
U
nm

anned Aerial Vehicles   •   Carlos Tavares Calafate and M
auro Tropea Unmanned Aerial 

Vehicles
Platforms, Applications, 
Security and Services

Printed Edition of the Special Issue Published in Electronics

www.mdpi.com/journal/electronics

Carlos Tavares Calafate and Mauro Tropea
Edited by



Unmanned Aerial Vehicles: Platforms,
Applications, Security and Services





Unmanned Aerial Vehicles: Platforms,
Applications, Security and Services

Editors

Carlos Tavares Calafate

Mauro Tropea

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Carlos Tavares Calafate

Technical University of Valencia

Spain

Mauro Tropea 
University of Calabria 
Italy

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Electronics

(ISSN 2079-9292) (available at: https://www.mdpi.com/journal/electronics/special issues/UAV

Platform Applications).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03936-708-5 (Hbk) 
ISBN 978-3-03936-709-2 (PDF)

c© 2020 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”Unmanned Aerial Vehicles: Platforms, Applications, Security and Services” . . . . ix

Carlos T. Calafate and Mauro Tropea
 Unmanned Aerial Vehicles—Platforms, Applications, Security and Services
Reprinted from: Electronics 2020, 9, 975, doi:10.3390/electronics9060975 . . . . . . . . . . . . . . 1

Yu Zhou, Chunxue Wu, Qunhui Wu, Zelda Makati Eli, Naixue Xiong and Sheng Zhang

Design and Analysis of Refined Inspection of Field Conditions of Oilfield Pumping Wells Based
on Rotorcraft UAV Technology
Reprinted from: Electronics 2019, 8, 1504, doi:10.3390/electronics8121504 . . . . . . . . . . . . . . 5

Jamie Wubben, Francisco Fabra, Carlos T. Calafate, Tomasz Krzeszowski, 
Johann M. Marquez-Barja, Juan-Carlos Cano and Pietro Manzoni

Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition
Reprinted from: Electronics 2019, 8, 1532, doi:10.3390/electronics8121532 . . . . . . . . . . . . . . 27

Muhammad Asghar Khan, Ijaz Mansoor Qureshi, Insaf Ullah, Suleman Khan, 
Fahimullah Khanzada and Fazal Noor

An Efficient and Provably Secure Certificateless Blind Signature Scheme for Flying Ad-Hoc 
Network Based on Multi-Access Edge Computing
Reprinted from: Electronics 2020, 9, 30, doi:10.3390/electronics9010030 . . . . . . . . . . . . . . . 43

Chin-Ling Chen, Yong-Yuan Deng, Wei Weng, Chi-Hua Chen, Yi-Jui Chiu 
and Chih-Ming Wu

A Traceable and Privacy-Preserving Authentication for UAV Communication Control System
Reprinted from: Electronics 2020, 9, 62, doi:10.3390/electronics9010062 . . . . . . . . . . . . . . . 65

Mauro Tropea, Peppino Fazio, Floriano De Rango and Nicola Cordeschi

A New FANET Simulator for Managing Drone Networks and Providing Dynamic Connectivity
Reprinted from: Electronics 2020, 9, 543, doi:10.3390/electronics9040543 . . . . . . . . . . . . . . . 97

Antal Hiba, Levente Márk Sántha, Tamás Zsedrovits, Levente Hajder and Akos Zarandy

Onboard Visual Horizon Detection for Unmanned Aerial Systems with Programmable Logic
Reprinted from: Electronics 2020, 9, 614, doi:10.3390/electronics9040614 . . . . . . . . . . . . . . 119

Marco Stellin, Sérgio Sabino and António Grilo

LoRaWAN Networking in Mobile Scenarios Using a WiFi Mesh of UAV Gateways
Reprinted from: Electronics 2020, 9, 630, doi:10.3390/electronics9040630 - . . . . . . . . . . . . . . 141

v





About the Editors

Carlos Tavares Calafate (Full Professor) is a member of the Department of Computer

Engineering at the Technical University of Valencia (UPV) in Spain. He graduated with honors in

Electrical and Computer Engineering at the University of Oporto (Portugal) in 2001. He completed

his PhD in Informatics at the Technical University of Valencia in 2006, where he has worked

since 2002. His research interests include ad hoc and vehicular networks, UAVs, smart cities and

IoT, QoS, network protocols, video streaming, and network security. To date, he has published more

than 400 articles, several of which have been journals, including IEEE Transactions on Vehicular

Technology, IEEE Transactions on Mobile Computing, IEEE/ACM Transactions on Networking,

Elsevier Ad Hoc Networks and IEEE Communications Magazine. He is an associate editor for several

international journals, and has participated in the TPC of more than 250 international conferences.

He is ranked among the top 100 Spanish researchers in the Computer Science and Electronics field.

He is also a founding member of the IEEE SIG on Big Data with Computational Intelligence.

Mauro Tropea (Post Doc Researcher) works in the DIMES Department at the University of

Calabria in Italy. He received his master’s degree in April 2003 and PhD in January 2009, both

in computer science engineering, at the University of Calabria, Cosenza, Italy. From May 2008 to

October 2008, he was a visiting researcher at the Telecommunication Department of ESA ESTEC

Noordwijk, The Netherlands. Since 2003, he has been with the telecommunications group of the

DIMES Department, and, since September 2018, he has been a postdoctoral researcher there.

His research interests include satellite communications, QoS architectures, bio-inspired algorithms,

VANETs, FANETs, hierarchical networks, and multicasting.

vii





Preface to ”Unmanned Aerial Vehicles: Platforms,

Applications, Security and Services”

In the years to come, UAVs are expected to keep gaining momentum and be adopted for

an ever-growing number of tasks in different fields. This creates multiple challenges in terms

of system/navigation, requiring significant integration efforts, multiple testbeds and deployment

results, and novel protocols. In the enabling of such systems, communications play a vital role, and

so, issues like software-defined radio/networks, virtualized networks, heterogeneous networks and

channel modeling will be key to make these systems possible, especially if we keep in mind the

trend towards more network demanding applications, like video streaming for real-time monitoring.

Moreover, issues like UAV identification, authentication and network security always remain critical

factors, especially when the UAVs are deployed to provide aerial surveillance or civil security, among

other things.

In this book, we present a collection of contributions from different authors that represent an

advancement in different areas related to UAVs. In particular, the first chapter, entitled ”Design and

Analysis of Refined Inspection of Field Conditions of Oilfield Pumping Wells Based on Rotorcraft

UAV Technology”, deals with an oil well monitoring method. The authors propose the use of

computer vision in the detection of working conditions in oil extraction, by making use of UAV

aerial photography images combined with the YOLOv3 framework for tracking detection. Through

different experiments, they prove the benefits of their proposal. The second chapter, entitled

”Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition”, presents a

solution for high precision landing. The authors propose a vision-based landing solution that relies

on ArUco markers that allow the UAV to detect the exact landing position from a high altitude (30 m).

They evaluate their system through a platform based on Arduino hardware, and they show how their

proposal improves the landing accuracy (offset of about 11 cm) compared to the traditional GPS-based

one, whose offset is about 1–3 meters. The third chapter, entitled ”An Efficient and Provably

Secure Certificateless Blind Signature Scheme for Flying Ad-Hoc Network Based on Multi-Access

Edge Computing”, proposes an efficient and provably secure certificateless blind signature scheme

(CL-BS), based on multi-access edge computing (MEC) for a FANET environment, using the

concept of hyperelliptic curve. The scope of the paper involves the resolution of computational

and communication issues of the existing security approaches. The authors propose the use of

multi-access edge computing (MEC) in a UAV environment, with the help of the 5G mobile network

enabling a secure communication between UAVs and the base station (BS). The fourth chapter,

entitled ”A Traceable and Privacy-Preserving Authentication for UAV Communication Control

System”, proposes a traceable and privacy-preserving authentication to integrate the elliptic curve

cryptography (ECC), digital signature, hash function, and other cryptography mechanisms for UAV

application. The authors designed a traceable and privacy protection protocol to conduct the UAVs’

application in a sensitive control area. This study also analyzed the computation and communication

costs, to prove that the proposed scheme is practical in the real world. The fifth chapter, entitled

”A New FANET Simulator for Managing Drone Networks and Providing Dynamic Connectivity”,

deals with the possibility of providing wireless connectivity, using a flying ad hoc network (FANET)

in all those emergency situations where the traditional network can encounter several difficulties.

A software simulator is proposed to implement different models: footprint, human mobility and

drone behavior. The sixth chapter, entitled ”Onboard Visual Horizon Detection for Unmanned Aerial

ix



Systems with Programmable Logic”, introduces a fast horizon detection algorithm suited for visual

applications, to be used on board a small unmanned aircraft. For this purpose, the designed algorithm

has a low complexity, in order to meet the power consumption requirements and to keep the

computational cost low. The authors present formulae for distorted horizon lines. The performance of

the proposed algorithm is tested on a real flight with the help of a FPGA implementation. Finally, the

seventh chapter, entitled ”LoRaWAN Networking in Mobile Scenarios Using a WiFi Mesh of UAV

Gateways”, proposes a double-layer network system called LoRaUAV. The system is based on an

ad hoc WiFi network of unmanned aerial vehicle (UAV) gateways able to act as relay for the traffic

generated between mobile LoRaWAN nodes and a remote base station (BS). The core of the system is

a completely distributed mobility algorithm, based on virtual spring forces, that periodically updates

the UAV topology to adapt to the movement of ground nodes. The proposed system is implemented

in NS-3, and the performance, evaluated in a wild area firefighting scenario, shows the improvement

in terms of the packet reception ratio (PRR).

Carlos Tavares Calafate, Mauro Tropea

Editors

x







electronics

Editorial

Unmanned Aerial Vehicles—Platforms, Applications,
Security and Services

Carlos T. Calafate 1,* and Mauro Tropea 2

1 Department of Computer Engineering (DISCA), Universitat Politècnica de València, 46022 València, Spain
2 DIMES Department, University of Calabria, 87036 Rende (CS), Italy; m.tropea@dimes.unical.it
* calafate@disca.upv.es

Received: 9 June 2020; Accepted: 9 June 2020; Published: 11 June 2020

1. Introduction

The use of unmanned aerial vehicles (UAVs) has attracted prominent attention from researchers,
engineers, and investors in multidisciplinary fields such as agriculture, signal coverage, emergency
situations, disaster events, farmland and environment monitoring, 3D-mapping, and so forth. The use
of this technology is playing an important role in supporting human activities. Man is concentrating
more and more on intellectual work, trying to automate practical activities as much as possible in order
to increase their efficiency. In this regard, the use of drones is increasingly becoming a key aspect of
this automation process. A drone offers many advantages including agility, efficiency and reduced
risk, especially in dangerous missions. Hence, this special issue focuses on applications, platforms
and services where UAVs can be used as facilitators for the task at hand, also keeping in mind that
security should be addressed from its different perspectives, ranking from communications security
to operational security, and also keeping in mind privacy issues.

2. The Present Issue

In response to the call for papers, we received 11 submissions, and 7 of these manuscripts have
been accepted for publication.

The first paper, titled ”LoRaWAN Networking in Mobile Scenarios Using a WiFi Mesh of UAV
Gateways” [1], proposes a double-layer network system called LoRaUAV. The system is based on
a WiFi ad hoc network of Unmanned Aerial Vehicle (UAV) gateways able to act as relay for the traffic
generated between mobile LoRaWAN nodes and a remote Base Station (BS). The core of the system
is a completely distributed mobility algorithm based on virtual spring forces that periodically updates
the UAV topology to adapt to the movement of ground nodes. The proposed system is implemented
in NS-3 and the performance, evaluated in a wild area firefighting scenario, shows the improvement
in terms of Packet Reception Ratio (PRR).

The second paper, entitled ”Onboard Visual Horizon Detection for Unmanned Aerial Systems with
Programmable Logic” [2], introduces a fast horizon detection algorithm suited for visual applications
to be used on board a small unmanned aircraft. For this purpose, the designed algorithm has a low
complexity in order to meet the power consumption requirements and to keep the computational
cost low. The authors present formulae for distorted horizon lines. The performance of the proposed
algorithm is tested on a real flight with the help of a FPGA implementation.

The third paper, entitled “A New FANET Simulator for Managing Drone Networks and Providing
Dynamic Connectivity” [3], deals with the possibility of providing wireless connectivity using a flying
ad-hoc network (FANET) in all those emergency situations where the traditional network can meet
several difficulties. A software simulator is proposed implementing different models—footprint,
human mobility and drone behavior.

Electronics 2020, 9, 975; doi:10.3390/electronics9060975 www.mdpi.com/journal/electronics1



Electronics 2020, 9, 975

The fourth paper, entitled “A Traceable and Privacy-Preserving Authentication for UAV
Communication Control System” [4], proposes a traceable and privacy-preserving authentication
to integrate the elliptic curve cryptography (ECC), digital signature, hash function, and other
cryptography mechanisms for UAV application. The authors designed a traceable and privacy
protection protocol to conduct the UAVs’ application in a sensitive control area. This study also
analyzed the computation and communication cost to prove the proposed scheme is practical
in the real world.

The fifth paper, entitled “An Efficient and Provably Secure Certificateless Blind Signature Scheme
for Flying Ad-Hoc Network Based on Multi-Access Edge Computing” [5], proposes an efficient
and provably secure certificateless blind signature scheme (CL-BS) based on multi-access edge
computing (MEC) for a FANET environment using the concept of hyperelliptic curve. The scope of
the paper is to resolve computational and communication issues of the existing security approaches.
The authors propose the use of multi-access edge computing (MEC) in a UAV environment with
the help of 5G mobile network enabling a secure communication between UAVs and the base
station (BS).

The sixth paper, entitled “Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern
Recognition” [6], presents a solution for high precision landing. The authors propose a vision-based
landing solution that relies on ArUco markers that allow the UAV to detect the exact landing position
from a high altitude (30 m). They evaluate their system through a platform based on Arduino hardware,
and they show how their proposal improves the landing accuracy (offset of about 11 cm) compared
to the traditional GPS-based one, whose offset is about 1–3 m.

Finally, the seventh and last paper, entitled “Design and Analysis of Refined Inspection of Field
Conditions of Oilfield Pumping Wells Based on Rotorcraft UAV Technology” [7], deals with an oil
well monitoring method. The authors propose using computer vision in the detection of working
conditions in oil extraction by making use of UAV aerial photography images combined with the YOLO
v3 framework for tracking detection. Through different experiments they prove the goodness of their
proposal.

3. Future

In the next years UAVs are expected to keep gaining momentum, being adopted for an
ever-growing number of tasks in different fields. This entangles multiple challenges in terms of
system/navigation, requiring significant integration efforts, multiple testbeds and deployment results,
and novel protocols. To enable such systems, communications play a vital role, and so issues
like software-defined radio/networks, virtualized networks, heterogeneous networks and channel
modeling will be key to make these systems possible, especially if we keep in mind the trend towards
more network demanding applications, like video streaming for real-time monitoring. Finally, issues
like UAV identification, authentication and network security always remain as critical factors, especially
when the UAVs are deployed to provide aerial surveillance or civil security, among others.

Acknowledgments: We thank all the authors for submitting their work to this Special Issue. We also thank
all the reviewers, who contributed to improve the quality of the papers through their valuable comments
and suggestions. We are extremely grateful to Juan-Carlos Cano, Section Editor-in-Chief of MDPI Electronics,
for giving us the possibility of serving the community with this Special Issue, and to Michelle Zhou, the managing
Editor of this Special Issue.

Conflicts of Interest: The authors declare no conflict of interest.

2



Electronics 2020, 9, 975

References

1. Stellin, M.; Sabino, S.; Grilo, A. LoRaWAN Networking in Mobile Scenarios Using a WiFi Mesh of
UAV Gateways. Electronics 2020, 9, 630, doi:10.3390/electronics9040630.

2. Hiba, A.; Sántha, L.M.; Zsedrovits, T.; Hajder, L.; Zarandy, A. Onboard Visual Horizon Detection for Unmanned
Aerial Systems with Programmable Logic. Electronics 2020, 9, 614, doi:10.3390/electronics9040614.

3. Tropea, M.; Fazio, P.; De Rango, F.; Cordeschi, N. A New FANET Simulator for Managing Drone Networks
and Providing Dynamic Connectivity. Electronics 2020, 9, 543, doi:10.3390/electronics9040543.

4. Chen, C.L.; Deng, Y.Y.; Weng, W.; Chen, C.H.; Chiu, Y.J.; Wu, C.M. A Traceable and Privacy-Preserving
Authentication for UAV Communication Control System. Electronics 2020, 9, 62, doi:10.3390/electronics9010062.

5. Khan, M.A.; Qureshi, I.M.; Ullah, I.; Khan, S.; Khanzada, F.; Noor, F. An Efficient and Provably Secure
Certificateless Blind Signature Scheme for Flying Ad-Hoc Network Based on Multi-Access Edge Computing.
Electronics 2020, 9, 30, doi:10.3390/electronics9010030.

6. Wubben, J.; Fabra, F.; Calafate, C.T.; Krzeszowski, T.; Marquez-Barja, J.M.; Cano, J.C.; Manzoni, P. Accurate
Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition. Electronics 2019, 8, 1532,
doi:10.3390/electronics8121532.

7. Zhou, Y.; Wu, C.; Wu, Q.; Eli, Z.M.; Xiong, N.; Zhang, S. Design and Analysis of Refined Inspection of
Field Conditions of Oilfield Pumping Wells Based on Rotorcraft UAV Technology. Electronics 2019, 8, 1504,
doi:10.3390/electronics8121504.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

3





electronics

Article

Design and Analysis of Refined Inspection of Field
Conditions of Oilfield Pumping Wells Based on
Rotorcraft UAV Technology

Yu Zhou 1, Chunxue Wu 1, Qunhui Wu 2, Zelda Makati Eli 1, Naixue Xiong 1 and Sheng Zhang 1,*

1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology,
Shanghai 200093, China; zhouyu0509@126.com (Y.Z.); wcx@usst.edu.cn (C.W.);
m18097909971@163.com (Z.M.E.); xiongnaixue@gmail.com (N.X.)

2 Shanghai HEST Co. Ltd., Shanghai 201610, China; shhest@aliyun.com
* Correspondence: zhangsheng_usst@aliyun.com; Tel.: +86-1338-6002-013

Received: 13 October 2019; Accepted: 28 November 2019; Published: 9 December 2019

Abstract: The traditional oil well monitoring method relies on manual acquisition and various
high-precision sensors. Using the indicator diagram to judge the working condition of the well is
not only difficult to establish but also consumes huge manpower and financial resources. This paper
proposes the use of computer vision in the detection of working conditions in oil extraction.
Combined with the advantages of an unmanned aerial vehicle (UAV), UAV aerial photography
images are used to realize real-time detection of on-site working conditions by real-time tracking of
the working status of the head working and other related parts of the pumping unit. Considering the
real-time performance of working condition detection, this paper proposes a framework that combines
You only look once version 3 (YOLOv3) and a sort algorithm to complete multi-target tracking in
the form of tracking by detection. The quality of the target detection in the framework is the key
factor affecting the tracking effect. The experimental results show that a good detector makes the
tracking speed achieve the real-time effect and provides help for the real-time detection of the working
condition, which has a strong practical application.

Keywords: computer vision; oil well working condition; real-time detection; sort; unmanned aerial
vehicle (UAV); YOLOv3

1. Introduction

The fault diagnosis technology and working condition monitoring technology of the pumping unit
have always been the focus of the oilfield. At present, the commonly used fault diagnosis methods are
mainly manual analysis and indicator diagram diagnosis. However, the dependence of a large number
of high-precision sensors and high-sensitive devices not only increases the original cost of working
condition detection but also gradually increases the requirements of staff [1]. The whole process
takes a lot of time, and even real-time working conditions cannot be obtained. This has posed a great
challenge to the detection of field working conditions of oil field pumping wells [2]. In recent years,
with the gradual maturity of UAV technology, more and more projects have been launched around
UAV, and it has been widely used in the inspection of power, highway, agriculture, communication,
oil, and other fields [3]. By making use of the flexible mobility and powerful timeliness of the UAV,
the difficulty of traditional condition detection can be overcome by using the UAV patrol mode [4,5].

The subject of this paper is the fine inspection research of pumping-well working conditions based
on UAV. Unmanned UAVs equipped with high-definition cameras can hover in the air for a long time
to monitor the ground over a wide range and obtain real-time images. Therefore, through the pumping
unit’s real-time images acquired by the UAV, the deep learning detection [6,7] and the tracking method

Electronics 2019, 8, 1504; doi:10.3390/electronics8121504 www.mdpi.com/journal/electronics5



Electronics 2019, 8, 1504

are used to detect the working condition of the oil-well pumping unit in operation. The specific
detection precision is to the extent of the pumping unit’s key parts [8]. At the same time of the whole
pumping unit detection, the head working part of the pumping unit also undergo detailed detection
and tracking, so as to achieve more refined inspection and get a more detailed pumping condition.
Tracking the working state of the pumping unit and key components provides real-time position and
movement information of the specified target [9]. By analyzing the state of the pumping unit and the
real-time working state of the key components, the purpose of the drone’s refined detection of the
oil-well pumping unit is achieved [10].

Because there are multiple targets on the oil field, such as vehicles and workers, the purpose of this
paper is to track multiple specified targets in the UAV image, which becomes a problem of multi-target
tracking [11]. Multi-target tracking lacks artificial markers, and there are multiple targets, so it is
necessary to use a target detector to detect the position of the target in the image at each moment [12].
Therefore, this paper adopts the tracking method based on detection and matching. Firstly, the detector
is used to detect the static image of the oil-well pumping unit and the important parts, such as head
working. Then, the static problem is extended to the dynamic problem, and the detection results of the
two frames before and after are matched one by one to realize the tracking of the key working parts of
the oil-well pumping unit and the pumping unit.

In this article, the main contributions are as follows. 1) A multi-target tracking framework (YLTS)
for real-time tracking is proposed. It uses YOLOv3 as the detector and the sort algorithm as the tracker.
In this paper, different algorithms are used as detectors to make multi-target tracking experiments
for oilfield pumping units and their related components, and their accuracy and real-time tracking
effects are compared. It is concluded that the use of YOLOv3 as the detector in this framework is most
suitable; 2) different from the traditional method of detecting pumping unit working conditions with
indicator diagrams, this paper applies the fine inspection project of UAV to the study of pumping unit
working condition detection in oil production. By detecting and tracking the pumping unit and the
head working part in the oil field, the position and movement information of the key components such
as the head working are obtained, which provides a reliable basis for the next semantic analysis and
the judgment of the working condition.so as to obtain the real-time working condition of the oil-well
pumping unit.

The rest of this article is arranged as follows. Section 2 briefly reviews the research status
of pumping unit working condition detection and the application status of UAV inspection.
Then the related work of the model is introduced. The proposed method is described in Section 3,
and experimental results and comparisons are explained in detail in Section 4. Finally, we summarize
the paper and illustrate the future work in Section 5.

2. Related Works

The pumping unit has many major components, and the common faults are also complicated.
In order to meet different fault inspections, the current pumping inspection methods generally involve
manual collection. High-precision sensors and high-sensitivity devices are used to detect the load
and displacement, current, voltage, stroke, and stroke parameters of the pumping unit. Then display
the parameter values and the indicator diagram on the LCD screen. Although this method basically
satisfies the basic needs of oilfields for pumping-unit monitoring, as the scale of oilfield mining is
getting larger and larger, the establishment of this system is more and more difficult and expensive.

In recent years, UAVs have been widely used in the field of inspection. However, so far, the more
mature inspection application of UAVs only stays in the inspection of pipelines and routes, such as
highways, high-voltage power lines, and oil and natural gas pipelines. The UAV flies along the pipeline
to be inspected. In the automatic flight mode, the built-in high-definition camera is used to point at
the pipeline to be inspected to collect the image of pipeline details, which is then transmitted to the
ground station through wireless remote real-time transmission. In this paper, the application of UAV
inspection is extended to the fine inspection of the working condition of the oil field pumping unit,

6



Electronics 2019, 8, 1504

so as to obtain the position of the pumping unit and the motion information of key parts in the video
sequence in the middle and low altitude flight, providing a basis for further semantic layer analysis
(motion state recognition, scene recognition, etc.) [13]. In this way, the real-time working condition of
the oil-well pumping unit can be further judged according to the obtained information.

In order to achieve the work status tracking for pumping units key component, based on the
requirement of real-time and multi-target, the technology adopted in this paper is the target tracking
algorithm based on detection and matching. The detection quality in this method largely affects the
tracking effect, so the key technology of this algorithm lies in the image target detection algorithm of
deep learning. This chapter mainly introduces the main algorithms and related concepts used in this
paper, including the principle of convolutional neural networks (CNN) in deep learning and the most
advanced algorithms in the field of image detection, and time series prediction algorithms.

2.1. The Basics of Convolutional Neural Networks (CNNs)

The convolutional neural network (CNN) is a deep learning algorithm, which is an application of
deep learning algorithms in the field of image processing and has excellent performance for large-scale
image processing [14]. Inspired by the biological neural network, the perception layer was used to
simulate the process of obtaining image information in biological vision, the hidden layer was used
to simulate the neurons in the biological neural network, and the convolutional layer and excitation
function were used to simulate the process of information transmission between neurons in the
biological neural network. CNN uses a large number of hidden nodes to store the data of the original
image. This method can obtain a better representation than the original image, and the tile processing
method of hidden layer nodes makes the CNN have translation invariance. The schematic diagram of
a CNN is shown in Figure 1:

Figure 1. The basic construction of a convolutional neural network (CNN).

As shown in Figure 1, a CNN is made up of several convolution layers [15], a pooling layer,
and a fully connected layer. Multiple convolutional layers are accompanied by a pooling layer.
After repeated cycles, a fully connected layer is added to form a CNN. The convolution layer is the
layer responsible for the transformation from the real domain to the feature domain, and it is also
the most critical layer. The purpose of the pooling layer is to subsample the convolution result [16],
extract the important part of the feature, reduce the number of network parameters, prevent the
emergence of an over-fitting image, and improve the robustness of the network. The fully connected
layer is mainly used to make some local features have global characteristics. All neuron nodes in this
layer will be connected with the output of all neurons in the convolution layer of the previous Layer.
Therefore, the calculation amount of the fully connected layer is relatively large. The output result of
the fully connected layer will be taken as the input of the classifier [17].

2.2. Object Detection

Object detection refers to detecting the location of objects in an image while classifying images.
The deep convolutional neural network (DCNN) has made great achievements in image object
detection after face recognition. In recent years, a large number of efficient object detection algorithms
based on deep learning have emerged successively, such as the region-convolutional neural network

7



Electronics 2019, 8, 1504

(R-CNN), fast region-convolutional neural network (Fast R-CNN), faster region-convolutional neural
network (Faster R-CNN), You only look once (YOLO), and Single Shot Multi-Box Detector (SSD) [18].
These algorithms are divided into two categories according to whether there is a region proposal.

2.2.1. Faster R-CNN

Faster R-CNN is the most advanced algorithm for object detection in R-CNN series images based
on deep learning. It introduced the region proposal network (RPN) to directly generate candidate
regions, which can be seen as a combination of the RPN and Fast R-CNN model [19].

For the RPN, a CNN model (commonly known as a feature extractor) is used to receive the whole
picture and extract the feature graph. An N × N sliding window is then used on the feature graph to
map a low-dimensional feature (e.g., 256–d) for each sliding window position. This feature is then
fed into two fully connected layers, one for classification prediction and one for regression. For each
window position is a set k different size or scale of a priori box (anchors, default bounding boxes), which
means that each location has a prediction k candidate region (region proposals). For the classification
layer, its output size is 2k, which represents the probability value that each candidate region contains
object or background, while the regression layer outputs 4k coordinate values, which represents the
position of each candidate region (relative to each prior box). The two full connection layers are shared
for each sliding window location. Therefore, RPN can be realized by convolution layer: firstly, an n × n
convolution to obtain low-dimensional features, and then two 1 × 1 convolutions for classification and
regression, respectively. The network architecture of RPN is shown in Figure 2.

Figure 2. Region proposal network (RPN) network architecture.

The region proposal network uses dichotomies to distinguish only the background and objects
but does not predict the categories of objects, namely class-agnostic. This method solves the regional
recommendation and time-consuming problems in Fast R-CNN and greatly improves the detection
speed. The detection of the mean average precision (mAP) value of PASCAL VOC 2007 increased from
70% to 73.2%.

2.2.2. YOLO

The YOLO neural network is based on the regression method to complete the target detection
instead of the regional recommendation. It was proposed by Ross et al. in 2015 [20], which mainly
transforms the multi-classification problem into a regression problem to solve the image detection.
The classification and localization problems are solved by the same regression algorithm, which greatly
improves the detection speed and achieves real-time effects in the field of general image target detection.
YOLO first divides the whole picture into S × S grids. Each grid is responsible for predicting the
position of the target point where the center point falls in this grid area. The predicted value is
compared with the real value to calculate the predicted loss. The core idea is to directly operate on the
entire picture, input a picture, and directly derive the position of the prediction frame and the category
to which the prediction frame belongs in the output layer. Each grid into which YOLO is divided is

8



Electronics 2019, 8, 1504

responsible for predicting some detection frames. Each detection frame needs to have a confidence
value of a specific target in addition to its own position information.

By means of direct regression of the whole graph, YOLO can greatly improve the detection speed,
reduce the error rate of background prediction, and learn highly generalized features, which is better
than Fast RCNN in migration learning. However, the disadvantage is that the detection accuracy
is low, object positioning errors easily occur, and the detection effect on small objects is not good
enough. A series of YOLO algorithms have appeared (e.g., YOLOv2, YOLOv3) in recent years and
have improved and strengthened the shortcomings of the original version. Based on the research of
this paper focusing on real-time and multi-objective features, the detection part used in this paper
is the latest YOLOv3 neural network in this series. The use of YOLOv3 neural network algorithm
modeling to implement the detector portion of this article will be described in detail in Section 3.

2.2.3. SSD

The Single Shot Multi-Box Detector (SSD) belongs to the multi-box prediction of a one-stage
method. The main idea is to carry out dense sampling uniformly on the feature graph of multiple layers
in the image [21]. Different scales and aspect ratios can be adopted in sampling, and then features can
be extracted by CNN for classification and regression. The whole process only takes one step, so it has
the advantage of fast speed. However, an important disadvantage of uniform dense sampling is that
training is difficult, mainly because the positive sample and the negative sample (background) are
extremely unbalanced, resulting in slightly lower accuracy of the model [22].

Given the advantages and disadvantages of the RCNN series and the YOLO series, the SSD
algorithm borrows many of these ideas and has many ideological improvements. Respectively, they are:

1. Multi-scale feature graph is adopted for detection—pyramid feature.
2. Set Default boxes.
3. Determination of Default boxes size.
4. Convolution was used for detection.

The above improvements made the detection speed faster than YOLOv1 and the accuracy
faster than Faster R-CNN. However, the initial size and aspect ratio of the default boxes need to
be set manually, and the size and shape of the default box used by the feature of each layer in the
network are just different, which makes the debugging process very dependent on experience [23].
Moreover, the recognition of small-size objects is still poor, which cannot reach the level of Faster
R-CNN. In contrast, the YOLOv3 used in this paper has obvious advantages in small object detection
after absorbing the advantages and disadvantages of the first two versions and is much faster than
SSD. This is one of the reasons why this article uses YOLOv3 instead of SSD as a detector.

3. Using the YLTS Framework to Realize the Pumping Unit Working Condition Detection of the
Aerial Image of the UAV

This paper uses the proposed YLTS framework to achieve multi-target tracking [24,25]. Before the
tracking, YOLOv3 was used to complete the detection of all the pumping units and the head working
parts in the video to realize feature modeling, and then, the sorting tracking algorithm to complete the
multi-target tracking was used. The whole process was to achieve multi-target tracking by detecting
and then using prediction and matching. The framework proposed in this paper achieves real-time
tracking, but mainly depends on the performance of the detector in the framework. YOLOv3, as a target
detector, was a relatively good model in recent years. After experimental comparison, it is concluded
that the use of YOLOv3 as a detector enables the framework to achieve faster real-time effects in
tracking speed. Because the state of the UAV is in cruise, the main purpose of this article concerns
the low altitude cruise in the detection of the oil pumping unit and the head working, and mainly
discusses the work condition of the head working (work cycle, movement speed, movement direction)

9



Electronics 2019, 8, 1504

for real-time tracking, access to the above information can be used according to its working status for
further analysis of the pumping unit working condition.

3.1. Using YOLOv3 as a Detector of the YLTS Framework to Detect the Pumping Unit and the Head Working

In order to learn more about YOLOv3, the first two versions of YOLO (v1, v2) must be understood
first. Since many of YOLOv3’s ideas are inherited from v1 and v2, this section first introduces YOLOv1,
and then introduces YOLOv3 in detail.

The earliest version of the YOLO series is YOLOv1, which is a detection model that converts
multiple classification problems into regression problems for solution. The classification and location
problems in the detection of a pumping unit and head working are solved by the same regression
algorithm, which greatly improves the detection speed. It uses a separate CNN model to realize
end-to-end target detection, divides the input images into 7 × 7 grids, and then each cell is responsible
for predicting the targets in which the center points fall in the grid; when the pumping unit or head
working fall in some grid, this grid is responsible for predicting them, compares the predicted value
with the real value, and calculates the predicted loss. The core idea is to directly manipulate the whole
picture by inputting a figure directly in the output layer for each grid to predict the B bounding box
location information and the confidence score of the bounding box [26].

The predicted value of each bounding box contains five elements: (x,y,w,h,c), where (x,y) represents
the center coordinate of the boundary box, and the predicted value (x,y) of the center coordinate is the
offset value relative to the coordinate point in the upper left corner of each cell; w and h are the width
and height of the bounding box, and the predicted values of w and h of the bounding box are the ratio
of the width and height relative to the entire image, and the value c is confidence score. The confidence
score includes two aspects: on the one hand, the probability of the boundary box containing the target
is denoted as Pr(object); if the pumping unit or the head working part in the picture falls in the grid cell,
it is set as 1, otherwise, it is 0. On the other hand, the accuracy of the boundary box can be represented
by the intersection ratio (IOU) of the prediction box and ground truth, denoted as IOUtruth

pred , so the

confidence is defined as Pr(object) ∗ IOUtruth
pred . The multiplication of confidence scores and conditional

probability is the solution of the classification problem, such as Formula (1):

Pr(classi|object) ∗ Pr(object) ∗ IOUtruth
pred = Pr(classi) ∗ IOUtruth

pred . (1)

As shown in Formula (1), it represents the confidence of the category. In the classification problem,
each grid unit also predicts C conditional category probabilities Pr(Class

∣∣∣Object) that are conditional
on the inclusion of the target grid unit. Each grid cell predicts only one set of category probabilities,
regardless of the number of bounding boxes B. This paper aims to detect the pumping unit and head
working parts in the field with complicated environmental conditions, so C here is set as 2, which
also reduces the workload of the algorithm. In the test, the conditional class probability is multiplied
by the predicted confidence value of each box, so as to calculate the class-specific confidence scores
of each boundary box, what it represents is the probability that the target belongs to a pumping
unit or head working in the boundary box and the quality that the boundary box matches the target.
Prediction boxes of the network are generally filtered according to category confidence. In general,
each cell needs to predict (B × 5 + C) values. If the input image is divided into an S × S grid, the final
predicted value is a tensor of S × S × (B × 5 + C) size.

The structure of the YOLO network can be seen from Figure 3 [27], which uses the convolutional
network to extract features and then uses the full connection layer to obtain predicted values. It can be
seen that its network has 24 convolutional layers and two fully connected layers. The fully connected
layer of the last layer outputs a 7 × 7 × 30 tensor; this tensor stores the location information of all the
detection boxes predicted by the YOLO model and the probability values that belong to a set of specific
classes with the detection boxes.

10



Electronics 2019, 8, 1504

Figure 3. The YOLOv1 network structure.

The training of YOLO is end-to-end, the prediction of the position, size, type, confidence (score),
and other information of the prediction box is trained by a loss function [28]. Formula (2) is YOLOv1′s
loss function.

loss = λcoord
S2∑

i=0

B∑
j=0

lobj
i j

[
(xi − x̂i)

2 + (yi − ŷi)
2
]
+

λcoord
S2∑

i=0

B∑
j=0

lobj
i j

[
(
√
ωi −

√
ω̂i)

2
+ (
√

hi −
√

ĥi)
2]
+

S2∑
i=0

B∑
j=0

lobj
i j (ci − ĉi)

2+

λnoobd
S2∑

i=0

B∑
j=0

lnoobj
i j (ci − ĉi)

2+

S2∑
i=0

∑
c∈classes

(pi(c) − p̂i(c))
2.

(2)

The S2 in Formula (2) represents the number of grids, in this case, 7 × 7. B is the number of
prediction boxes per cell, which, in this case, is 2. The value of lobj

i j is 0 or 1, that is, whether there is
a target in the cell. The value of λcoord is 5 and the value of λnoobd is 0.5. Formula (2) is divided into
four parts:

Part 1: The first line is the loss function for position prediction. The total square error (SSE) is used.
Part 2: The second line is the loss function for width and height. The total square error is used.
Part 3: The third and fourth rows of confidence (confidence) are also the total squared error (SSE)

used as a loss function.
Part 4: The fifth line is the loss function for the class probability and also uses the total square

error (SSE) as the loss function.
Finally, several loss functions are added together as a loss function of YOLOv1.
Different oilfields have different environmental conditions. In the complex environment of

oilfields, the pumping unit is connected to the head working. In addition, the head working is relatively
small compared with the pumping unit when the UAV is flying higher. Moreover, the up and down
swing of the head working in the pumping unit may lead to the overlap with the pumping unit itself.
Under such complex and harsh testing conditions, YOLOv1 cannot meet the requirements of the
industrial application level. YOLOv3’s improvements make it an algorithm that meets the industrial
application level requirements. On the surface, the core idea of YOLOv3 is basically the same as that
of YOLOv1, both of which are tested by dividing cells in a square way, but the number of partitions
is different. However, its improvement makes its detection effect become an excellent detector both
for accuracy and speed. For example, batch normalization has been added since v2 as a method of
regularization, accelerating convergence, and avoiding overfitting, connecting the BN layer and leaky

11



Electronics 2019, 8, 1504

ReLu layer to the end of each convolutional layer. The use of multilevel prediction makes up for the
shortcomings of the previous version of small target detection. Multi-scale training, which allows
for a trade-off between speed and accuracy, makes YOLOv3 more flexible and suitable for industrial
applications. Figure 4 shows the network structure of YOLOv3.

Figure 4. The YOLOv3 network structure.

Here are three additions to Figure 4:
First of all, DBL is the basic component of YOLOv3, which consists of convolution, BN, and Leaky

Relu. For v3, in addition to the last layer of convolution, the three have been merged to form the
smallest component. Secondly, there are multiple res, which are the big components of YOLOv3.
They draw on ResNet’s residual structure. Using this structure can make the network structure deeper.
Its basic component is also DBL. Finally, splicing the intermediate layer of darknet and the upper
sampling of a later layer. The splicing operation is different from the residual layer add operation.
Splicing expands the dimension of a tensor, whereas add simply adds without changing the dimension
of a tensor.

There is no pooling layer and full connection layer in the entire v3 structure, add an anchor
box to predict the bounding box. This avoids the image that can only recognize the same resolution
as the training image at the time of detection and can have a higher resolution at the output of the
convolutional layer. It is very suitable for the occasion when the UAV is not in the fixed altitude
inspection. Good detection can be maintained when the drone’s flight is very close to a pumping unit
or the flight altitude is high. In the process of forward propagation, the dimensional transformation of
the tensor is realized by changing the step size of the convolution kernel [29]. The following analysis is
carried out layer by layer.

Input layer: images are input with 416 × 416 pixels and 3 channels, and then the BN operation is
carried out on the input. Then, the 32-layer convolution kernel operation is carried out. The size of
each convolution kernel is 3 × 3, and the step is 1. Finally, the 416 × 416 feature map of 32 channels is
produced as the output.

Res layer: the input and output in this layer are generally consistent, and no other operations,
just subtraction. In order to solve the phenomenon of gradient diffusion or gradient explosion in
deep neural network, it is proposed to change layer by layer training to stage by stage training.
The deep neural network is divided into several subsegments, each of which contains a relatively
shallow network layer, and then each segment is directly connected to train the residual. Each segment
learns only a fraction of the total difference, and ends up with a smaller total loss. At the same time,
the propagation of the gradient is well controlled to avoid situations that are not conducive to training,
such as the disappearance or explosion of the gradient.

12



Electronics 2019, 8, 1504

Darknet-53: from layer 0 to layer 74, there are 53 convolution layers, and the rest are res layers.
This layer is the main network structure for feature extraction of YOLOv3, and the convolution layer
of 3 × 3 and 1 × 1 is used [30]. A large number of jump layer connections using residuals. In the
previous work, the sampling was generally conducted by max-pooling or average-pooling with the
size of 2 × 2 and stride length of 2. However, in this network structure, convolution with a step size of
2 is used for descending sampling. At the same time, up-sampling and route operation are used in the
network structure, and three times of detection are carried out in a network structure. This ensures
the convergence of training. The effect of classification and detection will also be improved, and the
reduction of parameters will reduce the amount of calculation. This is very good for more complex oil
field sites, different locations of the sparse distribution of pumping units, plus the blocking of the head
working. Better results can be obtained by using a darknet-53 network to train such complex images.

The part of YOLO: this part is divided into three scales from 75 to 105 layers, and local feature
interaction is realized by a convolution kernel, such as in Figure 5.

Figure 5. Output from the YOLO layer.

The minimum scale YOLO layer inputs 13 × 13 feature maps, a total of 1024 channels, reduces the
channel to 75 by convolution operation, and finally outputs 13 × 13 feature maps and 75 channels,
and on this basis, perform position regression and classification.

The input of the mesoscale YOLO layer is to convolve the feature map of the 13 × 13 and
512 channels of the 79 layer to generate the feature map of 13 × 13 and 256 channels. A 26 × 26,
256-channel feature map is generated after up sampling, and convolution is performed after merging
with the 61 × 26, 512-channel mesoscale feature map of the 61 layer. Finally, an output of a 26 × 26 size
feature map and 75 channels is produced.

The input of the large-scale YOLO layer is to convolve the feature map of the 91-story 26 × 26 and
256-channel and generate the feature map of 26 × 26 and 128 channels and generate the feature map of
52 × 52 and 128 channels after up sampling. At the same time, convolution is performed after merging
with the 52 × 52, 256-channel mesoscale feature map of 36 layers. Finally, a feature map of size 52 × 52
and 75 channels are output. Based on this, position regression and classification are performed [31].

According to the structural pattern of YOLOv3, except for the last layer of the model, which uses
the linear activation function, all other layers use the leaky ReLU below as the activation function:

y =

{
x, x > 0
0.1x, otherwise

. (3)

Compared to ordinary ReLU, leaky does not make the negative number directly 0, but multiplies
it by a small coefficient (constant). Keep negative output, but reduce negative output.

13



Electronics 2019, 8, 1504

Compared with YOLOv1, v3 makes some adjustments in the loss function. Except that the loss
function of the width and height of the second part still uses the total square error, the loss function of
other parts uses the binary cross entropy. The next step is to add them together. The loss function
for V1 was explained in Formula (2) in the previous section. The following is the formula for binary
cross entropy:

loss = −
n∑

i=1

ŷi log yi + (1− ŷi), (4)

∂loss
∂y

= −
n∑

i=1

ŷi

yi
− 1− ŷi

1− yi
(5)

This is the loss function between probabilities. Only when yi and ŷi are equal, the loss
will be 0; otherwise, the loss will be a positive number. Moreover, the greater the difference in
probability, the greater the loss will be. This measure of probability distance is called cross entropy.
YOLOv3 changes the loss function so that it can better model complex target categories and data sets
of overlapping labels. It is also suitable for the data set that the head working overlaps or blocks with
the pumping unit in the scene of the oil field in this paper.

Through the above modeling, the work of the detector is first completed. The detection of each
frame of the pumping unit and the head working part is realized. After that, the tracker is used to
complete the tracking of multiple targets.

3.2. Use the Sort Algorithm as a Tracker of the YLTS Framework to Track the Pumping Unit and the Head
Working

In order to ensure the real-time tracking effect, this paper uses the Sort algorithm as a tracker
to track the target based on the detector’s detection of the pumping unit and the head working.
The algorithm is an algorithm based on detection and multi-target tracking, which is updated online
and has good real-time performance. The tracking problem is regarded as a data association problem.
The Kalman filter is used to process the correlation of frame-by-frame data [32,33], and the Hungarian
algorithm is used to correlate metrics. The position and size of the detection box are used to correlate
the motion estimation and data of the target [34]. The following is an object state model that represents
and propagates the target ID to the next frame:

x =
[
u, v, s, r,

.
u,

.
v,

.
s
]T

. (6)

where u and v represent the central coordinate of the target, s represents the size area of the target,
r represents the aspect ratio of the target, which remains unchanged, and the last three quantities
represent the predicted next frame.

The steps of the whole process are as follows:

1. When the first frame comes in, the detected target is initialized and a new tracker is created,
labeled with an id.

2. When the following frame comes in, the state prediction and covariance prediction generated by
the previous frame detection box are obtained first in the Kalman filter. The target state prediction
and the IOU of the frame detection box are respectively obtained, the maximum matching of the
IOU is obtained by the Hungarian assignment algorithm, and the matching pair in which the
matching value is smaller than the IOU threshold is removed.

3. The Kalman tracker is updated using the matched target detection frame in this frame to calculate
the Kalman gain, status update, and covariance update. The status update value is output as
the tracking frame of this frame. The tracker for targets that are not matched in this frame are
reinitialized [35,36].

14



Electronics 2019, 8, 1504

After the above steps, the proposed YOLOv3 is used as the detector, and the sort algorithm is
basically completed as the framework of the tracker. First, use YOLOv3 to test the pumping unit and
the head working part, and input the test result to the tracker. As a tracker, the sort algorithm uses
the Kalman filter to process the correlation of frame-by-frame data and the Hungarian algorithm to
correlate metrics to track the pumping unit and the head working. After that, through the analysis of
the results of the tracking, the real-time working condition of the pumping unit can be obtained.

4. Experiment and Analysis

In this paper, the UAV is used for video capture, and the video is processed by frame separation.
The image marking tool is used to mark the pumping unit and the head working, and the training
data set is produced. The Tensorflow-GPU [37] version is used as a framework for deep learning,
implemented under the Linux operating system, using 1080Ti GPU for image training and target
detection and tracking in the video. The detection speed and mAP value are used to analyze the
advantages of the YOLOv3 algorithm as a detector in the framework proposed in this paper, to achieve
a good real-time tracking effect, and make decisions for the detection of the working condition.

4.1. Description of the Training Data

In this paper, UAV aerial photography inspection data provided by China Petroleum Western
Drilling Engineering Co., Ltd., were screened through screening and editing to select 5 videos for
130 min with a resolution of 640 × 480. Four of them are medium and low altitude flight (15–25 m),
and one video is high altitude flight (45–55 m). After the data from three videos were processed
by interval frames, the parts of the data that did not meet the training conditions were removed.
The training set contained about 5400 images, and the data from the remaining two videos were
processed by interval frames as the test set images, with about 2500 images. A part of the data set is
shown in Figure 6.

 

 
Figure 6. Part of the image in the dataset.

After the video data was processed in a frame-by-frame process, the pumping unit and the head
working were manually labeled using an image labeling tool. After each image was annotated, a class
label file was generated, which stores the position of the label box and the category information,
as shown in Table 1:

15



Electronics 2019, 8, 1504

Table 1. The examples of annotated data.

Class ID
Normalization of

the Central Point x
Value

Normalization of
the Central Point y

Value

Normalization of
w Value

Normalization of
h Value

0 0.6698369565217391 0.4565916398713826 0.34148550724637683 0.9131832797427653
0 0.3675781250000003 0.6263888888888889 0.20390625 0.4666666666666667
0 0.3583333333333334 0.5857142857142857 0.46 0.5428571428571429
1 0.5083333333333334 0.4768356643356643 0.6266666666666667 0.7159090909090909
1 0.6391666666666667 0.65 0.22166666666666668 0.3666666666666667
1 0.6216666666666667 0.43214285714285716 0.41000000000000003 0.7214285714285715

It can be shown from Table 1 that the class label with ID 0 is the pumping unit, and the class
label with ID 1 belongs to the head working. The center point x,y coordinate value, the width value w,
and the height value h of the detection frame are all normalized according to the image size.

The purpose of frame separation processing is to improve the processing speed of the whole
system without affecting the prediction ability of the Kalman filter. The direct impact of video frame
separation processing is whether the target position change rate can be learned. If the interval is too
long, there will be a phenomenon in which the image information is not extracted when the target
trajectory changes greatly, which will lead to an unstable change of the learned position. In order to
verify the effect of different interval frames on the learning ability of the frame on the target trajectory,
each video in this paper trains the network at intervals of 1, 5, 10, 15, and 25 frames and tests them.
Figure 7 shows the average of the loss results of the three videos of the training set after different
interval frame numbers.

 

Figure 7. Comparison of average loss results at different intervals.

As can be seen from Figure 7, there is a small gap between different interval frames in the
prediction of the target trajectory in the video total, especially in the case of small intervals, but when
the interval frames are too large, the prediction ability will decline sharply. It can be concluded from
the results that the Kalman filter can learn the target motion rule well. However, when the frame
interval time is larger, the target motion regularity is weaker, and the prediction effect will be worse.
Because the pumping unit is in a working state during the inspection of the drone, the head working is
often obscured or incomplete. Therefore, the data of head working in the obtained data is relatively
poor compared to the overall pumping unit. When the number of interval frames is large, the loss
result will also be worse than that of the pumping unit.

16



Electronics 2019, 8, 1504

4.2. Experimental Results and Comparison

The tracking framework used in this article makes the tracking effect dependent on the quality of
the detector; therefore, different detectors are used in this paper to make comparative experiments.
SSD is an algorithm similar to YOLOv3 in performance and core thinking; thus, the comparison of
detectors in the following section is mainly to compare SSD with YOLOv3. Figure 8 shows the detection
and tracking effect of a single target. The blue box is the detection box, and the white one is the
tracking box. The purpose of the detection box is to accurately find the location and size of the target
to be found in each frame and mark it out. The tracking box relies on the detection box to match the
detection box before and after the frame and to predict the motion and similarity of the tracking target.
For the occluded target, the detection box will not appear, because there is no target to be detected in
the image. In this paper, for the occluded target in a short time, the tracking box will continue to track
it according to the prediction in the previous frame.

 
Figure 8. Single target effects.

Whether it is SSD or YOLOv3 as a detector, the detection of a single target can get better results.
Although the pumping unit has no movement change, with the movement of the UAV, the detection
box and tracking box can accurately follow the target. Moreover, the box of the head working can also
move as it moves up and down.

In the case of a medium or low flight height of the UAV, different algorithms are used as detectors
to detect and track multiple targets, which are shown in Figures 9 and 10.

 
Figure 9. The tracking effect with Single Shot Multi-Box Detector (SSD) as the detector.

17



Electronics 2019, 8, 1504

 
Figure 10. The tracking effect with YOLOv3 as the detector.

It can be shown from Figure 9 that a pumping unit in the lower left corner was not detected,
which also led to the failure of tracking, while the tracking of YOLOv3 as a detector succeeded.
However, neither achieved a tracking effect on targets with long-term obscuration, which is the sacrifice
of the sort algorithm in this framework to achieve a faster tracking speed. However, the flexibility
based on drones can make up for this shortcoming. In terms of speed, YOLOv3 as the detector is faster,
which is also the advantage of the algorithm for the detecting speed. For the shadowing problem, this
paper makes the following test to test the critical value of tracking failure.

As shown in Figure 11, with a test for the critical value of the tracking effect in the case of shielding,
it can be seen that the four images are continuously intercepted while the head working of the left
pumping unit is slowly leaving the video viewing angle. The head working in the first three pictures
is still in the line of sight of the drone, but are slowly decreasing. Still, it can still be tested and
tracked, and the last one shows that when the head working disappears completely in the line of sight,
it immediately loses its detection and tracking effect. Moreover, there is also a pumping unit behind
the pumping unit on the left side of Figures 1–3, but they are not detected and tracked because of the
occlusion. This is because the sort tracking algorithm only uses the position and size of the detection
frame to perform the motion estimation and data association of the target in pursuit of the tracking
speed. When the target is lost, it cannot be found, and the ID can only be re-updated through detection.
Therefore, the critical value in the case of occlusion is that the tracking effect is lost when the occlusion
is completely occluded or the detector does not detect the target due to occlusion. However, this is
when the target disappears in the entire image. In Figures 9 and 10, multiple pumping units are
working side by side, which causes the pumping unit and head working to be obscured by other
pumping units. When the obstacle is detected, the Kalman filter can predict the position of the object
in the detection box at the next moment. However, this prediction is very rough. When the object
appears again, it is tracked through matching. However, the frame proposed in this paper is exactly in
line with the scene of the oil field, and the shielding time is almost zero. Moreover, the UAV is in the
way of patrol inspection, which also increases the probability of avoiding shielding and reduces the
shielding time.

18



Electronics 2019, 8, 1504

  
(a) (b) 

  
(c) (d) 

Figure 11. Masking of the critical value test. (a) Frame 180, (b) frame 185, (c) frame 188, (d) frame 196.

In the case of the UAV flying at a high altitude, different algorithms are used as detectors to detect
and track multiple targets, which are shown in Figures 12 and 13.

 
Figure 12. The tracking effect with SSD as detector.

 
Figure 13. The tracking effect with YOLOv3 as detector.

It can be seen from Figures 12 and 13 that the detection and tracking effect of the pumping unit
was achieved, but the tracking result with SSD as the detector did not detect and track the head
working position. This is related to the performance of the detector. For YOLOv3, the defects of small
targets that could not be detected in the previous series have been improved, so compared to SSD as

19



Electronics 2019, 8, 1504

a detector, YOLOv3 has a better effect on detecting small targets. The tracking effect in this paper also
depends on the quality of the detector, so it can be seen that the tracking effect with SSD as the detector
does not track small targets.

4.3. The Analysis of Experiment

When training in the detector section, the default number of iterations for YOLOv3 training is
500,200. After 500,200 iterations, the training will stop automatically. Training can also be stopped
when the loss is no longer falling or the drop is very slow. The training log should be saved after the
training and the following loss curve drawn using python. In order to make the contrast more vivid,
the training loss curve of the SSD is drawn by taking the iteration times and the same iteration interval
of YOLOv3.

As shown in Figure 14, the training stops at 16,000 iterations, and the loss value finally converges
to 0.05. In this experiment, since the average loss of YOLOv3 is very slow and substantially converged
after less than 0.05, the threshold for stopping the training is set to 0.05 at the time of this training.
When the loss value reaches 0.05, the number of iterations is about 16,000. Therefore, the training
iteration of the SSD is also taken from the log between 6000 and 16,000 to draw Figure 15. The above
two loss graphs show that YOLOv3 basically converges to 0.05, and after 16,000 iterations, the SSD’s
loss curve still fluctuates between 0.25 and 0.1 and does not converge. It can be concluded that YOLOv3
has the advantage of training. The loss curve is not only faster than SSD convergence but also has
a smaller convergence value. Therefore, YOLOv3 is more suitable as a detector in this paper than the
SSD algorithm.

Figure 14. The loss curves of YOLOv3.

20



Electronics 2019, 8, 1504

Figure 15. The loss curves of SSD.

In the experiment of this paper, the SSD algorithm with similar performance to YOLOv3 is
compared with the algorithm used in this paper to compare the advantages of YOLOv3 as the detector
in this paper. However, a comparison of the Faster R-CNN algorithm [38], the most advanced in object
detection based on deep learning R-CNN series images, is also added. The comparison is mainly
made from two aspects, the detection speed and mAP value. The former directly affects the real-time
detection and tracking of the pumping unit and the head working, while the latter reflects the accuracy
of detection and is the performance evaluation of the detector.

The mean average precision (mAP) is shown in Formula (7):

mAP =

∫ 1

0
P(R)d(R) (7)

where P is the accuracy of the pumping unit and the head working, and R is their recall rate.
The formulas for R and P are shown in Formulas (8) and (9), respectively:

P = Number o f targets detected/The total number o f detected detection f rames (8)

R = The total number o f detected targets/Veri f y the total number o f all marked
pumping units and the head working in the set

(9)

As shown in Table 2, mAP values and the target detection speed of the three algorithms are
respectively displayed.

Table 2. Test results for the three models.

Model mAP(%) Time for Detection(s)

Faster R-CNN 57.6 248
SSD 64.7 39

YOLOv3 64.5 20

It can be shown from Table 2 that YOLOv3 reached 64%; although the mAP of YOLOv3 is 0.02%
less than that of SSD, it is almost the same. However, in terms of time, YOLOv3 only uses 20 s, which is
much shorter than the time of the above two algorithms. It fully meets the requirements of real-time

21



Electronics 2019, 8, 1504

performance emphasized in this paper. Therefore, it can be concluded that YOLOv3 is the most suitable
detector for this experiment in terms of both accuracy and speed.

Finally, we compare the advantages and disadvantages of the proposed framework with other
multi-target tracking algorithms, as this paper focuses on industrial applications, especially in this
paper, for the tracking of oil field pumping units and head working. Therefore, the first two methods
with the fastest processing speed of MOT Challenge2016 are selected for comparison. According to the
size of the MOTA scores, the comparison results are shown in Table 3.

Table 3. The quality of evaluation of different methods.

Tracker MOTA MOPI FP FN ID SW HZ

YLTS 57.6 79.6 8698 63,245 1423 60.1
SMMUML 43.3 74.8 8463 93,892 985 187.2

LP2D 35.7 75.5 5084 111,163 1264 49.3

As shown in Table 3, the two algorithms with the fastest processing speed are compared with
the framework proposed in this paper. The fastest algorithm is 182.7 HZ, which is far higher than
all other algorithms. The processing speed of the framework proposed in this paper ranks second,
which is more suitable for industrial applications, thanks to the processing speed of YOLOv3 and
the sort algorithm. However, some other factors are sacrificed. IDSW is relatively high, which is
also used to improve the speed and lead to more ID changes. Generally speaking, this framework
achieves the second level in terms of processing speed on the premise of maintaining a high MOTA
level. In combination with speed and accuracy, it can be seen that the proposed multi-target tracking
framework has achieved good results.

5. Conclusions and Future Works

The Faster R-CNN, SSD, and YOLOv3 algorithms used in the experiments in this paper were used
as detectors in the tracking framework proposed in this paper. The framework uses sort tracking to meet
the real-time nature of the oilfield well conditions, which also puts the focus of this framework on the
detector. The quality of the tracking depends entirely on the quality of the detector. Experiments have
shown that YOLOv3 is the most suitable detector for this article, both in terms of accuracy and speed.
However, the framework also has shortcomings. The detector and tracker used in this paper are
designed to meet real-time performance, so it is faster in speed, but it also sacrifices tracking in special
cases. For example, in the case of a long-term occlusion, the target being tracked will be lost, and the
target ID will be frequently switched, which reduces the tracking effect. However, based on the
background of the drone’s refined inspection, this situation has also been reduced. Therefore, the final
result can be used to track the pumping unit and the key components, such as head working, to obtain
the position and motion information of the target, and to provide a basis for further semantic layer
analysis (motion state recognition, scene recognition, etc.). In this way, the working conditions are
checked in real-time.

According to the current research results, this paper believes that although the tracking target does
not appear to be occluded for too long in the scene of drone inspection, it cannot ignore the existence
of this situation. Considering the problem of target occlusion in the tracker is a concern for future
research. This also reduces the dependence on the detector, reduces the number of ID switching during
the tracking target, and improves the overall tracking performance. After obtaining the information
of the tracking target, further motion analysis of the target working state to obtain clearer working
conditions is also a concern for future research.

Author Contributions: Conceptualization, Y.Z., C.W., Q.W. and N.X.; data curation, Y.Z., Q.W. and Z.M.E.;
formal analysis, Y.Z., C.W., N.X., Z.M.E. and S.Z.; funding acquisition, C.W.; investigation, Y.Z., Q.W. and S.Z.;
methodology, Y.Z.; project administration, C.W., N.X. and S.Z.; resources, C.W., Q.W. and Z.M.E.; software, Y.Z.

22



Electronics 2019, 8, 1504

and S.Z.; supervision, C.W., N.X. and S.Z.; validation, Y.Z.; visualization, Y.Z., Q.W. and Z.M.E.; writing—original
draft, Y.Z.; writing—review & editing, Y.Z., C.W. and N.X.

Funding: This research was supported by Technology Innovation Action Plan Project (19511105103, 17511107203)
and the National Key Research and Development Program of China (2018YFC0810204, 2018YFB17026) and
National Natural Science Foundation of China (61872242), Shanghai Science and Shanghai key lab of modern
optical system.

Acknowledgments: The authors would like to appreciate all anonymous reviewers for their insightful comments
and constructive suggestions to polish this paper in high quality. Thanks to the data provided by China Petroleum
West Drilling Engineering Co., Ltd. to support this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, H.; Wu, C.; Huang, W.; Wu, Y.; Xiong, N. Design and Application of System with Dual-Control of
Water and Electricity Based on Wireless Sensor Network and Video Recognition Technology. Int. J. Distrib.
Sens. Netw. 2018, 14, 1550147718795951. [CrossRef]

2. Li, X.; Zhou, C.; Tian, Y.-C.; Xiong, N.; Qin, Y. Asset-Based Dynamic Impact Assessment of Cyberattacks for
Risk Analysis in Industrial Control Systems. IEEE Trans. Ind. Inform. 2018, 14, 608–618. [CrossRef]

3. Ju, C.; Son, H. Multiple Uav Systems for Agricultural Applications: Control, Implementation, and Evaluation.
Electronics 2018, 7, 162. [CrossRef]

4. Hu, G.; Yang, Z.; Han, J.; Huang, L.; Gong, J.; Xiong, N. Aircraft Detection in Remote Sensing Images Based
on Saliency and Convolution Neural Network. EURASIP J. Wirel. Comm. Netw. 2018, 2018, 26. [CrossRef]

5. Hua, X.; Wang, X.; Rui, T.; Wang, D.; Shao, F. Real-Time Object Detection in Remote Sensing Images Based on
Visual Perception and Memory Reasoning. Electronics 2019, 8, 1151. [CrossRef]

6. Aksu, D.; Aydin, M.A. Detecting Port Scan Attempts with Comparative Analysis of Deep Learning and
Support Vector Machine Algorithms. In Proceedings of the 2018 International Congress on Big Data,
Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), Ankara, Turkey, 3–4 December 2018. [CrossRef]

7. Wu, C.; Luo, C.; Xiong, N.; Zhang, W.; Kim, T. A Greedy Deep Learning Method for Medical Disease Analysis.
IEEE Access 2018, 6, 20021–20030. [CrossRef]

8. Huang, H.; Xu, Y.; Huang, Y.; Yang, Q.; Zhou, Z. Pedestrian Tracking by Learning Deep Features. J. Vis.
Commun. Image Represent. 2018, 57, 172–175. [CrossRef]

9. Wang, S.; Wu, C.; Gao, L.; Yao, Y. Research on Consistency Maintenance of the Real-Time Image Editing
System Based on Bitmap. In Proceedings of the 2014 IEEE 18th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), Hsinchu, Taiwan, 21–23 May 2014. [CrossRef]

10. Zhao, J.; Xu, H.; Liu, H.; Wu, J.; Zheng, Y.; Wu, D. Detection and Tracking of Pedestrians and Vehicles Using
Roadside Lidar Sensors. Transp. Res. Part C Emerg. Technol. 2019, 100, 68–87. [CrossRef]

11. Jiang, X.; Fang, Z.; Xiong, N.N.; Gao, Y.; Huang, B.; Zhang, J.; Yu, L.; Harrington, P. Data Fusion-Based
Multi-Object Tracking for Unconstrained Visual Sensor Networks. IEEE Access 2018, 6, 13716–13728.
[CrossRef]

12. Liu, C.; Zhou, A.; Wu, C.; Zhang, G. Image Segmentation Framework Based on Multiple Feature Spaces.
IET Image Process. 2015, 9, 271–279. [CrossRef]

13. Yang, J.C.; Jiao, Y.; Xiong, N.; Park, D.S. Fast Face Gender Recognition by Using Local Ternary Pattern and
Extreme Learning Machine. TIIS 2013, 7, 1705–1720.

14. Xue, W.; Wenxia, X.; Guodong, L. Image Edge Detection Algorithm Research Based on the Cnns Neighborhood
Radius Equals 2. In Proceedings of the 2016 International Conference on Smart Grid and Electrical Automation
(ICSGEA), Zhangjiajie, China, 11–12 August 2016. [CrossRef]

15. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

16. Wan, L.D.; Zeiler, M.; Zhang, S.; Lecun, Y.; Fergus, R. Regularization of Neural Networks Using Dropconnect.
Int. Conf. Mach. Learn. 2013, 28, 1058–1066.

17. Wang, Z.; Lu, W.; He, Y.; Xiong, N.; Wei, J. Re-Cnn: A Robust Convolutional Neural Networks for Image Recognition;
Springer: Berlin, Germany, 2018.

23



Electronics 2019, 8, 1504

18. Napiorkowska, M.; Petit, D.; Marti, P. Three Applications of Deep Learning Algorithms for Object Detection
in Satellite Imagery. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote
Sensing Symposium, Valencia, Spain, 22–27 July 2018. [CrossRef]

19. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-Cnn: Towards Real-Time Object Detection with Region Proposal
Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

20. Lan, W.; Dang, J.; Wang, Y.; Wang, S. Pedestrian Detection Based on Yolo Network Model. In Proceedings
of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China,
5–8 August 2018. [CrossRef]

21. Wang, X.; Hua, X.; Xiao, F.; Li, Y.; Hu, X.; Sun, P. Multi-Object Detection in Traffic Scenes Based on Improved
Ssd. Electronics 2018, 7, 302. [CrossRef]

22. Biswas, D.; Su, H.; Wang, C.; Stevanovic, A.; Wang, W. An Automatic Traffic Density Estimation Using Single
Shot Detection (Ssd) and Mobilenet-Ssd. Phys. Chem. Earth Parts A/B/C 2018, 110, 176–184. [CrossRef]

23. Kitayama, T.; Lu, H.; Li, Y.; Kim, H. Detection of Grasping Position from Video Images Based on Ssd.
In Proceedings of the 2018 18th International Conference on Control, Automation and Systems (ICCAS),
Daegwallyeong, Korea, 17–20 October 2018.

24. Zhang, H.; Gao, L.; Xu, M.; Wang, Y. An Improved Probability Hypothesis Density Filter for Multi-Target
Tracking. Optik 2019, 182, 23–31. [CrossRef]

25. Yang, T.; Cappelle, C.; Ruichek, Y.; El Bagdouri, M. Online Multi-Object Tracking Combining Optical Flow
and Compressive Tracking in Markov Decision Process. J. Vis. Commun. Image Represent. 2019, 58, 178–186.
[CrossRef]

26. Shinde, S.; Kothari, A.; Gupta, V. Yolo Based Human Action Recognition and Localization. Proced. Comput. Sci.
2018, 133, 831–838. [CrossRef]

27. Krawczyk, Z.; Starzyński, J. Bones Detection in the Pelvic Area on the Basis of Yolo Neural Network.
In Proceedings of the 19th International Conference Computational Problems of Electrical Engineering,
Banska Stiavnica, Slovakia, 9–12 September 2018. [CrossRef]

28. Liu, X.; Yang, T.; Li, J. Real-Time Ground Vehicle Detection in Aerial Infrared Imagery Based on Convolutional
Neural Network. Electronics 2018, 7, 78. [CrossRef]

29. Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple Detection During Different Growth Stages in
Orchards Using the Improved Yolo-V3 Model. Comput. Electr. Agric. 2019, 157, 417–426. [CrossRef]

30. Tumas, P.; Serackis, A. Automated Image Annotation Based on Yolov3. In Proceedings of the 2018 IEEE 6th
Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Vilnius, Lithuania,
8–10 November 2018. [CrossRef]

31. Huang, R.; Gu, J.; Sun, X.; Hou, Y.; Uddin, S. A Rapid Recognition Method for Electronic Components Based
on the Improved Yolo-V3 Network. Electronics 2019, 8, 825. [CrossRef]

32. Shi, Z.; Xu, X. Near and Supersonic Target Tracking Algorithm Based on Adaptive Kalman Filter.
In Proceedings of the 2016 8th International Conference on Intelligent Human-Machine Systems and
Cybernetics (IHMSC), Hangzhou, China, 27–28 August 2016. [CrossRef]

33. Reza, Z.; Buehrer, R.M. An Introduction to Kalman Filtering Implementation for Localization and Tracking
Applications; The Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 2018.

34. Liu, Y.; Wang, P.; Wang, H. Target Tracking Algorithm Based on Deep Learning and Multi-Video Monitoring.
In Proceedings of the 2018 5th International Conference on Systems and Informatics (ICSAI), Nanjing, China,
10–12 November 2018. [CrossRef]

35. Li, H.; Qin, J.; Xiang, X.; Pan, L.; Ma, W.; Xiong, N.N. An Efficient Image Matching Algorithm Based on
Adaptive Threshold and Ransac. IEEE Access 2018, 6, 66963–66971. [CrossRef]

36. Tounsi, K.; Abdelkader, D.; Iqbal, A.; Sanjeevikumar, P.; Barkat, S. Extended Kalman Filter Based Sliding
Mode Control of Parallel-Connected Two Five-Phase Pmsm Drive System. Electronics 2018, 7, 14.

24



Electronics 2019, 8, 1504

37. Demirović, D.; Skejić, E.; Šerifović–Trbalić, A. Performance of Some Image Processing Algorithms in
Tensorflow. In Proceedings of the 2018 25th International Conference on Systems, Signals and Image
Processing (IWSSIP), Maribor, Slovenia, 20–22 June 2018. [CrossRef]

38. Beibei, Z.; Xiaoyu, W.; Lei, Y.; Yinghua, S.; Linglin, W. Automatic Detection of Books Based on Faster R-Cnn.
In Proceedings of the 2016 Third International Conference on Digital Information Processing, Data Mining,
and Wireless Communications (DIPDMWC), Moscow, Russia, 6–8 July 2016. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

25





electronics

Article

Accurate Landing of Unmanned Aerial Vehicles
Using Ground Pattern Recognition

Jamie Wubben 1, Francisco Fabra 2, Carlos T. Calafate 2,*, Tomasz Krzeszowski 3,

Johann M. Marquez-Barja 1,4, Juan-Carlos Cano 2 and Pietro Manzoni 2

1 Faculty of Applied Engineering, Electronics-ICT, IDLab University of Antwerp, 2000 Antwerp, Belgium;
jamie.wubben@student.uantwerpen.be (J.W.); Johann.Marquez-Barja@uantwerpen.be (J.M.M.-B.)

2 Departament of Computer Engineering (DISCA), Universitat Politècnica de València, 46022 Valencia, Spain;
frafabco@cam.upv.es (F.F.); jucano@disca.upv.es (J.-C.C.); pmanzoni@disca.upv.es (P.M.)

3 Faculty of Electrical and Computer Engineering, Rzeszow University of Technology,
35-959 Rzeszow, Poland; tkrzeszo@prz.edu.pl

4 imec Antwerp, 2000 Antwerpen, Belgium
* Correspondence: calafate@disca.upv.es

Received: 6 November 2019; Accepted: 3 December 2019; Published: 12 December 2019

Abstract: Over the last few years, several researchers have been developing protocols and applications
in order to autonomously land unmanned aerial vehicles (UAVs). However, most of the proposed
protocols rely on expensive equipment or do not satisfy the high precision needs of some UAV
applications such as package retrieval and delivery or the compact landing of UAV swarms. Therefore,
in this work, a solution for high precision landing based on the use of ArUco markers is presented.
In the proposed solution, a UAV equipped with a low-cost camera is able to detect ArUco markers
sized 56 × 56 cm from an altitude of up to 30 m. Once the marker is detected, the UAV changes
its flight behavior in order to land on the exact position where the marker is located. The proposal
was evaluated and validated using both the ArduSim simulation platform and real UAV flights.
The results show an average offset of only 11 cm from the target position, which vastly improves the
landing accuracy compared to the traditional GPS-based landing, which typically deviates from the
intended target by 1 to 3 m.

Keywords: UAV; autonomous landing; vision-based; ArduSim; ArUco marker

1. Introduction

Recently there has been a growing interest in unmanned aerial vehicles (UAVs). Their applications
are diverse, ranging from surveillance, inspection and monitoring, to precision agriculture and package
retrieval/delivery. Landing a UAV is acknowledged as the last and most critical stage of navigation [1].
According to statistics, the number of accidents associated to the UAV landing process represent
80% of the hazard cases [2]. Therefore, improved landing techniques are being intensely explored.
Furthermore, some of the applications mentioned above, such as package retrieval, require a high level
of accuracy so as to make sure the UAV lands exactly on the desired target.

Previous proposals heavily rely on the Global Positioning System (GPS) and inertial navigation
sensors (INS) as the main positioning approaches [3]. However, altitude data provided by the GPS
is typically inaccurate and needs to be compensated with a close-range sensor, such as a barometric
pressure sensor or a radar altimeter [4]. Despite such compensation, these methods still remain
inaccurate, especially in the horizontal plane, resulting in a landing position that typically deviates from
the intended one by 1 to 3 m. Furthermore, the GPS cannot be used indoors. For these reasons, GPS
and INS systems are mostly used for long range, outdoor flights having low accuracy requirements [3].

Electronics 2019, 8, 1532; doi:10.3390/electronics8121532 www.mdpi.com/journal/electronics27



Electronics 2019, 8, 1532

Taking the aforementioned issues into consideration, the aim of this work is to develop a novel
vision-based landing system that is able to make a UAV land in a very specific place with high precision.
This challenge is addressed by developing a solution that combines the use of a camera and ArUco
markers [5,6]. This way, the relative offset of the UAV towards the target landing position is calculated
using the ArUco library [7] (based on OpenCV). After computing its relative offset, the UAV adjusts its
position so as to move towards the center of the marker and start descending, performing additional
adjustments dynamically.

The rest of this work is structured as follows: in the next section some related works on UAV
landing strategies are presented. In Section 3, our proposed solution is introduced, detailing the
methodology followed in order to track the target for landing and how to perform the necessary
calculations to adjust the UAV position. Then, Section 4 provides some technical details about the
UAV used to deploy our proposal, highlighting the main issues and restrictions to be taken into
consideration in the design of our novel landing algorithm. Section 5 describes how the different
experiments were made. The main results are then presented in Section 6, where our solution is
compared to a GPS-based approach, with an appropriate discussion. Finally, Section 7 concludes this
work and refers to future works.

2. Related Work

Recently, different UAV landing approaches have been studied. These studies can be categorized
based on the different types of landing platforms adopted. According to Reference [8], the vast amount
of landing platforms belong to one of these three categories:

1. Category I–fixed platforms:
Fixed platforms include all platforms that are stationary. This type of platforms are the easiest to
land on, since the target remains stationary.

2. Category II–moving platforms:
Moving platforms are defined by the ability to move with two degrees (surge, sway) of freedom.
In this case, the UAV needs to track the platform first and then land on it.

3. Category III–Landing on a ship:
The ultimate landing platform is on a moving ship. In this case the ship has six degrees of freedom
(heave, sway, surge, yaw, roll, pitch) and, therefore, developing a safe landing approach becomes
a troublesome task.

It is also possible to categorize the different landing approaches based on the sensor(s) used in the
process. Many different sensors can be used, such as sonar, infrared, LIDAR, cameras or a combination
of these. Below, some approaches that rely on computer vision will be discussed.

Chen et al. [9] succeeded in landing a real UAV on an object moving with a speed of 1 m/s
(category II). A camera was used to track the position of the landing platform (xy-coordinates) and
a LIDAR sensor provided detailed information about the altitude. This research work introduced a
robust method to track and land on a moving object. However, the use of a LIDAR sensor discourages
the solution, as it tends to be too expensive when scaling to a high number of UAVs.

Nowak et al. [10] proposed a system in which a UAV could land both at night, as well as during
the day. The idea is simple yet robust and elegant: a beacon is placed on the ground. The light emitted
from the beacon is then captured by a camera (without a infrared filter) and the drone moves (in the
xy-plane) such that the beacon is in the center of the picture. Once centerd, the height is estimated
based on the image area occupied by the beacon and the drone’s altitude is decreased in order for it to
land safely.

Shaker et al. [11] suggested another approach: reinforcement learning. In this approach, the
UAV agent learns and adapts its behaviour when required. Usually, reinforcement learning takes a
lot of time. To accelerate this process, a technique called Least-Squares Policy Iteration (LSPI) is used.
With this method, a simulated UAV (AR100) was able to achieve a smooth landing trajectory swiftly.

28



Electronics 2019, 8, 1532

In the work of Lange et al. [12] an approach for landing and position control, similar to our work,
was developed. Their approach was also based on OpenCV and on recognizing a landing pattern.
However, their landing pattern was not built with the use of ArUco markers. In fact, the landing
pattern used, with a diameter of 45 cm, was only detected from a distance of 70 cm. Therefore, this
strategy cannot be used in an outdoor environment where the flight altitude is typically much higher.
However, in this approach, the UAV does not need to see the entire marker, which is an advantage of
this scheme.

A system that can land on and track a slow moving vehicle (180 cm/s) was developed by
Araar et al. [13]. Indoor experiments show that the UAV used was able to successfully land on the
target landing platform (which also consists of multiple ArUco markers) from a height of approximately
80 cm.

More recently, Patruno et al. [14] presented a solution for the landing of UAVs on a human-made
landing target. Their target was similar to traditional heliplatforms but with specific aspect ratios, so
that it can be detected from long distances. The geometric properties of the H-shaped marks adopted
are used to estimate the pose with high accuracy, achieving an average RMSE value of only 0.0137 m
in pose and 1.04◦ in orientation.

Baca et al. [15] were able to detect a moving car at 15 km/h, predict its future movement and
attach to it. To achieve it they equipped the UAV with onboard sensors and a computer, which detects
the car using a monocular camera and predicts the car future movement using a nonlinear motion
model. While following the car, the UAV lands on its roof and it attaches itself using magnetic legs.

De Souza et al. [16] developed a autonomous landing system based on Artificial Neural Network
(ANN) supervised by Fuzzy Mamdani Logic. Their method introduced low computational complexity
while maintaining the characteristics and intelligence of the fuzzy logic controller. They validated their
solution using both simulation and real tests for static and dynamic landing spots.

Fraczek et al. [17] presented an embedded video system that allows the UAV to automatically
detect safe landing sites. Their solution was implemented on a heterogeneous Zynq SoC device from
Xilinx and a Jetson GPU. Differently from the previous works, this work does not rely on a human
made marker. Through the use of machine learning and computer vision techniques, the UAV classifies
the terrain into three classes. The proposed solution was tested on 100 test images and classified the
different terrains correctly in 80% of the cases. Furthermore, in these tests the performance between
the Zynq SoC device and the Jetson GPU was compared.

Our work differs from the former ones as we want the UAV to detect the landing area when it is
high above the ground (height > 20 m) to compensate for possibly high GPS error values, while using
cheap sensors (only a Raspberry Pi camera is needed) and yet still achieving very low errors in terms
of landing accuracy (<20 cm). To that extent, only one other source (the Ardupilot community [18])
was found that is attempting to achieve results similar to ours. Their method follows the same strategy
as the work of Nowak et al. [10], as they also make use of an IR-beacon. According to the ArduPilot
authors, their proposed method is able to land a UAV from an altitude of 15 m, reliably under all
lighting conditions and with an maximum offset of only 30 cm. While the results of this approach are
impressive, ours still outperforms it in terms of both accuracy, altitude and price.

3. Proposed Solution

The aim of this work is to make a UAV land on a specific location. First the UAV has to make a
coarse approach to the landing zone. As stated before, the UAV will typically fail to hover above its
exact target location, being usually within 1 to 3 m away from the intended landing position. Once
the UAV is close to the target location our protocol is activated. The first step deals with finding the
marker. The ArUco marker library [5,6] (based on OpenCV) provides a function which takes the
camera feed and returns information about the marker(s). ArUco markers resemble the well-known
QR-codes. They carry less information than the latter ones (only an id), which makes them easier to
detect. A typical ArUco marker consists of a black border and a 6x6 square of black and white smaller

29



Electronics 2019, 8, 1532

squares. There are different types of configurations (e.g., 3 × 3, 4 × 4, 7 × 7) known as dictionaries.
A marker from a dictionary with less squares is of course easier to detect but only a small number
of ids can be provided. In this work, dictionary “DICT_6X6_250” is used. As the name suggests, it
provides 250 different ids, which is more than enough for our purposes. The second part consists of
descending the UAV while trying to keep it centered over the marker.

In order to detect a marker two conditions must be met: (i) the marker must be fully inside the
picture and (ii) each square must be uniquely identified (black or white). In this application, it is
possible that the two conditions are not simultaneously met in some cases. For instance, when the
drone is at a low altitude (i.e., 0.5 m) the marker is too big to fit inside the field of view of the camera;
in addition, the shadow of the drone may “corrupt” the image. On the other hand, when the drone is
flying at a higher altitude (e.g., 12 m) the image may be too small to be detected. Therefore, a strategy
was developed that combines markers of different sizes (see Figure 1), so that the drone can find its
target from a higher altitude. If the UAV is able to detect a smaller marker, it will switch to it, adjusting
its course accordingly. Figure 2 shows a real scenario where the UAV is able to see two markers but
chooses to move towards the smaller marker. The center of this marker is indicated by the red spot.

Figure 1. Two examples of ArUco markers of different sizes.

Figure 2. Image retrieved by the Unmanned Aerial Vehicle (UAV) camera after processing using
OpenCV/ArUco libraries.

Once the marker is detected, the drone has to move towards the center of the marker and descend
from there. Due to the effect of wind and to the inherent instability of the UAV itself, the drone will also
move in the horizontal plane while descending. This unwanted movement should be compensated in

30



Electronics 2019, 8, 1532

order to land the drone more precisely. To achieve this behavior, the strategy described in Algorithm 1
is proposed, which works as follows: In line 3, the UAV searches for an ArUco marker. If no marker is
detected, the flight mode of the UAV is changed to loiter. If this is the case for 30 consecutive seconds,
the mission is aborted and the UAV will land using GPS only. Otherwise, from the potential list of
detected markers, the marker with the highest ID (i.e., the smallest marker) is selected (line 11). With
the use of the ArUco library, the location of the marker with respect to the drone is estimated. If the
altitude of the UAV is greater than z2 (see empirical values in Table 1), α is set to 20 degrees; otherwise,
it is set to 10 degrees. These values are based on: the detection distance of the markers, size of the UAV,
size of the markers and a margin which is optimized empirically. In line 20 it is checked if the marker
is within the virtual border (explained later). If so, the UAV descends; otherwise, it moves horizontally
towards the target position. This algorithm will be executed continuously as long as the altitude of the
UAV is greater than z1. From the moment the UAV’s altitude drops below z1 (very near to ground),
the control will be handed over to the flight controller, which will land the UAV in a safe manner and
disarm the engines.

Algorithm 1 Static vision-based landing strategy.

1: Start timer 30 s
2: while altitude > z1 do

3: IDs, detected ← SearchMarker()
4: if ¬ detected then

5: Loiter()
6: if timer exceeded then

7: AbortLanding()
8: end if
9: else

10: reset timer()
11: ID ← highest detected ID
12: Get P(x, y, z)id
13: if z > z2 then

14: α = 20◦
15: else

16: α = 10◦
17: end if
18: βx = | arctan (x/z)|
19: βy = | arctan (y/z)|
20: if βx > α or βy > α then

21: Move(x,y)
22: else

23: Descend()
24: end if
25: end if
26: end while
27: Descend and disarm UAV

Table 1. Parameter values adopted regarding Algorithms 1 and 2.

Altitude threshold z1 0.30 m
Altitude threshold z2 13 m
Virtual border angle α {10◦, 20◦}

31



Electronics 2019, 8, 1532

In the description above, a virtual border is mentioned. This border defines an area which should
enclose the marker (illustrated in Figure 3). This virtual border is created in order to distinguish the
two cases of descending or moving horizontally. The size a of this square is defined as:

a = 2 × tan (α)× h

where h refers to the relative altitude of the UAV.

Figure 3. Visual representation of the virtual border.

The main advantage of defining the area in this way is that it will decrease as the drone lowers
its altitude. Therefore, the drone will be more centerd above its target position when it flies at low
altitude. However, when flying at higher altitude, the drone should descend whenever possible to
avoid excessive landing times. For this reason, α is increased to 20◦ if the UAV is flying above 13 m (z2).

There are multiple ways to move the UAV towards the target point. In ArduSim, a UAV can be
moved for example, by overriding the remote control with function “channelOverride”. With the use
of this function the UAV can be moved at a constant speed, first along the roll axis (left/right) and
afterwards along the pitch (forward/backward) axis, until the target point is met.

This algorithm experiences difficulties tracking a marker, because it will quickly change between
marker IDs whenever one of the markers is not visible for a short amount of time. At first, a small timer
was used to eliminate this problem. However, this approach was not satisfactory and so an extension
of this algorithm is proposed as Algorithm 2. This second version uses the same general ideas but
introduces improvements such as hysteresis that make adjustments more dynamic, achieving a higher
effectiveness than the former one. In particular, for this second version, the altitude (activationLevel[i])
is saved whenever a new marker is detected. Contrary to the former version, the algorithm will only

32



Electronics 2019, 8, 1532

switch between markers when its current altitude is lower than half of the activationLevel[i] value.
With this modification, the typical glitching behaviour (of detecting and not detecting a marker) is
bypassed. Furthermore, if the UAV is not able to detect a marker, it will switch to a recovery mode.
This means that it will increase its altitude by one meter, thereby increasing the chances of finding
the marker again. Finally, the horizontal speed of the UAV depends on the horizontal distance to the
marker. The pitch and roll values are set to v1 (see empirical values in Table 2) if the distance between
marker and UAV is greater then 1 m (see Table 1); otherwise, it is set to v2.

Algorithm 2 Adaptive vision-based landing strategy.

1: Start timer 30 s
2: while altitude > z1 do

3: IDs ← Search
4: if ¬ detected then

5: Recover
6: if timer exceeded then

7: Abort
8: end if
9: else

10: reset timer
11: for all IDs do

12: if First time detected then

13: activationLevel[i] = altitude
14: end if
15: if altitude < activationLevel[i]/2 then

16: id ← i
17: end if
18: end for
19: Get P(x, y, z)id
20: if z > z2 then

21: α = 20◦
22: else

23: α = 10◦
24: end if
25: βx = | arctan (x/z)|
26: βy = | arctan (y/z)|
27: if βx > α or βy > α then

28: Move(x,y)
29: else

30: Descend(speed)
31: end if
32: end if
33: end while
34: Descend and disarm UAV

Table 2. Speed values adopted regarding Algorithm 2.

speed v1 15%
speed v2 5%
speed v3 10%

33



Electronics 2019, 8, 1532

Since the area captured by the camera is large when flying at high altitudes, there is less risk of
missing the marker. Therefore, the UAV‘s descending speed can be varied with respect to its altitude
in the following Equation (1):

descending speed =

{
min {60%, altitude × 2%} i f altitude > 6 meters
v3 otherwise.

(1)

4. UAV Specification

Due to the vast amount and diversity of UAV models available, it is worth mentioning the actual
characteristics of the UAV used for our experiments. The UAV adopted belongs to the Vertical Take-Off
and Landing (VTOL) category, more commonly known as a multirotor UAV. In the experiments
described in this work, a hexacopter model is used (see Figure 4), being equipped with a remote control
operating in the 2.4 GHz band, a telemetry channel in the 433 MHz band, a GPS receiver, a Pixhawk
flight controller and a Raspberry Pi with external camera (see Figure 5). The Raspberry Pi creates an
ad-hoc WiFi connection in the 5 GHz band, which is used to communicate with a ground station or
with other UAVs. Below we detail the purpose and the connections (as shown in Figure 6) between
these different devices.

4.1. 2.4 GHz Remote Control

The FrSky X8r receiver provides communication between the UAV and the remote control. This
device makes it possible to fly the UAV manually. It receives signals from the remote control and passes
them to the flight controller. Furthermore, it sends basic information about the UAV to the remote
control for example, flight mode, so that the pilot is informed about the UAV state. It accomplishes these
tasks by using the entire 2.4 GHz ISM band. Therefore, it becomes nearly impossible to receive/send
any WiFi signal in this band (2.4 GHz), as shown in Reference [19]. Hence, our ad-hoc WiFi connections
rely on the 5 GHz band instead. This 5 GHz WiFi connection is used to connect an UAV or multiple
UAVs to the ArduSim ground station.

Figure 4. Hexacopter used in our experiments.

34



Electronics 2019, 8, 1532

Figure 5. Raspberry Pi camera attached to the UAV.

Figure 6. Wiring scheme of our UAV.

4.2. 433 MHz Telemetry

The telemetry channel operates at a lower frequency (433 MHz). Its purpose is sending UAV
information from the flight controller to a ground station (typically a smartphone), including data
such as heading, tilt, speed, battery lifetime, flight mode, altitude, and so forth. It is also able to receive
instructions to follow a specific mission, that is, return to home or to perform an emergency landing.
However, these set of instructions are very limited since the 433 MHz telemetry is downlink focused.
For this reason we have chosen to use the above mentioned 5 GHz WiFi connection to control the UAV
from ArduSim. The 433 MHz telemetry will only be used in case of emergency.

35



Electronics 2019, 8, 1532

4.3. Flight Controller

The flight controller, in this case the Pixhawk 4, is a device that receives information from sensors
and that processes this information in order to control the UAV at a low-level, while a Raspberry
Pi is in charge of application level control. In particular, information from different sensors such
as GPS, barometer, magnetometer, accelerometer and gyroscope are combined in order to provide
an accurate representation of the UAV state. This information is then used in order to stabilize the
UAV and make it controllable. Some of this information can also be sent via a serial link towards
the Raspberry Pi. We opted to use the Pixhawk flight controller (containing an implementation of
the Ardupilot firmware [18]) because it is an open source solution and thus new protocols are easily
implemented and deployed on real UAVs. For the communication between the Raspberry Pi and the
Pixhawk, the open source MAVLink protocol [20] is used. It is a lightweight messaging protocol for
communicating with most open-source flight controllers, as is the case of the Pixhawk.

4.4. Raspberry Pi

The Raspberry Pi 3 Model B+ serves three purposes in our custom UAV. First, it runs the open
source ArduSim [21] simulation platform, which controls the UAV at a high-level. This program
is capable of coordinating an autonomous flight. Second, it also runs a Python application that
processes the camera information (see Figure 5) using the ArUco marker library and sends the resulting
information to ArduSim via a TCP connection. Finally, it is used to setup an ad-hoc network in the
5 GHz band. This network can be used to communicate with other UAVs or, in our case, with a ground
station (laptop). As an alternative, the Raspberry Pi can be equipped with a 4G LTE dongle so as to
operate the UAV from a remote location. However, this option is currently not supported by ArduSim.

4.5. General Components

In addition to the elements referred above, there are mandatory components for each UAV such as:

1. Electronic Speed Controller (ESC): provides power to motors and controls their speed individually
with the use of a Pulse Width Modulation (PWM) signal. The signal needed to vary the motor
speed is provided by the flight controller.

2. Brushless DC motors to rotate the propellers and thus create thrust.
3. Li-Po battery and power module used to deliver and transmit power to the flight controller, ESCs

and all other electrical components.
4. Safety switch which has to be manually pressed by the pilot to ensure no unintended takeoff

takes place.
5. An optional buzzer to provide feedback about the current state of the UAV.

5. Experimental Settings

Once we finished the implementation of our solution in ArduSim, we performed validation
experiments with the multicopter described in Section 4 in order to assess the effectiveness of our
proposed solutions. In the first set of experiments, the UAV was instructed to fly up to an altitude of
20 m, to move toward a specific GPS location and to land automatically (by giving the flight controller
full control) once that position was reached. During these experiments, the landing time was recorded,
as well as the actual landing position. Those experiments, which do not use our protocol, are used
as reference.

In the second set of experiments, the landing accuracy of Algorithm 1 was evaluated. Again, the
UAV took off until an altitude of 20 m was reached and then flew towards the target GPS location.
The largest available marker (56 × 56 cm) was placed at that location and the UAV used this marker
as the initial reference point for landing. When the UAV was able to detect the smaller marker
(18 × 18 cm), it used that marker as the reference point instead. For these experiments, the descending
speed was defined by lowering the throttle by 10% and the roll and pitch values were set to a value

36



Electronics 2019, 8, 1532

of 5%. After each experiment, the landing time and the distance between the marker and the actual
landing position were recorded. We define the landing time as the time interval from the moment
when the UAV detected the largest marker until the time when the landing procedure was finished.

In the last set of experiments, the landing time of Algorithm 2 was measured. The markers
used were the same. However, in this optimized version, the descending, roll and pitch values were
dynamic, as described in Section 3.

6. Results

Without the use of our approach, the UAV was able to land consistently within a time span
ranging from 27 to 30 s. Nonetheless, this rapid landing comes at a price. As shown in Figures 7
and 8, the actual landing position varies substantially, ranging from a maximum error of 1.44 m to a
minimum error of 0.51 m; the mean value for our experiments was of 0.85 m.

-150 -100 -50 0 50 100 150

Offset in roll-axis [cm]

-150

-100

-50

0

50

100

150

O
ffs

et
 in

 p
itc

h-
ax

is
 [c

m
]

GPS approach
Target postion
Our vision approach

Wind: 10 km/h

Figure 7. UAV landing position comparison.

GPS Vision

0

50

100

150

O
ffs

et
 (

ra
di

us
) 

[c
m

]

Figure 8. Landing offset Global Positioning System (GPS) vs visual based approached.

37



Electronics 2019, 8, 1532

Notice that these errors are smaller than expected (1–3 m). This is most likely due to the small
travelled distance between the takeoff and landing locations. In fact, in these experiments, the UAV
flew for only 14 m and the total flight time was of about 52 s. Longer flights will introduce higher
errors, as reported in the literature [22].

As shown in Figure 7, the landing position accuracy increased substantially when Algorithm 1
was adopted. In particular, experiments showed that the error ranged from only 3 to 18 cm, with a
mean value of 11 cm (see Figure 8). Overall, this means that the proposed landing approach is able to
reduce the landing error by about 96%. However, in three out of ten of the experiments performed,
the UAV moved away from the marker due to the effect of wind. Since at these moments the altitude
was already quite low, the UAV could no longer detect the marker, causing the mission to be stopped
after 30 s. Furthermore, the average landing time was increased to 162 s. This is due to the fact that,
during the transition from one marker to another, the algorithm experienced problems at detecting the
smaller marker during some time periods, as illustrated in Figure 9a (from second 22 to 35).

0 20 40 60 80 100

time [s]

0

50

100

150

200

250

300

350

400

fr
am

es

(a) Algorithm 1: static approach.

0 10 20 30 40 50 60

time [s]

0

2

4

6

8

10

12

14

16

fr
am

es

(b) Algorithm 2: dynamic approach.

Figure 9. Number of consecutive dropped camera frames.

Besides this malfunction situations, the UAV showed a smooth landing trajectory (see Figure 10).

0 20 40 60 80 100
Flight time [s]

-5

0

5

10

15

20

25

D
is

ta
nc

e 
[m

]

x static
y static
z static
x dynamic
y dynamic
z dynamic

Figure 10. Algortihms: static and dynamic approach.

38



Electronics 2019, 8, 1532

Notice how the UAV makes more aggressive adjustments in the X axis when the altitude drops
below 13 m; this is due to the fact that parameter α becomes smaller, restricting the error range.
If the malfunction cases are removed, the average descending speed was of 0.3 m/s, which could be
considered too conservative. Furthermore, Figure 10 shows that most of the adjustments are made
when the UAV is close to the ground (constant altitude). This can be better observed in Figure 11,
where the center of the camera frame and the actual location of the marker in regard to both axes is
plotted (betax,betay). It can be seen that the drone only moves when the betax or betay angle exceeds
the value of α. The range of estimated values captured is shown in Figure 12; we can observe that
there is a higher variability in the X axis due to wind compensation requirements along that direction
during the experiments, something that occurs to a much lower extent for the Y axis.

0 20 40 60 80 100

Time [s]

-20

-15

-10

-5

0

5

10

15

20

an
gl

e 
[d

eg
re

es
]

X angle
Y angle

-

Figure 11. betax and betay angle variations vs. flight time.

Estimated offset X Estimated offset Y

-0.5

0

0.5

1

1.5

2

2.5

3

O
ffs

et
 [m

]

Figure 12. Estimated X and Y variations associated to UAV positions during landing.

39



Electronics 2019, 8, 1532

The malfunctions of Algorithm 1 are solved in the second version. As shown in Figure 9b,
Algorithm 2 does not have any issues when switching between markers. Therefore, the landing time is
decreased significantly to an average of only 55 s. Furthermore, as shown in Figure 10, the UAV is
descending faster, which also contributes to reduce the landing time. The decrease in landing time did
not have any affect on the accuracy of the application. The new recovery mode was also found to be
beneficial to ensure that the UAV landed on the marker every time.

To compare the proposed solution to those mentioned in Section 2, Table 3 summarizes the results
obtained, highlighting the main differences between them.

Table 3. Comparative table of the different schemes.

Source Accuracy [m] Landing Speed [m/s] Maximum Altitude [m] Moving Target Outdoor

Ours/dynamic 0.11 0.3 30 No Yes
Ours/static 0.11 0.1 20 No Yes
GPS-based 1-3 0.6 ∞ No Yes
Chen et al. [9] n/a 0.23 2.5 Yes No
Araar et al. [13] 0.13 0.06 0.8 Yes No
Patruno et al. [14] 0.01 n/a n/a No Yes

Finally, an illustrative video (https://youtu.be/NPNi5YC9AeI) has been made available to show
how the proposed solution performs in real environments.

7. Conclusions and Future Work

Achieving accurate landing of multirotor UAVs remains a challenging issue, as GPS-based landing
procedures are associated with errors of a few meters even under ideal satellite reception conditions,
performing worse in many cases. In addition, GPS-assisted landing is not an option for indoor
operations. To address this issue, in this work a vision-based landing solution that relies on ArUco
markers is presented. These markers allow the UAV to detect the exact landing position from a high
altitude (30 m), paving the way for sophisticated applications including automated package retrieval
or the landing of large UAV swarms in a very restricted area, among others.

Experimental results using a real UAV have validated the proposed approach, showing that
accurate landing (mean error of 0.11m) can be achieved while introducing an additional (but small)
time overhead in the landing procedure compared to the standard landing command.

As future work, it is planned to improve the overall efficiency of the protocol. This can be
done by improving the flight behaviour. In addition to decreasing the landing time even further,
the accuracy can be increased by integrating the UAV‘s state (acceleration, velocity, etc.) in the control
loop. Finally, the algorithm can be further optimized so that the UAV is able to land under less
favourable weather conditions.

Author Contributions: C.T.C. conceived the idea; J.W. designed and implemented the protocol with the help of
F.F. and T.K.; J.W. analyzed the data and wrote the paper; C.T.C., J.-C.C., F.F., T.K., J.M.M.-B. and P.M. reviewed
the paper.

Funding: This work was funded by the “Ministerio de Ciencia, Innovación y Universidades, Programa Estatal de
Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018”, Spain, under
Grant RTI2018-096384-B-I00.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pan, X.; Ma, D.Q.; Jin, L.L.; Jiang, Z.S. Vision-based approach angle and height estimation for UAV landing.
In Proceedings of the 1st International Congress on Image and Signal Processing, CISP 2008, Sanya, China,
27–30 May 2008; Volume 3, pp. 801–805. [CrossRef]

40



Electronics 2019, 8, 1532

2. Tang, D.; Li, F.; Shen, N.; Guo, S. UAV attitude and position estimation for vision-based landing.
In Proceedings of the 2011 International Conference on Electronic and Mechanical Engineering and
Information Technology, EMEIT 2011, Harbin, China, 12–14 August 2011; Volume 9, pp. 4446–4450.
[CrossRef]

3. Gautam, A.; Sujit, P.B.; Saripalli, S. A survey of autonomous landing techniques for UAVs. In Proceedings
of the 2014 International Conference on Unmanned Aircraft Systems, ICUAS 2014, Orlando, FL, USA,
27–30 May 2014; pp. 1210–1218. [CrossRef]

4. PX4 Dev Team. Holybro Pixhawk 4 · PX4 v1.9.0 User Guide. 2019. Available online: https://docs.px4.io/
v1.9.0/en/flight_controller/pixhawk4.html (accessed on 23 November 2019).

5. Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.J.; Medina-Carnicer, R. Generation of fiducial
marker dictionaries using Mixed Integer Linear Programming. Pattern Recognit. 2016, 51, 481–491.
[CrossRef]

6. Romero-Ramirez, F.J.; Muñoz-Salinas, R.; Medina-Carnicer, R. Speeded up detection of squared fiducial
markers. Image Vis. Comput. 2018, 76, 38–47. [CrossRef]

7. Romero-Ramirez, F.J.; Muñoz-Salinas, R.; Medina-Carnicer, R. ArUco: Augmented reality library based on
OpenCV. Available online: https://sourceforge.net/projects/aruco/ (accessed on 7 June 2019).

8. Jin, S.; Zhang, J.; Shen, L.; Li, T. On-board vision autonomous landing techniques for quadrotor: A survey.
In Proceedings of the Chinese Control Conference, Chengdu, China, 27–29 July 2016; pp. 10284–10289.
[CrossRef]

9. Chen, X.; Phang, S.K.; Shan, M.; Chen, B.M. System integration of a vision-guided UAV for autonomous
landing on moving platform. In Proceedings of the IEEE International Conference on Control and
Automation, Kathmandu, Nepal, 1–3 June 2016; pp. 761–766. [CrossRef]

10. Nowak, E.; Gupta, K.; Najjaran, H. Development of a Plug-and-Play Infrared Landing System for Multirotor
Unmanned Aerial Vehicles. In Proceedings of the 2017 14th Conference on Computer and Robot Vision,
Edmonton, AB, Canada, 16–19 May 2017; pp. 256–260. [CrossRef]

11. Shaker, M.; Smith, M.N.R.; Yue, S.; Duckett, T. Vision-Based Landing of a Simulated Unmanned Aerial
Vehicle with Fast Reinforcement Learning. In Proceedings of the 2010 International Conference on
Emerging Security Technologies, Canterbury, UK, 6–7 September 2010, pp. 183–188. [CrossRef]

12. Lange, S.; Sünderhauf, N.; Protzel, P. Autonomous Landing for a Multirotor UAV Using Vision.
In Proceedings of the SIMPAR 2008 International Conference on Simulation, Modeling and Programming
for Autonomous Robots, Venice, Italy, 3–7 November 2008; pp. 482–491.

13. Araar, O.; Aouf, N.; Vitanov, I. Vision Based Autonomous Landing of Multirotor UAV on Moving Platform.
J. Intell. Robot. Syst. 2016. [CrossRef]

14. Patruno, C.; Nitti, M.; Petitti, A.; Stella, E.; D’Orazio, T. A Vision-Based Approach for Unmanned Aerial
Vehicle Landing. J. Intell. Robot. Syst. 2019, 95, 645–664. [CrossRef]

15. Baca, T.; Stepan, P.; Spurny, V.; Hert, D.; Penicka, R.; Saska, M.; Thomas, J.; Loianno, G.; Kumar, V.
Autonomous landing on a moving vehicle with an unmanned aerial vehicle. J. Field Robot. 2019, 36, 874–891.
[CrossRef]

16. De Souza, J.P.C.; Marcato, A.L.M.; de Aguiar, E.P.; Jucá, M.A.; Teixeira, A.M. Autonomous Landing of
UAV Based on Artificial Neural Network Supervised by Fuzzy Logic. J. Control. Autom. Electr. Syst. 2019,
30, 522–531. [CrossRef]

17. Fraczek, P.; Mora, A.; Kryjak, T. Embedded Vision System for Automated Drone Landing Site
Detection. In Computer Vision and Graphics; Chmielewski, L.J., Kozera, R., Orłowski, A., Wojciechowski,
K., Bruckstein, A.M., Petkov, N., Eds.; Springer International Publishing: Cham, Switzerland, 2018;
pp. 397–409.

18. Team, A.D. SITL Simulator (Software in the Loop). 2016. Available online: http://ardupilot.org/dev/
docs/sitl-simulator-software-in-the-loop.html (accessed on 10 July 2019).

19. Fabra, F.; Calafate, C.T.; Cano, J.C.; Manzoni, P. On the impact of inter-UAV communications interference
in the 2.4 GHz band. In Proceedings of the 2017 13th International Wireless Communications and Mobile
Computing Conference, Valencia, Spain, 26–30 June 2017; pp. 945–950. [CrossRef]

20. Meier, L.; QGroundControl. MAVLink Micro Air Vehicle Communication Protocol. Available online:
http://qgroundcontrol.org/mavlink/start (accessed on 30 January 2019).

41



Electronics 2019, 8, 1532

21. Fabra, F.; Calafate, C.T.; Cano, J.C.; Manzoni, P. ArduSim: Accurate and real-time multicopter simulation.
Simul. Model. Pract. Theory 2018, 87, 170–190. [CrossRef]

22. Careem, M.A.A.; Gomez, J.; Saha, D.; Dutta, A. HiPER-V: A High Precision Radio Frequency Vehicle for
Aerial Measurements. In Proceedings of the 2019 16th Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON), Boston, MA, USA, 10–13 June 2019; pp. 1–6. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

42



electronics

Article

An Efficient and Provably Secure Certificateless Blind
Signature Scheme for Flying Ad-Hoc Network Based
on Multi-Access Edge Computing

Muhammad Asghar Khan 1, Ijaz Mansoor Qureshi 2, Insaf Ullah 3, Suleman Khan 2,

Fahimullah Khanzada 4 and Fazal Noor 5,*

1 Department of Electronic Engineering, ISRA University, Islamabad 44000, Pakistan;
khayyam2302@gmail.com

2 Department of Electrical Engineering, AIR University, Islamabad 44000, Pakistan;
imqureshi@mail.au.edu.pk (I.M.Q.); 171518@students.au.edu.pk (S.K.)

3 Department of Computer Sciences, Hamdard University, Islamabad 44000, Pakistan; insafktk@gmail.com
4 Descon Engineering Limited, Lahore 54000, Pakistan; fahimullahk@gmail.com
5 Department of Computer and Information Systems, Islamic University of Madinah,

Madinah 400411, Saudi Arabia
* Correspondence: mfnoor@gmail.com; Tel.: +966-551497218

Received: 31 October 2019; Accepted: 22 December 2019; Published: 26 December 2019

Abstract: Unmanned aerial vehicles (UAVs), when interconnected in a multi-hop ad-hoc fashion, or as
a flying ad-hoc network (FANET), can efficiently accomplish mission-critical tasks. However, UAVs
usually suffer from the issues of shorter lifespan and limited computational resources. Therefore, the
existing security approaches, being fragile, are not capable of countering the attacks, whether known
or unknown. Such a security lapse can result in a debilitated FANET system. In order to cope up with
such attacks, various efficient signature schemes have been proposed. Unfortunately, none of the
solutions work effectively because of incurred computational and communication costs. We aimed to
resolve such issues by proposing a blind signature scheme in a certificateless setting. The scheme
does not require public-key certificates, nor does it suffer from the key escrow problem. Moreover, the
data that are aggregated from the platform that monitors the UAVs might be too huge to be processed
by the same UAVs engaged in the monitoring task. Due to being latency-sensitive, it demands
high computational capability. Luckily, the envisioned fifth generation (5G) mobile communication
introduces multi-access edge computing (MEC) in its architecture. MEC, when incorporated in a
UAV environment, in our proposed model, divides the workload between UAVs and the on-board
microcomputer. Thus, our proposed model extends FANET to the 5G mobile network and enables a
secure communication between UAVs and the base station (BS).

Keywords: blind signature; security; MEC; UAVs; FANET; 5G; IoT

1. Introduction

During the last couple of years, the exponential advancement in the manufacturing of small
unmanned aerial vehicles (UAVs) has led to a new clan of networks, referred to as flying ad-hoc network
(FANET). The prominent features of agility, low-cost, and easy deployment, among others, are paving
ways for FANET to offer successful solutions for diverse military and civilian application. In case of
a disastrous situation, FANET can offer a cost-effective solution for real-time data communication
as compared to its predecessors, these being, mobile ad-hoc networks (MANETs) and vehicular
ad-hoc networks (VANETs) [1]. Not only does FANET have the capability of collecting and sharing
the aggregated data amongst the UAVs, it can also send it to the base station (BS). Additionally,
if some of the UAVs are detached during the mission, irrespective of any reason, they still have

Electronics 2020, 9, 30; doi:10.3390/electronics9010030 www.mdpi.com/journal/electronics43



Electronics 2020, 9, 30

the facility to remain associated to the network with the support of other UAVs due to an ad-hoc
network between the UAVs. Furthermore, the inherent multi-hop networking schema counters the
obstacles of short-range communication and limited guidance that normally arise in a stand-alone
UAV system [2]. Nevertheless, such exclusive attributes make FANET a suitable solution for various
applications. The small UAVs have restricted capabilities in terms of power, sensing, communication,
and computation. This renders the small UAVs as luring targets to different kinds of known and
unknown cyber-attacks. Generally, in a FANET environment, multiple UAVs are integrated into a team
that cooperates with each other to accomplish critical tasks [3]. Hence, when a self-governing UAV
desires to perform a certain task, it receives the command containing relevant task-specific information
such as time, target location, and actions, among others. Then, it either flies autonomously to the target
position in the assigned time, or it may cruise in the air while waiting for commands, thus reducing
the response time and accomplishing the results proficiently.

The ground station interconnects with UAVs over an unauthenticated and unencrypted channel.
Therefore, anyone with a suitable transmitter can link with the UAV and insert commands into an
ongoing session, and thus can easily interpret any UAV. Thus, it is important for a UAV to ascertain the
origination of a command. Normally, digital signatures are used to ascertain the source of command.
He et al. [4] described the overall process as follows:

(1) A command center initiates command and computes the corresponding digital signature.
(2) The corresponding command and signature are then forwarded to the UAV by the command center.
(3) The UAV, upon receiving the command and signature, attempts to verify the signature.

• If the signature is valid, the UAV deems it to be issued by the command center and proceeds
with executing the command.

• Otherwise, the command is considered counterfeit and, thus, the UAV does not execute it.

However, due to its intrinsic complexities and security requirements, the mutual digital signature
scheme is not appropriate for an UAV-based network. Additionally, the average speed of a typical
UAV can lie in the range of 30–460 km/h in a three-dimensional (3D) setting [5]. Moreover, the topology
of the particular network varies rapidly, which necessitates the need of ascertaining the validity of a
command in the shortest time. Therefore, it is essential for the UAV to validate the signature in a timely
manner, especially for location-based services. For example, the user or ground station (GS) pledges a
command and the corresponding signature to the UAV; however, the concerned UAV can only verify
the signature. Even in the worst case, if an intruder eavesdropped on the command and corresponding
signature, they cannot authenticate the signature and authorize the task to be accomplished next. In
addition, frequent changes in topology also increase the latency and communication cost. In order to
accommodate the key escrow problem, a certificateless signature scheme is required. In a certificateless
cryptosystem, a participant private key is composed of two parts: the partial private key and a secret
value. The trusted third-party key generation center (KGC) generates the partial private key, whereas
the secret value is affirmed by the participant. Similarly, a participant’s public key also consists of
two parts, these being the participant’s identity information and the public key conforming to the
secret value. Therefore, the cost of public key management is significantly reduced due to the fact that
the public key does not require any certificate. Furthermore, it does not suffer from the key escrow
problem because the KGC has no information about the participant secret value.

Typically, small UAVs have batteries that last for merely 20 to 30 min [6]. Therefore, it is of utmost
importance to manage the battery resources efficiently. This prolongs the network lifetime especially
for large-scale deployments of UAVs. Thus, it is harder for the UAVs to complete these resource-hungry
applications in a timely fashion. Furthermore, FANET can be deployed in remote locations to assist the
Internet of Things (IoT) devices for collecting large volumes of data. Fortunately, these impediments
can be mitigated by employing multi-access edge computing (MEC) technology. The MEC shifts the job
performed by the commanding UAV to the edge of the network, which is closer to UAV, thus reducing

44



Electronics 2020, 9, 30

the propagation delay. The MEC thus paves way for a diverse set of applications that, explicitly,
demand a real-time response. The heterogeneous radio access network of a ground-based network is
composed of macro cells and small cells. The network assists the mobile phones, driver-less cars, and
IoT gadgets, among others, in performing the required operations. Therefore, as a direct consequence,
a multitude of emerging technologies can synergize with the 5G (fifth generation) wireless networks.
A symbiotic relation can be visualized between the UAVs, engaged in scheduling the computing tasks,
and the onboard microprocessor, dedicated to executing the particular operations. Furthermore, the
usable data can be stored temporarily for retrieval by either the UAVs or the ground devices, while,
concurrently, the drone-cells transmit the data.

Normally, the security and efficiency of the aforementioned signature scheme is based on
some computationally hard problems, for example, Rivest–Shamir–Adleman (RSA), bilinear pairing,
and elliptic curve cryptosystems (ECC). RSA offers a solution based on large factorization [7,8],
which utilizes a 1024 bit large key [9]. However, due to the restricted on-board processing capabilities
on UAVs, the solution is not appropriate for the resource-constrained FANET system. In addition,
bilinear pairing, which suffers from high pairing and map-to-point function computations, is 14.90 times
worse than RSA [10]. Therefore, in order to counter the shortcomings of RSA and bilinear pairing,
a new category of cryptography, elliptic-curve cryptography (ECC) was introduced [11]. ECC is
characterized by a smaller parameter size and involves miniaturized versions of public key, private
key, identity, and certificate size, among other factors. Moreover, unlike bilinear pairing and RSA,
the security hardiness and efficiency of the scheme is based on 160 bit small key, which is still not
suitable for resource-hungry devices [12]. Thus, a new type called hyperelliptic-curve cryptography
(HECC) was proposed [13]. The hyperelliptic curve uses an 80 bit key, identity, and certificate and
offers security to the degree comparable to that of elliptic curve, bilinear pairing, and RSA [14,15]. It is,
hence, a far better choice for energy-constrained devices.

1.1. Authors’ Motivations and Contributions

A comprehensive literature review of the existing blind signature schemes was carried out. It was
found that these schemes are based on hard problems, that is, elliptic curve, bilinear pairing, and modular
exponential, and thus suffer from high computational and communication costs. Hence, the existing
schemes are not compatible with small devices, that is, UAVs that have limited computational power.
Moreover, these schemes are not validated using formal security validation tools such as automated
validation of internet security protocols and applications (AVISPA) or Scyther, among others, which
can, somehow, guarantee security. There is a critical need to harness the state-of-the-art certificateless
blind signature scheme so as to engineer a viable cryptographic solution for FANET that poses less
danger to the battery lifetimes of resource-constrained UAVs.

The authors, motivated by the aforementioned objectives, to name a few, propose a new scheme,
called provably verified certificateless blind signature (CL-BS) scheme for FANET. The proposed
scheme is based on hyperelliptic curve, which is an advanced version of the elliptic curve. It provides
the same level of security as elliptic curves, bilinear pairing, and modular exponential with smaller key
size. Some of the salient features signifying contributions of our research work, in this paper, are as
follows:

• We introduce a novel architecture for flying ad-hoc network (FANET) constituted by UAVs with a
multi-access edge computing (MEC) facility that leverages the 5G wireless technology.

• We propose an efficient and provably secure certificateless signature (CL-BS) scheme
for the same architecture using the concept of hyperelliptic curve for operating in
resource-constrained environments.

• The proposed scheme is shown to be resistant against various attacks through formal as well as
informal security analysis using the widely-accepted automated validation for internet security
validation and application (AVISPA) tool.

45



Electronics 2020, 9, 30

• The proposed scheme is also compared with existing counterparts and it is shown that our
approach provides better efficiency in terms of computational and communication costs.

1.2. Structure of the Paper

The remainder of the paper is structured as follows: Section 2 contains a brief about the related
work; Section 3 presents the foundational concepts; Section 4 presents the proposed architecture
and construction of proposed scheme (i.e., CL-BS); Section 5 holds implementation of the proposed
scheme in FANET; Section 6 outlines the AVISPA tool component of our proposed scheme for formal
security verification as well as informal security analysis; Section 7 compares the proposed scheme with
the existing schemes; and in the end, Section 8 succinctly culminates the manuscript by concluding
the work.

2. Related Work

2.1. Flying Ad-Hoc Network

In flying ad-hoc network, the security and privacy are important because UAVs are always
unattended. The primary security mechanisms for FANET emphasize authenticity, confidentiality and
integrity of data via cryptography. A well-designed data protection mechanism can significantly reduce
the probability of the data becoming compromised, irrespective of the malicious technique involved.
There are a few studies dedicated to investigating the data protection issues for UAV networks. Won et
al. [16], proposed a suite of cryptographic protocols for drones and smart objects. The protocols deal
with three communication scenarios: one to-one, one-to-many, and many-to-one. In the first scenario,
that is, one-to-one, the efficient encapsulation mechanism, a certificateless signcryption tag key, backs
the authenticated key agreement in addition to offering non-repudiation and user revocation. The
one-to-many scenario involves a certificateless multi-recipient encryption scheme, which allows a UAV
to transmit privacy-intensive data to multiple smart objects. Lastly, UAVs are able to collect data from
multiple smart objects in the “many-to-one” communication scenario. The protocol, however, finds it
difficult to transmit a multitude of encrypted messages and at the same time assure privacy of the end
devices. Such novel cryptographic mechanisms are efficient and secure. However, they are supposed
to be used in group communication where nodes are of equal computational capability. A novel
approach to mitigate the broadcast storm problem during the interest’s dissemination is proposed
by Barka et al. [17]. The approach is based on a trust-aware monitoring communication architecture
for flying named data networking. It makes use of the inter-UAV communication for checking the
data authenticity on a particular UAV without disturbing the desired level of security. However, data
privacy and caching policies are not taken into consideration in the proposed scheme.

In order to resist the physical capturing of drones with minimum exposure of confidential data,
Bae et al. [18] proposed a saveless-based key management and delegation system for a multi-drone
environment. Nevertheless, the proposed scheme is not compatible with devices such as UAVs
equipped with limited on-board energy that hinder the potency of finding a proper key renewal
period with low computation cost and more security guarantee. Seo et al. [19] proposed a pairing-free
approach for drone-based surveillance applications. However, this approach faces the user revocation
problem in the case of a physical attack. In such a case, the intruders can access not only current but
future information of the drones. In order to cater the forward secrecy problem in drones, Liu et al. [20]
proposed two construction schemes that achieve better performance in terms of the computational cost
required by the recipient. However, the approach uses the elliptic curves and, thus, it suffers from
high computational cost. Moreover, the proposed scheme is not validated through formal security
analysis. In 2018, Reddy et al. [21] presented a pairing-free key insulated signature scheme in the
identity-based setting for improving the computational and communication efficiency. Later, in 2019,
Xiong et al. [22] also proposed a pairing-free and provably secure certificateless parallel key-insulated
signature (CL-PKIS) scheme in order to secure the communication in the IIoT setting. However, because

46



Electronics 2020, 9, 30

the scheme involves the concept of elliptic curve, it is not free from the issue of high computational
cost. Moreover, the proposed schemes are not validated through formal security analysis.

2.2. Multi-Access Edge Computing

It is mandatory for a FANET system to diminish latency to the maximum possible extent.
MEC can solve the problem of latency resulting from long communication distance. So far, studies
have been conducted to examine the usage of edge computing for UAVs [23–25]. However, the studies
do not discuss the topic of communication link quality. ETSI proposed a reference architecture
of MEC [26]. Primarily, the MEC reference architecture is composed of user equipment, mobile
edge applications, and networks. The network is classified into either of the following three
levels: system level, host level, and network level. The reference points and functional elements
of the reference architecture are depicted by the reference architecture. Garg et al. aimed to
answer the surveillance-related concerns by proposing a data-driven transportation optimization
model [27]. The model comprises UAV, dispatcher, aggregator, and edge devices. Each of the
constituents undertake the designated tasks as follows: the UAV captures and validates the date;
the dispatcher, in addition to validating the tasks, schedules the processing tasks in the edge computing
devices; the aggregator assures a secure transmission of data; and the edge devices analyze the
data. A hierarchical MEC architecture has been proposed by Lee et al. [28]. It involves utilizing the
resources of the MEC server for providing services customized on the basis of content type and the
computing demand. After exploring the major causes of communication and computational latencies,
Intharawijitr et al. proposed a mathematical model. The model is used to estimate the computing
latency in an edge node selected on the basis of either of the three policies [29]. A game theoretic
model is proposed by Messous et al. in which the UAVs, as game players, strategize to achieve the
optimal tradeoff between energy overhead and the execution delay. As a result, the UAVs do not
stay overburdened anymore [30]. Ansari et al. addressed the issue of end-to-end delay between
the proxy virtual machine and the device. They claim to resolve the problem by suggesting two
dynamic proxy virtual machine migration methods, which is corroborated by simulation results [31].
Zhang et al. attempted to resolve the issue of increased energy consumption and longer execution time
by proposing a mobility-aware hierarchical MEC framework [32]. The proposed solution involves the
MEC servers and, for sharing the computing tasks, a backup computing server. An incentive-based
optimal computational offloading scheme was developed. The objective of quick-response and energy
conservation was achieved to a significant extent.

The methodology proposed by Christian et al. [33] increases the system reliability and reduces the
end-to-end source-actuator latency. Their work intends to broaden the 5G network edge by making
the FANET UAVs fly close to the monitoring layer. The UAVs are accoutered with MEC facilities while
carrying out the processing tasks and they follow a policy for mutual help for improved performance.
However, the work fails to address the issue of limited battery duration of MEC UAVs.

2.3. Related Certificateless Blind Signature Schemes

As early as 1983, Chaum presented a blind signature scheme that significantly reduces the
probability of detectability [34]. The scheme, for the case of transmitting a message, revolves around
two major players: signer, the entity that computes the signature, and provider, the part tasked to
blind the message. The signer transmits the computed signature to the provider, who deciphers and
retrieves the original signature. Owing to its versatility, the scheme can, in e-commerce settings,
help establish a forgery-resistant payment system. In 1996, Mambo et al. proposed a proxy signature
scheme in which the original signer can delegate the task of issuing signature to a proxy security and
communication network 5 [35]. Tan et al. applied the concepts of discrete logarithm and elliptic curve
discrete logarithm to suggest two proxy blind signature schemes [36]. Each of the schemes offers the
security threshold promised by the proxy and blind signature schemes. Tan proposed another proxy
blind signature scheme as well [37]. The comparatively efficient scheme is based on identity and is

47



Electronics 2020, 9, 30

pairing-free. It proves to be secure in random oracle model. A proxy partially blind signature scheme
has been proposed by Yang et al. The scheme can revoke the proxy privileges and is characterized
by security features [38]. Verma et al. proposed a proxy blind signature scheme [39]. The scheme
exhibits message recovery and caters to the requirements of low-bandwidth because it abbreviates
the size of message signature. The efficient identity-based proxy blind signature scheme proposed
by Zhu et al. can even overcome a quantum computer attack [40]. A designated verifier signature
scheme is proposed by Jakobsson et al. [41]. Dai et al. further advanced the concept of designated
receiver proxy signature scheme by presenting a combo of a designated verifier signature scheme and a
proxy signature scheme [42]. In the schema, a proxy signer is delegated the authority to sign, and then
authenticate, in lieu of the original signer.

A short-designated verifier proxy signature (DVPS) scheme is proposed by Huang et al. [43].
The scheme is characterized by signatures of comparatively shorter length and, thus, caters to the
applications requiring low bandwidth. Shim furthered the idea by presenting a short DVPS scheme
based on BLS signature. The scheme proves to be superior when tested using the random oracle
model [44]. Islam et al. considered the concept of bilinear pairing to propose an efficient identity-based
DVPS scheme [45]. The scheme assigns private keys to the involved entities generated from a private
key generator (PKG). Hu et al. proposed two DVPS schemes: weak DVPS and strong DVPS [46].
Although the weak DVPS scheme is not able to compute a DVPS, the strong DVPS scheme can do
so. The random oracle model is used to prove the effectiveness of the proposed scheme. It has been
demonstrated on multiple occasions that the blind signature scheme offers forgery-proof operations
when applied in sensitive applications such as e-voting and e-cash, among other applications [47,48].
However, anonymity and intractability of the voter and the unforgeability of the electronic vote are the
main security concerns. In addition, the proposed schemes are based on bilinear pairing and elliptic
curves, both of whom are costly operations in cryptography. Chin et al. [49] presented a certificateless
blind signature scheme based on bilinear pairing. Likewise, the proposed scheme is based on bilinear
pairing. Furthermore, the security analysis is done through random oracle model and has not been
authenticated using any tool.

3. Preliminaries

A brief overview of some of the foundational concepts, along with their formal definitions,
is presented in this section.

3.1. Hyperelliptic Curve Cryptosystems (HECC)

Hyperelliptic curves can be viewed as generalizations of ECC (elliptic curve cryptosystems),
introduced by Koblitz [50]. A hyperelliptic curve [51] is denoted over curves, whose genus is greater
than 1, as shown in Figure 1. Similarly, the curves with genus 1 are generally known as elliptic curves.
The group order of the field Fq for genus 1, 160 bit long operands are required, that is, we need at least
g.log2(q) ≈ 2160, where g is the genus of curve over Fq that is a set of finite fields of order q. Likewise,
for curves with genus 2, 80 bit long operands, and, for curves with genus 3, 54 bit long operands are
needed [52].

A hyper elliptic curve C of genus greater than 1 over F is a set of solutions (x, y) ∈ F × F to the
following equation:

C : y2 + h(x)y = f (x). (1)

A divisor D is a finite formal sum of points on hyper elliptic curve and represented as

D =
∑

Pi∈C
mipi , mi ∈ Z. (2)

48



Electronics 2020, 9, 30

The two divisors can be added as follows:
∑
Pi∈C

mipi +
∑
Pi∈C

nipi =
∑
Pi∈C

( mi + ni)pi. (3)

Each element of the Jacobian can be represented in the semi-reduced divisor form [53]:

D =
∑

i

mipi −
⎛⎜⎜⎜⎜⎜⎝
∑

i

mi

⎞⎟⎟⎟⎟⎟⎠ , ∀mi ≥ 0. (4)

If the divisor is subjected to the additional constraint, that is, r ≤ g, such a divisor is defined as
a reduced divisor. Additionally, in [50], the author shows that the divisors of the Jacobian can be
denoted as a pair of polynomials a(x) and b(x) with following degrees: b(x) ≤ deg a(x) ≤ g, where the
coefficients of a(x) and b(x) are elements of F and a(x) divided by y2 + h(x)y − f (x).

 

Figure 1. Hyper elliptic curve of genus 2, that is, g = 2.

3.2. Threat Model

The widely used Dolev–Yao (DY) threat model [54] is used in the proposed scheme. According to
the DY model, an insecure public channel (open channel) is used for communication between any two
parties and the end-point entities have an untrustworthy nature. Therefore, the system is prone to
eavesdropping of exchanged messages and deletion/modification attempts by the attacker. Moreover,
as the UAVs may roam around in unattended hostile areas, there exists the probability of them getting
physically captured. This may lead to leakage of precious data from a UAV’s memory. The KGC,
on the other hand, is a fully trusted entity.

4. Proposed Architecture

The proposed architecture of flying ad-hoc network based on multi-access edge computing
is illustrated in Figure 2. The application scenario considered is the surveillance of a specific area,
which may collect data, that is, video streaming and images. We consider two representative classes
of UAVs: monitoring UAV (M-UAV) and raspberry pi-based multi-access edge computing UAV
(RMEC-UAV). M-UAV perform data acquisition and monitoring only from the assigned zone. In our
proposed architecture, the set of M-UAVs are assigned to one RMEC-UAV that is used to reduce the
power consumption while executing the security mechanism (i.e., sign, verify). The set of M-UAVs
allocated to RMEC-UAV is essentially subjected to the load produced by M-UAV. RMEC-UAV collects

49



Electronics 2020, 9, 30

data from M-UAVs and forwards this to the base station. RMEC-UAV can also connect with the IoT
devices and collect data from them. Prior to transmitting, the RMEC-UAV validates the authenticity of
the M-UAVs. Upon successful validation, the RMEC-UAV forwards the data to the BS. The RMEC-UAV
transmits not only the IoT data but also the flight information and the information about the role of
each M-UAV.

Figure 2. Proposed architecture of flying ad-hoc network with 5G and multi-access edge computing
(MEC) facilities. RMEC-UAV: raspberry pi-based multi-access edge computing unmanned aerial vehicle,
M-UAV: monitoring UAV, IoT: Internet of Things, URLLC: ultra-reliable low latency communications,
KGC: key generation center.

Raspberry PI (RPI) board was considered for RMEC-UAV. Even though there are other substitutions
for RPI, with sophisticated hardware configurations, such as LattePanda 4G/64 GB, Qualcomm Dragon
board, ODROID-XU4, and ASUS Tinker Board, among others, RPI is nonetheless considered to be the
most cost-effective and energy-efficient option. Other alluring features of RPI 4 that further defend its
selection are the built-in wireless networking support, that is, Wi-Fi (dual-band 802.11 b/g/n/ac) and
Bluetooth 5.0 BLE. RPI 4 is equipped with a 1.5 GHz 64-bit quad core ARM Cortex-A72 processor. The
5G and 802.11 ac wireless modules are enabled on RMEC-UAV in order to link it with the BS/IoT
devices and hence provide a hotspot service over the M-UAVs. Fifth generation (5G) is further
classified into enhanced mobile broadband (eMBB), massive machine-type communications (mMTC),
and ultra-reliable low latency communications (URLLC) by the International Telecommunication
Union (ITU) in order to fulfill the requirements of diverse industrial and market demands. However,
we have considered URLLC in the proposed architecture, as of it offers very high mobility, which
further defends its selection for UAV-based operations [55].

The images transmitted by the monitoring UAVs, ground cameras, and the sensors, among
other sources, are all received by the RMEC-UAV on-board microcontroller. The microcontroller, then,
generates the tasks that will be processed by the local microcomputer, or the decision support engine
(DSE). The human operator receives a decreased share of the data flow so as to decide quickly. In case
the human decisions are not timely, the predictive and interpolative/extrapolative modules mounted
on the RMEC-UAV DSE step in. The probability of response-delays resulting from the queues of
to-be-processed jobs can never be ignored. To compensate for such time lapse and to enhance reliability,
the RMEC-UAVs synergize with each other. Further, each of the M-UAVs, after being equipped
with the essential gadgets, these being cameras, IMU, sensors, and a GPS unit, among others, can be
accustomed to different application scenarios.

The proposed architecture can be divided into the following three main layers:

• Layer 1 consists of the ground-level IoT devices that are devoted to different tasks as per application
scenario. The ground-level IoT devices are connected with the RMEC-UAV and BS via URLLC, a
5G wireless link. Furthermore, the macro base station (MBS) are typically linked with the core
network via wires that have huge bandwidth.

50



Electronics 2020, 9, 30

• Layer 2 comprises a team of M-UAVs equipped with the essential gadgets, these being cameras,
IMU, sensors, and a GPS unit, among others, for monitoring the assigned zone. Moreover, M-UAVs
are connected with each other using Bluetooth 5 (2.4 GHz) link and with the RMEC-UAV with
802.11 ac (5 GHz) Wi-Fi link.

• Layer 3 is composed of RMEC-UAV that is used to collect data from M-UAVs and forwards it to
the base station. RMEC-UAV can also connect with the ground-level IoT devices and collect data
from them.

Construction of the Proposed Scheme

The proposed scheme includes the following four entities: KGC, blind signer, requester, and verifier.
Further, it involves the following six sub-algorithms for producing the certificateless blind signature:
setup, partial private key setting (PPKS), secret value setting (SVS), private key setting (PKS), public
key setting (PBKS), blind signature, and verification.In Table 1, we provide an explanation about the
notations used in the proposed algorithm. Therefore, for representing the whole process of certificateless
blind signature, we aimed to provide the simplest explanation by using the following steps:

1. Setup: In this sub-algorithm, the KGC selects the following parameters:

• A hyper elliptic curve (C);
• A divisor (D), where D is the divisor in C;
• The hash function (h);
• Select ∂ from {1, 2, . . . , n − 1} and the size of n = 280.

After the above process, the KGC determines the master public key using  = ∂.D. Then,
it publishes the set of selected parameters, {C, D,  , n = 280}.

2. Partial private key setting (PPKS): In order to set the partial private key for the participating users
(verifier and signer) with identity JD
, the KGC performs the following sub-steps:

• It selects Xu from {1, 2, ..., n − 1};
• It computes αu = Xu. D and βu = Xu + ∂. αu;
• It computes δu = βu. D;
• It sends (βu, δu) to the users (verifier and signer) with identity JD
.

The users can verify the pair (βu, δu) such as: βu. D = αu + αu.  = αu + αu.  = X.D + αu (∂.D) =
D (X + αu. ∂) =D (βu) = βu.D.

3. Secret value setting (SVS): The user (verifier and signer) with identity JD
 selects Qu from {1, 2,
..., n − 1} and keeps it as his secret value.

4. Private key setting (PKS): The user (verifier and signer) set the private key as σu = <Qu, βu>.
5. Public key setting (PBKS): The user (verifier and signer), with identity JD
, compute χ
 = σu.D.

The user sets his/her public key as Bu = <χ
, δu>.

• Blind signature: In this part, the blind signer first selects ω from {1, 2, . . . , n − 1}, computes
Δ1 = ω/Qs, Δ2 = βs/ω, and then sends it (Δ1, Δ2) to the requester. Further, the requester
proceeds as follows:

• It selects (τ, ϕ) from {1, 2, . . . , n − 1};
• It computes E =  (�, Δ1, Δ2, σr) and Z = E + ϕ;
• It sends Z to the blind signer. The blind signer generates the partial blind signature S* = Qs

− Z.βs and sends it to the requester;
• The requester, then, generates the hash value as ∇ = (�, Ns) and full blind signature, using

S** = S* − τ, and transfers it (S**, ∇) to the verifier.

51



Electronics 2020, 9, 30

6. Verification: The verifier can verify the blind signature if either of the following equalities are
satisfied: ∇* = (�, Ns) = ∇ = (�, Ns) or ∇* = ∇.

Table 1. Notations used in proposed algorithm.

S.NO Symbol Definition

1 C Means hyperelliptic curve with genus 2, which is the generalized form elliptic
curve requiring 80 bit key

3 D A divisor, which is a finite formal sum of points on hyperelliptic curve

4 ∂ Master secret key which is generated by KGC for producing partial private key

5  The master public key of KGC

6 N Randomly generated number and the size of N as n = 280

7  One-way hash function, which means that it has the property of irreversibility

8 σr = <Qr, βr> Private key of requester

9 σs = <Qs, βs> Private key of signer

10 Ns A fresh nonce that is used for anti-replay attack

11 JD
 Identities for sender and receiver

12 � Plain-text (message)

5. Implementation of Proposed Scheme in FANET

We divided this process in two sub-phases that are (1) initialization and registration, and (2)
signing and verifying Phase, which are illustrated in Figures 3 and 4, respectively.

5.1. Initialization and Registration

In this sub algorithm, the KGC selects a hyper elliptic curve (C), a divisor (D), the hash function
(  ), and then computes ∂ from {1, 2, . . . , n − 1} and the size of n = 280.

After the above process, the KGC determines the master public key using  = ∂.D. Then,
it publishes the set of selected parameters, {C, D,  , n = 280}.

• Partial Private Key Generation for RMEC-UAV: In order to set the partial private key for
RMEC-UAV with identity JDrv, the KGC performs the following sub steps:

i. It selects Xrv from {1, 2, . . . , n − 1};
ii. It computes αrv = Xrv. D and βrv = Xrv + ∂. αrv;
iii. It computes δrv = βrv. D;
iv. It sends (βrv, δrv) to the RMEC-UAV.

The RMEC-UAV can verify the pair (βrv, δrv), such as βrv.D = αrv + αrv.  = αrv + αrv.  = X.D +
αrv.(∂.D) =D (X + αrv. ∂) =D (βrv) = βrv.D.

• Secret Value Setting for RMEC-UAV: The RMEC-UAV selects Qrv from {1, 2, . . . , n − 1} and keeps
it as their secret value.

• Private Key Setting for RMEC-UAV: The RMEC-UAV sets the private key as σrv = <Qrv, βrv>.
• Public Key Generation for RMEC-UAV : The RMEC-UAV computes χrv = σrv.D and sets their

public key as Brv = <χrv, δrv>.
• Partial Private Key Setting for BS/IoT: In order to set the partial private key for BS/IoT with

identity JDBI, the KGC performs the following sub steps:

i. It selects XBI from {1, 2, . . . , n − 1};
ii. It computes αBI = XBI. D and βBI = XBI + ∂. αBI;

52



Electronics 2020, 9, 30

iii. It computes δBI = βBI. D;
iv. It sends (βBI, δBI) to BS/IoT.

The RMEC-UAV can verify the pair (βBI, δBI), such as βBI.D = αBI + αBI.  = αBI + αBI.  = X.D +
αBI.(∂.D) =D (XBI + αBI. ∂) =D (βBI) = βBI.D.

• Secret Value Setting for BS/IoT: The BS/IoT selects QBI from {1, 2, . . . , n − 1} and keeps it as their
secret value.

• Private Key Setting for BS/IoT: The BS/IoT sets the private key as σBI = <QBI, βBI>.
• Public Key Setting for BS/IoT: The BS/IoT computes χBI = σBI.D and sets their public key as BB =

<χBI, δBI>.

Figure 3. Initialization and registration phase.

5.2. Signing and Verifying Phase

In this part, the RMEC-UAV first selects ω from {1, 2, . . . , n − 1} and then computes Δ1 =ω/Qrv,
Δ2 = βrv/ω, and then sends it (Δ1, Δ2) to the M-UAV. Further, the M-UAV proceeds as follows:

• It selects (τ, ϕ) from {1, 2, . . . , n − 1};
• It computes E =  (�, Δ1, Δ2, σmuv) and Z = E + ϕ;
• It sends Z to the RMEC-UAV. The RMEC-UAV generates the partial blind signature S* = Qrv −

Z.βrv and sends it to the M-UAV;
• The M-UAV, then, generates the hash value as ∇ = (�, Ns) and full blind signature, using S** = S*

− τ, and transfers it (S**, ∇) to the BS/IoT.

Then BS/IoT can verify the blind signature if either of the following equalities are satisfied: ∇* =
(�, Ns) = ∇ = (�, Ns) or ∇* = ∇.

53



Electronics 2020, 9, 30

Figure 4. Signing and verifying phase.

6. Security Analysis

This section aims to justify the effectiveness of the proposed scheme in resisting well-known
attacks.

6.1. Informal Security Analysis

6.1.1. Theorem 1 Unforgeability

A certificateless blind signature is obviously assumed to provide security from a forgeability
attack if there is no malicious attacker, MA, which produces the forge blind signature.

Proof. In our case, if an MA desires the generation of the forge blind signature, then he/she must
compute Equation (5). Here, it is the need of S*, and can be calculated from Equation (6); however,
processing this equation, is the need for the calculation of Qs from Equation (7) is further needed,
which is equal to the processing of the hyper elliptic curve discrete logarithm problem. Also, it is
a need for βs from Equation (8), which further requires an equivalent process for the hyper elliptic
curve discrete logarithm problem. Thus, the aforementioned assumption proves that an MA cannot
generate the forge blind signature.

S** = S* − τ, (5)

S* = Qs − Z. βs, (6)

σs = Qs.D, (7)

δs = βs.D. (8)

�

6.1.2. Theorem 1 Integrity

A certificateless blind signature is supposed to secure from integrity attack if there is no malicious
attacker, MA, which becomes modified in the plain text.

Proof. In our proposed work, the requester produces the hash value of a plain text � as X =  2 (�, Ns)
and sent it to the verifier, along with signature S**and � as (S**, �). However, if the MA wishes to

54



Electronics 2020, 9, 30

change the plain text � into
→� , then the MA also needs to amend X =  2 (�, Ns) into

→X =  2 (
→� , Ns).

Therefore, the MA cannot perform this process because of the one-way nature of the hash function.
Thus, keeping in view the aforesaid discussion, our scheme is far more secure against breaking the
integrity of plain text. �

6.1.3. Theorem 1 Unlinkability

A certificateless blind signature is presumed to offer security from the linkability attack if the
blind signer has no access to the plain text.

Proof. In our designed scheme, first of all, the requester selects two blind factors (τ, ϕ), then performs
calculations to find out the value of hash, using ∇ =  1(�, Δ1, Δ2, σr), and Z, using Z = ∇ + ϕ. Further,
the requester sends Z to the blind signer. In case the signer wants to see the plain text, it is mandatory
for him/her to recover � from ∇, where ∇ =  1(�, Δ1, Δ2, σr). This, however, is not feasible because of
the one-way nature of the hash function. After this, the signer also needs the blind factor ϕ, which is
only known to the requester. Thus, the aforementioned discussion clearly justifies that the scheme,
decently, fulfills the security property of unlinkability. �

6.1.4. Theorem 1 Replay Attack

In the proposed scheme, the adversary may not give responses to old messages.

Proof. The scheme is resilient against replay attack by offering renewal of nonce Ns. In case an attacker
intrudes the message of one session, he/she may not intrude the messages of other sessions with
the same Ns because the Ns is renewed at every instance. The receiver is required to perform an
up-to-date check with every message and, in the case of an outdatedness being detected in the message,
that particular message is trashed into the black box. �

6.2. Formal Security Analysis Using Analysis

In this subsection, results produced from the simulation work using AVISPA tool are presented [56].
This is done, primarily, to ascertain the potency of the proposed scheme against replay and
man-in-the-middle attacks. AVISPA is a push-button tool for providing an expressive and modular
formal language to simulate protocols and their security properties. SPAN (specific protocol animator
for AVISPA) [57], the protocol of security animator for AVISPA, is designed to assist protocol developers
write high level protocol specification language (HLPSL) specifications [58]. The HLPSL specifications
are interpreted into an intermediate format (IF) by the HLPSLIF translator. Then, it is transformed to
the output format (OF) with either on-the-fly model-checker (OFMC) [59], CL-based attack searcher
(AtSe) [60], SAT-based model-checker (SATMC), or tree automata-based protocol analyzer (TA4SP).
These embedded tools examine the security claims of the aforementioned IF code of an algorithm for
two types of attack—replay and man-in-the-middle attacks. The IF code works under two validation
states: SAFE, if the cryptographic scheme can safeguard the man-in-the-middle attack, and UNSAFE,
in cases where the IF code does not provide protection against man-in-the-middle attack. Formal
security verification using the AVISPA tool can be found in several studies to determine the security of
many authentication protocols against replay along with man-in-the-middle attacks [61–66]. The basic
structure of the AVISPA tool is revealed in Figure 5.

55



Electronics 2020, 9, 30

Figure 5. Architecture of the automated validation of internet security protocols and applications
(AVISPA) tool v.1.1 [67].

7. Performance Comparison

This section compares the performance of the proposed scheme with the existing counterparts
suggested by Lei et al. [4], Islam et al. [47], Nayak et al. [48], and Chen et al. [49].

7.1. Computational Cost

In Table 2, the proposed scheme is compared, in terms of computational cost, with the existing ones,
that is, Lei et al.’s scheme [4], Islam et al.’s scheme [47], Nayak et al.’s scheme [48], and Chen et al.’s
scheme [49], hereinafter also referred to as the “four chosen schemes”, on the basis of major operations.
We considered hyperelliptic divisor multiplication as elliptic curve scalar multiplication, and bilinear
pairings are the most expensive operations used in the relevant existing schemes. The variables  �, em,
�√, and �§√ denote the hyperelliptic curve divisor multiplication, elliptic curve scalar multiplication,

bilinear pairing, and modular exponential, respectively. It has been observed that a single scalar
multiplication takes 0.97 ms for elliptic curve point multiplication (ECPM), 14.90 ms for bilinear
pairing, and 1.25 ms for modular exponential [15]. The Multi-Precision Integer and Rational Arithmetic
C Library (MIRACL) [68] was used to test the runtime of the basic cryptographic operations up to
1000 times to measure the performance of the proposed approach. The phenomenon was observed
on a workstation having following specifications: Intel Core i7- 4510U CPU @ 2.0 GHz, 8 GB RAM
and Windows 7 Home Basic 64-bit Operating System [19]. Similarly, the hyperelliptic curve divisor
multiplication (HCDM) was assumed to be 0.48 ms due to the smaller key size—80 bit key size [69].

Table 2. Computational cost.

Schemes Signing Verifying Total

Lei et al.’s scheme [4] 16 em 5 em 21 em

Islam et al.’s scheme [47] 7 em 1 �√ + 4 em 11 em + 1 �√
Nayak et al.’s scheme [48] 5 em 2 em 7 em

Chen et al.’s scheme [49] 2 em + 3 �§√ 1 em + 1 �√ + 1 �§√ 3 em + 1 �√ + 4 �§√
Proposed 1  � 0  � 1  �

The computational costs provided in Table 3 and illustrated in Figure 6 clearly show that
our proposed scheme, when compared with the “four chosen schemes” outperforms in terms of
computational cost. The presented scheme is quicker than the existing ones by the following degrees:

56



Electronics 2020, 9, 30

Lei et al. [4] by 97.64% (20.37 − 0.48/20.37 × 100 = 97.64%); Islam et al.’s scheme [47] by 98.12%
(25.57 − 0.48/25.57 × 100 = 98.12%); Nayak et al.’s scheme [48] by 92.93% (6.79 − 0.48/6.79 × 100 =
92.93%); and Chen et al.’s scheme [49] by 97.89% (22.81 − 0.48/22.81 × 100 = 97.89%).

Table 3. Computational cost in milliseconds.

Schemes Signing Verifying Total

Lei et al.’s scheme [4] 15.52 ms 4.85 ms 20.37 ms
Islam et al.’s scheme [47] 6.79 ms 18.78 ms 25.57 ms

Nayak et al.’s scheme [48] 4.85 ms 1.94 ms 6.79 ms
Chen et al.’s scheme [49] 5.69 ms 17.12 ms 22.81 ms

Proposed 0.48 ms 0 ms 0.48 ms

Figure 6. Computational cost (in ms).

7.2. Communication Cost

In this subsection, the proposed scheme is compared, in terms of communication cost, with the
existing ones, these being Lei et al.’s scheme [4], Islam et al.’s scheme [47], Nayak et al.’s scheme [48],
and Chen et al.’s scheme [49]. For the comparison, we supposed that, | | = 1024 bits, |Z�| = 160 bits,
|Zn| = 80 bits, |H| = 512 bits, |�| = 1024 bits, and |W| = 1024 bits [70]. According to our suppositions, the
communication cost for Lei et al.’s scheme [4] is 4|Z�| + 2|W| + |H| + |�|, for Islam et al.’s scheme [47]
is 2| | + |�|, for Nayak et al.’s scheme [48] is 2|Z�| + |�|, for Chen et al.’s scheme [49] is | | + |H| + |�|,
and for our proposed scheme is |Zn| + |H| + |�|.

The reduction in communication cost of our proposed CL-BS scheme compared with the existing
ones as provided in Figure 7 is shown by following degrees: from Lei et al.’s scheme [4] at (4|Z�| +
2|W| + |H| + |�|) − (|Zn| + |H| + |�|)/(4|Z�| + 2|W| + |H| + |�|) = (4224 − 1616/4224 × 100 = 61.74%);
from Islam et al.’s scheme [47] at (2| | + |�|) − (|Zn| + |H| + |�|)/(2| | + |�|) = (3072 − 1616/3072 × 100 =
47.39%); from Nayak et al.’s scheme [48] at (2|Z�| + |H| + |�|) − (|Zn| + |H| + |�|)/(2|Z�| + |H| + |�|) =

57



Electronics 2020, 9, 30

(1856 − 1616/1856 × 100 = 14.8%); and from Chen et al.’s scheme [49] at (| | + |H| + |�|) − (|Zn| + |H| +
|�|)/(| | + |H| + |�|) = (2560 − 1616/2560 × 100 = 36.78%).

Figure 7. Communication cost (in bits).

7.3. Security Funtionalities

Table 4 presents a brief comparison between the proposed scheme and relevant existing schemes
in terms of security functionality. It is worth noting, from Table 4, that the related schemes are not
validated through formal security validation tools, such as AVISPA, and none of them guarantee
replay attack (RA) and integrity (I). Our proposed scheme is shown to be resistant against various
attacks through formal analysis using the widely-accepted automated validation for internet security
validation and application (AVISPA) tool as shown in Appendix A.

Table 4. Comparison with relevant existing schemes. Legend: U: unforgeability, I: integrity, UL:
unlinkability, RA: replay attack, FA: formal analysis; symbols: �: satisfies the security functionality, X:
does not satisfy the security functionality.

Schemes

Security Functionalities

Informal Formal

U I UL RA FA

Lei et al.’s scheme [4] � X X X X
Islam et al.’s scheme [47] � X � X X

Nayak et al.’s scheme [48] � X X X X
Chen et al.’s scheme [49] � X X X X

Proposed � � � � �

8. Conclusions

In this article, we proposed an efficient and provably secure certificateless signature scheme,
CL-BS, based on multi-access edge computing (MEC) for a FANET environment using the concept of
hyperelliptic curve. The proposed scheme was shown to be resistant against various attacks through
informal security analysis, as well as through the formal security verification using the widely-accepted

58



Electronics 2020, 9, 30

AVISPA tool. The scheme was also efficient in terms of computational and communication costs. On
doing a comparative analysis with existing counterparts, it was noticed that the proposed scheme was
characterized by least computational and communication costs, these being 0.48 ms and 1616 bits,
respectively, which authenticates the superiority of our scheme.

In future, we intend to integrate a computational offloading and scheduling mechanism,
where M-UAVs will offload and schedule the computing tasks in the RMEC-UAV for fast processing
and execution.

Author Contributions: Conceptualization, M.A.K. and I.M.Q.; methodology and implementation, M.A.K., I.M.Q.,
I.U., and F.N.; simulation, M.A.K. and I.U.; validation, M.A.K., I.M.Q., I.U., and S.K.; data curation, M.A.K., S.K.,
and F.K.; writing—original draft preparation, M.A.K., F.K., and F.N.; writing—review and editing, M.A.K., F.N.,
and F.K.; supervision, I.M.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Implementation of Our Proposed CL-BS Scheme in AVISPA

The proposed scheme has been implemented for blind signer and verifier in HLPSL, as illustrated
in Algorithms A1 and A2. The experiment was performed on a computer workstation having the
specifications as follows: Haier Win8.1 PC; Intel Core i3-4010U CPU @ 1.70 GHz; 64-bit operating
system and ×64-based processor. The software platforms consulted were Oracle VM Virtual Box
(version: 5.2.0.118431) and SPAN (version: SPAN-Ubuntu-10.10-light_1). As with any security protocol,
to be analyzed in AVISPA, the roles for session, goal, and environment were executed as shown in
Algorithms A3 and A4. In order to gauge the probability of attacks on the proposed scheme, the
widely-used OFMC and CL-AtSe backends were selected for the execution test. Because other backends
such as SATMC and TA4SP are not compatible with bitwise XOR operations, the simulation results
of SATMC and TA4SP were not included in the research work. Here, it is imperative to ascertain the
execution of specified protocol in terms of whether the authentic agents can execute the specified
protocol or not. To do so, the back-ends perform check operations. Then, the information is provided
to the intruder about a few normal sessions between authentic agents. Secondly, the susceptibility of
the system to man-in-the-middle attack is also estimated by the back-ends. This is done to verify the
Dolev–Yao (DY) model [54]. The scheme is also simulated under SPAN (specific protocol animator for
AVISPA) web-tool. The results for OFMC and AtSe are shown in Figures A1 and A2, respectively. It is
evident that the scheme is safe against replay and man-in-the-middle attack.

Algorithm A1 High-level protocol specification language (HLPSL) code for Signer role

role

role_Blindsigner(Blindsigner:agent,Verifier:agent,Xs:public_key,Xv:public_key,SND,RCV:channel(dy))
played_by Blindsigner
def=

local
State:nat,Ns:text,Sub:hash_func,Z:text,T:text
init

State: = 0
transition
1. State=0 /\ RCV (start) =|> State’: =1 /\
SND (Blindsigner.Verifier)
2. State=1 /\ RCV (Verifier. {Ns’} _Xv) =|> State’: =2 /\ T':=new() /\ Z':=new() /\
SND(Blindsigner.{Sub(Z'.T')}_inv(Xs))
end role

59



Electronics 2020, 9, 30

Algorithm A2 High-level protocol specification language (HLPSL) code for Verifier role

role

role_Verifier(Blindsigner:agent,Verifier:agent,Xs:public_key,Xv:public_key,SND,RCV:channel(dy))
played_by Verifier
def=

local
State:nat,Ns:text,Sub:hash_func,Z:text,T:text
init

State: = 0
transition
1. State=0 /\ RCV(Blindsigner.Verifier) =|> State':=1 /\ Ns':=new() /\ SND(Verifier.{Ns'}_Xv)
2. State=1 /\ RCV (Blindsigner. {Sub (Z’. T')} _inv (Xs)) =|> State’: =2
end role

Algorithm A3 High-level protocol specification language (HLPSL) code for Sessions role

role

session1(Blindsigner:agent,Verifier:agent,Xs:public_key,Xv:public_key)
def=

local
SND2,RCV2,SND1,RCV1:channel(dy)
composition

role_Verifier(Blindsigner,Verifier,Xs,Xv,SND2,RCV2) /\
role_Blindsigner(Blindsigner,Verifier,Xs,Xv,SND1,RCV1)
end role

role

session2(Blindsigner:agent,Verifier:agent,Xs:public_key,Xv:public_key)
def=

local
SND1,RCV1:channel(dy)
composition

role_Blindsigner(Blindsigner,Verifier,Xs,Xv,SND1,RCV1)
end role

Algorithm A4 High-level protocol specification language (HLPSL) code for Environment role

role

environment()
def=

const

hash_0:hash_func,xs:public_key,alice:agent,bob:agent,xv:public_key,const_1:agent,const_2:public_key,
const_3:public_key,auth_1:protocol_id,sec_2:protocol_id
intruder_knowledge = {alice,bob}
composition

session2(i, const_1, const_2, const_3) /\ session1(alice,bob,xs,xv)
end role

goal

authentication_on auth_1
secrecy_of sec_2
end goal

60



Electronics 2020, 9, 30

Figure A1. Simulation results for on-the-fly model-checker (OFMC).

 

Figure A2. Simulation results for AtSe.

References

1. Khan, M.A.; Qureshi, I.M.; Khanzada, F.A. Hybrid Communication Scheme for Efficient and Low-Cost
Deployment of Future Flying Ad-Hoc Network (FANET). Drones 2019, 3, 16. [CrossRef]

2. Bekmezci, I.; Sahingoz, O.K.; Temel, Ş. Flying ad-hoc Network (FANET): A survey. Ad Hoc Netw. 2013,
11, 1254–1270. [CrossRef]

3. Khan, M.A.; Safi, A.; Qureshi, I.M.; Khan, I.U. Flying ad-hoc Network (FANET): A review of communication
architectures, and routing protocols. In Proceedings of the 2017 First International Conference on
Latest trends in Electrical Engineering and Computing Technologies (INTELLECT), Karachi, Pakistan,
15–16 November 2017; pp. 1–9.

4. He, L.; Ma, J.; Mo, R.; Wei, D. Designated Verifier Proxy Blind Signature Scheme for Unmanned Aerial
Vehicle Network Based on Multi-access Edge Computing (MEC). Secur. Commun. Netw. 2019, 2019, 8583130.
[CrossRef]

61



Electronics 2020, 9, 30

5. Khan, M.A.; Qureshi, I.M.; Khan, I.U.; Nasim, M.A.; Javed, U.; Khan, M.W. On the performance of flying
ad-hoc Network (FANET) with directional antennas. In Proceedings of the 2018 5th International Multi-Topic
ICT conference (IMTIC), Jamshoro, Pakistan, 25–27 April 2018; pp. 1–8.

6. Khan, M.A.; Khan, I.U.; Safi, A.; Quershi, I.M. Dynamic Routing in Flying Ad-Hoc Networks Using
Topology-Based Routing Protocols. Drones 2018, 2, 27. [CrossRef]

7. Suárez-Albela, M.; Fraga-Lamas, P.; Fernández-Caramés, T.M. A Practical Evaluation on RSA and ECC-Based
Cipher Suites for IoT High-Security Energy-Efficient Fog and Mist Computing Devices. Sensors 2018, 18,
3868. [CrossRef]

8. Yu, M.; Zhang, J.; Wang, J.; Gao, J.; Xu, T.; Deng, R.; Zhang, Y.; Yu, R. Internet of Things security
and privacy-preserving method through nodes differentiation, concrete cluster centers, multi-signature,
and blockchain. Int. J. Distrib. Sens. Netw. 2018, 14, 12. [CrossRef]

9. Braeken, A. PUF Based Authentication Protocol for IoT. Symmetry 2018, 10, 8. [CrossRef]
10. Zhou, C.; Zhao, Z.; Zhou, W.; Mei, Y. Certificateless Key-Insulated Generalized Signcryption Scheme without

Bilinear Pairings. Secur. Commun. Netw. 2017, 2017, 8405879. [CrossRef]
11. Kumari, S.; Karuppiah, M.; Das, A.K.; Li, X.; Wu, F.; Kumar, N. A secure authentication scheme based on

elliptic curve cryptography for IoT and cloud servers. J. Supercomput. 2017, 74, 12. [CrossRef]
12. Omala, A.; Mbandu, A.; Mutiria, K.; Jin, C.; Li, F. Provably Secure Heterogeneous Access Control Scheme for

Wireless Body Area Network. J. Med. Syst. 2018, 42, 6. [CrossRef]
13. Tamizhselvan, C.; Vijayalakshmi, V. An Energy Efficient Secure Distributed Naming Service for IoT. Int. J.

Adv. Stud. Sci. Res. 2019, 3, 8.
14. Naresh, V.S.; Sivaranjani, R.; Murthy, N.V.E.S. Provable secure lightweight hyper elliptic curve-based

communication system for wireless sensor Network. Int. J. Commun. Syst. 2018, 31, 15. [CrossRef]
15. Rahman, A.; Ullah, I.; Naeem, M.; Anwar, R.; Khattak, H.S.; Ullah, A. Lightweight Multi-Message and

Multi-Receiver Heterogeneous Hybrid Signcryption Scheme based on Hyper Elliptic Curve. Int. J. Adv.
Comput. Sci. Appl. 2018, 9, 5. [CrossRef]

16. Won, J.; Seo, S.H.; Bertino, E. Certificateless Cryptographic Protocols for Efficient Drone-Based Smart City
Applications. IEEE Access 2017, 5, 3721–3749. [CrossRef]

17. Barka, E.; Kerrache, C.; Hussain, R.; Lagraa, N.; Lakas, A.; Bouk, S. A Trusted Lightweight Communication
Strategy for Flying Named Data Networking. Sensors 2018, 18, 2683. [CrossRef]

18. Bae, M.; Kim, H. Authentication and Delegation for Operating a Multi-Drone System. Sensors 2019, 19, 2066.
[CrossRef]

19. Seo, S.-H.; Won, J.; Bertino, E. pCLSC-TKEM: A pairing-free certicateless signcryption-tag key encapsulation
mechanism for a privacy-preserving IoT. Trans. Data Priv. 2016, 9, 101–130.

20. Liu, W.; Strangio, M.A.; Wang, S. Efficient Certificateless Signcryption Tag-KEMs for Resource constrained
Devices. arXiv 2015, 1510, 01446.

21. Reddy, P.V.; Babu, A.R.; Gayathri, N.B. Efficient and Secure Identity-based Strong Key Insulated Signature
Scheme without Pairings. J. King Saud Univ. Comput. Inf. Sci. 2018.

22. Xiong, H.; Mei, Q.; Zhao, Y. Efficient and provably secure certificateless parallel key-insulated signature
without pairing for IIoT environments. IEEE Syst. J. 2019, 1–11. [CrossRef]

23. Bekkouche, O.; Taleb, T.; Bagaa, M. UAVs Traffic Control based on Multi-Access Edge Computing.
In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM 2018), Abu Dhabi,
UAE, 9–13 December 2018.

24. Ouahouah, S.; Taleb, T.; Song, J.; Benzaid, C. Efficient offloading mechanism for UAVs-based value-added
services. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France,
21–25 May 2017; pp. 1–6.

25. Motlagh, N.H.; Bagaa, M.; Taleb, T. Uav-based iot platform: A crowd surveillance use case. IEEE Commun.
Mag. 2017, 55, 128–134. [CrossRef]

26. ETSI. Multi-Access Edge Computing (MEC). In Framework and Reference Architecture; DGS MEC; ETSI: Sophia
Antipolis, France, 2016; Volume 3.

27. Garg, S.; Singh, A.; Batra, S.; Kumar, N.; Yang, L.T. UAV empowered edge computing environment for
cyber-threat detection in smart vehicles. IEEE Netw. 2018, 32, 42–51. [CrossRef]

28. Lee, J.; Lee, J. Hierarchical Multi-access Edge Computing (MEC) architecture based on context awareness.
Appl. Sci. 2018, 8, 1160. [CrossRef]

62



Electronics 2020, 9, 30

29. Intharawijitr, K.; Iida, K.; Koga, H. Simulation study of low latency network architecture using Multi-access
Edge Computing (MEC). IEICE Trans. Inf. Syst. 2017, E100D, 963–972. [CrossRef]

30. Messous, M.-A.; Sedjelmaci, H.; Houari, N.; Senouci, S.-M. Computation offloading game for an UAV
network in Multi-access Edge Computing (MEC). In Proceedings of the 2017 IEEE International Conference
on Communications, ICC 2017, Paris, France, 21–25 May 2017; pp. 1–6.

31. Ansari, N.; Sun, X. Multi-access Edge Computing (MEC) empowers internet of things. IEICE Trans. Commun.
2018, E101B, 604–619. [CrossRef]

32. Zhang, K.; Leng, S.; He, Y.; Maharjan, S.; Zhang, Y. Multi-access Edge Computing (MEC) and networking for
green and low-latency internet of things. IEEE Commun. Mag. 2018, 56, 39–45. [CrossRef]

33. Grasso, C.; Schembra, G. A Fleet of MEC UAVs to Extend a 5G Network Slice for Video Monitoring with
Low-Latency Constraints. J. Sens. Actuator Netw. 2019, 8, 3. [CrossRef]

34. Chaum, D. Blind signatures for untraceable payments. Adv. Cryptol. 1983, 199–203.
35. Mambo, M.; Usuda, K.; Okamoto, E. Proxy signatures for delegating signing operation. In Proceedings of

the 3rd ACM Conference on Computer and Communications Security, New Delhi, India, 14–15 March 1996;
pp. 48–56.

36. Tan, Z.; Liu, Z.; Tang, C. Digital proxy blind signature schemes based on DLP and ECDLP. MM Res. Prepr.
2002, 21, 212–217.

37. Tan, Z. Efficient pairing-free provably secure identity-based proxy blind signature scheme. Secur. Commun.
Netw. 2013, 6, 593–601. [CrossRef]

38. Yang, F.-Y.; Liang, L.-R. A proxy partially blind signature scheme with proxy revocation. J. Ambient Intell.
Humaniz. Comput. 2013, 4, 255–263. [CrossRef]

39. Verma, G.K.; Singh, B.B. Efficient message recovery proxy blind signature scheme from pairings. Trans. Emerg.
Telecommun. Technol. 2017, 28, e3167. [CrossRef]

40. Zhu, H.; Tan, Y.-A.; Zhu, L.; Zhang, Q.; Li, Y. An efficient identity-based proxy blind signature for semi
offline services. Wirel. Commun. Mob. Comput. 2018, 2018, 5401890. [CrossRef]

41. Jakobsson, M.; Sako, K.; Impagliazzo, R. Designated verifier proofs and their applications. In Proceedings
of the International Conference on the Theory and Applications of Cryptographic Techniques, Berlin,
Heidelberg, 13 July 2001; pp. 143–154.

42. Dai, J.Z.; Yang, X.H.; Dong, J.X. Designated-receiver proxy signature scheme for electronic commerce.
In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Washington,
DC, USA, 10 November 2003; pp. 384–389.

43. Huang, X.; Mu, Y.; Susilo, W.; Zhang, F. Short designated verifier proxy signature from pairings. In Proceedings
of the International Conference on Embedded and Ubiquitous Computing, Nagasaki, Japan, 6–9 December
2005; pp. 835–844.

44. Shim, K.-A. Short designated verifier proxy signatures. Comput. Electr. Eng. 2011, 37, 180–186. [CrossRef]
45. Islam, S.H.; Biswas, G. A provably secure identity-based strong designated verifier proxy signature scheme

from bilinear pairings. J. King Saud Univ. Comput. Inf. Sci. 2014, 26, 55–67. [CrossRef]
46. Hu, X.; Tan, W.; Xu, H.; Wang, J. Short and provably secure designated verifier proxy signature scheme.

IET Inf. Secur. 2016, 10, 69–79. [CrossRef]
47. Islam, S.; Obaidat, M.S. Design of provably secure and efficient certificateless blind signature scheme using

bilinear pairing. Secur. Commun. Netw. 2015, 8, 4319–4332. [CrossRef]
48. Nayak, S.K.; Mohanty, S.; Majhi, B. CLB-ECC: Certificateless Blind Signature Using ECC. JIPS 2017,

13, 970–986.
49. Chen, H.; Zhang, L.; Xie, J.; Wang, C. New Efficient Certificateless Blind Signature Scheme. In Proceedings of

the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; pp. 349–353.
50. Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209. [CrossRef]
51. Hyperelliptic Curve. 2019. Available online: https://en.wikipedia.org/wiki/Hyperelliptic_curve (accessed on

25 October 2019).
52. Pelzl, J.; Wollinger, T.; Guajardo, J.; Paar, C. Hyperelliptic curve cryptosystems: Closing the performance gap

to elliptic curves. In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin,
Heidelberg, 2003; pp. 351–365.

53. Cantor, D.G. Computing in Jacobian of a Hyperelliptic Curve. Math. Comput. 1987, 48, 95–101. [CrossRef]
54. Dolev, D.; Yao, A. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–208. [CrossRef]

63



Electronics 2020, 9, 30

55. Siddiqi, M.A.; Yu, H.; Joung, J. 5G Ultra-Reliable Low-Latency Communication Implementation Challenges
and Operational Issues with IoT Devices. Electronics 2019, 8, 981. [CrossRef]

56. AVISPA. Automated Validation of Internet Security Protocols and Applications. 2019. Available online:
http://www.avispa-project.org/ (accessed on 25 October 2019).

57. AVISPA. SPAN: A Security Protocol Animator for AVISPA. 2019. Available online: http://www.avispa-project.
org/ (accessed on 25 October 2019).

58. Oheimb, D.V. The high-level protocol specification language HLPSL developed in the EU project avispa.
In Proceedings of the APPSEM 2005 Workshop, Tallinn, Finland, 13–15 September 2005; pp. 1–2.

59. Basin, D.; Modersheim, S.; Vigano, L. OFMC: A symbolic model checker for security protocols. Int. J. Inf.
Secur. 2005, 4, 181–208. [CrossRef]

60. Turuani, M. The CL-Atse porotocol analyser. In Proceedings of the International Coneference on Rewriting
Techniques and Applications (RTA), Seattle, WA, USA, 12–14 August 2006; pp. 227–286.

61. Yu, S.; Lee, J.; Lee, K.; Park, K.; Park, Y. Secure Authentication Protocol for Wireless Sensor Network in
Vehicular Communications. Sensors 2018, 18, 3191. [CrossRef]

62. Park, K.; Park, Y.; Park, Y.; Reddy, A.G.; Das, A.K. Provably secure and efficient authentication protocol for
roaming service in global mobility Network. IEEE Access 2017, 5, 25110–25125. [CrossRef]

63. Odelu, V.; Das, A.K.; Choo, K.R.; Kumar, N.; Park, Y.H. Efficient and secure time-key based single sign-on
authentication for mobile devices. IEEE Access 2017, 5, 27707–27721. [CrossRef]

64. Odelu, V.; Das, A.K.; Kumari, S.; Huang, X.; Wazid, M. Provably secure authenticated key agreement scheme
for distributed mobile cloud computing services. Futuer Generat. Comput. Syst. 2017, 68, 74–88. [CrossRef]

65. Park, K.; Park, Y.; Park, Y.; Das, A.K. 2PAKEP: Provably Secure and Efficient Two-Party Authenticated Key
Exchange Protocol for Mobile Environment. IEEE Access 2018, 6, 30225–30241. [CrossRef]

66. Banerjee, S.; Odelu, V.; Das, A.K.; Chattopadhyay, S.; Kumar, N.; Park, Y.H.; Tanwar, S. Design of an
Anonymity-Preserving Group Formation Based Authentication Protocol in Global Mobility Network.
IEEE Access 2018, 6, 20673–20693. [CrossRef]

67. AVISPA v1.1 User Manual. 2019. Available online: http://www.avispa-project.org/package/user-manual.pdf
(accessed on 25 October 2019).

68. Shamus Sofware Ltd. Miracl library. Available online: http://github.com/miracl/MIRACL (accessed on
25 October 2019).

69. Ullah, I.; Amin, N.U.; Naeem, M.; Khattak, S.; Khattak, S.J.; Ali, H. A Novel Provable Secured Signcryption
Scheme PSSS: A Hyper-Elliptic Curve-Based Approach. Mathematics 2019, 7, 686. [CrossRef]

70. Ullah, I.; Alomari, A.; Ul Amin, N.; Khan, M.A.; Khattak, H. An Energy Efficient and Formally Secured
Certificate-Based Signcryption for Wireless Body Area Network with the Internet of Things. Electronics 2019,
8, 1171. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

64



electronics

Article

A Traceable and Privacy-Preserving Authentication
for UAV Communication Control System

Chin-Ling Chen 1,2,3, Yong-Yuan Deng 3,*, Wei Weng 1,*, Chi-Hua Chen 4,*, Yi-Jui Chiu 5 and

Chih-Ming Wu 6

1 College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China;
clc@mail.cyut.edu.tw

2 School of Information Engineering, Changchun Sci-Tech University, Changchun 130600, China
3 Department of Computer Science and Information Engineering, Chaoyang University of Technology,

Taichung 41349, Taiwan
4 College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
5 School of Mechanical and Automotive Engineering, Xiamen University of Technology,

Xiamen 361024, China; chiuyijui@xmut.edu.cn
6 School of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen 361024, China;

chihmingwu@xmut.edu.cn
* Correspondence: allen.nubi@gmail.com (Y.-Y.D.); wwweng@xmut.edu.cn (W.W.);

chihua0826@gmail.com (C.-H.C.)

Received: 15 November 2019; Accepted: 20 December 2019; Published: 1 January 2020

Abstract: In recent years, the concept of the Internet of Things has been introduced. Information,
communication, and network technology can be integrated, so that the unmanned aerial vehicle
(UAV) from consumer leisure and entertainment toys can be utilized in high value commercial,
agricultural, and defense field applications, and become a killer product. In this paper, a traceable
and privacy-preserving authentication is proposed to integrate the elliptic curve cryptography (ECC),
digital signature, hash function, and other cryptography mechanisms for UAV application. For
sensitive areas, players must obtain flight approval from the ground control station before they can
control the UAV in these areas. The traditional cryptography services such as integrity, confidentiality,
anonymity, availability, privacy, non-repudiation, defense against DoS (Denial-of-Service) attack, and
spoofing attack can be ensured. The feasibility of mutual authentication was proved by BAN logic. In
addition, the computation cost and the communication cost of the proposed scheme were analyzed.
The proposed scheme provides a novel application field.

Keywords: UAV; Mutual authentication; Privacy; Traceable; BAN logic

1. Introduction

With the development of battery power, sensing systems, artificial intelligence and other
technologies, small commercial unmanned aerial vehicles (UAVs) combining these technologies
have, in recent years, become a very popular product. Small UAVs have tremendous potential in
different fields and tasks, and have great flexibility in application. In addition to personal aerial
photography, entertainment, and commercial markets, they can be used in various monitoring
work such as disaster relief [1], in various environments involving animals and plants, coasts and
borders [2,3], in freight transportation, military and police law enforcement tasks, and even agricultural
and industrial applications [4–8]. Nader et al. [9] pointed out that UAVs could be employed in different
ways to achieve smart city services. For example, using UAVs for traffic monitoring and management,
merchandise delivery, health and emergency services, and air taxi services can enhance these services
in terms of quality, productivity, timeliness, reliability, and performance and could help reduce the

Electronics 2020, 9, 62; doi:10.3390/electronics9010062 www.mdpi.com/journal/electronics65



Electronics 2020, 9, 62

costs of offering these services. However, small UAVs also can pose a variety of security threats under
improper use.

Although every case of an unmanned aerial vehicle being improperly used has complex security
implications, it is difficult to sum this up as a single security threat; for example, in the protection of
important persons, unmanned aerial vehicles may violate their privacy, launch attacks, threaten their
lives, or destroy their facilities. Different threats in several different cases are examined below.

(1) Personal safety of specific persons and military and police officers: The small UAVs used by the
fighters of the Organization of Islamic States could, for example, be used to attack enemy soldiers
on the battlefield in the Middle East. This situation can be described as the future personal
safety protection work for important persons and law enforcement officers. It is necessary to take
precautions against small UAVs.

(2) Protection of key infrastructure: In July 2018, Greenpeace posted a video on the Internet showing
the small UAVs operated by members of Greenpeace, painted superhuman, hitting a spent fuel
facility near Lyon, France. This incident still reminds us of the importance of UAV protection for
key infrastructure or the environment (for example, forest fire detection).

(3) Flight safety: In late December 2018 and early January 2019, London’s Gatwick and Heathrow
airports were disrupted by UAVs, causing chaos in takeoff, landing, and scheduling. The
former even closed for 33 h and cancelled hundreds of flights, causing losses of more than
50 million pounds.

(4) Privacy and confidentiality protection: UAVs can be used to steal important confidential
information, such as in Northern Ireland in August 2016, when UAVs were used to take pictures
of people entering passwords in ATMs. Small UAVs can even be used as hackers’ tools to further
steal business secrets. According to the reports of The Times on 21 January 2019, in recent
years, secrets have been stolen by eavesdropping, or even masquerading as wireless network
connections to obtain employee passwords, etc. More and more companies are seeking anti-UAV
technology to ensure against commercial benefits by stealing secrets by disguising wireless
network connections to obtain employee passwords and other information.

(5) Other criminal behaviors: In addition to the use of military and police personnel to monitor
and assist in law enforcement, small UAVs may also operate in the hands of criminals. The
surveillance functions provided by UAVs also enable criminal groups to detect and monitor their
targets before committing crimes.

(6) Security loopholes become a hidden concern: In addition to the improper use by the users
themselves, UAVs may also be attacked by intentional hackers. By means of security loopholes
including GPS and control signals, wireless networks and so on, “hijacking” may take control
of a UAV. Vulnerabilities in the UAV manufacturer’s security may also become another type
of drone-derived security problem. A well-known software technology website Check Point
reported in November 2018 that the world’s largest manufacturer, China’s Dajiang, has a security
vulnerability in its identity authentication process. If it is attacked by a hacker, it may leak the
location of the operator and the captured image, etc. Even the possibility of intercepting the
carried goods also highlights the security problems of drones.

To sum up, in spite of UAVs being widely used in civilian, commercial, and military applications
in recent years, because they use wireless networks for information exchange, there are many security
issues that are faced.

Firstly, “privacy” refers to the part of an individual that he does not want to be known by others,
and that he has the right to protect. In English, “to be let alone” means to “not be disturbed by others”,
which is the basic spirit of privacy. Privacy also means “secret”. In general, what we call privacy
refers to information privacy. Privacy and freedom are related to individual behavior rather than
inappropriate observation and interference by others. The interests of privacy include sexual activities,
religious practices, and political activities. What is the importance of privacy? Privacy is about human

66



Electronics 2020, 9, 62

dignity, personal subjectivity, and personality development. If some of a person’s own information is
exposed, he will feel uncomfortable, embarrassed, or harassed by others, and it will be difficult to live
comfortably. Compared with personal privacy, sensitive information of the state or government has a
greater impact.

Secondly, the malicious attacker can perform passive eavesdropping, active interfering, leaking
of secret information, data tampering, denial of service, message misuse, message replay, and
impersonation attack between sender and receiver. This will cause the resource collapse attack,
and even disturb the operations of routing protocol for UAVs [10]. UAVs are conducted in flying
ad hoc networks (FANETs) which should provide defense against various known attacks under
wireless environment.

Thirdly, because of the specific properties of FANET (wireless links, collaborative characteristics,
uncontrollable environment, and lack of a fixed infrastructure) securing the network is difficult. The
traditional security issues are availability, authentication, integrity, and confidentiality, which have
become targets that the attacker wants to break. [11]. Legitimate UAVs suffer from malicious UAVs by
implanting the incorrect information into their sensors. Therefore, it causes these compromised UAVs
to transmit the wrong messages for the base station, and thereby endangering the data integrity [10].

In order to legalize and guarantee the privacy of the broadcasted messages, much literature
is focused on this issues. For example, Strohmeier et al. [12] surveyed an automatic dependent
surveillance-broadcast protocol (ADS-B), and that is an on-board component part of the UAV system,
and discussed and listed the vulnerabilities in ADS-B protocol. Wesson et al. [13] further analyzed and
evaluated the cryptographic strategies of ADS-B based on their effectiveness and practicality in the
cost-averse, technologically-complex, and interoperability-focused aviation community. The purpose
of these works was to find a suitable mechanism to ensure the security of the UAVs system for sensitive
control areas.

In past literature, some articles [10,14–16] refer to malicious attacks on UAV applications, such as
intrusion detection, enhancing security against the lethal cyber-attacks for UAV networks. Therefore, a
Q-learning-based UAV power allocation strategy combining Q-learning and deep learning to accelerate
the learning speed for attack modes was proposed by Xiao et al. [17]. García-Magariño et al. [16] used
a secure asymmetric encryption with a pre-shared list of official UAVs and an agent-based approach to
detect if an official UAV is physically hijacked. However, these articles only focus on the intrusion
detection or the problem of UAVs being physical hijacked. It is a fact that to prevent all intrusions from
being attacked by hackers, the fundamental solution is to propose an effective and comprehensive
security protocol. Such a secure mechanism should comprehensively detect and provide information
and identity authentication to achieve the purposes of availability, privacy, and non-repudiation and to
defend against known attacks for the UAV’s environment.

Recently, some literature [18–21] has used specific cryptographic algorithms to implement security
mechanisms in UAVs. In 2017, Yoon et al. [18] used the Raspberry Pi to present a design of a second
channel security system that can regain control of a UAV when there is an attack on the UAV. In this
scheme, the authors only used flow charts to describe the scenario. The authors claimed that they can
provide authentication with the ground station and defense against the DoS attack. However, this
scheme does not present the detail cryptography scenario and no performance analysis.

Later, Chen et al. [19] proposed a mutual authentication improvement in security. In order to
achieve higher efficiency and reduce the computational cost, thus the proposed scheme conformed
to the network-connected UAV communication systems, and that satisfied the requirements of the
limited bandwidth and computation resources. However, the authors used the asymmetric bilinear
pairings mechanism and the cost of this was high and it was not supported by formal proof. Wazid
et al. [20] also presented a lightweight remote user authentication and key agreement scheme to solve
security issues between the user and the accessed drone in Internet of Drones (IoD) applications.

Recently, Tian et al. [21] proposed an efficient privacy-preserving authentication framework for
the edge-assisted Internet of Drones. They followed a predictive UAV authentication approach. The

67



Electronics 2020, 9, 62

authors considered that location, identity, and flying routes of each legitimate UAV are sensitive
information in the IoD network. Therefore, they proposed a secure authentication and privacy
protection for an efficient MEC-assisted (mobile edge computing) framework. But this scheme did not
consider mutual authentication for ensuring the communication entity.

In fact, due to the UAV’s characteristics, it is hard to prevent a privacy leak. Therefore, this study
aims to focus on sensitive areas (for example: airports and military areas) to set up this management
system and use ECC (elliptic curve cryptography) technology [22,23] to ensure data integrity and
nonrepudiation. It is a fact that any intruders can break through the defense function of the system
if the security mechanism of the system is not perfect and the user’s identity is not authenticated
accurately. This study also intends to employ the proof mode of BAN logic mechanism for mutual
authentication to eliminate the intrusive chances of malicious attackers.

The paper is organized as follows. The applied mechanisms and security mechanisms are
reviewed and discussed in Section 2. The designs and flows of the proposed scheme are presented
in Section 3. Security analyses and comparisons are discussed in Section 4. Finally, in Section 5,
conclusions are offered.

2. Preliminary and Security Requirements

This section includes two subsections: (1) the elliptic curve cryptography and Diffie–Hellman key
exchange are presented in Section 2.1 and (2) security requirements are defined in Section 2.2.

2.1. Elliptic Curve Cryptography and Diffie–Hellman Key Exchange

Elliptic curve cryptography [22,23] was proposed in 1995. Digital signature schemes can be
used to provide the following basic cryptographic services: data integrity, data origin authentication,
and non-repudiation.

The Diffie–Hellman key exchange [24] is a method for securely exchanging cryptographic keys
over a public channel. It is one of the earliest practical examples of public key exchange implemented
within the field of cryptography. The Diffie–Hellman key exchange method allows two parties that
have no prior knowledge of each other to jointly establish a shared secret key over an insecure channel.
This key can then be used to encrypt subsequent communications by using a symmetric key cipher.

The following problems exist for the Elliptic Curve Diffie-Hellman method:

Computational Diffie–Hellman (CDH) Problem: Given aP and bP, where a, b ∈ R, Z ∗ q, and P are the
generator of G, compute abP.
Decisional Diffie–Hellman (DDH) Problem: Given aP, bP, and cP, where a, b, c ∈ R, Z ∗ q, and P are
the generators of G, confirm whether or not cP = abP, which is equal to confirming whether or not
c = abmodq.

2.2. Security Requirements

A UAV communication control system has the following main security requirements and known
attacks [11,13–15,19,20,25]:

• Mutual authentication: this ensures that only legitimate parties are allowed to participate in the
UAV network. There are two types of authentication services: node authentication and message
authentication [11,19,20,25]. In order to ensure the communication security. The communication
entity should perform mutual authentication before communication. As long as the mutual
authentication is implemented, some known attacks can be excluded.

• Integrity: preventing the altering GPS coordinates or disseminating of false information [25], thus
ensuring the consistent and uncompromising adherence of data message over their whole passage
through the flying networks [11,19,20]

• Confidentiality: Only the authorized UAVs are allowed to access the data packets [11,13,19,20,25].

68



Electronics 2020, 9, 62

• Identity anonymity: The UAV communication control system should keep identity anonymity
from the attacker to ensure the users real identity is not obtained from eavesdropped or captured
messages [11].

• Availability: The UAV communication control system should be always available to provide all
services in any time and in any conditions [11,25].

• Privacy: By tracking the messages sent out by the same UAV at different locations, adversaries
can disclosure the UAVs’ identities and perform further analysis to get other information from the
UAVs [11,18,20].

• Non-repudiation: Repudiation threat comes from the UAVs denying their behaviors in the IoD.
For example, malicious UAVs abuse their valid identities to broadcast fake information in the
IoD [18,20,25].

• DoS attack: DoS attack means that a malicious node attempts to exhaust energy resources of UAVs
or disturb the network and routing protocol [15,20,25].

• Spoofing attack: The attacker could generate a spoofed message such that the receiver gets the
incorrect message [15,25].

3. The Proposed Scheme

This section includes nine subsections: (1) system architecture is designed and described in
Section 3.1, (2) the used notations in this study are defined in Section 3.2, (3) the manufacturer
(UAV) registration phase of the proposed scheme is illustrated in Section 3.3, (4) the player (mobile
device) registration phase of the proposed scheme is presented in Section 3.4, (5) the ground control
station registration phase of the proposed scheme is described in Section 3.5, (6) the player and
manufacturer authentication and communication phase of the proposed scheme is shown in Section 3.6,
(7) the player and ground control station authentication and communication phase of the proposed
scheme is designed in Section 3.7, (8) the player, UAV, and ground control station authentication and
communication phase of the proposed scheme is discussed in Section 3.8, and (9) the ground control
station and UAV authentication and communication phase of the proposed scheme is illustrated in
Section 3.9.

3.1. System Architecture

Figure 1 is the system framework of the proposed scheme in this study.

Figure 1. The framework of a traceable and privacy-preserving authentication for UAV ad
hoc communication.

69



Electronics 2020, 9, 62

There are four parties in the scheme:

(1) Trusted authority center: a trusted third party agency which provides a public key and private
key to the registrant.

(2) Manufacturer (UAV): a UAV manufacturing company. The company has jurisdiction over all
manufactured UAVs.

(3) Player (mobile device): a person who intends to control a UAV. He/she must first buy or rent a
UAV from the manufacturer, then obtain the flight permit before he/she can control the UAV.

(4) Ground control station (GCS): a control center that provides the facilities for human control of the
UAV. A GCS reviews the flight path proposed by the player, and decides whether to agree to the
flight request.

1. All UAVs manufactured, all mobile devices carried by players, and all ground control stations
must be registered to the trusted authority center through a secure channel. The manufacturer
(UAV), player (with mobile device), and ground control station sends their universally unique
IDs to the trusted authority center. The trusted authority center returns parameters calculated by
elliptic curve group technology.

2. When a player wants to control UAVs, the player carries his/her mobile device to buy or rent a UAV
from the manufacturer. After mutual authentication between the player and the manufacturer,
the manufacturer will transfer the purchase or rental certificate of the UAV to the player, and
store the certificate to the UAV.

3. After the player has the right to use the UAV, then he/she must submit flight information and a
purpose to the ground control station for review. After mutual authentication between the player
and the ground control station, the ground control station will transfer the decision of the flight
plan to the player, and keep the relevant flight information.

4. The player transfers the purchase or rental certificate of the UAV, and the flight path agreed by
the ground control station to the UAV. After mutual authentication between the player and the
UAV and mutual authentication between the UAV and the ground control station, the ground
control station will confirm the legality of the UAV flight path. Once the legality of the relevant
identity and flight path have been confirmed, the player can control the UAV through his/her
mobile device.

3.2. Notations

q: A k-bit prime
Fq: A prime finite field
E/Fq: An elliptic curve E over Fq

G: A cyclic additive group of composite order q
P: A generator for the group G
s: A secret key of the trusted authority center
PKTAC: A public key of the trusted authority center, PKTAC = sP
Hi( ): ith one-way hash function
IDx: x’s identity, like a universal unique ID code
rx, a, b, c, d, e, f : A random numbers of elliptic curve group
Sx: x’s elliptic curve group signature
SEKxy: A session key established by x and y
Ex(m): Use a session key x to encrypt the message m
Dx(m): Use a session key x to decrypt the message m
Sigxy: The signed message for parties x and y
SKx/PKx: x’s private key SKx/x’s public key PKx

SSKx (m): Use x’s private key SKx to sign the message m

70



Electronics 2020, 9, 62

VPKx (m): Use x’s public key PKx to verify the message m
CHKx: x’s verified message

A ?
= B: Determines if A is equal to B

Mpayment: The payment message between the player and the manufacturer (UAV)
Mrequest: The flight plan proposed by the player
Mcon f irm: The flight permission issued by ground control station to UAV
MGPS: The GPS message reported by the UAV
ci: The session key encrypted sensitive information
CertUAV : The purchase or rental certificate of the UAV held by the player

3.3. Manufacturer (UAV) Registration Phase

The manufacturer must take the UAV to register with the trusted authority center. The
manufacturer (UAV) registration phase of the proposed scheme is shown in Figure 2.

Step 1: The manufacturer selects an identity IDUAV , and transmits it to the trusted authority center.
Step 2: The trusted authority center selects a random number rUAV, calculates

RUAV = rUAVP,
hUAV = H1(IDUAV, RUAV),

SUAV = rUAV + hUAVs,

and then sends (RUAV, SUAV, PKUAV, SKUAV) to the manufacturer.
Step 3: The manufacturer verifies

SUAVP ?
= RUAV + H1(IDUAV, RUAV)PKTAC.

If the verification is passed, the manufacturer stores (RUAV, SUAV, PKUAV, SKUAV) to the UAV.

 

UAVID
UAVID

UAV UAV UAV UAVR S PK SK

UAV UAV UAV UAV TACS P R H ID R PK= +

UAV UAV UAV UAVR S PK SK

UAV

UAV UAV

UAV UAV UAV

UAV UAV UAV

r
R r P
h H ID R
S r h s

=
=
= +

Figure 2. Manufacturer (UAV) registration phase of the proposed scheme.

3.4. Player (Mobile Device) Registration Phase

The player must take the mobile device to register with the trusted authority center. The scenarios
of player (mobile device) registration phase is shown in Figure 3.

Step 1: The player selects an identity IDPMD, and transmits it to the trusted authority center.
Step 2: The trusted authority center selects a random number rPMD, calculates

RPMD = rPMDP,
hPMD = H1(IDPMD, RPMD),

SPMD = rPMD + hPMDs,

71



Electronics 2020, 9, 62

and then sends (RPMD, SPMD, PKPMD, SKPMD) to the player.
Step 3: The player verifies

SPMDP ?
= RPMD + H1(IDPMD, RPMD)PKTAC.

If the verification is passed, the player stores (RPMD, SPMD, PKPMD, SKPMD) to the mobile device.

 

PMDID
PMDID

PMD PMD PMD PMDR S PK SK

PMD PMD PMD PMD TACS P R H ID R PK= +

PMD PMD PMD PMDR S PK SK

PMD

PMD PMD

PMD PMD PMD

PMD PMD PMD

r
R r P
h H ID R
S r h s

=
=
= +

Figure 3. Player (mobile device) registration phase of the proposed scheme.

3.5. Ground Control Station Registration Phase

The ground control station must also register with the trusted authority center. The ground
control station registration phase of the proposed scheme is shown in Figure 4.

Step 1: The ground control station selects an identity IDGCS, and transmits it to the trusted
authority center.

Step 2: The trusted authority center selects a random number rGCS, calculates

RGCS = rGCSP,
hGCS = H1(IDGCS, RGCS),

SGCS = rGCS + hGCSs,

and then sends (RGCS, SGCS, PKGCS, SKGCS) to the ground control station.
Step 3: The ground control station verifies

SGCSP ?
= RGCS + H1(IDGCS, RGCS)PKTAC.

If the verification is passed, the ground control station stores (RGCS, SGCS, PKGCS, SKGCS).

72



Electronics 2020, 9, 62

 

GCSID
GCSID

GCS GCS GCS GCSR S PK SK

GCS GCS GCS GCS TACS P R H ID R PK= +

GCS GCS GCS GCSR S PK SK

GCS

GCS GCS

GCS GCS GCS

GCS GCS GCS

r
R r P
h H ID R
S r h s

=
=
= +

Figure 4. Ground control station registration phase of the proposed scheme.

3.6. Player and Manufacturer Authentication and Communication Phase

When a player wants to control UAVs, the player carries his/her mobile device to buy or rent a
UAV from the manufacturer. After mutual authentication between the player and the manufacturer,
the manufacturer will transfer the purchase or rental certificate of the UAV to the player, and store
the certificate of the UAV. The player and manufacturer authentication and communication phase is
shown in Figure 5.

Step 1: The player selects a random number a, computes

TPMD = aP,

and then transmits (IDPMD, RPMD, TPMD) to the manufacturer.
Step 2: The manufacturer selects a random number b, calculates

TUAV = bP,
PKPMD = RPMD + H1(IDPMD, RPMD)PKTAC,

KUP1 = SUAVTPMD + bPKPMD,
KUP2 = bTPMD,

and the session key
SEKUP = H2(KUP1, KUP2).

The manufacturer then calculates

CHKPU = H3(SEKUP, TPMD)

and transmits (IDUAV, RUAV, TUAV, CHKPU) to the player.
Step 3: The player calculates

PKUAV = RUAV + H1(IDUAV, RUAV)PKTAC,
KPU1 = SPMDTUAV + aPKUAV,

KPU2 = aTUAV,

and the session key
SEKUP = H2(KPU1, KPU2),

73



Electronics 2020, 9, 62

The player verifies

CHKPU
?
= H3(SEKUP, TPMD)

to check the legality of the manufacturer. If the verification is passed, the player computes

cPMD = ESEKUP(Mpayment),
CHKUP = H3(SEKUP, TUAV),

and transmits (IDPMD, cPMD, CHKUP) to the manufacturer.
Step 4: The manufacturer verifies

CHKUP
?
= H3(SEKUP, TUAV)

to check the legality of the player. If the verification is passed, the session key SEKUP between the
player and the manufacturer is established successfully. The manufacturer calculates

Mpayment = DSEKUP(cPMD)

to get the payment information of the player. After the payment, the manufacturer generates the
encrypted purchase or rental certificate of the UAV

cUAV = ESEKUP(Mpayment, CertUAV),
SigUAV = SSKUAV (Mpayment, CertUAV),

and transmits (IDUAV, cUAV, SigUAV) to the player.
Step 5: The player decrypts the received message

(Mpayment, CertUAV) = DSEKUP(cUAV),

verifies the signature

(Mpayment, CertUAV)
?
= VPKUAV (SigUAV),

and obtains the purchase or rental certificate of the UAV from the manufacturer.

74



Electronics 2020, 9, 62

 

PMD PMD PMDID R T

UAV UAV UAV PUID R T CHK

PMD PMD UPID c CHK

UP

UAV UAV UAV UAV TAC

PU PMD UAV UAV

PU UAV

UP PU PU

PU UP PMD

PMD SEK payment

UP UP UAV

PK R H ID R PK
K S T aPK
K aT
SEK H K K

CHK H SEK T
c E M

CHK H SEK T

= +
= +
=

=

=
=

=

UP

UP

UAV

UP UP UAV

payment SEK PMD

UAV SEK payment UAV

UAV SK payment UAV

CHK H SEK T
M D c

c E M Cert

Sig S M Cert

=
=

=

=

PMD

a
T aP=

UAV

PMD PMD PMD PMD TAC

UP UAV PMD PMD

UP PMD

UP UP UP

PU UP PMD

b
T bP
PK R H ID R PK
K S T bPK
K bT
SEK H K K
CHK H SEK T

=
= +

= +
=

=
=

UAV UAV UAVID c Sig

UP

UAV

payment UAV SEK UAV

payment UAV PK UAV

M Cert D c

M Cert V Sig

=

=

Figure 5. Player and manufacturer authentication and communication phase of the proposed scheme.

3.7. Player and Ground Control Station Authentication and Communication Phase

After the player has the right to use the UAV, then he/she must submit a flight path and purpose to
the ground control station for review. After mutual authentication between the player and the ground
control station, the ground control station will transfer the decision of the flight plan to the player,
and keeps the relevant flight information. The player and ground control station authentication and
communication phase of the proposed scheme is shown in Figure 6.

75



Electronics 2020, 9, 62

Step 1: The player selects a random number c, computes

TPMD2 = cP,

and then transmits (IDPMD, RPMD, TPMD2) to the ground control station.
Step 2: The ground control station selects a random number d, calculates

TGCS = dP,
PKPMD = RPMD + H1(IDPMD, RPMD)PKTAC,

KGP1 = SGCSTPMD2 + dPKPMD,
KGP2 = dTPMD2,

and the session key
SEKGP = H2(KGP1, KGP2).

The ground control station then calculates

CHKPG = H3(SEKGP, TPMD2)

and transmits (IDGCS, RGCS, TGCS, CHKPG) to the player.
Step 3: The player calculates

PKGCS = RGCS + H1(IDGCS, RGCS)PKTAC,
KPG1 = SPMDTGCS + cPKGCS,

KPG2 = cTGCS,

and the session key
SEKGP = H2(KPG1, KPG2).

The player verifies

CHKPG
?
= H3(SEKGP, TPMD2)

to check the legality of the ground control station. If the verification is passed, the player calculates

cPMD2 = ESEKGP(Mrequest, CertUAV),
CHKGP = H3(SEKGP, TGCS),

and transmits (IDPMD, cPMD2, CHKGP) to the ground control station.
Step 4: The ground control station verifies

CHKGP
?
= H3(SEKGP, TGCS)

to check the legality of the player. If the verification is passed, the session key SEKGP between the
player and the ground control station is established successfully. The ground control station calculates

(Mrequest, CertUAV) = DSEKGP(cPMD2)

to get the flight path information of the player. After the review, the ground control station generates
the encrypted decision of the flight plan

cGCS = ESEKGP(IDPMD, Mrequest, CertUAV),
SigGCS = SSKGCS(IDPMD, Mrequest, CertUAV),

and transmits (IDGCS, cGCS, SigGCS) to the player.

76



Electronics 2020, 9, 62

Step 5: The player decrypts the received message

(IDPMD, Mrequest, CertUAV) = DSEKGP(cGCS),

verifies the signature

(IDPMD, Mrequest, CertUAV)
?
= VPKGCS(SigGCS),

and obtains the decision of the flight plan from the ground control station.

 

PMD PMD PMDID R T

GCS GCS GCS PGID R T CHK

PMD PMD GPID c CHK

GP

GCS GCS GCS GCS TAC

PG PMD GCS GCS

PG GCS

GP PG PG

PG GP PMD

PMD SEK request UAV

GP GP GCS

PK R H ID R PK
K S T cPK
K cT
SEK H K K

CHK H SEK T
c E M Cert

CHK H SEK T

= +
= +
=

=

=
=

=

GP

GP

GCS

GP GP GCS

request UAV SEK PMD

GCS SEK PMD request UAV

GCS SK PMD request UAV

CHK H SEK T
M Cert D c

c E ID M Cert

Sig S ID M Cert

=
=

=

=

PMD

c
T cP=

GCS

PMD PMD PMD PMD TAC

GP GCS PMD PMD

GP PMD

GP GP GP

PG GP PMD

d
T dP
PK R H ID R PK
K S T dPK
K dT
SEK H K K
CHK H SEK T

=
= +

= +
=

=
=

GCS GCS GCSID c Sig

GP

GCS

PMD request UAV SEK GCS

PMD request UAV PK GCS

ID M Cert D c

ID M Cert V Sig

=

=

Figure 6. Player and ground control station authentication and communication phase of the
proposed scheme.

77



Electronics 2020, 9, 62

3.8. Player, UAV and Ground Control Station Authentication and Communication Phase

The player transfers the purchase or rental certificate of the UAV, and the flight path agreed by the
ground control station to the UAV. After mutual authentication between the player and the UAV, and
mutual authentication between the UAV and the ground control station, the UAV will confirm the
legality of the flight path again from the ground control station. After confirming the legality of the
relevant identity and flight path, the player can control the UAV through his/her mobile device. The
player, UAV and ground control station authentication and communication phase of the proposed
scheme is shown in Figure 7.

Step 1: The player calculates
cPMD3 = ESEKUP(Mrequest, CertUAV),

SigPMD3 = SSKPMD(Mrequest, CertUAV),

and transmits (IDPMD, cPMD3, SigPMD3) to the UAV.
Step 2: The UAV decrypts the received message

(Mrequest, CertUAV) = DSEKUP(cPMD3),

verifies the signature

(Mrequest, CertUAV)
?
= VPKPMD(SigPMD3),

and obtains the purchase or rental certificate of the UAV, and the flight path agreed by the ground
control station.

The UAV then chooses a random number e, calculates

TUAV2 = eP,

and then transmits (IDUAV, RUAV, TUAV2) to the ground control station.
Step 3: The ground control station chooses a random number f , computes

TGCS2 = f P,
PKUAV = RUAV + H1(IDUAV, RUAV)PKTAC,

KGU1 = SGCSTUAV2 + f PKUAV,
KGU2 = f TUAV2,

and the session key
SEKGU = H2(KGU1, KGU2).

The ground control station then calculates

CHKUG = H3(SEKGU, TUAV2),

and transmits (IDGCS, RGCS, TGCS2, CHKUG) to the UAV.
Step 4: The UAV calculates

PKGCS = RGCS + H1(IDGCS, RGCS)PKTAC,
KUG1 = SUAVTGCS2 + ePKGCS,

KUG2 = eTGCS2,

and the session key
SEKGU = H2(KUG1, KUG2).

The UAV verifies
CHKUG

?
= H3(SEKGU, TUAV2)

78



Electronics 2020, 9, 62

to check the legality of the ground control station. If the verification is passed, the UAV calculates

cUAV2 = ESEKGU (IDPMD, Mrequest, CertUAV),
CHKGU = H3(SEKGU, TGCS2),

and transmits (IDUAV, cUAV2, CHKGU) to the ground control station.
Step 5: The ground control station verifies

CHKUG
?
= H3(SEKGU, TGCS2)

to check the legality of the UAV. If the verification is passed, the session key SEKGU between
the UAV and the ground control station is established successfully. The ground control station
calculates

(IDPMD, Mrequest, CertUAV) = DSEKGU (cUAV2)

to get the flight path information of the UAV. After the review, the ground control station generates
the encrypted confirm message of the flight plan

cGCS2 = ESEKGU (IDPMD, Mcon f irm, CertUAV),
SigGCS2 = SSKGCS(IDPMD, Mcon f irm, CertUAV),

and transmits (IDGCS, cGCS2, SigGCS2) to the UAV.
Step 6: The UAV decrypts the received message

(IDPMD, Mcon f irm, CertUAV) = DSEKGU (cGCS2),

verifies the signature

(IDPMD, Mcon f irm, CertUAV)
?
= VPKGCS(SigGCS2),

and obtains the confirm message of the flight plan from the ground control station. Then, the
UAV generates the encrypted confirm message of the flight plan and GPS information

cUAV3 = ESEKUP(IDPMD, Mcon f irm, MGPS, CertUAV),
SigUAV3 = SSKUAV (IDPMD, Mcon f irm, MGPS, CertUAV),

and transmits (IDUAV, cUAV3, SigUAV3) to the player.
Step 7: The player decrypts the received message

(IDPMD, Mrequest, MGPS, CertUAV) = DSEKUP(cUAV3),

verifies the signature

(IDPMD, Mcon f irm, MGPS, CertUAV)
?
= VPKUAV (SigUAV3),

then obtains the confirm message of the flight plan and GPS information.

79



Electronics 2020, 9, 62

 

PMD PMD PMDID c Sig

GCS GCS GCS UGID R T CHK

UAV UAV GUID c CHK

GU

GCS GCS GCS GCS TAC

UG UAV GCS GCS

UG GCS

GU UG UG

UG GU UAV

UAV SEK PMD request UAV

GU GU GCS

PK R H ID R PK
K S T ePK
K eT
SEK H K K

CHK H SEK T
c E ID M Cert

CHK H SEK T

= +
= +
=

=

=
=

=

GU

GU

GCS

GU GU GCS

PMD request UAV SEK UAV

GCS SEK PMD confirm UAV

GCS SK PMD confirm UAV

CHK H SEK T
ID M Cert D c

c E ID M Cert

Sig S ID M Cert

=
=

=

=

UP

PMD

request UAV SEK PMD

request UAV PK PMD

UAV

M Cert D c

M Cert V Sig

e
T eP

=

=

=

GCS

UAV UAV UAV UAV TAC

GU GCS UAV UAV

GU UAV

GU GU GU

UG GU UAV

f
T fP
PK R H ID R PK
K S T fPK
K fT
SEK H K K
CHK H SEK T

=
= +

= +
=

=
=

GCS GCS GCSID c Sig

GU

GCS

UP

UAV

PMD confirm UAV SEK GCS

PMD confirm UAV PK GCS

UAV SEK PMD confirm GPS UAV

UAV SK PMD confirm GPS UAV

ID M Cert D c

ID M Cert V Sig

c E ID M M Cert

Sig S ID M M Cert

=

=

=

=

UP

PMD

PMD SEK request UAV

PMD SK request UAV

c E M Cert

Sig S M Cert

=

=

UAV UAV UAVID R T

UAV UAV UAVID c Sig

UP

UAV

PMD confirm GPS UAV SEK UAV

PMD confirm GPS UAV PK UAV

ID M M Cert D c

ID M M Cert V Sig

=

=

Figure 7. Player, UAV, and ground control station authentication and communication phase of the
proposed scheme.

80



Electronics 2020, 9, 62

3.9. Ground Control Station and UAV Authentication and Communication Phase

When the ground control station wants to know whether the scope of the regulation has been
applied to the UAV, the ground control station can ask the UAV to provide relevant proof. After mutual
authentication between the ground control station and the UAV, the UAV will respond and confirm
the message of the flight plan from the ground control station and GPS information to the ground
control station. The ground control station and UAV authentication and communication phase of the
proposed scheme is shown in Figure 8.

Step 1: The ground control station calculates

cGCS3 = ESEKGU (IDUAV, Mrequest),
SigGCS3 = SSKGCS(IDUAV, Mrequest),

and transmits (IDUAV, Mrequest) = DSEKGU (cGCS3) to the UAV.
Step 2: The UAV decrypts the received message

(IDUAV, Mrequest) = DSEKGU (cGCS3),

verifies the signature

(IDUAV, Mrequest)
?
= VPKGCS(SigGCS3),

and obtains the legality check request from the ground control station. Then, the UAV generates
the encrypted confirmation message of the flight plan and GPS information

CUAV4 = ESEKGU (IDPMD, Mcon f irm, MGPS, CertUAV),
SigUAV4 = SSKUAV (IDPMD, Mcon f irm, MGPS, CertUAV),

and transmits (IDUAV, cUAV4, SigUAV4) to the ground control station.
Step 3: The ground control station decrypts the received message

(IDPMD, Mcon f irm, MGPS, CertUAV) = DSEKGU (cUAV4),

verifies the signature

(IDPMD, Mcon f irm, MGPS, CertUAV)
?
= VPKUAV (SigUAV4),

then obtains the response of the UAV and GPS information.

81



Electronics 2020, 9, 62

GCS GCS GCSID c Sig

GU

GCS

GU

UAV

UAV request SEK GCS

UAV request PK GCS

UAV SEK PMD confirm GPS UAV

UAV SK PMD confirm GPS UAV

ID M D c

ID M V Sig

c E ID M M Cert

Sig S ID M M Cert

=

=

=

=

GU

GCS

GCS SEK UAV request

GCS SK UAV request

c E ID M

Sig S ID M

=

=

UAV UAV UAVID c Sig

GU

UAV

PMD confirm GPS UAV SEK UAV

PMD confirm GPS UAV PK UAV

ID M M Cert D c

ID M M Cert V Sig

=

=

Figure 8. Ground control station and UAV authentication and communication phase of the
proposed scheme.

4. Security Analysis

This section includes nine subsections: (1) the mutual authentication of the proposed scheme is
analyzed in Section 4.1, (2) the integrity and confidentiality of the proposed scheme are evaluated in
Section 4.2, (3) the identity anonymity and privacy of the proposed scheme are proved in Section 4.3, (4)
availability and prevention of DoS attack are discussed in Section 4.4, (5) prevention of spoofing attack
is discussed in Section 4.5, (6) the non-repudiation of the proposed scheme is analyzed in Section 4.6,
(7) security issues are compared in Section 4.7, (8) the computation cost of the proposed scheme is
compared with other schemes in Section 4.8, and (9) the communication cost of the proposed scheme is
compared with other schemes in Section 4.9.

4.1. Mutual Authentication

BAN logic [26] is used to prove that the proposed scheme achieves mutual authentication between
different parties in each phase.

In the player and manufacturer authentication and communication phase, the main goal of the
scheme is to make sure whether the legality is authenticated by the player P and the manufacturer M.

G1 : P| ≡ P
SEKUP↔ M

G2 : P| ≡ M| ≡ P
SEKUP↔ M

G3 : M| ≡ P
SEKUP↔ M

G4 : M| ≡ P| ≡ P
SEKUP↔ M

G5 : P| ≡ IDUAV

G6 : P| ≡ M| ≡ IDUAV

G7 : M| ≡ IDPMD

G8 : M| ≡ P| ≡ IDPMD

According to the player and manufacturer authentication and communication phase, BAN logic
is used to produce an idealized form as follows.

82



Electronics 2020, 9, 62

M1 : (< IDPMD, RPMD, TPMD >PKUAV ,< H(SEKUP, TUAV) >CHKUP)

M2 : (< IDUAV, RUAV, TUAV >PKPMD ,< H(SEKUP, TPMD) >CHKPU )

To analyze the proposed scheme, the following assumptions are made.

A1 : P| ≡ #(TPMD)

A2 : M| ≡ #(TPMD)

A3 : P| ≡ #(TUAV)

A4 : M| ≡ #(TUAV)

A5 : P| ≡ M| ⇒ P
SEKUP↔ M

A6 : M| ≡ P| ⇒ P
SEKUP↔ M

A7 : P| ≡ M| ⇒ IDUAV

A8 : M| ≡ P| ⇒ IDPMD

According to these assumptions and goals of BAN logic, the main proof of the player and
manufacturer authentication and communication phase is as follows.

a. The manufacturer M authenticates the player P.

By M1 and the seeing rule, Statement 1 can be derived.
M � (< IDPMD, RPMD, TPMD >PKUAV ,<
H(SEKUP, TUAV) >CHKUP ).

(Statement 1)

By A2 and the freshness rule, Statement 2 can be derived.
M| ≡ #(< IDPMD, RPMD, TPMD >PKUAV ,<
H(SEKUP, TUAV) >CHKUP ).

(Statement 2)

By (Statement 1), A4, and the message meaning rule, Statement 3 can be derived.
M| ≡ P| ∼ (< IDPMD, RPMD, TPMD >PKUAV ,<
H(SEKUP, TUAV) >CHKUP ).

(Statement 3)

By (Statement 2), (Statement 3), and the nonce verification rule, Statement 4 can be derived.
M| ≡ #(< IDPMD, RPMD, TPMD >PKUAV ,<
H(SEKUP, TUAV) >CHKUP ).

(Statement 4)

By (Statement 4) and the belief rule, Statement 5 can be derived.

M| ≡ P| ≡ P
SEKUP↔ M. (Statement 5)

By (Statement 5), A6, and the jurisdiction rule, Statement 6 can be derived.

M| ≡ P
SEKUP↔ M. (Statement 6)

By (Statement 6) and the belief rule, Statement 7 can be derived.
M| ≡ P| ≡ IDPMD. (Statement 7)
By (Statement 7), A8, and the jurisdiction rule, Statement 8 can be derived.
M| ≡ IDPMD. (Statement 8)

b. The player P authenticates the manufacturer M.

By M2 and the seeing rule, Statement 9 can be derived.
P � (< IDUAV , RUAV , TUAV >PKPMD ,<
H(SEKUP, TPMD) >CHKPU ).

(Statement 9)

By A1 and the freshness rule, Statement 10 can be derived.
P| ≡ #(< IDUAV , RUAV , TUAV >PKPMD ,<
H(SEKUP, TPMD) >CHKPU ).

(Statement 10)

By (Statement 9), A3, and the message meaning rule, Statement 11 can be derived.
P| ≡ M| ∼ (< IDUAV , RUAV , TUAV >PKPMD ,<
H(SEKUP, TPMD) >CHKPU ).

(Statement 11)

83



Electronics 2020, 9, 62

By (Statement 10), (Statement 11), and the nonce verification rule, Statement 12 can be derived.
P| ≡ M| ≡ (< IDUAV , RUAV , TUAV >PKPMD ,<
H(SEKUP, TPMD) >CHKPU ).

(Statement 12)

By (Statement 12) and the belief rule, Statement 13 can be derived.

P| ≡ M| ≡ P
SEKUP↔ M. (Statement 13)

By (Statement 13), A5, and the jurisdiction rule, Statement 14 can be derived.

P| ≡ P
SEKUP↔ M. (Statement 14)

By (Statement 14) and the belief rule, Statement 15 can be derived.
P| ≡ M| ≡ IDUAV . (Statement 15)
By (Statement 15), A7, and the jurisdiction rule, Statement 16 can be derived.
P| ≡ IDUAV . (Statement 16)

By (Statement 6), (Statement 8), (Statement 14), and (Statement 16), it can be proved that the
player P and the manufacturer M authenticate each other in the proposed scheme. Moreover, it can
also be proved that the proposed scheme can establish a session key between the player P and the
manufacturer M.

In the proposed scheme, the manufacturer authenticates the player by

CHKUP
?
= H3(SEKUP, TUAV).

If it passes the verification, the manufacturer authenticates the legality of the player. The player
authenticates the manufacturer by

CHKPU
?
= H3(SEKUP, TPMD).

If it passes the verification, the player authenticates the legality of the manufacturer. The player
and manufacturer authentication and communication phase of the proposed scheme thus guarantees
mutual authentication between the player and the manufacturer.

In the player and ground control station authentication and communication phase, the main goal
of the scheme is to make sure whether the legality is authenticated by the player P and the ground
control station G.

G9 : P| ≡ P
SEKGP↔ G

G10 : P| ≡ G| ≡ P
SEKGP↔ G

G11 : G| ≡ P
SEKGP↔ G

G12 : G| ≡ P| ≡ P
SEKGP↔ G

G13 : P| ≡ IDGCS

G14 : P| ≡ G| ≡ IDGCS

G15 : G| ≡ IDPMD

G16 : G| ≡ P| ≡ IDPMD

According to the player and ground control station authentication and communication phase,
BAN logic is used to produce an idealized form as follows.

M3 : (< IDPMD, RPMD, TPMD2 >PKGCS ,< H(SEKGP, TGCS) >CHKGP)

M4 : (< IDGCS, RGCS, TGCS >PKPMD ,< H(SEKGP, TPMD2) >CHKPG)

To analyze the proposed scheme, the following assumptions are made.

A9 : P| ≡ #(TPMD2)

A10 : G| ≡ #(TPMD2)

A11 : P| ≡ #(TGCS)

84



Electronics 2020, 9, 62

A12 : G| ≡ #(TGCS)

A13 : P| ≡ G| ⇒ P
SEKGP↔ G

A14 : G| ≡ P| ⇒ P
SEKGP↔ G

A15 : P| ≡ G| ⇒ IDGCS

A16 : G| ≡ P| ⇒ IDPMD

According to these assumptions and goals of BAN logic, the main proof of the player and ground
control station authentication and communication phase is as follows.

c. The ground control station G authenticates the player P.

By M3 and the seeing rule, Statement 17 can be derived.
G � (< IDPMD, RPMD, TPMD2 >PKGCS ,<
H(SEKGP, TGCS) >CHKGP ).

(Statement 17)

By A10 and the freshness rule, Statement 18 can be derived.
G| ≡ #(< IDPMD, RPMD, TPMD2 >PKGCS ,<
H(SEKGP, TGCS) >CHKGP ).

(Statement 18)

By (Statement 17), A12, and the message meaning rule, Statement 19 can be derived.
G| ≡ P| ∼ (< IDPMD, RPMD, TPMD2 >PKGCS ,<
H(SEKGP, TGCS) >CHKGP ).

(Statement 19)

By (Statement 18), (Statement 19), and the nonce verification rule, Statement 20 can be derived.
G| ≡ P| ≡ (< IDPMD, RPMD, TPMD2 >PKGCS ,<
H(SEKGP, TGCS) >CHKGP ).

(Statement 20)

By (Statement 20) and the belief rule, Statement 21 can be derived.

G| ≡ P| ≡ P
SEKGP↔ G. (Statement 21)

By (Statement 21), A14, and the jurisdiction rule, Statement 22 can be derived.

G| ≡ P
SEKGP↔ G. (Statement 22)

By (Statement 22) and the belief rule, Statement 23 can be derived.
G| ≡ P| ≡ IDPMD. (Statement 23)
By (Statement 23), A16, and the jurisdiction rule, Statement 24 can be derived.
G| ≡ IDPMD. (Statement 24)

d. The player P authenticates the ground control station G.

By M4 and the seeing rule, Statement 25 can be derived.
P � (< IDGCS, RGCS, TGCS >PKPMD ,<
H(SEKGP, TPMD2) >CHKPG ).

(Statement 25)

By A9 and the freshness rule, Statement 26 can be derived.
P| ≡ #(< IDGCS, RGCS, TGCS >PKPMD ,<
H(SEKGP, TPMD2) >CHKPG ).

(Statement 26)

By (Statement 25), A11, and the message meaning rule, Statement 27 can be derived.
P| ≡ G| ∼ (< IDGCS, RGCS, TGCS >PKPMD ,<
H(SEKGP, TPMD2) >CHKPG ).

(Statement 27)

By (Statement 26), (Statement 27), and the nonce verification rule, Statement 28 can be derived.
P| ≡ G| ≡ (< IDGCS, RGCS, TGCS >PKPMD ,<
H(SEKGP, TPMD2) >CHKPG ).

(Statement 28)

By (Statement 28) and the belief rule, Statement 29 can be derived.

P| ≡ G| ≡ P
SEKGP↔ G. (Statement 29)

By (Statement 29), A13, and the jurisdiction rule, Statement 30 can be derived.

P| ≡ P
SEKGP↔ G. (Statement 30)

By (Statement 30) and the belief rule, Statement 31 can be derived.
P| ≡ G| ≡ IDGCS. (Statement 31)
By (Statement 31), A15, and the jurisdiction rule, Statement 32 can be derived.
P| ≡ IDGCS. (Statement 32)

By (Statement 22), (Statement 24), (Statement 30), and (Statement 32), it can be proved that the player
P and the ground control station G authenticate each other in the proposed scheme. Moreover, it can

85



Electronics 2020, 9, 62

also be proved that the proposed scheme can establish a session key between the player P and the
ground control station G.

In the proposed scheme, the ground control station authenticates the player by

CHKGP
?
= H3(SEKGP, TGCS).

If it passes the verification, the manufacturer authenticates the legality of the player. The player
authenticates the ground control station by

CHKPG
?
= H3(SEKGP, TPMD2).

If it passes the verification, the player authenticates the legality of the ground control station. The
player and ground control station authentication and communication phase of the proposed scheme
thus guarantees mutual authentication between the player and the ground control station.

In the player, UAV, and ground control station authentication and communication phase, the
main goal of the scheme is to make sure whether the legality is authenticated by the UAV U and the
ground control station G.

G17 : U| ≡ U
SEKGU↔ G

G18 : U| ≡ G| ≡ U
SEKGU↔ G

G19 : G| ≡ U
SEKGU↔ G

G20 : G| ≡ U| ≡ U
SEKGU↔ G

G21 : U| ≡ IDGCS

G22 : U| ≡ G| ≡ IDGCS

G23 : G| ≡ IDUAV

G24 : G| ≡ U| ≡ IDUAV

According to the player, UAV, and ground control station authentication and communication
phase, BAN logic is used to produce an idealized form as follows:

M5 : (< IDUAV, RUAV, TUAV2 >PKGCS ,< H(SEKGU, TGCS2) >CHKGU )

M6 : (< IDGCS, RGCS, TGCS2 >PKUAV ,< H(SEKGU, TUAV2) >CHKUG)

To analyze the proposed scheme, the following assumptions are made.

A17 : U| ≡ #(TUAV2)

A18 : G| ≡ #(TUAV2)

A19 : U| ≡ #(TGCS2)

A20 : G| ≡ #(TGCS2)

A21 : U| ≡ G| ⇒ U
SEKGU↔ G

A22 : G| ≡ U| ⇒ U
SEKGU↔ G

A23 : U| ≡ G| ⇒ IDGCS

A24 : G| ≡ U| ⇒ IDUAV

According to these assumptions and goals of BAN logic, the main proof of the player, UAV, and
ground control station authentication and communication phase is as follows.

e The ground control station G authenticates the UAV U.

86



Electronics 2020, 9, 62

By M5 and the seeing rule, Statement 33 can be derived.
G � (< IDUAV , RUAV , TUAV2 >PKGCS ,<
H(SEKGU, TGCS2) >CHKGU ).

(Statement 33)

By A18 and the freshness rule, Statement 34 can be derived.
G| ≡ #(< IDUAV , RUAV , TUAV2 >PKGCS ,<
H(SEKGU, TGCS2) >CHKGU ).

(Statement 34)

By (Statement 33), A20, and the message meaning rule, Statement 35 can be derived.
G| ≡ U| ∼ (< IDUAV , RUAV , TUAV2 >PKGCS ,<
H(SEKGU, TGCS2) >CHKGU ).

(Statement 35)

By (Statement 34), (Statement 35), and the nonce verification rule, Statement 36 can be derived.
G| ≡ U| ≡ (< IDUAV , RUAV , TUAV2 >PKGCS ,<
H(SEKGU, TGCS2) >CHKGU ).

(Statement 36)

By (Statement 36) and the belief rule, Statement 37 can be derived.

G| ≡ U| ≡ U
SEKGU↔ G. (Statement 37)

By (Statement 37), A22, and the jurisdiction rule, Statement 38 can be derived.

G| ≡ U
SEKGU↔ G. (Statement 38)

By (Statement 38) and the belief rule, Statement 39 can be derived.
G| ≡ U| ≡ IDUAV . (Statement 39)
By (Statement 39), A24, and the jurisdiction rule, Statement 40 can be derived.
G| ≡ IDUAV . (Statement 40)

f The UAV U authenticates the ground control station G.

By M6 and the seeing rule, Statement 41 can be derived.
U � (< IDGCS, RGCS, TGCS2 >PKUAV ,<
H(SEKGU, TUAV2) >CHKUG ).

(Statement 41)

By A17 and the freshness rule, Statement 42 can
be derived.
U| ≡ #(< IDGCS, RGCS, TGCS2 >PKUAV ,<
H(SEKGU, TUAV2) >CHKUG ).

(Statement 42)

By (Statement 41), A19, and the message meaning rule, Statement 43 can
be derived.
U| ≡ G| ∼ (< IDGCS, RGCS, TGCS2 >PKUAV ,<
H(SEKGU, TUAV2) >CHKUG ).

(Statement 43)

By (Statement 42), (Statement 43), and the nonce verification rule, Statement 44 can
be derived.
U| ≡ G| ≡ (< IDGCS, RGCS, TGCS2 >PKUAV ,<
H(SEKGU, TUAV2) >CHKUG ).

(Statement 44)

By (Statement 44) and the belief rule, Statement 45 can
be derived.

U| ≡ G| ≡ U
SEKGU↔ G. (Statement 45)

By (Statement 45), A21, and the jurisdiction rule, Statement 46 can be derived.

U| ≡ U
SEKGU↔ G. (Statement 46)

By (Statement 46) and the belief rule, Statement 47 can be derived.
U| ≡ G| ≡ IDGCS. (Statement 47)
By (Statement 47), A23, and the jurisdiction rule, Statement 48 can be derived.
U| ≡ IDGCS. (Statement 48)

By (Statement 38), (Statement 40), (Statement 46), and (Statement 48), it can be proved that the UAV
U and the ground control station G authenticate each other in the proposed scheme. Moreover, it can
also be proved that the proposed scheme can establish a session key between the UAV U and the
ground control station G.

In the proposed scheme, the ground control station authenticates the UAV by

CHKGU
?
= H3(SEKGU, TGCS2).

87



Electronics 2020, 9, 62

If it passes the verification, the ground control station authenticates the legality of the UAV. The
UAV authenticates the ground control station by

CHKUG
?
= H3(SEKGU, TUAV2).

If it passes the verification, the UAV authenticates the legality of the ground control station. The
player, UAV, and ground control station authentication and communication phase of the proposed
scheme thus guarantees mutual authentication between the UAV and the ground control station.

Scenario: A malicious attacker uses an illegal mobile reader to control an UAV.
Analysis: The attacker will not succeed because the illegal mobile reader has not been registered to the
trusted authority center and thus cannot calculate the correct session key SEKUP. Thus, the attack will
fail when the legal UAV attempts to authenticate the illegal mobile device. In the proposed scheme,
the attacker cannot achieve their purpose using an illegal mobile device. In the same scenario, the
proposed scheme can also defend against a malicious attack using an illegal ground control station to
send a fake message to a legal UAV, because the illegal ground control station has not been registered
to the trusted authority center and thus cannot calculate the correct session key SEKGU. Thus, the
attack will fail when the legal UAV attempts to authenticate the illegal ground control station.

4.2. Integrity and Confidentiality

To ensure the integrity and confidentiality of the transaction data, this study uses elliptic curve
cryptography and Diffie–Hellman key exchange algorithm to calculate the session key SEKUP, SEKGP
and SEKGU, and also to protect the integrity and confidentiality. The malicious attacker cannot use the
signatures (KUP1, KUP2), (KPU1, KPU2), (KGP1, KGP2), (KPG1, KPG2), (KGU1, KGU2), and (KUG1, KUG2) to
calculate the correct session key SEKUP, SEKGP, and SEKGU.

Only a legal mobile device or UAV can calculate the correct session key SEKUP. The legal UAV
calculates the session key

SEKUP = H2(KUP1, KUP2)

and the legal mobile device calculates the session key

SEKUP = H2(KPU1, KPU2).
KPU1 = SPMDTUAV + aPKUAV

= SPMDbP + aSUAVP
= bSPMDP + SUAVaP

= bPKPMD + SUAVTPMD = KUP1

KPU2 = aTUAV = abP = baP = bTPMD = KUP2

Only a legal mobile device or ground control station can calculate the correct session key SEKGP.
The legal ground control station calculates the session key

SEKGP = H2(KGP1, KGP2)

and the legal mobile device calculates the session key

SEKUP = H2(KPU1, KPU2).
KPG1 = SPMDTGCS + cPKGCS

= SPMDdP + cSGCSP
= dSPMDP + SGCScP

= dPKPMD + SGCSTPMD2 = KGP1

KPG2 = cTGCS = cdP = dcP = dTPMD2 = KGP2

88



Electronics 2020, 9, 62

Only a legal UAV or ground control station can compute the correct session key SEKGU. The legal
ground control station computes the session key

SEKGU = H2(KGU1, KGU2)

and the legal UAV calculates the session key

SEKGU = H2(KUG1, KUG2).
KUG1 = SUAVTGCS2 + ePKGCS

= SUAV f P + eSGCSP
= f SUAVP + SGCSeP

= f PKUAV + SGCSTUAV2 = KGU1

KUG2 = eTGCS2 = e f P = f eP = f TUAV2 = KGU2

Only the correct session key will allow successful communication. Thus, attackers cannot decrypt
or modify the transmitted message. Therefore, the proposed scheme achieves the integrity and
confidentiality.

Scenario: A malicious attacker intercepts the transmitted message from the ground control station to
the player and decrypts the message or sends a modified message to the player.
Analysis: The attacker will not succeed because the legal player will use

CHKPG
?
= H3(SEKGP‖TPMD2)

to check the integrity. The attacker cannot calculate the correct session key SEKGP. Thus, the attack will
fail when the legal player authenticates the received message. In the proposed scheme, the attacker
cannot achieve his/her purpose by sending a modified message to the player, and he/she also cannot
decrypt the intercepted message. For the same reason, the attack will fail when the legal ground control
station uses

CHKGP
?
= H3(SEKGP‖TGCS)

to check the integrity. Therefore, attackers cannot achieve their purpose by sending a modified message
to the ground control station or decrypt the intercepted message.

4.3. Identity Anonymity and Privacy

Another form of privacy attack involves attempting to obtain a player’s real name or physical
location by tracing his/her mobile device. If the mobile device sends the same message continuously, an
attacker can trace its location. In the proposed scheme, the session key SEKUP and SEKGP is changed
for every communication round in order to avoid location tracing. Besides, the pseudonym identity is
used instead of real name in the proposed scheme. Thus, location privacy is protected and identity
anonymity is achieved.

4.4. Availability and Prevention of DoS Attack

An attacker may impersonate a legal sender and then send the same message again to the intended
receiver, trying to make the system unable to provide services properly. However, this attack will
fail in the proposed scheme, as all messages between the sender and the receiver are protected with
the session key SEKUP, SEKGP, and SEKGU, and the attacker cannot calculate the correct session key.
Because the transmitted messages are changed every round, the same message cannot be sent twice.
Thus, the DoS attack is prevented and system availability is achieved.

89



Electronics 2020, 9, 62

4.5. Prevention of Spoofing Attack

In the proposed scheme, the GPS message is obtained by the UAV then transmitted to the ground
control station or the player. The GPS message MGPS is protected by the session key SEKUP and SEKGU.
The attacker cannot compute the correct session key SEKUP or SEKGU and he/she cannot impersonate
a legal UAV and send a fake message. Therefore, the spoofing attack is prevented.

Scenario: A malicious attacker pretends a legal UAV and sends a fake message to the legal ground
control station.
Analysis: The attacker will not succeed because the illegal UAV has not been registered to the trusted
authority center and thus cannot calculate the correct session key SEKGU. Thus, the attack will fail
when the legal ground control station attempts to authenticate the illegal UAV. In the proposed scheme,
the attacker cannot achieve the purpose of pretending to be a legal UAV and sending a fake message.
In the same scenario, the proposed scheme can also defend against a malicious attacker pretending
to be a legal UAV and sending a fake message to the legal player, because the illegal UAV has not
been registered to the trusted authority center and thus cannot calculate the correct session key SEKUP.
Thus, the attack will fail when the legal player attempts to authenticate the illegal UAV.

4.6. Non-Repudiation

In the proposed scheme, the digital signature is used to achieve non-repudiation between the
parties in each phase. The sender uses his/her private key to sign the transmitted message, and the
receiver uses the public key of the sender to verify the received message. Thus, the non-repudiation is
achieved. Table 1 shows the non-repudiation of the proposed scheme.

Table 1. Non-repudiation of the proposed scheme.

Item Phase Proof Issuer Holder Verification

Player and manufacturer
authentication

and communication phase
(CUAV , SigUAV) M P

SigUAV = SSKUAV (Mpayment, CertUAV)

(Mpayment, CertUAV)
?
= VPKUAV (SigUAV)

Player and ground control station
authentication

and communication phase
(CGCS, SigGCS) G P

SigGCS =
SSKGCS (IDPMD, Mpayment, CertUAV)

(IDPMD, Mpayment, CertUAV)
?
=

VPKGCS (SigGCS)

Player, UAV, and ground control
station

authentication and
communication phase

(CPMD3, SigPMD3) P U
SigPMD3 = SSKPMD (Mrequest, CertUAV)

(Mrequest, CertUAV)
?
= VPKPMD (SigPMD3)

(CGCS2, SigGCS2) G U

SigGCS2 =
SSKGCS (IDPMD, Mcon f irm, CertUAV)

(IDPMD, Mcon f irm, CertUAV)
?
=

VPKGCS (SigGCS2)

(CUAV3, SigUAV3) U P

SigUAV3 =
SSKUAV (IDPMD, Mcon f irm, MGPS, CertUAV)

(IDPMD, Mcon f irm, MGPS, CertUAV)
?
=

VPKUAV (SigUAV3)

Ground control station and UAV
authentication

and communication phase

(CGCS3, SigGCS3) G U
SigGCS3 = SSKGCS (IDUAV , Mrequest)

(IDUAV , Mrequest)
?
= VPKGCS (SigGCS3)

(CUAV4, SigUAV4) U G

SigUAV4 =
SSKUAV (IDPMD, Mcon f irm, MGPS, CertUAV)

(IDPMD, Mcon f irm, MGPS, CertUAV)
?
=

VPKUAV (SigUAV4)

4.7. Comparison of Security Issues

Table 2 shows a comparison of security issues of related works.

90



Electronics 2020, 9, 62

Table 2. Comparison of security issues.

Yoon et al. [18] Chen et al. [19] Wazid et al. [20] Tian et al. [21]
The Proposed

Scheme

Mutual
authentication

Unidirectional
authentication Yes Yes Unidirectional

authentication Yes

Integrity N/A Yes No Yes Yes

Confidentiality Yes Yes Yes Yes Yes

Identity
anonymity N/A N/A Yes Yes Yes

Availability No N/A N/A N/A Yes

Privacy N/A N/A Yes Yes Yes

Non-repudiation No Yes No Yes Yes

DoS attack Yes N/A Yes N/A Yes

Spoofing attack N/A N/A Yes N/A Yes

4.8. Computation Cost

Table 3 shows the computation cost of the proposed scheme and Wazid et al.’s scheme [20].
TP: Polynomial function operation
TMul: Multiplication operation
TH: Hash function operation
TCmp: Comparison operation
TEnc: Symmetric encryption operation
TSig: Signature operation
TXor: Exclusive-or operation

Table 3. Computation cost of the proposed scheme and Wazid et al.’s scheme [21].

Wazid et al. [20] The Proposed Scheme

Manufacturer (UAV) registration
phase

Manufacturer (UAV) N/A 2TMul + 1TH + 1TCmp

Trusted authority center 1TP + 2TH 2TMul + 1TH

Player (mobile device) registration
phase

Player (mobile device) 1TP + 8TH + 6TXor 2TMul + 1TH + 1TCmp

Trusted authority center 4TH 2TMul + 1TH

Ground control station
registration phase

Ground control station N/A 2TMul + 1TH + 1TCmp

Trusted authority center N/A 2TMul + 1TH

Player and manufacturer
authentication and

communication phase

Player (mobile device) N/A
5TMul + 4TH + 2TCmp

+2TEnc + 1TSig

Manufacturer (UAV) N/A
5TMul + 4TH + 1TCmp

+2TEnc + 1TSig

Player and ground control station
authentication and

communication phase

Player (mobile device) N/A
5TMul + 4TH + 2TCmp

+2TEnc + 1TSig

Ground control station N/A
5TMul + 4TH + 1TCmp

+2TEnc + 1TSig

Player, UAV, and ground control
station authentication and

communication phase

Player (mobile device)
1TP + 16TH + 3TCmp

+11TXor
1TCmp + 2TEnc + 2TSig

Manufacturer (UAV) 7TH + 2TCmp + 4TXor
5TMul + 4TH + 3TCmp

+4TEnc + 3TSig

Ground control station N/A
5TMul + 4TH + 1TCmp

+2TEnc + 1TSig

Trusted authority center 8TH + 2TCmp + 5TXor N/A

Ground control station and UAV
authentication and

communication phase

Ground control station N/A 1TCmp + 2TEnc + 2TSig

Manufacturer (UAV) N/A 1TCmp + 2TEnc + 2TSig

91



Electronics 2020, 9, 62

In Table 3, computation costs of the proposed scheme and Wazid et al.’s for the trusted authority
center, manufacturer (UAV), player (mobile device), and ground control station in each phase are
analyzed. For the highest computation cost in the player, UAV, and ground control station authentication
and communication phase, a UAV needs five multiplication operations, four hash function operations,
three comparison operations, four symmetric encryption operations, and three signature operations.
A player needs one comparison operation, two symmetric encryption operations, and two signature
operations. A ground control station needs five multiplication operations, four hash function operations,
one comparison operation, two symmetric encryption operations, and one signature operation. The
computation cost is acceptable in the proposed scheme.

4.9. Communication Cost

The communication cost of the proposed scheme and Wazid et al.’s scheme [20] is shown in
Table 4.

Table 4. Communication cost of the proposed scheme and Wazid et al.’s scheme [21].

Wazid et al. [20] The Proposed Scheme

Manufacturer (UAV)
registration phase

Message length 560 bits 2528 bits

Round 1 2

3.5G (14 Mbps) 0.040 ms 0.181 ms

4G (100 Mbps) 0.006 ms 0.025 ms

Player (mobile device)
registration phase

Message length 880 bits 2528 bits

Round 2 2

3.5G (14 Mbps) 0.063 ms 0.181 ms

4G (100 Mbps) 0.009 ms 0.025 ms

Ground control station
registration phase

Message length N/A 2528 bits

Round N/A 2

3.5G (14 Mbps) N/A 0.181 ms

4G (100 Mbps) N/A 0.025 ms

Player and manufacturer
authentication and

communication phase

Message length N/A 2816 bits

Round N/A 4

3.5G (14 Mbps) N/A 0.201 ms

4G (100 Mbps) N/A 0.028 ms

Player and ground
control station

authentication and
communication phase

Message length N/A 2816 bits

Round N/A 4

3.5G (14 Mbps) N/A 0.201 ms

4G (100 Mbps) N/A 0.028 ms

Player, UAV, and ground
control station

authentication and
communication phase

Message length 1840 bits 5536 bits

Round 3 6

3.5G (14 Mbps) 0.131 ms 0.395 ms

4G (100 Mbps) 0.018 ms 0.055 ms

Ground control station
and UAV authentication

and communication
phase

Message length N/A 2720 bits

Round N/A 2

3.5G (14 Mbps) N/A 0.194 ms

4G (100 Mbps) N/A 0.027 ms

92



Electronics 2020, 9, 62

The communication efficiency of the proposed scheme and Wazid et al.’s scheme during the
transaction process of each phase was also analyzed. It was assumed that an elliptic curve modular
operation required 160 bits, a hash operation required 160 bits, an AES operation required 256 bits,
a signature operation required 1024 bits, and other messages, such as id, pid, and random number,
required 80 bits. For example, the player, UAV and ground control station authentication and
communication phase of the proposed scheme requires four elliptic curve modular messages, two
hash messages, four AES messages, three signature operation messages, and six other messages. It
thus requires 160 × 4 + 160 × 2 + 256 × 4 + 1024 × 3 + 80 × 6 = 5536 bits. In a 3.5G environment, the
maximum transmission speed is 14 Mbps. This study also considered the player, UAV, and ground
control station authentication and communication phase of the proposed scheme, which only takes
0.395 ms to transfer all messages. In a 4G environment, the maximum transmission speed is 100 Mbps
and the transmission time is reduced to 0.055 ms.

Basically, Wazid et al.’s scheme provides a lightweight user authentication scheme in which a user
in the IoD environment needs to access data. This appeals as it aims at providing a fast authorization
mechanism. However, the integrity, non-reputation, and availability issues are excluded. However,
compared to Wazid et al.’s scheme, the proposed scheme used the public key cryptography to design a
UAV application field which was applied in a sensitive field such that the integrity, non-reputation and
availability issues needed to be considered and should be ensured [20]. The proposed scheme is a
different application field to Wazid et al.’s scheme. The players must pass necessary procedures to
obtain the flight authority in a sensitive area. It needs more scenarios and overloads. As shown in
Table 4, the communication cost sounds good. The proposed scheme provides a novel solution in the
UAV application field.

Compared to the Wazid et al.’s scheme, the proposed scheme achieves the following advantages:
firstly, the proposed scheme uses a signature mechanism, thus it can ensure data integrity and achieve
non-repudiation and secondly, the proposed architecture involves the role of the ground control
station to effectively grasp the UAVs’ flying status in a sensitive area. The ground control station can
also confirm whether the flying UAV is authorized. Although the proposed architecture has higher
computing and communication costs than the Wazid et al.’s scheme, it also achieves higher security
and availability.

5. Conclusions

At present, UAVs are mainly used for small package delivery and leisure entertainment. In
the future, they will have thousands of uses that could even be widely extended to agricultural,
land protection surveillance, emergency relief, military reconnaissance, space exploration, and other
applications. UAVs will also create new jobs, while also addressing population ageing and manpower
shortages. Advanced technology can bring a better and convenient living environment for mankind,
but UAVs can also be maliciously used, and even endanger national security.

In this paper, a traceable and privacy protection protocol was designed to conduct the UAVs’
application in sensitive control area. The proposed scheme creates a feasible and secure management
platform in a sensitive area surveillance for UAVs’ application. For sensitive military areas, players
must obtain flight approval from a ground control station before they can control the UAV in these
sensitive areas. The proposed scheme achieves mutual authentication, integrity and confidentiality,
anonymity and privacy, non-repudiation, availability and protection against DoS attack, while also
preventing spoofing attack. This study also analyzed the computation cost and the communication
cost in the proposed scheme to prove the proposed scheme is practical in the real world.

Author Contributions: Conceptualization, Y.-Y.D. and C.-L.C.; methodology, Y.-Y.D. and C.-L.C.; validation,
W.W., C.-H.C., Y.-J.C., and C.-M.W.; investigation, W.W. and C.-H.C.; data analysis, C.-H.C., Y.-J.C., and C.-M.W.;
writing—original draft preparation, Y.-Y.D.; writing—review and editing, C.-L.C.; supervision, C.-L.C. and C.-H.C.
All authors have read and agreed to the published version of the manuscript.

93



Electronics 2020, 9, 62

Funding: This work was supported in part by the National Natural Science Foundation of China under Grant
61906043, Grant 61877010, Grant 11501114, and Grant 11901100, in part by the Fujian Natural Science Funds under
Grant 2019J01243, and in part by Fuzhou University under Grant 510730/XRC-18075, Grant 510809/GXRC-19037,
Grant 510649/XRC-18049, and Grant 510650/XRC-18050.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Maza, I.I.; Caballero, F.F.; Capitán, J.; Martínez-de-Dios, J.R.; Ollero, A. Experimental results in multi-UAV
coordination for disaster management and civil security applications. J. Intell. Robot. Syst. 2011, 61, 563–585.
[CrossRef]

2. Meng, X.; Wang, W.; Leong, B. SkyStitch: A cooperative Multi-UAV-based real-time video surveillance
system with stitching. In Proceedings of the 23rd Annual ACM Conference on Multimedia Conference,
Brisbane, Australia, 26–30 October 2015; pp. 261–270.

3. Sun, Z.; Wang, P.; Vuran, M.C.; Al-Rodhaan, M.A.; Al-Dhelaan, A.M.; Akyildiz, I.F. BorderSense: Border
patrol through advanced wireless sensor networks. Ad Hoc Netw. 2011, 9, 468–477. [CrossRef]

4. Vollgger, S.A.; Cruden, A.R. Mapping folds and fractures in basement and cover rocks using UAV
photogrammetry, cape liptrap and cape Paterson, Victoria, Australia. J. Struct. Geol. 2016, 85, 168–187.
[CrossRef]

5. Cho, J.; Lim, G.; Biobaku, T.; Kim, S.; Parsaei, H. Safety and security management with unmanned aerial
vehicle (UAV) in oil and gas industry. Proc. Manuf. 2015, 3, 1343–1349. [CrossRef]

6. Zaouche, L.; Natalizio, E.; Bouabdallah, A. ETTAF: Efficient target tracking and filming with a flying ad
hoc network. In Proceedings of the 1st ACM International Workshop on Experiences with the Design and
Implementation of Smart Objects, Paris, France, 7 September 2015; pp. 49–54.

7. Danoy, G.; Brust, M.R.; Bouvry, P. Connectivity stability in autonomous multi-level UAV swarms for wide
area monitoring. In Proceedings of the 5th ACM Symposium on Development and Analysis of Intelligent
Vehicular Networks and Applications, Cancun, Mexico, 2–6 November 2015; pp. 1–8.

8. Ben-Asher, Y.; Feldman, S.; Gurfil, P.; Feldman, M. Distributed decision and control for cooperative UAVs
using ad hoc communication. IEEE Trans. Control Syst. Technol. 2008, 16, 511–516. [CrossRef]

9. Nader, M.; Jameela, A.J.; Imad, J. Unmanned aerial vehicles applications in future smart cities. Technol. Forecast.
Soc. Chang. 2018, in press. [CrossRef]

10. Sedjelmaci, H.; Senouci, S.M.; Messous, M. How to Detect Cyber-Attacks in Unmanned Aerial Vehicles
Network? In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington,
DC, USA, 4–8 December 2016; pp. 1–6. [CrossRef]

11. Chriki, A.; Touati, H.; Snoussi, H.; Kamoun, F. FANET: Communication, mobility models and security issues.
Comput. Netw. 2019, 163, 106877. [CrossRef]

12. Strohmeier, M.; Lenders, V.; Martinovic, I. On the security of the automatic dependent surveillance-broadcast
protocol. IEEE Commun. Surv. Tutor. 2015, 17, 1066–1087. [CrossRef]

13. Wesson, K.D.; Humphreys, T.E.; Evans, B.L. Can Cryptography Secure Next Generation Air Traffic Surveillance?
Technical Report. Available online: https://radionavlab.ae.utexas.edu/images/stories/files/papers/adsb_for_
submission.pdf (accessed on 21 December 2019).

14. Sedjelmaci, H.; Senouci, S.M.; Ansari, N. Intrusion detection and ejection framework against lethal attacks in
UAV-aided networks: A Bayesian game-theoretic methodology. IEEE Trans. Intell. Transp. Syst. 2016, 18,
1143–1153. [CrossRef]

15. Sedjelmaci, H.; Senouci, S.M.; Ansari, N. A hierarchical detection and response system to enhance security
against lethal cyber-attacks in UAV networks. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 1594–1606.
[CrossRef]

16. García-Magariño, I.; Lacuesta, R.; Rajarajan, M.; Lloret, J. Security in networks of unmanned aerial vehicles
for surveillance with an agent-based approach inspired by the principles of blockchain. Ad Hoc Netw. 2019,
86, 72–82. [CrossRef]

17. Xiao, L.; Xie, C.; Min, M.; Zhuang, W. User-centric view of unmanned aerial vehicle transmission against
smart attacks. IEEE Trans. Veh. Technol. 2017, 67, 3420–3430. [CrossRef]

94



Electronics 2020, 9, 62

18. Yoon, K.; Park, D.; Yim, Y.; Kim, K.; Yang, S.K.; Robinson, M. Security authentication system using encrypted
channel on UAV network. In Proceedings of the 2017 First IEEE International Conference on Robotic
Computing (IRC), Taichung, Taiwan, 10–12 April 2017; pp. 393–398.

19. Chen, L.; Qian, S.; Lim, M.; Wang, S. An enhanced direct anonymous attestation scheme with mutual
authentication for network-connected uav communication systems. China Commun. 2018, 15, 61–76.
[CrossRef]

20. Wazid, M.; Das, A.K.; Kumar, N.; Vasilakos, A.V.; Rodrigues, J.J.P.C. Design and analysis of secure lightweight
remote user authentication and key agreement scheme in internet of drones deployment. IEEE Internet
Things J. 2018, 6, 3572–3584. [CrossRef]

21. Tian, Y.; Yuan, J.; Song, H. Efficient privacy-preserving authentication framework for edge-assisted Internet
of Drones. J. Inf. Secur. Appl. 2019, 48, 102354. [CrossRef]

22. Han, W.; Zhu, Z. An ID-based mutual authentication with key agreement protocol for multiserver environment
on elliptic curve cryptosystem. Int. J. Commun. Syst. 2014, 27, 1173–1185. [CrossRef]

23. Sarath, G.; Jinwala, D.C.; Patel, S. A Survey on Elliptic Curve Digital Signature Algorithm and its Variants.
Comput. Sci. Inf. Technol. (CSIT)–CSCP 2014, 121–136. [CrossRef]

24. Chen, L.; Morrissey, P.; Smart, N.P. Pairings in Trusted Computing. LNCS 2008, 5209, 1–17.
25. He, D.; Chan, S.; Guizani, M. Communication security of unmanned aerial vehicles. IEEE Wirel. Commun.

2017, 24, 134–139. [CrossRef]
26. Burrows, M.; Abadi, M.; Needham, R. A logic of authentication. ACM Trans. Comput. Syst. 1990, 8, 18–36.

[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

95





electronics

Article

A New FANET Simulator for Managing Drone
Networks and Providing Dynamic Connectivity

Mauro Tropea *, Peppino Fazio, Floriano De Rango and Nicola Cordeschi

DIMES Department, University of Calabria, via P. Bucci 39/c, 87036 Arcavacata di Rende, Cosenza, Italy
pfazio@dimes.unical.it (P.F.); derango@dimes.unical.it (F.D.R.); nicola.cordeschi@unical.it (N.C.)
* Correspondence: mtropea@dimes.unical.it (M.T.); Tel.: +39-0984-494786

Received: 14 February 2020; Accepted: 19 March 2020; Published: 25 March 2020

Abstract: In the last decade, the attention on unmanned aerial vehicles has rapidly grown, due to
their ability to help in many human activities. Among their widespread benefits, one of the most
important uses regards the possibility of distributing wireless connectivity to many users in a specific
coverage area. In this study, we focus our attention on these new kinds of networks, called flying
ad-hoc networks. As stated in the literature, they are suitable for all emergency situations where the
traditional networking paradigm may have many issues or difficulties to be implemented. The use of
a software simulator can give important help to the scientific community in the choice of the right
UAV/drone parameters in many different situations. In particular, in this work, we focus our main
attention on the new ways of area covering and human mobility behaviors with the introduction of
a UAV/drone behavior model to take into account also drones energetic issues. A deep campaign
of simulations was carried out to evaluate the goodness of the proposed simulator illustrating how
it works.

Keywords: FANET; coverage model; human mobility model; UAVs/drones positioning;
energy model

1. Introduction

With the huge development of drone management, in terms of regulation [1] and ad-hoc protocols
for 3D environments [2], Unmanned Aerial Vehicles (UAVs) are becoming a new and efficient way of
providing wireless connectivity to the users in a specific geographical area covered by UAVs/drones.
Given the possibility to access hostile environments and desolate places, drones can be used in many
emergency situations (with the related disaster events) where the availability of temporary, prompt,
and efficient communication with the outside world can provide important help for saving lives or
executing rescue operations. Let us think, for example, to severe weather events, earthquakes, sabotage,
and other natural or man-made disasters which can destroy water lines, roadways, bridges, oil and gas
pipelines, power plants, transmission lines, and other infrastructures. The communication network
composed by a dynamic set of UAVs is well known in the literature as Flying Ad-hoc NETwork
(FANET), a particular type of Mobile Ad-hoc NETwork (MANET), in which the mobile nodes are
the UAVs/drones that can construct self-organizing networks [3] and more complicated 3D mobility
models. The way a fleet of drones can provide a reliable coverage service has been an important
research topic for several years [4]. FANETs aim to maintain a certain quality of transmission deploying
also node movement predictions [5–7]. The cooperation between these devices is fundamental for
an optimal coverage service, because it is based on many coordination techniques, able to create
collaborating fleet of drones, paying attention to energy issues [8] and channel state [9,10] conditions.

This paper is the extension of the conference paper [11] and it has the aim of providing the
design and the realization of a software simulator written in Java language, able to point the attention

Electronics 2020, 9, 543; doi:10.3390/electronics9040543 www.mdpi.com/journal/electronics97



Electronics 2020, 9, 543

on a set of important aspects of a FANET network. This kind of network is composed of a team
of UAVs/drones that, as in our case, are able to provide and guarantee connectivity to users that
are under their coverage. Moreover, the implemented software has the possibility of importing real
maps directly from Google Maps platform. The particularity of the simulator is the management of
the users based on a human mobility model that previews the subdivision of the map in different
Points of Interest (PoIs) in which different typologies of users can move. PoIs represent the places
crossed by mobile users that move towards a particular destination. The software is equipped also
with a Graphical User Interface (GUI) that allows setting parameters such as the number of drones
for covering an area, the number of users in the area, the specific drones parameters such as height
and coverage radius, network resource in terms of available bandwidth, traffic typology, and so on. In
addition to the previous conference paper, where the authors integrated the simulator with a human
mobility model, for modeling users movements in the covered area, and a footprint model, for modeling
drones channel and calculate the correct drone height on the basis of the coverage radius, a new
drone behavior model taking into account the limited autonomy of these devices that have the necessity
of recharging their batteries for continuing in the specific task and a a energy consumption model for
considering the decreasing of energy during the flight are also introduced. The whole simulator
was based on the current and newer Italian/European legislation related to the new ENAC proposal,
which will be effective from July 2020, and on a review of the current state of UAV Regulations [12].
The constraints used in the simulator have been extracted from the LIC15 draft [13,14] and the main
ones are resumed in Table 1. In the simulator, a standard link state protocol with periodical updates
was implemented, for considering availability of bandwidth resources in the area where moving the
users. Numerical results confirm the goodness of the proposed simulation software.

Table 1. Table of drones.

Subcategory Operative Environment Drone
Class

Weight Required Skills

A1 (VLOS,
h<120m)

Overflight of uninvolved
people (no gatherings)

C0
C1

<250 g;
<900 g;
(v<19 m/s,
E<80J)

Online training and online exam prepared by the
authority or center recognized by the authority

A2 (VLOS,
h<120m)

50 m horizontal from
uninvolved people, or 5 m if
a low speed mode limited to
3 m/s is installed

C2 <4 kg Certificate of competence issued by the authority
or a center recognized by the authority, after:
Online training and online examination as for A1.
Self-practical training. Additional online training
and online exam prepared by the authority or
center recognized by the authority with additional
subjects

A3 (VLOS,
h<120m)

No presence of uninvolved
people, 150 m from
residential, commercial,
industrial, or recreational
areas

C3
C4

<25 kg
<25 kg

Online training and online exam as for A1

The remainder of this paper is organized as follows. Section 2 presents the most recent works
on the considered research topics. Section 3 describes the FANETSim network simulator, with more
emphasis to its main components. Section 4 describes the Java simulation environment and the
implementation details. Numerical results are presented in Section 5. Section 6 summarizes the main
conclusions and future works.

2. Related Work

The UAVs management introduces many issues in terms of coverage guarantees, protocol
communications, self coordination, path planning, software modules implementation, privacy, and
civilian use [1]. It is a quite new opportunity for realizing a new kind of temporary and dynamic
infrastructure and, in the last years, it has been the subject of a lot of research activity [2]. In
fact, the utilization fields of these devices are many and different, such as: connectivity, precision

98



Electronics 2020, 9, 543

agriculture, disaster and recovery, and so on. In the literature exist many studies concerning the use of
UAVs/drones in different scenarios showing their enormous potentiality in many applicative domains.
Among different works, some propose new software simulators tailored on specific applications and
then capable of analyzing in depth the UAVs/drones’ behavior. In the following, some of literature
works are presented showing the studies of the researchers concerning drones’ simulators suitable for
covering a particular region and giving connectivity to the users.

2.1. UAVs/drones Path Planning

The general problem of the optimum path has been investigated for many years, not only in the
UAV environment. However, when considering a particular architecture, the best-path evaluation
from a source point to a destination point should consider some particular constraints.

For example, Huang et al. [4] analyzed the problem of drones deployment with particular attention
to the maximization of terrestrial user coverage and the minimization of drone communication costs.
The authors proposed an optimization model to seek the optimal positions on the street graph for the
drones to optimize the objective subject to that the drones and the Base Stations form a connected
graph. By the analysis of real datasets, the authors showed that a local optimum can be evaluated.

Mardani et al. [15] addressed the problem of path planning for maximizing the quality of video
streaming applications. The authors proposed two schemes, based on the A* search algorithm with
Dubins-path [16], taking into account the limited energy availability, the wind effect, and the path
post-smoothing, in order to avoid squared paths. Both algorithms optimize the path jointly in terms of
distance and throughput experienced by the drone. Numerical results confirm the effectiveness of the
proposed scheme.

Ghaddar et al. [17] considered the management of UAV flights for monitoring geographical
zones while optimizing the paths for covering the considered area of interests and minimizing energy
consumption. The proposed scheme also aims to achieve the minimum completion-time, minimum
number of turns, to lower the energy consumption, and having a shortest mission path to cover the
whole area. They considered one rotary wing drone, without obstacles and non-flying zones. The path
is planned again by considering a grid-based geographical decomposition.

2.2. UAV/Drone Simulators

In this subsection, we present some of the more recent works in literature that deal with
UAV/drone simulators showing different contexts of use. The simulators are very important given
that most of the experiments using real prototypes or systems are not feasible due to the costs and
risks involved.

De Rango et al. [18–20] proposed a software simulator in the field of agriculture domain able
to define specific variables and parameters and to test mechanisms of UAV/drone team control and
coordination. These articles suggest new techniques of UAV coordination and monitoring of the specific
region in order to cope with the parasites. The proposed techniques show how the UAVs’ behavior
and performance vary when different constraints, for example coverage range for communication,
consumed energy, and drones resources, are taken into account.

Marconato et al. [21] proposed a hybrid software-based simulator called Aerial Vehicle Network
Simulator (AVENS). This simulator merges X-Plane and OMNeT++ integrated with LARISSA (Layered
architecture model for interconnection of systems in UAS). They integrated several networking
protocols. The two simulators offer different functionalities: X-Plane allows controlling the flight;
OMNeT++ allows measuring network parameters such as throughput, packet loss, and so on.
Information between the two environments are exchanged through XML files.

Zema et al. [22] showed a novel simulation suite for networked flying robots, as the result of the
integration of two already validated solutions: FL-AIR (Framework libre AIR) simulator and NS-3.
The authors proposed a software solution that exploits the characteristics of these software to obtain

99



Electronics 2020, 9, 543

a new one, called CUSCUS (CommUnicationS-Control distribUted Simulator), able to manage both
networked and distributed control systems.

Baidya et al. [23] proposed a flexible and scalable open source simulator called FlyNetSim. Their
software is able to simulate swarm of UAVs and uses two open source tools, namely ArduPilot and
NS3, creating individual data paths between the devices operating in the system using a publish
and subscribe-based middleware. They illustrated the capabilities of the proposal through cases of
different scenarios.

Kate et al. [24] dealt with particular type of UAVs called micro-aerial vehicle (MAV) that are
an emerging class of mobile sensing system. Their simulator, called Simbeeotic, allows considering
swarms of MAVs and permits to model their key features, such as sensing and communication.
The authors demonstrated that their software provides the appropriate level of fidelity to evaluate
prototype systems while maintaining the ability to test at scale.

Javaid et al. [25] introduced in their paper a simulation testbed, called UAVSim (Unmanned
Aerial Vehicle Networks cyber security analysis). The software allows users to easily experiment
by adjusting different parameters for the networks, hosts and attacks. Each UAV device works on
well-defined mobility framework and radio propagation models, which resembles real-world scenarios.
Based on the experiments performed in their software, the authors evaluates the impact of Jamming
attacks against UAV networks and reported the results to demonstrate the needing and usefulness of
the testbed.

Al-Mousa et al. [26] proposed a simulator called UTSim able to simulate different UAV key
aspects such as physical specification, navigation, control, communication, sensing, and avoidance
in environments with static and moving objects in urban air traffic. The simulator is easy to use and
permits specifying a set of parameters: the properties of the environment, the number and types of
unmanned aerial vehicles in the environment, and the algorithm to be used for path planning and
collision avoidance. The simulator is able to produce log files with a lot of useful information to be
used for evaluating its goodness.

2.3. UAV/Drone Coverage

In this subsection, the studies on the coverage issues are analyzed. The research on connectivity is
very interesting. The problems around connectivity, especially concerning the possibility of providing
a prompt help in those situations of emergency such as catastrophic or disasters events, are an object
of study by the research community.

Al-Hourani et al. [27] gave an interesting study on a RF propagation model for low altitude
platforms providing a valid statistical approach. They proposed a simple analysis based on parameters
belonging to the urban scenario that can be applied in those situation where the terrestrial infrastructure
are “out-of-order” because of natural disaster. Their statistical model is able to perform prediction of
path loss between the altitude platform and the terminals in a typical urban scenarios.

Park et al. [28] provided the results about their study on the possibility of giving aerial Wi-Fi
network thanks to the use of UAVs/drones called Net-Drone. In this network, each aerial device
acts as an access point for the users and it is able to give connection based on their mobility, which
is especially useful for disaster areas where terrestrial network infrastructure is no longer available.
Their proposal takes into account also the handover mechanisms, necessary to perform an adequate
wireless coverage.

In addition, Sae et al. [29] analyzed, using low altitude platform, the possibility of providing
a temporary communication network, composed of a number of devices equipped on board with
dual technology, able to provide Wi-Fi connectivity acting as access point and a mesh network for the
inter-devices communications. The authors provided a set of simulation results to prove the goodness
of their proposal.

Xie et al. [30] analyzed and studied the optimal deployment density of Drone Small Cells (DSCs) to
achieve maximum coverage considering the inter-cell interference. They split the channel propagation

100



Electronics 2020, 9, 543

conditions as depending on two different signals, namely a probabilistic Line-of-Sight (LoS) and
a probabilistic Non-Line-of-Sight (NLoS) links, which increases the computational difficulties in
performance analysis. Their mathematical approach takes into account both LoS and NLoS links in
order to consider the inter-cell interference issues affecting the communications.

2.4. Main Paper Contribution

This paper is the extension of the conference paper [11] where a new Java simulator has been
proposed, able to simulate the dynamics of human movements and drones coverage. The main
contribution of this paper is the introduction in the simulator of a new model for simulating drones
coordination and behavior in order to re-accomplish the specific task and manage the charging
operations. Thus, the developed simulator considers four important models implemented in the
FANET network:

1. There is the model of a footprint, which links the coverage area, and then the radius and height of
these new devices.

2. The model of human behavior simulates real movements of users in the considered area.
3. The model of drones behavior in the sky considers their limited autonomy, and then the necessity

of recharging their batteries for continuing in the specific task.
4. The model of energy consumption considers how the energy of a drone decreases during its flight.

In this work no collision issues are taken into account and thus no collision behavior is modeled.
We considered energy consumption for the drone flight to model its limited autonomy and show the
need to perform charging operations for guaranteeing service continuity.

The simulator is also able to collect some interesting statistics about the simulated entities, giving
the possibility to analyze the critical aspects that could occur in real situations, in terms of bad service
coverage or emergency situations.

Table 2 compares the drone simulators described in the related work Section 2.2 showing
the implemented models for each simulator with respect to the models implemented in our
simulator software.

Table 2. Comparison of UAVs software simulators on implemented models.

Simulator Applications Human Mobility Coverage Model Path Planning Energy Model
Model Model Model

AVENS [21] R&D - - x -

CUSCUS [22] R&D - - x -

FlyNetSim [23] R&D - x x -

Simbeeotic [24] R&D - x - -

UAVSim [25] R&D - x x -

UTSim [26] R&D - x x -

FANETSim R&D x x x x

3. FANETSim: FANET Simulation System

The developed simulator is Java software able to consider a set of UAVs/drones that fly in the sky
for providing connectivity to the users inside the considered map, as shown in Figure 1. They have
to be able to communicate with each other in order to exchange protocol messages and they have to
guarantee connectivity to the users that require resources for a specific application. The simulator is
equipped with a GUI that gives the possibility of setting the opportune values of the considered input
parameters and, moreover, it permits extracting from Google Maps the real map to be considered
for the simulations. In this map, it is possible to analyze the human behavior on the basis of the
considered human mobility model that gives some indications on how people move during the day.

101



Electronics 2020, 9, 543

For the simulation, two different types of applications were considered: video and audio streaming.
The main actors of the simulator are represented by the two main nodes: UAVs/drones and Users. In
the following, the models considered for the aerial devices and for the people are shown.

Figure 1. UAV/drone coverage footprint on the map.

As illustrated below, the FANET network topology is modeled by a grid graph structure, in
which each node represents a drone and the links represent the connections between them (nodes
regarding users are neglected in the forwarding network topology). The obtained adjacency matrix
related to the graph is typically sparse, but it is highly dynamic given the mandatory drones mobility
(from/to charging stations). The protocol messages exchanged by nodes (UAVs/drones and Users)
allow the set up of the FANET network. Clearly, these nodes have to be inside a coverage that allows
the communication between each devices. As mentioned above, the topology is modeled as a graph
where an edge is represented by the couple of linked nodes. Each node (each vertex of the graph) has a
list of neighbors that it stores in its own database.

3.1. Link State Protocol

The protocol used for the set up of the FANET network is a standard link state protocol that uses
the typical messages preview by the standard. The link state protocol allows constructing the path
between a couple of nodes defined source and destination. The protocol guarantees the possibility of
topology adaptions, in case of topological changes when a new link is set up in the network or a link
goes down. The simulator considers a real time delay in the communication, taking into account the
propagation delay, the transmission delay, and the elaboration (processing) delay.

In the following, the messages sent for the creation of the FANET:

• HELLO: It is used for discovering the neighbor drones.
• ACK: It is used in reply to the HELLO message.
• BYE: It is used to disconnect a drone from the network.
• LSA (Link State Advertisement): It carries the Link State Table and it is sent in flooding to all

the neighbors.
• LSU (Link State Update): It is used to update other routers with the information contained in the

local router’s database.
• LU (Link Update): It is created to reduce traffic. Each drone sends it itself to account for its link

update. The LU are grouped in a single LSU message and managed every 30 s. At every prefixed
time, the drone generates a LSA packet with the updated information about its links.

The UAVs/drones can send the packets of the link state protocols containing the following main
information: a number ID that identifies the node; a sequence number increased in each new packet;

102



Electronics 2020, 9, 543

and the Time To Live (TTL) of the packet. Moreover, the device uses a database for storing update
information for each received LSA packet (see Figure 2).

Figure 2. New record of LSA DB.

3.2. Human Mobility Model

The simulator introduces a human mobility model that helps to describe people behavior during
the day giving indication on the main habits of the considered classes of users. This model is derived
from a study conduced by the University of Milan [31]. They analyzed a smartphone call information
dataset with over 69 million phone calls and 20 million text messages extracted in the city of Milan
conduced for 67 continuous days. Moreover, in their work, the authors also studied the dataset of
WiFi and GPS information based on the behavior of 178 people during four years (between 2007 and
2011). Thanks to this large volume of data, they extrapolated a human mobility model that considers
three different categories of Points of Interest (PoIs) that represent the places visited by people during
the day:

• Mostly Visited PoI (MVP): locations most frequently visited by users (in this case are the homes
and the workplaces);

• Occasionally Visited PoI (OVP): locations of interest for the user, but visited just occasionally (in
most cases, they correspond to favorite places or meeting points visited during the week); and

• Exceptionally Visited PoI (EVP): locations that users rarely visit.

The behavior of users in the area has been considered and a classification of this people behavior
has been introduced into the software simulator, considering the possible movement of the users in an
urban scenario. Three different typologies of mobile users have been proposed:

• Employee: People who spend most of their time of a day at work. In addition, students can fit
into this category.

• Housewife: People who spend most of their time, especially in the morning, at home.
• Retired Person: People who are free to move in the area without any constraints.

It is clear that each kind of users will spend its time during the day differently from other users
categories, moving on the map with a different mobility model, as shown in Figure 3.

103



Electronics 2020, 9, 543

Figure 3. Diagram of human behavior for the different types of users.

The mobile user movements are influenced by their needs and social links. A user moves towards
a series of places but he come back to home or to work that represent the most visited places. The
probabilities associated with the most relevant places visited by users are computed on the basis of the
visiting frequency. Equation (1) shows the probability that each mobile user m chooses of visiting the
next j − th Point of Interest, PoIj, during a generic day, given that he has just visited the i − th one:

P(PoIi,j) =
Nvis(PoIi,j)

NvisTOTouti

(1)

where Nvis(PoIi,j) represents the number of times a mobile user has left PoIi to go to PoIj, and
NvisTOTouti

is the total number of times a mobile user left PoIi.
As regards the PoIs management with the mobility trace-files extracted from the considered map

(Milan in our case), each mobile user chooses the next j − th PoI to be visited probabilistically, on the
basis of Equation (1). Our simulator gives the possibility to deploy a parametric number of PoIs as
a square grid. Thus, without loss of generality, suppose we have a square geographical map with
M × M size and a PoI grid equally spaced of n × n where each point represents the coordinates of
a point of interest. The horizontal and vertical distance among PoIs will be M/n. Thus, if PoIi has
the coordinates (xi, yi), then its “pertinency” will occupy the area Bi = [(x ± Thx), (y ± Thy)], where
Thx = Thy = M

2n . To obtain the expression of Equation (1) a preliminary simulation round is necessary;
the j − th PoI is considered visited (and, hence, Nvis(PoIi,j) is increased by 1 considering the starting

104



Electronics 2020, 9, 543

PoIi) if users arrive inside Bi during the trips provided into the trace-files and remain inside the Bi
for a certain temporal threshold indicated with parameter Tht at least equal to 300 s [32]. In this way,
Equation (1) can be defined for each defined PoI inside the map.

3.3. Footprint Coverage Model

In the considered urban scenario, a typical air to ground channel model has been considered
composed mainly of two signals: Line of Sight (LoS) and a Non-Line of Sight (NLoS) [27]. These two
typologies of signal can be considered separately and, then, they are studied considering different
occurrence probabilities, which are functions of environment, density and height of buildings, and
elevation angle. In this context, the impact of small scale fading has been neglected considering that
fading probability is much smaller that the probability of receiving LoS and NLoS components [33]. In
these conditions, for NLoS connections affected by shadowing and signals obstacles reflection, Path
Loss (PL) is higher than LoS. For this reason, additional path loss values are assigned to LoS and NLoS
links in the free space propagation loss model. In Table 3, the mathematical formulation symbols used
in this subsection are shown.

Table 3. Footprint coverage model: used symbols.

Symbols Description

ξLoS average additional loss to the free space propagation loss in LoS

ξNLoS average additional loss to the free space propagation loss in NLoS

γth SNR threshold

α constant values which depend on the environment (rural, urban, dense urban, etc.)

β constant values which depend on the environment (rural, urban, dense urban, etc.)

fc carrier frequency

PL Path Loss

PLLoS Path Loss for the LoS component of the signal

PLNLoS Path Loss for the NLoS component of the signal

h height

r coverage radius

d distance between drone and receiver

θ elevation angle

Pr(LoS) probability of having LoS connections at an elevation angle of θ

Pr(NLoS) probability of having NLoS connections at an elevation angle of θ

PTX transmission power

PRX received power

N noise power

μ h on r ratio

A typical coverage area of a drone is characterized by h (height of the drone), r (coverage radius),
d =

√
r2 + h2 (distance between user on the coverage edge and drone in the sky), and θ = tan−1(h/r)

(angle (in radiant) between r and d), as shown in Figure 1.
From the above, a formula for the Path Loss (PL) for LoS/NLoS conditions as in [27] is given:

PLLoS/NLoS(dB) = 20log(4π fcd/c) + ξLoS/NLoS (2)

where PLLoS/NLoS is the average (PL) for LoS/NLoS links, ξLoS/NLoS is the average additional loss to
the free space propagation loss which depends on the environment, c represents the speed of light,

105



Electronics 2020, 9, 543

and fc is the carrier frequency. The probability of having LoS connections at an elevation angle of θ is
given by [30]:

Pr(LoS) =
1

1 + α · exp[−(β[(180/π)θ − α])]
(3)

where α and β are constant values which depend on the environment (rural, urban, dense urban, etc.).
The NLoS probability is Pr(NLoS) = 1 − Pr(LoS). Equation (3) indicates that the LoS probability

in the connection between drone and user is a function of θ. In particular, it expresses that by increasing
the elevation angle θ, the shadowing effect decreases and clear LoS path exists with high probability.
Finally, the average PL is given. It shows its dependence from altitude (h) and coverage radius (r):

P̄L(r, h) = Pr(LoS) · PLLoS + Pr(NLoS) · PLNLoS. (4)

On the basis of the previous drone channel model it is possible to provide a formula that links
the optimal altitude h to the maximum ground coverage area of radius r. Considering the drone
transmission power (PTX), it is possible to compute the received power (PRX) as: PRX(dB) = PTX −
PL(r, h)

Having PRX , an user inside the coverage area of a drone at an height of h can receive the signal if
its Signal to Noise Ratio (SNR) is greater than a set threshold (γth):

γ(r, h) =
PRX
N

> γth (5)

where N is the noise power. From Equation (5), it is possible to state that, to find the maximum
achievable coverage radius, it should be: γ(r, h) = γth. Setting transmission power, the optimal drone
height for having maximum coverage is given by [33]:

180(ξNLoS − ξLoS)βZ
π(Z + 1)2 − 20μ

log(10)
= 0 (6)

where Z = α · exp(−β[(180/π)tan−1(μ)− α]) and μ = h/r. By solving Equation (6), hopt and rmax are
found. The following parameter values have been considered: fc = 2 GHz; ξLoS = 1 dB; ξNLoS = 20 dB;
α = 9.6; β = 0.28; and γth = 10 dB.

3.4. Drone Characteristics and Energy Model

In the simulator, a typology of a drone with a flight mechanism called “fixed-wing”, which is in
the category of very small drones (with a weight between 100 g and 2 kg), has been considered. In
particular, the model selected for this typology of drones is the “Parrot Disco”, which has the following
specific characteristics: a weight of about 750 g, a range of about 2 km for remote control, a flight
time of about 45 min, and a speed of about 80 km/h. Moreover, it is equipped with a three-cell LiPo
battery of about 2700 mAh/25 A. The typical applications for this typology of drones are recreation
and connectivity [34].

The total energy consumption of the UAV includes two components. The first one is the
communication-related energy, which is due to the radiation, signal processing, as well as other
circuitry. The other component is the propulsion energy, which is required for ensuring that the UAV
could remain in the sky for supporting its mobility, if needed. The energy of an aircraft is characterized
by two parameters, which are specific energy distribution rate, driven by elevator, and total specific
energy rate, driven by throttle [35]. Note that, in practice, the communication-related energy is usually
much smaller than the UAV’s propulsion energy consumption; thus, as shown in several studies, it
is ignored. For the flight level with fixed altitude, the UAV’s energy consumption can be considered

106



Electronics 2020, 9, 543

only depending on the speed v(t) and acceleration a(t). For steady straight-and-level flight (SLF) with
constant speed V, we have ||v(t)|| = V and a(t) = 0, ∀t. Thus, we have:

ĒSLF(V) = T
(

c1V3 +
c2

V

)
(7)

Equation (7) is the consumed energy of the flight device for a finite time horizon T, where c1

and c2 are two parameters that take into account: weight, wing area, air density, etc. For simplicity,
in this work, the payload is considered into the overall weight of the aircraft and the UAV energy
storage weight reduction over time (for consumed fuel or battery) is ignored. The energy consumption
presented in Equation (7) is a function of V, and it consists of two terms: one is proportional to the
cubed speed V; it is known as the parasitic power for overcoming the parasitic drag due to the aircraft’s
skin friction, form drag, etc. The other term, as shown in Equation (7), is inversely proportional to V; it
is known as the induced power for overcoming the lift-induced drag, i.e., the resulting drag force due to
wings redirecting air to generate the lift for compensating the aircraft’s weight. Moreover, the formula
shows the dependence of time T as the time.

3.5. UAV/Drone Behavior Model

In this section, the behavior of flying UAVs is described, as implemented in the proposed Java
simulator. We based our implementation on a simplified version of the idea in [15], considering the
energy-aware approach for generating optimal trajectories, neglecting wind conditions and considering
a dynamic coverage range, in order to adapt the data transmission to clients needs, in terms of the
number of service requests. In this paper, no collision avoidance issues are taken into account. We have
considered that drones cannot be in the same airspace and no collision model has been implemented.
These aspects will be considered in our future works. In Table 4, the symbols for the mathematical
formulation used in this subsection are shown.

Table 4. Drone behavior model: used symbols.

Symbols Description

ej edge ∈ E

Elm Energy consumed traveling between ejl and ejm

Eres Residual Energy

EPNR Point of No Return (PNR) Energy

Psd Loopless path between a starting waypoint and a destination waypoint

PWd Consuming power

csj j − th charging station

tlm traveling time on (ejl , ejm )

The authors of [15] based their path planning algorithm on the A* search algorithm and Dubins
paths [16], with a computational complexity lower than the one of Dijkstra’s algorithm, thanks to the
use of a heuristic function and a smaller search space. It must be underlined that physical trajectories
are computed off-line by internal controllers, while routing data distribution is based on the link state
protocol, as described above. Internal trajectory algorithms are also responsible for compensating
external disturbances of regular and stable movements and follow the indications evaluated by the
path planning algorithm. Drones join the data network by exchanging the HELLO packets with their
neighbors. Coverage range is dynamically adapted to cover bigger/smaller regions on the basis of
the requested bandwidth and the number of users (this is the main relation with the human mobility
model and PoIs). The coverage range is never lower than h∗ (the distance from the drone and the

107



Electronics 2020, 9, 543

terrestrial surface, in order to guarantee the air–terrestrial connectivity). Figure 4 represents a typical
coverage scenario with only four drones.

Figure 4. An example of geographical coverage: black points are the drones, thin circles represent their
coverage area, and the link represent the connection for data/overhead/LSP transmission.

As illustrated in Figure 4, the flight area is modeled according to an undirected grid graph [17]
GG =< V, E >, where V = v1, ..., vn is the set of nodes (drones) associated to the n tiles and
E = e1, ..., ek is the set of edges. The number of drones n is equal to the number of tiles, while
the number of edges k is variable and depending on the reciprocal coverage relationships. In fact, each
drone is located at the center of each tile and its coverage range is directly proportional to the number
of service requests of its tile. Differently from Mardani et al. [15], nodes corresponding to adjacent tiles
are not surely connected by an edge: radiuses are adjusted on the basis of the bandwidth needs of the
covered tile.

Each vi ∈ V is associated to a geographical position xi, yi and to a number of service requests
si, while an edge ej ∈ E is associated to the radio connection (ejl , ejm) between nodes vl and vm. We
do not consider obstacles in the flight area. Drones can fly from a tile to another one at constant
speed vd, while consuming a power PWd. The initial energy available in each drone is Es, while the
energy consumption for traveling on (ejl , ejm) is Elm. After the battery charging completion (in the
simulator, different numbers of charging stations have been considered and they are placed on the map
accordingly description in Section 4), each drone vi starts its trip from the first tile near the charging
station tsw (starting waypoint) and it needs to arrive to the center of its associated tile tdw (destination
waypoint), by following a set of consecutive flying segments from tsw to tdw, forming a loopless path
Psd. If PATHsd is the set of all the possible loopless paths, the implemented drone mobility scheme,
finds the optimal path ∈ PATHsd for minimizing energy consumption and respecting the following
relationship:

∑
(ejl

,ejm )∈Psd

Elm ≤ Eres (8)

with Eres residual energy of the drone (at the beginning Eres = Es), while the energy consumption is
Elm = PWd · tlm, with tlm equal to the traveling time on (ejl , ejm). For simplicity, we did not considered
the smoothing feature of Mardani et al. [15], thus drones move along the edges of the graph in a
squared way.

The algorithm implemented in Java for the proposed simulator is composed of three main parts:

• Initialization: At the beginning, charging stations are placed as explained above and it is assumed
that drones are fully charged, and then sent to the center of their own tile. When the drone arrives,

108



Electronics 2020, 9, 543

the Point of No Return (PNR) energy EPNR is evaluated for each drone, in order to know the
amount of energy needed for having the possibility to go back to the charging station. Each drone
then adjusts its coverage radius on the basis of the number of the number of service requests
and starts the flooding of HELLO messages and the LSP. Once the grid graph (GG) is created, its
adjacency matrix can be set as M.

• Loop: Each drone vi has to continuously check its own residual energy level. When the energy
drops down the EPNR threshold, the drone in tile ti needs to return to its charging station csj,
thus the function PLAN is called to evaluate the best “go-back” path with the lowest energy
consumption. If the drone vi is in csj and its energy level has reached the maximum Es, then the
optimal path needs to be planned again, through the PLAN function.

• PLAN: This function receives as inputs GG, source and destination nodes, and it returns the
evaluated path in the variable p. Its structure is very similar to the typical minimum search
Dijkstra′s algorithm, but the extract-min-energy function takes into account the relationship of
Equation (8). In fact, the energy needed by a drone to traverse an edge elm is given by Elm =

PWd · tlm and it is taken into account by this function as the metric for each edge of the graph.

4. UAV/Drone Simulation Environment

The geographical grid model has been based on the center of Milan, with its center GPS coordinates
equal to 45.468197, 9.193153. The map was extracted from Google Maps platform considering real
coordinates. Several PoIs (shops, restaurants, hotels, and churches) have been taken into account, as
well as people’s homes (a grid of 12 × 12 = 144 PoIs was chosen to cover most of the map).

Pedestrian mobility was then generated as follows: each mobile user will start its activity at
midnight of a generic working day, then it will stay at home until 8:00 am. After this time, all users
will move during the day according to their own behavior, as shown in Figure 3. There are three types
of moving users (employees, housewives and retired persons), by defining their percentage referring
to the total number of moving nodes. To obtain deterministic human movements, a random seed is
extracted and it is used to choose the next location probabilistically. Then, each mobile human node
will reach it by following a real path (the best one existing into the extracted geographical map). The
best path is obtained by searching, each time, for a next PoI of crossing. A grid on the map with a
radius of about 80 m between two points has been considered.

Figure 5 explains better this motivation by an example: a user that goes from point S towards point
D can choose one of Points 1–3. Among these, he chooses Point 2 because it satisfies the conditions of
the algorithm: it is the point reachable from S closer to D.

Figure 5. Example of next PoI chosen by user to reach point D from S (Point 2 is the closer to D).

Each human node reaches its destination by moving at a speed of 3 km/h. If, after a moving step,
it still does not reach the destination, then the next PoI is recursively re-evaluated, and another moving

109



Electronics 2020, 9, 543

step is generated. On the contrary, if the destination has been reached, then two other events related to
the pause of people’s mobility are initiated: a person who is not working (or is not at home) can stay in
a particular PoI for a time belonging to the interval [10, 60] minutes. All activities end at 10:00 pm, and
after this time, no more activities are provided (all the humans will return at home).

As regards flying devices, in the software simulator we considered the charging stations placement
as illustrated in Figure 6: four stations are placed at the four corners of the simulated map.

When a flying drone needs to go to the assigned charging station to charge its battery, because
it has reached the lower bound of residual energy, a backup drone is contacted before through a
recruiting message (we assume that each flying drone knows exactly the address of its backup drone).
Thus, the coverage hole is filled with the presence of the designated backup drone. We based our
approach on the one specified in [20]. In our simulator, we have considered an approach based on
drones recruiting. That is, to cope with the problem of the coverage hole left by a drone that needs
to recharge its battery, we have considered, as some works in the literature suggest [36], the use of
backup drones that lie near the charging station. This mechanism permits of replacing the drone that
has to recharge its battery with a spare drone that is in an idle status, waiting for a recruiting message
by a drone in the sky. The used policy for the recruitment is based on [20].

Figure 6. Charging stations placement with a typical UAV coverage.

The implemented simulator is able to simulate flying devices able to guarantee connectivity
among peopel who can communicate using multimedia applications. In particular, two types of traffic
have been considered: video and audio streaming.

The number of involved users is 50, 75, 100, 125, and 150. Each user is able to make a call
each time it is in a PoI. Regarding the proposed human behavior model, 70% has been chosen for
employees. Table 5 shows some of the considered parameters used in the simulative campaigns. For
all simulations, a network topology consisting of d = 9 drones, with a distance of 252 m from each
other, and disposed in a grid dx × dy = 3 × 3, has been used (this grid map permits of covering most
of the considered area).

110



Electronics 2020, 9, 543

Table 5. Simulation parameters.

Parameter Value

Simulation time 300 min

Area size M × M = 1 km × 1 km = 1 km2

Drones grid dx × dy = 3 × 3

Drones resource 10 Mbps

Drones coverage radius 175 m

Drones distance 252 m

Drones optimal height 120 m

Drones buffer size 50 packets

Drones communication range 300 m

Recharging station number 1, 2, 4, 5

Backup Drones number 1, 2, 4, 5

PoIs grid n × n with n = 12

PoIs distance M/n meters = 1000/12 ≈ 80 m

PoIs number n ∗ n = 12 ∗ 12 = 144 (108 h
36 shops, restaurant, entertainment)

Thx M/(2n) = 1000/24 ≈ 40 m

Thy M/(2n) = 1000/24 ≈ 40 m

Tht 300 s

Audio&Video Calls % 30% Audio & 70% Video

Users speed 3 km/h

Users number 50, 75, 100, 125, 150

Users’ distribution 70% employees
20% housewives

10% retired persons

For all the simulations, a network topology consisting of nine drones, with a distance of 252 m
each other and disposed in rows of three, has been considered (in this way the most of the area of
interest is covered).

5. Performance Evaluation

Different simulation campaigns were performed, changing the number of users able to move in
the considered geographical map. The following output parameters were collected by simulations:

• audio and video streams data delay;
• sent, received and lost packets;
• accepted and refused requests; and
• occupied bandwidth percentage.

These output parameters allowed evaluating the goodness of the proposed software simulator
varying some input parameters.

5.1. UAVs/drones Simulation Tests without Energy Issues

In this subsection, we assume that each drone has unlimited energy availability, thus neither
charging operations nor energy aware path planning are needed. Each flying device stays at the center

111



Electronics 2020, 9, 543

of its grid element giving the needed coverage, in terms of bandwidth, while communicating with its
neighbors via link state protocol. In this scenario, each UAVs/drones has no energy awareness and,
then, only the network aspects are discussed with the considered graphics.

Figure 7a shows the curve trend of the sent and received packets in the scenario. It is possible to
see how sent and received packets increase with the number of users on the map. This behavior of the
simulator fits with the expected simulations results. This is the direct consequence of the available
bandwidth on-board each device and the considered mobile users percentages among employees,
housewives, and retired persons. Figure 7b shows the histogram of accepted requests, calls, and
refused requests varying the number of user between 50 and 150. The trend of these results is in line
with the expectation; in fact, the figure shows how the number of bandwidth requests increases with
the number of users and how, therefore, calls and refused requests numbers increase. Figure 8 shows
the trend of call admission behavior of each drone in the considered map. It shows the percentage
of occupied bandwidth for each drone on the map and allows of making some consideration on
the results. It is possible to view how Drones 3, 6, and 8 are the most loaded ones. This last ones
present the greatest number of occupied bandwidth. In addition, the figure shows how the bandwidth
percentage increases for higher number of users in the system and in the covered points of interest. In
addition, it can be seen how the percentage of occupied bandwidth is under 26%, thus it results in a
non-congested network, without any bottleneck in terms of throughput. Finally, the delay for audio
and video streams is reported in the Figure 9. It shows the minimum, average, and maximum delay
for both multimedia traffic, video and audio applications. In addition, for these simulation results, the
obtained trend satisfies the expectations, respecting the typical values of these traffic typologies. Delay
slightly increases for a higher number of mobile users, due to the higher protocol overhead.

(a) Sent and received packets varying users
number.

(b) Accepted requests, calls, refused requests
varying users number.

Figure 7. Curves on packets and requests number.

Figure 8. Drones call admission number varying users number.

112



Electronics 2020, 9, 543

(a) Audio (b) Video

Figure 9. Audio and video stream delay (average, minimum, and maximum) varying users number.

5.2. UAVs/drones Simulation Tests with Energy Issues

Differently from the previous subsection, in this case, the residual energy is always taken into
account. Thus, the energy aware path planning is mandatory to guarantee a proper coverage. In
general, simulation results are worse than the previous scenario, because of the periodical need for
charging operations: energy and time are wasted for flying from charging station to the grid elements
and vice versa. In this scenario, firstly, we show some graphics considering four recharging stations
without considering backup drones, and then we show a comparison considering 1, 2, 4, and 5
recharging stations with and without taking into account a backup drone for each station.

As for the previous case, also taking into account energy issues, we show the graphics for the
sent and received packets in the overall considered system. Figure 10a shows the trend of the curves
of sent and received packets highlighting the increasing behavior with the number of users on the
map. This behavior of the simulator fits with the expected simulations results. Figure 10b shows that
the number of accepted requests, calls, and refused requests are worse in this scenario. This type
of behavior is due to the drones energy consumption. The drone that needs to recharge its battery
recruits a new drone to permit the continuous coverage of its geographical area, guaranteeing the
connectivity to the users connected; however, the drone exchange s takes some time, during which no
connectivity can be provided. For this reason, a higher number of refused calls and a lower number of
concluded calls are obtained. Figure 11 shows the average number of needed charges for each drone
by varying the number of charging stations from one to five, as illustrated in Figure 6. As can be seen,
the number of completed charging operations increases with the number of charging stations: this is
due to the higher availability of charging chances. We assume that, if two or more drones compete
for a charging place, they are served with a FIFO queue: waiting drones are placed near the charging
stations (on the ground) and they are set in a stand-by mode (with a negligible energy consumption).
Clearly, performance is degraded, in terms of not only energy consumption, but also served users,
as can be seen in Figure 10b. In addition, for audio and video streaming delay, this scenario shows
worse performance, as can be seen in Figure 12, because of the time needed for drones exchange and
charging operations.

113



Electronics 2020, 9, 543

(a) Sent and received packets varying users
number.

(b) Accepted requests, calls, refused requests
varying users number.

Figure 10. Curves on packets and requests number.

Figure 11. Number of charges varying charging stations number.

(a) Audio (b) Video

Figure 12. Audio and video stream delay (average, minimum, and maximum) varying user number.

To show the effects of recharging stations in our simulator, we show some graphics about
simulation results considering the use of 1–5 recharging stations on the map. Successively, we
considered also the use of backup drones that can be recruited when a drone needs to perform
recharging operations. The graphics in Figure 13 show how the introduction of recharging station to
allow drones to recharge their battery results in worse system performance concerning the requests
evaded by drones with respect to the case of considering no energy issues. The other series of graphics
in Figure 14 show the performance in terms of accepted and refused requests when recharge stations
and backup drones are implemented in the system together. The presence of spare drones allows
replacing the device that has to recharge its battery. The drone that notices its battery level is low
sends a recruiting message towards a drone placed near its recharging station. This drone reaches the
location of the drone sending the request so it can provide transparently coverage to users.

114



Electronics 2020, 9, 543

(a) 1 Recharge Station. (b) 2 Recharge Stations.

(c) 4 Recharge Stations. (d) 5 Recharge Stations.

Figure 13. Accepted requests, calls, and refused requests varying users and the recharge stations’ number.

(a) 1 Recharge Station + 1 Backup Drone. (b) 2 Recharge Stations + 2 Backup Drones.

(c) 4 Recharge Stations + 4 Backup Drones. (d) 5 Recharge Stations + 5 Backup Drones.

Figure 14. Accepted requests, calls, and refused requests varying users and the recharge stations’
number considering backup drones.

115



Electronics 2020, 9, 543

6. Conclusions

In this paper, a novel UAVs Java simulator is proposed. The main features of the simulator consist
of the possibility of analyzing different aspects of the so-called FANETs. Flying devices (commonly
defined UAVs or drones) are able to create temporary communications from air to ground, offering new
connectivity, last-mile bandwidth distribution, guaranteeing efficient communications. The proposed
Java software allows performing different simulation campaigns varying different input parameters.
The simulator takes into account some typical aspects of FANET, such as a human mobility model
with the introduction of Points of Interest (PoIs) in order to simulate the main behavior of the people,
the introduction of some typologies of users in order to simulate different users’ moving, the footprint
for channel modeling, the Link-State routing protocol for data exchange (audio and video streaming in
particular), and dynamic range adjustment for taking into account user requests. Simulation results
verified and confirmed the effectiveness of the proposed simulator.

As regards our future works, we plan to improve the simulator by adding some other aspects,
such as other network protocols and various techniques for safety and security considering new
proposal for the solutions against different attacks. It is also important to consider new optimal
placement algorithms and investigate adequately the energy aspects for drone flight in every phase of
its movement, including providing the connection to the users. Moreover, it is possible to improve
the use of the recharging station through the optimization of the stations and the number of backup
drones for each station. Moreover, in this work, no collision avoidance issues have been taken into
account and no consideration has been done on the possibility of a drone to be in the same airspace of
its neighbors. All these aspects are in the development phase and will be taken into account in our
future proposals.

Author Contributions: F.D.R. conceived the idea; M.T. designed and implemented the software simulator with
the help of P.F.; F.D.R. and N.C. analyzed the data; and M.T. and F.D.R. reviewed the paper with the help of N.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Winkler, S.; Zeadally, S.; Evans K. Privacy and Civilian Drone Use: The Need for Further Regulation.
IEEE Secur. Priv. 2018, 16, 72–80. [CrossRef]

2. Oubbati, O.S.; Atiquzzaman, M.; Lorenz, P.; Tareque, H.; Hossain S. Routing in Flying Ad Hoc Networks:
Survey, Constraints, and Future Challenge Perspectives. IEEE Access 2019, 7, 81057–81105. [CrossRef]

3. Bujari, A.; Calafate, C.T.; Cano, J.C.; Manzoni, P.; Palazzi, C.E.; Ronzani, D. Flying ad-hoc network application
scenarios and mobility models. Int. J. Distrib. Sens. Netw. 2017, 13, 10. [CrossRef]

4. Huang, H.; Savkin, A.V. An Algorithm of Efficient Proactive Placement of Autonomous Drones for Maximum
Coverage in Cellular Networks. IEEE Wirel. Commun. Lett. 2018, 7, 994–997. [CrossRef]

5. Fazio, P.; Tropea, M.; De Rango, F.; Voznak, M. Pattern prediction and passive bandwidth management for
hand-over optimization in QoS cellular networks with vehicular mobility. IEEE Trans. Mob. Comput. 2016,
15, 2809–2824. [CrossRef]

6. Fazio, P.; De Rango, F.; Tropea, M. Prediction and qos enhancement in new generation cellular networks with
mobile hosts: A survey on different protocols and conventional/unconventional approaches. IEEE Commun.
Surv. Tutor. 2017, 19, 1822–1841. [CrossRef]

7. Santamaria, A.F.; Fazio, P.; Raimondo, P.; Tropea, M.; De Rango, F. A New Distributed Predictive Congestion
Aware Re-Routing Algorithm for CO2 Emissions Reduction. IEEE Trans. Veh. Technol. 2019, 68, 4419–4433.
[CrossRef]

8. Nguyen, T.N.; Duy, T.T.; Luu, G.T.; Tran, P.T.; Voznak, M. Energy harvesting-based spectrum access with
incremental cooperation, relay selection and hardware noises. Radioengineering 2017, 26, 240–250. [CrossRef]

9. Nguyen, T.N.; Do, D.T.; Tran, P.T.; Voznak, M. Time switching for wireless communications with full-duplex
relaying in imperfect CSI condition. KSII Trans. Internet Inf. Syst. 2016, 10, 4223–4239.

116



Electronics 2020, 9, 543

10. Do, D.T.; Nguyen, H.S.; Voznak, M.; Nguyen, T.S. Wireless powered relaying networks under imperfect
channel state information: System performance and optimal policy for instantaneous rate. Radioengineering
2017, 26, 869–877. [CrossRef]

11. Tropea, M.; Fazio, P. A Simulator for Creating Drones Networks and Providing Users Connectivity. In
Proceedings of the 2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time
Applications (DS-RT), Cosenza, Italy, 7–9 October 2019; pp. 1–8.

12. Stöcker, C.; Bennett, R.; Nex, F.; Gerke, M.; Zevenbergen, J. Review of the current state of UAV regulations.
Remote. Sens. 2017, 9, 459. [CrossRef]

13. Bozza Circolare LIC 15 Mezzi Aerei a Pilotaggio Remoto - Centri di Addestramento e Attestati Pilota.
Available online: https://www.enac.gov.it/la-normativa/normativa-enac/consultazione-normativa/bozza-
circolare-lic-15-mezzi-aerei-pilotaggio-remoto-centri-di-addestramento-attestati-pilota (accessed on 10
November 2019).

14. Workshop “Prospettive e transizione dal Regolamento ENAC Mezzi a pilotaggio Remoto al nuovo
Regolamento EASA”. Available online: https://www.enac.gov.it/news/workshop-prospettive-transizione-
dal-regolamento-enac-mezzi-pilotaggio-remoto-al-nuovo (accessed on 10 November 2019).

15. Mardani, A.; Chiaberge, M.; Giaccone, P. Communication-Aware UAV Path Planning. IEEE Access 2019, 7,
52609–52621. [CrossRef]

16. Song, X.; Hu, S. 2D path planning with Dubins-path-based A* algorithm for a fixed-wing UAV. In Proceedings
of the 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), Beijing,
China, 17–19 August 2017.

17. Ghaddar, A.; Merei, A. Energy-Aware Grid Based Coverage Path Planning for UAVs. In Proceedings of
the Thirteenth International Conference on Sensor Technologies and Applications SENSORCOMM, Nice,
France, 27–31 October 2019.

18. De Rango, F.; Palmieri, N.; Santamaria, A.F.; Potrino, G. A simulator for UAVs management in agriculture
domain. In Proceedings of the 2017 International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS), Seattle, WA, USA, 9–12 July 2017; pp. 1–8.

19. De Rango, F.; Palmieri, N.; Tropea, M.; Potrino, G. UAVs Team and Its Application in Agriculture: A
Simulati5on Environment. SIMULTECH 2017, 2017, 374–379.

20. De Rango, F.; Potrino, G.; Tropea, M.; Santamaria, A.F.; Fazio, P. Scalable and ligthway bio-inspired
coordination protocol for FANET in precision agriculture applications. Comput. Electr. Eng. 2019, 74, 305–318.
[CrossRef]

21. Marconato, E.A.; Rodrigues, M.; Pires, R.D.M.; Pigatto, D.F., Luiz Filho, C.Q.; Pinto, A.R.; Branco, K.R.
Avens-a novel flying ad hoc network simulator with automatic code generation for unmanned aircraft
system. In Proceedings of the HICSS, Hilton Waikoloa Village, HI, USA, 4–7 January 2017.

22. Zema, N.R.; Trotta, A.; Sanahuja, G.; Natalizio, E.; Di Felice, M.; Bononi, L. CUSCUS:
CommUnicationS-control distributed simulator. In Proceedings of the 2017 14th IEEE Annual Consumer
Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017; pp. 601–602.

23. Baidya, S.; Shaikh, Z.; Levorato, M. FlyNetSim: An open source synchronized UAV network simulator based
on ns-3 and ardupilot. In Proceedings of the 21st ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, Montreal, QC, Canada, 19 October 2018; pp. 37–45.

24. Kate, B.; Waterman, J.; Dantu, K.; Welsh, M. Simbeeotic: A simulator and testbed for micro-aerial vehicle
swarm experiments. In Proceedings of the 2012 ACM/IEEE 11th International Conference on Information
Processing in Sensor Networks (IPSN), Beijing, China, 16–20 April 2012; pp. 49–60.

25. Javaid, A.Y.; Sun, W.; Alam, M. UAVSim: A simulation testbed for unmanned aerial vehicle network cyber
security analysis. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA,
9–13 December 2013; pp. 1432–1436.

26. Al-Mousa, A.; Sababha, B.H.; Al-Madi, N.; Barghouthi, A.; Younisse, R. UTSim: A framework and simulator
for UAV air traffic integration, control, and communication. Int. J. Adv. Robot. Syst. 2019, 16. [CrossRef]

27. Al-Hourani, A.; Kandeepan, S.; Jamalipour, A. Modeling air-to-ground path loss for low altitude platforms
in urban environments. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX,
USA, 8–12 December 2014; pp. 2898–2904.

117



Electronics 2020, 9, 543

28. Park, K.N.; Cho, B.M.; Park, K.J.; Kim, H. Optimal coverage control for net-drone handover. In Proceedings
of the 2015 Seventh International Conference on Ubiquitous and Future Networks, Sapporo, Japan, 7–10 July
2015; pp. 97–99.

29. Sae, J.; Yunas, S.F.; Lempiainen, J. Coverage aspects of temporary LAP network. In Proceedings of
the 2016 12th Annual Conference on Wireless on-Demand Network Systems and Services (WONS),
Cortina d’Ampezzo, Italy, 20–22 January 2016; pp. 1–4.

30. Xie, J.; Dong, C.; Li, A.; Wang, H.; Wang, W. Optimal Deployment Density for Maximum Coverage of Drone
Small Cells. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON,
Canada, 24–27 September 2017; pp. 1–6.

31. Papandrea, M.; Jahromi, K.K.; Zignani, M.; Gaito, S.; Giordano, S.; Rossi, G.P. On the properties of human
mobility. Comput. Commun. 2016, 87, 19–36. [CrossRef]

32. Kang, J.H.; Welbourne, W.; Stewart, B.; Borriello, G. Extracting places from traces of locations. ACM Sigmobile
Mob. Comput. Commun. Rev. 2005, 9, 58–68. [CrossRef]

33. Feng, Q.; McGeehan, J.; Tameh, E.K.; Nix, A.R. Path loss models for air-to-ground radio channels in urban
environments. In Proceedings of the 2006 IEEE 63rd Vehicular Technology Conference, Melbourne, Victoria,
Australia, 7–10 May 2006; Volume 6, pp. 2901–2905.

34. Fotouhi, A.; Qiang, H.; Ding, M.; Hassan, M.; Giordano, L.G.; Garcia-Rodriguez, A.; Yuan, J. Survey on
UAV cellular communications: Practical aspects, standardization advancements, regulation, and security
challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3417–3442. [CrossRef]

35. Zeng, Y.; Zhang, R. Energy-efficient UAV communication with trajectory optimization. IEEE Trans.
Wirel. Commun. 2017, 16, 3747–3760. [CrossRef]

36. Erdelj, M.; Natalizio, E. UAV-assisted disaster management: Applications and open issues. In Proceedings of
the 2016 international conference on computing, networking and communications (ICNC), Kauai, HI, USA,
15–18 Febuary 2016; pp. 1–5.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

118



electronics

Article

Onboard Visual Horizon Detection for Unmanned
Aerial Systems with Programmable Logic

Antal Hiba 1, Levente Márk Sántha 2,*, Tamás Zsedrovits 2, Levente Hajder 3 and Akos Zarandy 1,2

1 Institute for Computer Science and Control (SZTAKI) Kende utca 13-17, 1111 Budapest, Hungary;
hiba.antal@sztaki.hu (A.H.); zarandy.akos@sztaki.hu (A.Z.)

2 Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, Práter utca 50/A.,
1083 Budapest, Hungary; zsedrovits.tamas@itk.ppke.hu

3 Department of Algorithms and Their Applications, Eötvös Loránd University, Pázmány Péter stny. 1/C.,
1117 Budapest, Hungary; hajder@inf.elte.hu

* Correspondence: santha.levente.mark@itk.ppke.hu; Tel.: +36-1-886-4700

Received: 15 March 2020; Accepted: 2 April 2020; Published: 4 April 2020

Abstract: We introduce and analyze a fast horizon detection algorithm with native radial distortion
handling and its implementation on a low power field programmable gate array (FPGA) development
board in this paper. The algorithm is suited for visual applications in an airborne environment, that is
on board a small unmanned aircraft. The algorithm was designed to have low complexity because of
the power consumption requirements. To keep the computational cost low, an initial guess for the
horizon is used, which is provided by the attitude heading reference system of the aircraft. The camera
model takes radial distortions into account, which is necessary for a wide-angle lens used in most
applications. This paper presents formulae for distorted horizon lines and a gradient sampling-based
resolution-independent single shot algorithm for finding a horizon with radial distortion without
undistortion of the complete image. The implemented algorithm is part of our visual sense-and-avoid
system, where it is used for the sky-ground separation, and the performance of the algorithm is tested
on real flight data. The FPGA implementation of the horizon detection method makes it possible to
add this efficient module to any FPGA-based vision system.

Keywords: UAS; UAV; horizon; undistortion; FPGA; sense-and-avoid

1. Introduction

Unmanned aerial vehicle systems (UAS) with an airborne camera are used in more and more
applications from the aerial recreational photo shooting, to more complicated semi-autonomous
surveillance missions, for example in precision agriculture [1]. Safe usage of these autonomous UAS
requires Sense and Avoid (SAA) capability to reduce the risk of collision with obstacles and other
aircraft. Surveillance mission setups include onboard cameras and a payload computer, which can
also be used to perform SAA. Thus, computationally cheap camera-based solutions may need no
extra hardware component. Most of the vision-based SAA methods use different approaches for
intruders in sky and land backgrounds [2–4]. Thus, they can utilize horizon detection to produce
fast sky segmentation. Attitude heading reference system (AHRS) is a compulsory module of UAS
which provides Kalman-filtered attitude information from raw IMU (Inertial Measurement Unit)
and GPS measurements [5–7]. This attitude information can enhance the sky-ground separation
methods, because it can give an estimate of the horizon line in the camera image [8]; furthermore, if the
horizon is a visible feature (planar scenes), it can also be also used to improve the quality of attitude
information [9] or support visual serving for fixed-wing UAV landing [10]. Sea, large lakes, plains, and
even a hilly environment at high altitudes give visible horizon in the camera view, which is worth
detection onboard.

Electronics 2020, 9, 614; doi:10.3390/electronics9040614 www.mdpi.com/journal/electronics119



Electronics 2020, 9, 614

There are several solutions for horizon detection in the literature. In general, more sophisticated
algorithms are used, which use a statistical model for the sky and non-sky region separation.
Ettinger et al. use the covariance of pixels as a model for the sky and ground [11], while Todorovic uses
a hidden Markov tree for the segmentation [12]. McGee et al. [13] and Boroujeni et al. [14] use a similar
strategy, where the pixels are classified with a support vector machine, or with clustering. A different
kind of strategy is followed by Cornall and Egan [15] and Dusha et al. [16] Cornall and Egan [15] use
various textures, and they only calculate the roll angle. Dusha et al. [16] combine optical flow features
with Hough transform and temporal line tracking, to estimate the horizon line. The problem with
the single line model is that it cannot efficiently estimate the horizon in the case of tall buildings, or
trees and high hills, where the horizon can be better modeled with more line segments. Shen et al. [17]
introduced an algorithm for horizon detection on complex terrain. Pixel clustering methods, in general,
have the potential to give sky-ground separation in any case, but they are computationally expensive.
Notably, [18] presents a real-time solution that considers sky and ground pixels as fuzzy subsets in YUV
color space and continuously trains a classifier above this representation and compares its output to
precomputed binary codes of possible attitudes. This approach can be very effective if ground textures
do not change fast during flight and the camera always sees the horizon. To overcome this problem,
the authors used two 180-degree field of view (FOV) cameras. Their image representation was only
80 × 40 pixel, but the straight line horizon is a large feature and can be detected in such low resolution.

SAA and most of the main mission tasks need high-resolution images for the detection of small
features and aim for high angular resolution at large FOV. With a simple down-sampling, one can
provide input for existing horizon detection methods that work on low-resolution images, but we
can reach higher accuracy in the original image, which has a fine angular resolution. We still need to
do other manipulations in the high resolution for SAA and main mission tasks; thus, using this has
no overhead. In our previous work [8], a simple intensity gradient sampling method was proposed,
which fine-tunes an initial horizon line coming from the AHRS attitude. The computational need is
only defined by the number of sample points and is independent from the image resolution. The
single-shot approach is more stable, because detection errors cannot propagate to consecutive frames.
The existence of a horizon can also be defined based on the AHRS estimate. This horizon detector was
utilized in our successful SAA flight demonstration [2].

Large FOV optics have radial distortion, which does not degrade the detection of small features
(intruder). However, it makes horizon detection challenging without complete undistortion of the
image. In this paper, we introduce the advanced version of [8] with native radial distortion handling, in
which only a few numbers of feature/sampling points need to be transformed, instead of the complete
image. The mathematical representation of the distorted horizon line is given with the experimental
approach to finding it. The method is evaluated on real flight test data. This paper presents the field
programmable gate array (FPGA) implementation of the novel horizon detection module, with a
theoretic complete vision system for SAA.

2. Horizon Detection Utilizing AHRS Data

The attitude heading reference system provides the Euler angles of the aircraft, which define
ordered rotations around the reference North-East-Down coordinate system. First, it takes a rotation
around Down (yaw), then a rotation around the rotated East (pitch), and finally, a rotation around the
twice rotated North (roll), to have the actual attitude of the aircraft. We can also calibrate once the
relative transformation of the camera coordinate system to the aircraft body coordinate system. With
this information, one can define a horizon line in the image, which has calibration and AHRS errors. In
this paper, we use this AHRS-based horizon as an initial estimation of the horizon line in the image.

2.1. Horizon Calculation from AHRS Data

Figure 1 presents the main coordinate systems and the method for horizon calculation form Euler
angles. We define one point of the horizon in the image plane and the normal vector of it. To reach

120



Electronics 2020, 9, 614

this, we transform the North (surface parallel) unit vector of world coordinate system to the camera
coordinate system and get its intersection with the image plane, which will be one point of the horizon
(it can be out of the borders), and we can also transform a unit vector pointing upwards in the world
reference to have a normal vector as the projection of transformed upward vector to the image plane.
The horizon line is given by a point P0 and a normal vector

→
n [8].

Figure 1. Blue aircraft with a camera on its wing. From the North-East-Down (NED) reference world
coordinate system, we can derive the aircraft body frame NED (center of mass origin) and the camera
frame NED (camera focal point origin) coordinate systems. S is a North unit vector in a word reference
frame, which is parallel to the ground surface.

2.2. Horizon Based on AHRS Data Without Radial Distortion

The horizon is a straight line, if we assume a relatively unobstructed ground surface (flats, small
hills, lakes, sea), with a negative intensity drop from the sky to ground, in most cases. Infrared cut-off
filters can enhance this intensity drop, because it filters out infrared light reflected by plants. In general,
because of the different textures on the images, the horizon cannot be found solely based on this
intensity drop.

On the other hand, with AHRS data, an initial guess for the horizon line’s whereabouts is available.
This estimate is within a reasonable distance from the horizon in most cases. Thus, it can guide a search
for the real horizon line on the image plane. Rotations around the center point of the line and shifts in
the direction of its normal vector are applied to get new horizon candidates. Every time, the intensity
drop is checked at given points, denoted by H (sky region) and L (ground region), as it is shown in
Figure 2. The algorithm to find the horizon, in this case, is described in more detail in [8]. In this paper,
we introduce the advanced version of this gradient sampling approach, which considers the radial
distortion of large FOV cameras.

121



Electronics 2020, 9, 614

Figure 2. Horizon line candidate with the test point sets under (L—red) and above it (H—green).

2.3. Exact Formula of Distorted Horizon Lines

A standard commercial camera usually realizes the perspective projection. Consequently,
the projection of the horizon is a straight line in the image space. However, perspectivity is only an
approximation of the projection of real-world cameras. If a camera is relatively inexpensive or it has
optics with a wide field of view (FOV), then more complex camera models should be introduced. A
standard solution is to apply the radial distortion model to cope with the non-perspective behavior
of cameras.

We have selected the 2-parameter radial distortion model [19] in this study. Using the model, the
relationship between the theoretical perspective coordinates [u v ]T and the real ones [u′ v′ ]T

is given as follows: [
u′
v′
]
=
(
1 + k1r2 + k2r4

)[ u
v

]
,

where k1 and k2 are the parameters of the radial distortion, and r =
√

u2 + v2 gives the distance between
the point [u v ]T, and the principal point. The principal point is the location at which the optical
axis intersects the image plane. Therefore, this relationship is valid only if the origin of the used
coordinate system is at the principal point. Another important pre-processing step is to normalize the
scale of the axes by the division with the product of the horizontal and vertical focal length and pixel
size of the camera.

The critical task for horizon detection is to compute the radially distorted variant of a straight line.
Let the line be parameterized as: [

u
v

]
=

[
u0

v0

]
+ t
[

u
v

]
,

where t is the line parameter, d = [du dv] the vector of the line’s direction. The distorted line is
written by: [

u′
v′
]
=
(
1 + k1r2 + k2r4

)[ u0 + tdu

v0 + tdv

]
,

where: r2 = t2
(
d2

u + d2
v

)
+ 2t(u0du + v0dv) + u2

0 + v2
0, and r4 =

(
r2
)2

. The square of the radius can be
written in a more simplified form as:

r2 = At2 + Bt + C,

122



Electronics 2020, 9, 614

where: A = d2
u + d2

v, B = 2(u0du + v0dv), and C = u2
0 + v2

0. Then r4 is expressed as:

r4 = A2t4 + 2ABt3 +
(
B2 + 2AC

)
t2 + 2BCt + C2,

Therefore, the formula
(
1 + k1r2 + k2r4

)
is also a polynomial that is written in the following form:

αt4 + βt3 + γt2 + δt + ε,

where α = k2A2, β = k2AB, γ = k2
(
2AC + B2

)
+ k1A, δ = 2k2BC + k1B, and ε = k2C2 + k1C + 1. The

parametric formula of the line can be written in a compact form as:

[
u′
v′
]
=

[ ∑5
i=0 aiti∑5
i=0 biti

]
(1)

where: a5 = αdu, a4 = αu0 + βdu, a3 = βu0 + γβdu, a2 = γu0 + δdu, a1 = δu0 + εdu, and a0 = εu0.
Similarly, b5 = αdv, b4 = αv0 + βdv, b3 = βv0 + γβdv, b2 = γv0 + δdv, b1 = δv0 + εdv, and b0 = εv0.

2.3.1. Limits

For the horizon detection, the radially distorted line must be sampled within the image. For this
reason, the interval for parameter t must be determined in which the curve lies within the area of
the image. Let us denote the borders of the image with ul and ur (horizontal), vt and vb (vertical).
The corresponding values for parameter t are determined by solving the 5-degree polynomials∑5

i=1 aiti − ul = 0,
∑5

i=1 aiti − ur = 0,
∑5

i=1 biti − vt = 0 and
∑5

i=1 biti − vb = 0. Each polynomial has five
different roots. To our experiments, only one of those is the real root; the other four complex roots,
two conjugate pairs, are obtained per polynomial. The complex roots are discarded, the minimal and
maximal values of all possible real roots give the limits for parameter t.

2.3.2. Tangent Line

Another advantage of the formula defined in Equation (1). The direction dtan of the tangent line
can be determined trivially by deriving the equation. It is written as follows:

dtan =

[ ∑5
i=0 iaiti−1∑5
i=0 ibiti−1

]
(2)

2.3.3. Example

It is demonstrated in Figure 3 that the distortion model and its formulae can be a good representation
of the radially distorted variant of straight lines. The test image was taken by a GoPro Hero4 camera,
containing wide-angle optics. This kind of lense usually produces visible radial distortion in the
images. The camera was calibrated with images of a chessboard plane, using the widely-used Zhang
calibration method implemented in OpenCV3 [20]. As is expected, the curves fit the real borders
of the chessboard (left image) and the horizon (right). It is well visualized that the polynomial
approximation is principally valid at the center of the image. There are fitting errors close to the border,
as it is seen in the right image of Figure 3. This problem comes from the fact that the corners of the
calibration chessboard cannot be detected near the borders. Therefore, calibration information is not
available there.

123



Electronics 2020, 9, 614

 

Figure 3. Radially distorted lines in images taken by GoPro Hero4. Left: Distorted curves for borders
of a chessboard plane. White color indicates the original straight line fractions, mostly covered by the
blue, the corresponding radially distorted curves. Right: Curve of the horizon.

2.4. Horizon Detection, Based on AHRS Data with Radial Distortion

In the case of radial distortion, our straight-line approach [8] cannot be utilized, because the
horizon’s coordinate functions are transformed into a 5th-degree polynomial in the image space. One
possible way is to undistort the whole image, and then the straight-line approach is viable. However,
it takes several milliseconds, even with precomputed pixel maps. The previous section describes an
exact method for the distorted horizon line calculation. However, it is not necessary to calculate the
exact polynomial when the algorithm investigates a candidate horizon on a distorted image. Here,
we present a method that approximates the distorted horizon line with a sequence of straight lines
that connects the distorted sample points of a virtual straight horizon. Figure 4 shows the difference
between an undistorted horizon line and the corresponding distorted curve.

 

Figure 4. The blue line represents the pre-calculated straight horizon with endpoints P1 and P2. Red
crosses and the black curve represent the distorted version of the straight line.

The main steps of horizon detection are the same for the distorted and the distortion-free cases,
as is summarized in Figure 5. The initial AHRS-based horizon is given the same way as in the
undistorted case. The pre-calculated horizon is corrected based on the distorted image, with only a few
and computationally very inexpensive modifications. The gradient sampling algorithm realizes the
correction mechanism based on distorted visual input. The basic idea is to create sample points at the
two sides of the straight version of a horizon candidate, and distort these points to get the necessary
sampling coordinates in the image (alg. gradient sampling).

124



Electronics 2020, 9, 614

Algorithm Gradient Sampling: Horizon Post-calculation with Distortion

Require: AHRS horizon line (P0,
→
n ), num_of_samples, step_size, deg_range, shift_range, distort_func (k1, k2)

1. P1, P2 ← Two endpoints of the horizon line in the image, return if the horizon line is not on the image.
2. Center ← P1 + (P2 − P1)/2
3. Base_Points ← num_of _samples number of equidistant sample points on the elongated AHRS

horizon line
4. for deg = deg_range.min to deg_range.max do

5. Rotated_Points← Rotate Base_Points around the Center point by deg.

6.
→
n local← Rotate

→
n by deg

7. for shi f t_num = shift _range .min to shift _range.max do

8. Plocal←Center + shi f t_num ∗ step_size ∗ →n local

9. point set H ←Rotated_Points + (shi f t_num + 1) ∗ step_size ∗ →n local

10. point set L ← Rotated_Points + (shi f t_num− 1) ∗ step_size ∗ →n local

11. point set H ← distort_func (point set H)
12. point set L ← distort_func (point set L)
13. Calculate the average intensity difference at points H(i) and L(i)

14. Update Pbest and
→
n best searching for the maximal average difference

15. return Pbest,
→
n best

 

Figure 5. Block diagram of the horizon detection method. Camera calibration gives constants which
should be defined only once. Gradient sampling method can consider radial distortion, with minimal
overhead compared to the distortion-free version in [8].

The algorithm defines an exhaustive search of horizon line candidates. A predefined number
of sample points are fixed on the initial pre-calculated horizon line (Base Points). These points are
rotated around the center point (Rotated Points) and then shifted by the multiplicands of the rotated
normal vector (

→
nlocal), to get H and L sample point sets for each candidate line. Finally, the sample

points are distorted to have proper sampling positions in the image, which has radial distortion. The
average of img(H(i)) − img(L(i)) is calculated to give a gradient along with the horizon candidate. A
predefined range of rotations and shifts is explored, and the line is chosen that has the largest average
intensity difference on its two sides. If we consider the sample points of the straight horizon, and
we connect the distorted versions of these points, it is possible that the resulted line series do not
reach the borders of the image. Given that we want to get a complete horizon line, the pre-calculated
straight horizon should be elongated. In our implementation, we use a rough solution by creating
a 2*IMG WIDTH long line in all cases. Elements that are not in the image are discarded. Distortion
and undistortion of pixel coordinates can be performed efficiently if we have a pre-computed Lookup
table for the distortion of each image coordinate. Here, we need to remap only a predefined number
of sample points instead of the whole image. The lines between the resulted sampling pairs (H-L)
are not perfectly perpendicular to the corresponding horizon curve. However, this technique is still

125



Electronics 2020, 9, 614

effective, because the L points are near below the horizon, and points in H are near above. Straight
line-segments between sample points can define the horizon curve with a negligible difference from
the real curve, as can be seen in Figures 6 and 7.

 

Figure 6. The blue dotted curve represents the pre-calculated horizon. Post-calculated horizon curve is
formed by line segments between the green points. The effect of the white urban area under the hills
can be seen on the right.

 

Figure 7. The blue dotted curve represents the pre-calculated horizon. The post-calculated horizon
curve is formed by line segments between the green points. The small distortion error at the bottom
corner can be seen on the left.

126



Electronics 2020, 9, 614

Sky-Ground Separation in Distorted Images

In our SAA application, the horizon line is used for sky and ground separation. In the case of
straight-line horizons, the masking procedure is straightforward with the help of the normal vector.
However, on the distorted image, we have a series of line segments. Furthermore, the ground mask
may consist of two separate parts (the horizon curve goes out and then goes back to the image). To
handle this problem, we use flood-fill operation started from two inner points next to the first, and
the last points of the horizon curve on the image. The masks presented in the results section were
generated this way.

3. Experimental Setup

The two variants of the horizon detection algorithm (with and without radial distortion) were
tested in real flights. Flights were run at the Matyasfold public model airfield, which is close to
Budapest, Hungary. There are only small hills around Matyasfold, resulting in a relatively straight
horizon line, which was our original assumption.

3.1. Hardware Setup of Real Flight Tests

In the flight tests, a fixed-wing, two motor aircraft called Sindy was used. It is 1.85m in length,
has a 3.5m wingspan, and has an approximately 12kg take-offweight (Figure 8). It is equipped with an
IMU-GPS module, an onboard microcontroller with AHRS and autopilot functions (for details see [21]),
and the visual sensor-processor system.

 

Figure 8. Sindy aircraft with the mounted Nvidia TK1-based visual SAA system.

We have two embedded GPU (Nvidia TK1, TX1) and two FPGA-based (Spartan 6 LX150T [22],
Zynq UltraScale+ XCZU9EG) on-board vision system hardware. The development of new algorithms
is much easier on a GPU platform. However, one can have the best power efficiency and parallelization
with a custom FPGA implementation. All the flight test data in this paper acquired by the Nvidia
Jetson TK1 system [8] and tested offline with the new FPGA system. The two Basler Dart 1280-54um
cameras have monochrome 1280 × 960 sensor and 60-degree FOV optics, where the two FOVs have a
5-degree overlap.

There are different AHRS solutions which differ in sensor types and sensor fusion technique.
Different levels of AHRS quality (with and without GPS sensor) and corresponding AHRS-based
horizons were analyzed in [8]. In this paper, the best available on-board estimations of Euler angles are
used to create AHRS-based horizon candidates. Our Kalman-filter based estimator is described in [6],
which gives Euler angles to the autopilot. However, these results can still be improved, and small

127



Electronics 2020, 9, 614

calibration errors of the camera relative attitude and deformations of the airframe during maneuvers
can cause additional differences between the AHRS horizon and the visible feature in the image, which
makes horizon detection necessary.

3.2. FPGA-Based Vision System Hardware

A field programmable gate array (FPGA)-based processing system is under development (Figure 9),
on which it is possible to test finalized algorithms with more cameras at higher framerates, with lower
power consumption compared to the embedded GPU. On the other hand, integration and test of such
customized hardware to consider it flight-ready is very tedious, and we can also confirm its capabilities
based on offline tests, with real flight data captured by the GPU-based system.

 

•

•

•

•

Figure 9. FPGA-based experimental system.

For research flexibility, we use a high-end FPGA Evaluation Board, Xilinx Zynq UltraScale+
Multi-Processor System-on-Chip (MPSoC) ZCU102. It contains various common industry-standard
interfaces, such as USB, SATA, PCI-E, HDMI, DisplayPort, Ethernet, QSPI, CAN, I2C, and UART.

For image capturing, an Avnet Quad AR0231AT Camera FMC Bundle set can be used. This
contains an AES-FMC-MULTICAM4-G FMC module and four High Dynamic Range (HDR) camera
modules, each with an AR0231AT CMOS image sensor (1928 × 1208), and MAX96705 serializer. Due
to the flexibility of the system, this can be changed to other image capturing modules/methods, even to
USB cameras.

4. FPGA Implementation

In this section, the FPGA implementation of the horizon detection module is presented for
distortion-free and distorted images. This circuit is a part of an FPGA-based image processing system

128



Electronics 2020, 9, 614

for collision avoidance. First, the whole (planned) architecture is briefly introduced, then the details of
the realized horizon detection module are given with its power and programmable logic resource need
on the FPGA.

4.1. Image Processing System on FPGA

The Zynq UltraScale+ XCZU9EG MPSoC FPGA chip has two main parts. The first is the FPGA
Programmable Logic (PL). This contains the programmable circuit elements, such as look up tables
(LUT), flip-flops (FF), configurable logic blocks (CLB), block memories (BRAM) and digital signal
processing blocks (DSP) that are special arithmetic units designed to execute the most common
operations in digital signal processing. The second part is called processing system (PS). Unlike the PL
part, this contains fixed functional units, such as a traditional processor system, integrated I/Os and
memory controller. PS has an application processing unit (APU) with four Arm Cortex-A53 cores at up
to 1.5 GHz. A real-time processing unit (RPU) is also available with two Arm Cortex-R5 cores. There
are fixed AXI BUS connections between the PL, PS, and the integrated I/Os.

Figure 10 shows the complete architecture of the SAA vision system. This architecture is based
on [22] and not completely ready. In this paper, we introduce the horizon detection module and its
role in the complete SAA system.

 

Figure 10. Block diagram of the FPGA based image processing system for SAA.

129



Electronics 2020, 9, 614

The PS part is used to control the image processing system. It sets the basic parameters of the
different modules, reads their status information, and handles the communication with the control
system. Some integrated I/Os are also utilized in this part. Raw image information is stored via the
SATA interface. This can work as a black box during flight, and also makes it possible to use previously
recorded flight data in offline tests. The DDR memory controller is connected to the onboard 4GB
DDR4 memory. The UART controller performs the communication between the AHRS and the image
processing system.

The computationally intensive part of the system is placed in the PL part. First, we capture the
camera image of each camera and bind them together, making a new extended image. This is piped to
three data paths: one to the SSD storage via the SATA interface, one to the memory (the other modules
can access the raw image), and the third to the adaptive threshold module.

The input dataflow is examined by an n×n (now it’s 5×5) window looking for high contrast
regions, which are marked in a binary image, that is sent to the Labeling-Centroid module and stored
in the memory. In the next step, objects are generated from the binary image. In the beginning, every
marked region is an object and gets an identification label. If two marked regions are neighbors (to the
left, right, up, down, or diagonally), they can be merged into one object. Due to some special shapes,
like U, there is a second step in merging. The centroid of every object is calculated and stored.

When a full raw image is stored in the memory, the horizon detection module starts the calculation
based on the AHRS data. The module returns the parameters of the horizon line, that can be used by
the PS.

When both the horizon detection and the labeling-centroid module have finished, the PS is notified.
Based on the current number of objects, the adaptive threshold module is set, as the number of objects
on the next image should be between 20 and 30. Based on the horizon line, the PS determines that an
object should be further investigated, or it can be dropped (the system detects sky objects only). The
Fovea processor classifies the remaining objects, and the PS tracks the objects which were considered
as intruders by the Fovea processor. The evasion maneuver is triggered based on the track analysis.
For more details about the concept of this FPGA-based SAA image processing system, see [22].

4.2. Horizon Detection Module

In [8], the distortion-free version of the horizon detection was introduced and implemented
on an Nvidia Jetson TK1 embedded GPU system. In this paper, we introduce direct handling of
radial distortion without undistortion of the whole image, which is also implemented and used
in-flight with the TK1 system. Here, we give the FPGA implementations for both the distorted and the
distortion-free cases.

The TK1 C/C++ code is slightly modified to suit FPGA architecture design requirements better.
High levels synthesis (HLS) tools were used to generate the hardware description language (HDL)
sources from the modified C/C++ code. The main advantage of HLS compared to the more
general pure HDL way is that the development time is much less, while it still gives low-level
optimization possibilities.

4.2.1. Horizon Detection Without Radial Distortion

The block diagram of the AHRS-based pre-calculation [8] submodule is shown in Figure 11. First,
the trigonometric functions of the Euler angles are calculated. The result is written in Rot1 or Rot2
memory, which works like a ping-pong buffer. In this implementation, when the result is available
in one of the memories, the system starts the matrix multiplication. The transformation matrix from
the body frame to the camera frame (BtoC) depends on only constants. Thus, it is calculated offline
and stored in a ROM. The design is pipelined, therefore during the matrix multiplication, the system
calculates another trigonometric function. When the WC matrix, which defines the projection from
the world coordinate system to the camera frame, has been calculated, the system writes it to a
memory module.

130



Electronics 2020, 9, 614

Matrix 

Mult 

M 

U 

X 

RAM 

F1 

ROM 

BtoC 

RAM 

Rot1 

RAM 

Rot2 

Trig. 

func 

RAM 

WC 

Calc 

norm 

Calc 

point 
angle 

 

 

M 

U 

X 

Figure 11. Pre-calculation block diagram. Blocks: F1: temporary memory for matrix multiplication.
BtoC: Body frame to Camera Frame transformation matrix. Rot1, Rot2: Ping-pong buffer for
trigonometric functions. WC: World to Camera frame transformation matrix.

After that, the transformation of the AHRS-horizon parameters, a normal vector (calc norm),
and the two points of the line (calc point) occur in parallel. These two (three) values define the
pre-calculated horizon line on the image.

The block diagram of the FPGA implementation of the post-calculation (Gradient Sampling)
is shown in Figure 12. The endpoints of the pre-calculated horizon are derived from the normal
vector and the point from the previous step. The “Case Calc” module is estimating the location of
the endpoints on the image. For this estimation, eight regions are distinguished: The four sides and
the four corners. This is used as an auxiliary variable for the calculations. It is necessary to check if
the horizon line is in the image, based on the endpoints (check). If the endpoints are on the image,
the coordinates of the base points (BP) are calculated, and these are stored in a RAM. Otherwise, the
“valid” signal will be false, and the following steps are not calculated.

Cycle Rotate 

Rot 

Case 

Calc 

ROM 

Trig 

Check 
Base 

Points 

End 

Points 

RAM 

BP 
RAM  

RP 

Cycle 

Shift 
 

 

EP &NV 

 

 

AXI_M to Picture Memory 

RAM  

BEST&NV 

valid 

Figure 12. Post-calculation (gradient sampling) block diagram without radial distortion. Blocks: BP:
Base point storage memory. Trig: Values of trigonometric functions used in rotations. Rot: Rotation
calculation. RP: temporary storage for rotated points. BEST&NV: Temporarily stores the parameters of
the best founded horizon line. EP&NV: Endpoints and normal vector calculation.

131



Electronics 2020, 9, 614

In a cycle of rotations, the base points are rotated in each step with a predefined angle. The values
of the trigonometric functions (sin, cos) are calculated for these predefined angles, and they are stored
in a ROM (trig). The result of the rotation is stored in RAM RP, and an inner cycle is run for the
shift (cycle shift). In cycle shift, only those point pairs are used for the average intensity difference
calculation, where both points are in the image. For each run, the result is compared to the best average
so far, which is stored in RAM BEST&NV. The normal vector and a point of the line are also stored.
The cycles are pipelined to speed up the calculation. In the end, the two endpoints and the normal
vector of the horizon are calculated in EP&NV.

4.2.2. Horizon Detection with Radial Distortion

The pre-calculation submodule is nearly the same as in the distortion-free case. The only difference
is that we calculate only one point; the center point, not two.

The post-calculation submodule required noticeable modifications. Due to the distortion, it can
happen that we have even four intersections with the borders. Of course, in this case, only the left-
and the rightmost intersections are used. Therefore, the case calculation block was eliminated, end
the endpoint calculation module was extended with the functionality of handling the distortion. The
other changes in this submodule were in the cycle shift block. The other functionalities of the blocks
remained the same as the distortion-free case. In all shift cycles for every sample point pairs, the
distortion is calculated, and the samples are taken from the distorted pixel coordinates. In the end, a
normal vector and the center point of the (tuned) horizon are calculated in CP and NV block. The
block diagram of the modified post-calculation submodule is shown in Figure 13.

Cycle Rotate 

Rot 

ROM 

Trig 

Check 

Base 

Points 

End 

Points 

with 

Distortion 

RAM 

BP 

RAM  

RP 

Cycle 

Shift 

with 

distortion 

 

 

CP &NV 

 

 

AXI_M to Picture Memory 

RAM  

BEST&NV valid 

Figure 13. Post-calculation (gradient sampling) block diagram with radial distortion. Blocks: BP:
Base point storage memory. Trig: Values of trigonometric functions used in rotations. Rot: Rotation
calculation. RP: temporary storage for rotated points. BEST&NV: Temporarily stores the parameters of
the best founded horizon line. CP&NV: Center point and normal vector calculation.

4.2.3. Resource and Power Usage

The two different FPGA modules (with and without radial distortion) were optimized by two
different strategies. The first strategy aims for the highest possible clock rate/lowest evaluation time,
but keeping the requirement that the total usage of the available resources cannot be greater than 20%
(referred to as “Speed” implementation). The second one aims for less resource usage, even suitable for
low-cost FPGA-s (referred to as “Area” implementation). Based on HLS technology, the C/C++ source
during this process remained the same, and only the optimization directives/pragmas were changed.
All implementations use floating-point number representations to have the same numeric properties as

132



Electronics 2020, 9, 614

the TK1 implementation. However, these results can be further optimized with a fixed-point machine
number representation. Execution time mainly depends on the number of sample points (20) of
the gradient sampling phase and its search parameters, such as the number of rotation (±15 degree/
1 degree step) and shift (±120 pixel/5 pixel step) steps.

The properties of each architecture are shown in Table 1. Even the resource optimized version
(Area) with distortion has 2 mS execution time. The other versions have better results, but are relatively
close to this. If we are comparing the speed and area versions, we can see that the resource usage can be
reduced, especially when we calculate the distortion. On the other hand, the maximum clock frequency
is also decreased. In this (area) case the resource elements (multipliers, adder, and others) are shared
between the different blocks. This reduces the number of them, but generates a more complex control
flow graph, thus a more complex final state machine that cannot operate at a high clock frequency as
the speed implementation. Distorted and distortion-free versions do not have a huge difference in
execution time. Distortion handling requires more circuit resources, four times more DSP, and two
times more FF and LUT.

Table 1. The clock frequencies, execution times, and resource usage of different implementation
strategies.

Without Distortion With Distortion

Optimization Goal Speed Area Speed Area

Timing

Clock Frequency ~110 MHz ~72 MHz ~100 MHz ~72 MHz
Execution Time ~1.2 mS ~1.8 mS ~1.4 mS ~2 mS

Resource

BRAM_18K 2 2 2 2
DSP48E 70 48 211 75

FF 20,336 14,056 42,624 30,163
LUT 26,698 23,554 49,408 34,744

Resource %

BRAM_18K ~0% ~0% ~0% ~0%
DSP48E 2% 1% 8% 4%

FF 3% 2% 7% 5%
LUT 9% 8% 18% 12%

The estimated power usage of the whole image processing system is below 5 Watts. It doesn’t
matter which horizon detection module is used, and it remains 5 W, because the most power consuming
part of the system is the PS, not the PL in which the horizon module lies. More than 80% of the whole
usage comes from the PS part. The estimation is based on the Xilinx Vitis/Vivado built-in power
consumption estimator.

5. Experimental Results

The performance measurement of the horizon detection algorithm was done off-line, using the
in-flight video and sensor data. Three flight video segments were analyzed; two of them consist
of 1220 frames, and one of them consists of 1203 frames, which covers 2.5 min for each video
considering the 8Hz sampling frequency. Each frame consists of two images; thus, altogether, more
than 7000 horizons were evaluated. On each image, the horizon line was annotated by hand. Frames,
where the horizon cannot be seen, are skipped from the calculations. There were around 1000 of these
images. Tests for the undistorted case (2 videos) and the distorted case (1 video) were run on videos
captured at Matyasfold.

The AHRS and the CAM results were tested against the annotation. Three error measures were
calculated to show the performance of the horizon detection: (1) roll angle error (2) pitch angle error

133



Electronics 2020, 9, 614

(3) sky mask pixel ratio error. The geometric interpretation of these error terms is shown in Figures 14
and 15, and a graphical comparison of the algorithms to the annotation is shown in Figure 16.

 

Figure 14. Roll and mask error definitions.

Figure 15. Pitch error definition. If the result is rotated around the image center by the roll, then the
intersections of the horizons with the perpendicular line which goes through the center can give the
pitch angle. We consider the vectors pointing from the 3D focal point of the camera.

134



Electronics 2020, 9, 614

 

Figure 16. AHRS-based initial horizon candidate (red) the ground truth (blue) and the nearly identical
final output of the gradient sampling (cyan).

AHRS of the Sindy aircraft with its full functionality (Inertial-Magnetic-Barometer—GPS)
can provide attitude angles with less than 2-5-degree error. Thus, the horizon candidates of the
pre-calculation step are close to the visual horizon in the image as it can be seen in Figure 16. The
fine-tuned horizon output is nearly identical to the real visual horizon; only hills and long white urban
structures near the horizon can disturb the fit. Figure 17 presents the effect of the gradient sampling
phase, which can improve the AHRS horizon candidates from a 4.01 degree average absolute roll error
to 1.73 degrees. We can see even better improvement for the pitch angle in Figure 18; from 6.75 degrees
to 1.08 degrees.

Figure 17. Roll error distributions of AHRS-only and the vision-based improvement on the real flight
test data, with the average errors.

The bias of AHRS angles may come from the not ideal plane surface of the Mátyásföld area,
and the possible small ~0.5-degree relative calibration error of the camera. With the elimination
of this bias, we can still have benefited from the vision-based horizon, thanks to the fine angular
resolution of our images compared to other methods that do not utilize the AHRS candidate and run
complex sky-ground classification methods in low resolution to find a visual horizon. The real-time

135



Electronics 2020, 9, 614

implementation of [18] reported a 1.49-degree average pith/roll error, which is close to other slower
methods. Obviously, we have not solved the same challenging problem as other horizon detectors,
which use only the image. However, we utilized the AHRS, which is always at hand on-board, and
reach same performance on radially distorted images without undistortion of the complete image. The
number of sample points (20), the number of rotation (+-15 degrees/1 degree resolution) and shift
(+-120 pixel/5 pixel resolution) steps can be increased to reach better accuracy and robustness, however,
the computational need has linear growth. This setup was suitable for our sky-ground separation
application, where the main SAA mission task occupied most of our on-board computational resources.

Figure 18. Roll error distributions of AHRS-only and the vision-based improvement on the real flight
test data, with the average errors.

Due to the fact that we use the horizon for sky-ground separation, we also investigate the ground
mask pixel error as the percentage of the image (Figure 19). Here, we can see the sum of roll and
pitch improvement.

Figure 19. Pixel percentage error of ground masks for AHRS-only and the vision-based improvement
on the real flight test data, with the average errors.

136



Electronics 2020, 9, 614

The gradient sampling with native distortion handling was initially implemented on the Nvidia
Jetson TK1 embedded GPU and used in several flight tests with the Sindy aircraft. In this article, we
gave the FPGA implementation for the horizon detection module to demonstrate that this problem
can be solved under 5 W power in 2 mS time. Table 2 summarizes some reference algorithms and test
platforms. Only [18] is close to the TK1 implementation. However, we have reached better accuracy,
with the help of AHRS attitude information. The FPGA module for the distortion-free case can reach
1.2 mS response time with 20 sample points.

Table 2. The execution time of different horizon detection algorithms, on the given computer architecture
and image size in the distortion-free case.

Algorithm
Computer

Architecture
TDP

Camera Resolution
(Resolution for Calculation)

Execution
Time

Todorovic [12] Athlon x86 @900
MHz 60 W 640 × 480 (128 × 128) ~600 mS

Ettinger et al. [11] x86 @900 MHz ~60 W 320 × 240 (80 × 60) ~33 mS

McGee et al. [13] Pentium III x86
@700 MHz ~24 W 320 × 240 ~500 mS

Boroujeni et al. [14] x86 @2.4 GHz
(MATLAB) ~60 W 250 × 150 ~2000 mS

Dusha et al. [16] Pentium IV @3
GHz 84 W 352 × 288 ~70 mS

Moore et al. [18] dual-core PC104 @
1.5 GHz ~20 W 360 × 180 (80 × 40) ~2 mS

Ours – NVIDIA TK1 [8] ARM Cortex A15 @
2.3 GHz 10 W 1280 × 960 (does not depend on

resolution) ~5 mS

Ours – FPGA (Zynq
UltraScale+ ZCU102) Custom <5 W 1928 × 1208 (does not depend

on resolution) ~1.2 mS

Another way to handle distortion is to undistort the full image and then, run the simple horizon
algorithm. In the literature, most of the undistortion algorithms consider a region of interest (ROI)
and only distort this smaller area instead of the full image [23], which makes it possible to use simpler
distortion models in a small part of the scene. In our case, we cannot predefine a ROI. Therefore, these
methods are not suitable. In general, the system latency is increased with the full image undistortion
time, because the horizon search algorithm can be started only with the fully undistorted image. Even
if a fix-point number-representation is used, it takes around 20 mS on a full HD image (based on [24]).
In our solution, the difference between the distorted and the undistorted version is only 0.2 mS (more
FPGA circuit resources are consumed).

6. Conclusions

This paper presents a light-weight gradient sampling-based visual horizon detection for radially
distorted images. Operating in planar environments where the horizon is a visible feature, the method
explores the neighborhood of a horizon candidate, which is defined by the yaw pitch roll angles of
the attitude heading reference system (AHRS), which is a piece of common equipment on a UAS.
Vision-only methods are computationally more expensive, thus they are performed in low resolution
and require radial undistortion of the image. In our case, the complete undistortion of the image is not
necessary; only a few numbers of sample points should be transformed. The computational complexity
of the method is independent from the image size, thus down sampling is not necessary. The original
fine resolution image can provide better angular accuracy for the horizon detection.

The exact form of the distorted horizon is derived, which is a fifth order polynomial, and makes it
possible to have the best quality representation if it is needed. The gradient sampling algorithm can

137



Electronics 2020, 9, 614

efficiently improve even good quality AHRS data, based on the visual horizon. FPGA implementation
is also given for the horizon detection, which demonstrates that the distortion handling can be
performed with minimal time need (1.2 ms), if we add some extra circuit resources to the module. This
realization is the fastest known vision-based horizon detector. The time complexity is defined by the
number of sample points, rotation and shift steps. Our on-board setup has 1.7 degree roll and 1 degree
pitch average absolute error, which is suitable for most applications and better than the vision-only
real-time methods.

If complete undistortion of the whole image is not necessary for the main mission of the UAV,
the horizon detection does not require it. A simple search around the AHRS-based horizon can reach
high-quality attitude or sky-ground image masks.

Author Contributions: Conceptualization, A.H., A.Z., L.H. and T.Z.; data curation, A.H.; formal analysis, A.H.,
L.H. and T.Z.; investigation A.H., L.M.S. and T.Z.; methodology: A.H., L.H., L.M.S., A.Z. and T.Z.; software: A.H.,
T.Z. and L.M.S.; validation: A.H. and T.Z.; visualization: L.H., A.H., L.M.S. and T.Z.; writing—original draft: A.H.,
L.H., L.M.S. and T.Z.; writing—review and editing: A.Z., L.M.S., A.H. and T.Z. All authors have read and agree to
the published version of the manuscript.

Funding: This research was funded by ONR, grant number N62909-10-1-7081. The APC was funded by PPCU
KAP 19. L. Hajder was supported by the Project no. ED_18-1-2019-0030 (Application-specific highly reliable IT
solutions). The project has been implemented with the support provided from the National Research, Development
and Innovation Fund of Hungary, financed under the Thematic Excellence Programme funding scheme. The
article publication was funded by PPCU supported by NKFIH, financed under Thematic Excellence Programme.

Acknowledgments: Authors thank Krisztina Zsedrovitsne Gocze for the annotation of many flight videos, and
Peter Bauer for the Sindy aircraft AHRS integration and flight tests.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mogili, U.R.; Deepak, B.B.V.L. Review on application of drone systems in precision agriculture. Procedia
Comput. Sci. 2018, 133, 502–509. [CrossRef]

2. Zsedrovits, T.; Peter, P.; Bauer, P.; Pencz, B.J.M.; Hiba, A.; Gozse, I.; Kisantal, M.; Nemeth, M.; Nagy, Z.;
Vanek, B.; et al. Onboard visual sense and avoid system for small aircraft. IEEE Aerosp. Electron. Syst. Mag.
2016, 31, 18–27. [CrossRef]

3. Fasano, G.; Accardo, D.; Tirri, A.E.; Moccia, A.; De Lellis, E.E. Morphological filtering and target tracking
for vision-based UAS sense and avoid. In Proceedings of the 2014 International Conference on Unmanned
Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 430–440.

4. Molloy, T.L.; Ford, J.J.; Mejias, L. Detection of aircraft below the horizon for vision-based detect and avoid in
unmanned aircraft systems. J. Field Robot. 2017, 34, 1378–1391. [CrossRef]

5. Gleason, S.; Gebre-Egziabher, D. GNSS Applications and Methods; Artech House: Washington, DC, USA, 2009.
6. Bauer, P.; Bokor, J. Multi-mode extended Kalman filter for aircraft attitude estimation. IFAC Proc. Vol. 2011,

44, 7244–7249. [CrossRef]
7. Cornall, T.D.; Egan, G.K. Measuring Horizon Angle from Video on a Small Unmanned Air Vehicle. Auton.

Robots 2004, 339–344.
8. Hiba, A.; Zsedrovits, T.; Bauer, P.; Zarandy, A. Fast horizon detection for airborne visual systems.

In Proceedings of the 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA,
USA, 7–10 June 2016; pp. 886–891.

9. Zsedrovits, T.; Bauer, P.; Hiba, A.; Nemeth, M.; Pencz, B.J.M.; Zarandy, A.; Vanek, B.; Bokor, J. Performance
Analysis of Camera Rotation Estimation Algorithms in Multi-Sensor Fusion for Unmanned Aircraft Attitude
Estimation. J. Intell. Robot. Syst. 2016, 84, 759–777. [CrossRef]

10. Gibert, V.; Burlion, L.; Chriette, A.; Boada, J.; Plestan, F. Nonlinear observers in vision system: Application to
civil aircraft landing. In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 15–17
July 2015; pp. 1818–1823.

11. Ettinger, S.M.; Nechyba, M.C.; Ifju, P.G.; Waszak, M. Towards flight autonomy: Vision-based horizon
detection for micro air vehicles. In Proceedings of the Florida Conference on Recent Advances in Robotics,
Melbourne, FL, USA, 14–16 May 2002.

138



Electronics 2020, 9, 614

12. Todorovic, S. Statistical Modeling and Segmentation of Sky/Ground Images. Master’s Thesis, University of
Florida, Gainesville, FL, USA, 2002.

13. McGee, T.G.; Sengupta, R.; Hedrick, K. Obstacle Detection for Small Autonomous Aircraft Using Sky
Segmentation. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation,
Barcelona, Spain, 18–22 April 2005; pp. 4679–4684.

14. Boroujeni, N.S.; Etemad, S.A.; Whitehead, A. Robust horizon detection using segmentation for UAV
applications. In Proceedings of the 9th Conference on Computer and Robot Vision, Toronto, ON, Canada,
28–30 May 2012; pp. 346–352.

15. Bauer, P.; Bokor, J. Development and hardware-in-the-loop testing of an Extended Kalman Filter for attitude
estimation. In Proceedings of the 11th IEEE International Symposium on Computational Intelligence and
Informatics (CINTI), Budapest, Hungary, 18–20 November 2010; pp. 57–62.

16. Dusha, D.; Boles, W.; Walker, R. Fixed-Wing Attitude Estimation Using Computer Vision Based Horizon Detection;
QUT ePrints: Queensland, Australia, 2007; pp. 1–19.

17. Shen, Y.F.; Krusienski, D.; Li, J.; Rahman, Z. A Hierarchical Horizon Detection Algorithm. IEEE Geosci.
Remote Sens. Lett. 2013, 10, 111–114. [CrossRef]

18. Moore, R.J.; Thurrowgood, S.; Bland, D.; Soccol, D.; Srinivasan, M.V. A fast and adaptive method for estimating
UAV attitude from the visual horizon. In Proceedings of the 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 4935–4940.

19. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge,
UK, 2004; ISBN 0521540518.

20. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22,
1330–1334. [CrossRef]

21. Vanek, B.; Bauer, P.; Gozse, I.; Lukatsi, M.; Reti, I.; Bokor, J. Safety Critical Platform for Mini UAS Insertion
into the Common Airspace. In Proceedings of the AIAA Guidance, Navigation, and Control Conference,
American Institute of Aeronautics and Astronautics, Reston, VA, USA, 13–17 January 2014; pp. 1–13.

22. Zarándy, A.; Nemeth, M.; Nagy, Z.; Kiss, A.; Sántha, L.M.; Zsedrovits, T. A real-time multi-camera vision
system for UAV collision warning and navigation. J. Real-Time Image Process. 2016, 12, 709–724. [CrossRef]

23. Jakub, C.; Henryk, B.; Kamil, G.; Przemysław, S. A Fisheye Distortion Correction Algorithm Optimized
for Hardware Implementations. In Proceedings of the 21st International Conference “Mixed Design of
Integrated Circuits & Systems”, Lublin, Poland, 19–21 June 2014.

24. Daloukas, K.; Antonopoulos, C.; Bellas, N.; Chai, S. Fisheye lens distortion correction on multicore and
hardware accelerator platforms. In Proceedings of the IEEE International Symposium on Parallel Distributed
Processing, Atlanta, GA, USA, 19–23 April 2010; pp. 1–10.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

139





electronics

Article

LoRaWAN Networking in Mobile Scenarios Using a
WiFi Mesh of UAV Gateways

Marco Stellin 1,2,3,†, Sérgio Sabino 1,2,4,† and António Grilo 1,2,4,*,†

1 Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, no. 1, 1649-004 Lisbon, Portugal;
stellin.marco@gmail.com (M.S.); sergio.sabino@tecnico.ulisboa.pt (S.S.)

2 INESC-ID, Rua Alves Redol, no. 9, 1049-001 Lisbon, Portugal
3 MobileKnowledge, Carrer de Roc Boronat, 117, 08018 Barcelona, Spain
4 INOV, Rua Alves Redol, no. 9, 1049-001 Lisbon, Portugal
* Correspondence: antonio.grilo@inesc-id.pt; Tel.: +351-213100226
† These authors contributed equally to this work.

Received: 15 March 2020; Accepted: 5 April 2020; Published: 10 April 2020

Abstract: Immediately after a disaster, such as a flood, wildfire or earthquake, networks might be
congested or disrupted and not suitable for supporting the traffic generated by rescuers. In these
situations, the use of a traditional fixed-gateway approach would not be effective due to the mobility of
the rescuers. In the present work, a double-layer network system named LoRaUAV has been designed
and evaluated with the purpose of finding a solution to the aforementioned issues. LoRaUAV is based
on a WiFi ad hoc network of Unmanned Aerial Vehicle (UAV) gateways acting as relays for the traffic
generated between mobile LoRaWAN nodes and a remote Base Station (BS). The core of the system is
a completely distributed mobility algorithm based on virtual spring forces that periodically updates
the UAV topology to adapt to the movement of ground nodes. LoRaUAV has been successfully
implemented in ns-3 and its performance has been comparatively evaluated in wild area firefighting
scenarios, using Packet Reception Ratio (PRR) and end-to-end delay as the main performance metrics.
It is observed that the Connection Recovery and Maintenance (CRM) and Movement Prediction (MP)
mechanisms implemented in LoRaUAV effectively help improve the PRR, with the only disadvantage
of a higher delay affecting a small percentage of packets caused by buffer delays and disconnections.

Keywords: LoRaWAN; Unmanned Aerial Vehicles; topology control; virtual spring forces; firefighting
communications

1. Introduction

Over the past few years, the ubiquity of the Internet and the miniaturization of computational
devices created a new paradigm called Internet of Things (IoT). In many cases, IoT devices are subject
to very strict power constraints. For this reason, a new range of low power wireless communication
protocols has been developed in order to support Low Power Wide Area Networks (LPWANs) [1].
These networks are formed by simple devices that communicate infrequently over long distances at
low bitrates. Long Range (LoRa) is one of the most promising and versatile technologies enabling
LPWANs. LoRa [2] is a narrowband modulation technique based on Chirp Spread Spectrum (CSS)
modulation, a technology that achieves high robustness against channel degradation factors, such as
path loss, multipath fading, shadowing and Doppler shift. By taking advantage of Spread Spectrum
(SS), chirp orthogonality and the good propagation properties of the sub-GHz spectrum, LoRa provides
communication over long distances, at the expense of the bitrate and of the maximum time interval
between transmissions due to duty cycle limitations in the bands used by the protocol. Air time,
power consumption and data rates can be controlled by different Spreading Factors (SFs) (7 to 12) and

Electronics 2020, 9, 630; doi:10.3390/electronics9040630 - www.mdpi.com/journal/electronics141



Electronics 2020, 9, 630

bandwidth (125 kHz or 250 kHz) combinations. The LoRa modulation is the core of the PHY and MAC
of LoRa Wide Area Networks Protocol (LoRaWAN) [3].

Unmanned Aerial Vehicles (UAVs), popularly called drones, are flying vehicles that work without
a human pilot onboard. The exclusive prerogative of the military for many years, UAVs are now
commercially available at low prices, thus making them appealing for a wide variety of applications.
Drones come in different shapes, but the most common are quadrotors and fixed-wing drones. In case
of a disaster, such as a flood or a wildfire, UAVs can be used to support the rescuers, to localize the
victims and to create a backhaul network when communication facilities are disrupted. UAVs provide
many advantages compared to other solutions: movement in an obstacle-free environment, better
overview of the area, Line of Sight (LoS) with targets and faster data acquisition in large areas. However,
UAVs still have a limited flying range, autonomy and flying time. UAV swarms are increasingly being
considered as a possible solution to provide radio coverage in a target area. Integrating UAVs and
LPWAN protocols in disaster scenarios may offer a new cost-effective and energy efficient way to
solve problems arising during the operations of the rescuers. In this paper, a challenging scenario was
selected: support of wildfire combat operations. Wildfires affect rural or suburban areas where the
coverage of conventional networks (e.g., cellular networks) is weak or absent, or vulnerable to the fire
itself. UAVs can therefore be used to establish a relay network between the command post managing
the operations and the firefighters, therefore providing situational awareness to the rescuers.

The mobility of firefighters represents a big challenge, since the UAV swarm has to maintain both
area coverage and end-to-end connectivity to the Base Station (BS) of the command post. LoRaUAV, an
UAV system based on LoRaWAN and Wireless Fidelity (WiFi), is designed to tackle these problems.
Figure 1 shows a representation of the system architecture.

Figure 1. High level view of LoRaUAVsystem architecture.

In LoRaUAV, firefighters carry Global Positioning System (GPS) enabled LoRaWAN tags, which
are used to transmit their position, as well as biometric data. They may also deploy tactical LoRaWAN
sensors, which may detect when the fire has reached some selected locations. Firefighter tags and
ground sensors will be henceforth designated Ground Nodes (GNs).

In the target scenario, the LoRaWAN radio range is likely affected by additional attenuation due
to terrain features and foliage. In the LoRaUAV system, a WiFi mesh network of autonomous UAV
LoRaWAN gateways is dynamically deployed to provide LoRaWAN coverage during firefighting
operations. This mesh of flying LoRaWAN gateways will receive the data from the GNs and relay
it through WiFi to the command post, where the LoRaWAN Network Server resides. Since the WiFi
technology presents a higher data rate, it allows the aggregation of traffic originated from a high
number of GNs. On the other hand, its shorter range is somewhat compensated by the fact that
communication between UAVs takes place in LoS.

Since GNs are expected to move, the UAV mesh must adapt its position and topology according to
the GN movement patterns. In LoRaUAV, this is addressed by a topology control algorithm based on
Virtual Spring Forces (VSFs). In order to solve the problem of disconnections due to disruption caused
by continuous movement of GNs and transient UAV topology adaptation, a Connection Recovery and
Maintenance (CRM) extension is proposed. A Movement Prediction (MP) extension is also proposed

142



Electronics 2020, 9, 630

in order to make it easier to recover isolated GNs based on a combination of movement prediction
and VSFs.

LoRaUAV has been successfully implemented in ns-3and its performance has been evaluated
and compared with an existing VSF proposal by Di Felice et al. [4]. Packet Reception Ratio (PRR) and
end-to-end delay were used as the main performance metrics. From the results, it can be concluded
that the CRM and MP mechanisms implemented in LoRaUAV effectively help improving the PRR,
with the only disadvantage of a higher delay affecting a small percentage of packets, which is caused
by buffer delays and disconnections.

The main contributions of this paper are the following.

• Proposal and comparative performance evaluation of a system providing LoRaWAN coverage in
wild area firefighting operations by means of a WiFi mesh of UAV gateways.

• Novel CRM and MP extensions to VSFs topology control, which are shown to significantly
improve the performance of this kind of mechanism.

• Novel mobility model of wild area firefighting scenarios considered in the performance evaluation.

The rest of this paper is organized as follows. Section 2 presents a review of the related works.
Section 3 presents LoRaUAV and its main algorithms and explains the main design choices. Section 4
presents the developed simulation model. Section 5 presents the simulation results to evaluate all the
algorithms. Finally, conclusions are reported in Section 6.

2. Related Work

Establishing a relay wireless ad hoc network of UAVs comes with a set of non trivial problems:
how to optimally place the UAVs in a 3D environment, and how to plan the movement of UAVs
to avoid collisions while reaching the target objective? A problem that frequently arises is the
connectivity versus coverage problem. In an ideal situation, the mesh network should provide the
maximum possible coverage, while at the same time it should maintain the connectivity between its
members. Unfortunately, due to the limited available resources (i.e., number of UAVs), a compromise
between both requirements is typically needed. The algorithms that have been developed to tackle
the aforementioned problems fall in two main categories: centralized and distributed. Centralized
algorithms rely on one single entity having full knowledge and control of the nodes forming the
network. This approach typically produces close to optimal results when the location information
is timely and reliable, but suffers from the single point of failure problem and, if the dimension of
the problem is big enough, location information dissemination and the amount of computations can
generate substantial delays. Mixed integer programming [5], evolutionary algorithms [6,7] or potential
fields [8] are typically used. On the other hand, distributed algorithms provide less optimal solutions,
but computations are typically simpler, based on local information distributed among the nodes, thus
making the network more responsive and resilient in case of unexpected changes. Most of the existing
distributed algorithms adapt concepts coming from physics or natural animal behavior. Such is the
case of VSF approaches like the one presented in this paper. Consequently, this section will focus on
distributed approaches proposed so far.

Basu et al. [9] propose a flocking based system, where UAVs self-organize to follow military units
deployed and moving on the ground. The main purpose is to minimize the number of allocated UAVs
in comparison with a full area coverage scheme. Fixed wing UAVs are assumed, with a constraint
being considered on the maximum turn angle. A state machine with four states is proposed, which
runs independently in each UAV, leading to an emergent flocking behavior. The state machine defines
when the UAV should be repelled or attracted by its neighbors depending on mutual distance, when to
approach the centroid of ground nodes within range, or when to randomly walk to find positions where
more ground nodes are covered. The results show that the UAVs are able to follow and effectively
cover the ground nodes when they move, though performance is clearly better when ground node
movement is local and takes place within a constrained area.

143



Electronics 2020, 9, 630

Goddemeier et al. [10] consider a distributed decision approach to maintain a coherent mesh
network of UAVs with the objective of exploring a 3D area. The swarm has also the additional
requirement of keeping the connectivity to a ground base station. Two scenarios are studied by the
authors: one in which the connectivity to the base station is permanent (Bounded Relaying) and one
in which some disconnections are allowed for the purpose of extending the exploration (Release and
Return). Each UAV in the network has the ability of self-selecting a different role, depending on the
topology of the network: Scout Agents (SA) are assigned the task of exploration and sensing, Relay
Nodes (RN) keep the communication between one or more UAVs and the base station, Articulation
Points (AP) link two clusters that otherwise would be fragmented and Returnees (R) are drones that,
in a Release and Return scenario, return to regain connectivity after being detached from the network.
In order to maintain mesh connectivity, the authors propose a communication-aware algorithm based
on virtual potential fields called Communication Aware Potential Fields (CAPF). According to this
algorithm, each UAV is subject to a virtual force

−→
F dir =

−→
F conn +

−→
F AP +

−→
F CA, (1)

where
−→
F conn is the force that keeps a UAV connected to its neighbors,

−→
F AP is the force that keeps a SN

in the range of an AP or a RN, and
−→
F CA is the repelling force that keeps the UAV away from obstacles

(i.e., other UAVs). The magnitude and direction of each force are determined by the strength of the
communication between each pair of UAVs, measured by the RSSI.

−→
F conn is calculated as follows:

−→
F conn =

d

∑
k=1

−→
F connk , (2)

−→
F connk = q|ΔRSSI|−→d0 k. (3)

For each UAV, the d neighboring UAVs with the best connections are chosen. For each pair,−→
F connk is computed. ΔRSSI measures how far the current RSSI (RSSIcurr) is from the maximum

RSSI (RSSImax) or minimum RSSI (RSSImin) threshold, while
−→
d0 k is the normalized directional vector

between the two UAVs, and q determines if the force is attractive or repulsive. If RSSIcurr is above
RSSImax, the force is repulsive, while if it is below RSSImin, the force is attractive. The force is zero
only when RSSIcurr is between RSSImin and RSSImax. The resulting force

−→
F dir gives the direction in

which the UAV has to move in the current time step.
Di Felice et al. [4] propose a distributed algorithm based on VSFs to give coverage to a set of

isolated GNs. The mobility of UAVs is subject to three rules: connectivity of the aerial mesh must
be preserved, QoS of the links must be guaranteed and the covered GNs must be preserved. These
requirements are obtained by moving each UAV according to a virtual force

−→
R given by the sum of

the spring forces associated with each wireless link established by the UAV. Each force is computed
as follows: −→

F = −k · δ, (4)

where k is the stiffness of the spring and δ is its displacement, computed as a function of the link
budget LB(i, j) measuring the quality of the wireless link (i, j). For Air-to-Air (AtA) links, k is a fixed
parameter. For Air-to-Ground (AtG) links, k is dynamic and defined as follows:

kAtG =
ni

max(nj)∀j ∈ Neighi
. (5)

UAVs connecting more GNs oppose more resistance to movements that might reduce the number
of covered nodes. At each time step ΔT, the resulting force

−→
R is computed for each UAV and then,

if the force magnitude is above a certain threshold, the UAV moves with constant speed in the new
direction. An exploration phase is also triggered each Tscout seconds. All UAVs with no other UAV

144



Electronics 2020, 9, 630

in their visibility zone become scout nodes with probability pSCOUT and an attractive spring force
is computed between them and the center of the least visited cell. In [11], the authors perform a
comparison with a centralized optimization scheme, which concludes that the distributed algorithm
can achieve a performance that is similar to the centralized one.

Reynaud et al. [12] propose a virtual force based scheme in a scenario of detection and location of
vespa velutina. As pursuit UAVs move away from the control node to pursue vespa velutina individuals,
relay UAVs form a communication chain that provide multihop connectivity to pursuit nodes. Within
a communication chain, distances between each two neighbors determine if the force between them is
attractive, friction or repulsive, in order to keep the chain connected. A development of this scheme is
proposed in [13] to provide area coverage in zones where the network infrastructure is damaged or
non-existent. The concept of communication chain is now applied between a source and a destination
of data. Besides the already mentioned attractive, friction and repulsive forces, relay UAVs are now
subject to alignment forces, which seek to straighten the communication chains, making them as
coincident as possible to the line segment that connects the source and the destination nodes. This will
make the chain more efficient by minimizing the number of nodes. According to the proposed scheme,
the UAVs that do not belong to a chain become survey UAVs moving randomly to locate potential
source and destination nodes. The authors do not address the problem of topology management under
multiple simultaneous source-destination pairs. For example, they do not consider fusing or gluing
together closely located or crossed chains in order to minimize the overall number of relays. They also
do not explain how relays are assigned to chains when there are multiple possibilities.

3. The LoRaUAV System

The objective of LoRaUAV is to provide coverage to mobile GNs using a fleet of UAVs, whose
purpose is to relay the collected data to a BS through an ad hoc network established between its
members. Each UAV must be able to adjust its position to reflect the changing topology of the GNs
and, at the same time, maintain connectivity with the BS. Disconnections, although difficult to avoid,
must be minimized, and recovery measures must be set up to recover the connectivity. LoRaUAV
provides mechanisms to tackle all these problems. Some assumptions are made:

1. All UAVs fly at the same altitude in a 2D plane;
2. All UAVs can move with constant speed in any direction;
3. UAVs periodically exchange their position and the list of covered GNs with their neighbors;
4. UAVs have access to the received power of neighboring UAVs and GNs or can estimate it based

on their position;
5. The position of the BS is known by all UAVs;
6. The minimum data rate (and hence maximum SF) acceptable for each LoRaWAN link is a

configuration parameter.

3.1. Architecture

The architecture of LoRaUAV consists of a two-layer system: the first layer is composed of GNs
that transmit data using LoRaWAN, while the second layer is composed of a swarm of relay drones
communicating over an WiFi ad hoc network. LoRaUAV is composed of three entities: GNs, UAVs and
a BS. GNs are equipped with devices that aggregate data coming from various sensors and transmit
it using a LoRaWAN module. The UAVs must be equipped with all the necessary sensors, controls
and software for navigation and stabilization, e.g., speed meters and accelerometers. We assume that
drones already come with all the necessary components and with a software API to interact with
them. The UAVs considered in this work are multi-rotors able to hover over a location or target. The
UAVs carry a module that integrates a LoRaWAN Gateway (GW) chip and a WiFi chip supporting ad
hoc communications. End-to-end packet delivery over WiFi is accomplished thanks to a traditional
TCP/IP stack, with the assistance of a proactive MANET routing protocol. The module also contains

145



Electronics 2020, 9, 630

a relay application, responsible for adapting LoRaWAN packets received by the GW, and sending
them over the ad hoc network to the destination. The most important part of the system is the VSF
distributed mobility algorithm, responsible for planning the movements of the drone according to
virtual spring forces on the basis of parameters collected from the GPS, routing tables and messages
exchanged with GNs and other UAVs. Therefore, the algorithm needs to interface with almost all
UAV systems. The BS contains the same WiFi equipment as a UAV, runs the same MANET routing
protocol and integrates a LoRaWAN Network Server (NS) to manage the network. Other LoRaWAN
entities (Application Servers (ASs) and Join Server (JS)) can be placed anywhere provided that a form
of network connectivity is available (e.g., satellite or terrestrial link).

3.2. VSF Mobility Algorithm

LoRaUAV implements a force-based distributed mobility algorithm that can push or pull an UAV
closer or further from other UAVs or GNs. In this way, UAVs are kept within communication range of
each other, collisions are avoided and the objective of covering the GNs is pursued. The implemented
VSF algorithm is an adapted version of the algorithm described by Di Felice et al. in [4]. Modifications
affect the weights of AtA and AtG forces. The algorithm runs at fixed regular intervals ΔT. At each
time step, each UAV generates a set of virtual springs, having one end attached to the UAV that
generated them, and the other end attached to either a GN (AtG spring) or another UAV (AtA spring).
For each spring, the force Fij between node i and node j is calculated as follows:

−→
Fij = K · (LBij − LBreq)

−→x , (6)

where K is a proportionality factor, LBij is the real or estimated link budget between node i and node j,
and LBreq is the required link budget. Link budget measurements give a better indication of the quality
of the link and allow to better select the parameters according to application-specific QoS requirements.
The total force Fi

tot applied to UAV i is:
−→
Fi

tot =
N

∑
j=0

−→
Fij , (7)

where N is the number of springs originating from UAV i. AtG springs are established with all the
GNs that have sent to the UAV at least one update in the last tAtG seconds. AtA springs, instead,
are established with any one-hop neighboring UAV. AtA and AtG springs are only established with
direct neighbors, thus lowering the computations and the complexity of the interactions. The K
parameter is fundamental to determine the weight and priority of each spring force Fij. For AtA
springs, K is updated according to the following expression:

KAtA = Kp

(
Nmax

neighs

nneighs

)
, (8)

where Kp > 0 is a scaling factor, Nmax
neighs is the maximum expected number of neighboring UAVs and

nneighs is the current number of neighboring UAVs. Equation (8) allows to scale the magnitude of
the AtA forces on the basis of the relative number of neighboring UAVs. In this way, UAVs with
few neighbors have a higher tendency to stick to the formation, while UAVs with many neighbors
exhibit the opposite behavior, therefore assigning more relevance to AtG springs. A good value of
Nmax

neighs typically resides in the interval [6, 8], since UAVs tend to arrange themselves in hexagonal
grid formations when subject only to AtA forces. If the number of drones is small, Nmax

neighs can be
approximated with the total number of UAVs. The K parameter takes a different value at each time
step for each AtG spring attached to GN j:

Kj
AtG =

umax

uj
, (9)

146



Electronics 2020, 9, 630

where umax is the highest number of neighboring UAVs sharing one or more covered GNs and uj is the
current number of UAVs covering GN j. This relation gives more priority to the GNs that are covered
by less UAVs, and drones are therefore expected to distribute themselves uniformly between the GNs
that are in range.

3.3. Connection Recovery and Maintenance (CRM) Algorithm

In LoRaUAV, partitions of the UAVs are difficult to avoid. Disconnections might be caused by
difficult environmental conditions or by one or more UAVs that go too far from nearby UAVs due
to strong attractive forces. Some mechanisms are therefore integrated in the system to recover the
connectivity with the UAV formation and with the BS. After the connection to the BS is recovered,
a connection maintenance procedure is triggered. Figure 2 shows the developed CRM algorithm.
The CRM algorithm has three mobility modes: the VSF mobility described in Section 3.2, the Network
Recovery Mobility (NRM), which consists in moving the drone towards the BS to recover the
connection, and the Stationary Mobility (SM), which forces the drone to hover over a location. The pause
and persist parameters are used to select the mobility mode. The pause parameter is a positive integer
that specifies for how many time intervals the UAV has to remain stationary. When a connection with
the BS is recovered thanks to the NRM, the SM is activated and kept active for pause×ΔT time intervals
in order to avoid further disconnections. Every UAV sets pause according to the following expression:

pause =
⌊

Pmax
Rmax

DBS

⌋
, (10)

where Pmax is the maximum number of pause intervals, Rmax is the maximum communication range
and DBS is the current distance from the BS. Rmax is updated progressively thanks to the position
information periodically exchanged with neighboring UAVs. Equation (10) assigns a more conservative
behavior to drones that are closer to the BS and therefore more likely to cause the disconnection of a
larger part of the network. On the contrary, peripheral UAVs can act more freely, since their temporary
disconnection is less likely to cause the partition of other parts of the network. The pause parameter
is ignored only when the load parameter is zero. This parameter measures the number of relayed
packets during a time window of fixed length tload and it can therefore be used to select inactive
UAVs free to move without the constraints imposed by the CRM algorithm. The persist parameter is a
positive integer that specifies for how many time intervals the UAV has to keep using the VSF mobility
even without a connection to the BS, with the hope that a connection can be recovered thanks to the
rearrangement of other UAVs. The persist parameter is set according to the following expression:

persist =
⌊
(hops − 1)

DBS
Rmax

⌋
, (11)

where hops is the last recorded hop distance between the UAV and the BS. Equation (11) allows
peripheral UAVs to be dragged by VSF forces for a longer time, even if they are isolated. On the
contrary, UAVs closer to the BS are less tolerant to disconnections and try to recover a connection faster.
It is possible that a group of UAVs, sharing some covered GNs, gets isolated from the swarm. In this
case, the typical persist behavior would not exploit the redundant UAVs to recover the connectivity.
Instead, all the UAVs would trigger the NRM at almost the same time and all would loose the
connection with the covered GNs. To avoid this situation, UAVs that are covering a set of GNs
determine, after loosing the connection, the neighboring UAV with which they share the highest
percentage of GNs. If this percentage is above a certain threshold pshared, one of the two UAVs is
redundant. Every UAV has a fixed ID that has been assigned before the operation. The UAV with the
lowest ID among the two cuts by half its persist intervals, while the other UAV doubles those intervals.
In the next time steps, the UAV with the lowest value of persist triggers the NRM before the others

147



Electronics 2020, 9, 630

and repositions itself closer to the BS. This helps to recover a connection with the UAV swarm without
loosing the GNs.

Figure 2. CRM algorithm.

3.4. Movement Prediction (MP) Algorithm

The MP algorithm is a solution to recover isolated GNs based on a combination of movement
prediction and virtual forces. This last characteristic allows to easily integrate the solution in the
system and to preserve the simplicity of the LoRaUAV distributed approach. The algorithm is based
on entities called holograms, whose purpose is to signal to UAVs the estimated position of isolated GNs.

148



Electronics 2020, 9, 630

A hologram contains a pair of spatial coordinates that can be used to compute a virtual AtG force
between the hologram itself and other UAVs. Since GNs are moving, the information about their last
known position is not enough to create useful holograms. However, if GNs keep a regular direction
and speed for some time, the future position of GNs can be predicted from previous recorded positions
and the hologram location can be updated accordingly at each time step. In LoRaUAV, the prediction
is based on simple kinematic rules. In order to estimate the kinematic rule parameters, the algorithm
uses the GN position updates. The time must thus be treated as a sequence of discrete time steps. If we
consider a GN i at time t, its future coordinate xi(t+1) is:

xi(t+1) = xit + vx
it +

1
2

âx
it · Δt, (12)

where vit and âx
it are respectively the velocity at time t and the expected variation of velocity

(acceleration) within the update time interval Δt. The latter also corresponds to the interval between t
and t + 1. As will be seen in Equation (13), vit is computed as the difference between xit and xi(t−1).
As such, it already corresponds to the displacement within Δt. The computation of all the necessary
variables is based on the finite difference method and only requires the knowledge of the three most
recent positions of a node, so that:

⎧⎪⎪⎨
⎪⎪⎩

vx
it = xit − xi(t−1)

vx
i(t−1) = xi(t−1) − xi(t−2)

vx
i(t−2) = xi(t−2) − xi(t−3),

(13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

âx
it = ax

i(t−1) + Δax
i(t−1) · Δt

Δax
i(t−1) =

ax
i(t−1) − ax

i(t−2)

Δt

ax
i(t−2) =

vx
i(t−1) − vx

i(t−2)

Δt

ax
i(t−1) =

vx
it − vx

i(t−1)

Δt
,

(14)

It should be noted that, as expected, velocity and acceleration are still related as follows:

vx
i(t+1) = vx

it + âx
it · Δt, (15)

A similar reasoning applies to coordinate yi. In the current version, in order to simplify the
problem, only GNs with constant velocity are considered, so that only the two latest positions,
separated at most by tr seconds, are required. UAVs are responsible for keeping track of lost GNs
(in the last tlost seconds) and for sending to other UAVs the information needed to predict the location
of holograms: the last known position of a GN, its velocity vector and the time of its latest recorded
position. This information is included in a message called token, sent in unicast to every UAV in
the routing table. A hologram is created for each token and an expiration timer texp is attached to it.
To avoid disruptions of AtA and AtG forces, only UAVs that are inactive (load = 0) are influenced by
hologram forces. To reduce the amount of exchanged tokens, lost GNs can be first clustered in groups
using a clustering algorithm. In LoRaUAV, k-means [14] is used for clustering and k-means++ [15] is
used to initialize the centroids and speed up the convergence. The k-means algorithm is run multiple
times with different values of k, with k ranging from 2 to kmax, and the quality of the clustering is then
assessed through the average silhouette index, a metric that measures the similarity among members of
the same cluster and their dissimilarity from members of other clusters. The silhouette s(i) of the data
point i is calculated as follows:

149



Electronics 2020, 9, 630

s(i) =
b(i)− a(i)

max{a(i), bi} , (16)

where a(i) is the average distance of i from the members of its own cluster and b(i) is the lowest
average distance of i from the members of neighboring clusters. The index gets values in the interval
[−1, 1]. Values closer to 1 indicates that the data point i belongs to a good cluster. Data points belonging
to a cluster with only one point have a silhouette value of zero. The average savg of all s(i) is compared
to the minimum threshold sthr to assess the overall quality of the clustering. If no good clustering
is found, all lost GNs are assigned to a single cluster. A token is created for each cluster and sent to
the other UAVs. The token contains the center of mass, the average velocity and the time of the most
recent update of each cluster.

4. Simulation Model

The LoRaUAV system was developed and evaluated using the ns-3 [16] network simulator.
ns-3 has been chosen for its modular architecture, its speed and for its support of all the protocols
that are part of LoRaUAV, including modules for simulating LoRaWAN networks. Of the available
LoRaWAN modules for ns-3, the one developed by Magrin et al. [17] has been chosen. The main
modeling choices are described in this section. The LoRaUAV model developed for this paper is
available at the following link: https://github.com/marcostellin/ns3lorauav.

4.1. Channel Propagation Models

AtA links are modeled with a Friis propagation model. It is assumed that the monitored area is flat
and no obstacles are present in the LoS of the UAVs at any moment. Since UAVs operate several meters
above the ground, the LoS assumption is acceptable. Under these conditions, the Friis propagation
model represents a reasonable choice [18]. The path loss PL in dB is therefore computed as follows:

PL = Gt + Gr − 10 · log
(
(4πd)2L

λ2

)
, (17)

where Gt and Gr are antenna gains in dBi, λ is the wavelength in meters, d is the distance between the
transmitter and the receiver in meters and L is the system loss. Gt and Gr are set to 0 (omnidirectional
antennas) and L is set to 1.

In the considered scenario, GNs move in an environment rich of vegetation. Under these
conditions, the LoS between GNs and UAVs is not guaranteed at all times, and foliage and trunks
produce considerable absorption, scattering and diffraction. In this work, the AtG channel is modeled
with a Log Distance path loss model described by the following equation:

PL = L0 + 10 · n · log10

(
d
d0

)
, (18)

where n is the path loss exponent, d is the distance in meters from the receiver, and d0 and L0 are
respectively the reference distance and the reference loss for d0. These parameters are estimated from
the LoRaWAN RSSI measurements obtained in a forest environment and collected by Iova et al. in [19]
(L0 = 32.22 dbm, n = 5.2, d0 = 1 m). The path loss exponent value abstracts the range limitations
imposed by fading and shadowing effects. The authors show that a significant range drop is expected
when LoRaWAN is used in environments with thick vegetation, even if high SFs are used. The
implemented model gives a worst-case estimation of the LoRaWAN expected range that agrees with
the real experimental measurements in [19].

4.2. Firefighters Mobility Model

The VSF algorithm adapts the topology of the UAV swarm according to the movements of GNs.
To validate the performance of the developed algorithm, it is therefore necessary to assign a suitable

150



Electronics 2020, 9, 630

mobility model to the GNs. Given the considered application, GNs must act similarly to firefighters
during a wildfire operation. To the best of our knowledge, no mobility model has ever been created for
this situation and therefore a new one has been developed based on information collected from [20]
and [21]. An approximation of this behavior has been implemented. According to this model, each
GN i is assigned to a team j, with j = 0, 1, 2.., N. Teams can be placed anywhere in the simulation area,
which is assumed to be an S × S square. The whole area is divided vertically in N columns of equal
width, one for each team, and each column is in turn split horizontally in Rj equal width rows, with Rj
given by:

Rj = S/drj�, (19)

where dj
r is the retreat distance of team j. At this point, every team has an assigned vertical stripe with

Rj cells. At t = 0, each team selects a random point in the furthest cell from the origin of the scenario
in its assigned stripe and moves towards it with constant speed until the destination is reached. At this
point, the team members start moving independently and randomly for a certain amount of time trw

(deterministic or random) in a rectangular sx
j × sy

j operation area. When time is over, teams select a
new point in the second furthest cell and repeat the previously described process. Teams stop moving
when the simulation is over or when they have visited all the cells in their column. This model tries to
mimic the progress of a wildfire and the consequent retreat of firefighters to fallback areas where new
attacks to the fire are attempted. A representation of the model is shown in Figure 3.

Figure 3. Firefighter team mobility model. Teams start from a starting point and go down to the
furthest cell in their assigned column.

5. Simulation Results

An incremental evaluation of the algorithms has been made. All fixed parameters are reported
in Table 1. As the objective is to evaluate the performance of the UAV topology control algorithms,
the spreading factor of LoRaWAN was fixed to SF7, the worst case, resulting in the shortest AtG
communication range. The routing algorithm used in the UAV mesh is Optimized Link State Routing
Protocol (OLSR) [22]. The main evaluation metrics are the Average End-to-End Packet Reception Ratio
(AE-PRR) and the Average Total Delay (ATD). The first metric measures the average PRR of unique
packets at the BS, while the second metric measures the average end-to-end delay, including the buffer
delay of uplink packets. Averages consider 100 runs of the same scenario (seed in [0, 99]). The 95%
confidence interval is also computed assuming a Student’s t-distribution of the population. The default
simulation parameters are reported in Table 2.

A higher value of the Kp parameter favors the compactness of the aerial mesh, reducing the
disconnections. However, it reduces the coverage. Kp should therefore be optimized in each scenario
to achieve the best compromise between the desired coverage and delay. This optimization is relegated
to future work. In the presented simulation results, Kp is treated as an independent variable.

151



Electronics 2020, 9, 630

Table 1. List of fixed simulation parameters.

LoRaWAN WiFi and Routing

GN Tx Power 14 dBm PHY protocol IEEE 802.11g
Class Class A Modulation ERP-OFDM
Bandwidth 125 kHz Frequency 2.4 GHz
Frequency 868.1 MHz Tx Power 16.02 dBm
SF 7 Rx Sens. −99 dBm
GW Sens. (dBm) −124 (SF 7) Bitrate 12 Mbps
Packet size 10 bytes MANET protocol OLSR
Packet period 30 s

VSF Algorithm CRM Algorithm

ΔT 10 s Pmax 30
tAtG 40 s pshared 0.5
LBreq 20 dbm tload 3 min

MP Algorithm Firefighter Mobility Model

tlost 3 min sx
j ∀j 300 m

tr 40 s sy
j ∀j 100 m

texp 10 min dj
r U (50, 250) m

kmax 3 trw 5 min
sthr 0.6 BS position (S/2, 300)

Table 2. Default simulation parameters.

N. of UAVs 4, 8, 12
N. of teams 1-5
GNs per team 20
Sim. Time 2000 s
Area side 2000 m
Kp [1, 50]

5.1. Comparison of LoRaUAV VSF and DF VSF Algorithms

A comparison between the LoRaUAV VSF algorithm (see Section 3.2) without extensions, and the
VSF algorithm described by Di Felice et al. [4] (DF algorithm) has been performed. Before starting the
analysis, it must be clarified that the Kp parameter coincides with the proportionality factor of KAtA
in the LoRaUAV VSF algorithm and it coincides, instead, with KAtA itself in the DF VSF algorithm.
An AE-PRR comparison between the two algorithms is shown in Figure 4 for a scenario with three
and five teams of GNs. For clarity, the confidence interval is not shown. It is possible to notice that the
AE-PRR of both algorithms follows approximately the same trend for all configurations, presenting the
same regions of increase and decrease and the same range of optimal values. However, the AE-PRR
produced by the LoRaUAV VSF algorithm seems slightly better than the one generated by the DF VSF
algorithm for most Kp values. To verify this hypothesis, the curves generated by the two algorithms
have been compared by computing the point by point euclidean distance between them for each
configuration. On average, LoRaUAV produces an AE-PRR increment which lies between 0.03% and
4.6% independently of the value of Kp that is used. The developed VSF algorithm produces more
benefits when a large number of teams is deployed (e.g., five teams). However, for most Kp values,
improvements fall inside the confidence interval of the DF VSF algorithm. It is therefore not possible to
assert that the LoRaUAV VSF algorithm performs better in general. In fact, changing just the weights of
the forces is not by itself sufficient to achieve a significant AE-PRR increase. Nevertheless, even if small
and limited to particular configurations, the improvements introduced by the developed algorithm

152



Electronics 2020, 9, 630

come at no significant additional cost, apart from a delay penalty affecting some packets and correlated
with the higher PRR. As such, at this stage, basic LoRaUAV becomes at least validated in comparison
with DF. Further comparison regarding the frequency and duration of disconnection times is provided
in Section 5.4.

Figure 4. Average End-to-End Packet Reception Ratio (AE-PRR) comparison when the LoRaUAV
Virtual Spring Force (VSF) algorithm and the DF VSF algorithm are used in a scenario with three (A)
and five (B) teams of 20 GNs.

5.2. Study of the Impact of the CRM Algorithm

The CRM algorithm has been developed to increment the coverage provided by the UAV swarm,
without adding more UAVs. In fact, the AE-PRR obtained with just the VSF algorithm is affected
by a high percentage of lost packets. Depending on the application-specific QoS requirements, this
might be a major drawback. It is shown that the CRM algorithm effectively improves the AE-PRR
performance of the system in comparison with the basic LoRaUAV VSF algorithm operating alone.
In the first simulations, the size of the monitored area (2500 m of area side and 3000 s of simulation
time) has been chosen specifically to favor CRM and hence to show its intent. A visual comparison of
a sample scenario with three teams of GNs is plotted in Figure 5. In all the performed simulations,
the CRM algorithm significantly improves the AE-PRR, with most of the increments lying between
14% and 26% (2–5 teams), but with peaks of more than 50% (one team). In absolute terms, the achieved
AE-PRR is low. The ATD seems to be the QoS metric that is most negatively affected by the CRM
algorithm, as shown in Figure 5B. However, a deeper analysis shows that the ATD metric is greatly
influenced by a small number of packets with large delays. In fact, the CRM algorithm allows for
more and longer disconnections in order to achieve a higher PRR. Some packets may therefore stay

153



Electronics 2020, 9, 630

in the buffer for a long time before being sent. To prove this hypothesis, 10 individual simulations
have been run for a scenario having 12 UAVs, three teams of GNs and Kp = 25. The total individual
delays of all received packets have been recorded. The percentage of buffered packets more than
doubles when the CRM algorithm is active (from ≈2–3% to ≈4–8%) and their permanence in the buffer
increases drastically (from ≈15–34 s to ≈34–181 s). If buffered packets are not considered, the average
experienced delay is ≈55 ms, a value that is far lower than the reported ATD values.

The second set of simulations has considered the more reasonable default settings in Table 2.
The results are very encouraging, as concluded from the comparison between Figure 6A,B, where
CRM significantly improves the performance of VSF, usually by more than 30%.

Figure 5. AE-PRR (A) and Average Total Delay (ATD) (B) comparison when the CRM algorithm is
activated in a scenario with three teams of 20 GNs.

154



Electronics 2020, 9, 630

Figure 6. AE-PRR with VSF (A), VSF+CRM (B) and VSF+CRM+MP (C) (no team splits) in scenario
with the same parameters of Section 5.1.

5.3. Study of the Impact of the MP Algorithm

The MP algorithm represents the last attempt of the system to recover a connection between
the aerial mesh and the GNs that went out of range. For this reason, the PRR is used as the main
evaluation metric. In order to increase the triggering chances of the MP algorithm, the firefighters
mobility has been extended to support the splitting of teams. With this modification, a team can be
configured to split in half during the simulation, so that an UAV that is covering alone a team of GNs
is forced to create at least one hologram when half of the team eventually goes out of range. Given this
modification, it is of particular interest to observe the behavior of the MP algorithm in two situations:
a more conventional setting, where team splitting is not active, and in a more challenging setting
where teams can split. The end-to-end PRR is collected individually for all the 100 runs of the same
scenario and a direct comparison between corresponding runs of different scenarios is performed.
The results of the comparison are reported in Table 3, considering three teams and 2500 m of area side
and 3000 s of simulation time. The first observation is that the MP algorithm is not always beneficial
to the system. In fact, a relevant number of runs shows a PRR that is, on average, even 7% lower

155



Electronics 2020, 9, 630

than the one achieved without the MP algorithm. The loss is more marked in scenarios in which
teams do not split. This is caused by the fact that the strategy of recovering the connectivity with
lost GNs is not always beneficial to the UAV formation since it does not follow any global optimality
criteria. However, the simultaneous activation of the MP and CRM algorithms is beneficial in most
of the situations. In fact, the average PRR undergoes a considerable increment in at least 66 % of the
runs when teams do not split and 71 % of the runs when teams split. In some cases, the gain that
is obtained is more than double of the loss observed in analogous scenarios without MP algorithm.
When reverting to the default simulation parameters, the activation of the MP algorithm and of the
CRM algorithm produces the results shown in Figure 6C. Even if small, the improvements allow to
achieve AE-PRR levels above 0.9 with 12 UAVs and between 0.8 and 0.9 with 8 or 10 UAVs. Similar
tests have been run for the VSF+MP configuration with no noticeable advantages.

Table 3. Comparison between runs with VSF + CRM + MP and runs with only VSF + CRM.

No Split

UAVs Runs Avg MP PRR Gain/loss

Better w/ MP Better w/o MP Better w/ MP Better w/o MP

4 58% 42% +2.1% −1.5%
6 53% 47% +9.0% −7.1%
8 66% 34% +13% −6.6%
10 77% 23% +15% −7.0%
12 86% 14% +18% −4.0%

Split

UAVs Runs Avg MP PRR Gain/loss

Better w/ MP Better w/o MP Better w/ MP Better w/o MP

4 78% 22% +4.3% −2.4%
6 71% 29% +8.9% −5.9%
8 69% 31% +11% −5.8%
10 78% 22% +11% −5.2%
12 91% 9% +15% −1.9%

5.4. Frequency and Duration of Disconnections

LoRaUAV is subject to the inevitable disconnection of some GNs. In this section, the frequency
and duration of such disconnections is investigated and analyzed. The simulation parameters, which
are reported in Table 4, were configured so that they fall within the default parameter ranges.

Table 4. Parameters used for testing the frequency and duration of Disconnections.

Parameter Values

Number of UAVs 12
Number of teams 3
GNs per team 20
Kp 25
Total simulation time 3000 s
Simulation area 2000 × 2000 m

The simulation script has been adapted to periodically check the GNs that are covered by each
UAV. This information is then used to compute, for each GN, the number and duration of disconnection
periods. The results of 100 runs are aggregated and reported in this section. The total average
disconnection time, computed as the average of the sums of all disconnection periods of all the
performed runs, is reported in Table 5 for all the algorithms. It can be noted that, on average, the
activation of the CRM and of the MP algorithms effectively reduces almost by half the total experienced

156



Electronics 2020, 9, 630

disconnection time in comparison with both VSF algorithms. The VSF + CRM and the VSF + CRM +
MP configurations perform almost identically. However, if we separate the total average disconnection
times of the different teams, it can be seen that, while in the configuration with just the CRM, the
average disconnection time is split almost equally among teams (≈4000 s), the configuration with
the MP algorithm favors team 0 and team 1 (≈2200 s) at the expense of team 2 (≈7500 s ). A visual
inspection of the runs where long disconnection periods are experienced showed that team 2 tends
toward a region of the map that is more difficult to access for the aerial mesh. Disconnections of the
other teams are solved earlier in the simulation, thanks to the MP algorithm. This leads the UAV
mesh to steer towards the location of team 0 and team 1, thus making recovery of team 2 less likely.
As already stated, the current version of the MP algorithm suffers from the lack of global optimality
criteria that can better direct the connection recovery efforts.

The histogram of Figure 7 details the results for different combinations of algorithms. In order to
better visualize the results, disconnection periods are grouped in bins of different lengths and colors
are used to distinguish between different teams. The first observation that can be made is that all
the algorithms are subject to partitions, so that GNs might get isolated even for long periods of time.
This is particularly evident when the VSF algorithms are used alone. In fact, for both DF VSF and
LoRaUAV VSF, the number of disconnections above 500 s constitutes a big share of the total experienced
disconnections. In this regard, the DF VSF algorithm seems to experience less disconnections than the
LoRaUAV VSF algorithm. This can be explained by the reduced coverage offered by the DF algorithm
and the consequent presence of fewer but longer disconnection periods. In fact, a more in depth
analysis of the disconnection periods larger than 500 s of the DF VSF algorithm reveals that several
GNs remain isolated for more than 2500 s, while, with the LoRaUAV VSF, isolation periods are no
longer than 2000 s, meaning that the mesh is able to cover the GNs for a longer time before loosing
them definitely. Nonetheless, both VSF algorithms show low performances and a high chance of
almost permanent isolation of GNs. This claim is supported by the low AE-PRR results obtained
by the VSF algorithms in all the previous sections of this chapter. The CRM algorithm improves the
situation. One first observation is that the algorithm is fairer towards teams. In fact, disconnection
periods of the same duration are approximately uniformly distributed among teams. This is caused by
a better average distribution of the UAV mesh. The second observation is that disconnections are more
frequent if compared with the LoRaUAV VSF algorithm operating alone. However, disconnections are
shorter and the number of disconnection periods above 500 s is reduced by ≈1000 units overall, with
team 0 and team 1 experiencing the most marked improvements. This means that, albeit partitions
are still possible, they either happen much later in the simulation or they are recovered sooner by the
system. The introduction of the MP algorithm on top of the CRM algorithm gives some interesting
results. First, the frequency of shorter disconnection periods increases in comparison with the results
obtained with just the CRM algorithm, especially in the interval [0, 30] seconds. This increase can
be explained by the numerous connection recovery attempts, some of them successful, others only
partially successful because the connection is lost again after some time. The disconnection periods
above 500 s remains approximately the same obtained with the CRM algorithm, but with a huge
disproportion towards team 2 members for the reasons already explained before in this section.

Table 5. Total average disconnection time and relative confidence interval obtained with different
algorithm combinations.

Algorithm Total Average Disconnection Time (s)

DF VSF 23,199 ± 3350
LoRaUAV VSF 21,826 ± 2976
LoRaUAV VSF + CRM 12,365 ± 2258
LoRaUAV VSF + CRM + MP 11,876 ± 1600

157



Electronics 2020, 9, 630

Figure 7. Frequency and duration of disconnections for DF VSF (A), LoRaUAV VSF (B), LoRaUAV
VSF+CRM (C) and LoRaUAV VSF+CRM+MP (D).

6. Conclusions

In this paper, a new system called LoRaUAV has been proposed. The objective of the system is to
extend the coverage offered by a BS to a set of mobile GNs through UAV relay GWs. This is achieved
thanks to a network that consists of a LoRaWAN segment for GNs-GW communications and a WiFi
ad hoc network for GWs-BS communications. The core of the system is the distributed LoRaUAV
mobility algorithm based on VSFs, designed to adapt the UAV swarm to the changing topology of GNs.
The basic VSF mobility is expanded by the CRM and MP algorithms, designed, respectively, to increase
the GN coverage through a better UAV distribution and to restore the connection of isolated GNs
through movement prediction. The developed algorithms were evaluated through a ns-3 custom-built
loravs f module. Simulations were run on a model of a wildfire disaster scenario. The performance of
each algorithm has been assessed through relevant QoS metrics: the average end-to-end PRR (AE-PRR)
and the average delay (ATD). The LoRaUAV VSF algorithm has also been compared with another

158



Electronics 2020, 9, 630

similar VSF algorithm proposed in the literature. It has been shown that basic LoRaUAV VSF achieves
a small average AE-PRR improvement that affects only some values of Kp, with more significant gains
when 4 or 5 teams are deployed. The most significant AE-PRR improvements are obtained thanks
to the CRM algorithm. In fact, the AE-PRR shows a double-digit increment in most of the tested
configurations. The ATD is the metric that is more negatively affected, but long delays only affect a
small percentage of packets. The synergy between the CRM and MP algorithms produces another
AE-PRR improvement, particularly significant when teams split. The developed extensions to the
basic VSF algorithm were also demonstrated to effectively help in reducing almost by half the isolation
time of GNs.

Future evolutions of this work will consider the impact of LoRaUAV dynamics on the
Adaptive Data Rate mechanism of LoRaWAN, dynamic Kp optimization, more realistic UAV models,
more sophisticated prediction algorithms (e.g., Kalman-based tracking), integration with centralized
meta-heuristic optimization algorithms (e.g., [6]), downlink messages and the existence of multiple BSs.

Author Contributions: Conceptualization, M.S., A.G.; methodology, M.S., S.S., A.G.; software, M.S.; validation,
M.S., S.S., A.G.; formal analysis, M.S., A.G.; investigation, M.S.; resources, A.G.; data curation, S.S., A.G.;
writing–original draft preparation, M.S., S.S., A.G.; writing–review and editing, M.S., S.S., A.G.; visualization,
M.S., S.S., A.G.; supervision, S.S., A.G.; project administration, A.G.; funding acquisition, A.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This work has been supported by Portuguese national funds through Fundação para a Ciência
e Tecnologia (FCT) with reference UIDB/50021/2020, by Fundação Calouste Gulbenkian, and also by
FITEC-Programa Interface, with reference CIT “INOV-INESC Inovação-Financiamento Base”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun.
Surv. Tutor. 2017, 19, 855–873. [CrossRef]

2. LoRa Modulation Basics. Available online: https://www.semtech.com/uploads/documents/an1200.22.png
(accessed on 3 June 2018).

3. LoRaWAN 1.1 Specification. Available online: https://lora-alliance.org/sites/default/files/2018-04/loraw
antm_specification_-v1.1.png (accessed on 3 June 2018).

4. Felice, M.D.; Trotta, A.; Bedogni, L.; Chowdhury, K.R.; Bononi, L. Self-organizing aerial mesh networks
for emergency communication. In Proceedings of the 2014 IEEE 25th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014;
pp. 1631–1636.

5. Caillouet, C.; Razafindralambo, T. Efficient deployment of connected unmanned aerial vehicles for optimal
target coverage. In Proceedings of the 2017 Global Information Infrastructure and Networking Symposium
(GIIS), St. Pierre, France, 25–27 October 2017; pp. 1–8. [CrossRef]

6. Sabino, S.; Horta, N.; Grilo, A. Centralized Unmanned Aerial Vehicle Mesh Network Placement Scheme:
A Multi-Objective Evolutionary Algorithm Approach. Sensors 2018, 18, 4387. [CrossRef] [PubMed]

7. Kim, D.; Lee, J. Integrated Topology Management in Flying Ad Hoc Networks: Topology Construction and
Adjustment. IEEE Access 2018, 6, 61196–61211. [CrossRef]

8. Almeida, E.N.; Campos, R.; Ricardo, M. Traffic-aware multi-tier flying network: Network planning for
throughput improvement. In Proceedings of the 2018 IEEE Wireless Communications and Networking
Conference (WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6. [CrossRef]

9. Basu, P.; Redi, J.; Shurbanov, V. Coordinated flocking of UAVs for improved connectivity of mobile ground
nodes. In Proceedings of the IEEE Military Communications Conference (MILCOM), Monterey, CA, USA,
31 October–3 November 2004; pp. 1628–1634.

10. Goddemeier, N.; Daniel, K.; Wietfeld, C. Role-Based Connectivity Management with Realistic Air-to-Ground
Channels for Cooperative UAVs. IEEE J. Sel. Areas Commun. 2012, 30, 951–963. [CrossRef]

11. Trotta, A.; Felice, M.D.; Bedogni, L.; Bononi, L.; Panzieri, F. Connectivity recovery in post-disaster scenarios
through Cognitive Radio swarms. Comput. Netw. 2015, 91, 68–89. [CrossRef]

159



Electronics 2020, 9, 630

12. Reynaud, L.; Guérin-Lassous, I. Design of a force-based controlled mobility on aerial vehicles for pest
management. Ad Hoc Netw. 2016, 53, 41–52. [CrossRef]

13. Reynaud, L.; Guérin-Lassous, I. Improving the Performance of Challenged Networks with Controlled
Mobility. Mob. Netw. Appl. 2018, 23, 1270–1279. [CrossRef]

14. Hartigan, J.A.; Wong, M.A. A k-means clustering algorithm. JSTOR Appl. Stat. 1979, 28, 100–108. [CrossRef]
15. Arthur, D.; Vassilvitskii, S. K-means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 7–9 January 2007; pp. 1027–1035.

16. ns-3. Available online: https://www.nsnam.org/ (accessed on 21 September 2018).
17. Magrin, D.; Centenaro, M.; Vangelista, L. Performance evaluation of LoRa networks in a smart city

scenario. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France,
21–25 May 2017; pp. 1–7. [CrossRef]

18. Khuwaja, A.; Chen, Y.; Zhao, N.; Alouini, M.S.; Dobbins, P. A Survey of Channel Modeling for UAV
Communications. IEEE Commun. Surv. Tutor. 2018, 20, 2804–2821. [CrossRef]

19. Iova, O.; Murphy, A.; Picco, G.; Ghiro, L.; Molteni, D.; Ossi, F.; Cagnacci, F. LoRa from the City to the
Mountains: Exploration of Hardware and Environmental Factors. In Proceedings of the 2017 International
Conference on Embedded Wireless Systems and Networks, Uppsala, Sweden, 20–22 February 2017;
pp. 317–322.

20. National Wildfire Coordinating Group. Wildland Fire Suppression Tactics Reference Guide; National Interagency
Fire Center: Boise, ID, USA, 1996.

21. Tymstra, C.; Flannigan, M. Living with Wildland Fire: What we Learned from the 2016 Horse River Wildfire.
Available online: https://www.frames.gov/files/9615/1190/3222/2017_November_21_Alaska_Fire_Sci
ence_Consortium_webinar_Tymstra_Flannigan.png. (accessed on 11 July 2018).

22. Jacquet, P.; Muhlethaler, P.; Clausen, T.; Laouiti, A.; Qayyum, A.; Viennot, L. Optimized link state routing
protocol for ad hoc networks. In Proceedings of the IEEE International Multi Topic Conference, Technology
for the 21st Century, Lahore, Pakistan, 30 December 2001; pp. 62–68.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

160



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Electronics Editorial Office
E-mail: electronics@mdpi.com

www.mdpi.com/journal/electronics





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03936-709-2 


	Blank Page
	Blank Page
	Blank Page
	Electronics Unmanned Aerial Vehicles Platforms, Applications, Security and Services.pdf
	Blank Page
	Blank Page


