric and positive
semidefinite correlation matrix R

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

r21

r12

1
. . . r1K
. . . r2K

...
... . . .

...
rK1 rK2 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, rjk =
Sjk

SjSk
(7)

so that there is an exact linear relationship between the variables Xj and Xk if
∣∣∣rjk
∣∣∣ = 1.

It may happen that there are variables that are very dependent on others, in which case it is
convenient to measure their degree of dependence. Assuming that Y = Xj is the variable of interest,
and calling Ŷ the variable used to estimate Y, the best linear predictor from the other variables, called
the explanatory variables, is:

Ŷ = β0 + β1X1 + · · ·+ βKXK, (8)

where the parameter βi is determined through the data that we have at our disposal. The problem is
finding the set of parameters that minimizes

∑n
i=1 (Yi − Ŷi)

2
, leading to

y = Y −Y
xj = Xj −Xj, j = 1, . . . , K

(9)

and defining ŷ = Ŷ −Y, we have Y − Ŷ = y− ŷ, and Equation (8) can be written as follows

ŷ = α0 + α1x1 + · · ·+ αKxK, (10)

Since minimizing
∑n

i=1 (Yi − Ŷi)
2

is equivalent to minimizing
∑n

i=1 (yi − ŷi)
2 =
∑n

i=1 e2
i , by deriving

this sum with respect to the αk parameters, we obtain a system of p− 1 equations that can be written
as follows:

n∑
i=1

eixil l = 1, . . . , K, l � j (11)

Equation (9) indicates that the prediction errors must not be correlated with the explanatory
variables, so that the covariance of both is zero, or else the residual vector must be orthogonal to the
space generated by the explanatory variables. By defining the matrix XR, of size n× (p− 1), obtained
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by eliminating the column in the matrix X̃ corresponding to the variable that we want to predict,
y = xj, the parameters are calculated by the normal equation system as follows

α =
(
XT

RXR
)−1

XT
Ry (12)

and Equation (10), with these coefficients, is the multiple regression equation between variable y = xj
and the remaining variables xi, i � j, i = 1, . . . , K.

To express this result based on the X1, . . . , XK variables of Equation (8), we must consider

βi = αi, i = 1, . . . , K

β0 = α0 + Y − K∑
i=1
αiXi

(13)

The square of the multiple correlation coefficient (which can be greater than, less than, or equal
to the sum of the squares of the simple correlations between variable y and each of the explanatory
variables) [49] between the variable y = xj and the rest is

R2
j = 1− SSresid

SStotal
= 1− 1

sjjsj j , (14)

where sjj = s2
j is the j-th diagonal element of the covariance matrix S and sjj = 1

s2
r ( j)

is the j-th diagonal

element of the S−1 matrix, which represents the residual variance of a regression between the j-th
variable and the rest. As each time a variable is added to the model the number of degrees of freedom
is reduced and the adjustment is increased, it is necessary to make a correction of this coefficient and
calculate the adjusted R2

j ,

R
2
j = 1−

SSresid
(n−k)
SStotal
(n−1)

, (15)

where n is the total number of observations and k is the number of model variables; that is, the same
calculation is made, but weighted by the degrees of freedom of the residuals, n − k, and the model,
n− 1.

The R-squared RSQ =
∑
(ŷi−yi)

2∑
(yi−y)2 is a descriptive measure of the predictive capacity of the model,

and for a single explanatory variable is the square of the simple correlation coefficient between the
two variables.

3.1. Previous Data Processing

Correlation coefficients were determined among the study variables. A high degree of correlation
between toughness (CVN) and microstructure was observed, which was strongly supported in the
bibliography. This relationship also depends on other variables that have not been considered in
this experiment, such as temperature, tension state, or specimen geometry. Therefore, this particular
relation between both variables is exclusive to this experiment and cannot be generalized.

Figure 2 shows the correlation and scatterplot diagrams between all the variables (objective
and explanatory) taken two-by-two. The kernel density estimation (KDE) representation is also a
way to estimate the probability density function of a random variable. A strong correlation can be
observed among the CTOD and the explanatory variables, particularly toughness, microstructure, and
chemical composition. Excluding the chemical composition, other variables do not seem to follow a
normal distribution.
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Figure 2. Correlation, kernel density estimation (KDE), and scatterplots (the trendline that best fit
linear relation is represented in blue) among the different variables.

Figure 3 shows the quantiles of input samples (explanatory variables) versus standard normal
quantiles (theoretical quantiles from a normal distribution). If the distribution of the explanatory
variable is normal, the plot will be close to linear. Except for the chemical composition and toughness,
the rest of the independent variables (the mechanical strength, called M. Strength onwards, and
microstructure) do not seem to follow a normal distribution, so it would be advisable to make a
transformation (for example, logarithmic type) before carrying out a multiple regression analysis. This
can be explained by the observation of the KDE of the corresponding variable in Figure 2, where the M.
Strength variable shows a positive skewness towards lower values and the microstructure shows a
slightly bimodal distribution (this effect is eliminated through a logarithmic transformation after the
outlier exclusion).

Figure 3. Quantiles of input sample versus standard normal quantiles.
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With the aim of discarding the outliers that could influence observations, the Mahalanobis distance
was used [49,50] for their detection and ten complete data sets were excluded (14%).

3.2. Linear Regression Models

3.2.1. Linear Model 1

Here, Y is considered as the study variable that may be linearly related with K explanatory
variables X1, X2, · · · , XK through β0, β1, β2, · · · , βK (regression coefficients). A multiple linear regression
model can be written as:

Y = β0 + β1X1 + β2X2 + · · ·+ βKXK + e (16)

where e is the difference between the fitted relationship and the observations [51].
Using Equations (12) and (13), the values of the parameters are calculated. In Table 4, the

coefficients for the multiple linear regression (Equation (16)) can be found. It can be seen that all
coefficients are significantly different from zero, but toughness is the variable with the highest absolute
value. In this case, the number of observations is 63, and the error degrees of freedom is 58.

Table 4. Multiple linear model 1 Y = β0 + β1X1 + β2X2 + β3X3 + β4X4.

Parameters Estimate SE p-Value

β0 1.2202 0.022731 1.0629 × 10−46

β1 −M. Str. −0.080323 0.035816 2.8756 × 10−2

β2 − Tough. 0.22424 0.040094 6.3259 × 10−7

β3 −Micros. −0.12972 0.047887 8.8595 × 10−3

β4 −C. Comp. −0.19243 0.038258 5.0415 × 10−6

F-Statistic p-value - - 1.4 × 10−24

The root mean square error (RMSE) is 0.216, which when compared to the range of the values of Y
results in:

RMSE
(YMAX −YMIN)

= 0.1048 ≈ 10%, (17)

Which provides an estimate of the possible error obtained from the real values of the CTOD
variable. In Figure 2, it can be observed that the correlation coefficient between CTOD and toughness
is 0.799. Considering all the independent variables the R-squared (RSQ) is 0.866, and the adjusted RSQ
value is 0.856, so there is a limited improvement from considering the CTOD toughness (or CTOD
microstructure) correlation.

Henceforth, for the models shown, the t-statistic (tStat) and F-statistic will be calculated and
included. The first of them, tStat, calculated as estimated or standard error (SE), tests the null hypothesis
that the corresponding coefficient is zero against the alternative that it is different from zero. To
evaluate this coefficient, the corresponding p-value associated with a Student´s t distribution (for n
observations) is calculated and compared with a confidence interval of 95%. If the p-value is less than
0.05, we can conclude that the variable is significant for the model.

Analogously, the F-statistic, calculated as:

F =

∑n
i=1

(ŷi−y)2

(p−1)∑n
i=1

(yi−ŷi)
2

(n−p)

(18)

tests the null hypothesis that one or more of the regression coefficients are significantly different from
zero (meaning a significant linear regression relationship exists for the whole model). This value is
compared with an F-distribution for a given confidence interval (95%) and is evaluated in the same
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way as the t-statistic (associated p-value less than 0.05). The F-distribution is more appropriate than
Chi-square tests for small data sets [52].

Two different methods were used to verify that the obtained model was independent of the chosen
data population: cross-validation and training-test samples.

The cross-validation was calculated with the LeaveMout method (see crossvalind Matlab function)
with an M value of 1, which randomly selects one value and excludes it from the evaluation. This
process is repeated 50 times and helps to verify that the statistical analysis is independent of the data
set. The number of observations was 62, with RMSE = 0.218, RSQ = 0.866, and adjusted RSQ = 0.856.
The results are shown in Table 5.

Table 5. Cross-validation results.

Parameters Estimate SE p-Value

β0 1.2215 0.027668 8.971 × 10−46

β1 −M. Str. −0.08113 0.036144 2.8692 × 10−2

β2 − Tough. 0.22244 0.040667 1.0436 × 10−6

β3 −Micros. −0.13334 0.049165 8.8225 × 10−3

β4 −C. Comp. −0.19006 0.039041 9.3064 × 10−6

F-Statistic p-value - - 3.5 × 10−24

The training test was done considering a set of 500 executions of samples from 50 observations
(randomly selected from the whole data set) and test samples from 13 data sets. The averages of all
RMSE and RSQ results are

________
RMSE = 0.2275 and

_____
RSQ = 0.8284, respectively.

Table 6 contains the values of RSQ and RMSE obtained with the reference model (linear model 1),
cross-validation, and training test. As the values are similar (less than 5% discrepancy), we can
conclude that the relation between the CTOD and the explanatory variables is independent of the
data set.

Table 6. Comparison of the values of R-squared (RSQ) and root mean square error (RMSE).

Parameters RSQ RMSE

Linear Model 1 0.866 0.216
Cross reference 0.866 0.218
Training-Test 0.828 0.227

3.2.2. Linear Model 2

The significance of all variables was checked for all the explanatory variables, but it was observed
that the microstructure was highly correlated with toughness. For that reason, a new model (linear
model 2) was proposed, where the microstructure was eliminated from the original model.

Y = β0 + β1X1 + β2X2 + β4X4 (19)

Table 7 shows the values of the parameters calculated for linear model 2, and the adjustment
obtained (RMSE = 0.227, RSQ = 0.849, and adjusted RSQ = 0.841) was similar to the previous one
(linear model 1).
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Table 7. Multiple linear regression model 2 Y = β0 + β1X1 + β2X2 + β4X4.

Parameters Estimate SE p-Value

β0 1.2202 0.028657 5.353 × 10−46

β1 −M. Str. −0.11829 0.034686 1.1768 × 10−3

β2 − Tough. 0.27944 0.036337 1.8301 × 10−10

β4 −C. Comp. −0.22775 0.03785 1.2105 × 10−7

F-Statistic p-value - - 3.79 × 10−24

3.2.3. Linear Models 3 and 4

As the value of parameter β1 (coefficient of the mechanical strength) in linear model 1 was
small compared to the values of the rest of the parameters, it was that the corresponding variable be
eliminated to obtain a new model (linear model 3), considering that its contribution to the value of the
CTOD variable was small. The values of the coefficients of linear model 3 are represented in Table 8.

Table 8. Linear regression model 3 Y = β0 + β2X2 + β3X3 + β4X4.

Parameters Estimate SE p-Value

β0 1.2202 0.028146 1.9133 × 10−46

β2 − Tough. 0.22225 0.04143 1.4246 × 10−6

β3 −Micros. −0.17174 0.045549 3.793 × 10−4

β4 −C. Comp. −0.20715 0.038957 1.961 × 10−6

F-Statistic p-value - - 1.32 × 10−24

The quality of the adjustment is almost similar to that of the model with the four independent
variables, with RMSE = 0.223 and RSQ = 0.854.

Figure 4 shows the residuals of linear model 3, which can be considered as normally distributed.

 
(a) (b) 

Figure 4. Normal distribution of the residuals without variables. (a) Normal probability plot of
residuals (b) Plot of residuals vs. fitted values.

Finally, a new model (linear model 4) is adopted considering the square of the first variable
(M. Str2.), and the contribution of the independent variables to the variable CTOD is checked (see
Table 9). In this case, the coefficient of determination RSQ = 0.874 is larger than in the purely
linear model.
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Table 9. Linear regression model 4 Y = β0 + β1X2
1 + β2X2 + β3X3 + β4X4.

Parameters Estimate SE p-Value

β0 1.2584 0.029113 8.0522 × 10−46

β1 −M. Str2. −0.038872 0.012639 3.2021 × 10−3

β2 − Tough. 0.21641 0.038792 6.6704 × 10−7

β3 −Micros. −0.1562 0.042897 5.7976 × 10−4

β4 −C. Comp. −0.19142 0.036789 2.68 × 10−6

F-Statistic p-value - - 1.97 × 10−25

Other tests have been done with different interactions between variables, but they do not improve
the results.

3.3. Multivariate Adaptative Regression Splines (MARS)

Multivariate adaptive regression splines (MARS) is a non-parametric modeling method that
extends the linear model (incorporating nonlinearities and interactions). It is a generalization of the
recursive partitioning regression (RPR), which splits up the space of the explanatory variables into
different subregions. MARS generates cut points for the variables. These knots are identified through
baseline functions, which indicates the beginning and end of a region.

In each region in which the space is divided, a base linear function of one variable is adjusted.
The final model is constituted from a combination of the generated base functions [53].

The general expression of the model is:

Ŷ =
k∑

i=1

ciBi(x) , (20)

where ci is the constant coefficient and Bi is the base function.
A MARS model was applied using cubic splines. This method considers nonlinear relationships

among the CTOD variable and the explanatory ones using a spline adjustment, obtaining a RSQ = 0.86
and RMSE = 0.16. With a training sample of 50 data sets and test sample of 13, the results were
RSQ = 0.84 and RMSE = 0.26. Additional information may be found in Figure 5, where the
MARS model is plotted for two of the explanatory variables and two anaylsis of variance (ANOVA)
functions (this visualizes the contribution of the ANOVA functions for the pairs CTOD-M. Strength
and CTOD-microstructure in the MARS model).

(a) 

Figure 5. Cont.
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(b) 

(c) 

Figure 5. (a) Multivariate adaptive regression splines (MARS) model plot for two of the explanatory
variables together with its knot locations (up) and (b) the analysis of variance (ANOVA) function
for the pairs CTOD-M. Strength (left) and (c) CTOD-microstructure (right) (using ARESLab toolbox:
Jekabsons G., ARESLab: Adaptive Regression Splines Toolbox for Matlab/Octave, 2016, available at
http://www.cs.rtu.lv/jekabsons/).

Again, these values do not improve on those obtained with previous models.

3.4. Other Models

Other models were studied in order to observe a possible improvement with respect to the initial
model (linear model 1).

In the first place, we proposed a generalized linear model considering a Gaussian distribution
and an identity linking function, the parameters for which are included in Table 10 (Generalized linear
regression model 1—GLM1). It is noted that the p-value of the mechanical strength is greater than 0.05,
therefore, the variable X1 (mechanical strength) may not be significant.

Table 10. Generalized linear regression model 1 (GLM1) Y = β0 + β1X1 + β2X2 + β3X3 + β4X4.

Parameters Estimate SE p-Value

β0 1.2202 0.027231 1.0629 × 10−46

β1 −M. Str. −0.08032 0.035816 2.8756 × 10−2

β2 − Tough. 0.22424 0.040094 6.3259 × 10−7

β3 −Micros. −0.12972 0.047887 8.859 × 10−3

β4 −C. Comp. −0.19243 0.038259 5.0415 × 10−6

F-Statistic p-value - - 1.4 × 10−24
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For this reason, a generalized linear model was calculated without the mechanical strength
influence (GLM2), whose results are shown in Table 11, with RSQ = 0.675 and RMSE = 0.3396
obtained. These values do not improve on those obtained with previous models.

Table 11. Generalized linear regression model 2 (GLM2) Y = β0 + β2X2 + β3X3 + β4X4.

Parameters Estimate SE p-Value

β0 1.0169 0.043522 3.701 × 10−27

β2 − Tough. −0.032814 0.037709 3.8872 × 10−2

β3 −Micros. 0.3569 0.059269 2.6872 × 10−7

β4 −C. Comp. 0.15866 0.031816 9.1927 × 10−6

F-Statistic p-value - - 3.93 × 10−13

In the second place, we considered a regression tree model [54]. To make a prediction for a given
observation, we used the mean (or the mode) of the observations that were in the same region of the
multidimensional space of predictors. The rules that were used to divide the predictor space can be
represented as a tree [55].

The order of importance of the predictive variables, from highest to lowest, is microstructure,
toughness, mechanical strength, and chemical composition. Therefore, the variable microstructure is
the one that provides the value that maximizes the information about the dependent variable (CTOD)
if it is smaller than 0.26, otherwise it is the toughness that carries more information. Nevertheless, the
values associated with each subtree for the training sample (13) are between 3 to 7 times bigger than
those of the test sample (50), which indicates bad behavior of the model.

4. Results and Discussion

After having compared the previous model, due to the simplicity and reasonable accuracy, and
despite the unbalanced weigh of the different variable’s parameters (βi), linear model 1 (RSQ = 0.866)
is proposed as a predictive model of the values of CTOD.

The standardized model can be expressed as:

CTOD = 1.2202 −0.080323[M.Str] + 0.22424[Tough] − 0.12972[Micros]
−0.19243[C.Comp]

(21)

where [.] represents the standardized values of the corresponding variable. The standardization
process should be reverted to allow the use of the testing data directly:

(CTOD[mm]−1.0269)
0.586 = 1.2202− 0.080323 (M.Str[HV10]−221.09)

41.87

+0.22424 (Tough[J]−175.421)
51.84 − 0.12972 (Micros[μm]−169.23)

55.44

−0.19243 (CE−0.3831)
0.054

(22)

where CTOD[mm] is the value of the crack tip opening displacement, expressed in mm. M.Str[HV10] is
the effect of the mechanical strength of the material as the average of three hardness measurements
expressed in [HV10] units. Tough[J] is the average value of the two Charpy V-notch measurements,
with subsized specimens extracted from the interest zone and expressed in Joules. Micros[μm] is the
average size of the metallic grains expressed in μm. Finally, CE is the effect of the chemical composition
as the carbon equivalent calculated with the equation proposed in AWS D1.1 (adimensional).

5. Conclusions

The use of multivariate analysis has been proven viable for relating complex fracture mechanics
parameters to well-known material properties. The industrial suitability of the methodology depends
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on the experimental set, specifically the availability of samples, the number of tests, and the choice
of variables.

These chosen variables are significantly related with the CTOD (see p-value for linear regression
model 1). Also, there is well-known experience within the manufacturing industry relating these
variables with actual changes during the welding process. As an example, there is a wide background
of knowledge on how the shielding gas, the welding speed, or the bead scheme affect the grain size
or the hardness of a given welded joint. Using the proposed model, it is possible for the industry to
transfer this knowledge on how these variables may affect the CTOD value.

The final model is precise and functional, with an estimated error of ~10% (within the limits
covered by the experimental set). This error is compatible with the current uncertainty of the CTOD
testing process. Besides, the model is not dependent on which subgroup of data is used for the
modeling process. It is proposed to use this final model predictively, using the results of the tests
for the explanatory variables (it is cheaper, simpler, and more available than the CTOD) to compute
the CTOD value estimator. If this value (considering the mentioned error) is greater than the critical
value (acceptance criteria) specified in the design code, rule, or standard, the expensive CTOD test can
be dispensed.

The usefulness of the model has been proven within the limits of the experimental set for offshore
steel welded joints of high thickness. Nevertheless, the influences of other variables not explicitly
considered in this work were not tested, even for the mentioned category, and are out of the scope of
the presented model. Future developments of the model could include, among others, the influence of
testing temperature, different positioning or shape of the notch, post-weld heat treatments, or type of
failure category (brittle, ductile-brittle, and ductile).
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Abstract: Global warming, which largely results from excessive carbon emission, has become
an increasingly heated international issue due to its ever-detereorating trend and the profound
consequences. Plants sequester a large amount of atmospheric CO2 via photosynthesis, thus greatly
mediating global warming. In this study, we aim to model the temporal dynamics of photosynthesis
for two different vegetation types to further understand the controlling factors of photosynthesis
machinery. We experimented with a feedforward neural network that does not utilize past histories,
as well as two networks that integrate past and present information, long short-term memory and
transformer. Our results showed that one single climate driver, shortwave radiation, carries the most
information with respect to prediction of upcoming photosynthetic activities. We also demonstrated
that photosynthesis and its interactions with climate drivers, such as temperature, precipitation,
radiation, and vapor pressure deficit, has an internal system memory of about two weeks. Thus, the
predictive model could be best trained with historical data over the past two weeks and could best
predict temporal evolution of photosynthesis two weeks into the future.

Keywords: neural network; deep learning; climate; photosynthesis; ecology; FLUXNET

1. Introduction

Climate change, specifically global warming, has long been considered a pressing issue to the
international society as it disrupts the stability of the ecosystem and threatens the prosperity of
mankind [1]. Anthropogenic activities that yield excessive carbon emission, such as fossil fuel burning,
industrialization and animal husbandry, have been adversely affecting the ecosystem by raising the
global temperature. The dynamics of greenhouse gases, such as CO2, play pivotal roles in controlling
the radiative forcing and the energy balance of the whole earth system [2]. Therefore, understanding
the full cycle, especially the sources and sinks, of atmospheric CO2 is critical to better control the CO2

concentrations in the future to a reasonable extent.
Photosynthesis pathway is the largest land surface CO2 sink that sequester atmospheric CO2

into vegetation biomass and stores them as living biomass. The magnitude of photosynthetic carbon
sequestration pathway is around 120–130 Pg C per year (1 Pg = 1015 grams) [3]. Ecosystem respiration,
including autotrophic and heterotrophic, consumes most of the photosynthetic carbon sink, cycles
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it back into the atmosphere, and results in a much smaller net carbon sink compared with gross
carbon input from photosynthesis. The balance between photosynthesis carbon input and ecosystem
reparation carbon output determines the fate of atmospheric CO2 concentration and mitigates the
anthropogenic CO2 emissions, such as from fossil fuel and biomass burning [4].

Given the significant role of photosynthesis carbon uptake in determining the global carbon cycle,
atmospheric CO2 concentrations, radiative balance of earth system, and global warming, it is crucial to
gain mechanistic understanding of photosynthesis machinery and its relationship to climate factors
such as temperature, precipitation, and radiation. Observational networks, such as FLUXNET [5],
have been established globally to measure and understand various different components of land
surface carbon cycle including photosynthesis. At leaf scale, photosynthesis reaction is carried out
by Ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO enzyme), which combines CO2 and
water molecules to generate carbohydrate products. It occurs at two stages: (1) first, light-dependent
reactions capture the energy of light and store in adenosine triphosphate (ATP) and nicotinamide
adenine dinucleotide phosphate hydrogen (NADPH); (2) second, light-independent reactions capture
and reduce carbon dioxide. This biological reaction relies on substrate concentration (CO2 and water),
depends on the activity of temperature-sensitive RUBISCO enzyme, and is driven by solar energy. Thus,
theoretically, one is able to build an effective photosynthesis model that takes all those important factors
into account and predicts the magnitude of land surface photosynthesis given relevant climate drivers.

Historically, mechanistic models have been used to study the dynamics of land surface
photosynthesis and its relevance to the fate of global warming. These models are based on either
Monteith law of light use efficiency [6] or Farquhar photosynthesis modeling framework [7].
Alternatively, the photosynthesis rate could also be estimated by data-driven machine learning models
that are trained on a large amount of observed photosynthesis data.

The latter approach is gaining popularity because of the growth of Eddy covariance observational
networks that collect photosynthetic data on a daily basis over the years, along with the advancements
of effective machine learning techniques. Data-driven models have been applied to a wide-range of
areas recently, and have demonstrated their robustness in multiple tasks. Methods such as feedforward
neural network (FFNN) [8], random forest [9], model trees ensemble [10–12] and support vector
regression [13,14] have been utilized to estimate land surface–atmosphere fluxes from site level
to regional or global scales [3,11,12,14–19]. Adaptive neuro-fuzzy inference system and general
regression neural network have also been used to estimate daily carbon fluxes in forest ecosystems [20].
However, very little research has yet leveraged algorithms that specialize in the integration of temporal
dependencies, such as hidden Markov model (HMM), long-short term memory (LSTM) [21] or
transformer [22]. Thus, in this study, we employed LSTMs and transformers to predict photosynthetic
activities from the past history of climate drivers, and compared their performances against an FFNN
counterpart. Our intuition is that the temporal-aware neural network models shall be able to capture
the multi-day dynamics of photosynthesis, thus yielding better predictions.

Gross primary product (GPP), a measure of the amount of energy that plants can trap from the
sun, is used in this study as a correlate to the rate of photosynthesis. The objective of this study is
to model the temporal dynamics of plant photosynthesis in terms of GPP with three different neural
network architectures. With appropriately designed model experiments, we also aim to explore and
understand the impact of different climate drivers on photosynthesis, as well as the natural ecosystem
memory of the photosynthetic activities.

2. Results

We first modeled the dynamics of GPP across four different sites using Feedforward Neural
Networks (FFNNs), one for each site and trained independently. The model architecture, formulas,
and other details will be covered in the Materials and Methods section. In principle, each prediction
of GPP on any day is made by the model based on the six climate drivers including GPP from the
previous day. Afterwards, a leave-one-out experiment was conducted for climate drivers, where one
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driver is excluded from the input at a time, in the hope to draw inferences on which factors are the most
influential on predicting GPP. The results are shown in the top panels in Figure 1. The experimental
settings for subsequent models were the same unless otherwise specified.

Figure 1. The gross primary product (GPP) prediction performance of (1) the feedforward neural
network (FFNN), where only the current climate drivers are utilized; (2) the long short-term
memory (LSTM), where current and past climate drivers are taken into account; and (3) the transformer,
where current and past climate drivers are comprehensively encoded. A leave-one-out experiment is
also conducted for each model, where one of the climate drivers are excluded from the input. Within
each neural network candidate, a one-way analysis of variance (ANOVA) followed by a post-hoc
Tukey’s honestly significant difference (HSD) test [23] is performed to identify the climate drivers
without which the model performance would deteriorate. Asteroids indicate the ones whose square
errors significantly deviate from those of the version with all climate drivers provided. One, two and
three asteroids respectively corresponds to HSD p-value of less than 0.05, 0.01, and 0.001. GPP: gross
primary product; FSDS: shortwave radiation; Pre: precipitation; Temp: temperature; FLDS: longwave
radiation; VPD: vapor pressure deficit.

Secondly, we employed Long Short-Term Memory (LSTM) Networks [21], a member of the
Recurrent Neural Networks (RNNs) family which specializes in incorporating temporal information in
time-series data, to replace the FFNN counterpart in the same analyses. Instead of merely utilizing the
climate drivers in the day before, we let the LSTM candidate take into consideration the data within
the past thirty days. Compared to FFNN, our LSTM model achieved a consistently lower mean square
error and higher model-data correlation (the middle panels in Figure 1).

The last neural network variant we analyzed was the transformers [22], which was recently
introduced as a state-of-the-art natural language comprehension model whose utility covers the areas
of machine translation [24], question-answering [25], and various other tasks. Similar to the LSTMs,
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thirty days’ worth of data was provided as the input. In our task, there were several cases that the
transformers (the bottom panels in Figure 1) outperformed FFNN, such as it maintained a higher
Pearson correlation when shortwave radiation data was absent, but overall it did not demonstrate
superior performance over FFNN, let alone the even better-performing LSTM.

Given that the LSTM was the best candidate among the three, we then inspected multiple
variants of the LSTM model to explore the natural temporal memory of the photosynthetic process.
The photosynthetic activities as measured by GPP depend on the past history of environmental drivers,
but that temporal dependency is not likely to extend infinitely to the past. For example, whether it
rained a million years ago would minimally affect the GPP tomorrow. An LSTM variant that utilizes
information within a reasonable temporal span is likely to achieve optimal prediction accuracy. On the
other hand, incorporating information over a period much shorter or longer than the natural memory
duration is likely to yield sub-optimal results. The natural length of memory may be deduced by the
performance of different LSTM variants, and it may shed light on the internal linkage of photosynthesis
process across time.

Finally, we experimented on the forecasting ability of the LSTM models such that all variants
were given the historical data on climate drivers over the experimentally determined two-week period,
but were asked to predict the GPP on varying days ahead in the future. We would like to find out the
turning point at which the model was no longer able to yield faithful predictions, which may again
imply the temporal memory of photosynthetic dynamics. The results are displayed in Figure 2.

Figure 2. The past-history dependency and GPP forecasting ability of the LSTM model. Upper panel:
predicting the current GPP using varying length of historic data on climate drivers. Lower panel:
predicting the GPP on varying days ahead in the future using the same two-week length of historic data.

3. Discussion

In all three network candidates, the prediction accuracy were fairly consistent across multiple sites
when all climate drivers were provided as the input (Figure 1). The second grassland site seemed to be
the easiest to predict, judging from the fact that all three candidates achieved the best performance on
that site, as indicated by low mean square error and high Pearson correlation. The reason behind this
observation is yet to be discussed.

Furthermore, our leave-one-out experiment helped us identify the most influential climate
drivers on GPP prediction. The accurate estimation of GPP relies heavily on knowing the shortwave
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radiation in the region. This observation is reasonable, as shortwave radiation is radiation energy
with wavelengths around the range of visible light—the primary energy source for photosynthesis.
Apart from shortwave, knowledge of any other climate driver does not significantly influence the GPP
prediction accuracy consistently across all three neural network candidates, and interestingly enough
this is also the case for GPP itself: presence or absence of past GPP data does not significantly affect
the prediction of future GPP levels.

After identification of the most influential climate driver, the phenomenon that the second
grassland is the “most predictable” site becomes more explainable. If we look ahead into the shortwave
radiation distribution across the four sites shown in Figure 3 in the upcoming Materials and Methods
section, we could draw a plausible conclusion that the abundance of shortwave radiation might be the
reason behind the high predictability. The shortwave radiation distribution in the second grassland
implies a lot of non-zero, information-carrying observations of this climate driver, which would
reasonably improve the prediction accuracy of GPP.

In both the initial study and the leave-one-out experiments, the performance of the LSTM models
was consistently better than the FFNN counterparts, which we would attribute to the inclusion of
information over a longer duration of past history. The less appreciable performance of transformers
compared to LSTMs was likely due to the fact that transformers were originally designed for natural
language translation rather than for time-series interpretation. Besides being less task-specific,
the transformer we implemented had more parameters than the other two candidates, meaning
that it would require more data to optimize. That also might have yielded the less competitive
performance given the same amount of training data.

In the study of past-history dependency and forecasting ability of the LSTM models (Figure 2),
our experiment implied that photosynthesis has an internal memory length of two weeks. In the
past-history dependency study, the LSTM performance peaked when the historical data fed into
it covered the past two weeks; providing a more distant history of the climate drivers no longer
improved the performance. In the forecasting study, our LSTM model was able to predict GPP two
weeks into the future at most. Attempts to predict beyond two weeks demonstrated a significant
decrease in prediction accuracy as indicated by higher mean squared error and lower correlation
between the prediction and the respective ground truth. Such deterioration was especially obvious in
grassland sites (orange and green bars). Our results on the optimal historical system memory were
quite consistent with the longest temporal predictability, which were both about two weeks.

4. Materials and Methods

4.1. FLUXNET Dataset

We used Eddy covariance data collected from four different sites in the FLUXNET observational
network [5]. Eddy covariance [26] is a measurement technique that quantifies ecosystem gas exchange
and areal emission rates. By simultaneously measuring the velocity of the swirling wind with
anemometers and the gas concentrations with infrared gas analyzers, the technique can eventually
generate estimations of the flux of gases into or out of the ecosystem. By now, hundreds of sites are
operating on a long-term and continuous basis. In this study, we included two evergreen needleleaf
forest sites and two grassland sites (Table 1). Figure 3 shows the probability density distributions of
the climate drivers at the four selected sites.
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Table 1. Summary of the geographic location and basic information of the four FLUXNET sites included
in this study. Time-varying data is represented in mean ± standard deviation. AP: annual precipitation.
GPP: gross primary production, a measure that correlates to the rate of photosynthesis in a region.

Name
Latitude
(N)

Longitude
(E)

Elevation
(m)

Land Cover
Type

AP

(mm yr−1)

Temp
(◦C)

GPP

(gC m−2day−1)

NL-Loo 52.16 5.74 25
Evergreen
Needleleaf
Forest

419 ± 829 10.1 ± 6.4 4.3 ± 3.1

DE-Tha 50.96 13.56 385
Evergreen
Needleleaf
Forest

420 ± 988 8.8 ± 7.9 5.1 ± 4.1

AT-Neu 47.11 11.31 970 Grassland 334 ± 814 6.8 ± 8.2 5.9 ± 5.9

US-Var 38.41 −120.95 129 Grassland 282 ± 980 15.8 ± 6.8 1.8 ± 2.8

Figure 3. Probability densities of the observed climate drivers at the four FLUXNET sites included in
this study. Red and orange are grassland sites while blue and green are evergreen needleleaf forest sites.

4.2. Neural Network Architectures and Formulas

4.2.1. FFNN

The first neural network candidate we explored, FFNN, composes of five layers of cells as shown
in Figure 4b. Each cell is connected to all cells in the previous and the next layer but intact from other
cells. Information from the input feature vectors, which in our case are the six climate drivers, can only
pass from a shallower layer to a deeper layer but not the other way around, hence the “feedforward”
part in the name of the model. Figure 4a indicates the composition of the input feature vectors and
prediction ground truths for not only the FFNN but also the two other candidates.

An arbitrary subset of the FFNN, with n pre-synaptic cells attaching to the same post-synaptic
cell, is depicted in Figure 5a for a detailed demonstration of the network. Conceptually, the signal
passed to the post-synaptic cell is a weighted sum of the outputs from the pre-synaptic cells, and that
signal goes through an activation function before it passes on to the cells in the next layer.

The mathematical description of this scenario is denoted in Equation (1).
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y = f (
n

∑
i=1

xi · wi) (1)

where xi are the input features; wi are neural network parameters, or in technical terms, weights,
for each cell; f is the activation function, which is our implementation is a rectified linear
unit (ReLU) [27]; and yi is the output. For a cell in the first layer, the input features are the climate
drivers, whereas for other cells deeper down the network, the input features are abstractions extracted
from previous cells. For the single cell in the last layer, its output is the predicted GPP.

Figure 4. Complete depiction of the three neural network candidates used in our study. (a) The feature
vectors and ground truths. The candidates take in the feature vectors as their inputs and generate
predictions to approximate the ground truths. (b) Feedforward neural network (FFNN). Note: In each
of the first three layers, only the connection from one chosen cell is drawn to avoid overcrowding
the graph. In fact, every cell is connected to all cells in the adjacent layers. (c) Long short-term
memory (LSTM). (d) Transformer. The symbols used are described in the next figure.

Figure 5. Illustration of the building blocks of the three neural network candidates used in our study.
Symbols in the graphs are summarized in the panel on the right. (a) A representative subset of a FFNN
consisting of multiple pre-synaptic cells and one post-synaptic cell. (b) A single cell of an LSTM. (c) A
single block of a transformer.
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4.2.2. LSTM

The second candidate, LSTM, models GPP based on not only climate drivers on the previous day
but also climate drivers from the more distant past. As illustrated in Figure 4c, the six climate drivers
over the past k days are sequentially fed into the LSTM in the correct chronological order. The order at
which they enter the LSTM matters to the model, as the LSTM would adapt its states depending on the
past and present information. On a conceptual level, LSTM shares some similar design philosophies
with a hidden Markov model who computes the conditional probability P(xt|xt−k, ..., xt−1, state).
The linear layer immediately after the LSTM cell in the figure stands for a feedforward layer that very
much resembles the last layer in the FFNN counterpart: all the extracted features from the LSTM cell
are condensed into a single FFNN post-synaptic cell whose output is the predicted GPP at day t.

The building block, or an LSTM cell, is demonstrated in Figure 5b. Conceptually, an LSTM cell
keeps track of two internal states (i.e., cell state and hidden state which respectively corresponds
to long-term and short-term memory) and consists of three gates (i.e., forget gate that determines
what fraction of the previous cell state shall be maintained, input gate that decides how much new
information from the current input shall be integrated to the cell state and hidden state, and output

gate that updates the hidden state).
Mathematically speaking, given an input sequence x = (x1, ..., xT), a standard LSTM computes

the hidden vector sequence h = (h1, ..., hT), which can be used as the output of the model, by iterating
the following equations from t = 1 to T:

ft = σ(Wf xt + Uf ht−1 + b f ) (2)

it = σ(Wixt + Uiht−1 + bi) (3)

ot = σ(Woxt + Uoht−1 + bo) (4)

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc) (5)

ht = ot ◦ tanh(ct), (6)

where σ is the sigmoid function, and f , i, o, c and h are respectively the input gate, forget gate, output
gate, cell state and hidden state vectors. b f , bi, bo and bc are the biases (i.e., additive scalars) to their
respective gates. Matrices W and U contain the model weights at the input and recurrent connections. x
is the model input at each time step. The symbol “◦” represents the point-wise multiplication operation.

4.2.3. Transformer

The third candidate, the transformer, also incorporates information from multiple time
points in past history. Even though transformers and LSTMs may share similar high-level
structures (Figure 4c,d), there exists a major difference between them. Transformers completely
remove the concept of recurrence, or in other words, the way that LSTMs comprehend data as an
ordered sequence that incrementally builds up information. They instead rely on two methods called
positional encoding and self-attention to handle long series of data. The former means that although
there is no longer a concept of “who comes before whom and after whom”, the position of each data
point is nevertheless encoded so that transformers do have spatial awareness. The latter method helps
transformers to figure out “which data points” (or specifically, data points from “which positions”) are
more important and “pay more attention” to them, so that they can manage long sequence of data.

The fundamental building block of a transformer is shown in Figure 5c. All components should
already be self-explanatory, except for the layer normalization blocks. The purpose of such blocks
is to re-scale the output values from the previous layer in order to balance the data, prevent the
model from being overwhelmed by extreme outliers, and prevent such outliers from propagating and
deteriorating progressively.
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4.3. Neural Network Implementation Details

Data was divided into train, validation and test sets at the ratio of 8:1:1, where the training set
was used to train the model by updating model parameters according to the loss; the validation set
was left for sanity checking each time the entire training set has been exhausted; and the test set was
held out for the quantitative evaluation that yielded the results in Figures 1 and 2.

For all three candidates, model parameters were initialized as zeros and were iteratively optimized
by back-propagation of loss (i.e., amount of difference between the model prediction and the GPP
ground truth as determined by a loss function) via gradient descent. The loss function implemented
for all candidates was mean square error loss (MSE loss). Adaptive learning rate (i.e., adjust model
parameters at a larger magnitude at early stages of training, and gradually decrease that magnitude
when the model reaches the fine-tuning stage) and early stopping (i.e., stop training when the model
performance on the validation set no longer improves) were both implemented to prevent over-fitting
(i.e., the phenomenon that the model performs great on the training set, most likely by “memorizing”
the answers, but fails to generalize on the test set) and improve performance on the test set. Random
seed was controlled to secure reproducibility: for example, the pseudo-randomized order at which
each training sample was visited would be kept the same each time we ran the experiments.

Other more technical and less inspirational hyper-parameters, such as learning rate, batch size,
etc., will not be mentioned in this paper, but can be found in the GitHub repository https://github.
com/RosalieZhu/DL-CO2.

5. Conclusions

Greenhouse gas emissions such CO2 could dramatically warm up climate system via positive
radiative forcing effect. Fortunately, terrestrial ecosystems are able to mitigate the anthropogenic CO2

emissions via photosynthesis. In this study, we aim to model the dynamics of plant photosynthesis
activity using advanced machine learning frameworks with temporal awareness. Our results
showed that incorporation of past information is important for improving model predictability. Our
memory-based neural network model was able to successfully capture the temporal dynamics of
plant photosynthesis at all four sites of interest, and it identified shortwave radiation as the most
informative climate driver for faithful prediction of photosynthetic rates. Our modeling experiment
also demonstrated a two-week internal system memory of the photosynthesis machinery.

Our study demonstrated that LSTM, with its capability of capturing temporal dependencies, is
a technique worth investigating when researches study time series data regarding photosynthetic
activities, or even environmental data in general. In the future, similar methods can be directly
applied to evaluate other important climate drivers besides GPP, such as ecosystem respiration and net
ecosystem exchange. Specifically, a more comprehensive study on mapping photosynthesis internal
memory can be conducted if more data from additional FLUXNET sites that cover all land types are
incorporated, and ultimately an internal memory map can be derived based on the prediction of the
proposed LSTM network.
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Abbreviations

The following abbreviations are used in this manuscript:

ANOVA analysis of variance
ATP adenosine triphosphate
CO2 carbon dioxide
FFNN feedforward neural network
FLDS longwave radiation
FSDS shortwave/solar radiation
GPP gross primary product
HMM hidden Markov model
HSD honestly significant difference
LSTM long short-term memory
MSE mean square error
NADPH nicotinamide adenine dinucleotide phosphate hydrogen
Pre precipitation
RNN recurrent neural network
RuBisCO enzyme Ribulose-1,5-bisphosphate carboxylase oxygenase
VPD vapor pressure defict
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Abstract: Accurate prediction of crude oil prices is meaningful for reducing firm risks, stabilizing
commodity prices and maintaining national financial security. Wrong crude oil price forecasts
can bring huge losses to governments, enterprises, investors and even cause economic and social
instability. Many classic econometrics and computational approaches show good performance for the
ordinary time series prediction tasks, but not satisfactory in crude oil price predictions. They ignore the
characteristics of non-linearity and non-stationarity of crude oil prices data, which hinder an accurate
prediction and eventually lead to poor accuracy or the wrong result. Empirical mode decomposition
(EMD) and ensemble EMD (EEMD) solve the problems of non-stationary time series forecasting,
but they also generate new problems of mode mixing and reconstruction errors. We propose a hybrid
method that is combination of the complete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN) and multi-layer gated recurrent unit (ML-GRU) neural network to solve the
abovementioned issues. This not only deals with the issue of mode mixing effectively, but also makes
the reconstruction error of data close to zero. Multi-layer GRU has an excellent ability of nonlinear
data-fitting. The experimental results of real WTI crude oil dataset show that the proposed approach
perform better in crude oil prices forecasts than some state-of-the-art models.

Keywords: crude oil prices; forecasting; complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN); multi-layer gated recurrent unit (ML-GRU)

1. Introduction

Crude oil was once considered to be the blood flowing through the veins of the world economy
and played an extremely critical role in the development of the world economy. According to a
report by the U.S. Energy Information Administration (EIA), although renewable energy production
and consumption both reached their highest share in 2018, fossil fuel still accounted for 80% of the
United States’ energy consumption. In light of the International Energy Agency (IEA) data, the global
consumption of oil reached 1.0075 million barrels per day in 2019. In meeting world energy needs,
oil still plays the most important role. Asian emerging market countries have become the main
contributors to the growth in crude oil demand. The rapid economic growth has prompted them to
significantly increase demand for crude oil. For example, China’s oil consumption has soared from an
average of 69,700 barrels per day in 2005 to 145,100 barrels per day in 2019. As a production factor,
the increase in crude oil prices will lead to an increase in the non-oil companies’ production costs and a
decrease in profits. Sadorsky [1] verified the impact of fluctuations in crude oil prices on companies of
different firm size through evidence from the stock market. Rising oil prices may lead to inflation and
hinder economic growth. Volatility in oil prices increases risk and uncertainty to financial markets [2].
Not only that, but the continued collapse or the sudden plunge in oil prices can also have a huge
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impact on the economic development and financial markets of oil-producing countries [3]. An obvious
piece of evidence is the crisis signal coming from the credit default swap (CDS) market. The widening
of the CDS spread means that weak crude oil prices have caused investors to worry about the fiscal
sustainability of some oil producing countries [4]. The study of Haushalter et al. [5] concluded that
there is a negative correlation between the price of crude oil and the debt ratio of oil producers.

Based on the above discussion, it is obviously of great significance to find a method that can
accurately predict the price of crude oil. This means that policy makers will have more time to introduce
countermeasures to achieve the goal of avoiding or reducing risks. However, the trend of oil prices is
affected by not only the factors of market supply and demand, but also the other non-market factors,
such as geopolitical, alternative forms of energy, recession, war, natural disasters, and technological
development. Various uncertainties affect the crude oil market. The fluctuations in these factors cause
the nonlinear, volatile, and chaotic tendency of crude oil prices. Therefore, achieving sufficiently
reliable and accurate forecasting of crude oil prices has become one of the most challenging issues.

In the past decades, various techniques have been tried to forecast the trend of crude oil prices.
The classic statistical or econometric models such as autoregressive integrated moving average (ARIMA)
model and the autoregressive conditional heteroskedasticity (ARCH)/generalized ARCH (GARCH)
family model are widely used in the time series prediction tasks [6–12]. Zhao and Wang [9] used
the ARIMA model to model and predict crude oil prices based on the international crude oil prices
data from the 1970s to 2006. Mohammadi and Lixian [13] applied the ARIMA-GARCH model to
forecast the conditional mean and volatility of weekly crude oil spot prices in eleven international
markets. Aamir and Shabri [14] used the Box-Jenkins ARIMA, GARCH and ARIMA-Kalman models
to model and forecast the monthly crude oil prices in Pakistan. The premise of applying these classic
models represented by ARMA /ARIMA is that there is an autocorrelation in the crude oil prices series.
So, the historical data is used to infer the future prices of crude oil. These methods are suitable for
capturing the linear relationships in time series analysis but not for the nonlinear time series [15].
In addition to the classical methods mentioned above, the survey forecasting method is another
alternative method for crude oil price forecasting [16]. Kunze et al. [17] empirically studied the
performance of survey-based predictions of crude oil prices. The evaluation shows that the prediction
accuracy of the survey-based forecasts is not as good as that of the naive method in the short-term
crude oil prediction, but with the rise of the prediction horizon, the accuracy of the former will exceed
that of the naive method. This study demonstrates that survey predictions are not suitable for the
short-term prediction of crude oil prices.

Owning to the drawbacks of the classic approaches and the special features of crude oil price data,
artificial intelligence (AI), such as machine learning, deep learning or hybrid methods provide more
excellent nonlinear data predictive performance. In term of forecasting crude oil prices, the approaches
of AI are being widely used as alternative to the classic technologies. Li et al. [18] proposed an approach
that incorporates ensemble empirical mode decomposition (EEMD), sparse Bayesian learning (SBL),
for forecasting crude oil prices. Xie et al. [19] used support vector machines to forecast crude oil
prices and compared the performance with ARIMA and BPNN’s. Experiments show that SVM has
better performance than the other two methods. Fan et al. [20] propose an independent component
analysis based SVR scheme, for crude oil prices predictions. This approach starts from an independent
component analysis to decompose crude oil prices series into independent components, which are
respectively forecasted by support vector regression (SVR).

Crude oil prices trends have significant nonlinear and non-stationary characteristics. Regardless of
the traditional statistics or machine learning methods, it is difficult to obtain satisfactory results by
directly predicting the original crude oil prices series. Therefore, scholars usually adopt the method that,
first, the original crude oil prices series is decomposed into multiple same time scales or relatively simple
sub-sequences by a signal decomposition algorithm. Next, create multiple subtasks. Each sub-task
completes the prediction of a sub-sequence individually. Finally, the results of all subtasks are linearly
calculated and the forecasting is obtained. Common signal decomposition methods, such as the

50



Energies 2020, 13, 1543

wavelet transform, EMD, and EEMD, have been widely used to process the non-stationary time series.
Yu et al. [21] proposed an EMD-based neural network crude oil price forecasting. He et al. [22] come up
with a wavelet-based ensemble model to improve the predictive accuracy of oil prices. This approach
introduced the wavelet to generate dynamic basic data within a finer time-scale domain. Hamid and
Shabri [23] proposed a wavelet multiple linear regression method in daily forecasts of crude oil price.
Wu et al. [24] propose a model based on EEMD and long short-term memory (LSTM) for crude oil
price forecasting. Zhou et al. [25] introduced a hybrid approach of complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) and XGBOOST-based approach to forecast crude
oil prices.

Both wavelet analysis and EMD are becoming the common tools for analyzing non-stationary time
series but have their own limitations. The wavelet method can’t achieve an adaptive decomposition in
the light of time scales. It has been proven above that EMD perform well in extracting signals from
the non-stationary data. Mode mixing is the main limitations of EMD. It is a consequence of signal
intermittency which could result in the physical meaning of individual intrinsic mode function (IMF)
unclear [26]. To overcome this limitation of EMD, an ensemble EMD named EEMD, was subsequently
introduced by Wu and Huang [27]. EEMD adds white noise to the original signal. After a sufficient
number of EMD tests, the only lasting component of signal is then identified as the substantial answer.
EEMD eliminates the effects of mode mixing of EMD, but still retains some noise in the IMFs, which
affect the accuracy of signal reconstruction [28].

In summary, much effort has been made to improve the accuracy of forecasting crude oil prices,
but a more effective approach should be developed. The goal of this study is to propose a new novel
approach of CEEMDAN-based multi-layer gated recurrent unit networks (CEEMDAN-ML-GRU).
CEEMDAN is a variant of EEMD. In the applying of CEEMDAN, the multiple groups of adaptive
white noise is added to the original data at each stage of the decomposition and a unique residue is
computed to obtain each mode. CEEMDAN is complete, with a numerically negligible error of signal
reconstruction. Due to the excellent characteristics of CEEMDAN, in recent years, some researchers
have tried to apply it to no-stationary time series analysis [29,30]. The gated recurrent unit (GRU), like
LSTM, is a recurrent neural network with a gating mechanism, but it has fewer parameters than LSTM,
as it lacks an output gate. GRU’s performance on certain tasks was found to be similar or even better
to that of LSTM. A GRU network with a multi-layer stack structure has more powerful performance
than a single-layer structure. The following experiments show that our proposed hybrid model goes
on better than some other state-of-the-art’s in oil price forecast.

The content of this paper is organized as follows: Section 2 review the background works related
to our method. Section 3 introduce the proposed method in detail, Section 4 applies the proposed
approach to forecast crude oil prices of West Texas Intermediate (WTI), then compares it with other
standard models and some state-of-the-art hybrid models. Finally, Section 5 concludes the study and
summarizes several main interesting issues for future research.

2. Related Work

This section will briefly review the existing works that closely relate to our proposed approach.

2.1. Artificial Neural Networks (ANN)

ANN is made up of many "neurons", whose output can be the input of another neuron. One kind
of classic ANN, the multilayer perceptron (MLP) is illustrated in Figure 1. In the graph illustrated in
this figure, the variable X represents the input, and the circles represent the "neurons" of the network.
This ANN has three layers which relative positions, arranged from left to right, are in sequence: input
layer, output layer, and hidden layer. In Figure 1, the circles represent the nodes of the network.
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Figure 1. A multilayer perceptron (MLP) artificial neural network, which is a feedforward artificial
neural network.

There are m input neurons (nodes), n hidden neurons (nodes) and one output neuron (node) in
this network that each layer of neurons receives inputs from the previous layers. This type of network
is also called a multi-layer feedforward network, where the output of a node in one layer is the input
of the next layer. The nodes in the hidden layer receive the output of the previous layer and perform
weighted linear combination of the inputs. The result is then modified by an activation function before
being output. We introduce several concepts that are closely related to neural networks:

(1) Activate Function, it can normalize the output to a given range to ensure that the model
is convergent. Each neuron accepts input and passes it through an activation function.
The commonly used activation functions include Sigmoid, Tanh and ReLu.

(2) Backpropagation, it is an algorithm commonly used to train the neural networks. After the inputs
are loaded into the network, they pass forward through the neural network. Given an initial
weight, the network provides an output for each neuron. When there is an error between the
classification or regression results and the observations, the back-propagation mechanism comes
into play. It helps to adjust the weights of the neurons, bringing the results closer and closer to
the known true results.

(3) Optimization algorithm, they are commonly used mathematical techniques in neural network
optimization, and use the backpropagation to calculate the gradients. An example is gradient
descent, the most common optimization method. In each training cycle, the best strategy for
parameter (weight) adjustment is determined by observing the derivative of the error function
with respect to each parameter. It enables the parameters to be updated in the negative gradient
direction of the error function during each training to achieve the purpose of minimizing the
error. In deep learning, the commonly used optimizers include stochastic gradient descent (SGD),
adaptive gradient algorithm (Adagrad), adaptive moment estimation (Adam), etc.
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2.2. Backpropagation

In ANN, especially in deep learning, backpropagation is an algorithm widely used to train
feed-forward neural networks for supervised learning. The backpropagation algorithm is to compute
the gradient of the loss function with respect to each parameter by the chain rules, and iterate backward
from the last layer to avoid repeating calculation of the intermediate term of the chain. All of deep
learning models mentioned later, such as recurrent neural network (RNN), LSTM and GRU use the
backpropagation for training the network. The MLP is also shown in Figure 1.

Given a training set of m examples. The backpropagation algorithm is as follows:
(1) Perform a forward propagation, and so on up to the output layer.

Zl+1
i =

∑m

j=1
W(l)

i j xj + b(l)i (1)

S(l+1)
i = σ

(
Zl+1

i

)
= σ
(∑m

j=1
W(l)

i j xj + b(l)i

)
(2)

F(l+1)
W,b (X) = σ

(∑n

i=1
S(l+1)

i + bi

)
. (3)

The (W,b) is the parameter where W(l)
i j denote the weight associated with the connection between

unit i in layer l, and unit j in layer l + 1. b(l)i is the bias associated with unit i in layer l. σ denotes the
sigmoid function, which can transform the data into a value in the range of 0–1, thereby serving as a
gate signal. S(l)

i denote the activation of unit i in layer l. The computation steps of the neural network
Figure 1 represent is given by:
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(2) Define the overall cost function to be:

CW,b =
1
m

∑m

i=1

(1
2

∥∥∥FW,b(X) −Y
∥∥∥2) (4)

This cost function is used to compute error between the actual output and the expected output.
(3) Compute the partial derivatives with respect to (W,b):

δL
j =
∂CW,b

∂S(l)
i

σ′
(∑n

i=1
S(l+1)

i + bi

)
(5)

The derivative tells us the direction of movement of the weight values and how to get a lower
cost in the next iteration.

2.3. Gradient Descent (GD)

In neural networks or deep learning, GD is one of the most common optimization algorithms used
to minimize the loss function by iteratively moving in the steepest direction. The process of updating
the parameters (W,b) in one iteration of GD is as shown below:

(1) Initialize the ΔW(l) and Δb(l).
(2) Use backpropagation to compute ∇W(l) CW,b and ∇b(l) CW,b.
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(3) Set: ΔW(l) := ΔW(l) + ∇W(l)C(W,b;x,y), Δb(l) := Δb(l) + ∇b(l)C(W,b;x,y)

(4) Update the parameters:

W(l)
i j = W(l)

i j − α
∂

∂W(l)
i j

C(W,b) (6)

b(l)i = b(l)i − α
∂

∂b(l)i

C(W,b) (7)

where α is the learning rate, which specifies how aggressively the gradient descent should jump
between successive iteration.

3. Methodology

This section will not only detail the method proposed in this paper, but also introduce some
models that are closely related to the proposed method. They include signal processing algorithm
such as EMD, EEMD and CEEMD, recurrent neural networks such as RNN, GRU and ML-GRU.

3.1. EMD, EEMD and CEEMDAN

Through EMD, the nonlinear and non-stationary signal can be adaptively decomposed into the
limited IMFs based on local characteristic of time scales. The essence of this method is to eliminates
the interference of noise and identify the intrinsic oscillatory modes in the data empirically. To obtain
the valuable instantaneous frequencies, the IMFs must satisfy two conditions:

(1) The numbers of extremes and zero crossings of the sequence must be equal or differ by no more
than one.

(2) At any location, the mean of the envelope determined by the local extrema is zero [26].

The EMD is developed as follows:
Connect all the local maxima (minima) with a cubic spline as the upper (lower) envelope.
Get the first IMF by calculating the difference between the original data and local mean envelope:

M(t) =
1
2
[U(t) − L(t)] (8)

IMF(t) = X(t) −M(t) (9)

where U(t) and L(t) are the upper envelope and the lower envelope respectively. If the difference
original data X(t) to the mean envelope (M(t) meets the IMF constraints, this difference is the new IMF.

The result of subtracting all the previous IMFs from original data is the current residue. Using the
residue as the new input and repeating the above procedure, the next IMF can be obtained:

RK(t) = X(t) −
∑K

i=1
IMFi (10)

IMFK+1(t) = RK(t) − IMFK+1 (11)

where RK(t) is the residue series after K-th decomposition. A complete decomposition process stops
when the residue, RK(t), has been a monotonic function.

There are some drawbacks in EMD, mainly as follows: (a) In IMFs mode mixing exists. It means
that the IMFs composed of oscillations of different time-scales and no longer have physical meaning.
(b) The effects of end affect the results of decomposition. To overcome the drawbacks, Huang et al. [27]
introduced a novel EEMD approach that utilizes the advantages of white noise to eliminate the effects
of mode mixing. After EEMD, the reconstructed data includes residual noise and disparate parameters
of noise can produce disparate number of modes [28].
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CEEMD, proposed by Torres et al. [28]. The final decomposition result is obtained by taking the
average by adaptively adding white noise to the time series with the same magnitude and opposite
direction. After engaging in EMD processing, the output of CEEMDAN obeys a Gaussian distribution.
Compared with EEMD and CEEMD, this method effectively eliminates the problem of mode mixing,
and no matter how many times the decomposition, the reconstruction error of the signal is almost zero,
the completeness is better, and at the same time solves the problem of low decomposition efficiency,
greatly reducing the calculation cost. CEEMDAN’s spectra shows a more accurate decomposition of
the frequency than the EEMD’s. The same time series, the number of iterations of CEEMDAN shifting
is usually equivalent to half of the EEMD’s.

The implementation of the algorithm is summarized as follows:
Generate a white noise plus series (xi(t) = x(t) + wi(t)). Here, wi(t) denote the white noise of

finite variance, while x(t) represent the original data. Then decompose xi(t) to obtain the IMFs:

im fi =
1
n

n∑
j=1

im f j
i (t) (12)

where wj
i (t) is the white noise added at the j-th time with the mean equal to zero and variance equal to

one. The im fi is the i-th mode component obtained after the signal is decomposed by CEEMDAN.
Calculate the first residue:

r1(t) = x(t) − im f1 (13)

Decompose the residue to get the second IMF and calculate the second residue:

im f2 =
1
n

∑n

j=1
E1
{
r1(t) + ε1E1

[
wj

2(t)
]}

(14)

r2(t) = r1(t) − im f2 (15)

Decompose the (k− 1)th residue of rk−1(t) and extract the im fk(t). The process can be demonstrated
in the following equation (k = 2, 3, . . . K):

im fk(t) =
1
n

∑n

j=1
E1
(
rk−1(t) + wj

k−1Ek−1

(
ε j(t)

))
(16)

Calculate the k-th residue:
rk(t) = x(t) −

∑k

i=1
im fi (17)

where k indicates the number of IMFs. The attributes of the original time series are denoted by all the
IMFs exacted from different time-scales. The only residue demonstrates the trend, which is smoother
than that of the original time series.

3.2. GRU and Multi-LayerML-GRU

3.2.1. RNN and GRU

Among deep learning methods, RNN is a powerful method for processing time series data.
It is widely used in many fields such as finance [31,32], industry and engineering [33], machine
translation [34], speech recognition [35], economic prediction [36], and so on. As shown in Figure 2,
RNN has certain information persistence capabilities, which enable information to be passed from one
time-step to the next. However, the classic RNN does not have the ability to store and memorize data
for a long time, so that it cannot capture long-term historical information. In addition, in the reverse
process of model training, once the sequence is too long, the RNN will cause the problem of gradient
explosion or gradient disappearance. To overcome these drawbacks, Hochreiter and Schmidhuber [37]
proposed the LSTM neural network which is capable of learning long-term dependencies of time
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series, as well as forgetting the worthless information based on the current input. LSTM has since
replaced RNN as the most widely used recurrent neural network. LSTM has four gated unit that
capable adaptively regulate the information flow inside the unit. An LSTM neural network usually
requires many gated units, which need train a large number of parameters and occupy more computing
resources. In order to reduce the training parameters and simply the neural network, Cho et al. [38]
proposed a neural network named GRU which only have two gated units in the hidden unit.

 
Figure 2. Workflow graph of RNN. X denotes current input of neural network; Y denotes the output of
neural network; W, U and O are the parameters of recurrent neural network; h is the neuron state of the
hidden layer; The state at time t is related to the current input X and the hidden at time t−1.

As one of the variants of RNN, the input and output structure of GRU neural network is the same
as that of RNN and LSTM, as shown in the Figure 3 The neurons of GRU receive the hidden state (ht−1)
of the neuron of the previous neuron, and the current input xt. After passing through the gating unit,
the neural network gets the output yt and passes the hidden state ht to the next neuron.

 

sigmoid

output

tanhsigmoid

input

Figure 3. The internal structure of the GRU cell. rt —Reset gate. It allows the cell to forget certain parts
of the state; zt—Update gate.

The GRU architecture, like LSTM, learns the long-term dependence of time series based on a
gate mechanism that includes reset gate and update gate. The former is used to control how much
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information in the previous state will be ignored. The latter is used to control how much information
from the historical state is brought into the current state. GRU neural networks, like other neural
networks, consist of a large number of basic neurons. They are interconnected in a complex network.
A single neuron cell is shown in Figure 2. The specific process is designed as follows:

zt = σ(wxzxt + whzht−1) (18)

rt = σ(wxrxt + whrht−1) (19)

The internal structure of the GRU cell is shown in Figure 3.
The update gate is used to control the extent to which the state information from the previous

moment is retained to the current state. The more the value of the update gate approaches 0, the more
the state information from the previous moment is brought into the current state. The update gate
signal is the closer to 0, the more data it remembers. The closer to 1, the less it is forgotten.

Begin with getting the gating signal, GRU gets the reset data through the gate; then combine
it with the input xt, and use a tanh activation function to shrink the data to the range from −1 to 1.
The formula is shown in the following:

gt = tan h
(
wxgxt + whg(rt × ht−1)

)
(20)

The last step of GRU, we can call it "update memory" phase. Combined with the previous
discussion, this step forgets some of the dimensional information passed in and add some new
information inputted by the current neuron to the state variable ht:

ht = (1− zt) × ht−1 + zt × gt (21)

3.2.2. Multi-Layer GRU Architecture

If the problem is too complicated, a recurrent neural network with a single layer structure is not
enough to abstract the problem, and a multi-layer neural network is a better alternative. The multi-layer
neural network has more hidden layers and more powerful computing capabilities which is the key to
solving complex problems. The proposed model is one kind of forward multi-layer neural networks,
which demand the input layer are required to have the same number of input dimensions as the input
vector. The architecture and workflow of the ML-GRU are shown in Figure 4. The output dimensions
of the last layer demand only be equal to the number of labels for classification or a single value of
prediction for regression. With each training, the parameters are continuously updated. This process
continues until the output of the network is closer to the desired output.

The multi-layer architecture determines that data flows through more neurons and more
parameters need to be trained, as well as more powerful than the single layer network. If the
recurrent neural network is too deep beyond what is necessary, the computational cost will be
expensive. Also, the phenomenon of overfitting may occur.
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Figure 4. Architecture and workflow of ML-GRU.

3.3. CEEMDAN-Based Multi-Layer Gated Recurrent Unit Networks (CEEMDAN-ML-GRU)

In this study, we introduce a novel approach combining CEEMDAN and multi-layer GRU neural
networks. We call this model CEEMDAN-ML-GRU for crude oil price forecasts. Figure 5 shows the
architecture and workflow of the hybrid model. It aimed at improving the exiting crude oil price
forecast techniques, which are less efficient or have poor accuracy in dealing with nonlinear and
nonstationary regression tasks.

 

Figure 5. CEEMDAN-based Multi-layer Gated Recurrent Unit Networks (CEEMDAN-ML-GRU).
This approach adopts a strategy of “divide and process”, which transforms a complicated issue into
Several simple issues, and processes them independently.
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Firstly, CEEMD technology is used to add positive and negative paired white noise to the
original exchange rate sequence, which overcomes the problem of large EEMD reconstruction errors
and poor completeness of decomposition, and effectively improves the decomposition efficiency.
Then the original exchange rate sequence is decomposed into IMFs based on different characteristics.
Finally, the multi-layer LSTM based forecasting model is input for each component, and each of the
IMF prediction results is superimposed to obtain the desired overall prediction.

As mentioned in the introduction, signal decomposition techniques such as wavelet transform,
EMD and EEMD have been used for the analysis of time series of predicting energy prices.
Machine learning, especially neural networks and deep learning methods, have also been applied
to crude oil price forecasting to improve the learning process and prediction accuracy of crude oil
price data. Signal decomposition technology is good at processing non-stationary data, and deep
learning shows excellent performance when analyzing time series with nonlinear and long-term
dependency characteristics. Some scholars have proved that integrating signal decomposition and
deep learning methods for crude oil prices forecasting gained better results than only using a single
method. In Section 1, we have mentioned that Wu et al. [24] proposed a novel model based on EEMD
and long LSTM for crude oil price forecast. We will compare them experimentally with the proposed
method in the next section. This kind of hybrid model is able to synthesize the strengths of each hybrid
method, and significantly avoids the negative impact of the single method’s inherent disadvantages on
prediction performance.

The model first performs CEEMDAN on the original crude oil prices data. Then we input the
previously decomposed IMF into the ML-GRU neural network. As for the output, it is meaningless
to predict IMF alone, so we must use all the IMFs obtained by decomposing one sample at a time as
the input of a single training or test to directly predict the price trend of crude oil. We use a one-step
prediction strategy. By extracting the characteristics of IMFs, ML-GRU can use the crude oil prices
trend data of the last p days to predict the price trend of the next day. CEEMDAN-ML-GRU prediction
usually includes the following four main steps:

Step 1: Data preparing. In order to make the data meet the requirements of the model input,
we first preprocess the original data, where involved data cleaning, data reduction and
data transformation.

Step 2: Data decomposition. The training and test sets are decomposed into sets of IMFs and residue
using the CEEMDAN method. The original complex time series x(t), t = 1, 2, . . . , n is split into
a training set and a test set in a supervised form.

Step 3: Model training. Input the IMFs of training set into Multi-layer GRU neural network for training.
Step 4: Price forecasting. Input the IMFs of test set into the trained multi-layer neural network to

make one-step ahead forecasting for verification.

4. Experiments

4.1. Datasets

In this section, through a series of experiments, we verified the proposed CEEMDAN-ML-GRU
model is more advanced than the state-of-the-art methods, which include the EEMD-LSTM. In order
to measure and compare the forecasting performance of different models, WTI crude oil prices is
employed for the sample data set for the experiment. This dataset source is the U.S. Energy Information
Administration (EIA; http://www.eia.doe.gov/) and has 8321 observations that include all daily data
from 2 January 1986 to 3 January 2019. A test set with 1664 observations is used to evaluate the
prediction performance. The daily chart of WTI crude oil prices is illustrated in Figure 6.
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Figure 6. The daily chart of WTI crude oil prices from 2 January 1986 to 3 January 2019.

4.2. Evaluation Metrics and Baselines

Following, we adopt three metrics including the root mean squared error (RMSE), mean absolute
percent error (MAPE) and Diebold-Mariano (DM) to evaluate our model.

(1) Root mean squared error (RMSE):

RMSE(y, ŷ) =

√∑N
i=1(yi − ŷi)

2

N
(22)

RMSE is one of the most common metrics and often used to measure the deviation between
observations and prediction in the task of machine learning models. The letter y in the formula above
denotes the observations, ŷ is the prediction, and N indicate the number of samples.

(2) Mean absolute error (MAE):

MAE(y, ŷ) =

∑N
i=1

∣∣∣yi − ŷi
∣∣∣

N
(23)

(3) MAE can better reflect the actual situation of the error of prediction. Mean Absolute Error
Percentage (MAPE):

MAPE(y, ŷ) =
1
N

∑N

i=1

∣∣∣∣∣ yi − ŷi

yi

∣∣∣∣∣ (24)

MAPE measures not only the absolute error between the predicted value and the observations,
but also the relative distance. Unlike the previous two metrics, MAPE stands for percentage error,
which can help it compare errors between different data sets.

(4) Diebold-Mariano Test (DM test):

DM =
d√[

γ0 + 2Σh−1
k=1γk

]
/n

(25)

It is used to test the statistical significance of the forecast accuracy of two forecast methods. Variable d
is the subtraction of absolute error of the two methods. d is the mean of di. γk is the autocovariance at lag k.
DM ∼N(0, 1), if the p-value > α, we conclude there is no significant difference between the two forecasts.

An ideal metric is not only reflected in the description of prediction accuracy, but also required to
reflect the distribution characteristics of errors. Because of their effectiveness, these metrics are widely
used for error measurement in regression or prediction tasks. The definition of each metric is different.
When the sample size is large enough, RMSE is more reliable. RMSE is more suitable for Gaussian
distribution error measurement than MAE, and MAE has a better performance in measuring uniform
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error. A single metric is not enough to judge the pros and cons of the model. We need to combine
multiple metrics to determine the pros and cons of the model [39].

To verify that the proposed method is advanced, we compare our method with a series of
models, most of them mentioned in previous sections. These models include not only the common
models such as: naïve forecasts(that the prediction is the same as the last period), ARRIMA, least
squares SVR (LSSVR), ANN RNN, LSTM, but also some hybrid models such as: EEMD-ELM,
EEMD-LSSVR, EEMD-ANN, EEMD-RNN, EEMD-LSTM and EEMD-SBL-ADD. Both EEMD-LSTM
and EMD-SBL-ADD have been proposed in the last two years and represent the current state-of-the-art
approaches for crude oil forecasting.

4.3. Experimental Settings

There is one input layer, two hidden layers of GRU and one dense layer in our proposed model.
Figure 7 illustrate its Tensorflow computation graph which indicate the network architecture in our
method. Each input sample is a matrix of n × m, which is represented by a NumPy array. ‘n’ is
the lagging order and ‘m’ is the number of IMFs and residue. By trial and error, we determine set
the number of hidden neurons to 32 and MSE as the loss function. The optimizer of training is
adaptive moment estimation (Adam) which solve the problems of other algorithm, such as learning rate
disappearing, convergence slowly or loss function fluctuating greatly. The learning rate in following
experiment is set to 0.01. We adopt the strategy of one day ahead prediction to carry out our tasks.
In other words, the prices of the past n days (p1, p2, . . . pn−1, pn) is used to predict the price of the
(n + 1)th day. Letter n is called the lag order which related to the size of neuron of the GRU. We adopt
a strategy of grid search to determine the number of lagging order that is important for time series
analysis. By trial and error, the lag order was set to 32.

Figure 7. TensorFlow computation graphs of the network structure of proposed model. This figure illustrates
the data dependencies and control dependencies. The solid arrows indicate the data dependencies that
show the flow of tensors between two ops, while dotted lines indicate the control dependencies.
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For comparison purposes, we set the same initialization parameters for several deep learning
models that participated in the experiment. For other parameters, since they have little effect on the
results, we set the parameters to default.

The methods mentioned in the previous literature will be compared to our introduced approach
in the performance of crude oil prices forecasts. These methods include not only the single model,
LSSVR, ANN, ARIMA, and LSTM, but also the hybrid method EEMD-LSTM, which is considered the
state-out-of- art method in crude oil prices forecasting.

In this study, all experiments are conducted in Python 3.7 via several specialized package, such as
TensorFlow-GPU 2.0, Pyeemd 1.4, Keras 2.3 and so on. All experiments are conducted on a PC with a
3.2 GHz CPU, 16 GB RAM and 12 GB CG card.

4.4. Experimental Process, Result and Analysis

4.4.1. Data Decomposition

The original WTI crude oil is decomposed to 13 components which include 12 IMFS and one
CEEMDAN residue, where we added the white noise with standard deviation of 0.01 and the number
of ensemble size is equal to the size of dataset. Then the IMFs and residue are splinted into the train set
and test set. Both them are illustrated in Figure 8, in which the left part of dotted line is train set and
the right part is test set.

By trial and error, we determine the parameters of ensemble size of 0.05 and noise strength of
100. It means that the white noise data with standard deviation of 0.05 and quantity of 100 will be
added to the original data. Before data decomposition, we initialize the other parameters of the
algorithm. Table 1 shows the names and descriptions of the main parameters. Table 2 shows the
parameter settings.

Table 1. EEMD and CEEMDAN parameters description.

Parameter Description

spline_kind Defines type of spline, which connects extrema
nbsym Number of extrema used in boundary mirroring

max_imf IMF number to which decomposition should be performed
ensemble_size Number of trials or EMD performance with added noise
noise_strength Standard deviation of the additional noise.

Table 2. Parameters settings.

Method Nbsym Max_imf Trials Noise_Width/Epsilon

EEMD 2 ALL 100 0.05
CEEMDAN 2 ALL 100 0.05

The time–frequency spectra of IMFs and the residue by CEEMDAN after decomposition are
shown in Figure 8. We divide the original data and the decomposed result into a training set and a test
set. The former accounts for 80% of the entire dataset, and the latter accounts for the remaining 20%.
As shown in Figure 8, the data on the left side of the dotted line constitutes the training set, and the
test set is on the right. As one kind of supervised learning algorithm, the input paired to the desired
output in both the training and test sets.
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Figure 8. The time–frequency spectrums of IMFs obtained by CEEMDAN. The top sub-picture shows
the original WTI price data. The next 12 images represent intrinsic mode functions (IMF), which is
listed in the order from the high to the low frequencies. The last component is the residue, which
represents the portion of the original data not decomposed and the real trend of the original data.

4.4.2. Training/Learning

After the model is build, we move on to the next step: training/learning. In this process, the training
data is continuously feed into the model to incrementally improve the model’s predictive performance.
Both the loss function and optimizer of adaptive moment estimation (Adam) mentioned earlier are
used to evaluate and optimize the model in training to achieve the purpose of model optimization.
The workflow of training as shown in Figure 9.
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Files of H5

Figure 9. Workflow of training.

The trend of the loss function curve during the iteration of model training from 1st to 100th epoch
is shown in the Figure 10.

 
Figure 10. The loss curve graph of model.

The optimization algorithm mentioned above determines the optimization efficiency of the model,
while loss represents the distance between the prediction and the observation. From the preceding
graph, we observe that the loss curve descends rapidly in the initial epochs of training iteration, which
shows that the model is optimized significantly by tuning the hyperparameter. However, between
the 25th and 35th epochs of training, the loss curve is flat due to adaptive adjustment of the learning
rate. After that, the curve continues to descend rapidly. The curve descending slowly means that
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loss saturated after 70 epochs of iterations. After 100 training epochs, the loss (MSE) has descended
to a very low level. In fact, we conducted 2500 epochs experiment for each model, with 120 samples
per batch. Once the training\learning of the hyperparameters (weight) in the model is completed,
the model can be used in the tasks of crude oil price forecasts. The experimental results are shown
later in the paper.

4.4.3. Predictive Performance of Different Single Model

We propose a hybrid model that includes two components, a decomposition algorithm CEEMDAN
and a prediction model Multi-layer GRU. In order to make the method evaluation more accurate,
we adopt a combination of independent evaluation and overall evaluation. So, we expand single
model comparison and hybrid model comparison between two sets of experiments.

Here, we will evaluate our proposed CEEMD-ML-GRU’s effectiveness for improving forecasting
accuracy. The compared single models included the naïve forecasts, one classical time series method
of ARIMA, two famous machine models of LSSVR and ANN and two popular deep learning model
of LSTM and GRU. The samples used in each iteration of the deep learning model are randomly
drawn, which makes the results of each prediction different. In order to improve the robustness of the
model, experiments with each parameter condition were required to be trained 100 times. In order of
performance, the metric at the median position represents the model. The results are shown in Table 3.

Table 3. Predictive performance comparison of single methods.

Metrics
Methods

ML-GRU GRU LSTM LSSVR ANN ARIMA Naive

RMSE 1.2869 1.4820 1.4818 1.6473 1.5223 2.4861 1.5336
MAE 1.2424 1.3817 1.3788 1.5219 1.3649 2.2134 0.9271

MAPE 0.0138 0.0152 0.0153 0.0168 0.0156 0.0268 0.0152

From Tables 3–5, we can see that:

(1) Among all these models, the multi-layer GRU (ML-GRU) stacking network performed the best
on the metrics of RMSE and MAPE. As shown in Table 5, ML-GRU significantly outperformed
higher prediction accuracy than other single models. This phenomenon further illustrates that
the multi-layer neural network can be used to solve complex issues.

(2) Both GRU and LSTM, designed for long term dependencies of time series show better performance
than other traditional machine learning models for crude oil price forecasts. From Table 3,
we observe that there is no significant difference between the LSTM and GRU models in the task
of crude oil price prediction. Table 4 indicates that GRU has higher efficiency than LSM, because
GRU network needs 30% less hyperparameters that need be learned than LSTM, during the
training process. It means that GRU neural network use less training parameters comparing to
LSTM, and therefore use less resources of computing and storage, execute faster and train faster
than LSTM’s.

(3) It is interesting that the comprehensive score of the naive forecasts surpasses classical methods
such as ARIMA, ANN and LSSVR, and even achieve the best score on MAE. This phenomenon
indicates that the complex crude oil price trends are difficult to predict. Misuse of some models,
the result is even worse than doing nothing.

(4) While ARIMA performed the worst. The results further confirm that ARIMA, a classic time series
analysis model, doesn’t perform well at issues of nonlinear and non-stationary time series.
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Table 4. Comparison of GRU and LSTM model in the number of parameters.

Method Input Shape Output Shape Total Params

GRU (32, 13) (32, 32) 4416
LSTM (32, 13) (32, 32) 5888

Table 5. The Diebold–Mariano (DM) test results for single models on WTI crude oil prices.

DM Test
Benchmark Model

GRU LSTM LSSVR ANN ARIMA Naive

ML-GRU −2.1644
(0.02365)

−2.319
(0.02017)

−15.6146
(0.0000)

−3.4532
(0.0000)

−20.198
(0.0000)

−2.1581
(0.02517)

4.4.4. Effect of Selecting Different Hybrid Approaches

On the basis of the previous single model prediction, we continue to evaluate the performance of
the hybrid model based on the decomposition method. Table 6 shows the prediction performance of
the corresponding hybrid models based on EEMD or CEEMDAN. Table 7 demonstrates that the result
of DM test between CEEMDAN-ML-GRU and the other two models.

Table 6. The experimental results in terms of hybrid approaches on WTI crude oil prices forecasting.

Metrics
EEMD CEEMDAN

RMSE MAE MAPE RMSE MAE MAPE

ML-GRU 0.9619 0.9341 0.00987 0.9276 0.9134 0.0094

GRU 0.9912 0.9719 0.0106 0.9334 0.9278 0.0101
LSTM 0.9862 0.965 0.0104 0.9329 0.9261 0.0099
LSSVR 1.1265 1.0847 0.0116 1.1197 1.0903 0.0114
ANN 1.0508 1.0121 0.0106 1.0476 1.0118 0.0105

Table 7. The Diebold–Mariano (DM) test results for hybrid models on WTI crude oil prices.

Benchmark Model

DM Test ML-GRU

EEMD-LSTM
EEMD-ML-GRU

CEEMDAN-LSTM
CEEMDAN- GRU

Naive

CEEMDAN-ML-GRU −6.3309(0.0000)

−1.759(0.0776)
−15.6146(0.0000)
−3.4532(0.0000)
−20.198(0.0000)
−11.7541(0.0000)

In this set of experiments, we added a prediction model based on the EEMD decomposition
algorithm, and these hybrid models have appeared in the latest literature. Each single model
combines CEEMDAN and EEMD respectively, and thus two sets of mixed methods will be obtained.
Subsequently, these models were tested in the WTI crude oil price prediction task to derive who is the
optimal model. Table 6 demonstrates the predictions of different hybrid models. From the Tables 6
and 7, we can observe that:

(1) Both EEMD and CEEMDAN plus prediction models outperform single model significantly in
this prediction task. It indicates that machine learning models with signal processing algorithm
based contribute to the better forecasting performance in the nonlinear and non-stationary time
series analysis.
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(2) The hybrid model based on CEEMDAN has better prediction accuracy than that based on
EEMD’s. The residual noise from the components decomposed by EEMD, cause a certain extent
of reconstruction error, and affect the overall predictive accuracy ultimately.

(3) The ML-GRU with multi-layer architecture still performs better than the GRU with single-layer
architecture on the decomposed data. CEEMDAN-ML-GRU, our proposed method has been
verified to the best method for the task of crude oil price forecasting.

5. Conclusions

In this study, a hybrid model called CEEMDAN-ML-GRU for crude oil price forecasting is proposed.
This model takes full use of the advantages of the signal processing algorithm CEEMDAN and the
multi-layer gated recurrent unit networks (ML-GRU). As mentioned in the previous section, the hybrid
model uses CEEMDAN to solve the non-stationarity problem of crude oil price data, and generalizes
the nonlinear crude oil prices data by a multi-layered GRU neural network. We conduct a large number
of experiments to verify the effect of the proposed method in forecasting task by using the WTI price
data as sample data. The experimental results show that our proposed method goes beyond other
traditional statistical methods, machine intelligent algorithms and other hybrid models, which include
the EEMD-LSTM method proposed in 2019.

In addition to crude oil price forecasts, the introduced CEEMDAN-ML-GRU model can also
be extended to solve other complex problems in other areas, such as time series forecasts or risk
measurements in financial markets. The main purpose of this approach is to improve the accuracy of
short-term crude oil price predictions and help decision makers minimize the risks of the crude oil
market. However, the proposed method is mainly applied to short-term forecasts, so only daily data is
used. If we need to predict long-term price trends, we need to combine this method with economic
theory or measurement methods to play a greater role. This is exactly the research plan that we will
follow in our future research.
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Abstract: This paper applies a heuristic approach to optimize the predictor variables in artificial
neural networks when forecasting raw material prices for energy production (coking coal, natural
gas, crude oil and coal) to achieve a better forecast. Two goals are (1) to determine the optimum
number of time-delayed terms or past values forming the lagged variables and (2) to improve the
forecast accuracy by adding intrinsic signals to the lagged variables. The conclusions clearly are in
opposition to the actual scientific literature: when addressing the lagged variable size, the results
do not confirm relationships among their size, representativeness and estimation accuracy. It is also
possible to verify an important effect of the results on the lagged variable size. Finally, adding the
order in the time series of the lagged variables to form the predictor variables improves the forecast
accuracy in most cases.

Keywords: raw material; price forecasting; artificial neural network; predictor variable; lagged
variable size; rolling window; coking coal; natural gas; crude oil; coal

1. Introduction

Artificial neural networks (ANN) have been widely used as accurate forecast aids addressing
issues directly or indirectly related with energy or raw materials: energy production [1], raw material
inventory levels [2], crude oil prices [3], volatility of stock price indices [4], electricity prices [5],
stock prices [6], gold prices [7], copper spot prices [8], off-gases production [9], currency exchange
rates [10], etc.

This paper analyzes the forecast of raw material prices for energy production by means of ANN,
focusing on the selection of optimum parameters in order to configure the ANN. Design of experiments
(DOE) is normally used to select these parameters [11].

DOE can be focused on estimating the number of neurons in hidden layers [12], on forming
training and test datasets [13], on eliminating redundant dimensions in the predictor variables trying to
achieve compression [14,15], on determining the optimum size of the lagged variables [16], on adding
signals to the lagged variables [17], etc.

A heuristic approach will be used to optimize the predictor variables in ANN by means of (1)
modifying the lagged variable size and (2) adding intrinsic signals to the lagged variables.
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Addressing the lagged variable size, Liu and Su [18] indicated that a larger size allows
for increasing the forecast accuracy, while it decreases the representativeness of the subsample
heterogeneity. Moreover, although smaller sizes may improve representativeness, they will reduce the
estimation accuracy. In the above empirical research, they used lagged variable sizes of 12, 24 and 36
months to test different alternatives. Nevertheless, the lagged variable sizes indicate very little effect
on the results.

Tang and Abosedra [19] established that the lagged variable regression results are very sensitive
regarding their size, but as there are no proper methods to select an optimum size, arbitrary selections
have to be made. Other authors argue that a larger lagged variable size would lead to short-run
predictability information being missed, and thus, a shorter size is preferred [20,21].

WEKA from the Machine Learning Group at the University of Waikato (Waikato, New Zealand) [22,23],
a well-known open source machine learning software widely used for teaching, research and industrial
applications, has a specific time-series analysis environment to forecast models. WEKA’s time-series
framework uses a machine learning/data mining approach to model time series. It transforms the data
by removing the temporal ordering of individual input examples by encoding the time dependency
via additional input fields or lagged variables. When using WEKA, it is possible to manipulate and
control how lagged variables are created. They are the main mechanism to capture the relationship
between current and past values, creating a window over a certain time period. Essentially, the number
of lagged variables created determines the size of the window.

Regarding the adding of intrinsic signals to the lagged variables, Tavakoli et al. [24] proposed an
input management system based on flexible data by immediately providing a variable definition layer
on top of the acquisition layer to feed a data mining module to build modeling functions. Recently,
and within the neural networks field, Uykan and Koivo [25] have presented and analyzed a new
design for the predictor variables of a radial basis function neural network. In this design, the predictor
variables were augmented with a desired output vector, allowing for better/comparable performance
when compared with the standard neural network.

Raw material selection, namely, coking coal, natural gas, crude oil and coal, was based on the
representativeness and price availability of such materials. In the case of coking coal, prices were
obtained from the Colombian Mining Information System as they were publicly disclosed, while for
the rest of the raw materials, their prices were obtained from the World Bank Commodity Price Data
(The Pink Sheet) under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

The program used to simulate ANNs was NeuralTools 7.5 from Palisade Corporation (Ithaca,
NY, USA).

2. Method

This paper will attempt to improve the result of the time-series forecasting of raw material prices
for energy production developed with ANN by means of a twofold optimization of the predictor
variables (modifying the lagged variable size and adding intrinsic signals to the lagged variables),
taking into consideration the previous work of Matyjaszek et al. [26], in which coking coal prices were
forecasted by means of autoregressive integrated moving average models (ARIMA) [27,28] and ANN,
as well as the transgenic time-series theory.

2.1. Artificial Neural Networks

Two different types of ANNs proposed by Specht [29] will be tested using the best net search
function that is available in NeuralTools: generalized regression neural networks (GRNNs), which were
used in the past to forecast European thermal coal spot prices among very different applications [30,31],
and multilayer feedforward networks (MLFNs), with one or two layers as described in García
Nieto et al. [32].

GRNNs are based on nonlinear regression theory and are very closely related to probabilistic
neural nets. In GRNNs, a case prediction with a dependent value that is unknown is obtained by means
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of interpolation from the training cases, with neighboring cases given more weight [33]. The optimal
parameters for the interpolation are found during training. The main advantage is not requiring any
configuration at all.

Figure 1 presents a GRNN with two independent variables in the input layer and only four
training cases, with the pattern layer having four nodes corresponding to these training cases. Each of
the nodes will compute its Euclidean distance regarding the presented case. Then, these values pass
to the summation layer. The summation layer has two parts: one is the numerator, and the other is
the denominator. The numerator contains the sum of multiplying the training output data and the
activation function. The denominator is the sum of all the activation functions.

Figure 1. Configuration of a generalized regression neural network (GRNN) with two independent
numeric variables and four training cases.

Finally, the output layer has only one neuron that calculates the output by dividing the numerator
and the denominator of the summation layer.

On the other hand, MLFNs consist of an input layer, one or even two hidden layers and the
output layer. A MLFN is configured by specifying the number nodes in the hidden layers. The net
behavior will depend on the number of nodes selected for each hidden layer, the connections weights,
the bias terms that are assigned to each node, and the activation/transfer function selected to convert
into output the inputs of each node. They are able to approximate complex relationships between
the variables.

2.2. Lagged variable Size

One of the issues to be analyzed within this paper is the current discussion about if a larger lagged
variable size allows for increasing the forecast accuracy [18] or if a shorter size is preferred based on
avoiding to miss short-run predictability information [20,21]. Another issue will be whether lagged
variable regression results are very sensitive regarding their size [19] or not [18].

Lagged variables are generated by a number of linear time-delayed input terms or past values,
normally in ascending order, such as P(t−n) . . . P(t−2), P(t−1), to estimate the output value P(t) [34].
They are also referred to as rolling windows [35].

To undergo a first estimation of the number of time-delayed terms that should form the lagged
variables (n), there are several alternatives that can be selected, including the one developed by
Ren et al. [36], which uses the seasonal characteristic that appears in the autocorrelation function
(ACF) plot, although this value is not always available.

Other common approach is to approximate the value by determining the square root of the amount
of data available to undertake the analysis [26]:√

Total n◦ o f data (1)
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Another alternative is the one used also by Matyjaszek et al. [26], in which the adequate number
of time-delayed terms, k, that should form each input layer is calculated as follows:

Total n◦ of data ≤ n2 + 2n + 1, (2)

n = 1 + k + 1 (3)

2.3. Adding Intrinsic Signals to the Lagged Variables

Up to date and in order to improve the forecast accuracy by adding signals to the lagged variables,
research is focused on the extrinsic ones [24,25]. This paper would analyze whether it is feasible to
optimize predictor variables by adding intrinsic signals, so that the neural network will have more
information available; thus, a better forecast could be made. For this purpose, the order in the time
series of each lagged variable would be used, so the ANN could exploit this feature.

This line of thinking is congruent with the work developed by Barabási [37], who states that there
is a huge disconnect between network science and deep learning; although ANN are abstractions of
natural processes, some of the key neural networks could not be more ignorant about real networks.
Main deep learning algorithms treat network features, like degree, as simple variables. Thus, they
cannot truly exploit the network effects, which are the essence of these systems, as in networked
systems the key information is in the relationships between the connected components (i.e., in the links
or edges, which are the direct interactions between nodes), not in the node attributes.

Table 1 presents an example of the first through tenth lagged variables used in a model with five
time-delayed input terms: P(t−k) . . . P(t−2), P(t−1), with k = 5, as well as the output to be estimated: P(t).

Table 1. First through tenth lagged variables with five time-delayed input terms, and the output to be
estimated (t).

Lagged Variable t−5 t−4 t−3 t−2 t−1 t

First 37.93 37.31 34.84 37.87 26.03 38.73
Second 37.31 34.84 37.87 26.03 38.73 40.41
Third 34.84 37.87 26.03 38.73 40.41 38.31

Fourth 37.87 26.03 38.73 40.41 38.31 38.27
Fifth 26.03 38.73 40.41 38.31 38.27 39.33
Sixth 38.73 40.41 38.31 38.27 39.33 39.36

Seventh 40.41 38.31 38.27 39.33 39.36 39.85
Eighth 38.31 38.27 39.33 39.36 39.85 37.30
Ninth 38.27 39.33 39.36 39.85 37.30 38.27
Tenth 39.33 39.36 39.85 37.30 38.27 37.15

Table 2 presents the same first through tenth lagged variables with five time-delayed input terms
plus the order in the time series of each lagged variable, as well as the output to be estimated: P(t).

Table 2. First through tenth predictor variables with 5 time-delayed input terms plus the order in the
time series of each lagged variable, and the output to be estimated (t).

Neuron Number Order t−5 t−4 t−3 t−2 t−1 t

First neuron 1 37.93 37.31 34.84 37.87 26.03 38.73
Second neuron 2 37.31 34.84 37.87 26.03 38.73 40.41
Third neuron 3 34.84 37.87 26.03 38.73 40.41 38.31

Fourth neuron 4 37.87 26.03 38.73 40.41 38.31 38.27
Fifth neuron 5 26.03 38.73 40.41 38.31 38.27 39.33
Sixth neuron 6 38.73 40.41 38.31 38.27 39.33 39.36

Seventh neuron 7 40.41 38.31 38.27 39.33 39.36 39.85
Eighth neuron 8 38.31 38.27 39.33 39.36 39.85 37.30
Ninth neuron 9 38.27 39.33 39.36 39.85 37.30 38.27
Tenth neuron 10 39.33 39.36 39.85 37.30 38.27 37.15
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2.4. Figures of Merit

The experimental results will be evaluated using the two most common figures of merit [38],
namely, the root mean squared error (RMSE) and the mean absolute error (MAE).

The RMSE is an excellent general-purpose error measure used for numerical predictions.
It amplifies and penalizes large errors and can be expressed as follows:

RMSE =

√∑n
t=1(At − Ft)

2

n
, (4)

where At is the actual value, Ft is the forecasted value, and n is the number of forecasted values.
The MAE is used to measure how close the predictions are to the outcomes and can be expressed

as follows:

MAE =
1
n

n∑
t=1

|At − Ft| (5)

Chai and Draxler [39] proposed the use of a combination of metrics including but not limited
to the RMSE and the MAE. Conversely, Carta et al. [40], when addressing wind resource prediction,
proposed using the MAE, the MAPE and the index of agreement (IoA).

In this paper, the standard deviation of absolute error (STD of AE) was selected to complement
these measures as in Lazaridis [38], characterizing the dispersion of the absolute errors.

3. Results

3.1. Coking Coal

The dataset used was the Colombia hard coking coal monthly prices free on board (FOB) for
the period from January 1991 to December 2015, as publicly disclosed by the Colombian Mining
Information System [41], totaling 300 data points. The dataset is presented in Figure 2.

 
Figure 2. Colombia hard coking coal monthly prices FOB from January 1991 to December 2015 [41].

In first place, GRNNs and MLFNs with 2–6 nodes in the first hidden layer (as the second layer is
seldom needed for better prediction accuracy) were tested using the best net search function that is
available in NeuralTools.

Table 3 presents the results of this best net search, where the configuration of the lagged variables
was made using 19 time-delayed terms, which was the lagged variable size given by the seasonal
characteristic that appears in the autocorrelation function (ACF) plot of the transformed time series
when representing a consistent genome [26,42]. The results showed that the GRNN improved all the
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MLFN models, as stated for most cases by Modaresi et al. [43], so this will be the ANN to be used in
this paper.

Table 3. Best net search.

Neural Network Type RMS Error

GRNN 14.41
MLFN 2 Nodes 18.43
MLFN 3 Nodes 24.37
MLFN 4 Nodes 21.91
MLFN 5 Nodes 19.80
MLFN 6 Nodes 19.28

To undergo a first estimation of the number of time-delayed terms that should form the
lagged variables, the square root of the amount of data available to undertake the analysis was
calculated: √

Total n◦ o f data =
√

300 = 17.32

Using the other alternative previously mentioned, the value obtained is as follows:

300 ≤ n2 + n + 1 => n = 16.32,

k = n −2 = 14.32

Nevertheless, the GRNN will be trained starting with 12 time-delayed input terms and up to
24 time-delayed input terms, a range that includes the previous values of k as well as one and two
complete year periods [18].

This allows considering almost any periodical aspect that may be hidden within the time-series
values but without drastically reducing the sample size requirements according to Turmon and Fine [44].
The results from the GRNN training are presented in Table 4.

Table 4. Training results for the GRNN model of the Colombian coking coal time series, from 12 to 24
time-delayed input terms (total number of data points is 300).

Time-Delayed
Input Terms

Number of
Cases

% of Bad Predictions
30% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 288 9.0278% 5.715 3.718 4.340
13 287 9.7561% 6.383 4.295 4.721
14 286 9.7902% 6.352 4.131 4.826
15 285 8.7719% 5.801 3.699 4.469
16 284 9.5070% 6.167 3.996 4.698
17 283 9.1873% 5.678 3.580 4.408
18 282 9.5745% 5.969 3.761 4.636
19 281 8.5409% 4.550 2.784 3.599

20 280 8.9286% 5.080 3.172 3.968
21 279 8.6022% 4.853 2.949 3.854
22 278 9.7122% 5.352 3.296 4.217
23 277 9.3863% 5.211 3.230 4.089
24 276 9.0580% 4.955 3.040 3.913

The figures in bold correspond to the model that achieves better performance measures.

Based on these measures, the best result was obtained with 19 time-delayed input terms, which
was the lagged variable size given by the seasonal characteristic that appears in the autocorrelation
function (ACF) plot of the transformed time series when representing a consistent genome [26].

The figures of merit were root mean squared error (RMSE) of 4.550, mean absolute error (MAE) of
2.784 and standard deviation of absolute error of 3.599. With 30% tolerance, the percentage of bad
predictions was 8.5409%.

Then, it was checked if it was feasible to optimize the predictor variables by adding intrinsic
signals to the lagged variables so that the ANN would have more information available, and thus,
a better forecast could be achieved.
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For this purpose, the order of the lagged variables in the time series was considered. Using these
predictor variables, results from the training of the GRNN are presented in Table 5.

Table 5. Training results for the GRNN model of the Colombian coking coal time series, from 12 to
24 time-delayed input terms and including the order in the time series of the lagged variables (total
number of data points is 300).

Time-Delayed
Input Terms

Number of
Cases

% of Bad Predictions
30% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 288 7.9861% 5.690 3.816 4.221
13 287 6.9686% 5.599 3.731 4.175
14 286 8.0420% 6.018 4.034 4.466
15 285 8.4211% 6.288 4.246 4.637
16 284 9.5070% 6.112 4.072 4.557
17 283 6.7138% 5.358 3.447 4.102
18 282 5.6738% 5.138 3.311 3.929
19 281 6.4057% 4.914 3.169 3.756
20 280 5.7143% 4.555 2.962 3.460
21 279 3.2258% 3.871 2.545 2.916
22 278 3.2374% 4.575 3.104 3.361
23 277 2.8881% 3.883 2.624 2.863
24 276 2.5362% 3.376 2.286 2.485

The figures in bold correspond to the model that achieves better performance measures.

The best result was obtained with 24 time-delayed input terms, with a RMSE of 3.376, a MAE of
2.286 and a standard deviation of absolute error of 2.485. With 30% tolerance, the percentage of bad
predictions was 2.5362%. Thus, the order in the time series of the lagged variables clearly improved
the model’s forecasting performance, as it significantly reduced the RMSE, the MAE, the standard
deviation of absolute error and the percentage of bad predictions.

3.2. Natural Gas

The second raw material for energy production analyzed was natural gas. The dataset used was
natural gas prices in Europe for the period from January 1991 to August 2019, totaling 344 values.

Prices were obtained from the World Bank [45] and are presented in Figure 3 in MMBtu, also known
as million British thermal units, with 1 MMBtu = 28.263682 m3 of natural gas at 1 ◦F.

 
Figure 3. Natural gas prices in Europe for the period from January 1991 to August 2019 [45].

As no seasonal characteristic appears in the autocorrelation function (ACF), in order to estimate
the number of time-delayed input terms, the following calculations were made:√

Total n◦ o f data =
√

344 = 18.55,
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344 ≤ n2 + n + 1 => n = 17.54

k = n −2 = 15.54

Nevertheless, the GRNN was trained with lagged variables starting with 12 time-delayed input
terms and up to 24 time-delayed input terms, using the same interval as in the coking coal case and for
the same reasons.

The results from the training of the GRNN are presented in Table 6.

Table 6. Training results for the GRNN model of the European natural gas time series, from 12 to 24
time-delayed input terms (total number of data points is 344).

Time-Delayed
Input Terms

Number of
Cases

% of Bad Predictions
5% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 332 4.8193% 0.06273 0.03456 0.05235
13 331 13.2931% 0.11497 0.07372 0.08823
14 330 9.0909% 0.08877 0.04962 0.07361
15 329 11.2462% 0.10689 0.06426 0.08541
16 328 7.3171% 0.07147 0.03534 0.06211
17 327 8.5627% 0.08255 0.04554 0.06885
18 326 7.6687% 0.07654 0.04115 0.06453
19 325 8.9231% 0.08099 0.04326 0.06847
20 324 10.4938% 0.10054 0.05656 0.08312
21 323 9.5975% 0.08318 0.04125 0.07223
22 322 7.1429% 0.07656 0.03844 0.06621
23 321 11.5265% 0.10147 0.05458 0.08553
24 320 11.2500% 0.10862 0.05987 0.09064

The figures in bold correspond to the model that achieves better performance measures.

The best result was obtained with 12 time-delayed input terms, with a RMSE of 0.06273, a MAE of
0.03456 and a standard deviation of absolute error of 0.05235. With 5% tolerance, the percentage of bad
predictions was 4.8193%. A 5% tolerance was used this time, as with a 30% tolerance the percentages
of bad predictions were always zero.

Then, the GRNN was trained using the same number of time-delayed input terms but considering
the order in the time series of each lagged variable. The results from the training of the GRNN are
presented in Table 7. In this case, the best result was obtained with 14 time-delayed input terms,
with a RMSE of 0.01970, a MAE of 0.01032 and a standard deviation of absolute error of 0.01678.
With 5% tolerance, the percentage of bad predictions decreased to zero.

Table 7. Training results for the GRNN model of the European natural gas time series, from 12 to
24 time-delayed input terms and including the order in the time series of the lagged variables (total
number of data points is 344).

Time-Delayed
Input Terms

Number of
Cases

% of Bad Predictions
5% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 332 0.9036% 0.05682 0.03368 0.04577
13 331 1.2085% 0.04952 0.03043 0.03907
14 330 0.0000% 0.01970 0.01032 0.01678

15 329 11.8541% 0.11262 0.07292 0.08583
16 328 2.7439% 0.07011 0.04389 0.05468
17 327 1.2232% 0.04523 0.02703 0.03627
18 326 7.0552% 0.09436 0.05991 0.07291
19 325 4.9231% 0.06879 0.04397 0.05290
20 324 1.8519% 0.06466 0.04194 0.04922
21 323 9.2879% 0.10533 0.06673 0.08150
22 322 7.7640% 0.08618 0.05335 0.06768
23 321 8.4112% 0.09739 0.06137 0.07562
24 320 7.5000% 0.07879 0.04658 0.06354

The figures in bold correspond to the model that achieves better performance measures.
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Thus, again, the order in the time series of the lagged variables clearly improved the model’s
forecasting performance, as it significantly reduced the RMSE, the MAE, the standard deviation of
absolute error and the percentage of bad predictions.

3.3. Crude Oil

The third raw material for energy production analyzed was crude oil. The dataset used was
that of Brent crude oil prices for the same period as for the natural gas: January 1991 to August 2019,
totaling 344 values. Again, prices were obtained from the World Bank [45] and are presented in Figure 4
in $/bbl, that is, dollars per barrel, with 1 barrel being approximately 159 liters.

 
Figure 4. Brent crude oil prices for the period from January 1991 to August 2019 [45].

The number of estimated time-delayed input terms that should be used were the same as in the
case of natural gas and crude oil, as the number of data points was the same in all cases (344).

The GRNN was trained again with lagged variables starting with 12 time-delayed input terms and
up to 24 time-delayed input terms. The results from the training of the GRNN are presented in Table 8.

Table 8. Training results of the GRNN model for the Brent crude oil time series, from 12 to 24
time-delayed input terms (total number of data points is 344).

Time-Delayed
Input Terms

Number of
Cases

% of Bad Predictions
5% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 332 29.2169% 1.713 1.1509 1.269
13 331 28.3988% 1.486 0.9643 1.131
14 330 28.7879% 1.601 1.0494 1.209
15 329 29.1793% 1.535 0.9976 1.167
16 328 28.9634% 1.525 0.9911 1.159
17 327 25.6881% 1.324 0.8427 1.021
18 326 29.4479% 1.569 0.9986 1.210
19 325 28.3077% 1.539 0.9680 1.197
20 324 28.0864% 1.563 0.9761 1.221
21 323 28.7926% 1.535 0.9451 1.209
22 322 24.8447% 1.316 0.7827 1.058
23 321 23.0530% 1.177 0.6645 0.971
24 320 26.8750% 1.420 0.8398 1.145

The figures in bold correspond to the model that achieves better performance measures.

The best result was obtained with 23 time-delayed input terms, with a RMSE of 1.177, a MAE of
0.6645 and a standard deviation of absolute error of 0.971. With 5% tolerance, the percentage of bad
predictions was 23.0530%.
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Then, the GRNN was trained using the same number of time-delayed input terms but considering
the order in the time series of each lagged variable. The results from the training of the GRNN are
presented in Table 9.

Table 9. Training results of the GRNN model for the Brent crude oil time series, from 12 to 24
time-delayed input terms including the order in the time series of the lagged variables (total number of
data points is 344).

Time-Delayed
Input Terms

Number of
Cases

% of Bad Predictions
5% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 332 0.0000% 0.0000 0.0000 0.0000
13 331 0.0000% 0.1708 0.1147 0.1265
14 330 0.0000% 0.0281 0.0178 0.0218
15 329 4.8632% 0.5863 0.3764 0.4496
16 328 17.0732% 0.9034 0.5742 0.6974
17 327 4.2813% 0.4508 0.2649 0.3648
18 326 12.5767% 0.7637 0.4729 0.5996
19 325 5.8462% 0.7225 0.4589 0.5581
20 324 0.6173% 0.2725 0.1653 0.2166
21 323 5.5728% 0.6292 0.3951 0.4896
22 322 1.8634% 0.4352 0.2698 0.3414
23 321 13.0841% 0.8028 0.5109 0.6193
24 320 0.6250% 0.3644 0.2332 0.2801

The figures in bold correspond to the model that achieves better performance measures.

The best result was obtained with 14 time-delayed input terms, with a RMSE of 0.0281, a MAE of
0.0178 and a standard deviation of absolute error of 0.0218. With 5% tolerance, the percentage of bad
predictions decreased again to zero.

With 12 time-delayed input terms, it is clear that the ANN was able to learn the exact configuration
of the time series, but only in this case.

Thus, the order in the time series of the lagged variables clearly improved the model’s forecasting
performance, as it significantly reduced the RMSE, the MAE, the standard deviation of absolute error
and the percentage of bad predictions.

3.4. Coal

The fourth and last raw material for energy production analyzed was coal. The dataset used was
that of Australian coal prices for the same period as crude oil and natural gas: January 1991 to August
2019. Prices were also obtained from the World Bank [45] and are presented in Figure 5 in $/t.

 
Figure 5. Australian coal prices for the period January from 1991 to August 2019 [45].

The number of estimated time-delayed input terms that should be used were the same as in the
case of natural gas and crude oil, as the number of data points was the same in all cases (344).
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The GRNN was trained again with lagged variables starting with 12 time-delayed input terms
and up to 24 time-delayed input terms, as in the case of European natural gas and Brent crude oil.
The results from the training of the GRNN are presented in Table 10.

Table 10. Training results of the GRNN model for the Australian coal time series, from 12 to 24
time-delayed input terms (total number of data points is 344).

Time-delayed
Input Terms

Number of
Cases

% of Bad Predictions
5% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 332 17.1687% 1.4800 0.9232 1.1568
13 331 20.8459% 1.6634 1.0467 1.2928
14 330 16.6667% 1.4359 0.8757 1.1379
15 329 21.5805% 1.6421 1.0063 1.2976
16 328 21.6463% 1.6679 1.0163 1.3225
17 327 19.2661% 1.5443 0.9240 1.2373
18 326 16.8712% 1.4328 0.8257 1.1710
19 325 15.6923% 1.3280 0.7397 1.1029

20 324 24.3827% 1.7703 1.0805 1.4023
21 323 23.8390% 1.7435 1.0541 1.3888
22 322 21.1180% 1.6711 0.9920 1.3448
23 321 20.2492% 1.6219 0.9430 1.3196
24 320 18.4375% 1.5812 0.9129 1.2910

The figures in bold correspond to the model that achieves better performance measures.

The best result was obtained with 19 time-delayed input terms, with a RMSE of 1.3280, a MAE of
0.7397 and a standard deviation of absolute error of 1.1029. With 5% tolerance, the percentage of bad
predictions was 15.6923%.

Then, the GRNN was trained using the same number of time-delayed input terms but considering
the order in the time series of each lagged variable. The results from the training of the GRNN are
presented in Table 11.

Table 11. Training results for the GRNN models of the Australian coal time series, from 12 to 24
time-delayed input terms and including the order in the time series of the lagged variables (total
number of data points is 344).

Time-Delayed
Input Terms

Number of
Cases

% of Bad Predictions
5% Tolerance

Root Mean
Squared Error

Mean
Absolute Error

Standard Deviation of
Absolute Error

12 332 18.6747% 1.5567 1.0548 1.1448
13 331 18.4290% 1.5274 1.0027 1.1521
14 330 17.8788% 1.4749 0.9614 1.1185
15 329 17.6292% 1.3702 0.8624 1.0647
16 328 23.1707% 1.8393 1.1910 1.4017
17 327 22.6300% 1.7316 1.1060 1.3324
18 326 21.4724% 1.6358 1.0383 1.2641
19 325 20.9231% 1.5696 0.9819 1.2245
20 324 20.3704% 1.4961 0.9180 1.1813
21 323 18.5759% 1.4415 0.8794 1.1423
22 322 16.7702% 1.3678 0.8185 1.0959

23 321 23.0530% 1.9438 1.1856 1.5404
24 320 22.5000% 1.8997 1.1497 1.5123

The figures in bold correspond to the model that achieves better performance measures.

The best result was obtained with 22 time-delayed input terms, with a RMSE of 1.3678, a MAE of
0.8185 and a standard deviation of absolute error of 1.0959. With 5% tolerance, the percentage of bad
predictions was 16.7702%.

In this case, adding the order in the time series of each lagged variable only improved the standard
deviation of absolute error.

Nevertheless, if the RMSE and MAE were compared with the training results obtained without
adding the order in the time series of each lagged variable, although slightly higher, they were very
similar to the best results, and better than the rest of the training results.

Thus, the differences between both options were almost negligible.
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4. Discussion and Conclusions

This paper applied a heuristic approach to optimize the predictor variables in artificial neural
networks when forecasting raw material prices for energy production to achieve a better forecast.

Two goals are (1) to determine the optimum number of time-delayed terms or past values
forming the lagged variables and (2) to optimize predictor variables by adding intrinsic signals to the
lagged variables.

The experimental results were evaluated using the two most common figures of merit, the root
mean squared error (RMSE) and the mean absolute error (MAE), as well as the standard deviation of
absolute error, as the scientific literature proposes the use of a combination of metrics including RMSE
and MAE, but not being limited to them.

Results demonstrated, first, that in opposition to scientific literature when addressing lagged
variable size, a larger size did not allow for increasing the forecast accuracy, and that smaller sizes
did not reduce the estimation accuracy. Moreover, the lagged variable regression results were very
sensitive regarding their size.

In the three raw materials with the same number of cases (natural gas, crude oil and coal), the
best results were obtained with rolling window sizes of 12, 23 and 19, respectively. Furthermore, it was
possible to verify an important effect of the lagged variable size on the results, with differences that in
some cases were larger than 20%.

Thus, and in opposition again to scientific literature indicating that there are no proper methods
to select an optimum size so arbitrary selections have to be made, it is recommendable to address this
question by trial and error method, although the approximate size can be estimated in order to select
the complete year’s period range to which this value belongs, e.g., 12–24 months or 24–36 months.
This will allow considering any periodical aspect that may be hidden within the time series values,
but without drastically reducing or increasing the sample size requirements for neural networks.

Second, in three of the four raw materials analyzed (coking coal, natural gas and crude oil), it
was possible to improve the forecast accuracy by adding the order in the time series of the lagged
variables to form the predictor variables. The best results were achieved with rolling window sizes of
24, 14 and 14, respectively.

In the case of the Australian coal, this process only improved the standard deviation of absolute
error. Nevertheless, if the RMSE and MAE were compared with the training results obtained without
adding the order, although slightly higher, they were very similar to the best results and better than
the rest of the training results without adding the order.

As the differences between both options were almost negligible, it is possible to recommend
adding the order in the time series of each lagged variable to the predictor variable in all cases.

Third, only with the Brent crude oil with 12 time-delayed input terms and considering the order
in the time series of the lagged variables, the ANN was able to learn or deduct the exact configuration
of the time series. This is completely congruent with the fact that there is a huge disconnect between
network science and deep learning, as the key information is in the relationships between the connected
components, not in the node attributes.

Concluding, the findings presented in this paper have an immediate practical application
addressing the forecast of time series by means of ANN that consider lagged variables, without being
restricted to the studied case of raw material prices for energy production.

Any forecast may be optimized just by adding an intrinsic signal to the predictor variable
consisting of the order in the time series of each lagged variable. By doing this way, the ANN will be
able to exploit this feature, something that will not happen otherwise. In most of the cases, figures of
merit may improve (may be reduced) up to a 20%, with the consequent benefit for decision-makers
regarding savings, efficiency/benefit gains and/or lower risk.

Regarding the size of the lagged variable, a selection should be made about the period that will be
analyzed in order to undergo a trial and error process. This selection should follow the procedure
shown in this paper or other ones that may be found in the scientific literature.
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Further research should address different issues such as the use of more intrinsic signals. Regarding
this issue, authors have made interesting preliminary approaches by considering the transgenic time
series theory that allows eliminating anomalous phenomena from the time series. Augmenting the
lagged variables within this anomalous period with a ‘1’ and the rest with a ‘0’, or vice versa, it was
possible to improve a priori the figures of merit.

Another area of interesting future research will be to develop a procedure to determine accurately
the number of time-delayed input terms that should be used when considering the order in the time
series of the lagged variables. While the seasonal characteristic that appears in the autocorrelation
function (ACF) plot is valid before augmenting the lagged variables, later this figure is no longer valid,
so a new approach should be addressed. Nevertheless, nothing is yet developed addressing the
time series with an ACF plot that does not allow one to extract a seasonal characteristic. Again, the
transgenic time series theory could be of help in these cases.

Finally, it should be addressed by future research why in the case of Australian coal, or in similar
cases, it was not possible to improve the figures of merit by adding to the predictor variable the order
in the time series of each lagged variable.
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the COMEX copper spot price by means of neural networks and ARIMA models. Resour. Policy 2015, 45,
37–43. [CrossRef]

9. Colla, V.; Matino, I.; Dettori, S.; Cateni, S.; Matino, R. Reservoir Computing Approaches Applied to Energy
Management in Industry. In Engineering Applications of Neural Networks, Proceedings of the 20th International
Conference EANN, Xersonisos, Crete, Greece, 24–26 May 2019; Macintyre, J., Iliadis, L., Maglogiannis, I., Jayne, C.,
Eds.; Springer: Cham, Switzerland, 2019; pp. 66–79.

10. Baffour, A.A.; Feng, J.C.; Taylorb, E.K. A hybrid artificial neural network-GJR modeling approach to
forecasting currency exchange rate volatility. Neurocomputing 2019, 365, 285–301. [CrossRef]

83



Energies 2020, 13, 2017

11. Sánchez Lasheras, F.; Vilán Vilán, J.A.; García Nieto, P.J.; del Coz Díaz, J.J. The use of design of experiments to
improve a neural network model in order to predict the thickness of the chromium layer in a hard chromium
plating process. Math. Comput. Model. 2010, 52, 1169–1176. [CrossRef]

12. Bo, L.; Cheng, C. First-Order Sensitivity Analysis for Hidden Neuron Selection in Layer-Wise Training of
Networks. Neural Process. Lett. 2018, 48, 1105–1121.

13. Pontes, F.J.; Amorim, G.F.; Balestrassi, P.P.; Paiva, A.P.; Ferreira, J.R. Design of experiments and focused grid
search for neural network parameter optimization. Neurocomputing 2016, 186, 22–34. [CrossRef]

14. Li, F.; Zurada, J.M.; Liu, Y.; Wu, W. Input Layer Regularization of Multilayer Feedforward Neural Networks.
IEEE Access 2017, 5, 10979–10985. [CrossRef]

15. Li, F.; Zurada, J.M.; Wu, W. Smooth group L1/2 regularization for input layer of feedforward neural networks.
Neurocomputing 2018, 314, 109–119. [CrossRef]

16. Xu, X. Price dynamics in corn cash and futures markets: cointegration, causality, and forecasting through a
rolling window approach. Financ. Mark. Portf. Manag. 2019, 33, 155–181. [CrossRef]

17. Velázquez Medina, S.; Carta, J.A.; Portero Ajenjo, U. Performance sensitivity of a wind farm power curve
model to different signals of the input layer of ANNs: Case studies in the Canary Islands. Complexity 2019,
2019, 2869149.

18. Liu, G.D.; Su, C.W. The dynamic causality between gold and silver prices in China market: A rolling window
bootstrap approach. Financ. Res. Lett. 2019, 28, 101–106. [CrossRef]

19. Tang, C.F.; Abosedra, S. Tourism and growth in Lebanon: new evidence from bootstrap simulation and
rolling causality approaches. Empir. Econ. 2016, 50, 679–696. [CrossRef]

20. Timmermann, A. Elusive return predictability. Int. J. Forecast. 2008, 24, 1–18. [CrossRef]
21. Tang, C.F.; Chua, S.Y. The savings-growth nexus for the Malaysian economy: A view through rolling

sub-samples. Appl. Econ. 2012, 44, 4173–4185. [CrossRef]
22. Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine

Learning Tools and Techniques", 4th ed.; Morgan Kaufmann: Cambridge, MA, USA, 2016.
23. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining Software:

An Update. ACM SIGKDD Explor. Newsl. 2009, 11(1), 10–18. [CrossRef]
24. Tavakoli, S.; Mousavi, A.; Komashie, A. Flexible data input layer architecture (FDILA) for quick-response

decision making tools in volatile manufacturing systems. IEEE Int. Conf. Commun. 2008, 1, 5515–5520.
25. Uykan, Z.; Koivo, H.N. Analysis of Augmented-Input-Layer RBFNN. IEEE Trans. Neural Netw. 2005, 16,

364–369. [CrossRef]
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Abstract: In this research, a model is proposed for predicting the number of days absent from work
due to sick or health-related leave among workers in the industry sector, according to ergonomic,
social and work-related factors. It employs selected microdata from the Sixth European Working
Conditions Survey (EWCS) and combines a genetic algorithm with Multivariate Adaptive Regression
Splines (MARS). The most relevant explanatory variables identified by the model can be included in
the following categories: ergonomics, psychosocial factors, working conditions and personal data and
physiological characteristics. These categories are interrelated, and it is difficult to establish boundaries
between them. Any managing program has to act on factors that affect the employees’ general
health status, process design, workplace environment, ergonomics and psychosocial working context,
among others, to achieve success. This has an extensive field of application in the energy sector.

Keywords: sick leave; absenteeism; energy sector; genetic algorithms (GA); multivariate adaptive
regression splines (MARS)

1. Introduction

Over the past few years, the main concerns of industry, especially in developed countries, have
been to improve the workers’ productivity, occupational health and safety in the workplace, physical
and mental well-being, and job satisfaction. Through the application of ergonomics, it has been shown
that these issues have improved, so an effective implementation of ergonomics in the workplace can
achieve a balance between the characteristics of the worker and the demands of the task, in addition to
improving workplace design and introducing appropriate management programs. Companies that
belong to the energy sector have also been working in this direction, showing some distinctive features
that have been identified and studied here.

When the industry does not get involved in the abovementioned issues, it can affect the lives of
workers. This results in a risk of deterioration in health and causes absenteeism. Currently, one of the
major concerns is sick leave.

There are several factors that affect sick leaves. In this introduction, we first revise the studies that
explain the behavior of such factors in the general working environment. Afterwards, we focus on the
few works that are specifically oriented to the singularities of the energy sector.
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According to the EUROSTAT [1], some 1194 M€ have been spent on sickness and health benefits in
the European Union. This number was equivalent to 8.0% of gross domestic product (GDP). The average
expenditure per inhabitant was 2338 Euros. In recent years, the spending on sick leave benefits has
increased to 12.4%, with Norway being the country with the highest spending (32.4%) compared to
Portugal, the country with the lowest (5.8%). For these reasons, the problem of absenteeism is of great
interest to healthcare professionals, employers and economists.

According to the latest research published by the European Commission [2], women have higher
rates of sick leave than men. There are multiple reasons for this. They have more precarious work and
work contracts often linked to low income. Moreover, women often seek medical help for less-serious
illnesses and are more frequently diagnosed with mental-health-related illnesses. Another explanation
is connected to the burden of housework and childcare.

The aforementioned study [2] also mentions that sick leave increases with age; elderly people
take longer-term leave compared to young people, who generally take short-term leave. This is due to
the fact that health worsens with age, and working conditions have deteriorated since the economic
recession. A clear correlation between occupational, socioeconomic status and absence due to illness is
highlighted: the more physically demanding the occupation is and the lower the socioeconomic status,
the higher the absenteeism.

Regarding the energy sector, different factors have been studied that may lead to sick leave.
A study carried out in the petroleum industry [3] corroborates that women are more likely to take
sick leave than men. This may be mainly due to three factors: there is sick leave due to pregnancy;
they tend to have more temporary contracts; and they suffer more psychological problems. Another
risk factor is smoking; workers who are smokers or former smokers have a higher risk of taking sick
leave than non-smokers, those who consume alcohol and even workers exposed to chemical products.
Other good predictors of absenteeism due to illness are abnormal sleep and job dissatisfaction. Some
physical activity is recommended for workers.

Another specific factor that has been studied in the energy sector is how the different shiftwork
patterns can cause sick leave. The employees of a power plant prefer 12-hour shifts rather than
eight-hour shifts, since they enjoy longer breaks and an improved social and domestic life. This measure
also improves mood, health status and both the quality and quantity of sleep. The only drawback is that
it can pose a potential safety risk for the employee when performing highly demanding tasks at the end
of the shift, since concentration decreases [4]. A study conducted among workers of a nuclear power
plant [5] confirms all these findings on the relation between working in shifts and domestic, social life
and well-being of the worker.

Another relevant factor in the energy sector is the type of work carried out. It has been proven that
people who do manual work, also called blue-collar (production) workers, are more likely to remain
on long-term leave, and this would be of longer duration than in those people who perform skilled
jobs, also known as white-collar workers (office workers and managers). The latter are exposed to a
greater risk for short-term pain, mainly musculoskeletal disorders (MSD), but this could be avoided by
correcting posture [6].

The design of the job is another very important factor to take into account in this sector. A study
of workers in a thermal power plant [7] detected deficiencies both in its facilities and its resources.
This type of industry is complex and usually has more problems than other industries. Apart from
health problems due to ergonomic factors, it has been found that production work in combination
with bad environmental conditions (excessive temperatures in summer) and very noisy and dusty
environments are factors that tend to worsen the health of workers and increase the possibility of their
going on sick leave.

In summary, talking about the energy sector, it seems that absenteeism rates have different
behaviors attending to factors like gender, working organization circumstances, such as shifts or
psychosocial demands, workplace environment and other factors related with workstation design.
The way these factors combined affect sick leave remains unexplored.
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The use of machine-learning techniques to predict occupational health and safety outcomes in
different fields is not new, whether focused on work-related accidents [8], fire risk [9,10], MSD [11–14]
or visual disorders [15,16]. Some of these works focus on specific sectors, such as mining or the
health industry.

Nevertheless, to date, no researches have studied how the combination of factors such as age,
gender, well-being, domestic and social life, as well as psychosocial factors, can influence the proneness
to sick leave among workers in the energy sector. As far as it is known by the authors, most of the
previous research in this field that make use of machine-learning techniques employed just only,
for example, support vector machines [8,16], artificial neural networks [9,11], Multivariate Adaptive
Regression Splines (MARS) [10,14] or k-nearest neighbors [12]. All these research studies have
shown the utility of machine-learning techniques in this area for both regression and classification.
However, until today, there have been few works [13,15] that combine more than one machine-learning
methodology in order to improve their performance.

In this research, a hybrid methodology that combines MARS and genetic algorithm is proposed
for predicting the number of days absent from work due to sick or health-related leave, among workers
in the industry sector, according to ergonomic, social and work-related factors reported in the Sixth
European Working Conditions Survey (EWCS).

2. Materials and Methods

2.1. Dataset

This research work employs selected microdata from the Sixth European Working Conditions
Survey (EWCS), which was conducted in 2015 by the European Foundation for the Improvement of
Living and Working Conditions, Eurofound [17]. The EWCS is generally conducted every five years,
providing an overview of working conditions of the European population. A random representative
sample of “persons in employment” (i.e., employees and the self-employed) is surveyed through a
questionnaire administered face-to-face. The Eurofound datasets are stored and promoted online by
the UK Data Service [18]. Upon request, the data are available free of charge, provided they will be
used for non-commercial purposes.

Almost 44,000 workers in 35 countries were interviewed through the sixth wave of the
EWCS. The validity of the questionnaire was guaranteed by a questionnaire-development group
composed of experts and representatives of the European Commission and different international
organizations [19]. This sixth edition codified more than 370 variables that included physical and
psychosocial risk factors, working time, place of work, work-pace determinants, employee participation,
job security, social relations, personal conditions, etc. The whole list of variables included in the
sixth wave of the survey can be found in the source questionnaire, available online at the website of
Eurofound [20]: https://www.eurofound.europa.eu/sites/default/files/page/field_ef_documents/6th_
ewcs_2015_final_source_master_questionnaire.pdf.

The size of the initial dataset was first reduced by only selecting workers from energy-related
sectors. The final sample consisted of 420 workers (333 men and 87 women), aged between 17 and
71 years (average 44; see Figure 1) from the following NACE Revision 1 sections: mining of coal and
lignite; extraction of peat; extraction of crude petroleum and gas; mining of uranium and thorium
ores; manufacture of coke, refined petroleum products and nuclear fuel; electricity, gas, steam and hot
water supply. The distribution of the subjects by country is shown in Table 1. Table 2 presents their
level of studies, according to the International Standard Classification of Education (ISCED). Table 3
shows the distribution of the sample of workers according to their household’s total monthly income.
The average leave time was of 5.9 days, with a standard deviation of 16.1 days. Only two workers
have a leave longer than 100 days. Please also note that leaves over 10 days represent only 18.33% of
the total.
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Figure 1. Age distribution of the workers.

Table 1. Distribution of the sample of workers by country.

Country Number of Workers %

Norway 35 8.3%
Albania 26 6.2%
Slovenia 25 6.0%

Serbia 25 6.0%
Spain 22 5.2%

Belgium 18 4.3%
United Kingdom 17 4.0%

Croatia 17 4.0%
Montenegro 17 4.0%

Czech Republic 15 3.6%
Poland 14 3.3%

Bulgaria 13 3.1%
Germany 13 3.1%

France 12 2.9%
Romania 12 2.9%
Denmark 11 2.6%
Lithuania 11 2.6%
Austria 11 2.6%
Estonia 10 2.4%

Other countries * 76 18.1%

Total 420

* Other countries: FYROM, Luxembourg, Slovakia, Hungary, Netherlands, Sweden, Switzerland, Greece, Turkey,
Italy, Finland, Cyprus, Portugal, Malta.

A second-dimensional reduction was carried out by decreasing the number of variables through
expert criteria. Only the 59 most relevant independent variables were preselected to initially feed the
model developed and to try to explain the output variable. Some of the variables were designed as
Likert scales, some of them were binary and a few were continuous (numerical). Please note that it
would have been possible to perform this reduction also by means of either genetic algorithms or other
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methodologies like decision trees or PCA, but in our understanding, it was less time-consuming to use
expert criteria. Please note that this is a good way in order to avoid finding spurious relationships.

The output variable, y15_Q82, records the answers provided by the sample of workers to the
following question: “In the past 12 months, how many days absent from work due to sick leave or
health-related leave?” It is a numerical variable, ranging from 0 to 360, and synthetizes the duration of
the sick leave taken by the workers.

Table 2. Distribution of the sample of workers according to the level of studies (ISCED).

Level of Studies (ISCED) Number of Workers %

Early childhood education 1 0.2%
Primary education 1 0.2%

Lower secondary education 39 9.3%
Upper secondary education 185 44.0%

Post-secondary non-tertiary education 23 5.5%
Short-cycle tertiary education 54 12.9%

Bachelor or equivalent 52 12.4%
Master or equivalent 63 15.0%

Doctorate or equivalent 2 0.5%

Total 420

Table 3. Distribution of the sample of workers according to their household’s total monthly income.

Is Your Household Able to Make Ends Meet? Number of Workers %

Very easily 55 13.1%
Easily 101 24.0%

Fairly easily 121 28.8%
With some difficulty 104 24.8%

With difficulty 30 7.1%
With great difficulty 9 2.1%

Total 420

2.2. Multivariate Linear Regression

Let us consider a set of k + 1 quantitative variables with y as the dependent variable and
x1, x2, . . . , xk as independent variables. The multivariate linear regression method consists of creating
a lineal model that predicts y, using variables x1, x2, . . . , xk. It can be expressed as follows [21]:

y = β0 + β1x1 + . . .+ βkxk (1)

The parameters’ estimation is performed by means of the ordinary least squares approach [22] by
means of the following:

minβ∈Rk+1‖ y−Xβ ‖2 = minβ∈Rk+1

n∑
i=1

(yi − β0 −
k∑

j=1

β jxi j)
2 (2)

where ‖ · ‖ denotes the Frobenius norm.

2.3. Support Vector Machine for Regression

Let us consider again a set of k + 1 quantitative variables with y as the dependent variable and
x1, x2, . . . , xk as independent variables, where each i element constitutes a row vector. Let Φ : χ→ F
be the function that corresponds to each row vector with a point of the characteristics space F . Let us
define a function as follows [23]:

f (x) = < ω, Φ(x) >+ b (3)
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The problem to solve is as follows:

min
1
2
‖ ω ‖2 + C

n∑
i=1

(
ξi + ξ

∗
i

)
(4)

Constrains:
yi −< ω,φ(xi) > ≤ ε+ ξi i = 1, . . . , n
< ω,φ(xi) > −yi >≤ ε+ ξ∗i i = 1, . . . , n

ξi ≥ 0, ξ∗i ≥ 0 i = 1, . . . , n
(5)

The problem complexity depends on the dimension of the row vectors [24]. The solution of this
problem gives as a result the model of support-vector machines for regression.

2.4. Genetic Algorithms

The process of learning by trial and error can be considered as being similar to the natural
evolution process. The development of genetic algorithms (GA) started with the works of Holland [25].
GA is a kind of evolutionary algorithm that is based on the evolution of a certain set of solutions trying
to either maximize of minimize the result of an objective function. GA is a bioinspired methodology
that mimics the procedure of natural selection. The interest in GA methodology in optimization is
because they are a global and robust method for finding solutions that do not require any a priori
knowledge about the problem.

GA make use of the following three basic operators [16]:

• Crossover;
• Mutation;
• Elitism.

The crossover operator takes two different individuals of the population and creates a new one,
mixing the two. The mutation operator performs random changes in those individuals, created with
the help of the crossover operator. Mutation makes it possible to introduce new strings in the next
generation, giving the ability to search beyond the scope of the initial population. Another interesting
mechanism is elitism, which makes a certain number of individuals with a good performance according
to the result of the objective function survive and pass to the next generation, without any change.

2.5. Multivariate Adaptive Regression Splines

MARS is a well-known parametric methodology that builds a non-linear model based on hinge
functions. It is expressed by the following equation [26]:

ŷ j = β0 +
k∑

i=1

βi·B(xi), (6)

where ŷ j represents each one of the outputs forecasted values per each yj, βi are the model parameters
and B are the model basis functions. The basis functions are defined as follows:

B− =

{
(t− x)q i f x < t
0 otherwhise

B+ =

{
(t− x)q i f x ≥ t
0 otherwhise

(7)

where q is a natural number that represents the power function.
When a MARS model is created, there are three different well-known methods that take part in

the model in order to assess the importance of the variables. They are the following:
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• nsubsets: this criterion indicates the number of model subsets that make use of the variable.
The larger the number of subsets that include the variable, the more important they will
be considered.

• gcv: this criterion calculates the generalized cross-validation (GCV) of the variables, and, taking
into account the results, those variables that contribute most to increasing the GCV value are
considered the most important.

• rss: this criterion can be considered equivalent to gcv, but making use of the residual sum of
squares (RSS) expression.

The GCV expression is as follows [23]:

GCV(M) =

1
n ·
∑n

i=1

(
yj − ŷ j

)
(

1−C(M)
n

)2 , (8)

where C(M) is the complexity penalty function that increases with the number of basis functions in the
model and which is defined with this equation, where M is the number of basis functions. In the case
of the present research, the maximum interaction degree allowed was nine.

The equation for RSS is as follows [27]:

RSS = GCV(M)·3·M
n3 (9)

2.6. The Proposed Algorithm

The proposed algorithm works as is explained here. First, it is initialized with a random population.
Each member of the random population represents a subset of all the available variables that will be
employed for the forecast of the number of days off for each worker. It is a string, as in the following
example: 1100011 . . . 0101 with a total of 59 digits, one per variable, where 1 means that the variable is
present and 0 that is missing.

In order to know how each of the variables subsets performs, they are employed for training a
MARS model, using 80% of the available individuals, while the other 20% are employed for the model
validation. This process is repeated 1000 times for each of the variables subset and the average R2

value obtained is used as the result of the objective function. Following the usual methodology of
genetic algorithms, the best individuals of the population are selected and crossed.

In the present research, a mutation rate of 10% was allowed, and a 5% of elitism, which means
that the 5% of the best individuals of a generation are included in the next one. In the case of the
present research, a fine-tuning was performed, testing mutation rates from 0.5% to 15% in steps of
0.5%. The R2 values obtained did not find statistically significant differences from 0.5% to 10%, while
in higher mutation values, the R2 decreased. Therefore, results with 10% probability mutation rates
are presented. The crossover methodology employed is known as single point crossover, in which both
parental chromosomes are split in only one point randomly selected. Each generation of the genetic
algorithm population is formed by 1000 individuals; this means that there are 1000 different variables
subsets. The results shown were obtained after 100 iterations, which means that 100,000 variables
subsets were examined. This is a small number if compared with the more than 5.7 × 1017 possible
variables subsets that can be obtained for a problem like this with 59 independent variables. Finally,
it can also be highlighted that the performance of the algorithm would be improved if those workers
whose leave durations are over certain threshold value (i.e., 10 or 100 days) were considered as outliers
and removed. The flowchart for the proposed algorithm is shown in Figure 2.
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Figure 2. Flowchart of the proposed algorithm.

3. Results

The average value of the R2 for the 1000 models trained for the variables that were finally selected
in each case was 74.26%. The RMSE average value was 27.51. The average difference in days in
absolute value of forecasted and real number of days off was 10.22. If workers are divided in those
with leaves of 10 or less days, 85% of the total, and those with leaves of more than 10 days, the RMSE
values obtained are quite different. In the case of those with leaves of 10 or less days, the RMSE value
was of 5.56 and 71.49 for those with leaves of more than 10 days. In the case of average difference in
days in absolute value of forecasted and real number of days off, it was 4.28 for those with leaves of
10 or less days and 48.81 for those whose leaves are over 10 days. It means that prediction for those
leaves of 10 or less days are much more accurate. Figure 3 shows the histogram of the number of leave
days for all the workers. It can be observed that most of the leaves are of 10 or less days. The results
described in this paragraph are in line with what is said in Section 2.3 about how an outlier’s removal
would improve the algorithm performance.

In order to assess the performance of the proposed algorithm, it was compared with two benchmark
methodologies: linear regression [28] and support vector machines for regression [29]. In both algorithms,
1000 models with different training and validation datasets were tested. For the linear regression,
the average R2 value was of 26.72% with an RMSE of 74.21, while in the case of support vector machine
for regression the average R2 value was of 67.32% with a RMSE of 29.01. Table 4 shows a comparison of
the performance of the proposed algorithm with the two benchmark methodologies referred before,
linear regression and support vector machines.

Figure 4 shows the results of one of the models created with these variables. In such a model,
the forecasted and real number of days off for all the workers randomly included in the validation
dataset can be observed. The values in the horizontal axis are the workers’ identificators. Please note
that the largest differences of forecasted and real values can be found for workers with numbers from
81 to 83 that would be considered as spurious. In this case, the difference in days of forecasted and
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real number of days off was on average −4.255, with a median of 2.53 and a standard deviation of
27.34. In absolute values, the mean was 10.642 days. As after 100 iterations all the models give similar
results in terms of R2, Table 5 shows the list of variables selected by this model as the most relevant
when predicting absenteeism among workers in the energy sector, using the three importance criteria
(nsubsets, gcv and rss) referred to in Section 2.2.

 
Figure 3. Histogram of the number of leave days of all those individuals that took part in the
present research.

Table 4. Comparison of the performance of the proposed algorithm with two benchmark methodologies,
linear regression (LR) and support vector machines (SVM).

Performance Metric Proposed Algorithm LR SVM

R2 74.26% 26.72% 67.32%
RMSE

all 27.51 74.21 29.01
10 or less leave days 5.56 72.92 13.91

more than 10 leave days 71.49 74.47 68.75
Average absolute difference of days

all 10.22 49.60 17.26
10 or less leave days 4.28 47.62 10.06

more than 10 leave days 48.81 61.51 60.42

Table 5. A list of variables selected by the model as the most relevant to predict absenteeism among
workers in the energy sector.

Variable Nsubsets 1 gcv 2 rss 3 Description

y15_Q48a 30 100 100 Short repetitive tasks of less than 1 min
y15_Q88 30 100 100 Satisfied with working conditions
y15_Q100 30 100 100 Income
y15_Q20 29 90.3 91.0 Restructuring or reorganization at the workplace

y15_Q53d 29 90.3 91.0 Monotonous tasks
y15_Q78f 29 90.3 91.0 Headaches, eyestrain
y15_Q95f 27 81.7 82.5 Outside work: taking a training or education
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Table 5. Cont.

Variable Nsubsets 1 gcv 2 rss 3 Description

y15_Q75 24 62.6 65.2 General health status
y15_Q48b 19 45.6 49.4 Short repetitive tasks of less than 10 min
y15_Q30a 18 41.7 46.0 Tiring or painful positions
y15_Q30h 17 38.5 43.2 Being in situations that are emotionally disturbing
y15_Q76 17 38.5 43.2 Long-lasting illness
y15_Q29e 15 34.8 39.3 Smoke, fumes, powder, dust
y15_Q30d 14 30.9 36.2 Sitting

y15_Q27_lt 13 27.9 33.6 Other paid job
y15_Q74 12 24.8 31.0 Work affects health

y15_Q29b 9 15.9 23.9 Noise
y15_Q24 8 13.9 22.0 Work hours/week

y15_Q29d 5 13.4 18.2 Low temperatures
y15_Q2b 4 11.2 15.9 Age

1 nsubsets: number of model subsets that make use of the variable (see Section 2.2). 2 gcv: generalized cross-validation
of the variables (see Section 2.2). 3 rss: residual sum of squares (see Section 2.2).

 
Figure 4. Results of one of the models created: forecasted and real number of days off for all the
workers randomly included in the validation dataset.

4. Discussion

The results obtained show that it is possible to make use of machine-learning methodologies such
as MARS and GA in order to predict the number of days of health-related leave taken by workers in the
energy sector, taking into account a certain number of variables linked to personal and work-related
factors for each individual. The results obtained are not surprising, as GA and MARS have proven to
be valid in similar scenarios [23] and in other problems linked to the energy field [30,31]. The worst
forecasts were obtained for the longest leaves, as they were few and present a behavior outside the
normal range. In future research, the MARS model could be substituted by other regression models
such as neural networks or support vector machines for regression, and even by replacing GA with
other evolutive methods like particle swarm optimization or differential evolution.

As other studies have shown [13,32], there are several factors that have an influence on absenteeism
in the workplace. It should be pointed out that, in this case study, sick leave due to common illness and
sick leave due to occupational illness or occupational accidents were not analyzed separately. This is
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the reason behind the multiple kinds of factors that become part of the model, and implies that some
difficulties may appear during the discussion of the results [33]; in any case, it is necessary to consider
both, in order to understand the causes behind absenteeism.

The model was built with twenty items that can be classified into four categories:

• Ergonomics;
• Psychosocial factors;
• Working conditions;
• Personal data and physiological characteristics.

It must be pointed out that several of these items could belong to different categories simultaneously.
Therefore, they are included in those ones that better explain their impact as a cause of absenteeism.
Moreover, there are many interrelated circumstances between each category, to the extent that it is
difficult to find studies that only deal with one of them. In fact, there are several research studies that
cover issues in relation to ergonomics while speaking about working conditions, workers’ personal
characteristics and organizational contexts at the same time [32].

In absolute terms, working conditions have the greatest impact on sick leave among workers,
since nine out of twenty items of the model developed fall into this category. However, as mentioned
before, several of these items also affect other categories, such as ergonomics and psychosocial factors.

A discussion on the relationship between absenteeism and the items in each category is
presented next.

4.1. Ergonomics

There are five items in the model that show the impact of ergonomics on sick leave among workers.
This is in consonance with other researchers’ conclusions [33–36] that maintain that poor ergonomics
in the workplace and prevalence of musculoskeletal disorders (MSD) are linked and could therefore
mean an increase in sick leave. These five items are as follows:

• Doing short repetitive tasks of less than 1 min.
• Doing monotonous tasks.
• Doing short repetitive tasks of less than 10 min.
• Suffering tiring or painful positions.
• Remaining seated for a long time.

It is remarkable that the model seems to suggest a contradictory idea in relation to repetitive
tasking, in that it considers that short repetitive tasks of less than ten minutes have a negative impact
on sick leave among workers, whereas short repetitive tasks of less than one minute can reduce
absenteeism. Concerning ergonomics, the shorter the task, the more damaging it could be, so at first
glance, this would seem to be an error.

On the other hand, there could be several explanations for this curious result. For instance, it is
difficult to find a job that requires doing the same repetitive tasks lasting less than one minute for
the entire working day. However, it is more feasible to find jobs that include the same repetitive task
lasting less than ten minutes for the entire working day. Thus, multitasking would preferably be linked
to the first of these cases, and multitasking is a valued characteristic of good ergonomics. This would
be a proper explanation for the behavior of these items in the model. In any case, this sets a starting
point for future research.

Other items that are included in the model and classified into the ergonomics category, such as
monotonous tasks, painful positions and sitting, are ergonomic factors traditionally considered during
risks assessments due to their negative impact on MSD prevalence. As a first conclusion, the model has
proven that the beliefs as to how ergonomic investments have a positive impact on MSD prevalence
and occupational absenteeism are a step in the right direction. This study therefore supports other
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researchers’ conclusions that are applicable to industrial environments [37] and to the energy sector in
particular [38].

4.2. Psychosocial Factors

Only one item falls into this category: that of being in situations that are emotionally disturbing.
However, there are several studies that point out that psychosocially demanding working environments
have a deeply negative impact on absenteeism [39,40]. Nevertheless, it should be noted that this does
not mean that psychosocial factors are less relevant than others. In fact, there is a close interrelation
between them and the rest. For instance, as other studies have shown [41], ergonomic interventions
could be counterproductive, unless they attend to psychosocial factors.

4.3. Working Conditions

Working conditions is the category that includes the largest number of items from the model.
However, as previously stated, that does not necessarily mean it is the category with the strongest
influence on absenteeism. The nine items from the model classified in this category are as follows:

• Being satisfied with working conditions;
• Income;
• Restructuring or reorganization at the workplace;
• Working environment: smoke, fumes, powder and dust;
• Another paid job;
• Work affects health;
• Noise;
• Work hours/week;
• Working environment: low temperatures.

First of all, it must be said that “being satisfied with working conditions” could be included in
the category of psychosocial factors; after all, this item depends both on how working conditions are
designed and how workers perceive them. In any case, this aspect has already been discussed in the
previous section. In fact, the item included on working conditions highlights the interaction between
categories and the importance of psychosocial factors on the control of absenteeism.

Working conditions cover a great spectrum of factors that can become causes of occupational
absenteeism. Indeed, workers’ general health status, MSD prevalence and other diseases are closely
related to the working environment. Therefore, in terms of the energy sector in particular, each
company has to understand and act on several working conditions, to develop health management,
as other works have already shown [42].

A conclusion that can be obtained by analyzing the factors that appear in this category is, as has
been the case with others, the existence of a link with the category concerning personal conditions.
For example, it has been proven that a low income of the worker increases the probability of his/her
taking sick leave. One wonders if, in fact, this circumstance reveals the effects of socioeconomic status
on occupational absenteeism [43].

Other working condition factors included in the model show the effects of workplace environment
on sick leave: noise, air pollution, extreme temperatures, etc. This was to be expected, because it points
in the direction of occupational diseases, in line with several previous studies [44,45].

The only remarkable item that could be seen as a contradiction is that workers with more than
one job seem to be less vulnerable to sick leave. Several explanations can be suggested. For instance,
having more than one job could be linked with multitasking and, therefore, lower prevalence of MSD.
Another possible reason could be that this kind of worker is more likely to belong to a precarious social
stratum where health damages are sometimes underreported. In any case, this could be the subject of
a future line of research.
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4.4. Personal Data and Physiological Characteristics

There are five possible causes of absenteeism included in this category:

• Having headaches and eyestrain;
• Outside work: receiving training or education;
• General health status;
• Suffering a long-lasting illness;
• Age.

This category joins together several factors related to lifestyle that are too difficult to identify
and analyze properly, especially when the studied variable includes both common and occupational
diseases as a cause of absenteeism. In fact, there are many studies that deal with this subject without
achieving unanimity [46–48].

It seems to be expected that general health status [49] and, as a result, other factors that can alter it,
like age, must affect the prevalence of several illnesses that end up causing sick leave. There are other
studies that go further and that try to analyze gender differences in this matter [14]. In this category,
however, everything is vaguely interrelated, so there are many questions to answer in future research.

Apart from the item that refers to activities outside work, every factor included in this category
is a cause or an effect of the workers’ general health status. This appraisal has many implications
that must be kept in mind when planning any move designed to reduce absenteeism among a
company’s workforce.

5. Conclusions

It is possible to make use of machine-learning methodologies, such as MARS and GA, in order to
create models able to predict the number of days of health-related leave among workers in the energy
sector. Absenteeism can be monitored and predicted by using a model that employs several items
included in the following categories:

• Ergonomics;
• Psychosocial factors;
• Working conditions;
• Personal data and physiological characteristics.

These categories are all interrelated, and it is difficult to establish boundaries between them, but
as a positive consequence of this, acting on one of them to reduce absenteeism in a company could
have a great impact on the others.

Any management program has to act on factors that affect the employees’ general health status,
process design, workplace environment, ergonomics and psychosocial working context, among others,
if it is going to be successful. This has an extensive field of application in the energy sector, where most
of the activities are undertaken in an industrialized context.
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Abstract: The coal-producing territories in the world are facing the production of renewable energy
in their thermal systems. The production of biocoal has emerged as one of the most promising
thermo-energetic conversion technologies, intended as an alternative fuel to coal. The aim of this
research is to assess how the model of biomass to biocoal conversion in mining areas is applied
for thermal systems engineering. The Central Asturian Coal Basin (CACB; Spain) is the study
area. The methodology used allows for the analysis of the resource as well as the thermo-energetic
conversion and the management of the bioenergy throughout the different phases in a process of
analytical hierarchy. This is carried out using a multiphase mathematical algorithm based on the
availability of resources, the thermo-energetic conversion, and the energy management in the area of
study. Based on the working conditions, this research highlights the potential of forest biomass as
a raw material for biocoal production as well as for electrical and thermal purposes. The selected
node operates through the bioenergy-match mode, which has yielded outputs of 23 MWe and
172 MWth, respectively.

Keywords: biomass; bioenergy; energy production system

1. Introduction

The constant technological progress and the increasing industrialization of society have boosted
the demand for energy. Fossil fuel deposits, such as those in coal basins, are limited and have been
extensively exploited, so modelling the biomass potential of renewable sources in these areas is
a challenge for the future in the European Union (EU). Spain boasts a wide variety of renewable
resources such as biomass and wind and solar energy, all available as renewable energy sources [1].
The technological capacity of Spanish industry has made it a benchmark in the use of renewable
resources [2]. The potential of Spain in renewable energies is well above both the domestic energy
demand and the existing fossil fuel resources [3]. Despite this situation, Spain is highly dependent on
foreign energy from fossil fuels, coal being the main source of indigenous energy in Spain [4].

Renewable energy sources are found in nature, have the capacity to be totally or partially
regenerated, and can be used for energy purposes. Biomass is part of a continual cycle of mass
and energy consumption and production in the environment. It can be used to produce energy,
either directly by combustion or indirectly by way of biofuels. EU Directive 2003/30/EC [5] defines
biomass as a biodegradable fraction of products, waste and residues from agriculture, including vegetal
and animal substances, forestry and related industries, as well as the biodegradable fraction of industrial
and municipal waste. Such a definition has a comprehensive character since it includes a variety of
energy sources sharing certain characteristics but differing in their origin and the technology used to
obtain and use them, one of the main sources being forest biomass.
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The EU Forestry Action Plan [6] calls for an assessment of forest biomass availability for energy
production in both national and regional energy systems. The most promising scenarios for future
use are

1. Production of electricity either by co-combustion or direct combustion;
2. Thermal applications for domestic or industrial consumers;
3. Production of solid biofuels to be used in the cement or steel industry.

This study is to be carried out in the Region of Asturias in northern Spain, a region rich in fossil
fuels, i.e., coal, where the production of alternative biofuels has been of interest in the context of the
EU [7,8]. Its producing industry uses coal as the main source of indigenous primary energy, a part of
which is produced in its mining basins [9]. Mining has gradually declined in recent years following
the reduction of its activity [10]. Biomass from forests and forest management in the mining areas is
conditioned upon its frequency of occurrence along with its topography. It is, therefore, necessary
to carefully plan management procedures based on the distribution of potentials throughout the
whole territory. This strategic framework calls for an analysis of the most appropriate techniques for
extraction, storage, transport and use of biomass in forests. However, there is limited use of forest
biomass to provide an alternative to fossil fuels owing to its low energy density [11].

Biocoal is achieved through a roasting process (i.e., torrefaction process), a high potential process
to be applied in the production of solid biofuels from lignocellulosic biomass [12]. In this way,
the quality of this fuel increases by virtue of its hydrophobicity and higher calorific value compared
to the initial biomass [13]. Biofuels considerably improve the potential of biomass for industry and
thermal systems [14]. Furthermore, it is of interest for both industrial energy transition and industry
4.0 [15]. However, modelling, conversion and energy management of resource supply are some of
the main challenges in the current energy context [16]. In this regard, Visa et al. [17] have defined the
importance of characterizing energy production systems according to the nature of the energy resource
used. Paredes-Sánchez and Ochoa-Lopez [18] established the importance of biomass modelling as
an alternative to coal in the energy production systems. Therefore, a proper implementation in a
traditionally coal-based industry, as is the case of the Principality of Asturias, requires the development
of mathematical models for the energy conversion of its resources.

Extensive research has been carried out using both resource characterization and energy conversion
models from different perspectives [19–22]. These current works discuss numerous challenging issues,
including the increasing number of assumptions that ensure consistency between the models used
and the large amount of data required for energy conversion. The combination of modelling methods
allows for a significant number of variables to be taken into account to solve the problems of energy
conversion [22]. The multiphase model is an important step in developing the knowledge needed
to improve energy fuels in thermal systems. In this context, research and development activities
on biomass torrefaction have been particularly active in exploring its potential as a fuel [23,24].
However, the modelling and management of the torrefaction process can be found in the literature as a
current challenge [25,26]. Kumar et al. [27] have studied the processes of bioenergy transformation,
pointing out the necessity to search for comprehensive analytical models to overcome the existing
limitations and provide the necessary technology to enable industrial use of high value-added biofuels.
Huntington et al. [28] stress the importance of developing advanced mathematical models focused on
the potential supply of biomass resources as a source of bioenergy. Paredes-Sánchez et al. [29] point out
the limitations in modelling the potential use of biofuels for energy production systems considering
the scope of the energy conversion system. In this regard, Bach et al. [30] define the demand for a
comprehensive model of biomass torrefaction, which can provide interdisciplinary information to
industrialize and commercialize the process. In this framework, a comprehensive analysis of the energy
use of biocoal, starting with the supply of biomass as raw material and ending with its final energy
conversion through fossil-fuel-based technologies for thermal systems, is a difficult undertaking in the
field of bioenergy. Therefore, the present paper aims to develop a mathematical model that would
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allow a comprehensive analysis of the potential use of available biomass in the mining areas to produce
biocoal for thermal systems engineering. The main breakthrough consists of applying a multiphase
model to the data to characterize thermo-energetic conversion and energy management of biomass as
a raw material for the production of biocoal. These studies are carried out in the Carboniferous Basin
of the Principality of Asturias (CACB).

This work is organized as follows: Section 1 introduces the context of the research and the aim
of the work. Section 2 shows the methodology used for the study area and the modelling process to
produce biocoal. Section 3 shows both its findings and the details of its implementation as results.
Section 4 provides a more detailed analysis of and discussion on biocoal as an alternative fuel to coal in
mining areas for energy production systems. Section 5 provides the main conclusions of the study in
the mining area by means of energy production systems.

2. Materials and Methods

2.1. Study Area and Mine Nodes

The National Renewable Energy Action Plan (NREAP) in Spain is aimed at complying with
European Directives 2009/28/EC and 2009/29 EC on the contribution of renewable energy and the
reduction of greenhouse gas (GHG) emissions by 2020 [3]. Located in the north of Spain, the Principality
of Asturias is an Autonomous Community where 45% of the land is forested. The energy structure of
the Principality of Asturias is conditioned by the contribution of fossil fuels to the national energy
system as a whole. The Central Asturian Coal Basin (CACB) spreads over the southern councils of the
central area of the region (Figure 1).

Figure 1. Location of the study area—Principality of Asturias (Spain).

The CACB features the geological resources that represent one of the main coal mining deposits in
Spain, located above the geological unit of study [31]. The use of coal as an integral source of indigenous
energy is the basis of the Asturian economy. Therefore, the CACB constitutes a geographical, economic,
and geological unit that is the study area. In this sense, mine shafts are defined as candidate nodes
of analysis to implement the use of biocoal in energy production systems. It should be noted that
the layout and infrastructure of the coal mine itself, i.e., the electricity grid or the transport network,
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would favor the use of biocoal as an alternative fuel. Table 1 shows the mine shafts considered as
modelling nodes.

Table 1. Nodes defined in the Central Asturian Coal Basin (CACB) study area.

Code Name of the Node Municipality

PM Pozo María Luisa-Samuño Langreo
PSo Pozo Sotón San Martín del Rey Aurelio
PSa Pozo Santiago Aller
PMo Pozo Montsacro Riosa
PS Pozo San Nicolás Mieres
PC Pozo Candín Langreo

PCa Pozo Carrio Laviana

The analysis of the biomass in the forests surrounding the mine shafts allows unused resources
to be valorized for energy production. The use of forest biomass for energy purposes will not only
increase the economic development, but also energy self-sufficiency [32,33]. The use of forest residues
will also generate environmental benefits [34].

2.2. Multiphase Mathematical Model

The multiphase mathematical model developed for this work comprises three phases in the area of
study: resources, thermo-energetic conversion and energy management, each one of which is described
in detail in Figure 2.

Figure 2. Flowchart of the multiphase mathematical algorithm through mass and energy balance.
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2.2.1. Phase 1: Resources

For the assessment of potential resources, the Geographic Information System (GIS) database of
the BIORAISE GIS tool from the Research Centre for Energy, Environment and Technology (CIEMAT)
was used in order to collect data on forest biomass in the CACB study area [35]. In Phase 1 of the
mathematical model, it is estimated that the existing resources for each candidate node come from
residues of cleaning activities and forest management operations in the study area and are gathered in
each of the considered nodes (Figure 2). Mass and energy are expressed in terms of dry ton (dry t).
In this study, this biomass is considered as the raw material to be used to generate biocoal through the
torrefaction technology in Phase 2 of the model with the roasting system.

The potential mass (M) is the residual forestry biomass, such as branches and leaves, found within
the study area and therefore, in the surroundings of each modelling node. The available mass (m)
consists of branches and tops (including leaves). It is obtained from cleaning, thinning and felling
operations from BIORASE GIS database (Figure 2), which takes into account the techno-economic
constraints of the potential biomass to define the useful resources [35]. Such restrictions derive
from harvesting procedures, which depend on the terrain conditions to access the raw material [7]
that will define the useful resources, including available mass of conifers, wood and mixtures (dry
t/year). Techno-economic constraints affect its use from the point of view of mass and energy balance.
The biomass is evaluated in the surroundings of the selected node in the study area using Equation (1).

m =
n∑

i=1

mi (1)

where

m is total available mass (dry t/year); and
mi is total available mass of conifers, hardwood and mixtures (dry t/year).

The energy of the available residues (E) is the result of Equation (2), where the Lower Heating
Value (LHV) is used.

E =
n∑

i=1

(mi·LHVi) (2)

where

E is energy from available mass (GJ/year);
mi is total available mass of conifers, hardwood and mixtures (dry t/year); and
LHVi is Lower Heating Value of conifers, hardwood and mixtures (GJ/dry t).

Phase 2 of the calculation algorithm is defined from the available resource and energy (Figure 2).

2.2.2. Phase 2: Thermo-Energetic Conversion

In Phase 2, the thermo-energetic calculation algorithm used to calculate the mass and energy
potential of biocoal to be produced is based on Equations (1) and (2), respectively. Torrefaction is
a thermal pre-treatment carried out by a reactor system at atmospheric pressure, with no oxygen.
The roasting process takes place at temperatures between 200 ◦C and 300 ◦C to achieve more uniform
solid biofuel, whose two main thermo-energetic characteristics are energy yield and mass yield.
The energy and mass yields [36] are defined from the reactive part of the biomass, which is turned into
biocoal through torrefaction as energy and mass percentages or fractions [36,37]; therefore, both ash
and free water content are excluded from the definition. The mass yield (αy) is the correlation between
the mass of the biocoal produced (mb) and the mass of the raw material, i.e., total available mass (m),
obtained from the resources in the roasting system per candidate node (Equation (3)).

αy =
(mb

m

)
(3)
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Energy yield (βy) is defined in the model according to Equation (4)

βy = αy ·
(LHVb

LHV

)
(4)

where

“βy” is the yield referred to the LHV parameter already considered in Phase 1;
“αy” is mass yield; and
LHVb and LHV are lower heating value of biocoal mass and raw material, respectively [36].

The available energy per unit of mass corresponds to LHV because it represents the energy that
can be efficiently recovered after combustion. To this objetive, the torrefaction process is assumed to be
carried out on the available mass as a whole within the areas surrounding each node, thus obtaining
Equation (5):

mb = (
n∑

i=1

mi)·αy (5)

where

mb is biocoal mass from available mass per node (dry t/year);
mi is mass of available biomass (dry t/year); and
αy is mass yield.

For the calculation of energy potential to be obtained as primary energy from biocoal, Equation (6)
is applied as an approach.

Eb =
n∑

i=1

(mi·LHVi)·βy (6)

where

Eb is bioenergy as biocoal per node (GJ/year);
mi is available mass (dry t/year);
LHVi is lower heating value of conifers, hardwood and mixtures (GJ/dry t); and
βy is energy yield.

Equations (3) and (4) show the technical feasibility of placing a roasting system at a candidate node
in the study area by bioenergy-match mode. Such operating conditions correspond to short residence
periods, less than 30 min, with temperatures above 260 ◦C. Favorable conditions are considered to be
those with energy and mass efficiency above 95% and 90% respectively. If the initial biomass to be
torrefacted is dry, with moisture content below 10–15%, lower energy efficiency can be expected [37].

2.2.3. Phase 3: Energy Management

Biomass represents the main manageable renewable energy and should therefore play a role
in energy production to replace or complement fossil fuels (Phase 3). Introducing biocoal in the
industrial sector, and especially in thermal demand, calls for a change in the energy supply management
model [38]. Energy production systems consist of sets of technologies that transform raw energy from
one fuel into final use energy [17], allowing for the production of heat and/or electricity and of new
biofuels. Based on the analysis of energy management, the energy to be produced will be assessed on
the basis of the biocoal production in the roasting system as compared to its energy-based equivalence
to the mass (mf) of other conventional fuels, Equation (7).

mf = Eb /CVi (7)

This is done by taking the calorific value (CVi) of the fuels in Table 2 [39] as an approximation.
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Table 2. Energy-based equivalence of certain fuels.

Type of Fuel Calorific Value (CVi) (GJ/t)

Brown coal 18.8
Distilled oil 41.2
Natural gas 45.6

The model of analysis using the multiphase mathematical algorithm considers a maximum
distance of 50 km for the resources around each candidate node, which is a limit distance determined
for their transformation into conventional biofuels that can be used in that territory [40]. Consequently,
the calculation area is restricted to a maximum of about 50 km away from each candidate node for the
entire analysis (Phases 1, 2, and 3). Once the final combination of the results per candidate node has
been determined, the optimal node, i.e., the location of the roasting system in one mine shaft, will be
defined for the harvesting of the available resources in the study area.

3. Results

In Phase 1, the analysis model established by the multiphase mathematical algorithm (Figure 2)
shows the quantities of both potential biomass and available biomass in the study area for each of the
nodes considered, as shown in Figure 3.

Figure 3. Mass per candidate node in the study area: (a) potential biomass (M) and (b) available
biomass (m).

Figure 3 shows some linearity in the distribution of the potential biomass around each modelling
node considered in the CACB. It indicates a regular distribution of the biomass with the increase of
the distance from 10 km to 50 km. Increasing the distance yields more available biomass around each
candidate node (Equation (1)). The available energy based on the available biomass per candidate
node is shown in Figure 4.

For each node, the amounts of the available biomass that can be collected are above 75 dry kt/year,
around 1300 TJ/year. The available biomass will be used as raw material to be converted into biocoal
(Figure 4).
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Figure 4. The energy (E) of the available biomass per candidate node as calculated by Equation (2).

Phase 2 takes into account the thermo-energetic conversion of the available biomass into biocoal as
per Equations (5) and (6). Figure 5 shows the results of the biocoal potential and its equivalent energy
per modelling node with the increase of the distance from 10 km to 50 km. The thermo-energetic
conversion does not affect the distribution because it has a similar shift of the mass and energy per
candidate node in the study area.

Figure 5. Mass and energy per candidate node in the study area: (a) biocoal (mb), (b) bioenergy (Eb).

Furthermore, the LHV distribution of the biocoal obtained from the raw material collected in the
study area has been evaluated per candidate node (Figure 6).

As can be seen, there is a homogeneous distribution of the energy quality of the theoretical biocoal
to be obtained, reaching an overall average value of about 18.5 GJ/dry t.

Finally, Phase 3 of the algorithm is implemented in each node, based on the data in Table 2.
Equation (7) shows this potential as an alternative fuel to coal for energy conversion. This assessment
characterizes biocoal as compared to different types of fossil fuels for energy production systems
(Figure 7).
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Figure 6. Lower heating value (LHVb) distribution of the obtainable biocoal in the study area.

Figure 7. Energy-based equivalent fuels from biocoal, as a substitute in energy production systems.

Taking all candidate nodes, the potentially producible biocoal in terms of energy is equivalent of
above 28 kt/year of natural gas, 31 kt/year of distilled oil, and 68 kt/year of brown coal.

4. Discussion

Implementing a technological alternative requires splitting up the analysis by considering the
different aspects involved [41]. The paper explores biocoal use as an alternative to coal production
in mining basins by using mine shafts as energy conversion nodes that draw on the surrounding
forest biomass as raw material. The findings of the study reveal that the proposed model, based on
a multiphase algorithm, is highly useful in the study of energy conversion and management for
thermal systems. A cumulative analysis of these facts, augmented by other findings of this work,
is summarized below.

The potential renewable in the world is diverse and widely distributed in nature [1]. However,
most of it may present supply fluctuations, giving rise to risks and uncertainties in serving regional
energy markets. In this sense, the use of biocoal in mining environments, as proposed, guarantees the
use of renewable resources and their conversion, since it is based on substituting the use of fuel,
i.e., coal, with one of similar characteristics, i.e., biocoal. Moreover, there is a whole industrial structure
with mature technologies for the use of this coal. Despite this, one of the remaining challenges for
the development of biofuels in the industry is whether a sufficient amount of raw material can be
generated to meet the growing demand and achieve a shift from fossil fuels to biofuels [42].
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In this regard, the applied algorithm shows that any node considered as a thermo-energetic
conversion node for biocoal production has at least 75 dry kt/year of raw material for biocoal production
in the study area. Here, given the nature of the area under consideration and the nodes, only one node
may be selected, given the territorial extension of the CACB.

Biocoal could replace coal in the production of heat and power through energy production systems.
It would also have a large impact on industry [43]. Providing the infrastructure, technology and
research to enable the use of renewable energy sources available “on site” is a challenge for industry,
in particular for readily available sources such as biomass [38]. The continued development of
industrial technology is expected that will ensure more competitive, reliable and sustainable energy
production systems [44]. The use of biomass as an alternative to coal in certain contexts has been made
feasible by using biocoal technology, but advances in technology alone do not promote its widespread
use; therefore, extensive studies are needed. In this sense, from the mass and energy balance of the
analysis model, the optimal node appears to be PC, this is selected as the optimal node for the CACB.
With the use of a roasting system, this node would produce about 84 kt/year of biocoal, equivalent to
1544 TJ/year of biocoal, the largest amount of all the nodes selected in the proposed analysis.

Renewable energy generation systems are illustrative of the fact that some renewable energy
infrastructures are at a significant distance from energy conversion systems [41]. Overcoming this
barrier to competitiveness of renewable energies requires a well-planned and carefully managed
energy supply infrastructure during and after the infrastructure investment. An environment based
on fuel-coal energy production systems in the mining basins benefits both their use and direct
conversion for electrical, thermal or industrial purposes, given the development of a coal energy
conversion industry in the coal mining environment. However, all this requires some analysis of future
techno-economic feasibility as well as in-depth studies based on the development of these technologies.

Biomass holds the potential to be considered the best alternative to meet global energy demand
sustainably and reduce the impact of polluting energy resources [45]. In this context, the development
of biorefineries for the production of advanced biofuels is encouraged. Biorefinery represents a
sustainable means of generating multiple bioenergy products from various biomass raw materials via
the incorporation of relevant conversion technologies. Biorefinery is crucial in the transition of various
traditional industries into a circular bioeconomy in the context of energy transition [46]. That opens up
the door to the development of infrastructures such as the biorefinery in the aforementioned node.
The use of biomass in energy production systems such as co-firing coal with biomass to generate
energy is gradually increasing even though their performance differs significantly due to the wide
variations in its physical and chemical properties [47]. However, biocoal overcomes most of its use
limitations for heat or electricity production.

In this context, in the shaft named “Pozo Candín” (PC), considering the efficiency of a heat
production system with a thermal efficiency of 80% and about 2000 h of operation per year [48], it is
possible to install a total power of 172 MWth for the energy conversion of biocoal. Additionally, if it
is considered the alternative objective of electricity production, either by co-combustion or by itself,
looking at an electricity efficiency in the complete conversion of 40% for about 7500 h, it would be
possible to achieve an electricity potential equivalent to 23 MWe [49,50]. Detailed studies of biomass
conversion stages within the energy production system are working lines for the future in order to
further develop more efficient and advanced energy conversion systems.

5. Conclusions

Biocoal makes it possible to overcome many of the barriers that condition its use and the
development of biomass in mining basins around the world due to the traditional interrelationship
between the resource and conversion technology for its viability. This is an opportunity to focus
on using it in energy production systems that use coal as an energy source, as it overcomes many
of the limitations traditionally associated with biomass. In this respect, a multiphase mathematical

112



Energies 2020, 13, 2728

algorithm based on operational resource data, thermo-energetic conversion, and energy management
has been developed.

The research in this paper highlights the potential of forest biomass in mining areas around the
world, in this case in the CACB in Spain, and identifies possible options for the use of forest residues as
raw material for solid biofuels as an alternative to coal in carbon basins, i.e., biocoal. Taking a minimum
value considering all the nodes in the study area, the energy potential for biocoal is equivalent to over
28 kt/year of natural gas, 31 kt/year of distilled oil, and 68 kt/year of brown coal.

Overall, the quantities of biomass that can be collected in all the nodes studied are above 75 dry
kt/year (about 1300 TJ/year). The optimal node that guarantees the largest amount of energy, from a
point of view of the proposed mass and energy balance in the study area, is the “Pozo Candín” (PC),
which would allow biocoal to be produced through a roasting system at a rate of 84 kt/year, equivalent
to 1544 TJ/year in the considered operation conditions with the biomass of the CACB. The production
potential of electrical and thermal energy by thermal systems under the defined conditions in this node
amounts to 23 MWe and 172 MWth, respectively.

Implementing this energy potential on an industrial scale in the CACB requires techno-economic
and thermal systems studies based on the specific characteristics and objectives of the facilities that
will be using it. Future understanding of the range of benefits and challenges when introducing
and up-scaling biocoal production under different scenarios will depend on detailed, comprehensive,
and simultaneous assessments, technological options, and final techno-economic factors.
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Abstract: Non-intrusive load monitoring (NILM) has become an important subject of study, since it
provides benefits to both consumers and utility companies. The analysis of smart meter signals is
useful for identifying consumption patterns and user behaviors, in order to make predictions and
optimizations to anticipate the use of electrical appliances at home. However, the problem with
this kind of analysis rests in how to isolate individual appliances from an aggregated consumption
signal. In this work, we propose an unsupervised disaggregation method based on a controlled
dataset obtained using smart meters in a standard household. By using soft computing techniques,
the proposed methodology can identify the behavior of each of the devices from aggregated
consumption records. In the approach developed in this work, it is possible to detect changes in
power levels and to build a box model, consisting of a sequence of rectangles of different heights
(power) and widths (time), which is highly adaptable to the real-life working conditions of household
appliances. The system was developed and tested using data collected at households in France and
the UK (UK-domestic appliance-level electricity (DALE) dataset). The proposed analysis method
serves as a basis to be applied to large amounts of data collected by distribution companies with
smart meters.

Keywords: NILM; disaggregation methods; non-intrusive load monitoring; appliance consumptions;
soft computing

1. Introduction

Two of the main global problems that we are currently facing are pollution and consumption
control. In the Paris COP (United Nations Climate Change Conference 2015), the United Nations
agreed to limit global warming to 1.5 degrees by 2100 and, therefore, reducing energy consumption has
become a key task for achieving this goal [1]. The fact that 27% of electricity consumption in Europe is
attributed to households emphasizes the need to enact regulations promoting suitable and responsible
electricity usage. In this sense, monitoring home energy consumption is an important task in order to
optimize and reduce electricity usage [2,3]. Therefore, there will be great benefits if behavioral patterns
on appliance usage could be automatically detected with an eye to modifying consumer habits [4],
with a potential reduction of 12%, depending on the type of feedback that is provided, as depicted in
Figure 1.

Thus, electricity consumption has been studied progressively more, since it has benefits for both
sides: consumers and the energy companies. With regard to consumers, consumption control reduces
their demand for energy [5], as feedback in this area is proven to lead to a reduction in billing of 3% to
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12% [6,7]. Further, disaggregation can be used to detect broken appliances [8] and to check if appliances
were left on, as proposed by Bidgely [9], by using a smartphone application. With recent and upcoming
electricity tariffs, which may change dynamically depending on current demand, users may benefit
from a smart system that suggests how to delay or advance the running of certain electrical appliances.
At this point, the use of smart meters has been proven to be the cheapest and most effective way to
control consumption [3].

Figure 1. Graphical representation of independent studies analyzed by [3] about residential savings
resulting from different types of consumption feedback.

In the case of energy providers, a disaggregated bill can be employed to provide personalized
energy saving recommendations [7,10], grid control [11], predictions [12], failure detection [13],
and similar statistics.

More than 30% of home consumption is from basic appliances, like the washing machine,
refrigerator, and oven. The different behaviors of these appliances make it difficult to detect their
patterns based on aggregated consumption. Behavioral patterns may differ in some cases, although,
in others, they are relatively close, and could be classified into four general types according to their
operational states [14], as shown in Figure 2.

Some appliances are relatively easy to detect, as their behaviors have a characteristic pattern,
as shown in Figure 3 [5], for the case of a refrigerator. However, not all appliances have such
distinguishable patterns—ranging from kettles to washing machines—which makes their detection a
difficult task, as some of their stages behave similarly. At this point, fuzzy clustering plays a role to
allow for more than one clustering of classification with different degrees of belonging.

Our proposal identifies consumption patterns by detecting changes in power and building a
box model to express consumption as a sequence of elastic bars with different powers and different
durations. The system was built and tested using a four-year dataset with standard household
consumption data collected via smart meters.

According to this, this paper is organized as follows: Section 2 presents a review of non-intrusive
load monitoring (NILM) approaches using different techniques to isolate individual patterns. Section 3
describes the dataset used, along with the most significant fields to be analyzed. Section 4 explains the
methodology and techniques used, and Section 5 presents the results obtained, ending with conclusions
and future work.
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Figure 2. Classification of appliances based on their operation types [14]. (a) General framework of
NILM approach (b) An aggregated load data obtained using single point of measurement; (c) Different
load types based on their energy consumption pattern.

Figure 3. Similarity of stages between appliances. (Reproduced with the permission from [5], 2016).

2. State-Of-The-Art

The study of energy disaggregation is called non-intrusive load monitoring, or NILM, and was
patented by George Hart in the 1980s as a basic process for showing the differences that reactive power
can provide to distinguish one appliance from another [15], as shown in Figure 4.

Since then, many studies have emerged that have approached the problem from two perspectives:

1. As an optimization problem.
2. As a pattern recognition problem.

Dealing with NILM as an optimization problem is computably unattainable because every
appliance has a different set of states. We do not know the consumption of each state, and we do not
know the exact number of appliances in a house that are running at the same time. And a further
difficulty is that the same appliance often even produces different wave forms, as shown in Figure 5.
All these factors, added to the fact that we are handling the aggregated signals of all appliances, end up
posing problems with exponential complexity, as mathematically demonstrates Kelly in Reference [5].

In the orientation of NILM as a pattern recognition problem, there are many approaches based
on event detection, meaning locating any switch in a signal from a steady state to a new state [16,17].
Algorithms based on event detection, once the event is detected, try to classify the most representative
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characteristics of a given appliance so as to differentiate and identify them [18]. The standard procedure
for this approach is represented in Figure 6.

Figure 4. Taken from Hart’s US patent number 4,858,141 to map the differences in reactive power to
distinguish appliances.

Figure 5. States of a washing machine with different washing programs. (Reproduced with the
permission from [5], 2016).

Figure 6. Diagram of event-based non-intrusive load monitoring (NILM) algorithms [18].
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There are three main approaches for working with event detection in signals: expert heuristic,
probabilistic models, and matched filters [19].

Algorithms based on expert heuristic evaluations try to differentiate appliances by a set of rules
with significant variables, such as power variation or power consumption. Probabilistic approaches
use models to isolate the concurrence of events. They require training models to adjust variables
and create statistical models, as in the case of the generalized likelihood ratio (GLR) method [20].
To compare the heuristic method, see Reference [21]. Yang et al. tested a probabilistic algorithm based
on goodness-of-fit (GOF), with results revealing that this method’s results were more accurate and had
less false positives.

The third type—matched filters—uses patterns that are correlated with the signal waveform to
detect the type of appliance. In this case, a large amount of data is required [22].

In this scope, there are many works mixing advance techniques of machine learning, and some
other Artificial Intelligence algorithms, as seen in Reference [23], since the application of advanced
machine learning techniques as Hidden Markov Models [24–26] until evolved neural networks as
BP-ANNs (Back-Propagation-Artificial Neural Networks) in Reference [27] or CNNs (Convolutional
Neural Networks) in Reference [28–30].

Our approach is framed in this third group, as it identifies sections in which several appliances
can be running simultaneously. These time intervals are adaptable in length, so the problem of devices
operating for different lengths of time, with the consequent weakness for pattern correlation, is solved
in the proposed approach. Further, the power level identified for each box is discretized using fuzzy
clustering techniques, and, consequently, the method can handle the problem of having different sets
of devices with similar total power levels.

3. Description of the Dataset

Two different datasets were used in this research. The first dataset comprising electrical
consumption in house in France, near Paris, collected by Georges Hebrail. This dataset is available
at the Machine Learning Repository of the Center for Machine Learning and Intelligent Systems of
the University of California, Irvine [31]. It was used for the development of the proposed algorithm.
A second dataset, UK-domestic appliance-level electricity (DALE) 2015 [32], contains aggregated and
disaggregated data for 5 houses located in Southern England. It was used for evaluation purposes,
and it is described in the Results section.

The Paris dataset consists of a single household’s power consumption collected over the course
of four years: 2007 through 2010 (precisely from 16 December 2006 17:24:00 to 26 November 2010
21:02:00). A total of 2,075,259 measurements, collected every minute, are included in the dataset.
Data was collected at Sceaux (a village located south of Paris, France). This dataset was collected and
made public by Georges Hebrail, Senior Researcher, EDF (Électricité de France) R&D.

This dataset contains seven variables (besides date and time), which are:

• global_active_power: The total active power used at the house (kilowatts)
• global_reactive_power: The total reactive power consumed by the household (kilowatts)
• voltage: Average voltage (volts)
• global_intensity: Average current intensity (amps)
• Sub_metering_1: Active energy for kitchen (watt-hours of active energy)
• Sub_metering_2: Active energy for laundry (watt-hours of active energy)
• Sub_metering_3: Active energy for climate control systems (watt-hours of active energy)

Sub_metering_1 is the kitchen, primarily a dishwasher, electric oven, and a microwave oven (hot
plates are not electric, but gas powered).

Sub_metering_2 is for the laundry room, containing a washing machine, a tumble dryer, refrigerator,
and a light.

Sub_metering_3 is for the heating system, containing a water heater, and an air-conditioning unit.
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There is some electrical equipment that is not connected to any of the three sub-meters but
directly to the global meter (see Figure 7). Therefore, the sum of Sub_metering_1, Sub_metering_2,
and Sub_metering_3 (converted from watt-hours to kilowatts) does not equal to global_active_power.
Nevertheless, the objective of this work is to identify different machines and detect when they are in use,
so, for this purpose, we started working with the three Sub_metering signals and then demonstrated
the approach for the sum of these three signals.

Figure 7. Schematic of electrical appliances and smart meter distribution.

Some preprocessing of the data was necessary to convert energy units to power units and to smooth
the values using a filter. Sub_metering data was stored in energy units (watt-hours) every minute. But
it is more common to use power units, meaning the average power during the time windows, in this
case one minute. Therefore, the energy values of each Sub_metering had to be multiplied by 60 to
obtain the average power during every minute (in watts).

Filtering was also very convenient because the power of a small refrigerator is about 100 W, but,
in energy per minute, that is only 1.67 Wh. Since the values of the smart meters used to collect the
data can only be integers, the values alternate between 1 Wh and 2 Wh. Hence, a Gaussian-weighted
moving average filter of size 7 was applied to the data to make it less noisy and more realistic.

4. Data Overview

The Paris dataset was previously analyzed from the time series point of view [33], although
standard data series techniques cannot detect the activation of different appliances because they do not
show seasonality or fixed-time patterns. As shown in Figure 8, the power profile of Sub_metering_2 is
very predictable because it has fixed-time running/waiting cycles. This graph shows three days of data
in which practically the only appliance running was the refrigerator. Only the 12th of September shows
high-power activity from the washing machine, which overlaps the refrigerator’s regular activity.

Figure 8. Sub_metering_2 power, during 3 days in September 2007.
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Therefore, appliances, like refrigerators, are very predictable, and modeling by means of a time
series model is feasible. There are some differences in the period of the signal, which may depend on
the thermostat setting for the room’s temperature, although neither of them changes very often. So, a
model that implements some adaptation and forgetting factors could cope with the signal type without
any trouble. As an example, Figure 9 shows the power of Sub_metering_2 in two time intervals in
which no appliances were operating other than the refrigerator. The first graph corresponds to 28 June
2010—the middle of the summer—and the refrigerator starts with a period of nearly 2 h, while the
second graph corresponds to 17 December 2009—winter—and the period is longer than 3 h.

Figure 9. Profiles of the refrigerator in summer and winter.

Conversely, the water-heater basically starts when hot water is used in the house. Figure 10 shows
the power profile of Sub_metering_3, which includes the water heater, during the four Mondays in
the month of September 2007. There is a power step reaching about 1kW every morning, which is
probably triggered by using the shower. The exact time of this event is not always the same (7:05 a.m.
on 3 September, 6:15 a.m. on 10 September, 7:24 a.m. on 17 September, and 6:29 a.m. on 24 September).
In addition, the length of time that the water heater runs was not constant, where the variation is
probably due to the amount of water used. These parameters (start time and elapsed time) depend
on user behavior and cannot be predicted with time-series analysis techniques. Even when selecting
the same day of the week, as in Figure 10, which should be the most similar to each other, the power
profiles are completely different.

The proposed methodology to identify which electrical appliances are installed and their usage
patterns involves the use of several techniques. Firstly, regression trees [34] are used to determine the
instants of power change, as well the different consumption levels in the house. This step also lets
consumption boxes with variable time lengths be detected for each power level. Secondly, clustering
techniques are applied to the power levels, to minimize the effects of noisy power measurements, as
well as to ascertain which power levels are actually relevant.
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This approach could be implemented massively at the level of the electricity utility by using data
stream models, such as the one proposed in Reference [35].

Figure 10. Sub_metering_3 power, during the four Mondays in September 2007.

5. Fuzzy Clustering

In an imprecise environment, like the one we have in our systems, soft computing techniques
have emerged to model imprecise scenarios [36,37]. Clustering techniques are very popular as
supervised methods that are used to classify information according to a set of properties. In NILM
problems, clustering algorithms have been used to isolate patterns in several groups, combining them
with other procedures to obtain better results in most cases than when using traditional clustering.
In Reference [38], Liu et al. used fuzzy clustering techniques to create a set of general models that
could better detect appliances within a household. Wang et al. used fuzzy clustering, along with
Hidden Markov models [26], to retrieve single energy consumption based on the typical consumption
pattern. Lin [23,39] proposed a hybrid system using fuzzy clustering, along with neural networks,
leading to the identification of household appliances claiming an accuracy of 95%. In Reference [40],
Kamat used fuzzy logic applied to pattern recognition, in particular to detect the period of operation of
a given device and thus calculate the energy consumed by that particular device.

The method that we propose is focused on the analysis of the aggregated consumption signal.
In the case of several appliances operating at the same time, the consumption profiles overlap, making
pattern recognition technique difficult to apply to the aggregated signal.

We use fuzzy logic and regression trees to create a box model to model changes in power and to
discretize power level, allowing to differentiate devices even if the operate simultaneously. Neural
methods, as Reference [39,41,42], need intensive training to adjust the neural network. In our case,
being an unsupervised method, we do not need large amounts of data to train our method and obtain
good results, as shown in the following sections.

In our case, by segmenting electrical information, the appliances are grouped based on their
“distance,” understanding this distance from a mathematical view as their closeness to each other to
define two objects’ similarity. According to these groupings, we have two clustering types:

• Hard clustering: the traditional version, where objects can belong to just one group.
• Fuzzy clustering: this technique uses fuzzy logic [43], allowing the same object to be in more than

one group. The difference is the degree of membership or the extent to which each object belongs
to that cluster [44]. This approach is closer to real-life problems. In our case, we can isolate two
“similar” signals from the aggregated signal to detect the device to which it belongs.

Therefore, we use an objective function to obtain the optimal number of partitions that will let us
apply non-linear optimization algorithms to find a local minimum.

We have to define the number of clusters according to these three conditions, with c being the
number of clusters and N the number of items:

μi j ε [0, 1], 1 ≤ i ≤ c, 1 ≤ j ≤ N
c∑

i=1
μi j = 1, 1 ≤ j ≤ N

0 <
∑N

j=1 μi j < N, 1 ≤ i ≤ c.

(1)
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With this scenario, we define our fuzzy space as:

Fc =
{
U ∈ RcxN

∣∣∣∣μi j ∈ [0, 1], ∀i, k;
∑c

i=1
μi j = 1,∀k; 0 <

∑c

i=1
μi j < N,∀i

}
. (2)

Fuzzy clustering c-means is based on the optimization of fuzzy partitions [45,46], with U being
the membership matrix

[
μi j
]
∈ Fc, and V = [v1, v2, . . . , vc] being the vectors characterizing the centers

of these groupings, for which we want to minimize our function.

J(Z, U, V) =
∑c

i=1

∑N

j=1

(
μi j
)m||zj − vi||2A. (3)

The value of the cost function J(Z, U, V) can be interpreted as a measure of the deviation between
points vi and centers zj.

The minimization of this function leads to a non-linear optimization problem solved by the Picard
iterative process. The restriction of membership values, μi j, is imposed by Lagrange multipliers.

J(Z, U, V) =
∑c

i=1

∑N

j=1

(
μi j
)m||zj − vi||2A +

∑N

j=1
λ j

∑c

i=1

(
μi j − 1

)
. (4)

We can demonstrate that, to minimize the function, it is necessary that:

μi j =
1∑c

k=1(DijA/DkjA)
2/(m−1) , 1 ≤ i ≤ c, 1 ≤ j ≤ N

vi =

∑N
j=1(μi j)

m
zj∑N

j=1(μi j)
m , 1 ≤ i ≤ c.

(5)

Therefore, we need some other parameters for the algorithm, such as the number of clusters,
which is one of the most relevant due to having a great impact on segmentation. The number of
clusters is obtained through the fuzzy partition coefficient (FPC), which provides how well our data
are explained by this grouping, that is, that membership to each one of our data segments is—in
general—strong and not fuzzy. The fuzziness parameter, m, which affects fuzziness in the segmentation,
is completely fuzzy if it approaches ∞ and hard as it approaches 1. In our case, we set a value of
(m = 2), as a standard value for these types of problems, which is widely used in the bibliography. As
termination criteria, we established X number of iterations and the distance matrix. This is because the
calculation of distance implies establishing the scalar product matrix. The natural choice is the identity
matrix (A = I), but a widespread distance matrix is the inverse of the covariance matrix of the data,
leading to the Mahalanobis standard.

A = R−1, R =
1
N

∑N

i=1
(zi − z)(zi − z)T. (6)

The norm used affects to the segmentation criteria, changing the measure of dissimilarity.
The Mahalanobis distance leads to hyperellipsoid groupings on the axes, given by the covariances
between variables.

In the bibliography, there are several modifications of this algorithm related to use an
adaptative distance measure [47,48] and relaxing the condition on probability of belonging to
each segment. According to these parameters, we checked the Euclidean norm, Mahalanobis,
and Gustafson-Kessel algorithm.

The Gustafson-Kessel algorithm expanded the adaptive distance to locate different groupings
with distinct geometrical forms. Each segment has its own distance provided by the equation:

D2
i jAi

=
(
zj − vi

)T
Ai
(
zj − vi

)
. (7)
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The matrices Ai become variables that are optimized within the functional J. The only restriction
is that the determinant must be positive, (|Ai| = ρi, ρi > 0, ∀i. Optimizing by using the Lagrange
multipliers method, we obtain that the distance matrices must fulfill this equation:

Ai = [ρi det(Fi)]
1/mFi

−1, (8)

where Fi is the fuzzy covariance matrix of each one of the segments.

Fi =

∑N
j=1

(
μi j
)m(

zj − vi
)(

zj − vi
)T

∑N
j=1

(
μi j
)m . (9)

We checked several measures to verify which ones fit the best to segment our datasets [49].

6. Description of the Analysis Procedure

The proposed analysis approach involves several steps that are described in this section. Some
of these algorithms are shown using the signal obtained by one of the smart meters, but this is just
for clarification purposes, since the whole approach has been designed to be implemented on the
signal measured by a single smart meter that obtains the global household power consumption. If
we could expect the signals of several smart meters to be available on a regular basis in a standard
household, there would be a separation of appliances that would facilitate the analysis greatly. For
instance, this would make it possible, and very effective, to obtain the appliances’ typical operating
patterns, such as the most-used dishwasher and washing machine cycles. Then, by applying pattern
recognition techniques, it would be straightforward to detect when and how the appliances are used.
However, this approach becomes very problematic when trying to analyze one global signal for the
household—the sum of all the Sub_metering signals—because the power profiles of all the appliances
in the house become all mixed up in the single power signal.

Nevertheless, the proposed approach identifies instants of significant power changes, power
levels, and length of conditions, therefore defining a sequence of boxes of different heights and widths
with which to model global power consumption. Using this box-based model, it is possible to identify
which appliances are being used and when, which will enable a higher-level analysis of weekly or
seasonal usage patterns. This higher-level information about usage patterns would be extremely useful
for determining if small changes in schedules and habits can benefit the power network and harvest
savings for the user.

6.1. Detection of Power Changes

A very simple way to detect changes in power is to work with the derivative of the power signal,
although this method will be subject to many errors, due to the noise expected in the signal. Another
widely-used method, and more robust, is the MATLAB function findchangepts, which is based on the
algorithm described by Killick et al. [50]. However, using this method, we found an average of 522
change points per week in the dataset of just one Sub_metering. This is much higher than expected,
compared to a naked-eye detection of the signal, especially knowing that the only electrical appliance
running was the hot water heater, in cycles with a fairly constant operational power level.

The proposed approach is to use regression trees [34] to detect power changes. The tree can make
a decision based on the values of the signal to determine whether or not level changes are significant
to the problem. In contrast to the decision tree, created with algorithms, such as ID3, the training
process of regression trees is unsupervised. Hence, it is not necessary to manually label which changes
are relevant and which ones are noise. The regression tree can be automatically applied to any
household without prior knowledge of the appliances installed and without any manual pre-analysis
and annotation of the signals.
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Trees must be pruned to avoid overfitting, to make them more generic, and to yield better overall
results. The model developed in this way is very accurate and could clearly detect all 25 water-heater
cycles during one week in September 2007 of data analyzing smart meter number 3, in which the air
conditioning unit was not available yet. Figure 11 shows the actual power of Sub_metering_3 in blue
and the prediction of the model in red. The second graph shows the prediction error, which only has
spike values during transients of power.

Figure 11. Results of the regression tree for one week of data.

6.2. Power Levels

The regression tree model, described in the previous section, is able to predict the instant of power
changes, along with the power level. However, the power levels in a global power signal are linear
combinations of the power levels of the appliances installed in the house. Consequently, in order to
generate boxes with a meaningful height, which will not be affected by signal noise, some data must
be analyzed to determine what the typical power levels are in a given household.

By doing clustering analysis, we can obtain the “standard” levels of power of a given household.
As depicted in Figure 12 there are many standard levels that appear a significant number of times.
The application of clustering techniques at this point helps to detect power levels without the hassle of
small power changes due to the normal operation of any electrical machine.

As described in previous sections of this paper, in current applications, the use of fuzzy clustering
is more suitable because the subsequent analysis of which appliance set was operating at a given time
is easier if a given level can belong to several clusters and not just one. In this way, the number of
clusters is reduced, and the impact of noise is even more mitigated.
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Figure 12. Results of the clustering of power levels of the global consumption signal.

6.3. Box Model

The final step in the modeling and, hence, understanding the shape of the power signal, is to
produce the box model. In the proposed approach, the power signal is symbolized by a temporary
sequence of rectangles of different heights and widths, which we, the authors, named the Box Model.
This type of signal representation can handle the problems, described in the Data Analysis section,
related to the length and temporary spacing of some cycles, such as refrigerator operation, which is
different in summer and winter, or the water heater, which primarily depends on the amount of
water used.

As a result of the Box Model, the first boxes of a real signal analyzed by this approach are shown
in Table 1. The values that completely define a box are the starting point in minutes, the height of the
box in watts, and the width of the box in minutes. Each box represents a state of the system, and,
whenever system conditions change, a new box is created.

Table 1. Example of Box Model values.

FROM (min) TO (min) HEIGHT (W) WIDTH (min)

1 30 1085 30

31 45 1139 15

46 70 1111 25

71 80 1072 10

81 90 108 10

91 176 0.4 86

177 212 75.5 36

213 223 59.8 11

6.4. Detection of Appliances

Each box corresponds to a state in the system, since any significant change in the power will
produce a new box. These boxes are classified, based on the mean power level, applying clustering
techniques. Using classic clustering, such as K-means, each box will be assigned to the closest cluster,
so the appliances that are active for a given box are those represented in the cluster. The centroid
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of each cluster is a power level related with the electrical appliances that are in use simultaneously.
One may think of the different cluster centroids as linear combinations of the operational power level
of the appliances.

In contrast with classic clustering, using fuzzy clustering, one obtains, for a given box,
the membership degree of that box belonging to each of cluster. Therefore, the classification of
each box does not yield to a single answer, and several combinations of appliances could be considered.
In general, just one of the clusters attains a high and distinctive degree, hence behaving as classic
clustering. However, in some situations, the power level of the box may well represent to possible
configurations of appliances. In the upcoming Results section, an example of the potential of fuzzy
clustering is presented.

7. Experimental Results

In order to show the effectiveness of the Box Model proposed in this paper, all four years of data
of the Paris dataset where analyzed. Figure 13 shows the number of boxes created for every year and
every month, which is an indication of the activity in the house, since each change in the consumption
level creates a new box. In 2010, the graph does not include November and December because data
collection runs until mid-November of that year. In 2007, the last week of July and the first 3 weeks
of August there was very little activity because the house owners were probably on vacation; so,
even though June through September are the hottest months of the year in Paris and Air Conditioning
activity could be expected, the overall activity in 2007 is smaller. In 2008, August was the period of
summer vacation and the level of activity was also smaller that in July of September.

Figure 13. Results of the Box Model for all four years of data, sorted by month.

As an example of the effectiveness of the proposed methodology for detecting the use of
electrical appliances, Figure 14 shows a challenging scenario in which several appliances are operating
simultaneously, thus making the resulting total household power signal difficult to analyze. Since the
dataset used for this work uses smart meters for different sections of the house, it is possible to
understand the shape of the total power (subplot 4) by looking at the decomposed signals in subplots 1
through 3.

The first graph in Figure 14 shows Sub_metering_1, which includes a consumption event that
starts at 10:42 a.m. This event very likely corresponds to the dishwasher. The profile has a total
duration of 80 min and is characterized by a flat power level of about 75 W, with two heating cycles
15 min long and with 2200 W of power.

The second graph shows Sub_metering_2, with very regular refrigerator cycles. This profile
corresponds to an old Liebherr refrigerator that is operating every 2 h and 40 min for a period of 45 to
50 min, with a power level between 65 and 85 W. This is the most regular Sub_metering signal in the
results represented in the figure.
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Figure 14. Box Model example.

The third graph shows Sub_metering_3, which measures the consumption of a water heater and
an air conditioner. In Figure 14, the water heater operates twice with a fairly constant power level
of 1050 W. It starts for the first time at 10:30 a.m. for 1 h and 45 min and the second time starting at
2:10 p.m. with a duration of 2 h 10 min. The figure reveals that the first cycle of the water heater
overlaps with the dishwasher, and the second cycle overlaps with the refrigerator, making this example
interesting and challenging.

The fourth graph in Figure 14 shows the total power, which is the sum of the three previous smart
meter signals. This is the signal that was analyzed using the proposed procedure in order to create the
Box Model represented in the fifth graph. The first three graphs are shown in the figure to explain the
results obtained by the method.

In the resulting Box Model (fifth graph), the first couple small identical bars, as well as bar #11,
are refrigerator cycles and could be easily identified by any data analysis technique. Then, there is bar
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#3, which is the water heater, where this profile overlaps the dishwasher in Sub_metering_1. Therefore,
after 22 min at 1020 W of power, the algorithm creates a new box (bar #4) with a power level of 1110 W,
representing the water heater plus the first part of dishwasher profile. Bars #5 and #9 correspond to
the water heater plus high-power (heating) cycles of the dishwasher running.

Another interesting event in this graph is the second cycle of the water heater, which starts at 2:10
a.m. and overlaps with a refrigerator cycle at 2:55 p.m. The algorithm can detect the starting point (bar
#13), after a small transient bar #12, which should be removed in future versions of the algorithm. Then,
at 2:55 p.m., a change in power is triggered by the refrigerator cycle. The proposed method is able to
detect the power change and identify a new power level of 1110 W, which was previously selected as
one of the important power levels by the clustering module. Consequently, the method produces three
boxes, two corresponding to the water heater alone (bar #13 and bar #15), with a power level of 1020 W,
and one for the water heater and the refrigerator (bar #14), with a power level of 1110 W.

For further comparison, the algorithm was run on UK-DALE dataset, that has been widely used
in the literature [30,41,42,51–56]. Data was collected from November 2012 to May 2015, with sampling
periods of 1s for aggregated and 6s for disaggregated signals. However, not all the houses cover the
full range of collection time, and, in fact, there is no period of time in which data was collected from
the 5 houses simultaneously. For some houses the disaggregated signals comprised several electrical
appliances, so it was decided to use house 2 with 20 data channels and very fine disaggregation.
The advantage of house 2 is that all appliances are well identified in separated channels of data so a
ground truth for evaluation purposes can be easily generated. This dataset was preprocessed to obtain
data samples every minute and selecting similar appliances as in the case of the French dataset. House
2 has interruptions in data collection at different times in different channels, so the month of July 2013
was selected as the best period of time in terms of data quality showing minimal events of missing
data in 8 of the 20 channels. Signals were pre-processed to adjust the sampling period to 1 min, as in
the other dataset.

Table 2 shows the average power, maximum power and total energy of each channel. Only those
appliances highlighted in the table have a significant impact on the aggregated power, since other
devices are less relevant for low power or marginal use. For example, small electronic devices are not
interesting if operating all the time, such as the router that was only restarted 4 times in the month
(was operating 99.96% of the time). The microwave is used every day but very short periods of time,
mostly for less than 2 min. Finally, toaster and cooker are demanding in power, but the toaster was
only used once, and the cooker was never used. A similar type of selection to focus on the relevant
appliances was also done in Reference [51,55].

For each individual channel it is necessary to determine if the appliances were working or not,
resulting in a vector of 1s and 0s that will be as the ground truth for evaluating the results. These binary
vectors were obtained applying thresholds for each signal.

The dataset was evaluated using a system of 8 fuzzy clusters. A total of 2048 boxes were created
automatically for the UK-DALE dataset, which is higher than in the case of the Paris dataset. It could be
expected that in a more recent dataset the electrical appliances should be more efficient; nevertheless,
the fridge in the UK dataset is less efficient that the refrigerator in the Paris dataset and produces more
cycles. The results are typically evaluated in the literature using F1_score, which is defined as:

F1_score = 2
Precision ·Recall

Precision + Recall
, (10)

with Precision being the number of true positive divided by predicted positive (how many predictions
are correct) and the Recall being the number of true positive divided by the condition positive (how
many expected events have been correctly found).

The final results are presented on Table 3 separated by appliances. It can be seen that Kettle and
Washing Machine are harder to predict, but the fridge is detected remarkably well.
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Table 2. Summary of appliances in UK-domestic appliance-level electricity (DALE) house 2 during
July 2013.

Channel Average (W) Maximum (W) Total Energy (kWh)

2 laptop 8.1 59 6.0

3 monitor 19.9 79 14.8

4 speakers 5.8 11 4.3

5 server 14.0 18 10.4

6 router 6.0 7 4.5

7 server_hdd 1.0 1 0.7

8 kettle 19.5 2995 14.5

9 rice_cooker 3.6 414 2.7

10 running_machine 2.4 321 1.8

11 laptop2 4.5 69 3.3

12 washing_machine 10.7 2221 8.0

13 dish_washer 37.3 2064 27.7

14 fridge 53.0 117 39.5

15 microwave 5.3 1330 3.9

16 toaster 0.6 896 0.4

17 playstation 1.0 32 0.7

18 modem 9.0 10 6.7

19 cooker 0.2 392 0.1

1 aggregate 201.8 5105 150.1

Table 3. Results of the algorithm evaluated on UK-DALE. TP = True positive, FP = False positive, FN =
False negative, TN = True negative.

Appliance TP FP FN TN Prediction Recall F1_Score

Kettle 151 108 169 44211 0.58 0.47 0.52

Washing_machine 95 126 145 44273 0.43 0.40 0.41

Dish_washer 723 266 77 43573 0.73 0.90 0.81

Fridge 23751 730 863 19295 0.97 0.96 0.97

AVERAGE 0.68 0.68 0.68

These results are consistent with previous works found in the literature. The results in
Reference [55] for houses 1, 2, and 5 together, show a slightly better overall F1_score of 0.77 in
the best combination of methods, compared to 0.68. However, in Reference [51] the results for the
proposed H-ELM method are very similar: 0.67 in average F1-score, with a minimum average F1
of 0.47 for the washing machine and a maximum of 0.89 for the fridge. It is very interesting that
Reference [56] obtains the same average results of 0.63 but points out that using active and reactive
power (if available) the results may improve to 0.70.

In regard to the fuzzy clustering approach presented in this paper, Figure 15 presents the case of a
Kettle event that is not correctly classified with classic clustering. In these graphs, the black dotted lines
represent the centroids of the clusters associated to the dish washer (cluster #7) and to the kettle (cluster
#4). Due to sampling effects, the mean power of the box in the left graph is only 2253 W high, which is
lower than the typical power near 2500 W of cluster #4. As a consequence of the low power, this event
would be classified as a dish washer because it is closer to cluster #7 than to cluster #4. However,
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with fuzzy clustering, this event was assigned a 0.496 membership degree to dish washer cluster but
also a 0.432 membership degree to kettle cluster. Given that a dish washer always runs longer cycles,
in this case, the system correctly selected kettle for the event. The rule that was introduced takes into
account a low membership (less than 0.5 for cluster #7) and a narrow box (less than 4 min), and, in that
case, the system takes the second probable cluster (cluster #4). Once this rule was introduced and run
for the full dataset, the number of false positive in dish washer was reduced from 274 to 266, and the
number of false negative in kettle was reduced from 175 to 169.

Figure 15. Explanation of the advantage of using fuzzy clustering. Left: Kettle event miss-classified
with classic clustering. Right: typical Kettle event (for comparison). Blue line shows the actual power,
red line is the result of the box model, and black dotted lines represent the centroids of cluster #4 and #7.

8. Conclusions and Future Work

Monitoring power load makes it possible to obtain usage patterns of electrical appliances,
as well as real home energy consumptions. Understanding these data, small behavioral changes
could be introduced that could significantly reduce costs and the environmental impact of electricity
consumption. However, analyzing aggregated power consumption data is a challenging problem,
especially if a previous interaction with individual electrical appliances is not possible. This field is
called non-intrusive load monitoring and has been studied for years.

The work presented in this paper involves a methodology to analyze data collected with smart
meters, which are currently deployed in many countries or are being installed at this time. The proposed
method involves techniques for detecting changes in power based on regression trees, the selection of
standard power levels of a household based on fuzzy clustering, and the creation of a Box Model to
describe the aggregated power load measured by the smart meter. The system has been developed
and tested using data collected in standard households by several smart meters in France and the UK.
The results show that the proposed method is able to detect the usage of appliances, even in difficult
situations in which several appliances overlap in time. The application of fuzzy clustering solves
several cases in which classic clustering miss-classifies the events.

For future works, as fuzzy clustering allows to reduce the number of false positive and false
negative, we plan to continue this analysis by the addition of new appliances.
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