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Abstract: The off-grid solar photovoltaic (PV) system is a significant step towards electrification in
the remote rural regions, and it is the most convenient and easy to install technology. However, the
strategic problem is in identifying the potential of solar energy and the economic viability in particular
regions. This study, therefore, addresses this problem by evaluating the solar energy potential
and economic viability for the remote rural regions of the Sindh province, Pakistan. The results
recommended that the rural regions of Sindh have suitable solar irradiance to generate electricity.
An appropriate tilt angle has been computed for the selected rural regions, which significantly
enhances the generation capacity of solar energy. Moreover, economic viability has been undertaken
in this study and it was revealed that the off-grid solar PV power generation system provides electricity
at the cost of Pakistani Rupees (PKR) 6.87/kWh and is regarded as much cheaper than conventional
energy sources, i.e., around PKR 20.79/kWh. Besides, the off-grid solar PV power generation system
could mitigate maximum CO2 annually on the condition that all of the selected remote rural regions
adopt the off-grid solar PV system. Therefore, this study shall help the government to utilize the
off-grid solar PV power generation system in the remote rural regions of Pakistan.

Keywords: off-grid Solar PV power generation; remote rural regions; economic feasibility; CO2

mitigation; Pakistan

1. Introduction

Electricity is the main source for economic, environmental, and social growth of any country.
Electricity is considered to be an ideal invention of humankind and has brought a lot of changes in
human lives and society. Nevertheless, approximately 1.1 billion people of the earth are suffering or
living without electricity [1]. The majority of the population suffering from this situation are located
in rural areas of South-Asia and Sub-Saharan Africa [2]. Similarly, a large proportion of Pakistan
are living in rural regions, and the majority of them do not have access to electricity. Pakistan is a
developing country facing economic, environmental, and social development challenges which have
led the country to an increased power demand. The country’s total power demand is 25,000 Megawatts
(MW) and this is estimated to be boosted up 40,000 MW by 2030 [3]. Whereas, the electricity supply
remains around 17,000 MW, causing an electricity shortage of 8000 MW in the country [4]. In the
results, the electricity shortfalls in both urban and rural areas around 12 to 18 h a day [5]. Furthermore,
the condition of the remote rural regions of Sindh is very bad, where electricity remains inaccessible
for many days.

Pakistan is enriched with a vast potential of energy sources such as oil, gas, coal, and renewable
energy (i.e., solar, wind, hydro, and biomass). The estimated potential to generate electricity from
solar energy is 2900 Gigawatts (GW), wind energy (346 GW), hydropower (6 GW), and biomass

Processes 2019, 7, 308; doi:10.3390/pr7050308 www.mdpi.com/journal/processes1
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energy (5 GW) [6]. The province of Sindh is also enriched with renewable energy (RE) sources and the
government needs to tap RE to generate electricity [7]. However, most of the rural regions do not have
an electricity facility. Forty-eight percent of the population of the Sindh province are living in rural
regions, and approximately 13,451 villages are un-electrified [8]. These villages are scattered near and
far from the on-grid station, thus connecting to the grid is uneconomic and expensive. The demand
for electricity in the rural regions is low when compared to urban areas, from only 50 to 100 Watts (W)
per household [9]. Only a small number of lights and one to two fans are required in rural houses
because each house is very small and generally built with one room. Providing on-grid transmission
to these villages for such a minimum load is expensive and therefore, there is a very minimum chance
of grid-connected electricity in the near future. Likewise, electricity generated from diesel generators
does not propose an economical option because it is difficult to transport oil to remote rural regions, as
well as ineffective for the environment. Pakistan has a structured energy sector for both international
and local stakeholders. Moreover, the stakeholders are unwilling to invest in and participate in
RE technologies due to high-investment cost, high-discount rates, short-back period requirements,
the lack of infrastructural conditions, remoteness regions, and unavailability of the specific region’s
potential [10]. Currently, due to the worsening economic condition in Pakistan, the government has
also called to shut-down all of the on-going RE projects in the Sindh and the Khyber Pakhtunkhwa
(KPK) provinces, and this decision negatively affects the development of RE sources and over three
billion dollars in investments [11]. The province of Sindh suffers the most from this government
decision as its 53 projects are in-progress.

On the above-stated factors, the off-grid solar energy is the best option to generate electricity for
rural regions of the province. The regions of the Sindh province receive a high amount of solar radiance
throughout the year [12]. The province has enormous potential for solar energy and receives high solar
irradiation, with more than 300 sunlight days with about 1800–2200 kWh/m2 annual global horizontal
irradiation [13]. Furthermore, the Asian Development Bank recommended that the off-grid solar
photovoltaic (PV) is the best option, as it is easy to install, low-cost, and increases the socio-economic
conditions of the rural regions [9,14]. Various studies have proposed the off-grid solar PV system
solution to provide electricity in the rural regions [15,16]. Moreover, solar PV evades extra costs, fuel
transportation, and makes the project simple by installing on-site resources. In reference [17], it was
presented that off-grid solar PV is an appropriate and sustainable choice for rural electrification due
to its life-cycle cost, net energy, and local environmental benefits. In another study [18], the authors
identified that the development of the solar PV system improves the living standard of the people and
also increases the economic and social conditions in the region. The solar PV system is very favorable
for the environment because it has no noise impact, mitigates CO2 emissions, and does not harm
human health [19]. Moreover, numerous other studies, such as [20–22], have presented that the off-grid
solar PV system is a significant application for electrification and is an economically viable option
for the rural regions. In the US, the residential sector has built energy consumption-related heating
and air-conditioning, which make-up of a total of 42% of a buildings total energy use [23]. In another
study, the authors have assessed the wind energy potential to generate renewable hydrogen energy
in the Sindh province [24]. The planning is the most important aspect for energy management and
sustainable development, such as social, environmental, and economic [25].

For achieving the target of providing electricity to rural regions, there should be the proper policies
implemented for solar PV power generation system. Extensive research is required to evaluate the
particular regions for identifying solar energy potential, as well as to assess the economic viability of
the regions. To the best of the authors’ knowledge, no such research has been conducted for the Sindh
province. Thus, this study aims to fill this research gap. In the study, five rural regions of the Sindh
province, i.e., Panoaqil, Badin, Nawabshah, Mirpurkhas, and Kambar, are undertaken to investigate
the solar energy potential for electricity generation. The main objectives of the study are:
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• To evaluate the techno-economic feasibility of an off-grid solar PV system of five regions of Sindh
• To electrify the above-mentioned rural regions by an off-grid solar PV system

Therefore, this study shall help policy and decision-makers to establish solar PV power generation
system rural programs in Sindh and also support unwilling stakeholders to invest by providing
comprehensive techno-economic analysis. This study is a way forward for developing off-grid solar
PV system in the rural regions of Sindh, Pakistan.

2. Electricity Background in Sindh Province

Sindh is the third largest province by area, and the second largest in terms of the population in
Pakistan [26]. The location of the Sindh province holds strategic importance due to its long coastal
line, as presented in Figure 1. The Karachi port also provides the best, most economical, and shortest
route to the neighboring countries for transferring cargo. The geographical location of the port is very
significant, thus it has attracted foreign investment, development projects, and overall contributes to
both business and economic growth [27]. Therefore, the on-going projects have rapidly increased the
electricity demand in Sindh.

 

Figure 1. Sindh province map [28].

The energy demand is increasing day by day, which results in a huge electricity shortfall in the
country [29]. The Sindh province is being the most affected by the increasing electricity deficit as
they face a fresh series of load-shedding between 2 to 17 h a day [30]. This situation is even worse in
remote rural regions of Sindh, where power is inaccessible for many days. Moreover, the electricity
consumption in the rural regions is considered very low, and the transmission lines are a long distance
from the rural areas. Thus, it is considered as cost-intensive.

Pakistan has an estimated 2900 GW solar energy potential, however, this renewable source is still
waiting to be harnessed [31]. Figure 2 presented the major share in the electricity generation comprised
of the gas of 33.6%, oil 32.1%, hydropower 26.1%, nuclear 5.7%, renewable energy 2.2%, and coal 0.2%,
respectively [32].

3
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Figure 2. Energy mix of Pakistan.

The Sindh province is rich with renewable energy (RE) sources, such as wind, solar, mini-hydro,
and biomass which could be easily utilized for electricity generation. However, the government of
Sindh has not taken issues for the development of RE sources seriously, despite increasing demand for
electricity. The government had planned a RE policy in 2006, but it is in the infancy stage due to the lack
of interest of the government in exploiting these natural resources. Investors are worried and unwilling
to invest in the remote rural regions of Sindh since a worse law and order situation, no infrastructure,
and a low return on investment are the key factors behind obstructing private investment. However,
recently the World Bank has announced that they will finance $100 million worth of loans for the
installation of clean energy in Sindh, the target is to provide off-grid solar PV electricity to 200,000
households, equal to 1.2 million people [30].

Therefore, this study will help government, policymakers, and stakeholders in the implementation
of solar PV projects in the rural regions of Sindh.

2.1. Solar PV Power Generation Progress in Remote Rural Regions

Pakistan has installed a small number of solar PV projects in the country, and the first solar PV
project was installed in the 1980s. However, the project failed due to the lack of managerial and to
technical mistakes [33]. Afterward, until 2005, the country did not develop and promote any RE-based
project. Later in 2006, two organizations were established, the Alternative Energy Development Board
(AEDB) and the Pakistan Commission of Renewable Energy Technologies (PCRET) to promote and
develop RE resources for electricity production [34]. AEDB intends to install a solar PV system in
906 houses of rural regions [35]. Furthermore, the government has understood the advantage of a
solar energy framework for enriching socio-economic development and saving the environment in
rural regions.

2.2. Solar PV Power Generation Issues in Remote Rural Regions

Solar PV is the appropriate option for providing electricity to off-grid rural regions because of the
low-cost technology, easy installation and being environmentally benign. Whereas the development of
the solar PV system is substantially very low in rural villages of Pakistan, according to the National
Electric Power Regulatory Authority (NEPRA), 40,000 villages in the country do not have access to
electricity [36]. There must be robust coordination among organizations is required for a successful
solar PV rural electrification programs [37]. Before 2006, no organization was established for developing
and planning RE projects, PCRET and AEDB were established in 2006 to coordinate and develop plans
for the installation of RE projects in Pakistan. Unfortunately, the progress of both organizations for the
development of RE is very poor.

The government has failed to develop and plan innovate strategies and policies for the solar
PV system in rural regions, and solar energy productions have failed to take-off, regardless of the
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electricity crisis in Pakistan [38]. The common users put themselves at risk by choosing a solar energy
solution as an alternative energy. The high up-front cost is also an interruption in the development
of solar PV technology. Moreover, the cost of solar PV is significantly higher compared to that in
developed countries [31]. In the finance bill 2014–15, the government implemented a 32% tariff on the
import of solar PV panels, which results in the low progress of solar PV. Therefore, the government
took its decision back and reduced tariffs on solar panels. Despite tariffs on solar inverters, tariffs on
batteries are still existing with around 50%. Additionally, the government failed to provide incentives
to households on the installation of a solar PV system, which shows the lack of government policies for
both investors and customers [39].

3. Research Framework

The research framework of the study has been divided into several sub-sections, which are briefly
described as follows:

3.1. Determining the Solar Energy Potential

The average peak solar hours are used to identify and determine the solar irradiation in a
particular region when the sunshine at its maximum value for a certain number of hours. The peak
solar irradiation is 1 kW/m2, the peak hours of sun are equal to the daily solar irradiation in kWh/m2.
For example, the daily solar array output can be projected to be 545 Wh, if we assume that a 100 Wp
solar array is installed in the Panoaqil region with an average solar irradiation of 5.45 kWh/m2/day.
Therefore, the annual energy output can be computed for monitoring the PV system performance by
using the Equation (1) [40]:

Annual energy output
(

kWh
kWp

)
= Global inplane irradition

((
kWh/m2

)
/year

)
× Performance ratio

(1)

3.2. Solar Irradiation and Determining the Optimal Tilt Angle

The solar irradiation is generally measured on a horizontal surface of the particular region.
The direct solar irradiation received by a solar panel produces a high energy yield. Thus, usually solar
panels are angle-tilted to enhance the efficiency of the solar irradiation, and it is necessary to maximize
the solar energy yield to determine the optimal tilt angle [41]. The most effective way to increase and
improve the solar energy yield is by using solar tracker, solar trackers help in providing maximum
energy by changing the angle of solar panels. Nevertheless, solar trackers require high costs, and they
utilize more energy for tracking [42]. Furthermore, these solar trackers are a multifaceted nature.
Thus it is useless to install in remote rural regions. Consequently, it is more convenient and feasible to
change the title angle of solar panels manually rather than installing solar trackers [43]. The various
techniques have been employed to compute the ideal title angle of solar panels for exploiting the solar
irradiance [44–46]. In this study, a titled horizontal surface obtains a direct beam, some irradiation is
diffused, and some are absorbed, while some rays show off the ground, therefore the global horizontal
irradiance on a tilted surface IT

G is described as:

IT
G = IT

B + IT
D + IT

R (2)

where IT
B is a direct beam, IT

D is diffuse irradiation, and IT
R is reflected rays of solar energy on a

tilted surface.
Let GB be the ratio for the average daily direct beam on a horizontal surface and average daily

direct beam on a tilted surface, then IT
B can be altered as:

IT
B = IBGB (3)
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where GB is a geometric parameter, thus the value depends upon the declination angle, horizontal tilt,
surface azimuth, and latitude, respectively. Here, the extensively employed Liu and Jordan model [47]
is utilized for computing GB,

GB =
cos(L1 − T1)· cos Dsh· sin iss + iss· sin(L1 − T1)· sin Dsh

cos L1· cos Dsh· sin iss + iss· sin L1Dsh
(4)

where L1 is the latitude, T1 is the tilt angle, and iss and Dsh are declining angles and the sunshine hours.
For clarity, suppose an isotropic distribution of diffused irradiation. Therefore, the diffused region

upon the diffused irradiation on the horizontal surface and the horizontal tilt angle λ:

IT
D = ID

(cos(λ) + 1)
2

. (5)

Here, a property which is famous as albedo factor ω. The range of albedo varies between 0.1 and
0.9 [48]. Thus the reflected beam can be computed as:

IT
R = ω(IB + ID)

(− cos(λ) + 1)
2

. (6)

3.3. The Economic Viability of Off-Grid Solar PV Power Generation System

The economic feasibility of the off-grid solar PV power generation system in rural regions can be
described and identified in the following sub-sections:

3.3.1. Solar PV Power Generation System Size and Battery Storage

A normal solar PV system comprises a solar PV module, load or demand, battery storage, system
controller, and DC-AC inverter. The solar PV panels receive solar energy and transfer it to the system
controller, then transforming it to DC. Afterward, DC transmits the load to the DC and AC inverter.
The electricity produced by a solar PV system relies on the solar irradiance obtained in a particular
region. Whereas, several other criteria should be well-measured, such as optimal tilt, efficiency, and
solar PV maintenance [49].

Moreover, it is essential to calculate the losses suffered during the DC-AC transformation.
The various methods are available to forecast solar power yield on a tilted solar PV. The potential of
solar PV to produce electricity and Spv (kWh) is computed using Equation (7) [50].

Spv = apv·bpv·ct·PR (7)

where, apv is the panel area, bpv is the efficiency, ct is the annual solar irradiation obtained on a tilted PV
panel, and PR is the performance ratio used to determine the losses. Further, bpv is computed as [51]:

bpv = br[1− λr[TA − TR + (TN − Ta.N)
IT

IN
(8)

where br is the efficiency of solar panels, λr is the temperature of solar panels, TA is the ambient
temperature and TR is the referenced temperature of solar panels, TN is the nominal operating
temperature of solar panel cell, Ta.N is the ambient nominal operating temperature, and IN is the
solar radiation.

The designing of any solar PV is a very crucial task because it would have to approximate the load
that the PV system supports. For any Solar PV, it is necessary to measure the demand of electricity per
household, and it can be computed by multiple appliances, i.e., watt ratings, the number of operating
hours, and summing up watt ratings. As presented in Table 1, the projected load is about 440 W per
household in rural regions, comprising one pedestal fan, one ceiling fan, two charging slots, and three
light-emitting diodes (LED) lights.
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Table 1. Projected load requirement per household.

Appliance No. in Use Operational Hours Watts Rating Total Load (Watts-Hour)

Pedestal fan 1 8 12 96
Ceiling fan 1 12 12 144

Charging slot 2 2 5 20
LED light 3 5 12 180

Total Watts per day 440

The front end of the solar PV total electricity produced and demanded is presented here:

Electricity di f f erence =
365∑
i=1

(
Spv − Sd

)
(9)

where i is the day of the year, Spv is the total electricity produced, and Sd is the total electricity demand.
The solar energy can be used in the sunshine hours, thus for the night hours, an energy storage

technology is required for providing the electricity to the households. Most of the remote rural regions
of Sindh are off-grid, thus, battery storage is required at an extra cost. The benefit of battery storage
is that the electricity can be stored in the battery and can be utilized anytime, mostly in night hours
or cloudy weather when sunshine is unavailable. If electricity produced is more than its demand,
then there will be an electricity surplus, such as Spv > Sd, and the additional energy will be kept in the
battery. However, if the demand of the electricity is more than the electricity produced then Sd > Spv

and the solar PV is supposed to be insufficient to meet the electricity demand and load at a particular
period. The electricity required to be saved in a battery annually, Kb, is therefore:

Kb =
(∑

SE−
∑

FE
)
·eb (10)

where SE is surplus electricity, FE is shortfall electricity, and eb is the efficiency of the battery.
Simultaneously, the daily storage capacity of a battery, Sb, is considered as:

Sb =
Kb
365

(11)

3.3.2. Levelized Cost of Electricity (LCOE)

Levelized cost of electricity (LCOE) is an important metric employed to determine and compare
the cost of electricity produced by several technologies and sources. It prioritizes numerous choices
dependent on cost-effectiveness. This study compared the electricity generated by the off-grid solar PV
system and a conventional on-grid system to determine the total cost of electricity in both systems.
Therefore, the study has compared both alternative technologies through the estimated levelized cost
of electricity in kWh unit and is computed by a simple LCOE formula [52]:

LCOE =

∑n
α=1

Iα+Mα+Fα
(1+d)α∑n

α=1
eα

(1+d)α
(12)

where, Iα is the investment cost, Mi is the maintenance cost, Fi is the fuel cost, α is a year, ei is the
amount of electricity generated in kWh, d is the discounted rate, and n shows the working-life duration
of the alternative technology.

3.4. CO2 Emissions Mitigation from Solar PV Power Generation System

The clean energy is generated from the solar PV system through sunlight, which may help to
support minimizing greenhouse gas (GHG) emissions. Therefore, the government should install a

7
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solar PV system in the rural regions, so it may also help to eliminate the use and the need of diesel
generators which may possess high-carbon intensity and affect the environment and human health in a
bad manner. The solar PV system generates very little or no CO2 emissions during operation, but suffer
emissions in the manufacturing period [53]. Environmental sustainability is a globally challenging
issue since CO2 emissions are increasing from the unwanted activities of humans, such as utilizing
fossils fuels, which may directly affect the climate in a bad manner [54,55]. Thus, a solar PV system can
significantly mitigate CO2 emissions if it is replaced with a diesel generator. The amount of mitigating
CO2 emissions and diesel fuel kept or saved, Fk, is calculated by employing a solar PV system [56]:

Fk = Spv × FR (13)

where FR is fuel required for a diesel generator for producing electricity of 1 kWh. For the solar PV
system, the decrease in CO2 is measured in kilograms (kg), the CO2 emissions kept or saved is EMk in
the following Equation [56]:

EMk = Spv ×
(
Cd −Cpv

)
(14)

where Cd is the emitted carbon in kg required for a diesel generator for producing 1 kWh of electricity,
and Cpv is the emitted carbon in kg required for a solar PV system to produce electricity of 1 kWh.

4. Results and Discussion

The most important step before implementing and utilizing a solar PV system is the determination
of the available solar energy in the considered region [57]. The daily solar irradiance values received
in all of the five rural regions present the appropriate potential to generate electricity from solar PV
energy. Data of solar irradiance is obtained from the NASA database [58]. The data of these five
regions, i.e., Panoaqil, Badin, Nawabshah, Mirpurkhas, and Kambar regions, has been provided in
Table 2. It is identified from Table 2 that all of the selected remote rural regions have enough daily solar
irradiation throughout the year for electricity generation. Further, the daily solar irradiation received
on a horizontal surface in each rural region is presented in Figures 3–7. Moreover, the average values of
annual solar irradiation in the selected rural regions of Sindh is illustrated in Figure 8. The Nawabshah
region receives the highest annual solar irradiation (5.49 kWh/m2) followed by the Kambar region
(5.48 kWh/m2), the Panoaqil region (5.45 kWh/m2), the Mirpurkhas region (5.41 kWh/m2), and the
Badin region (5.39 kWh/m2), respectively.

Table 2. Solar data for five regions of Sindh, Pakistan [58].

Period

Panoaqil Region
Badin

Region
Nawabshah

Region
Mirpurkhas

Region
Kambar
Region

Daily Solar Irradiation
(kWh/m2/day)

Earth Temp
(◦C)

- - - - - - - -

Jan 4.10 14.65 4.49 16.92 4.20 14.60 4.41 15.90 3.73 14.70
Feb 4.97 18.36 5.25 21.03 5.09 18.30 5.06 20.03 4.89 19.26
Mar 5.71 25.29 5.97 27.85 5.76 26.19 5.88 27.55 5.83 26.04

April 6.65 33.15 6.69 33.97 6.67 34.04 6.61 34.81 6.90 34.14
May 6.88 38.72 6.79 36.06 6.90 37.55 6.78 37.81 6.79 39.60
June 6.76 41.93 6.48 37.31 6.75 39.46 6.55 39.29 6.77 41.12
July 5.91 40.69 5.08 36.15 5.82 37.91 5.52 37.94 5.65 39.92
Aug 5.97 39.28 5.14 34.38 5.91 37.44 5.49 36.73 6.00 39.40
Sep 5.86 39.28 5.47 33.45 5.82 35.75 5.58 34.95 5.82 36.01
Oct 4.95 30.42 4.97 31.47 5.03 30.88 5.00 31.51 5.47 30.02
Nov 4.00 22.97 4.31 26.55 4.13 24.37 4.15 25.67 4.22 21.03
Dec 3.70 16.08 4.02 19.24 3.80 16.90 3.90 18.48 3.68 15.23

Avg.
annual values

5.45 30.06 5.39 29.53 5.49 29.45 5.41 30.05 5.48 29.71

8



Processes 2019, 7, 308

Figure 3. The Panoaqil region daily solar irradiance received.

Figure 4. The Badin region daily solar irradiance received.

Figure 5. The Nawabshah region daily solar irradiance received.
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Figure 6. The Mirpurkhas region daily solar irradiation received.

Figure 7. The Kambar region daily solar irradiation received.

Figure 8. Annual solar irradiance received in five rural regions of Sindh.

4.1. Analyzing the Solar Energy Potential

The above-stated Figures present the average solar irradiation values for the selected regions
of the Sindh province. The optimal average peak solar hours are also computed for the selected
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regions. Table 3 presents the total potential of using solar PV system in five regions of Sindh province,
Pakistan, such as the Panoaqil, Badin, Nawabshah, Mirpurkhas, and Kambar regions. It presents that
the potential for the solar PV power generation system is significant in these regions. For example,
the Nawabshah and Kambar regions, with average solar irradiation of around 5.49 kWh/m2/day and
5.48 kWh/m2/day, have the probability of generating 1503 kWh/kWp and 1500 kWh/kWp annually.
Furthermore, the daily energy produced from a solar PV panel is around more than 500 Wh in each
region of the Sindh province, which can satisfy the need for a primary household energy consumption.

Table 3. Potential of solar photovoltaic (PV) power generation in selected regions of Sindh, Pakistan.

Region
Solar Irradiation

(kWh/m2/day)
Avg. Peak

Solar Hours
Daily Energy
Output (Wh)

Annual Energy Output
(kWh/kWp)

Panoaqil 5.45 5.450 545 1492.21
Badin 5.39 5.390 539 1475.782

Nawabshah 5.49 5.490 549 1503.162
Mirpurkhas 5.41 5.410 541 1481.258

Kambar 5.48 5.480 548 1500.424

4.2. Solar Irradiation Obtained at the Optimal Tilt Angle

Using Equations (2)–(6), the mean values of daily solar irradiation received on a tilted angle are
shown in Table 4. Similarly, [59] we conducted the techno-economic analysis to check the impact of
title angle on the performance of a PV battery storage for a single household in Germany. The results
indicate that a substantial percentage of solar energy yield can be annually elevated by changing the
angle from 0 to 90 degrees of solar PV panels on the optimal tilt angle. Solar energy yield can be
elevated by 9.87% in Panoaqil at the optimal tilt angle of 28.9◦. Likewise, 9.98% in Badin on 29.1◦,
10.11% in Nawabshah on 29.3◦, 11.66% in Mirpurkhas on 30.6◦, and 10.43% in Kambar at 29.5◦.

Table 4. Daily solar irradiation (kWh/m2/day) received on a tilted varying between 0 and 90 angle degrees.

Region
0 Tilt
Angle
Degree

15 Tilt
Angle
Degree

30 Tilt
Angle
Degree

45 Tilt
Angle
Degree

60 Tilt
Angle
Degree

75 Tilt
Angle
Degree

90 Tilt
Angle
Degree

Panoaqil 5.8 6.2 6.3 6.1 5.6 4.8 3.9
Badin 5.5 5.9 6.0 5.8 5.4 4.6 3.7

Nawabshah 5.7 6.2 6.3 6.2 5.7 4.9 4.0
Mirpurkhas 5.8 6.2 6.3 6.1 5.6 4.8 3.9

Kambar 5.8 6.2 6.3 6.1 5.6 4.8 3.9

4.3. The Economic Viability of Solar PV Power Generation System

An off-grid solar PV system is proposed in the study to provide electricity to rural households in the
Sindh province. In Table 5, the simulation of the parameters has been employed and provided by [60].
Based on Equations (7)–(11), it is identified that the PV module area is 1.2 m2, whereas maximum
voltage and current are 26.3 V and 7.61 A. The solar PV system can be used for the electrification of one
household, having a production capacity of 200 W or less [61]. Therefore, for a solar panel of 200 W
with a 140 Ah/12 V battery is appropriate for the load of one household. Moreover, the conversion
efficiency of a solar panel is 16%. Maximum electricity is produced in all of the selected rural regions
from April to June, however, due to monsoon season, a slight decline is observed from July to October
in the rural regions of Sindh. The cost specifications for the off-grid solar PV system are shown in
Table 5. It was identified using Equation (12), that the levelized cost of energy (LCOE) of the proposed
off-grid solar PV system is PKR 6.87/kWh, however, the electricity cost from the conventional energy
sources is PKR 20.79/kWh [60]. Thus, electricity produced by the solar PV system saves each household
approximately PKR 13.92 per kWh.
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Table 5. Parameters employed in the study.

Parameter Unit Value

Panel area m2 1.2
Max: power current A 7.61
Max: power voltage V 26.3

PV panel power rating WP 200
Ambient temperature ◦C 20

Panel referenced temperature ◦C 25
Panel referenced efficiency % 16
Solar radiation for NOM W/m2 800

PV panel life Year 25
Panel capital cost PKR/WP 110
Battery efficiency % 85

Battery cost PKR/Ah 120
O/M cost % of the total cost 4

Discount rate % 9
Battery duration Year 5

4.4. CO2 Emissions Mitigation from the Solar PV Power Generation System

A 20 kW diesel generator produces the electricity of 4 kWh/liter. The annual demand of the
electricity for the household mentioned above is 160 kWh, so the diesel generator would consume
a total of 41.43 L/year. Therefore, based on Equation (14), as per household, the proposed solar PV
system could mitigate CO2 at about 97.50 kg/year. According to the sixth population and housing
census of Pakistan, there are 4,185,828 households in rural regions of Sindh [62]. If the off-grid solar PV
system electrified 100% of the rural areas, then the high level of CO2 could be mitigated annually.

5. Conclusions and Policy Recommendations

5.1. Conclusions

An off-grid solar PV system is recognized as the optimal choice to provide electricity in remote
rural regions. However, it is very necessary to assess the techno-economic feasibility of the particular
region for installation of an off-grid solar PV power generation system. Therefore, this study has
evaluated the techno-economic feasibility of five rural regions of the Sindh province, i.e., the Panoaqil,
Badin, Nawabshah, Mirpurkhas, and Kambar regions. The study also suggests that by installing the
off-grid solar PV system in the above-mentioned regions it would help to mitigate the CO2 emissions
from the particular regions. The solar energy potential, solar irradiance, and optimal tile angles of
solar panels have been evaluated. For maximizing the solar energy, it was found that the output of
energy could be significantly increased by varying the solar panels angle on the optimal tilt angle.
The results also revealed that the off-grid solar PV system is a much cheaper option for electricity
compared to other conventional electricity sources. This study identified that all five regions of the
Sindh province have good potential for solar energy and are technically and economically feasible
for producing electricity. Therefore, the government must plan and build a strong policy framework
to install an off-grid solar system in the Sindh province. Meanwhile, this study provides key policy
recommendations for the implementation of an off-grid solar PV system in the rural regions of Sindh.

5.2. Policy Recommendations

The following policy recommendations can be employed to develop an off-grid solar PV power
generation system in remote rural regions of the Sindh province, Pakistan.

• The results of this study indicate that rural regions have a very good potential for solar-based
electricity generation. Therefore, off-grid solar PV rural programs must be started with critical
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action plans and strategies and the concerned authorities must formulate planning and policies to
implement such projects.

• According to the investigation, all of the selected regions have suitable solar energy potential to
generate off-grid solar PV electricity. However, the Nawabshah is the most favorable due to its
higher solar energy potential. Also, the geographical location of Nawabshah is technically and
economically the best option for generating PV electricity.

• As the review of the existing scientific studies and government policies indicate, lack of supportive
policies and political will are the main hurdles in the deployment of solar electricity generation
systems in rural areas of the country [63,64].

• It is suggested that supportive policies must be planned for stakeholders so that stakeholders can
easily invest in rural regions for developing a solar PV power generation system.

• The financial constraints due to poverty and a huge budget deficit are also recognized as another
hurdle in the deployment of the solar PV system. Therefore, the government tries to ensure the
availability of micro-financing projects which may aid rural communities to install an off-grid
solar PV system.

• The policy framework should be formulated by giving high preference to a renewable-based solar
power system instead of the conventional power generation system.

• The upfront cost of a solar PV system must be minimized, so that rural communities install and
electrify with a solar PV system.

• The quality standards should be taken into account for the off-grid solar PV system.
• It is important that householders should be given loans and subsidies to utilize solar PV power

generation systems at the domestic level.
• Educate people by organizing training and campaigns about the drawback associated with

conventional energy and make them aware of the advantages related to the deployment of
solar energy.

• Priority must be given to the local communities and train them to install, operate, and maintain
the solar PV system.

5.3. Limitations of the Current Study and Future Research Direction

This study has considered only five particular regions of Sindh province, thus the results of
the study are not feasible for other regions of Sindh and other provinces of Pakistan. Therefore, the
techno-economic feasibility analysis must be carried out for other regions to identify solar power
potential. In the future, the hybrid renewable energy system, solar and wind, can be developed in
the potential regions of Pakistan because the hybrid renewable energy system is a more reliable and
effective source of energy. The hybrid solar–wind energy system shall be employed in the remote rural
regions of Pakistan to make them independent of grids. The government can play a pivotal role to end
the energy crisis by facilitating rural regions with such a hybrid energy system.
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Abstract: Waste cooking oils (WCO) recycling companies usually have economic losses for buying
WCO not suitable for biodiesel production, e.g., WCO with high free acidity (FA). For this reason,
the determination of FA of WCO by near infrared (NIR) spectroscopy was studied in this work to
assess its potential for in situ application. To do this, FA of 45 WCO was measured by the classical
titration method, which ranged between 0.15 and 3.77%. Then, the NIR spectra from 800 to 2200 nm
of these WCO were acquired, and a partial least squares model was built, relating the NIR spectra to
FA values. The accuracy of the model was quite high, providing r2 of 0.970 and a ratio of performance
to deviation (RPD) of 4.05. Subsequently, a model using an NIR range similar to that provided
by portable NIR spectrometers (950–1650 nm) was built. The performance was lower (r2 = 0.905;
RPD = 2.66), but even so, with good accuracy, which demonstrates the potential of NIR spectroscopy
for the in situ determination of FA of WCO.

Keywords: free acidity; NIRS; partial least squares; waste cooking oil

1. Introduction

Fossil fuel combustion has negative effects on the environment. Therefore, current research
is mainly focused on the search for economic, environmentally friendly biofuels that can replace
petroleum fuels. Diesel combustion in engines leads to air pollution by greenhouse gas emissions,
namely NOx, CO, and CO2, and to the destruction of the ozone layer, due to photochemical interactions
of the hydrocarbon, CO, and NOx emissions. As an alternative to petroleum diesel fuel, the currently
produced biofuel is biodiesel, which is composed of fatty acid methyl esters (FAME). Biodiesel is
obtained by transesterification of vegetable oils with short-chain alcohols, mainly methanol [1].

The main problems of biodiesel production from vegetable oils are the high cost of the raw materials,
the threat to food security [2,3], and the oversupply of glycerin as a byproduct [4]. The current alternative
to vegetable oils is the use of waste cooking oils (WCO) as raw material for biodiesel production. WCO
are much cheaper than vegetable oils from crops or trees, are not in conflict with food security, and are
available as waste products [3,5]. The HORECA (hotels, restaurants, and catering) sector produces
roughly 400,000 tons of WCO per year in Spain [3]. As a profitable market, many enterprises dealing
with the collection and recycling of waste cooking oils for subsequent biodiesel production have been
set up [6].

Frying consists of introducing food to an oil bath at temperatures between 160 and 200 ◦C, during
a certain period in the presence of air. Because of this high temperature exposure, the oil undergoes
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numerous physical and chemical changes that make the characteristics of this oil different. Among
these changes, the most notorious one is the increasing of acidity, mainly provoked by the release of
free fatty acids from the partial hydrolysis of triglycerides.

WCO recycling companies usually collect these oils from clean points or special containers, or buy
entire trucks from smaller companies. After filtering in their facilities to remove leftover food, flour, etc.,
WCO are left to decant to obtain three phases: Clean oil, water, and sludge [6]. This oil is then analysed.
The main requirement is that the free acidity (FA) is lower than 2.5%. If not, in order to be suitable
for biodiesel production, this oil must be subjected to a chemical process (esterification) to reduce FA.
Most WCO recycling companies usually do not have either reactors nor qualified staff to carried out
the esterification reaction, so these companies have to sell this oil to bigger companies that have the
required equipment (mainly biodiesel producers) at a lower price than that of purchase, or to pay to
an environmental manager to dispose it. This problem could be overcome if FA was measured in situ.
The determination of oil FA is carried out by acid–base titration, and cannot be performed in situ because
it needs reagents, sample preparation, and laboratory glassware, and generates chemical wastes.

Near-infrared spectroscopy (NIRS) is a low-cost, safe, and non-destructive technique, which
generally does not require sample preparation or chemicals [7,8]. Nowadays, portable near-infrared
spectrometers can be purchased for roughly 6000 € (e.g., Oceanoptics Flame-NIR Spectrometer).
Therefore, NIRS can be suitable for in situ analysis. The potential of NIRS for olive and sunflower oils’
free acidity determination has been demonstrated [7–9], which makes it feasible that WCO′s FA can
also be measured by NIRS.

The aim of this work is to assess the feasibility of determining the free acidity of waste cooking oils
by near-infrared spectroscopy and verify whether this technique can be used for its in situ determination
by WCO collection and recycling companies. To do this, FA determination in WCO was first assayed
using the whole NIR spectrum. Subsequently, it was assayed in a reduced NIR interval, similar to that
provided by portable NIR spectrometers, thus proving the applicability of the technique.

2. Materials and Methods

2.1. Waste Cooking Oils (WCO)

Fifty WCO were collected from the university canteen of the Reina Mercedes Campus (University
of Seville) and different private households. These WCO were olive, sunflower and pomace oils, and
mixtures of them. This ensured a wide variety of oil types and degradation degrees. Once received at
the laboratory, WCO were filtered to remove solids such as leftover food, flour, etc.

2.2. Free Acidity (FA) Determination by Acid–Base Titration

The percentage of free fatty acids that WCO contain, expressed as oleic acid percentage, was
measured according to the Official Methods of Analysis of the EC [10,11]. Briefly, 20 g WCO were
placed into 250-cm3 wide-mouth Erlenmeyer flasks along with 50 cm3 ethanol/ethyl ether solution
(1:1 v/v) and a few drops of phenolphthalein, and then neutralized with 0.1 N KOH, previously
standardized with benzoic acid. The titration ends when a reddish-brown color change is observed.
Determinations were performed in duplicate.

The percentage of acidity of the oil was calculated according to the following equation:

FA (%) =
V× 0.1 N× 0.282

m
× 100

where V is the spent volume of KOH in mL, 0.1 N stands for the KOH normality, 0.282 is the equivalent
weight of oleic acid in mequiv, and m is the mass of WCO sample in grams. The FA contents ranged
between 0.15% and 3.77%, being the mean value and standard deviation, 0.94% and 0.79%, respectively.
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2.3. Spectra Acquisition

Before spectra acquisition, WCO samples were kept at 32 ◦C for 30 min in a water bath because
NIR radiation reflected and absorbed by a sample depends on its temperature and this temperature
ensures that all oil compounds are completely dissolved. A Vis/NIR Labspec Pro model LSP 350-2500P
(Analytical Spectral Devices Inc., Boulder, CO, USA) spectrophotometer with three detectors was used
for spectral acquisition, as described in [7]. The spectrophotometer is equipped with internal shutters
and automatic offset correction, the scanning speed time being 100 ms.

Samples were introduced in a 10-mm quartz cuvette, which was placed in a cuvette accessory
joined by fibre optic connectors to the spectrophotometer light source on one side, and to the
spectrophotometer detector on the opposite side. This optical path length was selected because it
showed higher absorption intensity than 1 mm, 2 mm, and 5 mm path-length quartz cuvettes when
acquiring olive oil NIR spectra [7]. NIR spectra from 800 to 2200 nm were then acquired in transmittance
mode and recorded using the Indico Pro software (Analytical Spectral Devices Inc. Boulder, CO,
USA), each spectral variable matching to a 1-nm interval. The spectrum of each sample was acquired
in duplicate.

2.4. Calibration Procedure and Model Evaluation

Reflectance data were first transformed to absorbance and then maximum normalised. Partial
least squares (PLS) models coupled to full-cross internal validation were built with The Unscrambler
software (CAMO Software AS, Oslo, Norway) for the full NIR spectrum (800–2200 nm) and for the
wavelength interval specified for the Ocean Optics Flame-NIR spectrometer (950–1650 nm).

The standard error of calibration (SEC) and the multiple correlation coefficient of calibration (r2
c)

were used to assess models′ fitness. The prediction performance of the models was evaluated based on
the standard error of prediction (SEP), which corresponds to the standard error of full-cross validation,
the multiple correlation coefficient of full-cross validation (r2

cv), and the ratio of performance to
deviation (RPD). The RPD was defined as the ratio between the standard deviation from the FA
reference data and SEP. Among them, the most important parameters to assess the performance of
a PLS model are r2

c (calibration) and RPD (validation): The higher these parameters are, the higher
the accuracy of the model. To be specific, models with r2

c ≥ 0.90 are considered to have excellent
precision, while models with r2

c = 0.70–0.89 are regarded as good precision models [12]. As for RPD,
this parameter must be higher than 3 for a PLS model to be considered of excellent precision [13],
although another author has pointed out that predictive models suitable for routine analysis should
have RPD values between 2 and 10 [14].

3. Results

3.1. Features of the NIR Spectra of Waste Cooking Oils

Absorbance in the NIR region is linear with the concentration of organic compounds. The NIR
spectrum of a sample consists of first and second overtones (800–1800 nm) and combination
bands (1800–2700 nm) of fundamental, largely hydrogenic vibrations that occur in the MIR region.
The acquired WCO absorbance spectra (Figure 1) were practically identical to those previously obtained
for olive oils (Figure 2), so their main features are described elsewhere [7]. Briefly, from left to right, a
broad absorbance band is observed at 1210 nm, which is related to C–H second overtones and CH=CH–
stretching vibrations. Next, a wide absorption band, due to the water first overtone, is observed in the
1350–1450 nm region. The intense absorption found at 1720 nm is related to the first overtone of the
C–H vibration of several chemical groups (=CH–, –CH3, –CH2–) and is characteristic of triglycerides
and fatty acids of vegetable oils [7]. Another broad water combination band is located at 1880–2100 nm.
The two water bands (1350–1450 nm and 1880–2100 nm) show multiple overlapping bands. Finally,
the absorption band of the C–H vibration of cis-unsaturation occurs at 2140 nm.
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Figure 1. Near-infrared spectra of the waste cooking oils (WCO) used in this research.

Figure 2. Visible/near-infrared spectra of olive oils [7].

3.2. NIR Partial Least Squares Model for the 800–2200 nm Spectrum

In light of the similarity between the NIR spectra of vegetable and waste cooking oils, it is
reasonable to think that free acidity of WCO can be obtained from their NIR spectra, as it has been
demonstrated for olive oil [7,8]. Indeed, the PLS calibration model for FA determination, built using
the 800–2200 NIR absorbance spectra of the 45 WCO samples, achieved high r2

c and RPD (0.970 and
4.05, respectively), which accounts for the excellent precision of the model taking into account the
aforementioned criteria [12–14]. Figures 3 and 4 illustrate the fit of the data to the proposed model,
along with the model statistics. The number of optimal principal components to build this PLS model
was nine, explaining 95.1% of the variation in the FA data. Models with large total explained variance
(close to 100%) explain most of the variation in the data. Ideally, in order to have simple models, the
residual variance has to go down to zero with as few principal components as possible. If this were not
the case, it would mean that there might be a large amount of noise in the data.

3.3. NIR Partial Least Squares Model for the 950–1650 nm Spectrum

Once it was proved the NIRS was suitable to determine FA in WCO, the second objective of this
work was to try to quantify FA in WCO using a narrower NIR range, similar to the typical range
provided by portable NIR spectrometers. In this case, the selected range was 950–1650 nm. The PLS
model was built using nine principal components, which explained 90.5% of the variation in the FA
data. According to the criteria established [12–14], this PSL model can be regarded as a good precision
model. As shown in Figure 5, the statistics of the calibration model were satisfactory, achieving an
acceptable r2

c (0.90). However, SEP increased to 0.30% (Figure 6), thus decreasing the RPD value to
2.66. Compared to the model obtained for the 800–2200 nm NIR range, the precision of the model
obtained for 950–1650 nm is markedly lower (Table 1).
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Figure 3. Performance of the 800–2200 partial least squares (PLS) model for free acidity (FA)
determination.

Figure 4. Validation of the 800–2200 PLS model for FA determination.

Table 1. Statistics of the PLS models obtained for the two assayed near-infrared spectroscopy
(NIRS) intervals.

NIR Interval n r2
c r2

cv SEC SEP RPD

800–2200 1401 0.970 0.914 0.113 0.195 4.05
950–1650 701 0.905 0.800 0.201 0.297 2.66

n: Spectral variable number; r2
c: Correlation coefficient of calibration; SEC: Standard error of calibration; SEP:

Standard error of prediction; RPD: Ratio of performance to deviation.

Figure 5. Performance of the 950–1650 PLS model for FA determination.

This could be due to the missing information related to the first overtone of the C–H vibration of
several chemical groups (=CH–, –CH3, –CH2–), characteristic of fatty acids of vegetable oils, which
was found to be 1720 nm. That aside, WCO contain not only the vegetable oil components, but also
degradation products, due to thermal, oxidative, and hydrolytic reactions that occur during frying
and food rests (flour, etc.). These components differ among samples and can decrease the PLS model
performance. Their negative effect can be balanced, increasing the number of contributing spectral
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variables to the model, which accounts for the higher accuracy of the PLS model built for the NIR range
800–2200 nm. The precision of both PLS models could be improved, eliminating spectral variables
without information related to the measured parameter, such as noise and background, or removing
outliers in the calibration and validation sets [7]. However, the accuracy of the 950–1650 nm PLS model
is enough for the proposed purpose: The in situ determination of FA of WCO. In fact, the achieved
SEP is not high when compared to other authors′ results. In this sense, the SEP using the whole NIR
spectrum (from 750 to 2500 nm) was 0.35% for virgin olive oils [8], while in this work, the SEP for
waste cooking oils was 0.30%. Furthermore, the use of techniques for uninformative spectral variable
removing requires knowledge in programs such as MATLAB (The MathWorks, Inc., Natick, MA,
USA), and the purchase of these programs and powerful computers, which will obviously decrease the
feasibility and practical application of NIRS to in situ FA determination.

Figure 6. Validation of the 950–1650 PLS model for FA determination.

4. Conclusions

In the absence of tests at companies’ facilities with different portable NIR spectrometers, the
potential of near-infrared spectroscopy for in situ waste cooking oils′ free acidity determination has
been demonstrated. High accuracy was achieved when using the whole NIR range provided by a
benchtop NIR spectrometer (r2 = 0.970; RPD = 4.05). Although not perfect, the accuracy of the partial
least squares model, built using a wavelength range similar to that incorporated in portable NIR
spectrometers (950–1650 nm), was good (r2 = 0.905; RPD = 2.66). Furthermore, the standard error
of prediction achieved with this narrow NIR interval (0.30%) was in the range of that obtained by
other authors for vegetable oils using the full NIR spectrum, which accounts for the ability of NIR
spectroscopy to determine free acidity of waste cooking oils.
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Abstract: Optimal scheduling of a redundant residential microgrid (RR-microgrid) could yield
economical savings and reduce the emission of pollutants while ensuring the comfort level of
users. This paper proposes a novel multi-objective optimal scheduling method for a grid-connected
RR-microgrid in which the heating/cooling system of the RR-microgrid is treated as a virtual energy
storage system (VESS). An optimization model for grid-connected RR-microgrid scheduling is
established based on mixed-integer nonlinear programming (MINLP), which takes the operating
cost (OC), thermal comfort level (TCL), and pollution emission (PE) as the optimization objectives.
The non-dominate sorting genetic algorithm II (NSGA-II) is employed to search the Pareto front and
the best scheduling scheme is determined by the analytic hierarchy process (AHP) method. In a case
study, two kinds of heating/cooling systems, the radiant floor heating/cooling system (RFHCS) and
the convection heating/cooling system (CHCS) are investigated for the RR-microgrid. respectively,
and the feasibility and validity of the scheduling method are ascertained.

Keywords: redundant residential microgrid (RR-microgrid); optimal scheduling; virtual energy
storage system (VESS); non-dominate sorting genetic algorithm II (NSGA-II); analytic hierarchy
process (AHP)

1. Introduction

In recent years, technologies for the utilization of clean energy generation and the improvement of
energy efficiency have been attracting more and more attention for the growing concerns about energy
exhaustion and environmental pollution all over the world. The European Union put forward targets
for 2030, which will achieve a 40% reduction, at least, in emissions of greenhouse gases compared with
1990 levels, while increasing the renewable energy utilization to 27% of total energy consumption [1].
Similarly, the United States proposed its greenhouse gas emission target for 2025, which will attain a
26–28% reduction as compared to 2005 levels. With respect to the Chinese government, it has been
committed that the reduction of greenhouse gas emissions per unit of GDP will be 40–45% at 2020 [2,3].
According to the International Energy Agency’s report, buildings bring about 32% of the total energy
expenditure while being responsible for approximately 30% of CO2 emissions [4]. In China, buildings
currently consume 27.6% of the total exhausted energy and it is predicted to be 35% by 2020 [5,6].
Therefore, it is of great importance to encourage the high penetration of clean energy generation and
the reduction of energy consumption for buildings.

The application of microgrids has become increasingly popular which provides a desirable
architecture able to improve the energy utilization efficiency. There are different definitions of
microgrid in the literature, and a broadly cited definition provided by U.S. Department of Energy
(DOE) is as follows: “A microgrid is a group of interconnected loads and distributed energy resources within
clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid
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can connect and disconnect from the grid to enable it to operate in both grid-connected or island mode. A remote
microgrid is a variation of a microgrid that operates in islanded conditions [7]”.

According to the tracker report from Navigant Research, at least 405 microgrid projects are
currently proposed, planned, under development, or fully operating [8]. Feng et al. [9] pointed out
that the world’s microgrid projects are mainly located in North America and the Asia Pacific region,
and present a review of microgrid development on policies, demonstrations, controls, and software tools.
For research purposes focusing on topics like operation, control, and protection, many experimental
projects have been built as the test beds for microgrids [10].

Building microgrids are generally comprised of combined cooling, heat and power (CCHP)
systems, distributed generators (DGs), energy storage systems (ESS), electric loads, and heating/cooling
demand. In order to provide economical, comfortable, and low-emission energy service to users, the
microgrid operation should be scheduled reasonably, however, there are still many great challenges
to face. For instance, the operating state of different kinds of energy supplies need to be reasonably
coordinated. Meanwhile, the energy balance and operating constraints of energy supplies must be met
simultaneously. Consequently, the intelligent scheduling method for building microgrids has been a
current research hotspot.

The optimal scheduling problems of building microgrids have been treated as a linear programming
(LP) problem [6,11,12], a non-linear programming (NLP) problem [13–15], and a multi-objective
programming problem (MOP) [16–18]. Guan et al. [6] established an economic scheduling model
of a building microgrid to minimize the total consumption of natural gas as well as electricity.
Jaramillo et al. [11] presented a multi-objective mixed-integer linear programming (MILP) model for a
hybrid energy microgrid to reduce its daily operating cost as well as its total emission. Wu et al. [12]
presented a MILP model for a microgrid to realize its economic scheduling. Jiang et al. [13] proposed
a double-layer coordination control method of microgrid based on NLP. Lu et al. [14] presented a
mixed-integer nonlinear programming (MINLP) model for a building microgrid to realize the economic
scheduling. Zhao et al. [15] presented a predictive control model for a building microgrid scheduling
under dynamic electricity prices. Javidsharifi et al. [16] presented an intelligent evolutionary modified
multi-objective bird mating optimizer (MMOBMO) algorithm for a renewable-based microgrid to
realize its short-term optimal scheduling. Carpinelli et al. [17] presented a multi-objective scheduling
approach for microgrid including different distributed resources. Lin et al. [18] proposed a two-stage
multi-objective dispatching method for an integrated community energy system.

Generally, ESS play an important part in the scheduling of microgrids. The commonly used ESS
includes electric ESS and thermal ESS. Electric ESS, like super capacitors or storage batteries, have the
strong point of rapid response speed and high energy density, however, large-capacity configuration of
them is quite expensive. Thermal ESS, like heat/cool storage tanks, have the virtue of low construction
cost, nevertheless, they are usually unavailable in applications due to the distinct weakness of higher
space requirements. Lately, it is a novel way to improve the performance of microgrid through
scheduling the controllable load on the demand side—such as water heaters [19], air conditioners [20],
heat pumps [21], refrigerators [22], electric vehicles (EVs) [23,24], etc.—of which the patterns of power
consumption could be changed.

Considering the insulation characteristics of buildings and the heat capacity of the indoor air,
Jin et al. [25,26] constructed a virtual energy storage system (VESS) and presented a scheduling method
for a building microgrid to minimize the daily operating costs. Similarly, considering that the radiant
floor heating/cooling system (RFHCS) has considerable thermal storage capacity and has been widely
used in residential buildings, Liu et al. [27] treated it as a VESS, and proposed a scheduling method
for two kinds of typical residential microgrids to lower the operating cost while ensuring the thermal
comfort level (TCL). In these VESS-related papers, the optimal scheduling problem is treated as a
single-objective problem which mainly focuses on the operation economy. However, economy, comfort,
and low-emission are expected to be achieved simultaneously for the operation of a building microgrid
in application.

26



Processes 2019, 7, 296

The motivation of this paper is to propose a multi-objective optimal scheduling method for
building microgrids, which could be considered as the extension and improvement of [27]. The main
contributions are as follows:

(1) A new kind of building microgrid—a redundant residential microgrid (RR-microgrid)—is chosen
as the investigated subject for optimal scheduling problem.

(2) ETP models are established for different heating/cooling systems, the RFHCS and the convection
heating/cooling system (CHCS).

(3) Three optimization objectives—operating cost (OC), thermal comfort level (TCL), and pollution
emission (PE)—are considered for the optimization model.

(4) The non-dominate sorting genetic algorithm II (NSGA-II) is applied to search the Pareto front of
the presented multi-objective optimization model and the best scheduling scheme is determined
by the analytic hierarchy process (AHP) method.

Accordingly, the contents of this paper includes six parts: an introduction of the RR-microgrid
(Section 2); the equivalent thermodynamic parameters (ETP) model of the heating/cooling system in the
RR-microgrid (Section 3); a multi-objective optimization model for the scheduling of the RR-microgrid
(Section 4); a solution to the optimization model using NSGA-II and AHP (Section 5); a case study
(Section 6); and the conclusion (Section 7).

2. Introduction of the Redundant RR-Microgrid

2.1. Structure of the RR-Microgrid

The structure of the RR-microgrid studied in this paper is shown in Figure 1, and it is known that
the RR-microgrid consists of renewable DGs, such as photovoltaic generation (PV) and wind generation
(WT), a battery energy storage system (BESS), a CCHP unit which is composed of micro-gas turbines
(MTs), a waste heat recovery system (WHRS), absorption chillers (ACs), and other devices, like electric
heaters (EHs) as well as electric chillers (ECs). In addition, the RR-microgrid is connected to an external
grid so that the exchange of electric power is allowed. “Redundant” means that the heating/cooling
demand of residential buildings could be satisfied by the CCHP unit as well as EHs/ECs, while the
electric load of the residential buildings could be satisfied by clean energy generation, the external
grid, and the CCHP unit.

 

Natural gas

Waste heat 
recovery system

Wind generation

PV generation

External grid

Battery energy storage system

Electric load

Cooling demand

Heating demand
Residential buildingsMicro-gas 

turbines

Absorbtion chillers

Electric chillers

Electric heaters

Figure 1. Structure of the studied RR-microgrid.
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2.2. Models of Energy Supplies

(1) CCHP Unit

MTs generate electricity through consuming natural gas, and the output electric power PMT can
be expressed as:

PMT = Fgas × LHVNG × ηMTE (1)

meanwhile, the output thermal power QMT is:

QMT = Fgas × LHVNG × ηMTH (2)

where Fgas is natural gas MTs consumed per unit time, LHVNG is the low calorific value for natural gas,
and ηMTE and ηMTH are the electric power efficiency and thermal power efficiency for MTs, respectively.

Output thermal power QMT could be turned into the heating power QMTH by the WHRS:

QMTH = QMT × ηHE (3)

where ηHE is the conversion efficiency of WHRS, and could be further turned into the cooling power
QMTC by the ACs:

QMTC = QMTH ×COPAC (4)

where COPAC is coefficient of performance (COP) for ACs.

(2) Electric Heaters/Chillers

The EHs consume electric energy to generate the heating power QEH expressed as:

QEH = PEH ×COPEH (5)

where PEH is the consumed electric power, COPEH is the COP for EHs. The ECs consume electric
energy to generate the cooling power QEC expressed as:

QEC = PEC ×COPEC (6)

where PEC is the consumed electric power, COPEC is the COP for ECs.

(3) Battery Energy Storage System

In practice, the charging and discharging processes of the BESS are usually not constant. However,
for the sake of simplicity, the charging and discharging of the battery is regarded as a constant power
load or supply during every scheduling period. The state of charge (SOC) for the BESS varies during
charging/discharging process, which can be expressed as:

Et = Et−1 + ΔT ×Ut
Si+ × Pt

Si+ × ηc − ΔT ×Ut
Si− ×

Pt
Si−
ηdisc

(7)

where Et is the SOC at the end of scheduling period t, Et−1 is the SOC at the end of scheduling period
t – 1, Pt

Si+/Pt
Si− are the charging power and discharging power for scheduling period t, respectively,

Ut
Si+/Ut

Si− are the charging status and discharging status for scheduling period t, respectively,
ηc/ηdisc are the charging efficiency and discharging efficiency, respectively, and ΔT is the time length
of the scheduling period.
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3. Equivalent Thermodynamic Parameters Model of the Heating/Cooling System
in the RR-Microgrid

In this paper, two kinds of heating/cooling systems for residential buildings are investigated:
the RFHCS as well as the CHCS. The RFHCS is different from CHCS in the way of transferring heat/cool
to the human body, as the former does so mainly through thermal radiation of the floor and envelope
structure, while the latter does so mainly through indoor air convection. Generally, the operative
temperature is suitable to evaluate the TCL. Correspondingly, the mean value of the air temperature
and indoor average radiation temperature could be regarded as the operative temperature for the
RFHCS, while the indoor air temperature could be regarded as the operative temperature for the CHCS.
The operative temperature is influenced mainly by the solar radiation load, heating/cooling demand,
and the thermal runaway resulting from the difference between the indoor temperature and outdoor
temperature. Accordingly, in this paper, equivalent thermodynamic parameter (ETP) models for the
RFHCS and CHCS are established, respectively, to describe their mathematical relationships based
on [16], as shown in Figure 2.

 
(a) (b) 
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Figure 2. ETP models for different heating/cooling systems. (a) RFHCS; and (b) CHCS.

In Figure 2, Q and Qs represent the heating/cooling demand (W) and solar radiation load (W),
respectively; Tg, Tz, and Tout represent the radiant floor surface temperature (◦C), the operative
temperature (◦C), and the outdoor temperature (◦C), respectively, Cg, Cw, and CA represent the
equivalent heat capacities (J/◦C) of the radiant floor, the envelope structure, and the indoor air,
respectively; RW represents the equivalent heat resistance (◦C/W) for the envelope structure, while RZ

represents the equivalent heat resistance (◦C/W) of convection and radiation from the radiant floor
surface to the indoor air and envelope structure.

For RFHCS, the differential equations for corresponding ETP model are:

Cg
dTg

dt
= Q− Tg − Tz

Rz
(8)

Cw
dTz

dt
=

Tg − Tz

Rz
+ Qs − Tz − Tout

Rw
(9)

while for the CHCS, the differential equation for corresponding ETP model is:

CA
dTz

dt
= Q + Qs − Tz − Tout

Rw
(10)

Taking into account the specific structure and material properties of residential buildings,
Equations (8) and (9) can be converted to:

Ag ×Cg1 ×
dTg

dt
= Q−Ag × hz(Tg − Tz) (11)

(Awi ×Cwi + Awa ×Cwa)
dTz

dt
= Aghz(Tg − Tz) + Awi × I × α − (Awikwi + Awakwa)(Tz − Tout) (12)
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while Equation (10) can be converted to:

ρ×C×V × dTz

dt
= Q + Awi × I × α − (Awikwi + Awakwa)(Tz − Tout) (13)

where Ag, Awa, and Awi represent the total area (m2) of the radiant floor, external walls, and external
windows, respectively, in the residential building; Cg1, Cwa, and Cwi represent the equivalent heat
capacity (kJ/(m2·◦C)) of the radiant floor, external walls, and external windows, respectively; ρ, C,
and V represent, respectively, the density (kg/m3), heat capacity (kJ/(kg·◦C)), and volume (m3) of
the indoor air; hz represents the comprehensive heat transfer coefficient (W/m2·◦C) from the radiant
floor surface to the indoor air as well as the envelope structure; kwi and kwa represent the heat
transfer coefficient (W/m2·◦C) for the external walls and external windows of the envelope structure,
respectively; I represents the total solar radiation intensity (W/m2); and α represents the shading
coefficient of the residential building.

From Equations (11)–(13), it is known that owing to the heat capacity for the radiant floor, external
windows, external walls, and indoor air, the heating/cooling demand could be adjusted to a certain
extent while ensuring the operative temperature Tz changes within a reasonable range. Therefore,
both the RFHCS and CHCS have charging/discharging characteristics, like the energy storage system,
which could be considered as a virtual energy storage system (VESS).

4. Optimization Model for RR-Microgrid Scheduling

4.1. Optimized Variables

A day-ahead optimization model for scheduling of the RR-microgrid is presented based on MINLP,
of which the time length of the scheduling period ΔT is 1 h and the number of the scheduling periods
θT is 24. For the scheduling period t ∈ θT, the variables that need to be optimized could be divided
into control variables and state variables, as shown in Tables 1 and 2, respectively.

Table 1. Control variables.

Variables Description

Pt
MT Output electric power of MTs

Pt
Si+ Charging power for the BESS

Pt
Si− Discharging power for the BESS

Pt
grid+ Electric power purchasing from the grid

Pt
grid− Electric power selling to the grid
Pt

EH Electric power consumed by the EHs
Pt

EC Electric power consumed by the ECs

Table 2. State variables.

Variables Description

Qt
MT Output thermal power for MTs
ηt

MTE Electric power efficiency for MTs
Et SOC for the BESS
Tt

g Surface temperature of the radiant floor
Tt

z Operative temperature of the residential building

4.2. Objective Function

In this paper, there are three optimization objectives considered for RR-microgrid scheduling:
operating cost (OC), thermal comfort level (TCL), and pollution emission (PE).
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4.2.1. Objective Function for Operating Cost

The OC of the RR-microgrid consists of four parts: the consuming cost of natural gas,
the charging/discharging cost of the BESS, the cost of exchanging electric power with the external grid,
and the maintenance cost of clean energy generation and devices, of which the objective function is
expressed as:

min f2(xs) = fG(xs) + fS(xs) + fGrid(xs) + fRMC(xs) (14)

In Equation (15), f G is consuming cost of natural gas:

fG(xs) =
∑
t∈θT

cgasFt
gas (15)

where cgas is the price for natural gas, Ft
gas is the natural gas MTs consumed at scheduling period t.

f S is charging/discharging cost of the BESS:

fS(xs) =
∑
t∈θT

(cSi+Pt
Si+ + cSi−Pt

Si−)ΔT (16)

where cSi+ and cSi− are the unit costs for charging/discharging.
f Grid is cost of exchanging electric power with external grid:

fGrid(xs) =
∑
t∈θT

(ct
grid+Pt

grid+ − ct
grid−Pt

grid−)ΔT (17)

where ct
grid+ and ct

grid− are the prices for purchasing/selling electricity from the external grid at
scheduling period t.

f RMC is maintenance cost of clean energy generation and devices:

fRMC(xs) =
∑
t∈θT

(cWTPt
WT + cPVPt

PV + cMTPt
MT + cEHPt

EH+cECPt
EC + cACQt

MTC)ΔT (18)

where Pt
WT and Pt

PV are, respectively, the output power of WT and PV at scheduling period t, cWT, cPV,
cMT, cEH, cEC and cAC are, respectively, the unit maintenance cost for WT, PV, MTs, EHs, ECs, and ACs.

4.2.2. Objective Function for the Thermal Comfort Level

Ref. [28] presented the predicted mean vote (PMV) as well as the predicted percentage of
dissatisfied (PPD) to describe peoples’ subjective perception to the thermal environment. According
to the national standards of the PRC (GB/T 18049-2000), the reasonable scopes of PMV and PPD are:
PPD ≤ 27%, −1 ≤ PMV ≤ +1. It is calculated in [27] that, in winter, the optimum operative temperature
Tzopt is about 22 ◦C, while in summer it is about 25 ◦C, corresponding to PMV = 0. In winter the
variation range of Tz is 17~27 ◦C, while in summer is 21.5~29 ◦C, corresponding to PPD ≤ 27%,
−1 ≤ PMV ≤ +1, which proves it is feasible to adjust the heating/cooling demand for economic benefits.

In the presented optimization model, the permitted adjustable scope of Tz during the scheduling
is ±2.5 ◦C to guarantee the TCL, and the objective function for the TCL is expressed as quadratic sum
of deviations between the optimum value and the actual value of the operative temperature during all
scheduling periods:

min f1(xs) =
∑
t∈θT

∣∣∣∣Tt
z − Tzopt

∣∣∣∣2 (19)
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4.2.3. Objective Function for Pollution Emission

The PE mainly includes the emission from the consumption of electricity purchased from the
external grid and the emission from consumption of natural gas. In this paper, the electricity purchasing
from the external grid is assumed generated by coal-fired power stations. Three types of polluting gas
are taken into account for consumption of coal and natural gas, i.e., CO2, SO2, and NOx, as shown in
Table 3. Consequently, the objective function for PE is depicted in Equation (20):

min f3(xs) =
∑
t∈θT

(Pt
grid+λe + Ft

gasλg)ΔT (20)

where λe and λg are the total emission coefficients for coal consumption and natural gas consumption,
respectively.

Table 3. Emission coefficients of natural gas and coal [29].

Pollution Gas CO2 SO2 NOx Total

Coal (kg/(MWh)) 326.37 3.14 1.134 330.644
Natural Gas (kg/(MWh)) 203.74 0.011 0.202 203.953

4.3. Constraints

(1) Balance of electric power:

Pt
load + Pt

EH+ Pt
EC + Pt

Si+ − Pt
Si−= Pt

PV + Pt
WT + Pt

MT + Pt
grid+ − Pt

grid− , ∀t ∈ θT (21)

where Pt
load is the forecast value of electric load at scheduling period t (electric power consumed by

EHs/ECs is not taken into account).

(2) Balance of thermal power

Considering the process of thermal runaway and operative temperature fluctuation in
residential building are quite slow, for the convenience of solving the presented optimization model,
Equations (11)–(13) are transformed to be difference equations expressing the constraint of the thermal
power balance for the RR-microgrid:

Tt+1
g = Tt

g +
ΔT

AgCg1
× [Qt −Aghz(T

t
g − Tt

z)], ∀t ∈ θT (22)

Tt+1
z = Tt

z +
ΔT

(AwiCwi+AwaCwa)
× [Aghz(Tt

g − Tt
z) + Awi × It × α− (Awikwi + Awakwa)(Tt

z − Tt
out)], ∀t ∈ θT (23)

Tt+1
z = Tt

z +
ΔT

ρ×C×V
× [Qt + Awi × It × α− (Awikwi + Awakwa)(Tt

z − Tt
out)], ∀t ∈ θT (24)

where for heating in winter, there is:

Qt = Qt
MTηHE + Pt

EHCOPEH, ∀t ∈ θT (25)

while for cooling in summer, there is:

Qt = −Qt
MTηHECOPAC − Pt

ECCOPEC, ∀t ∈ θT (26)
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(3) Battery energy storage system

Uniqueness constraints for charging/discharging states of the BESS are expressed as:

Pt
Si+Pt

Si− = 0, Pt
Si+ ≥ 0, Pt

Si− ≥ 0, ∀t ∈ θT (27)

Meanwhile, the charging/discharging power should satisfy the upper limits as:

Pt
Si+ ≤ PSi+, ∀t ∈ θT (28)

Pt
Si− ≤ PSi−, ∀t ∈ θT (29)

and the SOC should satisfy upper/lower limits as:

E ≤ Et ≤ E, ∀t ∈ θT (30)

where PSi+ and PSi− are, respectively, the upper limit for charging power and discharging power,

while E and E are, respectively, the upper limit and lower limit for the SOC.
At the end of the last scheduling period, the SOC of the BESS should be equal with the initial

value to ensure the balance of energy:
E0 = EN (31)

(4) Power exchanged with the external grid

The uniqueness constraints for power exchanged with external grid are expressed as:

Pt
grid+Pt

grid− = 0, Pt
grid+ ≥ 0, Pt

grid− ≥ 0, ∀t ∈ θT (32)

Meanwhile, the power exchanged should satisfy the upper limits:

Pt
grid+ ≤ Pgrid+, ∀t ∈ θT (33)

Pt
grid− ≤ Pgrid−, ∀t ∈ θT (34)

where Pgrid+ and Pgrid− are the upper limit, respectively, for power purchasing from, and selling to,
the external grid.

(5) Micro-gas turbines

Output electric power for MTs should satisfy the upper limits:

Pt
MT ≤ PMT, ∀t ∈ θT (35)

where PMT is the upper limit for the output electric power for MTs.
In practice, the relationship between ηMT and PMT is nonlinear. In the presented optimization

model, the fourth-order polynomial is chosen to fit the relationship in order to facilitate subsequent
calculation. Thus, the obtained polynomial equation could be expressed as:

ηt
MT = α1(

Pt
MT

Pmax
MT

)

4

+ α2(
Pt

MT

Pmax
MT

)

3

+ α3(
Pt

MT

Pmax
MT

)

2

+ α4(
Pt

MT

Pmax
MT

) + α5, ∀t ∈ θT (36)

where α1, α2, α3, α4, and α5 are the fitting coefficients and Pmax
MT is the rated power.
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(6) Electric heaters and electric chillers

Electric power EHs/ECs consumed should satisfy the upper limits:

Pt
EH ≤ PEH, ∀t ∈ θT (37)

Pt
EC ≤ PEC, ∀t ∈ θT (38)

where PEH and PEC are the upper limits for electric power consumed by EHs/ECs, respectively.

(7) Operative temperature

Tz ≤ Tt
z ≤ Tz, ∀t ∈ θT (39)

where Tz and Tz are, respectively, the upper and lower limits of the operative temperature.
At the end of the last scheduling period, the operative temperature must be equal with the initial

value for balance of thermal energy stored in residential building:

T0
z = TN

z (40)

In addition, in order to prevent the appearance of condensation for cooling in summer, the surface
temperature of the radiant floor is required to be higher than the dewpoint temperature:

Tt
g > Tg, ∀t ∈ θT (41)

where Tg is the dewpoint temperature.

5. Solve the Optimization Model Using NSGA-II and AHP

A genetic algorithm (GA) is a kind of population-based search algorithm which is quite suitable
for solving multi-objective optimization problems. The NSGA-II algorithm is one of the most effective
and efficient multi-objective optimization algorithms [30]. Compared with the NSGA algorithm,
the NSGA-II algorithm has a better sorting method and incorporates elitism, while no sharing
parameters need to be chosen. According to the non-domination concept, the populations are
combined and sorted at each generation. The N least crowded solutions are chosen based on the
crowding distance and abandons the rest of the non-dominated solutions. Owing to the above
improvements, both spreading and convergence are ensured for the solution front without requiring
any external population [31]. The flowchart of the NSGA-II algorithm is shown in Figure 3.

The steps of the NSGA-II algorithm are as follows:

(1) Start, input basic system data.
(2) Initialize parameters of the NSGA-II algorithm which consist of the number of individuals in

the population, Np, the maximum number of generations, gmax, the crossover probability, pc,
the mutation probability pm, and generate Np individuals randomly as the parent population, Pt.

(3) Calculate the objective functions, and generate the offspring population Qt from Pt using selection,
crossover, and mutation operators.

(4) Create the intermediate population Rt = Pt ∪Qt.
(5) Perform a non-dominated sorting to Rt based on the calculation of the crowding distance and

check constraints.
(6) Select the first Np individuals as new parent population Pt+1.
(7) Check whether the result is equal with the maximum number of generations. If not, return to

Step (3), otherwise continue to Step (8).
(8) Output the Pareto-optimal front.
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Figure 3. Flowchart of the NSGA-II algorithm.

The final output of above NSGA-II algorithm is the Pareto front which represents a set of
non-dominated solutions, and the last step is to determine a solution representing the best scheduling,
which is called multi-objective decision making (MODM). There are different methods that can be
adopted for MODM, and the AHP method is utilized in this paper. The main steps of the AHP method
are as follows: Above all, the relative importance of each objective is judged in accordance with the
fundamental scale defined in [32], a pairwise comparison matrix B is constructed, like in Equation (42),
and the largest eigenvalue λmax and corresponding normalized eigenvectors set ω are calculated. Then,
the consistency check of B is performed to ensure the process of the AHP method is effective. Finally,
ω is taken as the set of weight of each objective, as shown in Equation (43):

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 3 5

1/3 1 3
1/5 1/3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (42)

λmax = 3.0385, ω = {0.6090, 0.2793, 0.1116} (43)

6. Case Study

In order to validate the feasibility and validity of the proposed scheduling method for the
RR-microgrid, a case study is performed respectively considering scenes of heating in winter as well as
cooling in summer.

6.1. Case Introduction

Take a residential building (30 m long, 20 m wide, and 70 m high) consisting of 100 households
as an example, like in [27], the total areas of the envelope structure and radiant floor are 7100 m2

and 10,600 m2, respectively, while the shading coefficient α is 0.2 and the window-to-wall ratio is 0.3.
Material properties of the RFHCS and the envelope structure of the residential building are shown in
Tables 4 and 5, respectively.
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Table 4. Structure and material properties of RFHCS [33].

Type Structure and Materials
Comprehensive Heat Transfer

Coefficient (W/(m2·◦C))
Equivalent Heat

Capacity (kJ/(m2·◦C))

Heavy floor

25 mm cement mortar +25 mm
marble + 70 mm concrete

(embedded diameter 20 mm pipe,
spacing 150 mm)

11 148.1

Table 5. Structure and material properties of the envelope structure [25].

Type Structure and Materials
Heat Transfer

Coefficient (W/(m2·◦C))
Equivalent Heat

Capacity (kJ/(m2·◦C))

External window ordinary hollow glass + PV plastic
window 2.80 6.0

External wall
25 mm cement mortar + 190 mm
single row hole block + 25 mm

adiabatic mortar
1.50 62

The specifications of the MTs, BESS, EHs, ECs, WT, and PV in the RR-microgrid are shown in
Tables 6–10. The price of natural gas cgs is 2.4 CNY/m3, and the calorific value LHVNG is 34.92 MJ/m3.
The upper limits of power purchasing from and selling to the external grid are Pgrid+ = Pgrid− =

1000 kW.

Table 6. Specification of MTs.

Type Number of Units PMT (kW) cMT (CNY/MWh) ηMTH ηHE

C200 3 600 30 0.53 0.95

Table 7. Specification of the BESS.

ηc/ηdisc P
Si+

(kW) E (kWh) E (kWh) E0 (kWh) cSi+/cSi−
0.9 80 550 50 150 0.01

Table 8. Specification of EHs.

Type PEH (kW) COPEH cEH (CNY/MWh)

CWDZ1080-85/70 1080 0.99 10

Table 9. Specification of ECs.

P
EC

(kW) COPEC cEC (CNY/MWh)

1000 4 10

Table 10. Specification of WT and PV.

Type Rated Power (kW) Maintenance Cost (CNY/MWh)

WT 400 110
PV 300 80

Typical days in summer and in winter are chosen to carry out the scheduling experiment in
Hebei Province of China, while the corresponding forecasted curves of solar radiation intensity and
outdoor temperature are shown in Figure 4, forecasted curves of WT output, PV output, electric load,
and price curves of purchasing electricity from the external grid are shown in Figure 5. The peak-valley

36



Processes 2019, 7, 296

purchasing electricity price curves released by Hebei Southern Grid is utilized for the scheduling
experiment, while the selling electricity price is set to be 80% of the purchasing electricity price.

 
Figure 4. Forecasted curves of solar radiation intensity and outdoor temperature.

 

Figure 5. Forecasted curves of WT output, PV output, electric load, and electricity price curve.

The solving process of the presented optimization model for the RR-microgrid is implemented
using MATLAB software from MathWorks Company of America. Set the parameters of the NSGA-II
algorithm as: individual number in the population Np = 200, maximum number of generation
gmax = 60,000, crossover probability pc = 0.9, and mutation probability pm = 0.5.

6.2. Analysis of Scheduling Results

Optimal scheduling results are analyzed, respectively, for the RR-microgrid with RFHCS and the
RR-microgrid with CHCS in this paper.

6.2.1. Scheduling Results of RR-Microgrid with RFHCS

The Pareto-optimal front of the presented multi-objective optimization model obtained by NSGA-II
algorithm is shown in Figure 6. It is known that the Nhe edges SGA-II algorithm could gain enough
optimal scheduling solutions, and the solution, which is at t of the Pareto-optimal front represent
optimal scheduling schemes for minimized OC, TCL, and PE, respectively. The normalized objectives
of the Pareto-optimal front sorted by TCL are shown in Figure 7 and, obviously, the OC and PE are two
opposite objectives where increasing one of them decreases the other one when TCL is invariable.
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Figure 6. Pareto front of optimal scheduling for RR-microgrid with RFHCS. (a) A typical day in winter;
and (b) a typical day in summer.

(a) (b) 

Figure 7. The normalized objectives of Pareto front of optimal scheduling for RR-microgrid with
RFHCS. (a) A typical day in winter; and (b) a typical day in summer.

The optimal scheduling schemes for minimized TCL, OC, PE, as well as the best scheduling
scheme determined by AHP method are shown in Figure 8, in which the discharging power of the
BESS as well as the electric power selling to the external grid are taken as negative for the convenience
of representation, and the corresponding value of the objectives are shown in Tables 11 and 12.

scheduling scheme for minimized TCL(No. 1) scheduling scheme for minimized TCL (No. 1) 

  
scheduling scheme for minimized OC (No. 130) scheduling scheme for minimized OC (No. 96) 

Figure 8. Cont.
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scheduling scheme for minimized PE (No. 136) scheduling scheme for minimized PE (No. 143) 

 
best scheduling scheme (No. 140) best scheduling scheme (No. 83) 

(a) (b)  

Figure 8. The optimal scheduling results for RR-microgrid with RFHCS. (a) A typical day in winter;
and (b) a typical day in summer.

Table 11. Value of objective functions of different scheduling schemes for the typical day in winter.

Objective Functions OC (CNY) TCL (◦C2) PE (kg)

No. 1 2103.56 0.69 840.71
No. 130 736.49 44.65 949.51
No. 136 2326.27 48.89 348.62
No. 140 927.67 25.26 888.73

Table 12. Value of objective functions of different scheduling schemes for the typical day in summer.

Objective Functions OC (CNY) TCL (◦C2) PE (kg)

No. 1 759.75 0.09 135.97
No. 96 184.77 17.38 387.96
No. 143 623.80 31.87 9.46
No. 83 197.6 15.62 372.19

For all above scheduling schemes, the charging/discharging behaviors of the BESS are mainly
effected by electricity price, that is, the charging behavior prefers to happen during lower price periods
(0:00–5:00, 21:00–24:00), while the discharging behavior prefers to happen during higher price periods
(7:00–10:00, 15:00–20:00), which is a benefit to the economy of the RR-microgrid, obviously.

As for the scheduling scheme for minimized TCL, it is observed that the operative temperature is
quite close to the optimum operative temperature for all scheduling periods, which indicates that the
thermal power generated by MTs and EHs/ECs could satisfy the heating/cooling demand quite well.
According to the time-varying characteristic of the outdoor temperature, as well as solar radiation
intensity, it is easily deduced theoretically that the cooling demand in summer concentrates on the
daytime while the heating demand in winter concentrates on the nighttime. In addition, the heating
demand in winter is obviously greater than the cooling demand in summer mainly because the
difference between indoor temperature and outdoor temperature in winter is greater than in summer.
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The distribution characteristic of electric power generated by MTs and power consumed by EHs/ECs
on typical days in winter/summer agree quite well with the above-mentioned conclusion.

As for the scheduling scheme for minimized OC, on the typical day in winter, the EHs only
consume power during lower price periods, while the MTs mainly work during higher price periods
for at these time they could achieve better economy, respectively; on the typical day in summer, since to
the cooling demand of the nighttime is quite small, the ECs almost stop work for all periods, while the
MTs only work during higher price periods in daytime. On the whole, during lower price periods,
less thermal energy are generated by MTs and EHs/ECs, therefore operative temperature falls slowly
or maintains at a low level on the typical day in winter while it rises slowly or maintains at a high
level on the typical day in summer; on the contrary, during higher price periods, more thermal power
is generated by MTs and EHs/ECs, therefore, the operative temperature rises slowly on the typical
day in winter while it falls slowly on the typical day in summer. Obviously, to achieve the minimized
OC, there is little electric power purchasing from the external grid on the whole, but quite a lot of
electric power selling to the external grid during higher price periods. It should be realized that both
the MTs and EHs/ECs nearly stop working during the middle price periods (10:00–15:00) for typical
days in winter/summer, which indicates that the RFHCS is able to pre-store considerable heat/cool
energy enough to maintain the operating temperature within a reasonable scope for the next several
scheduling periods.

As for the scheduling scheme for minimized PE, for both typical days, no electric power is
purchased from the grid due to the coal consumption having greater a total emission coefficient
than natural gas. Meanwhile, the electric power selling to the grid is obviously less than that of the
scheduling schemes for minimized OC and TCL.

As for the best scheduling scheme determined by the AHP method, the variation trend of
the operative temperature is quite similar with that of the scheduling scheme for minimized OC,
while smaller TCL and PE are achieved through the power redistribution between EHs/ECs and
MTs. Obviously, it is essentially a compromise scheduling scheme with overall consideration of
multi-objectives according to the set of weight of each objective in AHP method.

In this paper, heating/cooling demand of the RR-microgrid is the sum of the heating/cooling power
generated by EHs/ECs and MTs. Treating the scheduling scheme for minimized TCL as the condition
without VESS, while the best scheduling scheme and scheduling scheme for minimized OC as the
condition with the VESS, respectively, then the curves of the heating/cooling demand with/without the
VESS are shown in Figures 9 and 10. Considering the curve of the heating/cooling demand without
the VESS as the reference curve, it is known that the curve of the heating/cooling demand with the
VESS fluctuates around the reference curve. Therefore, the part above the reference curve could be
considered as ‘charging’, and the part below the reference curve could be considered as ‘discharging’,
then charging/discharging power for the VESS is obtained as the difference of the heating/cooling
demand between the two cases. It is found that the performance of the VESS in best scheduling scheme
is quite similar with that in scheduling scheme for minimized OC for both the typical days. In addition,
compared with BESS, the VESS has the contrary charging/discharging response to the changing of
electricity price. For both typical days in winter/summer, the charging process of the VESS mainly
happens during higher price periods, while the discharging process of the VESS mainly happens at
lower price or middle-price periods.

Owing to the VESS capacity of RFHCS being quite considerable, the OC of the best scheduling
scheme and the scheduling scheme for minimized OC has a dramatic decline compared with the
condition without the VESS (55.90% and 64.98% for the typical day in winter, 73.99% and 75.68% for
the typical day in summer).
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(a) (b) 

Figure 9. VESS charging/discharging power in minimized OC scheduling scheme for RR-microgrid
with RFHCS. (a) A typical day in winter; and (b) a typical day in summer.

  
(a) (b) 

Figure 10. VESS charging/discharging power in best scheduling scheme for RR-microgrid with RFHCS.
(a) A typical day in winter; and (b) a typical day in summer.

6.2.2. Scheduling Results of the RR-Microgrid with CHCS

The Pareto-optimal front of the presented multi-objective optimization model obtained by the
NSGA-II algorithm is shown in Figure 11. Similarly, it can be known that the NSGA-II algorithm could
also gain enough optimal scheduling solutions.

 
(a) (b) 

° °

Figure 11. Pareto front of optimal scheduling for RR-microgrid with CHCS. (a) A typical day in winter;
and (b) a typical day in summer.

The normalized objectives of Pareto-optimal front sorted by TCL are shown in Figure 12, obviously,
and the OC and PE are also two opposite objectives where increasing one of them decreases the other
one when TCL is invariable.
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(a) (b) 

Figure 12. The normalized objectives of Pareto front of optimal scheduling for the RR-microgrid with
CHCS. (a) A typical day in winter; and (b) a typical day in summer.

The optimal scheduling schemes for minimized TCL, OC, PE, as well as the best scheduling
scheme determined by the AHP method are shown in Figure 13, and the corresponding objectives are
shown in Tables 13 and 14. For the sake of convenience of representation, the discharging power of the
BESS, as well as the electric power selling to the external grid, are also taken as negative in Figure 13.

scheduling scheme for minimized TCL(No. 1) scheduling scheme for minimized TCL (No. 1) 

  
scheduling scheme for minimized OC (No. 192) scheduling scheme for minimized OC (No. 199) 

  
scheduling scheme for minimized PE (No. 139) scheduling scheme for minimized PE (No. 91) 

Figure 13. Cont.
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best scheduling scheme (No. 27) best scheduling scheme (No. 77) 

(a) (b) 

Figure 13. The optimal scheduling results for RR-microgrid with CHCS. (a) A typical day in winter;
and (b) a typical day in summer.

Table 13. Value of objective functions of different scheduling schemes for a typical day in winter.

Objective Functions OC (CNY) TCL (◦C2) PE (kg)

No.1 2733.71 2.88 726.57
No.192 1686.66 123.22 957.37
No.139 2512.08 73.61 292.81
No.27 1911.02 15.24 518.05

Table 14. Value of objective functions of different scheduling schemes for a typical day in summer.

Objective Functions OC (CNY) TCL (◦C2) PE (kg)

No.1 840.75 0.73 166.17
No.199 545.72 85.99 154.49
No.91 689.18 28.64 57.64
No.77 604.29 22.72 84.35

For all of the above scheduling schemes, the charging/discharging behavior of the BESS are quite
similar with that in the mentioned scheduling schemes for the RR-microgrid with RFHCS, that is
to say, the charging behavior of the BESS prefers to happen during lower price periods, while the
discharging behavior prefers to happen during higher price periods. However, the electric power
consumed by EHs/ECs and generated by MTs are more balanced than the corresponding result in
the RR-microgrid with RFHCS. The reason for this phenomenon is that the total heat capacity of the
indoor air is quite smaller than that of the radiant floor, the heat/cool energy stored by the previous
scheduling period is not enough to support the EHs/ECs and MTs to stop working for the next one or
more scheduling periods.

As for the scheduling scheme for minimized TCL, the operative temperature is quite close to the
optimum operative temperature at all of the scheduling periods, which also indicates that the thermal
power generated by MTs and EHs/ECs could satisfy the heating/cooling demand quite well.

As for the scheduling scheme for minimized OC, on the typical day in winter, EHs only consume
power during lower price periods, while the MTs mainly work during higher price periods; on the
typical day in summer, MTs and ECs mainly work during the daytime for the cooling demand in the
nighttime is quite small. The ECs consume power during most scheduling periods, while the MTs only
work during the few higher outdoor temperature periods (14:00–16:00) when the cooling demand is
greater to achieve better economy than ECs. On the typical day in winter, the operative temperature
maintains at a low level during lower price periods while maintains at a high level during higher
price periods. On the typical day in summer, the operative temperature maintains at a high level at
most scheduling periods while maintaining at a low level during the few lower outdoor temperature
periods (4:00–6:00) or the higher outdoor temperature periods (14:00–16:00). To achieve the minimized
OC, on the typical day in winter, purchasing electric power from the external grid happens during
lower-periods and selling electric power to the external grid happens during higher price periods;
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on the typical day in summer, purchasing electric power from the external grid happens mainly at
midday scheduling periods while selling electric power to the external grid happens during most
scheduling periods.

As for the scheduling scheme for minimized PE, for both typical days, there is also no electric
power purchasing from the external grid due to the coal consumption has bigger total emission
coefficient than natural gas. On the typical day in winter, the electric power selling to the external
grid is obviously less than that of the scheduling schemes for minimized OC and TCL. While on the
typical day in summer, the electric power selling to the external grid concentrate on the lower outdoor
temperature periods (0:00–10:00) due to the cooling demand at that time is small.

As for the best scheduling scheme determined by the AHP method, compared with the scheduling
the scheme for minimized OC, the operative temperature has a similar variation trend and has an
obviously smaller variation magnitude so that TCL is dramatically decreased. Meanwhile, PE is
effectively decreased.

Similarly, we treat the scheduling scheme for minimized TCL as the condition without the VESS,
while the best scheduling scheme and scheduling scheme for the minimized OC as the condition
with the VESS, respectively; then the curves of heating/cooling demand with/without the VESS are
shown in Figures 14 and 15. For both the best scheduling scheme and scheduling scheme for the
minimized OC, on the typical day in winter, the charging process of the VESS mainly happens during
the higher price periods, while discharging process of the VESS mainly happens during the lower
price periods; on the typical day in summer, the charging process of the VESS rarely happens while
the discharging process of the VESS happens during most scheduling periods. Compared with the
result shown in Figures 9 and 10, it is found that the magnitude of the charging/discharging power of
the VESS becomes significantly smaller. The reason for this phenomenon is that the VESS capacity of
the CHCS is obviously smaller than that of the RFHCS. Consequently, compared with the condition
without the VESS, the OC of the best scheduling scheme and scheduling scheme for the minimized OC
has a relatively small decline (30.10% and 38.32% for a typical day in winter, 28.12% and 35.14% for a
typical day in summer).

  
(a) (b) 

Figure 14. VESS charging/discharging power in minimized OC scheduling scheme for RR-microgrid
with CHCS. (a) A typical day in winter; and (b) a typical day in summer.

  
(a) (b) 

Figure 15. VESS charging/discharging power in best scheduling scheme for RR-microgrid with CHCS.
(a) A typical day in winter; and (b) a typical day in summer.
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The charge/discharge power characteristics of the two kinds of VESS in the minimized OC
scheduling scheme and in the best scheduling scheme are calculated, as shown in Table 15, Table 16,
and Figure 16. It can be known that, compared with the VESS of CHCS, the charge/discharge power
characteristics of the VESS of the RFHCS in the minimized OC scheduling scheme are more similar
with that in the best scheduling scheme. In addition, the mean charging/discharging power and the
total charging/discharging amount are obviously greater, indicating that the heat capacity of the heavy
radiant floor is much higher than that of the indoor air.

Table 15. Performance of the VESS of RFHCS for the typical days in winter/summer.

Scheduling Scheme
Maximum
Charging

Power

Maximum
Discharging

Power

Mean
Charging/

Discharging
Power

Total
Charging
Amount

Total
Discharging

Amount

Typical day
in winter

No. 130 539.21 520.65 256.67 2989.17 3170.86
No. 140 537.40 398.18 230.01 2851.14 2668.95

Typical day
in summer

No. 96 647.90 382.67 166.20 1841.12 2158.66
No. 83 638.87 379.26 166.66 1835.24 2153.42

Table 16. Performance of the VESS of CHCS for the typical days in winter/summer.

Scheduling Scheme
Maximum
Charging

Power

Maximum
Discharging

Power

Mean
Charging/

Discharging
Power

Total
Charging
Amount

Total
Discharging

Amount

Typical day
in winter

No. 192 41.38 42.59 29.26 217.39 484.88
No. 27 21.55 22.29 7.44 42.96 135.66

Typical day
in summer

No. 199 41.70 36.93 22.10 41.69 488.79
No. 77 0.58 31.58 9.54 0.58 228.34

(a) (b) 

Figure 16. Comparison of total charging/discharging amount. (a) VESS of RFHCS; and (b) VESS
of CHCS.

7. Conclusions

A novel multi-objective optimal scheduling method for a grid-connected RR-microgrid is presented
in which the heating/cooling system of a residential building is considered as a virtual energy storage
system. The following conclusions are drawn:

(1) The NSGA-II algorithm could obtain enough optimal scheduling schemes for the presented
multi-objective optimization model of RR-microgrid, and the OC and PE are two opposite
objectives where increasing one of them decreases the other one when TCL is invariable. The best
scheduling scheme could be reasonably selected by the AHP method according to the set of
weights of each objective.

45



Processes 2019, 7, 296

(2) As for the best scheduling scheme of RR-microgrid with RFHCS, the charging process of VESS
mainly happens during higher price periods, while the discharging process of VESS mainly
happens during lower price or middle price periods for both typical days in winter/summer.

(3) As for the best scheduling scheme of the RR-microgrid with CHCS, on the typical day in the
winter, the charging process of the VESS mainly happens during higher electricity price periods,
and the discharging process of the VESS mainly happens during lower electricity price periods;
on a typical day in the summer, the charging process of VESS rarely happens while the discharging
process of VESS happens during most scheduling periods.

(4) Due to the VESS capacity of the CHCS being obviously smaller than that of the RFHCS, as for the
corresponding best scheduling scheme, the electric power consumed by EHs/ECs and generated
by MTs in the RR-microgrid with CHCS are more balanced than that in the R-microgrid with
RFHCS. Meanwhile, compared with the condition without VESS, the OC of the RR-microgrid
with RFHCS has a greater decline than that of the RR-microgrid with CHCS.

Author Contributions: W.L. proposed the optimization model and translated the original manuscript. C.L. and
Y.L. checked the results of the whole manuscript. K.B. and L.M. contributed to the case study. W.C. performed,
in part, the research tasks.

Funding: This research was supported by Beijing Natural Science Foundation (4182061) and the Fundamental
Research Funds for the Central Universities (2017MS134, 2018ZD05).

Acknowledgments: Great thanks for valuable comments and suggestions of the reviewers and the editors
of Processes.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Fgas Natural gas MTs consumed per unit time Awi Total area of external window

cgas Price of natural gas Cg1
Equivalent heat capacity for radiant floor
(kJ/(kg·◦C))

PMT Output electric power of the MTs Cwa
Equivalent heat capacity for external wall
(kJ/(kg·◦C))

QMT Output thermal power of the MTs Cwi
Equivalent heat capacity for external window
(kJ/(kg·◦C))

LHVNG Low calorific value for natural gas ρ Density of the indoor air
ηMTE Electric power efficiency of the MTs C Heat capacity of the indoor air
ηMTH Thermal power efficiency of the MTs V Volume of the indoor air

ηHE Conversion efficiency of WHRS hz

Comprehensive heat transfer coefficient from
radiant floor surface to indoor air and envelope
structure

QMTH Output heating power of the WHRS kwa Heat transfer coefficient of the external wall
QMTC Output cooling power of the ACs Kwi Heat transfer coefficient of the external window
COPAC Coefficient of performance of the ACs cSi+ Unit costs for charging of the BESS
COPEH Coefficient of performance of the EHs cSi− Unit costs for discharging of the BESS

COPEC Coefficient of performance of the ECs ct
grid+

Price of purchasing electricity from grid at
period t

QEH Heating power generated by the EHs ct
grid− Price for selling electricity to grid at period t

QEC Cooling power generated by the ECs Pt
WT Output power of WT at period t

PEH Electric power consumed by the EHs Pt
PV Output power of PV at period t

PEC Electric power consumed by the ECs cWT Unit maintenance cost of WT
Et SOC of the BESS at the end of period t cPV Unit maintenance cost of PV
Et−1 SOC of the BESS at the end of period t − 1 cMT Unit maintenance cost of MTs
Pt

Si+ Charging power of the BESS at period t cEH Unit maintenance cost of EHs
Pt

Si− Discharging power of the BESS at period t cEC Unit maintenance cost of ECs
Ut

Si+ Charging status of the BESS for period t cAC Unit maintenance cost of ACs
Ut

Si− Discharging status of the BESS for period t I Total solar radiation intensity
θT Number of scheduling periods PSi+ Upper limit for charging power of the BESS
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ηc Charging efficiency of the BESS α Shading coefficient of residential building
ηdisc Discharging efficiency of the BESS λe Total emission coefficient for coal consumption

ΔT Time length of scheduling period λg
Total emission coefficient for natural gas
consumption

Q Heating/cooling demand PSi− Upper limit for discharging power of the BESS
Qs Solar radiation load E Upper limit for SOC
Tg Surface temperature of radiant floor E Lower limit for SOC
Tz Operative temperature Pgrid+ Upper limit for power purchasing from grid
Tout Outdoor temperature Pgrid− Upper limit for power selling to grid
Cg Equivalent heat capacity for radiant floor (J/◦C) PMT Upper limit for output electric power of MTs

Cw Equivalent heat capacity for envelope structure (J/◦C) PEH
Upper limit for electric power consumed by
EHs

CA Equivalent heat capacities for indoor air (J/◦C) PEC
Upper limit for electric power consumed by
ECs

RW Equivalent heat resistance for envelope structure TZ Upper limit of operative temperature

RZ

Equivalent heat resistance for convection and radiation
from the radiant floor surface to the indoor air and the
envelope structure

TZ Lower limit of operative temperature

Ag Total area of radiant floor Tg Dewpoint temperature
Awa Total area of external wall

References

1. European Commission. A Policy Framework for Climate and Energy in the Period from 2020 up to 2030,
Brussels. 2014. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52013DC0169
(accessed on 17 May 2019).

2. den Elzen, M.; Fekete, H.; Höhne, N.; Admiraal, A.; Forsell, N.; Hof, A.F.; Olivier, J.G.; van Soest, H.
Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak
before 2030? Energy Policy 2016, 89, 224–236. [CrossRef]

3. Yang, L.; Wang, J.; Shi, J. Can China meet its 2020 economic growth and carbon emissions reduction targets?
J. Clean. Prod. 2017, 142, 993–1001. [CrossRef]

4. Jin, X.; Wu, J.; Mu, Y.; Wang, M.; Xu, X.; Jia, H. Hierarchical microgrid energy management in an office
building. Appl. Energy 2017, 208, 480–494. [CrossRef]

5. Yu, J.; Tian, L.; Xu, X.; Wang, J. Evaluation on energy and thermal performance for office building envelope
in different climate zones of China. Energy Build. 2015, 86, 626–639. [CrossRef]

6. Guan, X.; Xu, Z.; Jia, Q. Energy-efficient buildings facilitated by microgrid. IEEE Trans. Smart Grid 2010, 1,
243–252.

7. Pesin Michael. U.S. Department of Energy Electricity Grid Research and Development. In Proceedings of
the American Council of Engineering Companies, Environment and Energy Committee Winter Meeting,
Washington, DC, USA, 9 February 2017.

8. Navigant Research. More Than 400 Microgrid Projects are Under Development Worldwide [EB/OL].
Available online: http://www.navigantresearch.com/newsroom/more-than-400-microgrid-projects-are-
under-development-worldwide (accessed on 2 April 2013).

9. Feng, W.; Jin, M.; Liu, X.; Bao, Y.; Marnay, C.; Yao, C.; Yu, J. A review of microgrid development in the United
States–A decade of progress on policies, demonstrations, controls, and software tools. Appl. Energy 2018,
228, 1656–1668. [CrossRef]

10. Cagnano, A.; De Tuglie, E.; Cicognani, L. Prince-Electrical Energy Systems Lab: A pilot project for smart
microgrids. Electr. Power Syst. Res. 2017, 148, 10–17. [CrossRef]

11. Jaramillo, L.B.; Weidlich, A. Optimal microgrid scheduling with peak load reduction involving an electrolyzer
and flexible loads. Appl. Energy 2016, 169, 857–865. [CrossRef]

12. Wu, X.; Wang, X.; Wang, J.; Bie, C. Economic generation scheduling of a microgrid using mixed integer
programming. Proc. CSEE 2013, 33, 1–8. (In Chinese)

13. Jiang, Q.; Xue, M.; Geng, G. Energy management of microgrid in grid-connected and stand-alone modes.
IEEE Trans. Power Syst. 2013, 28, 3380–3389. [CrossRef]

47



Processes 2019, 7, 296

14. Lu, Y.; Wang, S.; Sun, Y.; Yan, C. Optimal scheduling of buildings with energy generation and thermal energy
storage under dynamic electricity pricing using mixed-integer nonlinear programming. Appl. Energy 2015,
147, 49–58. [CrossRef]

15. Zhao, Y.; Lu, Y.; Yan, C.; Wang, S. MPC-based optimal scheduling of grid-connected low energy buildings
with thermal energy storages. Energy Build. 2015, 86, 415–426. [CrossRef]

16. Javidsharifi, M.; Niknam, T.; Aghaei, J.; Mokryani, G. Multi-objective short-term scheduling of a
renewable-based microgrid in the presence of tidal resources and storage devices. Appl. Energy 2018,
216, 367–381. [CrossRef]

17. Carpinelli, G.; Mottola, F.; Proto, D.; Russo, A. A multi-objective approach for microgrid scheduling.
IEEE Trans. Smart Grid 2017, 8, 2109–2118. [CrossRef]

18. Lin, W.; Jin, X.; Mu, Y.; Jia, H.; Xu, X.; Yu, X.; Zhao, B. A two-stage multi-objective scheduling method for
integrated community energy system. Appl. Energy 2018, 216, 428–441. [CrossRef]

19. Yin, Z.; Che, Y.; Li, D.; Liu, H.; Yu, D. Optimal scheduling strategy for domestic electric water heaters based
on the temperature state priority list. Energies 2017, 10, 1425. [CrossRef]

20. Lu, N. An evaluation of the HVAC load potential for providing load balancing service. IEEE Trans. Smart Grid
2012, 3, 1263–1270. [CrossRef]

21. Wang, C.; Liu, M.; Lu, N. A tie-line power smoothing method for microgrid using residential
thermostatically-controlled loads. Proc. CSEE 2012, 2, 36–43. (In Chinese)

22. Jia, H.; Qi, Y.; Mu, Y. Frequency response of autonomous microgrid based on family-friendly controllable
loads. Sci. China Technol. Sci. 2013, 43, 247–256. (In Chinese) [CrossRef]

23. Van, R.J.; Leemput, N.; Geth, F.; Büscher, J.; Salenbien, R.; Driesen, J. Electric vehicle charging in an office
building microgrid with distributed energy resources. IEEE Trans. Sustain. Energy 2014, 5, 1–8. [CrossRef]

24. Igualada, L.; Corchero, C.; Cruz-Zambrano, M.; Heredia, F.J. Optimal energy management for a residential
microgrid including a vehicle-to-grid system. IEEE Trans. Smart Grid 2014, 5, 2163–2172. [CrossRef]

25. Jin, X.; Mu, Y.; Jia, H. Optimal scheduling method for a combined cooling, heating and power building
microgrid considering virtual storage system at demand side. Proc. CSEE 2017, 37, 581–590. (In Chinese)

26. Jin, X.; Mu, Y.; Jia, H.; Wu, J.; Tao, J.; Yu, X. Dynamic economic dispatch of a hybrid energy microgrid
considering building based virtual energy storage system. Appl. Energy 2016, 194, 386–398. [CrossRef]

27. Liu, W.; Liu, C.; Lin, Y.; Ma, L.; Bai, K.; Wu, Y. Optimal scheduling of residential microgrids considering
virtual energy storage system. Energies 2018, 11, 942. [CrossRef]

28. Fanger, P.O. Analysis and Applications in Environmental Engineering; Thermal Comfort Analysis & Applications
in Environmental Engineering; McGraw Hill: New York, NY, USA, 1970.

29. Wang, J. Optimal Design of Building Cooling Heating and Power System and Its Multi-Criteria Integrated
Evaluation Method. Ph.D. Thesis, North China Electric Power University, Beijing, China, 2010.

30. Brownlee, A.E.I.; Wright, J.A. Constrained, mixed-integer and multi-objective optimisation of building
designs by NSGA-II with fitness approximation. Appl. Soft Comput. 2015, 33, 114–126. [CrossRef]

31. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]

32. Chen, W. Quantitative decision-making model for distribution system restoration. IEEE Trans. Power Syst.
2010, 25, 313–321. [CrossRef]

33. Zhao, K.; Liu, X.; Jiang, Y. Dynamic performance of water-based radiant floors during start-up and
high-intensity solar radiation. Sol. Energy 2014, 101, 232–244. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

48



processes

Article

Control Strategy of Electric Heating Loads for
Reducing Power Shortage in Power Grid

Siyuan Xue 1, Yanbo Che 1,*, Wei He 2, Yuancheng Zhao 1 and Ruiping Zhang 3

1 Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China;
1029348750@163.com (S.X.); cheng528zyc@163.com (Y.Z.)

2 State Grid Jiangxi Electric Power Research Institute, Nanchang 330096, China; lanlyhw@163.com
3 College of Automation and Electrical Engineering, Lanzhou Jiaotong University, Gansu 730070, China;

zhrp74@mail.lzjtu.cn
* Correspondence: lab538@163.com; Tel.: +86-166-026-10538

Received: 17 March 2019; Accepted: 24 April 2019; Published: 9 May 2019

Abstract: With the development of demand response technology, it is possible to reduce power
shortages caused by loads participating in power grid dispatching. Based on the equivalent thermal
parameter model, and taking full account of the virtual energy storage characteristics presented
during electro-thermal conversion, a virtual energy storage model suitable for electric heating loads
with different electrical and thermal parameters is proposed in this paper. To avoid communication
congestion and simplify calculations, the model is processed by discretization and linearization.
To simplify the model, a control strategy for electric heating load, based on the virtual state ofcharge
priority list, is proposed. This paper simulates and analyzes a control example, explores the relevant
theoretical basis affecting the control effect, and puts forward an optimization scheme for the control
strategy. The simulation example proved that the proposed method in this paper can reduce power
storage in the grid over a long period of time and can realize a power response in the grid.

Keywords: power shortage; electric heating load; electric water heater; demand response; virtual
energy storage (VES), virtual state of charge (VSOC)

1. Introduction

When a power shortage occurs in the generation side of the power system, the system frequency
will be reduced, resulting in a series of power quality problems. Demand response [1,2] can solve the
mismatch problem between supply and demand at a relatively lower cost, which is of great significance
to absorb new energy sources, reduce power shortages, and reduce environmental pollution [3–5].
The popularization of advanced metering infrastructure [6] makes it possible to use the control strategy
of thermostatically controlled load (TCL) and scale the application of trunked dispatching.

As an important part of the demand response, TCLs realize virtual power storage through indirect
heat energy storage. The main principle of electric heating load is Joule’s law, that is, the chamber
temperature is maintained within a certain temperature range through the on-off state of resistance
wire heating. On the premise of guaranteeing users’ basic comfort [7], electrical heating equipment,
such as electric water heaters [8,9], air conditioners, refrigerators, can be equivalent to virtual power
storage devices, so electric heating loads can be regarded as good TCLs. An electrical heating device
forced to shut down for several minutes can reduce power consumption by a small amount without
dropping the temperature below the comfortable temperature range. When a large amount of electric
heating loads are forced to shut down in order, they can release a large amount of electric power.
The indirect energy storage capability of electric heating loads can reduce peak load and improve the
reliability of power grid operation.
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Several studies on the virtual energy storage (VES) model of electric heating loads have been
undertaken. Reference [10] analyzed the mechanism of aggregated load oscillations caused by the
traditional temperature adjusting method, on the basis of the equivalent thermal parameter (ETP)
model, and modeled household electric heating load. However, the rationality for model linearization
has not been quantitatively analyzed. Reference [11] presented a temperature state priority list method
to suppress power flow and decreased power shortage demand for a given micro-grid; however, the
modeling of the working state of the constant temperature state was not accurate enough. Reference [12]
presented a load model suitable for terminal voltage control of electric water heaters, which could
reduce the peak load of the power grid while ensuring the comfort of users, but the modeling process
was not described in detail. In [13], using the characteristics of household electric heating loads such as
electric water heaters, a high-precision model reflecting different working conditions of electric heating
loads was proposed. However, due to the limitation of computational complexity, this model was
suitable for small-scale regulation and control only, instead of for large power grid-trunked dispatching.

ETP modelling, as the theoretical basis of control, is widely used [14]. However, previous studies
lack an analysis of power parameters, the complete VES index system, and the deep mining of the
coupling relationship between variables, and do not accurately reflect the actual electro-thermal
conversion relationship.

In terms of the control algorithm, reference [15] started from the macro-layer of the grid side and
the micro-layer of the load aggregator, and presented a bi-level optimal dispatch and control model for
air-conditioning loads based on direct load control. But the running states of loads before control right
transferring need to be uniformly distributed. Reference [10] proposed a new temperature-adjusting
method on the basis of the ETP model, to avoid load oscillations caused by the traditional temperature
regulation method, but the parameters of the devices participating in the demand side response
needed to be the same. Reference [16] proposed a demand-side decentralized control strategy with
variable participation to provide directional control of the start-up and shutdown of TCLs, so as to
improve the frequency regulation capability of isolated microgrid systems in collaboration with energy
storage systems. But, the operation of the units in the cluster control was not analyzed. Reference [17]
developed a weighting coefficient-queuing algorithm based on a modified coloredpower algorithm
state-queuing model, which can be used to directly control the TCLs of electric heating equipment.

The daily load peak of a power grid generally lasts for several hours, thus the transfer of control
rights can last from a few minutes to hours. Previous studies have paid less attention to the analysis
of the control effect in the case of long-term (several hours) transfer of control rights and theoretical
analysis of factors affecting the control effect.

In this paper, a load model and a trunked dispatching strategy for electric heating loads are
analyzed deeply to solve the problem of electric heating loads with different parameters and demands
participating in demand response at the same time. Based on a simplified first-order ETP model, a VES
model, which can reflect the electro-thermal exchange, is proposed where the potential of demand
response can be fully exploited. Based on this model, the trunked dispatching strategy based on virtual
state of charge (VSOC) priority list, is proposed. The control effect under the condition of long-term
control right transferring is analyzed, and the control strategy is optimized according to the analysis
results. The validity and advancement of the optimized control strategy based on the VSOC priority
list are proved by design and simulation examples.

2. Virtual Energy Storage (VES) Model of Electric Heating Load

2.1. Concepts of VES

When power consumption is increased (or reduced) by controlling the difference between the
working states of the equipment before and after the control right transferring of the equipment,
and this power is stored in other forms, the equipment can be equivalent to VES. When the electric
power consumption of the equipment after control right transferring is greater than that before
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transferring, it can be considered to be virtual energy storage charging, whereas, when the electric
power consumption of the equipment after control right transferring is less than that before transferring,
it can be regarded as VES discharging. The control system of VES can offset the shortage of energy
storage by guiding and intervening in energy demand, and can achieve the effect of reducing the
energy storage capacity and cost.

VES is described using four indicators—charging/discharging power, switch state, charge/discharge
time, and VSOC—which are defined as follows:

(1) Charging/discharging power: charging power is the difference in power consumption of the
equipment after control right transferring minus that before transferring. A VES is in the charging
state when the charging power is positive, and in the discharging state when the charging power
is negative. The value of the discharging power is the opposite of the charging power;

(2) Switch state: refers to the switching state of electric heating equipment;
(3) Charge time: the length of time of the charging state; and discharge time: the length of time of

the discharging state;
(4) VSOC: The United States Advanced Battery Consortium defines state of charge (SOC) as the ratio

of the residual electricity to the rated capacity under the same conditions at a certain discharge
rate. Similarly, virtual state of charge (VSOC) is defined as the ratio of the residual energy to the
rated capacity under the same conditions at a certain charging and discharging power, which
represents the responsiveness of VES at a given stage.

2.2. Equivalent Thermal Parameter (ETP) Model of Electric Heating Load

The main idea of the ETP modeling method is to equivalent the internal and external environment
parameters of the room (chamber) and the refrigerating (heating) capacity of electric energy conversion,
to circuit components, such as resistors, capacitors, and power supplies, then use circuit knowledge to
analyze the relationship between temperature and energy conversion.

Considering the process of heat exchange between the medium and the mass in the room (chamber),
and the exterior environment, the differential equation of the second-order ETP model is:

.
x = Ax + Bu

.
y = Cy + Du

A =

⎡⎢⎢⎢⎢⎣ −( 1
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+ 1
R1Ca

) 1
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[
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]
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(1)

The thermal energy storage process is described by heat capacity and heat transfer resistance.
In Equation (1), Pele represents electric power, η represents refrigeration or heating efficiency, and ηPele

is refrigeration or heating power (kW). Tin_g represents the temperature of the medium in the room
(chamber)(◦C), Tout represents the ambient temperature (◦C), Tin_m represents the temperature of the
mass in the room (chamber) (◦C), Ce represents the heat capacity of the medium (J/◦C), Cm represents
the heat capacity of the mass (J/◦C), R1 represents the heat transfer resistance of energy between the
interior and the exterior environment of the room (chamber) (◦C/W), and R2 represents the heat transfer
resistance of energy between the medium and the mass in the room (chamber) (◦C/W).

The widely used second-order ETP model [18] is shown in Figure 1.
When the temperature change is relatively smooth, there is no obvious difference between the

medium and the mass temperatures. In order to improve the practicability of the model, assuming
Tin_g = Tin_m = Tin, the second-order ETP model can be reduced to the first-order ETP model:

Tin − Tout

R1
+ Ce

dTin

dt
= ηPele (2)
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Figure 1. Second-order equivalent thermal parameter (ETP) model.

2.3. Thermal Parameters Part of VES Model for an Electric Heating Unit

On the basis of the first-order ETP model, a partial model of VES thermal parameters was
established as shown in Figure 2.

T t

C

P
P T

S

Figure 2. Thermal parameters part of the virtual energy storage (VES) model.

Tin
t represents the temperature (◦C) of the room (chamber) at time t, S represents the switch

state, with 0 representing disconnection (the device is closed) and 1 as closure (the device is open).
Pheat = ηPele represents the VES power supply, whose specific form depends on the electric part.
Pleakage = (Tin

t − Tout)/R1 represents the current leakage in the model, mainly represented by the energy
loss caused by the temperature gap between the interior and exterior environment.

The electric power before control right transferring is set as the base power, Pbase. Electric heating
equipment that is not in use does not have any discharge capability, and Pbase is 0. Charging/discharging
power is closely related to the switching state, which directly reflects the real-time reserve energy
resource requirements. If Pele increases when the electric heating equipment participates in the demand
response, and it can be considered that the VES is in charging state, and vice versa for the discharge
state. Charging and discharging power can be expressed as:

Pdisc= −S(t)Pheat(t) + Pbase

Pchar = S(t)Pheat(t) − Pbase
(3)

where, the subscript char represents charging power and disc represents discharging power.
S(t) represents the switching state at time t. It can be seen that the charging/discharging capacity of VES
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comes from the change of state rather than the duration of the state of batteries. Charge/discharge time
determines the sustainable response ability of demand resources. If Tin(t0) = C, the solution of (2) is:

Tin(t) = Tout(t)+SηR1Pele(t)−(Tout(t)+SηR1Pele(t) −C)e−
t

R1Ce (4)

and charge/discharge time is:

ton/off = R1Ce ln(
C− Tout(t) − SηR1Pele(t)

Tin(t) − Tout(t) − SηR1Pele(t)
) (5)

Using the relationship between temperature and power in ETP model, the maximum capacitance
of VES is:

Qcapacity = Ce(Tmax − Tmin) (6)

where Tmax, Tmin are protocol maximum temperature and protocol minimum temperature after the
control right is transferred, respectively. Based on the principle of energy conservation, the charge
capacity at time t is

Q(t) =Q(t0)+

∫ t

t0

(ηPele(ξ)−Pleakage)dξ (7)

The ratio of residual energy to rated capacity under the same conditions can be expressed by:

VSOC =
Q(t)

Qcapacity
(8)

Figure 3 shows the charge/discharge curves of two VES systems. Number 1 is denoted by solid
lines and number 2 by dotted lines. They participate in the response at t1, and their discharging
powers are Pchar_1 and Pchar_2 respectively. Since it is convenient to control the equivalent VES of
electric heating load, the power climbing state during the response process is neglected. ton_1 and
ton_2 represent the discharge time, generally less than the maximum discharge time and limited by
the VSOC state of virtual energy storage. For different VESs, their charging/discharging power and
charge/discharge time are quite different, but their change modes are the same. The charging state is
similar to the discharging state, so it is not necessary to elaborate.

Figure 3. Charge-discharge curves of two VES systems.

2.4. Electrical Parameters Part of VES Model for An Electric Water Heater

Here we analyze the electrical parameters of a VES model of an electric heating load, and take an
electric water heater as an example. An electric water heater keeps the chamber temperature within
a specific temperature range by switching the on-off mode of resistance wire, and acts soon after
receiving a control signal. As there is no delay when it starts up or turned off, its working state is
single. There is no obvious power shock in the water heater. Under the working mode of rated voltage
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and rated current, temperature control is realized by switching on/off the devices. The relationship
between heating power and electric power is as follows:

Pheatl = ηPrated · S(t)

S(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S(t− 1) Tmin < Tin(t) < Tmax

0 Tmax ≤ Tin(t)
1 Tmin ≥ Tin(t)

(9)

where S(t) represents the switching state of the electric water heater at time t, S(t−1) represents the
switching state at the last time step, 1 for running and 0 for stop; Pheatl represents heating power
(kW); Prated is the rated electric power of electric water heater (kW); Tin(t) represents the chamber
temperature at time t (◦C).

As shown in Figure 4, the VES model mainly includes the electric power curve, the electrical part
and the thermal part. The arrowed solid line indicates the energy flow, and the arrowed dotted line
indicates the signal flow.

T P

TCP

R

P

S

t

Prated
P

Figure 4. VES model of electric water heater.

3. Model Preprocessing

In advanced metering infrastructures (AMI), only discrete data are transmitted, and communication
time intervals exist. It is necessary to discrete the original VES model. Furthermore, model linearization
is also needed to simplify the calculation and reduce communications traffic.

3.1. Discretization

Assume that the time step is Δt, (3) can be expressed as:

Tin
t+1 = Tout

t+1 + SηR1Pele − (Tout
t + SηR1Pele − Tin

t)e−
Δt

R1Ce (10)

where Tin
t and Tin

t+1 are the internal temperature of the room(chamber) at time t and t + 1, respectively;
Tout

t and Tout
t+1 are the external ambient temperature at time t and t + 1, respectively.
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By connecting the discrete dots calculated by Equation (10) into a smooth curve, the relationship
between time and temperature can be accurately described. Figure 5 shows the change of electric
power and chamber temperature over time, where Tset is the setting temperature.

In 0~t1, the water heater is heated from the initial temperature to the protocol maximum
temperature. In t1~t2, the water heater stops heating until the temperature drops to the protocol
minimum temperature. The dot dash expresses the temperature drop curve after the unit is shut down.

t

Prated

P
t

T

T

t t t

T

T

Figure 5. Variation curve of electric water heater temperature to power input.

3.2. Linearization

In order to simplify the calculation, we intend to linearize the temperature curve in Figure 5 and
prove the rationality.

The process of temperature change is slow and the time for equipment to participate in demand
response is relatively short, so it can be considered that the external temperature is constant. That is,
Tout

t = Tout
t+1. The temperature range of the room(chamber) is set to [Tmin,Tmax], the control cycle of

Pele is tcyc, and the time interval(i.e., time step) is Δt. The length of time of electric power input is ton,
and the length of time without electric power input is toff. Substitute Tmin, Tmax into Equation (10) for
reception calculation, we get:

Tmax= (Tout + ηR1Pele)(1− e−
tonΔt
R1Ce )+Tmine−

tonΔt
R1Ce

Tmin = Tout(1− e−
toffΔt
R1Ce )+Tmaxe−

toffΔt
R1Ce

tcyc = ton + toff

(11)

After solution, ton and toff are described by:

toff =
R1Ce

Δt ln(Tmax−Tout
Tmin−Tout

)

ton = R1Ce
Δt ln( Tmin−Tout−ηR1Pele

Tmax−Tout−ηR1Pele
)

(12)

To describe the temperature change of each iteration by the ratio of the time step Δt to ton and toff,
we obtain: ⎧⎪⎪⎨⎪⎪⎩ Tin

t+1 = Tin
t + Δt

ton
(Tmax − Tmin)s = 1

Tin
t+1 = Tin

t − Δt
toff

(Tmax − Tmin)s = 0
(13)
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3.3. Rationality of Linearization

Take the actual running condition of an electric water heater as an example. Assume that an
electric water heater is heated from 30 ◦C to 50 ◦C, and after that the temperature is controlled from Tmin

to Tmax; the operation parameters of the electric water heater are as below: ton = 20 min, toff = 20 min,
Pele = 2000 W, Tmin = 50 ◦C, Tmax = 60 ◦C, Tout ≡ 20 ◦C, Tin

0 = 30 ◦C. It is available from (12) that:
R1 = 3.5 × 10−2 ◦C/W; Ce = 1.192× 105 J/◦C. The shorter the communication time step, the more accurate
the model and the more timely the control are. But at the same time, the communication pressure and
the construction cost of AMI will increase. In this paper, the time step Δt is 1 min.

Simulation is conducted on MATLAB R2016a (MathWorks, Natick, MA, USA) and the variation
of temperature along time is shown in Figure 6. The solid line represents the results of the first-order
ETP model, and the dotted line represents the results of the linearized ETP model.

Figure 6. Comparison of temperature curves between linearized model and original ETP model.

Calculate the root mean square error (RMSE) of the two curves, and the smaller RMSE is, the less
the influence of substitution will be.

RMSE(X, Y) =

√√√
1
N

N∑
i=1

(Xi −Yi)
2 (14)

As the calculated RMSE between the linearized ETP model and the first-order ETP model within
113 min is only 0.2751 ◦C, it can be concluded that the linearized model fits well with the original
model and will not bring significant change to the related results. Actually, the smaller the heating
time ton is or the greater the cooling time toff is, the smaller RMSE is. Considering the actual situation
of electric water heater, the duration of heating process of the equipment is generally much shorter
than the duration of cooling process, that is, ton < toff.

4. Control Strategy of Electric Heating Loads Based on Virtual State of Charge (VSOC)
Priority List

4.1. Proposal of the Control Strategy

Set the following assumptions:
The internal and external environment do not change when the control right is transferred;

the energy conversion of electric heating equipment is 100%; the energy loss only comes from the
difference between the chamber temperature and outside environment; the refresh time interval of
communication data is Δt.
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The following analysis still takes the electric water heater as an example. When a certain number
of electric water heaters are controlled at the same point, the charge and discharge power of the jth one
can be described by:

Pj
disc(t) = −Sj(t)Pj

rated + Pbase
j

Pj
char(t) = Sj(t)Pj

rated − Pbase
j

(15)

where the superscript j represents the jth VES.
At time t, the jth VES (VSOCj) is like formula (8). After the model preprocessing of discretization

and linearization, bring (13) into (7) to derive the formula (16):

VSOC j(t) =
Q(t)

Qcapacity
=

Cj(Tj(t) − Tj
min)

Cj(Tj
max − Tj

min)
=

Tj(t) − Tj
min

Tj
max − Tj

min
(16)

In (16), electrical parameters are described by thermal parameters, and interconversion from
electrical parameters to thermal parameters is completed in time domain. The relationship between
linearized temperature curve, VSOC curve and electric power is shown in Figure 7.

t
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t t t
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tj j j j

Figure 7. The relationship between linearized temperature curve, virtual state of charge (VSOC) curve
and electric power.

The shaded portion indicates that the temperature of VES equipment has not reached the protocol
value. Tj(t) represents the temperature of jth VES at time t; tj

off and tj
_on are remaining discharge and

charge time of jth VES at time t; tj
off_max and tj

on_max are the maximum discharge and charge time of
jth VES.

The recursion formula of VSOCj is as follows:

VSOC j(t + 1) −VSOC j(t) =
Tj(t + 1) − Tj

min

Tj
max − Tj

min
− Tj(t) − Tj

min

Tj
max − Tj

min
(17)

By substituting (13) into (17), it can be concluded that VSOCj is related to time step:

VSOC j(t + 1) =
Δt

Sjtj
on_max − (1− Sj)tj

off_max

+VSOC j(t) (18)
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Charge/discharge time are important constraint indexes. On the one hand, they can ensure that
the VES will not charge or discharge excessively, which means that the temperature fluctuation of the
electric water heater is within the set range. On the other hand, they can ensure that the state of the
device will not change during the time step, which shuns affecting the control accuracy and bringing
unnecessary grid side fluctuations. According to Figure 7, we can obtain:

tj
off

tj
off_max

=
VSOC j(t)−VSOC j

min

VSOC j
max−VSOC j

min

1−tj
on

tjon_max
=

VSOC j(t)−VSOC j
min

VSOC j
max−VSOC j

min

(19)

tj
off =

Tj (t)−Tj
min

Tjmax−Tj
min

tj
off_max= VSOC j(t)tj

off_max

tj
on =

Tj
max−Tj (t)

Tjmax−Tj
min

tj
on_max = (1−VSOC j(t))tj

on_max

(20)

To sum up, taking discharge as an example, the control strategy of VES are:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Pj
disc(t) = −Sj(t)Pj

rated + Pbase
j

VSOC j(t + 1) = Δt
Sjtj

on_max−(1−Sj)tj
off_max

+VSOC j(t)

tj
off =

Tj (t)−Tj
min

Tjmax−Tj
min

tj
off_max= VSOC j(t)tj

off_max

(21)

Taking the demand side response of discharge condition as an example, the principle of the control
strategy for VESs is to control the switching state mainly based on the sequence of VSOC values, that is,
the unit with higher VSOC is shut down preferentially. The main objective function is to meet the
power shortage in each time step. The marginal limit conditions are that the discharge time is longer
than the time step and VES do not overcharge or overdischarge.

The specific control function at time t are

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Pt

s ≤ min
∑
Q

Pt
disc( jn)

0 ≤ VSOCt( jn) ≤ 1

tj
off ≥ Δt

(22)

where Pt
s represents the power shortage at time t; Q represents the set arranged from large to small

according to VSOC; jn is an element of set Q, and n represents the order of j in the new set.

4.2. Simulation of the Strategy

MATLAB is used as the simulation platform to verify the control effect of trunked dispatching of
the electric heating loads with different parameters and working states. The program mainly includes
the following steps: data refreshment, dealing with VSOC off-limit problem, generating control queue
Q based on VSOC values, calculating whether the power shortage is satisfied, handling the switch
state of controlled energy storage and updating the states of VES iteratively. The parameters of the
example are: the amount of electric water heaters under control is 100; the initial value of VSOC is
uniformly distributed from 0 to 1; the switching function is 0~1 integer distributed; the time step is
1min; the rated power of the equipment is uniformly distributed from 1.5 to 2.5 kW. For each water
heater, the maximum charge and discharge time are 15~25 min and 30~50 min uniformly distributed,
respectively; the protocol minimum and maximum temperature are 45~55 ◦C and 55~65 ◦C uniformly
distributed, respectively.

Suppose the power shortage in the power system is 30 kW and the protocol control time is 30 min,
and the control result is shown in Figure 8. After analysis, it can be found that the response power can
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satisfy the power shortage well in a short time, but there is an excessive response at 23 min, as shown
in Figure 8a. At the same time, a large number of VSOC values reach the limit in Figure 8b, which
shows that there is a certain relationship between the excessive response of power and a large number
of VESs reaching the limits simultaneously.

Figure 8. The response variation of power and VSOC in 30 min.

Suppose the power shortage is 30 kW and the protocol control time is 180 min. The control result
is shown in Figure 9. It is found that the response power basically satisfies the power shortage in a long
time, but at the same time there are more excessive responses and insufficient responses. By comparing
Figure 9a,b, we come to the same conclusion as Figure 8: when a large number of VSOC values are
concentrated and near the limit value, they will lead to excessive or insufficient response. Especially
starting at 135 min, since most VESs are close to the limit of VSOC = 0, and in order to maintain the
marginal condition VSOC > 0, a large number of VESs are forced to open and charge, resulting in
insufficient response over a period of time.

Above all, the control strategy based on the VSOC priority list can achieve a relatively stable
power response in a short time. However, limited by the state of VES, the control results over a long
period of time are yet to be adjusted and optimized.
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Figure 9. The response variation of power and VSOC in 180 min.

4.3. Discussion

After observing Figures 8 and 9, it would be found that when the power response is excessive,
more electric water heaters are forced to close and their equivalent VESs discharge in advance because
their VSOC values reach the upper limit, which leads to load peak of excessive response. When the
response is inadequate, more electric water heaters are in uncontrolled state, namely, the relevant
equipment is closed and there is inadequate load capacity for respond. At the same time, we found that
before insufficient response of VES, there is always a large excessive response. The excessive response
power is so large that the state of charge and discharge is changed in advance, causing insufficient
discharge capacity and insufficient response.

By analyzing Figure 8 and the first 30 min of Figure 9, it is found that the control effect is better
when the control right is transferred for a short time than that for a long period of time. By comparison,
it is found that the states of the VESs are more dispersed in a short period of time, while more
concentrated after long-term control.

As shown below, the control effect is affected by the diversity of VES.
The degree of distribution of virtual state of charge of virtual energy storage is defined. It is

expressed by the standard deviation of VSOC. It reflects the diversity of virtual VES. The greater the
standard deviation, the higher diversity of related VES.

By applying the relevant parameters in 4.2, the variation of VES diversity in 180 min can be
obtained, as shown in Figure 10. It is obvious that with the increasing of transfer time of control right,
the diversity of VES converges to a smaller value oscillatorily. The histograms of VES distribution
at special time points 10 min, 55 min, 95 min and 115 min are shown in Figure 11. At 10 min,
the distribution of VES is relatively uniform, but at 55 min, 95 min, and 115 min, it is relatively
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concentrated and the diversity is lower. Compared with Figure 9, 55 min, 95 min, and 115 min are the
time points when excessive or insufficient response occurs.

Figure 10. The variation of VES diversity.

Figure 11. Histograms of VES distribution at different time points.

With increasing control time, VES diversity of electric water heaters is decreased, and that is
before excessive response or insufficient response is low. Obviously, the diversity state of VES leads to
excessive and insufficient response in the transfer process of control right.

In summary, in the response process, the above VSOC-priority VES control strategy makes the
state of VESs convergent and thus reduces its diversity, which leads to worse results than expected,
namely, excessive or insufficient response occurs frequently after long-term control right transfer.

5. Optimized Control Strategy of Electric Heating Loads Based on VSOC Priority List

5.1. Proposal of the Optimized Control Strategy

Based on the above analysis, the diversity of VES states directly affects the control results.
In (22), the switching state of set Q is refreshed within each communication time step in the

original control strategy, which will inevitably lead to the discharge of VES with higher VSOC and
charge of VES with lower VSOC, making the states of VESs synchronised, resulting in the reduction
of the diversity of VESs and directly affecting the control effect.

In order to make the charge and discharge of each VES more complete, the improved control
strategy is to reduce the switching times of VES, trying to change the active control to passive control
according to limit value. To this end, the improved restrictive conditions are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pt
s ≤ min

∑
A

Pt
disc( jn)

Pt
s −∑

A
Pt

disc( jn) ≤ min
∑
�QA

Pt
disc( jn)

0 ≤ VSOCt( jn) ≤ 1
tj

off ≥ Δt

(23)
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where A represents the set of controlled VESs arranged from large to small according to VSOC; CQA
represents the complement set of A with Q as the complete set. The new restriction condition indicates
that the VES discharging during the last time step is preferentially controlled to continue discharging,
and then the power shortage is supplemented based on the order of VSOC values.

5.2. Simulations of the Optimized Strategy

The example parameters in Section 4 and the optimized control strategy based on VSOC priority
list for electric water heaters are used to draw the VES diversity variation curve as shown in Figure 12.

Figure 12. Variation of VES diversity of electric water heaters (after optimized).

Through quantitative calculation and comparison with Figure 10, it can be found that the diversity
of VES obtained by the optimized control strategy is maintained well, the standard deviation oscillates
within a stable range, and the amplitude is much smaller than that of the original control strategy.
The histograms of VES distribution at 45 min, 90 min, 135 min and 180 min are shown in Figure 13.
Obviously, the distribution of VES is more uniform and the diversity is better.

Figure 13. Histograms of VES distribution at different time points (after optimized).

The control effect is shown in Figure 14. The simulation result shows that the optimized control
strategy has better control effect because long-term transfer of control rights does not result in
insufficient or excessive response. The VSOC values of VESs are relatively uniform in the whole
process, and there is no convergence of the states of VES. The power shortage can be reduced steadily
by using the optimized control strategy to control electric heating loads.
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Figure 14. Control effect of optimized control strategy for electric water heaters.

The control effect of the optimized control strategy based on a VSOC priority list for electric
water heaters under fluctuating power shortage is shown in Figure 15. As can be seen from the figure,
the response power still tracks power shortage well, which shows that the control strategy proposed in
this paper is also applicable to power grid with power shortage fluctuations.

Figure 15. Cont.
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Figure 15. Control effect of optimized control strategy under fluctuating power shortage.

6. Conclusions

In this paper, we establish a complete VES index system and propose a VES model which can
reflect the practical electro-thermal exchange. The model is mainly divided into two parts: electrical
parameters and thermal parameters, reflecting the impact of electric heating loads scheduling variation
on the distribution network. The model is discretized to reduce communications traffic and linearized
to simplify calculation. Taking the electric water heater as an example, a control strategy based on
VSOC priority list is proposed, and simulation results show that this method can reduce the power
shortage of the grid to a certain extent. By analyzing the insufficiency of the strategy, the optimized
VSOC priority list control strategy, which optimizes the control effect of long-time scheduling, is put
forward. The optimized control strategy can maintain the diversity of VES well and make it possible for
the electric water heater to track the power shortage of the grid for a long time. Simulation examples
are designed to verify the superiority and effectiveness of the proposed optimized control strategy.

The control strategy proposed in this paper is not only applicable to the electric water heater,
but also to other electric heating loads that maintains the temperature of the room (chamber) in a
specific temperature range by controlling the on-offmode of the resistance wire. For other types of
electric heating loads, it is only necessary to modify the electrical parameters of the VES model and
propose its control strategy in a targeted manner. The research in this paper is helpful to build a
multi-VES system which can participate in the trunked dispatching of the power grid and promote the
development of demand side response. The cost, benefit and pricing mechanism of demand response
can be analyzed in the following studies.
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Abbreviation

Pele electric power
η refrigeration or heating efficiency
Tout ambient temperature
Tin room (chamber) temperature
Ce heat capacity of medium

R1
heat transfer resistance of energy between the interior and the exterior environment of the
room (chamber)

Pheat VES power supply
Pleakage leakage current
Pbase electric power before control right transfering
Pdisc discharging power
Pchar charging power
S(t) switching state at time t
ton charge time
toff discharge time
Qcapacity maximum capacitance of VES
Tmax protocol maximum temperature
Tmin protocol minimum temperature
Q(t) charge capacity at time t
Pheat1 heating power
S(t−1) switching state at the last time step
Prated rated electric power of electric water heater
Δt time step
Tin

t+1 internal temperature of the room(chamber) at time t + 1
RMSE root mean square error of two curves,
(Symbol)j (Symbol) of jth VES
tj

off remaining discharge time of jth VES at time t
tj

h_on remaining charge time of jth VES at time t
tj

off_max maximum discharge time of jth VES
tj

on_max maximum charge time of jth VES
Pt

s power shortage at time t
Q the set arranged from large to small according to VSOC
jn the order of j in the new set
CQA the complement set of A with Q as the complete set
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Abstract: Double-suction centrifugal pumps are widely used in industrial and agricultural applications
since their flow rate is twice that of single-suction pumps with the same impeller diameter. They usually
run for longer, which makes them susceptible to cavitation, putting the downstream components at
risk. A fast approach to predicting the Net Positive Suction Head required was applied to perform
a multi-objective optimization on the double-suction centrifugal pump. An L32 (84) orthogonal array
was designed to evaluate 8 geometrical parameters at 4 levels each. A two-layer feedforward neural
network and genetic algorithm was applied to solve the multi-objective problem into pareto solutions.
The results were validated by numerical simulation and compared to the original design. The suction
performance was improved by 7.26%, 3.9%, 4.5% and 3.8% at flow conditions 0.6Qd, 0.8Qd, 1.0Qd
and 1.2Qd respectively. The efficiency increased by 1.53% 1.0Qd and 1.1% at 0.8Qd. The streamline
on the blade surface was improved and the vapor volume fraction of the optimized impeller was
much smaller than that of the original impeller. This study established a fast approach to cavitation
optimization and a parametric database for both hub and shroud blade angles for double suction
centrifugal pump optimization design.

Keywords: multi-objective optimization; artificial neural network; NPSHr prediction; cavitation
optimization; CFD

1. Introduction

Over recent years, pump manufacturers have intensified their quest to rapidly develop
cost-competitive and high-performance pumps with compact and robust structures to meet consumer’s
limitless demands for high end centrifugal pumps, since they offer wide-ranging stable operation both
in industrial and agricultural applications. As such, double-suction centrifugal pumps are widely
used in various fields, since their flow rate is twice that of single-suction pumps with the same
impeller diameter [1]. For systems with large capacity demands, the pumps are usually run for longer
periods, making them very susceptible to cavitation; this puts downstream components at risk of being
damaged, since, in most cases, the flow passage gets blocked by cavitation bubbles [2].

Recent advances in the design of centrifugal pump systems does not only require energy efficient
and quieter systems, but also reductions in design time and lower costs. Engineers have therefore
devised optimization methods and algorithms with numerical simulations so that optimization does
not rely solely on the designer’s experience [3]. Aside from the optimization algorithms there are other
approaches to optimization, such as the experimental design known as the design of experiment (DOE)
method, and the application of meta-models as surrogates for optimization [4]. Pei et al. [5] applied
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the L9 (33) orthogonal design of experiments and computational methods to optimize the cavitation
performance in a centrifugal pump to reduce the required Net Positive Suction Head (NPSHr) by
0.63 m. A cavitation performance optimization was also carried out on a large-scale axial flow pump
using orthogonal DOE to reduce the cavity length and vapor volume fraction [6]. Nataraj et al. [7] used
the Taguchi test design (ODOE) and numerical simulations to optimize the design of the centrifugal
pump impeller. Xu et al. [8] conducted a multi-objective and multi-parameter optimization study of
a using Taguchi method. The optimized impeller increased in efficiency by 3.09% and reduced critical
cavitation point by 1.45 m. Also, the Response Surface Method, Kriging Model and Artificial Neural
Networks are popular surrogate models that have been applied in centrifugal pump optimization
design [9–11]. Jin et al. [12] compared various surrogate models based on several defined criteria,
including prediction accuracy, efficiency, and robustness, and concluded that a neural network should
be used for higher-order nonlinear problems. Artificial Neural Networks (ANNs) abstract the human
brain’s vegetative cell network from the angle of data process, establish an easy model, and form
completely different networks which are in step with different affiliation strategies. ANNs have been
applied in turbomachinery by various researchers [13–16]. Pei et al. [17] carried out a multi-objective
optimization on the inlet pipe shape of a vertical inline pump and using an ANN and Multi-Objective
Generic Algorithm (MOGA) to increase the efficiency over a wide range.

During cavitation optimization designs, a numerical process of optimizing a collection of individual
objective functions is simultaneously performed [5,18]. The process involves the calculation of several test
cases to determine the NPSHr for each case, which consumes a lot of computational time. Traditionally,
during the use of Computational Fluid Dynamics (CFD) for cavitation simulations, the common practice
has been to set the inlet boundary to total pressure, while the boundary at the outlet is fixed to the volume
flow rate. Although this boundary set has been fruitfully implemented in numerical simulations with
and without cavitation models, the choosing of total inlet pressure relies on guesswork if there is no
foreknowledge of the NPSHr range [19–22]. This approach usually requires about 10–15 independent
simulations before good accuracy is reached [21,23]. Moreover, this pure guessing game is likely to
draw the simulation into severe cavitation conditions, which takes much longer times to converge,
especially in situations where transient simulations are required to acquire the necessary accuracy. [24,25].
A recent approach proposed by Ding et al. [26] introduced a controllable and more predictable simulation
procedure where the traditional boundary set were substituted by introducing a new boundary pair and
an algorithm developed to estimate a good value for a static pressure that correlated to a 3% drop in
pump head. The procedure predicted NPSHr at a head drop of 3.3% just in three simulation steps in
an industrial centrifugal pump. Despite the fact that this novel approach proved numerically stable for
simulating cavitation flows, the application of this method in cavitation flow simulations has been very
rare, and has not been applied to the double-suction pump.

In this study, a fast approach to NPSHr prediction was used to perform a multi-objective
cavitation design optimization first to improve hydraulic efficiency and secondly to improve the
suction performance of the double-suction centrifugal pump. The choice of decision variables was
centered on the impeller hub and shroud angles, since there have been several cavitation performance
enhancement studies on the blade inlet angle. An L32 (84) orthogonal array was designed to evaluate
8 geometrical parameters at 4 levels each. A two-layer feedforward neural network and genetic
algorithm was applied to solve the multi-objective problem into 2D pareto-frontier solutions that meet
the objective functions. The study established a fast approach to cavitation optimization design and
also created a parametric database of the impeller hub and shroud blade angles for the double-suction
centrifugal pump optimization design.

2. Description of Computational Domain

The 250GS40 double-suction centrifugal pump (Figure 1) was developed with PTC Creo parametric
4.0 (Boston, MA, United States). It was designed according to a specific speed of 126.57. It has a shrouded
impeller with six twisted blades. The spiral suction domain has flow directing baffles to de-swirl the
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flow towards the impeller eye. The pump has a single volute; Table 1 presents the design specifics of
the pump.

Figure 1. Tested pump and computational domain.

Table 1. Design specifications of model pump.

Design Parameters Value

Flow rate, Qd (m3/h) 500
Head, H (m) 40
Rotational speed, N (rpm) 1480
Number of blades, z 6
Suction diameter, Ds (mm) 250
Impeller inlet diameter, D1 (mm) 192
Impeller outlet diameter, D2 (mm) 365
Delivery diameter, Dd (mm) 200
Efficiency, η 84
NPSHr (m) 3.5

2.1. Computational Grid and Mesh Sensitivity

The flow passage for the tested pump was meshed with ANSYS ICEM 18.0 (ANSYS Inc.,
Canonsburg, PA, United States) mesh tool. High quality structural hexahedral mesh was built to
achieve maximum calculation accuracy. The grid size and blocking method was used and the grids for
the impeller and suction chamber were refined with large numbers for higher precision. The grids near
the walls were refined further to attain boundary motion features. An overview of the computational
mesh is shown in Figure 2.

Figure 2. Mesh overview of the flow domains.
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Based on similar works [17,27,28], 5 independent high quality structural hexahedral meshes were
built and a grid sensitivity analysis executed. Simulations were performed at the design flow rate of
to determine the mesh influence on pump head and efficiency. The effects of the mesh density on
the hydraulic performance remained fairly constant when the number of grid elements increased
past 4.26 × 106 elements, suggesting that numerical accuracy gradually stabilized as the grid number
increased. The mesh density with elements 4,266,423 was therefore used for the computations to
reduce calculation load and computation time. Statistics for the selected mesh density is presented in
Table 2, and the grid sensitivity of the 5 independent mesh generated is shown in Figure 3.

Table 2. Grid cells of the selected mesh.

Domain Impeller Suction Volute All Domains

No of Elements 1,199,880 1,938,727 1,127,816 4,266,423
No of Nodes 1,285,686 2,019,162 1,159,980 4,464,828

Figure 3. Performance comparison for 5 independent grids.

2.2. Governing Equations

The continuity equation, which is the basic equation governing two-phase flow is adopted from
the Navier-Stokes equations [29] which is time dependent, and is given as:
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Density and dynamic viscosity mixtures are represented by ρand μrespectively. Velocity is denoted
by u, p for pressure and turbulent viscosity is μt. Variables i and j are axis directions. The turbulence
model chosen was SST k–ω, because it exhibits a combined advantage of both the k–ω and k–ε
turbulence models [30,31]. The cavitation model used is the mass transport equation is deduced from
Rayleigh-Plesset’s equation. Transport equation for bubble formation and collapse is expressed as:
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whereαv denotes the vapor fraction, m+ and m− stands for mass transfer terminology for evaporation and
condensation respectively. The coefficients for condensation and evaporation phases are represented as
Ccond and Cvap. rg, is the nucleation site volume fraction, Rb, is the bubble radius, ρv, for vapor density,
ρl, the liquid density and pv, whch is also the saturation pressure. Standardized values according to
literature are: Cvap = 50, Ccond = 0.01, rg = 5 × 10−4, Rb = 10−6 m, ρv = 0.554 kg/m3, ρl = 1000 kg/m3 and
pv = 3169 Pa [32,33].

2.3. NPSHr Prediction Procedure

For a given flow rate condition, three key procedures are required to calculate for the NPSHr.
The approach used here is adapted from Ding et al. [26]. There are however two other optional
procedural steps (pre and post procedural) that can be applied by discretionally where necessary.
Step 0 (optional): The first step is an optional step of performing a quick simulation with the traditional
boundary settings to give an idea of the pump head and can be skipped if the head is already known.
Step 1: Recalculated pump head with new boundary pair to obtain clear-cut reference point in predicting
the 3% head drop. The inlet is held fixed to the flow rate and static pressure at the outlet. The outlet
static pressure, PSout, is estimated as follows.

PSOUT (1) = H(0) + PTin(0) −HD(0) = PSOUT (0) (6)

Step 2: Set outlet static pressure to 97% of head from step 1. This step prevents the simulation from
running into severe cavitation since the estimated NPSHa is not far from the cavitation point.

PSOUT (2) = 0.97H100 −HD(1) (7)

Here, PSout (2), is used to expressed outlet static pressure for step 2, H100, is the pump head at no head
drop calculated from step 1, and HD, is the dynamic head calculated from step 1.
Step 3: This step is to correct the errors in the previous step by adjusting the outlet boundary condition.
The predicted results are expected to be as near as possible to the NPSHr.

PSOUT (3) = 0.97H100 + PTIN (2) −HD(2) (8)

2.4. Numerical Simulation Setup

Three dimensional Reynolds-Averaged Navier Stokes (3-D RANS) equation for a fully developed
flow was solved using the commercial CFD package ANSYS CFX (ANSYS Inc). Water at room
temperature was selected as the working fluid for the homogeneous fluid model and the reference
pressure was 0 atm. An isothermal heat transfer rate was selected to render the system in thermal
equilibrium with its surroundings at 25 ◦C. In addition, all flow domains were considered to have
a surface roughness of 25μm with no-slip. Due to additional effects in the viscous sublayer, an automatic
near-wall treatment was applied. An inlet viscosity ratio of 10 was chosen to correspond to a medium
turbulence intensity level of 5% at the pump inlet. To guarantee consistency, convergence and accuracy
during the simulations, a high-resolution upwind scheme was employed to solve both steady and
unsteady equations. For no cavitation conditions, pressure opening and flowrate boundary conditions
were specified at the inlet and outlet. Cavitation simulations were performed under steady state
with boundary conditions specified as static pressure for the outlet and mass flowrate at the inlet.
The volume fraction of water (1 − α) was set to 1, whereas the vapor volume fraction, α, set to 0 at the
inlet of the pump. Steady state iterations were set to a maximum of 700 for no cavitation conditions and
up to 3000 for cavitation conditions. However, iterations converged when maximum residual values
were less than or equal to 10−5, and this occured when the flow had reached its stable periodicity.
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2.5. Test Setup to Validate Numerical Method

The pump performance tests were done at Shandong Shuanglun Company Ltd., China. The test
rig schematics can be seen in Figure 4, and the test setup is shown in Figure 5. The flow rate was
measured with LWGY-200A electromagnetic flowmeter from Shanghai Zijiu Instrument Co. Ltd., China,
with an error margin of ±0.5%. The fluid pressure was measured with WT200 pressure transmitters
from Shanghai Weiltai Instrument Co. Ltd., China, and the uncertainty is less than ±0.1%. Hydraulic
performance and cavitation tests were performed and evaluation was done according basic pump
theory [34].

Figure 4. Scheme of the test rig. 1: Inlet pipe, 2(9): Valve, 3(7): Pressure transducer, 4: Vacuum pump,
5: Tested pump, 6: Driven motor, 8: Magnetic flow meter, 10: Outlet pipe.

  
(a) (b) 

Figure 5. Test Pump (a) and Data Acquisition Device (b).

3. Optimization Procedure

The procedure for optimization is shown in Figure 6. The initial process was to sample the
input bound variables based on an orthogonal design of experiment method. Secondly, series of
single-suction impellers were designed by the hydraulic design software CFturbo (CFturbo® GmbH,
Dresden, Germany). It was then mirrored with PTC Creo parametric 4.0 to obtain the 3D model of
the double-suction impeller. ANSYS ICEM 18.0 and CFX 18.0 (ANSYS Inc.) were adopted for the
numerical simulations to obtain the efficiencies and NPSHr, and the results were selected as objectives
to train the surrogate models. The fourth part was to solve the models using multi-objective genetic
algorithm to obtain pareto solutions. Finally, the optimized cases were verified by numerical simulation
to improve the reliability of the results.
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Figure 6. Flowchart of Optimization process.

3.1. Objective Functions

In the design process of centrifugal pump, the optimization goals and targets are considered
as significant indexes for performance evaluation. For this study, the efficiency and NPSHr of the
double-suction centrifugal pump at the design condition are selected as the optimization targets, and
they are obtained by numerical model calculation. The expression for calculating efficiency is:

η =
ρgHQ

Ps
(9)

Here, ρ is density, H is the pump head, Q is the flow discharge, and PS the shaft power. For pump
cavitation, NPSHr, which is the minimum pressure required at the suction point to prevent cavitation
is a significant performance index. The expression for NPSHr is given as:

NPSHr =
Ps − Pv

ρg
+

V2
s

2g
(10)

Here, Ps and Vs are the reference pressure and velocity, and Pv is vapor pressure.

3.2. Decision variables and Array Orthogonal Design

There were space constraints due the structure of the suction and volute casing; therefore the
shape of the impeller was maintained by holding constant the inlet diameter D1, the impeller outlet
diameter D2, the hub diameter Dh, and the blade width at outlet b2. Only the blade profile is optimized.
Eight geometrical parameters namely hub inlet angle β1 hub, hub exit angle β2 hub, hub wrap angle ϕ1 hub,
leading edge wrap angle at hub Δϕ0 hub, shroud inlet angle β3 shroud, shroud exit angle β4 shroud, shroud
wrap angle ϕ2 shroud and the leading edge wrap angle at shroud Δϕ0 shroud, were selected as optimization
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variables. Each parameter is given a set of four values. Table 3 shows the decision variables and their
set of values used for the parameterization. Orthogonal Design of Experiment was applied here to
design the experimental scheme. The main inputs to the design were the input variables (factors) and
the number of values in each variable (levels). From Table 3, an orthogonal scheme of L32 (84) with n
levels; p factors; and m schemes was designed in Table 4 according to the formula:

Lm(np) (11)

Table 3. Range design of variables.

Trial No
A B C D E F G H

β1hub/
◦ β2hub/

◦ ϕ1hub/
◦ Δϕ0hub/

◦ β3shroud/
◦ β4shroud/

◦ ϕ2shroud/
◦ Δϕ0shroud/

◦

Original 17 29.43 143 0 15 29.43 143 0
1 15 26 139 −5 13 26 139 −5
2 17 28 143 −2.5 15 28 143 −2.5
3 19 30 145 2.5 17 30 145 2.55
4 21 32 148 5 19 32 148 5

Table 4. Orthogonal scheme.

Trial No A B C D E F G H

1 17 28 148 −2.5 13 26 148 −5
2 21 28 145 −2.5 19 28 139 −2.5
3 21 26 143 −2.5 17 26 145 5
4 21 28 139 5 19 32 145 −5
5 15 28 143 2.5 15 32 139 5
. . . . . . . . . . . . . . . . . . . . . . . . . . .
28 19 32 143 −2.5 15 30 139 −5
29 15 30 148 −2.5 19 30 143 5
30 15 32 145 5 17 28 143 −5
31 15 28 148 −5 15 28 145 2.5
32 21 32 143 −5 13 32 143 2.5

To eliminate the time of 2D hydraulic design and 3D modeling, the 3D hydraulic design software
CFturbo 10.3 (CFturbo® GmbH) was used to carry out the 3D parametric design of the double suction
impeller. In the parametric design, the focus is to control the blade profile. The meridional shape has
4 points for controlling the lines and the inclination of the angles of the hub and shroud (Figure 7).
The position of the inlet edge of the blade is adjusted by a Bézier curve with five points. CFturbo is
limited to single-suction impeller design only, and therefore a single-suction impeller was designed
according to the hydraulic characteristics and mirrored into a double-suction impeller using PTC PTC
Creo 4.0. The 32 design variables were written into the trail files using MATLAB R2017b (Mathworks
Inc., Natick, MA, USA), then started PTC Creo with these trail files by BAT codes to complete the
modeling process. ANSYS Workbench (ANSYS Inc.) was adopted to combine meshing with CFX
solver since it can work in batch mode with a journal file, making it easier to automate meshing and
solving using MATLAB and BAT codes.
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Figure 7. Meridional shape of impeller and leading edge of blade.

3.3. Artificial Neural Network Training

For this study, a dual-layer feed-forward artificial neural network with sigmoid hidden neurons
and linear output neurons was adopted to fit the NPSHr and efficiency at the design flow condition and
8 design variables of the impeller. The Levenberg-Marquardt algorithm was adopted as the training
algorithm to build the feedforward neural network. This is because compared with the disadvantages
of traditional BPNNs, such as slow convergence speed and local minimum problems, the convergence
rate of the Levenberg-Marquardt algorithm is the fastest of all traditional or improved networks, and it
has been shown to achieve excellent evaluation and prediction results [35,36]. Also, to improve the
prediction performance of ANN, it is important to use a much effective activation function in order
to obtain a higher prediction accuracy. Therefore, the activation function used for the feedforward
NN was the Tangent Hyperbolic Activation Function (tanh). This is because tanh has a much better
recognition accuracy for multi-layer neural networks [37,38]. Its main advantage is the ability to
produce zero centred output which aids the back-propagation process [39]. Figures 8 and 9 are the
dual-layer feedforward neural network structures used for training the efficiency and NPSHr objectives.
The mathematical relation for the ANN function is written as Equation (12), the activation function,
tanh is written as Equation (13) and the linear function as Equation (14).

 

Figure 8. ANN structure for efficiency objective.
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Figure 9. ANN structure for NPSHr objective.

y = g

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

w2
j × f

⎛⎜⎜⎜⎜⎜⎝
m∑

k=1

w1
k , j xk + b1

n

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠+ b2 (12)

f (x) =
[

2
(1 + e−2x)

]
− 1 (13)

g(x) = ax + b (14)

Here, weight coefficient is expressed as w, threshold is b. Superscripts 1 and 2 represent the coefficients
from the first layer to the second layer, and from the hidden layer to the output layer respectively.

3.4. Multi-objective Optimization Design

The multi-objective problem, which is defined as an N-dimensional problem with M objective
functions is mathematically expressed as:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max
min [σ1(X), σ2(X), . . . , σM(X)]

subject to

δi(X) ≤ 0, i = 1, 2, . . . , M

(15)

where X = (x1, x2, . . . , xN) is the N-dimensional vector;

σ j = (X)( j = 1, 2, . . . , M) are the objective functions;
δi(X) ≤ 0 is the variables limit.

Hence, the problem for the multi-objective optimization can be described as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find
maximize η = f1(A, B, C, D, E, F, G, H)

miximize NPSHR = f2(A, B, C, D, E, F, G, H)

subject to
15◦ ≤ A ≥ 21◦
26◦ ≤ B ≥ 32◦

139◦ ≤ C ≥ 148◦
−5◦ ≤ D ≥ 5◦
13◦ ≤ E ≥ 80◦
26◦ ≤ F ≥ 80◦

139◦ ≤ G ≥ 148◦
−5◦ ≤ H ≥ 5◦

(16)

76



Processes 2019, 7, 246

The value of each function could not be used to evaluate the individuals since the objective
functions were more than one. The expression in Equation (17) was adopted [17] to evaluate the
individuals and solve the problem.

F(x) =

⎡⎢⎢⎢⎢⎣ 1

1+
∣∣∣∣∣∣x− y

∣∣∣∣∣∣2
⎤⎥⎥⎥⎥⎦ (17)

where x is any single population individual; y is the Pareto efficient individual closet to x;
∣∣∣∣∣∣x− y

∣∣∣∣∣∣ is the
Euclidean distance between x and y.

To solve this problem, a Pareto-optimal solution was applied to determine the optimal parameter
combinations that would best solve the problem. To obtain the global Pareto frontier of the two
objective functions, the Multi-objective Generic Algorithm (MOGA) was applied [40]. To invoke the
algorithm, gamultiobj a customized MATLAB function [41] was used. This function has the ability
to use a controlled elitist individual, which gives it an advantage over the simple genetic algorithm,
and has been successfully applied in optimization works [42]. In construction of the Pareto-optimal
solutions, the following input parameters were used. Population size of 100, Pareto-front population
of 0.8, crossover fraction of 0.85, 1000 generations, and function tolerance of 10.

4. Discussion of results

4.1. Numerical Model Validation

The efficiency calculated from the simulation results is the hydraulic efficiency only. To compare
the simulation results with the experimental results, the overall efficiency of the pump, which comprises
the hydraulic efficiency ηh, the mechanical efficiency ηm, and the volumetric efficiency ηv has to be
considered. This is because the experimental efficiency includes the hydraulic efficiency, volumetric
efficiency and mechanical efficiency. Thus, following the examples from [24,43], the efficiency obtained
from the simulation is further processed, before comparing with the test results. The mechanical
efficiency is expressed as:

ηm = 1− 0.07
1(

ns
100

) 7
6

− 0.02 (18)

The Volumetric efficiency is expressed as:

ηv =
1

1 + (0.68ns)
−2
3

(19)

The relationship between the efficiencies is expressed as:

η = ηhηmηv (20)

Computational results from the numerical simulations were matched with the experiments in
Figure 10. The pump head dropped gradually as the flow rate was increased, and the trend between
the numerical and experimental heads were quite similar. The experimental head was, however, higher
than the numerical head whereas the efficiency from the test results was lower than the calculate
efficiency. The experimental head at the best efficiency point (BEP) was 41.49 m, and the corresponding
efficiency was 86.63%, at a flow rate of 518.57 m3/h, whereas the BEP for the numerical predictions
occurred at head 40.24 m and efficiency 88.39 %. The relative errors at the BEP were 3.01% and 2.03%
respectively. The experimental head at the design point was 41.83 m and efficiency 85.20%. Overall,
the agreement between the results from the experiments and the simulation was very good, and this
affirmed the reliability of the numerical approach.
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Figure 10. Hydraulic performance comparison of test and numerical results.

A comparison of the cavitation characteristics at the pump design point, Qd, between the simulation
and the experimental results is shown in Figure 11a. The calculated NPSHr was 2.532 m at a corresponding
head drop of 3.12%. The deviation between the unsteady simulation and the experimental NPSHr for the
design flow rate was calculated as 4.05%. It can be noted that both calculated and the test measurements
for the NPSHr did not exceed the design NPSHr, and the characteristic “sudden” head-drop was very well
predicted by the numerical simulation. The suction performance at different flow rates for the numerical
and experimental results are compared in Figure 11b. The computational results were relatively higher
than the experimental test values at part load conditions of O.6Qd and comparatively lower at design and
overload conditions. That notwithstanding, the deviations were minimal and therefore the numerical
results agreed well with the experimental results to established the suitability of the numerical approach
for simulating and predicting cavitation flow in centrifugal pumps.

  
(a) Cavitation characteristics at Qd (b) Suction performance at Q/Qd 

Figure 11. Suction performance prediction and comparison.

4.2. Optimization Results

4.2.1. Comparison of CFturbo Impeller to Original Impeller

The hydraulic performance characteristics of the design impeller built with CFturbo (CFturbo®

GmbH) is compared with the original model. This is to validate the new design schemes to be produced
by the CFturbo hydraulic software. For all three characteristics compared, the design condition
recorded the lowest deviation of 0.4% for power and head, whereas the deviation in efficiency was
0.03%. This is shown in Figure 12. Looking at the margin of deviation, there was a perfect agreement
between the two models, indicating that the model built by Cfturbo hydraulic design software could
be used for the design of 3D models according to the design variables.
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Figure 12. Comparison of Cfturbo built impeller to original model.

4.2.2. Orthogonal Test Results

The 32 impellers designed from Table 4 were simulated with ANSYS-CFX 19.2 (ANSYS Inc.).
Investigations were done at the design flow rate as per the objectives of the optimization. The results
from the orthogonal test are presented in Table 5.

Table 5. Orthogonal scheme results.

Trial No A B C D E F G H η (%) NPSHr (m)

1 17 28 148 −2.5 13 26 148 −5 88.03 2.420
2 21 28 145 −2.5 19 28 139 −2.5 88.69 2.338
3 21 26 143 −2.5 17 26 145 5 89.21 2.364
4 21 28 139 5 19 32 145 −5 88.16 2.374
5 15 28 143 2.5 15 32 139 5 87.41 2.647
6 15 32 139 −2.5 17 32 148 −2.5 87.26 2.464
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27 19 32 148 5 15 26 145 −2.5 88.93 2.488
28 19 32 143 −2.5 15 30 139 −5 87.79 2.450
29 15 30 148 −2.5 19 30 143 5 87.87 2.442
30 15 32 145 5 17 28 143 −5 88.43 2.517
31 15 28 148 −5 15 28 145 2.5 88.18 2.513
32 21 32 143 −5 13 32 143 2.5 87.17 2.521

4.2.3. ANN Metamodeling and Validation

Artificial neural networks were adopted as the metamodel to build the relationship between the
two objective functions and the design variables for optimization. To determine the suitability of the
surrogates for further optimization, the R-square analysis was carried out to measure the strength of
the relationship between the linear model and the dependent variable. Figure 13 shows the R-square of
the ANN models of the objective functions. The R-square values for both efficiency and NPSHr were
calculated as 0.96758 and 0.96083 respectively, indicating that the ANN models for can be applied to
the multi-objective optimization since the prediction accuracy is high enough. As from previous works,
validation of a metamodel is a requirement before it can be used as a surrogate [17,44]. A comparison
of the ANN prediction and the CFD simulation results from is drawn in Figure 14. From the graph,
the predicted ANN model values are in agreement with the CFD simulation values. Hence, both
NPSHr and efficiency would be used as objective functions in the multi-objective optimization.
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(a) Efficiency (b) NPSHr 

Figure 13. R-Square analysis of efficiency and NPSHr.

  
(a) Cavitation characteristics at Qd  (b) Suction performance at Q/Qd 

Figure 14. Validation of ANN prediction with CFD.

4.2.4. Optimal Solution Solving-MOGA Solutions

The multi-objective generic algorithm was applied to establish an optimization model with
MATLAB. The Pareto frontiers from ANN for the two objective functions have been presented in
Figure 15. The pareto solutions presented a set of 100 optimal schemes that satisfied both objective
functions. In real pump applications, it is necessary to maximize economic benefits; hence, a maximum
efficiency point was considered. Consequently, the lower the suction performance the more resilient
the pump is to cavitation, and so the minimum NPSHr point was also considered. A third point,
the middle point is also considered. Three impeller schemes were then built according to the optimum
decision variables in Table 6 and simulated with ANSYS 19.2 (ANSYS Inc.).

The comparison of the original case and the calculation results from the three optimal cases at the
design condition is presented in Table 7. Although the head is not an optimization objective, it shouldn’t
be made worse. For all the 3 cases, the head of case 1 reduced by 5% even though it had the highest
increase in efficiency of about 2.6%. There increase in efficiency of case 3 is 0.08%, which is almost
negligible. Case 2 however increased its efficiency by 1.53%. For NPSHr, the cavitation performance for
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case 2 improved tremendously by 7.26%, whereas that of case 3 recorded the best cavitation performance
by improving 8.21%. Despite case 3 performing slightly better than case 2 for cavitation performance,
optimized case 2 would best suit the multi-objective optimization since its increase in efficiency is
much significant. The selected best case was modelled with the original suction and volute units and
numerically simulated for the optimization objectives.

Figure 15. Pareto-frontiers from ANN.

Table 6. Variables for Optimum Cases.

Cases β1 β2 ϕ1 Δϕ1 β 3 β4 ϕ2 Δϕ2 η (%) NPSHr (m)

1 21.000 26.00 148.00 5.000 19.000 26.00 139.93 5.00 89.25 2.280
2 20.994 26.006 145.69 4.999 18.999 26.01 143.34 3.16 89.247 2.205
3 19.931 26.00 139.00 4.999 18.999 26.001 146.95 −5.00 89.191 2.173

Table 7. Comparison of original case and best optimal cases.

Name η (%) NPSHr (m) Head (m)

Original case 88.28017 2.532 40.721
Case 1 90.64207 2.392 38.650
Case 2 89.65017 2.348 40.019
Case 3 88.35048 2.324 40.070

4.2.5. Comparison of External Characteristics—Optimized with Original Design

Figure 16 is a comparison of the predicted NPSHr for the optimized impeller and the original
model at different flow conditions. It can be seen from the graph that the optimized impeller had
improved cavitation performance as compared to the original impeller. There was a 7.26% improvement
in suction performance at the design point. Comparatively, the improvement in suction performance
decreased slightly as the flow moved from the design point. At 1.2 Qd, the suction performance was
improved by 3.9%. At part loads however, the improvement in suction performance was 3.8% and 4.5%
for 0.6 Qd and 0.8 Qd flow conditions respectively. The predicted efficiencies for the optimized and
original impellers were also compared in Figure 17 at off design conditions. The maximum increase in
efficiency which is 1.53% occurred at the nominal flow rate. At 0.8 Qd, there was in increase in efficiency
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of 1.1%. At overload and deep part loads, the effects of the optimization of hydraulic efficiency was
very little, with 0.4 Qd improving by only 0.2%.

Figure 16. Predicted NPSHr comparison at different flow rates.

 
Figure 17. Predicted efficiency comparison at different flow rates.

4.2.6. Internal Flow Analysis at 1.0 Qd

The static pressure distribution on the blade suction and pressure blade surfaces were compared at
the design condition in Figure 18. For both the original impeller and the optimized impeller, the static
pressure increased steadily with a smooth transition along the impeller’s radial direction. Generally,
low pressure gradients existed in the blade leading regions, which moved towards the blade suction
surface (SS). The optimized impeller however had relatively higher pressure distributions along the
blade surface with original impeller having lower distributions in the leading regions. For the original
impeller, the span of the low pressure regions went as far as the middle of the blade for the suction
side. At the pressure side (PS) of the blade, the trend was same. Static pressure was much higher than
the suction side which is very usual of the blade. The optimized blade saw much improvements in the
pressure distribution, with the pockets of low pressure regions disappearing.

Figure 19 compares the of blade streamlines of the optimum and original designs at no cavitation
conditions to illustrate the improvement of pump performance. The streamline distribution along the
blade surface is uniform and symmetric. There was some flow distortion observed very close to the
leading edge of one of the blades. This however disappeared and the flow distribution became uniform
when as the flow moved towards the middle of the blade. In the optimized impeller, no flow distortion
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was seen. The velocity direction was along with the blade, indicating the ability of the optimized blade
to control the fluid much better than the original blade.

Figure 18. Comparison of static pressure distribution in impeller blade surface.

 
Figure 19. Comparison of streamline on blade surface at no cavitation condition.

At critical cavitation conditions, flow distortions and reverse flow were observed on the blade
surface for both designs. As in Figure 20, the suction side of both blades had a smooth distribution at
the leading edge. Distortions appeared along the blade surface on different blades up to the middle of
the blade where the flow became uniform, and by this, the static pressure would have increased and
bubble cavities disappearing. The distortions on the optimized impeller however covered a smaller
region as compared to the original impeller; this is also an indication that flow distribution had
improved in cavitation conditions. The pressure side of the blade had flow distortions that appeared
similar for both the original and optimized schemes. However, a critical look revealed some vortex
and reverse flow appearing closer to the leading edge of some blades of the original impeller.
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Figure 20. Compare streamline on blade surface at cavitation condition.

4.2.7. Vapor volume fraction analysis at 1.0 Qd

To compare the vapor and bubble distribution within the two schemes, the optimized impeller
was first compared with the original impeller at the nominal operating condition. From Figure 21,
pockets of vapor above 5% volume fraction could be seen at the right corner of the leading edge for all
the blades in the original impeller. The case was rather different for the optimized impeller with vapor
cavities appearing on only two blades. This indicates the improvement in cavitation performance
by the optimized impeller. For the case of critical cavitation, Figure 22 shows the volume fraction
distribution in the impeller for water vapor above 10% volume fraction.

On comparison, the vapor volume fraction of the optimized impeller was shown to be much
smaller than that of the original impeller, whereas for most of the blades, the bubble cavities spread
up to the middle of the impeller before collapsing, and the bubble distribution was much lower in
the optimized impeller, mostly covering just a quarter of the blade length. For the suction domain,
vapor cavities formed around the wear rings which indicated the presence of suction ring cavitation
for both design schemes. Figure 23 is the bubble distribution in suction domain at critical cavitation
condition. The cavity formed around on the suction ring closer to the suction tongue region was not
surprising, due to the geometry configuration. However, the bubble distribution in the suction unit
was relatively smaller in the optimized impeller other than the original impeller which also proves that
the optimized impeller has improved cavitation performance.
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Figure 21. Volume fraction distribution in impeller at NPSH = 8.77 m.

Figure 22. Volume fraction distribution in impeller at critical cavitation.

Figure 23. Bubble distribution in suction domain at critical cavitation.

5. Conclusion

A multi-parameter and multi-objective optimization was performed on an axially-split double-suction
centrifugal pump first to increase efficiency and second to improve cavitation performance. An L32

(84) orthogonal array was designed to evaluate 8 geometrical parameters at 4 levels each. A two-layer
feedforward neural network and genetic algorithm was applied to solve the multi-objective problem
into pareto solutions that meets the objective functions. Three best cases from the pareto solutions were
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validated by numerical simulation and compared to the original design. The results from the study are
as follows:

1. There was a 7.26% improvement in suction performance at the design point. At 1.2 Qd, the suction
performance was improved by 3.9%. At part loads, however, the suction performance improved
by 3.8% and 4.5% for 0.6 Qd and 0.8 Qd flow conditions respectively.

2. The efficiency increased by 1.53% at the nominal flow rate and 1.1% at 0.8 Qd. For overload and
deep part loads, the effects of the optimization of hydraulic efficiency was very low.

3. For the optimized design, the pressure distribution at the leading regions were comparatively
higher and the streamline on the blade surface was improved.

4. By comparison, the vapor volume fraction of the optimized impeller was much smaller than that
of the original impeller. Also, the bubble distribution in the suction unit was relatively smaller in
the optimized impeller.

5. This study provides a theoretical reference and a parametric database for both hub and shroud
blade angles for double suction centrifugal pump optimization design.
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Nomenclatures

Latin symbols

b2 blade width, mm
Ccond Condensation coefficient
Cvap Evaporation coefficient
D Impeller diameter, mm
H Head, m
HD Dynamic Head, m
k Kinetic energy of turbulence, m2/s2

m+ Evaporation rate
m- Condensation rate
N Rotational speed, r/min
p Pressure, Pa
PS Shaft power, kW
Q Flow rate, m3/h
Rb Bubble radius, m
rg Nucleation site volume fraction
u Velocity, m/s
z Number of blades
Greek symbols

αv Vapor volume fraction
β1 hub Inlet angle at hub, ◦
β2 hub Exit angle at hub, ◦
β3 shroud Inlet angle at shroud, ◦
β4 shroud Exit angle at shroud, ◦
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ε Turbulence dissipation rate, m2/s3

η Efficiency, %
ρ Density, kg/m3

μ Dynamic viscosity, Pa.s
μt Turbulent viscosity, m2/s
ω Specific dissipation of turbulent kinetic energy, s-1

ϕ1 hub wrap angle at hub, ◦
ϕ2 shroud wrap angle at shroud, ◦
Δϕ0 hub leading edge wrap angle at hub, ◦
Δϕ0 shroud leading edge wrap angle at shroud, ◦
Abbreviations

2D Two-Dimensional
3D Three-Dimensional
ANN Artificial Neural Network
BEP Best Efficiency Point NPSHr
CFD Computational Fluid Dynamics
DOE Design of Experiment
MOGA Multi-objective Generic Algorithm
NPSHr Net positive suction head required
ODOE Orthogonal Design of Experiment
SST Shear Stress Transport
RANS Reynolds-averaged Navier-Stokes
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Abstract: Transmission congestion not only increases the operation risk, but also reduces the operation
efficiency of power systems. Applying a quasi-dynamic thermal rating (QDR) to the transmission
congestion alarm system can effectively alleviate transmission congestion. In this paper, according to
the heat balance equation under the IEEE standard, a calculation method of QDR is proposed based
on the threshold of meteorological parameters under 95% confidence level, which is determined by
statistical analysis of seven-year meteorological data in Weihai, China. The QDR of transmission
lines is calculated at different time scales. A transmission congestion management model based on
QDR is established, and the transmission congestion alarm system including conductor temperature
judgment is proposed. The case shows that transmission congestion management based on QDR is
feasible, which improves the service life and operation flexibility of the power grid in emergencies
and avoids power supply shortages caused by unnecessary trip protection.

Keywords: transmission line; meteorological parameter; quasi-dynamic thermal rating (QDR);
transmission congestion

1. Introduction

In view of the challenges of renewable energy, load growth and obsolete distribution facilities,
it is imperative to improve transmission capacity [1]. At the same time, the reliability and safety of
power supplies are always primary problems. Transmission congestion aggravates the power supply
crisis. In the event of transmission congestion, the use of electricity by enterprises and residents has to
be limited, or electricity supplies have to be cut off altogether [2]. Therefore, it is of great significance
to alleviate transmission congestion and improve the service life and operation flexibility of power
grids in emergency situations.

There are several generator units, transmission lines and loads in power systems. The active
power flow on each branch is determined by the system structure and the output of generator unit.
The absolute value of the active power flow on each branch is set to a safety limit in order to leave
sufficient safety margin for the system to be adjusted in emergency. Once the absolute value of the
active power flow exceeds the safety limit, the system will overload or violate voltage safety constraint,
resulting in the electricity demand cannot be satisfied, which is called transmission congestion [3].

Managers adopt some protection schemes, such as limiting the use of electricity or planned
outage, to regulate power flow and node voltage. It is an effective method to alleviate transmission
congestion to maintain the stability and connectivity of the system, which is called transmission
congestion management. Considering the system stability and management cost, generator regulation
and load shedding are usually adopted [4]. When the transmission congestion is serious, it is
necessary to regulate the generation and load side simultaneously. In most cases, load shedding
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is a remedial measure, and certain compensation should be paid according to the cost of generator
rescheduling [5]. Therefore, preventive measures can reduce the management costs which arise due to
transmission congestion.

Static thermal rating (STR) is used as the maximum ampacity of transmission lines in traditional
preventive measures. If a branch fails, the current on other branches will exceed STR. At this point,
some measures, such as trip protection, output reduction and load shedding, will be adopted to
regulate the generation or load side, thereby greatly reducing the current of fault-free branch and
avoiding thermal overload [6]. STR is a conservative method based on severe weather conditions.
The thermal load capacity of transmission lines is often underestimated using STR as a reference for
power dispatching, resulting in unreasonable utilization of transmission capacity [7,8]. Compared with
STR, dynamic thermal rating (DTR) determines the ampacity by real-time meteorological data. In the
favorable conditions of wind speed and ambient temperature, the maximum ampacity of transmission
lines is significantly improved [9,10].

At present, the application of DTR technology has been studied in transmission congestion
management. In [11], the classical method considering DTR and voltage stability limit was used to
solve the optimal power flow in congestion management. A congestion management model based on
DTR for distributed robust optimization was proposed in [12]. The thermal overload risk in short-term
load forecasting was studied and the possibility of multi-line overload was evaluated to control the
overload risk within the system security. In [2], an alternative solution based on DTR to alleviate
transmission congestion was presented. Smart adaptations based upon varying weather conditions
provided a feasible scenario for DTR of transmission lines. In order to ensure the safety of the system
operation, the most perfect scheme is to install thermal sensors on each span of the transmission
lines, which aims to obtain the running state and the surrounding meteorological data accurately [13].
However, such a scheme leads to the installation of redundant sensors, and the high cost makes it
difficult to implement [14]. At the same time, large-scale deployment of thermal sensors may further
lead to calculation complexity and dimensionality reduction in DTR evaluation [15]. Finally, the time
variant of DTR increases the complexity of system operation and control.

In addition to above problems, there are some errors between meteorological forecast data and
real-time data due to the large fluctuation of meteorological parameters and the short variation interval,
which leads to the results of DTR often deviate from the actual value [16]. The concept of quasi-dynamic
thermal rating (QDR) was proposed in [17]. QDR is an ideal solution to solve above problems effectively.
QDR uses statistical method to determine the thermal rating with a certain confidence level based
on the meteorological data defined in time scale. Compared with DTR, as slightly conservative as
QDR is, it is more reliable and lower cost. In [18], a market-based real time transmission congestion
management algorithm taking QDR into account was proposed, which fully exploit the capability of
conductors to withstand different current flows when the system is faced with an emergency situation.
The results show that the congestion mitigation, reduction in the congestion costs and load shedding is
possible. On the basis of [18], the ampacity calculated by QDR is used as an important reference for
overheating alarm in power grid, and the conductor temperature is the core basis for judging thermal
overload of lines in this paper. The trip protection, power reduction or load shedding can be adopted
to improve the accuracy of system congestion management.

The rest of this paper is organized as follows. In Section 2, the thermal rating model of overhead
transmission lines based on IEEE standard is introduced. In Section 3, the key meteorological parameters
based on historical meteorological data in Weihai are analyzed, the threshold of meteorological
parameters under 95% confidence level is determined, and the QDR at different time scales is obtained
by steady-state heat balance equation. A transmission congestion management method based on QDR
is proposed in Section 4, which integrates conductor temperature judgment module into transmission
congestion alarm system. In Section 5, an improved 14-bus case is given to analyze the variation of
currents in fault according to the characteristics of conductor electrothermal under dynamic thermal
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balance. The trip protection scheme and congestion management decision based on QDR are also
given. Conclusions are given in Section 6.

2. Thermal Rating Calculation Model of Transmission Line

The thermal load capacity is determined by the physical properties of conductor. The solution of
thermal load capacity is an important issue after determining conductor material, geometric section
and maximum allowable operating temperature. The calculation principle is derived from the heat
balance equation of conductor. The conductor temperature is affected by its current carrying value and
ambient conditions. The main factors are the joule heat caused by the current passing through the line
and the heat absorbed from solar radiation. The cooling effects of the transmission line are mainly
the convection heat generated by the wind and the radiation heat due to the temperature difference
between the conductor temperature and ambient temperature. Therefore, the conductor temperature
is a function of current, wind speed, illumination and ambient temperature. According to the IEEE
standard, the heat balance equation representing the dynamic change of conductor temperature is
shown in Equation (1):

qc + qr + mCp
dTc

dt
= qs + I2R(Tc) (1)

where qc is the convection heat caused by the wind speed, W/m; qr is the radiation heat caused by
temperature differences, W/m; qs is the absorption heat from solar radiation, W/m; I is the current
carrying, A; Tc is the conductor temperature, ◦C; R(Tc) is the conductor resistance per unit length of
the conductor at the temperature of Tc, Ω/m; m is the mass per unit length of the conductor, kg/m; Cp is
the specific heat capacity of the conductor, J/(kg·◦C); t is the time, s.

When the current and the weather conditions are constant, the absorption and loss of heat will be
in equilibrium. The heat balance equation in the steady state is shown in Equation (2):

qc + qr = qs + I2R(Tc) (2)

It is assumed that the conductor operates at the maximum allowable temperature Tmax and the
meteorological parameters are known, the ampacity of the transmission lines can be deduced from
Equation (2), as shown in Equation (3):

I =

√
qc + qr − qs

R(Tmax)
(3)

The type of the line in this paper is LGJ-400/50. STR is a conservative method based on severe
weather conditions. The wind speed is 0.5 m/s. The ambient temperature is 40 ◦C, and the sunshine
intensity is 1000 W/m2. The STR calculated by Equation (3) is 592 A.

3. Quasi-dynamic Thermal Rating of Transmission Line

DTR determines the ampacity of overhead transmission lines according to the real-time
meteorological parameters such as wind speed, ambient temperature and sunshine, which can
effectively improve the utilization ratio of transmission lines. However, the time-varying increases the
complexity of system. QDR is used to analyze the historical data of key meteorological parameters to
determine the threshold values under different confidence levels and time scales (monthly, seasonally
and yearly). The thermal ratings in different time scales are calculated by the threshold of each
parameter. Theoretically, the selection of time scale for thermal rating can be arbitrary. However,
for regions with obvious seasonal variations in meteorological conditions, time scales based on seasonal
variations can greatly improve the ampacity of transmission lines. Monthly, seasonally and yearly
rating of QDR are mainly studied in this paper. Firstly, the meteorological parameter thresholds under
95% confidence level are calculated based on wind speed and ambient temperature with the interval of
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10 min. The meteorological data are from November 24, 2008 to November 23, 2015 in Weihai, China.
Next, the QDRs of year, season and month are solved.

3.1. Statistical Analysis of Key Meteorological Parameters

The climate in Weihai belongs to marine monsoon climate, with four distinct seasons, clear monsoon
and large wind-force. The seven-year meteorological data of Weihai are analyzed. The statistics of the
key meteorological parameters are as follows.

3.1.1. Statistical Analysis of Wind Speed

From November 24, 2008 to November 23, 2015, the maximum wind speed in Weihai is 22.7 m/s.
The maximum differences of the maximum frequency wind speed in different years is 0.4 m/s. Similarly,
the wind speed difference of the same season in different years is 1.9 m/s, and the difference of the
same month in different years is 1.8 m/s. The above differences illustrate that it is necessary to use
statistical analysis of meteorological data for many years to drive the thermal rating of the line. In the
same years, the maximum differences of the maximum frequency wind speed in different seasons and
months of the same year are 3.4 m/s and 3.3 m/s respectively. The differences indicate that different
time scales for thermal rating will directly affect the QDR.

The frequency distribution histogram of the seven-year wind speed is shown in Figure 1. It can be
seen that wind speed are mainly concentrated in the interval of 0-5 m/s. If the confidence level is set to
95%, there are 368,116 × 95%wind speed data is higher than the threshold and the annual wind speed
threshold is 2.2 m/s.

Figure 1. The frequency distribution histogram of wind speed.

3.1.2. Statistical Analysis of Ambient Temperature

According to statistics, the maximum and minimum temperatures are 42.0 ◦C and −13.5 ◦C,
respectively. The maximum annual temperature difference is 48.9 ◦C. The maximum difference of the
average temperatures in different years is 1.9 ◦C. Similarly, the temperature differences of the same
seasons in different years, and the same months in different years are 3.5 ◦C and 4.3 ◦C respectively.
In the same year, the maximum differences of the average temperatures of different seasons and months
are 27.8 ◦C and 30.4 ◦C, respectively. The above temperature differences show the necessity of thermal
rating in different time scales based on meteorological data. The frequency distribution histogram of
the seven-year ambient temperature is shown in Figure 2. The conductor ampacity decreases with
the increase of ambient temperature, so a high temperature threshold is set. The annual temperature
threshold under the confidence level of 95% is 27.2 ◦C.
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Figure 2. The frequency distribution histogram of ambient temperatures.

In addition, according to the statistical analysis of the wind direction, the wind direction shows a
high variability from 0◦ to 180◦, and especially the low wind speed is non-directional. Considering
the strong randomness of wind direction and the change of line direction, the distribution of wind
incidence angle along the line changes greatly. Therefore, the average value of long-term incidence
angle of 45◦ is used to calculate the thermal rating of the line.

3.2. Quasi-dynamic Thermal Rating

The type of the line in this paper is LGJ-400/50, the typical overhead lines in Weihai of China,
whose diameter is 27.63 mm and the maximum allowable operating temperature is 70 ◦C. With the
condition of overhead lines is unknown, the absorptivity and emissivity of sunshine are usually 0.5.
The seven-year meteorological data are divided into several subsets according to above time scales,
and the frequency distributions of wind speed and ambient temperature in each subset are obtained.
Next, the threshold of each parameter is calculated based on confidence level. Using the steady state
heat balance equation and the threshold values of meteorological parameters, the thermal ratings of
the line in different time scales are calculated. The flow chart of the method is shown in Figure 3.

Input the meteorological data with a 
time resolution of 10 minutes

Set the time scale

Form data sets under 
corresponding time scales

Set the confidence level

Figure out the conductor ampacity 

Start

Count the thresholds of 
meteorological parameters

Calculate the steady state heat 
balance equation

End  
Figure 3. The flow chart of quasi-dynamic thermal rating driven by meteorological data.
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According to Equation (3) and the meteorological parameter threshold, the wind speed and
ambient temperature thresholds at different time scales under the confidence level of 95% are shown in
Table 1. The yearly, seasonally and monthly ratings are shown in Figure 4.

Table 1. Meteorological parameter thresholds and quasi-dynamic thermal ratings under confidence
level of 95%.

Time
Scale

Wind
Speed
(m/s)

Ambient
Temperature

(◦C)

QDR
(A)

Time
Scale

Wind
Speed
(m/s)

Ambient
Temperature

(◦C)
QDR (A)

year 2.2 27.2 1109.9

spring 2.5 23.2 1236.2
March 2.4 14.4 1341.3
April 2.4 20.5 1258.7
May 2.7 26.5 1216.4

summer 1.8 30.2 1016.5
June 2.2 28.3 1113.1
July 1.8 30.4 1013.6

August 1.6 30.9 979.3

autumn 2.1 24.7 1149.0
September 2.0 26.8 1101.6

October 2.4 21.8 1240.1
November 2.2 15.4 1292.6

winter 2.2 6.8 1399.7
December 2.3 7.6 1409.3

January 2.2 5.4 1416.3
February 2.3 6.9 1417.8

Figure 4. The results of quasi-dynamic thermal ratings under confidence level of 95%.

As shown in Table 1 and Figure 4, there are obvious differences between meteorological parameters
in different months, which makes large difference of carrying capacity. There is much room for
improvement of the ampacity with favorable meteorological parameters. The thermal carrying
capacity reaches the maximum in the winter of February and the minimum in the summer of August,
respectively. The difference between them is 438.5 A. The thermal load capacity of overhead lines is
seasonally dependent, which can greatly improve the ampacity in winter. In addition, the average
of rating monthly is higher than that of rating seasonally, indicating that shortening the time scale
can significantly improve the ampacity. The confidence level and time scale are important parameters
affecting the ampacity. With the increase of confidence level, the ampacity is increased. Even if the
confidence level is 99%, the rating yearly is 745.5 A, which is much higher than the traditional STR of
592 A, as well as the seasonally and monthly thermal rating under different confidence levels. It is
further illustrated that QDR can effectively improve the utilization ratio of lines.
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4. Design of Transmission Congestion Management Based on Quasi-dynamic Thermal Rating

STR is replaced by QDR as the maximum ampacity to relax the thermal restriction of transmission
lines. When the line fails, real-time meteorological data are used to determine the occurrence and time
of thermal overload, so as to regulate the generator.

The method is used to deal with the transmission congestion caused by line fault. The conductor
temperature is an important signal to adjust the generation side. The logical design diagram is shown
in Figure 5. The current value, the real-time meteorological data, and the circuit breaker state are the
input signals of the system. If a fault occurs, the circuit breaker on the fault line will cut off and a
breaking signal will feed back to the managers. The regulatory signal will be sent out only the system
satisfies the following conditions simultaneously: the open circuit signal is detected; a warning signal
is sent out when the current value of the fault-free line exceeds the safety limit of QDR; the real-time
conductor temperature exceeds the maximum allowable operating temperature.

State of circuit 
breaker

Real-time 
meteorological 

data

Running safely

Warning signal is 
sent out

Generator or 
load is regulated

Conductor 
current

Conductor 
temperature 
calculation 

module

Exceeding 
conductor 

temperature?

Detecting open 
circuit signal?

Y

Y

N

N

Exceeding 90% of 
QDR?

Y

N

Regulatory signal 
is sent out

 

Figure 5. Design of transmission congestion management based on quasi-dynamic thermal rating.

The tripping signal is sent out when the conductor overheats. Because the thermal time constant
is larger than the electrical time constant, the system security will not be affected as long as the trip
protection or load reduction is completed within a short time after receiving the regulatory signal.
The delay time in this system is 0.1 s.

5. Case

A 14-bus system is given to analyze the transmission congestion. The base voltage and capacity
are 220 kV and 100 MVA, respectively. There are 17 high-voltage transmission lines with the type of
LGJ-400/50 and the voltage of 220 kV whose transmission distance is between 100 km and 300 km.
Conductor resistance, reactance and susceptance are 0.07875 Ω/km, 0.405 Ω/km and 2.815 × 10−6 S/km,
respectively. The structure of the system is shown in Figure 6.
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Figure 6. The structure of 14-bus system.

The parameters of generator, transmission line and load are shown in Tables 2–4 respectively,
where the voltage, resistance, power and other parameters are expressed as per-unit value.

Table 2. Generator parameters.

Number Type Node Voltage (p. u.) Active Power (p. u.)

1 slack 1.06 3.41
2 PV 1.045 0.86
3 PV 1.01 1.8
4 PV 1.025 1.25
5 PV 1.07 0.95

Under normal operation, the current values of all branches in the system are lower than STR of
592 A. Compared with other branches, the currents of L1, L2, L13, L15 and L18 are larger, but they don’t
exceed 592 A. The current values of the five branches are shown in Table 5.
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Table 3. Transmission line and transformer parameters.

Branch Type Resistance (p. u.) Reactance (p. u.) Susceptance (p. u.)

L1

Transmission
line

0.0163 0.0837 0.0681
L2 0.0244 0.1255 0.1022
L3 0.0408 0.2092 0.1703
L4 0.0326 0.1674 0.1362
L5 0.0489 0.2511 0.2043
L6 0.0163 0.0837 0.0681
L7 0.0978 0.5022 0.4086
L8 0.1565 0.8035 0.6538
L9 0.1252 0.6428 0.5230
L10 0.0326 0.1674 0.1362
L11 0.0782 0.4018 0.3269
L12 0.0587 0.3013 0.2452
L13 0.0326 0.1674 0.1362
L14 0.0326 0.1674 0.1362
L15 0.0626 0.3214 0.2615
L16 0.1252 0.6428 0.5230
L17 0.1565 0.8035 0.6538
L18

Transformer
0 0.2520 0

L19 0 0.2091 0
L20 0 0.5562 0

Table 4. Load parameters.

Number Node Active Power (p. u.) Reactive Power (p. u.)

1 2 1.36 0.13
2 3 0.94 0.15
3 4 0.48 −0.3
4 5 0.9 0.2
5 6 0.9 0.35
6 9 1.26 0.35
7 10 0.09 0.04
8 11 0.04 0.01
9 12 0.15 0.03
10 13 1.13 0.25
11 14 0.14 0.05

Table 5. Branch current.

Branch Current (A)

L1 402.8
L2 528.6
L13 390.9
L15 548.6
L18 434.3

Analysis of Transmission Congestion

Any actions violating the power grid restrictions may cause transmission congestion. The power
flow is analyzed in 14-bus system with transmission congestion caused by line fault. With the
occurrence of overload, short circuit or undervoltage, the circuit breaker will automatically cut off,
resulting in a sharp increase in active power flow on the fault-free lines. Once the current exceeds
the rating, the line may be thermal overload, resulting in transmission congestion to endanger the
operation of power system.
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It is assumed that three classical line faults occur when the system runs to 300 s, at the same time
the circuit breaker on the line starts and cuts off the branch.

Fault 1: only L4 fails;
Fault 2: L5 and L12 fail (five seconds apart);
Fault 3: L2, L7 and L17 fail (five seconds apart).
Generally, there are few simultaneous faults of three branches in the system. In order to ensure

the stability of the system, it is assumed that the time interval of the line fault is 5s. The power flow of
each branch under the three kinds of faults is monitored. The conductor temperature after occurrence
of faults is analyzed.

Only the branch with the greatest current change is analyzed after the circuit breaker is cut off.
The currents on other branches change insignificantly. The circuit breaker starts up with a break signal
at the same time. The current variation of the three faults are shown in Figures 7–9, respectively.

Figure 7. Current variation of fault 1.

Figure 8. Current variation of fault 2.
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Figure 9. Current variation of fault 3.

For fault 1, L4 fails when the system runs to 300 s, at the same time the circuit breaker on L4 starts.
Consequently, as shown in Figure 7, the currents on L1, L2 and L5 change obviously. The current on L1

decreases to lower than 60% of STR, however, the currents on L2 and L5 increase. The current on L5

rises to about 40% of STR still lower than STR. The current on L2 rises to 617.2 A, which is 4.3% higher
than STR.

For fault 2, L5 and L12 fail when the system run to 300 s and 305 s respectively. The circuit breakers
on L5 and L12 start at 300 s and 305 s, respectively. As shown in Figure 8, at 300 s, the current on L1

decreases and the currents on L2 and L4 rise, and they are all lower than STR. From 300 s to 305 s,
only the current on L2 is close to STR. After 305 s, the current on L2 is up to 723.4 A which is 22.2%
higher than STR.

For fault 3, it is assumed that the circuit breakers on L2, L7 and L17 start at 300 s, 305 s and 310 s,
respectively. As shown in Figure 9, from 300 s to 305 s, the current on L1 rises to 986.6 A. Although the
currents on L4 and L12 rise sharply, it is much smaller than STR. From 305 s to 310 s, L2 and L7 are cut
off. At the same time, the current on L1 reduces to 974.1 A. After 310 s, all fault branches are cut off.
The current on L1 rises to 1065.6 A, reaching 180% of STR. The current on L4 and L12 is still lower than
STR. The circuit breaker signals in fault 3 are shown in Figure 10.

Figure 10. Circuit breaker signals of fault 3.
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The three faults lead to the currents on critical fault-free branches exceed STR. In the case of
transmission congestion management based on STR, it is necessary to adopt corrective measures and
cut power or load in serious case. A transmission congestion management scheme based on QDR is
presented in this paper. In order to ensure the system security, the safety limit of the active power
and the confidence level of QDR are set to 90% and 99%, respectively. It is necessary to analyze the
conductor temperature and decide to take preventive measures when the current exceeds the safety
limit of QDR.

The confidence level of QDR is set at 99% and the safety threshold of judgment module is 90%
to keep enough safety margin to prevent conductor temperature from exceeding the thermal limit.
The yearly, seasonally, monthly rating under the confidence level of 99% and safety limit of 90% can be
obtained using the method proposed in Section 3, as shown in Table 6.

Table 6. Safety limit of quasi-dynamic thermal rating.

Time Scale Rating (A) Safety Limit (A) Time Scale Rating (A) Safety Limit (A)

year 745.5 671.0 STR 592

spring 833.9 750.5
March 866.1 779.5
April 872.0 784.8
May 867.6 780.8

summer 685.2 616.7
June 744.8 670.3
July 681.5 613.4

August 672.9 605.6

autumn 780.8 702.7
September 762.4 686.2

October 809.6 728.6
November 884.9 796.4

winter 1017.5 915.8
December 977.0 879.3

January 1136.9 1023.2
February 1041.1 937.0

It can be seen that the QDR significantly improves the ampacity of lines. Compared with STR,
the yearly safety limits, the average seasonally and monthly safety limits increased by 13.3%, 26.1%,
and 30.7%, respectively.

The 14-bus power system with three kinds of transmission congestions is studied. Meteorological
data around overhead transmission lines are from the observatory of Shandong University (Weihai).
The interval of meteorological data is 5 min. It is assumed that there is no significant change in
meteorological data in 5 min. The yearly rating and the winter rating are used as QDR to verify the
effectiveness of the method based on QDR.

In order to verify that yearly rating can avoid unnecessary regulation after fault occurs, the ambient
parameters are set to the severe value in 2016 (the minimum average wind speed and the maximum
average ambient temperature in one hour). According to the statistics of meteorological data, the
meteorological data at 11 a.m. on July 24, 2016 are chosen as the most conservative in the whole year.
The sampling of meteorological data around the line at 5 min is shown in Table 7.
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Table 7. Meteorological data around the line in one hour.

Time (s) Wind Speed (m/s) Ambient Temperature (◦C)

0–300 1.8 31.3
301–600 2.2 31.1
601-900 1.8 30.9

901–1200 1.8 30.6
1201–1500 1.8 30.7
1501–1800 0.4 31.1
1801–2100 0.9 31.6
2101–2400 3.1 31.5
2401–2700 4.5 30.6
2701–3000 3.1 30.1
3001–3300 4.0 29.3
3301–3600 3.6 28.5

According to the time resolution of meteorological data, the conductor temperatures are divided.
The conductor temperatures are analyzed with a line fault. Figure 11 shows the changes of conductor
temperature after the occurrence of the fault.

 
Figure 11. Change of conductor temperature after fault.

In fault 1, although the current value of L2 is 617.2 A which exceeds STR, it never exceeds the safety
limit of yearly rating of 671.0 A. Therefore, the warning signal will not be sent out and the conductor
temperature is much smaller than the thermal limit. In fault 2, the current value of L2 is 723.4 A,
which exceeds the safety limit of yearly rating. A warning signal will be sent out after 300s. At the same
time, the conductor temperature module shows that the conductor temperature is always in allowable
range. Therefore, the regulatory signal will not be sent out and it is non-essential to adjust the generator
or load. In fault 3, the conductor temperature of L1 is 1065.6 A after 310s, which is much greater
than the safety limit of yearly rating. In addition, it can be seen form Figure 11 that the conductor
temperature of L1 exceeds the maximum limit at 1995s to cause overload. Meanwhile, the warning
and regulatory signals will be sent out at 300s and 1995s, respectively, as shown in Figure 12.
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Figure 12. Warning and regulatory signals.

Due to the hysteresis of conductor temperature, the warning and regulatory signals are 28 min
apart, which means the managers have enough time to make decision after receiving the warning
signal. If the system returns to normal operation within 28 min, there is no need to issue a regulatory
signal. If the fault cannot be effectively removed within 28 min, the following methods are adopted
according to the power flow after receiving the regulatory signal at 1995s. First, regulate the generator.
Open L16 in 0.1s to complete trip protection of generator G5. The current on L1 reduces to 617.5 A,
however, it is still the largest. Second, cut the load. After receiving the regulatory signal, the load P1

is cut off and the current on L1 reduces to 663.1 A. The two methods make the current value of L1

fall within the safety limit of the yearly rating to ensure the system security. The current value in the
second method is slightly higher than that in the first one. The current and conductor temperature
change of L1 are shown in Figure 13.

Figure 13. Change of conductor temperature after load shedding.

As shown in Figure 13, the conductor temperature is always lower than 70 ◦C and runs in safety
after regulating the generation side or the load side after fault 3, indicating the congestion management
based on yearly rating is effective. The analysis is based on the severe meteorological conditions in
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2016. It is feasible to use the yearly rating under the severe meteorological conditions, indicating that
the yearly rating can be applied to other meteorological conditions.

Because the difference between the winter rating and the yearly rating is the largest, the winter
rating is used to verify the effective of QDR. The meteorological data at 8 a.m. on February 26, 2016
are chosen as the most conservative in winter. The change of meteorological parameters is shown in
Table 8.

Table 8. Meteorological data of rating in winter.

Time (s) Wind Speed (m/s) Ambient Temperature (◦C)

0–300 1.3 11.1
301–600 1.3 10.7
601–900 1.8 10.2

901–1200 0.9 9.9
1201–1500 0.4 10.7
1501–1800 0.4 11.6
1801–2100 0.9 12.1
2101–2400 0.9 12.0
2401–2700 0.9 11.8
2701–3000 0.9 11.6
3001–3300 1.3 11.2
3301–3600 0.9 10.9

The ampacity of transmission lines is higher in winter. As shown in Figure 14, the conductor
temperature in three faults does not exceed the safety limit in this case. The current value of L1 is 1065.6 A
in fault 3, which exceeds the safety limit of the winter rating of 915.8 A. The conductor temperature in
three faults does not exceed the safety limit in this case. As shown in Figure 14, the current value of L1

in fault 3 exceeds the safety limit of the winter rating. The conductor temperature peaks at 1806s and
later, there is no significant change in conductor temperature. The conductor temperature does not
reach the thermal limit after the fault has occurred, so a warning signal is sent out without other actions.
Therefore, it is completely feasible to take QDR as the reference for overheating alarm, which not only
overcomes the conservation of STR, but also improves the accuracy of the trip protection. Taking the
conductor temperature as the main basis for judging the thermal overload of transmission lines can
provide safety operation time for fault repairing and improve the accuracy of congestion management.

Figure 14. Change of conductor temperature after fault (winter).
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6. Conclusions

In this paper, a method of transmission congestion management based on QDR is proposed,
which integrates QDR technology into the trip protection scheme. The trip protection, based on the
characteristic that the thermal time constant is greater than the electrical time constant, can provide
sufficient dispatching time for managers without affecting the safety of system. This method predictably
regulates the load pressure of line faults by trip protection to alleviate transmission congestion.
A warning signal will be sent out to inform managers the overload. The method can improve the
accuracy of transmission congestion alarm judgment and can be widely used in power system detection,
protection and control. Increasing transmission capacity under real-time weather conditions, providing
sufficient time for decision-making, and reducing unnecessary trip protection and load shedding are
conducive to improve the utilization of existing transmission lines and economic benefits.
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Abstract: Electricity demand in Pakistan has consistently increased in the past two decades. However,
this demand is so far partially met due to insufficient supply, inefficient power plants, high transmission
and distribution system losses, lack of effective planning efforts and due coordination. The existing
electricity generation also largely depends on the imported fossil fuels, which is a huge burden on
the national economy alongside causing colossal loss to the environment. It is also evident from
existing government plans that electricity generation from low-cost coal fuels in the near future
will further increase the emissions. As such, in this study, following the government’s electricity
demand forecast, four supply side scenarios for the study period (2013–2035) have been developed
using Long-range Energy Alternatives Planning System (LEAP) software tool. These scenarios are
Reference scenario (REF) based on the government’s power expansion plans, and three alternative
scenarios, which include, More Renewable (MRR), More Hydro (MRH), and More Hydro Nuclear
(MRHN). Furthermore, the associated gaseous emissions (CO2, SO2, NOX, CH4, N2O) are projected
under each of these scenarios. The results of this study reveal that the alternative scenarios are more
environmentally friendly than the REF scenario where penetration of planned coal-based power
generation plants would be the major sources of emissions. It is, therefore, recommended that the
government, apart from implementing the existing plans, should consider harnessing the renewable
energy sources as indispensable energy sources in the future energy mix for electricity generation to
reduce the fossil-fuel import bill and to contain the emissions.

Keywords: electricity demand; emissions; LEAP model; fossil fuels; renewable energy

1. Introduction

Electricity is considered one of the most important vectors for economic growth and development
of any country. Industrial processes, transportation, education systems, construction activities,
household appliances, as well as large businesses and small commercial services heavily rely on the
electricity supply. The global electricity consumption is growing rapidly with population growth,
and with the change of lifestyle across the world. The generation of electricity is a serious challenge,
especially for developing countries. Globally, fossil fuels such as coal, oil, and natural gas are the major
primary energy sources [1]. About 68% of electricity in the world is generated from these fossil fuels.
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Electricity generation from fossil fuels produces the Greenhouse Gases (GHGs) along with air pollutant
emissions such as oxides of nitrogen (NOx) and sulfur dioxide (SO2). These air pollutants and GHG
emissions have negative impacts on the environment such as causing global warming, climate change,
and health problems of all living organism [2–4].

Pakistan is a developing country having a low Gross Domestic Product (GDP) of 232 billion USD,
the growth rate of GDP remained 4.4% during 2013. In terms of population, Pakistan ranks as the
sixth largest nation in the world, and second populous country in South Asia with 182 million people
recorded in 2013 [3,5]. The per capita, electricity consumption in Pakistan is ~449 kWh, which is also
well below the world average energy consumption. Electricity shortage, which was estimated to be
1000–2000 MW in 2007, reached ~7000 MW in 2015 [5]. Many industries have been forced to shut down
or slow down their production, and residential consumers in urban as well as rural areas are facing
power cuts for about 12 h on a daily basis during the summer [6,7]. The electricity crises, without
major steps taken, may worsen in the coming years due to the increase in demand and inconsistency
in supply. In order to cope-up this challenge, the Government of Pakistan (GOP) announced a new
power policy in 2013 [8]. The goal of this power policy was to build a power generation capacity that
can meet electricity demand in the country. To achieve this goal on a long-term basis, the government
made a plan to ensure the generation of electricity by focusing on shifting the country’s electricity
generation mix towards low-cost indigenous sources such as coal, hydro, gas, nuclear, and biomass,
with a major share from coal [1]. To complement the government’s efforts of overcoming electricity
shortage, a careful planning exercise needs to be undertaken to devise future strategies.

Fossil fuel consumption, luxurious lifestyles, population and industrial growth are key drivers of
climate change. GHG emissions from various sectors of the economy are also to blame. Pakistan’s
GHG emissions include 158.10 Mt of CO2 (54%), 111.60 Mt of CH4 (36%), 27.90 Mt of N2O (9%), 2.17 Mt
of CO (0.75), and 0.93 Mt of volatile organic carbon (VOC) (0.3%) [9]. Pakistan’s accumulative CO2

emissions are likely to reach 250 Mt by 2020, which may grow to 650 Mt if subsidies continue on fossil
fuels. Energy and transport sectors contribute the largest share of approximately half the national
GHG emissions of Pakistan, while the agricultural sector contributes 39%, according to a 2008 national
greenhouse gas inventory [8].

Pakistan mainly uses natural gas and furnace oil for power generation. The country has also some
abundant reserves of coal at Tharparkar but has not used these towards power generation in 2013
although some projects on coal based power generation are at advanced stages of realization. At present,
Pakistan is on the path of an environmentally damaging energy mix with various government-planned
projects in hand or to be realized in the near future. Pakistan’s overall GHG emissions are projected to
increase from 347 million tons of CO2 equivalents (Mt CO2-eq) in 2011 to 4621 Mt CO2-eq in 2050 [1].

Energy modeling using various computer-based tools is attaining greater importance, and is now
essentially used for energy planning [2]. Globally various energy planning models are available, which
have been developed with different modeling approaches to address the energy-planning requirement
on a case-to-case bases. Some of the well-known modeling tools are MARket ALlocation/The
Integrated MARKAL-EFOM System (MARKAL/TIMES), EnergyPlan, Model for Energy Supply
Strategy Alternatives and their General Environmental Impact (MESSEGE), and LEAP. However,
amongst these and various other tools, the LEAP energy model is a freely available tool for academia
with sufficient capabilities and easy to use features for energy scenario planning and emission analysis.
LEAP is a scenario-based energy and environmental modeling tool used in several countries for energy
and environmental planning [10–12]. It is a user-friendly energy-modeling tool, which facilitates the
tracking of energy resource extraction, production, and consumption in all sectors of the economy.
Lower data requirement of the LEAP model, and the built-in technology and environmental data base
suit this study’s requirements [3].

There are only a few studies, in Pakistan’s case, in the contemporary literature which have taken
into account the government’s existing plans and policies, while further considering the energy resource
potential to develop scenarios for electricity generation with emission projections. For example, GHG
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emissions of the electric power sector are estimated by Usama Perwaiz over the period of (2012–2030)
with different scenarios [13], and a review study of GHG emissions for Pakistan from various sectors [1].

In this study, following electricity demand projection, environmental emissions have been
estimated for the period 2013–2035, in accordance with the government’s plans and policies to meet
the project demand using the LEAP modeling tool. The study also considers the other environmentally
friendly electricity generation options. To evaluate the diversification of the future electricity generation
system, a Reference scenario (REF) and three alternative scenarios, More Renewable (MRR), More Hydro
(MRH), and More Hydro Nuclear (MRHN) were developed. As such, this study not only provides
insight into existing government plans for power generation alongside estimating the associated
emission, but at the same time also propose three alternative scenarios based on the country’s energy
resources. These alternative scenarios for electricity generation propose utilizing indigenous resources,
and as such, would lower the emissions compared to the REF scenario.

The next section of the paper provides an overview of the electricity supply and demand situation
in Pakistan. A detailed analysis of future electricity generation plans is discussed in Section 3. Section 4
describes the development of Pakistan’s LEAP energy model development for the expansion of the
electricity generation sector, and emission assessment based on scenario analysis. In Section 5, the
simulation results of the developed energy model are analyzed and discussed. The final section of the
paper provides conclusions and recommendations for energy policy makers based on this study.

2. Electricity Supply and Demand Situation in Pakistan

Over the years, the growth in electricity demand in Pakistan has been witnessed owing to increase
in the population, rapid urbanization, improved living standards, and some level of industrial growth.
The major sectors consuming electricity are domestic, commercial, agricultural, and industrial. The
gap between generation and demand is widening, and reached about 7 GW in 2013 as shown in
Figure 1. Because of this demand–supply gap, economic development in the country has been widely
compromised. The electricity crises of Pakistan are thus reflective of failed energy planning and policy
regime of the country [2].

Pakistan heavily relies on fossil fuels like imported oil, natural gas, and a small share from coal, for
electricity generation. The huge potential of hydro, other renewables, and indigenous coal is available
in the country, but these resources have not been significantly exploited due to several constraints
including technical, economic, and political. The installed electricity generation capacity in the country
has increased only (14.86%) from 19,420 MW in 2008 to 22,812 MW in 2013 as shown in Figure 2 [5].

 
Figure 1. Electricity demand and generation in Pakistan [3,5].
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Figure 2. Electricity installed capacity in Pakistan from 2008 to 2013 [5].

Electricity generation in the country is mainly dominated by thermal power, and during 2012–2013,
~36% of electricity was produced using expensive imported oil. The costly electricity generation using
imported oil is the major cause of the present electricity crisis, as the dwindling economy of the country
cannot provide adequate fuel to these power plants [14]. The total electricity generation in the country
during 2012–2013 was 96,122 GWh, the shares of thermal (oil, gas, coal), hydro, and nuclear generation
were 61,711 GWh (64.2%), 29,857 GWh (31%) and 4553 GWh (5%), respectively [5]. Shares of different
fuels in the total electricity generation during 2012–2013 are shown in Figure 3 [5]. Due to this over
dependence of electricity generation on fossil fuels, CO2 emissions have also increased to ~792.32 Mt
with a growth rate of 12.62% [6].

Figure 3. Shares of electricity generation from different sources during 2012–2013 [5].

The major concern pertaining electricity generation is that around half of the total installed generation
capacity is underutilized due to the inappropriate fuel mix, inefficient power plants, and lack of proper
maintenance of power plants [7]. In order to meet the augmenting demand of electricity, besides planning
and developing the conventional sources of energy, Pakistan should also focus on exploiting the potential
of hydro and other renewable energy resources, mainly biomass, biogas, wind, and solar, to develop a
substantial share of sustainable energy sources in the electricity generation fuel mix [8].

Environment-related emissions from conventional fossil fuel based power plants have severally
adverse effects on human societies, animals habitants, and woodlands by hot and cold waves, flash
floods, glaciar melts, acidic rains, droughts, and other unwanted effects. Pakistan is among the top
ten countries worst hit by climate change. Hundreds of people die every year because of heat waves.
Natural habitat is at the destruction level, on the other hand, forests have dried due to dieback during
1998–2005 [1]. A proper strategic energy mix is required to fulfill present and future energy demand
keeping in view of climate change.

Pakistan has abundant sources of indigenous energy, it is estimated that 185 Gt of coal reserves are
available, of which around 7 Gt are technically feasible and could be utilized for power generation using
clean technologies [10]. The estimated hydro power capacity of Pakistan is 100 GW, of which ~55 GW
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are technically feasible for power generation. The technical potential of Solar, Wind, and Biomass is
240, 62 and 8.6 MTOE/Year, respectively, which could be effectively used for power generation [11].
The energy potential of renewable only is 4.4 times the current energy demand of Pakistan, however,
because of poor governance and unavailability of effective policies, only 33% of renewable energy
resources have been utilized so far.

3. Future Electricity Generation Plans

In order to overcome the electricity crises in the country, the GOP has announced the development
of various power projects based on coal, hydro, and other renewable energy sources under the Power
Policy 2013. As a result of these efforts, it is expected that ~16–20 GW of the power generation capacity
will be added to the national grid during the next 5–10 years, which will reduce the load shading
duration [15]. In this context, a brief assessment of the future power projects under referred policy is
undertaken as under:

3.1. Hydroelectric Power Plants

Hydroelectric-based power generation has a huge potential in the country and such plants can
produce low-cost electricity. The government under Power Policy 2013 has proposed and initiated
medium and long-term projects for hydroelectric capacity expansion. In this context, a total capacity
of 384 MW power projects has been completed and connected to the grid in 2016. The Gulpur and
Patrind hydel projects of smaller capacity, are also expected to be completed in the near future, which
will add 247 MW to the national grid. Furthermore, around 969 MWs of electricity is expected from
the Neelum–Jhelum project in the near future too. A number of hydroelectric projects are anticipated
to come online during this plan period, which include the fourth and fifth Tarbela expansions. These
expansions add the generating capacity to the tune of 1910 MW. The detailed engineering design
for projects at Patan 2800 MW, Dasu of 2160 MW, and Thakot 2800 MW are also anticipated to be
undertaken under the current Power Policy. Some other long-term projects are as Bunji 7100 MW,
Kohala 1100 MW, and Diamer–Bahasha 4500 MW. Completion of these projects may save the country
from the vulnerable conditions of electricity crises [15,16]. Brief detail of these projects is given in
Table 1 below.

Table 1. Proposed hydroelectric power plants [17].

Name of Power Plant Capacity (MW)

Hydro Neelum–Jhelum Hydroelectric 969
Tarbela 4 th,5th extension 1910

Patrind Hydroelectric 147
Akhori dam project 600

Sehra Hydroelectric Project 130
Dasu Hydroelectric Project 4320

Diamer–Basha Dam 4500
Suki Kinari Hydroelectric 870

Karot Hydroelectric Project 720
Bunji Hydroelectric 7100

Azad Pattan Hydroelectric 640
Lower Palas Hydroelectric 665

Lower Spat Gah Hydroelectric 496
Kohala Hydroelectric Project 1100
Mahl Hydroelectric Project 590

Thakot Hydroelectric 2800
Patan Hydroelectric 2800
Munda dam project 740

Mohmand dam Hydroelectric 800
Shyok dam project 690

Chakoti–Hattan Hydroelectric 500
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3.2. Coal Power Plants

Realizing the low cost-based power generation from electricity, the government decided to install
coal-based power plants at different locations of the country. In this context, various power plants
based on imported coal having a total capacity of 5,580 MW are under construction with the financial
support of China–Pakistan Economic Corridor (CPEC). One of these project of 1320 MW at Sahiwal,
Punjab province was completed recently, and also commenced the commercial operation in July
2017 [18]. Furthermore, additional coal based power plants are also proposed under the Power Policy
for installation at various locations inPunjab based on imported coal. Sindh Engro Coal Mining
Company (SECMC) in a joint venture with Sindh Government and Engro power is also developing
coal mines in Block-I and II in district Tharparkar. SECMC is expected to complete construction of
a 660 MW power plant in the first phase, while in the second phase another 660 MW power plant
would be commissioned by the end of 2019. In Block III of Thar coal mines, 5000 MW power plants
are expected to be installed by various companies, whereas 7500 MW of power plants by Sino Sindh
Resources (Pvt.) Limited (SSRL) China will be established in Block-I of Thar Coal Mines in different
phases. Three power plants, based on coal, each of 1320 MW are proposed for installation at Jamshoro,
Lakhra, and Port Qasim by PEPCO and K-Electric [19–22]. Table 2 summarizes the proposed coal-based
power plants under current power policy of the government.

Table 2. Proposed coal power plants [17].

Name of Power Plant Capacity (MW)

Imported Coal
Coal power plants at Punjab 2 × 660
Coal power plants at Punjab 5280

Coal power plants at Jamshoro 2 × 660
Coal power plants at Hub 2 × 660

Coal power plants at Gawadar 300
Coal power at Port Qasim 2 × 660
Conversion of Jamshoro

Power Plant from Oil to Coal 850

Conversion of Muzaffargarh
Power Plant from Oil to Coal 1350

Conversion of Guddu
Power Plant from Oil to Coal 640

Conversion of K-Electric
Power Plant from Oil to Coal 1260

Conversion of HUBCO
Power Plant from Oil to Coal 1292

Local coal

Sino Sindh Resources
(Pvt.) Limited (SSRL) (China 7500

Thar Power Company
Ltd. (THARCO) SECM 5000

Oracle Coalfields UK 1400
GENCOS 1320

Sindh/ETON Japan Power 3960

3.3. Oil and Natural Gas Power Plants

The steep increase in furnace oil prices in the international market has rendered the electricity
generation mix highly unsustainable and costly in Pakistan. Therefore, the government has decided
in principle not to install oil fuel-based power plants in future, as such, in this study, the existing oil
fuel power plants are gradually decreased whereas no new power plant is considered for during the
study period.
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Natural Gas contributes ~45% of the total primary energy supply mix in the country. Pakistan has
a widespread gas network of pipelines to cater the requirement of more than 8.4 million consumers
across the country by providing about 4 Billion Cubic Feet of natural gas per day [23]. The GOP is also
implementing a multi-pronged approach which include import of piped natural gas from neighboring
countries like Iran and Turkmenistan, or LNG from Qatar towards meeting its energy needs, especially
for power generation [24]. In this context, two power plants based on natural gas Uch-II and Guddu
with an installed capacity of 404 MW and 747 MW, respectively, were completed and added to the
national grid in 2014. Four power plants having a total capacity of 4,883 MW on Re-gasified Liquefied
Natural Gas (RLNG) are under development in different locations of the Punjab province. Table 3
below summarizes the natural gas-based power plants which have started commercial operation or
expected to start commercial operation in the future [25].

Table 3. Proposed natural gas power plants [17].

Name of Power Plant Capacity (MW)

Uch-II power plant 404
Guddu power plant 747

RLNG based power plant Bhikki Punjab 1180
RLNG based power plant Balloki Punjab 1223
RLNG based power plant Haveli Punjab 1230
RLNG based power plant Jhang Punjab 1250

3.4. Nuclear Power Plants

Pakistan Atomic Energy Commission (PAEC) is currently operating three nuclear power plants:
Karachi Nuclear Power Plant (KANUPP), Chashma Nuclear Power Plant Unit-1 (C-1), and Unit-2
(C-2). The construction of two more power plants at Chashma, C-3 and C-4, of 340 MW each are in
progress and expected to be commissioned in different phases in the near future. The ground-breaking
ceremony of two Karachi-based Coastal Nuclear Power Plants (K-2) and (K-3) of 1100 MW each was
also held in November 2013, and they are expected to be completed in 2020. Another 2200 MW nuclear
power plant is also proposed at the coastal belt of Balochistan near Hub [26]. A summary of the
proposed nuclear power plants under the Power Policy 2013 is given in Table 4.

Table 4. Proposed nuclear power plants [17].

Name of Power Plant Capacity (MW)

Chashma Nuclear Power
Plant Units-3 (C-3) and

Unit-4 (C-4)
680

Karachi Nuclear Power
Plants (K-2) and (K-3) 2200

Chashma Nuclear Power
Plant Unit-5 1000

Coastal Nuclear Power
Hub Balochistan 2200

3.5. Renewable Energy Power Plants

Pakistan has immense potential for renewable energy (RE) resources. These resources, if harnessed,
can play a significant role towards the nation’s energy security. In this context, GOP has tasked the
Alternative Energy Development Board (AEDB) to ensure that 15% of total power generation should
be from renewable energy (other than hydro) by 2030 [27–29]. Solar, wind, and biomass are the leading
renewable energy sources of the country. The potential of each of these renewable energy resources is
discussed as under:
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3.5.1. Solar PV Power Plants

The solar radiation map of Pakistan is given in Figure 4. Realizing this potential, the government
has taken steps to harness power from solar energy. A 1000 MW of solar PV-based power plant
development, as such, has been undertaken at “Quaid-e-Azam Solar Power Park” in district Bahawalpur,
Punjab province. Another 500 MW solar based power plant is also on the cards to be set up by a
Chinese Company at “Quaid-e-Azam Solar Power Park” which is expected to be completed in near
future [29,30].

Figure 4. Solar radiation map of Pakistan [31].

3.5.2. Wind Power Plants

The coastal belt of Pakistan is blessed with a 60 km wide (Gharo-Keti Bandar) and 180 km long
(up to Hyderabad) wind corridor. In addition to this wind corridor, there are other wind sites available
in the coastal area of Balochistan and some northern areas of the country. The wind map of Pakistan is
shown in Figure 5, which illustrates enormous wind energy potential in the country [32,33].
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Figure 5. Wind map of Pakistan [34].

However, despite this huge potential, wind power is not utilized optimally in Pakistan, only two
power plants, “Fauji Fertilizer Energy Company Limited (FFCEL)” and “Zorlu Wind Energy” with
the cumulative installed capacity of 106 MW could only be connected to the national grid in the early
phase of implementing the Power Policy 2013. Other wind power plants (50 MW Foundation Wind
energy I, 50 MW Foundation Wind energy II, 50 MW Sapphire Power, 50 MW Metro and 50 MW China
Three Gorges) are at the final stages. In addition, Letters of Support (LOS) have been issued for projects
up to 450 MW, and an additional 2276 MW of wind power projects are currently in the feasibility
evaluation process. Thus a cumulative 2726 MW of wind electricity could come online in the near
future in different phases [9,15]. The brief of renewable energy projects already undertaken or to be
undertaken as per government’s plans are given in Table 5.
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Table 5. Proposed renewable (other than hydro) power plants [17].

Name of Power Plant Capacity (MW)

Solar PV power park Punjab 1000
Chinese solar Company 500

Zorlu Wind Energy Sindh 56
Fuji Fertilizer Energy Sindh 50

Capacity of wind power to be Commissioned 2726
Bagasse based power plant 83

3.5.3. Biomass Power Plants

Pakistan is the fifth largest producer of sugarcane in the world, with an average production of
about 50 million tons annually. This huge amount of sugarcane is crushed in 80 sugar mills across the
country produce, which in turn produce 10 million tons of bagasse. This huge resource of bagasse can
be turned into an immense source of energy by producing 3000 MW of electricity. Another 5000 MW
of electricity can also be produced from the livestock. The National Power Policy 2013 stipulated to
produce at a minimum 83 MW of electricity from bagasse. In this context, Letters of Intent (LOIs)
have also been issued to different companies by the Alternative Energy Development Board (AEDB)
to develop a bagasse-based power plant. As such, biomass to energy power plants at Jhang and
Faisalabad, Punjab, at Mirpurkhas, Sindh and Mardan, Khyber Pakhtunkhwa provinces are at different
stages of the development [11,35,36].

4. Methodology

Power generation expansion planning is very crucial in the overall planning for a country or
region. It provides insight into long-term alternative strategies to meet the future power requirements.
It can also be adapted to search for minimum cost solutions which meet the present and future power
demand [37,38]. However, sustainability-related concerns now emphasize optimal solutions instead of
least-cost solutions. Various computer-based energy modeling tools are available for power generation
planning, including MARKAL/TIMES, EnergyPlan, and LEAP. Each of these tools has its advantages
and limitations. In this study, an energy scenario modeling exercise was undertaken using the
computer-based modeling tool LEAP. The accounting platform in LEAP matches the energy demand
through supply-side energy generation technologies and updates the system impacts consisting of
electricity generation by type, system electricity generation cost, depletion of resources, and emission
estimates. Subsequent sections elaborate the modeling exercise undertaken in this study.

4.1. LEAP Energy Model Framework Development

The LEAP modeling efforts adopt the bottom-up approach to meet the electricity demand by
considering capacity factors of different fuel-based power plants, energy intensity of the power plants,
and emissions intensity of the fuels. The LEAP model was developed by the Stockholm Environment
Institute, and is widely used around the globe. The essential concept of LEAP is user-driven scenario
analysis [39]. The scenario manager in the model sets the Base/Reference/Business As Usual (BAU)
scenarios. The input data set for LEAP consists of various modules such as key assumptions, demand,
transformation, and resources. The key assumption module includes Gross Domestic Product (GDP),
GDP growth, total population, population growth, number of consumers and their growth, alongside
other relevant parameters. In the key transformation module of LEAP, energy transformed from energy
sources as input to energy product is modeled using a range of electricity technologies, including
those in operation during the base year, and others anticipated in the government’s plans, as well
as those considered in accordance with the emerging trends of the generation technologies in the
future. Figure 6 shows the LEAP model framework developed under this study focusing on electricity
generation for the modeling period 2013–2035. The reference scenario was initially developed based
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on the governments’ plan and policy followed by three alternative policy scenarios, which were then
evaluated by comparing their obtained values with those of the reference scenario.

Figure 6. LEAP modeling framework for Electricity Generation 2013–2035.

4.2. Electricity Demand Forecast

Electricity demand is an important component, which must be estimated for the power generation
expansion planning. The National Transmission and Dispatch Company (NTDC), a subsidiary of
Water and Development Authority (WAPDA) of the GOP, has forecasted the electricity demand in the
country using a multiple regression analysis. These estimates suggest an increase at a growth rate of
5.4% from 2013 to 2035 [40]. The main variables considered during the electricity demand forecast by
the NTDC include the contribution of various sectors in the overall GDP, the population of the country,
electricity consumption by various sectors and a number of consumers. Utilizing NTDC determined
electricity demand growth rate of 5.4%, LEAP model estimated that that electricity demand is likely to
increase from 139 TWh in 2013 (base year) to 442 TWh in 2035 (end year). Electricity demand forecast
by NTDC and that of LEAP model of this study are illustrated and compared in Figure 7. It shows
that demand forecast estimated by the LEAP model is generally in parallel to that of the estimated
by NTDC.
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Figure 7. Comparison of electricity demand forecast from the LEAP Model and NTDC.

4.3. Basic Assumptions for LEAP Modeling

The basic assumptions considered while developing the LEAP modeling framework of this
study are given in Table 6. In addition, the overall Transmission and Distribution (T&D) losses are
assumed to decrease from 17.37% in 2013 to 12.5% in 2020, and about 11.7% by 2035 as projected by
the NTDC [40]. Taking into account the GOP’s current plant, the currently working oil and natural
gas-based power plants are assumed to continue with existing efficiency and availability while the
power plants being converted from oil- to coal-based power generation are assumed to operate on new
efficiency and availability.

The reserve margin is described as the fraction of additional power generation capacity, which is
available to meet the peak load in case the sudden increase in demand can happen. Keeping in view
the situation of the power system in Pakistan, the reserve margin in this study is assumed as 12% for
the modeling period. The Load Duration Curve (LDC) provides the variation in power demand during
a specified period and under this study, the LDC is considered on the hourly basis throughout the
year. The GHGs emissions from all the fuels used in the power generation system are assessed by their
associated emission factors available in the Technology and Environment Database (TED) of the LEAP
energy model. For all the fuels, the Tier 1 default emission factors published by Intergovernmental
Panel on Climate Change (IPCC) are selected. The dispatch rule for the power generation plants is
followed as per merit order according to the GOP plan and policy. The capacity credit, is defined as
the fraction of availability of the power plant to the standard availability of thermal power plant, and
for this study is assumed by following the precedent literature [13,41].

Table 6. Summary of model development assumptions.

Parameters Assumptions

Transmission and Distribution
(T&D) losses

Assumed to reduce from 17.37% in 2013 to 12.5% in 2020 and about 11.7% by 2035 as
published by NTDC.

Emission factors of fuels Default emission factors published by IPCC are available in LEAP TED database.
Reserve Margin Assumed 12% according to the previous studies

Dispatch rule Followed as merit order according to the government of Pakistan’s regulating body.
Load Duration Curve (LDC) Calculated according to the published data in the “Pakistan energy yearbook 2013”.

Capacity credit Capacity credit is assumed by previous studies.

Plant development
For presently operational oil and gas steam turbines existing technologies whereas
for coal, combined cycle gas turbines, solar, wind and biomass new mature
technologies are assumed.

Furthermore, in this study, four supply side scenarios have been developed to meet the demand
forecast for the study period (2013–2035). A summary description of the four scenarios of the study is
given in Table 7.
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Table 7. Summary of scenario alternative of this study.

Scenario Objective Main Resources

Reference (REF) In this scenario, the government’s current plan and
policy is followed.

As per the government plan and
policy.

More Renewable
Energy (MRR)

Under this scenario, the share of renewable energy
resources (other than hydro) is increased while
share of coal is decreased.

Renewable energy resources, solar,
wind, and biomass.

More Hydro Energy
(MRH)

Under this scenario, share of hydroelectric is
increased while the share of coal is decreased.

Renewable energy resources,
hydro, solar, wind, and biomass.

More hydro Nuclear
Energy (MRHN)

Under this scenario, the share of hydro and nuclear
is increased while reducing the share of coal.

Energy resources, hydro, nuclear,
solar, wind, and biomass.

The detailed description of each of these scenarios is discussed in the following sections of
this paper.

4.4. Reference or Base Scenario

Reference or Base scenario of this study was developed according to the future electricity generation
plans of the GOP as discussed in Section 3, and is based on the existing National Power Policy. The
new installed capacity in the reference scenario is projected to be based on different fuel sources like
imported coal (20 GW), local coal (20 GW), hydro (36 GW), natural gas (8 GW), nuclear (8 GW), and
renewables (wind, solar, biomass) other than hydro (15 GW). The base year electricity generation data
are given in Table 8, which were also used as input to the LEAP scenarios manager.

Table 8. Base year electricity generation data [14,41,42].

Fuel Efficiency (%) Output (GWh) Capacity (GW) Maximum Availability (%)

Hydro 80 29,857 68 60
Coal 45 61 0.01223 75

Natural Gas 50 27,116 6.59 70
Nuclear 34 4553 0.75 85

Oil 40 34,534 8.2 50
Other Renewable 34 0 0 34

4.5. Alternative Scenarios

Three alternative scenarios were further developed using the scenario manager to compare the
results with the reference scenario over the modeling period 2013–2035. The total installed capacity
under these scenarios increased in such a way that electricity generation remained the same in the
alternative scenarios as in the reference scenario, but only the shares of fuels in each alternative scenario
alongside installed capacity varied accordingly. The brief description of the alternative scenarios
developed in this study is provided in the following sections.

4.5.1. More Renewable Energy (MRR) Scenario

According to the government’s existing power policy, a major share of electricity, which would be
generated from the imported and indigenous coal, this results in more GHG and other air pollutant
emissions. Following this path poses serious threats to regional and global environments. In order
to counter this situation, the MMR scenario in this study takes into account Pakistan’s enormous
renewable energy potential, which is so far untapped. It is estimated that the exploitable potential of
solar, wind, and biomass is 169 GW, 65 GW, and 15 GW, respectively in the country [13]. In this scenario,
the share of renewables (other than hydro)increased while the share of coal for power generation
decreased. The increment in renewable energy, in this scenario, is mainly from the wind, solar, and
biomass resources.
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4.5.2. More Hydro Energy (MRH) Scenario

Hydroelectric is a major source of electricity generation for the base-load requirements, and can
meet the peak and unexpected electricity demands in the power system. The electricity generation cost
of hydroelectric also cheap since no any fuel is consumed during the generation of electricity which
makes it a competitive source of renewable energy [43]. The hydroelectric plants, during operation,
also do not produce any emission and industrial waste like fossil fuel-based power plants. Pakistan is
blessed with ~100 GW of hydroelectric potential out of which so far 59 GW has been identified. Talking
into account the enormous potential of hydroelectric, in this scenario, the share increased, reducing the
share of coal thus altering the reference scenario.

4.5.3. More Hydro Nuclear Energy (MRHN) Scenario

Nuclear is also among the group of energy resources and technologies that are available, and
capable of dealing the environmental challenge faced due to the GHG and other air pollutant emissions
due to combustion of other fossil fuels [44]. Nuclear and hydroelectric energies emit negligible
amounts of CO2 and other GHG, with the emissions considered for the total life cycle fewer than 15
CO2-eq/kWh [45]. Nuclear-based power plants are base-load electricity generation options, which are
particularly suitable for large-scale, uninterrupted electricity supply to meet the demand. Extended
penetration of nuclear power in the energy supply mix can also help address the higher electricity
generation costs. Keeping in view both the environment and cost related benefits of nuclear and
hydroelectric energies in this scenario the shares of nuclear and hydroelectric are increased by cutting
the share of coal.

The above-discussed scenarios were simulated in the LEAP energy model. The results of these
simulations are discussed in the following section.

5. Results and Discussions

5.1. Reference or Base Scenario

Simulation results of the developed model for the Reference scenario of existing and planned
electricity generations are shown in Figure 8a. According to these results, about 107 GW of new
installed capacity is required from various available sources up to 2035 in order to meet the growing
electricity demand. This newly installed capacity raises the overall capacity of the reference scenario
by 124 GW in 2035. The maximum shares are from the low-cost electricity generation sources of coal
and hydro with the capacities of 40 GW and 36 GW, respectively. In the new power policy, it has been
decided by the government that more than 60% of the existing low-efficiency high fuel cost oil-fired
power plants will be converted to low-cost coal based power plants. Therefore, instead of adding
the oil-based power plants, the existing share of oil will be reduced from 8.6 GW to 3 GW. For the
diversification of electricity generation fuel mix, government also plans to install new power plants
based on natural gas. As such, another 8 GW of newly installed capacity from natural gas has been
added to the total installed capacity under this scenario. The supply of natural gas for new power
plants is planned for importation through LNG and gas pipeline. This scenario also takes into account
the renewable energy resources and ~15 GW of renewable energy sources other than hydro have been
included in the installed capacity by the year 2035. These developments are in line with existing GOP
plans, which should be realized by the year 2035.

Electricity generation in the reference scenario, with additional installed capacity, increases to
meet the growing electricity demand. The total electricity generation, therefore, increased from 96
TWh in 2013 to 442 TWh in 2035 as shown in Figure 8b. The major shares in the electricity generation
were from coal and hydroelectric as per government plans. The share of oil decreased from 36% to
only 2% in the year 2035, as there would be no new installations from oil-based sources during the
study period. Reductions in oil shares were replaced by hydro- and coal-based power generation. The
overall share in electricity generation from hydroelectric plants are anticipated to increases from 31%

122



Processes 2019, 7, 212

in the base year to 37% in the end year, whereas the share of natural gas for electricity generation is
expected to significantly decreases from 28.2% to 13% during the same period.

The share of nuclear-based electricity generation is anticipated to increases from 5% in the base
year to 9% in the end year. The share of other renewables in 2013 was 0%, increased in 2015 by 1.2%,
and is expected to reach 6% in 2035. Electricity generation from coal-fired power plants is more
cost-competitive than oil-fired power plants thus the share of coal for electricity generation, under this
scenario, increased from 0.1% to 34% during the modeling time period.

(a) 

(b) 

Figure 8. (a) Electricity installed capacity by source under reference/base scenario; and (b) total
electricity generation by a source under reference/base Scenario.

The electricity output shares from various fuel sources for the modeling period under the reference
scenario are shown in Table 9.

Table 9. Electricity output share from various fuel sources for the modeling period.

Fuel Source Percentage Share 2013 Percentage Share 2035

Oil 36 2
Natural Gas 28.2 13

Nuclear 5 9
Coal 0.1 34

Hydro 31 37
Renewable 0.0 6
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It is apparent that significant variation in fuel share for electricity generation under reference
scenario may follow if GOP remain wedged on its plans.

5.1.1. MRR Scenario

Renewable energy sources such as solar, wind, and biomass are expected to play a significant
role in the mitigation of emissions to counter the climate change and address the sustainability cause.
Therefore, under this scenario, the share of installed capacity of renewables (other than hydroelectric)
increased from 15 GW to 30 GW, while the installed capacity of coal decreased from 40 GW to 20 GW
compared to the REF scenario as shown in Figure 9a. The installed capacities of other sources like
hydro, nuclear, and oil remained the same as in the reference or base scenarios. The increased share of
renewables shall reduce the reliance on coal, but it needs flexible power sources such as the natural gas
power to compensate electricity demand due to the lower capacity factors of renewable energy based
plants. The newly installed capacity from natural gas was 20 GW in the end year under this scenario,
which enhanced the overall installed capacity from all sources to 132 GW to meet the electricity demand.

(a) 

(b) 

Figure 9. (a) Electricity installed capacity by source under MRR scenario; and (b) total electricity
generation by source under MRR scenario.

The overall electricity generation output in this scenario was same as in the reference or base
scenario, but only the share of renewables (other than hydroelectric) significantly increased due to the
increment in their capacities. The share of other renewable energy sources, which was 0% in 2013,
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is anticipated to increase 11% in 2035. The share of coal is expected to decrease from 34% as in the
reference scenario to 16% in the MRR scenario in 2035 as shown in Figure 9b. The penetration of
renewable energy sources in the total electricity generation shall results in better environmental and
economic impacts since these are indigenously available and emissions-free resources.

MRR scenario considerations and results are very important, and following this pattern would
greatly help country to reduce oil import bill as well as help in containing the climate change.

5.1.2. MRH Scenario

In this scenario, which utilizes the country’s hydro potential, the installed capacity of hydroelectric
should increase from 36 GW to 40 GW by the end year 2035. The installed capacity shares of all other
sources for power generation are assumed to remain the same as in the reference or base scenario
except for the installed capacity of coal which should be reduced from 40 GW as in reference or base
scenario to 34 GW in this scenario by the end year as shown in Figure 10a. Increasing the installed
capacity of hydroelectric presents a viable option for electricity generation from cost-effective and
green power generation sources. The total installed capacity under this scenario, should increase by
~123 GW in the year 2035, with substantial share of the hydroelectric plant in this scenario.

(a) 

(b) 

Figure 10. (a) Electricity installed capacity by source under MRH scenario; and (b) total electricity
generation by a source under MRH scenario.
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The electricity generation share under this scenario for hydroelectric is expected to increase from
37% in the reference scenario to 42% by the year 2035 as shown in Figure 10b. Increase in the share of
hydroelectric depicts the low-cost, secure and sustainable electricity generation option. The share of
coal should also decrease from 34% in the reference scenario to 28% in this scenario by 2035 to balance
the increase of hydroelectric share.

The MRH scenario is focused on exploiting the indigenous hydroelectric resources and thus could
significantly contribute towards reducing oil-based power generation as well containing emissions.

5.1.3. MRHN Scenario

In this scenario, alongside hydroelectric, nuclear power increment is considered to offer
cost-effective, sustainable, technologically superior, and long-term energy supply option for electricity
generation. The installed capacity of nuclear and hydroelectric, as such, is expected to increase from
8 GW and 36 GW as of in reference scenario to 10 GW and 40 GW under MRHN scenario, respectively
by 2035. In response to an increase in installed capacity of these plants, the installed capacity of
coal-based plant reduces from 40 GW in the reference scenario to 31 GW under MRHN scenario as
shown in Figure 11a. The overall installed capacity in this scenario is expected to reach 123 GW in 2035
to meet the increased demand.

(a) 

(b) 

Figure 11. (a) Electricity installed capacity by source under MRHN scenario; and (b) total electricity
generation by a source under MRHN scenario.
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The electricity generation shares from nuclear and hydroelectric are subsequently higher in this
scenario as shown in Figure 11b. These shares of electricity from nuclear and hydroelectric are expected
to increase by 2% and 5%, respectively, under MRHN compared to the reference scenario in 2035.
The share of coal would also decrease by 8% compared to the reference scenario. The reduction in
electricity generation shares from coal is an optimistic situation to mitigate the effects of emissions,
which are harmful for the environment.

MRHN scenario in addition to exploiting the hydroelectric potential also taken into account the
nuclear-based power generation, which would require care full planning, and execution of such projects.

5.2. Environmental Emissions in Reference and All Alternative Scenarios

The LEAP energy model estimates the emissions from power plants using the emission factors
and other technical characteristics integrated within TED, which are based on IPCC Tier 1 database.
The simulated results of GHG emissions for the reference and alternative scenarios of this study are
shown in Table 10.

Table 10. Air pollution and GHG emissions in different scenarios from 2013 to 2035.

Emissions Units 2013
2035

REF MRR MRH MRHN

CO2 million tons 34 143 103 126 117
SO2 kilo tons 253 553 372 487 454
NOx kilo tons 92 157 167 146 140
CH4 kilo tons 1 1.8 2.3 1.7 1.6
N2O kilo tons 0.2 82 41 70 63

Each of these tabulated emission components are further discussed with respect to the reference
and other three alternative scenarios as under.

5.2.1. CO2 Emission

CO2 emissions are estimated to increase from 34 million tons in the base year 2013 to 143 million
tons in 2035 under the reference scenario, and from 34 million tons to 103 million tons in the MRR
scenario. In case of the MRH scenario, these emissions increase from 34 million tons in the base year to
126 million tons by the year 2035, while in MRHN scenario the CO2 emissions are estimated to increase
from 34 million tons to 117 million tons from 2013 to 2035, respectively. The CO2 emissions results
pertaining all four scenarios of the study are illustrated in Figure 12.

Figure 12. Annual CO2 emissions in all scenarios.
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CO2 emissions are estimated to be 118% less in the MRR scenario compared to the reference
scenario. This would be a significant reduction in emissions due to the addition of renewable energy
sources. The higher CO2 emissions in the reference scenario are evidently due to increased coal-based
generation, which emits a huge amount of emissions. Under the MRHN and MRH scenarios, CO2

emissions were 76% and 51%, respectively, less than the reference scenario due to hydroelectric and
nuclear power-based capacity additions.

5.2.2. SO2 Emissions

The utilization of both imported and indigenous coal as a fuel for electricity generation in all
scenarios would produce a great amount of emissions. However, with highly efficient critical pressure
boilers and advanced Fluidized Bed Combustion (FBC) combustion technologies considered in this
study, hazardous emissions such as SO2 could be reduced to a minimum level. Nevertheless, a
substantial amount of emissions would be from the combustion of coal. In addition, SO2 emissions
from the existing oil-based power plants would also be present. In these, existing plants’ no emission
control systems are in place. Therefore, SO2 emissions are projected to increase 300 thousand tons
during the whole study period under the REF scenario, which is the highest increase as compared to
the other alternative scenarios. The amount of SO2 emissions in other alternative scenarios is projected
to be 234 thousand Mt in MRH scenario, 201 thousand Mt in MRHN, and only 120 thousand Mt in
MRR scenario by the end of modeling period. The projected SO2 emissions under REF, and the three
alternative scenarios, are shown in Figure 13.

Figure 13. Annual SO2 emissions in all scenarios.

5.2.3. NOX Emissions

NOX emissions from existing and planned thermal power plants in the reference and alternative
scenarios for the modeling period are shown in Figure 14. These estimated projections illustrate that
NOX emissions are estimated to increase 72% in the REF scenario from 2013 till 2035, while an increase
of 59%, 53%, and 83% is projected under MRH, MRHN, and MRR scenarios, respectively. The thermal
power plants—particularly coal-based—proposed by the GOP during the study period, would be a
major source of increased NOX emissions in the reference scenario. NOX emissions were also higher in
the MRR scenario compared to the other alternative scenarios, due to the large installed capacity of
natural gas to compensate the low capacity factor renewable power plants. The power plants based on
natural gas produce more NOX than coal-based power plants.
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Figure 14. Annual NOx emissions in all scenarios.

5.2.4. CH4 Emissions

Methane-like CO2 is also another major component of GHGs. It is projected in this study
that methane (CH4) emissions from the existing and planned biomass, natural gas, and oil-based
power generations plants would increase considerably. CH4 emissions are projected to increase from
1 thousand Mt to 2.3 Mt from the base year (2013) to the end year (2035) in MRR scenario, which is
a 137% increase compared to the base year emission of CH4. These emissions are also projected to
increase 80% in the REF scenario, 71% in the MRH scenario, and 65% in the MRHN scenario from
the base year level in 2013 to the end year of study period as illustrated in Figure 15. The increasing
share of CH4 emissions are noticeably high in the MRR scenario compared to the other alternative
scenarios due to high shares of biomass and natural gas fuels in the MRR scenario. Biomass fuels like
crop residues—bagasse, rice husk, and corn straw—discharge large amounts of CH4 emissions during
combustion. CH4 is also the main component of natural gas fuels, and as such, power plants based on
natural gas would also emit unburnt CH4.

Figure 15. Annual CH4 emissions in all scenarios.

5.2.5. N2O Emissions

N2O is also a GHG and mainly emitted due to the combustion of coal with minimum amount of
such emissions from oil and natural gas fuel-based power plants. N2O emissions under reference as
well as all alternative scenarios as estimated in this study are shown in Figure 16. N2O emissions are
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estimated to increase from 0.2 thousand Mt in 2013 to 82 thousand Mt in 2035 under the REF scenario,
0.2 thousand Mt to 70 thousand Mt under the MRH, 0.2 thousand Mt to 63 thousand Mt under the
MRHN, and 0.2 thousand Mt to 41 thousand Mt under the MRR scenario for the same period. These
emissions are highest in the REF scenario owing to the highest share of coal. In all alternative scenarios,
N2O emissions were comparatively less than the REF scenario. These emissions were lowest in the
MRR scenario since a large amount of electricity is generated from renewable energy sources, which
do not produce any N2O emissions.

Figure 16. N2O emissions in all scenarios.

It can be concluded from these results pertaining emission—under different scenarios of this
study—that all the alternative scenarios have low overall emissions compared to the reference scenario.
However, the MRR scenario has the lowest CO2 (28% less then reference scenario), SO2 (33% less than
reference scenario), and N2O (50% less than reference scenario) emissions compared to the reference
scenario, whereas the MRHN scenario has the lowest NOx (11% less than the reference scenario) and
CH4 (11% less than the reference scenario) emissions.

6. Conclusions and Recommendations

The electricity demand in Pakistan is increasing with the increase in population, load growth,
economic development, and improved lifestyle. This growing demand cannot be met from existing
electricity generating plants. Furthermore, generating electricity from costly imported fossil fuels have
plunged the country into existing power crises owing to huge oil import bills and issues of circular
debt. In order to improve the electricity demand–supply balance, the government has initiated some
positive steps to resolve the electricity crises on priority basis as discussed in Section 3. Modeling the
planned power generation capacity of the country was undertaken via the REF scenario and three
alternative scenarios: MRR, MRH, and MRHN, which developed using LEAP model. The emphasis of
this energy modeling exercise has been to determine and suggest the environment friendly sources of
electricity generation in Pakistan for the study period 2013–2035.

The electricity generation output from existing power plants in 2013 remained 96 TWh, which
according to this study is projected to be 442 TWh in 2035, based on demand growth rate determined
by the government. As such, the addition of new plants in order to meet the increased demand by the
year 2035 is inevitable. In summary, the results of the model simulations of this study reveal that:

• The REF scenario based on government plans suggests a reduction of oil-based power generation,
however, conversion of certain power plants to coal and addition of new coal-based power plants
in this scenario lead to more emission which are highest compared to other alternative scenarios.
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• The MRR scenario mainly emphasized the renewable sources for electricity generation wherein
the share of renewables increases to be 11% of total electricity output in 2035. This scenario has
minimum emissions resulting from power generation during the modeling period.

• The MRH scenario prefers hydroelectric-based power generations to the tune of 42% in the total
energy mix by the year 2035. The coal-based generation forms about 28% in this scenario, as such,
environmental emissions in the scenario are found to next highest to the REF scenario.

• In the MRHN scenario, the share of electricity output of hydroelectric and nuclear power is
projected to increase from 31% to 42% and 5% to 11%, respectively, by the end year 2035, as such,
environmental emissions, in this case, are minimum but second to those of the MRR scenario.

It is evident from the above-summarized conclusions of this study that:

• All alternative scenarios (MRR, MRH, and MRHN) are more environmentally friendly and
acceptable compared to the base or REF scenario, and

• Coal-based power generation is the major sources of emission with local coal (indigenous lignite)
emitting more emissions than imported (bituminous) coal.

Pakistan has a huge potential of renewable energy resources such as wind, solar, and biomass
energy alongside hydroelectric potential, which, if effectively utilized can play a major role in meeting
the electricity demand and would reduce the GHGs and other air pollutant emissions. It is, therefore,
recommended that in order to address the current gap in supply and demand of electricity, decision
makers at the government level apart from implementing the existing plans should also consider
harnessing indigenous renewable energy resources for electricity generation. Renewable energy
resources of country such as wind, solar, and biomass together with hydro and nuclear energy can
form a substantial part of the future energy mix of the country to minimize oil import bills, reduce
GHG emissions and air pollution appropriately.
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Abstract: The enhanced geothermal system (EGS) reservoir consists of a heterogeneous fracture
network and rock matrix, and the heterogeneity of the reservoir has a significant influence on the
system’s electricity generation performance. In this study, we numerically investigated the influence
of reservoir heterogeneity on system production performance based on geological data from the
Gonghe Basin geothermal field, and analyzed the main factors affecting production performance.
The results show that with the increase of reservoir heterogeneity, the water conduction ability of
the reservoir gradually reduces, the water production rate slowly decreases, and this causes the
electric power to gradually reduce, the reservoir impedance to gradually increase, the pump power to
gradually decrease and the energy efficiency to gradually increase. The fracture spacing, well spacing
and injection temperature all have a significant influence on electricity generation performance.
Increasing the fracture spacing will significantly reduce electric power, while having only a very
slight effect on reservoir impedance and pump power, thus significantly decreasing energy efficiency.
Increasing the well spacing will significantly increase the electric power, while having only a very
slight effect on the reservoir impedance and pump power, thus significantly increasing energy
efficiency. Increasing the injection temperature will obviously reduce the electric power, decrease the
reservoir impedance and pump power, and thus reduce energy efficiency.

Keywords: reservoir heterogeneity; enhanced geothermal system; electricity generation; performance;
influence

1. Introduction

1.1. Background

The enhanced geothermal system (EGS) adopts artificial circulating water to extract heat from
the fractured hot dry rock (HDR) at a depth of 3–10 km, and is an effective approach to exploiting the
high-temperature geothermal energy stored deep in the earth [1]. All over the world, the total EGS
resource reserves within a 10km depth amounts to about 40–400 MEJ (1 EJ = 1018 J), approximately
100–1000 times the quantity of fossil energy [2]. In China, total EGS resource reserves within a 3–10 km
depth amounts to 20.90 MEJ; if the recoverable fraction is taken as 2%, the recoverable EGS resource
amounts to 4400 times the total annual energy consumption of China in 2010 [3]. Compared with
other renewable energy sources, the EGS resource is very suitable for generating base-load electric
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power, with nearly no pollution emissions and with a high utilization efficiency [1]. It is predicted that
there will be commercial exploitation of EGS in the next 15 years, with large scale utilization of EGS to
generate electricity by 2030 [1]. It is suggested that EGS will provide about 100,000 MW electric power
by 2050 in the USA and this will occupy about 10% of total electricity generating capacity [1].

The field tests and experimental studies of EGSs are time-consuming, expensive and very difficult,
while numerical studies are very fast, lower cost and easy, thus numerical simulation studies of EGS
have received more and more attention all over the world and have made important progress in recent
years. Two issues need to be considered in the simulation of EGS reservoirs: fracture representation and
simplification of the coupled hydraulic-thermal-mechanical-chemical interaction between the fractured
rock and circulating water [4,5]. For fracture representation, there are two main types of method: the
equivalent continuum method (ECM) and the discrete fracture network (DFN) method [4,5]. The ECM
will regard the actually discrete and interconnected fracture network as continuous porous media and
use the mature theories of fluid flow in porous media to describe the water seepage and heat transfer
process in the fractured rocks, and this method is mainly used for densely fractured reservoirs [6–10].
The commonly used ECM includes the equivalent porous media (EPM) method, the double-porosity
method (DPM) and the multiple interacting continua (MINC) method. The DFN method considers
the fracture orientation, spacing and other mechanical properties to establish a fracture network
model [4–10]. For simplification of the multiphysics field, recently, the coupling between water flow
and heat transfer has been most important and most considered, while the models considering the
coupling among the hydraulic, thermal and mechanic effects are increasing [4–10].

The EPM method is mainly used to model densely fractured reservoirs where fracture spacing
is small and fracture density is high, especially for average fracture spacing less than 2–3 m [4–10].
Birdsell et al. used the EPM method to develop a three-dimensional model of fluid, heat and tracer
transport in the Fenton Hill HDR reservoir [11]. McDermott et al. used the EPM method to analyze
the influence of coupled processes on differential reservoir cooling in heat extraction from crystalline
rocks [12]. Watanabe et al. used the EPM method to study the uncertainty of thermo-hydro-mechanical
coupled processes in heterogeneous porous media [13]. Zeng et al. adopted the EPM method to analyze
the electricity generation potential from the EGS reservoirs at Desert Peak geothermal and Yangbajing
geothermal field [5,14–19]. Cheng et al. employed the EPM method to analyze the influencing factors
of heat extraction from EGSs considering water losses [20]. Based on the EPM method, Hu et al.
established a novel fully-coupled flow and geomechanics model in EGS reservoirs [21].

When the average fracture spacing is higher than 10 m, we must consider the temperature
difference between rock and water, and the DPM or MINC method is more reasonable for this [4,5].
Sanyal et al. employed the DPM method to analyze the power generation prospects of EGS at the
Desert Peak geothermal field [22]. Taron et al. used the DPM method to study the hydrologic-thermal-
mechanical-chemical processes in the EGS reservoir [23,24]. Gelet et al. adopted the DPM method to
establish a hydro-thermo-mechanical coupled model in local thermal non-equilibrium for fractured
HDR reservoirs and found that fluid loss is high initially and decreases over time [25,26]. Benato et
al. used the DPM simulator TFReact to analyze the mechanisms influencing permeability evolution
during the reservoir stimulation and circulation at Desert Peak geothermal field [27]. Pruess et al.
used the MINC method to evaluate the heat extraction rate from EGS reservoirs where the heat
transmission fluid is either CO2 or water [28,29]. Spycher et al. used the MINC method to establish
a phase-partitioning model for CO2-Brine mixtures at elevated temperatures and pressures and
applied it to CO2-EGSs [30]. Borgia et al. used the MINC method to analyze salt precipitation in
the fractures of a CO2-EGS [31]. Xu et al. used the MINC method to calculate the power generation
potential of an EGS by water circulating through two horizontal wells in the Gonghe Basin geothermal
field [32]. Zeng et al. employed the MINC method to compute the electricity generation potential at
the Yangbajing geothermal field [33].

If the data from reservoir fracture distribution are adequate, the DFN model can be adopted,
and the use of the DFN method has been increasing recently [4–10]. Baujard et al. used the DFN
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model to study the impact of fluid density on the pressure distribution and stimulated volume in
the Soultz HDR reservoir and found that the density difference between the in situ reservoir fluid
and the injected fluid might play a significant role in the hydraulic stimulation of the reservoir [34].
Kolditz et al. used the DFN model to study fluid flow and heat transfer in fractured crystalline rocks
in Rosemanowes HDR reservoir and they also made long-term predictions of the thermal performance
of HDR systems [35,36]. Jing et al. adopted the stochastic DFN model to study the heat extraction
performance of EGS and found that rock thermoelasticity has an obvious effect on the production
temperature [37–39]. Based on the DFN model, Sun et al. studied heat extraction in EGS with the
hydraulic-thermal-mechanical coupling method and the results show the significance of taking into
account the hydraulic-thermal-mechanical (HTM) coupling effect when investigating the performance
and efficiency of EGS [40,41].

Though much important progress has been made in recent years, most fractured reservoirs
represented by the ECM are homogeneous and the reservoir heterogeneity is not taken into
account [4–10]. In fact, because the formation is usually layered and the hydrofracture effect is
commonly heterogeneous, the EGS reservoirs are generally heterogeneous [1]. A report from Huang et
al. [42] has indicated that reservoir heterogeneity has a significant influence on the heat production
performance of EGS, but they only discussed the quantitative relation between the heat extraction
ratio and the reservoir heterogeneity. There are quantitative relationships between the electric power,
flow impedance, energy efficiency and the reservoir heterogeneity, however recently there is a lack of
deep and systematic studies on these quantitative relations [4–10]. In order to analyze the influence
of reservoir heterogeneity on the electricity generation performance of the EGSs, in this work we
established the numerical model of the EGSs and discussed the influence of reservoir heterogeneity
on electricity generation performance in detail based on the geological data of the Gonghe Basin
geothermal field [32]. These will lay a good foundation for future research and development of EGSs
at the Gonghe Basin geothermal field.

1.2. Research Objectives

The research objectives of this work are to establish a numerical model of EGS with
heterogeneous reservoir and to reveal the influence of reservoir heterogeneity on system electricity
generation performance.

The novelty of this work is in the following three features. First, we used the MINC method
to represent the fractured reservoir and the temperature difference between circulating water and
rock matrix was taken into consideration. Second, the layered EGS reservoir with heterogeneous
permeability was considered and the corresponding numerical model was established. Third, through
a comparison with a homogenous reservoir we examined the impact mechanism of the reservoir
heterogeneity on system production performance.

2. Electricity Generation Method and Well Design

2.1. Heat Production Method

In order to deeply analyze the influence of reservoir heterogeneity on system production
performance, in this work we considered a five-spot well configuration at the Gonghe Basin geothermal
field to mine the heat—namely four production wells at corners and one injection well in the center,
as shown in Figure 1. The distance is 1000 m between two adjacent production wells. Only one quarter
of the domain needs to be simulated due to symmetry. This kind of well configuration is usually used
to analyze heat mining performance [28–31]. Based on the geological data at Gongbe Basin geothermal
field, in this work we aimed to mine the heat at a depth of 2700–3200 m [32]. The vertical wells are
perforated over the whole reservoir height of 500 m to obtain maximum water production rate and
thermal power. As shown in Figure 2, along the circumference of the vertical wells there are 8 grooves
evenly distributed and previous studies have shown that this kind of well design can obtain a much
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higher mining efficiency [14–19]. The whole injection rate or production rate is distributed across the
four gridblocks where the well is located, thus one gridblock will only represent the production rate
through two grooves, namely one quarter of the whole production rate [14]. We used the constant water
production rate method to mine the heat in the fractured rocks. For the production well, we installed a
downhole pump to maintain the bottomhole production pressure Ppro at a constant; for the injection
well, we installed an injection pump to maintain the injection rate q at a constant. Field tests and
numerical simulations all show that this kind of injection and production method can greatly reduce
reservoir impedance and water losses [4,5]. When injecting cold water into the fractured reservoir,
the formation pressure will rise. To avoid second reservoir growth and water losses, Pinj must be lower
than the minimum reservoir principal stress [5]. Based on the experience from the oil and gas industry,
in order to avoid the second fracture growth Pinj must be kept below an upper limit Pmax [5]:

Pinj < Pmax (1)

where Pmax = f PW0; PW0 is the initial pressure of the wellbore; f = 1.2 is the safety factor and is
determined by the actual geologic conditions [5]. At the Gonghe Basin geothermal field, the initial
wellbore pressure of the injection well at the intermediate depth of 2950 m is PW0 = 29.20 MPa,
so the Pmax = 35.04 MPa in this work. The initial wellbore pressure of the production well at the
intermediate depth of 2950 m is 29.20 MPa. Based on the engineering data at Desert Peak geothermal
field, under current pump technology the maximum pressure drawdown in the bottomhole production
well is 3.40 MPa [5]. Therefore, in this work the minimum bottomhole production pressure P0 at
the production well is (29.20 − 3.40) = 25.80 MPa, and the production pressure Ppro is decreased to
25.80 MPa to maintain continuous production.

 
Figure 1. Five-spot well pattern for the 2700–3200 m fractured reservoir.
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Figure 2. Well design used in the five-spot enhanced geothermal system (EGS) at the Gonghe Basin
geothermal field.

2.2. Electricity Generation Method

So far, the commonly used methods for electricity generation in the geothermal industry include
the dry steam system, the flash system and the binary system, and the applicable conditions and
efficiency of each system are all different [1]. The dry steam system is mainly used for high-temperature
geothermal resources where the geothermal fluid is mainly in the form of steam. The flash system
and binary system are mainly used for medium and low temperature geothermal resources where the
geothermal fluid is mainly in the form of hot liquid. The factors affecting the conversion efficiency of
the geothermal power plant includes production temperature, system design, heat loss from equipment,
non condensable gases (NCG) content, turbines and generator efficiency and other factors [43]. At the
Gonghe Basin geothermal field, the average temperature of the fractured formation at a depth of
2700–3200 m is about 180 ◦C, the most suitable method is the binary system according to reports
from Xu et al., so in this numerical study we used the binary system to calculate the production
performance [32].

The scheme of the basic binary geothermal power plant at Gonghe Basin geothermal field was
reported by Xu et al. in Reference [32]. Based on the studies from Zeng et al., the optimized injection
temperature for the circulation system is 60 ◦C [5]. Neglecting the temperature drop when the water
flows from the production well to the power plant, the production temperature Tpro is regarded as the
inlet temperature for the power plant. The mean annual temperature in the Gonghe Basin is 4.1 ◦C [32],
thus the heat rejection temperature of T0 = 277.25 K is used for electric power calculation. Based on
the second law of thermodynamics, the fraction of the total produced heat that can be converted to
the maximum mechanical work fR can be calculated as Equation (2), in which the T0 and Tpro are all
absolute temperature.

fR = 1 − T0

Tpro
(2)

3. Numerical Method

3.1. Mathematical Model

Because the pressure in the fractured reservoir is great enough, the water remains in the liquid
state when temperature is at 180 ◦C, thus it is water saturated single liquid flow in the fractured
formation. The mass conversation equation is (3), where ρ is water density, φ reservoir porosity, V the
velocity vector.

∂(ρφ)

∂t
+∇·(ρV) = 0 (3)
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The momentum conservation equation for single liquid flow is the classical Darcy’s law,
as Equations (4)–(6), where Vx,Vy and Vz is velocity component along the x, y and z direction, Kx,Ky

and Kz is reservoir permeability along the x, y and z direction, μ the dynamic viscosity, P the pressure,
g = 9.80 m/s2 the acceleration of gravity.

Vx = −Kx

μ

∂p
∂x

(4)

Vy = −Ky

μ

∂p
∂y

(5)

Vz = −Kz

μ
(

∂p
∂y

+ ρg) (6)

Assuming that the rock matrix and circulating water is in local thermodynamic equilibrium,
namely the rock temperature is equal to the water temperature, in the rock the heat transfer is
conduction, and in the water the heat transfer is convection and conduction, thus the energy
conservation equation for single liquid flow is Equation (7):

[φ(ρcp) f + (1 − φ)(ρcp)s]
∂T
∂t

+ (ρcp) f (V·∇)T = [φk f + (1 − φ)ks]∇2T (7)

where T is the temperature, (ρcp)f is product of water density and water specific heat capacity, (ρcp)s is
product of solid density and solid specific heat capacity. cp is specific heat capacity, kf is water heat
conductivity, and the ks is solid heat conductivity. Because in this work the variation of reservoir
pressure and temperature is very great and its influence on water density and viscosity is significant, we
considered that the water density and viscosity are functions of pressure and temperature, as Equations
(8) and (9). In this paper, the ρ and the μ are calculated from steam table equations as given by the
International Formulation Committee [44]. For more information about the state equations, the reader
can refer to Reference [44].

ρ = ρ(p, T) (8)

μ = μ(p, T) (9)

3.2. The MINC Method

For EGS reservoirs with large fracture spacing, the MINC method is an effective approach for
modeling fluid flow and heat transfer. In the fractured reservoirs, matrix blocks with low permeability
are embedded in the fracture network, and fluid flow mainly occurs through the fractures [44].
For describing the fluid and heat transport process in the fractured media, it is necessary to resolve
the driving temperature, pressure and mass fraction gradients at the matrix/fracture interface. In the
MINC approach, the pressure and temperature changes in the matrix are controlled locally by the
distance from the fractures. Based on Xu et al. [32], in this work the matrix blocks are divided into
four subgrids with volume fractions of 0.08, 0.2, 0.35 and 0.35. The fracture domain occupies a volume
fraction of 0.02. In this work, the TOUGH2-EOS1 codes are employed to carry out the simulation.
For more information about the MINC method and the TOUGH2 codes, the reader can refer to
Reference [44].

3.3. Domain, Grid and Parameters

As stated above, in this work we mainly aim to exploit the heat stored in the fractured reservoir at
a depth of 2700–3200 m and the distance between two adjacent production wells is 1000 m, as shown in
Figure 1. Because of symmetry, only one quarter of the whole domain needs to be simulated, thus the
actual calculated domain is 500 m × 500 m × 500 m. As shown in Figure 3, in the horizontal direction
the grid that is within 50 m of the wells is refined, the width of every gridblock is 5 m and there are
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10 gridblocks near the wells. For the other subdomain that is not near the wells, the 400 m length is
evenly divided into 8 gridblocks, and the width of every gridblock is 50 m. Therefore, there are a total of
28 gridblocks in the x direction and the y direction. In the vertical direction, the 500 m height is evenly
divided into 10 gridblocks, and the height of every gridblock is 50 m. With this grid arrangement,
in the simulated domain there are total 28 × 28 × 10 = 7840 gridblocks. Based on Section 3.2, the
reservoir domain is further divided into 5 continua for the MINC method, thus there are total 7840 ×
5 = 39,200 gridblocks for the whole calculated domain. Under reference condition, we assumed that
after hydrofracture, the fracture spacing is 50 m [32]. According to Pruess et al. [29], the conductive
heat transfer between the impermeable cap rock or base rock and the permeable reservoir can be
neglected for the fracture spacing of 50 m, thus in this work the conductive heat transfer between the
confined rocks and the reservoir is neglected and only the heat transfer process within the reservoir is
considered in this simulation. Assuming the surrounding rocks are impermeable, the water loss can
be neglected [5], and the water injection rate qinj is equal to the water production rate qpro:qinj = qpro.
Neglecting the water loss can greatly simplify the calculation of reservoir performance, and this has
been adopted from previous studies by Zeng et al. and Xu et al. [4,5,32].

In order to investigate the influence of reservoir heterogeneity on system electricity generation
performance, under reference conditions we considered three permeability distribution patterns,
as shown in Figure 4. In this work, we assumed that the permeability is independent of the porosity,
namely the relationship between permeability and porosity is not taken into account. There are 10
layers in the vertical direction, and the average permeability of the 10 layers is maintained at 50 mD
(1 mD = 1.0 × 10−15 m2). For the first case R1, we considered a homogenous reservoir of uniform
permeability, and the permeability of every layer is 50 mD. For the second case R2, we considered
a heterogeneous reservoir, in which the permeability of the 5th and 6th layer is 200 mD, and the
permeability of the remaining 8 layers is 12.50 mD. For the third case R3, we considered a heterogeneous
reservoir, in which the permeability of 3rd layer, 4th layer, 7th layer and 8th layer is 100 mD, and
the permeability of the remaining 6 layers is 16.67 mD. We can easily find that the R1 reservoir is
homogenous, the R2 reservoir is most heterogeneous, and the heterogeneity of the R3 reservoir is in
between. Namely, the ranking for the heterogeneity of the three cases is: R2 > R3 > R1. Based on the
studies from Xu et al. at the Gonghe Basin geothermal field, the fracture porosity is taken as 0.5 [32].
The other model parameters are listed in Table 1, in which most are referred to work of Xu et al. [32].

 
Figure 3. Simulation domain and grid used in this work.
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Figure 4. The permeability distribution pattern for the three cases: R1, R2 and R3.

Table 1. EGS reservoir properties and conditions at the Gonghe Basin geothermal field [32].

Parameter Value

Rock grain density 2650 kg/m3

Rock specific heat 1000 J/(kg·K)
Rock heat conductivity 2.50 W/(m·K)

Fracture system volume fraction 2%
Fracture spacing 50 m

Porosity in fracture system 0.5
Porosity in matrix

Permeability in matrix
Injection temperature

Bottomhole production pressure
Productivity index

1.0 × 10−5

1.0 × 10−18 m2

60 ◦C (275.571 kJ/kg)
25.80 MPa

5.0 × 10−12 m3

3.4. Boundary and Initial Conditions

Neglecting the conductive heat transfer between the cap rock or base rock and the reservoir and
assuming that the surrounding rocks are impermeable, the topmost and bottommost boundaries in
Figure 3 are all no-flow for mass and heat. Because of symmetry, the lateral boundaries in Figure 3 are
also all no-flow for mass and heat. The initial pressure is P = −0.0088z + 3.24(MPa), and the initial
temperature is 180 ◦C [32].

4. Influence of Reservoir Heterogeneity on the Electricity Generation Performance

4.1. The Determination of Water Production Rate

In previous studies, we have clearly stated the determination method for the water production
rate [4]. A lower water production rate will decrease electric power and reduce the practical application
value of the system. With an increase of the water production rate, the injection pressure gradually
increases; however, for given reservoir conditions, the tolerable maximum injection pressure is finite.
Based on (1), we gradually increased the water production rate and calculated the corresponding
injection pressure under various conditions. With the increase of water production rate, the production
temperature Tpro rapidly declines [4,5]. For engineering applications, during the exploiting period
the drop of the production temperature Tpro should be less than 10%, or the decline of reservoir
temperature will be too great, and this will affect the regenerability of the geothermal resource [4,5].
As stated above, based on the two principles that the maximum injection pressure must be lower than
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Pmax = 35.04 MPa and the production temperature drop must be less than 10%, we can determine
the available maximum water production rate, and under this water production rate the system
can obtain maximum electric power. Because of symmetry the total water production rate and
thermal power of the five well system is 4 times that of the simulated domain. Figure 5 shows the
change of the injection pressure Pinj corresponding to the three reference cases and Figure 6 shows
the change of the production temperature Tpro corresponding to the three reference cases. For the
R1 reservoir, the water production rate for the simulated domain is 40 kg/s, thus the total water
production rate of the five well system is 160 kg/s. For the R2 reservoir, the water production rate
for the simulated domain is 17.50 kg/s, thus total water production rate of the five well system
is 70 kg/s. For the R3 reservoir, the water production rate for the simulated domain is 30 kg/s,
thus total water production rate of the five well system is 120 kg/s. It can be easily found that with
the increase of the reservoir heterogeneity, namely R1 < R3 < R2, the corresponding water production
rate gradually decreases. Though the average permeabilities of the three reference cases are the same,
for the heterogeneous reservoir, the permeabilities of the various layers are different and with the
increase of the reservoir heterogeneity, the fluid conduction ability of the reservoir is decreasing,
thus the available water production rate gradually declines. It can be seen in Figure 5 that with the
increase of the reservoir heterogeneity—namely R1 < R3 < R2—the corresponding injection pressure
gradually decreases. As stated above, the injection pressure is mainly determined by the water
production rate and a higher water production rate means a higher injection pressure. Because with
the increase of reservoir heterogeneity—namely R1 < R3 < R2—the water production rate gradually
decreases, thus the corresponding injection pressure gradually declines. It can also be seen in Figure 5
that during the period that the injection pressure is gradually increasing, the maximum injection
pressure under the three reference cases are all lower than Pmax = 35.04 MPa. This is mainly due to
the decline of the reservoir temperature, causing an increase of the water viscosity and the rise of
reservoir impedance [4,5]. This is in agreement with previous studies by Zeng et al. [4,5]. Figure 6
shows that changes in the production temperature under three cases are consistent for the determined
water production rate, and the production temperature decreases to about 162 ◦C, a reduction of about
10%. This indicates that the reservoir heterogeneity has only a very slight influence on the production
temperature for the determined water production rate. Though reservoir heterogeneity increases local
ability to conduct water, it decreases the global ability to conduct water and heat, thus it has only a
very slight influence on the production temperature when reducing the water production rate.

 

Figure 5. Change of the injection pressure Pinj corresponding to the three reference cases.
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Figure 6. Change of the production temperature Tpro corresponding to the three reference cases.

4.2. Influence of Reservoir Heterogeneity on the Electric Power

For the binary system, if the water production rate of the simulated domain is q, the total water
production rate for the five well system is Q = 4q. In a more realistic environment, it is very likely
that there will be a short circuit between the injection well and one of the production wells; therefore,
that production well will produce more than the rest. For simplification, in this work we have assumed
there is no short circuit between the injection well and production wells, and that the water production
rate of each production well is equal. If the injection specific enthalpy of the injection water is hinj,
the production specific enthalpy is hpro, then the thermal power of the system Wh can be calculated
by Equation (10), where the temperature drop, when flowing from production well to power plant,
is neglected [5]. The hpro is calculated according to the bottomhole production temperature and
pressure: hpro = hpro(Ppro, Tpro). As stated above, hinj = 275.571 kJ/kg and is corresponding to Tinj =
60 ◦C.

Wh = Q(hpro − hinj)= 4q(hpro − hinj) (10)

Based on Equation (2), the fraction of the total produced heat that can be converted to the
maximum mechanical work is fR. If the utilization efficiency of the maximum mechanical work
transferred to electric power is 0.45 [4,5], the electric power We of the EGS power plant can be
calculated as Equation (11). As stated above, at the Gonghe Basin geothermal field, T0 = 277.25 K.

We = 0.45 fRWh = 0.45Q(hpro − hinj)(1 − To

Tpro
) = 1.8q(hpro − hinj)(1 − To

Tpro
) (11)

Figure 7 shows the change in electric power over 30 years under three reference cases. Based on
previous studies, the change of the electric power of the EGS power plant can be divided into two
stages: a stable stage and a declining stage [4,5]. During the stable stage, Tpro maintains an initial
reservoir temperature and the corresponding electric power is also maintained unchanged; during
the declining stage, the Tpro gradually declines and the corresponding electric power also gradually
reduces based on Equation (11). It can be easily seen in Figure 7 that for the R1 reservoir, the electric
power We is highest, and over the 30 years, the We gradually decreases from 13.97 MW to 11.20 MW.
For the R3 reservoir, the We is in between, and it gradually decreases from 10.45 MW to 8.29 MW.
For the R2 reservoir, the We is lowest, and it slowly reduces from 6.10 MW to 4.97 MW during the
30 years. According to Figure 6, the Tpro are very close in the three reference cases, thus the main
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factor affecting the We is the water production rate q based on Equation (11). For the R1, R3 and R2
reservoir, the q is 40 kg/s, 30 kg/s and 17.50 kg/s, respectively. The q gradually decreases, thus the
corresponding We also reduces. This indicates that with the increase of the reservoir heterogeneity,
namely R1 < R3 < R2, the water conduction ability of the reservoirs decreases, the corresponding water
production rate reduces and the electric power declines. It is clear that during the reservoir stimulation
stage, we should control the reservoir to be uniformly stimulated and make the permeability of every
layer the same and this will greatly improve the water conduction ability of the reservoir and increase
the electric power.

 
Figure 7. Change of the electric power during the 30 years under the three reference cases.

4.3. Influence of Reservoir Heterogeneity on the Reservoir Impedance

The water flow impedance of the system can be calculated as Equation (12), where Ppro =
25.80 MPa. In previous studies, Zeng et al. has analyzed the main factors influencing the flow
impedance [4,5], and found that with heat mining the reservoir temperature gradually declines,
the water viscosity slowly increases, and this causes the gradual increase of the reservoir impedance.

IR =
Pinj − Ppro

q
(12)

Figure 8 shows the change of the reservoir impedance over the 30 years under the three reference
cases. For the R1 reservoir, over the 30 years the reservoir impedance is lowest, and it gradually
increases from 0.097 MPa/(kg/s) to 0.128 MPa/(kg/s). For the R3 reservoir, the reservoir is in between,
and it slowly increases from 0.110 MPa/(kg/s) to 0.145 MPa/(kg/s) over the 30 years. For the
R2 reservoir, the reservoir impedance is highest, and it increases from 0.160 MPa/(kg/s) to 0.195
MPa/(kg/s) over the 30 years. These indicate that with the increase of the reservoir heterogeneity,
namely R1 < R3 < R2, the reservoir impedance increases. As stated above, this is mainly because
the reservoir heterogeneity significantly reduces the global water conduction ability of the reservoir;
when the average permeability of the various layers is constant, the water conduction ability of the
reservoir decreases with the increase of the reservoir heterogeneity, thus the reservoir impedance
increases with an increase in the reservoir heterogeneity. In this work, the rock deformation due to
mechanics and thermoelasticity is not taken into consideration in the simulation. However, in factual
EGS reservoir, as the reservoir cools, the fractures may dilate, and this increases permeability and
reduces inter-well impedance.
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Figure 8. Change of the reservoir impedance during the 30 years under the three reference cases.

4.4. Influence of Reservoir Heterogeneity on the Pump Power

The internal energy consumption Wp = Wp1 + Wp2, includes mainly the energy consumed by the
injection pump Wp1 and the production pumps Wp2 [4,5]:

Wp1 =
4q(Pinj − ρgh1)

ρηp
(13)

Wp2 =
4q(ρgh2 − Ppro

)
ρηp

(14)

where h1 is the depth of the injection well, h2 is the depth of production well, and ηp = 80% is the
pump efficiency [4,5]. Based on these the internal energy consumption Wp is Equation (15):

Wp = Wp1 + Wp2 =
4q(Pinj − Ppro

)− 4ρqg(h1 − h2)

ρηp
(15)

In this work, h1 = h2 = 3200 m, thus the Equation (15) of Wp can be reduced into Equation (16):

Wp = Wp1 + Wp2 =
4q(Pinj − Ppro

)
ρηp

(16)

In Equation (16), the water density ρ is determined by the reservoir pressure and temperature.
When the pressure is within 25.80–31.00 MPa and the temperature is within 60–180 ◦C, the maximum
value of the water density is 996.25 kg/m3, the minimum value of the water density is 902.61 kg/m3,
thus the average value of the water density is ρ = 949.43 kg/m3. Based on previous studies from
Zeng et al. [4,5], adopting the average value of the water density in Equation (16) is accurate and
reliable, thus in this work we used the average density of ρ = 949.43 kg/m3 for calculation and analysis.
Figure 9 shows the change of the pump power Wp during the 30 years under the three reference cases.
Based on Equation (16), during the mining period the Pinj is increasing, thus the Wp is also gradually
rising, and this is in accordance with Figure 9. For the R1 reservoir, the Wp is highest and it gradually
increases from 0.82 MW to 1.08 MW. For the R3 reservoir, the Wp is in between and it gradually
increases from 0.52 MW to 0.69 MW. For the R2 reservoir, the Wp is lowest and it gradually rises from
0.26 MW to 0.31 MW. So, we can see that with an increase of reservoir heterogeneity—namely R1 < R3
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< R2—the Wp gradually decreases. Based on Equation (16), this is mainly because, with the increase of
reservoir heterogeneity, the available water production rate declines. Therefore, the water conduction
ability reduction caused by the increase of the reservoir heterogeneity can significantly influence the
pump power.

 

Figure 9. Change of the pump power during the 30 years under the three reference cases.

4.5. Influence of Reservoir Heterogeneity on the Energy Efficiency

The energy efficiency η of the system is defined as the ratio of the total produced electric energy
to the internal energy consumption, and can be calculated as Equation (17):

η =
We

Wp
=

0.45ρηp(hpro − hinj)(1 − To/Tpro)

(Pinj − Ppro
)−ρg(h1 − h2)

(17)

In the calculation of Equation (17), the water density is still taken as the average value of ρ =
949.43 kg/m3. Figure 10 shows the change of the energy efficiency during the 30 years under the
three reference cases. Based on Equation (17), during the heat mining because the Tpro and hpro

gradually decreases while the Pinj gradually increases, the energy efficiency η gradually reduces,
and this is in agreement with Figure 10. For the R1 reservoir, the η is lowest and it decreases from
20.62 to 10.36. For the R3 reservoir, the η is in between and it reduces from 23.13 to 12.04. For the
R2 reservoir, the η is highest and it decreases from 24.05 to 15.83. So, it can be found that with the
increase of the reservoir heterogeneity—namely R1 < R3 < R2—the η rises. Though the reservoir
heterogeneity significantly reduces the water conduction ability of the reservoir, under a lower water
production rate the system obtains a higher energy efficiency. These are in accordance with previous
studies from Zeng et al. [4,5]. Though the heterogeneous reservoir can obtain higher energy efficiency,
it decreases the water production rate and also electric power is reduced, thus the economic benefit of
the heterogeneous reservoir is still lower than that of the homogenous reservoir.
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Figure 10. Change of the energy efficiency during the 30 years under the three reference cases.

4.6. Influence of Reservoir Heterogeneity on the Pressure Field

Figure 11 shows the evolution of the spatial distribution of the fracture pressure over the 30 years
under the three reference cases. High pressure annular regions gradually form near the injection well,
and the fracture pressure declines from the injection well to the production well. With heat mining,
the high pressure regions gradually expand, the reservoir pressure gradually increases, and this
represents the thermal energy in the reservoir is being gradually extracted out. These are in accordance
with previous studies from Zeng et al. [16]. From the comparison among the three reference cases,
the distribution and evolution of the fracture pressure are basically identical and this shows that the
reservoir heterogeneity has only a very slight influence on the pressure field.

 

 

Figure 11. Cont.
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Figure 11. Evolution of spatial distribution of the fracture pressure (Pa) during the 30 years under the
three reference cases.

4.7. Influence of Reservoir Heterogeneity on the Temperature Field

Figure 12 shows the evolution of the spatial distribution of the fracture temperature during the
30 years under the three reference cases. Annular low temperature regions gradually form near the
injection well and the fracture temperature gradually increases from the injection well to the production
well. With heat mining, the low temperature regions gradually expand, the reservoir temperature
gradually declines, and this represents the result of the thermal energy in the reservoir being gradually
extracted out. These are in accordance with previous studies from Zeng et al. [16]. Comparing the three
reference cases, we find that a cold front forms in the high permeability layer of the heterogeneous
reservoir. For the R1 reservoir, the temperature distribution of all the layers are basically identical and a
cold front does not develop in which the temperature field is uneven. For the R2 reservoir, there forms
one cold front in the two high permeability layers, because in these layers the water seepage velocity
is much higher than that in the lower permeability layers. For the R3 reservoir, there forms two cold
fronts in the four high permeability layers of the reservoir, also because the water velocity in these
layers is much higher than that in the rest layers. These indicate that the reservoir heterogeneity has a
significant influence on the fracture temperature field. In higher permeability layers, the water seepage
velocity is increased, and there will form cold front, which means the temperature distribution along
depth is uneven. The figure also shows that the system can benefit from buoyancy drive due to the
temperature difference in the production and injection wells, and these are in agreement with studies
from Huang et al. [42].

 

 

Figure 12. Cont.
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Figure 12. Evolution of the spatial distribution of the fracture temperature (◦C) during the 30 years
under the three reference cases.

4.8. Influence of Reservoir Heterogeneity on the Water Density Field

Figure 13 shows the evolution of the spatial distribution of the fracture water density over the
30 years under the three reference cases. Because near the injection well, it is high pressure and low
temperature, annular high water density regions form. The water density reduces from the injection
well to the production well. With heat mining, the high density regions expand toward the production
well, the water density in the reservoir gradually increases, and this represents the result of the thermal
energy being gradually extracted from the reservoir. Comparing the three reference cases we can
find that in the high permeability layers there forms low density front, while in the low permeability
layers the density distribution are basically even. For the R1 reservoir, the water density in each
layer is basically identical, and a low density front does not form. For the R2 reservoir, there forms
one low density front in the two high permeability layers. For the R3 reservoir, there forms two low
density fronts in the four high permeability layers. As stated above, this is mainly because in the
high permeability layers the horizontal velocity is much greater than that in the lower permeability
layers, thus the low density contours are fronted in the high permeable layers. These indicate that the
reservoir heterogeneity has a significant influence on the water density field. Higher permeability will
increase the water conduction ability in the layers and there will form low density front, making the
density distribution uneven along depth. This is in agreement with the studies by Huang et al. [42].

 

 

Figure 13. Cont.
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Figure 13. Evolution of the spatial distribution of the facture water density (kg/m3) during the 30 years
under the three reference cases.

5. Sensitivity Analysis

Many factors have significant influence on the production performance of the EGSs and previous
studies can be found in References [4,19,20,45]. Most important parameters that can be controlled
and adjusted are fracture spacing, well spacing and injection temperature [20,45], thus in this
study we mainly investigated the influence of the above three parameters. Based on the above
three reference cases, we further investigated the sensitivity of electricity generation to the three
key parameters: fracture spacing D, well spacing WS and injection temperature Tinj. In detail we
researched the performance and efficiency characteristics of the following 3 scenarios: (1) increasing D
to D = 75 m; (2) increasing WS to WS = 600 m; (3) increasing Tinj to Tinj = 80 ◦C. Figures 14–17 show
the sensitivity of electric power, reservoir impedance, pump power and energy efficiency to the above
three parameters, respectively.

Figure 14. Sensitivity of electric power to main parameters.
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Figure 15. Sensitivity of reservoir impedance to main parameters.

 
Figure 16. Sensitivity of pump power to main parameters.
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Figure 17. Sensitivity of energy efficiency to main parameters.

5.1. Sensitivity to Fracture Spacing

Figure 14 R1a shows that increasing D from 50 m to 75 m results in a decrease of We from
13.97–11.20 MW to 13.83–10.52 MW. For Figure 14 R2a and R3a, we can also find that an increase of
D will cause the reduction of We. This is mainly because the fracture spacing determines the heat
transfer area between the fractured rock and circulating water, higher fracture spacing will decrease
the ratio between surface area and reservoir volume, finally decrease the heat transfer area, and this
will significantly reduce the We according to the heat transfer formula. These are in agreement with
studies from Sanyal et al. [22]. Figure 15 R1a shows that increasing D from 50 m to 75 m results in only
very slight influence on the IR. For Figure 15 R2a and Figure 15 R3a, similarly we can find that the
increase of D has only very slight influence on the IR. This is because the IR is mainly determined by
water viscosity and reservoir permeability [4,5]. In this study, the viscosity and reservoir permeability
are all independent of the D, thus the change of the D has only a very slight effect on the IR. This is in
accordance with previous studies from Zeng et al. [33]. Figure 16 R1a shows that increasing D from
50 m to 75 m results in only a very slight influence on the Wp. For Figure 16 R2a and Figure 16 R3a,
similarly we can find that the increase of D has only a very slight influence on the Wp. Because the
increase of D has only a very slight influence on the IR, based on Equations (12) and (16), the increase
of D also has only a very slight effect on the Pinj and thus has only a slight effect on the Wp according
to Equation (16). This is in accordance with previous studies by Zeng et al. [33]. Figure 17 R1a shows
that increasing D from 50 m to 75 m results in a decrease of η from 20.62–10.36 to 19.31–9.69. For
Figure 17 R2a and R3a, similarly we can find that the increase of D will cause the reduction of the
η. This is because the increase of D will reduce the We, while only has a very slight influence on the
Wp, based on Equation (17) this will obviously decrease the η. This is in accordance with previous
studies from Zeng et al. [33]. Overall, the D has a significant influence on the electricity generation
performance, within a certain range, increasing D will reduce the We, while have only a very slight
effect on the IR and Wp, thus significantly decrease the η.

5.2. Sensitivity to Well Spacing

Figure 14 R1b shows that increasing WS from 500 m to 600 m results in an increase of We from
13.97–11.20 MW to 19.72–13.27 MW. For Figure 14 R2b and R3b, similarly we can find that the increase
of WS will cause the rise of We. This is because higher WS increases the reservoir volume between
the injection well and production well, thus increases the Tpro and hpro, according to Equation (11)
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this obviously increases the We. This proves that the WS is an important design parameter for EGS
construction, it is directly related to the We, thus the determination of WS should be based on an
accurate analysis of the geological data of the geothermal field. Figure 15 R1b shows that increasing
WS from 500 m to 600 m results in only a very slight influence on the IR. For Figure 15 R2b and
Figure 15 R3b, similarly we can find that the increase of WS has only a very slight effect on the IR.
As stated above, the IR is mainly determined by water viscosity and reservoir permeability—the
viscosity and permeability are independent of WS, thus it has only a very slight influence on the IR.
Figure 16 R1b shows that increasing WS from 500 m to 600 m results in only a very slight influence
on the Wp. For Figure 16 R2b and R3b, similarly we can find that the increase of WS has only a very
slight effect on the Wp. This is mainly because the increase of WS has only a very slight on the IR,
based on Equations (12) and (16), the increase of WS has only a very slight influence on the Pinj and
Wp. Figure 17 R1b shows that increasing WS from 500 m to 600 m results in an increase of η from
20.62–10.36 to 22.56–12.35. For Figure 17 R2b and R3b, similarly we can find that an increase of WS
significantly increases the η. As stated above, this is because the increase of WS obviously increases
the We, while it has only a very slight effect on the Wp, based on Equation (17) this will increase the η.
Overall, the WS has a significant influence on the electricity generation performance, within a certain
range, increasing the WS will significantly increase the We, while have only a very slight effect on the
IR and Wp, thus significantly increase the η.

5.3. Sensitivity to Injection Temperature

Figure 14 R1c shows that increasing the Tinj from 60 ◦C to 80 ◦C results in a decrease of We from
13.97–11.20 M to 12.06–9.41 MW. For Figure 14 R2c and R3c, similarly we can find that the increase of the
Tinj reduces the We. This is in accordance with previous studies from Zeng et al. [4,5]. This is because
the increase of Tinj increases the hinj, based on Equation (11) when the other conditions are unchanged,
this will significantly decrease the We. Figure 15 R1c shows that increasing the Tinj from 60 ◦C to 80 ◦C
results in a decrease of IR from 0.097–0.128 MPa/(kg/s) to 0.095–0.115 MPa/(kg/s). For Figure 15 R2c
and R3c, similarly we can find that the increase of the Tinj will significantly reduce the IR. As mentioned
above, the IR is mainly determined by the water viscosity and reservoir permeability [4,5]. The increase
of Tinj will increase the reservoir temperature, decrease the water viscosity, thus reducing the IR. This is
in accordance with previous studies by Zeng et al. [33]. Figure 16 R1c shows that increasing the Tinj

from 60 ◦C to 80 ◦C results in a decrease of Wp from 0.82–1.08 MW to 0.80–0.97 MW. For Figure 16
R2c and R3c, similarly we can see that the increase of the Tinj will significantly decrease the Wp.
This is because the increase of the Tinj reduces the IR, according to Equations (12) and (16), this will
significantly reduce the Pinj and thus further decrease the Wp. Figure 17 R1c shows that increasing
the Tinj from 60 ◦C to 80 ◦C results in a decrease of the η from 20.62–10.36 to 18.20–9.73. For Figure 17
R2c and R3c, similarly we can find that the increase of the Tinj will significantly reduce the η. This is a
comprehensive result of both reduction of We and Wp. Overall, the Tinj has a significant influence on
the electricity generation performance, within a certain range, increasing the Tinj will reduce the We,
decrease the IR and Wp, and thus reduce the η.

6. Conclusions

In this study, we numerically investigated the influence of reservoir heterogeneity on the electricity
generation performance of an EGS reservoir and analyzed the main factors affecting the production
performance. The conclusions are as follows:

(1) With increasing of the reservoir heterogeneity, the water conduction ability of the reservoir
gradually decreases, the available water production rate gradually reduces, thus the electric power
gradually decreases.

(2) With increasing of the reservoir heterogeneity, the reservoir impedance gradually increases.
(3) With increasing of the reservoir heterogeneity, the pump power gradually reduces.
(4) With increasing of the reservoir heterogeneity, the energy efficiency gradually increases.
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(5) The reservoir heterogeneity has a significant influence on the fracture temperature field.
In higher permeability layers, a cold front will form and make the temperature distribution along
depth uneven.

(6) The fracture spacing has a significant influence on the electricity generation performance,
within a certain range, increasing the fracture spacing will obviously reduce the electric power,
while having only very slight effect on the reservoir impedance and pump power, thus significantly
decreasing the energy efficiency.

(7) The well spacing has a significant influence on the electricity generation performance, within
a certain range, increasing the well spacing will obviously increase the electric power, while having
only very slight effect on the reservoir impedance and pump power, thus significantly increasing the
energy efficiency.

(8) The injection temperature has a significant influence on the electricity generation performance,
within a certain range, increasing the injection temperature will obviously reduce the electric power,
decrease the reservoir impedance and pump power, thus reducing the energy efficiency.
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Nomenclature

D fracture spacing, m
g gravity, 9.80 m/s2

h well depth, m
h1 depth of injection well, m
h2 depth of production well, m
hinj injection specific enthalpy, kJ/kg
hpro production specific enthalpy, kJ/kg
IR reservoir impedance, MPa/(kg/s)
k reservoir permeability, m2

kf fracture permeability, m2

km matrix permeability, m2

kx intrinsic permeability along x, m2

ky intrinsic permeability along y, m2

kz intrinsic permeability along z, m2

P pressure, MPa
Pmax critical pressure, MPa
Pinj injection pressure, MPa
Ppro production pressure, MPa
P0 bottomhole production pressure, MPa
q water production rate, kg/s
Q total water production rate, kg/s
T temperature, ◦C
T0 mean heat rejection temperature, 282.15 K
Tpro production temperature, ◦C
Tinj injection temperature, ◦C
Wp electric power of pump, MW
WS well spacing, m
We electric power, MW
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x, y, z cartesian coordinates, m
φ reservoir porosity
η energy efficiency
ηp pump efficiency, 80%
ρ water density, kg/m3

References

1. Tester, J.W.; Livesay, B.; Anderson, B.J.; Moore, M.C.; Bathchelor, A.S.; Nichols, K.; Blackwell, D.D.; Petry, S.;
Dipoppo, R.; Toksoz, M.N.; et al. The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS)
on the United States in the 21st Century. An assessment by an MIT-Led Interdisciplinary Panel; MIT: Cambridge,
MA, USA, 2006.

2. Zhao, Y.S.; Wan, Z.J.; Kang, J.R. Introduction to HDR Geothermal Development; Science Press: Beijing, China,
2004. (In Chinese)

3. Wang, J.; Hu, S.; Pang, Z.; He, L.; Zhao, P.; Zhu, C.; Rao, S.; Tang, X.; Kong, Y.; Luo, L.; et al. Estimate of
geothermal resources potential for hot dry rock in the continental area of China. Sci. Technol. Rev. 2012, 30,
25–31. (In Chinese)

4. Zeng, Y.C.; Tang, L.S.; Wu, N.Y.; Cao, Y.F. Analysis of influencing factors of production performance of
enhanced geothermal system: A case study at Yangbajing geothermal field. Energy 2017, 127, 218–235.
[CrossRef]

5. Zeng, Y.; Su, Z.; Wu, N. Numerical simulation of heat production potential from hot dry rock by water
circulating through two horizontal wells at Desert Peak geothermal field. Energy 2013, 56, 92–107. [CrossRef]

6. Pruess, K. Modelling of geothermal reservoirs: Fundamental processes, computer simulation, and field
applications. In Proceedings of the 10th New Zealand Geothermal Workshop, Auckland, New Zealand,
2–4 November 1988.

7. Willis-richards, J.; Wallroth, T. Approaches to the modeling of HDR reservoirs: A review. Geothermics 1995,
24, 307–332.

8. Hayashi, K.; Willis-Richards, J.; Hopkirk, R.J.; Niibori, Y. Numerical models of HDR geothermal reservoirs—A
review of current thinking and progress. Geothermics 1999, 28, 507–518. [CrossRef]

9. Sanyal, S.K.; Butler, S.J.; Swenson, D.; Hardeman, B. Review of the state-of-the-art of numerical simulation of
enhanced geothermal system. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan,
28 May–10 June 2000.

10. O’Sullivan, M.J.; Pruess, K.; Lippmann, M.J. State of the art of geothermal reservoir simulation. Geothermics
2001, 30, 395–429. [CrossRef]

11. Birdsell, S.; Robinson, B. A three-dimensional model of fluid, heat, and tracer transport in the Fenton Hill
hot dry rock reservoir. In Proceedings of the Thirteenth Workshop on Geothermal Reservoir Engineering,
Stanford, CA, USA, 19–21 January 1988.

12. Mcdermott, C.I.; Randriamanjatosoa, A.R.; Tenzer, H.; Kolditz, O. Simulation of heat extraction from
crystalline rocks: The influence of coupled processes on differential reservoir cooling. Geothermics 2006, 35,
321–344. [CrossRef]

13. Watanabe, N.; Wang, W.Q.; McDermott, C.I.; Taniguchi, T.; Kolditz, O. Uncertainly analysis of thermo-hydro-
mechanical coupled processes in heterogeneous porous media. Comput. Mech. 2010, 45, 263–280.

14. Yuchao, Z.; Nengyou, W.; Zheng, S. Numerical simulation of heat production potential from hot dry rock by
water circulating through a novel single vertical fracture at Desert Peak geothermal field. Energy 2013, 63,
268–282.

15. Yuchao, Z.; Nengyou, W.; Zheng, S. Numerical simulation of electricity generation potential from fractured
granite reservoir through a single horizontal well at Yangbajing geothermal field. Energy 2014, 65, 472–487.

16. Yuchao, Z.; Jiemin, Z.; Nengyou, W. Numerical simulation of electricity generation potential from fractured
granite reservoir through vertical wells at Yangbajing geothermal field. Energy 2016, 103, 290–304.

17. Yuchao, Z.; Jiemin, Z.; Nengyou, W. Numerical investigation of electricity generation potential from
fractured granite reservoir by water circulating through three horizontal wells at Yangbajing geothermal
field. Appl. Therm. Eng. 2016, 104, 1–15.

156



Processes 2019, 7, 202

18. Yuchao, Z.; Jiemin, Z.; Nengyou, W. Numerical investigation of electricity generation potential from fractured
granite reservoir through a single vertical well at Yangbajing geothermal field. Energy 2016, 114, 24–39.

19. Yuchao, Z.; Liansheng, T.; Nengyou, W.; Jing, S.; Yifei, C. Orthogonal test analysis on conditions affecting
electricity generation performance of an enhanced geothermal system at Yangbajing geothermal field.
Energies 2017, 10, 2015.

20. Cheng, W.L.; Wang, C.L.; Nian, Y.L.; Han, B.B.; Liu, J. Analysis of influencing factors of heat extraction from
enhanced geothermal systems considering water losses. Energy 2016, 115, 274–288. [CrossRef]

21. Hu, L.T.; Winterfeld, P.H.; Fakcharoenphol, P.; Wu, Y.S. A novel fully-coupled flow and geomechanics model
in enhanced geothermal reservoirs. J. Petrol. Sci. Eng. 2013, 107, 1–11. [CrossRef]

22. Sanyal, S.K.; Butler, S.J. An analysis of power generation prospects from enhanced geothermal systems.
In Proceedings of the World Geothermal Congress 2005, Antalya, Turkey, 24–29 April 2005; pp. 1–6.

23. Taron, J.; Elsworth, D.; Min, K.B. Numerical simulation of thermal-hydrologic-mechanical-chemical processes
in deformable, fractured porous media. Int. J. Rock Mech. Min. Sci. 2009, 46, 842–854. [CrossRef]

24. Taron, J.; Elsworth, D. Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered
geothermal reservoirs. Int. J. Rock Mech. Min. Sci. 2009, 46, 855–864. [CrossRef]

25. Gelet, R.; Loret, B.; Khalili, N. A thermal-hydro-mechanical coupled model in local thermal non-equilibrium
for fractured HDR reservoir with double porosity. J. Geophys. Res. 2012, 117, 1–23. [CrossRef]

26. Gelet, R.; Loret, B.; Khalili, N. Thermal recovery from a fractured medium in local thermal non-equilibrium.
Int. J. Numer. Anal. Method Geomech. 2013, 37, 2471–2501. [CrossRef]

27. Benato, S.; Taron, J. Desert Peak EGS: Mechanisms influencing permeability evolution investigated using
dual-porosity simulator TFReact. Geothermics 2016, 63, 157–181. [CrossRef]

28. Pruess, K. Enhanced geothermal system (EGS) using CO2 as working fluid-A novel approach for generating
renewable energy with simultaneous sequestration of carbon. Geothermics 2006, 35, 351–367. [CrossRef]

29. Pruess, K. On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy
Convers. Manag. 2008, 49, 1446–1454. [CrossRef]

30. Spycher, N.; Pruess, K. A phase-partitioning model for CO2-brine mixtures at elevated temperatures and
pressures: Application to CO2-enhanced geothermal systems. Transp. Porous Media 2010, 82, 173–196.
[CrossRef]

31. Borgia, A.; Pruess, K.; Kneafsey, T.J.; Oldenburg, C.M.; Pan, L. Numerical simulation of salt precipitation in
the fractures of a CO2-enhanced geothermal system. Geothermics 2012, 44, 13–22. [CrossRef]

32. Xu, T.F.; Yuan, Y.L.; Jia, X.F.; Lei, Y.D.; Li, S.T.; Feng, B.; Hou, Z.Y.; Jiang, Z.J. Prospects of power generation
from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the
Gonghe Basin, Qinghai Province, China. Energy 2018, 148, 196–207. [CrossRef]

33. Zeng, Y.; Tang, L.; Wu, N.; Cao, Y. Numerical simulation of electricity generation potential from fractured
granite reservoir using the MINC method at the Yangbajing geothermal field. Geothermics 2018, 75, 122–136.
[CrossRef]

34. Baujard, C.; Bruel, D. Numerical study of the impact of fluid density on the pressure distribution and
stimulated volume in the Soultz HDR reservoir. Geothermics 2006, 35, 607–621. [CrossRef]

35. Kolditz, O.; Clauser, C. Numerical simulation of flow and heat transfer in fractured crystalline rocks:
Application to the hot dry rock site in Rosemanowes. Geothermics 1998, 27, 1–23. [CrossRef]

36. Kolditz, O. Modelling flow and heat transfer in fractured rocks: Conceptual model of a 3-D deterministic
fracture network. Geothermics 1995, 24, 451–470. [CrossRef]

37. Jing, Z.; Willis-Richards, J.; Hashida K, W. A three-dimensional stochastic rock mechanics model of
engineered geothermal systems in fractured crystalline rock. J. Geophys. Res. 2000, 105, 23663–23679.
[CrossRef]

38. Jing, Z.; Watanabe, K.; Willis-Richards, J.; Hashida, T. A 3-D water/rock chemical interaction model for
prediction of HDR/HWR geothermal reservoir performance. Geothermics 2002, 31, 1–28. [CrossRef]

39. Jing, Y.N.; Jing, Z.Z.; Willis-Richards, J.; Hashida, T. A simple 3-D thermoelastic model for assessment of the
long-term performance of the Hijiori deep geothermal reservoir. J. Volcanol. Geotherm. Res. 2014, 269, 14–22.
[CrossRef]

40. Sun, Z.X.; Zhang, X.; Xu, Y.; Yao, J.; Wang, H.X.; Lv, S.H.; Sun, Z.L.; Huang, Y.; Cai, M.Y.; Huang, X.X.
Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method
based on discrete fractures model. Energy 2017, 120, 20–33. [CrossRef]

157



Processes 2019, 7, 202

41. Yao, J.; Zhang, X.; Sun, Z.X.; Huang, Z.Q.; Liu, J.R.; Li, Y.; Xin, Y.; Yan, X.; Liu, W.Z. Numerical simulation
of the heat extraction in 3D-EGS with thermal-hydraulic-mechanical coupling method based on discrete
fractures model. Geothermics 2018, 74, 19–34. [CrossRef]

42. Huang, W.; Cao, W.; Jiang, F. Heat extraction performance of EGS with heterogeneous reservoir: A numerical
evaluation. Int. J. Heat Mass Transfer 2017, 108, 645–657. [CrossRef]

43. Zarrouk, S.J.; Moon, H. Efficiency of geothermal power plants: A worldwide review. Geothermics 2014, 51,
142–153. [CrossRef]

44. Pruess, K.; Oldenburg, C.; Moridis, G. TOUGH2 User’s Guide, Version 2.0; Lawrence Berkeley National
Laboratory: Berkeley, CA, USA, 1999.

45. Asai, P.; Panja, P.; Mclennan, J.; Moore, J. Performance evaluation of enhanced geothermal system (EGS):
Surrogate models, sensitivity study and ranking key parameters. Renew. Energy 2018, 122, 184–195.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

158



processes

Article

A Rotor-Sync Signal-Based Control System of a
Doubly-Fed Induction Generator in the Shaft
Generation of a Ship

Trong-Thang Nguyen

Faculty of Energy Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi 11398, Vietnam;
nguyentrongthang@tlu.edu.vn; Tel.: +84-038-846-8555

Received: 20 February 2019; Accepted: 29 March 2019; Published: 1 April 2019

Abstract: A doubly-fed induction machine in generator-mode is popularly used for energy generation,
particularly in the case of a variable speed, such as in the wind generator, the shaft generator of a ship,
because the doubly-fed induction generator is able to maintain a stable frequency when changing
the rotor speed. This paper aims to propose a novel method for controlling the shaft generation
system of a ship using a doubly-fed induction generator. This method uses the rotor signals of a small
doubly-fed induction machine as base components to create the control signal for the doubly-fed
induction generators. The proposed method will be proven by both theory and a simulation model.
The advantage of the proposed method is that the control system of the generator can be simply built,
but it functions effectively. The generator voltage always coincides with the grid voltage, even when
the grid voltage and the rotor speed are changed, and the reactive and active power of the generator
fed into the grid can be separately controlled.

Keywords: shaft generator; DFIG; shipboard; power; control

1. Introduction

Today, fuel resources are increasingly becoming exhausted, so identifying and using renewable
sources is very urgent and necessary. In order for these renewable energy sources to operate reliably,
they must be able to operate together or connected to the grid. Some researches [1,2] have succeeded
in solving these difficulties. However, on a ship, it is more difficult to connect the generator voltage to
the grid, because the grid of the ship is a soft-grid, and so the voltage is frequently changed. Therefore,
solving this problem is a challenge and an opportunity for scientists.

On a ship, the power station must be optimally exploited when cruising to reduce energy
consumption, noise, environmental pollution and to avoid the negative impact on people and nature.
When navigating on the sea, in steady climatic and weather conditions, the main propulsion engines
of the ship’s propeller often do not reach full capacity. To take advantage of this surplus capacity, the
ship is designed with a shaft generator, which works together with the diesel generator.

The required power for a ship in cruise mode only accounts for 5–10% of the main engine power.
Therefore, ships with a shaft generator use the main engine’s surplus power to save the operation time
of the diesel generators, reduce the consumption of materials, and improve the lifetime of the diesel
generator. In particular, the production cost of a power unit, created by a shaft generator, is only equal
to 50% of the cost, when using the diesel generator [3].

However, as the power station system adds the shaft generator, the ship’s power system becomes
more complicated, posing technical problems that need to be addressed. The most complicated
problem is that the output voltage of the shaft generator must coincide with the unstable grid voltage
of the ship, when changing the rotor speed of the main engine [4,5]. Further, the engine power is much
larger than the electric power, so the rotor speed of the generator is independent of the electric power.
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The rotor speed depends only on the operation of the ship, so the speed range of the rotor is very wide.
Therefore, the most effective solution is to use the doubly-fed induction machine in generator mode
because of its ability to maintain a stable frequency of this system.

The doubly-fed induction machine (DFIM) is an induction machine with both stator and rotor
windings [6]. The doubly-fed induction machine plays the role of generation (DFIG), with inherent
advantages, such as a small control circuit, suitable for the variable speed system, so DFIG has been
applied in many energy generation systems, such as the shaft generator in a ship, the wind generator
system. In these generator systems, the control circuit is located in the rotor, and the energy emitted in
the stator is transmitted to the grid directly. Thus, the control circuit power is much lower than the
grid-transmitted power.

The control circuit has two main parts: The first part is connected to the grid [7,8], used to regulate
the DC voltage [9,10]. The second part is connected to the rotor of DFIG [11,12], used to control the
reactive and active power of DFIG fed into the grid [13,14]. The rotor side control is more complicated
than the grid side control, thus attracting many scientists around the globe. In this study, we are only
interested in controlling the rotor side control, so we assume that the DC source already exists and
is stable.

There is a lot of research on controlling the control system for the rotor side [15,16], most of
which use the space vector modulation technique. Relying on that technique, in order for the
controller to perform the mission, all parameters of the stator and rotor must be transformed in
a synchronous reference frame [17,18], which coincides with the space vector of the grid voltage
(grid voltage-orientated coordinates) or with the space vector of the stator flux (stator-flux-orientated
coordinates). However, the final parameters for controlling the system are not within these coordinates.
Thus, the control structure must consist of two coordinate conversion stages: First, all input and
feedback parameters of the controller are transformed in a synchronous reference frame; and lastly,
all output parameters of the controller are transformed in the rotor or stator frame. For these reasons,
the control system calculations must be more complex.

In this research, the author proposes a simple and effective technique, which does not need the
coordinate-conversion stages. Relying on this proposed technique, all signals of the control system
are continuous. This technique uses the rotor signals of a small DFIM as a base to create the control
signals of the DFIG rotor current.

2. The Proposed Model

The purpose of the control system is to make the DFIG stator voltage coincide with the grid
voltage in the case of a changing rotor speed and grid voltage. Thus, the author proposes a method
of using a small DFIM with the stator connected to the grid, so the change of the DFIM rotor voltage
depends on two factors: the rotor speed and the grid voltage. The natural change in the DFIM rotor
voltage is therefore suitable for controlling the DFIG rotor current. DFIM only acts as a sync signal
generator, so it has a small capacity. In order for the sync signal to not be distorted, the output of this
signal is connected to high resistance. The initially proposed model is shown in Figure 1.

The generation system includes:

• The main machine, which is used for pulling the propeller. In addition, it is also used for pulling
the shaft generator through the gearbox.

• DFIM with the stator connected to the grid and the rotor connected to the high-resistance mode.
The DFIM rotor signal is a base component for creating the control signals for DFIG.

• An isolation stage, which is a circuit that has a high-resistance input, so the DFIM rotor is
connected to the high resistance.

• The current control circuit, which creates the output current value that is equal to the input
voltage value.

• DFIG, which creates the power that is fed into the grid.
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Rotors of DFIG and DFIM are connected to each other tightly so that the angles between the stator
and rotor are equal.

 

Figure 1. The initially proposed model.

3. Building the Equations of the Proposed Model

3.1. The Initial Equations

The system includes two machines, so the parameter symbols are as follows: GX for DFIG, and MX
for DFIM. For example, GRs is the stator resistance of DFIG, and MRs is the stator resistance of DFIM.

The DFIM equations in the grid voltage-orientated coordinates are as follows [19–21]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Mu f
s =MRs ·Mi f

s +
d(Mψ

f
s )

dt + j·ωs·Mψ
f
s (1a)

Mu f
r =MRr·Mi f

r +
d(Mψ

f
r )

dt + j·ωr·Mψ
f
r (1b)

Mψ
f
s = Mi f

s ·MLs +
Mi f

r ·MLm (1c)
Mψ

f
r = Mi f

s ·MLm + Mi f
r ·MLr (1d)

,

The DFIM rotor is connected to the high resistance, so Mi f
r = 0. Substituting Mi f

r = 0 for (1c),
the DFIM stator flux Mψ

f
s = Mi f

s ·MLs. Substituting Mψ
f
s for (1a), the DFIM stator voltage:

Mu f
s =MRs·Mi f

s +
MLs·d(

Mi f
s )

dt
+ j·ωs·MLs·Mi f

s . (2)

On the rotor shaft-orientated coordinates, the DFIM rotor voltage and DFIM rotor flux equations
are as follows [20,21]: {

Mur
r =

MRr·Mir
r +

d(Mψr
r)

dt (3a)
Mψr

r =
Mir

s·MLm + Mir
r·MLr (3b)

.

Substituting Mir
r = 0 for (3b), Mψr

r =
Mir

s·MLm, and substituting for (3a):

Mur
r =

MLm·d(
Mir

s)

dt
, (4)

Mur
r is fed into the isolation stage. The first section of the isolation stage is the amplifier with the

gain Gss, so the output voltage vector of this section in the rotor shaft-orientated coordinate is:

ur
ss = Gss·MLm·d(

Mirs)
dt

. (5)
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Next, ur
ss is fed into the integral section, so the signal output vector of the integral section in the

rotor shaft-orientated coordinate is:

ur
is =

∫
ur

ss =
∫

Gss
MLm

d(Mir
s)

dt
= Gss·MLm·Mir

s. (6)

Converting (6) into an equation in the grid voltage-orientated coordinates:

u f
is =Gss·MLm·Mi f

s , (7)

u f
is is fed into the current control circuit. This circuit makes the output current value equal the

input voltage value:
i f
c = Gss·MLm·Mi f

s . (8)

The DFIG equations in the grid voltage-orientated coordinates are as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Gu f
s =GRs·Gi f

s +
d(Gψ

f
s )

dt + j·ωs·Gψ
f
s (9a)

Gu f
r =GRr·Gi f

r +
d(Gψ

f
r )

dt + j·ωr·Gψ
f
r (9b)

Gψ
f
s = Gi f

s ·GLs +
Gi f

r ·GLm (9c)
Gψ

f
r = Gi f

s ·GLm + Gi f
r ·GLr (9d)

.

The DFIG rotor receives the current (Gi f
r ) from the current control circuit. We control Gi f

r to satisfy
Equation (10):

Gi f
r =i f

c =Gss·GLm·Gi f
s (10)

3.2. Adjusting the System before the DFIG Stator is Connected to the Grid

The DFIG stator is disconnected from the grid, so the DFIG stator current is Gi f
s = 0. The DFIG

rotor current is Gi f
r = Gi f

r0 = Gss·MLm·Mi f
s . Substituting Gi f

s = 0 for Gi f
r . with (9c), the DFIG stator

flux is: Gψ
f
s = Gss·MLm·GLm·Mi f

s . Substituting Gψ
f
s and Gi f

s = 0 for (9a), the DFIG stator voltage is:

Gu f
s =Gss·MLm·GLm·

d(Mi f
s )

dt
+ j·ωs·Gss·MLm·GLm·Mi f

s = Gss·MLm·GLm·(
d(Mi f

s )

dt
+ j·ωs·Mi f

s ). (11)

Considering Equation (2), which is the DFIM stator voltage equation, the grid voltage equation
also includes two parts:

• The first part creates the heat of the resistor: Gu f
sr =

GRs·Gi f
s , but this part is very small in Gu f

s , so
it can be neglected.

• The second part creates the flux:

Mu f
sψ =MLs·(d(Mi f

s )

dt
+ j·ωs·Mi f

s ). (12)

• The frequency of Gu f
sψ is equal to the frequency of the grid voltage.

Combining (12) with (11), it can be seen that the frequency of Gu f
sψ is equal to the frequency of

the DFIG stator voltage.
Finally, the frequency of the DFIG stator voltage is equal to the frequency of the grid voltage, and

the phase difference between the two voltages is very small and constant, so it can be ignored or can
be compensated for in an easy way, that is, by rotating the shaft between DFIG and DFIM.
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The amplitude of the DFIG stator voltage can be adjusted by Gss in the isolation stage. In order
for Gu f

s =Mu f
sψ , Gss is evaluated by balancing the equation:

Gu f
s =Mu f

sψ so Gss =
MLs/(MLm·GLm). (13)

After adjusting, all of the above stages will be kept stable.
In the stator-fix-orientated coordinates, the DFIG stator voltage (ignoring the small voltage in the

resistor) is [20,21]:

Gus
s =

d(Gψs
s)

dt
= j·ωs·Gψs

s. (14)

The above equation shows that the phase of the stator voltage is equal to the phase of the stator
flux plus π/2.

Gi f
r0 creates the flux, so the phase of Gi f

r0 is equal to the phase of the flux, so the phase of Gi f
r0 is

equal to the phase of the stator voltage minus π/2. Thus, in the grid voltage-orientated coordinates,
(−Gi f

r0) is a base component to create the q axis component of the rotor current (Girq). The phase of the

d axis component of the rotor current (Gird) is equal to the phase of (−Gi f
r0) minus π/2, or is equal to

the phase of Gi f
r0 plus π/2. The vector graph in the grid voltage-orientated coordinates is shown in

Figure 2.

 

Figure 2. The doubly-fed induction machine plays the role of generation (DFIG) rotor current vector in
the grid voltage-orientated coordinates.

3.3. Controlling the System in the Grid-Connected Mode

In the grid-connected mode, the DFIG stator feeds the current Gi f
s to the grid. The DFIG rotor

current is Gi f
r = Gi f

r0 +
Gi f

rt.

Where: Gi f
r0 is the DFIG rotor current in the grid-disconnected mode. (Gi f

rt) is created in order

that the DFIG stator feeds the current Gi f
s to the grid. Substituting Gi f

r = Gi f
r0 +

Gi f
rt and Gi f

s for (9c),
the DFIG stator flux is as follows:

Gψ
f
s = Gi f

s ·GLs + (Gi f
r0 +

Gi f
rt)·GLm (15)

Substituting Gψ
f
s for (9a), the DFIG stator voltage is:

Gu f
s =GRs·Gi f

s +
GLs· d(Gi f

s )
dt + GLm· d(Gi f

r0)
dt + GLm· d(Gi f

rt)
dt + j·ωs·Gi f

s ·GLs + j·ωs·Gi f
r0·GLm + j·ωs·Gi f

rt·GLm (16)

The voltage in GRs is very small, so this voltage can be ignored. Thus, Gu f
s is written as:

Gu f
s =GLs· d(Gi f

s )
dt + GLm· d(Gi f

r0)
dt + GLm· d(Gi f

rt)
dt + j·ωs·Gi f

s ·GLs + j·ωs·Gi f
r0·GLm + j·ωs·Gi f

rt·GLm (17)
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The DFIG stator voltage must coincide with the grid voltage and be steady. Combining Gu f
s in

Equation (17) with Gu f
s in Equation (11):

Gi f
rt = −(GLs/GLm)·Gi f

s . (18)

Analyzing the components of Gi f
rt:{

Gisd = −(GLm/GLs)·Girtd (19a)
Gisq = −(GLm/GLs)·Girtq (19b)

3.4. Controlling the DFIG Stator Power

In the grid voltage-orientated coordinates, Gusq = 0, so the DFIG stator power is [14,15]:{
P = (3/2)·Gusd·Gisd (20a)
Q = (3/2)·Gusd·Gisq (20b)

.

Substituting Gisd (19a) for (20a) and Gisq (19b) for (20b):{
P = (−3/2)·Gusd·Girtd·(GLm/GLs) (21a)
Q = (−3/2)·Gusd·Girtq·(GLm/GLs) (21b)

,

where: {
Girtd = Gp·Gird0
Girtq = Gq·Girq0

, (22)

where: Girq0 is created by Girq0 = −Gi f
r0; and Gird0 is created by rotating the vector Gi f

r0 by angles π/2.
Substituting Girtd and Girtq for (21a,b):{

P = −(3/2)·Gp·Gusd·Gird0·(GLm/GLs) = Gp·X (23a)
Q = −(3/2)·Gq·Gusd·Girq0·(GLm/GLs) = Gq·Y (23b)

.

In the grid voltage-orientated coordinates, Gusd, Gird0, Girq0 are steady, so X and Y are steady.
Thus, the reactive and active power can be controlled by adjusting Gq and Gp separately. The system
block diagram is shown in Figure 3.
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Figure 3. The system block diagram.

4. Building the Model to Demonstrate the Correctness of the Proposed Structure

In the above section, based on the DFIG equations, the author proposed a control structure and
demonstrated its ability to control the system. For clarity, in this section, the author will build circuits
and emulate systems using the Matlab-Simulink software (R2014b, MathWorks Inc., Natick, MA, USA).

Based on the system structure in Figure 3, building the system includes:

• DFIM with the stator connected to the grid and the rotor functioning in high-resistance mode.
• The isolation stage, which is a circuit with a high-resistance input, so the DFIM rotor is connected

to the high resistance.
• The integral stage, which is a circuit in which output signals are created by integrating the

input signal.
• The current control circuit, which creates the currents fed into the DFIG rotor.
• The ejπ/2 stage, which creates the output signals in order that the phases of the output signals are

equal to the phases of the input signals plus π/2.
• The amplifying stage Gq: Based on (23b), the reactive power of the DFIG stator can be controlled

by adjusting Gq.
• The amplifying stage Gp: Based on (23a), the active power of the DFIG stator can be controlled by

adjusting Gp.
• DFIG, which is the doubly-fed induction generator that creates the currents fed into the grid.

All of the above stages are available in Matlab-Simulink. These stages’ fabrication techniques in
practice are very easy. The details are as follows:

• Four amplifier stages, such as Gss, Gp, Gq, (−1), and one integral stage are available in the library
of Matlab-Simulink.

• The ejπ/2 stage is the three-phase circuit, with a phase difference between each two input phases
that is a 2π/3. For example, working on the A-phase, the phase of the output signal (Sa’) is
equal to the phase of the input signal (Sa) plus π/2. The signal (Sa’) is created by the formula
(Figure 4a) [22]:

S′
a = (2/

√
3)·(0.5Sa + Sc). (24)
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(a) (b) 

Figure 4. The ejπ/2 stage: (a) the vector graph; (b) the signals.

Running the ejΠ/2 stage with input signals (Sa, Sb, Sc), the A-phase output signal (Sa’) is presented
in Figure 4b.

The current control circuit has three phases (Figure 5a), and each phase is controlled by two IGBTs
independently. For example, the A-phase with the desired current value (i*ra) and the actual current
value (ira). If i*ra is less than ira, G1_1 is turned off, and G2_1 is turned on to decrease ira; otherwise,
G1_1 is turned on, and G2_1 is turned off to increase ira. Running this circuit, the results are shown in
Figure 5b.

 

Figure 5. The current control stage: (a) the circuit; (b) the currents.

• The other stages: The other generator, 600V-1MVA, the transformer, TR1, the wire, L, the rectifier
circuit with three level bridges, the voltage measurement device, the current measurement device,
the breaker, etc.

Finally, the simulation model is shown in Figure 6, and the parameters of DFIG and DFIM are
shown in Table 1.

Table 1. The parameters of DFIG and DFIM.

U (V) f (HZ) S (VA) Ls (H) Rs (Ω) Lm (H) Lr (H) Rr (Ω) p

DFIG 400 60 1,000,000 3.9 × 10−4 1.56× 10−3 0.0121 3.95× 10−4 1.62× 10−3 2
DFIM 400 60 1500 6.93× 10−3 0.512 0.0511 3.92× 10−3 0.690 2
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Figure 6. The simulation system model.

5. The Results and Discussion

5.1. Before the DFIG Stator Is Connected to the Grid (the Grid-Disconnected Mode)

Gp and Gq are set to zero. The multiplier Gss is adjusted in order that the DFIG stator voltage
coincides with the grid voltage. The signals during the adjustment of Gss are shown in Figure 7.

The DFIG stator generates the voltages (example in the A-Phase: Gusa), with the phase and
frequency being always equal to the phase and frequency of the grid voltage. Thus, in order for the
DFIG stator to be connected to the grid, we only need to adjust the amplitude of Gusa. The simulation
results show that if the value of Gss increases, the amplitude of Gusa increases. If the value of Gss

decreases, the amplitude of Gusa decreases. At time=1.6s and setting Gss = 11.2, the amplitude of Gusa
is equal to the amplitude of the grid voltage (Musa), so the DFIG stator can be connected to the grid.

Next, the model was run to test the ability of the DFIG stator voltage (Gusa) to coincide with the
grid voltage (Musa) in the case of the changing of the rotor speed ( ) and the grid voltage.

The ability to coincide with the grid voltage of the generator in the case of the changing of
is shown in Figure 8. When is closer to 1 pu (synchronous speed), the frequency and amplitude
of DFIM rotor voltages (Mura, Murb, Murc) are reduced, the DFIG rotor current (Gira, Girb, Girc) and
amplitudes are steady, and the frequencies are reduced. When is equal to 1 pu,Mura, Murb, Murc

are zero, and Gira, Girb, Girc become the steady ones. Finally, Gusa and Musa always have an equal
frequency, equal amplitude, and equal phase. Thus, in the case of the changing of the rotor speed,
the DFIG stator voltage always coincides with the grid voltage.
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Figure 7. The signals during an adjustment of Gss.

 

Figure 8. The ability to coincide with the grid-voltage of the generator when changing the rotor speed.
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In addition, the simulation results in Figure 8 show that when changing the rotor speed ( ),
the DFIG rotor current (Gi f

r0) in the grid voltage-orientated coordinates is constant, and this result

coincides with the above conclusions. Gi f
r0 is constant, so Gi f

r0 is the base component for modulating
the d, q axis component of the DFIG rotor current (Gird,Girq) in the grid voltage-orientated coordinates.

When the grid voltage (Musa) is reduced, the ability to coincide with the grid-voltage of the
generator is shown in Figure 9. The DFIM rotor voltages (Mura, Murb, Murc) and the DFIM rotor
currents (Gira, Girb, Girc) are changed, but the DFIG stator voltage (Gusa) always coincides with the
grid voltage (Musa).

Figure 9. The ability to coincide with the grid-voltage of the generator when changing the grid-voltage.

In grid-disconnected mode, the conclusion is that, after adjusting Gss, the DFIG stator voltage
always coincides with the grid voltage, even when the grid voltage and the rotor speed are changing.
This is a very good condition for connecting the DFIG stator to the grid.

5.2. Controlling the System in the Grid-Connected Mode

When the DFIG stator is connected to the grid, it is very easy to control Q and P separately by
adjusting Gq and Gp. The simulation results are shown in Figure 10.
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Figure 10. The process of adjusting P and Q through Gp and Gq.

In the period before 1.4 s and after 1.9 s, setting Gp and Gq to zero, the result is Gisa = 0 (A), so P = 0
and Q = 0.

In the period from 1.4 s to 1.6 s, Gp �= 0 and Gq = 0. The simulations show that the phase of the
DFIG stator current is equal to the phase of the grid voltage (example in the A Phase: Gisa,Gusa), so the
DFIG stator feeds the active power to the grid. In addition, if Gp increases by double, the DFIG stator
current amplitude increases by double, and the active power increases by double.

From 1.7 s to 1.9 s, Gq �= 0 and Gp = 0. The simulations show that the phase of the DFIG stator
current is faster than the phase of the grid voltage at an angle of π/2, so the DFIG stator feeds the
reactive power to the grid. In addition, if Gq increases by double, the stator current amplitude increases
by double, and the reactive power increases by double.

Thus, these simulation results show that it is very easy to control Q and P by adjusting Gq and
Gp separately.

Next, when changing the rotor speed ( ), the stability of the system is shown in Figure 11. Setting
Gp = 10 and Gq = 0, the simulation results show that the DFIG rotor currents (Gira, Girb, Girc) are
changed, but the DFIG stator current (example in the A Phase: Gisa) is not changed, so P and Q are not
changed. Thus, it is confirmed that the system is stable when the rotor speed is changed.
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Figure 11. The stability of the system when the rotor speed is changed.

The reaction of the system in the case of the changing of the grid voltage is shown in Figure 12.

 

Figure 12. The reaction of the system when the grid voltage is changed.
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With simple conventional power generation systems, when the DFIG stator is connected to the
grid, if the grid voltage is reduced, the voltage difference between the generator terminal and the grid
is increased rapidly, so the generator is over-current. However, in this proposed system, the simulation
results show that, if the grid voltage is reduced, the DFIG stator current fed into the grid is decreased,
so the DFIG stator power fed into the grid is decreased. Thus, the natural reaction of the system is
suitable for the case of dropping the grid voltage, because the generator is not over-current.

In summary, the simulation results show that, when the DFIG is not connected to the grid,
the natural characteristics of the system are such that the DFIG stator voltages and the grid voltages
have an equal phase and equal frequency. We only need to adjust the amplitude of the DFIG stator
voltage to make it equal to that of the grid-voltage by adjusting Gss. After this, the DFIG stator voltages
always coincide with the grid voltages, even when the grid voltage and the rotor speed are changed.
This is a very good condition for connecting the stator DFIG to the grid. In the grid-connected mode, it
is very easy to control P and Q by adjusting Gp and Gq separately. Therefore, controlling the power of
the generator fed into the grid will be convenient and effective.

6. Conclusions

This paper presents a novel method for controlling DFIG connected to the grid. This new method
has been fully demonstrated by the author in both theory and simulation. Compared with the previous
system, the proposed system needs small DFIM more to generate the rotor signal, but it ignores the
encoder. The natural feature of the proposed system is that the output voltage always coincides with
the grid voltage. All stages are very simple, and the control system does not need the coordinate
conversion stages, so it is easy and cost-effective to fabricate the generator system.

When the DFIG stator is disconnected from the grid, the DFIG stator voltages and the grid
voltages have an equal phase and equal frequency. Thus, in order for the DFIG stator to be connected
to the grid, we only need to adjust the amplitude of the DFIG stator voltage by adjusting Gss. After
this, the DFIG stator voltages always coincide with the grid voltages, even when the grid voltage and
the rotor speed are changed. This is a very good condition for connecting the stator DFIG to the grid.

When the DFIG stator is connected to the grid, it is very easy to control P and Q by adjusting Gp

and Gq separately.
Based on this novel method, the structure of the control system is very simple, and the generation

system operates easily and effectively. This system is suitable for energy generation system applications
with a variable speed, particularly on ships with an unstable grid voltage.

However, the limitation of this study is that it does not offer a solution to the problem of the
generator supplying loads independently when the generator is not connected to the grid. Further
studies will overcome the above limitation and present practical application results for ships. Therefore,
it will be possible to show more clearly the effectiveness of the proposed method.
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Nomenclature

Symbol Unit Definition

u f
s ,u f

r V Stator, rotor voltage vector in the grid voltage-orientated coordinates

i f
s ,i f

r A Stator, rotor current vector in the grid voltage-orientated coordinates
ψ f

s
,ψ f

r Wb Stator, rotor flux vector in the grid voltage-orientated coordinates
irs,irr A Stator, rotor current vector in the rotor shaft-orientated coordinates
ur

r V Rotor voltage vector in the rotor shaft-orientated coordinates
us

s V Stator voltage vector in the stator-fix-orientated coordinates
ψs

s Wb Stator flux vector in the stator-fix-orientated coordinates
Rs, Rr Ω Stator, rotor resistance
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Ls, Lr Lm H Stator, rotor, mutual inductance

s, r pu Stator, rotor electrical angular velocity
pu Rotor speed

P W Active power
Q VA Reactive power
isd, isq A d, q components of the stator current
ird, irq A d, q components of the rotor current
urd, urq V d, q components of the rotor voltage
usd, usq V d, q components of the stator voltage
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Abstract: The prediction of mold level is a basic and key problem of continuous casting production
control. Many current techniques fail to predict the mold level because of mold level is non-linear,
non-stationary and does not have a normal distribution. A hybrid model, based on empirical mode
decomposition (EMD) and support vector regression (SVR), is proposed to solve the mold level in this
paper. Firstly, the EMD algorithm, with adaptive decomposition, is used to decompose the original
mold level signal to many intrinsic mode functions (IMFs). Then, the SVR model optimized by
genetic algorithm (GA) is used to predict the IMFs and residual sequences. Finally, the equalization
of the predict results is reconstructed to obtain the predict result. Several hybrid predicting methods
such as EMD and autoregressive moving average model (ARMA), EMD and SVR, wavelet transform
(WT) and ARMA, WT and SVR are discussed and compared in this paper. These methods are applied
to mold level prediction, the experimental results show that the proposed hybrid method based on
EMD and SVR is a powerful tool for solving complex time series prediction. In view of the excellent
generalization ability of the EMD, it is believed that the hybrid algorithm of EMD and SVR is the best
model for mold level predict among the six methods, providing a new idea for guiding continuous
casting process improvement.

Keywords: empirical mode decomposition; support vector regression; genetic algorithm; mold level;
continuous cast

1. Introduction

In the modern steel industry, high efficiency continuous casting technology has become the
most internationally competitive core technology. The continuous casting process is a complex
and continuous phase change process. There are many factors that affect the quality of slabs [1].
The research of the key technologies and cores in the high quality steel continuous casting process is
mainly focused on mold level precision, the segment, and secondary cooling dynamic control [2].

Mold level is non-linear and non-stationary in terms of the time scale and does not satisfy Gaussian
normal distribution. Therefore, the development and adoption of an effective signal processing method
to predict the Mold level is hugely challenging. This brings great difficulties for the prediction of Mold
level. The prediction of Mold level is crucial for improving the adaptive control of the continuous
casting process. Therefore, an accurate prediction of mold level cannot only guarantee the quality of
slab products, but also improve the automation level of the continuous casting manufacturing industry.

Precise mold level monitoring is regarded as the key to improving continuous casting production
quality [3,4]. The mold level is an important reference for casting speed control, segment roll gap
control, mold cooling water control, and stopper rod opening control. In the continuous casting
production process, the fluctuation of mold levels will cause large amounts of slag in the mold to be
involved in the molten steel, which will seriously affect the quality of the slab and may even lead
to accidents in the casting process, such as slab breakout and steel overflow at the top of the mold.
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Continuous high mold level operation will lead to overflow accidents, where the impurities float
on the liquid surface, resulting in surface defects of strand and internal defect of the cast product,
which in turn affects the surface and internal quality of the slab. Lowering the casting speed results
in excessive fluctuations in the mold level, which affects the productivity and production rhythm.
This impacts the quality of the slab and causes unplanned shutdown because of the stick and damage
of the tundish slide-gate.

The mold level predict model can control and maintain the mold level according to the mold
level historical data when the casting speed is disordered. As shown in Figure 1, after the transition of
tundish, hot metal enters into mold through slide-gate, and the lower end of slide-gate is under the
surface of mold. Hot metal transforms into solidified shell in mold and enters the root roll segment
through the narrow surface of mold. When the casting speed is over-low, the hot metal level in mold is
over-high, will cause overflow accident; when the casting speed is over-high, the hot metal level in
mold is over-low, which leads to the bulging of root roll segments and cause results in a break-out
accident. The stopper rod can control the flow rate of the hot metal when it flows into the mold.

Figure 1. Mold level model.

Some researchers have adopted many methods for the prediction of time series. Numerical weather
predict model is used for predicting future wind speed using mathematical models [5], multiple regression,
exponential smoothing, autoregressive moving average model (ARMA), and many others for wind speed
predict, power predict, and stock trend predict. Weron et al. [6] explained the complexities, strengths,
and weaknesses of the available solutions for electricity price predicting, the opportunities and threats
that predicting tools provide. However, the traditional time series predict methods, such as regression
analysis and grey predict [7], have some shortcomings, where the prediction accuracy of signals with large
fluctuations need to be improved [8].

In recent years, due to the rapid development of science and technology, artificial intelligence
technology has been widely used and introduced into the prediction of time series [9]. Artificial neural
networks (ANN) [10] and support vector regression (SVR) [11] methods are the main tools for dealing
with non-linear, non-stationary time series. ANN is an artificial intelligence method developed in
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the 1940s that can simulate human brain biological processes [9]. Wang et al. [12] proposed a new
back propagation neural network algorithm to apply to a semi-distributed model. Fei He et al. [13]
gives an advance artificial intelligent technology based on the genetic algorithm (GA) and the back
propagation (BP) neural networks. SVR is a small sample machine learning method, based on
statistical learning theory, Vapnik-Chervonenkis (VC) dimension theory, and minimum structural
risk principles [10]. Based on limited sample information, it seeks the best compromise between
model complexity and learning ability to achieve the best promotion effect [14,15]. Y. Liu established
a method for online predictions of the silicon content in blast furnace ironmaking processes [16].
Silvano Cincotti et al. [17] used the SVM model to forecast the electricity spot-prices of the Italian
power exchange (IPEX), which provided a better prediction accuracy, closely followed by econometric
technique. Existing studies have shown that the ANN method takes a long time to calculate and
is prone to localized minimization [3,18–20], leading to overfitting and poor predict results. SVR is
more adaptable to overfitting than ANN because the parameters of SVR can be improved by means of
global optimization.

Many studies show that ANN or SVR methods were employed for the prediction of time series
but only a few pieces of literature have combined the two methods [21]. For that reason, we apply
the combination of empirical mode decomposition (EMD) and SVR for prediction of time series.
The concept of hybrid predict appears in numerical weather prediction (NWP)-based predicts, such as
NWP-ANN/ARMA for solar radiation predict [20]. Ye and Liu [22] used EMD-SVR for short-term
wind power predict and achieved good predict results.

In this paper, we present a novel predict method for time series of mold level, based on the
combination of EMD and SVR with global optimization. The results of simulation experiments display
their effective and competitive advantages by using the proposed hybrid algorithm. First, the original
mold level signal is decomposed by EMD into several intrinsic mode functions (IMFs). Then the
improved SVR model is optimized by GA and used to predict the subsequences. Finally, the predict
sequence is reconstructed to obtain the predict result. The rest of this paper is organized as follows.
In Section 2, the basic algorithms EMD and SVR are introduced. In Section 3, we present a novel
predict method for time series of mold level based on the combination of EMD and SVR with global
optimization. Section 4 consists of experimental results and analysis. Finally, we conclude our work in
Section 5.

2. Basic Algorithm Research

2.1. EMD Algorithm

EMD is an adaptive signal processing technique suitable for non-linear and non-stationary
processes [23]. In 1998, Huang et al. [24] proposed the empirical mode decomposition technology,
which has been widely used in biomedicine [25,26], speech recognition [27], system modeling [28–30],
and process control [31,32]. Based on the time scales, EMD local features, such as local maxima, local
minima, and zero-crossings, decompose the signal into several IMFs and a residual, the IMFs are
orthogonal to each other. Modal decomposition is determined by the signal itself.

EMD satisfies the following basic assumptions:

(1) In the entire data set, the number of extreme values and the number of zero crossings must be
equal or at most have one point of difference.

(2) At any point, the average is defined by the local maximum envelope, and the minimum envelope
is zero.

EMD steps are shown in Figure 2.
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Find all the local maximum and 
local minimum values for the 

original signal x(t)
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Figure 2. The empirical mode decomposition (EMD) algorithm.

Finally, the original signal is decomposed into:

x(t) =
N

∑
i=1

ci + rN (1)

where x(t) is the original signal, ci is the IMF, N is the number of IMFs and rN is the residual. i = 1, 2, . . . N.

2.2. SVR Algorithm

SVR does not solve only the classification problem, but also solves the regression problem.
The basic model is the largest linear classifier as defined in the feature space [33]. SVR aims to achieve
a distinction between the samples by constructing a hyperplane for classification, so that the sorting
interval between the samples is maximized and the sample to the hyperplane distance is minimized.

Set a training data set for a feature space:
D = {(x1, y1), (x2, y2) . . . , (xm, ym)},
xi ∈ χ = 	n, yi ∈ y = {+1,−1}, i = 1, 2, . . . , N

where xi is the i-th feature vector, yi is the class

tag of xi.
The corresponding equation of the classification hyperplane is as follows:

h(x) = ω · x + b (2)

where x is the input vector, ω is the weight, b is the offset.

178



Processes 2019, 7, 177

The classification decision function is as follows:

Sign(h(x)) (3){
h(x) > 0, yi = 1

h(x) < 0, yi = −1
(4)

The support vector machine is implemented to find the ω and b when the interval between the
separation hyperplane and the nearest sample point is maximized. When the training set is linearly
separable, the sample points belonging to different classes can be separated by one or several straight
lines with the largest interval. The maximum interval is solved by the following formula:

maxγi = yi(
ω

‖ω‖ · xi +
b

‖ω‖ ) (5)

s.t.yi(
ω

‖ω‖ · xi +
b

‖ω‖ ) ≥ γ, i = 1, 2, . . . , N (6)

Thus, we can obtain the linear separable support vector machine optimization problem.

min
ω,b

1
2
‖ω‖2 (7)

s.t.yi(ω · xi + b)− 1 ≥ 0, i = 1, 2, . . . , N (8)

In the actual data set, there are many specific points, making the data set linear inseparable; in
order to solve this problem, we introduce a slack variable for each sample point. ξi ≥ 0 so that

yi(ω · xi + b) ≥ 1 − ξ (9)

For each slack variable ξi, pay a price ξi, and the optimization problem becomes:

1
2
‖ω‖2 + C

N

∑
i=1

ξi (10)

where C > 0 is the penalty factor.
Most of the data in the actual data are linearly inseparable. Therefore, these data should be

mapped to a high-dimensional feature space through non-linear mapping, and the non-linear problem
is transformed into a linear problem. The linear indivisible problem is transformed into a linear
separable problem.

The kernel functions are introduced as follows:

K(xi, xj) = ϕ(xi) · ϕ(xj) (11)

where the value of the kernel equals the inner product of two vectors, xi and xj.
At this point, we obtain:

W(α) =
1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjK(xi, xj)−
N

∑
i=1

αi (12)

where αi > 0, i = 1, 2, . . . , N is the lagrangian multiplier and N is the number of samples.
In this paper, the radial basis function (RBF) is chosen as the support vector machine kernel

function, and the expression is as follows:
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K(xi, x) = exp(
−‖xi − x‖2

2g2 ) (13)

where g is the kernel function coefficient.
At this point, the classification function becomes:

f (x) = sign[
N

∑
i=1

αiyi exp(
−‖xi − x‖2

2g2 ) + b] (14)

3. Hybrid Algorithm Research

The accuracy of prediction for the mold level is influenced by many factors. In order to improve
the accuracy of prediction for the mold level, a predicting model, based on a Hybrid predict algorithm
for the mold level, is proposed.

First, the original signal is subjected to data pre-processing to remove singular points. Then all
data is marked in the range of 0 to 1 to improve computational efficiency. Finally, the hybrid model is
used for data predict.

3.1. Feasibility Analyses

EMD and SVR algorithm can be hybridized into an efficient hybrid algorithm. The reasons can be
summarized as follows:

EMD is a decomposition algorithm that can decompose complex signals into simple signals.
SVR is a regression algorithm. The fusion of EMD and SVR can helpful to predict complex signals,
improve the ability of complex signal prediction, and it can obtain high-quality solutions. For this
reason, the predict accuracy of hybrid algorithm is higher.

GA is a global optimization algorithm. The best model of SVR has a strong dependence on the
kernel function parameters. GA can calculate the optimal SVR kernel function parameters faster and
lay the foundation for the establishment of the best SVR model. Consequently, the efficiency of hybrid
algorithm is higher.

EMD algorithm is an adaptive decomposition algorithm. There is no influence of human
factors. The SVR model is more robust to nonlinear signals after optimization by the GA algorithm.
Therefore, hybrid algorithm is more robust.

3.2. The Full Procedure of EMD-SVRGA

EMD is an adaptive decomposition algorithm, based on the original signal, which can decompose
complex signals into simple signals. Obviously, the prediction of simple signals is simpler than
the prediction of complex signals, and the calculation cost is small. SVR is an excellent predictive
algorithm, especially robust to nonlinear signals. GA algorithm is used to optimize parameters of
the SVR kernel function, which further improves the SVR prediction accuracy. In order to make full
use of the above algorithms, we present a hybrid algorithm, in which the GA is incorporated into the
SVR. In EMD-SVRGA, SVR is used to predict simple signals, which is decomposed by EMD, and the
computational cost is greatly reduced. The GA algorithm optimizes the parameters of the SVR kernel
function, improves the SVR calculation efficiency, and makes the hybrid algorithm achieve faster
convergence speed. In addition, the adaptive characteristics of EMD and the robustness of SVR to
nonlinear, non-stationary, non-Gaussian distributed signals further improves the generalization ability
of the hybrid algorithm. The EMD-SVRGA algorithm can be described by the following steps as shown
in Table 1, and the corresponding flowchart is shown in Figure 3.
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Table 1. The EMD-SVRGA algorithm.

Step 1. Decompose the mold level signal data into several IMFs and one residual by the EMD.
Step 2. Global optimization of C and g in SVR is performed using GA to determine the SVR model.
Step 3. Predicted IMFs (PIMF) obtained by SVR for each IMF.
Step 4. Predicted residual sequence obtained by SVR for residual sequence.
Step 5. Sum all predicted IMFs and residual sequences to obtain the predicted signal.

The flow chart of EMD-SVR is shown in Figure 3.

Input data

IMF1 IMF2 ... IMFk RES

SVR

PIMF1 PIMF2 ... PIMFk PRES

Predicted signal

Calculate the 
fitness

cross

Select the 
chromosomes 

with high fitness 
for replication

New group

variation

Get the best 
SVM parameters

Figure 3. The flow chart of EMD-SVR. IMF: intrinsic mode functions; SVR: support vector regression;
PIMF: predicted intrinsic mode functions.

From the above, we can see that GA gives the optimal parameters of the SVR kernel function,
improves the convergence speed of SVR, EMD decomposes the original signal of mold level, reduces
the complexity of mold level signal, and further predicted by SVR. The roles of the three algorithms are
different. In a word, EMD performs signal decomposition, and the GA performs SVR kernel function
parameter optimization to make the SVR obtain the prediction result precisely and faster.

4. Experiments Studies

4.1. Problem Prescription

In order to clearly express the applicability, superiority, and generalization capability of the model
applications, the mold level data of actual process parameters are used in this paper. These were
collected from the continuous casting machines developed by the China National Heavy Machinery
Research Institute Co., Ltd., Xi’an, China. We used an eddy current sensor to collect the mold-level
signal at a steady cast speed. The cast speed is 0.9 m/min, and the tundish temperature is 1562 ◦C.
Most of the disturbances are non-linear and non-stationary, and the long-term predict model is difficult
to establish. This paper presents mold level predict model is important for mold level control to
propose new ideas to improve the continuous casting automatic control.

A continuous casting production process data acquisition graph is presented in Figure 4. The time
interval Δt = 1 h, and the sampling frequency is 3 Hz.

 
Figure 4. Mold level. The unit of mold level is mm, n is the number of point.
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The main technical parameters of the continuous casting machine are shown in Table 2.

Table 2. Main technical parameters of the continuous casting machine.

Project Specification

Continuous casting machine model Curved continuous caster
Secondary cooling category Aerosol cooling, dynamic water distribution

Gap control Remote adjustment, dynamic soft reduction
Basic arc radius/mm 9500

Mold length/mm 900
Metallurgical length/mm 39,200

Mold vibration frequency/time/min 25–400
Mold vibration amplitude/mm 2–10

Slab width/mm 900–2150
Slab thickness/mm 230/250

Working speed/m/min 0.8–2.03

4.2. EMD-SVR

During the continuous casting production process, the data was intercepted for one hour,
the singularity points were removed according to the Layda criteria, the data from the first 40 min was
used as the training set, and the last 20 min of data was used as the test set to verify the validity of the
model. Descriptive statistics of mold level data are also given in Table 3. Mold-level data EMD results
is shown in Figure 5, there is a trend term in Figure 5, which clearly shows that the mold level data is
non-stationary. As shown in Figure 6, C is 95.5729 and g is 0.39511, through the global optimization of
the GA. Then the SVR model was determined, each IMF and residual sequence is predicted by the
SVR model. The final predict signal, as shown in Figures 7 and 8.

 
Figure 5. Mold-level data EMD results. di is the i-th IMF, the unit of di is mm, n is the number of Point,
res is residual.
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Figure 6. C and g optimization results.

Figure 7. Comparison of EMD-SVR prediction results with original mold level data.

 
Figure 8. The EMD-SVR predict error.

Table 3. Descriptive statistics of mold level.

Project Mold Level

Max-Min Values (mm) 951–1096
Mean (mm) 1026.7607

Standard Deviation (mm) 28.3495
Skewness −0.02506
Kurtosis 2.1049

4.3. Experimental Results and Analyses

We made a comparison between our proposed EMD-SVRGA method and the five kinds of
algorithms, i.e., the algorithms include WT-ARMA, WT-SVR, WT-SVRGA, and EMD-ARMA, EMD-SVRGA.
The computational results of the above methods are listed in Table 3 in detail. The parameter values of the
model are displayed in Table 4.

Table 4. Parameter values of the model. ACF is Autocorrelation coefficient, PACF is Partial
autocorrelation coefficient.

C g ACF PACF

WT-ARMA - - 2 2
WT-SVR 100 1 - -

WT-SVRGA 16.3485 0.01773 - -
EMD-ARMA - - 2 2

EMD-SVR 100 1 - -
EMD-SVRGA 95.5729 0.39511 - -
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The performances of the three hybrid methods models are verified by four statistical indicators in
this paper, and the best hybrid predict model that is suitable for continuous casting process parameters
is selected.

Correlations between the original data and the predict data, which is characterized by correlation
coefficients (CC)

R =
Cov(P, A)√

Var(P) · Var(A)
(15)

CC is defined as a statistical indicator used to reflect the close relationship between variables,
the larger the CC, the better the algorithm performance.

Root-mean-square Error (RMSE)

RMSE =

√
∑n

i=1 (Pi − Ai)
2

n
(16)

RMSE is defined as reflect the degree of dispersion of a data set, measure the deviation between
the observed value and the true value, the smaller the RMSE, the better the algorithm performance.

Mean Absolute Error (MAE)

MAE =
∑n

i=1|Pi − Ai|
n

(17)

MAE is defined as average value of absolute error, reflect the actual situation of predict error
better. The smaller the MAE, the better the algorithm performance.

Mean Absolute Percentage Error (MAPE)

MAPE =
∑n

i=1

∣∣∣ Pi−Ai
Ai

∣∣∣
n

× 100 (18)

MAPE can be used to measure the outcome of a model predict. The smaller the MAPE, the better
the algorithm performance.

Where Pi and Ai are the i-th predicted and actual values, respectively, and n is the total number
of predict.

Predict model test results are shown in Table 5 and Figure 9.
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Figure 9. Comparison between EMD-SVRGA and other methods.
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Table 5. Predict model test results.

R RMSE MAE

WT-ARMA 0.7705 0.118334 5.0878
WT-SVR 0.9733 0.390670 0.6088

WT-SVRGA 0.9993 0.155473 0.7662
EMD-ARMA 0.99689 7.0172 5.3532

EMD-SVR 0.9691 0.417956 0.5983
EMD-SVRGA 0.9992 0.063341 0.9601

As shown in Table 5 and Figure 9, among the EMD based hybrid methods, the EMD-SVR had
a better performance than EMD-ARMA, and EMD-SVRGA had better performance than EMD-SVR.
Only the MAE is 0.9601, it is larger than the other methods. The other three indicators are all the
best predictors of performance. Among the WT based hybrid methods, the WT-SVR had a better
performance than WT-ARMA, and WT-SVRGA had better performance than WT-SVR, the performance
of WT-SVRGA is the best, however, it is not stable. Only two indicators are better than the other two
methods. RMSE is worse than WT-ARMA, and MAE is worse than WT-SVR.

The SVR based hybrid methods had better performance than ARMA based hybrid methods, due to
the advantage of SVR as a non-linear data regression algorithm. The SVR based hybrid algorithm
greatly improves the prediction accuracy compared to the traditional ARMA algorithm, and shows a
strong generalization ability and robustness.

Among the SVR-based hybrid methods, R of the WT-SVRGA is close to the R of EMD-SVRGA.
Only MAE of WT-SVRGA is 0.7662, it is better than EMD-SVRGA. Although the performance
of WT-SVRGA predict is equivalent to that of EMD-SVRGA, the wavelet transform is a kind of
transcendental non-adaptive transformation. The transform effect depends on the selection of the basis
function and the order of transformation. There are many human factors. For instance, the prediction
effect is not stable, adaptability cannot be guaranteed to all data, and the generalization ability is far
less than EMD-SVRGA.

It is observed from the results that the R of SVRGA-based hybrid method is improved by
0.2287 compared with the ARMA based hybrid method, RMSE is reduced by 6.9538. R of EMD
hybrid method is reduced by 0.0001, RMSE is reduced by 0.054993. The EMD-SVRGA hybrid method
greatly improves the prediction accuracy compared to the traditional ARMA algorithm, and shows a
strong generalization ability and robust.

4.4. Predicting Accuracy Significance Tests

In order to verify the significant advantages of the proposed model in terms of prediction accuracy,
some statistical tests are implemented in this section. Based on Dong et al. [34] and Fan et al. [35]
suggested the Wilcoxon signed-rank test [36] and Friedman test [37], which are simultaneously applied
in this paper.

The statistic W of the Wilcoxon signed-rank test:

W = min
{

r+, r−
}

(19)

The statistic F of the Friedman test:

F =
12N

k(k + 1)

[
k

∑
j=1

R2
j −

k(k + 1)2

4

]
(20)
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where N is the total number of predict results; k is the number of compared models; Rj is the average
rank sum obtained in each predict value for each compared model as shown in Equation (21):

Rj =
1
N

N

∑
i=1

rj
i (21)

where rj
i is the rank sum from 1 (the smallest predict error) to k (the worst predict error) for i-th predict

result, for j-th compared model.
If the associated p-value of F meets the criterion of not acceptance, the null hypothesis, equal

performance among all compared models, are also not held.
The results of Wilcoxon signed-rank test and Friedman test are listed in Table 6.

Table 6. Results of Wilcoxon signed-rank test and Friedman test.

Compared Models

Wilcoxon Signed-Rank Test Friedman Test

α = 0.025 α = 0.05
α = 0.05

h-Value p-Value h-Value p-Value

EMD-SVRGA vs. WT-ARMA 1 0 1 0
H0: The results of the six algorithms are equal

F = 35.8
p = 0 (Reject H0)

EMD-SVRGA vs. WT-SVR 1 0 1 0
EMD-SVRGA vs. WT-SVRGA 1 0 1 0

EMD-SVRGA vs. EMD-ARMA 1 0 1 0
EMD-SVRGA vs. EMD-SVR 1 0 1 0

where α is the level of significance, p returns whether the population producing the two
independent samples is the same significant probability, and h returns the result of the hypothesis
test. If the overall difference between x and y is not significant, then h is zero. If the overall difference
between x and y is significant, then h is 1. If p is close to zero, then the null hypothesis can be questioned.
H0 is the assumption of Friedman Test.

5. Conclusions

In this paper, a novel hybrid method, based on EMD-SVRGA, is proposed. The proposed method
is applied to predict the mold level. In this method, the original mold level signal decomposed to
several IMFs by the EMD algorithm. SVR is optimized by GA, predicted IMFs and predicted residual
sequences are obtained by optimized SVR. The predicted result is reconstructed by EMD. The use of
EMD-SVRGA model can achieve accurate predictions of non-linear, non-stationary data. This model
uses GA to improve the global search capability of the parameters in the SVR models and avoid falling
into local optimization, thereby optimizing SVR algorithm for better accuracy. In this paper, six predict
algorithms were calibrated by four statistical indicators. The experimental results demonstrate the
reliability and validity of the proposed EMD-SVRGA model in predict Mold level. The model has a
strong generalization, capability and robustness.

The precise prediction of mold level provides a new idea for the continuous casting process
improvement. Short-term mold level prediction can effectively avoid confusion of production rhythm
caused by crystallizer level fluctuations, and long-term predictions can effectively avoid accidents,
such as slab breakout and steel overflow at the mold top. Accurate predictions of mold levels has
important practical significance.
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Nomenclature

EMD Empirical mode decomposition
IMF Intrinsic mode function
TS Time series
ARMA Autoregressive moving average
ACF Autocorrelation function
PACF Partial autocorrelation function
SVR Support vector regression
GA Genetic Algorithm
WT Wavelet Transform
CC Correlation Coefficient
RMSE Root-mean-square error
MAE Mean Absolute Error
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Abstract: The traditional effective variance weighted least squares algorithms for solving CMB
(Chemical Mass Balance) models have the following drawbacks: When there is collinearity among
the sources or the number of species is less than the number of sources, then some negative value
of contribution will appear in the results of the source apportionment or the algorithm does not
converge to calculation. In this paper, a novel robust algorithm based on enhanced sampling Monte
Carlo simulation and effective variance weighted least squares (ESMC-CMB) is proposed, which
overcomes the above weaknesses. In the following practical instances for source apportionment,
when nine species and nine sources, with no collinearity among them, are selected, EPA-CMB8.2
(U.S. Environmental Protection Agency-CMB8.2), NKCMB1.0 (NanKai University, China-CMB1.0)
and ESMC-CMB can obtain similar results. When the source raise dust is added to the source
profiles, or nine sources and eight species are selected, EPA-CMB8.2 and NKCMB1.0 cannot solve the
model, but the proposed ESMC-CMB algorithm can achieve satisfactory results that fully verify the
robustness and effectiveness of ESMC-CMB.

Keywords: CMB receptor model; effective variance weighted least squares algorithm; enhanced
sampling Monte Carlo simulation

1. Introduction

Atmospheric particulate matter (PM10 and PM2.5, with diameters less than 10 μm and 2.5 μm)
is a mixture of solid or liquid particles suspended in the air, and is an important air pollutant in
urban environments [1–3]. Epidemiological studies have shown that PM2.5/PM10 and an increase
in respiratory symptoms, lung cancer mortality, and cardiovascular disease are closely related [4–10].
China is one of the countries with the most serious PM2.5 pollution in the world. In recent years, a
total of 28 provinces and cities have reported heavy PM2.5 pollution phenomena; on average, each
province has an annual total of nearly 20 days of heavy pollution.

At present, haze is frequent in China, affecting a wide range and having a long duration, which
causes inconvenience to public life, threatens human health, and causes great concern for society and
the government. Understanding and clarifying the potential sources and their contributions of PM2.5
is important [4]. The work of source apportionment of PM2.5 has become one of the core strategies in
the prevention and control of atmospheric pollution.

Processes 2019, 7, 169; doi:10.3390/pr7030169 www.mdpi.com/journal/processes189
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The CMB (Chemical Mass Balance) air quality model [5,6] is the most important model of
atmospheric particulate matter source apportionment technology [7], recommended by the United
States’ EPA (Environmental Protection Agency), mainly used to study the TSP (Total Suspended
Particulate), PM2.5, PM10, and VOC (Volatile Organic Compounds) as well as other sources of
pollutants and their contribution. CMB receptor models are established according to the principle of
mass balance, and the chemical concentration of pollutants can be expressed by the sum of the product
of the species richness and the source contribution.

The CMB receptor model [8,9] is composed of a set of linear equations, which indicates that
the receptor concentration of each chemical element is equal to the linear sum of the product of the
element content and the source contribution concentration. The basic principle of CMB model is
mass conservation. It is assumed that there are several sources (J) that contribute to atmospheric
particulates in the receptor, and that: (1) compositions of source emissions are constant over the
period of ambient and source sampling; (2) the number of sources or source categories is less than
or equal to the number of species; (3) the chemical composition of the particulate matter emitted by
the various sources is significantly different; (4) the chemical composition of the particulate matter
emitted by the source class is relatively stable; (5) all sources that make an obvious contribution to
the receptors have their respective emission characteristics; (6) there is no interaction between the
particles emitted by the source class, so the change in the process of transmission can be ignored;
and (7) measurement uncertainties are random, uncorrelated, and normally distributed. Then the total
substance concentration measured on the receptor is the linear sum of the contribution of each source.

The methods for solving CMB equations mainly include: (1) trace element method [10]; (2) linear
programming solution [11]; (3) ordinary weighted least squares method [12]; (4) ridge regression
weighted least squares [13]; (5) partial least squares [14]; (6) neural networks [15]; and (7) effective
variance weighted least squares (EVWLS) with or without an intercept [16].

At present, the most commonly used algorithm for solving CMB model is the EVWLS method [17],
which is derived by minimizing the weighted sums of the squares of the differences between the
measured and the calculated values of Ci and Fij, and is a practical method for calculating the
contribution of the source Sj and the error σSj :

minm2 =
I

∑
i=1

(Ci −
J

∑
j=1

Fij × Sj)
2

Ve f f ,i
, (1)

where the effective variance is Ve f f ,i = σ2
ci
+

J
∑

j=1
σ2

Fij
× S2

j , σSj (μgm−3 or g/g) is the uncertainty in source

contribution Sj (μgm−3 or g/g), σCi (μgm−3 or g/g) is the uncertainty in the ambient concentrations
species i, and σFij is the uncertainty in the fraction of species i in the source j profile.

The EVWLS method is actually an improvement over the ordinary weighted least squares method
to minimize the sum of squares of the differences between the weighted chemical composition
measurements and the calculated values.

However, there are some weaknesses to the above algorithms, such as near collinear sources
resulting in incorrect source contributions, and the requirement that the number of chemical species be
greater than or equal to the number of sources. At the same time, most of the above algorithms are
finally transformed into optimization algorithms, which are mostly NP (Non-deterministic Polynomial)
problems. So, in general, we get a locally optimal value or suboptimal value instead of a globally
optimal value. So, instability is a fatal drawback to these algorithms, that is to say that different runs of
the same input dataset at different times using the same algorithm may produce very different outputs
or exhibit high variance with the same diagnostic criteria.

The Monte Carlo method [18], also known as stochastic simulation or statistical experiments,
is based on statistical theory, according to the law of large numbers, using computer simulation
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technology [19] to solve some practical problem that is difficult to figure out directly with mathematical
or other methods. The Monte Carlo method uses computer programs and mathematical models [20]
to simulate practical random phenomena, through simulation experiments to get experimental data,
and then infers from the analysis to get the law of certain phenomena. Monte Carlo simulation [19] is
a method for exploring the solution and sensitivity of a complex system by varying the parameters
within the statistical constraints. It is widely used in many fields such as engineering [21],
environmental science [22], statistical physics [23], biophysics [24], materials science [25], and financial
engineering [26]. Many practical problems are often accompanied by many random factors. If we
take these factors into account, the model will become too complex to solve. However, we can utilize
the Monte Carlo method to generate a random number to simulate these complicated phenomena,
and then find out the operation law. The validity of the Monte Carlo method relies on the sampling
process in simulation. However, the simple Monte Carlo algorithm converges too slowly, and it is easy
to converge to local extreme points.

In this paper, we explore a novel robust method for solving CMB receptor model based on
enhanced sampling Monte Carlo simulation, which overcomes the shortcomings of the above
algorithms. In other words, when collinearity exists in the source profiles or the number of source
profiles is greater than the number of species, the ESMC-CMB (Enhanced Sampling Monte Carlo
CMB) algorithm can come to the correct results for source apportionment. In general, these enhanced
sampling methods can be employed to help us quickly find an optimal stable solution when the model
is complex, nonlinear, or involves more than just a couple uncertain parameters.

This paper is organized as follows. Section 2 provides a literature review about the CMB model
and enhanced sampling Monte Carlo simulation. In Section 3, the proposed enhanced sampling Monte
Carlo CMB algorithm (ESMC-CMB) is described. Section 4 presents the related numerical experiments
and a comparison with various traditional algorithms. Finally, conclusions are given in Section 5.

2. CMB Model and Enhanced Sampling Monte Carlo Simulation

Methods commonly used for the particulate source apportionment include receptor model, source
emission inventory, and source dispersion models. The source emission inventory method determines
its contribution rate by investigating and accounting for emission factors and activity levels for different
source categories. The source dispersion model is a combination of meteorological conditions, emission
sources, and chemical processes to assess the distribution and contribution of different source classes
in three dimensions [27]. The receptor model is a commonly used model in source apportionment.

In general, due to source j with constant emission rate Ej, the source contribution Sj present at a
receptor during a sampling period of length T is

Sj = Dj · Ej, (2)

where:

Dj =
∫ T

0
d
[
⇀
u (t), σ(t),

⇀
x j

]
dt. (3)

Dj is a dispersion factor depending on atmospheric stability (σ), wind velocity (u) and the location
of source j with respect to the receptor (xj). All parameters in Equation (2) vary with time, so the
instantaneous Dj must be integrated over time period T [27].

The CMB receptor model consists of a solution of a linear equation that represents the chemical
concentration of each receptor as the product of source profile abundance and source contribution.
Resource profile abundances (i.e., mass fractions of certain chemicals or other properties emitted
from each source) and receptor concentrations (estimated with appropriate uncertainties) are used as
input data for CMB. In order to distinguish the contribution of source types, the measured chemical
and physical properties must occur in different proportions of source emissions, and the changes of
these proportions between source and recipient can be neglected or approximated. The CMB model
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calculates the contribution values of each source and the uncertainties of these values. The principle of
the CMB receptor model is shown in Figure 1.

Figure 1. The principle of the Chemical Mass Balance (CMB) receptor model.

The receptor model was used to identify the source of the receptor and determine the quantitative
contribution of various sources to the receptor by analyzing the chemical tracers of the source of the
environmental samples and the emission sources. If there is no interaction between their emissions to
cause mass removal, the total mass measured at the receptor C is a linear sum of the contributions of
the individual sources Sj:

C =
J

∑
j=1

Dj · Ej =
J

∑
j=1

Sj. (4)

Similarly, the mass concentration of elemental component i, Ci, will be

Ci =
J

∑
j=1

Fij · Sji = 1, 2, · · · , I, (5)

where Fij is the mass fraction of source contribution Sj composed of element i at the receptor.
The number of chemical species (I) must be greater than or equal to the number of sources (J) for a
unique solution to these equations.

Equations (4) and (5) are based on material immortality and mass conservation. In Equation (5),
Ci and Sj are the inputs to the model, and Fij is the source contribution we need to calculate.

There are several methods to solve the CMB receptor models: (1) the tracer element method [28];
(2) an ordinary weighted least squares solution [28]; (3) a linear programming solution [29], which
maximizes the sum of the source contributions; (4) a ridge regression weighted least squares solution
with or without an intercept [30] that is one approach for handling the multi-collinearity; (5) a neural
networks solution; and (6) an EVWLS solution, which is the most common algorithm.

At present, the most commonly used algorithm to solve the CMB model is the effective variance
least squares method, because this method is a practical method to calculate the error σSj of source
contribution Sj. The effective variance least squares method is actually an improvement on the ordinary
weighted least squares method, which minimizes the sum of squares of the difference between the
measured and calculated values of the weighted chemical components:

minm2 =
I

∑
i=1

(Ci −
J

∑
j=1

Fij × Sj)
2

Ve f f ,i
, (6)
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where the effective variance is Ve f f ,i = σ2
ci
+

J
∑

j=1
σ2

Fij
× S2

j , σSj (μgm−3 or g/g) is the uncertainty in

source contribution Sj (μgm−3 or g/g), σCi (μgm−3 or g/g) is the uncertainty (i.e., measurement errors)
in the ambient concentrations species i, and σFij is the uncertainty (i.e., measurement errors) in the
fraction of species i in the source j profile.

The matrix form of the CMB model is as follows:

Ci×1 = Fi×jSj×1. (7)

The steps of EVWLS iterative algorithm for solving the CMB model (Equation (7)) are as follows:

1. Set the initial estimate of the source contributions equal to zero:

Sk=0
j = 0j = 1, 2, · · · , J. (8)

2. Calculate the diagonal components Ve f f ,i of the effective variance matrix. All off-diagonal
components of this matrix are equal to zero:

Vk
e f f ,i = σ2

ci
+

J

∑
j=1

(Sk
j )

2 × σ2
Fij

. (9)

3. Calculate the K + 1 value of Sj:

Sk+1
j = (FT(Vk

e )
−1

F)
−1

FT(Vk
e )

−1
C. (10)

4. If the result of Equation (10) is greater than 1%, the previous iteration is executed; if less than 1%,
the iteration is terminated.

If
∣∣∣Sk+1

j − Sk
j

∣∣∣/Sk+1
j > 0.01, go to step 2.If

∣∣∣Sk+1
j − Sk

j

∣∣∣/Sk+1
j ≤ 0.01, go to step 5.

5. Calculate the value of σSj in the K + 1 step iteration, then

σSj =

[
(FT(Vk+1

e )
−1

Fjj)
−1

]1/2
j = 1, 2, · · · , J, (11)

where C = (C1, · · · , CI)
T is a column vector with Ci as the ith component; S = (S1, · · · , SJ)

T is
a column vector with Sj as the jth component; F is an I × J matrix of Fij, the source composition
matrix; σci is one standard deviation uncertainty of the Ci measurement; σFij is one standard deviation
uncertainty of the Fij measurement; and Ve is diagonal matrix of effective variances.

The above algorithm shows that the input parameters of the model are: the measured values of the
concentration spectrum of the chemical components of the receptor Ci and the standard deviation σCi

of Ci, the measured values Fij of the source chemical composition spectrum and the standard deviation
σFij of Fij. The output parameters of the model are: the calculated source contribution values of Sj and
the standard deviation σSj of Sj, the calculated source contribution values of chemical composition Sij,
and the standard deviation σSij of Sij.

In the actual work of source apportionment, there are two commonly used software tools,
EPA-CMB8.2 (V8.2, EPA, Washington, USA, 2004) and NKCMB1.0 (V1.0, Nankai University, Tianjin,
China, 2005), which are the concrete implementation of above effective variance least squares algorithm
for solving the CMB model.
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The CMB receptor model is one of the standard methods used by the U.S. Environmental
Protection Agency (EPA) to assess air quality. The practical tool software EPA-CMB8.2 based on
the CMB model and the effective variance least squares algorithm is recommended by the EPA.
NKCMB1.0 is a practical software tool for PM2.5 source apportionment, developed by the Key
Laboratory of Urban Air Particulate Pollution Prevention and Control, Nankai University, Tianjin
China, based on the CMB receptor mathematical model and the corresponding effective variance least
squares algorithm. NKCMB1.0 is more suitable for source analysis and calculation in China’s more
complex air quality environment.

As a stochastic method, Monte Carlo modeling can be used to describe and analyze complex
problems by computer simulation sampling based on probability theory combined with certain
statistical methods. Although the method emerged in the 1940s, it was limited to defense-related
nuclear technology because it required sufficient computing resources to analyze the neutron behavior
in matter [20]. With the rapid development of high-speed computers, the Monte Carlo simulation
method is more and more widely used [19,20].

The basic idea of the Monte Carlo method is to establish an appropriate probability model or
stochastic process so that its parameters (such as the probability of events, the mathematical expectation
of random variables) are equal to the solution of the problem. Then repeated random sampling test of
the model or process are carried out. With the statistical analysis to the results, the final calculation of
the parameters, the approximate solution is obtained.

For example, in a Monte Carlo Simulation problem we represent the quantity we want to know
as the expected value of a random variable Y, such as μ = E(Y). Then we generate values Y1, · · · , Yn

randomly and independently from the distribution of Y and get their average:

μ̂ =
1
n

n

∑
i=1

Yi, (12)

as the estimate of μ.
However, the convergence speed of the above simple sampling Monte Carlo method is too slow;

for a large dimension sampling space, the time to complete the sampling calculation is intolerable.
This paper will explore a new, enhanced sampling method to accelerate the convergence of the

algorithm from the following aspects.
Firstly, in the process of solving the receptor CMB model, if the diagnostic indicator

PM =
J

∑
j=1

ηj =
J

∑
j=1

Sj/C < λ, the results did not meet the requirements. So we could sample in the

following space PM =
J

∑
j=1

ηj =
J

∑
j=1

Sj/C ≥ λ, for which the dimensions of the sample space will be

reduced to some extent, and in the following experiment, λ = 0.7 will be selected. In the new sampling
space, the Gibbs sampling method will be used.

Gibbs sampling [31–33] or a Gibbs sampler is a MCMC (Markov chain Monte Carlo) algorithm for
obtaining a sequence of observations that are approximated from a specified multivariate probability
distribution. Like other MCMC algorithms, Gibbs sampling from Markov chain can be regarded as
a special case of the Metropolis-Hastings algorithm; its sampling distribution can be deduced from
the properties of the Markov chain and probability transition matrix, and it finally converges to joint
distribution. The name of the algorithm originated from Josiah Willard Gibbs and was proposed by
brothers Stewart and Donald Gemman in 1984 [31–33]. Gibbs sampling is suitable for multivariate
distribution, where conditional distribution is easier to sample than edge distribution. At the same
time, in order to accelerate the convergence speed of the simulation process, in this paper we adopt
the enhanced Gibbs sampling algorithm from [34], called the enhanced sampling algorithm for short.

In order to overcome the shortcomings of the effective variance algorithm for solving the CMB
model, in this paper, the EVWLS (effective variance weighted least square) algorithm will be combined
with the Monte Carlo simulation algorithm of enhanced sampling to obtain a novel robust ESMC-CMB
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algorithm for solving the CMB receptor model. The algorithm is programmed by using MATLAB
(V8.5, Mathworks, Natick USA, 2015) and implemented through numerical experiments with a real
background. By comparing with the results of EPA-CMB 8.2 and NKCMB 1.0, the accuracy, robustness,
and superiority of ESMC-CMB algorithm are fully verified.

3. Solving CMB Model Based on Enhanced Sampling Monte Carlo Simulation

For the CMB model with consideration of random error:

Ci =
J

∑
j=1

Fij · Sj + εii = 1, 2, · · · , I, (13)

where Ci is the ambient concentration of species i, Sj is the source contribution of source j, Fij is the
fraction of species i in source j, εi is for errors. The number of chemical species (I) must be equal to or
greater than the number of sources (J) for a unique solution to these equations. Equation (13) is solved
by an effective variance weighted least squares approach: minimizing χ2, where

χ2 =
I

∑
i=1

⎡⎣ (Ci − ∑J
j=1 FijSj)

2

σ2
Ci
+ ∑J

j=1 α2
Fij

S2
j

⎤⎦. (14)

In the CMB model, uncertainties in the source contribution are estimated as

σSj =

⎛⎝ I

∑
i=1

F2
ij

σ2
Ci
+ ∑J

j=1 α2
Fij

S2
j

⎞⎠−1/2

, (15)

where σSj (μgm−3 or g/g) is the uncertainty in source contribution Sj (μgm−3 or g/g), σCi (μgm−3

or g/g) is the uncertainty in the ambient concentrations species i, and σFij is the uncertainty in the
fraction of species i in the source j profile. Uncertainties in input variables are propagated by inversely
weighting the EV (effective variance).

In this paper a new method for solving CMB receptor model based on the enhanced sampling
Monte Carlo simulation was proposed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minχ2 =
I

∑
i=1

[
(Ci−∑J

j=1 FijSj)
2

σ2
Ci
+∑J

j=1 α2
Fij

S2
j

]

st.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Generate random inputs : Sj
with Enhanced Gibbs sampler

J
∑

j=1
Sj ≤ C

Sj ≥ 0

PM =
J

∑
j=1

ηj =
J

∑
j=1

Sj/C ≥ λ

i = 1, 2, · · · , I j = 1, 2, · · · , J

σSj =

(
I

∑
i=1

F2
ij

σ2
Ci
+∑J

j=1 α2
Fij

S2
j

)−1/2

. (16)

Then we can get the following ESMC-CMB algorithm:
Algorithm ESMC-CMB: Given the initial receptor and source profile data Ci, σCi , Fij, σFij ,

i = 1, 2, · · · , I j = 1, 2, · · · , J, the number of source and receptor components I, the number of
source J, obj = 10100, the number of simulation times N, n = 0.
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Step 1: Generate random variables with the enhanced sampling Monte Carlo method proposed in this
paper: Sj ≥ 0j = 1, 2, · · · , J.

Step 2: If
J

∑
j=1

Sj ≥ C, go to step 1.

Step 3: n = n + 1, Calculate χ2, if χ2 < obj, then obj = χ2 objSj = Sj.

Step 4: if n < N then step 1.

Step 5: Calculate χ2, ηj =
objSj

C , σSj .

4. Application to a Realistic Case

This realistic case focuses on the dataset from a city in China. The profiles of the receptor and
source component are shown in Tables 1 and 2.

Table 1. Receptor component profiles.

Ele. Conc. STDE Ele. Conc. STDE

TOT 111.8677 54.19443 Co 0.000505 0.000458
Na 0.381248 0.149582 Ni 0.006908 0.00752
Mg 0.201556 0.094942 Cu 0.055663 0.076044
Al 2.647172 2.03143 Zn 0.237994 0.184731
Si 2.435858 1.56244 Pb 0.111147 0.091934
P 0.061124 0.039434 OC 20.2725 12.6826
K 1.372987 0.862706 EC 3.855547 2.132063
Ca 2.912185 1.292981 Cl 0.26934 0.560002
Ti 0.014792 0.00704 NO3 4.703921 5.350789
Cr 0.018382 0.012077 SO4 17.27229 7.314421
Mn 0.041736 0.035401 NH4 9.960722 5.706486
Fe 4.122549 6.704566

Note: Ele. = Elements, Conc. = Concentration (μg/m3), STDE = Standard Deviation.

EPA-CMB8.2 and NKCMB1.0 software can be used to solve the CMB model when the number of
sources or source categories is less than or equal to the number of species. So, firstly, we select nine
sources (Soil Dust, Construction Dust, Coal Combustion, Cooking Smoke, Biomass Burning, Industrial
Processes, NO3

−, SO4
2−, Vehicular Emissions) and nine components (Al, Si, K, Ca, Fe, OC, EC, NO3,

SO4), and use EPA-CMB8.2 and NKCMB1.0 to calculate source apportionment with the data in Tables 1
and 2; the results are shown in Figures 2 and 3.

Figure 2. The result using EPA-CMB8.2 with nine sources and nine species.
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Figure 3. The result using NKCMB1.0 with nine sources and nine species.

With the same selection of the source profiles and receptor components and the same dataset, we
use our proposed ESMC-CMB algorithm to calculate the source apportionment, and the results are
shown in Figure 4. Table 3 shows the numerical comparison of the contribution rates of the above
three algorithms.

Figure 4. The result using proposed ESMC-CMB algorithm (with nine sources and nine species.
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Table 3. A numerical comparison of EPA-CMB8.2, NKCMB1.0, and ESMC-CMB.

Source Contribution

Algorithms
EPA-CMB8.2 NKCMB1.0 ESMC-CMB

Soil Dust 0.026698964 0.018464739 0.030721789

Construction Dust 0.030752527 0.027916899 0.038269989

Coal Combustion 0.051126227 0.050733701 0.04052869

Cooking Smoke 0.163715722 0.164181048 0.13384989

Biomass Burning 0.039397644 0.038893606 0.048647818

Industrial Processes 0.069811171 0.094471832 0.058153522

SO4
2− 0.263039684 0.249173003 0.294499399

NO3
− 0.054531719 0.051178676 0.04448467

Vehicular Emissions 0.202244424 0.202902245 0.214208926

Other 0.098681918 0.102084251 0.096635306

From the results of Figures 2–4 and Table 3, we can see that the results of source apportionment
calculated with the above three algorithms are very close, and the correctness of the ESMC-CMB
algorithm is verified.

If eight species such as Al, Si, K, Ca, Fe, OC, EC, and NO3
− are selected, then the software

EPA-CMB8.2 and NKCMB1.0 cannot be used because the number of species is less than the number of
sources, but the proposed algorithm ESMC-CBM can calculate the results in Figure 5.

Figure 5. The result using ESMC-CMB with nine sources and eight species.

As there is strong collinearity between the sources Raise Dust (RD) and Soil Dust, if RD is added
to the source profiles (Soil Dust, Construction Dust, Coal Combustion, Cooking Smoke, Biomass
Burning, Industrial Processes, NO3

−, SO4
2−, Vehicular Emissions) to participate in the calculation

using EPA-CMB8.2 and NKCMB1.0, some values of source contribution will be negative, so correct
results cannot be obtained. However, using our proposed ESMC-CMB algorithm, we can get the
correct value of the source apportionment as shown in Figure 6.
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Figure 6. The result using ESMC-CMB with 10 sources and nine species including RD (Raise Dust)
collinear with Soil Dust.

A comparison of the above results is given in Table 4. As can be seen clearly from Table 4, in the
practical instances for source apportionment, when nine species and nine sources, with no collinearity
among them, are selected, EPA-CMB8.2, NKCMB1.0, and ESMC-CMB can obtain similar results.
However, because there is strong collinearity between source Raise Dust (RD) and Soil Dust, when
the source Raise Dust is added to the source profiles, or nine sources and eight species are selected,
EPA-CMB8.2 and NKCMB1.0 cannot solve the model, but the proposed ESMC-CMB algorithm can
come to a satisfactory results, which fully verify the robustness and effectiveness of ESMC-CMB.

Table 4. A comparison of NKCMB1.0 and MC-CMB.

Algorithms

Conditions
EPA-CMB8.2 NKCMB1.0 ESMC-CMB

Number of sources ≤ number of
species and existing no collinearity Having results Having results Having results

Number of sources > number of
species No results No results Having results

The collinearity exist in sources No results No results Having results

5. Conclusions

In this paper, a new robust algorithm for a CMB receptor model based on enhanced sampling
Monte Carlo simulation and the effective variance weighted least squares is proposed. Because of
the weaknesses of the traditional algorithms and software for CMB receptor source apportionment
model such as collinearity and the requirement that the number of chemical species be greater than or
equal to the number of sources, in many cases, software such as EPA-CMB8.2 and NKCMB1.0 cannot
obtain results for the source apportionment or some values of the source contribution are negative.
However, the proposed robust novel ESMC-CMB algorithm can overcome the above weaknesses and
achieve satisfactory results. In the realistic source apportionment experiments, firstly, we selected nine
sources (Soil Dust, Construction Dust, Coal Combustion, Cooking Smoke, Biomass Burning, Industrial
Processes, NO3

−, SO4
2−, Vehicular Emissions) with no collinearity among them and nine species (Al,

Si, K, Ca, Fe, OC, EC, NO3, SO4), and used the EPA-CMB8.2, NKCMB1.0, and ESMC-CMB algorithms
to calculate source contributions, and got similar results, but when we selected eight species and

200



Processes 2019, 7, 169

nine sources or added Raise Dust to the source profiles, because of the collinearity with Soil Dust,
EPA-CMB8.2 and NKCMB1.0 could not obtain correct results; however, the proposed ESMC-CMB
algorithm can calculate the right results for source apportionment. This has fully demonstrated the
robustness and effectiveness of the ESMC-CMB algorithm.

Although the ESMC-CMB algorithm has many advantages, there is often missing data in the
actual problem. How to further improve the ESMC-CMB algorithm in the case of missing data is the
next area of research to tackle.

Due to the limitations of the CMB model, in the realistic study of air pollution, the results of
source analysis from the ESMC-CMB algorithm should be referred to the calculation results of other
models, such as PMF (Positive Matrix Factorization) and CMAQ (Community Multiscale Air Quality),
to obtain more reasonable results.
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Abstract: The continuous increase in the number of stringent exhaust emission legislations of marine
Diesel engines had led to a decrease in NOx emissions at the required level. Selective catalyst
reduction (SCR) is the most prominent and mature technology used to reduce NOx emissions.
However, to obtain maximum NOx removal with minimum ammonia slip remains a challenge.
Therefore, new mixers are designed in order to obtain the maximum SCR efficiency. This paper
reports performance parameters such as uniformity of velocity, ammonia uniformity distribution,
and temperature distribution. Also, a numerical model is developed to investigate the interaction of
urea droplet with exhaust gas and its effects by using line (LM) and swirl (SM) type mixers alone
and in combination (LSM). The urea droplet residence time and its interaction in straight pipe are
also investigated. Model calculations proved the improvement in velocity uniformity, distribution
of ammonia uniformity, and temperature distribution for LSM. Prominent enhancement in the
evaporation rate was also achieved by using LSM, which may be due to the breaking of urea droplets
into droplets of smaller diameter. Therefore, the SCR system accomplished higher urea conversion
efficiency by using LSM. Lastly, the ISO 8178 standard engine test cycle E3 was used to verify the
simulation results. It has been observed that the average weighted value of NOx emission obtained at
SCR outlet using LSM was 2.44 g/kWh, which strongly meets International Maritime Organization
(IMO) Tier III NOx (3.4 g/kWh) emission regulations.

Keywords: selective catalyst reduction system; emission control; marine Diesel engine; urea;
ammonia

1. Introduction

Environmental safety is one of the hottest research areas nowadays due to increased public
awareness. To achieve this goal, efforts are continuously made to reduce pollution and develop
green processes. Exhaust emissions from marine Diesel engine are responsible for producing severe
environmental pollution, especially nitrogen oxide (NOx) emissions [1,2]. The automobile Diesel engine
produces exhaust emissions species such as carbon monoxide, carbon dioxide, and hydrocarbon in
abundance compared to NOx. On the other hand, marine Diesel engine produces more detrimental
NOx emissions [3]. Hence, in order to reduce exhaust emissions from ships, many national and
international organizations have promulgated regulations and also enforced strict requirements on
NOx emissions in Emission Control Areas [4]. In 2016, International Maritime organization (IMO) Tier
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III regulations on NOx emissions have already been enforced in North America emission control areas,
including the East and West Coast of USA and Caribbean. As reported, it will also be enforced in
North Sea and Baltic Sea in future [5]. Both high pressure fuel injection and exhaust gas recirculation
systems have potential to reduce NOx emissions, but due to poor engine performance results and
continuous increase in engine emission legislations, more primitive and improved processes are needed
to overcome the said issues [6]. The most convenient and easy option is the treatment of exhaust gas.
Selective Catalyst Reduction (SCR) is technically mature, and is the most prominent after-treatment
technology used to meet the latest NOx emission regulations due to its high NOx removal efficiency,
cost-effectiveness, and good fuel economy [7]. However, challenges related with SCR system include
improper mixture of urea water solution (UWS) with exhaust gas and ammonia leakage [8]. UWS
(32.5% urea) is injected into exhaust gas [9,10]. Urea decomposition occurs in three steps: firstly, water
is evaporated from urea water solution; secondly, the urea pyrolysis reaction occurs, which results in
the decomposition of urea into isocyanic acid (HNCO) and ammonia (NH3); and lastly, hydrolysis
of HNCO occurs which produces NH3 and CO2 [11,12]. Ammonia is used as a reducing agent and
cannot be used directly due to poisonous nature, storing and handling difficulties [13]. It has been
proved that NOx is mainly 90% composition of NO at the exhaust of the marine Diesel engine. The key
reactions involved in SCR system are described as follows [14–17].

CO(NH2)2→ NH3 + HNCO (Urea pyrolysis reaction)
HNCO + H2O →NH3+ CO2 (HNCO hydrolysis)
4NH3 + 4NO + O2→ 4N2 + 6 H2O (Standard SCR reaction)
4NH3 + 2NO + 2NO2→4N2 + 6 H2O (Fast-speed SCR reaction)
8NH3 + 6NO2→7N2 + 12H2O (Slow SCR Reaction)

A static mixer is commonly adopted to generate uniform distribution of ammonia at the inlet
of SCR catalyst [18]. CFD code (Fire 8.3, 2004) has been used to optimize the design of SCR system.
The authors have done many studies about the decomposition and evaporation of urea water solution
without using static mixer. Birkhold [19] studied the urea droplet’s evaporation and decomposition at
different temperatures of exhaust gas. Strom [20] studied the effects of turbulent velocity and different
forces on distribution and movements of urea water droplet in the exhaust species. In addition, other
authors have established various studies to evaluate the effect of static mixer on the SCR performance.
Sivanandi Rajadurai [21] studied the distribution of ammonia by using wire mesh mixer. Zhang [22]
investigated the uniformity index of ammonia by adopting delta wing mixer. Shazam Williams and
Ming Chen studied the velocity and ammonia distribution in the straight pipe together with static
mixer having two rows of tabs [23]. Azael and Ibarra investigated the interaction of fluid with a double
vortex mixer to improve the performance of SCR. The evaporation effect and droplet crushing was
significantly improved. The distribution of NH3 was also studied, revealing a smooth and uniform
distribution using a double vortex mixer; however, the velocity uniformity distribution, reaction
temperature, and droplet distribution time was not studied [24]. One of the disadvantages of the SCR
system is that it occupies the additional space on vessels. Mostly, authors are working to simplify the
SCR system according to the space requirements. One of the authors used an 18 mm distance between
the two mixers without considering the impact of velocity on SCR system [18]. Park et al. reported
that if the continuous uneven impact of velocity occurs, which causes excessive aerodynamic velocity
and temperature, it will lead to the thermal fatigue failure, which reduces the service life [25]. The first
mixer can create turbulence intensity and sudden impact on velocity, which directly affects the second
mixer. By considering both of the references, it can be perceived that the optimum condition which can
satisfy both of the conclusions from different studies can lie within limits. It therefore looked suitable
to trial for 0.2 m distance. One of the study used series of only swirl mixer (SM) near the injection
point and in line [18]. However, use of a line mixer (LM) can result in increasing the mixing flow
(exhaust gas plus urea droplets) in the blind corner near the pipe wall, while SM results in increasing
the mixing flow in the center [25]. Some studies investigated LM with different blade angles [25,26],
and others used SM with different blade angles [18,27]. In this study LM was used in front of SM.

204



Processes 2019, 7, 168

Initially, LM and SM were used separately and then analyzed for the combined effect of both (LSM).
In this work, the blade angle was 45◦ for both mixers because it has been proven that static mixers
consisting of bitched blades with an angle of inclination angle of 45◦ can generate higher turbulence
intensity and a swirling flow in the pipe [28]. Furthermore, many authors have used a greater number
of blades than this study. One author used 36 blades in only LM [25]. In this study, 18 (LM:12, SM:6)
blades were used and distributed in two difference places in the pipe. In addition, if a single mixer has
many blades at a certain location, it tends to decrease the wall temperature, which ultimately results
in deposit formation [29]. Hence it is necessary to distribute number of blades in two mixers with
different locations to increase the mixing performance and prevents deposit formation. Generally,
SCR performance depends upon the velocity uniformity and ammonia uniformity near the inlet of
the SCR catalyst. Therefore, a suitable design of mixers for increasing the efficiency of SCR is needed.
Furthermore, a numerical model has been developed, which describes the impact of mixer on the
ammonia and velocity uniformity, droplet residence time, and temperature distribution in the pipe.
In addition, it is also necessary to consider reaction temperature and wall temperature, as it affects
the catalyst performance and deposit formation [1]. In this paper, two different types of mixers—line
(LM) and swirl (SM) type mixers alone and in combination (LSM)—were used to indicate the effects
on the performance of SCR. The main objective of this investigation is to create the optimum SCR
design, to achieve higher uniformity index for velocity and ammonia distribution, better evaporation
rate, and droplet distribution by consideration of the reaction temperature and wall temperature
distribution based on CFD. Furthermore, for the verification of the simulated results of ISO 8178 a
standard marine Diesel engine test cycle E3 was used [30].

2. Computational Model Formulation

2.1. Geometric Model

The complications in the design and arrangements of SCR system leads to difficulties in the
uniformity of flow field and ammonia in the exhaust flow by using only urea water solution (UWS)
and species diffusion. It is therefore necessary to use static mixer to optimize the mixing of exhaust
gas flow with UWS. It has been proved by previous studies that uniformity of flow velocity and
ammonia distribution can be increased with a suitable mixer, which directly enhances the performance
of SCR catalyst. The optimized mixers have ability of complete rapid mixing of UWS droplet with
exhaust gas which accelerates the pyrolysis reaction. Therefore, the catalyst conversion efficiency was
improved [31].

In this study, two different types of mixers are used—line type mixer (LM) and swirl type (SM).
In the first part of study, the SCR performance was analyzed by LM and SM separately. The second
part of study focused on the combined effects of LM and SM. The distance between two mixers was
kept 0.2 m. The pipe diameter was 100 mm. Injection point was located 0.1 m away from the LM and
0.3 m away from the SM, when both mixers were used together. For the single mixer, the position
was taken as 0.1 m away from the injection point. The complete systematic design of SCR system is
represented in Figure 1.

The design of LM includes 4 × 4 rows of blades and the angle of blades with horizontal plane was
45◦. This design represents the improved heat transfer efficiency and abolishes the blind corners. Four
blades were used at the center rows while two at the corners. One column of blades shows a downward
direction and the other shows an upward direction. The design construction of SM was adopted in
order to enhance the breakup effect of droplets and increase the turbulence intensity which ultimately
results rapid mixing and pyrolysis of urea. The SM mixer possess six number of blades tilted at an angle
of 45◦ with the horizontal. By analyzing the result of individual mixers on SCR performance, a system
was designed using both LM and SM in combination to achieve an improvement in performance.
Considering the complexity of SCR system, the mesh grid is generated by tetrahedral method for
adequate adaptation as shown in Figure 2. Away from the solid wall boundary, the grid was stretched
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which was the good comprise between the mesh points and computational costs. Furthermore, mesh
independence test has been performed to calculate the ammonia uniformity without using any mixer,
as shown in Figure 3. After mesh independence analysis, the total number of cells in the mesh
system was 1.8 million; because a further increased in mesh cells has no significant effect on the
uniformity index.

 
Figure 1. Systematic structure of the selective catalyst reduction (SCR) system.

 

  

Figure 2. Mesh grids of computational domain.
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Figure 3. Mesh grid independence analysis.

2.2. Numerical Procedure

Numerical studies have been done for the optimum design of SCR system in the form of flow
uniformity and the reduction of NOX emissions [22,32]. In this study, the flow field distribution of
velocity was taken uniform and thermal expansion in the catalyst was negligible. Exhaust gases
from the engine were adopted as the ideal gas mixture in the CFD. Incompressible steady flow was
used. The flow was simulated by using the standard K-epsilon model (K-ε) in combination with
wall treatment function to evaluate the turbulent flow velocity in the exhaust system because the
Reynolds number is usually very high in an exhaust pipe. It is a two equation model that gives a
general description of turbulence by means of two transport partial differential equations. The first
transported variable is the turbulence kinetic energy (K) and the second transported variable is the
rate of dissipation of turbulence energy (ε) [25,33]. The injection and decomposition process of UWS
were simulated by transport model. Evaporation and decomposition performances were described
by using a mixture model of multicomponents. The concentration of 32.5 wt% UWS was injected at
the temperature window of 313 K. Pressure swirl atomizer was used for injection of UWS. KH-RT
model was used for breakup of droplet. Firstly, water was evaporated from urea droplets during
decomposition. The rate of water evaporation was predicted by Raouli’s law of multi component
mixture. Raoult’s law is based on the assumptions that the vapor phase behaves as an ideal gas and the
liquid phase is an ideal solution in mixing of the flow. The rate of water evaporation can be obtained
by Equation (1).

dm
dt

= MWwaterkc

(
xwaterPsat,water

RTP
− Cwater

)
(1)

If the fraction of water in UWS is going beyond the threshold value (0.01), then the UWS droplets
are considered as the particles of urea and it can be easily calculated by the decomposition reactions of
urea particles. As the urea particles react with exhaust gas species, it results in NH3 and HNCO. The
mass change rate can be obtained by Equation (2).

dmP
dt

= MWi

NR

∑
r=1

Ri,r (2)

The species transport and continuity equation are used to define the variation of gases produced
from decomposition reactions such as NH3, CO2, and HNCO (Equations (3) and (4)).

∂(ρYi)

∂t
+∇ · (ρ→VYi) = −∇ · →Ji + Ri + Si (3)

∂ρ

∂t
+∇ · (ρ→V) = Sm (4)
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By concentration gradients, the mass diffusion in laminar flows used and it was modeled by
Fick’s law, as shown in Equation (5).

→
j i = −ρDi,m∇Yi − DT,i∇T/T (5)

The turbulence due to turbulent diffusion is directly responsible for the quick mixing and species
transport in turbulent flows therefore the mass diffusion can be obtained by Equation (6).

→
j i = −(ρDi,m + μ/Sct)∇Yi − DT,i∇T/T (6)

The diffusive process is modeled by using turbulent diffusivity (DT) in the K-ε model. The DT can
be obtained from Equation (7) [34].

DT = vT/Sct (7)

Schmidt turbulence number (Sct) is usually taken as 0.7. In the turbulence model, the turbulent
diffusivity DT directly depends upon the use of turbulent viscosity VT. Turbulent viscosity is obtained
from given formula in the K-ε model Equation (8).

vT = Cuk2/ε (8)

In the K-ε model, closure coefficient (Cu) is taken as 0.09.
Energy dissipation rate and turbulent kinetic energy are obtained from a standard two-layer K-ε

turbulent model as showed in Equations (9) and (10), respectively.

∂k
∂t

+
∂uik
∂xi

=
∂

∂xi

((
v +

vt

σk

)
+

∂k
∂xi

)
+ G − ε (9)

∂ε

∂t
+

∂uiε

∂xi
=

∂

∂xi

((
v +

vt

σε

)
+

∂ε

∂xi

)
+

ε

K
(C ε1G − C ε2ε) (10)

where,

G = −uiui
∂ui
∂xi

= vt

(
∂ui
∂xi

+
∂ui
∂xi

)
∂ui
∂xi

, and vt = Cμ
K2

ε

Cε1 = 1.44, Cε2 = 1.92, Cμ= 0.09, σK = 1.0, σε = 1.3

For describing the conservation equation of gas–liquid phase and spray phenomenon, the discrete
phase model was used. By the discrete phase model under the Lagrangian coordinate system, it could
be constructed a governing equation to analyze the motion law of droplet and motion of liquid droplet
which can be given by Equation (11).

d
→
u p

dt
=

→
u −→

u p

τr
+

→
g
(ρp − ρ)

ρp
+

→
F (11)

Gradient diffusion is responsible for the rate of vaporization at low vaporization rates [35].
Transportation of urea droplet vapor was made at the bulk of gas and droplet surface because of the
concentration gradient. At high vaporization rates, the fluctuation of urea water droplets into exhaust
gases is directly associated with the effects of evaporating species under convective flow [36]. UWS
droplets include the mixtures of two parts; therefore, the evaporation of UWS is separated into two
different periods. During the first stage of decomposition, contents of water evaporate quickly from
UWS droplets. In the later stage, molten urea evaporates [37,38]. In this study, UWS droplets were
taken as multicomponent, therefore the total vaporization rate of UWS is the sum of vaporization rates
for all UWS components. The evaporation of urea solution is the heat and mass transfers between
the urea droplet and exhaust gases. Diffusion is controlled by concentration gradients described by
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Fick’s law which was used as diffusion also occurs in multispecies systems that are experiencing the
Stefan flow also and the model included the internal recirculation and Stefan flow effects [39].Thus the
evaporation rate can be described by Equation (12).

mpcp
dTP
dt

= hAP(T∞ − TP)−
dmp

dt
h f g + εp + Apσ(θ4

R − T4
p) (12)

Radiation properties are very complex to be described by the flow and have less importance.
It was therefore neglected in our study. Moreover, some studies also have neglected this effect due to
the complexity of system [25,26].

A honeycomb-type catalyst is often used in the SCR system, and its single channel is very small
to the outline size of the catalyst [32]. In this study, the catalytic reaction section was taken as a
multiple holes section, and the porous medium model was adopted for evaluation. In the porous
medium model, the momentum source term was included to the momentum equation and showed in
Equation (13).

Si = −
(

3

∑
j=1

Dijμvj +
3

∑
j=1

Cij
1
2

ρ
∣∣vj

∣∣vj

)
(13)

If each position of catalyst has the same nature in gas convection and diffusion in the channel are
ignored, the above equation can be simplified as Equation (14).

∇p = −μ

α
v (14)

2.3. Boundary Conditions

CFD boundary conditions were selected according to the ISO standard 8178 marine Diesel engine.
The initial temperature and exhaust flow rate before the catalyst reactor weretaken as 327 ◦C and
1.6 kg/s, respectively. The quantity of NOx emission was 256 ppm. The inlet and outlet diameter of
catalyst reactor were 100 mm. The boundary conditions at the inlet of catalytic reactor was set to the
mass flow rate, turbulent kinetic energy was set as 6% of the average velocity, and the characteristic
length was 10% of the inlet diameter. The boundary condition at the outlet of catalytic reactor was
defined as outlet pressure and the outlet pressure was same as atmospheric pressure. The boundary
conditions at the wall of catalytic reactor were set as nonslip velocity and frictionless. The material is
defined as iron.

The working parameters of the SCR system are shown in Tables 1 and 2. The working process of
the SCR system was studied and simulated in this paper. Flow rate, temperature at the diesel exhaust,
exhaust pressure, and urea injection rate increased with respect to engine load. Furthermore, urea
water solution was injected by using air assisted injector at the upstream of mixer with the ten numbers
of streams. Pressure atomizer injector was used with the injection hole diameter of 0.0007 m. The spray
angle was kept 60◦ with spray pressure of 6 bar. The rate of multitude hole was 0.89 in the porous
medium model. The thermal conductivity of solid phase coefficient was taken as 1.7 W/(m·k) and the
specific heat capacity was 1016 J/(kg·k).

Table 1. Exhaust conditions of marine Diesel engine.

Parameters 25% 50% 75% 100%

Flow (kg/s) 0.516 1.2 1.63 1.94
Pressure (bar) 1.4 2.17 3.1 3.8

Temperature (◦C) 254 290 327 395
Urea Injection (kg/s) 0.0091 0.013 0.0161 0.0192
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Table 2. Injection system and catalyst conditions.

Parameters Value

Injection Conditions

Injection type model Pressure swirl atomizer
Injection inner hole diameter 0.0007 m

Urea temperature 313 k
Number of streams 10

Catalyst Conditions

Inverse absolute Permeability (m−2) 1.85
Inertia resistance (m−1) 85

Porosity 0.89
Surface to volume ratio (1/m) 1275

3. Results and Discussion

3.1. Uniformity

Catalyst efficiency depends upon the two important parameters: flow velocity uniformity and
uniform distribution of ammonia. Long-time irregular scattering and non uniformity of flow velocity
will cause the excessive aerodynamic velocity and temperature, which directly impacts the structure
and performance of catalyst. As the result, thermal stress can be developed, which leads to the fatigue
failure and effects the service life of catalyst [25]. It is therefore recommended that the velocity of UWS
must be well distributed as much as possible, at the front of the SCR catalyst reactor inlet. Equation
(15) can be used to calculate the uniformity index of flow velocity and ammonia distribution.

UIf low = 1 − 1
2

n

∑
i=1

|Vi − Vmean|Ai
AVmean

(15)

3.1.1. Velocity Uniformity

The distribution of velocity field of LM, SM and the combination of both (LSM) is represented in
Figure 4. The exhaust gases flow with LM was initially very uneven; downstream of mixer at the center
of pipe. Furthermore, a baffle gap was also generated at the downstream but the velocity distribution
inside the baffle seems smooth. As the distance was increased to the reactor inlet, uniformity was
also increased, as shown in Figure 4a. SM effectively created the rotational air flow generating
swirling mixing flow at the pipe wall. Swirl flow shows well mixing of exhaust gases and urea
solution. Moreover, a high baffle gap was produced at the downstream of mixer, but the velocity
distribution inside the baffle was highly uneven. However, flow velocity of mixture at the middle
seems comparatively low as in Figure 4b.

Figure 4c showed the combined effects of LM and SM. In comparison with pure rotating blade
and line type blade structures of SM and LM, respectively, the velocity uniformity was enhanced when
LSM was employed. The arrangement of LSM not only generated a strong swirl flow beside the mixer
wall, but also increased the velocity near the wall of pipe.

Catalyst effectiveness and utilization rate directly depends on the velocity uniformity index of
UWS and exhaust gas mixture along the axial direction at the catalyst reactor inlet. The relation of the
velocity uniformity index from the mixer downstream to catalyst reactor inlet is shown in Figure 5.
Uniformity index of flow velocity of LM, SM, and LSM mixers were calculated as 0.93, 0.86, and 0.95
at the upstream of reactor inlet (0.8 m), respectively. Uniformity index of LSM at the downstream
of mixers (0.1 m) is relatively low because of continuous and sudden impacts of two mixers on the
flow velocity. However, with the increase of distance the uniformity of velocity for LSM was greatly
improved due to the turbulence outcome produced from the sudden impact effect of two mixers.
Therefore, the overall uniformity index of flow velocity of LSM before the reactor inlet was relatively
high as compared to LM and SM.
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(c) 

Figure 4. Velocity contour maps. (a) Line (LM) type mixer, (b) swirl (SM) type mixer, and (c) two
mixers (LSM).

 
Figure 5. Distribution of velocity uniformity.

To illuminate the SCR reactor internal stability and uniformity index of flow velocity,
the distribution at the reactor entrance was extracted and is shown in Figure 6. The main objective of
displaying the velocity uniformity at the reactor inlet was to remove the turbulence effect produced
by mixers and to show actual velocity distribution more clearly. Figure 6a,c shows that the exhaust
gases gained high turbulent kinetic energy, resulting in the better velocity uniformity. However,
SM (Figure 6b) shows that the radial velocity gradient was high and resulted in poor uniformity, but
the velocity flow was slightly decreased with the increase of distance.
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 (a) (b) (c) 

Figure 6. Velocity contour maps at the inlet of catalyst inlet. (a) Line (LM) mixer, (b) swirl (SM) mixer,
(c) and two mixers (LSM).

3.1.2. Ammonia Uniformity

The irregular and insufficient ammonia distribution will result in NOX escape [40,41]. The NH3

uniformity distribution is an important index of the SCR system for estimating performance [42–44].
The water from the urea droplets evaporates entirely and converts urea in NH3 gas when it reaches
to reactor inlet. Reductant uniformity index is the most significant factor used to evaluate, whether
the catalyst will achieve the highest denitrification rate and lowest ammonia leakage. The plane
was created in CFD at a certain distance/area and then divided the plane into the number of points
and finds the mass fraction of ammonia on each single point. After that, the standard deviation and
average value of all the points were calculated. Finally, the formula for the uniformity index was
used to find ammonia uniformity at certain distances. The ammonia uniformity index from the mixer
downstream to catalyst reactor inlet in the axial direction was calculated and is shown in Figure 7.
The NH3uniformity distribution of LM, SM, and LSM were calculated as 0.87, 0.94, and 0.96 at the
upstream of reactor inlet, respectively.

Ammonia uniformity index of LSM at the downstream of mixers is relatively low due to
uninterruptedly and sudden impacts of two mixers continuously. However, the uniformity index of
ammonia of two mixers was greatly enhanced with the increase of distance due to high turbulence
outcome produced from the impact effect of two mixers. Hence, generally, the ammonia uniformity
index is the combination of two (line and swirl type) mixers before the catalyst reactor inlet is relatively
high, as compared with the separately use of line and swirl type mixers.

Uniformity index of ammonia distribution at the outlet of reactor inlet was extracted to clarify the
result as much as possible and showed in Figure 8. At first, the plane was created in CFD at the catalyst
inlet, plane was divided into number of cells and value of molar concentration of ammonia at each
single point was calculated. Next, the standard deviation and average value of ammonia concentration
at the catalyst inlet were calculated. Finally, the uniformity index was used to calculate the ammonia
uniformity at catalyst inlet. In LM, a high concentration of ammonia distribution is located at the
upper side of the pipe wall, and some places at the mid of pipe also show that ammonia distribution
was not smooth (Figure 8a), resulting in poor catalyst performance. In SM, ammonia seems well
distributed as a whole but the small area at the upper side of pipe shows the high concentration
(Figure 8b). Distribution of ammonia was greatly improved when using LSM and much less ammonia
was deposited at sides and center (Figure 8c).
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Figure 7. Distribution of ammonia uniformity.

 

   

 (a) (b) (c) 

Figure 8. Velocity contour maps at the inlet of catalyst inlet. (a) Line (LM) mixer, (b) swirl (SM) mixer,
and (c) two mixers (LSM).

The values of indexes of the velocity and ammonia uniformity of LM, SM, and LSM from the
location of mixer downstream to catalyst reactor inlet are tabulated in Table 3. It is very clear that LM
reveals a good uniformity index for velocity but, on the contrary, it exhibits a poor uniformity index
for ammonia. SM behaves opposite to the LM: it possesses good ammonia uniformity but shows poor
velocity distribution.

Table 3. Uniformity index at the inlet of the catalyst reactor.

Uniformity Index LM SM LSM

Velocity Uniformity 0.93 0.86 0.95
Ammonia Uniformity 0.87 0.94 0.96
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It is difficult to obtain the good uniformity of the both important indicators at the same time
while using only single mixer. In comparison, LSM can be categorized with the good uniformity for
both, the velocity and ammonia distribution due to high turbulent intensity. The values calculated for
uniformity were 0.95 and 0.96 for the velocity and ammonia, respectively. For the purpose of mass
transfer and homogenization, when the mixture species passes through the second mixer of LSM,
it creates swirl and endorse the mass transfer effect near the pipe wall. The shear and swirl flows
with the pipe wall produce molecular diffusion and eddy diffusion under forced convection. Hence,
the mixing of ammonia with exhaust gases is comparatively sufficient which results the effective
improvement in the uniformity of velocity and ammonia, simultaneously.

3.2. Droplet Residence Time

UWS injection in the exhaust gases lowers the temperature of the gas phase due to heat transfer
phenomena. Figure 9 represents the UWS droplets residence time for diameter ranges from 0.007 mm
to 0.07 mm. The plane was located at the downstream of injector. By counting the frequency of droplets
with different diameters to pass through the plane for calculation purpose, the plane was divided
into number of sections with each section having a fixed width. Each section was analyzed for the
droplet, which was assumed to be spherical. After that, each droplet diameter was calculated from
droplet volume obtained by taking into account the volume fraction occupying the computational
meshes. Also, the cumulative probability distribution function was used to describe the probability of
finding the diameter of the secondary droplets in a sample of splashing drops. The mass of splashing
droplets from the wall depends upon the splashing energy of the droplets [45]. In the system of LM,
SM, and LSM, while the UWS droplets were injected into the gas phase, the UWS droplets residence
time ranged from 0.004 s to 0.121 s, 0.004 s to 0.091 s, and 0.004 s to 0.064 s, respectively. From this
analysis, the LSM-installed system showed obvious differences of 47% and 29% decreases of residence
time compared to LM and SM, respectively.

 
Figure 9. Residence time of urea droplets with the use of different mixers.

The angle of injection of UWS was 30, and the injection was done at the center of pipe; therefore,
it is difficult for droplets to move far in radial directions but as an alternative of it, droplets will try to
moves toward center. The droplets with bigger diameter will not follow the flow but start to move in
radial directions. Small droplets evaporate faster than the bigger diameter and can easily be blown to
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the center of pipe. However, with the use of LSM, the mixing ability of UWS droplets and exhaust
gas enhance sufficiently, which resist the gathering of larger UWS droplets and avert the temperature
drop at the center of pipe. Moreover, the combination of two mixers results to increase the turbulence
intensity which produces high evaporation rate. Overall, in the system of LSM, the residence time of
UWS droplets decreases not only due to the improvement in the distribution of droplets and but also
due of high turbulence impact of two mixers.

3.3. Urea Conversion

Better conversion or evaporation of UWS results the enough production of ammonia for SCR
reaction. With the use of mixers, primary UWS droplets can be distributed and broken up into
secondary droplets resulting in quick evaporation of UWS. Conversion of urea from the mixer
downstream to the catalyst inlet (Figure 1 blue arrow) for LM, SM, and LSM are shown in Figure 10.
It has been observed that there is deficient conversion of urea with the use of single mixer. As the
decomposition distance increases, the conversion of urea also increases gradually. For the system of
LM and SM, the conversion of urea is 76.1% and 83.2%, respectively. However, for the LSM system,
the conversion increases up to 95.4%. Urea conversion is directly related with the mixing of flow
distribution and droplet residence time in the SCR system.

 
Figure 10. Urea conversion from mixer downstream to catalyst inlet.

Conversion of urea takes place in two stages, one is water vaporization stage, while the other
urea vaporization stage as shown in Figure 11. Initially, the evaporation of pure water occurs from
UWS droplets; therefore it becomes unstable in the exhaust gas in the later stage. As a result, the
decomposition of urea produces NH3 and HCNO. The droplets with bigger diameter can only undergo
water vaporization stage and hence does not produces sufficient ammonia in long distances. With the
use of LSM, bigger droplets are break up into small droplets and need short time to evaporate which
ultimately results in increased evaporation rate.
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Figure 11. Urea water solution (UWS) droplet at two vaporization stages.

3.4. Relation of Temperature with SCR Performance

Two important factors relating to the SCR system temperature include deposit formation and
catalyst reaction efficiency. SCR is a means of converting NOx emissions into N2 and H2O by using the
catalyst and O2 in the temperature window of 280 to 420 ◦C [11]. The rate of reaction will be slow and
unwanted reactions will occur, if the temperature goes below 280 ◦C, resulting in poor SCR catalyst
performance. Ammonia will start to burn without reacting with the NOx emissions if the temperature
goes above 420 ◦C. It is therefore recommended to control the reaction temperature of SCR system [46].

The wall temperature is the prominent source for finding the deposit formation. Urea starts to
decompose rapidly, associated with the secondary reactions, if the temperature is more than 163 ◦C.
If the temperature is in between the range of 133 to 163 ◦C, pyrolysis of urea occurs slowly. Urea
crystals are formed certainly as temperature is reduced below 133 ◦C. Once the temperature goes down,
urea crystals are produced and the exhaust pipe will be blocked, which is responsible for decreasing
the mixing performance and increasing the back pressure [18]. Concurrently, the overall catalytic
reactor efficiency is decreased considerably. Once the urea injected into the system, a number of small
droplets produce collisions with the pipe wall and mixer. The increase in collision strength of droplets
with pipe wall decreased the temperature. Under the Leidensforst temperature, droplets of urea are
separated into four boiling phenomenon as maintained by three values of temperature: 140, 190, and
300 ◦C. Heat transfer to the liquid film from pipe wall increased at ~180 ◦C [9]. If the wall temperature
is lower than the boiling point temperature (Tb) of the UWS droplet, the droplets will stick on the wall
and, if the temperature is higher than Tb, the droplets will rebound after striking with the wall [45].
Therefore, it is important to obtain maximum liquid film temperature for improved performance of
urea decomposition and decrease the deposit formation.

Temperature Distribution along the Mixer Downstream

The temperature distribution along the radial direction at the mixer downstream (Figure 1 red
arrow) as represented in Figure 12. The pipe diameter is 10 cm; therefore, the initial position (0 cm)
stands for the upper edge of the pipe and 10 cm shows the position of lower edge. A plane was
created in CFD at a certain distance and then divided into number of points. The value of temperature
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on each single point was found. Next, the standard deviation and average value of all the points
were calculated. The minimum temperature of LM at the top edge is 274 ◦C, which is 32 ◦C less than
SM and LSM.As it has been proved that after the urea injection process a large number of droplets
collide with the mixer and the pipe wall: the wall temperature decreases with the increase in collision
intensity [29]. In all types of mixers arrangement, the temperature difference at the center of the pipe
is not obvious. However, the temperatures of LM and SM at the bottom edge of pipe were 276 ◦C and
281 ◦C, respectively. The temperatures at top edge and bottom edge of pipe are 304 ◦C and 301 ◦C
respectively. Generally, the combination of two mixers (LSM) have good temperature distribution for
both upper edge as well as lower edge, which is beneficial for catalyst reaction performance and also
very suitable to prevent the deposit formation.

The axial wall temperature distribution from the mixer downstream to the catalyst inlet (blue
arrow in Figure 1) as represented in Figure 13. Wall temperature distributions of LM and SM at the
catalyst inlet were289 ◦C and 294 ◦C, respectively, but the combination of two mixers (LSM) was 300 ◦C
due to better heat transfer effect. A continuous decrease in the temperature was observed from 0.3 to
0.5 m distance; with minimal temperature of 270 ◦C in SM. Low temperature region produces direct
effect on the wall of pipe and reaction performance, without creates disturbance for the mixer.

Generally, temperature plays an important role in the reaction performance and deposit formation.
With the use of LSM, the temperature remains above 280 ◦C in axial and radial directions, which is
very helpful for preventing the unwanted reactions and deposit formations.

 
Figure 12. Radial distribution of temperature in the mixer downstream.
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Figure 13. Axial distribution of temperature from mixer downstream to catalyst inlet in pipe wall.

3.5. Working Performance of LSM-Based SCR System

The standard ISO 8178 is the international marine Diesel engine test cycle used to measure the
exhaust emissions from ships. By following the control requirements of exhaust emission as per IMO
Tier III, standard marine Diesel engine test cycle has been divided into two parts one is ISO 8178 D2
test cycle for marine Diesel engine operated with constant speed and other is ISO 8178 E3 test cycle
with propelling character for marine Diesel engine. In this study marine Diesel engine with propelling
character was studied. Hence, the ISO 8178 E3 test cycle was used to measure the exhaust emissions.
The weightage average value of NOx exhaust emission was calculated by ISO 8178 marine Diesel
engine test cycle E3 as shown in Table 4 [30].

Table 4. ISO 8178 marine Diesel engine test cycle E3.

Type ISO 8178 E3 Mode 1 2 3 4

Load (%) 25 50 75 100
Speed (%) 63 80 91 100

Weightage factor 0.15 0.15 0.5 0.2

The overall weighted NOx exhaust emission level in g/kWh can be calculated using
Equation (16) [47].

EFx =

n
∑

i=1
miWFi

n
∑

i=1
piWFi

(16)

The main purpose of SCR system is to decrease the NOx emissions and to prevent the ammonia
leakages responsible for air pollution. Figure 14 represents the NOx removal efficiency under different
loading conditions. It was observed that, there is a small difference in between theoretical value
(standard) and calculated value (simulation). At low load, the NOx removal efficiency is low, because
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under lower loading conditions, the exhaust temperature of Diesel engine is comparatively low, which
directly affects the catalyst performance; as a result, the catalyst efficiency decreases. Figure 15 shows
the NH3 escaping rate at different engine loading conditions. The rate of NH3escaping decreases with
the increase of engine load. NH3 escaping rate is relatively high at low load due to lower temperature
of the exhaust gas, resulting in incomplete catalyst reaction. The reaction of NH3 oxidization is
neglected for design of SCR model parameters in this study; therefore, more NH3 slipping occurs at
low loading conditions. However, at higher loading conditions (75% and 100%), the NH3 escaping
rate is less than 10 ppm, which meets the design requirement of the SCR system.

Figure 14. NOx removal efficiency under different engine loading conditions.

Figure 15. NH3 escaping rate under different engine loading conditions.

Verification of simulated results was confirmed by using ISO 8178 standard marine Diesel engine
test cycle E3. According to emission regulations of IMO Tier III, the value of NOx emission should
be less than 3.4 g/kWh under all loading conditions. Figure 16 shows a NOx emission value of the
LSM-based SCR system at different loading conditions. It was observed that NOx emission decreases
as the load increases. The average weighted value of NOx emission was 2.44 g/kWh for four different
loads at the downstream of SCR catalyst. Hence, the system based on using LSM strongly meets the
standard of IMO Tier III NOx emission regulations effectively.
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Figure 16. NOx emission under different engine loading conditions.

4. Conclusions

In this work, numerical methods were used to analyze the mixing performance, effects of mixers
on the evaporation rate of urea, residence time of urea droplet in the pipe, and temperature distribution
for the catalyst reaction and deposit formation. The prime results are shown below.

• For the in-line type mixer (LM), the uniformity index of velocity was good (0.93) but the uniformity
of ammonia was poor (0.87). In contrary to LM, the swirl type mixer (SM) has good ammonia
uniformity (0.94) but poor uniformity index of velocity (0.86). However, better values were
observed by using combination of two mixers (LSM). The uniformity index of velocity and
ammonia uniformity achieved the values of 0.95 and 0.96, respectively, for LSM-based SCR system.

• The residence time UWS was studied. The results show that the residence time of urea droplets
for LSM-based SCR system was 0.064 s, which represents47% and 29% decreases compared to
LM and SM, respectively. Furthermore, the conversion of urea into ammonia is highly related
with the residence time of urea droplets in the pipe. Hence, urea conversion achieves the value of
95.4% by using LSM, which is 19.3% and 12.2% higher than the value of LM and SM, respectively.

• It was also observed that the combination of two mixers (LSM) have good temperature distribution
than the LM and SM for radial and axial directions, the temperature at catalyst inlet in axial
direction was 300 ◦C for LSM-based SCR system which is suitable for the catalyst reaction
performance and prevents the deposit formation.

• Finally, the simulated results of the model parameters were compared and verified by using ISO
8178 standard marine Diesel engine test cycle E3. The average weighted value of NOx emission
was calculated as 2.44 g/kWh for four different loads. Hence, it is concluded that the system based
on using LSM strongly meets the standard of IMO Tier III NOx emission regulations effectively.
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Abbreviations

CFD Computational Fluid Dynamics
ECA Emission Control Areas
IMO International Maritime Organization
LM Line Mixer
LSM Line Swirl Mixer
SM Swirl Mixer
SCR Selective Catalyst Reduction
UWS Urea Water Solution
Nomenclature

Symbol Name (Unit)
R Gas constant (J kg−1 K−1)
P Pressure (Pa)
T Reaction Temperature (K)
U Fluid velocity (m/s)
P Droplet density (m2/s3)
K Turbulent kinetic energy (m2/s2)
Vt Velocity with time (m/s)
Cμ Closure coefficient
Cs Volume concentration (m3)
→
ji Diffusion flux
DS Component diffusion coefficient
Sm Chemical reaction component mass
→
V Gas velocity vector
Ri Net production rate of species
Si Rate of creation from dispersed phase to user defined phase
Yi Species destruction molar rate
DT Turbulent diffusivity (m2/s)
DT,i Thermal diffusion coefficient (m2/s)
DT,m Mass diffusion coefficient
Cwater Molar concentration of water
Kc Mass transfer coefficient (m/s)
Tp Droplet temperature
Ri,r Species destruction molar rate
mp Droplet mass (kg)
up Velocity of liquid droplet
ρp Density of liquid droplet
F Force except drag force
CP Specific heat of liquid droplet (J/K)
AP Droplet surface area (m2)
T∞ Droplet environment temperature
h Convective heat transfer coefficient (W/(m2K))
hfg latent heat of vaporization (KJ/kg)
Vi Carrier Nominal velocity (m/s)
Vmean Average velocity (m/s)
Ai Cell area (m2)
A Sectional area of the plane (m2)
EFx Weighted emission level (g/kWh)
mi Mass emission rate (g/h)
WFi Weighting factor
Pi Engine load
Ar Pre-exponential factor
Ea Activation energy (J/kmol)
MW Species molecular weight
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Greek symbols

E turbulent dissipation (m2/s3)
A viscosity coefficient
εp radiant heat transfer rate of liquid droplet
μt turbulent viscosity (m2/s)
Psat, water Vapour pressure of water
Dimensionless numbers

Pr Prandtl number
Sct Turbulent Schmidt number
Sc Schmidt number
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Abstract: In order to precisely control the wind power generation systems under nonlinear variable
wind velocity, this paper proposes a novel maximum power tracking (MPPT) strategy for wind turbine
systems based on a hybrid wind velocity forecasting algorithm. The proposed algorithm adapts the bat
algorithm and improved extreme learning machine (BA-ELM) for forecasting wind speed to alleviate
the slow response of anemometers and sensors, considering that the change of wind speed requires a
very short response time. In the controlling strategy, to optimize the output power, a state feedback
control technique is proposed to achieve the rotor flux and rotor speed tracking purpose based on MPPT
algorithm. This method could decouple the current and voltage of induction generator to track the
reference of stator current and flux linkage. By adjusting the wind turbine mechanical speed, the wind
energy system could operate at the optimal rotational speed and achieve the maximal power. Simulation
results verified the effectiveness of the proposed technique.

Keywords: maximum power tracking (MPPT); wind speed forecasting; wind energy system (WES); state
feedback controller

1. Introduction

Wind, used as widely distributed huge reserves of green energy [1], has dramatic increased in
grid-connected power these years. Thus, to improve the efficiency of wind power system becomes an
essential part, both to reduce the costs of wind power generation systems, and to increase the proportion
of renewable energy in the national power grid. High efficiency, good robustness and low costs have
become the research focus of wind energy harnessing.

Currently, the literature extensively investigates modeling effective wind turbine systems to optimize
and effectively utilize the turbine power output through the maximum power point tracking (MPPT)
technique. By the adoption of variable speed wind turbine (VSWT), adjusting the rotation speed of wind
turbine rapidly according to the variable wind speed can achieve for high efficiency to harness wind
source [2]. These technique adopted by MPPT controller mainly can be categorized into four types: by
controlling of Tip Speed Ratio (TSR), adopting Power Signal Feedback (PSF) control, Perturb and Observe
(P&O) method, and Optimal Torque Control (OTC) method. TSR is a constant value which is dependent
of wind velocity. It is the only parameter that can be set to provide the maximum power output from
wind which is related to rotor radius and the blades rotational speed [3]. Such method needs two sensors

Processes 2019, 7, 158; doi:10.3390/pr7030158 www.mdpi.com/journal/processes
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to measure the wind and turbine speeds by an anemometer and a tachometer respectively for that both
wind speed and rotational speed are feedback signals [4]. Compared to TSR (nomenclature can be seen in
Table 1), PSF only uses one sensor to measure rotational speed. Error between measured turbine power
and reference power is delivered to the controller, then the output power is adjusted to the reference value.
The efficiency is good and the reliability is better than TSR [5]. While the P&O method does not necessarily
need any sensor beside the electrical measurement devices, its reliability is strong but efficiency is not
good. The Optimal Torque Control (OTC) extracts optimum torque by measuring angular velocity [6],
which is similar to PSF control yet adopts mechanical torque equation.

Table 1. Acronyms and nomenclature.

BA bat algorithm
MPPT maximum power point tracking
VSWT variable speed wind turbine
PSF adopting power signal feedback
TSR tip speed ratio
OTC optimal torque control
FIS fuzzy inference system
ELM extreme learning machine
SLFNN single-hidden layer feed-forward neural networks
MAE mean absolute error
MSE mean square error
VOC voltage oriented control
P&O perturb and observe

However, these conventional techniques fail to consider that the wind speed is a discrete nonlinear
parameter set which is not compliant to a certain law of variation. That requires the anemometers
to measure wind velocity in time and the controller should also respond quickly to the wind speed
fluctuation, then drives the mechanical rotor to rotate with the optimized direction and speed. Usually
the measurements and controlling process should not exceed one second to harness the wind energy in
highest efficiency [7]. Yet in large-scale wind turbines, anemometers and controllers have large volume
and great inertia, leading to a slow response [8]. Therefore, typically when a rotor speed instruction has
not completed, the controller should execute in an opposite direction. In this way, the wind turbine is more
likely to have mechanical fatigue. Besides, because of the hysteresis effect, the current optimal tracking
point is not the current maximum power point.

Such problems are noticed by scholars in recent years, with the development of computational
intelligence and numerical optimization, some novel MPPT frameworks are also proposed to tackle this
issue. These framework often involves: the fuzzy inference system (FIS), taking multi-objectives into
account [9]; nonlinear control [10], with Boukhezzar et al. adapts a two-mass model with a wind speed
estimator for variable-speed wind turbine control [11]; robust control, via controlling the rotor angular
speed to control the tip-speed ratio [12]; adaptive control [13] and the like. Some scholars even proposed
hybrid models with the combination of artificial intelligence algorithm and conventional control methods
to achieve a higher efficiency [14]. Though it can effectively deal with high non-linearity of wind turbines,
the training process is indeed time-costing and introduces a huge amount of iteration parameters like
weights and bias into systems [15]. In order to avoid generating these parameters and to save hardware,
here we consider extreme learning machine (ELM) to forecasting wind velocity, which do not need to use
back-propagation method to updates weights and thresholds and only the linear least square solution is
needed [15]. With the prediction scheme, a novel controlling strategy to intervene the hysteresis effect in
both wind speed measurement and controlling process is proposed in this paper.
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The proposed controlling strategy can be concluded into three steps, first is to optimize the weights
and thresholds of extreme learning machine (ELM) by bat algorithm (BA) to forecast the short–term wind
speed, since the random distributed weights and bias of traditional ELM algorithm are likely to be not
convergent [16]. The second is that we adapt the forecasting values to calculate the optimal reference
rotational speed based on MPPT algorithm. Meanwhile the anemometer would measure the current wind
velocity thus to feed the input of BA-ELM. Finally the state feedback control and optimal control technique
will be implemented in wind energy conversion system, to achieve maximal power point thus the current
asynchronous machine torque can achieve high efficiency [17].

The outline of rest is organized as follows. Section 2 describes the wind energy conversion system.
Section 3 introduces the detailed design procedure of speed forecasting method with BA-ELM for wind
energy conversion system. Section 4 presents the state feedback controller for induction machine with the
MPPT algorithm. The simulation results are presented in Section 5. Finally, some comments conclude this
work in Section 6.

2. Wind Energy Conversion System

The wind energy conversion system is a high nonlinear and complex coupled system. The system
comprises of the wind turbine, transmission device, induction machine and converters [18]. The basic
components and general scheme of a wind energy system are shown in Figure 1, which contain the
following main parts:

1. Wind turbine, which is a installation capturing wind energy by blades and transferring the wind
kinetic power to mechanical torque;

2. Induction machine, which can convert the power from the mechanical side into the electrical side.
3. Gearbox and shaft, which is a transmission device to adapt the rotation speed for the generator;
4. Power converters, it is composed of the grid side inverter and the machine side rectifier, connected

by a DC-bus.

Generator

Figure 1. Block diagram of the wind turbine.

The following subsections will focus on the wind turbine model and induction machine model.
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2.1. Wind Turbine Model

The wind turbine extracts power by the wind blades in the turbine nacelle, then converts it into
mechanical power. The wind kinetic power can be formulated as follows:

Pw =
1
2

ρπR2V3
w (1)

where Pw represents the power input of wind turbine, R determines the radius of blades, Vw indicates the
wind speed.

The tip speed ratio λ can be expressed by

λ =
Rωr

Vw
(2)

where ωr represents the rotor speed.
The power extracted from the wind is

Pm =
1
2

Cp(λ, β)ρπR2V3
w (3)

where Pm represents the mechanical power, Cp(λ, β) is a non-linear power coefficient depending on the
design of turbine [19], which is:

Cp(λ, β) = 0.5176(
116
λi

− 0.4β − 5)e−
21
λi + 0.0068λ (4)

with
1
λi

=
1

λ + 0.08β
− 0.035

β3 + 1
(5)

where β is the blade pitch angle. The power coefficient is a nonlinear function of tip speed ratio λ and the
blade pitch angle β, and its curve is plotted in Figure 2.

Figure 2. Power coefficient Cp(λ, β) versus tip-speed ratio in different pitch angle.

It can be seen that two points can be concluded to extract more power in the wind energy system [20],
which are:
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(a) When the blade pitch angle β does not change, the peak values of power coefficiency Cp(λ, β)

corresponds to a unique tip speed ratio λ, where the conversion of wind energy is expected.
(b) As the blade pitch angle β increases, the wind energy use coefficient Cp(λ, β) decreases obviously.

Thus for tracking more wind power, β should be set into a small value.

The torque TL caused by the wind turbine can be computed as

TL =
Pm

ωr
=

1
2

ρ
Cp(λ, β)

λ
πR3V2

w (6)

From Equation (6), it can be noticed that the turbine TL is related to the wind speed Vw and the
characteristics of the turbine, that is the power coefficiency Cp(λ, β).

2.2. Induction Machine Model

2.2.1. Mechanical Equations

In the block wind turbine blades, the aerodynamic torque model can be used to describe dynamic
relationship between the high-speed rotor shaft and the low-speed axial-flow fan of the wind turbine,
which is composed of a spring and a damper. Formulations for the system can be established as follows:

Jmω̇r = Te − frωr − TL (7)

where Jm represents the rotary inertia of wind turbine pales.

2.2.2. State Space Equation of the Induction Machine Motor

The state space equation of induction machine in the well-known inductor part flux reference frame
(α,β) can be expressed as follows [21]:

i̇sα = −c1isα + c2c3ψrα + c3 pωrψrβ +
usα

c4
(8)

i̇sβ = −c1isβ + c2c3ψrβ − c3 pωrψrα +
usβ

c4
(9)

ψ̇rα = c5isα − c6ψrα − pωrψrβ (10)

ψ̇rβ = c5isβ − c6ψrβ + pωrψrα (11)

Te =
pMsr

Lr
(isβψrα − isαψrβ) (12)

where usα and usβ are the stator voltages, isα and isβ are the stator currents, ψrα and ψrβ are the rotor
fluxes, p is the number of pole pairs, Msr is the mutual inductance, Lr is the rotor inductance, Te is the
electromagnetic torque. Moreover, the variables c1, c2, c3, c4, c5, c6 are defined as follows

c1 =
Rs + Rr

M2
sr

L2
r

σLs
, c2 =

K
Tr

, c3 = K, c4 = σLs, c5 =
Msr

Tr
, c6 =

1
Tr

with the related parameters Tr, σ, K are

Tr =
Lr

Rr
, σ = 1 − M2

sr
LsLr

, K =
Msr

σLr
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where Rs is stator resistance, Rr is rotor resistance, Ls is stator inductance.
Substitute Equation (12) into Equation (7), the dynamic equation can be expressed by the

following form

ω̇r = c7(ψrαisβ − ψrβisα)− fr

Jm
ωr − TL

Jm
(13)

with c7 = pMsr
Jm Lr

is a known constant.

2.2.3. Current Flux Model

In the induction machine model, the stator voltage and stator current can be measured, while the
secondary flux can not be measured. Here, the current flux model is proposed to estimate the value of
secondary flux. From voltage equation and flux equation of induction machine, the flux current model of
induction machine is given as follows

dψr

dt
= − 1

Tr
ψr +

Msr

Tr
is − j (ωmr − pωr)ψr (14)

where ψr is the induced-part flux, is is inductor current, ωmr is the induced-part flux vector rotational speed,
j is the imaginary unit. This equation represents the so-called “current model” of the induction machine.

3. Wind Speed Forecasting

As an anticipatory control strategy, predict wind velocity is more conducive to smooth the output
power of wind turbines, since the power generation process is a complex nonlinear process, which will
be affected by the wind speed and torque of the power generator. Besides, wind speed forecasting can
estimate daily output of wind turbines in advance, and improve the planning ability of wind farms for
electric power transmission and distribution. In addition, the maximum power point tracking can be
achieved precisely by wind forecasting even without anemometers. Considering that there is a significant
time-lag in the wind speed measurement of wind turbines for the anemometers’ inertia is great, suitable
prediction model should be chosen from the model base according to certain principles. Here we build
a hybrid prediction model of wind speed on the basis of applying the modified bat algorithm (BA) to
optimize the initial weights in the layers of extreme learning machine (ELM). The prediction model can
predict the future state of wind velocity on the basis of the estimated mechanical torque from the output of
WES model, so as to settle down the problem of system lag from measurement of the anemometer. Thus to
keep correspondence with current wind speed by adapting the mechanical speed ωr mentioned above
from blade shafts to predict the one-step wind speed, current maximum power can be tracking in higher
accuracy which eliminates the effect of the system lag.

3.1. BA Algorithm

The bat algorithm (BA) is a novel metaheuristic algorithm adapted in prediction model is to optimize
the input weights between layers of the studied training network [22]. Given a data set of of historical
wind speed input to the network, the short term wind speed forecasting will perform as the output of
prediction system.

The BA rules can be concluded as the real-time dynamic adjustment of the location, loudness and
pulse emission of the virtual BA bats when hunting and foraging, bats change the frequency, loudness and
pulse emissivity, and choose the best solution until the end specified iteration loop or achieve specified
accuracy. Here we denote yt to be the bat positions, with the parameter t is the current iteration number.
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fi as the pulse frequency in a range [ fmin, fmax], and vi is the velocities of bats. Initially each bat is assigned
with a random frequency. An iterative loop is presented as follows:

fi = fmin + ( fmax − fmin)β , i = 0, 1, · · · , N − 1 (15)

vt
i = vt−1

i + (yt
i − y∗) fi , i = 0, 1, · · · , N − 1 (16)

yt
i = yt−1

i + vt
i , i = 0, 1, · · · , N − 1 (17)

In the above formulation, β ∈ [0, 1], parameter N denotes specified loop accounts which end the
iteration loop. Here the newest obtained position yt

N will be evaluated with the fitness function to
determine whether the solution exhibits the best current performance.

3.2. BA-ELM Network

Extreme Learning Machine (ELM) is a supervised learning algorithm originated from single-hidden
layer feed-forward neural networks (SLFNN) proposed by Guangbin Huang [15], and it achieves high
precision in the performance of classification and forecasting. Unlike other gradient-based learning
algorithms, the main idea is that the weights between the input layer and the hidden layer, the bias of
the hidden layer of ELM do not need to be adjusted. The solution is very efficient in that only the least
norm and the least square solution are needed (ultimately resolved into Moore-Penrose inverse problem).
Therefore, the algorithm has the advantages of using very few training parameters and achieving extremely
fast speed [23].

Here for standard SLFNN, the constructed model is formulated as following [24].

Ñ

∑
i=1

g
(
wi · xj + bi

)
βi = tj.j = 1, 2, ..., N (18)

t̂j(w, β, b) = [ ˆt1j · · · ˆtmj]
T
m×1

= [
l

∑
i=1

βi1g(w1Xj + bi) · · ·
l

∑
i=1

βimg(w1Xj + bi)]
T
m×1, (19)

Which:

Xj =
[

X1j X2j X3j · · · Xn−1j Xnj

]T
(20)

In the above formulation, wi denotes the weights between the input and the hidden layer. Xj denotes
the inputs historical wind speed data. bi denotes the bias. In addition, g(x) denotes the activate function.
βi which equals to (βij)N̂×M, represents the weight matrix between the hidden layer and the output
layer [4]. Here the above formulation can also be denoted as:

Hβ = T (21)

H is the hidden layer output matrix of neural network. The equation has a unique solution when
H is reversible (that means the number of hidden layers equals to the number of input data). While in
most cases, the number of hidden layers is far less than the number of inputs. Common solutions to solve
this problem include the gradient descend method to iterate parameters. However, it easily falls into the
problem of over-trained and time-costing. To overcome its weakness, the literature points out that a lot of
experiments show that H do not need to be adjusted, considering that adjusting input weights and biases
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of hidden layer will bring no possible gains [25]. Thus in ELM, when the input weights and biases are set
once for all, the formulation (21) equals to find the linear least square solution for formulation (22).∥∥Hβ̂ − T

∥∥ = min
β

‖Hβ − T‖ (22)

The detailed ELM training process can be found in [15]. Since the hidden layer nodes are pre-allocated
and input weights and biases remain unchanged, some initial weights and biases are likely to remain
non-optimized values [26]. For example, randomly allocated input weights might be zero, thus some
hidden layer nodes would fail, leading that the model cannot converge or a slow convergence. To optimize
these parameters, BA is introduced to optimize the weights and thresholds of ELM.

The BA-ELM training process can be concluded into two steps. First is to optimize the initial weights
(w,β), and biases of the hidden layer b with the usage of bat algorithm. Second is to train the constructed
ELM with these parameters and find the linear least square solution. The structure of BA-ELM is shown in
Figure 3.

Figure 3. Block of multi-step forecasting.

When running an iteration loop of BA, the fitness function will be invoked to update for the current
best weights and thresholds, which aims to reduce the error between the predicted value and the actual
wind speed value. Thus the current best of these parameters will be updated and substituted into ELM
when an iteration of BA finished. Then the iteration loop of BA will stop when satisfy the objective
tolerance of BA.

To evaluate the errors between the actual wind velocity and predicted ones, here two percentage
error indexes are employed: mean absolute error (MAE), and the mean square error (MSE). In addition,
the proposed BA-ELM are compared with traditional ELM, the promoting percentages are defined
as follows:

ξMAE =

∣∣∣∣ MAE1 − MAE2

MAE1

∣∣∣∣× 100% (23)

232



Processes 2019, 7, 158

ξMSE =

∣∣∣∣ MSE1 − MSE2

MSE1

∣∣∣∣× 100% (24)

Therefore we can output the forecasting wind speed at the end of our training process. The maximum
rotor speed wr,opt, can be deduced by applying Equation (5), which is a control signal to obtain the optimal
tip speed ratio.

For the effective reduction of prediction error, the short-term wind speed prediction technique is
applied in our model. Due to the uncertainty of system disturbance, it is necessary to improve the accuracy
of the model and performance index in real time. The implementation of the ideology could be realized by
solving the linear least square problem of β and T. In each step, the real time output values of the system
are detected and compared with the predicted values to correct the prediction error. When the system is
influenced by such factors as the non-linearity, interference, adaptation of constructed model and the like,
feedback compensation will correct the prediction output in time to make the optimization.

To verify the prediction accuracy of proposed BA-ELM network, we choose two indicators to test
the precision of multi-step forecasting: the mean absolute error (MAE) and the mean square error (MSE).
Training and testing data collected from three sites of different wind farms.

The speed forecasting results with BA-ELM algorithm is shown in Table 2. Here two points can
be concluded:

(1) Single step wind speed forecasting of ELM and BA-ELM is more accurately compared to two-step
forecasting, which indicates BA-ELM achieves high precision in shorter term forecasting.

(2) Both networks can get good training and testing accuracy in forecasting. With bat algorithm to
optimize the input weights and thresholds, BA-ELM is more inclined to obtain higher precision
according to the MAE and MSE indexes, which illustrates that BA could improve the forecasting
performance of ELM.

Table 2. Forecasting Performance of Modified ELM.

ELM BA-ELM Percentage Improvement

1-Step 2-Step 1-Step 2-Step 1-Step 2-Step

Site 1 MAE 0.138 0.233 0.109 0.193 ξMAE 21.014 17.167
MSE 0.055 0.062 0.037 0.060 ξMSE 32.727 3.226

Site 2 MAE 0.159 0.245 0.127 0.236 ξMAE 20.126 3.673
MSE 0.047 0.079 0.039 0.069 ξMSE 17.021 12.658

Site 3 MAE 0.175 0.244 0.132 0.40 ξMAE 24.751 1.639
MSE 0.026 0.108 0.025 0.086 ξMSE 3.846 20.370

4. Controller Design

In order to achieve the MPPT control, the state feedback controller is designed by measuring the
stator current and flux linkage compared with the desired current and flux reference. Considering the time
lag in the turbine’s wind speed measurement, we adopt the turbine mechanical speed ωr from blade shafts
to predict the one-step wind speed Vw [27]. The rotor flux is estimated with current flux model. For gird
side, the voltage oriented control (VOC) is proposed. The overall control scheme for wind turbine system
is shown in Figure 4. This figure contain two main parts: Grid Side and Machine Side. The Grid Side was
designed with Voltage Oriented Control strategy. The Machine Side was designed by combined BA-ELM
algorithm, MPPT and State Feedback Control strategy together.
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4.1. MPPT Control Objective

From Equation (4), we can deduce that the MPPT algorithm should be applied to extract the maximum
power from the wind turbine when the rotor speed is below the rated speed [28]. Moreover, a rotor power
control mechanism should be activated when the rotor speed exceeds the speed of rated power. On account
that different wind speed corresponds to unique optimal turbine speed, and the maximum power point is
expected so that the power can be extracted as much as possible.

From Equation (2), the reference of generator speed is calculated by the optimal tip-speed ratio λopt,
which is

ωr,opt =
λoptVw

R
(25)

Currently, the wind speed used in the control system is usually measured with an anemometer. While
in practical, the wind speed is changeable parameters [29]. In this paper, to record its real time value
and to optimize the power output, the estimated effective wind speed V̂w is obtained with wind speed
forecasting method mentioned above.

Figure 4. Block diagram of the wind energy conversion scheme.

The block diagram of the MPPT technique is presented in Figure 5. It can be seen that the low pass
filter was added to give a clear reference value of generator speed, which can avoid the turbulence of
turbine mechanics.
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Figure 5. Block diagram of the MPPT technique.

4.2. Control System Design for Machine Side

4.2.1. Internal Loop Design

To represent the internal loop, rewrite the model from the model (α, β) stationary reference frame
(8)–(12) to (d, q) rotary reference frame is given as follows:

i̇ds = −c1ids + ωmriqs + c2c3ψdr + c3 pωrψqr +
uds
c4

(26)

i̇qs = −c1iqs − ωmrids + c2c3ψqr − c3 pωrψdr +
uqs

c4
(27)

ψ̇dr = c5ids − c6ψdr + (ωmr − pωr)ψqr (28)

ψ̇qr = c5iqs − c6ψqr − (ωmr − pωr)ψdr (29)

ω̇r = c7
(
ψdriqs − ψqrids

)− fr

Jm
ωr − TL

Jm
(30)

where ωmr is the rotating speed of the reference frame, which can be chosen arbitrarily, if we choose:

dρr

dt
= ωmr = pωr + c5

iqs

ψdr
= pωr +

Msr

Tr

iqs

ψdr
(31)

Then Equation (29) will become

ψ̇qr = − 1
Tr

ψqr (32)

It is obvious that ψ̇qr converge to zero exponentially, which means that ψr = ψdr, then the state
equations of LIM will become:

i̇ds = −c1ids + pωriqs + c5
i2qs

ψr
+ c2c3ψr +

uds
c4

(33)

i̇qs = −c1iqs − pωrids − c5
idsiqs

ψr
− c3 pωrψr +

uqs

c4
(34)

ψ̇r = c5ids − c6ψr (35)

ρ̇r = pωr + c5
iqs

ψr
(36)

ω̇r = c7ψriqs − fr

Jm
ωr − TL

Jm
(37)
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Now, the two control inputs uds and uqs are designed through a state feedback as follows:

uds = c4

[
−pωriqs − c5

i2qs

ψr
− c2c3ψr + vds

]
(38)

uqs = c4

[
pωrids + c5

idsiqs

ψr
+ c3 pωrψr + vqs

]
(39)

where vds and vqs are additional control inputs that will be designed in the following stages.
Subtract Equations (38) and (39) in the induction machine model (33)–(37), we obtain the

following equations:
i̇ds = −c1ids + vds (40)

i̇qs = −c1iqs + vqs (41)

ψ̇r = c5ids − c6ψr (42)

ρ̇r = pωr + c5
iqs

ψr
(43)

ω̇r = c7ψriqs − fr

Jm
ωr − TL

Jm
(44)

Using PI algorithm to design the control inputs vds and vqs, we obtain:

vds = −kpd

(
ids − ids,re f

)
− kid

t∫
0

(
ids − ids,re f

)
dτ (45)

vqs = −kpq

(
iqs − iqs,re f

)
− kiq

t∫
0

(
iqs − iqs,re f

)
dτ (46)

In this subsection, the state feedback terms are used to decoupling the system. Then, two PI controllers
are proposed to achieve current tracking. The two desired currents ids,re f and iqs,re f will be designed in the
next subsection.

4.2.2. External Loop Design

In this section, we design the desired current ids,re f and iqs,re f . In the LIM, the flux reference ψr,re f is
set equal to constant. From Equation (32) we know ψ̇qr convergence to zero exponentially, which means
ψr,re f = ψdr,re f . One can determine from this equation that the desired current ids,re f can be expressed by:

ids,re f =
c6

c5
ψr,re f (47)

By using PI controller above, we can ensure that the current ids converges to ids,re f , which means that
the flux ψdr converges to ψdr,re f .

After that, we use the iqs,re f and ψr,re f to replace iqs and ψdr, rewrite Equation (44) as follows:

ω̇r = c7ψr,re f iqs,re f − fr

Jm
ωr − TL

Jm
(48)

Using PI controller to design the control input iqs,re f , we obtain:
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iqs,re f = −kpv

(
ωr − ωr,re f

)
− kiv

t∫
0

(
ωr − ωr,re f

)
dτ (49)

Here, the desired rotor speed ωr,re f is given with MPPT algorithm, which can be obtained from
Equation (25), which is:

ωr,re f = ω̂r,opt =
λoptV̂w

R
(50)

where V̂w is the wind speed forecast value with MBA-ELM algorithm.

4.3. Control System Design for Grid Side

In this part, the grid-side converter control has been adopted on the basis of an effective method:
voltage oriented control (VOC), as shown in Figure 4. This method is based on the idea that the injected
currents can be decoupled into the direct d and quadrature q components. For the reason that the aim is
to directly control the dc-link voltage, the control scheme is provided with a further control loop, which
output the direct reference current. To make the reactive power flow with the grid can be remaining to
zero, the quadrature current reference is set to zero.

5. Simulation Results

To verify the proposed algorithm, simulation is operated on MATLAB/Simulink R2014a (Matlab
2014a, The MathWorks, Natick, Apple Hill Campus, MA, USA, 2014). Considering the randomness and
volatility of wind speed, in order to avoid frequent switch between forecasting model and wind turbine
model, the average wind speed is taken as the basis of model switching. In the process of switching, try to
diminish the disturbance between models. The values of related parameters [30] are given in Table 3.

Table 3. System Specifications.

Symbol Parameter Value

λopt Optimal tip speed ratio 7
βopt Optimal blade pitch angle 0◦
R Blade radium of turbine blades (m) 2.5
Cp,max Power coefficient 0.45
Ppal Generator rated power (kW) 5.5
Vwpal Generator rated speed (rpm) 1500
Prated Rated power (kW) 2.2
Urated Rated voltage (V) 220
p Number of pole pairs 2
Rr Rotor resistance (Ω) 1.52
Rs Stator resistance (Ω) 2.9
Lr Rotor inductance (H) 0.229
Ls Stator inductance (H) 0.223
Msr Mutual inductance (H) 0.217
Jm Moment of inertia (kg·m2 ) 0.0048
fr Viscous friction coefficient (Nm·s/rad) 8.29 × 10−5

In this paper, the blade pitch β is set as optimal zero, which means that βopt = 0o. In consideration of
tracking the maximum power, we control the wind wheel torque through dominating rotational speed.
The controller parameters are given as kpd = 10, kid = 200; kpq = 10, kiq = 200; kpv = 2, kiv = 20.
The parameters of wind energy system is given in Table 3. To verify the performance of designed controller,
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based on MPPT algorithm, two typical wind speed signals are tested in the Matlab/Simulink environment.
The maximum value of Cp(λ, β) (Cp,max = 0.45) is obtained when β = 0o and λ = 7, as shown in Figure 2.
In the simulation, the reference rotor flux is set as ψr,re f = 0.7Wb.

5.1. Constant Wind Speed Signal Tracking Performance

In this subsection, the wind speed signal Vw is presented as step function, which is

Vw =

⎧⎪⎨⎪⎩
10 m/s, 0 s ≤ t < 6 s
20 m/s, 6 s ≤ t < 12 s
15 m/s, 12 s ≤ t < 18 s

(51)

Figure 6a shows that the pattern of the flux ψr follows up the desired reference flux linkage ψr,re f
with the steady state error almost zero. It also indicates the suitable adjusting time is achieved. The rotor
speed has the great tracking performance as exhibited in Figure 6b with the step change of reference speed.
The profile of current tracking performance is totally in accordance with the theoretical value, the induction
generator current adjust itself quickly to follow its reference, with the tracking error converges to zero in
real time on both d, q axis, as displayed in Figure 6c,d. Correspondingly, Figure 6e presents the profile of
the control inputs uds and uqs. The three-phase primary voltage Ua, Ub, Uc is presented in Figure 6f. It can
be seen that the variation of the wind velocity plays an essential faction in the change of V/I frequency.
The proposed technique, suitable for both the variable power and constant power working regions, has
been verified also on a real wind speed profile.

(a) Rotor flux ψr tracking performance (b) Rotor speed ωr tracking performance

(c) Direct stator current ids tracking performance (d) Quadratic stator current iqs tracking performance

Figure 6. Cont.
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(e) Control inputs uds and uqs (f) Three phase primary voltage Ua, Ub, Uc

Figure 6. Constant wind speed signal test performance.

5.2. Various Wind Speed Signal Tracking Performance

In this subsection, the emulator of wind turbine uses the equation to approximate the wind speed Vw,
which is:

Vw = Vw,av (1 − 0.18 cos (2πt)− 0.18 cos (2πt/60)) (52)

where Vw,av=10 m/s is the average wind speed.
Figure 7a shows the rotor flux tracking performance. It can be seen tracking error rapidly converges

to zero and there is no overshoot. Moreover, the adjustment time is very small. The rotor speed has the
same characteristics as exhibited in Figure 7b with the various wind speed signal. The direct and quadratic
stator currents tracking performance are presented in Figure 7c,d. It can be seen that the value of iqs varies
with different wind speed while the value of iqs keeps constant. Correspondingly, the control inputs uds
and uqs are shown in Figure 7e, and the three-phase primary voltage Ua, Ub, Uc is given in Figure 7f. It is
clearly that control inputs are smooth and continuous.

(a) Rotor flux ψr tracking performance (b) Rotor speed ωr tracking performance

Figure 7. Cont.
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(c) Direct stator current ids tracking performance (d) Quadratic stator current iqs tracking performance

(e) Control inputs uds and uqs (f) Three phase primary voltage Ua, Ub, Uc

Figure 7. Various wind speed signal test performance.

The correct behavior of the system has been verified also on a real wind speed profile on a daily scale.
Results show a good behavior of the system, capable of extracting the maximum generable power at low
wind speeds and the rated power at high wind speed by properly driving the blade pitch actuators.

6. Conclusions

This paper investigates a complete modeling of a maximum power point tracking (MPPT) wind
energy system with BA-ELM prediction model proposed to tackle the lag of wind speed measurement in
turbines and eliminate the discontinuity of wind speed sequence. The state feedback control technique
is adapted and combined with speed forecasting model to tracking the maximum power in induction
generator, in which the turbine torque has been compensated based on the control law. Here the PI
controller is also applied to enhance the controlling performance and robustness. Simulation results show
that the flux linkage and turbine rotational speed tracking the reference value almost without oscillation
and back to stable state, which indicates its highly acceptable tracking performance, considering the quick
reaction and following-up time. Thus, the maximal power point in WES can be obtained with the tracking
characteristics allow for the industrial variable-speed-tracking application. It can be seen that the proposed
technique is a great method and can be adopted in the industrial applications.
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Abstract: The best pricing method for any company in a perfectly competitive market is the pricing
scheme with regards to the marginal cost. In contrast to this environment, there is a market
with imperfect competition. In this market, the price can be affected by some players in the
generation/demand side (i.e., suppliers and/or buyers). In the economic literature, “market power”
refers to a company that has the power to affect prices. In fact, market power is often defined as
the ability to divert prices from competitive levels. In the electricity market, especially because
of the integration of intermittent renewable energy resources (RESs) along with the inflexibility of
demand, there are levels of market power on the supply side. Hence, implementation of demand
response (DR) programs is necessary to increase the flexibility of the demand side to deal with
the intermittency of renewable generations and at the same time tackle the market power of the
supply side. This paper uses economic theories and mathematical formulations to develop a flexible
responsive load economic model (FRLEM) based on real-time pricing (RTP) to show modification of
the load profile and mitigation of the energy costs for an industrial zone. This model was developed
based on constant elasticity of the substitution utility function, known as one of the most popular
utility functions in microeconomics.

Keywords: demand-side management; economic demand response model; consumer utility function;
electricity market restructuring

1. Introduction

The objective of demand-side management (DSM) in the industrial sector is to improve the
profile of electrical loads by two means: (1) energy efficiency solutions; and (2) demand response (DR)
programs. An energy efficiency solution reduces the electricity consumed to provide a certain service,
with the primary goal of reducing electricity costs and protecting the environment. These programs
reduce the total electricity consumption and peak electricity load with the help of energy-efficient
equipment and other efficiency improvement means. These programs consist of activities such as
installing thermal insulators, low-power equipment, and so on [1].

The DR program refers to a set of measures aimed at encouraging a voluntary change in the
consumers’ electricity usage pattern in response to changes in electricity prices or grid reliability
conditions. The increase in the demand-side capacity following the participation in such programs
could effectively reduce the electricity costs [2] and improve the robust operation of energy systems [3],
as well as enhance system reliability [4,5]. The US Department of Energy has defined DR as changes in
electric usage by end-use customers from their normal consumption patterns in response to changes in
the price of electricity over time (passive participation), or to incentive payments (active participation)
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designed to induce lower electricity use at times of high wholesale market prices or when system
reliability is jeopardized [6]. This DR definition is focused on the price of the wholesale market and
the occurrence of power crises. However, what is important for consumers is the retailer’s price,
which includes the cost of energy transmission, distribution, and peripheral services. The Nordic
Electricity Market has provided a more precise definition of DR as a voluntary temporary adjustment
of electricity demand as a response to a price signal or a reliability-based action [7].

The DR programs are classified into two major categories and several subcategories, as shown in
Figure 1 [8].

 
Figure 1. Classification of demand response (DR) programs.

In the industrial sector, electrical loads can be categorized into several groups in terms of their
response to DR programs. In [9], these loads are divided into three categories:

• The loads related to production machinery and equipment that apply a variable force on a
raw material over a defined cycle time (e.g., mechanical and hydraulic equipment, presses,
welding equipment, etc.). These loads cannot be modified, but can be switched on/off when
necessary. Therefore, these electrical loads can respond well to direct load curtailment commands
while supporting demand-shifting-type DR programs.

• The loads related to production machinery and equipment that apply a steady continuous force to
move fluids (e.g., pumps, fans, blowers, air compressors, etc.). The power consumption of these
loads can be adjusted as needed, so they respond to all DR programs.

• The loads related to production machinery and equipment that change the phase, composition,
or chemical properties of a raw material and run continuously unless stopped for maintenance.
Any interruption or change in the power supply of such machinery may result in the failure of
the production process or poor product quality. These loads never respond to DR programs.

According to the above-mentioned classification of electrical loads in the industrial sector, we can
conclude that some of these electrical loads (known as flexible demand) may respond well to DR
programs [9] However, there are several technical/operational challenges and obstacles ahead of the
application of such programs in the industrial sector. These mainly include [10–12]:

• Absence of proper responsive load economic models,
• Poor understanding of the technical potentials of DR programs in the industrial sector,
• Insufficient economic returns of DR programs,
• Inadequate time to adjust production or take action,
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• Absence of smart platforms for reciprocal communication between retailers and
end-use customers.

In general, access to a flexible responsive load economic model (FRLEM) greatly contributes
to our knowledge about the impact of consumer participation in DR programs and their influence
on the load profile [13–15]. Therefore, many such models have been developed for DR programs of
different types, such as time of use (TOU), critical peak pricing (CPP), and real-time pricing (RTP)-based
programs [16–20]. However, most of these models utilize the concept of price elasticity, which assumes
the point elasticity as the price elasticity of demand at a particular point on the demand curve. In other
words, these models linearize the demand curve at a specific operating point instead of considering
the entire demand. This means that they consider the price elasticity of demand as a pre-known
fixed value at a point on the demand curve. Since the price elasticity varies along the demand curve,
this assumption creates a discontinuity in the decision-making process. Therefore, these models will
not perform well for the industrial sector, where a given DR model is supposed to consider countless
consumers with different loads [21,22].

In References [23,24], economic theories and mathematical formulations are used to present
a novel model for TOU-based DR programs with effective market-oriented models for residential
consumers to change their time of consumption (i.e., to achieve adjustability in the DR model).
Application of DR programs for the operation management of energy hubs is investigated in
Reference [25], where responsive thermal and electrical loads are presented with related temporal
behavior. Authors in [26] presented a day-ahead multi-objective optimization model for a building
energy management system under TOU price-based DR programs, which merges building-integrated
photovoltaic with other generations to optimize the economy and occupants’ comfort by the synergetic
dispatch of source–load–storage. In [27], an incentive DR program is proposed to assist customers to
participate in the program. The proposed plan provides tools that can help the customers’ premises to
take part in DR programs. Likewise, a multi-level demand charge, along with an RTP program and
incentivized signals is proposed in [28] for the participation of thermal energy storage (TES)-integrated
commercial buildings in DR programs. The findings demonstrate that the existence of TES in a
commercial building could result in higher flexibility for joining DR programs, and so to further
decrease energy costs while maintaining the level of comfort for residents.

In this paper, we use economic theories and mathematical formulations to develop an RLEM for
RTP-based programs with 24-h time intervals. Our aim in this effort was to achieve a model with
two primary features: adaptability and adjustability. Here, adaptability refers to the applicability
of the proposed model to all types of consumers regardless of their response to the DR program.
Moreover, since the operating plans of industrial consumers may vary depending on their policies,
extensive disparity in the hours of power usage in the industrial sector might be needed. Because of
this, the model to be developed for this sector has to be sufficiently adjustable, which is also considered
in this work. In light of the reviewed literature, the contributions of this work can be summarized as:

• A novel model is presented based on economic theories and mathematical formulations to enable
industrial customer response to RTP-based DR programs for cost minimization,

• An efficient framework is proposed for industrial load management by considering different
levels of participation in DR programs,

• A working platform is introduced to support key functionalities of an industrial DR program
known as adaptability and adjustability.

The rest of this paper is given as follows: Section 2 explains theory of consumer choice.
Simulation results together with model validation under different test scenarios are presented in
Section 3. Finally, Section 4 concludes the paper by summarizing the main results.

245



Processes 2019, 7, 147

2. Theory of Consumer Choice

As mentioned in the introductory part of the paper, a model to be used for an RTP-based DR
program should be able to account for a wide range of customers by featuring both adaptability and
adjustability. Many of the existing models are based on the concept of price elasticity of demand,
which cannot meet these features in a continuous process, as required for RTP-based programs.

The theory of consumer choice is a well-known microeconomics theory that explores how
consumers spend their economic resources according to their preferences and subject to their budget
constraints. Two important instruments of this theory are the utility function and the budget constraint.
The interactions of these functions and constraints determine how consumers make their spending
decisions [29,30].

The utility function is an economic concept that represents the interest in gaining greater returns.
There is no specific method for formulating this function, and it is often derived through empirical
methods. One of the most popular standard utility functions developed for microeconomic analyses is
the constant elasticity of substitution (CES).

This function is widely popular among economists working on microeconomic problems, and is
normally applied where there are several different commodities available for consumption. The CES
utility function for n commodities is [31]:

U(X1, X2, X3, . . . , Xn) =

(
n

∑
i=1

α
1−ρ
i Xρ

i

) 1
ρ

0 �= ρ ≺ 1
n

∑
i=1

αi = 1; αi > 0 (1)

In the above formulation, (ρ − 1)−1 is the elasticity of substitution and αi denotes the share factors.
To expand this function to the electricity market, we assume that electrical energy with a specific

price P1 is considered as a commodity (X1), and electrical energy at a specific price of P2 is considered
as a commodity (X2). Thus, assuming n electricity price levels for a 24-h period, we will have
n commodities.

Parameter ρ determines the consumer’s desire to participate in DR program. The greater the
value of ρ, the more willing the customer will be to participate in DR program. This parameter
also provides the first feature of a worthy DR model, known as adaptability. This means that by
changing/fine-tuning this parameter, a broad range of customers in the electricity market can be
considered. In the same way, parameter αi (or share factors) accounts for adjustment of consumption
ratio over the time in accordance with the customer’s request. That is, changing the αi parameter
provides a new arrangement of the consumption in each hour. This enables the model to account for
adjusting the amount of consumption in every time interval, which is the second feature of a worthy
DR model, known as adjustability of consumption levels. From now on, parameter ρ is named as the
adaptability parameter while αi is named as the adjustability parameter.

In the theory of consumer choice, consumer’s spending decisions are subject to budget constraints.
This theory considers the consumer behavior as a maximization problem where the goal is to obtain the
highest profit from limited resources. Since a consumer’s desire for making more profit is unlimited,
the only factor that limits consumption is the limited budget. Therefore, the utility function subject to
the budget constraint is:

U(C1, C2, C3, . . . , C24)

s.t. B =
24
∑

i=1
(Ci · Pi)

(2)
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Here, it is assumed that the consumer adjusts their flexible power consumptions (Ci) according to
the pricing scheme. Therefore, the consumer aims to maximize the following utility function:

Max

⎧⎨⎩U(C1, C2, C3, . . . , C24) = (
24
∑

i=1
α

1−ρ
i Cρ

i )

1
ρ

⎫⎬⎭ ; 0 �= ρ ≺ 1 ;
n
∑

i=1
αi = 1; αi > 0

s.t. B =
24
∑

i=1
(Ci · Pi)

(3)

According to the method of Lagrange multipliers [32]:

L =

(
24

∑
i=1

α
1−ρ
i Cρ

i

) 1
ρ

+ λ

[
B −

24

∑
i=1

Ci · Pi

]
(4)

The partial derivatives of Equation (4) with respect to any Ci and λ are given by:

dL
dCi

= α
1−ρ
i Cρ−1

i ·
(

24

∑
j=1

α
1−ρ
j Cρ

j

) 1−ρ
ρ

− λPi = 0 ⇒ λPi = α
1−ρ
i Cρ−1

i ·
(

24

∑
j=1

α
1−ρ
j Cρ

j

) 1−ρ
ρ

(5)

dL
dλ

= B −
24

∑
i=1

Ci · Pi= 0 (6)

Taking (5) and (6) into account, one can easily conclude that:

C2 = α2
α1

(
P2
P1

) 1
ρ−1 · C1

C3 = α3
α1

(
P3
P1

) 1
ρ−1 · C1

...

C24 = α24
α1

(
P24
P1

) 1
ρ−1 · C1

(7)

By substituting the relations extracted from (7) into (6), we arrive at:

B = C1 · P1 +
α2
α1

(
P2
P1

) 1
ρ−1 · C1 · P2 +

α3
α1

(
P3
P1

) 1
ρ−1 · C1 · P3 + . . . . . . . . . + α24

α1

(
P24
P1

) 1
ρ−1 · C1 · P24;

⇒ C1 = B

P1+
α2
α1

(
P2
P1

) 1
ρ−1 ·P2+...+ α24

α1

(
P24
P1

) 1
ρ−1 ·P24

(8)

Assuming Ω as the denominator of the above formulation, we have:

Ω = P1 +
α2

α1

(
P2

P1

) 1
ρ−1 · P2 +

α3

α1

(
P3

P1

) 1
ρ−1 · P3 + . . . . . . . . . +

α24

α1

(
P24

P1

) 1
ρ−1 · P24 (9)

Therefore, the load model for a 24-h daily period in the presence of an RTP-based DR program is:

C1 = B
Ω

C2 = α2
α1

(
P2
P1

) 1
ρ−1 · B

Ω

...

C24 = α24
α1

(
P24
P1

) 1
ρ−1 · B

Ω

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⇒

⎛⎝ Ch = αh
α1

(
Ph
P1

) 1
ρ−1 · B

Ω

h = 1, 2, . . . , 24

⎞⎠ (10)
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Since the industrial production in any industrial zone is directly related to their electricity usage,
there is no difference between the total electricity consumed over a 24-h period before and after the
implementation of the DR program. In other words, the change will be in the pattern (hours) of
consumption, not in the total power consumed, which means:

Cprimary =
24

∑
h=1

Ch =
24

∑
h=1

αh
α1

(
Ph
P1

) 1
ρ−1 · B

Ω
(11)

where Cprimary is total electricity consumed before the DR program.

B =
Ω.Cprimary

24
∑

h=1

αh
α1

(
Ph
P1

) 1
ρ−1

(12)

By substituting (12) into (10), it can be deduced that:

Ch =
αh
α1

(
Ph
P1

) 1
ρ−1 · Cprimary

24
∑

h=1

αh
α1

(
Ph
P1

) 1
ρ−1

(13)

As shown in (13), the demand for each hour Ch is a function of budget B, price Ph, adjustability
parameters αh, and adaptability parameter ρ. The consumers’ budget is limited and prices are
determined by market mechanism and retailers. Thus, the parameters related to the customer are ρ

and αh. These parameters decide the extent of consumer participation in the DR program, and can be
used to estimate how the consumer responds to such programs.

3. Performance Evaluation

In this section, we examine the performance of the proposed model. The load profile used for this
purpose (Figure 2) belongs to an industrial zone that was adopted from [33].

In this industrial zone, as shown in Table 1, operation of industrial units is continuous and are
scheduled in three shifts per day [34]. Also, the electric energy demand is divided into non-flexible and
flexible parts. In each work shift, it is assumed that the minimum demand relates to the non-flexible
part while the rest of the electrical demand relates to the flexible loads. Hence, we are only able to
manage the flexible part of the demand to reduce the cost of purchasing electrical energy.

Table 1. Work shifts.

Day Shift Evening Shift Night Shift

08:00–15:00 16:00–23:00 00:00–07:00

Note that the work shift times can affect the cost of a company. In general, employers pay a
premium to the night-shift workers. Hence, there is less willingness to engage workers in the night
shift from the company owner’s perspective. Since the cost of paying for night-shift workers may
be higher than the cost of electricity, there should be a trade-off between these two. The proposed
DR model in this paper could also address this issue with the help of the adjustability parameters α.
Wages are assumed to be constant for any time within a given work shift.
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Therefore, the values of adjustability parameters αh are considered different among different work
shifts while remaining unchanged within a work shift, that is:⎧⎪⎨⎪⎩

αday = αh1 h ∈ 08 : 00 − 15 : 00
αevening = αh2 h ∈ 16 : 00 − 23 : 00
αnight = αh3 h ∈ 00 : 00 − 07 : 00

(14)

As an example, the condition αday > αnight denotes that the company owner’s desire to use electrical
energy for the day shift is higher than for the night shift. On the other hand, when αday = αevening = αnight,
the industrial DR participant demonstrates a homogeneous behavior along the day, meaning that there
is no difference among the work shifts from the company owner’s viewpoint.

In the following sections, the effectiveness of this model is validated under two case studies.

Figure 2. Load profile used in the evaluation.

3.1. Case I

In the first case, we simulated four scenarios, illustrated in Table 2. In the first scenario simulation,
customers (e.g., industrial plants) showed no response to price changes, that is, there was no
participation on the part of consumers. In the next three scenarios, consumers participated by the
amounts shown in the third column of Table 2. As stated earlier, the higher the ρ value, the greater
the participation of customers in the DR program. The following assumptions were also made for the
aforementioned scenarios:

(a) The price signal for the examined industrial zone was provided in two ways (Note: in both
pricing methods, the average price was the same for over 24 h):

(1) RTP pricing (as shown in Figure 3a, belongs to the date 28 August 2017, available in [35]);
(2) TOU pricing according to work shifts (as shown in Figure 3b);

(b) The adjustability parameters values were the same for all work shifts, that is,
αday = αevening = αnight.
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Table 2. Performance evaluation of the proposed model in different scenarios. RTP: real-time pricing;
TOU: time of use.

No. Program
Partnership

Level
Energy Consumption

(MW)
Budget

(Euro/kW)
Budget

Change (%)

1
TOU - 1528 69,064 base
RTP 1528 71,508 base

2
TOU

0.3
1528 63,906 −8.07

RTP 1528 63,273 −13.01

3
TOU

0.5
1528 62,769 −10.02

RTP 1528 62,045 −15.25

4
TOU

0.8
1528 59,254 −16.55

RTP 1528 58,433 −22.37

The results obtained by modelling of the scenarios are presented in Table 2. As the fourth column
of this table shows, all scenarios had the same total energy consumption. This is consistent with our
second assumption, which states that industrial units do not reduce their total energy usage but shift
the usage from high-price hours to low-price hours to minimize their electricity bill without altering
their output.

According to the budget column of the first scenario in Table 2, the RTP program had greater cost
implications for customers than TOU program. This is a realistic result, as implementation of RTP
program is more likely to transfer the risk of the wholesale market from retailers to consumers.

(a) 

(b) 

Figure 3. Electricity prices according to (a) real-time pricing (RTP) pricing; (b) time of use (TOU) pricing.
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In scenario No. 2, although both RTP and TOU programs were modelled with the same participation
level (ρ = 0.3), the customer’s electricity budget in RTP was less than in TOU.

This was also true for the reduction in electricity budget, meaning that even a low participation in
the RTP program resulted in a lower electricity budget compared to the base scenario and TOU.

An examination of Table 2 also reveals similar results for scenarios No. 3 and 4. However, as the
participation rates assumed in these scenarios were greater than before, the consequent reductions
in electricity budget were more significant, which implies that industrial customers can reduce their
electricity bill without reducing their consumption.

To get a better insight into the level of commitment in industrial DR programs over the work shifts,
the load profiles are plotted in Figures 4 and 5 for the different scenarios in Table 2. It can be observed
that with the increase of ρ, the consumer’s wish to take part in DR programs, especially during the
night shift, increased, as the price of electric energy is low. This effect is clearly illustrated in Figure 5
for each time interval.

Figure 4. The impact of TOU programs on load profile.

Figure 5. The impact of RTP programs on load profile.
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3.2. Case II

Table 3 shows the changes in the budget and demand for adaptability parameter ρ and
adjustability parameters α = (αday, αevening, αnight).

In Table 3 for a given ρ, when αday = αevening = αnight, as mentioned before, there was no difference
between the work shifts. Because of this, consumption shifted to a night shift when the price of
electrical energy was low. On the other hand, different behavioral patterns during a given working day
could be emulated by considering different adjustability values. As an example, in row 3 of Table 3,
αday = 1.1 × αevening and αday = 1.3 × αnight, which denotes that the company owner’s desire to use
electrical energy for the day shift was higher than the evening shift and much higher than the night
shift. Since the price of electrical energy for the day shift is higher than other shifts, the amount of
required budget is increased relative to the previous state.

In Table 3 for a given α, an increase in ρ (and consequently consumers’ participation) led to a
decrease in the budget, which reflects the consumer’s tendency to move towards more participation
in the DR program. As mentioned and shown in Table 3, the total daily power consumption in the
absence and presence of DR action remained the same and only shifted among different working hours.

As shown in Figures 6 and 7, the required budget and day shift consumption was reduced
by increasing the level of participation ρ. On the other hand, with the increase of the adjustability
parameters αday for the day shift (which means an increase in the inclination of electricity consumption
for day shift with high energy prices), the amount of the budget and day-shift consumption
also increased.

The results obtained for DR model during the night shift are shown in Figure 8. As can be seen,
with the increase of ρ, there was a growing inclination in the power consumption of this shift due to
the lower electricity prices. In a like manner, with the increase of the adjustability parameters αnight,
the consumption tendency increased at the night shift.

Table 3. Changes in the budget and demand.

Scenario
Budget (Euro) and Demand (kW)

ρ = 0.3 ρ = 0.5 ρ = 0.8

base case—without DR 71,508 and 1528
αday = αevening = αnight 63,273 and 1528 62,045 and 1528 58,433 and 1528

αday = 1.1 × αevening and αday = 1.3 × αnight 64,046 and 1528 62,727 and 1528 58,741 and 1528

αρ

αρ

Figure 6. Changes in the budget for different values of adaptability and adjustability parameters.

As can be seen from the simulation results, the introduction of the two mentioned control
parameters in an industrial DR action creates a strong tool to adjust the amount of participation and
consumption according to customer preferences. So, the proposed DR model is able to reconcile to
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different customers with different flexibilities against prices, and allows the consumption levels to be
adjusted over different work shifts.

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation, as well as the experimental conclusions that can
be drawn.

αρ

αρ

Figure 7. Changes in the day-shift consumption for different values of adaptability and
adjustability parameters.

αρ

Figure 8. Changes in the night-shift consumption for different values of adaptability and
adjustability parameters.

4. Conclusions

The development of flexible responsive load economic models is an important requirement for the
proper evaluation of the consumer participation impact on load profiles. In this paper, economic models
and mathematical formulation were used to develop a new economic model for RTP-based DR
programs. Compared to the existing models reported in the same area, the model presented in
this paper was able to integrate consumers’ tendency to modify the load profile and reallocate the
consumption at any time. This feature enabled the DR model to be customized for every type of
consumer with different preferences. Unlike the previous DR models, which are mainly based on
the concept of price elasticity at a specific operating point, the proposed model considered the whole
demand curve modelling for DR actions. Additionally, the presented model demonstrated that the
classical economic decision-making process for each consumer can be applied. In this way, the decision
maker can identify and assess all possible options and consequences of DR implementation and select
the most logical way of doing so. For example, retailers can use this model to build optimal bidding
curves or help network operators get the information they need about responding to the DR program
in order to determine network tariffs that are appropriate for managing congestions. It was also
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demonstrated that the proposed model enables system operators to investigate the impact of different
participation levels on the aggregated load profile.
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Abstract: Energy is one of the valuable resources in this biosphere. However, with the rapid increase
of the population and increasing dependency on the daily use of energy due to smart technologies
and the Internet of Things (IoT), the existing resources are becoming scarce. Therefore, to have an
optimum usage of the existing energy resources on the consumer side, new techniques and algorithms
are being discovered and used in the energy optimization process in the smart grid (SG). In SG,
because of the possibility of bi-directional power flow and communication between the utility and
consumers, an active and optimized energy scheduling technique is essential, which minimizes the
end-user electricity bill, reduces the peak-to-average power ratio (PAR) and reduces the frequency
of interruptions. Because of the varying nature of the power consumption patterns of consumers,
optimized scheduling of energy consumption is a challenging task. For the maximum benefit of
both the utility and consumers, to decide whether to store, buy or sale extra energy, such active
environmental features must also be taken into consideration. This paper presents two bio-inspired
energy optimization techniques; the grasshopper optimization algorithm (GOA) and bacterial
foraging algorithm (BFA), for power scheduling in a single office. It is clear from the simulation
results that the consumer electricity bill can be reduced by more than 34.69% and 37.47%, while PAR
has a reduction of 56.20% and 20.87% with GOA and BFA scheduling, respectively, as compared to
unscheduled energy consumption with the day-ahead pricing (DAP) scheme.

Keywords: appliance scheduling techniques; bacterial foraging algorithm (BFA); energy management
system; energy optimization algorithms; grasshopper optimization algorithm (GOA); smart grid

1. Introduction

With the increased use of modern technologies and smart appliances in every field of life, energy
consumption is rapidly increasing. The rising electricity demand cannot be fulfilled by the traditional
electric power grid. That is why the smart grid is becoming more popular to fulfil daily electricity
demand. The smart grid (SG) is supposed to be the incorporation of information technologies (IT)
in the existing power grids to increase their robustness and consistency. Smart meters (SM) are
used for communication and energy monitoring purposes in SG. To schedule smart appliances in
residential, commercial and industrial sectors, an energy management controller (EMC) is installed
at the consumer premises. Demand side management (DSM) has many strategies that help to solve
the energy optimization problem by peak clipping, load shifting, strategic conservation, flexible
load shifting, strategic load growth and valley filling. By using these strategies, the load is shifted
from high demand timings to low demand timings [1]. The two main functionalities of DSM are
proper management of the load and demand response (DR) [2]. Consumer load management is also
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known as DSM. It is the process of shifting electricity demand from high-demand (on-peak) hours to
low-demand(off-peak) hours to decrease the energy cost. DR is the consumer’s response to variable
pricing signals. There are two shapes of DR: in the form of energy price reduction or some incentives
to consumers [3,4].

The main objectives of the energy management system (EMS) are the reduction of the energy bill,
PAR and consumer discomfort. Many algorithms have been deigned to accomplish the aforementioned
objectives. For cost and energy consumption minimization, mixed integer linear programming (MILP),
mixed integer nonlinear programming (MINLP), non-integer linear programming (NILP) and convex
programming were used in [5–8]. However, these techniques are used for fewer appliances and have
a large convergence time. In order to overcome these deficiencies, researchers use meta-heuristic
techniques to resolve the issue of energy optimization. For cost minimization, the genetic algorithm
(GA) was proposed by the authors in [9,10]. For cost minimization and aggregated power consumption,
differential evolution (DE) and ant colony optimization (ACO) were used in [11,12].

In this research work, we use GOA and BFA techniques for a single office using the DAP pricing
signal. The simulation is performed in MATLAB, and we obtained the results of PAR, cost and average
waiting time. The rest of the paper is divided into the following sections: Related work is illustrated in
Section 2. Section 3 discusses the problem statement and approach. Section 4 depicts the system model
and problem formulation. The proposed schemes are described in Section 5. Simulation results are
illustrated in Section 6 to demonstrate some of the achievements. The paper is concluded in Section 7.

2. Related Work

In SG, numerous algorithms have been proposed by researches, for energy-efficient optimization
in residential, commercial and industrial areas, for the benefits of both consumers and the utility. The
main targets of researchers have been balancing the load and decreasing electricity cost. Different
parameters such as pricing mechanisms, types of appliances and different user demands are considered.

Hybrid bacterial foraging and genetic (HBG) algorithm-based DSM for smart homes was
proposed by the authors in [13]. They focused on peak load reduction, cost minimization, user
comfort maximization and load shifting. Through HBG cost, PAR and waiting time were reduced
compared to GA and BFA. A smart community-based energy optimization technique was discussed
in [14]. The authors focused on the end-user’s high comfort level and less energy usage with
integration of renewable energy sources using particle swarm optimization (PSO). A time-constrained
nature-inspired algorithm-based home energy management (HEM) system was proposed by the
authors in [15]. GA, moth-flame optimization algorithm (MFO) and their hybridization were proposed
for energy bill reduction and achieving end-users’ high comfort level. A HEM system using cuckoo
search was proposed in [16]. The performance of GA and the cuckoo search algorithm was compared
with respect to the reduction of energy cost, PAR and user discomfort by using the DAP signal. Cuckoo
search incorporation with levy flights of some kind of birds and fruit-flies were considered for the
breading strategy in [17]. In many optimization problems, because of its generic and robust nature,
the cuckoo search is superior to GA and PSO. The authors used GA, TLBO (teacher learning-based
algorithm), LP (linear programming) and TLGO (teacher learning genetic optimization) algorithms
for appliances scheduling in [18]. They categorized flexible appliances as “time flexible” and “power
flexible” for proficient energy consumption of consumers in SG. This approach enables energy
consumers to schedule their appliances to get optimized energy consumption. This approach also
maximizes the comfort level of customers with restricted total energy consumption. In [19], the authors
discussed optimal operation methods for a micro-grid. They used the improved adaptive evolutionary
algorithm and swarm optimization algorithm. In [20], the authors presented an optimal scheduling
scheme for residential appliances, using the DAP signal in smart homes. This algorithm reduced peak
cost to 22.6% and normal price to 11.7%. This approach does not rely on the energy optimization
approach. In [21], the authors discussed load shifting, cost minimization and the energy storage system
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(ESS). They proposed a system that enables the user to buy energy during low demand timings and
sale their stored energy to the utility during on-peak hours.

In [22], the gradient-based particle swarm optimization (GPSO) technique for demand response
(DR) in smart homes, considering the load and energy price uncertainties, was discussed. Having an
optimal scheduling of power, the heuristic-based genetic algorithm (GA) was used for demand
response (DR) in HEM systems in [23]. In this paper, the authors used GA, TLBO (teaching
learning-based optimization), EDE (enhanced differential evolution) and proposed EDTLA (enhanced
differential teaching learning algorithm) for minimization of the residential total energy cost and
end-user discomfort level. The authors in [24] discussed the cooperative multi-swarm particle swarm
optimization (PSO) technique for achieving their goals of cost minimization; however, they did not
considered PAR. In [25], the authors used GA with the DAP scheme for optimally scheduling the
load demand. In [26], the authors introduced a load balancing mechanism in commercial, residential
and industrial areas. They compared the usage of electricity with GA and without GA in DSM. By
using GA-based DSM, they reduced the electricity usage during peak hours. However, PAR and
end-user discomfort were not discussed. In [27], the authors used PSO for scheduling of smart electric
appliances for electricity cost minimization. They took different cases of changing the renewable energy
consumption rate and user comfort level and applied it in a smart community as a case study. The
aforementioned optimization techniques achieved the energy cost minimization and PAR reduction by
losing the end-user comfort. Therefore, in this work, we have explored and analyzed two bio-inspired
algorithms for the energy optimization problem in the residential sector: GOA and BFA. This is because
the algorithms were developed based on the perfect optimization behavior of naturally-available
organisms. Through simulations, we have shown that using bio-inspired optimization algorithms, the
energy cost and PAR can be reduced compared to the unscheduled load.

3. Problem Statement and Approach

Traditional electric power grids are unable to fulfill today’s electricity demand. This deficiency has
raised the demand for an energy management system. Through different techniques and algorithms,
we can solve the energy optimization problem. Researchers have applied different bio-inspired
algorithms, however, they have not considered the end-user comfort by reducing their waiting time
along with the reduction of energy cost and PAR. Therefore, in this work, we use the GOA and BFA
techniques for the office energy management system (OEMS), using DAP. Eight appliances have been
considered, named automatically operating appliances (AOAs). We have divided 12-h office-timings
into 60 time slots of 12 min in duration. The simulation results show that by using GOA and BFA in
OEMS, we can reduce the total cost to 34.69% and 37.47% and PAR to 56.20% and 20.87%, respectively.

4. System Model and Problem Formulation

4.1. Model Architecture

The efficient utilization of the existing energy resources is necessary in our daily life. The
proposed system model architecture is depicted in Figure 1. It consists of a smart meter (SM),
the energy management controller (EMC), automatically-operated appliances (AOAs) and advance
distribution and communication systems. EMC receives the required energy consumption outline from
all connected appliances, which schedule the energy consumption pattern according to the pricing
signal. The utility sends the pricing signal to the smart meter, which is then forwarded to the EMC.
At the same time, the SM receives the consumed electricity reading from EMC and transmits it to the
utility. Through a wireless communication network, i.e., Wi-MAX, ZigBee, Bluetooth, WiFi, GSM or
GPRS or using PLC (power line communication), the utility and SM communicate with each other. In
this work, we considered only a single office with eight appliances. In our case, the decision would
be made after every 12 min, not 1 h, because we have divided 24 h into 120 time slots, each equal to
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12 min. Here, we considered 120/2 slots for offices because offices only consume energy during the
daytime, which is denoted by symbol s.

s ∈ S = {1, 2, 3...60} (1)

The scheduled vector of office energy consumption (OEC) for a single appliance is:

OECs
ac = {OEC1

ac, OEC2
ac, OEC3

ac...OEC60
ac } (2)

Total energy consumption OECT is calculated as:

OECT =
60

∑
s=1

(
12

∑
i=1

OECs
i ) (3)

Table 1 gives the specifications of different appliances in an office.

Table 1. Specifications of office automatically operating appliances (AOAs).

S. No. AOAs LOT Power Rating (kW) OTIs

1 Air conditioner 30 4.00 1–60
2 Computer 40 0.25 5–55
3 Electric kettle 2 3.00 1–55
4 Coffee maker 3 2.00 10–45
5 Water dispenser 45 2.5 1–60
6 Oven 5 5.00 10–50
7 Fan 25 3.5 1–60
8 Light 35 2 1–60

Figure 1. The proposed system model architecture.

4.2. Problem Formulation

In the proposed work, we formulate our problems of: (a) end-user high comfort level,
(b) consumers’ electricity bill minimization and (c) minimization of PAR by optimization of the energy
consumption profiles of office appliances, using the multiple knapsack problem (MKP) scheduling
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technique. MKP is a capacity (resources) allotment problem. It consists of N number of capacities and
Q number of objects [28].

MKP is a combinatorial problem. In MKP, the stuff quantity, having different weights and values,
can be kept into a knapsack of a certain capacity, such that the worth of the knapsack should be
maximum, as shown in Figure 2.

20 kg 
capacity

20 kg 
capacity

Figure 2. The multiple knapsack problem (MKP) formulation.

We consider U number of knapsacks and use MKP as the scheduling mechanism to map our
problem as follows:

• Power capacities of consumers in every time interval are mapped as U number of knapsacks;
• Appliances in an office are mapped as “Q” number of objects;
• The weight of every object in MKP is mapped as appliances’ consumed energy in every time

interval. This is assumed to be time invariant;
• In MKP, the worth of each object in a particular time interval is mapped as the cost of appliances’

consumed energy in that interval of time [29].

If OECT is the maximum energy capacity in every time slot, then the end-user electricity cost
along with PAR can be minimized, keeping aggregated energy consumption of the cumulative office
appliances within the maximum threshold limit of CT .

Mathematically, this constraint can be shown as follows:

OECT ≤ OECmax (4)

Here, OECT is the cumulative energy demand of the end-user and OECmax is the maximum
energy capacity in a particular interval of time available from the utility grid. MKP scheduling tells us
to keep the total energy demand of the end-user less than or equal to this maximum energy capacity
threshold.

4.3. The Electricity Cost

In order to calculate total energy cost, we use the following equation:

C =
60

∑
h=1

(Erate × Prate) (5)

C is the total cost in 60 time slots; Erate is the energy cost per hour; Prate is the connected appliances’
power rating.
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4.4. The Power Consumption

The power consumption of each appliance is calculated by the following equation:

Load =
60

∑
h=1

Prate × X (6)

Prate is the power rating, and X is the ON/OFF status of an appliance.

4.5. PAR

For RAR, the following equation is used.

PAR =
max(load)
Avg(load)

(7)

4.6. Waiting Time

This is that time interval when a consumer wants to switch-ON an appliance. However, due to the
scheduling of appliances, the consumer has to wait for a certain amount of time. Figure 3 shows that
α is the appliance starting time, but actually, the appliance will start its operation at η. mathematically,
the waiting time is given as:

τw = η − α (8)

The normalized waiting time is given by:

τw =
η − α

(β − LOT)− α
(9)

where (β − LOT) is the last starting time of an appliance, so that it will complete its operation.

Figure 3. Appliances starting time, operation ending time and waiting time.

4.7. Objective Function

Our objective function can mathematically be expressed as follows:

min
( 60

∑
m=1

[ω1 ×
N

∑
n=1

(OECT,n × Erate) + (ω2 × τw)]

)
(10)

where Erate is the energy cost in every interval of time. The aim of our objective function is to minimize
electricity cost, while keeping a higher consumer comfort level by the reduction of waiting time.
ω1 and ω2 are weighting factors of the two portions of our objective function. Their values can be
either “0” or “1”, so that (ω1 + ω2) = 1 [9]. This reveals that either ω1 or ω2 could be zero or one. This
means that, if a consumer does not want to schedule his/her appliances, then these weighting factors
will be ω1 = 1 and ω2 = 0 in the objective function.
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5. Scheduling Algorithms

To solve the appliances optimal scheduling problem, in order to achieve the lowest energy
cost, lower PAR and less user discomfort, different scheduling algorithms have been proposed in
the literature. In this paper, we have proposed GOA and BFA. A brief description of both of these
algorithms is given below.

5.1. Grasshopper Optimization Algorithm

A grasshopper is a kind of destructive insect, which is known as a pest because it damages crops.
There are eleven thousand species of grasshopper [30]. It is generally considered as a flying animal. As
a grasshopper reaches its adult stage, it passes through the stages of eggs, nymph and adult, as shown
in the Figure 4.

Figure 4. The lifecycle of a grasshopper.

Usually, grasshoppers can be seen in the form of a swarm in nature. They attack agricultural lands
and become a nightmare for formers. The swarming behaviour is found in both adult and nymph
grasshoppers [31,32]. Generally, a locust swarm contains five billion of grasshoppers and spread over
an area of 60 square miles. Nature-inspired algorithms have a unique search mechanism for food. This
consists of two techniques: exploration and exploitation.

(a) Exploration: The process in which the algorithm finds a new solution from the current solutions
in the search space.

(b) Exploitation: The process in which algorithm searches the surrounding search space.
The mathematical model of GOA, which carries the swarming behaviour of a grasshopper, is

given as in [33].
Pi = Si + Vi + Ai (11)

In the above equation, Pi shows the ith position of a grasshopper, Si gives the social collaboration,
Vi gives the gravitational force over a grasshopper and Ai is the air-advection. To produce randomness
in the above equation, it becomes:

Pi = (x1 × Si) + (x2 × Vi) + (x3 × Ai) (12)

where x1, x2 and x3 are random numbers between zero and one. Si is modelled as:

Si =
N

∑
i=1

s(dij)d̂ij..................j �= i (13)

where N is the number of search agents, s defines the social interaction between two grasshoppers i
and j, dij is the respective distance between ith and jth grasshoppers and is given by:
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dij = |Pj − Pi| (14)

and:

d̂ij =
(Pj − Pi)

dij
(15)

is the unit vector from the ith grasshopper to the jth grasshopper. Mathematically, the social force is
given as follows:

s(d) = Fe
−d

l − e−r (16)

where F is the attractive force, d shows the distance and l is the measure of attraction.
The V component in Equation (1) is given as:

Vi = −vêv (17)

where v is the gravitational force, and the negative sign shows its direction towards the centre of the
Earth, while êv is the unit vector in the direction of the Earth.

Now, the A component in Equation (1) is given as:

Ai = vêw (18)

where v is the constant drift when there is a wind and êw shows the wind directional unit vector.
By putting the values of S, G and A in Equation (1), we get:

Si =
N

∑
i=1

s(|Pj − Pi|)
(Pj − Pi)

dij
− gêg + vêw (19)

We utilize the above equation for the swarm in free space and use it in simulation to describe the
interaction between the grasshoppers in a swarm. The steps involved in the GOA algorithm are given
in Algorithm 1 and are depicted in Figure 5.

Algorithm 1: GOA algorithm.

1 Initialization: Generation of price signal according to the scheme used
2 LOTs’ specification of appliances
3 power ratings of appliances
4 Input: variables ub, lb, dim, N
5 Initialize position of grasshopper
6 for h = 1 to H do

7 Find electricity cost
8 Find cost of all appliances’ LOTs
9 Find Fbest, Lbest and Gbest;

10 for It = 1 to ItMax do

11 for i = 1 to NVAR do

12 end

13 Find the best position
14 end

15 Update the LOTs of appliances
16 end

17 Output: OECT , load, PAR.
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Figure 5. Flowchart of grasshopper optimization algorithm (GOA).

5.2. Bacterial Foraging Algorithm

BFA was proposed by Kevin Passino in 2002 [34]. In this algorithm, the group foraging strategy
of a swarm of Escherichia coli (E. coli) bacteria is the key point. Bacteria forage for food and nutrients, to
maximize their energy per unit time. By sending a signal, bacteria also communicate with each other.
Because of predators, the prey may be mobile. Therefore, it is chased by the bacterium in an optimal
way. When a bacterium maximizes its energy by getting sufficient food, then it does other activities
like sheltering, mating, fighting, etc.

The following steps are needed in order to explain BFA.

(a) Chemotaxis
(b) Swarming
(c) Reproduction
(d) Elimination

5.2.1. Chemotaxis

In the chemotaxis step, the E. coli move from one place to another through flagella. According
to the biological point of view, its motion is observed in two different ways: it may either swim or
tumble.

To consider the chemotaxis movement of bacteria, we have the following equation:

δj(i + 1, k, l) = δj(i, k, l) + Q(j)
Δ(j)√

ΔT(j)Δ(j)
(20)

In the above equation, δj(i, k, l) shows the position of the jth bacterium at the ith chemotactic, the
kth reproductive and the lth elimination-dispersal step. Q(i) represents the size of the step taken by the
bacterium in a random direction when it tumbles. Δ shows the vector in random direction [−1, 1].

5.2.2. Swarming

The E. coli bacterium is blessed with swarming behaviour. In this step, bacteria cells form a
ring-shaped structure and move in search of nutrients. A high level of succinate usage stimulates the
cells, due to which attractant-aspartate is released by the cells, which helps them to bind in groups.

5.2.3. Reproduction

When a bacterium is in a feasible and nutritious environment, it reproduces, splits into two
bacteria and keeps the number of cells in a swarm fixed.
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5.2.4. Elimination and Dispersal

The scarcity of nutrients kills the bacterium or disperses them into another environment. They
are also killed due to high temperature. If there is a poor condition in the environment, the bacteria
may place themselves near a good food source, hence assisting chemotaxis.

To calculate the fitness of each bacterium, the following equation can be used:

Fj[i, k, l] = Fj[i, k, l] + Fcc(δj[i, k, l], P[i, k, l]) (21)

In the above equation, Fj shows the fitness of the bacterium and δj is the position of the bacterium.

Fcc =
d−1

∑
d=1

(100 × (δ(j, d + 1)− (δ(j, d))2)2 + (δ(j, d)− 1)2) (22)

In order to achieve the time-varying objective, we must put the objective function Jcc into the
actual objective function Fj. The steps involved in the BFA algorithm are given in Algorithm 2 and are
depicted in Figure 6.

Algorithm 2: Bacterial foraging algorithm.

1 Initialization: Generation of the price signal according to the scheme used, LOTs’ specification
of appliances, power ratings of appliances

2 Input: Give initial values to variables; pop, Np, Ne, Nc, Nr, Ns, D, C.
3 Evaluate fitness for each bacterium (Jlast).
4 for l = 1 to Ne do

5 for k = 1 to Nr do

6 for j = 1 to Nc do

7 for i = 1 to Np do

8 Find new position of the bacterium
9 Find the fitness

10 for s = 1 to Ns do

11 end

12 if Ji < Jlast then

13 Replace the previous position of the bacterium with the new position
14 Go back to line 10
15 else

16 Assign a random direction
17 Evaluate the fitness
18 Go back to line no. 10
19 end

20 end

21 end

22 Evaluate the fitness of the bacterium
23 Select the best one Random elimination and dispersal
24 end

25 if 1 < Ne then

26 else

27 Go back to the initial elimination step
28 end

29 end

30 Output: OECT , load, PAR.
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Figure 6. Flowchart of bacterial foraging algorithm (BFA).

6. Simulation Results

A substantial simulation was performed to show the performance of different algorithms in
terms of minimization of electricity cost by shifting appliances from on-peak hours to off-peak hours,
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minimization of PAR and minimization of end-user discomfort due to waiting time. In this paper,
eight appliances were selected, as shown in the Table 1. For comparison purpose, firefly algorithm
(FA), cuckoo search algorithm (CSA) and ant colony optimization algorthm (ACO) are considered in
the same scenario for thirty-days load scheduling. Figure 7 gives the day-ahead pricing (DAP) signal,
taken from the daily report of the New York Independent System Operator (NYISO) [35]. The total
time of 24 h was divided into 24 time slots. For an office, usually 8–12 h was used, so time was taken
from 8:00–20:00. Figure 8 shows the daily unscheduled load and scheduled load with the GOA and
BFA algorithms. The figure shows that GOA outperformed by eliminating the peak in the unscheduled
load. Figure 9 shows the hourly unscheduled (Un-sch) and scheduled load with GOA and BFA cost. It
is clear that the hourly cost is averaged compared to the unscheduled cost, especially the high cost in
the on-peak hours due to shifting of the load from on-peak hours to off-peak hours. Figure 10 shows
that the office monthly load was equal for all algorithms, as each algorithm had to reschedule the
appliances only. Figure 11 depicts the total monthly cost in dollars. In the unscheduled case, we had a
maximum cost of 267.45 $; when scheduled by GOA, it became 174.67 $ (34.69% reduction); and in
the case of BFA, it became 161.23 $ (37.47% reduction). The comparison of these proposed algorithms
with state-of-the-art algorithms for the same scenario is depicted in Table 2. Figure 12 depicts the daily
PAR. It is clear from the figure that our proposed schemes minimized the PAR. Before scheduling, the
PAR value was 7.81, and after scheduling with GOA and BFA, the PAR values became 3.42 (56.20%
reduction) and 6.18 (20.87% reduction), respectively. Figure 13 depicts the average waiting time. The
waiting time in the case of GOA was 1.28 h, and BFA was 1.32 h. This shows that the waiting time of
BFA was greater than GOA because it had reduced the total cost more than that reduced by BFA. Table
2 shows that, there is always a trade-off between energy cost and waiting time.
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Figure 7. Day-ahead pricing signal [35].

Figure 8. Hourly load for unscheduled load and scheduled load with the GOA and BFA algorithms.
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Figure 9. Hourly cost for unscheduled load and scheduled load with the GOA and BFA algorithms.
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Figure 13. Average waiting time.

Table 2 compares the performance of the proposed algorithms with unscheduled load and
state-of-the-art algorithms like firefly algorithm (FA), cuckoo search algorithm (CSA) and ant colony
optimization (ACO) with respect to three parameters; energy cost, waiting time and PAR.

Table 2. Comparison of the unscheduled load and scheduled load with the GOA, BFA, GA, FA, CSA
and ACO algorithms.

Techniques Days Cost ($) Cost Reduction Waiting Time (h) PAR PAR Change

Unschedule 30 days 267.45 – – 7.81 –
GOA-scheduled 30 days 174.67 34.69% 1.28 3.42 56.20%
BFA-scheduled 30 days 161.23 37.47% 1.32 6.18 20.87%
GA-scheduled 30 days 150.07 43.89% 1.39 5.84 25.22%
FA-scheduled 30 days 177.39 33.68% 1.25 4.17 46.60%

CSA-scheduled 30 days 147.68 44.79% 1.38 7.11 08.96%
ACO-scheduled 30 days 176.83 33.89% 1.27 5.34 31.62%

Table 3 shows the run-time of the proposed algorithms using an Intel (R) Core (TM) i5 processor,
with 4.00 GB of installed memory (RAM) and the 32-bit Windows 7 Operating system.

Table 3. Run-time of the proposed algorithms for 30 days of load scheduling.

Proposed Algorithm No. of Days Run-Time (s)

GOA 30 days 11.695
BFA 30 days 13.171

7. Conclusions

In this paper, we have proposed a novel technique of appliances’ scheduling in an office. We
used two nature-inspired optimization algorithms, GOA and BFA, to achieve our objective functions
of end-user electricity bill minimization along with a reduction of PAR and user discomfort due
to appliance scheduling. We considered only eight appliances to check our proposed algorithms’
performance. We compared our results with a few state-of-the-art nature-inspired algorithms in the
literature like GA, FA, CSA and ACO for the three mentioned fitness functions, i.e., minimization of
the electricity bill, PAR and waiting time. Indeed, numerous countries in the world can fulfil electricity
demand. However, keeping in view the minimization of the electricity bill, the reliability of the existing
system and improvements towards smart grids to facilitate the customers, with increased dependency
on electricity with automation, energy optimization is a big issue throughout the world. Furthermore,
with increased electricity generation, carbon emission increases due to the use of different types of
fuels, which pollute this biosphere day by day. Therefore, the advantage of these algorithms for energy
optimization is not only to save money, but to reduce pollution, as well. The simulation results show
that our proposed energy optimization schemes performed well in the case of minimization of PAR
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and cost. However, when energy cost is minimized, user waiting time will increase as a penalty. In
the future, multi-objective algorithms will be designed to minimize the energy cost and PAR while
keeping in view the high comfort level of consumers. Furthermore, the proposed algorithms will be
applied to residential, commercial and industrial areas for the greater benefit of both the utility and
consumers. For this purpose, more nature-inspired algorithms will be used and analyzed.
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Abbreviations

The following abbreviations are used in this manuscript:

OEC Office energy consumption
LOT Length of operational time
OTI Operational time interval
AOAs Automatically operating appliances
PAR Peak-to-average power ratio
Un-sch Un-scheduled load
FA Firefly algorithm
CSA Cuckoo search algorithm
ACO Ant colony optimization
s Each time slot
C The total electricity cost in sixty time slots
Prate Power rating of connected appliances
Load Power consumption of each appliance
τw Waiting time for an appliance
S Set of 60 time slots
Erate Energy cost per hour
X ON-OFF states of an appliance
α Starting time of an appliance
η Operational starting time of an appliance
β Ending time of an appliance
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Abstract: Pakistan has long relied on fossil fuels for electricity generation. This is despite the fact that
the country is blessed with enormous renewable energy (RE) resources, which can significantly
diversify the fuel mix for electricity generation. In this study, various renewable resources of
Pakistan—solar, hydro, biomass, wind, and geothermal energy—are analyzed by using an integrated
Delphi-analytical hierarchy process (AHP) and fuzzy technique for order of preference by similarity
to ideal solution (F-TOPSIS)-based methodology. In the first phase, the Delphi method was employed
to define and select the most important criteria for the selection of RE resources. This process
identified four main criteria, i.e., economic, environmental, technical, and socio-political aspects,
which are further supplemented by 20 sub-criteria. AHP is later used to obtain the weights of each
criterion and the sub-criteria of the decision model. The results of this study reveal wind energy
as the most feasible RE resource for electricity generation followed by hydropower, solar, biomass,
and geothermal energy. The sensitivity analysis of the decision model results shows that the results
of this study are significant, reliable, and robust. The study provides important insights related to the
prioritizing of RE resources for electricity generation and can be used to undertake policy decisions
toward sustainable energy planning in Pakistan.

Keywords: Delphi; analytical hierarchy process; fuzzy technique for order of preference by similarity
to ideal solution techniques; renewable energy (RE) resources; sustainable energy planning

1. Introduction

Energy is one of the key drivers for sustainable growth and economy of any country. In fact,
in this era, the measure of the development of any economy is synonymous with the level of energy
consumption. Energy, which is crucial in economic, environmental, technical, and socio-political
aspects, has become one of the most discussed issues in recent times. Industrialization and
technological developments have created a higher energy need worldwide [1]. However, the quantity
of reserves of fossil fuels differs from one country to another. This situation has, therefore, resulted in
an unavoidable economic dependency, major environmental concerns, technological issues, important
social consequences, and serious political conflicts [2]. The existing situation and the future estimations
for energy requirements make it crucial to explore alternate energy resources. Further, the current
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and future possible economic, environmental, technical, and socio-political consequences also push
countries toward renewable energy (RE) resources. In this scenario, RE has become the answer to
sustainable energy planning.

Pakistan is a developing country with striving economic progress and thus essentially requires a
sufficient amount of energy for meeting the growth targets and attaining sustainable development.
However, in the last two decades, the country has been coping with its worst ever energy crises,
with regular power interruptions that have deteriorated the economy, thus adversely impacting the
livelihood of people [3]. The ongoing energy crises in the country have paralyzed the economy,
and the circular debt of the power sector alone has crossed over Pak Rupees 922 billion [4]. It is
also unfortunate that only around 50% of the country population has access to on-grid electricity.
Load shedding of 16–18 h in the rural areas is a common phenomenon while in the urban areas,
the electricity is inaccessible for 10–12 h a day [5]. This huge shortfall of electricity is mainly owing to
Pakistan’s reliance on fossil fuels, which are a key source of huge import bills and expensive electricity.
Apart from these issues, there are also various governance-related problems and hurdles behind
these crises. Amongst these all, a lack of focus toward harnessing the indigenous RE resources is a
noteworthy shortcoming that has not received any major attention in the planning and development
processes in Pakistan. In order to eliminate energy shortfalls, it is required that abundantly available
renewable resources be harnessed effectively [6]. Pakistan is fortunate to have various RE resources
that include solar, hydro, biomass, wind, and geothermal energy [7]. All these RE resources have huge
potential to generate electricity as well as help to eradicate energy deficits and enhance sustainable
development of the country.

The total electricity generation capacity of Pakistan in 2017 has been reached to 29,944 MW [8].
Shares in electricity generation are comprised of natural gas, 33.6%, oil, 32.1%, coal, 0.2%, hydropower,
26.1%, nuclear, 5.7%, and renewable energy, only 2.2%. In the total energy mix of Pakistan, the share of
non-renewable is, as such, higher and needs to be reduced in order to ensure long-term sustainability
and energy security. In the wake of the global focus on reducing greenhouse gas (GHG) emissions
and thus enhanced effort for the deployment of RE-based projects for electricity generation, Pakistan
also needs to undertake essential measures toward development and completion of RE-based power
projects. However, so far, no significant accomplishment toward harnessing RE-based projects has been
witnessed in the country. In this context, serious and extensive energy planning and decision-making
efforts are required to exploit RE resources for electricity generation.

RE resources are not only capable of meeting the ever-increasing demand for electricity, but they
are also environment-friendly. These facts regarding RE resources are recognized globally, but Pakistan,
though blessed with enormous RE potential, is making extremely slow progress in realizing the true
potential of RE-based projects. In this context, the Alternative Energy Development Board (AEDB)
and the Pakistan Council of Renewable Energy Technologies (PCRET) are two key organizations
of the government undertaking RE projects and technology development activities, respectively [9].
However, the progress of these organizations is very slow and only some small RE-based projects
have been installed in the country. The poor level of commitment from government, the overlapping
management functions of the energy sector, and the lack of financial capacity and technical awareness
are key barriers toward developing RE-based projects in Pakistan. Likewise, Usama et al. [10] have
identified various key barriers that obstruct successful implementation of social sustainability practices
in manufacturing firms using interpretive structural modeling (ISM).

It is, therefore, important that, for sustainable development, short-term, middle-term, and
long-term energy planning consider various energy resource alternatives. As such, the various
RE resources need to be evaluated in a systemic way, and they must be considered from the
techno-economic and socio-political point of view. In this context, the aim of this study is to
systematically prioritize the RE resources of Pakistan for sustainable energy planning. According to
the authors, this is the very first attempt to propose and develop an integrated Delphi-analytical
hierarchy process (AHP) and fuzzy technique for order of preference by similarity to ideal solution
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(F-TOPSIS)-based methodology to undertake systematic prioritization of RE resources of Pakistan.
This effort is expected to inspire policy and decision makers to consider a systematic planning process
for resource selection to expedite the development of RE-based projects.

The rest of the paper is as follows: Section 2 presents related literature applied in the energy sector,
while Section 3 provides a detailed analysis of various RE resources of Pakistan. The analysis-based
proposed integrated decision framework is shown in Section 4. The results and relevant discussion
are contained in Section 5, and Section 6 provides conclusions and recommendations derived from
this study.

2. Related Literature

There are various energy planning-related studies where Delphi and Multi-Criteria Decision
Making (MCDM) approaches have been comprehensively used with varying aims, objective,
and specific criteria. These applications have considered energy planning and policymaking at
different levels, risks assessments of long-term energy plans, the selection of the best RE technologies,
energy scenario analysis, environmental concerns related to the energy sector, energy management
problems, and the selection of power plants. The Delphi and F-TOPSIS methodology has been used
to rank flood vulnerability and vulnerability characteristics in the South Han River basin in South
Korea [11]. Some authors [12–14] have stated that MCDM approaches are well-suited to address
strategic decision-making problems. MCDM methods provide a systemic and transparent way to
enclose multiple conflicting objectives. MCDM based on multi-attribute value functions is often
employed to support energy planning and policy, and to select and prioritize suitable alternatives.
Wang et al. [15] in a detailed review provided various applications of MCDM methods in sustainable
energy planning and concluded that AHP is the most prevailing and popular method.

It is apparent from the literature that MCDM methods are often used and are popular for decision
making in sustainable energy planning, and they greatly help in addressing important criteria [15].
Amer and Daim [16] used the AHP method to suggest the optimal RE resource in Pakistan. In this
study, authors ranked biomass as the best alternative for electricity generation; however, biomass
only has a 5000 MW potential, which is not sufficient to meet the increasing energy demand of the
country [17]. Another limitation of this study is that the authors used AHP to obtain the weights of
the RE alternatives; however, literature has suggested that the combination or integration of various
MCDM methods for one goal provide more refined and better results. Furthermore, Table 1 illustrates
the summary of various energy-related studies from multi-criteria approaches.

Table 1. The summary of various energy related studies with multi-criteria perspectives.

No. Focus Method Year Reference

1 Multi-criteria decision making for plant
location selection

Delphi-AHP and Preference Ranking
Organization Method for Enrichment of

Evaluations (PROMETHEE)
2013 [18]

2 Developing offshore wind farm siting criteria Delphi 2018 [19]

3 Portfolio of renewable energy sources for
achieving the 3-E policy goals in Taiwan AHP 2011 [20]

4 An analysis on barriers to renewable energy
development in Nepal AHP 2018 [21]

5 Potential survey of photovoltaic power plants AHP 2017 [22]

6 Supplier evaluation and selection in the gas
and oil industry

Supply Chain Operations Reference (SCOR)
metrics-AHP and TOPSIS 2018 [23]

7 Selection of wind power project location in the
southeastern part of Pakistan Factor analysis-AHP and Fuzzy TOPSIS 2018 [24]

8 Dam site selection in Iran AHP-TOPSIS 2018 [25]

9 Assessing energy management performance
in Turkey

AHP-TOPSIS and VlseKriterijuska
Optimizacija I Komoromisno Resenje (VIKOR) 2018 [26]
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Table 1. Cont.

No. Focus Method Year Reference

10
Considering the public opinion and geospatial
conditions to distinguish energy alternatives

for energy investment planning
Goal programming, AHP and F-TOPSIS 2018 [27]

11 Risk assessment and mitigation model for
overseas steel-plant project investment AHP—Fuzzy Inference System 2018 [28]

12 Evaluating water resource
management strategies

Multiple Attribute Utility Theory
(MAUT)-AHP- Elimination Et Choice

Translating Reality (ELECTRE) and TOPSIS
2018 [29]

13 Sustainable assessment of economy-based and
community-based urban regeneration AHP 2018 [30]

14 The policy scenario analysis for accomplishing
renewable energy sources targets Fuzzy TOPSIS 2017 [31]

15 Identifying the most significant low-emission
energy technologies development in Poland Fuzzy AHP-Fuzzy TOPSIS 2018 [32]

16 Assessing the energy planning in Turkey Analytic Network Process
(ANP)-Fuzzy TOPSIS 2018 [33]

17 Strategic selection of renewable energy source
for Turkey

Hesitant Fuzzy Linguistic (HFL)- Simple
Additive Weighting (SAW) and HFL-TOPSIS 2018 [34]

18 Evaluation and prioritization of renewable
energy alternatives HFL-TOPSIS and Interval type-2 Fuzzy AHP 2017 [35]

19 Comparative analysis for optimum paper
shredder selection

AHP– Graph Theory and Matrix Approach
(GTMA) and AHP–TOPSIS 2018 [36]

20 A SWOT framework for analyzing the
electricity supply chain

Strengths, Weaknesses, Opportunities and
Threats (SWOT)-AHP and Fuzzy TOPSIS 2015 [37]

21 Selection of the best energy technology
alternative in energy planning Modified Fuzzy TOPSIS 2011 [38]

22 Identifying the barriers to renewable energy
development in Pakistan ---- 2009 [39]

23 Sustainable development through
energy management ---- 2014 [40]

In light of the above, this study attempts to contribute to the contemporary literature by proposing
an integrated Delphi-AHP and F-TOPSIS methodology for RE resource prioritization. The Delphi
approach translates Delphi qualitative assessments about the importance of the criteria into constraints
on the weights that are exploited through the AHP approach. Further, the F-TOPSIS method has been
employed to finally rank the RE alternatives. The following section described the detailed analysis of
various RE resources of Pakistan.

3. Renewable Energy Potential of Pakistan

Pakistan is blessed with various RE resources such as solar, hydro, biomass, wind, and geothermal
energy, with significant potential to produce electricity. However, there has been extremely slow growth
in harnessing these resources, so they form a mere share in the overall energy mix of the country.
The RE policy of 2006 aims at adding 10,000 MW of electricity from RE resources by 2030 [41]. However,
the estimated potential of RE is far greater than 10,000 MW. With growing demand, the maximum
potential for RE needs to be tapped. Table 2 provides a summary of the estimated potential of each RE
resource and installed electricity generation capacity from these resources in Pakistan.

It is, therefore, required that government undertake extraordinary measures to explore, develop,
and establish sustainable energy sources at the regional and national level to overcome the current
energy crisis. In the following sub-sections, detailed analysis of five RE resources of Pakistan for
electricity generation is provided.
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Table 2. Estimated renewable energy potential of various source and installed capacity in
Pakistan [42–44]. RE: renewable energy.

RE Resource Potential (MW) Installed (MW)

Solar 2,900,000 200
Hydro 60,000 6556

Biomass 5000 35
Wind 346,000 308

Geothermal 100,000 0

3.1. Solar Energy

Pakistan has plentiful solar energy throughout the year and across the country [9]. The solar
energy potential of Pakistan is estimated to be 2,900,000 MW, which can be exploited extensively to
meet the energy demand. Geographically, Pakistan receives the highest solar radiation in the region
with more than 300 sunlight days with around 1800–2200 kWh/m2 of annual radiation at a 26–28 ◦C
average annual temperature, which can produce an electricity of 5.5–6 kWh/m2/day [45]. As such,
the exploitable solar resources are estimated to be greater than 50,000 MW, with more than 2500 h of
sunlight in a year. There is an excellent potential for deploying solar energy projects in Baluchistan
and Sindh, where the sun shines for 7–8 h a day, approximately 2300–2700 h/annum [9]. A solar map
of Pakistan for direct normal radiation is depicted in Figure 1.

Figure 1. Solar map of Pakistan [46].

Unfortunately, due to a lack of interest and commitment of concerned government authorities,
the development of RE resources including solar energy for generating electricity is at very early stages
despite outstanding geographical conditions. In the meantime, with the penetration of solar-based
technology in the market, various electricity consumers in both rural and urban areas have installed
standalone photovoltaic units of 100–500 W for power generation. However, these individual efforts
can be short-lived with an operational maintenance requirement, the availability of spares, and other
challenges. With the potential of solar energy duly taken into consideration, and with an annual mean
sunlight duration of 8–8.5 h a day, it is projected that around 40,000 villages in the country can be
provided with electricity [47].

The only significant effort by government related to the harnessing of solar energy is the
development of the Quaid-e-Azam Solar Power Park underway in the Bahawalpur district of Punjab.
At completion, the total installed capacity of this solar project will be 1000 MW [48]. It is evident from
this analysis that the share of solar energy for electricity generation is negligible and requires colossal
efforts for the development of the solar energy sector to ensure sustainable supplies to address the
demand–supply gap and ensure energy security.
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3.2. Hydropower

Pakistan has an enormous resource potential of hydropower, with a suitable amount of water
at appropriate terrains to generate electricity [49]. The northern parts of the country are rich with
significant hydropower resources, while few resources are also identified in the southern part of
the country. In all, it is estimated that these resources have a potential of 60,000 MW of electricity
generation [50]. As such, Pakistan can sufficiently produce electricity from hydro resources, with only
a mere potential exploited so far. About 89% of the potential is yet to be harnessed. The current total
installed capacity of the hydropower units of Pakistan is only 6556 MW [42].

The key hydropower resources identified in the terrain of Hindukush, Himalayas, and the
Karakoram ranges include flows from various rivers, namely Indus with a potential of 66% of electricity
generation followed by Jhelum, 9%, Swat, 3%, Kunhar, 3%, Kandiah, 2%, Punch, 1%, and others,
16% [51]. Figure 2 illustrates the total estimated shares of identified hydro resources of major rivers
of Pakistan.

Figure 2. Identified hydro resources of Pakistan [51].

At present, hydropower is the most economically viable, environmentally friendly, and cheapest
source of electricity in Pakistan. It contributes 26% of the total power generation in Pakistan.
The Government of Pakistan (GoP) plans to add 13 hydro projects with a capacity of 20,733 MW
by 2023, whereas six projects sites have been identified with the capacity and feasibility of 8650 MW
of electricity [50]. Hydropower is one of the oldest and most mature RE resources in the world.
Therefore, considering the huge hydropower potential, the GoP needs to give it top priority and
undertake the development of hydro-based projects in the country.

3.3. Biomass Energy

Biomass is a sustainable RE resource and is widely available [52]. Pakistan is an agricultural
country and is the 5th largest sugarcane producer in the world [48]. The average 50 million tons of
sugar yields provides an estimated 10 million tons of bagasse annually from sugar mills. The AEDB has
identified the bagasse potential of 1800 MW and the waste-to-power potential of 500 MW with the help
of Germany, USA, and Denmark [49,53]. As such, the AEDB has begun to install biomass-to-energy
power plants of 12 MW, 11 MW, and 9 MW in Punjab and Sindh. However, these initiatives are not
sufficient compared to the significant potential of biomass energy of the country.

With around 62% of the population of country living in rural areas, it is estimated that, overall,
including bagasse, 5000 MW potential of biomass is available in the country. Both agriculture and
animal wastes are readily available in rural areas and are a cheap source that can be used for cooking
and heating. Biomass energy potential is a promising source of energy seeking the greatest ever
attention. Despite this huge potential of biomass in the country, no notable grid-connected power
generation project has been developed yet. It is therefore high time that government takes care of
significant biomass resource toward electricity generation.
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3.4. Wind Energy

Electricity generation from wind energy has grown remarkably over the past decade; as such,
wind energy is now the second leading source of RE for providing electricity globally. With its
promising potential, energy experts believe that wind energy will provide one-third of total global
electricity supplies by the year 2050. Countries like Germany, India, and Brazil have been leading
wind energy development over the last few years [54]. China is, however, far ahead in the global
wind power market with a total cumulative installed capacity of 188,232 MW followed by USA and
Germany with 89,077 and 56,132 MW, respectively [55]. Figure 3 highlights the cumulative wind
power installed capacity of the top 10 countries and the rest of the world in 2017.

Figure 3. Global wind power capacity in MW [55].

3.4.1. Wind Energy Resources in Pakistan

Pakistan also has abundant wind energy potential for electricity generation. Wind projects, mainly
comprised of 50–100 MW units in a wind corridor in the Sindh province, with a cumulative 500 W
capacity were installed by 2003 [56]. PCRET also installed 26 micro units of wind energy, each of
500 W, in the village of Gul Muhammad, and it is stated to be the first wind energy-electrified village of
Pakistan. It is estimated that Pakistan is capable of producing about 346,000 MW of wind power [24].
However, the first major wind power project of Pakistan only became functional in 2013. According to
a survey, 50,000 MW of wind power potential has been identified in the southern regions of the country
alone, i.e., in Sindh and Baluchistan, whereas a wind power capacity of 1000–1500 MW has been
estimated in the Punjab province. The Pakistan Meteorological Department (PMD) surveyed the wind
speed in the coastal areas of Sindh and Baluchistan and found a persistent wind speed of 5–7 m/s [57].
The PMD has also measured wind in two regions in Sindh, namely Gharo and Keti Bandar. Following
a year-round survey and data collection, these sites were found to be ideal for wind power projects.
The annual mean wind speed in Gharo was estimated to be 6.86 m/s from the above-ground level of
50 m, while 408.6 W/m2 is the annual power density of the area. These figures show that this area has
good wind potential and is economically feasible for large wind farms. The wind power potential of
Pakistan is shown in Figure 4.
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Figure 4. Wind resource map of Pakistan [46].

3.5. Geothermal Energy

Pakistan has an enormous potential of geothermal energy, especially in KPK, Baluchistan, Kashmir,
and Himalayas, with temperatures estimated around 30–170 ◦C [45]. Geothermal energy is a type
of heat energy that is present inside the surface of the earth in the form of volcanoes, hot springs,
and hot water. Further, it is identified that Pakistan can produce up to 100,000 MW of electricity from
geothermal resources [44]. However, no effort has been made by government to utilize geothermal
energy, so substantial investment and planning is required for implementation of geothermal energy
projects in Pakistan. This renewable resource can also be useful for space heating and cooling in
buildings, greenhouses, hot water supply, fish farming, and establishing small industries requiring
heat. A geothermal resource potential map is presented in Figure 5.

Figure 5. Geothermal resource map of Pakistan [58].

It is evident from the above analysis that Pakistan essentially needs to seriously plan and make the
required policy decisions for the development of indigenous RE resources. However, it is understood
that evaluation, selection, and prioritization of these resources is a complex process with divided
opinions among policy-makers, and stakeholders may have a different view as well. This is common
in most developing countries, where limited financial resources are major constraints in developing RE
resources. As such, for the case of Pakistan we propose and develop a multi-criteria decision model

282



Processes 2019, 7, 118

taking into account various criteria, as well as experts’ weights of these criteria, and subsequently
prioritize the RE resources of the country.

4. An Integrated Decision Framework

The proposed integrated decision framework of the present study is provided in Figure 6. In the
first instant, using the Delphi method, key criteria are identified; these criteria and sub-criteria are
then determined using AHP methodology. Finally, the F-TOPSIS method is employed to prioritize the
alternatives (i.e., renewable energy resources).

Figure 6. Decision model of the study.

The detailed elaboration of each module of the proposed decision model is provided in the
following sub-sections.

4.1. The Delphi Method

The Delphi methodology was originally developed by the RAND Corporation in the 1950s for
eliciting expert opinion [59]. This research method is a systematic and interactive method to collect
and analyze experts’ judgment or opinion by collecting data, brainstorming for problems, prioritizing
the issues, forecasting, and decision-making [60]. It is a very useful method when there is a lack of
clarity with decision makers and stakeholders regarding certain decisions.

In the precedent literature, the experts’ group size seems to be different in each study, but a
panel of experts between 9 and 18 participants is suggested in order to obtain pertinent results and
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avoid any disagreement among experts [61]. Skulmoski et al. [62] recommended that the participants
possess knowledge of different aspects of decision problems in order to be designated for the Delphi
survey panel. Relevant experience and knowledge about the survey, time capacity, willingness to
participate, and strong communication skills are also desired. The Delphi approach is at the first
stage of our decision framework, which includes review of the literature and a survey from experts
to finalize appropriate criteria toward addressing the decision problem of prioritizing RE resources.
The first round is exploratory in nature. Following a comprehensive literature review, key criteria
influencing RE resource prioritization such as economic, environmental, technical, and socio-political
considerations have been explored. This followed the questionnaire survey process, which was
conducted through electronic mail sent to academia, stakeholders, industry, and government energy
experts, in order to save expenses and time. In the study, we evaluated the coefficient of variation (CV)
and content validity ratio (CVR) of the survey. When the CV values were less than 0.50, a further round
for evaluating criteria was not undertaken [63]. Further, the CVR proposed by C.H. Lawshe [64] and
its calculation suggested by Wilson et al. [65] were employed to measure agreement among experts,
determining the importance of specific criteria. The CVR ranges from +1 to −1. A greater, positive
value indicates that experts were in agreement that a criterion was important. A CVR higher than 0.29
can usually be regarded as a suitable assessment level. The CV is the ratio of the standard deviation to
the mean. It is easy to compare the consistency of the overall obtained data using the CV, as presented
in Equation (1).

CVR =
NE − N

2
N
2

(1)

where NE is the number of experts representing assessed criteria, which is “important”, and N = the
total number of experts.

4.2. Analysis of RE Resources Using MCDM Techniques

Evaluation and selection decisions pertaining to prioritization of RE resources for long-term
development is a complex process. This is mainly because the nature of decision problems are
multi-faceted and owing to various constraints and limitations [66]. In this context, multi-criteria
analysis of such complex problems is useful and appropriate for technology choice, considering
long-term energy planning, resource potential, acquisition and deployment of renewables, and the
uncertainty of future energy demand. Therefore, AHP and F-TOPSIS methodologies of MCDM are
used in this study to analyze the decision problem with economic, environmental, technical, and
socio-political aspects as main criteria, and solar, hydro, biomass, wind, and geothermal energy as
alternatives in the decision model. It is anticipated that this approach will provide an improved
mechanism for decision making in the RE sector compared to traditional assessment methods
such as cost–benefit or techno-economic analysis. No study in the Pakistani context has evaluated
RE resources based on an integrated AHP and F-TOPSIS framework. However, there are a few
studies in the literature wherein decision evaluation has been undertaken using limited criteria and
minimum sub-criteria.

4.2.1. Analytical Hierarchy Process

Various MCDM methods are often used and are popular in energy planning decision-making [67].
AHP is one of the most widely used MCDM methods in this context. It provides a means of
decomposing a complex problem into a hierarchy of sub-problems that are further subjectively
evaluated. The subjective assessments are later converted into numerical form and are arranged
to rank each alternative on a numerical scale. Thomas L. Saaty developed the AHP methodology in
the 1970s and is accomplished using the following steps [68].
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Step 1. The decision problem is divided into different levels in a hierarchical manner comprised
of goal, criteria, and sub-criteria. The elements at one level are related to those at other levels, and a
hierarchical relationship is established between them.

Step 2. Corresponding to the hierarchical structure, data is collected from the decision makers
based on a pairwise comparison of criteria on a numerical scale, which is illustrated in Figure 7.

Step 3. The various criteria are compared to determine the relative importance via the principal
eigenvalue and the corresponding normalized eigenvector of the comparison matrix. The elements of
the normalized eigenvector are then named as weights with respect to criteria and sub-criteria.

Step 4. The matrix consistency of order n is assessed. The matrix comparison undertaken in this
method is subjective, and inconsistency is tolerated by AHP through redundancy in the approach.
The consistency index (CI) must be within the required level if it fails, and the comparison may be
repeated. The CI is calculated as

CI =
(λmax − n)

(n − 1)
(2)

where λmax is the maximum eigenvalue of the judgment matrix, and n is the number of elements in
the judgement. The CI can be compared with a random consistency index (RI). The consistency ratio
(CR) is calculated as

CR =
CI
RI

(3)

where RI is the random consistency index. The average CI of a randomly generated pairwise
comparison matrix of similar size is illustrated in Table 3. Saaty suggests that the value of CR
should be less than 0.1, while meaningless results may be found for a value of more than 0.1 [69].

Figure 7. Pair-wise comparison matrix scale [70].

Table 3. Random index (RI) scale [71].

n 1 2 3 4 5 6 7 8 9 10

Random Index (RI) 0.00 0.00 0.058 0.90 1.12 1.24 1.32 1.41 1.45 1.49

Following implementation of the AHP methodology as per these steps, the F-TOPSIS method has
been employed to finally evaluate and prioritize the best RE alternative.

4.2.2. F-TOPSIS

The TOPSIS technique was developed by Hwang and Yoon in 1981 [72]. It is based on the distance
between positive and negative solutions i.e. the best alternative should be closest to the positive ideal
solution, whereas the least favorable alternative should be farthest from the negative ideal solution.
The fuzzy logic or fuzzy set theory is a powerful mathematical technique used to address uncertain
and imprecise information in decision problems [73]. Fuzzy logic was developed by Lofti A. Zadeh in
1965 [74]. When fuzzy logic is combined with TOPSIS, it provides additional decision support, and this
combined methodology is known as fuzzy TOPSIS (F-TOPSIS). This method can be based on linguistic
variables with triangular fuzzy numbers (TFNs); thus, in this study, a TFN scale was utilized and is
shown in Table 4.
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Table 4. Linguistic scale for alternatives ranking [75].

Number Linguistic Variable TFNs

1 Very poor (VP) (0,0,1)
2 Poor (P) (0,1,3)
3 Rather Poor (RP) (1,3,5)
4 Fair (F) (3,5,7)
5 Rather Good (RG) (5,7,9)
6 Good (G) (7,9,10)
7 Very Good (VG) (9,9,10)

The detailed F-TOPSIS methodology implementation steps are described as follows:
Step 1. Obtain the evaluation matrix of decision-makers.
Step 2. Define the fuzzy decision matrix W̃.

W̃ = (wij)m×n (4)

where wij =
(
w1ij, w2ij, w3ij

)
.

Step 3. Compute the normalized fuzzy decision matrix, indicated by W̃, is shown as

W̃= [wij]m×n (5)

where i = 1, 2, 3, . . . , m and j = 1, 2, 3, . . . , n.
For the benefit criteria, conduct the normalization process using Equation (6).

wij =

(
w1ij

w∗
3j

,
w2ij

w∗
3j

,
w3ij

w∗
3j

)
. (6)

For cost criteria, conduct the normalization process using Equation (7).

wij =

(
w−

1j

w3ij
,

w−
1j

w2ij
,

w−
1j

w1ij

)
. (7)

Step 5. Calculate the weighted normalized fuzzy decision matrix. The weighted normalized
fuzzy decision matrix is presented using Equation (8).

Ṽ = [vij]m×n (8)

where vij = wij × wj
Step 6. Identify the distance between ideal positive solution (d+i ) and negative ideal solution (d−i )

using Equations (9) and (10).
d+i = (v∗1, v∗2, v∗3, . . . , v∗n) (9)

where V+
j = (1, 1, 1) j = 1, 2, 3, . . . , n.

d−i =
(
v−1 , v−2 , v−3 , . . . , v−n

)
(10)

where V−
j = (0, 0, 0) j = 1, 2, 3, . . . , n.

Step 7. Calculate the closeness coefficient (CCi) using Equation (11).

CCi =
d−i

d+i + d−i
(11)

where i = 1, 2, 3, . . . , m.
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Step 8. Evaluate and prioritize the optimal alternative according to the CCi value.
We have taken into account both cost and benefit criteria. Resource potential (ECA3), job creation

(SPA2), and energy security (SPA3) are considered as benefit criteria, while the rest are taken as
cost criteria. All these criteria play a crucial role in assessing and prioritizing RE resources for
electricity generation.

4.3. The Survey Respondents for the Delphi, AHP, and Fuzzy TOPSIS Study

It is critical to finalize and consult with specialized experts while implementing the Delphi,
AHP, and F-TOPSIS methodologies since the understanding and relevancy of experts in assigning
weights could be quite conflicting and uncertain [76]. In order to achieve the objective of this study,
we approached 15 experts from academic institutions, government energy departments, stakeholders,
and industries. However, out of these 15 only 10 experts agreed to participate in these study surveys.
The demographic information of experts is given in Appendix A. YAAHP software (Version 10.5)
was used to obtain the weights of main criteria and sub-criteria. Subsequently, the F-TOPSIS method
was employed with Microsoft Excel to analyze and rank RE alternatives for electricity generation
in Pakistan.

4.4. The Process of Delphi, AHP, and Fuzzy TOPSIS Methodology Implementation

Initially, the Delphi method was employed with the help of 10 experts’ feedback to identify the
main criteria and sub-criteria for evaluating RE resources of Pakistan. From the Delphi analysis,
the authors shortlisted four main criteria and their 20 sub-criteria for further analysis. Secondly, AHP
and F-TOPSIS methods of MCDM were employed to obtain the weights and rank the criteria,
sub-criteria, and alternatives. The AHP method has the strength to analyze quantitative and qualitative
factors altogether in one model. Therefore, expert assessment was employed at the AHP step to
evaluate the four criteria and 20 sub-criteria, while the F-TOPSIS approach was employed to prioritize
the five RE alternatives of the decision model.

4.4.1. Data Analysis of RE Resources

In this study, alongside wind, geothermal, and biomass resources, mini-hydropower and solar
PV are considered as alternatives, while large hydropower and solar thermal are excluded from the
study for being cost-intensive and technologically complex. Table 5 provides the key quantitative data
related to RE resources that include average initial cost, O&M cost, efficiency, capacity factor, expected
life of the RE plants, and CO2 emissions avoided per year. Table 6 provides the information pertaining
to the job creation, land requirements, and power generation cost of RE-based plants in the USA. It is
pertinent to mention that the data of Table 6 is taken from a developed country where labor and other
associated costs are quite expensive. It is, therefore, assumed that implementing RE-based plants in
Pakistan will create more jobs than the USA. Moreover, for the land requirement, areas requiring a
low amount of land are generally preferred for developing RE-based plants. It is also noted that in the
case of wind energy plants, wind farms can also be used for other activities such as farming and cattle
cropping. As such, wind farms can be far more useful compared to other RE resources where land
cannot be utilized for other purposes.

Table 5. RE data of various RE resources of Pakistan [77,78].

RE Source
Initial Cost

(m USD/kW)
O&M Cost

(m USD/Year)
Efficiency

(%)
Capacity

Factor (%)
Expected Life

of RE Plant
CO2 (m Tons

Avoided/Year)

Solar 570 57 80 25 25 0.16
Hydro 39,412 788 80 50 100 24.25

Biomass 3000 70 33 83 40 0.90
Wind 3650 7 96 34 20 0.30

Geothermal 2500 35 90 60 25 0.95
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Table 6. Job creation, land requirements, and energy generation cost for RE technologies in USA [78,79].

RE Source
Job Creation

Employees/500 MW
Land Requirement

sKM2/1000 MW
Energy Generation

Cost ($/kWh)

Solar 5370 35 0.058
Hydro 2500 750 0.064

Biomass 36,055 5000 0.098
Wind 5635 100 0.044–0.20

Geothermal 27,050 18 0.04–0.14

Lastly, Figure 8 shows the public opinion regarding the acceptance of the implementation of
RE-based plants in Portugal and Australia [80]. The public acceptance is one of the sub-criteria of the
socio-political aspect in this study. The public opinion varies from country to country, but in general
the public is favorable toward greener technologies for the electricity generation.

Figure 8. Public opinion for RE technologies implementation in Portugal and Australia.

5. Results and Discussion

Assessment and prioritization of the best RE resource is a difficult and complex decision problem.
However, an attempt has been made in the context of Pakistan to address this decision problem by
considering four main criteria and 20 sub-criteria to evaluate five RE resources for the electricity
generation in Pakistan.

5.1. Delphi Results

In this phase, the experts were not only asked to assign the weights to the criteria but also to
recommend additional criteria which they consider important for evaluating RE resources. The data
analysis was undertaken using the CV and CVR values of each criterion. Each evaluation criterion met
the required CV (less than 0.5) and CVR (greater than 0.29) levels. The detailed CV and CVR results of
the various criteria and sub-criteria are given in Appendix A. Finally, the refined results regarding
criteria and sub-criteria that would influence the assessment process of RE resources are shown in
Table 7.

Table 7. Criteria refined by the experts.

Criteria Reference

1. Economic Aspect (ECA)
Initial cost (ECA1) [15,81,82]

Operation and Maintenance Cost (ECA2) [15,81,83]
Resource Potential (ECA3) [83,84]

Energy Generation Cost (ECA4) [82,85,86]
Expected life of RE plant (ECA5) [15,87]
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Table 7. Cont.

Criteria Reference

2. Environmental Aspect (ENA)
CO2 Emission reduction (ENA1) [83,86]
Impact on Environment (ENA2) [83,86]

Land Requirement (ENA3) [83,88,89]
Noise (ENA4) [90,91]

3. Technical Aspect (TA)
Technology maturity (TA1) [81,83,86]

Efficiency (TA2) [83,85,92]
Capacity factor (TA3) [16,93]

Human Resource Expertise (TA4) [16,94]
Climate conditions (TA5) [90,95,96]

Reliability/Feasibility (TA6) [15,86,97]

4. Socio-Political Aspect (SPA)
Public acceptance (SPA1) [81,83,86]

Job creation (SPA2) [81,83]
Energy security (SPA3) [16,82,98]

Institutional arrangement (SPA4) [99,100]
Regulatory mechanism (SPA5) Delphi consultation

The four main criteria and 20 sub-criteria were identified via the Delphi approach. These criteria
are useful in assessing the potential of various RE resources of Pakistan. Later, each of the main
criteria and sub-criteria are ranked via the AHP method. A brief description of each of these criteria is
summarized as follows:

5.1.1. The economic aspect (ECA)

The economic aspect is significant for the selection and ranking of RE resources in Pakistan.
The various sub-aspects (sub-criteria) have been identified from economic perspectives and are defined
as follows:

Initial Cost (ECA1)

Initial cost is defined as the total expenditure required for establishing a renewable power plant
and comprises the labor, equipment, and infrastructure development costs as well. RE resources that
require low initial cost are generally preferred.

Operation and Maintenance Cost (ECA2)

O&M cost comprises the total cost of operating and undertaking the regular maintenance of the
plant including the salaries of workers; the maintenance costs ensure system operation and reduce
downtime. RE resources with a low O&M cost requirement are generally preferred.

Resource Potential (ECA3)

Resource potential is the availability of renewable resources (solar, hydro, biomass, wind, and
geothermal energy) in the region to produce energy. RE resources with more potential to generate
electricity are preferable.

Energy Generation Cost (ECA4)

Energy generation cost is defined as the cost of electricity generated from renewable power plants.
RE resources with a lower electricity generation cost are preferable.
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The Expected Life of RE Plant (ECA5)

A renewable plant has a life expectancy. The expected life of the RE plant depends upon the raw
resource used to generate electricity. Thus, this sub-criterion is very important when analyzing an RE
plant. As such, RE resources with a greater plant life expectancy are preferable.

5.1.2. The environmental Aspect (ENA)

The environmental aspect plays a key role in the selection and ranking of various RE resources
(i.e., solar, hydro, biomass, wind, and geothermal energy). These aspects include CO2 emission
reduction, impact on environment, land requirements, and noise, which are individually defined
as follows:

CO2 Emissions Reduction (ENA1)

This criterion pertains to minimum CO2 emissions from RE resources, including their production
and transportation. RE resources that cause low CO2 emissions are preferable.

Impact on Environment (ENA2)

A RE power plant’s impact on the environment and on its surroundings is important. As such,
RE resources that cause low or no impact on the environment are preferable.

Land Requirement (ENA3)

RE power plants require land for physical installation. RE resources that occupy a low amount of
land and can be used for other purposes such as cultivation and farming are preferable.

Noise (ENA4)

The probability of noise pollution due to the installation of RE power plants in the region is
significant. As such, RE resources that have less or zero noise pollution are preferable.

5.1.3. The technical Aspect (TA)

The technical aspect is an important part of choosing an optimal RE resource for electricity
generation. There are several key sub-aspects from the technical perspective and are defined as follows:

Technology Maturity (TA1)

This indicates how technology is extensive at regional, national, and international levels.
RE resources with a mature technology are generally suitable for electricity generation.

Efficiency (TA2)

The efficiency of an electricity plant is denoted by the ratio of output energy to input energy.
RE resources with greater efficiency are preferable.

Capacity Factor (TA3)

The capacity factor indicates how useful and productive energy obtained from an RE source can
be. RE resources with a high capacity factor are more useful for electricity generation.

Human Resource Expertise (TA4)

Human resource (HR) experts and their availability in the country to operate and maintain the
RE-based power plant is important. As such, RE resources that have more HR experts available
are recommended.
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Climate Conditions (TA5)

Climate conditions affect generation from a power plant; the performance of RE-based plant
depends on these conditions. RE resources that are favorable and useful in different climate conditions
are generally preferred.

Reliability/Feasibility (TA6)

Reliability is described as the ability of an electric power plant to perform essential functions
under specified conditions. A constant and sufficient amount of electricity generation thus needs to be
ensured. RE resources with higher reliability and feasibility are preferable.

5.1.4. The Socio-Political Aspect (SPA)

The socio-political aspect is crucial for the selection of RE resources in Pakistan. Similarly,
this aspect has important sub-aspects (sub-criteria) and each of these has been described here:

Public Acceptance (SPA1)

Public acceptance is defined as an acceptability and opinion about the utilization of RE plants in
the region. RE resources with a more favorable opinion are preferable.

Job Creation (SPA2)

RE plant installation promises job creation and opportunities for the locals in terms of both
technical and non-technical positions. RE resources that create more job opportunities for the local
people are preferable.

Energy Security (SPA3)

Energy security will be strengthened by installing and utilizing RE resources in the country.
RE resources that can generate more electricity and help the country to reduce its reliance on fossil
fuels are preferable.

Institutional Arrangement (SPA4)

Institutional arrangement is required for the development of RE resources. RE resources with an
existing institutional arrangement are preferable.

The Regulatory Mechanism (SPA5)

Mechanisms that support the promotion of tariffs, long-term contracts, or mandatory targets are
crucial for the deployment of RE-based plants. RE resources with a suitable regulatory mechanism
are preferable.

5.2. AHP Results

The AHP technique was employed to develop the pairwise comparison matrix of the identified
criteria and sub-criteria. Each element of this matrix signifies a numerical importance with the other
element in the matrix entry comparison. The calculations are partly based on actual objective data for
priority weightage/ranking associated with sub-criteria.

The CR and RI were determined using Equations (2) and (3). The AHP model thus provides
the results of various pairwise comparisons at different levels of the hierarchy. The detailed pairwise
comparisons matrices of criteria and sub-criteria are provided in Appendix B. Further, Table 8
illustrates the local and global weight and overall ranking of each main criteria and sub-criteria.
The results of AHP methodology in this study reveal that the economic aspect is considered the most
important criterion, with a weight of 0.3695, followed by socio-political and technical aspect criteria,
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with comparative scores of 0.2959 and 0.1859, respectively. The environmental aspect secured the
last place in the pairwise comparison of the main criteria. In the pairwise comparison of sub-criteria,
the resource potential is ranked as the priority sub-criteria from economic perspective. These aspects
are rightly identified as they pose serious challenges for the government to eradicate the on-going
energy crisis and maximize the utilization of RE resources for sustainable development. Experts also
ranked energy security as the second most important sub-criterion of the socio-political crtierion,
followed by regulatory mechanism, job creation, institutional arrangement, and public acceptance.
From the environmental perspective, CO2 emission reduction and land requirements were considered
the most important sub-criteria. Technology maturity was the most significant sub-criterion of the
technical criterion. The preference of technology maturity over efficiency and reliability shows the
lowered risk and sustainability of new renewable technologies.

Table 8. Overall priority weight and ranking of criteria and sub-criteria.

Criteria Sub-Criteria Local Weight Global Weight Overall Ranking

Economic
Aspect (ECA) 0.3695 1st (Criteria)

Initial cost (ECA1) 0.1688 0.0624 5th
Operation and Maintenance Cost (ECA2) 0.1725 0.0637 4th

Resource Potential (ECA3) 0.3475 0.1284 1st
Energy Generation Cost (ECA4) 0.2164 0.0800 3rd

Expected life of renewable energy plant (ECA5) 0.0949 0.0350 13th

Environmental
Aspect (ENA) 0.1487 4th (Criteria)

CO2 Emission reduction (ENA1) 0.3695 0.0549 7th
Impact on Environment (ENA2) 0.1886 0.0281 15th

Land Requirement (ENA3) 0.3382 0.0503 9th
Noise (ENA4) 0.1037 0.0154 19th

Technical
Aspect (TA) 0.1859 3rd (Criteria)

Technology maturity (TA1) 0.2804 0.0521 8th
Efficiency (TA2) 0.2203 0.0409 12th

Capacity factor (TA3) 0.1354 0.0252 17th
Human Resource Expertise (TA4) 0.0608 0.0113 20th

Climate conditions (TA5) 0.1415 0.0263 16th
Reliability/Feasibility (TA6) 0.1617 0.0301 14th

Socio-Political
Aspect (SPA) 0.2959 2nd (Criteria)

Public acceptance (SPA1) 0.0771 0.0228 18th
Job creation (SPA2) 0.1563 0.0462 10th

Energy security (SPA3) 0.4275 0.1265 2nd
Institutional arrangement (SPA4) 0.1385 0.0410 11th

Regulatory mechanism (SPA5) 0.2006 0.0594 6th

It is evident from Table 9 that AHP methodology pairwise comparisons of criteria and sub-criteria
have been accomplished.

Table 9. Final ranking of the renewable alternatives.

RE Source DPIS (d+
i ) DNIS (d−i ) CCi Rank

Solar 19.367 0.654 0.033 3
Hydro 19.352 0.672 0.034 2

Biomass 19.394 0.625 0.031 4
Wind 19.320 0.706 0.035 1

Geothermal 19.396 0.623 0.031 5
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5.3. Fuzzy TOPSIS Results

Finally, F-TOPSIS methodology was employed to determine the optimal RE resource from the
given five RE alternatives. Initially, we obtained the decision matrix by providing the TFNs of the
alternatives, obtained the normalized decision matrix, and further weighted the normalized decision
matrix, provided in detail in Appendix C. The results of F-TOPSIS indicate that the wind energy-based
electricity generation is the most prioritized alternative since it has the least distance from the ideal
solution. Table 9 provides a summary ranking of the five RE resources of Pakistan considered in
this study. The closeness coefficient CCi indicates that wind energy achieved the highest score, 0.035,
followed by 0.034 for hydro, 0.033 for solar, 0.031 for biomass, and 0.031 for the geothermal alternative.
Wind energy ranks first on the basis of the renewable potential in the country, a lower capital cost,
the land’s potential for cultivation and cropping, higher efficiency and public acceptance, good energy
security, and the lower impact on the environment, with low or zero greenhouse gas emissions.

5.4. Sensitivity Analysis

A sensitivity analysis was undertaken to investigate any major or minor variation in experts’
preferences that might change the results. As such, we examined the level of significance of criteria
weights with the ranking of RE resources (i.e., alternative) one by one. Five scenarios were accordingly
evaluated, revealing that the priority order of the alternatives does not vary and remains the same.
Table 10 provides the criteria weights in the evaluated scenarios. Moreover, Table 11 shows the
obtained results/rankings of the sensitivity analysis. Scenario 1 is the weights of this study, whereas
the rest of the scenarios are considered for the sensitivity analysis. The results of Table 11 signify that
results of Scenarios 2 and 3 have no impact on the ranking order of the alternatives; in Scenarios 4 and
5, the ranking order of alternatives (solar and hydro) has changed.

Table 10. Criteria weights employed for sensitivity analysis.

Criteria
Scenario 1

(Current Weight)
Scenario 2 Scenario 3 Scenario 4 Scenario 5

Economic (ECA) 0.3695 0.25 0.30 0.35 0.40
Environmental (ENA) 0.1859 0.25 0.20 0.15 0.10

Technical (TA) 0.1487 0.25 0.30 0.35 0.40
Socio-Political (SPA) 0.2959 0.25 0.20 0.15 0.10

Table 11. Results of the sensitivity analysis.

Alternative Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Solar 3 3 3 2 2
Hydro 2 2 2 3 3

Biomass 4 4 4 4 4
Wind 1 1 1 1 1

Geothermal 5 5 5 5 5

In summary, the sensitivity analysis reveals that there is no significant change in the main
findings of the study; therefore, it appears insignificant to change the weights of the obtained
results. Wind energy remained the highest ranked alternative, followed by hydro, solar, biomass,
and geothermal. Thus, the study results are considered valid and robust.

6. Conclusions

Pakistan has not been able to diversify its electricity generation from fossil fuels to RE resources.
Thus, the share of RE in the overall energy mix is negligible. The ongoing energy crises, the ever
increasing circular debt of the power sector, and decreasing economic growth may cause further crises
in the economy. It is also believed that energy demand will increase in the future. Given these facts,
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it is now impossible to neglect the indigenous RE resource development for electricity generation
in Pakistan. As regards the decision problem pertaining to the prioritization of RE resources for
harnessing, this study lays a foundation for planning and policy makers of the country to consider
scientific decision aid methods.

As such, in this study, five majors RE resources of Pakistan, treated as alternatives, are analyzed
and ranked on multiple decision criteria. In the AHP criteria weight analysis, the highest scores were
attained for the economic aspect, followed by socio-political, technical, and environmental criteria.
The quantitative and qualitative data was analyzed for overall synthesis. The AHP model results
illustrated that resource potential and energy generation costs were the highest-ranked sub-criteria in
the economic aspect. CO2 emission reduction and land requirements were the top-ranked sub-criteria
in the environmental aspect. Technology maturity and efficiency emerged as the highest-ranked
sub-criteria in the technical aspect. In the socio-political aspect, energy security and regulatory
mechanisms appeared as top-ranked sub-criteria. Therefore, all selected main criteria and the
top-ranked sub-criteria should play a significant role in the development of RE resources in Pakistan.
In terms of F-TOPSIS, alternative weights and thus priority ranking wind energy attained the highest
score, followed by hydropower, solar, biomass, and geothermal resources. Furthermore, sensitivity
analysis provided additional confidence regarding the results of this study. In general, this study
highlights the importance of wind energy, which can be effectively utilized for electricity generation in
Pakistan. The integrated Delphi, AHP, F-TOPSIS methodologies, in fact, enabled us to understand the
decision variants more specifically with regard to common criteria, thereby synthesizing the qualitative
criteria into numerical values and thus providing results with adequate clarity.

The top ranking of the wind energy resource for harnessing and exploitation for electricity
generation is also in consonance with international and national level development in the wind energy
sector. It is therefore recommended that the GoP not only adopt a scientific basis for resolving energy
planning and policy decision problems but also consider results of this study, which emphasizes the
exploitation and development of available RE resource potential for sustainable electricity generation.
These key recommendations in terms of prioritizing wind energy on other RE resources is viable and
should be adopted because wind energy is the most abundant, economical, and environment-friendly
source of electricity generation. We thus propose the following policy recommendations to promote
the development of RE resources in Pakistan:

1. It is recommended that government should utilize advanced innovation or technology for the
development of wind, hydro, solar, biomass, and geothermal energy.

2. Pakistan can use a competitive advantage to promote the overall industrial development and
then create job opportunities and a sizable domestic market for the development of RE resources.

3. RE enterprises should be promoted to engage in the green energy industry and increase
research and development to help enterprises. The government should organize information
sharing platforms and technical seminars, and combine promotion policies to achieve
sustainable development.

4. The electricity generation cost from the RE power plants must be low for residential or commercial
use because this may obstruct the development of RE technology. Enterprises or people do not
have enough incentive to install high cost RE technology. Therefore, regulating the electricity
generation cost structure must be given top priority.

5. Feed in Tariffs should be reduced, and this would also encourage stakeholders to invest in the
RE market.

6. New transmission and distribution (T&D) networks should be developed to increase efficiency
and decrease T&D losses in the energy system.

7. There are many countries where RE technology accounts for more than 50% of electricity
generation, such as Norway (96%), Austria (68%), Colombia (70%), Denmark (57%), Brazil (85%),
Sweden (55%), and Iceland (100%) [101]. Thus, the GoP can refer to successful foreign cases
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to identify feasible implementation plans and accelerate the promotion and development of
RE technology.

Further, for future research, more stakeholders, the inclusion of different experts, and the
application of other MCDM methods such as VIKOR, DEMATEL, ELECTRE, ANP, and PROMETHEE
can be utilized to refine results and can be explored to compare the results in search of any changes.
In addition, more criteria and RE resources (such as offshore wind and tidal power) could be considered.
We believe that further research can shed much more light on this subject.
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MCDM multi-criteria decision making
AHP analytical hierarchy process
F-TOPSIS fuzzy technique for order of preference by similarity to ideal solution techniques
CR consistency ratio
CI consistency index
RI random index
CV coefficient of variation
CVR content validity ratio
RE renewable energy
GoP government of Pakistan
PMD Pakistan meteorological department
AEDB alternative energy development board
PCRET Pakistan council of renewable energy technologies

Appendix A

Table A1. Demographic information of experts.

Designation Qualification Age Organization

Stakeholder Graduate 55 REAP, Lahore
Stakeholder Graduate 56 Resource Future, Islamabad

Professor PhD 43 Mehran U.E.T, Jamshoro
Professor PhD 38 University of Sindh, Jamshoro
Manager PhD 52 HESCO, Hyderabad
Director Graduate 50 NTDC, Islamabad
Secretary PhD 48 MoPW, Islamabad
Director Graduate 45 AEDB, Islamabad

Senior Manager PhD 48 PAEC, Islamabad
Deputy Director Graduate 40 PCRET, Islamabad

Note: Names of the experts not revealed at their request. Questionnaire survey on the development of criteria for
the selection of renewable energy resources.
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Table A2. Coefficient of variation (CV) and content validity ratio (CVR) results of final
evaluation criteria.

Criteria CV (Less than 0.50) CVR (Greater than 0.29)

1. Economic Aspect (ECA)

1. Initial cost (ECA1) 0.29 0.56
2. O&M cost (ECA2) 0.27 0.48
3. Resource Potential (ECA3) 0.17 0.75
4. Energy Generation Cost (ECA4) 0.23 0.80
5. Expected life of RE plant (ECA5) 0.25 0.65

2. Environmental Aspect (ENA)

1. CO2 Emission reduction (ENA1) 0.32 0.80
2. Impact on Environment (ENA2) 0.15 0.60
3. Land Requirement (ENA3) 0.18 0.56
4. Noise (ENA4) 0.31 0.65

3. Technical Aspect (TA)

1. Technology maturity (TA1) 0.34 0.60
2. Efficiency (TA2) 0.21 0.45
3. Capacity factor (TA3) 0.19 0.50
4. Human Resource Expertise (TA4) 0.26 0.60
5. Climate conditions (TA5) 0.14 0.40
6. Reliability/Feasibility (TA6) 0.16 0.40

4. Socio-Political Aspect (SPA)

1. Public acceptance (SPA1) 0.32 0.45
2. Job creation (SPA2) 0.11 0.75
3. Energy security (SPA3) 0.12 0.80
4. Institutional arrangement (SPA4) 0.37 0.80
5. Regulatory mechanism (SPA5) 0.22 0.60

Appendix B

Table A3. Pair-wise comparison matrix of criteria with respect to goals along with the priority weight.

ECA ENA TA SPA Priority Weight Rank

ECA 1 2.6673 1.7826 1.3195 0.3695 1st
ENA 0.3749 1 1 0.4251 0.1487 4th
TA 0.5610 1 1 0.6988 0.1859 3rd

SPA 0.7579 2.3522 1.4310 1 0.2959 2nd

CR = 0.0102 < 0.10 and λmax = 4.1080

Table A4. Pair-wise comparison matrix of economic sub-factor.

(ECA1) (ECA2) (ECA3) (ECA4) (ECA5) Priority Weight Rank

(ECA1) 1 1.3195 0.4152 0.6084 1.9332 0.1688 4th
(ECA2) 0.7579 1 0.4503 1.1487 1.7826 0.1725 3rd
(ECA3) 2.4082 2.2206 1 1.4310 3.3227 0.3475 1st
(ECA4) 1.6438 0.8706 0.6988 1 2.2206 0.2164 2nd
(ECA5) 0.5173 0.5610 0.3010 0.4503 1 0.0949 5th

CR = 0.0157 < 0.10 and λmax = 5.2937
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Table A5. Pair-wise comparison matrix of environmental sub-factor.

(ENA1) (ENA2) (ENA3) (ENA4) Priority Weight Rank

(ENA1) 1 1.8882 1.1487 3.5195 0.3695 1st
(ENA2) 0.5296 1 0.5173 18882 0.1886 3rd
(ENA3) 0.8706 1.9332 1 3.1777 0.3382 2nd
(ENA4) 0.2841 0.5296 0.3147 1 0.1037 4th

CR = 0.0011 < 0.10 and λmax = 4.0545

Table A6. Pair-wise comparison matrix of technical sub-factor.

(TA1) (TA2) (TA3) (TA4) (TA5) (TA6) Priority Weight Rank

(TA1) 1 1.1487 2.4082 4.2823 1.8882 1.8882 0.2804 1st
(TA2) 0.8706 1 1.8882 3.8981 1.3195 1.1487 0.2203 2nd
(TA3) 0.4152 0.5296 1 2.0477 1.1487 1 0.1354 5th
(TA4) 0.2335 0.2565 0.4884 1 0.4066 0.3749 0.0608 6th
(TA5) 0.5296 0.7579 0.8706 2.4595 1 0.8027 0.1415 4th
(TA6) 0.5296 0.8706 1 2.6673 1.2457 1 0.1617 3rd

CR = 0.0057 < 0.10 and λmax = 6.2112

Table A7. Pair-wise comparison matrix of socio-political sub-factor.

(SPA1) (SPA2) (SPA3) (SPA4) (SPA5) Priority Weight Rank

(SPA1) 1 0.4152 0.2453 0.4884 0.3701 0.0771 5th
(SPA2) 2.4082 1 0.3615 1.1487 0.6598 0.1563 3rd
(SPA3) 4.0760 2.7663 1 3.3935 2.5508 0.4275 1st
(SPA4) 2.0477 0.8706 0.2947 1 0.6988 0.1385 4th
(SPA5) 2.7019 1.5157 0.3920 1.4310 1 0.2006 2nd

CR = 0.0095 < 0.10 and λmax = 5.1250
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Abstract: The objective of this paper is to evaluate and to simulate the cogeneration process applied
to an apartment building in the Polanco area (Mexico). Considering the building’s electric, thermal
demand and consumption data, the cogeneration process model was simulated using Thermoflow©

software (Thermoflow Inc., Jacksonville, FL, USA), in order to cover 1.1 MW of electric demand and
to supply the thermal needs of hot water, heating, air conditioning and heating pool. As a result of
analyzing various schemes of cogeneration, the most efficient scheme consists of the use of a gas
turbine (Siemens model SGT-100-1S), achieving a cycle with efficiency of 84.4% and a heat rate of
14,901 kJ/kWh. The economic results of this evaluation show that it is possible to implement the
cogeneration in the building with a natural gas price below US$0.014/kWh. The use of financing
schemes makes the economic results more attractive. Furthermore, the percentage of the turbine
load effect on the turbine load net power, cogeneration efficiency, chimney flue gas temperature,
CO2 emission, net heat ratio, turbine fuel flow and after burner fuel flow was also studied.

Keywords: cogeneration; technical viability; apartment building

1. Introduction

Rapidly increasing world energy use has already raised concerns over supply difficulties,
exhaustion of energy resources and heavy environmental impacts (ozone layer depletion, global
warming, climate change, etc.). Final energy consumption is usually shown split into three main
sectors: industry, transport and ‘other’, including in the latter, agriculture, service sector and residential.
This makes it difficult to gather information about building energy consumption [1].

Buildings account for approximately 40% of global energy consumption and play an important
role in the energy market. The energy demands of buildings are predicted to continue growing
worldwide in the coming decades [2–4]. Some authors [4–6] report that the energy demands of
buildings (including residential and commercial buildings) have grown by 1.8% per year for forty
years (see Figure 1a). Coal and oil use in buildings has remained fairly constant since then, while natural
gas use grew steadily by about 1% per year. Global use of electricity in buildings grew on average
by 2.5% per year since 2010, and in non-OECD countries it increased by nearly 6% per year. Global
buildings sector energy intensity (measured by final energy per square meter) fell by 1.3% per year
between 2010 and 2014, thanks to the continued adoption and enforcement of building energy codes
and efficiency standards. Yet, progress has not been fast enough to offset growth in floor area (3% per
year globally) and the increasing demand for energy services in buildings. More telling is energy
demand per capita, where global average building energy use per person has remained practically
constant since 1990, at just below 5 MWh per person per year (see Figure 1b) [6]. The Secretary of
Energy (SENER) [7] has reported that buildings in Mexico are responsible for: 20% of total energy
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consumption, 27.8% of total electricity consumption, 78% of total gas consumption and 20% of CO2

emissions. Ali [8] explored various architectural and building technologies that are employed to
achieve a low-energy built environment. He concluded that the designers of the next generation of
buildings, whether residential, commercial, or institutional, should aim for “zero energy” buildings in
which there will be no need to draw energy from a region’s power grid. In this approach, the climate
and environment are used advantageously, rather than being treated as adversaries, and buildings
become sources of energy.

On the other hand, by 2015, global energy generation was distributed in the following
way: 78.3% fossil fuels, 2.6% nuclear energy and 19.1% renewable energy (9% biomass, 10.1%
geothermal-solar-hydro-wind-biofuels). In addition, 15% of the world’s population did not have
access to electricity. Of this group, 87% belonged to rural areas, 55% to sub-Saharan Africa and 34%
to South Asia [9]. SENER [7] has reported that the percentage distribution of the energy sources for
buildings (Mexico) is: 42.2% fossil fuel, 29.2% electricity, 27.8% wood and 0.8% solar. In addition,
until June 2015, the generation of electric energy was distributed in the following way: Photovoltaic
<1%, Wind 0.8%, Geothermal 2.3%, Nuclear 4.3%, Hydroelectric 13.5%, Carboelectric 13.5% and
Thermoelectric (combined cycle, steam cycle, turbo gas and internal combustion) 65.6%, which is why
the Mexican electricity market is based mainly on power cycles that must use cogeneration in order to
optimize their process.

 
(a) 

 
(b) 

Figure 1. Recent trends in the buildings: (a) Decomposition of final energy demand; (b) Final energy
use by fuel and per person [6].

There are other fuels that can be used in the cogeneration process or as part of a combined process,
for example, Al-Aboosi and El-Halwagi [10] developed a design framework for integrating water
and energy systems including multiple energy sources, the cogeneration process and desalination
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technologies in treating wastewater and fresh water for shale gas production. Solar energy was
included to provide thermal power directly to a multi-effect distillation plant exclusively (to be more
feasible economically) or indirect supply through a thermal energy storage system. On the other
hand, if renewable energies are used, the cogeneration process can be more environmentally friendly;
for example, Yan and Qin [11] designed an integrated heating system that incorporates geothermal
energy into the framework of an integrated energy system of electricity, heating, and gas. An analysis
of the environmental and economic benefits indicates that the system reduces pollutant emissions and
decreases the cost of urban heating.

Cogeneration is defined as: “The production of more than one useful form of energy (such as
process heat and electrical power) from the same energy source” [12]. This concept must be
complemented by the use of waste-generated fuels in the same process as, for example, biogas.
The cogeneration process has existed since 1882, when Thomas Edison designed and built the first
commercial plant in the USA [5]. The basic elements of a cogeneration plant are: primary energy source,
heat utilization systems, refrigeration systems, water treatment system, control system, electrical
system and auxiliary systems. The different types of cogeneration can be distinguished by the
equipment used in the production of energy, as, for example: cogeneration with steam turbine,
cogeneration with gas turbine, cogeneration with an alternative engine, combined cycle cogeneration
with gas turbine, combined cycle cogeneration with an alternative engine and tri-generation [13].

In conventional power plants, a large amount of heat is produced but not used. By using
cogeneration, on the designed systems that can use heat, the efficiency of energy production can be
increased starting from the current levels, ranging from 35% to 55%, to over 80% [14]. This increase in
energy efficiency can be a result of spending less energy and reducing greenhouse gas emissions, when
conventional methods of generating heat and electricity are compared separately [15,16]. Figure 2
shows the generation ranges and energy losses for the different cogeneration configurations. It is
observed that in all four cases, a greater amount of heat, rather than electricity, is produced. Thus,
the decision to choose one of the options is based on the technical-economic analysis of the process.

 

Figure 2. Heat and electricity production scheme for different cogeneration configurations.

Several authors have investigated cogeneration systems. Figure 3 shows the number of
publications from 1978 to 2018. These graphs are for the word “cogeneration” in the title, keywords
and abstract. Some authors on the subject of cogeneration are: Jana and De [17], who propose a
biomass-based cogeneration plant with CO2 capture. The thermodynamic modeling of the industrial
plant was simulated by using ASPEN Plus; Ünal et al [18] have reported the techniques of optimization
in the processes of trigeneration and poly-power generation; Shabbir and Mirzaeian [19] describe a
feasibility study of the implementation of different cogeneration options to a paper mill to evaluate
their energy saving potentials and economic benefits; Dincer and Zamfirescu [20] developed the
concept of renewable-energy-based multigeneration options for producing a number of outputs, such
as power, heat, hot water, cooling, hydrogen, fresh water, and so forth and discussed their benefits.

307



Processes 2019, 7, 93

Such options obviously led to an improved system performance and reduced the environmental
impacts; Buoro et al [21] identified the optimal energy production system and its optimal operation
strategy required to satisfy the energy demand of a set of users in an industrial area. A distributed
energy supply system is made up of a district heating network, a solar thermal plant with long term
heat storage, a set of Combined Heat and Power units and conventional components also, such as
boilers and compression chillers; and Yu et al [22] propose a general evaluation method to compare the
performance of six different approaches for promoting wind power integration. In consideration of
saving coal consumption, reducing CO2 emissions, and increasing investment costs, the comprehensive
benefits are defined as the evaluation index.

Current technology is making cogeneration cost-effective on increasingly smaller scales, which
means that electricity and heat can be produced in neighborhoods, or even individual sites, in which
cases the process is called micro-cogeneration [23]. Cogeneration applications in buildings include
hospitals, institutional buildings, hotels, office and residential/housing buildings where several
families live [24]. Thus, cogeneration systems for multifamily, commercial or institutional applications
benefit from the thermal/electrical load diversity in the multiple loads required, which reduces the
need for storage [25]. District energy systems reduce greenhouse gas emissions in two different ways:
(i) In buildings, less efficient equipment is replaced by an efficient central power plant; and (ii) By
producing electricity for the central grid which can replace, for example, coal and other sources of
electricity that involve a large amount of greenhouse gas emission per each kWh [26]. Joelsson [27]
determined district heating based on cogeneration of heat and electricity and bedrock heat pumps
were found to be energy-efficient systems. The net emission of CO2 is dependent on the fuel, and the
CO2 emissions from these systems are comparable to those from a wood pellet boiler, if biomass-based
supply chains are used.
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Figure 3. Representation of the number of articles published in WoS and Scopus from 1978 to 2018.

There are several publications about the cogeneration process in residential systems [25,28–34]
(see Figure 3). Figure 4 shows the bibliographic mapping that connects the authors with the cited
references. This was done with the search “Cogeneration AND Building”. The circumferences indicate
the volume of publications made by the authors. The proximity between these circumferences and lines
account for the research network on the subject. The 9 authors with the highest number of citations are
highlighted. E.g., Tchanche et al [32] presents existing applications and analyzes their maturity. Binary
geothermal and binary biomass combined heat and power (CHP) are already mature. Provided the
interest in recovering waste heat rejected by thermal devices and industrial processes continues to grow,
and favorable legislative conditions are adopted, waste heat recovery organic Rankine cycle systems
will experience rapid growth in the near future. Esen and Yuksel [33] experimentally investigated
greenhouse heating by biogas, solar and ground energy in the climate conditions in Elazig, Turkey.
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The greenhouse was constructed, and then the required heating load of the greenhouse was determined.
For this purpose, biogas, solar and a ground source heat pump greenhouse heating system with a
horizontal slinky ground heat exchanger was designed and set up. Chua et al [34] present a review
of recent innovative cooling technology and strategies that could potentially lower the kW/R ton of
cooling systems—from the existing mean of 0.9 kW/R ton towards 0.6 kW/R ton or lower.

 

Figure 4. Authors network of research on cogeneration applied to buildings. Determined with the
Citespace software.

Studies on the cogeneration process in Mexico have been carried out mainly in industrial
areas [35–39]. Currently, despite the fact that the cogeneration process is considered an alternative to
efficient and non-polluting energy generation, there is little scientific literature on cogeneration studies
in buildings in Mexico, i.e., Fuentes-Cortes et al [40] presents a multi-objective optimization method for
designing cogeneration systems in residential complexes and accounting for the involved uncertainty.
The model accounts for satisfying the hot water and electric energy demands in a residential complex
while minimizing the total annual cost and the associated greenhouse gas emissions. A housing
complex in central Mexico is presented as a case study. Weber et al [41] compares the energy efficiency
of two processes covering the thermal energy demand of a swimming pool: a CHP unit on the one
hand, and a heat pump with internal combustion engine on the other. The energy losses for the CHP
unit on-site are equivalent to half the losses caused by extraction and distribution of natural gas under
current circumstances in Mexico.

Problem Statement

The problem is to determine the optimal configuration of a cogeneration system for a building.
This configuration must meet the energy demands (electric and thermal), considering factors such as:
operation scheme, size and type co-generator (turbine or combustion engine), capacity of an auxiliary
thermal system (boiler) and energy purchase-sale scheme with the local company’s grid, along with
minimizing the total annual energy cost and greenhouse gas (GHG) emissions associated with the
consumption of fuels in the process. In this research, the thermal load required by the building’s
facilities is much higher than the electric load, so to be able to comply with this, the electric energy
produced will be divided into only what is absolutely necessary for the building, as well as for the sale
to the electricity distribution company or sale to a private supplier under the current framework of the
law in Mexico (since January 2015).
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This research arises from recognition of the importance of the cogeneration process in Mexico.
Therefore, it seeks to collect information from the analysis of the energy cogeneration system design
applied to a housing building, using the computer tool Thermoflex 25 by Thermoflow© (Thermoflow
Inc., Jacksonville, FL, USA).

The study contributes to the development of cogeneration in residential applications in warm and
not so extreme climates. The study shows how to evaluate a cogeneration plant in a poorly-developed
application in Mexico, because in the world, mainly in inhabited areas with colder and more extreme
climates, cogeneration applications in apartment buildings are evaluated from a technical and economic
point of view, and are very attractive for implementation. But in warmer regions such as Mexico City,
this is not the case, since the need for hot and cold air are not as extensive as in cities on more northern
latitudes. Hence, it is crucial to determine which cogeneration applications can be economically
attractive, determining the values of economic variables and their prices-costs, in apartment buildings.

Knowing the technical, economic, and technological elements that help make cogeneration
attractive for investment helps local regulators and governments design strategies for regulations,
norms, and supports its development, accurately locating where and what type of support is required,
given that these studies show where technical, economic, and even environmental variables are most
sensitive, to give attractive results to investors or apartment owners to build and operate the plants.

This in turn favors the technological development of the equipment used by diversifying its
applications and generating more market for the commercialization of equipment and services, which,
in the long run, lowers costs and helps to increase the benefits of the projects, and also contributes to
helping the emission reduction goals to be achieved on the regional, nation, and global scales by having
more efficient energy sectors, supported by the contribution that cogeneration can make in applications
for housing in countries and regions with warmer climates and not so extreme. And in particular
for Mexico, it can also help accelerate the results of government programs for the development of
cogeneration and exploitation of cogeneration potential, which has been sought after and promoted
in Mexico since 1994, and has not yielded the desired results. This type of study and its results
can contribute to providing certainty that cogeneration projects can be successfully evaluated and
carried out.

2. Materials and Methods

In the first stage, the current legal framework for cogeneration in Mexico is thoroughly reviewed.
This is quite important, as some conceptual design considerations of the cogeneration plant will come
from this framework. Some of these considerations are the marketing and sale of the electric surplus,
the availability and fees that pertain to the type of fuel as well as tax incentives and aid in fee payments,
along with everything related to permits and procedures to follow for the implementation of the
project, which will be reflected, firstly, as costs and economic savings in the initial stage of the project.
Moreover, the available technical information on the property is collected in order to characterize
the demand and consumption of the building’s known average electrical and thermal energy; later,
the thermal energy requirements are determined by estimating the demand and consumption of the
building, based on the type of apartments, the number of people who could live in them, geographical
conditions of the site and usage and customary habits of the potential tenants, keeping in mind
the recommendations made by American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE), equipment manufacturers and developers of this type of project. In this study,
the Thermoflow© software was used, which allows the estimation of the operating conditions based on
the building’s energy requirements. Therefore, in order to carry out the Thermoflow© modeling of the
building’s cogeneration process, it is necessary to know the physical characteristics of the apartments
and buildings, the number of users, energy consumption habits, environmental conditions, type of
fuel available and current energy regulations. Then, using Thermoflex 25 software by Thermoflow©,
two processes are proposed that comply with the building’s thermal and electrical requirements.
Finally, a feasibility and viability analysis of both proposed processes is carried out.
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For the economic analysis, the value of money over time is considered, and it is necessary to
define the discount rate. It is common to improperly use the interest rate paid for the debt as a discount
rate, instead of a higher value that considers the opportunity cost for the investor; this is called the
‘Minimum Attractive Rate of Return’ (TREMA) or ‘cost of capital’. This rate can be calculated as the
rate that would be earned in an investment without risk (for example, Libor or CETES in Mexico),
plus a premium that defines the risk level of the project. This methodology is typical for assessing
projects feasibility [19,35].

2.1. Cogeneration Processes Simulation

Processes simulation in engineering is the digital representation of a set of unit operations, which
allows determining process variables (flow, temperature, pressure, energy and power) through the use
of computational tools. It also makes it possible to study existing processes in a faster, more economic
and thorough way than in a real plant. The simulation of the cogeneration process was carried out in
this research using the Thermoflex 25© software from Thermoflow©, applied to a residential building.
This program has been mainly used in cogeneration processes in industry [42–46]. In the Thermoflex
simulation of this work, the planned cogeneration plant will simultaneous produce of electrical and
thermal energy. Its production capacity will be designed to cover the entire thermal demand. Thus,
this will make the electrical generation greater than the actual demand of the apartment building;
therefore, the level of electric surplus and its possible economic income, benefiting the project due to
its sale, must be determined. The plant will run uninterrupted 24 h a day, 365 days a year at 100%
production capacity on-site and with the plant factor calculated for the proposed installation based
on the equipment and the best operating practices. Moreover, in order to cover the scheduled and
possible non-scheduled stoppages, the current fee structure provides for contracting an electrical
backup service in the public network, with its corresponding cost which will be integrated into the
operational cost of the cogeneration plant and into the economic evaluation of the project.

The simulations allow us to determine the performance of the cycle with different sizes of gas
turbine and combustion engines. Both technologies are the most used in the cogeneration process.
The gas turbine and the combustion engine chosen for the final analysis of the cycle differed mainly in
the parameters, i.e., gross power, CHP efficiency, air stream, fuel stream, emissions of CO2 and fuel
consumption. These parameters have been evaluated using Thermoflex 25© software, as given by the
equations described above.

The theoretical foundations of these simulations are based on thermodynamics and heat transfer.
Mainly, energy and mass balances are considered in system flow. For the calculation of thermal energy
fluxes in the non-phase-changing fluid, the sensible heat equation is considered [47]:

E = FC·ΔT, (1)

where F is the mass flow (kg/s), C is the specific heat (kJ/kg·◦C), ΔT is the temperature change of the
fluid (◦C) and E is the energy flow that absorbs or dissipates the fluid (kW). The determination of the
energy flows is made based on the maximum requirement possible by all of the users, whereas for the
calculation of the thermal energy flows in which the fluid changes phase, the latent heat, along with
the sensible heat equation [47], are used:

ECF = F·C·ΔT + ΔH, (2)

where ΔH is the latent heat of the fluids (kW) and ECF is the energy flow that absorbs or dissipates the
fluid considering the phase change (kW). The determination of the energy flows is made based on the
maximum requirement possible by all of the users. Furthermore, to determine the energy content of a
flow, the following equation is considered valid:

H = F·h, (3)
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where h is the specific enthalpy (kJ/kg) and H is the energy content (kW) of the flow. On the other
hand, the following relationship is used to determine the power of a unit present in the cogeneration
process:

.
W = F·Δh, (4)

where Δh is the enthalpy change of the fluid (kW) and is the power of the equipment (kW). Furthermore,
the equation for determining pump power (

.
W) is derived from the mechanical energy balance:

.
W =

F·ΔP
ρ

, (5)

where ΔP is the pressure change (Pa) and ρ is the density (kg/m3). Equation (6) represents the energy
balance of heat exchangers:

.
QHE = FH·ΔhH = −FC·ΔhC, (6)

where ΔhH is the specific enthalpy change of hot fluid (kJ/kg), ΔhC is the specific enthalpy change of
cold fluid (kJ/kg), FH is the mass flow of hot fluid (kg/s), FC is the mass flow of cold fluid (kg/s) and

.
QHE is the heat flow (kJ/s) transferred from the hot fluid to the cold fluid.

Other important energetic variables in the cogeneration cycles are energy intensity (kW/kg),
which relates the amount of energy required to produce a mass unit of product, the Q/E ratio that
specifies the ratio of the thermal and electrical energy needed to cover the requirements of the building
and the efficiency of the cycle that indicates the relation between the energy demanded and the energy
required by the cogeneration system.

The cogeneration is a process that is generates two products (thermal energy and electricity).
The typical parameters used to determine the performance of a cogeneration plant are [48–50]: electrical
efficiency (Equation (7)), thermal efficiency (Equation (8)) and total efficiency (Equation (9)).

ηe =
Qe

Q f
(7)

ηh =
Qh
Q f

(8)

ηtot =
Qh + Qe

Q f
(9)

where Qe (kWh) is the gross generation of electricity, Qh (kWh) is the net generation of heat Qf (kWh)
is the fuel used.

In the Thermoflow software, the plant model is built from the inside out. The users construct
the subsystems from their basic elements. Then, the overall scheme emerges from the interconnected
subsystems. Finally, the lowest level decisions are made, such as the fine details within the various
subsystems. The structural approach automatically considers all interactions between subsystems.
It also allows many lower lever inputs to be logically generated by the program, depending upon the
user’s higher level selection. At any level, however, the user is free to alter any or all of the program’s
automatic selections.

2.2. Case Study

In this research, the design of a cogeneration system for a building was analyzed. The building
has electrical and thermal energy requirements (hot water and steam) in its apartments, pool and event
hall. The building is located in a high-income area (Polanco) in Mexico City, so the occupants of the
property have a high socioeconomic status. They are “L” shaped towers (see Figure 5); towers A and B
have 19 and 14 floors, respectively. Their total height is approximately 52 m. There are 5 basement
levels with a total of 528 parking lots, 233 cellars and an engine room. On the ground floor there
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are administrative offices, rooms with electric and gas meters, a gymnasium, entertainment rooms,
an indoor pool and green areas.

 
Figure 5. Photographs of the building under study.

Medina et al. [51] describe the detail of the building’s infrastructure. The building’s apartments
were still under construction at the time of the elaboration of this study; therefore, the electric
consumption, the thermal demand and its consumption were estimated according to the average
demand and consumption practices in apartments. The building has 233 apartments which are
distinguished by the surface, number of people and number of showers (see Table 1).

Table 1. Number of apartments according to surface (m2), number of people and showers [51].

Items Amount Amount Amount

Surface (m2) <75 105–120 130–182
Apartments (n◦) 60 88 85

People (n◦) 2 4 5
Apartments (n◦) 60 155 18

Showers (n◦) 1 2 3
Apartments (n◦) 60 93 80

By studying the energy conditions of the building, it was determined that it is necessary to supply
it with thermal energy by way of steam and hot water, electric energy and cold and hot air thermal
energy; therefore, throughout the day, users will have, at their disposal: Hot water service in the
showers and swimming pool, and hot and cold air conditioning, all of which improve their comfort
inside the property. In this case, the cogeneration plant will be able to sell surplus electrical energy,
with additional benefits such as those provided by green certificates. The thermal demand is estimated
according to the frequency of use given to the facilities (see Figure 6). It was considered that users
would take showers mainly in the morning and a small fraction of them at night. This is the reason for
the maximum values detected. It is important to highlight that a fraction of those who bathe in the
morning during the summer will do so at night during the winter. On the other hand, the pool will be
active 24 h a day, the kitchen sink will be used in the middle of the day and a rarely at night, and the
washing machine will be used in the morning and evening. Finally, the trend in air conditioning usage
has been estimated for both summer and winter.

Table 2 shows the thermal energy demand annual. Based on the lifestyles of the building users,
a sharp decrease is shown during the following periods: the last week of March and the first week of
April, as well as the three first weeks of August. This represents the holiday period, which is in line
with the owners’ standard of living, since they leave their apartments during these periods. Guelpa et
al [52] examined the effects on the total load that can be obtained by adopting management strategies
such as variation in the thermal request profile of the buildings or installation of local storage systems.
Results show that even in the case only small changes being applied, reductions in annual primary
energy consumption up to 0.4% can be obtained without any additional investment cost.
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Figure 6. Thermal demand of users for winter and summer.

Table 2. Percentage of thermal demand of building.

Places of Energy Consumption Winter (%) Summer (%)

Shower 5.33 7.67
Bathroom sink 0.33 0.05
Kitchen sink 0.21 0.30

Washing machine 0.44 0.82
Swimming pools 6.21 7.61

Hot air 86.39 2.11
Cold air 1.40 81.45

Figure 7 shows the building’s thermal hot and cold-water requirements, as well as cold air. This
simulation was carried out with the Thermoflow© software which solves the mass and energy flows in
detail. A summary of the most important energy requirements for the process is shown in Table 3.

Table 3. Energy requirements of the system.

Requirement Value Unit

Hot water flow (swimming pool) 3.16 kg/s
Energy for the swimming pool 52.06 kW
Hot water flow (Showers, washing machine, kitchen and bathroom sink 34.40 kg/s
Energy for showers, washing machine, kitchen and bathroom sink 5033 kW
Hot water flow 32.33 kg/s
Hot air energy 426 kW
Cold air flow 28.40 kg/s
Cold air energy 1116 kW

The installed load of the building, based on the information reported by Medina et al. [51], is:
contacts 35%, pumps 25%, lift force 14%, air force 14%, lighting common services 6%, parking lighting
3% and others 3%. It is observed that electricity is consumed mainly in plugs, pumps and elevators.
This coincides with reported by Ali [8]; described in the introduction.

In an average day, there are two periods of greater electricity consumption (7:00–9:00 h and
19:00–21:00 h), which do not come close to the installed load or the maximum possible consumption of
electricity, i.e., in the case that the building’s entire electrical installation is working. On the other hand,
Figure 8 shows that the electrical demand is between 19 and 62% of the installed load. The estimation
of the annual electrical requirements was calculated based on the users’ behavior with regards to their
permanency in the building during the year.
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Figure 7. Thermoflow diagram of the thermal energy requirements for the building without

cogeneration. Units: bar
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Figure 8. Percentage of annual electrical requirement for building users.

3. Results and Discussions

Energy efficiency should be understood as the intelligent use of energy, and not only as a decrease in
energy consumption. That is to say, in the case of a building, residents should perform their activities
using energy only at the time that it is absolutely necessary, without affecting their comfort and well-being.
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In a cogeneration project, it is necessary to know the industrial context in which the process will
be installed. Other authors [53–56] have also considered this prior information, i.e., to know in advance
whether it is a manufacturing industry or a commercial building or a public building and establish
the type of fuel to be used. Then, it is necessary to have the electrical requirements clearly quantified
in order to define the electric demand profile of the process. On the other hand, it is necessary to
establish the thermal requirements, i.e., hot water for showers, bathroom and kitchen sinks, or any
other industrial use, as cold and/or hot water for air conditioning, water vapor for higher thermal
requirements, such as large swimming pools. Once the above is defined, the electricity and natural gas
fees for the central region of the country must be considered in the project, which in this case means
using the current rates in Mexico City. Finally, it is also important to be informed of the environmental
norms and regulations, techniques and the legal framework that will affect the decisions made during
the project.

3.1. Choices of Cogeneration Systems

In this research two design process proposals were made: alternative A, which is based on
combustion engines (EC process), and alternative B, which uses a gas turbine (GT process). Both comply
with the basic conceptual model of a cogeneration plant, which is detailed in Figure 9.

 
 

 
 

Figure 9. General scheme of the cogeneration system for the building under study.

Figure 9 shows that an internal combustion engine or a gas turbine will produce electricity and
feed hot gas/air to the heat recovery steam generator (HRSG) in order to generate steam and hot
water necessary for the pool, showers, toilets, washing machines, sinks and air conditioning systems.
The generation of electricity will be distributed by a board to a system against fire, air conditioning,
electrical system, auxiliary and substations, among others. The HRSG system will provide water at
133 and 99 ◦C. For the generation of cold air, a chiller of at least 300 tons of refrigeration is used. For
both hot air and cold air, fan and coils are used as an air conditioning system. Once the water flow has
passed through the corresponding stage, condensate recovery is performed.

The system will be installed in the basement to avoid interfering with the facilities at the top
of the building. This will make the distribution of the thermal resource via variable speed pumps
or hydropneumatics systems, to avoid the tanks in the highest part of the building. Regarding the
electrical part, the system will be coupled to the current electrical connection, in order to connect the
electric backup service in the public network. By means of a general board, the electrical load will be
distributed to the different devices and substations that feed the building.

In both processes studied, compliance with 100% of the thermal and electrical requirements are
achieved. The scheme (Figure 10) is divided into five sub-processes: I. Combustion engines or gas
turbine and recovery boiler, II. Swimming pools, III. Showers IV. Hot air and V. cold air.

First, in the “Combustion Engine” stage of CE process where engines WAR 20V34SG (Wärtsilä
North America Inc., Houston, TX, USA) and CAT G16CM34 (Caterpillar company, Deerfield, IL, USA)
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(CH4 fuel) were used to produce the necessary hot air sent to the HRSG. A cooling sub-process called
“Refrigeration of engine system” was required to lower the heat of the engine due to the burning
of fuel, without transforming into mechanical energy. Thus, this keeps the engine parts below their
design temperature and avoids their deformation and destruction. In addition, part of the cooling heat
is used to obtain a fraction of the necessary heat for the showers. The WAR 20V34SG engine has an
electric efficiency of 45% and the output air flow temperature is 361 ◦C. The CAT G16CM34 engine has
an electrical efficiency of 42.3%, and the output air flow temperature is 368 ◦C. Moreover, for proper
operation at 100% capacity, 0.694 kg/s of fuel is required, thus generating 26.69 kg/s of air at 363.7 ◦C,
which is necessary for the recovery boiler.

On the other hand, in GT process, the SIEMENS SGT-100-1S (Siemens Aktiengesellschaft, Munich,
Germany) (CH4 fuel) turbine was used to produce the necessary hot air which is sent to the recovery
boiler (HRSG). Here, a post-combustion sub-process was required to increase the temperature of the
exhaust gases, instead of using a higher capacity turbine, making the process more expensive.

For alternative A and B, in the “HRSG” and “Condensate return” steps, the sub-process consists
of an evaporator (6; lower area Figure 10) and two economizers (7 and 8; lower-right area Figure 10),
where the evaporator allows the saturated steam to be obtained and feed the thermal energy to the
“swimming pool” and the “showers”, while the economizer (7) generates the hot water for the stages
of “hot air and “cold air”. The exhaust gases from the economizer (8) must be greater than 100 ◦C to
avoid the condensation of the water present in chimney flue gases. Finally, there is the “condensate
return” stage which allows the mixing of the water-cooling flows in the different stages of the process,
incorporating this flow to the economizer 7. The “swimming pool” stage is observed, in which a heat
exchanger is used to contact, countercurrent wise, the saturated steam coming from the evaporator,
with a flow of 3.64 kg/s of recirculated water from the pool (Process block with return 14). In the
“showers” stage, hot water is used in the apartment’s showers, washing machines, as well as bathroom
and kitchen sinks. A heat exchanger (21; center-left area Figure 10) is used to obtain the hot water
which is fed with saturated steam from the evaporator of the recovery boiler to achieve the hot water
flow required for the building at 60 ◦C. Each process shaft (13, 18, 22, 41, 42) represents the hot water
requirement for a section of the building, according to the number of people living in an apartment.
The “hot air” stage is shown, which meets the needs of hot air by using a heat exchanger, where the
hot water flow from the recovery boiler comes into contact, countercurrent wise, with the air that heats
up from room temperature conditions on to 23 ◦C. Flows are separated per building and thereafter,
the processes (30, 54, 56, 57 and 92) are distinguished according to living/dining room volume of
<80 m3 and between 80 and 144 m3. Moreover, the hot air requirements of the building’s entrance hall
are included. In the “cold air” stage, the cold air is generated with the intervention of an absorption
chiller (32; center-right area Figure 10), where hot water from the recovery boiler enters. This allows a
flow of cooling water to be obtained and which comes in contact with the hot ambient air, cooling it
down to 23 ◦C. The cold air is separated by buildings and also according to the cooling tons required
by the apartment, in the living-dining room area. It is important to emphasize that fans appear in each
flow representing the electric consumption by the air conditioning system, either for hot or cold air.
Moreover, tag 42, which indicates the cooled water flow in exchanger 28 (“Hot air” stage; center area
Figure 10), is returned to be mixed with the chiller outlet flow.

The main results of each process are reported in Table 4, where it can be observed that the
GT process exceeds, in at least 13 aspects, the CE Process. For example, it has a CHP efficiency of
24.3%, consumes 40.9% less fuel, which translates into the same percentage of lower CO2 emissions,
the heat ratio for each kWh of electricity is 44.4% higher, the auxiliary energy consumption is 33%
of the EC process and the water consumption is 8% lower. Therefore, the installation of the GT
Process is proposed in order to comply with the energy requirements of the building. Onovwiona and
Ugursal [25] reported that gas turbines offer a number of advantages when compared to reciprocating
internal combustion based cogeneration systems. These include compact size, low weight, small
number of moving parts and lower noise. In addition, gas turbine-based cogeneration systems have
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high-grade waste heat, low maintenance requirements (but require skilled personnel), low vibration
and short delivery time. However, in the lower power ranges, reciprocating internal combustion
engines have higher efficiency.

Evaporator
6

Economizer
7

Economizer

8

Heat
exchanger

Heat
exchanger

Heat
exchanger

Heat
exchanger

21

3

31

28

13

18

42

41

22

57

56

54

30

64

63

61

58

93

92

Absorption
chiller

32

Figure 10. Scheme of the simulated cogeneration process with the Thermoflow©, considering a gas
turbine as an energy source. Carso II CHP/Gas Turbine with HRSG and natural gas to supply 100% of
thermic demand.

3.2. GT Process

Figure 10 shows the simulation model of the cogeneration process using a gas turbine as the
energy matrix. With this system, it is possible to comply with 100% of the thermal and electrical
requirements. The results of the proposed GT process for the building are analyzed in detail below.
First, the “Gas Turbine” section is explained. The gas turbine is a Siemens SGT-100-1S model with
30.6% efficiency, 4907 kWe (at sea level) electric power generation and gas production at 514 ◦C, which
is sent to a post-combustion sub-process to raise its temperature to 650 ◦C. The air fed to the turbine is
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at an ambient temperature pressure of 0.765 bar (altitude 2308 m) and at an average temperature of the
sector of 17.2 ◦C. Thus, due to these air conditions, the gross electric power generated is 3475 kW.

Table 4. Main results of the GT and EC Process.

Property Unit GT CE

Gross power kW 3475 15258
Net power kW 3420 15090
Total auxiliares kW 55.41 167.6
Net process heat output kW 8533 8517
CHP efficiency % 84.44 67.92
Net heat rate (LHV) kJ/kWh 14901 8291
Net electric efficiency (LHV) % 24.16 43.42
Air stream N◦ 29 31
Water stream N◦ 53 68
Fuel stream N◦ 3 2
Cycle heat imbalance % 0.0002 0.0011
Cycle mass imbalance % 0 0
Water consumption kg/s 3.66 3.97
Water discharge kg/s 1.73 1.65
Emissions of CO2 tonne/year 22626 55554
Fuel consumption kg/s 0.283 0.694

3.2.1. Ambient Temperature Effect

Figure 11 shows the ambient temperature effect on the generation of electrical power and on
the efficiency of cogeneration, where the minimum and maximum temperatures of the sector under
study were considered. It was observed that in this range, the generation of power varies by 16.8%,
while the cogeneration efficiency varies by 7.8%. The latter would indicate that the process is minimal
affected by temperature changes in the sector. Basrawi et al [57] researched the effect of the inlet
air temperature on the performance of a micro gas turbine (MGT) with cogeneration system (CGS)
arrangement. The results showed that when ambient temperature increased, electrical efficiency of the
MGT decreased but exhaust heat recovery increased.

Figure 11. Variation of the gross generation of electrical power and the cogeneration efficiency
according to the ambient temperature.

The sensitivity for the variation of the heat rate of the system in the function of the variation of the
ambient temperature was analyzed (see Figure 12) as the base value for the analysis of 14901 kJ/kWh
electrics. Therefore, the expected result (heat rate) for different environmental conditions of year is
observed in Figure 12.
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Figure 12. Heat rate of the system in the function of the variation of the ambient temperature. Image
obtained from Thermoflow.

3.2.2. Fuel Effect

The Siemens SGT-100-1S turbine uses 0.24 kg/s of natural gas at 25 ◦C and 31 bar, obtaining the
results reported in this work, but, moreover, the analysis was performed for different types of fuels.
The composition of these gases is reported in Table 5, where the variability of the compounds present
in the fuels is observed, so the contrast between the cogeneration efficiency and the gross generation of
the electrical power was carried out (see Figure 13). It was then observed that Syngas allows a greater
generation of gross electrical power, but with a low cogeneration efficiency compared to that obtained
with the other fuels. This behavior of the GT process with Syngas is due to the high concentration of CO
and CO2, which gives this fuel a greater heat reaction. In addition, the installation requires a gasifier;
thus, the proposal is intended to serve as an example. Figure 13 shows a linear trend with a negative
slope (R2: 0.981) between the cogeneration efficiency and the gross power generated. Hence, the higher
the cogeneration efficiency, the lower the power generated for the different fuels. With Syngas as fuel,
more electricity is generated, so it should be chosen according to an economic criterion. However,
60166 ton/year of CO2 is emitted by using it, which goes against the environmental principles of the
cogeneration process.

Table 5. Composition of gases tested in the GT process.

Molecule

Combustible

Metane

Natural
Gas (with

H2S)

Natural
Gas (no

H2S)

Coke
Oven
Gas

Digester
gas

Erdgas Landfill
Gas

Syngas

CH4 100 87.00 87.00 33.9 62 97.65 63.5 5
H2 0 0.36 0.36 47.9 0 0.00 2.5 30
O2 0 0.07 0.07 0.6 0 0.00 0.0 0
N2 0 3.61 3.65 3.7 2 0.86 0.0 5
CO 0 0.09 0.09 6.1 0 0.00 0.0 35
CO2 0 0.34 0.34 2.6 36 0.08 33.0 25
C2H6 0 8.46 8.46 0.0 0 0.97 0.0 0
C2H4 0 0.03 0.03 5.2 0 0.00 0.0 0
C3H8 0 0.00 0.00 0.0 0 0.03 0.0 0
C4H10 0 0.00 0.00 0.0 0 0.11 0.0 0
C5H12 0 0.00 0.00 0.0 0 0.02 0.0 0
C6H14 0 0.00 0.00 0.0 0 0.01 0.0 0

H2S 0 0.04 0.00 0.0 0 0.00 0.0 0
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Figure 13. Contrast between cogeneration efficiency and gross electric power.

Figure 14 shows that the CO2 emission is higher for lower cogeneration efficiency with regards
to the different types of fuels. It should be highlighted that the CO2 fuel emissions of renewable
sources are considered neutral. This coincides with the report by Joelsson [27] which was described in
the introduction.

Figure 14. Emission of ton/year of CO2 of each fuel according to the cogeneration efficiency.

The decrease in the cogeneration efficiency is due to the loss of useful energy that is reflected in
the temperature of the gas outlet that leads to the chimney. As shown in Figure 15, there is a linear
correlation (R2: 0.99997) between the cogeneration efficiency and the temperature of the HRSG gas
outlet. The efficiency of the cogeneration cycle is 84.4%, which is an expected value for this type
of system, and therefore, is a value superior to the efficiency of a steam power cycle. In this case,
the efficiency is greater in at least 44 percentage points. The energy used in auxiliary devices for the
operation of the cycle corresponds to 1.6% of the gross energy generated, which can be considered a
very acceptable value. On the other hand, the error percentages of the heat and mass balances show a
very good simulation of the calculations obtained. Finally, the electric power generated is 3.48 MW,
which greatly surpasses what is required by the building, i.e., 1.12 MW. This implies that the 2.36 MW
surpluses can be commercialized according to the country’s legal framework (active as of January
2015). However, the easiest option would be to sell them to the electricity company in Mexico City.

321



Processes 2019, 7, 93

Figure 15. Linear trend between the cogeneration efficiency and the temperature of the HRSG gas outlet.

3.2.3. Load Effect

The analysis of the system was performed in case of a variation in the turbine load, decreasing
from 100 to 30%, which complies with the building’s thermal requirements, as summarized in Figure 16.
Here, it can be observed that by lowering the turbine load, the fuel flow towards it decreases to 50%,
while up to 141% more fuel is required in the afterburning, although the total fuel flow decreases
by 19%, following the same trend as the CO2 emissions. On the other hand, the temperature of the
chimney flue gases decreases by 6.6%, reaching 95.6 ◦C, which implies that the water vapor present
in them does not condense because the atmospheric pressure in the area is 0.7648 bar. Furthermore,
the cogeneration efficiency decreases to 1.88%. Finally, the net power decreased to 1.01 MW, and
this value is 9.8% less than the total load of the building. However, it must be considered that it is
unlikely that 100% of the load will be used at a given time. In other words, with the proposed process,
the thermal and electrical limit requirements can be met.

For cogeneration applications, the heat to power ratio of the engine is critical. Onovwiona and
Ugursal [25] reported that the percentage of fuel energy input used in producing mechanical work,
which results in electrical generation, remains fairly constant until 75% of full load, and thereafter
starts decreasing. This means that more fuel is required per kWh of electricity produced at lower
partial loadings, thereby leading to decreased efficiency.

Figure 16. Percentage of the turbine load effect on the turbine load net power, cogeneration efficiency,
chimney flue gas temperature, CO2 emission, net heat ratio, turbine fuel flow and afterburner fuel flow.
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3.2.4. Economic Analysis

Based on the building’s energy study, the economic expenditure on electric energy, by the
building’s users, was determined (see Figure 17). It is important to highlight that the Mexican electric
fee to be used for the calculation is the HM Central zone, where the cost of electricity depends on the
time of use, seasonality and geographical area. Figure 17 shows that the highest economic expenditure
on electricity consumption occurs in January because the winter rate increases with respect to the
summer rate. The annual expenditure on electricity consumption then is US$ 29527.
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Figure 17. Monthly electricity expenses (US$) for the building.

On the other hand, the mean economic expenditure on apartment thermal energy was determined
to be US$9471, annually, where the winter months showed greater spending on thermal energy
(Figure 18). Moreover, there is the initial investment of the project which mainly considers the purchase
of equipment (see Table 6). The largest investment in this cogeneration process is the acquisition of the
Gas Turbine, which makes up 87.2% of equipment expenses.

Then, for the economic analysis of the process, the following annual costs are considered (Table 7):
Energy of the conventional process and cogeneration, operation and maintenance of the conventional
process and cogeneration, and investment in the cogeneration process. The values were compiled
from quotations or estimates and information from similar projects. Considering the values in Table 7,
the capital or investment recovery will be based on the savings in the consumption of electric and
thermal energy, as well as the sale of electric power to the central electricity network, under the prices
determined by the market.
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Figure 18. Monthly expenses (US$) on the building’s thermal energy.
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Table 6. Summary of the costs associated to the initial investment of the cogeneration process.

Equipment Cost (US$)

Turbine Gas Model: Siemens SGT-100-1S 3,100,000
7 Centrifugal pumps 17,000

Absorption chiller 292,000
7 Heat exchangers 105,000

Auxiliary equipment 9000
Equipment import charges 20,000

Hand labor 7500
Equipment maintenance 10,000

Process administrator 7200
Miscellaneous 5000

Total 3,555,500

Table 7. Costs considered in the economic analysis.

Ítem Cost (US$)

O&M Fixed 40,800

Conventional Process

Energy/year 2,784,948
O&M/year 68,282

Cogeneration Process

* Energy/year 2,000,781
O&M/year 66,973
Investment 3,555,500

* The term Energy consider fuel expenses and electric energy sale.

A positive NPV is then produced in the seventh year of operation (see Figure 19) of the
cogeneration process, indicating that from that year on the cogeneration process will bring profits to
the building being studied. The project is attractive, and an investment recovery period of 7 years is
expected, with a natural gas price that does not exceed 0.014 dollars per kWh. However, it no longer is
considered attractive if this price is set at around 5 dollars or more. As the gas price refers to that of
South Texas (Henry Hub) or Ciudad Pemex to the south of Veracruz, Mexico, the final price is greatly
increased by the cost of transportation to Mexico City.

Figure 19. Recovery period of investment (MARR 12.1%).
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4. Conclusions

The building’s highest energy consumption is in the generation of hot water because it is mainly
used in the swimming pool, showers and for the generation of hot and cold air (absorption chiller).

The cogeneration process based on a gas turbine gives better results in the main energy parameters
than a process running with combustion engines, i.e. higher cycle efficiency, a lower amount of flows,
lower water consumption, lower fuel consumption and therefore a lower amount of CO2 emissions.

It was observed that the ambient temperature (5 to 33 ◦C) affects with an increasing linear
tendency towards the efficiency of the cycle, increasing by 7%, while the generated gross power
decreases linearly by 13%. This is because the greater the ambient temperature, the greater the greater
enthalpy of the air necessary for the combustion inside the equipment. Such an effect can be visualized
in the energy balance system. It is important to highlight that the temperature at the outlet of the
chimney should be higher than 100 ◦C in order to avoid water condensation, along with corrosion of
the ducts.

The type of fuel affects the efficiency of the cycle and the power obtained. It is observed that the
use of syngas allows a lower cycle efficiency but, in turn, a higher gross power than for the rest of the
fuels, while methane shows the opposite trend. These results are due to the calorific power of each
compound, with that of Syngas being higher than the rest of the fuels. On the other hand, Syngas is
the one that emits the largest amount of CO2, while methane is the one that emits the least. Therefore,
the latter is the most environmentally friendly fuel.

By making a variation in the turbine load by decreasing it from 100 to 30%, it was observed that
when lowering the load on the turbine, the fuel flow towards the turbine decreases by 50%, while up
to 141% more fuel is required in post-combustion, and the total fuel flow decreases by 19%, following
the same trend of CO2 emissions.

The results of the technical simulation and the economic and financial evaluation demonstrate
that it is possible to take the industrial cogeneration process to the real estate industry; in this specific
case, the project is attractive and an investment recovery period of 7 years is expected, with a natural
gas price that does not exceed 0.014 dollars per kWh. However, it is not considered attractive any
longer if this price is set at around 5 dollars or more. As the gas price refers to that of South Texas
(Henry Hub) or Ciudad Pemex to the south of Veracruz, Mexico, the final price is greatly increased by
the cost of transportation to Mexico City.

In conclusion, it was shown that the cogeneration process of an apartment building in Polanco
area is technically feasible.
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Abstract: Implementation of energy-efficient train driving strategy is an effective method to save
train traction energy consumption, which has attracted much attention from both researchers and
practitioners in recent years. Reducing the unnecessary braking during the journey and increasing
the coasting distance are efficient to save energy in urban rail transit systems. In the steep downhill
segment, the train speed will continue to increase without applying traction due to the ramp force.
A high initial speed before stepping into the steep downhill segment will bring partial braking
to prevent trains from overspeeding. Optimization of the driving strategy of urban rail trains
can avoid the partial braking such that the potential energy is efficiently used and the traction
energy is reduced. This paper presents an energy-efficient driving strategy optimization model
for the segment with the steep downhill slopes. A numerical method is proposed to calculate the
corresponding energy-efficient driving strategy of trains. Specifically, the steep downhill segment
in the line is identified firstly for a given line and the solution space with different scenarios is
analyzed. With the given cruising speed, a primary driving strategy is obtained, based on which
the local driving strategy in the steep slope segment is optimized by replacing the cruising regime
with coasting regime. Then, the adaptive gradient descent method is adopted to solve the optimal
cruising speed corresponding to the minimum traction energy consumption of the train. Some
case studies were conducted and the effectiveness of the algorithm was verified by comparing
the energy-saving performance with the classical energy-efficient driving strategy of “Maximum
traction–Cruising–Coasting–Maximum braking”.

Keywords: rail transit; train control; energy-efficient driving strategy; steep downhill segment;
local optimization

1. Introduction

Owing to the advantages in safety, high capacity and efficiency, urban rail transit has rapidly
developed worldwide in recent years. However, with the massive construction and short headway,
the energy consumption of urban rail systems has increased dramatically. Consequently, how to
reduce the total energy consumption has become an important and urgent concern for a sustainable
development of rail transit systems. The traction energy consumption of trains accounts for about 53%
of the total energy consumption in urban rail transit system [1]. Thus, the total energy consumption
of the system can be effectively decreased if the train traction energy consumption is reduced,
which would also contribute to the reduction of operational cost and carbon emission [2].
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Implementation of energy-efficient train driving strategy in the automatic train operation (ATO)
system contributes greatly to reducing the traction energy consumption. In recent years, many scholars
have conducted a lot of research on the energy-efficient train control problem, which is mainly divided
into continuous control models and discrete control models.

In 1980, Milroy [3] developed an approach to optimize train speed trajectory based on the
continuous train control model, which established the theoretical foundation of the optimal train
control problem. Afterwards, the problem with constant gradients was analyzed and the Pontryagin
maximum principle was applied to obtain the optimal speed trajectory by Asnis [4]. Howlett [5,6]
formulated a finite dimensional constrained optimization model and used the maximum principle to
solve the energy-efficient train driving regimes and the corresponding switching points. Considering
varying gradients and speed limits, Khmelnitsky [7] built a continuous train driving model, in which
the kinetic energy was considered as the state variable. Liu [8] proposed an analytic algorithm to solve
the optimal switching points among different regimes by applying the Pontryagin maximum principle.
Taking variable traction efficiency into consideration, Su [9,10] developed a numerical algorithm based
on an energy consumption allocation method, in which the energy-efficient driving strategy among
multi-stations was calculated by optimizing the multi-station running time distribution. Except for the
analytical and numerical algorithms, many scholars also used intelligent algorithms based on modern
heuristic search methods to study the energy-efficient driving strategy of trains. To reduce traction
energy consumption by making full use of coasting, Chang and Sim [11] applied the genetic algorithm
to optimize the position of the coast starting points in the coast control table. Ma [12] used real-coded
genetic algorithm to automatically calculate the optimal coasting points in the energy-efficient driving
strategy of subway trains. Jin [13] used the neural network technology and genetic algorithm to
study the energy-efficient driving strategy of trains on the undulating track, which could adapt
to different line conditions and meet the requirements of real-time optimization. Ke et al. [14,15]
presented a method of designing block-layout between successive stations, in which the Max-Min
ant colony algorithm was used to optimize the train speed curve for a significant improvement in
computational efficiency.

In practice, the control output of the diesel electric locomotives used for the heavy freight is
discrete. Each different handle position corresponds to a fixed fuel supply rate and output power,
thereby determining that the traction cannot change continuously. Therefore, many scholars have
developed discrete train control models for this feature [16]. In the 1990s, Cheng and Howlett [17,18]
studied the energy-efficient driving problem with a constant gradient and speed limit, and proved
that the energy-efficient driving regimes of discrete control model trains included “maximum traction,
coasting, and maximum braking”. Then, Pudney and Howlett [19] took varying speed limits into
consideration, and proved that the train must run at limits on the segments where the speed limits
were lower than the expected cruising speed. Besides, Howlett and Cheng [20] considered the
problem of continuously changing gradients. They solved critical equations of switching points in
different operating regimes by using Lagrange Function and Kahn–Tucker Conditions to find an
optimal type of driving strategy. Importantly, Howlett [21] proved that an arbitrary continuous
energy-efficient operating sequence can be approximated by discrete “traction–coasting” pairs,
establishing a connection between continuous control and discrete control models. In addition,
considering non-constant gradients, curve and speed limits, Han [22] used genetic algorithms to
optimize the driving strategy of the train ATO system. Ding [23] also designed a genetic algorithm
to find the optimal solution of the energy-efficient train operation problem. In 2014, based on a real
ATO system, Dominguez [24] introduced a Multi-Objective Particle Swarm Optimization algorithm to
obtain the consumption/time Pareto front, which solved the optimization problem more efficiently
than the previous algorithms.

It is concluded from the above studies that the classical energy-efficient driving strategy consists of
maximum traction, cruising, coasting, and maximum braking as well as their corresponding switching
points [2]. However, if there are steep slope segments in the route, the position of the switching points
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will be affected. For an individual steep uphill segment, Howlett [25] introduced an analytical method
to obtain the optimal switching points. Furthermore, Albrecht [26–28] proved that the optimal driving
strategy always existed and was unique via a perturbation analysis. Considering the regenerative
braking in the train model, Ko [29,30] adopted dynamic programming to optimize the train driving
strategy with the confined state space and irregular lattice for trains running on the route containing a
steep downhill. For a steep downhill segment, if entering the ramp at a relatively high speed, the train
would probably brake on the segment to avoid exceeding the speed limit, which increases the global
energy consumption. If the entering speed is relatively low, the trip time would be longer and the
operational efficiency and service quality would consequently be reduced. Hence, to make full use
of the potential energy of the steep downhill segment, this paper proposes an approach to solving
the energy-efficient control problem for trains running in the steep downhill segment based on the
classical energy-efficient driving strategy.

The main contributions of this paper are stated as follows:

1. Considering the route with a steep downhill, the solution space for a given cruising speed is
analyzed to obtain the classical energy-efficient driving strategy for a given trip time.

2. A local optimization approach is developed to reduce the traction energy consumption for trains
running in the steep downhill segment by applying the dichotomization algorithm.

3. A global optimization is achieved with the utilization of the adaptive gradient descent
method to calculate the optimal cruising speed, which corresponds to the minimum traction
energy consumption.

The remainder of the paper is organized as follows. Section 2 describes the optimized problem
including the formulation of an energy-efficient train control model as well as the definition of the
steep downhill. In Section 3, a numerical method is designed to calculate the optimal driving strategy
for trains running in a steep downhill segment. In Section 4, simulations with actual data of Beijing
Yizhuang line is presented to illustrate the effectiveness of the proposed approach, followed by the
conclusion in Section 5.

2. Problem Description

2.1. Assumptions

To simplify the train model, we make the following assumptions:

• The train is considered as a mass point when running on the track, and its mass is fixed.
• The slope of the centroid of the train represents the gradient of the entire vehicle.
• The traction efficiency is assumed to be constant, and the mechanical energy is used as the traction

energy during the trip.
• The regenerative braking is not considered in the train model, because we only consider

optimizing the driving strategy of a single train in this work.

2.2. Model Formulation

The train driving strategy, which is intuitively reflected with a train running speed curve, is
the combination of an operating control sequence and the corresponding switching points among
different control regimes. With the given planned trip time, line conditions, vehicle performances, etc.,
a set of train driving strategies between two successive stations satisfy the operation constraints [31]
(see Figure 1).

Although the above driving strategies can make the train arrive at the target station on a punctual
basis, the accelerating distances and positions are not the same between different driving strategies,
resulting in different traction energy consumption for the interstation. The purpose of energy-efficient
driving is to find a driving strategy with minimum traction energy consumption among these
feasible strategies.
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Figure 1. Different driving strategies of trains between successive stations.

The objective function of the energy-efficient train control problem can be generally written as [8]

min E =
∫ S

0
u f · F(v)dx. (1)

where E represents the traction energy consumption; u f is the relative traction force; F is the maximum
traction force; v is the train speed; and x and S are the train position and the trip distance, respectively.

For a mass-point train, the equation of motion can be described as [8]⎧⎪⎪⎨⎪⎪⎩
dv
dt

=
u f F(v)− ubB(v)− Rb(v)− Rg(x)− Rc(x)

mρ
,

dx
dt

= v,

(2)

where m is the train mass; ρ is the rotating mass factor; ub and B denote the relative braking force and
maximum braking force, respectively; Rb(v) is the basic resistance including rolling resistance and air
resistance; and Rg(x) and Rc(x) represent the grade resistance and curve resistance, respectively.

The traction force and the braking force should be bounded by the maximum traction and braking
force. Thus, we have

u f ∈ [0, 1], ub ∈ [0, 1]. (3)

The train speed should satisfy the maximum train speed and trip time constraints:

0 ≤ v(x) ≤ Vmax(x). (4)

where Vmax is the maximum allowable train speed with respect to x.
To arrive at the next station on time and stop precisely, the boundary conditions of the train

movement are described as follows.

v(0) = vstart = 0, x(0) = xstart = 0,

v(T) = vend = 0, x(T) = xend = S.
(5)

where T is the planned trip time given by the timetable.
Based on Equations (1)–(5), the optimization model is formulated to minimize the energy

consumption during the trip.
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2.3. Definition of Steep Downhill

The steep downhill is a piece of route where the train speed will increase without applying
traction force (see Figure 2). In the steep downhill segment, the gradient force is larger than the sum of
the curve resistance and line resistance.

Rg(x)− (Rc(x) + Rb(vc)) > 0, (6)

In Equation (6), Rb(vc) can be described as follows [32]

Rb(vc) = m(arv2
c + brvc + cr), (7)

Rg(x) is calculated by
Rg(x) = mg sin α(x), (8)

and the curve resistance can be described by empirical formulas [33]

Rc(x) = fc(r(x)) =

⎧⎪⎪⎨⎪⎪⎩
m

6.3
r(x)− 55

, r(x) ≥ 300m

m
4.91

r(x)− 30
, r(x) < 300m

, (9)

where ar, br, and cr are non-negative constants, which can be identified from the historical data. g,
α(x) and r(x) are the gravitational acceleration, the slope and the radius of curvature, respectively.
With the estimate train speed for a fixed position, the basic and curve resistances can be calculated.
By comparing with the gradient force, the steep downhill slope can be easily identified.

Figure 2. Train speed curve in a steep downhill segment.

3. Solution Approach

Given a specific planned trip time, the proposed solution algorithm starts from calculating the
classical energy-efficient driving strategy with an initial cruising speed. With the obtained driving
strategy, a local optimization approach is then developed to optimize the driving strategy in the steep
downhill segment. Furthermore, an adaptive gradient method is applied to adjust the cruising speed
such that the traction energy consumption during the trip is minimized.

The algorithm for solving the energy-efficient driving strategies of trains with considering the
steep downhill segment is mainly divided into the following four parts and the overall framework of
the proposed algorithm is shown in Figure 3.

• Initialization: Load line data and vehicle data and set a planned trip time T.
• Solution to classical energy-efficient driving strategy: Initialize a cruising speed vc, identify steep

segment [b, c] and solve classical energy-efficient driving strategy.
• Local optimization on [b, c]: Judge the driving regime of the train in the steep downhill; if the

train is cruising in this segment, then optimize the local driving strategy of the segment.
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• Optimal strategy search with adaptive gradient method: Calculate energy consumption and use
the gradient method to solve the cruising speed corresponding to the minimum traction energy
consumption, and then obtain the optimal energy-efficient driving strategy.

Set a trip 
time 

Initialize a 
cruising speed  

Solve classical e-e 
driving strategy

If cruise 
on ( )

Optimize local 
strategy on ( ) 

Calculate energy 
consumption 

| |< ?

Output the 
optimal strategy 

with  

Identify steep 
section ( )

Load vehicle data 
and line data

Figure 3. The structure of the proposed optimization approach.

3.1. Calculation of Classical Energy-Efficient Driving Strategy

3.1.1. Analysis of Energy-Efficient Driving Regimes

In this subsection, the energy-efficient driving regimes are analyzed by applying the Pontryagin
maximum principle, according to which the following Hamiltonian function should be maximized
with optimal control sequences [8,10]

H =
η1(x)
mρv

× (u f F − ubB − Rb − Rg − Rc) + η2(x)v − u f F. (10)

where η1 and η2 and the complementary slackness condition M(x) should satisfy the following
differential equations:

dv
dt

=
dH
dη1

,
dx
dt

=
dH
dη2

,

dM
dx

(v − Vmax) =
dH
dη1

,
dM
dx

≥ 0
(11)

Equation (10) can be rewritten as

H = (
η1(x)
mρv

− 1)u f F − η1(x)
mρv

(ubB + Rb + Rg + Rc) + η2(x)v. (12)

Thus, the four energy-efficient driving regimes are derived by maximizing Equation (12) in the
following cases with respect to the control variables u f and ub [10]:

• η1 > mρv: u f should be 1 and ub is 0, which implies the Maximum traction regime.
• η1 = mρv: ub should be 0 and u f may vary in (0,1), which indicates the Partial traction phase;

η1 = 0: u f should be 0, and ub may vary in (0,1), which suggests the Partial braking phase.
These two phases only exist for the Cruising regime by analyzing Equation (11).

• 0 < η1 < mρv: ub should be 1 and u f is 0, which implies the Maximum braking regime.
• η1 < 0: Both u f and ub should be 0, which suggests the Coasting regime.
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3.1.2. Solution Space Analysis

For an individual given cruising speed, the steep downhill segment [b, c] in the line is identified
by Equation (6). Then, four critical states of the driving strategy, as shown in Figure 4, and the
corresponding running time t1, t2, t3 and t4 are calculated. ti is explained as follows:

• t1 denotes the trip time of the driving strategy that the train begins to coast as soon as it reaches
the cruising speed at the position s1.

• t2 denotes the trip time of the driving strategy that the train begins to coast at the initial position
s2 of the steep slope.

• t3 denotes the trip time of the driving strategy that the train begins to coast at the final position s3

of the steep slope.
• t4 denotes the trip time of the driving strategy that the train begins to coast at the position s4

when the train speed reaches the braking profile.

Figure 4. Driving strategies for the train, respectively, coasting from s1, s2, and s3,s4.

By the analysis, the length and position of the steep slope differ in the different steep slope lines,
which leads to five typical scenarios of the running time t1, t2, t3 and t4 (see Figure 5).

Figure 5. Five typical scenarios of the running time t1, t2, t3 and t4. (a) t1 > t3 > t2 > t4; (b) t1 > t3 >

t4 > t2; (c): t3 > t1 > t2 > t4; (d) t3 > t1 > t4 > t2; (e) t3 > t4 > t1 > t2.
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• Scenario 1: t1 > t3 > t2 > t4 (Figure 5a). This situation always happens for the scenario that the
steep downhill is relatively short and exists in the middle of the line. For the segment [s1, s2],
when the train begins to coast later, the trip time with a higher average coasting speed will be
shorter, i.e., t1 > t2. Coasting from the position s2 makes the train speed increase due to the steep
slope such that the speed in the steep slope and the following segment is higher, which indicates
t3 > t2. In addition, a small steep slope has a small effect on the average train speed. Keeping the
cruising speed on the segment [s1, s3] can achieve a short trip time, i.e., t1 > t3. The train speed
will decrease without traction and steep slopes after s3. Hence, we have t3 > t4. In conclusion, t1,
t2, t3 and t4 will satisfy t1 > t3 > t2 > t4.

• Scenario 2: t1 > t3 > t4 > t2 (Figure 5b). This situation generally happens for the scenario that
the steep downhill exists in the second half of the line. Differing from the first situation, due to
the steep slope exists in the second half, coasting from the position s2 makes the average train
speed higher than the cruising speed in the segment [s2, s4], i.e., t4 > t2. As a result, t1, t2, t3 and
t4 will satisfy t1 > t3 > t4 > t2.

• Scenario 3: t3 > t1 > t2 > t4 (Figure 5c). This situation always happens when the steep downhill
is relatively short and exists in the first half of the line. After accelerating to the cruising speed,
the train immediately enters the steep downhill segment, and the speed rises to exceed the
cruising speed such that the average running speed of the train in the segment [s1, s3] is greater
than the cruising speed, i.e., t3 > t1. Thus, t1, t2, t3 and t4 will satisfy t3 > t1 > t2 > t4.

• Scenario 4: t3 > t1 > t4 > t2 (Figure 5d). This situation exists when the steep downhill is
relatively long and exists in the first half of the line. Because a longer steep slope has a greater
effect on the average train speed, coasting from the position s2 makes the average train speed
higher than the cruising speed for the segment [s2, s4], i.e., t4 > t2. Therefore, t1, t2, t3 and t4 will
satisfy t3 > t1 > t4 > t2.

• Scenario 5: t3 > t4 > t1 > t2 (Figure 5e). This situation happens when the relatively long
steep downhill exists in the first half of the line, and there is a downward slope, but not a steep
downhill, in the segment [s1, s2]. Compared with Scenario 4, a downward slope in the segment
[s1, s2] brings a higher initial speed before stepping into the steep downhill, hence, the average
train speed will be higher than the cruising speed in the segment [s1, s4], that is, the trip time will
be shorter (t4 > t1). Consequently, t1, t2, t3 and t4 will satisfy t3 > t4 > t1 > t2.

3.1.3. Coasting Position Calculation

As shown in Figure 5, the running time t in each section is monotonously increasing or decreasing.
According to the planned trip time T and the relationships among t1, t2, t3, t4, the distribution of the
coasting position is firstly determined in Table 1.

Table 1. Five scenarios of t1, t2, t3, and t4 and distribution of the coasting point s.

t1 > t3 > t2 > t4 t1 > t3 > t4 > t2 t3 > t1 > t2 > t4 t3 > t1 > t4 > t2 t3 > t4 > t1 > t2

t2 > T > t4 [s3, s4] t4 > T > t2 [s1, s2] t2 > T > t4 [s3, s4] t4 > T > t2 [s1, s2] t1 > T > t2 [s1, s2]

t3 > T > t2 [s1, s2] t3 > T > t4 [s1, s2] t1 > T > t2 [s1, s2] t1 > T > t4 [s1, s2] t4 > T > t1 -

t1 > T > t3 [s1, s2] t1 > T > t3 [s1, s2] t3 > T > t1 - t3 > T > t1 - t3 > T > t4 -

Taking the first scenario as an example, the detailed analysis process is described as the following:

• t2 > T > t4 or t1 > T > t3: In Figure 5a, the horizontal line from the ordinate T intersects
the curve in the figure at a unique point s ∈ [s3, s4] or s ∈ [s1, s2], which indicates the optimal
coasting position with the trip time T exists in the segment [s3, s4] or [s1, s2], and the solution is
unique in these two situations.
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• t3 > T > t2: There will be three solutions, which belong to [s1, s2], [s2, s3] and [s3, s4], respectively.
Due to the principle that, when the running times are the same, a longer coasting distance
contributes to a smaller traction energy consumption, the optimal coasting position should be
found in [s1, s2].

It is noted that cases such as t3 > T > t1 in Scenario 3 should be treated differently. As shown
in Figure 5c, if the planned trip time T satisfies t3 > T > t1, there will be two different solutions that
belong to [s2, s3] and [s3, s4], respectively. By applying the principle that a longer coasting distance leads
to a smaller traction energy consumption, the solution belonging to [s3, s4] is undesirable. Additionally,
if the train switches from cruising to coasting in position sc that belongs to [s2, s3], the potential energy
in the first half of the segment will be wasted (see Figure 6). Compared to the strategy that trains
begin to coast at the position s, the trip time is the same but the latter strategy will cost less energy
consumption, i.e., Esc > Es. Thus, the solution sc is also undesirable. In addition, though the strategy
with coasting from s is dropped as the speed of s is less than the current given cruising speed, it will be
found in another circumstance when the other cruising speed is given.

Figure 6. Driving strategies with coasting from s and sc, respectively.

Summarizing Sections 3.1.2 and 3.1.3, the starting point s of the coasting regime is found according
to the time of four critical states and the given trip time, and then a classical energy-efficient driving
strategy with a fixed cruising speed is obtained.

3.2. Local Optimization on Steep Downhill Segment

As shown in Figure 7, [b, c] is the steep downhill segment. If the train uses the cruising regime at
the segment [a, d] in the classical energy-efficient driving strategy, the speed profile is shown as the
horizontal dotted line and the running time in [a, d] is Thold. Specifically, the train may apply partial
traction at the segment [a, b] to maintain the cruising speed vc. The traction energy consumption at
such segment is E(a,b). The train applies partial braking at the segment [b, c] to maintain the train drive
at the cruising speed. The traction energy consumption at this segment is E(b,c) = 0. The regime at
segment [c, d] is the same as that at the segment [a, b], and the traction energy consumption is E(c,d).
Thus, before optimizing the driving strategy of steep downhill segment, the actual traction energy
consumption at the segment [a, d] can be expressed as

E(a,d) = E(a,b) + E(c,d). (13)

Meeting the trip time constraint, the proposed local optimal driving strategy in the steep downhill
is to switch the regime from cruising to coasting at point x = a before the steep segment and from
coasting to cruising at point x = d after passing by the steep segment. The train coasts during the
segment [a, d] and the coasting time is Tcoast. In this way, the potential energy of the steep downhill
segment can be fully used. Furthermore, substituting the cruising with the coasting consumes no
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traction energy, i.e., E′
(a,d) = 0. Hence, the traction energy consumed by the optimized energy-efficient

driving strategy is obviously reduced compared to the classical driving strategy [2], i.e., we have the
following inequality:

E(a,d) > E′
(a,d). (14)

Figure 7. Local optimization at the steep downhill segment.

The trip time for the segment [a, d] is continuous with respect to the coasting position s. The “s∗”
must exist, which satisfies

Thold = Tcoast. (15)

Equations (14) and (15) indicate that the effect of local optimization in the steep slope segment
is realized with the same trip time. To obtain the optimal coasting position s∗, the dichotomization
method is used in this paper.

Specifically, we define a time function

T(sa) = Thold(sa)− Tcoast(sa), (16)

then the purpose of the dichotomization algorithm for calculating the coasting position is to find the
position s∗ that satisfies

s∗ = arg
sa

(T(sa) = 0). (17)

The specific steps of the dichotomization algorithm can be described as Algorithm 1.

Algorithm 1: The dichotomization algorithm for calculating the optimal coasting position.

Step 1. Give a search segment [xs, xe] ( initially setting xs = s1 and xe = s2 ) and an error ξ, and verify
T(xs) · T(xe) < 0;

Step 2. Calculate the midpoint xm of the segment [xs, xe] and its time function T(xm);
Step 3. If T(xs) · T(xm) < 0, then turn to step (4); otherwise, turn to step (5);
Step 4. If xm − xs < ξ, then output the coasting point s∗ = xm; otherwise, return to step (2) with setting

xe = xm;
Step 5. If xe − xm < ξ, then output the coasting point s∗ = xm; otherwise, return to step (2) with setting

xs = xm.

3.3. Calculation of the Optimal Cruising Speed With Adaptive Gradient Descent Method

The above subsections have described how to obtain an energy-efficient driving strategy for a fixed
cruising speed. In this subsection, the adaptive gradient descent (AGD) method is applied to solve
the optimal cruising speed corresponding to the minimum traction energy consumption of the trip.
By dynamically incorporating knowledge of the geometry of the gradient in earlier iterations, AGD is
able to perform informative gradient-based search, which ensures more robust performance [34].
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The objective of gradient search is to find the optimal cruising speed

v∗c = arg min
vc

E(vk
c). (18)

The specific solution to the strategy search problem is described in Algorithm 2.

Algorithm 2: The ADG algorithm for calculating the optimal cruising speed.

Step 1. Give a cruising speed v0
c ∈ [vmin

c , vmax
c ], set the allowable error ε, the number of iterations k = 0 and

initialize a step size parameter λ0;
Step 2. Calculate the traction energy consumption Ek = E(vk

c) and the gradient gk = ∇E(vk
c) with vk

c ;
Step 3. Take the negative gradient direction as the search direction dk = −gk, and determine the step size λk

by λk = λ√
k
∑

i=0
g2

i

∗ gk.

Step 4. Search the next cruising speed vk+1
c = vk

c + λkdk, and calculate Ek+1 = E(vk+1
c ) and gk+1 = ∇E(vk+1

c ).
Step 5. Determine whether the termination condition |Ek+1 − Ek| ≤ ε is satisfied. If yes, then output the opti-

mal strategy with v∗c . Otherwise, set k = k + 1, and return to step (2).

4. Simulation Results

In this Section, we present some simulations to illustrate the effectiveness of the proposed
optimization approach. In Case 1, a case study based on the practical data of Yizhuang line was
conducted and a comparison of energy efficiency was derived between the two algorithms, i.e., the
proposed and the classical algorithms. In Case 2, the route was gently modified to verify the availability
of the proposed approach in the different situations shown in Figure 5.

4.1. Case 1

In this case, we chose the interval from Jinghai to Ciqu as an example. The distance between
Jinghai and Ciqu stations is 2086 m and the speed limit of the whole segment is 80 km/h. The gradient
information is shown in Table 2. The vehicle data of Beijing Yizhuang rail transit line were used for
simulations. Characteristics of the traction force F(v), the braking force B(v) and the basic resistance
Rb(v) can be found in [10].

Table 2. Gradient information between Jinghai and Ciqu.

Segments (m) Gradients (‰)

0–19 −1.4006
20–339 0

340–689 −15.6250
690–1389 −24.3900

1390–1629 3.0030
1630–1979 −10.1010
1980–2086 −2

For the cruising speed ranging 65–78 km/h, the segment from 690 m to 1389 m was identified as
the steep downhill segment according to Equation (6).

When the planned trip time T was set to be 160 s, the energy-efficient driving strategies calculated
with the classical algorithm and the proposed approach are shown in Figure 8. As shown in Figure 8a,
the cruising speed of the classical energy-efficient driving strategy is 69 km/h and the traction energy
consumption is 16.56 kW·h.
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Additionally, Figure 8b shows that the optimal cruising speed solved by the proposed approach is
72 km/h and the traction energy consumption is reduced to 14.79 kW·h. It is worth noting that there is
no unnecessary braking on the steep slope segment in the optimized energy-efficient driving strategy,
which consists of maximum traction regime in [x′1, x′2], cruising regime in [x′2, x′3], coasting regime in
[x′3, x′4] and maximum braking in [x′4, x′5].

a b

Figure 8. Energy-efficient driving strategies calculated with: (a) the classical algorithm; and (b) the
proposed approach.

The energy-efficient driving strategies with the proposed approach and the classical
energy-efficient algorithm were solved for other trip times. Then, the energy consumption was
compared, as shown in Table 3.

Table 3. Energy efficiency comparison between the proposed and classical algorithm with different
trip times.

Trip Times

E (kW·h) Methods
Proposed Classical Proportion

155 s 17.52 19.27 9.08%
157 s 16.35 18.48 11.52%
160 s 14.79 16.56 10.69%
162 s 13.84 15.38 10.01%
164 s 13.00 15.03 13.50%

Average - - 10.96%

It is shown from the simulation results that the energy consumption is reduced by 10.96% in
average. In addition, the energy-efficient performance is low when the trip time is short. To reduce
the trip time, the train has to apply partial braking to keep a high speed, although the steep downhill
segment exists. As a result, the potential energy cannot be used efficiently and the energy reduction is
less in this situation.

The simulation was conducted on a personal desktop PC with processor speed of 3.6 GHz and
memory size of 16 GB. The average computation time of the proposed approach was about 0.12 s,
which can satisfy the requirement of real-time control.
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4.2. Case 2

As stated in Section 3.1, there are five kinds of lines, in which the length and position of the steep
downhill segment are different. In this case, the availability of the proposed method was tested with
the different line data (see Table 4).

Table 4. Gradient information of different lines.

Lines Segments (m) Gradients (‰) Lines Segments (m) Gradients (‰)

Line 1

0–120 0

Line 2

0–100 0
121–330 −3 101–380 3
331–650 3 381–660 −4
651–870 −26 661–1200 2.5

871–1240 −2 1201–1620 −28
1241–1560 3.5 1621–1880 3.5
1561–1980 −2.5 1881–1980 2

Line 3

0–100 0

Line 4

0–120 0
101–320 3.5 121–420 2
321–460 2 421–1400 −26
461–780 −26 1401–1650 3.5
781–970 3 1651–1800 −2
971–1320 −3 1801–2000 2

1321–1580 4 2001–2200 1.5
1581–1760 −2
1761–1980 2

Line 5

0–120 0
121–280 2
281–420 −4

421–1400 −26
1401–1650 3.5
1651–1800 −2
1801–2000 2

Taking Line 1 as an illustrative example, the planned trip time T was set to be 160 s. The optimal
cruising speed calculated by the proposed approach is 75 km/h, and the corresponding energy
consumption is 19.93 kW·h. The energy-efficient driving strategies solved by the classical (the black
line) and the proposed (the red line) approaches are shown in Figure 9. Obviously, tn the proposed
approach, the cruising regime is substituted with coasting on segment [x3, x4] within the same trip time.

Under this circumstance, the critical states are s1 = 426 m, s2 = 651 m, s3 = 870 m and
s4 = 1626 m; the running times are t1 = 167.61 s, t2 = 160.06 s, t3 = 160.98 s and t4 = 151.91 s; and the
coasting position s, i.e., x5 in Figure 9, is 914 m. It is clearly shown that, because T is set to be within the
time interval (t4, t2], the coasting point s is obtained from the interval (s3, s4], which is in accordance
with Scenario 1 described in Table 1, i.e., s ∈ (s3, s4].

Furthermore, when different line conditions and planned trip times are given, the results solved
by the proposed approach are shown in Tables 5 and 6. Table 5 shows the optimal cruising speed
and corresponding energy consumption of each scenario with the given planned trip time. Moreover,
the critical states and the corresponding running time of each scenario are given in Table 6. It can
be observed that the coasting point s of each scenario is obtained according to the planned trip time,
as analyzed in Section 3.1. For instance, the planned trip time T of Line 2 was set as 160 s, which
belongs to the interval (149.84, 168.02], i.e., T ∈ (t3, t1]. Thus, according to Scenario 2 illustrated in
Table 1, the coasting point s found in (333, 1201] is 622 m, i.e., s ∈ (s1, s2].
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Figure 9. Energy-efficient driving strategy for the train running in Line 1 with T = 160 s.

Table 5. The optimal cruising speed v∗c and energy consumption E of each line with a planned trip
time T.

Lines T (s) vc (km/h) E (kW·h)

Line1 160 75 19.93
Line2 160 74 19.19
Line3 160 73 19.38
Line4 164 73 15.85
Line5 154 70 14.29

Table 6. Four critical states s1–s4, the corresponding running time t1–t4 and the coasting point s of
different lines.

Lines s1 (m) s2 (m) s3 (m) s4 (m) s (m)

Line1 426 651 870 1626 914
Line2 333 1201 1620 1689 622
Line3 430 461 780 1579 1056
Line4 319 421 1400 1906 343
Line5 287 421 1400 1723 310

Lines t1 (s) t2 (s) t3 (s) t4 (s) T (s)

Line1 167.61 160.06 160.98 151.91 160
Line2 168.02 149.22 149.84 149.76 160
Line3 166.74 165.69 167.98 155.48 160
Line4 164.56 162.21 166.26 161.77 164
Line5 154.35 152.35 156.80 154.85 154

In addition, we present comparisons among the proposed and the classical strategies to illustrate
the energy-saving performance, respectively, with the same planned trip time (see Table 7). It can be
concluded that the greater the proportion of the steep slope in the line accounts for, the more obvious
the energy-saving effect is (e.g., see Line 4 and Line 5).
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Table 7. Energy-saving performance comparisons for trains running in different lines.

Lines

E (kW·h) Methods
Proposed Classical Proportion

Line 1 19.00 19.48 2.46%

Line 2 21.65 23.37 7.36%

Line 3 18.37 19.27 4.67%

Line 4 16.16 19.23 15.9%

Line 5 15.25 18.07 15.6%

Average - - 9.20%

5. Conclusions

Based on the classical energy-efficient train control approach, this paper proposes an optimization
approach focusing on solving the energy-efficient control problem for trains running on a line with a
steep downhill segment. The solution space for a given cruising speed is firstly analyzed to obtain
the classical energy-efficient driving strategy for a given trip time. With the same trip time, a local
optimization approach is developed to replace the partial braking in the downhill segment by the
coasting regime such that the local energy consumption is reduced. Further, the adaptive gradient
descent method is utilized to obtain the optimal cruising speed with minimum traction energy
consumption to achieve a global optimization. Some simulations based on practical data of the
Yizhuang line showed that the proposed approach can averagely reduce the energy consumption by
10.96%, compared with the classical energy-efficient train control approach. Simulations with five
typical lines were also conducted to indicate that the proposed method has a good availability for
variable lines. The average computation time of this method was about 0.12 s, thus the proposed
approach can be applied in the real-time control system. Future work could extend this approach to
study the energy-efficient train control strategy with considering multi-slopes in the line.
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Abstract: Influenced by the complexity of ocean environmental noise and the time-varying of
underwater acoustic channels, feature extraction of underwater acoustic signals has always been a
difficult challenge. To solve this dilemma, this paper introduces a hybrid energy feature extraction
approach for ship-radiated noise (S-RN) based on complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) combined with energy difference (ED) and energy entropy (EE).
This approach, named CEEMDAN-ED-EE, has two main advantages: (i) compared with empirical
mode decomposition (EMD) and ensemble EMD (EEMD), CEEMDAN has better decomposition
performance by overcoming mode mixing, and the intrinsic mode function (IMF) obtained by
CEEMDAN is beneficial to feature extraction; (ii) the classification performance of the single energy
feature has some limitations, nevertheless, the proposed hybrid energy feature extraction approach
has a better classification performance. In this paper, we first decompose three types of S-RN into
sub-signals, named intrinsic mode functions (IMFs). Then, we obtain the features of energy difference
and energy entropy based on IMFs, named CEEMDAN-ED and CEEMDAN-EE, respectively. Finally,
we compare the recognition rate for three sorts of S-RN by using the following three energy
feature extraction approaches, which are CEEMDAN-ED, CEEMDAN-EE and CEEMDAN-ED-EE.
The experimental results prove the effectivity and the high recognition rate of the proposed approach.

Keywords: complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN);
energy difference (ED); energy entropy (EE); hybrid energy feature extraction; ship-radiated
noise (S-RN)

1. Introduction

Due to the complexity of ocean ambient noise and the time-varying of underwater acoustic
channels, feature extraction of underwater acoustic signals has always been a difficult problem in
the area of underwater acoustic signal processing [1,2]. In order to solve this problem, some feature
extraction approaches for underwater acoustic signals have been proposed, including a time domain
analysis, a spectral analysis, a time–frequency analysis, a high-order statistics analysis and a complexity
analysis. In recent years, with the development of mode decomposition, feature extraction approaches
have been proposed based on mode decomposition [3].

After Empirical mode decomposition (EMD) was first proposed as a classical mode decomposition
approach, it has become widely used [4,5]. The research history and the current status of EMD
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mainly include two parts. On the one hand, it is the improvement of EMD, in particular for
mode mixing. Two of the revised EMD approaches are generally accepted to be effective, they are
ensemble EMD (EEMD) [6] and complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) [7]. In addition, CEEMDAN is an upgrade of EEMD, which can better suppress mode
mixing than EEMD. On the other hand, their application areas are expanding and deepening gradually.
EMD has been widely used in different fields, such as short-term wind speed forecasting combined
with hybrid linear and nonlinear models [8], the detection and location of pipeline leakage [9],
the detection of incipient damages for truss structures [10], denoising for grain flow signal [11],
biomedical photoacoustic imaging optimization [12] and heart rate variability analysis [13]. Many
scholars have also applied EEMD to their research fields, such as wind speed forecasting combined
with the cuckoo search algorithm [14], machine feature extraction combined with a kernel-independent
component [15], feature extraction for motor bearing combined with multi-scale fuzzy entropy [16],
a bearing fault diagnosis combined with correlation coefficient analysis [17], a partial discharge feature
extraction combined with sample entropy [18] and monthly streamflow forecasting combined with
multi-scale predictors selection [19]. In addition, CEEMDAN is used in machinery, electricity and
medicine, such as impact signal denoising [20], daily peak load forecasting [21], health degradation
monitoring for rolling bearings combined with multi-scale sample entropy [22], planetary gear fault
diagnosis combined with permutation entropy [23], denoising for gear transmission system [24],
friction signal denoising combined with mutual information [25] and electrocardiogram signal
denoising combined with wavelet threshold [26]. Generally, the three EMD approaches can solve
practical problems in different fields. Some comparative studies have also proven that CEEMDAN has
a better decomposition performance.

In the past three years, the mode decomposition approach has been applied to the underwater
acoustic field. Two frequency feature extraction approaches were proposed, based on maximum
energy intrinsic mode function (IMF) by using EEMD and variational mode decomposition (VMD),
respectively [27,28]. In addition, two complexity feature extraction approaches were proposed
based on the permutation entropy of maximum energy IMF by EMD [29] and the multi-scale
permutation entropy of maximum energy IMF by VMD [30]. Energy feature extraction approaches for
underwater acoustic signals were seldom proposed by scholars. In Reference [31], an energy feature
extraction approach was put forward based on EEMD, which extracted the energy difference between
the high-frequency and the low-frequency bands as a new energy feature. However, this energy
feature extraction approach has limited recognition ability for different sorts of ship-radiated noise
(S-RN) signals.

In this paper, we propose a new energy feature extraction approach to effectively extract the
energy feature for underwater acoustic signals. The method we propose, named CEEMDAN-ED-EE,
is based on CEEMDAN, energy difference (ED) and energy entropy (EE). We use CEEMDAN to
decompose three sorts of S-RN signals into IMFs. According to the rule of ED and EE, we can obtain
the features of ED and EE for three sorts of S-RN. Compared with CEEMDAN-ED and CEEMDAN-EE,
the proposed CEEMDAN-ED-EE approach can extract energy features more effectively and has a
relatively higher recognition rate.

The following section presents the theory related to CEEMDAN, ED and EE; the novel energy
feature extraction approach for underwater acoustic signal is presented in Section 3; the proposed
energy feature extraction approach is used to three sorts of S-RN signals in Section 4; finally,
the concluding remarks are made in the last section.

2. Theory

2.1. CEEMDAN

In this study, we use the CEEMDAN approach for two main reasons: (i) CEEMDAN has a better
anti-mode mixing performance than EMD and EEMD and (ii) thus far, an energy feature extraction
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approach using CEEMDAN has not been found for underwater acoustic signals. The main procedures
of CEEMDAN can be summarized as follows:

CEEMDAN, as an improved algorithm of EMD and EEMD, can adaptively decompose complex
signals into IMFs in order. The specific steps of CEEMDAN are summarized as follows [8]:

(1) Construct the noise signal fi(t) by combining the original signal f (t) and white noise ni(t), N
noisy signals fi(t) can be obtained:

fi(t) = f (t) + ni(t), i = 1, 2, · · · , N (1)

(2) Decompose each fi(t) by using EMD in order to get the IMF1 ci1(t) and its residual item, ri(t):⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1(t)
f2(t)
· · ·
fi(t)
· · ·

fN(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
EMD−−−→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c11(t) r1(t)
c21(t) r2(t)
· · · · · ·

ci1(t) ri(t)
· · · · · ·

cN1(t) rN(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2)

(3) Calculate the average value of ci1(t) to get the IMF1 c1(t) of CEEMDAN:

c1(t) =
1
N

N

∑
i=1

ci1(t) (3)

(4) Subtract c1(t) from f (t) to get the residual item R1(t):

R1(t) = f (t)− c1(t) (4)

(5) White noise ni(t) participates in subsequent decompositions at different scales. Here we use
EMD to decompose white noise as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎣

n1(t)
n2(t)
· · ·

ni(t)
· · ·

nN(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
EMD−−−→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cn11(t) cn12(t) · · · cn1 j(t) rn1(t)
cn21(t) cn22(t) · · · cn2 j(t) rn2(t)
· · · · · · · · · · · · · · ·

cni1(t) cni2(t) · · · cni j(t) rni (t)
· · · · · · · · · · · · · · ·

cnN1(t) cnN2(t) · · · cnN j(t) rnN (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5)

where cni j(t) is the j-th IMF of the i-th white noise ni(t), and rni (t) is the residual item of ni(t). For
convenience, we define Ej(gi(t)) as a set, which consists of the j-th IMFs of gi(t). Therefore, E1(ni(t))
can be expressed as:

E1(ni(t)) =
(

cn11(t) cn21(t) · · · cni1(t) · · · cnN (t)
)T

(6)

(6) Construct f new1(t) by combining R1(t) and E1(ni(t)). We can decompose f new1(t) as follows:

f new1(t) = R1(t) + E1(ni(t)) (7)
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f new1(t) = R1(t) +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cn11(t)
cn21(t)
· · ·

cni1(t)
· · ·

cnN1(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
EMD−−−→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cr1n11(t)
cr1n21(t)

· · ·
cr1ni1(t)

· · ·
cr1nN1(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(8)

(7) Calculate the average value of cr1ni1(t) to get the IMF2 c2(t) of CEEMDAN, c2(t). Residual
item R2(t) of CEEMDAN can be expressed as follows:

c2(t) =
1
N

N

∑
i=1

cr1ni 1(t) (9)

R2(t) = R1(t)− c2(t) (10)

(8) In order to get the rest of IMFs cj(t) and the residual item Rj(t), we can construct f newj−1(t)
and repeat step (6) and step (7). We can express f newj−1(t) cj(t) and Rj(t) as follows:

f newj−1(t) = Rj−1(t) + Ej−1(ni(t)) (11)

cj(t) =
1
N

N

∑
i=1

crj−1ni 1(t) (12)

Rj(t) = Rj−1(t)− cj(t) (13)

(9) If the new IMF cannot be extracted from Rj(t), we make Rj(t) equal to R(t). We can express
f (t) as follows:

f (t) =
M

∑
j=1

cj(t) + R(t) (14)

where M and R(t) are the number of IMFs and the residual item of f (t).

2.2. ED

According to the definition of energy difference in Reference [31], we define an instantaneous
frequency that is equal or less than 1 kHz as the low-frequency band, and an instantaneous frequency
that is more than 1 kHz as the high-frequency band. Therefore, ED is defined as the difference
between the high-frequency band energy and the low-frequency band energy. In this paper, the specific
calculation steps of ED for S-RN are as follows:

(1) Decompose S-RN into IMFs by CEEMDAN, and then process each IMF ci(t) through the
Hilbert transform:

ci(t) =
1
π

∫ ∞

−∞

ci(τ)

t − τ
dτ (15)

(2) The analytic signal of each IMF is represented as:

zi(t) = ci(t) + jĉi(t) = λi(t)ejθi(t) (16)

(3) We can obtain the instantaneous amplitude λi(t), instantaneous phase θi(t) and instantaneous
frequency fi(t) as follows:

λi(t) =
√

c2
i (t) + ĉ2

i (t) (17)

θi(t) = arctan(
ĉi(t)
ci(t)

) (18)

fi(t) =
1

2π

dθi(t)
dt

(19)
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(4) Calculate the instantaneous energy intensity of each sampling point by using the instantaneous
amplitude of each sampling point. For example, the q-th sampling point of p-th IMF is bpq,
the instantaneous energy intensity Qpq of this sampling point can be represented as:

Qpq = b2
pq (20)

(5) Calculate the high-frequency band energy PH and the low-frequency band energy
PL, respectively.

PH = 10 log
m

∑
k=1

QHk (21)

PL = 10 log
n

∑
k=1

QLk (22)

where QHk and QLk are the instantaneous energy intensity of the k-th sampling point in the
high-frequency and the low-frequency bands, respectively.

(6) ED is represented as:
ΔP = PH − PL (23)

2.3. EE

The difference in time–frequency distribution can be expressed by the uncertainty of energy
distribution in different time–frequency bands. Time–frequency bands can be provided by using IMFs.
In this paper, we propose an energy feature extraction approach for S-RN, based on CEEMDAN and
EE. The specific calculation steps of EE for S-RN are as follows:

(1) Decompose S-RN into M IMFs by CEEMDAN. The energy sum of each IMF equals the total
energy of the S-RN signal without considering the residual item.

E =
M

∑
i=1

Ei (24)

where E and Ei are the energy of the S-RN signal and the energy of i-th IMF.
(2) Calculate the energy proportion of each IMF in the S-RN signal.

Ci =
Ei
E

(25)

where Ci is the energy proportion of i-th IMF.
(3) According to the definition of information entropy, we can express EE of the S-RN signal as:

H(C) = −
M

∑
i=1

Ci ln Ci (26)

3. Hybrid Energy Feature Extraction Approach for S-RN

This paper presents a hybrid energy feature extraction approach for S-RN, based on CEEMDAN,
ED and EE. The proposed CEEMDAN-ED-EE approach, combining the advantages of CEEMDAN-ED
and CEEMDAN-EE, can reflect the energy distribution of a S-RN signal at different scales.
The flowchart of the hybrid energy feature extraction approach is shown in Figure 1. The specific steps
of the hybrid energy feature extraction approach are as follows:

Step 1: The S-RN signal decomposition.
(1) Collect S-RN signals under sensor measurement;
(2) Decompose S-RN signals into N IMFs by CEEMDAN.
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Step 2: hybrid energy feature extraction.
(1) Extract ED features for S-RN signals;
(2) Extract EE features for S-RN signals;
(3) Extract hybrid energy features for S-RN signals by combining ED and EE;

Step 3: classification and recognition.
(1) Input hybrid energy features of different S-RN signals into a support vector machine (SVM);
(2) Obtain the classification accuracy for S-RN signals.

 

Figure 1. The flowchart of the hybrid energy feature extraction approach; S-RN: ship-radiated noise,
CEEMDAN: complete ensemble empirical mode decomposition with adaptive noise; IMF: intrinsic
mode function, ED: energy difference, EE: energy entropy, SVM: support vector machine.

4. Energy Feature Extraction for S-RN

4.1. Data Measurement

In this paper, three sorts of S-RN signals were measured in the South China Sea, called Ship-1,
Ship-2 and Ship-3. In order to reduce the influence of artificial and ocean background noise,
we obtained the data under a sea state of level 1. The depths of the measurement area and the
hydrophones were about 4 km and 30 m, respectively. Each sample of S-RN had 5000 sampling points;
the three types of S-RN signals, which were normalized are shown in Figure 2.
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(a) Ship-1 (b) Ship-2 

(c) Ship-3 

Figure 2. Three sorts of S-RN signals.

4.2. CEEMDAN for S-RN

Traditional feature extraction approaches usually extract features from original target signals,
which can only acquire limited features. In this study, three sorts of S-RN signals were decomposed
from a high-frequency to a low-frequency by using CEEMDAN. The CEEMNAN results for S-RN
signals are shown in Figure 3. By observing Figure 3, it can be seen that the amplitude and the number
of IMFs were different for all three types of S-RN signals.

4.3. CEEMDAN-ED

The ED of the high-frequency and the low-frequency bands can reflect the energy distribution of
S-RN signals on the macroscopic scale. The CEEMDAN-ED approach was first used to calculate the
analytic signal of each IMF; we then obtained the energy of the high-frequency and the low-frequency
bands, according to the instantaneous frequency and amplitude of each sampling point. The energy
of the low-frequency and the high-frequency bands for S-RN signals are shown in Figure 4. Finally,
the ED was obtained by a subtraction operation. The ED for S-RN signals are shown in Table 1. As can
be seen from Figure 4 and Table 1, the ED of Ship-1 was distinctly different from the other two ships,
while the EDs of Ship-2 and Ship-3 were very close.
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(a) Ship-1 (b) Ship-2 

 
(c) Ship-3 

Figure 3. CEEMNAN results for S-RN signals.

Figure 4. The energy of the low-frequency and the high-frequency band for S-RN signals.

Table 1. The ED for S-RN signals. S-RN: ship-radiated noise, ED: energy difference.

Ship-1 Ship-2 Ship-3

−14.3713 dB −2.3841 dB −2.0176 dB
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The ED distribution for S-RN signals (20 samples for each ship) is shown in Figure 5. As can be
seen from Figure 5, the ED of the same ship remained at the same level. We could easily distinguish
Ship-1 by using ED, however, it was difficult to distinguish between Ship-2 and Ship-3, due to their
similar EDs.

Figure 5. The ED distribution for S-RN signals.

4.4. CEEMDAN-EE

The energy of IMF by CEEMDAN can reflect the energy distribution of S-RN signals on the IMF
scale. The CEEMDAN-EE approach was first used to calculate the energy of each IMF according to the
instantaneous amplitude of each sampling point; we then obtained the energy proportion of each IMF.
The energy proportion for S-RN signals is shown in Figure 6. Finally, the EE was calculated according
to information entropy. The EE for S-RN signals is shown in Table 2. As can be seen from Figure 6
and Table 2, the EE of Ship-2 was distinctly different from the other two ships, while the EE difference
between Ship-1 and Ship-3 was small.

Table 2. The EE for S-RN signals. EE: energy entropy.

Ship-1 Ship-2 Ship-3

1.2138 1.9125 0.9494

The EE distribution for S-RN signals (20 samples for each ship) is shown in Figure 7. As was
the case in the measurement of the ED distribution, the EE of the same ship was also at the same
level, as can be seen in Figure 7; we could distinguish Ship-2 by using EE, however, it was hard to
distinguish between Ship-1 and Ship-3 because of their similar EEs.
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(a) Ship-1 (b) Ship-2 

 
(c) Ship-3 

Figure 6. The energy proportion for S-RN signals.

Figure 7. The EE distribution for S-RN signals.
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4.5. CEEMDAN-ED-EE

CEEMDAN-ED and CEEMDAN-EE are all energy feature extraction approaches for S-RN signals.
The two approaches extract energy features based on the macroscopic scale and the IMF scale,
respectively. However, CEEMDAN-ED and CEEMDAN-EE have limited and different capabilities
for S-RN signals that distinguish them. In this paper, CEEMDAN-ED-EE, as a hybrid energy feature
extraction approach, was proposed because it combines the advantages of CEEMDAN-ED and
CEEMDAN-EE. The hybrid feature distribution for S-RN signals (20 samples for each ship) is shown
in Figure 8. As can be seen from the horizontal and vertical coordinates in Figure 8, representing ED
and EE respectively, the hybrid features of the same ship were distributed in a limited region, and the
hybrid features of the different ships were independent and non-overlapping. Therefore, we could
easily distinguish the three sorts of S-RN.

Figure 8. The hybrid feature distribution for S-RN signals.

In order to further prove the effectiveness of CEEMDAN-ED-EE, we used SVM for the
classification of the three sorts of S-RN. The number of samples for each ship was 100, and the
classification results for S-RN signals are listed in Table 3. As shown in the Table 3, CEEMDAN-ED
and CEEMDAN-EE had a higher recognition rate than EMD-ED, EMD-EE, EEMD-ED and EEMD-EE;
CEEMDAN-ED-EE also had a higher recognition rate than EMD-ED-EE and EEMD-ED-EE; in
addition, the classification result of CEEMDAN-ED-EE was shown to be 100%, which was better
than CEEMDAN-ED and CEEMDAN-EE.

Table 3. The classification results for S-RN signals. CEEMDAN: complete ensemble empirical mode
decomposition with adaptive noise; EMD: empirical mode decomposition; EEMD: ensemble empirical
mode decomposition.

(a)
EMD-ED EMD-EE EMD-ED-EE

67.33% 66.33% 90.67%

(b)
EEMD-ED EEMD-EE EEMD-ED-EE

70.67% 69.67% 96.33%

(c)
CEEMDAN-ED CEEMDAN-EE CEEMDAN-ED-EE

79.67% 76.67% 100%
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5. Conclusions

A hybrid energy feature extraction approach for S-RN was proposed in this paper based on
CEEMDAN, ED and EE. The main contributions to this work are as follows:

(1) CEEMDAN was first used to extract the energy features of IMF for underwater acoustic signals
in this paper.

(2) An energy feature extraction approach for S-RN was proposed in this paper based on IMFs by
CEEMDAN and EE.

(3) CEEMDAN-ED-EE was successfully applied to extract the energy feature of S-RN signals.
CEEMDAN-ED-EE can be more accurate and efficient in extracting the energy feature.

(4) Compared with CEEMDAN-ED and CEEMDAN-EE, CEEMDAN-ED-EE was shown to have a
better performance, which proves its effectivity and its high recognition rate.
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the experiments.
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(No. 51409214 and No. 51179157).
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Abstract: With the rapid development of smart community technologies, how to improve user
comfort levels and make full use of renewable energy have become urgent problems. This paper
proposes an optimization algorithm to minimize daily energy costs while considering user comfort
level and renewable energy consumption rate. In this paper, the structure of a typical smart
community and the output models of all components installed in the community are introduced
first. Then, the characteristics of different types of loads are analyzed, followed by defining the
coefficients of user comfort level. In this step, the influence of load-scheduling on user comfort level
and the renewable energy consumption rate is emphasized. Finally, based on the time-of-use gas
price, this paper optimizes the daily energy costs for an off-grid community under the constraints of
the comfort level and renewable energy consumption rate. Results show that scheduling transferable
loads and interruptible loads are not independent to each other, and improving user comfort level
requires spending more money as compensation. Moreover, fully consuming renewable energy has
side effects on energy bills and battery lifetime. It is more conducive to system economy and stability
if the maximum renewable energy consumption rate is restricted to 95%.

Keywords: smart communities; user comfort levels; renewable energy consumption rate

1. Introduction

A smart community is a standard architecture group, which is planned and constructed by
governments. It has complete supporting facilities, including energy supply, communication,
transportation, and warehousing, which makes it possible to meet the needs of industrial production
and specific scientific experiments. More importantly, an advanced smart community can provide
convenient and personalized services in terms of human work and life [1]. Since smart communities
have obvious advantages compared with traditional communities, the development of smart
communities has prompted considerable awareness from all over the world, which thus accelerates
the pace of planning and constructing of smart communities [2–4].

With the rapid development of renewable energy and internet of things technology, the proportion
of distributed power generation increases significantly in smart communities. By increasing the amount
of renewable generation, smart communities can not only reduce the exploitation of fossil energy, but
also promote the sustainable development of society [5,6]. In addition, a smart community has the
characteristic of local consumption of renewable energy, which is considered to be an effective means
of dealing with energy efficiency [7,8]. Therefore, it plays an important role in improving energy
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efficiency and promoting the use of low-carbon energy [9,10]. However, at present, the operation
and management of smart communities still lacks perfect user comfort evaluation methods and
research on renewable energy consumption, which will seriously hinder the further development of
smart communities [11]. Therefore, it is of great significance to study further the influence of user
comfort level, renewable energy consumption, and other factors on the optimal operation of the
smart community.

In the study of controllable load optimization in smart communities, user comfort level is
an important evaluation index and an essential constraint condition. An optimal and automatic
residential energy consumption scheduling framework, proposed in [12], aimed to find a desired
trade-off between the optimal energy costs and the waiting time of equipment operation under
the incentive of electricity price. It was mentioned in [13] that an approximate greedy iterative
algorithm had been employed to adjust the use time of electric equipment to reduce the cost of
electricity. Both above-mentioned articles used the same criteria to judge user comfort level for all
the electrical appliances in a unified way. However, regarding controllable loads, the influences of
shifting transferable loads and shedding interruptible loads on user comfort level are significantly
different, and therefore the lack of classification of user comfort level would lead to a large error in
optimization results. The coordination scheduling method of electric vehicles and home energy was
described in [14] based on energy costs and comfort levels. The authors only considered the influence
of a detailed controllable load (electric vehicle) optimization on user comfort level, while there are
multiple controllable loads in smart communities. Therefore, it is necessary to classify controllable
loads and propose a universal comfort evaluation method. In this paper, the controllable loads in
smart communities were divided into transferable loads and interruptible loads, and the coefficients of
user comfort levels relating to transferable and interruptible loads were proposed according to their
respective characteristics, to optimize the load-scheduling of the smart community.

With the rapid development of clean energy technologies, how to improve the consumption
rate of renewable energy has become a research hotspot of power system optimization. To enhance
a network’s peak load regulation capacity and improve system efficiency, an additional portable
energy system and a heat storage tank were introduced in [15] to optimize the operation of a
distributed network. This study significantly improved the stability of network operation, but it
ignored renewable energy consumption rate. Based on the state-queuing model, a renewable energy
output tracking control algorithm was put forward in [16] to consume renewable energy. To maximize
the direct self-consumption of photovoltaic power, [17] proposed a new method to determine the power
generation of photovoltaic generators based on the cost-competitiveness. A logarithmic mean divisia
index method was proposed in [18], proving that urbanization had a positive effect on the growth
of renewable energy consumption. All the aforementioned articles promote the consumption rate of
renewable energy. However, there was no quantitative analysis of the impact of promoting renewable
consumption rate on energy costs. This paper compared and analyzed the cost changes under different
renewable energy consumption rates and revealed the relationship between the renewable energy
consumption rate and the cost change.

To make full use of demand-side resources to participate in power system interaction programs,
many experts have carried out studies on tariff policies such as time-of-use tariff. The authors of [19,20]
put forward optimization methods of scheduling controllable loads according to the electricity price
policy. Yu et al. proposed a new operation method of risk-averse to adjust hybrid power generation
with the purpose of dealing with price fluctuations in the power market and saving electricity costs
for industrial users [21]. Nojavan et al. developed a model relating to user demand response under
the time-of-use tariff policy, and discussed the impact of time-of-use tariff on load-scheduling and
electricity purchase [22]. The authors of [23] proposed an EV impact analysis approach and analyzed
the impact of EV charging on distributed network under time-of-use pricing. The above articles,
in terms of the influence of electricity price policy upon power grid and users, played an important
guiding role in reducing electricity costs and improving system stability. It is worth noting that with
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the rapid development of power generation technologies in recent years, many fuel cells and diesel
generators fueled by natural gas and diesel emerge on the demand side, causing price fluctuations of
gas and diesel. However, there is a lack of research on power system optimization based on gas price
or diesel price. Therefore, this paper proposed a fuel cell operation optimization strategy considering
time-of-use gas price.

The main contributions of this paper can be summarized as follows:

(1) Controllable loads were classified as transferable loads and interruptible loads, and then the
coefficients of user comfort level relating to transferable loads and interruptible loads were defined,
respectively. Additionally, the influences of load-shifting and interruption on user comfort level
were studied.

(2) Based on different renewable energy consumption rates, daily energy costs of the smart community
were optimized, which revealed how the renewable energy consumption rate influenced the daily
energy costs and user comfort level.

(3) Considering the influence of user comfort level and renewable energy consumption rate on
system optimization, the optimal operation strategy of the smart community was proposed based on
time-of-use gas price, and subsequently verified by the case study.

2. System Definition and Its Modelling

2.1. System Definition

Compared with a traditional community, a smart community integrates the most advanced
technologies of information, communication, and renewable energy, and these technologies enable the
smart community to interlace information with energy generation system, storage system, and loads.
In addition, a clear classification of electrical loads and proper configuration of energy storage system
capacity can help smart communities optimize power flow in multiple time scales.

In this paper, a distributed generation system with photovoltaic, wind turbine, and fuel cells
installation is selected as an example to show the typical structure of the distributed generation system.
Additionally, lead-acid batteries are used as an energy storage system. Figure 1 is the structure diagram
of a smart community.

Figure 1. A typical structure of a smart community.
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2.2. Modelling of Distributed Power Systems

To accurately balance power generation and consumption within smart communities, the mathematical
output power models of the distributed power sources (including distributed photovoltaic, wind
turbine power and fuel cell), distributed energy storage systems, and loads are developed in this part.

2.2.1. Modelling of Renewable Energy Generation Systems

As four primary types of renewable energy generation, solar generation, wind turbine power
generation, geothermal generation, and tidal generation have their own remarkable advantages
of less pollution and strong sustainability, and therefore are widely deployed in distributed smart
communities to reduce carbon emissions in the process of power generation [24]. Considering the
fact that solar energy generation and wind turbine power generation are easy to access and are
complementary to each other, they are selected as examples to show the output power models of
renewable energy generation systems.

• Modelling of Photovoltaic Generation

Photovoltaic generation is a kind of noise-free and pollution-free energy technology, which can be
installed on roofs to reduce the footprint of power generation [25]. Since the output of photovoltaic
generation is strongly affected by solar radiation intensity, ambient temperature, etc., its output power
needs to be revised under the standard test condition (STC). The realistic output power of photovoltaic
can be expressed as [26]:

Ppv = PSTC
GS

GSTC
[1 + k(Tc − T0)] (1)

• Modelling of Wind Turbine Generation

Similarly to photovoltaic generation, wind turbine power generation also has the advantage
of environmentally friendliness, and additionally it achieves much lower levelized cost of energy
(LCOE). Because the output powers of photovoltaic generation and wind turbine power generation
are complementary to each other, they can be installed as a package to compensate for the uncertainty
of renewable generation.

Based on the operation characteristics, wind turbines can be divided into two categories, namely
the fixed-speed generator and the variable-speed generator. Compared with the fixed-speed generator,
the variable-speed generator is more cost efficient, stable, and lightweight. Therefore, it is preferable to
install variable-speed generators in smart communities. The mathematical output power model of
variable-speed generators can be expressed as follows [27]:

Pw =

⎧⎪⎨⎪⎩
0, v < vci, v > vco

av + b, vci ≤ v < vr

P0, vr ≤ v ≤ vco

(2)

where:
a =

P0

vr − vci
(3)

b = − P0vci
vr − vci

(4)

2.2.2. Modelling of Fossil Power Generation Systems

Fossil power generation systems have characteristics of high energy efficiency, flexible use, and
low environmental dependency. They can be used to supply supplementary power for loads when
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renewable generation cannot meet loads. In this paper, the fuel cell is selected as an example to
demonstrate the output power of a fossil power generation system [28].

Pf c = η f c · Pf cin (5)

2.2.3. Modelling of Distributed Energy Storage Systems

Since renewable generation is the dominant form of power generation in most smart communities,
the great uncertainty of renewable energy may break the balance of power generation and loads.
To improve power quality and maintain system stability, an energy storage system is generally
installed in smart communities.

The optimization of an energy storage system helps to boost system flexibility and reduce system
loss of load probability (LOLP). As an important parameter that needs to be monitored, battery state
of charge (SOC) represents the proportion of remaining battery capacity to battery installation capacity
at the current time. Therefore, the mathematical expression of battery SOC can be represented by [29]:

SOCes(t) = (1 − δ) · SOCes(t − 1)− Pes(t) · ηes(t) · Δt
Ees

(6)

2.2.4. Modelling of Loads

According to the importance of user loads, electrical demands can be classified into three types:
important loads, transferable loads, and interruptible loads. Among them, important loads, which
include basic lighting, production equipment, etc., must be satisfied in all operation conditions, and
cannot be removed or shifted. However, transferable loads, which include residential electric cookers,
electric vehicles etc., can be transferred from one time period to another without changing total power
consumption. Finally, interruptible loads, including air conditioning and electrical heating systems,
can be cut off for some time according to system scheduling plans. Since important loads have no
effects on user comfort levels, this paper focuses on modelling the influences of transferable loads and
interruptible loads on user comfort levels.

The length of operation time can be different for different types of transferable loads. However,
for a specific transferable load, the amount of energy consumption cannot be changed within an
optimization period. When scheduling transferable loads, it is not only necessary to consider current
transferable loads, but also the number of loads shifted in/out to the current/next period. Therefore,
the net transferable loads at time t can be expressed as:

HTLN(t) = HTLC(t) + HTL I(t)− HTLO(t) (7)

where:

HTLC(t) =
N

∑
i=1

PTLCi(t) (8)

HTL I(t) =
J

∑
m=1

PTLIm(t) (9)

HTLO(t) =
K

∑
n=1

PTLOn(t) (10)

When renewable power generation is less than the predicted value or system spinning reserve is
insufficient to cover all electrical loads, some of interruptible loads should be cut off to ensure network
safety operation. Total electrical loads that need to be cut off at time t can be expressed as:

HIL(t) = max{ΔPr_d(t)− fsr_u(t), 0} (11)
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As demonstrated in the introduction, most previous studies focus on minimizing user energy
costs without considering customer comfort level. A few studies may consider user comfort level
when optimizing user energy costs, but in this process, they do not clearly specify the types of loads.
In the following parts, two coefficients of customer comfort level relating to transferable loads and
interruptible loads are defined separately.

For transferable loads, user comfort level is directly related to the time interval of load-shifting.
If the time interval of load-shifting is shorter, less impact will be given to users and higher comfort can
be experienced by users. Therefore, the coefficient of user comfort level relating to transferable loads
(ϕTL) is defined as follows:

ϕTL =
|ts − tα|
tβ − tα

(12)

In contrast to transferable loads, interruptible loads can be directly cut off at peak demand time
and do not need to make up for it at low demand time. For interruptible loads, user comfort level is
mainly affected by the actual interruption power. For a given amount of interruptible energy, if it is
removed in a short period (i.e., the interruption power is high), user comfort level can be significantly
affected. By contrast, if it is removed for a relatively long period of time (i.e., the interruption power is
lower), user comfort level be will less affected. In other words, it is preferable to cut off interruptible
loads with lower power and longer period of time. In summary, the coefficient of user comfort level
relating to interruptible loads (ϕIL) can be expressed as:

ϕIL =

⎧⎪⎨⎪⎩
0 UIL = 0
TIL
∑

i=1

(
PILiΔt

UIL

)2

UIL �= 0
(13)

3. System Optimization Strategy

To balance the calculation speed and accuracy of simulation results, this paper takes day-ahead
planning to optimize power flow within the smart community. Day-ahead planning focuses on
optimizing daily energy costs on the time scale of 24 h.

3.1. Objective Function

This paper selects daily energy costs as the objective to optimize power flow within the smart
community. For a smart community, daily energy costs mainly include two parts, which are the costs
of renewable generation and fuel cell. Therefore, the objective function can be expressed as:

minC = min
T

∑
t=1

M

∑
i=1

Ci(Pi(t))ΔT (14)

The operation costs of a distributed fuel cell generally include fuel costs, maintenance costs and
emission penalty costs, which can be listed as follows:

Cf c = Cf uel + Cop +
Y

∑
y=1

Cyen (15)

3.2. Constraints

• Power Conservation

To improve the reliability of energy supply and avoid system loss of load, energy generation must
be greater than community electrical demands all the time. Moreover, since the distance of power
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transmission within the community is relatively short, electricity transmission loss is neglected in this
paper. Equation 16 shows the constraint of power conservation [30]:

Ppv(t) + Pw(t) + Pf c(t) + Pes(t) = Ploads(t) (16)

• Fuel Cell Operation Constraints

Fuel cell, as a typical fossil generator, is constrained by its rated maximum output power and
minimum output power, which can be written as [31]:

Pf cmin < Pf c(t) < Pf cmax (17)

In addition, the operation of a fuel cell is also limited by its ramp rate and can be described as [31]:

− ΔPf cdmax < Pf c(t + 1)− Pf c(t) < ΔPf cumax (18)

• Battery Operation Constraints

To maintain battery safety operation, its charging/discharging power needs to be limited within
a certain range, which can be written as [29]:

− Pescmax < Pes(t) < Pesdmax (19)

Moreover, the energy storage system SOC needs to be constrained within a certain range to extend
the life of battery. Therefore, the inequality constraint of SOC can be expressed as [29]:

SOCesmin < SOCes(t) < SOCesmax (20)

• User Comfort Level Constraints

Considering the fact that the reduction of interruptible loads and the shift of transferable loads
have direct influence on user comfort level, it is necessary to set the threshold of the coefficients of user
comfort level relating to the interruptible and transferable loads.

0 < ϕIL ≤ ϕILmax (21)

0 < ϕTL ≤ ϕTLmax (22)

• Renewable Energy Consumption Rate Constraints

To make full use of renewable energy generator installation capacity and reduce carbon emissions,
renewable energy consumption rate needs to be designed.

γmin < γ < γmax (23)

In this paper, the Particle Swam Optimization (PSO) is selected to optimize daily energy costs of
the aforementioned smart community under the equality and inequality constraints proposed in this
section. Figure 2 shows the flow diagram of the proposed PSO-based optimization model.
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Figure 2. The flow diagram of the proposed operation model.

4. Case Study

In this paper, a smart community (shown in Figure 1) located in the north of China is selected as
an example to verify the proposed operation strategy. In this community, the installation capacity of
the distributed photovoltaic generation system is 5 MW, and the rated power of the distributed wind
turbine generation system is 2.5 MW. To improve the power consumption rate of renewable generation
and avoid system loss of loads, a 3 MWh lead-acid battery is installed as the energy storage system.
Meanwhile, the smart community is equipped with a 3 MW fuel cell as a backup power generator and
its energy conversion efficiency is 40%. Table 1 shows the rated parameters of the fuel cell and energy
storage system. Figure 3 reveals the initial load curve and the output curves of photovoltaic and wind
turbine power.

Table 1. Rated parameters of the fuel cell and energy storage system.

Distributed Generators Rated Parameters Value

Fuel cell Ramp-up rate (MW/h) 1.5

Energy storage

Maximum discharge power (MW) 2
Maximum charging power (MW) 1.5

Overall efficiency 80%
SOC 20~90%

Because of the irregular use of nature gas [32], this paper takes time-of-use gas price to optimize
system operation cost. The time-of-use gas price is shown in Table 2. In addition, the costs of
photovoltaic and wind turbine power generation are set as 10 and 14 US cents/kWh [33].
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Figure 3. Daily load curve and the output curves of photovoltaic and wind turbine power.

Table 2. Daily time-of-use gas price.

Natural Gas Price ($/m3) Time Period

0.45 23:00–05:00; 13:00–15:00
0.6 05:00–09:00; 15:00–17:00; 20:00–23:00

0.75 09:00–13:00; 17:00–20:00

5. Results and Analysis

5.1. The Influence of Load-Scheduling on User Comfort Level

To show the influence of load-scheduling on user comfort levels, Figure 4 shows the optimal loads
scheduling results under different comfort levels.

By ignoring user comfort level (shown in Figure 4, Case 1), the optimal daily energy cost reduces
to $8894.90. In this case, three types of transferable loads are shifted to other time periods and the
interruptible loads are largely cut off between 10:00–12:00 and 16:00–19:00. To be specific, the operation
time periods of transferable loads are shifted to a high photovoltaic output period or a lower gas price
period. For interruptible loads, they are mainly cut off in a period of higher gas price. By reducing
interruptible loads and transferable loads during peak gas price time, Case 1 minimizes users’ energy
costs. However, this method neglects user comfort levels, which results in a relatively long load-shifting
time period for transferable loads and high interruption power for interruptible loads. Simulation
results show that ϕTL and ϕIL are 28.5 and 0.182, if user comfort levels are ignored.

Case 2 shows the optimization results of load-scheduling with the restriction of user comfort level.
In this case, the coefficients of user comfort level relating to the transferable loads and interruptible
loads are set as 8.5 and 0.150, respectively. It can be seen from Case 2 that the transferable load TLa
shifted its demands from the period of 16:00–19:00 to the period of 13:00–16:00. Compared with
Case 1, the length of the load-shifting period reduces from 16 h to 3 h. In addition, the length of
the load-shifting periods for TLb and TLc are also shortened to some extent. For interruptible loads,
the interruption power is much lower compared with Case 1, but the length of time that needs to
cut off loads is extended. Simulation results show that the optimal daily energy cost is $9055.00 in
this case, which gives a 1.8% of increase compared with Case 1. However, this optimization method
significantly enhances user comfort level and is more practical in engineering applications.
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(a) Case 1 (b) Case 2 

(c) Case 3 (d) Case 4 

Figure 4. Optimal load-scheduling results under different comfort levels. (IL represents interruptible
loads; TLa, TLb, and TLc represent three types of transferable loads; positive power represents the
amount of active power shifted out/cut off and negative power represents the amount of active power
shifted in).

The optimization results of Case 3 and Case 4 are obtained by increasing the coefficients of user
comfort level relating to the transferable loads and interruptible loads based on Case 2 (the threshold
of ϕTL in Case 3 are increased to 13 and the threshold of ϕIL in Case 4 are increased to 0.170). It can be
concluded from Figure 4c,d, the length of the load-shifting period is extended in Case 3 compared with
Case 2 and the average interruption power in Case 4 is increased compared with Case 2. The results
show that the optimal daily energy costs in Case 3 and Case 4 are $8976.70 and $9018.40, which are
0.9% and 0.4% decreases compared with Case 2. Simulation results indicate that the increase of the
coefficients of user comfort level can reduce users’ energy costs, which further proves the inverse
proportional relationship between user energy costs and the coefficients of comfort levels. It is worth
noting that the optimal results of Case 2 and Case 3 are not same in terms of interruptible loads
reduction, given that the coefficient of user comfort level relating to interruptible loads stays the
same in Case 3. This is because scheduling transferable loads and scheduling interruptible loads are
not independent of each other. Similarly, changing the coefficient of user comfort level relating to
interruptible loads will also affect the optimization results of transferable loads.
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5.2. The Influence of Increasing Renewable Energy Consumption Rate on User Comfort Level

Simulation results show that when only selecting the daily energy costs as the criterion, the renewable
energy consumption rate in the aforementioned Case 1 is 82.5%, which is about 7.5% lower than the
minimum requirement of the renewable energy consumption rate published by Chinese National
Energy Administration. Therefore, to reveal the impact of increasing renewable energy consumption
rate on user comfort level, this part presents further research.

Figure 5 shows the optimal daily load curves (including transferable loads, interruptible loads,
and important loads) of the proposed community, given that the minimum renewable energy
consumption rates are set as 82.5%, 85%, 90%, 95%, and 100%, respectively. It can be seen from
Figure 5 that with the increase of the renewable energy consumption rate, the demands increase during
the maximum PV output period (13:00–14:00). When the renewable energy consumption rate reaches
100%, the peak demand time period will shift from 18:00–19:00 to 13:00–14:00, exerting a significant
impact on user comfort levels.

 
Figure 5. Optimal daily load curves of the proposed community under different renewable energy
consumption rates.

Table 3 shows the optimization results of the system operating parameters under different
renewable energy consumption rates. It can be concluded that when the renewable energy consumption
rate increases from 82.5% to 85%, 90%, and 95%, daily energy costs can increase about 0.23%, 0.33%,
and 0.74%, respectively. In these situations, user average daily energy costs almost remain the same and
user comfort levels will not be strongly affected. However, when the renewable energy consumption
rate reaches 100%, daily energy costs increase to $9295.20, which is about 3.16% of increase. In addition,
compared with the case of 95% of renewable energy consumption, the coefficients of user comfort level
relating to the transferable and interruptible loads increase significantly as well. Simulation results
show that the coefficients of user comfort level relating to the transferable loads (ϕTL) and interruptible
loads (ϕIL) increase from 31.5 and 0.193 to 36.5 and 0.213, respectively. The growth rates of these two
parameters are more than 10%, which is mainly caused by the mismatch between renewable energy
generation and community demands.

To completely consume renewable energy generated during the period of 13:00–14:00, an excessive
number of transferable loads need to be shifted to this period.
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Table 3. Optimization results of system operating parameters.

Renewable Energy
Consumption Rate

Average Daily
Energy Costs ($)

User Comfort Level Energy Storage System

ϕTL ϕIL Range of SOC
Total Energy

Interaction (MWh)

82.5% 8894.9 28.5 0.182 20%–88.7% 3.92
85% 8915.4 28.5 0.184 20%–88.1% 3.98
90% 8944.7 29 0.187 20%–87.3% 4.11
95% 9010.5 31.5 0.193 20%–85.9% 4.37

100% 9295.2 36.5 0.213 20%–80.2% 5.31

To improve the renewable energy consumption rate, one possible solution is to shift loads,
or alternatively to store redundant electricity generated by the renewable energy sources in energy
storage systems. However, since the loss of energy storage system is relatively high (20%),
inappropriate use of energy storage can lead to the decrease of battery lifetime and the increase
of daily energy costs. As can be seen from Table 3, the operation range of battery SOC in a day does
not change significantly during the process of increasing the renewable energy consumption rate from
82.5% to 95%. In this process, the maximum SOC of battery decreases from 88.7% to 85.9%, which is
3.2 percent of reduction. However, when the renewable energy consumption rate increases to 100%,
the operation range of battery SOC decreases to 20%–80.2%. In this situation, the maximum SOC
of battery reduces by 9.6%. In addition, it can be concluded from Table 3 that when the renewable
energy consumption rate is lower than 95%, total energy interaction between the energy storage system
and the smart community is almost the same. While, when the renewable energy consumption rate
increases from 95% to 100%, total daily energy interaction between the energy storage system and
the smart community increases rapidly, which is about 21.5% increase. This indicates that when fully
consume renewable energy, 0.19 MWh extra electricity will be generated to compensate the loss of
energy storage system compared to the case of 95% of renewable energy consumption. Therefore, fully
consuming renewable energy will lead to the decrease of battery lifetime and the increase of users’
daily energy costs.

5.3. Optimal Load-Scheduling Results with Considering Comfort Level and Renewable Consummation Rate

To avoid the serious impacts of load-scheduling on user comfort levels and avoid the reduction of
renewable energy consumption rate caused by large-scale installation of renewable energy sources, this
part demonstrates system optimal operation results under the conditions of ϕTL < 15, ϕIL < 0.17 and
90% < γ < 95%. Figure 6 shows the optimal scheduling results of transferable loads and interruptible
loads under the aforementioned constraints.

It can be concluded from Figure 6 that compared with the optimization results of Figure 4a
(only considering energy costs), the demands of transferable loads, shown in this part, increase about
2.93 MWh during the period of low renewable energy consumption rate (2:00–7:00 and 13:00–16:00).
In addition, during the period of the maximum renewable generation (13:00–14:00), the demands of
transferable loads are the highest, which are 1.54 MWh. In this situation, the coefficients of user comfort
level relating to transferable loads and interruptible loads are 14.8 and 0.165, which is 48.1% and 9.3%
reduction compared with results of Figure 4a. Figure 7 shows the output power of all generators and
the operation states of the energy storage system taking user comfort levels and renewable energy
accommodation rate into account.
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Figure 6. Optimal load-scheduling results of transferable and interruptible loads given ϕTL < 15,
ϕIL < 0.17 and 90% < γ < 95%.

 
Figure 7. Optimization results of renewable generation, fuel cell generation, and operation state
of battery.

As can be seen from Figure 7, the fuel cell, working as a backup power source, generates 6.79 MWh
electricity during the periods of 8:00–13:00 and 16:00–22:00, which accounts for 8.2% of the total
electrical demands. In addition, the energy storage system has two complete charge/discharge cycles
in a day and the operation range of battery of SOC is between 20% and 86.8%. To be specific, the SOC
of energy storage system starts at 25%, and reaches its maximum value of 86.8% from 16:00–17:00.
Moreover, from 2:00–7:00 and 13:00–16:00 (shadows in Figure 7), renewable energy generation is not
sufficiently consumed by the smart community. Optimization results shows that the optimal daily
energy costs of the community are $9023.10 when the renewable energy consumption rate reaches
91%. Compared to Case 1 of Section 5.1, the renewable energy generation rate increases by 10.3%, with
only a small cost of 1.4% of energy costs increase. It should be noted that the energy storage system is
in charging state when the renewable energy consumption is insufficient, because the loads are less
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than the renewable power generation in these periods. To ensure that more than 90% of the renewable
generation is consumed by community, it is necessary to make full use of the energy storage system to
store redundant electricity.

6. Conclusions

To further improve the renewable energy consumption rate and save energy costs in smart
communities, this paper proposes a novel load-scheduling method for optimizing a smart community’s
daily energy costs while taking user comfort level and the renewable energy consumption rate into
consideration. Then, by implementing the PSO algorithm, the proposed strategy schedules the
transferable loads and interruptible loads, optimizes the output of each renewable generator and
controls the state of energy storage system. Finally, a case study is developed to validate the effects
of improving user comfort levels and the renewable energy consumption rate on daily energy costs.
Meanwhile, mathematical optimization results are analyzed in detail. Three main findings of this
paper can be concluded as follows:

(1) To reduce daily energy costs in a smart community, it must increase the coefficients of user
comfort level relating to transferable loads and interruptible loads, and this will lead to a decrease in
user comfort. Therefore, it is important to consider user comfort level when scheduling loads.

(2) Compared with the case of 95% of renewable energy consumption, fully consuming renewable
energy can increase daily energy costs, the coefficient of user comfort level relating to transferable loads,
and the coefficient of user comfort level relating to interruptible loads by as much as 3.16%, 15.9%, and
10.4%, respectively. This proves that the excessive increase of renewable energy consumption rate will
result in the increase of electricity cost and the decrease of user comfort.

(3) For the given constraints of renewable energy consumption rate and user comfort levels,
a smart community can acquire minimum operation costs if the system renewable energy consumption
rate, the coefficient of user comfort level relating to transferable loads, and the coefficient of user
comfort level relating to interruptible loads are 91%, 14.8%, and 0.165%, respectively. In this case, user
comfort level and renewable energy consumption rate increase significantly while the community’s
daily energy costs only increase by 1.4%.
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Nomenclature

Nomenclature Meaning Nomenclature Meaning

Ppv Actual output power of PV generation PSTC
Maximum output power under the
standard test condition

Gs Actual solar radiation intensity GSTC
Solar radiation intensity under the standard
test condition

k A coefficient of temperature Tc Cell temperature

T0 Reference ambient temperature Pw
Actual output power of a wind turbine
system

P0 Rated power of a wind turbine system vci Cut-in speed of a wind turbine system
vr Rated wind speed of a wind turbine system vco Cut-out speed of a wind turbine system
v Actual wind speed of a wind turbine system a, b Power coefficients of a wind turbine system
Pfc Output power of a fuel cell generator Pfcin Input power of a fuel cell generator

ηfc Power generation efficiency of a fuel cell generator SOCes (t)
Energy storage system state of charge at
time t

δ Self-discharge efficiency of an energy storage system Pes (t)
Charging/discharging power of an energy
storage system at time t

ηes (t)
Energy storage system charging/discharging
efficiency at time t

�t Time interval

Ees Installation capacity of an energy storage system HTLN (t) Net transferable loads at time t
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HTLC (t) Original transferable loads at time period t HTLI (t)
Transferable loads shifted into current time
period t

HTLO (t) Transferable loads shifted out to next period at time t N Total number of transferable loads

PTLCi (t)
The ith transferable load’s original electrical demands at
time t

J
Total number of transferable loads shifted
into current time t

PTLIm (t)
The mth transferable load’s power shifted into current
time t

K
Total number of loads shifted out to next
period at time t

PTLOn (t)
The nth transferable load’s power shifted out to next
period at time t

HIL (t)
Total electrical loads need to be cut off at
time t

�Pr_d (t)
Difference between predicted and actual renewable power
generation at time t

fsr_u (t) System up spinning reserve capacity

ϕTL
Coefficient of user comfort level relating to the
transferable loads

ts Actual start time of the transferable loads

tα Expected start time tβ Expected end time

ϕIL
Coefficient of user comfort level relating to the
interruptible loads

TIL
Number of time periods existing
interruption loads

PILi Actual interruption power in the ith time period UIL Total amount of actual interruption energy
C Daily energy costs of a smart community T Total number of time period
M Number of distributed power generators Ci Energy costs of the ith renewable generation
Pi (t) Output power of the ith renewable generator at time t �T Scheduling time period
Cfc Energy costs of a fuel cell generator Cfuel Fuel costs
Cop Maintenance costs Y Total types of pollutant

Cyen Penalty costs of the yth pollutant Ppv (t)
Actual output power of PV generation at
time t

Pw (t) Actual output power of a wind turbine system at time t Pfc (t)
Actual output power of a fuel cell generator
at time t

Ploads (t) Total amount of loads of a smart community at time t Pfcmin
Minimum output power of a fuel cell
generator

Pfcmax Maximum output power of a fuel cell generator �Pfcdmax Maximum fuel cell down ramp rate

�Pfcumax Maximum fuel cell up ramp rate Pescmax
Maximum charging power of an energy
storage system

Pesdmax Maximum discharging power of an energy storage system SOCesmin Lower limit of energy storage SOC

SOCesmax Upper limit of energy storage SOC ϕILmax
Maximum coefficient of user comfort level
relating to the interruptible loads

ϕTLmax
Maximum coefficient of user comfort level relating to the
transferable loads

γ Renewable energy consumption rate

γmin Minimum renewable energy consumption rate γmax
Maximum renewable energy
consumption rate
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