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Preface to ”Industry 4.0 for SMEs - Smart

Manufacturing and Logistics for SMEs”

In recent years, the industrial environment has been changing radically due to the introduction

of concepts and technologies based on the fourth industrial revolution (also known as Industry

4.0). The fourth industrial revolution should extend to the whole production and supply chain

and not only, like in the past revolutions, to the mechanical manufacturing process of products

and the associated process organization. Production based on the principles of Industry 4.0

creates the conditions necessary to replace traditional structures, which are based on centralized

decision-making mechanisms and rigid organizational forms. These structures are replaced

by flexible reconfigurable manufacturing and logistics systems, decentralized and collaborative

decision-making mechanisms, as well as digitally supported processes.

Additionally, SMEs have moved into the focus of many economies. Due to their flexibility,

entrepreneurial spirit, and innovation capabilities, SMEs have proved to be more robust than large

and multi-national enterprises. Small organizations are increasingly proactive in improving their

operational processes, which is a good starting point for introducing the new concepts of Industry

4.0. The successful implementation of an industrial revolution like Industry 4.0 has to take place not

only in large enterprises, but must also show a high potential, especially in SMEs. The readiness of

SME-adapted Industry 4.0 concepts and the organizational capability of SMEs to meet this challenge

exist only in some areas. This reveals the need for further research and action plans for preparing

SMEs in a technical and organizational direction. Therefore, special research and investigations are

needed for the implementation of Industry 4.0 technologies and concepts in SMEs. SMEs will only

achieve Industry 4.0 by following SME-customized implementation strategies and approaches and

realizing SME-adapted concepts and technological solutions.

Thus, this Special Issue represents a collection of theoretical models as well as practical case

studies related to the introduction of Industry 4.0 concepts in small- and medium-sized enterprises.

Erwin Rauch, Manuel Woschank

Special Issue Editors

ix





sustainability

Article

The Role of Smart Technology in Sustainable
Agriculture: A Case Study of Wangree Plant Factory

Salinee Santiteerakul 1,2, Apichat Sopadang 1,2,*, Korrakot Yaibuathet Tippayawong 1,2

and Krisana Tamvimol 3

1 Center of Excellence in Logistics and Supply Chain Management, Chiang Mai University,
Chiang Mai 50200, Thailand; salinee@eng.cmu.ac.th (S.S.); korrakot@eng.cmu.ac.th (K.Y.T.)

2 Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University,
Chiang Mai 50200, Thailand

3 Wangree Health Factory Co., Ltd., Nayok 26000, Thailand; krisana@oi.co.th
* Correspondence: apichat.s@cmu.ac.th

Received: 31 March 2020; Accepted: 4 June 2020; Published: 5 June 2020

Abstract: Sustainable development is of growing importance to the agriculture sector because the
current lacking utilization of resources and energy usage, together with the pollution generated
from toxic chemicals, cannot continue at present rates. Sustainability in agriculture can be
achieved through using less (or no) poisonous chemicals, saving natural resources, and reducing
greenhouse gas emissions. Technology applications could help farmers to use proper data in
decision-making, which leads to low-input agriculture. This work focuses on the role of smart
technology implementation in sustainable agriculture. The effects of smart technology implementation
are analyzed by using a case study approach. The results show that the plant factory using intelligence
technology enhances sustainability performance by increasing production productivity, product
quality, crop per year, resource use efficiency, and food safety, as well as improving employees’ quality
of life.

Keywords: smart technologies; sustainable agriculture; plant factory

1. Introduction

In the era of the fourth industrial revolution (Industry 4.0), new technologies, such as artificial
intelligence, automation systems, and cloud computing have been developed to combine the digital
and physical world together. One of the Industry 4.0 benefits is to provide a crossing workspace
among machines, infrastructures, and digital platforms. [1]. The methods of Industry 4.0 have been
investigated in the area of agriculture. Various innovations, like sensor technology, machine learning,
wireless communication, positioning systems, and data visualization tools, have been adopted to create
value and increase productivity in the farming sector [2].

Due to the environmental stress on water scarcities, insufficient land use, soil depletion,
and greenhouse gas emissions, the demands on sustainable agriculture are rapidly increasing.
The sustainable development (SD) concept was developed regarding a reorganization of a threatened
future. Many regions face risks of inevitable damage to the human environment. Environmental
stress has been seen as the result of the increasing growth of the population, technology growth and
development, and the rising living standards among the affluent. Given the importance of agriculture as
the crucial provider of food, the sustainable development of this sector is important. Thus, sustainable
agriculture needs an innovative system that protects and enhances the natural resource base while
increasing productivity.

There are essential research works that deal with aspects of the technology implementation
for sustainable agriculture. The authors of [3] Reviewed relevant research works on intelligent

Sustainability 2020, 12, 4640; doi:10.3390/su12114640 www.mdpi.com/journal/sustainability1
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agricultural information handling methods. The technological applications related to agricultural
aspects were classified into three categories, namely data sources and collection, machine learning (ML)
methodologies for agricultural data, and intelligent knowledge acquisition. These applications lead to
the development of innovation for precision and optimal farming. The authors of [4] studied artificial
devices of closed plant production systems and found that smart plant production systems produce
high-quality plants and transplants with minimum use of resources and carbon dioxide emissions as
well as environmental pollutants.

This work aims to study the effects of smart technology implementation on sustainability
performance by using a case study. The case study company, namely the Wangree Health Factory
Company (located in Nakhon Nayok, Thailand), deploys plant factory with artificial lighting technology
to cultivate fresh organic vegetables and fruits. This work develops the analysis framework to analyze
how deploying plant factories will impact the sustainability of agriculture. This article is organized as
follows: first, the literature review provides a background on smart farming and sustainable agriculture.
Then, the material and methods section provides a research framework and a case study analysis, and is
followed by the results section. Finally, the roles of smart technology are presented and discussed.

2. Literature Review

2.1. Smart Farming

Smart farming is a management concept using modern technology to increase the quantity
and quality of agricultural products. Smart farming involves an integration of information and
communication technologies into machines, sensors, actuators, and network equipment for use in
agricultural production systems [5]. There are several technologies related to smart farming, including
sensors, robotics, the Internet of Things (IoT), mapping, decision-making, and statistical processes [5,6].

Ray [6] proposed the detailed framework of IoT-based agriculture. This framework comprises six
layers. First, the physical layer contains various types of devices, such as sensors and microcontrollers,
to collect, exchange, and process data to other devices. Second, the network layer comprises the
Internet and relevant communication technologies. Third, the IoT-based middleware layer performs
various tasks, such as device management, interoperation, context awareness, platform portability,
and security-related tasks. Fourth, the service layer provides cloud storage and Software-as-a-Service
(SaaS). Fifth, the analytics layer performs big data processing to predictive and multi culture analysis.
Sixth, the user experience layer facilitates the farmer’s communication using social network activities
to share and disseminate agricultural knowledge.

Plant factories are one of the smart farming applications. A plant factory is a closed-growing
system that enables a farmer to achieve constant and regular production of vegetables throughout the
year. There are three types of plant factories: (1) Plant factory with sunlight; (2) Plant factory with
sunlight and supplemental light; and (3) Plant factory with artificial lighting. The plant factory with
artificial lighting replaces sunlight with artificial intelligence sources of light. This plant factory creates
a more consistent light environment for the plants. Ray [6] explained that there are three units for
managing plant factory systems: (1) Farm Gate Way (FGW), (2) A data collection/storage/distribution
platform, and (3) an application module. A FGW unit is a data collection and control device. It collects
growing conditions data in the plant factory (such as temperature and nutrient content) and the crop
production equipment data (such as nutrient solution pumps and heat pumps). A cloud-based data
collection, storage, and distribution platform is used to provide communication between the data
center and the plant factory for the control of growing conditions and equipment. It also helps in the
servicing of command and control information management. The application unit is composed of
physical devices to perform three operations: sensory data reception, command delivery to the FGW,
and response reception from the FGW.

This work employed the integrated IoT-based agriculture and plant factory unit framework
(see Figure 1) to analyze the technology implementation of a case study company.
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Figure 1. Internet of Things (IoT)-based agriculture and plant factory units framework (modified from [6]).

2.2. Sustainable Agriculture and Sustainability Measurement

Over the past decade, societies have changed rapidly as a result of technology advancement,
rapid urbanization, and innovations in production systems. At the same time, enormous changes have
occurred, such as climate change, an increasing number of crises and natural disasters, increasing of
population dynamics, and economic growth. Crop production is damaged by floods, climate change,
drought, and insufficient land resources. The world’s population is expected to increase by more
than 30% by 2050 (from 7 billion in 2011). Meanwhile the global crop production is expected to grow
by more than 90% from higher yields. The world’s agricultural production has increased more than
three times between 1960 and 2015 [7]. This caused the use of resource conservation technologies
and productivity enhancement for agricultural purposes. These trends threaten the sustainability of
agricultural systems and undermine the global capacity to meet its needs.

A useful definition of sustainability is that of the World Commission on Environment and
Development (1987), which states: “A sustainable economy is one which can meet the needs of
the present without compromising the ability of future generations to meet their own needs” [8].
Sustainability as an attribute of agriculture has been gaining recognition globally since the 1970s [9].
The term “sustainable agriculture” refers to an agricultural system that will continue to be productive
in the future.

There are many suggested measures of sustainability. Most of the literature uses the triple bottom
line (TBL) developed by Elkington [10]. This concept divides sustainability into three categories,
including economic, environment and society. The sustainability indicators are developed based on
the TBL concept by defining a set of indicators to indicate the performance of each category [11–16].

At the farm level, numerous sustainability assessment methods have been developed to assess
the sustainability performance of agricultural systems. Some examples of sustainability assessment
methods from the scientific literature are the sustainability assessment of food and agriculture systems
(SAFA) [13], sustainability monitoring and assessment routine (SMART) [14], response-inducing
sustainability evaluation (RISE) [17], and multi-criteria assessment (MCA) [18].

3
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The indicators of measuring the sustainability of the agriculture system are divided into three
main categories. The first category is technical data, which require specific quantitative data, such as
energy consumption, water use, soil pH, and farm revenue. The second category is the performance
rating indicator, which requires an approach to convert sustainability performance to rating scores.
For example, to evaluate working condition performance, the working environment is assessed in terms
of a 5-scale rating from worse (score = 1) to excellent (score = 5). The third category is a descriptive
indicator, which relates to the driver, pressure, state, impact, or response of sustainability. Quantitative
and qualitative descriptive indicators describe the factual situation but do not assess whether this is
good or bad—they are, in practical terms, a statement of a fact.

3. Material and Methods

3.1. Research Framework

A framework to analyze the roles of smart technology in sustainable agriculture consists of four
steps (see Figure 2).

 
Figure 2. Research Framework.

Step 1: Identify technology implementation of the case study by using the IoT-based agriculture
and plant factory unit framework [6].

Step 2: Define a sustainability measurement model by defining sustainability indicators and
metrics and constructing the measurement model.

Step 3: Planting data was collected by using the case study. The data on cultivation in a plant
factory were collected from Wangree Health Factory Company. The data on conventional organic
cultivation were collected from Wangree Organic Farm. The relevant data were collected based on the
assumption of equal production outputs, which is one-crop cultivation of 5 tons of product weight.
This data collection includes all activities from seeding to harvest process.

Step 4: Assess the sustainability performance of plant factory cultivation compared to conventional
organic cultivation.

3.2. Case Study Overview

Wangree Health Factory Company, located in Nakhon Nayok, Thailand, was founded in 2016
with the corporate vision of using modern digital technology to provide fresh organic vegetables and
fruits to the Thai market. A plant factory with artificial intelligence light is an indoor farming system
connected with a smart control system. The structures of the plant factory separate the plants from
the external environment so that the plants are protected from uncertain conditions. These systems
permit high-quality and high-yield production year-round under a controlled environment (e.g., light,
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temperature, humidity, the concentration of carbon dioxide, and culture solution). The IoT-based
technologies allow farmers to plan their production by using mobile devices for monitoring and
controlling their farming systems.

Wangree Health Factory Company combines a vertical farming system with IoT technologies
(see Figures 3 and 4). The growth process is fully automated for watering, lighting, nutrient adding,
and temperature controlling. The 173.85 m2 × 6 m high plant factory produces approximately
50,552 heads of lettuce per month. The main production equipment is composed of electricity
supply, an air conditioning system, nutrient solution supply, lighting, CO2 supply, smart devices,
and communication devices.

 

Figure 3. Plant factory, a vertical farming system.

 

 

 

Figure 4. Seedlings grow with light at Wangree Health Factory Company.

Wangree Plant Factory employs IoT-based technology to produce and manage the agriculture
production system. The workflow of the system consists of three steps (see Figure 5): (1) Detecting
and collecting data from sensor devices; (2) Analysis and control based on a specific AI algorithm;
and (3) Data visualization for statistical reporting to help farm owners make decisions.

5
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Figure 5. Smart technology implementation at Wangree Health Factory Company.

The lists of equipment for one plant factory are shown in Table 1. The hardware equipment
comprises seven categories, i.e., electricity supply, air conditioning, nutrient solution supply, lighting,
CO2 supply, sensors for environmental control, and communication and management equipment.

Table 1. Equipment and environmental sensors typically installed in a plant factory.

Category Equipment and Environmental Sensors

Electricity supply
Power distribution box and backup power system

Power Consumption AC 100 V/240 V 100–150 W (Power Saving Mode),
300–350 W (Full Power Mode)

Air conditioning
Inner units of air conditioners 40,000 BTU *

Air circulation fans
Air cleaners with filters

Nutrient solution supply

Water and fertilizer system
Cultivation controller system

Pest protection system
Plumbing for clean water supply

UV water purifier

Lighting Light source with reflectors
LED lumen 5 cm—11,000 lum and 26 cm—9000 lum

CO2 supply Control unit with distribution tubes

Sensors for environmental control

Smart light control
Smart air sensors

Smart water feeding
Temperature and humid sensors

CO2 sensors

Communication and Management Wireless communication
Plant dashboard visualization

* Note: British Thermal Unit (BTU) is a unit of heat. It is defined as the amount of heat required to raise the
temperature of one pound of water by one degree Fahrenheit. One BTU is about 1055 Jules.

The software system (see Figure 6) comprises three main functions: (1) a cloud data center system
with an intelligence processing system (Big Data and AI) is responsible for storing databases for
automatic processing and backup of essential data. (2) A back-end information management system,
which is a web-based system, is responsible for managing information in terms of data security, right of
data accessing, and data editing. (3) A mobile application system for both iOS and Android platforms
is an application module used for managing and controlling operational production. It deploys remote

6
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controlling technology and allows users to monitor and manage their operation in real-time from a
distance via smartphone and tablet devices.

 

Figure 6. Software system of Plant Factory at the Wangree Health Factory Company.

Following the framework developed by Ray [6], the IoT-based technology implementation is
shown in Figure 7.

Figure 7. Wangree Health Factory Company technology implementation.

3.3. Sustainability Measurement Model Definition

This work adopts the sustainability performance measurement model proposed by [19]
(see Figure 8). The objective of the proposed model is to measure the sustainability performance of
sustainable farming. This model is composed of five levels. Level 0 is the top level and identifies the
goal, which is sustainable agriculture.

Level 1 is a dimension level dividing sustainability into economic, environmental, and social
categories. Level 2 is a sub-dimension level. There are eight sub-dimensions regarding three principal
dimensions. For example, raw material, natural resources, and energy are sub-dimensions of the
environmental perspective. Level 3 is an indicator level that provides a performance indicator to
indicate the performance of each sub-dimension. For example, we could evaluate the impact of natural
resources, from resource consumption to pollution and emission. Level 4, the last level, is a metric level
that provides a formulation to measure sustainability performance. For example, resource consumption
performance is indicated by the quantity of water consumption, land use, and soil quality.

7
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Figure 8. Sustainability performance measurement framework.

To implement the sustainable agriculture performance measurement model, [20] suggested that
decision-maker(s) should use level 0 to level 2 as a framework to select specific indicators (level 3)
and metrics (level 4) that are appropriate for their application. Therefore, this work will construct the
performance indicators and metrics that relate to smart technology implementation in agriculture.

This work selected seven sub-dimension (level 2) and the details are as follows:

• Financial criteria relate to increasing revenue, profit, market share, reducing the cost of operation,
and unit cost.

• Non-financial criteria relate to improving product quality, crop per year, and reducing harvest time.
• Raw material criteria relate to conserving and enhancing the raw material by efficient use through

the reduce, reuse, and recycle concepts; reducing hazardous material usage; and reducing defects
and waste generation.

• Natural resource (water, soils, and land use) criteria relate to conserving and enhancing the natural
resource base by efficiently using and reducing environmental emission.

• Quality of life criteria relate to assessing and reducing the potential health impacts of new
technologies as well as increasing the well-being of stakeholders.

• Human capability criteria relate to encouraging education to improve human skills and
knowledge performance.

• Ethics criteria relate to respecting local and international laws on business and human rights and
supporting ethical operating practice issues.

The details of sustainability indicators and metrics are shown in Table 2.

8
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Table 2. Sustainability indicators and metrics.

Dimension Sub-Dimension Indicator Metrics

Economic (EC) Financial Cost
Infrastructure cost (EC-1)

Fertilizer cost (EC-2)
Unit cost (EC-3)

Non-Financial Productivity

Harvest time (EC-4)
Weight per unit (EC-5)

Product quality grade (EC-6)
Crop per year (EC-7)

Lifetime of cultivation system (EC-8)

Environmental (EN)
Raw material Defects Percentage of defects (EN-1)

Natural resource Resource consumption Water use (EN-2)
Land use (EN-3)

Pollution and emission Wastewater management (EN-4)

Social (SO)
Quality of life Health and Safety Consumer health and safety (SO-1)

Employee health and safety (SO-2)

Human capability Knowledge sharing Social support by sharing knowledge to
the local community (SO-3)

Ethics Fair operation practices Fair salary (SO-4)

4. Results

The results of the sustainability performance of plant factories and conventional organics
cultivation are shown in Table 3.

Table 3. Results of comparing sustainability Performance.

Indicator Metrics Wangree Plant Factory
Conventional

Organics Cultivation

Cost

Infrastructure cost
(million baht) 5–6 10–12

Fertilizer cost (baht) 10,000 50,000

Unit cost (baht) 4.25 6.00

Productivity

Harvest time (days) 21–30 45–50

Weight per unit (g) 100–175 75–100

Product quality grade Medical grade (post organic) Good agricultural practice (GAP)
or Organic

Crop per year (crops) 12–15 4–8

Lifetime of cultivation
system (years) 15–30 3–5

Labors (man) 2 10–20

Defects Percentage of defects (%) 0.5–1% 30–50%

Resource consumption
Cultivation water use for

(liter per month) 30,000 3,000,000

Land use (m2) 160 1600

Pollution and emission Wastewater management Wastewater from fertilizer will be reused for
traditional agriculture production. N/A

Health and Safety
Consumer health

and safety

Clean and healthy products: because of the high
controllability of the environmental and sanitary

conditions, pesticide-free and other
contaminant-free plants are produced.

High traceability throughout the supply chain,
which enables a high level of risk management.

Pesticide-free

Employee health
and safety

Light and safe work under comfortable air
temperature and moderate air movement. Requires intensive physical work

Knowledge sharing
Social support by

sharing knowledge to
the local community

Wangree Plant Factory provides knowledge
sharing to the local community, such as researchers

in academic institutes, governance institutes,
and private companies.

N/A

Fair operation practices Fair salary

Due to the requirements of highly skilled persons
and less labor needed (only 2–3 persons compared

with 10–15 persons for traditional organic
production), the Wangree Plant Factory could pay a

higher salary to its employees.

N/A
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Wangree Plant Factory has actualized most of the potential benefits in the economic and
environmental aspects. Compared with traditional organic cultivation, the Wangree Plant Factory
can greatly reduce the consumption of resources than conventional cultivation. The percentage of
resources saved and the improvement in produce quality and yield in the plant factory are as follows:

Economic Perspective:

• A 50% reduction of infrastructure cost and a 3–5 times reduction of lifetime cultivation system.
• A 80% reduction of fertilization cost because of lower fertilizer consumption achieved through

recycling with little drainage of circulating nutrient solution.
• A 30% reduction of unit cost because of lower resource consumption and higher productivity.
• A 33–75% increase of product weight per unit.
• An increase by 1.8–2 times of amount of a crop per year.
• Better product quality grade.

Environmental Perspective:

• Both the plant factory and organic cultivation are free-pesticide applications. The plant factory
keeps the cultivated area clean and free from pest insects.

• A 99% reduction in water consumption.
• A 99% reduction in land use compared to conventional agriculture due to a higher productivity

per production area.
• A 30–50% reduction in plant defects.

Social Perspective:

• Increasing demands for fresh food, nutritious food, and functional food for health care and
higher quality of life because of high controllability of plant environment. Controlled aerial
environmental factors include photosynthetic photon flux density (PPFD), air temperature, CO2

concentration, light quality, and flow rate of the nutrient solution.
• Light and safe work under comfortable air temperature and moderate air movement.

5. Discussion

The closed environment of a plant factory isolates crop production from an exterior environment.
Consequently, the plant growth factors, such as water, light, carbon dioxide concentration, and nutrients
are controllable. A plant factory control system can measure the environmental conditions, such as
temperature, humidity, and light intensity, and respond by adjusting the plant growth factors via
controllers. Measurement and responsiveness capabilities depend on the sensors’ data collection and
storage and on the processing ability of cloud computing with AI and Big Data analysis. Moreover,
the effective management system and data visualization encourage farmers to make good decisions to
operate their production.

This work studies how technology affects sustainable agriculture. The sustainability performance
is composed of three dimensions: economic, environment, and society. The effects from technology
implementation in each dimension are discussed here.

Economic Dimension

• Increasing product quality: precision measurement and a suitable plant growth factor adjustment
lead to better product quality. It can be seen that the products from the plant factory are higher in
weight per unit, and have a better quality grade and a lower percentage of defects.

• Increasing productivity: the production productivity of the plant factory is higher than the
conventional cultivation due to the cost reduction from resource use (water and fertilization),
the increase of product weight per unit, and the amount of labor reduction.

10
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• Increasing crop per year: the plant factory has an artificial intelligence system completely closed off
the outside environment. It replaces sunlight with controllable lighting sources and controls other
plant growth factors, such as humidity, carbon dioxide concentration, temperature, and nutrients
by using an artificial intelligence system. Consequently, a plant factory can achieve a year-round
production environment. The plant factory produces around twice as much crop per year
compared to conventional agriculture and reduces harvest time by around 50 percent compared
to traditional cultivation.

Environmental Dimension

• Increasing resource use efficiency: the plant factory enhances crop irrigation water productivity
due to a water control system that reduces drained water in the growing area and recycles water
vapor into liquid water. The vertical farming of the plant factory increases land use efficiency.
It provides a 99% reduction in land use.

Social Dimension

• Increasing food safety: the plant factory gives priority to keeping the growing area free from pests
and pesticides. These hygiene conditions create a ready-to-eat product after harvesting. Moreover,
the information technology in the plant factory allows customers and stakeholders in the supply
chain to trace operational data from producers.

• Increasing employees’ quality of life: the controllable working environment in the plant factory is
much more desirable than field cultivation, which involves the uncertainty of heat and weather.
Further, to work with automatic and high technology systems, the plant factory requires highly
skilled workers. It encourages employees to improve their skills and knowledge.

It is clear that the plant factory with artificial system enhances the sustainability performance in
all economic, environmental, and social perspectives. The isolated environment of the plant factory
provides numerous advantages for improving productivity, improving product quality, increasing
resource use efficiency, and increasing food safety. However, plant factories tend to require a greater
energy input. Due to the fact that free energy from sunlight has been rejected from this growing system,
the plant factory needs new energy to provide a light source to the system. It This leads to much higher
costs of lighting in the plant factory. The electricity cost represents nearly one-fourth of the production
costs [21] This issue can be solved and further investigated in future research.

6. Conclusions

Technological development and digitalization shape feasible boundaries to increase resource use
efficiency. Smart agriculture reduces the negative environmental impacts of farming, increases resilience
and soil health, and decreases costs for farmers. The number and types of challenges associated with
smart farming expand across various agricultural production systems, and infrastructural limitations
apply when it comes to IoT implementation. The plant factory is one of the solutions to solve the
problems regarding foods, resources, and the environment. Methodologies have been developed
by which the yield and quality of foods are improved, with less consumption of resources and less
environmental degradation than the current plant production system. The potential benefits of the
plant factory are enhanced economic and environmental sustainability.
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Abstract: Industry 4.0 concepts and technologies ensure the ongoing development of micro-
and macro-economic entities by focusing on the principles of interconnectivity, digitalization,
and automation. In this context, artificial intelligence is seen as one of the major enablers for
Smart Logistics and Smart Production initiatives. This paper systematically analyzes the scientific
literature on artificial intelligence, machine learning, and deep learning in the context of Smart
Logistics management in industrial enterprises. Furthermore, based on the results of the systematic
literature review, the authors present a conceptual framework, which provides fruitful implications
based on recent research findings and insights to be used for directing and starting future research
initiatives in the field of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in
Smart Logistics.
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logistics 4.0

1. Introduction

The fourth industrial revolution (Industry 4.0) comprises a set of concepts and technologies that
should be used to strengthen the competitiveness of industrial enterprises by referring to the concepts
of interconnectivity, digitalization, and automation [1–4]. In this context, Smart Logistics aims at
the successful implementation of intelligent and lean supply chains based on agile and cooperative
networks and interlinked organizations. Furthermore, information exchange is established through the
usage of modern information and communication technologies (ICT), data networks, actors and sensors,
and automatic identification and material tracking technologies. Moreover, automated transport,
transition, and storage systems, supported by autonomous transport vehicles, should enable a partial
and/or complete self-control of systems [2,4–6].

Furthermore, Smart Logistics can be implemented by using the technological concepts of
cyber-physical systems (CPS), the internet of things (IoT), respectively as the industrial internet
of things (IIoT), and the physical internet (PI) [2]. Besides the implementation of the technological
concepts, the application of artificial intelligence, machine learning, and deep learning concepts
can be considered as one of the most important success factors within the process of the digital
transformation [7].

In this context, artificial intelligence (AI) can be defined as the science and engineering of
intelligent machines with a special focus on intelligent computer programs [8]. Machine learning
(ML) is considered as an integral part of AI, which refers to the automated detection of meaningful
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patterns in datasets. ML tools aim to increase the efficiency of algorithms by ensuring the ability to
learn and adapt based on big-data analytics [9]. Moreover, deep learning (DL), is defined as a sub-class
of ML within the AI-technologies that explores many layers of non-linear information processing for
supervised and/or unsupervised features extraction and transformation, and for pattern analyses and
classification [10,11].

In recent years, AI, ML, and DL have gained increasing relevance in a multitude of research fields
such as engineering, medicine, economics, and business management as well as in marketing [12–15].
However, to the best of our knowledge, a holistic study on the usage of AI, ML, and DL in the context
of Smart Logistics in industrial enterprises is currently missing in the scientific literature. Therefore,
the authors conduct a systematic literature review on AI, ML, and DL technologies in the timeframe
from 2014 to 2019. The identified studies can be used to provide an overview of research on these
emerging topics that can be used as a starting point for further studies in the area of Smart Logistics
later on.

This paper is structured as follows. Section 2 describes the selected research methodology and
methods of this study as well as the detailed process steps of the systematic literature review. Section 3
presents a descriptive analysis and the content analysis of the identified studies. Section 4 introduces
the conceptual framework of AI, ML, and DL approaches in the research area of Smart Logistics in
industrial enterprises. Section 5 contains a discussion of the research findings. Section 6 summarizes
the implications for both future research initiatives and practical applications, and the limitations of
this research study. The final Section 7 briefly concludes by reflecting on the main contributions of
this paper.

2. Research Methodology and Methods

In this paper, the authors conduct a systematic literature review (SLR) for the secondary-data-based
evaluation of recent research studies regarding the application of AI, ML, and DL approaches in the
research area of Smart Logistics in industrial enterprises.

By including the sequential identification, screening, clustering, and evaluation of research-relevant
studies in research-related areas, the SLR approach was selected because of its systematic, method
driven, and replicable approach [16–18]. Especially for the generation and assessment of new
knowledge, the SLR process is considered as a valuable instrument that minimizes various judgment
biases by systematically evaluating relevant findings from recent research studies [19–21].

In this context, research offers a multitude of guidelines for SLR, which should be used to ensure
high quality in empirical research [16,22–24]. In this study, the authors focus on the SLR guidelines as
suggested by Denyer et al. [23] and Hokka et al. [16], which generally can be divided into the following
four steps:

• Step 1: Definition of the research objective(s);
• Step 2: Framing of the research subject (conceptual boundaries);
• Step 3: Data collection by using inclusion/exclusion criteria;
• Step 4: Validation of the research results.

2.1. Research Objectives

This paper aims to systematically evaluate possible future directions for AI, ML, and DL in Smart
Logistics by analyzing the current knowledge and the state of the research regarding AI, ML, and
DL-related topics with a special emphasis on recent developments in industrial research. In particular,
the authors want to understand how this research topic evolved during the last years. Moreover,
the evaluation results will be used for the identification of key activities for further research as well as
practical applications.
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2.2. Framing of the Research Subject

This research focuses on the systematic evaluation of artificial intelligence, machine learning, and
deep learning approaches for Smart Logistics in industrial enterprises. Therefore, the research subject,
i.e., the conceptual boundaries, was defined based on the term “artificial intelligence” and the related
terms “machine learning” and “deep learning” in the industrial environment.

2.3. Data Collection by Using a Set of Inclusion and Exclusion Criteria

The SLR further requires a definition of search criteria, databases, search terms, and publication
period. In this study, the authors have used Scopus as the main source for the keyword search, because
it was identified as the most relevant database for scientific publications in the areas of engineering and
management science. An additional review of similar databases (Web of Science, Science Direct, and
Emerald) did not lead to significant differences in the resulting research studies. Therefore, the authors
have decided to use Scopus as the main database for the evaluation of secondary data in the course of
this research study.

The following Figure 1 shows the structured research process [16,23] and the pre-defined inclusion
and exclusion criteria, which are based on our overall meta-search query.

 

Step 4: Subsequent full text analysis based on inclusion/exclusion criteria by the research team: 
Full text screening of all articles

Step 3: Further limitation to conference papers, conference reviews, article conference papers, conference reviews, articles, 
or reviews: Article title and abstract screening 195 records

Step 2: Further limitation to the areas of Smart Logistics, Smart Production, Smart Transportation, Smart Collaborative 
Networks, Smart Transformation, or Industry 4.0: Article title and abstract screening 351 records

Step 1: Identification of relevant studies for AI, ML, DL in the subject areas engineering 
and business, management and accounting in English: Article title and abstract screening 52,546 records

Figure 1. Process steps of the systematic literature review.

In the first step, the authors identified the relevant literature for AI, ML, and DL in the subject
areas of engineering and business, management and accounting by screening the article title, abstract,
and keywords. In this step, the authors included all kinds of document types and restricted them to
the language English. This first approach was primarily used to get a first impression of the current
state of research. Therefore, the authors limited the timeframe of the research studies to the period
from 1 January 2014 to 1 January 2019. In general, this process resulted in 52,546 identified studies.

In the second step, the authors additionally focused on studies that are related to the areas
of Smart Logistics, Smart Production, Smart Transportation, Smart Collaborative Networks, Smart
Transformation, or Industry 4.0. Therefore, we limited the previously identified 52,546 papers to
the terms Smart Logistics, Smart Production, Smart Transportation, Smart Collaborative Networks,
Smart Transformation, or Industry 4.0, which resulted in a total of 351 identified papers. Moreover,
the authors have computed a ranking of all identified keywords, which was used to validate the
meta-search query for the ongoing database research. No significant keywords were missing in our
research strategy.
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In the third step, the research was limited to conference papers, conference reviews, articles,
or reviews to consider only high-quality studies. In sum, the final meta-search query was formulated
as follows: (TITLE-ABS-KEY (“artificial intelligence” OR “machine learning” OR “deep learning”)
AND TITLE-ABS-KEY (“smart logistics” OR “smart production” OR “smart transportation” OR “smart
collaborative networks” OR “smart transformation” OR “industry 4.0”)) AND (LIMIT-TO (DOCTYPE,
“cp”) OR LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cr”) OR LIMIT-TO (DOCTYPE,
“re”)) AND (LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO (SUBJAREA, “BUSI”)) AND (LIMIT-TO
(PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO
(PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014)) AND (LIMIT-TO
(LANGUAGE, “English”)).

The following Table 1 displays the characteristics of the search string.

Table 1. Characteristics of the search string.

Keywords (1) Keywords (2) Language Timeframe Paper Type 1

Artificial
Intelligence Smart Logistics — — CP or CR

Machine Learning Smart Production English 2014–2019 AR
Deep Learning Smart Transportation — — RE

— Smart Collaborative Networks — — —
— Smart Transformation — — —
— Industry 4.0 — — —

1 Conference Proceedings (CP), Conference Reviews (CR), Articles (AR), Reviews (RE).

As a result, the authors have identified 195 papers as the basis for the further research process.

2.4. Validation of the Research Results

Based on the quality criteria of empirical research (validity, reliability, objectivity, and
generalizability) the authors emphasize that the identification process is one of the most crucial
elements within the SLR [17]. Therefore, we ensured the quality of the research results by coding the
identified studies with the score “1” (high appropriateness), the score “2” (medium appropriateness),
or the score “3” (low appropriateness).

The screening was carried out in two steps by three independent Postdoc-researchers. In the first
step, the screening focused only on the title and abstract of the studies. In the second step, the full text
of the study was completely evaluated by the research team. Moreover, the reliability was calculated by
evaluating significant differences in the scorings. Papers without significant differences were directly
included or excluded in/from the research process. Papers with significant differences were reevaluated
by the research team to get unambiguous research results.

By reviewing the title and abstract of the 195 papers, we identified 103 relevant papers for the
area of Smart Logistics and 148 for the area Smart Production. In the area of Smart Logistics, out of the
103 studies, 33 were assigned as having high appropriateness, whereas in the area of Smart Production,
44 were assigned as having high appropriateness for this research study and the subsequent secondary
data analyses. Table 2 displays the total results of the SLR.

Table 2. Total research results of the systematic literature review (SLR).

No./Appropriateness Smart Logistics Smart Production

Total studies 103 148
High appropriateness 33 44

Medium appropriateness 52 46
Low appropriateness 18 18

18



Sustainability 2020, 12, 3760

In this paper, we aim to analyze the current state-of-the-art regarding the use of artificial intelligence,
machine learning, and deep learning in logistics. Therefore, we consider in the following sections only
the papers identified for Smart Logistics.

3. Results

In this section, the authors analyze the descriptive findings of the SLR. Moreover, the full texts of
the identified papers will be discussed in the content analysis section.

3.1. Descriptive Analysis

Based on the previously identified total number of 52,546 papers regarding the application of
AI, ML, and DL in various scientific disciplines, 103 papers were finally assigned to the area of
Smart Logistics in industrial enterprises and therefore rated as relevant for further analysis within
this research study. Table 3 shows the distribution of the appropriateness of the identified studies,
which was evaluated by screening the title and the abstract of the respective studies.

Table 3. Distribution of appropriateness of studies.

No./Appropriateness Records Records (%)

Total studies 103 100.00
High appropriateness 33 32.04

Medium appropriateness 52 50.49
Low appropriateness 18 17.48

Out of the identified 103 full texts in the area of Smart Logistics, 33 papers (32.04%) were classified
as papers with high appropriateness, 52 papers (50.49%) were classified as papers with medium
appropriateness, and 18 papers (17.48%) were classified as papers with low appropriateness regarding
the aim of this research study.

Table 4 shows the distribution of document types based on the identified 103 full papers in the
area of Smart Logistics.

Table 4. Distribution of document types.

Type of Document Records Records (%)

Conference Proceedings 63 61.17
Conference Reviews 0 0

Articles 38 36.89
Reviews 2 1.94

A total of 63 papers (61.17%) are conference proceedings, 38 (36.89%) are articles, and 2 (1.94%)
are reviews. No conference reviews were identified in the final sample. The following Figure 2 shows
the development of the relevant research studies from 2014–2019.

Three papers (2.91%) were published in 2014, four papers (3.88%) were published in 2015,
six papers (5.83%) were published in 2016, 29 papers (28.16%) were published in 2017, and 61 studies
(59.22%) were published in 2018. In general, there is still an increasing trend of relevant studies
regarding the application of AI, ML, and DL in the area of Smart Logistics in industrial enterprises.

The following Table 5 displays the distribution of sources of the identified studies. Most of the
studies were published in Lecture Notes in Computer Science, Advances in Intelligent Systems and
Computing, IFAC-Papers Online, and IFIP Advances in Information and Communication Technology.
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Figure 2. Development of the relevant research studies 2014–2018.

Table 5. Distribution of the identified studies.

Source Records Records (%)

Lecture Notes in Computer Science 8 7.77
Advances in Intelligent Systems and Computing 5 4.85

IFAC-Papers Online 5 4.85
IFIP Advances in Information and Communication Technology 4 3.88

Journal of Manufacturing Systems 3 2.91
Procedia CIRP 3 2.91

Procedia Manufacturing 3 2.91
CEUR Workshop Proceedings 2 1.94

Computers in Industry 2 1.94
IEEE Intelligent Systems 2 1.94

Journal of Big Data 2 1.94
Manufacturing Letters 2 1.94

IEEE Transactions on Industrial Informatics 2 1.94
2018 IEEE Global Communications Conference 2 1.94

Others 58 56.31

The following Figure 3 shows an overview of the identified research collaborations based on the
systematic literature review.
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Figure 3. Overview of the identified research collaborations.
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Five papers (4.85%) were published by one author, 23 papers (22.33%) were published by two
authors, 22 papers (21.36%) were published by three authors, 24 papers (23.30%) were published by
four authors, 15 papers (14.56%) were published by five authors, eight papers (7.77%) were published
by six authors, two papers (1.94%) were published by seven authors, and four papers (3.88%) were
published by more than seven authors.

In the next step, the authors performed a keyword analysis by extracting the author keywords
and index keywords of the relevant papers from the Scopus database. The results are displayed in the
following Figure 4.

 
Industry (4.0): 43.4‰ 

Machine Learning: 32.5‰ 

(Big) Data: 23.7‰ 

(Smart) Systems: 20.2‰ 

Smart Manufacturing: 18.7‰  

Author Keywords 

(Smart) Systems: 49.9‰ 

(Machine) Learning: 29.4‰ 

(Big) Data: 20.5‰ 

Industry (4.0): 15.5‰  

(Artificial) Intelligence: 14.8‰ 

Index Keywords 

Figure 4. Analysis of keywords.

The keywords were analyzed by using the software packages IBM SPSS Statistics 24 (IBM,
New York, NY, USA) and Wordle (www.wordle.net, California, CA, USA). Thereby, the size of the
words and letters reflects the frequency of the keywords from the final sample of 103 full papers.
As expected, the most important author keywords are “Industry (4.0)”, “Machine Learning”, “(Big)
Data”, “(Smart) Systems”, and “Smart Manufacturing”. Moreover, the top-ranked index keywords are
“(Smart) Systems”, “(Machine) Learning”, “(Big) Data”, “Industry (4.0)”, and “(Artificial) Intelligence”.

The following Figure 5 displays the classification of the relevant research study by the type of
study, divided into Case Study (CS), Conceptual Approach (CA), Experiment (EX), and Literature
Review (LR). The classification is based on the content analysis and subsequent assignment of the
works to one main type of study by the research team.
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Figure 5. Classification of the relevant research studies per type of study—Case Study (CS), Conceptual
Approach (CA), Experiment (EX), and Literature Review (LR).
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From the identified 33 articles with high appropriateness, eight (24.24%) articles can be classified
as case articles (CS), 12 (36.36%) articles can be classified as conceptual approaches (CA), seven (21.21%)
articles can be classified as an experiment (EX), and six (18.18%) articles can be classified as literature
review (LR).

3.2. Content Analysis

In this section, the authors analyze the full texts of the identified papers. Therefore, Tables 6 and 7
display the comprehensive results from the systematic literature review by briefly summarizing the
clusters, the main references, the number of records, and the percentage of records in Table 6, as well as
the authors, the type of the study, the clusters, and the main content of each identified work in Table 7.
The research team conducted a profound content analysis to categorize the selected literature into
similar clusters.

Table 6. Classification of the identified studies.

No. Cluster Main References Records Records (%)

1 Strategic and Tactical Process Optimization [25–28] 4 12.12%
2 Cyber-Physical Systems in Logistics [29–35] 7 21.21%
3 Predictive Maintenance [36–41] 7 21.21%
4 Hybrid Decision Support Systems [42–44] 3 9.09%
5 Production Planning and Control Systems [45–49] 4 12.12%
6 Improvement of Operational Processes in Logistics [50–53] 4 12.12%
7 Intelligent Transport Logistics [54–57] 4 12.12%

The results were further aggregated to the following five clusters:

(1) Strategic and tactical process optimization;
(2) Cyber-physical systems in logistics;
(3) Predictive maintenance;
(4) Hybrid decision support systems;
(5) Production planning and control systems;
(6) Improvement of operational processes in logistics;
(7) Intelligent transport logistics.

The following Table 6 displays the results of the classification of five clusters regarding the
application of AI, ML, and DL in the area of Smart Logistics in industrial enterprises.

In the following paragraphs, we will describe and summarize the content of the identified studies
for each of the defined clusters.

3.2.1. Strategic and Tactical Process Optimization

A total of 12.12% of the identified articles were assigned to the cluster “strategic and tactical process
optimization”. Gursch et al. review learning systems for management support in the area of condition
monitoring and process control of enterprises. Furthermore, the authors state that ML can provide
solutions in the fields of optimization, automation, and human support by handling complex problems
that cannot be solved via static and non-adaptive computer programs [25]. Brodsky et al. focus on the
application of decision analytics, for example, for the development of decision guidelines in strategic
and tactical reasoning. Furthermore, the guidelines can be used to perform monitoring, analysis,
planning, and optimization tasks within manufacturing and logistics processes [26]. Qu et al. propose
a general computational reasoning and learning framework under realistic conditions. The approach
explains how to realize smart processes from a formal and data-orientated methodological point of
view [27]. Bonino and Vergori introduce a concept and architecture for connecting inner and outer
value chains in modern factories by using ML, AI, and IoT technologies. Thereby, the authors highlight
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how modern IT-systems will innovate and optimize daily processes in production and logistics by
implementing multi-agent systems and ML technologies [28].

3.2.2. Cyber-Physical Systems in Logistics

A total of 21.21% of the identified articles were assigned to the cluster “frameworks for CPS in
logistics”. In this context, Peres et al. introduce an IDARTS framework for intelligent data analysis
and real-time supervision as a guideline for the implementation of scalable, flexible, and pluggable
analyses within production environments. The framework can be used to translate data into business
advantages in fields such as predictive maintenance, quality control, production, and logistics through
the implementation of CPS based on cloud computing. The framework further includes technologies
of data acquisition, ML, and run-time reasoning for production and logistics processes [29]. Guo et al.
describe a method for learning from imbalanced machinery data by transferring visual elements
detectors. The authors propose a methodology to organize collected sensor data into image form and
utilize visual element detectors based on convolutional neuronal networks (CNN) [30]. Ferrer et al.
present a concept for the implementation the adaptation of CPS by focusing on the production line,
logistics, and facilities based on advanced data analytics, machine-to-machine IoT protocols, machine
learning, knowledge representation algorithms, and cloud-based platforms in (smart) manufacturing
environments. Moreover, they present a scenario for the implementation of CPS in the course of a pilot
study [31].

Thalmann et al. describe new analytic methods and tools for the optimization of industrial
processes. The projects aim to develop a set of tools, e.g., algorithms, analytic machinery, planning
approaches, and visualization for industrial process improvement based on data analytics [32].
Morozov et al. present an adaptation approach for CPS, namely the Formal Concept Analysis
(FCA), which includes AI and ML for the structuring of knowledge and the optimization of the CPS
interoperability [33]. Marella and Mecalla and Marella et al. introduce a process management system
(PMS) for cyber-physical processes (CPPs) and smart process management (SmartPM). The system
can be used to automatically adapt processes by using AI and cognitive computing based on a large
amount of data [34,35].

3.2.3. Predictive Maintenance

A total of 21.21% of the identified articles were assigned to the cluster “predictive maintenance”.
Thereby, Subakti and Jiang propose the design, development, and implementation of an augmented
reality system for machines in smart factories. A deep learning image detection module identifies
different machines and IoT allows the machines to report machine settings and machine states to a
cloud-based server [36]. Susto et al. describe a methodology to derive the health factor of machines by
applying a Monte Carlo approach based on particle filtering techniques to a real industrial predictive
maintenance problem in the semiconductor industry [37]. Wang and Wang discuss the impact of AI
on the future of predictive maintenance by focusing on DL technology. Thereby, they state a list of
state-of-the-art algorithms in the field of predictive maintenance, e.g., deep feedforward networks,
long short-term memory, convolutional networks, deep belief networks, etc., which can be considered
as key success factors for future industries [38].

Klein and Bergman propose an approach for the generation of predictive maintenance data for
ML investigations by using a Fischertechnik model factory equipped with several sensors. The dataset
will be published and can be used in future investigations and for the further development of ML and
DL approaches as well [39]. Cho et al. introduce a hybrid ML approach for predictive maintenance
in smart factories. The approach combines unsupervised learning with semi-supervised learning to
provide data-driven decision support [40]. Wuest et al. review the application of ML techniques in
manufacturing in the areas of monitoring and image recognition. Thereby, they distinguish between
supervised learning, unsupervised learning, and reinforcement learning, which can be used as powerful
toolsets within manufacturing environments [41].
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3.2.4. Hybrid Decision Support Systems

A total of 9.09% of the identified articles were assigned to the cluster “decision support systems
and man-machine interaction”. In this context, Terziyan et al. introduce Pi-Mind technology as a
mixture of human-expert-driven decision-making and AI-driven decision-making approaches for
smart manufacturing processes based on AI and ML technologies. In many cases, this hybrid approach
outperforms rational decision-making processes by human operators [42]. Venkatapathy et al. and
Zeidler et al. describe a basic concept of a hybrid network for the usage of human and machine
synergies in the intra-logistics. Thereby, they focus on optical reference systems, radio reference
systems, laser project systems, virtual reality systems, robot systems, LR-WPAN, and other wireless
network systems, and networked computational systems [43,44].

3.2.5. Production Planning and Control Systems

A total of 12.12% of the identified articles were assigned to the cluster “production planning and
control systems”. Lolli et al. present an approach for a multi-criteria-based classification of inventory
based on machine learning techniques. Thereby, the authors achieve a reduction of simulation effort
by using supervised classifiers from the field of ML [45]. He et al. review a set of multi-objective
swarm intelligence algorithms for flow shop scheduling problems. Besides conventional algorithms,
new ML-based approaches are also presented in this paper. The performance of the various algorithms
can be evaluated by the minimum distance to the Pareto-optimal front, the goodness of the distribution,
and the maximum spread [46]. Zhang et al. systematically review the literature on job shop scheduling
research in the context of Industry 4.0, based on ML, AI, and DL technologies. The algorithms
were further classified in exact optimization methods, e.g., efficient rule approach, mathematical
programming approach, branch and bound methods, and approximate methods (e.g., constructive
methods, artificial intelligence methods, local search methods, and meta-heuristic methods) [47].

Gomes et al. develop an ambient intelligent-based decision support system for production
planning and control based on ML that assists in the creation of standard work procedures that
assure production quantity and efficiency by using ambient intelligence, optimization heuristics, and
ML [48]. Luetkehoff et al. develop a self-learning production control system by using algorithms of AI.
The developed approach presents a new platform-based concept to collect and analyze data by using
self-learning algorithms. The patterns can be used for a prediction of future system behavior [49].

3.2.6. Improvement of Operational Processes in Logistics

A total of 12.12% of the identified articles were assigned to the cluster “improvement of operational
processes in logistics”. Wen et al. discuss the application of swarm robotics in the area of Smart
Logistics by outlining some possibilities and fields of application, e.g., smart warehousing, smart
delivery, route tracking, precise supply chains, green logistics, and smart ICTs, in the next area of
modern logistics [50]. Laux et al. describe a reflection-based sound localization system that is based on
ML approaches and can be used for indoor localization and object tracking [51].

Ademujimi et al. review the current literature on ML techniques in manufacturing by focusing on
techniques, e.g., Bayesian networks, the artificial neural network, the support vector machine, and the
hidden Markov model for the optimization of manufacturing fault diagnosis [52]. Teschemacher and
Reinhart develop an ant colony optimization algorithm to enable dynamic milk runs in logistics to
reduce the number of necessary vehicles in long-term optimization approaches [53].
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3.2.7. Intelligent Transport Logistics

A total of 12.12% of the identified articles were assigned to the cluster “intelligent transport
logistics”. Li et al. (2018) introduce an intelligent transport system that combines information
technology, data communication technology, electronic sensing technology, global positioning
technology, geographical information system technology, computer processing technology, and system
engineering technology to a real-time, accurate, efficient and intelligent transportation management
system based on deep belief network models (DBN) and support vector regression classifier (SVR) [54].
Cheng et al. (2017) discuss a fuzzy-group-based control for smart transportations, which reduces
waiting time and improves the performance by up to 40% [55]. Li et al. (2015) analyze traffic conditions
based on IoT techniques by applying numerical techniques from data mining and machine learning
approaches [56]. Edelstein (2014) outlines the potentials of smarter transport management through
ICT in terms of operational efficiency, reduced costs, and an enhanced entrepreneurial environment
for the staff to develop and implement process innovations by using integrated multimodal transport
systems [57].

4. Conceptual Framework for the Application of AI, ML, and DL in Smart Logistics

4.1. Framework for the Application AI, ML, and DL in Smart Logistics

In this paper, the authors have identified five clusters that can be amalgamated to a conceptual
framework for the application of AI, ML, and DL in Smart Logistics in industrial enterprises. Figure 6
illustrates the developed clusters, namely, “frameworks for CPS in logistics”, “predictive maintenance”,
“decision support systems and man-machine interaction”, “production planning and control systems”,
and “improvement of operational processes in logistics”. According to the results of the content analysis,
the research team mapped to each of the identified clusters of relevant methods and instruments
indicated in the literature.

AI, ML, and DL 
in Smart Logistics

Strategic and Tactical 
Process Optimization

Optimize strategic and tactical 
processes on an enterprise or 
logistics network design level

Cyber-Physical Systems 
in Logistics

Transformation from 
conventional systems to Smart 

Logistics Systems

Predictive Maintenance

Usage of modern learning 
approaches in the areas of 
condition monitoring and 

predictive maintenance

Hybrid Decision 
Support Systems

Hybrid decision-making 
approaches for an increased 
decision-making efficiency

Production Planning 
and Control Systems

Advanced scheduling, 
planning, and control 

techniques

Improvement of 
Operational Processes 

in Logistics

AI, ML, and DL integration in 
operational logistics processes

Intelligent Transport 
Logistics

AI, ML, and DL in the context 
intelligent transport systems 

and processes

Figure 6. Conceptual framework for AI, ML, and DL in Smart Logistics.

Cluster 1, “strategic and tactical process optimization”, concentrates on the application of AI,
ML, and DL methods to optimize strategic and tactical processes on an enterprise or logistics network
design level. Based on learning systems for management support, so-called management information
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systems can be enriched with intelligence, therefore providing not only data, information, and key
performance indicators but also preparing and make decisions on a strategic and tactical level [25–28].
Further progress in such strategic and tactical process optimization will be of significant importance
for large companies operating in different countries.

Cluster 2, “cyber-physical systems in logistics”, describes opportunities for the development from
a conventional logistics system to a Smart Logistics system based on actors and sensors for real-time
data analysis and enhanced knowledge management through state-of-the-art learning approaches.
CPS can be used to improve the quality of production and logistics processes, which further affects
the overall efficiency of the industrial enterprise. Moreover, CPS will lead to increased connectivity,
consistent digitalization, better modeling techniques, more flexibility, and higher versatility and
reusability of systems and systems’ components [29–35].

Cluster 3, “predictive maintenance”, focuses on the usage of learning approaches in the areas
of condition monitoring and predictive maintenance. Thereby, a multitude of studies suggests the
application of recent AL, ML, and DL approaches for the continuous reporting of machine settings,
machine states, and quality parameter settings. Based on real-time data, enhanced knowledge can be
used for further predictive analysis regarding a strategic and pro-active plant maintenance strategy for
production and logistics processes [36–41].

Cluster 4, “hybrid decision support systems”, describes the improvement of non-automated and
therefore human-centered decision-making processes by using learnable support systems. In this
context, decision-relevant information will be automatically collected, aggregated, and pre-analyzed
by AI, ML, and DL technologies. In many cases, these hybrid decision-making processes outperform
purely rational decision-making processes [42–44,58].

Cluster 5, “production planning and control systems”, introduces new opportunities for advanced
planning and control approaches in the research fields of inventory management, flow shop problems,
traditional job shop scheduling problems, production process optimization, and the self-learning
abilities of modern production planning and control systems based on the application of AI, ML, and
DL technologies [45–49].

Cluster 6, “improvement of operational processes in logistics”, outlines various possibilities
for the enhancement of operational processes in logistics by applying AI, ML, and DL technologies.
Thereby, swarm robotics can be used to optimize smart warehouses, sound location systems can
increase the efficiency of identification and tracking approaches, AI-based algorithms ensure holistic
manufacturing fault diagnosis, and ant colony optimization approaches enable the optimization of
milk runs in logistics problems [50–53].

Cluster 7, “intelligent transport logistics”, analyzes the application of AI, ML, and DL technologies
in intelligent transport systems and intelligent transport processes. In this context, the performance of
transport logistics can be increased by applying AI-based methods in combination with state-of-the-art
approaches based on the usage of information technology, data communication technology, electronic
sensing technology, global positioning technology, geographical information system technology,
computer processing technology, and system engineering technology [54–57].

4.2. Practical Examples

In this section, we looked for practical examples for each of the identified clusters or applications of
AI, ML, and DL in logistics. This analysis should provide an overview of how the proposed framework
can be transferred into practice and what are the practical implications for managers of companies.

Aitheon presents on his website one of the first AI-driven project management tools. The project
management AI generates a straightforward list for those who want to be in the general work process
without the need to understand or learn the depths of project management tools. The tool generates
prioritized and grouped tasks by artificial intelligence. An AI-based sketchboard visually organizes
information to show the relationships amongst the pieces of the whole project. This helps to create
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a vision of complex ideas, concepts, or projects, which is generated into tasks viewable in Gantt or
Kanban views [59].

DHL research describe their vision of digital twins in logistics. Artificial intelligence has given
digital twins and cyber-physical systems a big push in creating new value. Today, all the data DHL
has from sensors, historical performance, and inputs about behavior lends itself to being linked to
spatial models and to predict future behavior by changing different inputs. The data and prediction
capabilities of AI make the spatial model come alive [60].

Presenso is a predictive maintenance software using machine learning and deep learning
algorithms to drive precise and continuous failure prediction. With the use of software, logistics
companies can achieve operational savings through full predictive maintenance aimed at yield
optimization. The system collects large amounts of data at high speed and streams the data to the
Cloud in real-time. Using unique, proprietary deep neural-network architectures, Presenso’s analytic
engine autonomously interlinks events with components within the machines and ultimately predicts
evolving failures. In addition, it provides valuable information about the remaining time to failure and
its origin within the machine [61].

According to a study of PWC, 67% of business leaders believe that AI and automation will impact
negatively on stakeholder trust levels in their industry in the next five years. The central challenge is
that many of the AI applications operate within black boxes, offering little if any discernible insight
into how they reach their outcomes. The greater the confidence in AI, the faster and more widely can it
be deployed [62].

SkyPlanner APS is an advanced planning and scheduling system using AI. The software includes AI
that instantly optimizes work order, in which production is most efficiently scheduled. The AI algorithm
also takes into account details that can further enhance production efficiency. For example, in many
productions, it is advisable to schedule jobs that use the same materials or tools in succession [63].
AI is also able to more accurately estimate the time it takes to complete the different jobs.

Swarm Logistics is a deep-tech software technology company specializing in the development of
intelligent, autonomous transportation systems. The Auto-Dispatcher of Swarm Logistics is based on a
complex algorithm that is constantly improving itself with the use of artificial intelligence. This software
was tested in a case study and compared to previous planning. The results of the comparison showed
cost savings of 25% and 35% faster delivery for the transportation company [64].

Siemens Mobility is testing its ITS Digital Lab applications and services for smarter management
of road traffic, fleets such as e-bikes, and intermodal mobility. Connected vehicles sending data in
real-time, infrastructure systems transmitting their status to Siemens’ internet-of-things platform
MindSphere and road users who are connected with their smartphones all produce an immense
amount of data. This rich and growing source of data is changing the types of services of mobility that
are feasible. Siemens Mobility is working on solutions for a Balanced Intermodal Mobility Ecosystem,
which manages not only the road network but also specific fleets within the network and ultimately
the traveler across different modes of transportation [65].

5. Discussion

In this paper, the authors identified the following five clusters for the application of AI, ML, and
DL in Smart Logistics: (1) frameworks for cyber-physical systems (CPS) in logistics; (2) AI, ML, and DL
in the context of (predictive) maintenance; (3) decision support systems and man-machine interaction;
(4) production planning and control systems, and (5) improvement of operational processes in logistics.
In the above-described conceptual framework, we analyzed the main clusters where AI, ML, or DL are
applied today or where the potential for application is already studied.

Looking at the first cluster in the proposed framework, AI and related technologies and methods
will be used in the near future to do better forecasting and to better understand users and customers.
This will have a significant impact on the optimization of the forecast on a strategic/tactical level
and may be also used to determine new customer demand. In the future, AI may be used also in
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higher-level processes to detect fraud, prevent cybersecurity threats, and generally optimize higher-level
processes. Possibilities of the future use of AI can also be in project management tasks, reducing
the failure rate of projects thanks to predictive analysis and to more accurate project management.
In addition, if AI algorithms can win chess games, they will also be able to be used in the generation of
corporate strategies.

Taking a more detailed look at the second identified cluster dealing with the application of AI
methods to create CPS in logistics, we can observe that already there are many research activities for
realizing CPS and mono-directional information flow from the physical object to the digital model
(digital shadow), and in a further step a bidirectional information flow between both models to control
the physical system through a so-called digital twin [66]. CPS are receiving large amounts of different
datasets and data from the logistics systems. Today, most of the practitioners face the challenge that
they do not have the right tools to exploit the amount of data in the right manner. Here AI methods can
complete the vision of a digital-twin-based control of logistics systems by analyzing big data from CPS,
determining data patterns and therefore automating workflows and processes for more immediate
and more qualitative control of logistics systems. Although some works deal with this topic, we find
that, especially for logistics systems, this field is still an emerging research field with much need for
further investigation and case study applications.

The third cluster deals with AI methods for realizing what we call predictive maintenance as an
enhancement of preventive maintenance, which is well-known from lean management. Predictive
maintenance as a concept has been well-discussed since the beginning of the new century, but looking
at the Scopus database using this keyword, research on this concept has “exploded” in the years
after 2017 when progress was made in the application of AI-based methods for realizing predictive
maintenance. As AI methods depend a lot on the availability of a large amount of data, the field of
predictive maintenance is a highly important research direction due to new generations of logistics
systems equipped with sensors and providing large amounts of data that can be used for data analytics.
Seeing this development, we consider predictive maintenance as one of the more consolidated fields
of research for AI in logistics, although we are conscious of the fact that there is still a huge need for
investigation especially for applied research and case study research.

The fourth cluster of “hybrid decision support systems” follows the current trend of
human-centered engineering. Despite all of the potential for automation and digitalization in
production and logistics, we have understood that many processes still depend from skilled workers
and that the human will also in the future play a big and important role in the industry. What we can do
is to support workers with cognitive assistance systems to enhance their capabilities in decision-making
as well as taking advantage of a large amount of data. AI-based methods play a big role in this ongoing
development of such digital aid systems for our workers. As indicated also in the analyzed literature,
it will be important for the future not to only offer pure rational decision-making assistance tools,
as this would decrease the role of the human from an intelligent individuum to a “stupid” executor
of commands and decisions taken from a “super-intelligent system”. It will become important to
develop solutions using an approach based on so-called Explainable AI [67] and thus a hybrid way
where the human is still able to understand the result through explainable interfaces. We state the
hypothesis that only such hybrid systems will succeed in being applied also in practice, as the human
being is still a skeptical individuum that would not accept assistance systems based on pure rational
decision-making. While the use of AI in man–machine interactions has already been studied for many
years, we consider therefore the development of decision-making systems based on explainable AI as
one of the main future challenges in research.

The fifth cluster of “production planning and control systems” can be considered again as one
of the already more developed and perhaps more consolidated fields compared to the other clusters
identified in the proposed conceptual framework. For many years now production planning and
control deal with the optimization of the planning when it comes to conduct advanced planning and
scheduling tasks and to transfer this results in meaningful control mechanisms for production control.
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We can already find several works dealing with the use of simulation-based methods for scheduling
since the early 1990s [68]. On the other hand, we postulate that there will be a “renaissance” in this
field due to the ongoing trend of AI, opening an emerging field towards real-time planning. A human
planner would never be able to process information as fast as AI does based on sensors and seamless
vertical data integration. Through the combination of a steady increase of computational power and
storage capacity for a large amount of data with sensor devices for collecting real-time data, real-time
planning comes within reach in the near future.

The sixth cluster deals with improvements of operational processes in logistics that can often be
deduced from nature, as the examples in the framework description have shown (see also [50–53]).
The topic of biological transformation is an already emerging theme promoted, e.g., by the Fraunhofer
research institutes [69] and other researchers [70], and describes the change from solely bioinspired
manufacturing or logistics systems towards those that are bio-integrated and bio-intelligent by
combining what we can deduce and learn from the observation of processes in nature and leaping
computational power as well as progress in AI, ML, and DL.

The seventh cluster of “intelligent transport logistics” has been making enormous progress in
data-based traffic optimization and the development of autonomous vehicles for years. With the latest
technologies in object recognition, roads and important traffic junctions can be monitored even better
in real-time, reducing possible delays in processing time. A great challenge for the future will be the
investigation and finding of appropriate solutions for reducing or eliminating the risk of cyber-attacks
and biased decisions about transport as well as discussing ethical questions regarding liability for the
decisions taken by artificial intelligence in the place of humans. In this regard, for example, the EU is
taking important steps to adapt its regulatory framework to these developments so that it supports
innovation while at the same time ensuring respect for fundamental values and rights [71].

The following Table 8 summarizes the main research actions that can be deduced from the
discussion of the identified clusters for applying AI, ML, and DL in Smart Logistics. In addition,
it addresses also the experts/stakeholders that should be involved in research activities, as logistics
is a broad field in which several different subjects, perspectives, and types of expertise converge.
This should guarantee that further research is target-oriented and follows the needs of practitioners
in the field of logistics. The listed research actions should motivate researchers of basic and applied
research to conduct further research to exploit the full potential of AI, ML, and DL in the field of logistics.

Table 8. Research actions and experts/stakeholders to be involved.

No. Research Action Cluster Experts/Stakeholder

1 Further research on the automated
generation of corporate strategies

C1—Strategic and Tactical Process
Optimization Top management

2
Further research for AI support in project
management to reduce failures and increase
the success of projects

C1—Strategic and Tactical Process
Optimization Project managers

3 Case study research on applications for
AI-based CPS in logistics

C2—Cyber-Physical Systems in
Logistics

Users and experts from all fields of
logistics

4 Case study research on applications of
predictive maintenance C3—Predictive Maintenance Maintenance managers of logistics

systems and vehicle fleets

5 Further research on explainable AI for
AI-based hybrid decision support systems

C4—Hybrid Decision Support
Systems

Users and experts from all fields of
logistics

6 Real-time planning and (re-)scheduling C5—Production Planning and
Control Systems

Production planners and
intralogistics experts

7 Learning from nature through
bio-intelligence in logistics

C6—Improvement of Operational
Processes in Logistic Operations managers

8 Development of low-cost real-time
monitoring devices/solutions

C7—Intelligent Transport
Logistics Traffic Planners, hardware providers

9
Clarify questions and provide solutions for
reducing the risk of cyber-attacks and
regarding ethical/liability questions

C7—Intelligent Transport
Logistics Experts in ethics and cybersecurity
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6. Limitations and Implications

6.1. Limitations of This Study

The study conducted a review of the scientific literature from 2014 to January 2019, the date of
data extraction from the Scopus scientific database. A limit of this research is that during the period of
the screening, selection and analysis and development of the framework, further research on AI in
logistics may have been performed and published. We are aware that the current rapid development
of research in this area is a limit for the results of this review. For this reason, in the following we have
summarized the most important work that has been done on this topic in the period from the beginning
of 2019 to the beginning of 2020, to analyze whether further research directions have emerged. Firstly,
this analysis confirmed the proposed framework, as also after the period investigated by the authors,
many works deal with the clusters identified. In addition, a scientific discussion on some new topics
has been started. The following short overview does not present an exhaustive list of new research
topics, but some examples of the most interesting ones.

Giusti et al. address synchromodal logistics as an emergent topic in logistics and transportation
where AI-based methods may open new possibilities. Synchromodality is an emerging and attractive
concept in logistics, developed and established in the Benelux region during the last decade. The main
purpose of synchromodality is reducing costs, emissions, and delivery times while maintaining the
quality of supply chain service through the smart utilization of available resources and synchronization
of transport flows [72].

In Le et al. neural network-based approaches are used for example to estimate, predict, and
optimize fuel consumption for container ships in Korea. The developed model has thus been applied
to confirm the effectiveness of the slow-steaming method for achieving energy efficiency [73].

Liu et al. examine the effects of context-awareness on the ambient intelligence of logistics
service quality, as context-awareness makes it possible to provide personalized service for each client.
Context-awareness-based ambient intelligence predicts users’ intention-to-use depending on the
contexts they provide. By applying the prediction to logistics services, it can provide customized
service to keep clients satisfied. A key issue in user-centered services is how to detect each user-specific
situation and choose a certain service that meets users’ requirements the best, and then to provide
support for real-time decision-making [74].

According to Ceyhun, using AI will contribute to the prevention of ship-related accidents by
anticipating future cases by using pinpoint calculations [75].

Another use of AI-based methods will be to develop intelligent road inspection systems for smart
mobility and transportation maintenance systems [76].

6.2. Implications for Academia and Practitioners

From our point of view, this research is interesting for both academics and practitioners. While there
are now some literature review articles on artificial intelligence, machine learning, or deep learning
in manufacturing or business processes, there is a great lack of such review articles in the field of
logistics. With this paper, researchers can find a comprehensive review of the current state of research.
In addition, the paper presents a framework for the use of AI, ML, or DL in logistics. This framework,
as well as the research actions and fields collected in the discussion Section, should contribute to and
encourage researchers to carry out further research in these areas and thus take an important step
towards consolidating these areas.

More and more managers and practitioners from logistics companies or logistics sectors are
interested in the potential of AI-based methods in logistics. However, the complexity of these topics
makes it very difficult for practitioners to estimate their use or even to get an overview of the current
status. Therefore, it was our concern after the creation of the framework, which is informative for
academics as well as for practitioners, to show practical examples from management literature and
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case studies. This will provide practitioners with an overview of the current methods as well as new
input to plan and start initiatives for the use of AI in their logistics processes.

7. Conclusions

In the context of Smart Logistics, the application of AI, ML, and DL technologies is still in an early
stage of development. Most of the identified studies are concepts, laboratory experiments, or in a
very early testing phase. Mature industrial applications are still missing. However, the continuous
reporting of machine settings, machine states, quality parameter settings, predictive maintenance,
decision-making support systems, advanced scheduling, planning, and control approaches in the
research fields of inventory management, flow shop problems, traditional job shop scheduling
problems, production process optimization, and the improvement of operational logistics processes,
e.g., identification and tracking approaches, can be seen as promising areas within the Smart
Logistics framework.

The findings of this research study should be used as a starting point for future investigations
regarding the application of AI, ML, and DL technologies in the area of Smart Logistics in industrial
enterprises, and provide a framework for practitioners in industrial companies for the successful
implementation of state-of-the-art technologies as well. Therefore, it is important to integrate different
research areas, e.g., information technology, logistics, mechanical engineering, industrial engineering,
mathematics, and statistics, into future research projects.
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Abstract: This article deals with the creation of a digital twin for an experimental assembly system
based on a belt conveyor system and an automatized line for quality production check. The point of
interest is a Bowden holder assembly from a 3D printer, which consists of a stepper motor, plastic
components, and some fastener parts. The assembly was positioned in a fixture with ultra high
frequency (UHF) tags and internet of things (IoT) devices for identification of status and position.
The main task was parts identification and inspection, with the synchronization of all data to a digital
twin model. The inspection system consisted of an industrial vision system for dimension, part
presence, and errors check before and after assembly operation. A digital twin is realized as a 3D
model, created in CAD design software (CDS) and imported to a Tecnomatix platform to simulate
all processes. Data from the assembly system were collected by a programmable logic controller
(PLC) system and were synchronized by an open platform communications (OPC) server to a digital
twin model and a cloud platform (CP). Digital twins can visualize the real status of a manufacturing
system as 3D simulation with real time actualization. Cloud platforms are used for data mining and
knowledge representation in timeline graphs, with some alarms and automatized protocol generation.
Virtual digital twins can be used for online optimization of an assembly process without the necessity
to stop that is involved in a production line.

Keywords: Industry 4.0; smart manufacturing; digital twin; cloud platform

1. Introduction and Relevant Previous Works

The Industry 4.0 concept is referred to as the fourth industrial revolution and is the current trend
in automation, monitoring, and data mining from manufacturing processes. The main technologies to
realize these tasks are [1]:

• IoT (internet of things);
• CPS (cyber-physical systems);
• CP (cloud platforms);
• CC (cognitive computing);
• AR/VR (augmented reality/virtual reality) devices; and
• other related disciplines.

The main tasks are digitization of data, analysis, and knowledge extraction. In these areas
many papers have been published with research results aimed towards the use of cyber-physical
systems within the Industry 4.0 concept, big data processing [2], and the combination of CPS with
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IoT systems [3]. The next task of the Industry 4.0 concept is product customization, because current
customers want unique products. This requirement is a big challenge for the Industry 4.0 concept to
ensure production with minimal cost and high customization.

Generally, manufacturing systems, production processes, and products are nowadays suitable for
full digitalization. The first task in process digitalization is the specification of suitable technologies.
There can be defined two groups of devices, the first for permanent installation in product, which must
be low cost and the second group for machine and production process monitoring.

Perspective technologies for data digitization and collection from machines, processes,
and products are:

• RFID (radio-frequency identification) labels for wireless part identification, and RFID transceivers
for fixture monitoring in the production process;

• MEMS sensors integrated into the product for contactless data measuring and also integrated in
the production process;

• IoT devices with independent wireless communication for data upload to cloud platforms for
next processing; and

• Cloud platforms with data mining for knowledge extraction and data representation in timelines
and alarms.

A modern approach to product identification is using RFID UHF (ultra high frequency) technology,
because it reaches higher distances and reliability like LF and HF (low and high frequency) RFID
technology. Some research results concerning RFID systems were published in articles about security
of tags [4], detection of missing tags [5], and new searching protocols [6].

MEMS sensors have minimal power consumption and can be powered from battery during
a product’s lifetime. They can be used, for example, for monitoring of product overheating and
vibration during operation by the customers, and are generally used for continuous monitoring of the
product environment. Some research on the usability of MEMS sensor devices was published in the
articles about the monitoring of mechatronic systems by MEMS [7], vibration analyses by MEMS [8],
and structural monitoring by MEMS [9].

Modern IoT systems are based on specialized communication technologies for data isolation from
standard Wi-Fi (Wireless-Fidelity) or Bluetooth networks. The main IoT communication standard
is LPWAN (low-power wide-area network) and includes solutions such as LoRa/LoRaWAN and
Sigfox. Other technologies are using modifications of GSM (Global System for Mobile Communication)
networks for low data transfer. Some research results in this area of interest are described in articles
about energy-efficient communications in the internet of things [10], novel chaining encryption
algorithm for LPWAN IoT networks [11], evaluation of next-generation low-power communication
technology to replace GSM in IoT applications [12], performance assessment of long-range and Sigfox
protocols with mobility support [13], and a new effective way to boost LoRaWAN network capacity [14].

Knowledge extraction (data mining) and data analysis are the main tasks of a cloud system. Cloud
platforms can provide data in user-friendly form by timelines, day/weeks, or monthly automated
reports. There can be also integrated an alarm system for critical production status, usually as a
message by email or SMS (short message service). Some new research trends in cloud platforms
and data mining are described in the papers concerning clouds and big data connection [15], cloud
robotics data [16], clouds in industrial automation [17], and chaos theory combined with cloud
systems [18]. The practical aspects are described in the papers about industrial process simulation and
data digitization in Tecnomatix software [19,20].

Applying a virtual model for remote monitoring is a new trend of the Industry 4.0 concept and
can represent the real manufacturing system, production process, or product. Such virtual models
digitally replicate all aspects of real devices and they are called digital twins, which continuously learn
and update themselves from multiple data sources. The articles and case studies aimed at digital twins
are, for example, about digital twins with ergonomic optimization [21], digital twin methodology

40



Sustainability 2020, 12, 3658

to commentary [22], the learning of new experiences by digital twins [23], automatic generation of
simulation for digital twins [24], digital twins’ implementation for legacy systems [25], new possibilities
of digital twin technology [26], and its application for Smart Industry [27].

Our research idea was to create a unified methodology for full data transfer from an experimental
manufacturing assembly system to its digital twin, with real-time simulation and long-time data
storage in a cloud platform with adequate synchronization.

The main purpose of this article is to present an architectural concept for a digital twin design
with cloud platform and methodology of full data digitalization for smart manufacturing, which was
implemented and tested on the experimental assembly system based on a belt conveyor system and an
automatized line for quality production check.

2. Problem Specification and Proposed Work

The basic problem in implementation of an Industry 4.0 concept is data acquisition from the
manufacturing environment. So, the first task is to select suitable technologies for data collection from
production machines, production processes, and products.

Data from production processes can be provided by integrated position check sensors, for example:
inductive proximity sensors, optical sensors, and laser sensors. These sensors can provide the actual
status of the production, but no customized data about products; for example, they cannot provide
information about where an exact order is currently positioned within the production process.

The next task is implementation of technology for exact part localization in production. The useful
technology for exact part localization in production is RFID technology. An RFID reader, with an RFID
transceiver on fixture and RFID labels on final assembly or parts, can provide exact information about
the product status and its history.

The next important task in production is quality control. It can be divide into these levels:

• standard part identification;
• part presence check-in;
• dimension check in defined tolerance; and
• assembly check for product completeness.

If there is need for automatic feedback from a realized product, some autonomous monitoring
equipment has to be implemented. The solution is implementation of IoT devices combined with
MEMS sensors. This provides a reliable and low-cost solution with long-term operation. The data
collection must be separated from standard communication networks like Wi-Fi or Bluetooth. The new
IoT communication technologies provide this feature also with roaming possibilities.

The last task involes data storage and knowledge representation in some readable form.
The standard databases cannot be used, because industrial systems now usually produce big data.
The solution is to use industrial cloud platforms for data storage and visualization from all production
processes. Open source timeline databases with graphical visualization are also suitable for data
collection from IoT devices.

The proposed work is divided into four phases:

1. Creation of minimalized physical experimental assembly system with technologies for
data collection;

2. Design of data digitization from all integrated technologies;
3. Synchronization of the actual status of physical devices with a digital twin; and
4. Data accumulation and representation in a cloud platform.

The main novelty of the research is its methodology for full digitalization of different inspection
and identification technologies used in the experimental smart manufacturing assembly system.
The basis is an architectural concept design of the digital twin of the experimental system and its
synchronization with the cloud platform.
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2.1. The Concept of Experimental Smart Manufacturing Assembly System

The concept of the experimental smart manufacturing assembly system is shown in Figure 1 and
partial physical realization for research and educational purposes is shown in Figure 2. This concept
includes all necessary technologies for digital data acquisition: RFID technology, vision systems,
and IoT devices. All data from these technologies must be transformed to standardized industrial
format. The PLC (programmable logic controller) is the main data collector for the next data processing
and transfer to cloud system. Standardization of data is reached by the open platform communications
(OPC) server, which also provides data distribution to the digital twin based on Siemens Tecnomatix
plant simulator and the cloud platform MindSphere.
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Figure 1. The concept of experimental smart manufacturing assembly system with data transfer to
digital twin and cloud.
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Figure 2. (a) The experimental assembly system; (b) the fixture with parts and finalized assembly.

2.2. RFID Part Identification System

The RFID reader (Siemens SIMATIC R685R with one integrated and second external antenna
SIMATIC RF615A) was used for product identification. The first antenna checked the part presence
by RFID labels tags. The second antenna checked the assembly completeness and wrote data for the
fixture’s RFID tag transponder. Implementation of RFID technology created an identification gate for
input parts and output for finalized assembly. Any data acquired from vision system can be written to
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a part or assembly RFID tag as unique data. The used RFID system with two antennas, tested tags,
and RFID tag implementation for some assembling parts and the fixture is shown in Figure 3.

(a) (b) 

(c) 

Figure 3. (a) Radio-frequency identification (RFID) gateway for assembly identification; (b) RFID
gateway for parts localization; (c) parts with RFID tags.

Data from the RFID system were acquired as EPCID (Electronic Product Code ID) numbers and
collected in PLC system, as shown in Figure 4.

(a) (b) 

Figure 4. (a) RFID data from integrated tags on fixture and parts; (b) RFID data in the programmable
logic controller (PLC).

2.3. Vision Systems for Part and Assembly Inspection

The used industrial vision systems, and specialized vision system with integrated trained
convolutional neural network for standard parts (nuts, screws, washers) recognition [28], are shown
in Figure 5. Examples of using vision systems for part checks, dimension measuring, assembly
completeness, and standard part (nut) identification are shown in Figure 6.
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(a) (b) (c) 

 
(d) 

Figure 5. Industrial vision systems: (a) Omron FZ3-L355 with 5Mpix camera sensor; (b) Cognex with
Insight-Explorer software; (c) Sick Inspector I10 with SOPAS Engineering tools; and (d) the specialized
vision system Nvidia Jetson AGX Xavier Developer Kit with e-con Systems e-CAM130 CUXVR dual
13Mpix camera sensors using neural networks for parts identification.

  
(a) (b) 

  
(c) (d) 

Figure 6. Examples of using vision systems for: (a) part checks; (b) dimension measuring; (c) assembly
completeness; and (d) standard part (nut) identification.
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An example of digital data output from a vision system for measured dimension and its transfer
to the OPC server is shown in Figure 7.

(a) (b) 

Figure 7. Digital data from the vision system: (a) in the graphical table; (b) in the open platform
communications (OPC) server.

2.4. IoT Devices for Long-term Product Monitoring by MEMS Sensors

Three IoT communication technologies (GSM technology, Sigfox, and LoRaWAN) which can
provide isolated data transfer were selected for long-term product monitoring. The experimental
system combines these IoT technologies to one module with data collection to an open source system,
as shown in Figure 8.
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Figure 8. The principle scheme of the experimental combined IoT device.

Examples of the tested components for such combined system are shown in Figure 9. The software
was programmed by Pymakr IDE inside Visual Studio and transferred to an FiPy module. The multiple
IoT communication was operated by the FiPy module, which was connected to a MEMS sensor to
collect vibration information.

These devices were used for experimental signal quality measurements, and for real
implementation they must be reduced in dimension for integration to final assembly product.

An example of digital data collected from the hybrid IoT device by LoRaWAN network user
interface “The things network” (TTN) is shown in Figure 10.
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(a) (b) 

 
(c) 

Figure 9. (a) IoT device FiPy and 9-axis MEMS sensor MPU-6050—accelerometer, gyroscope,
magnetometer; (b) integration of the FiPy module from PyCom to development board; (c) LoRaWAN
Gateway “The Things Outdoor Gateway—868Mhz version” with Omni antenna SIRIO GP 868 C.

  
(a) (b) 

Figure 10. Digital data from: (a) LoRaWAN TTN network; (b) Sigfox network.

The limitations of the tested IoT communication technologies for industrial use are summarized
in Table 1.

Table 1. Comparison of IoT technologies for industrial tasks.

Technology Nr. of Uplink MSG/Day Nr. of Downlink MSG/Day Bytes Delay

LoRaWAN (TTN) 1440 max 10 10 30s
Sigfox 140 max 4 12 30s
GSM not defined not defined UDP/TCP -
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The simple principle of MEMS system calibration in production is to acquire the reference vibration
of product during normal working condition. Then it is possible to identify increased vibration or
critical states during operating status. An example of the calibration and the critical status identification
is shown in Figure 11. The reference status in this case is vibration amplitude in a stepper motor
running at nominal speed. So, there is need to acquire this reference vibration status as the value range
and write the offset value to the MCU (MicroController Unit) as a critical level. Data acquisition from
MEMS sensors has been tested in Arduino IDE (Integrated Development Environment). An example of
the vibration with filtration based on Kalman filters in x-axis and cumulated data from MEMS sensor
decoded by Node Red interface is shown in Figure 12.

Figure 11. The principle of MEMS sensor calibration.

 

Figure 12. An example of data acquired from an accelerometer in x-axis with filter in Arduino IDE.

3. Digital Twin

A digital twin is a digital replica (a virtual model) for several hierarchy levels, like a sensor,
an actuator, a production unit, a plant. It consists of 3D models grouped to assemblies with the
possibility of remote monitoring and data synchronization with a real system and offline simulation.

The basis for digital twin creation is 3D virtual models of empty fixture, a fixture with parts,
a fixture with assembly (Figure 13), and a 3D virtual model of a belt conveyor system with equipment
for data acquisition (Figure 14).

Optimization of the production systems and their processes have so far usually been executed
offline, mainly before the production starts or before it had to be stopped for optimization.
The main improvement in the suggested approach is online optimization within the digital twin and
synchronization with the real system. In the presented setup, a Python OPC UA (Unified Architecture)
server (FreeOpcUa framework) is responsible for data transfer from the digital twin to the PLC system
(Siemens PLC S7-1200 with HMI 4,3” TFT KTP 400).
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So, it is possible to synchronize simulation (digital twin of the system) with control system of
the real manufacturing system and update process variables in a very short time by user interface.
The designed 2D and 3D digital twins of the experimental assembly system are shown in Figure 15.

 
(a) 

 

(b) 

 
(c) 

Figure 13. (a) 3D model of the fixture; (b) 3D model of the fixture with parts; (c) 3D model of
the assembly.

 

Figure 14. 3D model of the belt conveyor system with equipment for data acquisition.

(a) (b) 

Figure 15. Simulation in Tecnomatix plant simulator with OPC communication: (a) 2D model;
(b) 3D model.
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The digital twin was transferred to a virtual reality device—HTC Vive Pro virtual reality glasses.
This equipment can be used in quality control to remotely monitor the actual status of production.
The main task is the synchronization of data from real production to the 3D virtual digital twin with
simple visualization. An example of a digital twin of product identification and customization (a) and
transfer (b) of Technomatix simulation to virtual reality by HTC Vive Pro is shown in Figure 16.

(a) (b) 

Figure 16. (a) 3D model in plant simulator; (b) digital twin inspection in virtual reality (VR).

VR devices (HTC Vive Pro, Oculus Rift, Valve Index VR) for communication with virtual scenes
use hand controllers, but in assisted assembly there is the need to have both hands free. This problem
was solved by using a Leap motion sensor to detect hand and finger position. Another problem
in assisted assembly is that recognized parts must be detected in any position, rotation, and scale,
but this is unsolvable by standard industrial vision systems. This task we solved by using deep
learning techniques; all assembly parts were trained in deep neural networks by Google TensorFlow
frameworks [29]. The trained network was transformed to OpenCV library DNN (Deep Neural
Network) for Android and executed in an AR device inside a Unity 3D engine. An example of hand
detection by Leap motion installed on a VR device (HTC Vive Pro with SteamVR software) is shown in
Figure 17a, and standardized assembly parts recognized by the AR device (Epson Moverio BT350 with
the development software Unity engine) in Figure 17b [28].

(a) (b) 

HTC Vive Pro

Motion Leap

Real view Hand Digital Twin

Figure 17. (a) Hand detection; (b) implementation of standardized part recognition for assisted assembly.

4. Data Transfer to Cloud System

To isolate the plant from the internet, we used IoT gateway MindConnect (connected to Amazon
Web Services Cloud access) with separated network interfaces: the first one for internet connection,
the second one for data transfer from the isolated manufacturing process by a Python OPC Server. So,
security of all critical digital data transfer from the experimental manufacturing system to the cloud
platform was solved by Mindsphere network unit MindConnect, which works like a hardware firewall
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and isolates the production process (plant) from the internet. The extracted data sent to the cloud
platform Mindsphere were encrypted. The encryption for OPC server data is possible, but all OPC
data were transferred in local networks, so there was no problem with security.

The used communication devices for data transfer to the MindSphere cloud platform are shown
in Figure 18.

 

Figure 18. MindConnect devices as gateway to MindSphere cloud.

An example of data timelines’ visualization from the vision system for all measured dimensions
in the MindSphere cloud platform is shown in Figure 19.

 

Figure 19. Cloud digital data from vision system.

Some typical IoT data from MEMS sensors as acceleration in two axis X and Y in the cloud
platform Thinger.io, and signal quality monitoring by Grafana visualization, are shown in Figure 20.

 
 

(a) (b) 

Figure 20. (a) IoT data from MEMS sensor (acceleration) in Thinger IO platform; (b) quality signal
monitoring by Grafana.
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5. Discussion

All data acquisition technologies, which were integrated into the experimental assembly system
for identification (RFID tags) and inspection (vision systems, MEMS sensors, IoT devices) have their
own limitations, which must be solved before data is stored into a cloud platform.

Identification systems used in manufacturing based on UHF RFID devices cannot be used for
very small parts, because the tag size is limited by antenna length. RFID readers working with low
frequency (LF) or high frequency (HF) tags are the solutions for tagging smaller parts, but they are not
primarily developed for industrial parts (mainly for the food industry) and they reach lower distances
for stable communication. The main limitation of UHF RFID technology in experimental assembly
systems is UHF RFID tag size. The small parts—for example, screws, washers, and nuts—cannot
be tagged. One of the possible solutions could be the combination of UHF with LF or HF RFID
technologies, but this would have the disadvantage of shorter distance detection of assembly parts.

Smart industrial vision systems are usually closed source systems without the capability to modify
an algorithm. This limitation arises especially in surface errors in recognizing very complicated parts.
The next limitation of industrial vision systems for assembly operation is that detected parts must be in
the fixed distance and position from camera, with only limited rotation. A new approach and solution
could be the use of convolutional neural networks (CNN) with deep learning training techniques
described in details in research articles about automated training of deep learning networks by 3D
virtual models [28] and recognition of assembly parts by convolutional neural networks [29]. This new
approach was also tested in the experimental smart manufacturing assembly system using the Tensor
Flow framework, with good results for its application in real production. The main advantage of these
approaches is a relatively simple integration into assisted assembly operation with AR/VR devices.

The data acquisition from MEMS sensors is based on some physical theorems which provide
data with limited long-term precision (LTP), because they are physically isolated from measured
objects and therefore must acquire data contactless. This is main reason why the MEMS sensors’
data from accelerometers or gyroscopes have to be filtered by some filters, for example a Kalman
filter, because their output signal is very noisy. The position of MEMS sensors in the manufacturing
system must be with minimum interferences from RFID system. MEMS sensors integrated into the
product are not influenced by RFID signal because they start to operate after the production process,
during the lifetime of products. The next problem is high frequency output bandwidth generated
by MEMS sensors, which is not compatible with currently used cloud platforms. A standard cloud
platform minimal data acquisition time is one second. So, there is a need to use some buffers for data
accumulation. The problem of how to accumulate more data in the one second interval is described
in the research article about data optimization for communication between wireless IoT devices and
Cloud platforms in production process [30].

The significant problem in the usability of clouds platforms is the lack of support to store a digital
twin and its simulation and visualization. Industry 4.0 uses both technologies: cloud platforms for
simple data storage, and digital twins for actual status visualization and simulation. So, there is a need
to have some connection between these technologies.

Cloud platforms are primarily focused on data collection and basic graphical representation via
timelines and data knowledge extraction, with critical status alarm systems or user-defined periodical
reports: daily, weekly, monthly, and yearly. Available cloud platforms currently offer for storage simple
variables like integer, float, bool, data time, and string. All digital data are usually stored in predefined
frames and defined only by strings or numbers. It is not possible to include advanced structures
with combined blob (Binary Large OBject) data, for example images, or binary data combined with
numerical/string variables.

In the currently available cloud platforms, it is not possible to store customized 3D virtual digital
twin models of products with adequate digital variable data.

The first solution could be to create a separate database for the customized digital twin 3D model,
with a hyperlink to standard digital data stored in a cloud platform. This solution could link data from
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a digital twin to a cloud platform in one direction of synchronization. The main advantage of this
approach would be increased security for critical data of products, because customized digital twin
models of products would be stored in local databases.

The second solution could be the modification of an open source cloud platform for visualization
and storage of customized digital twin models and image data, with simple variables, in one place.
The main advantage of this approach would be very low operating costs, because whole solutions
could be integrated into factory server infrastructure.

The main disadvantage of the designed and tested architecture, with the digital twin and cloud
platform after implementation to real device, is the necessity of trained staff to modify, optimize,
and extract knowledge, which is specific to every production process.

6. Conclusions

Full digitalization of production processes is a very important part of the Industry 4.0 concept
to increase the effectivity of SME (Small and Medium-sized Enterprise) manufacturing. Suitable
technologies for fast digitalization, data transfer, data storage, and finally for data mining have to be
used. In this paper, we described an approach for how to capture data with contactless technologies in
a smart manufacturing assembly process, and to transfer this data from the production process to the
extended digital twin 3D model.

To build a bridge between the real production system and its digital twin, an OPC technology
for data synchronization in both directions was implemented using OPC UA Server (OPC DCOM
–Distributed Component Object Mode). The OPC server must ensure three communications: the first
to the digital twin model, the second to the cloud platforms, and the third to the PLC system.
For that reason, the customized OPC server written in Python Programming Language was designed
and implemented. The IoT gateway MindConnect was used for data transfer to the MindSphere
cloud platform.

The vision system, consisting of three camera modules, was implemented into the experimental
manufacturing assembly process to check the shapes and surfaces of assembly parts and to measure
their dimensions. An RFID system was used to localize parts on the conveyor line by RSSI (radio signal
strength indication) signal from tags. The RFID gate wrote unique information to the main assembly
RFID tag label of every product, as for example, acquired dimension data and quality data. So, in this
way a smart identification system was applied to the experimental manufacturing assembly system.

Furthermore, the MEMS sensor data acquisition in combination with IoT communication
technologies was tested. The product vibrations had been measured by an integrated accelerometer.
The IoT data were processed by Node Red data conversion technology to the specialized NoSQL
(Non-Structured Query Language) database with Grafana visual interface. Independent IoT
communication technologies Sigfox and LoRaWAN were used for data transfer to a cloud platform.

After the implementation of the architectural concept of the digital twin with the cloud platform
to the real manufacturing system with full digitalization, the finding is that there are some limitations
which arise from currently available technologies. The main limitation is the cloud platform because it
does not support storage of customized digital twins and it provides a minimum delay of about one
second in data transfer.

The realized experimental smart manufacturing assembly system will serve for further research
(for example, to extend the digital twin via data from articulated assembly robot) and also for
educational purposes. Using advanced technologies based on the Industry 4.0 concept by educated
students and workers can help to develop sustainable production of SMEs. The designed and tested
digital twin architecture on the experimental manufacturing system with full data digitalization
provides a universal digital model which can be used as a template for real manufacturing of SMEs.
Implementation of digital twins into manufacturing is a necessary condition for product lifecycle
management (PLM) to ensure sustainable production.
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Abstract: Far from being exclusively related to economic considerations, the advantages of
Industry 4.0 applications also include environmental and social concerns. An increasing amount
of scientific publications relate the implementation of the fourth industrial revolution paradigm to
sustainability. Several studies reported opportunities of Industry 4.0 implementation particularly to
the environmental dimension of sustainability, e.g., through improved logistics streams and lowered
waste from production. The present research aims at providing evidence on whether manufacturing
companies consider Industry 4.0 implementation as an advantage contributing to environmental and
social sustainability in terms of lower environmental impact of production, as well as higher physical
relief for workers and flexibility of work organisation. The results were an attempt to study such
relations with company sizes, industry sectors, turnover and self-assessed levels of digitalization
varying. The sample encompasses 65 companies located in the Marche region (Italy). The results show
that overall the perception of economic opportunities prevail, while the association of a beneficial
impact of Industry 4.0 on environmental sustainability is rather low across companies, regardless of
their size, turnover and digital level. As for the statistically significant variables, the results suggest a
strong association of the size and the digital level to specific Industry 4.0 related advantages, referring
to the social and economic dimension of sustainability, respectively.

Keywords: Industry 4.0; SME; sustainability; assessment; field study; small and medium
sized enterprises

1. Introduction

The core of Industry 4.0 lies in the real-time and smart connection of people, machines and
objects for the management of production systems [1]. The introduction of Cyber-Physical Systems
(CPS) will enable the digitalisation of the entire value chains, reshaping relations between producers,
consumers and suppliers [2]. Consequently, a large scale and heterogeneity of components is emerging
also driven by the Key Enabling Technologies (KET) of Industry 4.0, encompassing, among other
things, advance manufacturing solutions, additive manufacturing, augmented and virtual reality,
simulation, Internet of Things (IoT), cloud, big data and cyber security. Industry 4.0 solutions exhibit
an increasing application potential across several businesses and industries. However, the success
of Industry 4.0 and the approaches under it will ultimately depend on whether small and medium
sized enterprises (SMEs) can adopt and implement these technologies, as they represent the backbone
of several productive systems worldwide [3]. The process leading SMEs shifting their production
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and organisational mindsets towards Industry 4.0, as well as the implementation of digital projects,
introduces several opportunities and challenges [4–6]. To support digital transformation in SMEs
in the last years, several EU countries launched innovation policies. Most of them foresee measures
encouraging research and development actions which have been considered to play an important
role in the decision to launch investments in digital technologies [7]. The introduction of technologies
and concepts inherited from the Industry 4.0 paradigm is considered strategic also for small and
medium sized enterprises (SME) to ensure competitiveness, increasing productivity and flexibility
of production systems [8,9], while matching the growing market demand for customised products
and services [10]. In recent times, business, research and institutions have been increasingly focusing
their attention on the sustainability implications of Industry 4.0, in terms of economic, environmental
and social impacts of manufacturing and digitalisation, requiring the scientific community to further
explore such dynamics [11].

Several scholars agree that Industry 4.0 can provide, beyond economic advantages, numerous
opportunities for environmental and social sustainability [12–14]. The expected advantages of Industry
4.0 for sustainability target the overall promotion of sustainable development [15] through the
achievement of higher resource efficiency, waste reduction [16] and the realisation of a more favourable
production environment for workers, e.g., in terms of higher physical relief and safety [17,18].
The consideration of these growing series of aspects calls for shifting the focus of analysis, adopting
the Triple Bottom Line (TBL) approach, that is, extending the assessment of relevant factors among
companies, for the implementation of Industry 4.0 to the economic, environmental and social dimensions
of sustainability [19]. Within the ongoing scientific debate on this topic, notably Müller et al. have
acknowledged the importance of understanding the underlying dynamics of the implementation of
Industry 4.0, the predominant focus of existing literature on the analysis of technical motivations
and the need to adopt differentiated approaches considering, e.g., company size as an explanatory
variable to adequately investigate the emerging relations [20]. Beier et al. affirm the lack in research
investigating the impact of digitalized industry on the relevance of sustainability aspects [21].

In this work we conduct a study to investigate the benefits of Industry 4.0 applications for
sustainability. We use the results from a sample of manufacturing companies, which were asked
by means of a questionnaire. In detail, we investigate to what extent manufacturing companies see
Industry 4.0 as an advantage for economic, environmental and social sustainability. Furthermore,
the study gives an overview of whether there are different opinions depending on turnover or company
size. The main findings of our study indicate that the consideration of economic opportunities
prevails over environmental and social ones. Environmental opportunities are not considered relevant
by companies. The overall perception of the beneficial impact of Industry 4.0 on environmental
sustainability is that it is low, and this trend is consistent among companies of different sizes, yearly
turnover and digital level. The social opportunity relating to flexible organisation of work emerges
as a driver in large companies, more so than SMEs. The economic opportunity, relating to improved
logistics, results were strongly implicated for companies with a higher digital level.

The paper is structured as follows. After a short introduction the state of the art regarding the
main relations between Industry 4.0 and sustainability will be outlined. The methodology employed
to collect data and typologies of the analysis conducted are presented. To test the hypothesis emerging
from the literature review indicating Industry 4.0 holding opportunity for realizing sustainable
industrial value creation [12,20,22], the present paper derived evidence from the results of a digital
self-assessment tool, distributed among a sample of manufacturing companies, encompassing both
SMEs and large companies. For this reason, the presentation of results will provide general information
on the characteristics of the sample and specific analysis of the subject of this research, namely the
existing relations regarding sustainability and Industry 4.0 among the considered groups of responding
companies. The results will be discussed considering the scientific publications about the topic included
and concrete implications for practitioners and academia. Finally, conclusions will be drawn paving
the way for future studies based on the emerging evidence and limits of this research.
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2. Theoretical Background

2.1. Literature Review

The “Brundtland” report published in 1987 by the World Commission coined the term “sustainable
development”, giving rise to an increasing societal awareness towards the environmental impact
of industrial manufacturing [23]. The emerging environmental concerns such as availability of
non-renewable resources and stricter legislation, as well as consumer preference for environmentally
friendly products, require manufacturing companies to consider sustainability in their supply chain [24].
From a sustainability perspective, focusing exclusively on the maximisation of profits without
considering additional stakeholder concerns is becoming less tolerable [25]. Nevertheless, it is
logical to think that the economic profitability of the company is an indispensable element for its
existence [26]. The consideration of aspects other than the economic implications of sustainability
has the potential to boost innovation and enhance the competitiveness of companies [27]. Against
this background, an increasing number of scholars argue that Industry 4.0 holds great opportunity
for realizing sustainable industrial value creation on all three dimensions of sustainability: Economic,
social and environmental [12].

The terms Industry 4.0 and fourth industrial revolution were used for the first time at the Hannover
Fair in 2011, referring to a smart real time connection between people, machines and objects with
the aim of managing a production system [1]. Industry 4.0 has been defined as the convergence of
Internet technologies in the manufacturing environment [28]. The concept of Industry 4.0 includes
several technologies, which are defined as the key enabling technologies of this strategic initiative;
these are: Advanced manufacturing solutions, additive manufacturing, augmented and virtual reality,
simulation, horizontal and vertical data integration, industrial Internet, cloud computing, cyber
security, big data and analytics. Internet of things (IoT) and Cyber Physical Systems (CPS) make it
possible to create networks incorporating the entire manufacturing processes converting factories into
smart environments in which the physical and the virtual world cooperate [29]. Over the last few
years the attention that has been given and the number of conferences and studies dedicated to the
topic of Industry 4.0 have grown exponentially [30], not only in the academic environment but also
from managers who recognize the potential of this paradigm-shift impacting the entire concept of
production, the processes involved as well as the dynamics among suppliers and customers. The fourth
industrial revolution has created several opportunities and challenges for SMEs [31,32], which can take
advantage of these technologies to increase their flexibility, productivity and competitiveness [9,28].

From a sustainability point of view, Stock and Selinger [12] identified Industry 4.0 as a step
towards a more sustainable industrial value creation, arguing that industrial value creation must be
geared towards sustainability and Industry 4.0, providing immense opportunities for the realization
of sustainable manufacturing. By providing detailed information on each point of the production
process, resource and energy use can be optimized over the entire value network [22]. The scientific
debate considers the Triple Bottom Line construct [23], consisting of the analysis of environmental,
economic and social aspects of sustainability. Authors mentioning such an approach included in
their analysis combinations of these dimensions such as environmental [33], economic and social [24]
as well as the entire TBL construct [14]. A comprehensive review of the state of the art in terms of
environmental and economic aspects reported that research activities are clearly unbalanced and focus
mainly on energy as specific input mean [24]. In fact, Morelli [34], relates the use of environmentally
responsible and sustainable energy sources and the effort of improving energy efficiency to the concept
of sustainability. Vance et al. [35] show that a reduction of energy consumption can be considered as a
step towards sustainability. Bonilla et al. [36] provided a systematic overview of scientific publications
relating Industry 4.0 to environmental sustainability, drawing conclusions about the uncertainty
of the long-run impact of digital transformation on environmental sustainability. The impacts on
sustainability have been assessed in relation to specific key enabling technologies on the sustainable
value creation of a manufacturing company such as IoT on reshoring. In logistics [12], a reduction
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in the number of transport processes as well as unnecessary material flows can be achieved [22].
Decentralised production, which can be translated into reduced transport distances based on relocating
production closer to where products and production equipment are purchased, leads to a decrease
in both logistics costs and environmental impact [5,37]. This can be achieved with the use of new
production technologies such as additive manufacturing that can help to shorten and reduce the size
of the value chain [38]. Furthermore, the number of wrong deliveries, unnecessary waiting time and
damaged products can be reduced by data transparency throughout the entire supply chain [39,40].
In other words technologies associated with the concept of Industry 4.0 are considered to have the
unique potential to unlock environmentally sustainable manufacturing [33], and positive relations to
environmental sustainability are detected in terms of load balancing optimisation, leading to a reduction
in energy consumption [41,42]. Further aspects which are related to environmental sustainability are
product usage, waste, end-life products and information [36].

Additional sources relate Industry 4.0 to the concept of sustainability from an ecological point
of view and at the same time link it to the social perspective. Since social sustainability is necessary
to the fulfilment of the three dimensions of the TBL, it deserves a specific and detailed analysis [43].
The increasing level of automation [44] and collaboration between the workers and the machines [45]
will improve people’s working conditions. This is particularly advantageous, since the proportion
of older workers will increase due to the age shift [22]. It implements collaborative robots into
the workstations, which are non-ergonomically designed and physically demanding and preserves
workers’ health and consequently the productivity of the production system in the long term [18,46].
Smart worker assistance systems will support operators in performing tasks that are monotonous
and repetitive, resulting in higher employee satisfaction and motivation [47]. These approaches
meet the current demographic challenges since the working environment needs to be designed
age-appropriately [28]. These are just examples of the impact Industry 4.0 has on sustainability.
From the literature review, it has been shown that even sustainability has a positive impact on the
implementation of Industry 4.0, by working as an incentive for the implementation of the related
technologies. As Kiel et al. [14] state, the environmental and social opportunities which Industry 4.0
has to offer have a positive impact on the companies’ tendency to start the implementation process of
Industry 4.0. In this regard, literature identifies sustainability also as the implementation and usage of
tools, methods, processes, approaches and practices that aim at improving the company’s contribution
to sustainable development [48], which is the main focus of the present study.

2.2. Research Question

The literature analysis shows numerous advantages of the introduction of technologies and
concepts of Industry 4.0 for sustainability. In the literature, however, there is currently a limited
number of studies analysing and reporting on the differences between the perceived opportunities of
Industry 4.0 implementation on sustainability in larger companies and SMEs. We see here a large gap
in scientific research, which should be tackled, increasing targeted research in this field. Therefore,
in this paper we focus on the influence of Industry 4.0 on sustainability, adopting a TBL approach,
among manufacturing SMEs and large companies. In detail, the present work will answer the research
question of whether manufacturing companies perceive the economic, environmental and social
sustainability opportunities driven from the implementation of Industry 4.0. More specifically the
following research questions (RQ) have been formulated:

RQ1: To what extent do manufacturing companies consider Industry 4.0 as an advantage related to
economic, social and environmental sustainability?

RQ2: Which variables might explain differences in the perception of economic, social and environmental
sustainability among companies?

To answer these questions, the advantages and challenges related to the implementation of
Industry 4.0 technologies and concepts perceived by companies were analysed, considering the
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TBL of sustainability, which covers different aspects such as the economic, environmental and
social dimensions [23,49,50]. Furthermore, the paper investigated whether specific characteristics
of companies, such as size and digital level of the company, are associated with differences in the
perception of specific dimensions of sustainability (economic, social or environmental) as an advantage
driven by Industry 4.0 implementation. This approach is aligned to the study of Müller et al., which
effectively examined differences in size, industry sector and the company’s role as an Industry 4.0
provider or user in determining the Industry 4.0-related opportunities and challenges [20]. Following
this comprehensive approach investigating the three dimensions of sustainability, we formulated
specific hypotheses related to RQ1 and RQ2, aiming at deepening the focus on the perception of
environmental sustainability. In this regard, we expect a relatively low perception of Industry 4.0
implementation to be an advantage for the sustainability performance of the companies, regardless of
their size and digital level:

Hypothesis 1 (H1). Industry 4.0 is not considered a main advantage related to environmental sustainability.

Hypothesis 2 (H2). Companies do not perceive environmental sustainability as an advantage, regardless of
their size in terms of both number of employees and turnover.

Hypothesis 3 (H3). Companies do not perceive environmental sustainability as an advantage, regardless of
their digital level.

RQ1 is linked to H1, while RQ2 entails an in-depth discussion following H1 and H2. The next
section will provide more details on the methods employed to test the hypotheses, the approach used
to collect data and the metrics used to derive the digital level of companies in the considered sample.

3. Research Methodology

3.1. The Online Self-Assessment Tool “Digital Check”

The assessment of the digital level of companies and the perceived advantages relating to the
implementation of Industry 4.0 was part of the survey, distributed among a sample of manufacturing
companies associated to Confindustria Marche Nord, the industrial representative association located
in Central Italy Marche Region. An online tool named “Digital Check” allowed local companies to
self-assess their digital level and readiness for the Industry 4.0 paradigm. The survey was defined
considering the general structure and objectives of existing self-assessment tools [51,52] and adapted
according to the challenges SMEs face in initiating digital transformation, considering recent scientific
works on this topic carried out, among others, by the authors of the present work [31]. The “Digital
Check” comprises 26 questions across the following dimensions: (1) Strategy, (2) processes, (3) Industry
4.0, (4) employees, (5) Information Technology (IT) and data security. The current digital level perceived
by the individual companies responding to the survey was calculated considering the average of
selected questions (see those marked with •) within each dimension as indicated in Table 1.
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Table 1. Structure of the Digital Check.

Dimension Question Type

D1
Strategy

Q-1 Degree of definition of a strategy towards
Industry 4.0? Likert •
Q-2 Have you planned intervention related to
Industry 4.0 over the next two years? Likert

Q-3 Degree of collaboration with external experts
(e.g., universities, research centres and consulting
agencies) on Industry 4.0 topics?

Likert •

Q-4 Expected collaborations with external experts
over the next two years? Likert

D2
Processes

Q-5 Use of key enabling technologies. Likert
Q-6 Integration of IT in production systems. Likert •
Q-7 Flexibility of production systems. Likert •
Q-8 Digitalisation of organisation and processes. Likert •
Q-9 Impact of Industry 4.0 on the organisation of the
company. Likert

D3
Industry 4.0

Q-10 Knowledge about Industry 4.0. Likert •
Q-11 Perceived need to increase knowledge about
Industry 4.0 over the next two years. Likert

Q-12 Relevance of Industry 4.0 for the company. Likert
Q-13 Contribution of Industry 4.0 to the development
of new products/services and business models. Likert •
Q-14 Expected contribution of Industry 4.0 to the
development of new products/services and business
models over the next two years.

Likert

Q-15 Challenges related to Industry 4.0. Multiple
response

Q-16 Advantage related to Industry 4.0. Multiple
response

Q-17 Areas requiring support to local companies. Multiple
response

D4
Collaborators

Q-18 Adequacy of digital skills of collaborators. Likert •
Q-19 Perceived need to increase digital competences
of collaborators over the next two years. Likert

D5
Information
Technology

Q-20 Degree of use of data from production Likert
Q-21 Use of cyber-security systems Likert
Q-22 Degree of data-security Likert •

D6
Company profile

Q-23 Sector. Multiple
choice

Q-24 Number of employees. Multiple
choice

Q-25 Yearly turnover (optional question). Multiple
choice

Q-26 Role of the respondent in the company. Multiple
choice

• Rating considered to calculate average values determining the digital level of companies.

Respondents could rate the questions within each dimension of the survey along a five levels
Likert Scale ranging from 1 (low implementation level) to 5 (high implementation level), according to
the specific topic of analysis, as shown in the example in Table 2.
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Table 2. Exemplary scale according to topic and dimension in the survey.

Dimension D1 Strategy

Question topic To what extent has your company defined a strategy toward Industry 4.0

1 No strategy has been formulated or planned
2 Planning to develop a strategy in the short term

Scale 3 Development of the strategy currently ongoing
4 The strategy is formulated but not yet implemented
5 The strategy is fully implemented

The overall digital level resulted from the average values assigned by companies to each item
object of evaluation across the different dimensions considered. The results of the survey enabled
to assign one category portraying the self-assessed digital level of each company taking part to the
survey, namely into so called (i) “Digital Newcomers”, (ii) “Companies in Transition” and (iii) “Top
Performers” (Table 3).

Table 3. Description of digital levels.

Category Description

Digital Newcomers
(Low digital level)

Companies belonging to this level do not consider the transition to
Industry 4.0 relevant to their business or are testing the first pilot
projects in isolated areas to test possible effects. A concrete strategy for
digitization is still under development or not yet at an advanced stage.
Few or none of the production processes support IT integration. The
sharing of corporate data and information is still limited. The skills of
employees are still inadequate in the Industry 4.0 perspective.

Companies in Transition
(Medium digital level)

Companies belonging to this level demonstrate that they have already
incorporated the concept of Industry 4.0 into their strategic orientation.
They are taking the first steps towards sharing information both at
company level and with business partners. IT services are supported
and sometimes incorporated into production processes. In certain areas
the skills of employees are proving to be enough to apply/test Industry
4.0 concepts. This type of company is not new to collaborations with
research institutes and/or strategic consulting firms.

Top-Performer
(High digital level)

Companies of this level are in the advanced stage of implementation
of Industry 4.0. A strategy has already been implemented. Investments
in multiple areas are either in the planning stage or already underway.
The sharing of information at company level between departments and
with suppliers is fully or largely integrated. Production processes are
integrated with IT systems thanks to which production data are
collected and used for monitoring and optimisation of the processes
themselves. This type of company has concluded several collaboration
experiences with different partners (e.g., applied research institutes,
consulting companies, system integrators).

The variable representing the digital level of companies will be employed to test the RQ2 of the
present study, namely which characteristics of companies may be associated with different perceptions
of sustainability, together with other attributes that were subjects of the survey such as size (number of
employees) and turnover (EUR) as summarised in Table 4.
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Table 4. Variables.

Category Description Metrics Source

Size
1 Small 10–49 employees

[53]2 Medium 50–249 employees
3 Large Over 250 employees

Turnover
1 Small Up to 10 million EUR

[53]2 Medium 11–49 million EUR
3 Large Over 50 million EUR

Digital level
1 Digital Newcomers (low level)

Own elaboration Own elaboration2 Companies in Transition (medium
level)

3 Top Performer (high level)

A specific question in the survey (Q-16) assesses the advantages of Industry 4.0 perceived by
companies, considering the TBL as identified in prior studies and systematically outlined in Table 5.

Table 5. Structure of Q-16: Advantages of Industry 4.0 perceived by companies.

ID Advantage Triple Bottom Line Reference

Log Optimization in logistics and warehousing Economic [54–57]
TS Time savings Economic [58,59]
Flex Flexible organisation of work Social [60,61]
Qual Quality (reduction of errors) Economic [62–64]
PS Lower physical stress Social [65–68]
Work Reduction of workforce Economic [69,70]
Cost Reduction of costs Economic [71,72]
Sust Sustainability (lower environmental impact) Environment [20,73]

Most advantages included in the survey relate to the economic line that turned out to be relatively
more covered by previous related studies in the recent scientific literature. Being a multiple-response
question, respondents could express more preferences (in the specific case up to three questions):
The typology of the question was considered for the choice of the proper statistical test searching for
an association between attributes of the companies such as size, turnover and digital level with the
perception of the different advantages related to Industry 4.0 (Section 3.3).

3.2. Data Collection and Sample

The data derived with Digital Check were collected via an online survey available to be filled
out from 15 October 2018 to 18 November 2018. The survey was managed by Confindustria Marche
Nord (regional unit of the General Confederation of Italian Industry) and distributed among a sample
of companies operating in the Marche Region (Italy). The sample consists of 65 companies, mainly
operating in the machine construction (40%), chemical (13%) and footwear (7%) sectors. Approximately
70% of the respondent companies could be classified as SMEs employing less than 250 collaborators
and having less than 50 million Euro of yearly turnover (see Table 6).

Table 6. Sample of participating companies according to size.

Size Number Percent

Small 23 35.4%
Medium 23 35.4%

Large 19 29.2%
Total 65 100.0%
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Figure 1 shows the results of the survey and the categorization of the sample into the three digital
levels as explained before. A positive result of the survey is that few companies ended up as digital
newcomers (4.6% of total) and therefore at the outset of introducing Industry 4.0 and digitalization
into their company. While 20.0% of the respondents belong to the digital top performers, most of the
participating companies are in transition and therefore on an average digital level (75.4%). Taking a
further look only to SMEs we can see that especially those that are newcomers are almost all SMEs,
while top performers seem to be almost all medium to large companies. It is interesting to note that the
companies in the transitional phase consist nearly equally of small, medium-sized and large companies.

 

Figure 1. Digital level of participating companies.

3.3. Data Analysis

The structure and the results of the Digital Check provide the opportunity to answer the research
questions of the present study, and particularly to test whether an association between variables exists.
In the analysis, we employed the multiple response to question 16 (Q-16) assigned by companies
ordered in different variables, namely size, turnover and digital level, to study whether there are
differences in the perceptions of sustainability among a group of companies. The analysis and modelling
of categorical variables have been the focus of significant research activities such as [74]. Considering
the multiple-response nature of the data, the work of Agresti and Liu and Thomas and Decady were
considered [75,76]. Pearson Chi-squared test for nominal (categorical) data was performed. For the
data analysis, the statistical software SPSS v.19 was employed.

4. Results

This section presents the main results of the analysis. Section 4.1 answers RQ1 and the related H1.
Sections 4.2–4.4 deal with RQ2. In this regard, while the Sections 4.2 and 4.3 provide evidence to assess
H2, Section 4.4 exclusively addresses H3.

4.1. Advantages Related to Industry 4.0 Implementation

As shown in Figure 2 the main advantages linked to the adoption of Industry 4.0 concern the
possibility of increasing the quality of products through the reduction of errors (63.1%). Advantages
in the management of logistics (53.8%) and time savings (50.8%) are also considered major benefit
following the implementation of Industry 4.0 concepts. Within the social dimension of sustainability,
less than half of the respondents consider Industry 4.0 beneficial to lower physical stress of collaborators
(40.0%). The percentage decreases with consideration to the advantage related to higher flexibility of
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work (24.6%). A rather low number of respondents consider Industry 4.0 applications as an opportunity
to improve sustainability, e.g., reducing negative environmental impact of manufacturing processes
(6.2%). Regarding RQ1, we conclude overall that companies consider economic sustainability at a
higher extent compared to the social and environmental dimension. The consideration of environmental
sustainability as an advantage among companies is very low, hence H1 is supported.

 

Figure 2. Advantages of Industry 4.0 for companies.

4.2. Company Size as Variable for Different Associations in the Perception of Sustainability

The first categorical variable tested for a potential association with the perception of Industry
4.0 as beneficial for sustainability in manufacturing is the size of the company, which considers the
number of employees. There is a strong association (χ2 = 7.093, p < 0.019) between the size of the
company and the beneficial perception of Industry 4.0 in achieving more flexible organisation of
work (Table 7). Indeed, only a very marginal percentage of small companies (4.3%) perceive this
aspect of social sustainability as beneficial, against a substantial 34.8% and 36.8% of medium and large
companies, respectively.

Table 7. Summary table of the joint distributions of size of the companies (rows) and each investigated
advantage of Industry 4.0 (columns).

Size Advantages

N = 65 Qual Log TS LPS Flex Cost Work Sust

Small 56.5% 13 60.9% 14 60.9% 14 43.5% 10 4.3% 1 13% 3 4.3% 1 8.7% 2
Medium 69.6% 16 56.5% 13 39.1% 9 43.5% 10 34.8% 8 21.7% 5 4.3% 1 8.7% 2

Large 63.2% 12 42.1% 8 52.6% 10 31.6% 6 36.8% 7 10.5% 2 10.5% 2 0% 0
χ2 0.840 1.577 2.212 0.793 7.903 1.155 0.889 1.761

Sig. 0.657 0.455 0.331 0.673 0.019 0.561 0.641 0.415

Considering the variable environmental sustainability as advantage of Industry 4.0, the available
data show no significant association (χ2 = 1.761, p < 0.415). As for the statistically significant variables
referring to RQ2, results suggest a strong association between the size of the company and the advantage
of higher flexibility of work organization within the social dimension of sustainability. None of the
other advantages related to other dimensions of sustainability (economic and environmental) show a
significant association with size. Consequently, H2 is supported, since environmental sustainability is
not perceived as an advantage related to Industry 4.0 regardless of the size of the company.

4.3. Turnover of the Company as Variable for Different Association in the Perception of Sustainability

Following the same approach, the categorical variable referring to the yearly turnover of the
company (EUR) was tested against the hypothesis of independence with the perception of Industry 4.0
as beneficial for specific economic, social and environmental dimensions concerning sustainability
in manufacturing (see Table 8). In this case the number of respondents covers 92.3% of the entire
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sample (N = 60) since five companies opted for not disclosing their category of yearly turnover.
The Chi-Squared statistics indicate the existence of no significant association across the economic,
social and environmental advantages proposed, such as cost savings (χ2 = 0.051, p < 0.0975), lower
physical stress (χ2 = 0.008, p < 0.996) and environmental impact (χ2 = 4.058, p < 0.131), respectively.
The answer to RQ2 is that the variable turnover does not show any significant association to specific
advantages related to the economic, social and environmental dimensions of sustainability. Therefore,
H2 is supported.

Table 8. Summary table of the joint distributions of turnover of the companies (rows) and each
investigated advantage of Industry 4.0 (columns).

Turnover Advantages

N = 60 Qual Log TS LPS Flex Cost Work Sust

Small 63.6% 14 54.5% 12 59.1% 13 40.9% 9 9.1% 2 13.6% 3 9.1% 2 4.5% 1
Medium 68.4% 13 63.2% 12 42.1% 8 42.1% 8 31.6% 6 15.8% 3 31.6% 6 15.8% 3

Large 63.2% 12 47.4% 9 42.1% 8 42.1% 8 36.8% 7 15.8% 3 36.8% 7 0% 0
χ2 0.144 0.960 1.610 0.008 4.829 0.051 0.328 4.058
Sig 0.930 0.619 0.447 0.996 0.089 0.975 0.849 0.131

4.4. Digital Level as Variable for Different Association in the Perception of Sustainability

Finally, a test was performed to investigate whether the digital level of the company is associated
with advantages related to Industry 4.0 applications (see Table 9). The Chi-Squared statistics indicate
the existence of a significant association between the advantage of Industry 4.0 for logistics and the
digital level of the company (χ2 = 8.035, p < 0.018). This provides an additional element to answer RQ2
since the variable digital level results associated to a specific advantage of Industry 4.0 related to the
economic dimension of sustainability and related to the optimisation of logistics and warehousing.
The association of Industry 4.0 as beneficial for environmental sustainability remains low (χ2 = 0.250),
regardless of the digital level of companies. Consequently, H2 is supported.

Table 9. Summary table of the joint distributions of the digital level of the companies (rows) and each
investigated advantage of Industry 4.0 (columns).

Digital Level Advantages

N = 65 Qual Log TS LPS Flex Cost Work Sust

Low 66.7% 2 0% 0 33.3% 1 66.7% 2 0% 0 0% 0 0% 0 0% 0
Medium 61.2% 30 63.3% 31 53.1% 26 40.8% 20 22.4% 11 14.3% 7 22.4% 11 6.1% 3

High 69.2% 9 30.8% 35 46.2% 6 30.8% 4 38.5% 5 23.1% 3 38.5% 5 7.7% 1
χ2 0.300 8.035 0.579 1.364 2.447 1.182 2.447 0.250
Sig 0.861 0.018 0.749 0.506 0.249 0.554 0.294 0.882

5. Discussion

5.1. General Discussion of Results

The present research studied whether differences exist in the perception of the advantages related
to the implementation of Industry 4.0 within a sample of manufacturing companies located in the
Marche Region (Italy). In particular, the existence of differences in the association of Industry 4.0 to
specific economic, social and environmental sustainability concerns was investigated considering as the
explanatory variable “company specific characteristics” such as number of employees, yearly turnover
and digital level. With respect to the RQ1 formulated in the present paper, the overall analysis of the
sample indicates that companies in general rate economic advantages among the most relevant factors,
compared to other social and environmental benefits, resulting from Industry 4.0. This evidence is
aligned to the existing literature, indicating a consistent number of economic opportunities at the base
of the implementation of Industry 4.0 technologies and concepts, which can also be gained in the
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context of SMEs [77,78]. Similar conclusions were drawn from other studies in relation to the most
recurrent advantages rated in the sample object of the present research, such as quality (reduction
of errors) and logistics [79,80]. Furthermore, the relatively low perception in terms of reduction of
workforce, following Industry 4.0, complies with the current literature on the topic, portraying unified
perspectives on potential gain or loss in the number of employees in industry [81]. Social aspects of
sustainability, such as more flexible organisation of work and lower physical stress, contributing to
improved working environment for employees, have been rated overall of secondary importance,
although previous studies acknowledged such aspects as drivers for Industry 4.0 implementation [20].
Environmental opportunities emerge as irrelevant drivers relating to the implementation of Industry
4.0, within the considered sample. A very limited number of respondents declared considering
Industry 4.0 as an opportunity to improve their companies. This evidence differs from the findings
of previous studies [82], indicating environmental opportunities as relevant drivers for a tendency
towards Industry 4.0 [20,28]. Another relevant study on this field showed with a higher degree of
details that green production in general, as well as energy and resource management, resulted as
high priority within the surveyed sample of companies [22]. The results of this analysis offered
enough elements to confirm the proposed H1, acknowledging the absence of sustainable opportunities
influencing the tendency for Industry 4.0 implementation. Consequently, at the aggregate level of the
sample, economic opportunities are considered prominent.

Answering RQ2 implied studying the opportunities associated to Industry 4.0 according to
different characteristics of the sample such as size, turnover and digital level. With respect to company
size in terms of employees, the findings for RQ2 revealed the existence of a stronger association for
large companies regarding the perceived social opportunity, related to the higher flexibility in the
organisation of work. The latter is acknowledged as being enabled by Industry 4.0 [58] and in terms
of reshaping organisations is considered a driver for sustainability [83]. In the literature, SMEs are
recognised for their higher degree of flexibility compared to large companies [84], due to specific
characteristics already enabling them to react to increasingly volatile market conditions [85]. This aspect
may explain the higher relevance attributed by larger companies to Industry 4.0 implementation
as potentially nurturing their demand for higher flexibility. Considering the advantage of cost,
our research did not find any association with size. In this respect a recent study identified a greater
relevance of this advantage for larger companies, such as multinational enterprises, compared to SMEs
due to their higher cost reduction and profitability expectations [86]. There is no strong association of
Industry 4.0 to environmental sustainability, regardless of the size of the companies. For this reason,
the proposed H2 is confirmed.

The analysis considering yearly level of turnover did not show significant associations to specific
Industry 4.0 related advantages. This confirmed our initial hypothesis (H2), related to the turnover as a
potential variable resulting in different associations to environmental sustainability among companies.
Several scholars argue that the lack of financial resources in general may represent a main constraint
to the implementation of Industry 4.0 concepts, particularly across SMEs [87–89]. In this respect,
the results of our study could not indicate clear directions on whether large companies, due to their
higher investment capabilities, rate specific advantages differently compared to SMEs.

The results obtained analysing the digital level against the different advantages relating to
Industry 4.0 do not show any significance association for environmental and social sustainability.
Therefore, companies of the sample, regardless of their digital level, as proposed in H3, do not associate
significantly environmental sustainability as a driving advantage for application of Industry 4.0. In this
regard, the results indicate for RQ2 a rather stronger association for economic sustainability, such as
the opportunity for optimization of logistics and warehousing, among companies rated with a higher
digital level, namely companies in transition and top-performer. Reviewing the scientific literature on
the topic, we noted that the association between digital level and the perceived advantages relating to
Industry 4.0 implementation appears have limited assessment. While the existence of assessment of
the adoption of specific typologies of technologies according to the maturity level of implementation
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of Industry 4.0 is acknowledged [90], the review of existing literature did not yield to the identification
of studies analysing the aforementioned association between digital level and advantages of Industry
4.0. While not relating to social or environmental sustainability, we observe that companies with a
higher digital level consider the advantages of Industry 4.0 for efficient logistics and warehousing
more relevant, compared to less digitalised companies. Considering the limited number of similar
studies on this specific matter, it is challenging to draw further conclusions in comparison with existing
literature. A partial explanation for this association can be suggested considering the general large size
of companies which achieved the highest digital level (top performer) within the considered sample.
In this respect, large companies may consider Industry 4.0 applications more relevant for logistics,
being more advanced in integrating information technology systems into their production facilities
compared to SMEs facing more obstacles to their integration in digital supply chain [91,92].

5.2. Implications for Practitioners and Academia

The results of this study are relevant for researchers as well as for practitioners from industry and
especially managers of SMEs. As already seen in the literature review there is a lack of investigation
concerning the current status as well as opportunities for the introduction of Industry 4.0 and
digitalization in companies. To be precise, the literature review showed that there are lots of
contributions to presenting different concepts and technologies for Industry 4.0, but not that many
works that give an insight into already ongoing projects to introduce Industry 4.0 or its results. With this
work and survey, we provide information from the perspective of companies themselves and how they
see the impact and advantages of Industry 4.0 regarding economic, social and environmental aspects.

The study provides valuable information for practitioners and mangers of SMEs. First of all,
the study used a self-assessment tool adapted to the needs of SMEs to assess the current status of
companies in introducing Industry 4.0. The results show that almost all companies started to deal
with the introduction of Industry 4.0. This is an important result for all those companies that did not
yet start to implement any kind of measure, as it would mean that they are already far behind most
companies and thus that intervention measures are compelling. In addition, this kind of benchmarking
data shows also that for most of the companies there is still a long way to go to be fully digitalized and
to become a top-performer.

An unfortunately sobering result of this study is that most of the companies (including SMEs as
well as large enterprises) do not perceive Industry 4.0 as a chance to enhance sustainability (especially
environmental and social sustainability). This should be an important input for researchers working in
the area of Industry 4.0 and sustainability, as it shows that there is still a need to raise awareness of the
opportunities arising from the introduction of Industry 4.0 to increase sustainability and performance
aspects as already shown by recent studies [73,93,94]. In this respect, these results may suggest that,
e.g., regional business and industrial associations update accordingly the programs offered on digital
transformation and Industry 4.0 toward the topics increasingly relevant but currently less mastered
by companies, such as the social and environmental opportunities of Industry 4.0. In addition, there
seems to be a general lack of enterprises in perceiving sustainability as an important aim for the future,
combining long-term economic aspects with social and environmental aspects. Therefore, it will be
important for the future to conduct, e.g., case study research in order to provide information of real case
studies where Industry 4.0 contributes to increasing sustainability and at the same time to improving
the overall performance of the company. Targeted actions could also consist in knowledge transfer,
providing more information about the relationship between Industry 4.0 and sustainability. As the lack
of perception of advantages of Industry 4.0 concerning sustainability seems to be evident not only for
SMEs, but also for large companies, further studies should also motivate large companies with higher
financial and human resources to take a first step in implementing measures. Table 10 summarizes all
identified implications in a sort of action plan.
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Table 10. Sample of participating companies according to size.

N◦ Result of this study Derived Actions Interested Parties

1

SMEs participating in this
study learned a lot from

conducting the
self-assessment.

SMEs should take advantage of
offered self-assessment tools to

identify the current status in
introducing Industry 4.0.

Practitioners in SMEs

2
Almost all companies started
to deal with the introduction

of Industry 4.0.

Intervention measures are
compelling for all those SMEs that
have not yet started to introduce

Industry 4.0.

Practitioners in SMEs

3 Most of the companies are not
yet top performer.

SMEs need to define a long-term
oriented strategy with the aim to

become top performer.
Practitioners in SMEs

4

Most of the companies do not
perceive Industry 4.0 as a

chance to enhance
sustainability.

Revise programs and offer of
initiatives to increase the
awareness of social and

environmental opportunities of
Industry 4.0.

Regional and Industrial
Associations

5

Most of the companies do not
perceive Industry 4.0 as a

chance to enhance
sustainability.

Conduct research to raise
awareness of the opportunities of

Industry 4.0 to increase
performance as well as
sustainability aspects.

Researchers in Academia

6

Lack of information from real
case studies where Industry
4.0 contributed to increase

sustainability.

Conduct case study research to
provide best practice examples

Researchers in Academia
together with

practitioners from
industry

7

Missing knowledge transfer
regarding the relationship
between Industry 4.0 and

sustainability

Conduct research on the
relationship of Industry 4.0 and

sustainability
Researchers in Academia

5.3. Limitations

We want to note that our study might have certain limitations that need to be considered. While we
consider the size of the sample with 65 companies as sufficient to derive generalized results and
hypotheses, we are conscious of the fact that all companies are located in one specific geographical
region in Italy. The study is therefore representative for all rural regions in Italy or Europe with the
similar characteristics of industry sectors and company size, while there might be differences in the
perception between the participating companies in this study and, e.g., companies in urban regions
and heavily industrialized areas or large cities.

Further, the study was mainly targeted to assess the current state in the introduction of Industry
4.0 in the region of Marche in Italy with only a partial focus on sustainability aspects. Therefore,
future research should be conducted to focus and further investigate the relationship between Industry
4.0 and sustainability. This will enable defining more specific relations between sustainability and
Industry 4.0 in specific domains and to explore innovative ways to enhance the improvement of either
economic or social and environmental performance and contribution of companies. Future research
directions, deepening the discourse about sustainability in SMEs approached in the present study,
should extend the focus of the analysis to the realm of circular economy and Industry 4.0. This foresees
the development of targeted tools assessing the degree of circular economy, adapted to the requirements
of SMEs, similar to the methodological work and considerations undertaken to define the structure
and metrics of the self-assessment tool for digital readiness employed in the present study.

We exclude any subjective influence on the part of the research team, as data has been taken
directly and without any subjective assessment or modification and evaluated using statistical methods
and software.
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6. Conclusions and Outlook

This work deals with the investigation of the advantages in the application of Industry 4.0 for
sustainability. It presents the partial results of a larger survey-based study with 65 companies from
the Marche region in Italy. Two research questions were set up for the study and answered based
on the results. The first research question deals with whether Industry 4.0 is seen as beneficial for
sustainability, considering the economic, environmental and social dimension. The results confirm the
initial hypothesis (H1) that currently Industry 4.0 is not seen as beneficial for achieving environmental
sustainability by most of the companies. The advantages relating to the economic dimensions of
sustainability prevail also over social considerations of sustainability. The second research question
deals with whether there are different views on this aspect depending on factors such as size, turnover
or the digital level of the companies. Two hypotheses were also put forward that were also confirmed
by the data. The first of these two hypothesis (H2) is that companies, regardless of their size (small,
medium, large) and level of turnover (small, medium, large), do not consider Industry 4.0 to be
advantageous for achieving environmental sustainability. The other hypothesis (H3) is that Industry
4.0 is not considered beneficial for environmental sustainability, regardless of the current digital level
of companies.

While it has been shown that some recent research indicates positive links between Industry 4.0
and environmental sustainability, the results of this study show that companies are not fully aware
of them. Overall, it is evident that issues such as social and environmental sustainability are often
neglected by companies to the benefit of economic sustainability. We therefore see a great need for
actions for knowledge transfer in the future, but also to prove a positive correlation between Industry
4.0, sustainability and the performance of companies through applied research and real industrial
case studies.

Author Contributions: R.B. developed the overall research design; D.F. worked on the systematic literature
review and data analysis; E.R. contributed validating the findings considering the ongoing scientific debate and
related implications for practitioners and academia; D.T.M. supervised the correct framing of the proposed concept
within the scientific context of the topics discussed. All authors have read and agreed to the published version of
the manuscript.

Funding: The APC was funded by the project “SME 4.0—Industry 4.0 for SMEs” (European Union’s Horizon
2020 R&I programme under the Marie Skłodowska-Curie grant agreement No 734713).

Acknowledgments: This work belongs to the project “SME 4.0—Industry 4.0 for SMEs” (funded in the European
Union’s Horizon 2020 R&I programme under the Marie Skłodowska-Curie grant agreement No 734713) and the
project “SCENA” (CIG: 7417905858D9 funded by Fondirigenti). The authors would like to thank Confindustria
Marche, Federmanager and all the participating local institutions for the fruitful collaboration.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Platform Industry 4.0. Available online: https://www.plattform-i40.de/PI40/Navigation/EN/Home/home.html
(accessed on 7 December 2019).

2. Pfohl, H.-C.; Yahsi, B.; Kurnaz, T. The Impact of Industry 4.0 on the Supply Chain. Innovations and Strategies
for Logistics and Supply Chains. Proocedings of the International Conference of Logistics (HICL), Hamburg,
Germany, 24–25 September 2015.

3. Andulkar, M.; Le, D.T.; Berger, U. A multi-case study on Industry 4.0 for SME’s in Brandeburg, Germany.
In Proceedings of the 51st International Conference on System Sciences, Honolulu, Hawaii, 3–6 January 2018;
pp. 4544–4553.

4. Schröder, C. The Challenges of INDUSTRY 4.0 for Small and Medium-sized Enterprises; Friedrich-Ebert-Stiftung:
Bonn, Germany, 2017.

5. Rauch, E.; Dallasega, P.; Matt, D.T. Critical Factors for Introducing Lean Product Development to Small and
Medium Sized Enterprises in Italy. Procedia CIRP 2017, 60, 362–367. [CrossRef]

6. Bauer, W.; Schulund, W.; Marrenbach, D.; Ganshar, O. Industrie 4.0-Volkswirttschafliches Potenzial fur
Deutschland; BITKOM: Berlin, Germany, 2014.

69



Sustainability 2020, 12, 3647

7. Lasinio, C.J.; Lucchetti, F.; Perani, G.; Rinaldi, M.; Zeli, A.; Zurlo, D. Il Piano Nazionale Impresa 4.0: Prime
Valutazioni; ISTAT: Rom, Italy, 2018.

8. Spath, D.; Ganschar, O.; Gerlach, S.; Hämmerle, M.; Krause, T.; Schlund, S. Manufacturing Work of the
Future–Industry 4.0; Fraunhofer Verlag: Stuttgart, Germany, 2013.

9. Wenking, M.; Benninghaus, C.; Friedli, T. Umsetzungsbarrieren und -lösungen von Industrie 4.0: Welche
Faktoren limitieren die Produktion der Zukunft? ZWF 2016, 111, 847–850. [CrossRef]

10. Baum, G. Innovation as the basis for the next industrial revolution. In Industry 4.0-Control of Industrial
Complexity with SysLM (in German); Springer: Berlin/Heidelberg, Germany, 2013.

11. Ghobakhloo, M. Industry 4.0, Digitization, and Opportunities for Sustainability. J. Clean. Prod. 2020, 252,
119869. [CrossRef]

12. Stock, T.; Seliger, G. Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia CIRP 2016, 40,
536–541. [CrossRef]

13. Prause, G. Sustainable business models and structures for Industry 4.0. J. Secur. Sustain. Issues 2015, 5,
159–169. [CrossRef]

14. Kiel, D.; Müller, J.M.; Arnold, C.; Voigt, K.-I. Sustainable industrial value creation: Benefits and challenges of
industry 4.0. Int. J. Innov. Mgt. 2017, 21, 1740015. [CrossRef]

15. Jensen, J.P.; Remmen, A. Enabling Circular Economy through Product Stewardship. Procedia Manuf. 2017, 8,
377–384. [CrossRef]

16. Tortorella, L.G.; Fettermann, D. Implementation of Industry 4.0 and lean production in Brazilian
manufacturing companies. Int. J. Prod. Res. 2018, 56, 2975–2987. [CrossRef]

17. Ender, J.; Wagner, J.C.; Kunert, G.; Guo, F.B.; Larek, R.; Pawletta, T. Concept of a self-learning workplace cell
for worker assistance while collaboration with a robot within the self-adapting-production-planning-system.
IAPGOS 2019, 9, 4–9. [CrossRef]

18. Hirsch-Kreinsen, H. Smart production systems: A new type of industrial process innovation. In Proceedings
of the 2014 DRUID Society Conference, Copenhagen, Denmark, 16–18 June 2014.

19. Littig, B.; Griessler, E. Social Sustainability: A Catchword between Political Pragmatism and Social Theory.
Int. J. Sust. Dev. 2005, 8, 65–78. [CrossRef]

20. Müller, J.M.; Kiel, D.; Voigt, K.-I. What Drives the Implementation of Industry 4.0? The Role of Opportunities
and Challenges in the Context of Sustainability. Sustainability 2018, 10, 247. [CrossRef]

21. Beier, G.; Niehoff, S.; Ziems, T.; Xue, B. Sustainability Aspects of a Digitalized Industry–A Comparative
Study from China and Germany. Int. J. Pr. Eng. Man.-GT. 2017, 4, 227–234. [CrossRef]

22. Gabriel, M.; Pessel, E. Industry 4.0 and sustainability impacts: Critical discussion of sustainability aspects
with a special focus on future of work and ecological consequences. Int. J. Eng. 2016, 1, 131–136.

23. Elkington, J. Towards the Sustainable Corporation: Win-Win-Win Business Strategies for Sustainable
Development. Calif. Manage. Rev. 1994, 36, 90–100. [CrossRef]

24. Giret, A.; Trentesaux, D.; Prabhu, V. Sustainability in manufacturing operations scheduling: A state of the art
review. J. Manuf. Syst. 2015, 37, 126–140. [CrossRef]

25. Mcwilliams, A.; Parhankangas, A.; Coupet, J.; Welch, E.; Barnum, D. Strategic Decision Making for the Triple
Bottom Line. Bus. Strateg. Environ. 2014. [CrossRef]

26. Markley, M.; Davis, L. Exploring Future Competitive Advantage through Sustainable Supply Chains. Int. J.
Phys. Distr. Log. 2007, 37, 763–774. [CrossRef]

27. Zampou, E.; Plitsos, S.; Karagiannaki, A.; Mourtos, I. Towards a framework for energy-aware information
systems in manufacturing. Comput. Ind. 2014, 65, 419–433. [CrossRef]

28. Kagermann, H.; Wahlster, W.; Helbig, J. Reccomendations for Implementing the Strategic Initiative Industrie 4.0;
acatec -National Academy of Science and Engineering: München, Deutschland, 2013.

29. Schwab, K. The Fourth Industrial Revolution; Crown Business: New York, NY, USA, 2016.
30. Liao, Y.; Deschamps, F.; Rocha Loures, E.; Ramos, L. Past, present and future of Industry 4.0-a systematic

literature review and research agenda proposal. Int. J. Prod. Res. 2017, 55. [CrossRef]
31. Brozzi, R.; D’Amico, R.D.; Pasetti Monizza, G.; Marcher, C.; Riedl, M.; Matt, D. Design of Self-Assessment

Tools to Measure Industry 4.0 Readiness. A Methodological Approach for Craftsmanship SMEs. In Product
Lifecycle Management to Support Industry 4.0; Chiabert, P., Bouras, A., Noël, F., Ríos, J., Eds.; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 566–578.

70



Sustainability 2020, 12, 3647

32. Matt, D.; Rauch, E. Chancen Zur Bewältigung Des Fachkräftemangels in KMU Durch Die Urbane Produktion
von Morgen (Opportunities to address shortages in qualified staff in SMEs through the Urban Production
of tomorrow). In Industrie 4.0 Wie Intelligente Vernetzung und Kognitive Systeme Unsere Arbeit Verändern;
Lödding, H., Kersten, W., Koller, H., Eds.; Gito Verlag: Berlin, Germany, 2014; pp. 155–176.

33. de Sousa Jabbour, A.B.L.; Jabbour, C.J.C.; Foropon, C.; Godinho Filho, M. When titans meet–Can industry
4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors.
Technol. Forecast. Soc. 2018, 132, 18–25. [CrossRef]

34. Morelli, J. Environmental Sustainability: A Definition for Environmental Professionals. J. Environ. Sustain.
2011, 1, 1–10. [CrossRef]

35. Vance, L.; Eason, T.; Cabezas, H. Energy sustainability: Consumption, efficiency, and environmental impact.
Cleam. Techn. Environ. Policy 2015, 17, 1781–1792. [CrossRef]

36. Bonilla, S.; Silva, H.; Terra da Silva, M.; Franco Gonçalves, R.; Sacomano, J. Industry 4.0 and Sustainability
Implications: A Scenario-Based Analysis of the Impacts and Challenges. Sustainability 2018, 10, 3740.
[CrossRef]

37. Müller, J.; Dotzauer, V.; Voigt, K. Industry 4.0 and its Impact on Reshoring Decisions of German
Manufacturing Enterprises. In Supply Management Research. Advanced Studies in Supply Management;
Bode, C., Bogaschewsky, R., Eßig, M., Lasch, R., Stölzle, W., Eds.; Springer: Berlin/Heidelberg, Germany,
2017; pp. 165–179.

38. Gebler, M.; Schoot Uiterkamp, A.J.M.; Visser, C. A global sustainability perspective on 3D printing
technologies. Energy Policy 2014, 74, 158–167. [CrossRef]

39. Qiu, X.; Luo, H.; Xu, G.; Zhong, R.; Huang, G.Q. Physical assets and service sharing for IoT-enabled Supply
Hub in Industrial Park (SHIP). Int. J. Prod. Econ. 2015, 159, 4–15. [CrossRef]

40. Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 49th
Hawaii International Conference on Systems Sciences (HICSS), Honolulu, HI, USA, 5–8 January 2016.

41. Ding, K.; Jiang, P.; Zheng, M. Environmental and economic sustainability-aware resource service scheduling
for industrial product service systems. J. Intell. Manuf. 2017, 28, 1303–1316. [CrossRef]

42. Fysikopoulos, A.; Pastras, G.; Alexopoulos, T.; Chryssolouris, G. On a generalized approach to manufacturing
energy efficiency. Int. J. Adv. Manuf. Technol. 2014, 73, 1437–1452. [CrossRef]

43. Pfeffer, J. Building Sustainable Organizations: The Human Factor. Acad. Manag. Perspect. 2010, 24. [CrossRef]
44. Gualtieri, L.; Rojas, R.; Carabin, G.; Palomba, I.; Rauch, E.; Vidoni, R.; Matt, D.T. Advanced Automation for

SMEs in the I4.0 Revolution: Engineering Education and Employees Training in the Smart Mini Factory
Laboratory. In Proceedings of the 2018 IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM), Bangkok, Thailand, 16–19 December 2018; pp. 1111–1115.

45. Rojas, R.; Rauch, E.; Dallasega, P.; Matt, D.T. Safe Human-Machine Centered Design of an Assembly Station
in a Learning Factory Environment. In Proceedings of the International Conference on Industrial Engineering
and Operations Management, Bandung, Indonesia, 6–8 March 2018; pp. 403–411.

46. Gualtieri, L.; Rauch, E.; Rojas, R.; Vidoni, R.; Matt, D. Application of Axiomatic Design for the Design of a
Safe Collaborative Human-Robot Assembly Workplace. MATEC Web Conf. 2018, 223, 01003. [CrossRef]

47. Mark, B.G.; Hofmayer, S.; Rauch, E.; Matt, D.T. Inclusion of Workers with Disabilities in Production 4.0:
Legal Foundations in Europe and Potentials Through Worker Assistance Systems. Sustainability 2019, 11,
5978. [CrossRef]

48. Schulte, J.; Hallstedt, S.I. Self-Assessment Method for Sustainability Implementation in Product Innovation.
Sustainability 2018, 10, 4336. [CrossRef]

49. Elkington, J. Partnerships from Cannibals with Forks: The Triple Bottom Line of 21st-Century Business.
Environ. Qual. Manag. 1998, 8, 37–51. [CrossRef]

50. Norman, W.; MacDonald, C. Getting to the Bottom of “Triple Bottom Line”. Bus. Ethics Q. 2004, 14, 243–262.
[CrossRef]

51. Schumacher, A.; Erol, S.; Sihn, W. A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of
Manufacturing Enterprises. Procedia CIRP 2016, 52, 161–166. [CrossRef]

52. Matt, D.T.; Rauch, E.; Riedl, M. Knowledge Transfer and Introduction of Industry 4.0 in SMEs: A Five-Step
Methodology to Introduce Industry 4.0. In Analyzing the Impacts of Industry 4.0 in Modern Business Environments;
Jirsák, P., Bureš, V., Eds.; IGI Global: Pennsylvania, PA, USA, 2018; pp. 256–282.

71



Sustainability 2020, 12, 3647

53. European Commission. Available online: https://ec.europa.eu/growth/smes/business-friendly-environment/
sme-definition_en (accessed on 12 March 2020).

54. Barreto, L.; Amaral, A.; Pereira, T. Industry 4.0 Implications in Logistics: An Overview. Procedia Manuf. 2017,
13, 1245–1252. [CrossRef]

55. Schmidt, R.; Möhring, M.; Härting, R.-C.; Reichstein, C.; Neumaier, P.; Jozinović, P. Industry 4.0-Potentials
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Abstract: An important role in product variety management is finding an accurate variety extent
to which the product matches the consumer’s expectations. In principle, customers prefer to have
more rather than less versions of a product from which to choose. This motivates producers to offer a
richer variety of goods. As a consequence, it brings a large amount of manufacturing complexity,
and configuration conflicts may frequently occur. In order to avoid a situation in which a customer
will select mutually incompatible components, product configurators usually recommend corrective
actions for generating valid configurations. Nevertheless, the presence of infeasible configurations
in customer options are negatively perceived by customers, and therefore it has an unfavorable
impact on the sustainability of mass customization. One way to solve this problem is to eliminate,
or at least reduce, mutually incompatible components. When considering the fact that eliminating
all incompatible components may cause a rapid decrease in product variety, then the reduction
of incompatible components can help to solve the product configuration problem. The proposed
method aims to find a trade-off solution between minimizing configuration conflicts and maintaining
a sufficient level of mass customization. Moreover, two supplementary methods for the determination
of infeasible product configurations are proposed in this paper. The applicability and effectiveness of
the proposed methods are demonstrated by two practical examples.

Keywords: positive complexity; negative complexity; infeasible configurations; product platform;
customer’s perception

1. Introduction

A great challenge facing original equipment manufacturers (OEMs) today is learning about which
mass customization strategy is appropriate for specific product categories and markets, which large
product variety should be offered, and how to manage product variety and its resulting complexity.
Commonly, regarding the extent of customizable products, it is perceived by customers that the
larger the product variety, the better [1]. This fact stimulates manufacturers to offer more and more
individualized products in order to meet customer requirements [2]. It is obvious that such an approach
may result in unexpected turbulence in their manufacturing systems, leading to, for example, higher
direct production costs [3]. However, the higher costs themselves are not an issue if a company offers
customization at acceptable prices. On the contrary, product configuration conflicts are becoming a
serious problem that appear mostly when a high variety of products is offered. The presence of product
configuration conflicts results in infeasible configurations, which are negatively perceived by customers
due to uncertainty in customer choice. In order to solve this problem, different approaches are offered,
recommending that designers take corrective actions such as removing selected components or adding
new components [4,5]. In spite of this, so called ex-post interventions are limited. Moreover, Fraizer
and Wells [6] showed that eliminating infeasible options through product configurators is not always
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viable. Therefore, product designers might reconsider such constraints because they trigger adverse
reactions and/or customer disappointment. A promising solution to solve this problem is to eliminate,
or at least reduce, mutually incompatible components in the early phase of the design process.

The main scope of this paper is to outline the necessary steps that are needed to solve this problem
by changing the balance between infeasible product configurations and feasible product configurations.
For this purpose, two methods for the determination of viable product configurations are proposed in
order to find trade-off solution between minimizing configuration conflicts and maintaining a sufficient
level of mass customization. These methods will be described and their feasibility will be demonstrated
by two realistic examples. Finally, a discussion and conclusion with a summary drawn from current
and future research relating to product configuration conflicts and sustainability of mass customization
is presented.

2. Related Work

Mass customization as a business strategy can be very successful when sufficient varieties of
products are offered at competitive prices with reasonable delivery times [7–10]. However, mass
customization is an emerging paradigm, and may not be the panacea for all organizations [11].
According to Hadzistevic and Moraca [12], typical high product variety environments tend to come
with a higher number of differentiated products that have a higher number of design changes, but
Whitley et al. [13] argue that “consumers’ perceptions of how many choices they prefer change
depending on whether they intend to use an item for pleasure or to meet a functional need”. Therefore,
consumers motivated by pleasure prefer a large assortment, and customers looking only for functional
products will be satisfied by a smaller assortment from which to choose. In this context, our research
follows the behavior of the first group of customers. Aydogdu et al. [14] emphasized that product
configuration conflicts cause enormous problems in the product or service design. Krus [15] proposed
expressing the quality of a modular design through the rest of the design space that is outside the
constrained design space by the term ‘waste information entropy’. His approach inspired us to think
in this way and adopt his idea with respect to the propriety of this complexity attribute.

Several studies, those by [16–19] for example, have underlined the fact that with the increasing
demand for individual products and variants the transition from mass customization (MC) towards a
personalized customization becomes more and more realistic. Some studies have considered advanced
methods and techniques that lead to formal approaches for the design of entire product families in
terms of MC. For example, a formal computer-assisted approach that addresses the requirements for
the design of product family architecture products has been proposed by Bonev et al. [20]. A dynamic
constraint satisfaction approach for configuring structural products under MC was presented in the
studies of Huang et al. [21] and Yang et al. [22]. Matt and Rauch [23] focused their research on designs for
the modular manufacturing of mass customized goods. High product variety in MC is often associated
with complexity problems [24,25]. The positive impact of so called variety-induced complexity on sales
performance has been presented, e.g., in works by Zhou et al. [26] and ElMaraghy et al. [27]. Tseng and
Piller [28] developed a generic product variety structure consisting of the common product structure,
variety parameters, and configuration constraints. A CAD-based approach for the automatic variation
of three-dimensional product structure by changing the combination of parts, selecting the assembly
method, and rearranging the assembly sequence was proposed by Chu et al. [29]. Such techniques
allow product designers to determine the optimum level of the feasible rate of product customization.

Moreover, our research has been motivated by previous findings that restricted options are not
perceived positively by individual users. In this context, authors, e.g., Mailharro [30], Antonelli et al. [31],
Aldanondo et al. [32], Helo et al. [33], and Paul et al. [34] argue that infeasible configurations might be
eliminated or minimized to avoid customer disappointment.
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3. Methodological Framework

In general, it is assumed that a large scale of product variety and its resulting complexity
are inherently tied together. In order to establish a working definition for product variety-induced
complexity, it is first supposed that complexity can be separated into structural and dynamic complexity
concepts. Product variety-induced complexity belongs to the category of structural properties
that describes only the static structure of a system by the number of system elements and their
interrelationships [35]. Abdelkafi [36] developed a comprehensive framework explaining the term
‘variety–induced complexity’, assuming that this aspect of complexity is directly associated with the
extent of product variety and not with the sates of the system. He emphasized that such a view on
complexity differs a great deal from its meaning in cybernetics. Hu et al. [37] proposed a unified
measure of complexity by combining both product variety and assembly process information, and
developed models for evaluating complexity in assembly systems. Trattner et al. [38] argued that
there is no strong relationship between the complexity of the products produced and any measure
of manufacturing operational performance. Therefore, taking into account that every effort to find
an adequate definition for product variety-induced complexity is not trivial, we further assume that
variety-induced complexity relates to the amount of product variants.

Second, it is important to distinguish between an external customers’ views on variety-induced
complexity problems and the internal viewpoints of manufacturers. In this context, internal complexity
can be defined as the amount of input, information, or energy that the manufacturing system receives
from its environment [39]. External complexity relates to customers experience during the product
selection process in extensive variety environments [40]. Our focus, in this research work, is only on
the external complexity that reflects the number of realistic product configurations, Nreal, offered to
customers as well as the number of infeasible product variants, Ninf, that can occur during product
configuration by the customers.

The first question when dealing with infeasible product configurations due to incompatible
components concerns the distinction between customer perceptions of available product configurations
and infeasible product configurations. The number of available product configurations are perceived
by customers positively, i.e., the larger the better [20]. Therefore, uncertainty related to product variety
reflecting only the quantity of realistic product configurations can be viewed as a positive source
of variety-induced complexity. By contrast, infeasible product configurations are undesirable for
customers [41]. Thus, the smaller the better criterion can be taken as a preliminary assessment of
the presence of infeasible product configurations. Accordingly, the related variety-based complexity
reflecting relative rate of Ninf in the total amount of product configurations , Ntotal, is attributed here as
a negative source of variety-induced complexity.

Based on the above, product configuration conflicts negatively affect the sustainability of mass
customization. When following the words of Lord Kelvin, “If you cannot measure it, you cannot
improve it” the subsequent challenge is to measure this impact in a way that is quantifiable as well as
qualitative. For this purpose, it is reasonable to employ Axiomatic Design Theory [42] for selecting the
best design parameters (DPs) to satisfy the functional requirements (FRs). The second axiom states that
when several alternative designs satisfy the first axiom, then the best design is the one with minimal
additional information. In other words, design is good if its additional information content equals zero.
Quantity of information content can be constructed by using the probability density function, as shown
in Figure 1, where the design range represents the extent of the FRs, the system range corresponds with
the DPs, and the common range is the mutual area between the design range and the system range.
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Figure 1. Probability density function of uniform distribution. Note: functional requirements (FR),
design parameters (DP).

According to information theory, the information content of an event, E, is expressed as follows:

I(E) = −log2(p(E)) = log2

(
1

p(E)

)
(1)

Then, additional information content of the design space can be calculated by formula [43]:

I = log2

(
System range

Common range

)
(2)

In our specific case we consider that:

Design range is represented by the Ntotal;
Common range is represented by the Nreal;
System range is identical to the design range because, if Nreal = Ntotal, then Ninf = 0, i.e., information
content is optimal because I = 0, and if Nreal � Ntotal, then Ninf � 0; i.e., information content is not optimal
because I � 0.

Based on that amount of the additional information content, i.e., negative complexity of the
product design variety, (CN) can be expressed as:

CN = log2Ntotal − log2Nreal (3)

Moreover, gradual categorization of the notion of negative complexity is shown in Figure 2.

Figure 2. Classification of variety-induced complexity in terms of mass customization.

In order to apply this methodology to product design projects, figures for Ntotal and Nreal are
first determined and, subsequently, figures for Ninf are enumerated. Ntotal can be calculated using
common combinatorial rules, while standard procedures for the enumeration of Nreal are not available.
Therefore, the two different methods for determining Nreal are presented in the next section by using the
realistic Case 1. Consecutively, the realistic Case 2 demonstrates the applicability of the methodological
framework to measure the negative complexity of the product design variety.
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4. Application of Methodology on Real Case Studies

As mentioned above, one of the aims of this section is to show how to calculate the number of
realistic product configurations when restrictions between product components occur. Prior to this,
it is beneficial to classify the main types of product components (PCs), which are as follows: Stable
components (S), which are comprised in all possible configuration; Optional components (O), which
are chosen according to the customer’s requirements and are alterable in any combination, including
the case where customers do not choose any of the offered options; Restricted optional components
(RO) that can be selected from a set of different components according to exactly specified restriction
conditions. Restrictions can be determined using at least three types of the volition rules: minimum,
maximum, and particular requirements on selection of optional components.

The particular volition rule can be specified in a simple way by combinatorial number
(

k
l

)
,

where l defines the required number of selected RO from the available number, k, of RO, while 1 ≤ l < k.

Selection by minimum volition rule
(

k
lmin

)
should be limited to a certain number or more.

Selection by maximum volition rule
(

k
lmax

)
should be limited to a certain number or less.

It should be noted that the number of possible product configurations depends practically on
the number of optional components on the number of restricted optional components described by
volitions rules for their selection.

As mentioned earlier, two methods concerning how to enumerate Nreal will be presented. The
first is based on graphical presentation using multidimensional matrices, whereas the second one uses
proposed calculator software, which enumerates Nreal using two-dimensional matrices between two
complementary types of optional components and their variants. Both of the mentioned methods will
be applied to Case 1, and the software based method will be applied to Case 2.

4.1. Case 1

The ways to enumerate Nreal using the graphical method and the calculator-based method with
component restrictions are described through the example of a customizable mobile phone containing
one stable component, namely Calls; two optional components, specifically GPS and Media; and one

restricted optional component, i.e., Screen with specific volition rule
(

3
1

)
and defined restrictions, as

shown in Figure 3.

4.1.1. Enumeration of Possible Product Configurations Using the Graphical Method

To enumerate the number of Ninf using the graphical method, the following procedure is proposed.
Let us start, for example, with the restricted optional component, i.e., Screen, for which we select,
e.g., Color screen (CSc.). Other options are Basic screen (BSc.) and High resolution screen (HRSc.).
It is then possible to construct an incidence sub-matrix for the Color screen option and a stable
component—Calls. Because there is no restriction, Color screen as an option can be combined with the
Calls component (see Figure 4a). Then, a three-dimensional matrix is created with relations between
the Color screen component, the Calls component, and the optional GPS component. Note that a
mobile phone configuration without GPS can also be designed (marked in the matrix as without
GPS). There are no restrictions in this case (see Figure 4b), therefore, a four-dimensional matrix of
relations is subsequently constructed to determine the number of restricted product configurations
with Color screen by adding a fourth dimension—Media, with two optional components. It is possible
to create four choices here, such as only the MP3 component, only the Camera component, the MP3
and Camera components together, or none of these components. Only one restricted option occurs
in this four-dimensional matrix and, accordingly, Camera must be combined with a compatible type
of screen (Camera requires High resolution screen in its product configuration). Subsequently, it is
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possible to identify two options for Media—the presence of MP3 in the final product configuration or
no Media components (see Figure 4c).

Figure 3. (a) Feature diagram of mobile phone; (b) Product component structure.

Figure 4. Procedure for transforming incidence matrices into product component structure with
the initial component Color screen: (a) Step 1; (b) Step 2; (c) Step 3; (d) Generated Nreal respecting
defined restrictions.
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Consecutively, the sub-procedure depicted in Figure 4a–c has to be repeated for the rest of the
components, namely, Basic screen and High resolution screen. Then one can obtain 14 realistic product
configurations of the mobile phone in total (see Figure 4d).

4.1.2. Enumeration of Possible Product Configurations Using Software

The second method generates Nreal using the proposed online calculator [44]. As this method is
based on two-dimensional matrices, it allows the calculation of Nreal between two complementary
types of optional components, while restrictions can occur. Let us use the previous example—a mobile
phone—to calculate Nreal. Firstly, we start with two components; Screen and Media. To obtain the
correct number of Nreal, one more variant of Media has to be considered, i.e., the option without media.
Media variations are as follows: MP3 (V22), Camera (V21), MP3 + Camera (V23), or configuration
without media (V24). The initial step of how to use the online calculator for Nreal is to define “Value
Problems”, known as an m × n matrix, which has m vertical columns and n horizontal rows. In our case,
m presents Screen options (BSc. (V11), CSc. (V12), and HRSc. (V13)) and n presents Media options,
then m × n = 3 × 4. Subsequently, it is possible to assign defined restrictions (BSc. and CSc) in columns
V21 and V23 of this matrix by checking the white boxes, which turn red, as can be seen in Figure 5a.
Finally, the online calculator generates Nreal, respecting the restrictions. In the case of the generation of
Ntotal without restrictions, we leave the white boxes unchecked.

Figure 5. (a) Calculator software window with calculation of preliminary Ntotal and Nreal. (b) Calculator
software window with calculation of final Ntotal and Nreal.

To calculate the final Nreal, when restrictions are included for all the components of the mobile
phone, it is necessary to join together Screen and Media into one component type with its variations
(BSc. with GPS (V21); BSc. without GPS (V22); CSc. with GPS (V23); CSc. without GPS (V24); HRSc.
with GPS (V25), and HRSc. without GPS (V26)), which creates the rows of the new two-dimensional
matrix. The columns of this matrix will form the Media component type with its variants. The
component Calls, being the stable one, is included in each configuration, and it does not affect the
number of Nreal. For this reason, only the mentioned components and their variants are included in
this procedure. Then, it is necessary to define in the software window “Define sizes of subgroups”
m × n = 6 × 4, and to assign restrictions in the new matrix, which are as follows: GPS cannot be in
configuration with a BSc., Camera and MP3 + Camera cannot be in configuration with a BSc. or a CSc.
Finally, we obtain the Nreal and the Ntotal (see Figure 5b).
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According to the obtained results by the proposed calculator, the number of Nreal is 14, which
is the same as that gained by using the graphically based method. Finally, Ninf is enumerated as
Ntotal − Nreal = 10.

4.2. Case #2

The purpose of this section is twofold: (1) To describe the calculator-based method of enumerating
Nreal on a realistic case, and (2) to demonstrate the applicability of the methodology for identification
and reduction of negative complexity in designing product platforms and sub-platforms.

4.2.1. Description of the Calculator-Based Method

The calculator-based procedure will be described using the two inter-operating parts of a front
drivetrain bicycle module, which can be found on every model of bicycle. This product sub-platform
consists of nine types of gear component and two types of front drivetrain parts each with a different
chain stay angle (CSA). Each of the nine groups differs from the others in the specific number of related
components to be combined with the selected alternative of the front drivetrain (FD). For example,
Gear type 1 can be combined with six Front Crank sets (FC11–FC16). In Table 1, elements of the matrix
noted with “X” stand for a restriction/incompatibility.

With this range of components, we can construct an incidence matrix with sizes of subgroups
m × n = 38 × 19 using the same principle as described in Section 4.1.2. First, we add into the software
window the names of the columns marked as V21 to V219 and the names of the rows marked as V11
to V138, representing the bicycle components. Next we assign restrictions between the components
by checking the white boxes. Subsequently, by clicking on “Calculate

∑
Var” we obtain Nreal = 239

product configurations, as depicted in Figure 6.

Figure 6. Generated number of Ntotal and Nreal using software.

Finally, the number of infeasible product configurations is enumerated as Ntotal − Nreal = 483.
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4.2.2. Resolving Product Configuration Conflicts

In order to resolve the product configuration conflicts, one can see the two possible ways that
can be used to eliminate or at least reduce mutually incompatible components. When considering
the fact that eliminating all incompatible components may cause a rapid decrease in product variety,
then reduction of incompatible components seems to be a more useful approach. Therefore, it appears
to be reasonable to generate derived alternatives of the original product sub-platforms, in which
selected incompatible components will be omitted. For this purpose, this method can be used to
generate three other alternative product platforms, D1–D3, in which selected incompatible components
will be gradually removed from the initial design platform, D0, where the complete design space
(Ntotal) is defined by 722 configurations, and the restricted design space (Nreal) is represented by
239 configurations.

In this task, in order to propose a possible concurrent product platforms at once, let us remove
Gear type 3, which includes 8 crank sets (FC31–FC38), from D0. This group of components was
selected to be excluded from D0, using the criterion of the highest density of restrictions. In this way
we obtained platform D1, which is defined by Ntotal1 = 570 drivetrain configurations, from which 215
are viable.

Afterwards, for determination of the platform, D2, we proceed towards the reduction of Gear
type 4, which includes three crank sets (FC41, FC42, and FC43). We obtained platform D2 with
Ntotal2 = 513 drivetrain configurations and Nreal = 206 restricted (viable) product configurations.

In order to provide the next alternative product platform, D3, two FDs, namely FD11 and FD15, can
be removed from D2 due to the high number of restrictions related to these two components. Then, D3

is represented by Ntotal = 459 drivetrain configurations and Nreal = 194 feasible product configurations.
In the next step, the obtained number of configurations are used to quantify and compare the

values of negative complexity of the concurrent product sub-platforms, as depicted in Table 2.

Table 2. Comparison of the product sub-platforms.

D0 D1 D2 D3

Ntotal 722 conf. 570 conf. 513 conf. 459 conf.

Nreal 239 conf. 215 conf. 206 conf. 194 conf.

Ninf 483 conf. 355 conf. 307 conf. 265 conf.

Entropy of design space
(without constraints) 9.50 bits 9.16 bits 9.00 bits 8.84 bits

Entropy of constrained
design space 7.90 bits 7.75 bits 7.69 bits 7.60 bits

CN 1.60 bits 1.41 bits 1.31 bits 1.24 bits

5. Discussion

Firstly, as regards the two proposed computational methods to calculate Nreal, it is important
to note that the graph-based method approach using more dimensional matrices is not suitable for
large numbers of components, while the software-based method is intended to enumerate numbers of
module variations and/or product configurations with large numbers of optional product components.
In addition, the graph based method can be used as the theoretical basis for developing an effective
concurrent software programming technique that could be used for the same purpose.

Coming back to the results obtained by generating the alternative product platforms D1–D3, it is
evident that D3 is has the smallest value of negative complexity. In other words, this product platform
has a minimal negative effect on the customers’ perception of the company product offer.
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6. Conclusions

Summarily, it is worth noting that sustainable mass customization projects are oriented on the
building of trust with customers. This also means that each potential negative perception of risk must
be eliminated or reduced because, otherwise, it could cause customers to feel reluctant to invest their
time and effort in mass customization and may prefer a standard product instead. It is quite obvious
that a universal solution to this problem is rather counterintuitive. Theoretically, the best way is to
eliminate all configuration constraints by product design changes, if possible. Alternatively, the next
effort could be focused on eliminating infeasible options through product configurators. Computational
experiments have clearly shown that designers can generate alternative product platforms and identify
their negative complexity through the proposed method. However, only designers of specific products
can decide which product platform is the best for them, according to the given criterion.

According to related experts, each different MC sector requires a specific approach to solve
configuration conflicts, and therefore elimination of infeasible options through product configurators
is significantly difficult. In this context, experts recommend that this type of configurators should be
capable of analyzing inconsistencies between components during the selection process and propose to
the customers the minimum changes required to achieve a resolution. A complementary solution to
the previous one is offered in the present study.

The proposed method has been theoretically verified through the investigation of several realistic
problems, two of which have been demonstrated in this study. The next stage of research will be
focused on the willingness of manufacturers to reduce the number of incompatible components in
their product platforms, and the exploration of the potential benefits of such decisions.

Finally, it can be stated that the proposed method combines known elements of knowledge in a
novel way.
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Abstract: Industrial collaborative robotics is one of the main enabling technologies of Industry 4.0.
Collaborative robots are innovative cyber-physical systems, which allow safe and efficient physical
interactions with operators by combining typical machine strengths with inimitable human skills.
One of the main uses of collaborative robots will be the support of humans in the most physically
stressful activities through a reduction of work-related biomechanical overload, especially in
manual assembly activities. The improvement of operators’ occupational work conditions and
the development of human-centered and ergonomic production systems is one of the key points of the
ongoing fourth industrial revolution. The factory of the future should focus on the implementation of
adaptable, reconfigurable, and sustainable production systems, which consider the human as their
core and valuable part. Strengthening actual assembly workstations by integrating smart automation
solutions for the enhancement of operators’ occupational health and safety will be one of the main
goals of the near future. In this paper, the transformation of a manual workstation for wire harness
assembly into a collaborative and human-centered one is presented. The purpose of the work is to
present a case study research for the design of a collaborative workstation to improve the operators’
physical ergonomics while keeping or increasing the level of productivity. Results demonstrate that
the achieved solution provides valuable benefits for the operators’ working conditions as well as
for the production performance of the companies. In particular, the biomechanical overload of the
worker has been reduced by 12.0% for the right part and by 28% for the left part in terms of manual
handling, and by 50% for the left part and by 57% for the right part in terms of working postures.
In addition, a reduction of the cycle time of 12.3% has been achieved.

Keywords: industry 4.0; collaborative robotics; physical ergonomics; human-robot collaboration;
human-centered design; assembly; SME; small and medium sized enterprise

1. Introduction

Nowadays, production systems are shifting from mass production to mass customization [1].
As a consequence, in order to remain competitive and profitable, modern companies need further
production flexibility, efficiency, and sustainability in terms of lot sizes, variants, and time-to-market.
These conditions require the integration of adaptable, reconfigurable, and agile manufacturing systems
and technologies characterized by a scalable degree of automation. The term “Industry 4.0”, also
known as the fourth industrial revolution, was initially introduced by a German government strategic
initiative in 2011 [2] and represents the current transformation, which is affecting a large part of
worldwide industrial companies.

Sustainability 2020, 12, 3606; doi:10.3390/su12093606 www.mdpi.com/journal/sustainability89
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Process sustainability is one of the drivers of the fourth industrial revolution, and it is defined as a
multi-dimensional concept encompassing environmental, social, and economic aspects [3]. Operators’
occupational health and safety (OHS) as well as wellbeing and satisfaction are crucial parts of social
sustainability in industry. Manufacturing companies should consider the human element as their
core and a valuable part by improving work conditions and developing human-centered production
systems. In this context, a major role is played by work-related ergonomics. Even if ergonomics
includes three different categories dealing with the physical, cognitive, and organizational aspects of the
interaction between humans and systems, this paper mainly focuses on the aspects related to physical
one. The International Ergonomics Association (IEA) defines physical ergonomics as the scientific
discipline concerned with human anatomical, anthropometric, physiological, and biomechanical
characteristics as they relate to physical activity [4].

A possible and concrete solution to improve the social sustainability in terms of physical
ergonomics without neglecting the production efficiency is represented by the collaborative robotics [5,6],
as demonstrated by the increasing scientific literature on such a topic. Castro et al. [7] developed an
integrated robot simulation and digital human modeling aimed to be a tool to create and confirm successful
ergonomic collaborative workstations. Lietaert et al. [8] proposed a model-based methodology to aid the
layout design of a collaborative workcell by considering feasibility, reachability, safety, and ergonomics
as constraints. Mateus et al. [9] provided an information-based generic methodology for collaborative
assembly solution development, starting from CAD models. Petruck et al. [10] designed an ergonomic
human-robot collaboration (HRC) workstation where intelligent sensors are used to adapt the system
behavior to the way the working person works. Dombrowski et al. [11] presented an interactive and
real-time physics simulation as a tool for workcell validation and optimization. Makrini et al. [12]
developed a modular architecture used to enhance human-robot interaction (HRI) in assembly tasks.
Schmidtler et al. [13] presented a study about the optimization of working conditions by adapting
collaborative assistance systems in terms of human acceptance and well-being. Basically, all these
works aimed to finalize design tools and methodologies for the realization of a new collaborative
workstation. Conversely, just few works have addressed the problem of the conversion of an existing
manual workstation into a collaborative one. In particular, Heydaryan et al. [14] developed an HRC
workstation for the assembly of an automotive brake disc by implementing a hierarchical task analysis
to allocate operational tasks to humans and robots based on productivity, quality, human fatigue,
and safety considerations.

This paper presents the conversion of an industrial manual workstation for wire harness assembly
into a collaborative one and its realization and validation. The conversion aims at improving the
operators’ physical ergonomics, in terms of reduction of biomechanical overload, and the company’s
productivity, in terms of cycle time. Before starting with the workstation conversion, the preliminary
steps are introduced by proposing two algorithms. One is addressed to the evaluation of the physical
ergonomics conditions, while the other is aimed at assessing the feasibility of using collaborative
robotics. The first one is a framework based on three key questions that guide the evaluator towards
the most suitable ergonomics assessment methods to be used. The second is a simplified version of the
methodology proposed by Gualtieri et al. [15]. It allows for an easy and quick identification of the
potentials for the adoption of collaborative solutions in terms of ergonomics and safety, product and
process quality, and economics.

The paper is organized as follows. Section 2 describes the methodology adopted for transforming
a manual assembly workstation into a collaborative one. Section 3 describes the industrial case study
employed. Section 4 collects all the results. Finally, Section 5 discusses the technical measures designed
for the workstation re-design according to ergonomics and production efficiency requirements and
draws the possible future improvements.
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2. Materials and Methods

In order to design a new collaborative assembly workstation starting from an existing one by
considering the physical ergonomics and production efficiency as main conversion goals, the following
sequential steps, described in detail in the next subsections, were applied:

a) Analysis of the current situation in terms of physical ergonomics;
b) Evaluation of the potentials for collaborative robotics;
c) Workstation re-design for physical ergonomics and production efficiency enhancement.

2.1. Analysis of the Current Situation in Terms of Physical Ergonomics

A crucial part of the ergonomic re-design of an assembly workstation is the physical ergonomics
assessment. A detailed analysis is needed to identify the tasks that present unsuitable conditions from
the biomechanical point of view. To this end, a framework to assess the manual assembly activities
that are typically carried out in a workstation is presented.

The idea was to evaluate the current conditions related to the assembly by considering the potentials
of collaborative robots in terms of physical assistance. The proposed framework was inspired by the
approach presented in the technical report ISO TR 12295 [16]. It was formulated for the evaluation of
typical manual assembly tasks, which could be possibly supported by a fixed-position anthropomorphic
collaborative robot. For this reason, other ergonomic evaluations related to two-handed whole-body
pushing and pulling of loads were ignored [17]. The suggested framework, shown in Figure 1, mainly
focuses on the evaluation of the biomechanical overload of neck, trunk, and/or upper limbs related to
manual assembly tasks and is based on a key question analysis [16]. In particular, three key questions
were adopted, focusing on: the manual handling of heavy objects, the repetitive tasks of upper limbs,
and the awkward working postures. According to the proposed framework, for each positive key
question a further physical ergonomics analysis must be performed to understand whether or not
there are the needs for an ergonomics re-design by eventually integrating a collaborative robot. On the
other hand, if all the key questions are negative, no problems are highlighted, and changes will be not
required. The presented key questions were based on the following methodologies, respectively:

—the National Institute for Occupational Safety and Health (NIOSH) lifting equation for manual
lifting of objects [18–20];

—the Occupational Repetitive Action (OCRA) for repetitive tasks (in check-list form) [21,22];
—the Rapid Upper Limb Assessment (RULA) for working postures [23].
The first two methods are discussed and partially developed into the technical report ISO TR

12295 and related ISO standards; the third method is an evaluation procedure mainly focused on
working postures which differs from the one proposed into the technical report. It is worth noticing
that the suggested framework does not aim to calculate occupational risks, but to evaluate which tasks
of the manual assembly cycle are not suitable from the point of view of the biomechanical overload.
This will be useful to identify which tasks could potentially be improved by integrating a collaborative
robot to be used as a physical assistance system for the enhancement of operators’ work conditions.
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Figure 1. Framework for the identification of not-ergonomic tasks which could be improved by
integrating a collaborative robot to be used as a physical assistance system.

2.2. Evaluation of the Potential for Collaborative Robotics

A so-called Quick Assessment algorithm is proposed to identify if the current assembly cycle
has the potential to be performed (or not) in collaboration with a robot. The sense of such a Quick
Assessment algorithm is to propose a simple and easy to use assessment methodology that can also
be applied by small and medium-sized enterprises (SMEs). This approach is a simplified version of
the study presented in [15]. Basically, the simplification is addressed to better support the technicians
without specific skills and experiences by providing a preliminary tool for a quick and simple evaluation.
Firstly, it helps SMEs in understanding their weaknesses with respect to a certain assembly process.
This will be useful to define priorities and understand where to focus improvement interventions.
Secondly, this will support them in quantifying the potential benefits of using collaborative robots to
fill these gaps. This should overcome the technological barriers related to the lack of technical and
organizational knowledge about a proper implementation of collaborative robots. The evaluation is
based on the analysis of five process critical issues (PCIs) ranging from safety and ergonomics, product
and/or process quality to economics (see the first and second columns of Table 1). In accordance with
the Industry 4.0 principles, which aim to promote sustainable production systems, the algorithm is
organized to provide more relevance to the operators’ occupational safety and wellbeing. After that,
the procedure considers the relevance of process and product quality, which is a crucial matter for SMEs.
Finally, the last consideration refers to economic factors. The algorithm requires the scoring of the five
PCIs for each task of the assembly cycle. The score is an integer from 0 to 3, where 0 means that there
are no possible improvements for the analyzed task and 3 that they are extremely recommendable.
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Table 1. Quick Assessment of the actual manual assembly of wire harness.

Category Process Critical Issue (PCI)
Weight

(Wi)

Score
(Sij)

Safety and
ergonomics

PCI 1:
Are there physical ergonomic problems related to:

—lifting/lowering or carrying of objects
OR

—repetitive tasks of the upper limbs characterized by repeated work cycles
OR

—static or awkward working postures?

3 0–3

PCI 2:
Are there occupational risks for the operator’s safety which are not properly

managed
OR

occupational risk for operator’s health which are not properly managed? (not yet
considered in the previous point)

3 0–3

PCI 3:
Is there high work monotonousness

OR
very low requirements in terms of task qualification of the manual work?

3 0–3

Product
and Process

Quality

PCI 4:
Are there not-constant/satisfactory product quality

OR
unsuitable process quality levels according to the nominal values

(i.e., characterized by high variability/low standardization)?

2 0–3

Economics

PCI 5:
Is there an inefficient use of time and/or resources without a real advancement of

production, which means tasks which cannot generate value to the final
costumers (not value-added activities)

OR
Is there low/not satisfactory process productivity and/or production efficiency?

1 0–3

(*) Score meaning:
0—Improvements are not required for that activity / the problem does not exists

1—The achievable improvements could be moderate for that activity
2—The achievable improvements could be good for that activity

3—Improvements could be very significant for that activity

The potential value (Pvalj) in terms of HRI for the j-th task is calculated as a weighted sum of the
scores (Sij) given to the five PCIs:

Pvalj =
5∑

i=1

Sij ∗Wi; j = 1, . . . , nt. (1)

In Equation (1), nt is the number of tasks of the assembly process. The PCI weights Wi (stated
in the third column of Table 1) are introduced in order to follow the abovementioned considerations.
The index Pvalj, computed according to Equation (1) ranges from 0 to 36. The resulting value describes
the potential for a successful adoption of collaborative solutions in the analyzed manual tasks by using
the following five classes:

—No potential: Pvalj = 0;
—Low potential: 1 ≥ Pvalj > 9;
—Modest potential: 9 ≥ Pvalj > 18;
—Good potential: 18 ≥ Pvalj > 27;
—High potential: 27 ≥ Pvalj ≥ 36.

2.3. Workstation Re-Design for Physical Ergonomics and Production Efficiency Enhancement

If the physical ergonomics assessment highlights unsuitable work conditions, the process and the
workstation shall be improved. According to the (positive) Quick Assessment results, this can be done by
exploiting the benefits of the integration of a collaborative robot in lowering the biomechanical overload
for the operator. In addition to the introduction of the collaborative robot, another important aspect
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concerns the development of an ergonomically optimized layout of the workspaces. The proposed
re-design follows the guidelines presented in the EN ISO 14738 [24]. Basically, this standard establishes
the principles for dimension derivation from anthropometric measurements and their application to
the design of workstations.

On the other hand, improvement of the collaborative workstation in terms of productivity
(and hence of cycle time) is made by properly setting the layout of the new workstation. In particular,
the new layout is chosen on the basis of the following production variables:

—Number of robots (R);
—Number of kinds of workpieces (P);
—Number of workers (W);
—Number of working areas (A).
By combining these four production variables, it is possible to identify 16 different layouts for

the collaborative workstation, as shown in Table 2. The more convenient layout will depend on the
specific values assumed by such variables for the analyzed assembly process.

Table 2. Classification of the possible layouts for collaborative workstations according to the following
variables: Number (Nr) of robots (R), Nr of different kind of workpieces (P) and related assembly tasks
which are intended to be allocated to the robot, Nr of workers (W), and Nr of working areas (A).

Possible HRI Workstation Layouts

Nr. of robots
R = 1

Nr. of robots
R = n > 1

Nr. of kind of
workpieces

P = 1

Nr. of kind of
workpieces
P =m > 1

Nr. of kind of
workpieces

P = 1

Nr. of kind of
workpieces
P =m > 1

Nr. of workers
W = 1

Nr of working area
A = 1

RPWA-1111 RPWA-1m11 RPWA-n111 RPWA-nm11

Nr of working areas
A = s > 1

RPWA-111s RPWA-1m1s RPWA-n11s RPWA-nm1s

Nr. of workers
W = q > 1

Nr of working areas
A = 1

RPWA-11p1 RPWA-1mq1 RPWA-n1q1 RPWA-nmq1

Nr of working areas
A = s > 1

RPWA-11qs RPWA-1mqs RPWA-n1qs RPWA-nmqs
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3. Test Case Study Description

The investigated case study was proposed by the company ELVEZ d.o.o. [25], a manufacturer of
cable harnesses and processer of plastic components located in Višnja Gora, Slovenia. The company
asked for a robotic collaborative system able to fulfill the assembly of wire harnesses for the automotive
sector while interacting with an operator in a safe, ergonomic, and efficient way. Such a case study
is one of the manufacturing challenges proposed in the first call of ESMERA (European SMEs
Robotics Applications), the European Union‘s “Horizon 2020” project for research and innovation [26].
The solution to the challenge outlined in this paper is part of the project Wire Cobots, which is funded
by ESMERA and developed by the research group of the Smart Mini Factory Lab (SMF) of the Free
University of Bolzano-Bozen [27] and Carretta s.r.l. [28], a company specializing in the design and
installation of industrial automation solutions, located in Quinto di Treviso, Italy.

The wire harnesses are currently assembled on a manual assembly line made by two stations
working on average six days per week with three shifts (8h/shift) per day. The average total year
production of the line is 900,000 pieces, computed as follows:

500 pcs/shift × 3 shifts × 6 days/week × 50 weeks × 2 lines = 900,000 pcs/year.
It can vary between 750,000 and 1,050,000 pcs/year depending on the number of workdays per

week as a result of market interest. An efficiency of 40 s/unit is considered for each station.
The assembly process consists of taping together three groups of wires with connectors by means

of a taping pistol. The wires are sequentially inserted by the worker into dedicated assembly jigs (see
Figure 2 [29] and Figure 3) and then fastened together by means of the isolating tape in seven different
spots (Figure 2b). The assembly process consists of 19 elementary tasks, listed in Table 3 together
with the average time. Since the case study refers to an industrial challenge provided by a company,
the publication of some sensitive data (e.g., the standard deviation of the task time) is not possible.
The total assembly cycle lasts on average 40 s. All the tasks can be conceptually grouped into two
groups: the group of operations related to wire insertion (tasks 1–5, 9,10,19 in Table 3—see Figure 2a)
and the one related to the tapings (tasks 6–8, 11–18 in Table 3—see Figure 2b). The total cycle time is
roughly divided in half between these two groups of tasks.

The company Elvez d.o.o. wants to make this manual assembly workstation collaborative in order
to improve the following main metrics:

—Physical ergonomics: the new process should provide better physical work conditions to
the operators;

—Productivity: the new cycle time should be the same as—or shorter than—the current
manual process.

Figure 2. Wire harness manual assembly workstation at the ELVEZ d.o.o. company [29]: tasks related
to wire insertion (a) and tasks related to the tapings (b).
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Figure 3. Layout of the assembly jigs and related position of wires and tape spots.

Table 3. Cable harness manual assembly sequence and related average task time.

Nr. Task Average Task Time (s)

1 Taking 1st wire harness 2

2 Positioning 1st wire harness 1

3 Taking 2nd wire harness 3

4 Positioning 2nd wire harness 3

5 Adjusting 1st and 2nd wire harness 2

6 Taking taping pistol 2

7 Performing 1st taping 1

8 Depositing taping pistol 1

9 Taking 3rd wire harness 3

10 Positioning 3rd wire harness 5

11 Taking taping pistol 2

12 Performing 2nd taping

10

13 Performing 3rd taping

14 Performing 4th taping

15 Performing 5th taping

16 Performing 6th taping

17 Performing 7th taping

18 Depositing taping pistol 1

19 Storing the wire harnesses 4

Total assembly time (s) 40

4. Results

4.1. Analysis of the Current Situation in Terms of Physical Ergonomics

A physical ergonomics assessment of the manual assembly workstation was carried out by means
of the framework proposed and discussed in Section 2.1. The application of the proposed approach to
our case study is shown in Table 4. The results show that the key questions related to repetitive upper
limbs tasks and awkward working postures were positive. Therefore, further ergonomics evaluations
on these aspects are needed. An OCRA check list and a RULA analysis were performed and discussed
in Section 4.1.1 and Section 4.1.2., respectively. Conversely, since the assembly tasks did not present
manual lifting or lowering of objects of 3 kg or more, the NIOSH-based evaluation was not necessary.
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Table 4. Preliminary identification of unsuitable work conditions related to physical ergonomics for
the case study of manual assembly cycle (inspired by ISO TR 12295 [16]).

HRI Physical
Assistance

Key Question Answer Motivation

Manual handling of
heavy objects

Is there manual lifting or
lowering of heavy
objects during the

assembly cycle?
NO

The cables are very light (weight << 3kg).
The taping pistol weight is less than 3 kg and

is supported.

(Note: it is possible to consider a “heavy object” a weight ≥ 3 kg [18].)

Repetitive upper
limb task

Are there one or more
repetitive tasks of the

upper limbs during the
assembly cycle?

YES

The operator performs the same assembly all the
day. The average assembly cycle is 40s. In that

time, the operator performs 19 tasks. This means
that the total amount of daily manual tasks

performed by an operator is about 10,945 per shift
(it is supposed a shift duration of 8 hours and an

effective working time of 80%).
(Note: it is possible to consider a “repetitive task” an activity with a total duration of one hour or

more per shift and characterized by repeated work cycles or tasks during which the same
working actions are repeated for more than 50% of the cycle time [19].)

Awkward working
postures

Are there awkward
working postures during

the assembly cycle?
YES

According to a first visual ispection, there are
different human body districts which do not
maintain a suitable posture during the work.

The operator performs the same assembly all day.
(Note: the awkward working postures are related to neck, trunk, and/or upper limbs and

repeated for a significant part of the working time [23].)

4.1.1. The OCRA Analysis Results

The analysis of the effects provided by manual handling of low loads at high frequency was
based on the OCRA check list [21,22]. For the reader’s convenience the OCRA method is recalled in
“Annex A”. Table 5 summarizes all the variables requested by the OCRA check list for the evaluation of
the biomechanical overload and the related motivations for those choices. The table also shows the final
estimation of the workstation risk value: “medium” for both the right and the left part. Major technical
problems come from the static frequency of actions (which causes a multiplier equal to 4.5 for both the
sides) and from awkward postures, especially for the hands (multiplier equal to 8 for both the sides).
Since it was behind the aim of this work to provide organizational improvements, the ergonomics
re-design of the workstation was focused on the technical aspects of the abovementioned multipliers.
Therefore, only the frequency of technical actions and the awkward postures were considered in the
new workstation proposal (force, stereotype, and additional factors are not a problem in the current
assembly process).

4.1.2. The RULA Analysis Results

The preliminary key questions underline the need for further investigations about the working
postures. In order to identify which tasks of the entire assembly cycle are less suitable from the postural
point of view, the RULA analysis was performed for each task summarized in Table 3. This subdivision
is useful to identify the least suitable manual tasks that are the best candidates to be potentially
performed by the collaborative robot. Further theoretical information about the methodology and the
evaluation are provided in “Annex A”. Muscle use and force/load scores were ignored in this case,
since the analysis was related to postures. Nevertheless, the related values were calculated for all the
tasks and they were all equal to zero. The procedure was repeated in detail for each working task.
The final RULA values related to the assembly cycle (the so-called overall section “C”) are summarized
in Table 6. A detailed analysis of each body district for all the assembly tasks is provided in Tables A1
and A2 of “Appendix A”.
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Table 5. Summary of the multipliers and final estimation of the workstation risk (manual workstation).

Multiplier
Right

Part Value
Left

Part Value
Motivation

Recovery multiplier 1.33 The shift (8h) is interspersed with a break (1h). As a result,
the operator works for 4 hours without a recovery period.

Constant of frequency
(dynamic actions) 4 4 The movements of the arms are rapid (~40 action/min),

interruptions are infrequent and uneven.

Constant of frequency
(static actions) 4.5 4.5

The operator is handling the taping pistol and the cables for
all the assembly cycle (there is a pinch for more than the 80%

of the time for both the right and the left hands).

Force multiplier 0 0 According to the operator interviews, the assembly tasks do
not require the use of force (Borg scale values lower than 3).

Posture and
movements
multiplier

Shoulder 6 1
The movements and related postures were studied according

to the guidelines provided in the check list.
Elbow 2 6

Wrist 0 0

Hand 8 8

Stereotype 0 0 No stereotype.

Additional factors score 0 0 No additional factors.

Multiplier for net duration 0.95
The total net duration of the repetitive tasks was estimated to

361–420 min/shift, which takes into account the unplanned
interruptions that may occur.

Final Check-list values 15.8 15.8
Medium red

Final risk estimation Medium Medium

Table 6. Final Rapid Upper Limb Assessment (RULA) values (overall section “C” table) for the analyzed
assembly cycle.

Nr. Task Left Value Right value

1 Taking 1st wire harness 5 4

2 Positioning 1st wire harness 3 3

3 Taking 2nd wire harness 5 6

4 Positioning 2nd wire harness 6 7

5 Adjusting 1st and 2nd wire harness 6 7

6 Taking taping pistol 5 5

7 Performing 1st taping 6 7

8 Depositing taping pistol 6 5

9 Taking 3rd wire harness 4 4

10 Positioning 3rd wire harness 6 7

11 Taking taping pistol 5 5

12 Performing 2nd taping 6 7

13 Performing 3rd taping 6 7

14 Performing 4th taping 6 7

15 Performing 5th taping 6 7

16 Performing 6th taping 6 7

17 Performing 7th taping 5 7

18 Depositing taping pistol 3 3

19 Storing the wire harnesses 6 7

Max values (Overall values) 6 7
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As for the OCRA check list approach, this representation of the results makes it possible to
quickly and efficiently understand the needs for an ergonomic re-design of the layout and/or process.
The workstation final values (left and right side) were equal to the maximum values calculated for all
the analyzed tasks. In general, with the exception of tasks 2, 9, and 18, all the others required important
improvements in terms of working postures. From the technical point of view, this could be achieved
by re-designing the workspaces in a more ergonomic way and by adding a collaborative robot for
performing the most stressful tasks.

4.2. Evaluation of the Potential for Collaborative Robotics

With reference to the studied assembly process, the proposed algorithm was not applied to each
of the 19 identified tasks (Table 3), since many of them are the same operation repeated in different
moments. In particular, this is the case of the taking and the positioning of cable harness (tasks 1–4,
9–10), and the picking and the dropping off the taping pistol, as well as the related taping tasks (6–8,
11–18). It is worth noticing that although the grouped tasks have a different duration and involve
different components, for the purpose of assessing their potentials in HRI they behave like they are the
same task. Additionally, the grouping of the harness picking/placing as well as of picking/placing the
taping pistol and taping avoids introducing additional tasks (e.g., the transfer of the harness/pistol from
human to robot or vice-versa), since each task group is performed by the same human/robot resource.

The scoring of the five PCIs for each of the four groups of the studied assembly cycle is shown
in Table 7. Considering the results of the physical ergonomics analysis presented in Section 4.1,
the first and third groups received the highest possible value for the first process critical issue (PCI 1).
In addition, according to a preliminary risk analysis, none of the groups received a value for the
aspects related to the occupational risks (PCI 2). On the other hand, due to the repetitiveness of the
assembly cycle, all the groups received a value equal to two for the process critical issue related to
work monotonousness (PCI 3). Since the taping tasks often require to be re-performed, the third group
(only) received a value equal to two for the process critical issue related to the product and process
quality (PCI 4). Finally, the first and the last groups received a value equal to three for the last process
critical issue since they are classified as not value-added (PCI 5). The third group received a value
equal to one due to the fact that only the picking and dropping off of the taping pistol are tasks of the
group classified as not value-added.

Table 7. Quick Assessment of the actual manual assembly of wire harness.

Process Critical Issue

Score (Sij)

Task
1–4, 9–10

Task
5

Task
6–8, 11–18

Task
19

PCI 1 3 2 3 2

PCI 2 0 0 0 0

PCI 3 2 2 2 2

PCI 4 0 0 2 0

PCI 5 3 0 1 3

Potential value (Pvalj) 18 12 20 15

Potential class good good good good

According to the resulting Pval indexes (see Table 7), there are good potentials for the implementation
of HRI solutions for all the identified groups of tasks. In particular, the highest values were related to
the first group (PvalG1 equal to 18) and to the third group (PvalG3 equal to 20). If in addition to the
evaluated PCIs the technical feasibility for the robot execution was considered, the tasks of the third
group were by far the ones with more potential, since the picking and handling (group 1) of flexible
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and tangle components, such as wires, are very complex and expensive tasks (both in terms of time as
well as investments) for a robotic system.

4.3. Workstation Re-Design for Physical Ergonomics and Production Efficiency Enhancement

The results in Section 4.1 show that the physical ergonomics of the manual workstation need to be
improved, while the ones in Section 4.2 demonstrate that there is a good potential for collaborative
robotics. The highest score in terms of potential for collaborative robots was the one of the taping tasks,
which are the ones that mostly contribute to the biomechanical overload for the operator. In addition, in
order to provide flexible and cost-effective solutions, there is the necessity to improve the productivity
of the current assembly cycle without using fully automated solutions. This means that a sharing of
tasks and workspaces between human and automated solutions could be a suitable solution. These
conditions make the use of the collaborative robot as a physical assistance system very attractive,
especially if properly combined with an ergonomic re-design of the workspace. Based on such results,
the manual assembly workstation was re-designed by introducing a collaborative robot supporting the
worker in the tapings. In order to further improve the physical ergonomics of the new workstation
and its productivity, both the workstation and the assembly cycle were re-organized.

A layout RPWA-1112 (one robot, one type of workpiece, one operator, two working areas), among
the ones suggested in Section 2.3, was chosen. The main considerations that led to the adoption of this
layout with two working areas were:

—the need to assemble only one kind of product;
—the need to improve productivity without increasing company costs;
—the small dimension of the assembly panel (about 500 × 300 mm), that might lead the operator

and the robot to hinder each other preventing a safe sharing of the working area;
—the sequentiality of most of the tasks to be performed, that does not make it possible to parallelize

operations between human and robot.
The adoption of two working areas, i.e., a double-panel workstation, overcomes the issues stressed

above. Indeed, while the operator is working on one panel, the robot works on the other, and vice-versa
(basically they work in parallel).

The results of the physical ergonomics assessment (see Section 4.1.) highlight that the current
assembly process leads the worker to assume awkward postures as well as to perform unsuitable
repetitive movements. A summary of the highlighted problems as well as the related solutions to
improve the manual handling and the postural conditions is given in Table 8.

Table 8. Potential ergonomic improvements according to the physical ergonomics assessment.

Involved Body Part, Posture,
and Movements

Involved Task Possible Solutions

upper arm position and
movements tapings Use of a collaborative robot as support for tapings

wrist position and twist and
movements all tasks Re-design of the worktable areas according to main

anthropometric requirements [24]

neck position all tasks Re-design of the worktable areas according to main
anthropometric requirements [24]trunk position all tasks

Involved work-related feature Involved task Possible solutions

activity rhythm all tasks Use of a collaborative robot as support for the
reduction of manual frequency

overload balance all tasks Use of a collaborative robot as support for the balance
of the overload between left and right body sides

With reference to the working area, it was designed according to the guidelines defined in the EN
ISO 14738 [24]. Since for productivity purposes the new workstation will have two working areas, i.e.,
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two side by side assembly panes, the optimal working area was designed by properly matching two
single optimal zones. The resulting working area is shown in Figure 4. The same figure also shows the
new layout of the working area. According to such a layout, the assembly panel is completely included
in the optimal area as well as the picking zone of the boxes for cables supply. Therefore, during the
assembly process, the operator moves in a zone that optimizes the working postures.

Figure 4. New assembly workstation working area and related layout.

As far as the workstation is concerned, its re-design was based on the EN ISO 14738 guidelines
too. In particular, the following features have been provided:

—the working area is inclined 30◦ with respect to the horizontal, that is, the orientation that
minimize the operator’s wrist twist;

—the angle with respect to the vertical axis between the two assembling panels is 120◦. Such an
arrangement of the assembling panels allows the operator to work on both the panels with a minimal
trunk twist and without colliding with the adjacent panel;

—the workstation height as well as the panel positions are adjustable, so that they can fit the
anthropometric measure of the operator working on it.

A preliminary numerical validation of the physical ergonomics of the re-designed working area
and workstation was carried out in “Siemens Tecnomatix Process Simulate” [30]. Such a simulation
software makes it possible to perform postural analysis (RULA index) for manufacturing tasks. This
preliminary evaluation showed that a great improvement in terms of operators’ working postures can
be obtained with the proposed workstation. Indeed, the maximum values of the RULA scores were
decreased from 6 for the left arm and 7 for the right arm of the old workstation to 3 for both the arms.

The collaborative robot has been placed at the back side of the workstation, while the worker
at the front one, i.e., they operate one in front of the other, with the assembling panels interposed.
The robot is located on the floor level and moves towards the panel from the underside. In order to
equally and easily reach the taping zones of both the panels, the robot has been placed in the middle of
the two panels. Such a placement of the robot drastically reduces the possibility of collision with the
operator’s head. However, since the robot moves under the workstation, if the operator is in a seated
position, collisions between the robot and the operator’s legs could happen. In order to avoid such a
risk, the operator will use a high stool that permits an upright position or will directly take a standing
position. The suggested design for the conversion of the manual assembly workstation for the wire
harness assembly has been implemented in the laboratory prototype shown in Figure 5.

101



Sustainability 2020, 12, 3606

Figure 5. Laboratory prototype of the new collaborative workstation: front (a), back (b) view.

4.4. Collaborative Workstation Assessment

In order to experimentally assess the physical ergonomics and production efficiency improvements
of the proposed solution, several wire-assembly tests were carried out on the developed prototype (see
Figure 6). The laboratory tests involved two persons with no knowledge of robotics. The age, gender,
anthropometric features, and work skills of the two candidates were very similar and reasonably
represent the “real” workers of the company. The ergonomic assessments (OCRA index and RULA
analysis) of the new workstation were carried out by the members of the SMF lab with expertise in
biomechanical overload analysis and collaborative robotics.

Figure 6. Pictures of experiments with the new assembly cycle.

4.4.1. Manual Handling Improvements

Table 9 summarizes the results of the OCRA check-list carried out on the new workstation.
By comparing the final check list values in Table 9 with the ones of Table 5 (related to the manual
workstation), it is evident that the operator’s work conditions in terms of manual handlings are
considerably improved in the new workstation. The overall values were reduced by 12.0% for the right
part and by 28% for the left part. In particular, the final indexes changed from 15.8 to 13.9 for the right
side and from 15.8 to 11.4 for the left side. This reduction will provide important benefits in terms
of biomechanical overload related to manual handlings. In particular, the use of the collaborative
robot considerably reduced the multipliers related to the dynamic and static constant of frequency,
the posture, and the movements for different body regions. This is possible since the parallel work
allows a reduction of the work rhythm. In addition, the use of the robot for the taping tasks reduces
the operator’s average awkward postures and movements.
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Table 9. Summary of the other multipliers and final estimation of the workstation risk (collaborative
workstation). The percentage of indexes reduction between manual and collaborative workstation is
highlighted in the brackets.

Multiplier
Right Part

Value
Left Part

Value
Motivation

Recovery multiplier 1.33
It was supposed that the shift (8h) is interspersed with a break
(1h). As a result, the number of hours without recovery period

is 4, which means a multiplier equal to 1.33

Constant of frequency
(dynamic actions) 3 (–25%) 3 (–25%)

The movements of the arms are rapid (~40 action/min). There
is the possibility of short interruptions. This means a

multiplier equal to 3.

Constant of frequency
(static actions) 2.5 (–44%) 2.5 (–44%)

The operator handles the taping pistol and the cables for more
than half of the assembly cycle (there is a pinch for about the

70% of the time for both the right and the left hands). This
means a multiplier equal to 2.5.

Force multiplier 0 0 According to the operator interviews, the assembly tasks do
not require the use of force (Borg scale values lower than 3).

Posture and
movements
multiplier

Shoulder 1 (–83%) 0 (–100%)

The movements and related postures were studied according
to guidelines provided in the check list.

Elbow 8 (+300%) 6

Wrist 0 0

Hand 0 (–25%) 0 (–25%)

Stereotype 0 0 According to the definition, there is no stereotype

Additional factors score 0 0 According to the definition, there are no additional factors

Multiplier for net duration 0.95
It was supposed that some working interruptions sometimes
occur. As a result, the total net duration of repetitive tasks is

361–420 min/shift, which means a multiplier equal to 0.95

Final Check-list values 13.9 11.4

YellowFinal risk estimation light light

Reduction percentage –12.0% –28%

4.4.2. Postural Improvements

The postural assessment results are summarized in Table 10. The large part of the RULA values
for different body regions were lower than the ones of the manual workstation. The operator’s postures
were considerably improved in the new workstation. The ergonomic benefits provided by changing
the workstation from the manual to the collaborative one in terms of RULA values are shown in
Table 11. The overall workstation values were reduced by 50% for the left part and by 57% for the
right part (which are the combination of the left or right arm and related wrist analysis with the neck,
trunk, and leg analysis). In particular, they changed from 6 to 3 for the left side and from 7 to 3 for the
right side. This reduction will provide important benefits in terms of working postures. In particular,
the use of the collaborative robot and the new layout reduced considerably the impact of the postures
for different body regions.

4.4.3. Production Efficiency Improvements

The cycle time of the proposed solution is about 35 s/part, it was computed as an average
value of the cycle times of the different experiments conducted with the prototype assembly station.
In particular, such a value was obtained by dividing by two the overall assembly time which is needed
for the parallel fabrication of two harnesses (one for each panel). The original cycle time was around
40 s/part for each workstation. Therefore, the new assembly cycle is more efficient than the original one:
the cycle time is reduced by 12.3%, which means about 1460 h/year in terms of “saved manual labor”.
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Table 10. RULA results analysis of the new workstation.

Nr Task
Final Value

Left Side
Final Value
Right Side

1 Picking the 1st wire harness the box 2 2

2 Positioning the 1st wire harness into the frame 3 3

3 Picking the 2nd wire harness from the box 2 2

4 Positioning the 2nd wire harness into the frame 2 2

5 Adjusting the first cable group on the second cable group 2 2

6 Pushing the button (robot call) 3 3

7 Moving from Panel 1 to Panel 2 2 2

8 Taking the previous final assembly from the frame 3 3

9 Storing the previous final assembly into the box 3 3

10 Moving from Panel 2 to Panel 1 2 2

11 Picking the 3rd wire harness from the box 2 3

12 Positioning the 3rd wire harness into the frame 3 3

13 Pushing the button (robot call) 3 3

14 Moving from Panel 1 to Panel 2 2 2

Perform the same tasks (from 1 to 6) on Panel 2 and then come back to Panel 1 ***

15 Taking final assembly from the frame 3 3

16 Storing the final assembly into the box 3 3

Max values (Overall values) 3 3

*** Since the layout of Panel 2 is specular to Panel 1 and since the assembly sequence is the same, no other or different
tasks are required for harness assembly on Panel 2. For this reason, from a postural point of view, an additional
RULA analysis of the assembly tasks related to Panel 2 was not required (because the results will be comparable to
the one calculated for Panel 1 tasks).

Table 11. RULA values for each analyzed body region.

RULA Analysis Results (Max Values for Each Posture)

Actual Workstation Collaborative Workstation Index Variation

Left Side Right Side Left Side Right Side Left Side Right Side

Arm and
Wrist

Analysis

Upper Arm Posture Scores 4 6 2 2 –2 –4

Lower Arm Posture Scores 3 3 2 2 –1 –1

Wrist Posture Scores 3 4 2 2 –1 –2

Wrist Twist Posture Scores 2 2 2 2 0 0

Muscle Use Scores 0 0 0 0 0 0

Force/Load Scores 0 0 0 0 0 0

Neck,
Trunk,

and Leg
Analysis

Neck Posture Scores 4 3 –1

Trunk Posture Scores 4 2 –2

Leg Posture Scores 1 1 0

Muscle Use Scores 0 0 0

Force/Load Scores 0 0 0

Max values (overall values) 6 7 3 3 –3 –4

Improvements (reduction % of overall workstation values) 50% 57%

5. Discussion and Conclusions

In this work, a manual workstation for wire harness assembly was transformed into a collaborative
one. According to the formal definition, the proposed result is a co-existence solution, since the robot is
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supporting the human without providing a real hand-by-hand physical interaction. This was possible
by properly introducing a collaborative robot and by changing the working layout and the related
assembly cycle. The main driver for the conversion was the improvement of operators’ physical
ergonomics. To this end, a framework was proposed to perform an accurate ergonomics assessment of
the starting situation. Such a framework is based on ergonomics standards and state-of-the-art-methods
for the ergonomic analyses. It is suitable for analyzing the manual assembly activities that are typically
carried out in a workstation.

In order to preliminarily evaluate if the introduction in the manual assembly of a collaborative
robot is beneficial, a methodology called Quick Assessment algorithm was exploited. It considered the
benefits that the integration of a collaborative robot could provide to the manual process in terms of
ergonomics and safety, product and process quality, and economics.

After that, the guidelines followed to design the new collaborative assembly workstation, starting
from the existing one by particularly focusing on physical ergonomics and production efficiency, were
outlined and applied.

Finally, the developed solution was implemented in the SMF laboratory through a TRL 4 prototype
and its performance assessed. The achieved results show that the ergonomics indexes related to
manual handlings (OCRA check-list) and postures (RULA values) were considerably reduced in the
new workstation. In particular, the biomechanical overload of the worker was reduced by 12.0% for
the right part and by 28% for the left part in terms of manual handling and by 50% for the left part
and by 57% for the right part in terms of working postures. In addition, the estimated cycle time was
reduced by 12.3%. Considering the annual productivity, this improvement means a potential annual
reduction of 1460 working hours.

The re-design approach introduced in this work is based on solutions that are effectively and
simply utilizable by SMEs. The use of the framework for the identification of not-ergonomic tasks
which could be improved by integrating a collaborative robot, the Quick Assessment algorithm as
well as the virtual simulations are smart and easy-to-use tools for a proper design of a collaborative
workstation starting from a manual one. The implementation of a prototype in a learning factory
laboratory based on a real industrial case study provided by a manufacturing SME confirmed the
effectiveness of the proposed solutions.

Although the results were satisfactory, both the employed methodologies and the developed
collaborative workstation could be further improved, as discussed in the below.

1. Physical ergonomic assessment:

The framework presented for the physical ergonomics could be improved and generalized by
using a different methodology for the assessment of the working postures, even if the RULA method is
quick and easy to use; indeed, it is suggested to use such an approach only for preliminary postural
assessment. A possible improvement relies on replacing the RULA method with the standardized
guidelines included in ISO 11226 [31], as for the other methodologies mentioned in the framework.

2. Ergonomic improvements:

The achieved results are more than satisfactory in terms of reduction of work-related biomechanical
overload. Even if the project goal was successfully achieved, the final OCRA check-list and RULA
values were slightly over the optimal zone, i.e., the green one. Better results could be achieved by
integrating the proposed technical solutions (which usually have the major impact) with organizational
solutions. This should provide further benefits and a real possibility to achieve the green zone.

3. Cycle time:

Even though the achieved results were satisfactory, the cycle time could be shortened by optimizing
the robot trajectories and/or developing a new taping pistol (specially designed for robotic applications).
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In both the cases, the time taken by the robot for performing the assembly cycle would be reduced
and the cycle time improved. Indeed, the bottleneck (in terms of cycle time) of the new collaborative
workstation is the second set of tapings (from the second to the seventh). A minimum speeding up of
such tasks can bring enormous benefits to the annual productivity: a reduction of about the 5% of the
robot cycle time (≈1 s less than the current overall cycle time) results in a potential reduction of 292
annual working hours.

In addition to the economic considerations, a taping pistol which is specially designed for robotic
applications could provide several benefits also in terms of product quality.

4. Future research directions:

Future research should focus on the possibility to autonomously and dynamically adapt the
workstation elements according to operators’ psychophysical work conditions, needs, and wants [32].
This will surely improve both physical and cognitive ergonomics and therefore have a good impact on
productivity. These improvements would be possible by properly integrating the robot systems with
specific monitoring sensors and wearable devices. In addition, the possibility to increase the system
flexibility by rapidly adapting the assembly to different product variants should be investigated.
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Appendix A

Appendix A.1. NIOSH Lifting Equation

A large proportion of occupational back disorders originate from improper manual lifting activities
that provide operators’ biomechanical and psychological overload as well as psychosocial factors.
For these reasons, NIOSH proposed a practical evaluation procedure for the analysis of the physical
demands of two-handed manual lifting [18]. The methodology is composed of the assessment of two
main factors: the recommended weight limit and the lifting index. The former is calculated through
the analysis of main task features, such as the geometry of the hand location, frequency of lifting, work
duration, and type of hand coupling required for the task. The latter estimates the physical demand
related to the task and is defined as the ratio between the actual weight of the load lifted and the
recommended weight limit for the same activity [20].

Appendix A.2. OCRA Check List

Manual handling activities could be potentially harmful for operators if proper physical ergonomics
expedients are not correctly implemented. In general, it is advisable to avoid or reduce as much as
possible these operations through work enlargements, job rotation, and/or automation. Especially in
the case of repetitive tasks characterized by manual handling of low loads at high frequency, industrial
robotics could be an efficient solution [22]. The OCRA check list is a quantitative methodology for the
evaluation of the biomechanical overload related to upper limbs in the case of manual handling of low
loads at high frequency. This method is a simplified form of the so called “OCRA index” and is part of
the ISO standard 12228-3 [22] about manual handling ergonomics and considers the following risk
factors (for the right and left parts): frequency of technical actions, repetitiveness, awkward postures
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(for shoulders, elbows, wrists, and hands), force, additional factors, lack of recovery periods, duration
of repetitive task. The method is based on the combination of the following multipliers [22]:

—Recovery multiplier: it evaluates the recovery time, which is defined as any time in which the
upper limb is primarily physically inactive;

—Constant of frequency: it evaluates the contribution of the movement frequency to the
development of a muscle-tendon disorder. The technical action may be dynamic (characterized by
movement) or static (characterized by holding a single posture, such as when a worker must hold an
object in their hand);

—Force multiplier: it evaluates the operator’s use of force during the manual tasks by means of
interviewing them and asking to describe the subjectively perceived muscular effort made when they
are carrying out a repetitive task;

—Posture and movements multiplier: it evaluates the contribution of awkward postures and
movements of shoulder, elbow, wrist, and hand (type of grip and finger movements) required during
the activity to the work-related muscle-tendon disorders;

—Additional factors score: it evaluates the further contribution of additional physico-mechanical
factors and/or additional socio-organizational factors. These additional factors may increase the risk if
they are present and, as a consequence, should be carefully considered;

—Multiplier for net duration: it aims to adapt the risk value by weighing the final index for the
real duration of the repetitive work.

As output, it provides the intrinsic risk of a certain work situation or workplace by providing an
exposure level classified through a three-zone system. These zones are represented by different colors,
as following:

—Green zone (check-list value ≤ 7.5): if the results of the analysis of a certain activity are within
this zone, the overall risk is considered to be acceptable;

—Yellow zone (7.5 < check-list value ≤ 11.0): if the results of the analysis of a certain activity are
within this zone, a more detailed risk assessment is needed or else remedial action should be taken to
reduce the risk to the green zone;

—Red zone (11 < check-list value ≤ 14.0 for light red, 14.0 < check-list value ≤ 22.5 for medium
red, and check-list value > 22.5 for high red): if the results of the analysis of a certain activity are within
this zone, then the work is judged to be harmful for the operators.

Appendix A.3. RULA Method

RULA is a guided survey method for simple and fast evaluation of the musculoskeletal system
through the analysis of postures. It involves the analysis of the neck, trunk, and upper limbs, along
with muscle function and the external loads experienced by the body. Basically, the method allows
the study of the upper body activities by using body part diagrams integrated with code for joint
angles, body postures, load/force, coupling, and muscle activity [23]. The evaluation is done on a
single worksheet page composed by different sequential tables to fulfill. Scores are then entered based
on both the two central regions: section “A” for wrist and arm and section “B” for trunk and neck (and
eventually legs). By combining the results of these two first sections, it is possible to calculate a final
score (section “C”) which is related to a proposed a scale of action levels:

—Green zone (RULA value between 1 and 2): if the results of the analysis of a certain activity are
within this zone, then the work is acceptable and no improvement action are required;

—Pale yellow zone (RULA value between 3 and 4): if the results of the analysis of a certain activity
are within this zone, further investigations are necessary and changes may be required;

—Dark yellow zone (RULA value between 5 and 7): if the results of the analysis of a certain
activity are within this zone, further investigations are necessary and changes are required soon;

—Red zone (RULA value equal or higher than 7): if the results of the analysis of a certain activity
are within this zone, further investigations are necessary and changes are required immediately.
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These action levels should provide a guide to the level of risk and need for action to conduct more
detailed assessments. Basically, they evaluate whether the posture is acceptable or requires further
investigation and change, which means the possibility to introduce the collaborative robot for physical
ergonomics improvement.

Even if the method was originally proposed for the investigations of work-related upper limb
disorders, the results are usually not sufficient for a comprehensive evaluation of the biomechanical
overload related to the assembly activities. Due to the fact that RULA is easy to use by enabling a quick
study without requiring a higher degree in ergonomics or even the need for expensive equipment, this
method is often chosen for the postural analysis.

Appendix A.4. RULA Evaluation of the Current Assembly Process

Tables A1 and A2 explain in details the RULA evaluation for each body district involved in the
manual assembly (Table 3). The summary of the final results is provided in Table 6.

Table A1. Summary of the RULA analysis related to the arm and wrist values.

A—Arm and Wrist Analysis

Upper Arm
Posture
Scores

Lower Arm
Posture
Scores

Wrist Posture
Scores

Wrist Twist
Posture
Scores

Look-Up
Posture Index

in Table A

Find row in
Table C

Task nr. Left Right Left Right Left Right Left Right Left Right Left Right

1 4 3 3 1 2 3 2 2 5 4 5 4

2 1 1 2 2 3 2 2 2 3 2 3 2

3 1 2 2 3 1 3 2 2 3 4 3 4

4 3 3 2 2 3 4 2 2 4 5 4 5

5 3 4 1 2 3 3 2 2 4 5 4 5

6 2 2 2 1 2 2 2 1 3 3 3 3

7 3 6 1 1 3 4 2 1 4 8 4 8

8 2 2 2 1 3 2 2 1 4 3 4 3

9 4 4 1 2 3 3 2 2 5 5 5 5

10 3 3 2 2 3 4 2 2 4 5 4 5

11 2 2 2 1 2 2 2 1 3 3 3 3

12 3 5 2 2 3 3 2 1 4 6 4 6

13 3 6 1 1 3 3 2 1 4 7 4 7

14 2 6 1 2 3 4 2 1 4 9 4 9

15 2 6 1 2 3 4 2 1 4 9 4 9

16 2 6 1 2 3 3 2 2 4 9 4 9

17 1 6 2 1 3 4 2 2 3 9 3 9

18 2 2 1 1 2 2 2 1 3 3 3 3

19 3 3 2 3 3 4 2 2 4 5 4 5
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Table A2. Summary of the RULA analysis related to the neck, trunk, and leg values.

B—Neck, Trunk, and Leg Analysis

Task nr.
Neck Posture

Scores
Trunk Posture

Scores
Leg Posture

Scores
Lookup Posture
Index in Table B

Find Column
in Table C

1 3 3 1 4 4

2 3 1 1 3 3

3 4 3 1 6 6

4 4 3 1 6 6

5 4 3 1 6 6

6 4 3 1 6 6

7 4 4 1 7 7

8 4 3 1 6 6

9 3 2 1 3 3

10 4 3 1 6 6

11 4 3 1 6 6

12 4 3 1 6 6

13 4 4 1 7 7

14 4 4 1 7 7

15 4 4 1 7 7

16 4 4 1 7 7

17 4 3 1 6 6

18 3 2 1 3 3

19 4 3 1 6 6
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Abstract: Industry 4.0 has attracted the attention of manufacturing companies over the past ten years.
Despite efforts in research and knowledge transfer from research to practice, the introduction of
Industry 4.0 concepts and technologies is still a major challenge for many companies, especially small
and medium-sized enterprises (SMEs). Many of these SMEs have no overview of existing Industry 4.0
concepts and technologies, how they are implemented in their own companies, and which concepts
and technologies should primarily be focused on future Industry 4.0 implementation measures. The
aim of this research was to develop an assessment model for SMEs that is easy to apply, provides
a clear overview of existing Industry 4.0 concepts, and supports SMEs in defining their individual
strategy to introduce Industry 4.0 in their firm. The maturity level-based assessment tool presented in
this work includes a catalog of 42 Industry 4.0 concepts and a norm strategy based on the results of the
assessment to support SMEs in introducing the most promising concepts. For testing and validation
purposes, the assessment model has been applied in a field study with 17 industrial companies.

Keywords: industry 4.0; small and medium-sized enterprises; SME; assessment model; sustainability

1. Introduction

The proclamation of the fourth industrial revolution with the aim of a digital transformation of
companies changed the industrial world. While in the past a focus was given to the introduction of
lean production [1,2], almost every modern enterprise aspired in recent years to become a proper smart
factory according to the ‘Industry 4.0’ principles. In the industrial environment, a curious feeling grew.
At first glance, Industry 4.0 was not really perceived as an opportunity, but more as a challenge. Since
the first use of the term Industry 4.0 in 2011 [3], many studies have been conducted to investigate the
impact of Industry 4.0, its significance for the sustainable competitiveness of companies, the related
technologies, as well as methods and strategies for the introduction and implementation of Industry
4.0 in industrial enterprises.

Industry 4.0 is considered to be another word for the fourth industrial revolution [3]. After
mechanization, electrification, and computerization, the fourth stage of industrialization aims
to introduce concepts like cyber-physical systems (CPS), internet of things (IoT), automation,
human–machine interaction (HMI), as well as advanced manufacturing technologies in an intelligent
and digitalized factory environment [4]. A distinctive feature of the fourth industrial revolution is
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the ability to combine the digital and the physical world, affecting a broad spectrum of industrial
disciplines [5]. The term was introduced in 2011 by a German group of scientists during the Hannover
Fair event, which symbolized the beginning of this fourth industrial revolution [6]. Since then, the
term Industry 4.0, or also its synonym smart manufacturing [7], has been one of the most popular
manufacturing topics among industry and academia in the world [3,8,9].

Considering recent developments in terms of the industrial progression to smart factories and the
fourth industrial revolution, companies are overwhelmed and seem to be incapable of developing
appropriate implementation strategies [10]. Each company has to analyze its situation and its individual
needs and then choose those Industry 4.0 concepts that promise the best prospects for achieving the
goals set [11]. There is a need to develop suitable models and instruments to assess the current status
or maturity of applied technologies in industrial companies and to implement Industry 4.0 concepts
based on the appropriateness for the individual company.

One of the remarkable works, titled ‘Guideline Industry 4.0—Guiding principles for the
implementation of Industry 4.0 in small and medium-sized businesses’, presented by the VDMA
(German Engineering Federation), proposes an ‘Industry 4.0-toolbox’ that should provide first guidance
in the challenging change process [12]. The supplied toolbox was perceived as an acceptable starting
base to assess one’s own company regarding the implementation of Industry 4.0 technologies and
concepts, but is limited to the evaluation of a few concepts for product design and manufacturing.

The need for instruments for the assessment of one’s own company regarding the level of
Industry 4.0 implementation motivated researchers to develop further models. Schumacher et al. [13]
developed an assessment model for the determination of the readiness for Industry 4.0-related measures.
Compared with former works [14], the degree of completeness of the model is enhanced through the
inclusion and combination of technological and organizational aspects, which are categorized into
nine dimensions and single specific assessment items.

However, there is still room for further improvements in the development of models for the
evaluation of companies introducing Industry 4.0. Therefore this work aimed to enrich the evolution
of Industry 4.0 assessment models giving a specific focus to small and medium-sized enterprises.
Further, it opens doors to new and enriched evaluation possibilities that are no longer addressing a
problem of readiness of enterprises, but one affiliated to the maturity level associated to the Industry
4.0 implementation. Small and medium-sized enterprises (SMEs) are usually less informed about
Industry 4.0 concepts. Therefore, an assessment model must clearly describe the concepts and also
show the companies which different possibilities of concepts and technologies Industry 4.0 has to offer.
Subsequently, such a model should support SMEs simply and pragmatically to show their status of
implementation and the potential for future Industry 4.0 projects. Thus, the model’s objective was
(i) to inform SMEs about the existing Industry 4.0 concepts, (ii) to assess the current progress in the
implementation and application of these concepts, and (iii) to signalize to SMEs which of the Industry
4.0 concepts are the most important ones for the individual company.

The paper is structured as follows: after a first introduction to the topic in Section 1, the authors
provide in Section 2 the research methodology for this work. Section 3 follows a literature review of
existing assessment and maturity models, as well as for the identification of Industry 4.0 concepts and
technologies. Section 4 provides a detailed insight into the structure and development of the proposed
maturity level-based assessment tool. Section 5 describes the evaluation and testing of the developed
model in several industrial companies. Section 6 provides a discussion about the proposed model, the
implications for practitioners, as well as its limitations. Finally, the paper ends with a summary and a
look at further research needed in the future.

2. Research Methodology

In this work, we applied a research approach in three phases (see also Figure 1): (i) in the first
phase a literature review was conducted in 2018 and Industry 4.0 concepts and technologies were
identified; (ii) in the second phase the assessment tool for SMEs was developed in 2018–2019; (iii) in
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the third phase the developed assessment model was tested and validated by using a field study with
industrial companies in 2019.

In the first phase (see also Section 3), we conducted a literature review to analyze already existing
assessment models and their suitability for SMEs. In addition, we looked into the scientific literature for
Industry 4.0 concepts and technologies to assess their implementation in SMEs in the assessment model.

In the second phase (see also Section 4), we developed the maturity level-based assessment tool
for Industry 4.0 to be used in SMEs. In the first step, we defined the maturity levels for each of the
Industry 4.0 concepts and technologies. The assessment model foresees the evaluation of the current
implementation of Industry 4.0 in SMEs as well as the future target implementation. The difference
between current and target state defines the gap that needs to be overcome by SMEs. Further, the
assessment model should include also the assessment of the potential of each concept/technology for
the single SME. Based on the gap and the potential of Industry 4.0 concepts/technologies, a norm
strategy matrix indicates to SMEs a meaningful prioritization of final implementation measures.

In the third phase (see also Section 5), we conducted a field study with 17 industrial companies
from Italy, Austria, Slovakia, and the United States to test and validate the developed assessment
model. First, we will describe the structure of the field study describing the dimensions of the analyzed
companies, their origin, as well as the approach of the field study. Then we present the results of the
field study for the application of the assessment model and discuss the lessons learned to focus on
feedback from SMEs.

 

Figure 1. Research methodology used in this work.

3. Literature Review and Identification of Industry 4.0 Concepts and Technologies

3.1. Overview of Existing Assessment and Maturity Models for SMEs

The analysis of existing assessment and/or maturity models for Industry 4.0 was based on a
literature search in SCOPUS database, as this is one of the leading and most complete scientific
databases for industrial and manufacturing engineering. The research team used for the literature
analysis the following research query: (TITLE-ABS-KEY ("Industry 4.0") AND TITLE-ABS-KEY
(assessment OR maturity) AND TITLE-ABS-KEY (sme OR "small and medium sized")) AND (LIMIT
TO (LANGUAGE,"English")), with an output of 32 search hits. In the search, only works in the
English language were considered, excluding 1 work in German. The remaining 31 works were
published mainly as conference papers (22 works) and conference reviews (2 works), while 7 works
were articles/reviews in journals and 1 had been published as a book chapter. This shows that the
development of assessment models for Industry 4.0 in SMEs is a quite new topic and is already mainly
discussed in scientific conferences and not yet so much in peer-reviewed journals. Also, the year of
publication confirmed this as 2 works were published in 2016, 14 works in 2018 and 16 works in 2019.
In the first screening of title and abstract, a total of 19 works were encoded as firmly pertinent. In a
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second screening reading all remaining works, a total of 13 research papers were considered for a
further content analysis.

In the following, a summary of the content analysis of the remaining works (see Table 1) will be
given to explain the current status of assessment and maturity models with a special focus on SMEs.

The first group of works focused on maturity-based assessment models determining the
maturity/implementation of concepts and technologies from Industry 4.0. The authors in [15]
were focused more on the maturity levels of the general implementation of an Industry 4.0 strategy
but did not go into detail regarding single Industry 4.0 concepts. The model in [16] was based
on five maturity levels (novice, beginner, learner, intermediate, expert) as well as five dimensions
(finance, people, strategy, process, product). Also in this model, the assessment provided only a rough
overview of seven categories of Industry 4.0 so-called toolboxes (manufacturing/fabrication, design
and simulation, robotics and automation, sensors and connectivity, cloud/storage, data analytics, and
business management), but not of the single Industry 4.0 concepts and technologies. The authors in [17]
presented a study of the maturity of Industry 4.0 in German companies, focusing on six dimensions
(product development process, steering, and control, manufacturing and operation, smart services,
process organization, big data). The authors in [18] presented a maturity level assessment with five
fields of action and 29 subordinated action elements. The action elements showed only areas of
implementation (e.g., production logistics or communication), thus the results gave only an overview
of a general assumption of the implementation of Industry 4.0 in each action element, but not based on
single Industry 4.0 concepts and technologies. In [19] the authors proposed a maturity model based on
five dimensions (strategy, technology, production, products, people) and a Likert scale from 1 to 5.
The study used a Likert scale from 0 to 6. In [20] the authors used five dimensions (strategy, people,
processes, technology integration) with a Likert scale from 1 to 5. Also in the latter cases, the maturity
assessment did not go in deep on the concept and technology level, but instead remained on a very
superficial level of exploration.

The second group of works concentrated on the assessment model for evaluating the level of
readiness of Industry 4.0. [21] determined the readiness for Industry 4.0 based on six dimensions
(1—strategy and organization; 2—smart factory; 3—smart products; 4—data-driven services; 5—smart
operations; 6—employees) based on a Likert scale from 0 to 5. The works did not provide any
further insight into the readiness regarding detailed Industry 4.0 concepts. The work described
in [22] presented a readiness self-assessment for craftsmanship companies with the three dimensions
production/operations, digitalization, and ecosystem. In these three dimensions, a total of 23 items
(e.g., data security, perception of digitalization, quality of internet connection) were assessed with a
Likert scale from 1 to 5. Also, in [23] the model provided only a rough overview of two dimensions
(smart factory, strategy, and culture). The authors in [24] provided a readiness assessment based on
five dimensions (manufacturing and operations, people capability, technology-driven process, digital
support, and business and organization strategy) and 43 subdimensions with a Likert scale from 0 to 4.
Summarizing, most of the models discussed did not go very in depth and followed a different scope to
the one in this work as they assessed the readiness for Industry 4.0 and not the maturity of applied
Industry 4.0 concepts and technologies.

The third group of works dealt with a specific assessment model for Industry 4.0 in SMEs. In [25]
the following process modules of intralogistics were assessed: incoming goods, internal transport,
storage, order picking, packaging, and outgoing goods. In [26], four dimensions (data, communication,
processes, and intellectual capital) were assessed based on a Likert scale from 1 to 5. A characteristic of
this work was that each maturity level was described in detail with examples, which makes it easier
for SMEs to validate the right maturity level. The work in [27] referred to nine characteristics of SMEs
(e.g., ability to produce customized products) and assessed the maturity of lean and Industry 4.0
components). In summary, this group of assessment models dealt only with specific areas of an SME,
like logistics, or with additional concepts from lean manufacturing and is therefore not suitable for the
scope of the work proposed in this article.
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Most of the authors used a Likert scale from 1 to 5 for measuring the maturity of Industry 4.0,
which was applied also in our work. All works did not go into detail about the single Industry 4.0
concepts and technologies and evaluated only dimensions or fields of application. As one of the most
difficult tasks for SMEs is to understand what kind of concepts belong to Industry 4.0, we maintained
it was important to develop a much more detailed assessment model. The evaluation might be difficult
for SMEs if only a Likert scale with a vague description is shown (e.g., from beginner to expert). We
used here the procedure as shown in [26], where each maturity level is well described with examples to
simplify the use of the assessment model for SMEs. Further, in all the shown approaches, an evaluation
to assess also a target maturity level for SMEs was missing. Not all SMEs need the maximum level of
Industry 4.0 for their purposes, thus the maximum maturity level should not be seen as something that
must be attained at all costs. In addition, the analyzed assessment models do not show any procedure
to rank the potential implementation steps or technologies for a single company. All these points
should be included in the new proposed assessment model.

3.2. Identification of Industry 4.0 Concepts and Technologies

To design an assessment model for maturity in the application of Industry 4.0 technologies and
concepts, the assessment units must first be identified and defined. As mentioned before in Section 3.1,
the aim is to provide a comprehensive method catalog with Industry 4.0 concepts and technologies to
support SMEs in the selection of measures to be implemented. Therefore, the research team carried out
a systematic literature analysis with the keyword "Industry 4.0" in the database SCOPUS in the first
year of the research project. From initially 733 works a large number of publications were excluded
based on exclusion criteria like type of paper (only journal articles, reviews, and articles in press were
considered), the cover period (from 2011 to 2017), the language (only works in English), the subject area
(only papers belonging to engineering, computer science, business, materials science, social sciences,
decision sciences, management and accounting, energy, econometrics and finance, multidisciplinary,
economics and psychology were considered in the search) were analyzed. The remaining 102 works
were screened by three independent researchers to guarantee objectivity in the analysis. The screening
process resulted in a total of 27 publications that were defined as firmly pertinent for further analysis,
which means that they provided clear information about Industry 4.0 technologies and concepts.

These identified works formed the basis for a subsequent content analysis, from which Industry
4.0 concepts and technologies could be extracted. The content analysis resulted in a first step in 75
Industry 4.0 topics that were condensed by the research team into 42 meaningful Industry 4.0 concepts
and technologies used as a basis for the proposed assessment model. The reason for the adopted
consolidation lay in the fact that many of the identified Industry 4.0 topics were characterized by a
subject or industry-specific nature with the need for generalization.

The broad spectrum of the identified Industry 4.0 concepts and technologies required structuring
into several levels of Industry 4.0 dimensions (see also Table 2). In the first dimension level the concepts
were classified as follows:

• Operations (concepts/technologies for production and operational processes)
• Organization (concepts/technologies for organizational and management-oriented processes)
• Socio-Culture (concepts/technologies related to corporate culture and employee-related topics)
• Technology (data and process-driven technologies).

In the second dimension level, a total of 21 subdimensions were identified. Table 2 summarizes
the identified Industry 4.0 concepts and technologies, including dimension level I and II in
alphabetical order.
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4. Maturity Level-Based Assessment Tool of Industry 4.0 for SMEs

4.1. Maturity Levels Used in the Assessment Model

First of all, SMEs have to insert in the assessment model their general data, like operating sector,
number of employees, annual revenue, and balance sheet total. These data are used in a later stage
to compare their own results with the average of other SMEs of the same size and the same sector.
In the next step, SMEs have to define the maturity level of the identified Industry 4.0 concepts and
technologies (see Section 3.2) in their own company. As already seen in Section 3.1, many assessment
models use such maturity levels to express the progress of implementation of Industry 4.0 in their
own company. We wanted to apply the same approach also in our assessment model for Industry 4.0
in SMEs. Each level should specify the peculiarities and the progress of the evaluated enterprises or
desires to achieve to become a smart enterprise.

As already mentioned in Section 3.1, we wanted to adopt also a Likert scale with five maturity
levels. According to the results of the review of maturity level-based assessment models, it can be
confirmed that five stages are most common and suitable to map the implementation or maturity of
Industry 4.0 concepts. To facilitate the application of the assessment model in SMEs, the maturity
levels are expressed and described not only by numbers from 1 to 5 but with a combination of a single
term and a brief statement/example. First, tests with an SME have shown that persons asked to do
the assessment based only on a Likert scale from 1 to 5 (therefore described only by numbers) have
difficulties deciding which is the right value for the stage of implementation in their company as for
many Industry 4.0 concepts they have no experience with what could be the lowest stage or the highest
stage of implementation. Next, tests that added a term to the numbers facilitated the assessment, but
still caused uncertainty (and therefore a lower quality of the assessment data) due to many new and
innovative Industry 4.0 concepts where people needed some more explanation and, if possible, also an
example. The explained maturity levels are illustrated in Figure 2 as follows.

 

Figure 2. Exemplary representation of maturity levels of Industry 4.0 concepts.

4.2. Analysis of the Current Status of Implementation and the Target Status

The company completes the assessment of the current status regarding the implementation of
Industry 4.0 concepts by selecting one of the maturity levels shown above. In our assessment model,
this maturity level is called the ‘firm’s I4.0 score’. In addition, the company also indicates a degree of
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maturity that it would like to achieve in the medium term, and where the firm also realistically sees
the feasibility of implementation. This objective of a future maturity level is called the ‘target level’.

These two values are the basis for the calculation of the ‘I4.0 gap’ that describes the difference
between target level and the firm’s I4.0 score. This gap should act as a measure of the difficulty for the
SME to achieve the future target level of Industry 4.0 for each single Industry 4.0 concept.

Figure 3 shows a screenshot of the MS Excel-based maturity level-based assessment tool with
the fields to be filled in by the SME to determine the firm’s I4.0 score and the target level. For the
development of a prototype of the assessment model, MS Excel was chosen as it is widely spread in
SMEs and easy to use also for nonexpert users of MS Excel. In the final stage of the project a web-based
self-assessment model is developed to maximize dissemination.

 
Figure 3. Fields to be filled in for firm’s I4.0 score, target level, and the importance of each Industry
4.0 concept.

Figure 4 shows an example of the visualization of the firm’s I4.0 score and the target level
automatically generated by the MS Excel prototype of the assessment model. The representation in
the radar chart is intended to simplify the evaluation of the assessment for SMEs, as the gap between
today and tomorrow is directly visible.

The radar charts illustrate the firm’s Industry 4.0 score as well as the firm’s target score for
each Industry 4.0 concept categorized in an operational I4.0 level, an organizational I4.0 level, a
social–cultural I4.0 level, as well as a technological I4.0 level (further subdivided into data-driven and
process-driven technological level).

In the visual representation of the results, the technology-related Industry 4.0 concepts are
subdivided into a group of data-driven technologies and process-driven technologies (see Table 3).
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Table 3. Data-driven and process-driven technologies.

Data-driven Technologies Process-driven Technologies

Cloud Computing Additive Manufacturing (3D-Printing)
Digital and Connected Workstations Predictive Maintenance

E-Kanban Telemaintenance
Internet of Things and Cyber-Physical

Systems Automated Storage Systems

Cyber Security Automated Transport Systems
Artificial Intelligence Automated Manufacturing & Assembly

Object Self Service Collaborative Robotics
Identification and Tracking Technology Smart Assistance Systems

Product Data Management and Product Lifecycle Management
Cyber-Physical Systems Standards

Virtual and Augmented Reality
Simulation

 

Operational I4.0 Level Organizational I4.0 Level Socio-Cultural I4.0 Level

Technological I4.0 Level (data-driven) Technological I4.0 Level (process-driven)
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Figure 4. Exemplary visualization of the gap between firm’s I4.0 score and the target level.

4.3. Identification and Ranking of Industry 4.0 Concepts and Technologies with the Highest Potential
in Implementation

In the next step, the company is asked to provide an assessment of the potential (‘importance’) of
the respective Industry 4.0 concept (see also Figure 3). Also, this evaluation is based on a 5-step Likert
scale and is meaningful according to the authors, because not every Industry 4.0 concept might be
important for the individual company. While for example, the traceability of products is essential and
of the highest importance for certain companies and industries (e.g., automotive sector, food sector),
this concept will play a much less important role in many other SMEs.

In this respect, the estimation of the importance is used to express the potential of each Industry
4.0 concept for the individual SME. To prioritize the Industry 4.0 concepts and thus to define the basis
for implementation measures, the assessment tool automatically generates a ranking based on the
identified potential (see Figure 5).
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Figure 5. Exemplary visualization of the potential for each Industry 4.0 concept.

4.4. Norm Strategy Matrix for Defining Implementation Measures

Not all of the 42 Industry 4.0 concepts listed will be of high potential and not all of them require
the same amount of effort and time for implementation. Therefore it makes sense, especially for
SMEs with financial and personnel limits, to strive for a gradual implementation of the Industry 4.0
concepts. Both criteria, namely the gap and the identified potential, are therefore combined in a norm
strategy matrix as shown in Figure 6, to facilitate the selection and scheduling of implementation
measures for Industry 4.0 in terms of time (short-term vs. medium-term implementable I4.0 concepts).
Figure 6 shows the matrix schematically with the following standardization strategies depending on
the respective quadrant in the diagram:

• Quick Wins (high potential–low gap)
• Must Haves (high potential–high gap)
• Low Hanging Fruits (low potential–low gap)
• Money Pits (low potential–high gap).

Figure 6. Norm strategy matrix to facilitate the selection and definition of Industry 4.0 measures/projects.
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Depending on the position of the Industry 4.0 concepts, the SMEs can then define whether, and to
what extent and in what time frame, implementation measures have to be defined.

5. Validation of the Industry 4.0 Assessment in a Field Study with SMEs

5.1. Structure and Procedure of the Field Study

A number of 17 SME companies operating in different industrial sectors from Italy (10), Austria
(3), Slovakia (1), and the USA (3) participated in the field study. The participating companies in
the field study were mainly operating in industrial goods manufacturing (6), industrial supplies
and materials (4), construction (3), food (2), and other industries (2). From these companies, seven
were small enterprises with up to 49 employees and 10 were medium-sized enterprises with 50–249
employees. The companies had been collaborating with the research team in the H2020 research project
“SME 4.0—Industry 4.0 for SMEs”. In the case study companies, the assessment was completed by
the company owner/manager or the head of production. In most of the cases, they called for specific
concepts experts from product development, IT department, or other operational departments. To
identify difficulties in completing the assessment, a representative of the research team was always
present. This was done to monitor the time spent on completing the assessment, to record difficulties
in completing the assessment, and then to ask the companies for their feedback on the user-friendliness
of the assessment. At no time did the researcher present intervene in the evaluation or influence the
participant in the assessment.

All participants assessed the firm’s I4.0 score, the target level and the importance of the respective
Industry 4.0 concepts for their company. As a result and for their benefit, they learned possible Industry
4.0 concepts and technologies, they got an overview of their status and the gap for each concept, and
they received a visual ranking of the most potential concepts for their firm.

5.2. Results of the Field Study

In general, the assessed importance/potential of each single Industry 4.0 concept was analyzed in
the form of the average value, the respective standard deviation, and the coefficient of variation as a
measure of relative variability of the answers as well as the number of answers. This analysis was used
by the research team to identify suitable/potential Industry 4.0 concepts from the viewpoint of SMEs.
These results are summarized and presented in [28].

In this work, we were more interested in the overall results of the field study and the feedback
from the participating persons using the assessment model. Therefore we analyzed the data of the
field study to investigate in the first step the maturity level and target level for Industry 4.0 concepts
according to the participating SMEs (see Figure 7).

The overall results showed that the current maturity level of Industry 4.0 concepts in SMEs
is generally very low. Comparing the single categories and I4.0 concepts depicted in Figure 7 we
can see that the 10 concepts with the highest Firms I4.0 score were (from highest to lowest value):
(1) agile manufacturing, (2) cloud computing, (3) product data management (PDM) and product
lifecycle management (PLM), (4) enterprise resource planning (ERP) and manufacturing execution
system (MES), (5) role of the operator, (6) simulation, (7) automation in manufacturing and assembly,
(8) integrated and digital real-time monitoring systems, (9) collaboration network models, and (10)
self-adapting manufacturing models.

The 10 Industry 4.0 concepts with the highest target level were (from highest to lowest value): (1)
integrated and digital real-time monitoring systems, (2) agile manufacturing systems, (3) ERP/MES,
(4) Industry 4.0 roadmap, (5) cloud computing, (6) digital and connected workstations, (7) cultural
transformation, (8) PDM and PLM, (9) big data analytics, and (10) training 4.0.

Further, it is interesting to know those Industry 4.0 concepts that showed the greatest gap between
the current level and the target level (from highest to lowest value): (1) integrated and digital real-time
monitoring systems, (2) Industry 4.0 roadmap, (3) Training 4.0, (4) cultural transformation, (5) digital
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and connected workstations, (6) ERP/MES, (7) internet of things and cyber-physical systems, (8)
decision support systems, (9) predictive maintenance, and (10) big data analytics.

In the next step, we analyzed the data to determine the average potential of the Industry 4.0
concepts according to the participating SMEs in the field study (see Figure 8).

 

Operational I4.0 Level Organizational I4.0 Level Socio-Cultural I4.0 Level

Technological I4.0 Level (data-driven) Technological I4.0 Level (process-driven)
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Figure 7. Visualization of average Firms I4.0 Score and Target level of SMEs in the field study.
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Figure 8. Ranking of the average potential of Industry 4.0 concepts according to SMEs in the field study.

Based on the evaluations of the companies in the field study the most promising Industry 4.0
concepts are the ones illustrated in Figure 8. Interestingly, most of these concepts were also evaluated
very highly when companies had to determine the current maturity level and the target level. This
led to the conclusion that the most promising concepts are not completely new to them and that they
are already targeting to increase their competences in these fields. The only concept that was not
mentioned before in Figure 7 was cybersecurity. This led to the hypothesis that SMEs are already
aware of the future importance of cybersecurity, but they do not feel they are at a good level and also
fail to raise their level in this area.

125



Sustainability 2020, 12, 3559

In the third step of the field study, we combined the average data of the Industry 4.0 gap and the
identified potential to generate the norm strategy matrix (see Figure 9). In principle, it can be seen that
none of the Industry 4.0 concepts mentioned had a low potential and a large gap in implementation.
This means that it makes sense to introduce all of the 42 concepts in the long term. There are a few
so-called "low hanging fruits" that have a moderate potential with little effort for introducing the
target level (which might be high or moderate according to the needs of SMEs). Examples of such
concepts are additive manufacturing, servitization and sharing economy, digital upgrade, freemium, or
artificial intelligence. It might sound surprising that a technology like artificial intelligence is clustered
as a low hanging fruit technology. Here, it must be specified that SMEs in this field study defined a
relatively low target level for artificial intelligence. The matrix also showed some concepts that can
only be implemented with great effort, but which require a long-term "must have" strategy due to
their high potential. Examples for this norm strategy are big data analytics, predictive maintenance,
collaborative robotics, real-time monitoring systems, digitalized workplaces, improvement of their
ERP, the introduction of MES systems, as well as a cultural change of the company towards developing
an Industry 4.0 roadmap and qualifying their people with Training 4.0. The large number of Industry
4.0 concepts mentioned fall within the norm strategy “quick wins”, which means that the effort for
introduction is relatively moderate, but the concepts show a high potential. Examples of concepts where
it makes sense to apply this strategy are agile manufacturing systems, automation, e-kanban, operator
4.0, simulation, cloud computing, smart assistance systems, as well as appropriate cybersecurity
solutions for SMEs.
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Figure 9. Norm strategy matrix with average values of the Industry 4.0 gap and the potential in the
field study.

The norm strategy matrix illustrated in Figure 9 supports SMEs to plan short-term, medium-term,
as well as long-term-oriented measures for introducing Industry 4.0 in their company. Thus, the
application of the assessment model with a subsequent definition of norm strategies is recommended.
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Finally, we asked the participating SMEs about the usability of the assessment model and feedback
for improvement. All participants found the assessment to be very instructive and a good exercise for
thinking about the status of Industry 4.0 in their own company. Concerning the number of items to be
evaluated, the participants were not all of the same opinion. Most felt it very positive that an Industry
4.0 concept catalog was provided to get a better overview of existing Industry 4.0 concepts. However,
the catalog of 42 Industry 4.0 concepts requires a lot of time to fill out the assessment, which was
considered quite exhausting by the participants. According to the participants, there were no major
difficulties in assigning the level of maturity due to the detailed description and examples provided
in the assessment model. The companies found it very useful to have an overview in the form of an
individual norm strategy matrix at the end of the assessment, as this supported the definition of future
Industry 4.0 measures and projects. All in all, the participants found the assessment to be effortful to
conduct, but extremely useful for paving the way to implement Industry 4.0 in a systematic manner in
the company.

6. Discussion

6.1. Novel Aspects of the Proposed Assessment Model

As described in the introduction and review in Section 3.1, our assessment model differs from
existing models. While general assessment models [13–15] (developed for both SMEs and large
companies) are often limited to a general Likert scale assessment, our model offers a significant
advantage for smaller companies. The additional detailed description of each maturity level for each
Industry 4.0 concept (including practical examples) makes it easier for SMEs to determine their own
maturity level. This assistance is particularly important as many SMEs do not have highly qualified
employees who have experience with all concepts. Another advantage over all previous models is the
depth and number of Industry 4.0 concepts that can be evaluated, which means that many companies
doing the assessment even start to think about certain perhaps less well-known concepts. Finally, we
saw the subsequent derivation of the norm strategy matrix as a decisive difference and novelty of our
model, since it is a practical aid especially for SMEs in the selection and introduction of important
Industry 4.0 concepts for each individual firm.

6.2. Implications for Academia and Practitioners

For research purposes, the presented assessment model represents an extension and enrichment of
already existing assessment models for Industry 4.0. On the one hand, the proposed model is designed
for use in SMEs and has also been developed and tested with the involvement of SMEs. On the other
hand, the implementation of Industry 4.0 in the whole company or parts of the company is not just
evaluated superficially, but existing Industry 4.0 concepts are specifically evaluated on a very detailed
level. On the one hand, this type of evaluation goes much deeper than all other currently existing
models and at the same time offers a catalog of 42 Industry 4.0 concepts, which have been determined
based on scientific contributions. For future research, the assessment model offers the possibility to
examine the implementation of the Industry 4.0 concepts in detail. If the assessment is carried out in
the future with a sufficient number of SMEs from different industrial sectors, these data can be used for
many purposes. For example, it will be possible to determine which Industry 4.0 concepts are most
important for different company sizes. In addition, this analysis can also be reduced to individual
industrial sectors to understand where and why different dimensions of SMEs or different industrial
sectors gave a different assessment. The same analysis can also be extended to the current and target
maturity level. Finally, it is a new and original approach, as the assessment of an Industry 4.0 gap and
its potential is combined in a norm strategy matrix.

For practitioners from SMEs, the assessment model is an ideal tool to evaluate the current situation
of the company and to systematically plan future projects and initiatives. One of the biggest advantages
for SMEs is the Industry 4.0 catalog with different concepts and technologies, which also helps small
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companies to get an overview of Industry 4.0 methods. The validation in practice has shown that
the model can be applied in small companies, although the evaluation itself takes some time. The
subsequent systematic analysis of the Industry 4.0 gaps and the potential in the norm strategy matrix
especially serves SMEs as an orientation guide to better plan future initiatives and to transfer them into
an implementation plan for Industry 4.0. The application of the assessment model provides companies
practical recommendations for the application of selected Industry 4.0 concepts and how and with
which priority they should be implemented.

6.3. Limitations of the Proposed Assessment Model

Despite the many advantages mentioned, the model has certain limitations. One limitation is
certainly the already mentioned effort for the evaluation. The validation phase has shown that most
companies spend about one to two hours on the evaluation and usually also bring in experts from
different areas of the company. Therefore, the user must invest the necessary time to be able to draw
the right conclusions from the results. Furthermore, it can be limited if only one person carries out the
evaluation because a certain subjective opinion cannot be excluded. Therefore, it is recommended
that a team completes the evaluation to improve not only the quality of the answers but also the
objectivity of the result. A third limitation to be mentioned is the catalog of 42 Industry 4.0 concepts
used as a basis. In the course of the four-year research project from 2017–2020, a literature analysis was
conducted to identify existing Industry 4.0 concepts until 2017. A first check by the research team after
the development of the model in 2018 and its validation in 2019 showed that the Industry 4.0 concepts
are still up-to-date and can be used in this way. However, it cannot be excluded that a few Industry
4.0 concepts might be added in the meantime. The proposed assessment model can be applied to
every kind of industry sector. In the sample of SMEs we used for validation there were many different
industrial sectors and the model could be used successfully in each of the industries. Of course the
proposed model provides a catalog of 42 Industry 4.0 concepts, which not all might be of interest in
each sector. This can easily be handled as the companies can assess the importance for their individual
company as very low.

7. Conclusions

Industry 4.0 is a chance for SMEs to achieve a new level of competitiveness. Many SMEs are
already trying to implement Industry 4.0 [28], but there is still a lack of specific instruments for
introducing them [29,30]. In this paper, a maturity level-based assessment model for SMEs is presented.
The model is based on 42 Industry 4.0 concepts identified by literature analysis, which are rated on
a Likert scale of 1 to 5. In addition to the current maturity level, a target level and the importance
and potential of the Industry 4.0 concepts are evaluated by the user. The collected results show in a
developed norm strategy matrix, which of the Industry 4.0 concepts should be approached immediately
and which may need more time or are not immediately implemented due to a lower potential.

The proposed assessment model shows several advantages compared to already existing models.
It provides a detailed overview of existing Industry 4.0 concepts and is very easy for SMEs to adopt.
The evaluation of the maturity level is facilitated through a brief description of the five maturity levels
for each of the 42 Industry 4.0 concepts. Further, the evaluation and combination of a target level and
the potential of each of the Industry 4.0 concepts in the norm strategy matrix allow SMEs to plan and
schedule the implementation of Industry 4.0 in a very systematic way.

Further research is planned in the development of a web-based version of the assessment model
and its dissemination in SMEs (ongoing work). As soon as enough SMEs complete the assessment
model online and allow the use and processing of the anonymized data the research team plans to use
these data for further analysis and a benchmarking functionality. In its final version, the assessment
model will also show SMEs their position for each Industry 4.0 concept compared to those of the
average of companies of a similar size and the same industrial sector. This will allow SMEs to better
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identify their own competitive situation and researchers to better understand the implementation of
Industry 4.0 for each company size and industrial sector as well as its development over the time.

Author Contributions: E.R. led the research team, developed the structure of the maturity level-based assessment
model, and conducted the field study for testing and validation purposes; M.U. worked on the literature review
and the development of the maturity level-based assessment model; R.A.R. and L.G. contributed to the literature
review and screening process as well as in the content analysis; M.W. conducted the analysis of field study data;
D.T.M. supervised the work as scientific coordinator of the research project. All authors have read and agreed to
the published version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 R&I programme under the
Marie Skłodowska-Curie grant agreement No 734713.

Acknowledgments: This work belongs to the project “SME 4.0 – Industry 4.0 for SMEs” (funded in the European
Union’s Horizon 2020 R&I program under the Marie Skłodowska-Curie grant agreement No 734713). The authors
would like to thank all industrial companies that contributed to the field study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Matt, D.T. Design of lean manufacturing support systems in make-to-order production. Key Eng. Mater.
2009, 410, 151–158. [CrossRef]

2. Dallasega, P.; Rauch, E.; Matt, D.T. Sustainability in the supply chain through synchronization of demand
and supply in ETO-companies. Procedia CIRP 2015, 29, 215–220. [CrossRef]

3. Kagermann, H.; Helbig, J.; Hellinger, A.; Wahlster, W. Recommendations for Implementing the Strategic Initiative
INDUSTRIE 4.0: Securing the Future of German Manufacturing Industry; Final report of the Industrie 4.0
Working Group; Forschungsunion: Frankfurt am Main, Germany, 2013.

4. Zhou, K.; Liu, T.; Zhou, L. Industry 4.0: Towards future industrial opportunities and challenges. In
Proceedings of the 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD),
Zhangjiajie, China, 15–17 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 2147–2152.

5. Lee, J.; Bagheri, B.; Kao, H.A. A cyber-physical systems architecture for industry 4.0-based manufacturing
systems. Manuf. Lett. 2015, 3, 18–23. [CrossRef]

6. Lee, J. Industry 4.0 in big data environment. Ger. Harting Mag. 2013, 1, 8–10.
7. Kang, H.S.; Lee, J.Y.; Choi, S.; Kim, H.; Park, J.H.; Son, J.Y.; Kim, B.H.; Do Noh, S. Smart manufacturing: Past

research, present findings, and future directions. Int. J. Precis. Eng. Manuf. Green Technol. 2016, 3, 111–128.
[CrossRef]

8. Thoben, K.D.; Wiesner, S.; Wuest, T. Industrie 4.0” and smart manufacturing-a review of research issues and
application examples. Int. J. Autom. Technol. 2017, 11, 4–16. [CrossRef]

9. Rojas, R.A.; Rauch, E. From a literature review to a conceptual framework of enablers for smart manufacturing
control. Int. J. Adv. Manuf. Technol. 2019, 104, 517–533. [CrossRef]

10. Hübner, M.; Liebrecht, C.; Malessa, N.; Kuhnle, A.; Nyhuis, P.; Lanza, G. A process model for implementing
Industry 4.0-Introduction of a process model for the individual implementation of Industry 4.0 methods. Wt
Werkstattstech. 2017, 107, 266–272.

11. Matt, D.T.; Rauch, E.; Riedl, M. Knowledge Transfer and Introduction of Industry 4.0 in SMEs: A Five-Step
Methodology to Introduce Industry 4.0. In Analyzing the Impacts of Industry 4.0 in Modern Business Environments;
Brunet-Thornton, R., Martinez, F., Eds.; IGI Global: Hershey, PA, USA, 2018; pp. 256–282.

12. Anderl, R.; Picard, A.; Wang, Y.; Fleischer, J.; Dosch, S.; Klee, B.; Bauer, J. Guideline Industrie 4.0—Guiding
Principles for the Implementation of Industrie 4.0 in Small and Medium Sized Businesses. VDMA. Available
online: https://industrie40.vdma.org/documents/4214230/0/Guideline%20Industrie%204.0.pdf/70abd403-
cb04-418a-b20f-76d6d3490c05 (accessed on 12 March 2018).

13. Schumacher, A.; Erol, S.; Sihn, W. A maturity model for assessing Industry 4.0 readiness and maturity of
manufacturing enterprises. Procedia CIRP 2016, 52, 161–166. [CrossRef]

14. Jentsch, D.; Riedel, R.; Jäntsch, A.; Müller, E. Factory audit for industry 4.0—Strategic approach for capability
assessment and gradual introduction of a smart factory (in German: Fabrikaudit Industrie 4.0: Strategischer
Ansatz zur Potenzialermittlung und schrittweisen Einführung einer Smart Factory). Zwf Z. Für Wirtsch. Fabr.
2013, 108, 678–681. [CrossRef]

129



Sustainability 2020, 12, 3559

15. Ganzarain, J.; Errasti, N. Three stage maturity model in SME’s toward industry 4.0. J. Ind. Eng. Manag. 2016,
9, 1119–1128. [CrossRef]

16. Mittal, S.; Romero, D.; Wuest, T. Towards a Smart Manufacturing Maturity Model for SMEs. In Advances in
Production Management Systems; Moon, I., Lee, G., Park, J., Kiritsis, D., von Cieminski, G., Eds.; Springer:
Cham, Switzerland, 2018; Volume 536, pp. 155–163.

17. Bittighofer, D.; Dust, M.; Irslinger, A.; Liebich, M.; Martin, L. State of Industry 4.0 Across German Companies.
In Proceedings of the IEEE International Conference on Engineering, Technology and Innovation 2018,
Stuttgart, Germany, 17–20 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–8.

18. Puchan, J.; Zeifang, A.; Leu, J.D. Industry 4.0 in practice-identification of industry 4.0 success patterns. In
Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management
(IEEM 2018), Bangkok, Thauiland, 16–19 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1091–1095.

19. Trotta, D.; Garengo, P. Assessing Industry 4.0 Maturity: An Essential Scale for SMEs. In Proceedings of the
8th International Conference on Industrial Technology and Management (ICITM 2019), Cambridge, UK, 2–4
March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 69–74.

20. Pirola, F.; Cimini, C.; Pinto, R. Digital readiness assessment of Italian SMEs: A case-study research. J. Manuf.
Technol. Manag. 2019. [CrossRef]

21. Hamidi, S.R.; Aziz, A.A.; Shuhidan, S.M.; Aziz, A.A.; Mokhsin, M. SMEs maturity model assessment of IR4.
0 digital transformation. In Advances in Intelligent Systems and Computing, Proceedings of the 7th International
Conference on Kansei Engineering and Emotion Research 2018, KEER 2018, Kuching, Malaysia, 19–22 March 2018;
Lokman, A., Yamanaka, T., Lévy, P., Chen, K., Koyama, S., Eds.; Springer: Singapore, 2018; Volume 739,
pp. 721–732.

22. Sheen, D.P.; Yang, Y. Assessment of Readiness for Smart Manufacturing and Innovation in Korea. In
Proceedings of the 2018 IEEE Technology and Engineering Management Conference (TEMSCON), Evanston,
IL, USA, 28 June–1 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5.

23. Chonsawat, N.; Sopadang, A. The Development of the Maturity Model to evaluatethe Smart SMEs 4.0
Readiness. In Proceedings of the International Conference on Industrial Engineering and Operations
Management, Bangkok, Thailand, 5–7 March 2019; IEOM: Bangkok, Thailand, 2019; pp. 354–363.

24. Brozzi, R.; D’Amico, R.D.; Monizza, G.P.; Marcher, C.; Riedl, M.; Matt, D. Design of Self-assessment Tools to
measure industry 4.0 readiness. A methodological approach for craftsmanship SMEs. In Proceedings of the
IFIP International Conference on Product Lifecycle Management 2018, Turin, Italy, 2–4 July 2018; Springer:
Cham, Switzerland, 2018; pp. 566–578.

25. Schiffer, M.; Wiendahl, H.H.; Saretz, B. Self-assessment of Industry 4.0 Technologies in Intralogistics for
SME’s. In Proceedings of the IFIP International Conference on Advances in Production Management Systems
2019, Austin, TX, USA, 1–5 September 2019; Springer: Cham, Switzerland, 2019; pp. 339–346.

26. Krowas, K.; Riedel, R. Planning Guideline and Maturity Model for Intra-logistics 4.0 in SME. In Proceedings
of the IFIP International Conference on Advances in Production Management Systems 2019, Austin, TX,
USA, 1–5 September 2019; Springer: Cham, Switzerland, 2019; pp. 331–338.

27. Kolla, S.S.V.K.; Minoufekr, M.; Plapper, P. Deriving essential components of lean and industry 4.0 assessment
model for manufacturing SMEs. Procedia CIRP 2019, 81, 753–758. [CrossRef]

28. Rauch, E.; Stecher, T.; Unterhofer, M.; Dallasega, P.; Matt, D.T. Suitability of Industry 4.0 Concepts for Small
and Medium Sized Enterprises: Comparison between an Expert Survey and a User Survey. In Proceedings
of the International Conference on Industrial Engineering and Operations Management, Bangkok, Thailand,
5–7 March 2019.

29. Saxena, P.; Papanikolaou, M.; Pagone, E.; Salonitis, K.; Jolly, M.R. Digital Manufacturing for Foundries 4.0. In
Light Metals 2020; Springer: Cham, Switzerland, 2020; pp. 1019–1025.

30. Matt, D.T.; Rauch, E. SME 4.0: The Role of Small-and Medium-Sized Enterprises in the Digital Transformation.
In Industry 4.0 for SMEs; Palgrave Macmillan: Cham, Switzerland, 2020; pp. 3–36.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

130



sustainability

Article

Industry 4.0—Awareness in South India

Leos Safar 1,*, Jakub Sopko 1, Darya Dancakova 1 and Manuel Woschank 2

1 Department of Banking and Investment, Faculty of Economics, Technical University of Košice, Nemcovej 32,
04001 Košice, Slovakia; jakub.sopko@tuke.sk (J.S.); darya.dancakova@tuke.sk (D.D.)

2 Montanuniversitaet Leoben, Erzherzog-Johann-Strasse 3/1, 8700 Leoben, Austria;
manuel.woschank@unileoben.ac.at

* Correspondence: leos.safar@tuke.sk

Received: 28 February 2020; Accepted: 3 April 2020; Published: 15 April 2020

Abstract: Industry 4.0 (I4.0) approaches, frameworks, and technologies have gained an increasing
relevance in order to gain sustainable and competitive advantages for industrial enterprises and
for small and medium enterprises (SMEs), as well. Contrary to previous studies, which are mainly
focused on companies, we conducted a questionnaire-based survey on inhabitants, in an attempt to
examine general awareness about I4.0 concepts, in the region of South India. Our findings revealed
a rather poor informational level of I4.0 concept and its components, which consequently leads to
inadequate future actions and expectations. Moreover, respondents with prior information about
I4.0 framework tend to have rather positive opinions and expectations of possible future trends. We
emphasize that insufficient knowledge of the potential workforce regarding I4.0 concepts, especially
in a region with ascending demographic development, can be considered as one of the main barriers
for a successful and sustainable future development towards the 4th industrial revolution.

Keywords: Industry 4.0; Internet of Things; India; SMEs; awareness

1. Introduction

In recent years, as a consequence of business and social evolution, a multitude of modern topics
emerged, and therefore gained tremendous attention, in the areas of manufacturing, logistics, and
organizational development of small and medium enterprises (SMEs), as a consequence of an ongoing
business and social evolution. Megatrends, such as globalization, demographics’ dynamics, mass
customization, technological progress, or climate change, lead to tremendous challenges for both society
and the business sector. As a reaction to this very complex and volatile business environment, various
strategic initiatives have taken place all over the world, in order to keep pace with the exponential
technological development and to achieve sustainable future growth, for example, the “Made in China
2025”, Germany’s “High Tech Strategy 2020”, or the US’s “Industrial Internet Consortium” [1]. The aim
of these projects is to develop and implement future concepts, frameworks, and technologies (e.g.,
Internet of Things or Industry 4.0) in order to make industries more effective, competitive, sustainable,
and to produce higher value added [2] while minimizing negative impact on environment. Considering
the costs, Industry 4.0 initiatives could also improve enterprises’ costs management [3–5].

In this study, the authors focus on Industry 4.0 (I4.0) as the most promising concept from both
social and manufacturing–orientated point of view. Over the past years, we faced a strong advance of
technology among almost all industrial sectors. New business propositions and applications within the
business systems were enabled given the new technologies. As Thestrup et al. [6] stated, the systematic
gathering of physical and virtual data from users, sensors, or devices, emerged. The so called
“Internet of Things” (IoT) [7] was defined as a world-wide network of such objects communicating and
operating through standardized communication protocols. However, IoT was recognized after the
ITU1 report [8], describing IoT as ability of connecting everyday objects, meaning that people will be
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able to communicate with objects, the same as objects will be able to communicate among themselves.
Prerequisite to such communication is advanced wireless technology (identification technologies and
sensors). Logically, IoT can be diversified to Industrial IoT and Commercial IoT, while I4.0 expects all
those parts to be interconnected and communicating.

To simplify, the goal of IoT infrastructure is to enable participants (people and objects) to be
more flexible, to react appropriately and autonomously, thanks to an information sharing network.
Harbor Research [9] suggests that two major strands of technological development emerged in the
beginning of the 21st century; first is the mentioned IoT, and secondly, “Internet of People” (IoP,
or social networking). These interconnected devices, processes, machines, products, etc., will have
significant impact on enterprise’s life cycle, efficiency, functioning, and consequently, on the broader
economy [10].

To conclude, Sundmaeker et al. [11] defines the IoT as an integrated part of ‘Future Internet’, or
a “dynamic global network infrastructure with self-configuring capabilities based on standard and
interoperable communication protocols where physical and virtual ‘things’ have identities, physical
attributes, and virtual personalities and use intelligent interfaces, and are seamlessly integrated into
the information network”. Internet of Things, as an essential part of I4.0 concept, is already partially
adopted by households, with aim of creating a “smart house”, despite the fact that not every gadget is
appropriately connectable yet [12]. The same problem can be observed among enterprises, especially
in the area of SMEs. It assumed that the main barriers for becoming “smart” are insufficient education
and little knowledge [10].

Moreover, interconnected objects and subjects are just one prerequisite for the so called “4th
industrial revolution”, where cyber and physical levels should merge [3]. The term Industry 4.0 points
to the 4th industrial revolution, and was firstly presented on Hannover-Messe (one of the biggest
international trade fairs, oriented on new and smart technologies) in 2011, while it also indicates
the initiative of the German government to improve the environment in the manufacturing sector
using new technologies (information regarding the concept was brought up in 2014 at the World
Economic Forum in Davos [13]). According to BITKOM (Germany’s digital association, founded in
1999 as a merger of individual industry associations in Berlin, representing more than 2500 companies
in the digital economy, among them 1000 SMEs, all 400 start-ups), the 4th industrial revolution
should allow control over the entire life cycle of the product and value stream, therefore redefine
organization entirely. With respect to efficiency oriented on cost-savings and complexity reduction,
Modrak and Bednar [14,15] conclude that I4.0 environment will initiate mass customization, mainly
because of the ability of each entity throughout the value stream to communicate and identify itself.
All these visions and concepts are meant to be environmentally, economically, but mainly socially
sustainable. Thestrup et al. [6] also report to the importance of value creation and value constellations
for developing the sustainable business models in industrial services. Sustainable development
towards I4.0 is however a very complex issue. Leaving a now technical standpoint, we emphasize
non-technical aspects of proposed changes within the industries.

As Slusarczyk [16] suggests, the 4th revolution differs from previous revolutions, because it will
apply to all aspects of everyday lives, as a consequence of environment, where information will be
exchanged between objects, between people, and between people and objects. In other words, real-time
data exchange and horizontal and vertical integration of production systems are the main pillars of
I4.0 [17], along with cyber security, autonomous systems, capability of analyzing large data sets, virtual
reality, and cloud computing. Undoubtedly, such changes would require managerial decisions firstly,
due to inevitable initial costs linked to such new technological equipment. Schröder et al. [18] leaves an
open question, whether it is even worth implementing I4.0, especially for SMEs, despite the consensus
we find among authors describing reduced costs and more efficient processes and environment as a
consequence of I4.0. We argue that such dynamics within the industries should be examined deeply,
and various elements of sustainable development, not only the economic point of view, should be
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evaluated [19,20]. The opposite to mentioned cost-saving and cost-reducing is initial need of significant
financial expenditures, that are in many occasions out of reach for companies, especially SMEs.

Another very important social aspect of such smart environment is how the intelligent machines
will affect the labor market [20–24]. This topic has basically been examined from two perspectives; firstly,
by describing requirements towards workers in I4.0 [20–24]; secondly, by examining the standpoint of
workers and their outlook or current state of mind [20,25]. Regarding the I4.0 environment, the authors
can conclude that there is a growing trend in the literature highlighting the importance of sustainable
development and management [26]. We argue that unless reasonable level of awareness and basic
knowledge of Industry 4.0 related concepts, parts, and inevitable parts is reached, it will be hard to
successfully move towards smart environment, especially in case of less developed regions. Insufficient
information base of the eligible work force represents an obstacle for potential employers oriented
towards I4.0. Inadequate information and knowledge could also lead potential employees towards
wrong or misjudged conclusions or attitudes. Probably the most crowded thought is that bringing
in the intelligent machines would steal jobs, again, especially in less developed regions with less
qualified, manually involved workforce. Consequently, a lack of awareness and affinity towards
any modernization steps could hold the required transformation processes. However, according to
Statista [27], countries without any problems with unemployment (e.g., Germany, USA, Japan) report
the highest numbers of installed industrial robots per 10,000 employees.

The aim of conducted research is to investigate and analyze general awareness and knowledge
regarding Industry 4.0 within the area of South India. Based on an initial analysis, questionnaire-based
surveys in the literature show a lack of covering focus on knowledge and attitudes of potential
employees within the examined region and in general, as well. This paper concerns the crucial
perspective of the potential workforce in the way to find a sustainable process of implementing
Industry 4.0 in less developed regions. The questionnaire was created on the basis of previous industry
visits and consultations with students, employers, and entrepreneurs in the investigated region. Issues
addressed the most by respondents are highlighted and summarized.

The article is further organized as follows: Section 2 provides a problems description, where
issues necessary for further research are stated. Section 3 provides a methodology description, while in
Section 4, we present obtained results. Section 5 concludes the findings of this research study.

2. Problems Description

The emerging economies should leverage their advantages, such as huge markets, attractive
conditions for manufacturing, fast growing economies, and mainly larger labor force with more
favorable demography [28]. Admitting that Industry 4.0 will primarily affect manufacturing sector, we
face significant discrepancies among countries and regions. Despite the estimate that India will be
the world’s fastest growing economy in following years [29] with manufacturing sector that could hit
1 trillion US$ in 2025 [30], we doubt the ability of successful transformation towards Industry 4.0, hence
we find India and its regions important to examine with respect to the 4th industrial revolution [31].
For example, having Germany—a technology and manufacturing leader, however, with an aging
population and lack of labor force—and on the other hand, an emerging country like India—suffering
from technological gaps, which put India to a level of Industry 2.0 as Iyer [28] concludes, on the
contrary, with strong demography.

There is also a political will to spur manufacturing sector, translated into initiatives such as ”Digital
India” [32], “Skill India” [33], or “Make in India”, with aims to (among others) create sufficient skill
sets within the urban poor and rural migrants for inclusive growth, or to increase technological depth
in manufacturing in order to increase domestic value addition. In addition, there is the mentioned
demographic factor—India has the best demographic dynamics, with approximately 60% of population
in age between 15 and 59 [34]. The open question remains, are citizens and workers ready for such
development in the foreseeable future?
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We accept that within such a huge country, significant disparities among particular regions exist,
hence we applied our research only in southern part of India (authors were physically present in
the state of Tamil Nadu during data collection). South Indian region includes several states and
union territories (Kerala, Andaman and Nicobar Islands, Tamil Nadu, Pondicherry, Andra Pradesh,
Karnataka, Telangana, Lakshadweep Islands), which combined accounts for 19.31% of the geographical
area of the whole of India. With over 250 million people, South India represents around 20% of the
country’s population [35]. As of 2016, economic growth of South India was around 17%, compared to
8% growth of the whole of India, while GDP of South India accounted for 30% of total Indian’s GDP.
Some specific industries are even more important from overall perspectives, such as cotton production
(48% of India’s entire cotton production comes from South India) or agricultural production (36% of
whole state’s production comes from South India).

Same as for other countries and regions, the main employers are SMEs. Unfortunately, as Iyer [28]
states for India’s industrial policy in general, it is old, and lacking critical technology. Many enterprises
in this area are old and have long lasting traditions. Despite the established reputation and customers
created, they are equipped with insufficient and old devices or machines. Internet access and computer
equipment within industries in this region is also rather poor. Since the majority of the research has
been conducted in the field of needed modernization, especially with respect to the SMEs in order
to successfully transform towards Industry 4.0, we would rather point at the necessity of having a
potential labor force ready for such a transformation. It is therefore considered that awareness of I4.0
needs to be continuously expanded and promoted, as confirmed by several authors [10,36–38]. Even if
obtaining new machines and gadgets would be economically viable, will there be enough sufficiently
educated workers? Throughout the literature, we find papers addressing similar problems within
different regions, e.g., concluding that qualified specialists are often not satisfied with the salary, which
causes their outflow in favor of richer economic regions, leaving almost no people able to operate such
modern machines [39]. We argue that unless some basic level of knowledge regarding the addressed
issues is reached within the population, the ability of forming a sustainable path to become competitive
in an Industry 4.0 environment is rather limited.

3. Methodology

Research was conducted in the area of South India, where different industries operate in several
segments, with a majority representation of SMEs. The aim of this survey-based study is to examine
level of awareness and general consciousness of Industry 4.0 among South Indian students, workers,
entrepreneurs, in other words, a broad spectrum of citizens. We expect that proper analysis of the
gathered responses could provide us with unique and valuable knowledge of the current state of mind
of local citizens, along with their current level of internet/connection requiring gadgets/platforms,
and further serve as guidance for finding a suitable implementing strategy for new technologies in
such areas.

Results presented in this paper concern opinions and knowledge of inhabitants living, studying,
working, or doing business in the previously described area. For obtaining responses, a questionnaire
was used, and data collection took place from December 2019 to February 2020. As advised by several
authors [40,41], we used fixed-choice questions, in order to maintain time efficiency and difficulty of
evaluation. Questionnaire was distributed within several traceable ways during the stay of authors
in Tamil Nadu (see Table 1). Sample contains 564 unique responses (after removing incomplete
and inappropriately filled responses—respondents’ answers were checked to confirm all required
questions had been answered in a prescribed manner). Respondents were notified in advance that
providing answers to this questionnaire is anonymous. All answers provided will serve only for
research purposes, and no personal details will be required or stored.
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Table 1. Profile of respondents.

Demographics N % Demographics N %

Gender Age
Female 147 26.1 25 or below 466 82.6
Male 417 73.9 26–35 57 10.1

36–45 24 4.3
Status 46 and more 17 3.0

Student 438 77.7
Employed & Entrepreneur 105 18.6 Residential place

Houseperson & Retired 7 1.2 Andaman and Nicobar Islands * 12 2.1
Unemployed 14 2.5 Andra Pradesh 6 1.1

Karnataka 10 1.8
Education Kerala 14 2.5

Higher Secondary and below 181 32.1 Lakshadweep Islands * 4 0.7
Bachelor 256 45.4 Pondicherry * 9 1.6
Master 67 11.9 Tamil Nadu 507 89.9

Doctorate, Medical, Law
degree, or higher 60 10.6 Telangana 2 0.4

Note: *Union territory; Source: Prepared by authors.

We divided the questionnaire into four main parts (Figure 1). In the first part, we focused on the
social status of the respondent, education, and the place where respondent currently works, studies,
or stays. In the second part, we were interested in respondents’ basic internet communication and
usage of social communication applications. In the third and main part, we looked at the awareness
of Industry 4.0 in general among respondents. We asked about key terms such as cloud solutions,
mass customization, Internet of Things, Industry 4.0, smart manufacturing, smart cities, etc. In the
fourth part, we intended to examine what the I4.0 could bring to the South Indian region from the
responders’ perspective.

Figure 1. Stages of survey. Note: * For all types of questions, please see Supplementary Materials.

Several scales were used due to substance of the question (full text of the questionnaire and scales
of answers is provided in Supplementary Materials). Questions addressing previous experience and
general awareness about key terms were scaled binomially (yes/no). Other questions addressing
South India region were scaled as 5 levels: Not at all important/no—1; slightly important/rather
no—2; no opinion (due to lack of information/knowledge, referring also to “I do not know”)—3; fairly
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important/rather yes—4; very important/yes—5. Supplementary questions regarding usage of social
media, email, or e-commerce had specific scales examining frequency of usage.

To analyze responses, we used tables of counts and percentages for the joint distribution of two
(severe combinations) categorical variables. We used custom and contingency tables, statistical testing,
and generated bar graphs for easier data presentation. Pearson’s chi-square test was performed to
test the independence between the row and column variables. Pearson’s chi-square test requires a
large sample. The main rule regarding the sample size is that not more than 20% of expected cells
should be less than 5, and none of the expected cells should be less than 1 [42,43]. If the relationship
was significant, consequently we used z-test to compare the proportion of column pairs to each other
(adjusted by Bonferroni correction) according to the social variables and variables reported by Industry
4.0 areas. For 2 × 2 tables, we used Fisher’s Exact test. The column proportions test shows whether
the ratio in one column is significantly different from the ratio in the other column. The test assigns a
letter key (A, B, C) to each category reported in column variables. The definition of each comparison of
column proportions is discussed in the following section. All statistical outputs were processed in the
IBM SPSS Statistics v25.0.

In this study we try to identify the main drivers and barriers of Industry 4.0 readiness in South
India. Among the literature, we follow several research questions to investigate their importance on
Industry 4.0 readiness in this region. Accordingly, these research issues can be concluded:

- The higher education achieved and higher personal status play an important role on Industry 4.0
readiness in South India’s region [28].

- The proper education and requalification are necessary, especially regarding current dynamics
(4th industrial revolution), throughout the industries [44–48].

- The importance of the digital behavior of the young people, whose relationship with the digital
world and services are very important for their further social and economic development,
supported by the integrating social and economic dimensions of sustainable development in the
context of I4.0 [38,49].

Further, we will concentrate on presenting the most attention grabbing outcomes and dependences
from responses that were statistically proven as significant.

4. Results & Discussion

In order not to confuse respondents and avoid misinterpretations, we provided short
descriptions of possibly unknown terms related to our scope (presented in Supplementary Materials).
The questionnaire, in its actual form, is composed by twenty-seven questions divided into four main
areas, mentioned above.

Firstly, we asked our respondents if they ever heard about key terms related to 4th industrial
revolution. As presented in Figure 2, the term “mass customization” is not known by almost 60% of
respondents, while, more importantly, the term “Industry 4.0” is unknown to 49.6% of respondents.
Rather than focusing only on simple percentage points-presentations of answers observed, we
examined and focused mainly on dependences between key answers on a statistically significant basis,
as presented further in this chapter.
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Figure 2. Awareness in general on Industry 4.0.

Before examining key aspects of this survey, we took the first step by examining dependence
between age, education, and such awareness. In all tables below, Chi-square statistic (X2) and p-value
(Sig.) are presented for each row question, as inevitable assumptions for further column proportions
comparison. X2 refers to Pearson Chi-Square statistic value, obtained by Chi-square test in SPSS, which
tests the hypothesis that two variables (row and column) are independent. Sig. refers to significance
value, which has the information we are looking for. The lower the Sig., the less likely it is that two
variables are unrelated. When the significance value is less than 0.05, we can conclude that there is a
relationship between two variables. To understand the relationship between row and column variables,
we examine the crosstabulation tables with results of the column proportions tests. As we mentioned
in previous section, the column proportions test shows whether the proportion in one column is
significantly different from the proportion in the other column. The test assigns a letter key (A, B, C) to
each category reported in column variables. We used three significance levels: 0.05 *; 0.01 **; 0.001 ***.
Column proportion tests are performed by z-test, and tests are adjusted for all pairwise comparisons
within a row of each innermost sub-table using the Bonferroni correction (see Sedgwick [50]). Below we
provide Table 2, where statistically significant relationship between answers ”No” to above mentioned
general awareness questions and education “Higher Secondary and below” can be observed. We
find this in line with basic logic that ongoing and deeper education opens possibilities and provides
information about new approaches and cutting-edge trends. Similarly, we find a logical relationship
within our answers, that higher education (Doctorate, Medical, or Law degree or higher) goes with
higher age of the respondent. However, we consider the fact that 46.4% (45.3%) of the group “Higher
Secondary and below” answered “No” when asked about “Cloud solutions” (“Internet of Things”),
as a result of teaching plans that are not updated sufficiently, not the respondents’ inability to learn
about possibilities linked to I4.0.
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In Table 2, the column proportions test assigns a letter key, (A) or (B), to each category of question
Q10–Q17. (A) refers to the answers “No” and (B) to the answers “Yes”. The row variables are “Age”
and “Education”, which have four categories of answers. The two-sided asymptotic significance of
chi-square statistics adjusted by Bonferroni correction is less than 0.05 * in all comparisons, except
comparison between “Age” and “Mass Customization” (Sig. 0.100). The Sig. value (0.000 ***) is less
than 0.001, therefore statistically significant. For the column proportions test associated with the age
group “25 or below” and the answers to question Q10, the B key appears in the column “No”.

Thus, we can conclude that the proportion of respondents aged “25 or below”, who answered
the question Q10 about cloud solutions negatively, is greater than the proportion of respondents that
answered the question Q10 positively (aged “25 or below”). The same results are listed between the
respondents aged “25 or below” and other questions, except the Q11 about mass customization. For the
tests associated with “Education”, the results indicate the same in the case of “Higher Secondary and
below” education for all questions Q10–Q17.

We would like to highlight the relationship between the age group “25 or below” and answers
“No” to general questions. In absolute terms, 56.0%, and 41.4%, respectively, of group “25 or below”
answered “No” to questions addressing Industry 4.0 and IoT as a crucial stage of 4th industrial
revolution, respectively. We consider this as a very poor informational level, especially within the
young and flexible group of workers entering labor market. On the contrary, 79.8% (46.6%) of this group
is using WhatsApp (Facebook) almost daily, therefore we cannot explain this level of awareness as a
result of insufficient conditions for obtaining information or being digitally isolated. Motyl et al. [49]
conducted a survey of more than 460 students at three different universities in Italy about the Industry
4.0 concept. The authors point out the importance of the digital behavior of the young people, whose
relationship with digital world and services are very important for their further social, but also
economic development, ultimately for the development of the region or country. We agree with the
authors that in today’s environment, it is important to empower a broader knowledge of the general
I4.0 concepts and bring well-structured action plans into the educational process. These conclusions
should emphasize, on the one hand, the role of education, and the SMEs on the other, which are
dependent on an educated workforce in the terms of I4.0 and related IoT.

The second part contains information about the importance of several aspects of doing business
from the perspective of respondents, considering SMEs. We present Figure 3 with questions Q18,
Q21, Q22, and Q23. We observed a relatively high proportion of responds without any clear opinion
regarding each question, while almost one quarter of respondents consider investing in training of
workers as “Not at all important”. Such attitudes we consider as negative, while on the other hand,
almost 40% of respondents consider approaching smart manufacturing as very important.
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Figure 3. The answers to the questions Q18, Q21–Q23.

In Table 3 below, each column refers to awareness questions mentioned above, and each row refers
to questions regarding IoT, I4.0, smart manufacturing, e-commerce, and investing in workers’ education.

We then expected the row questions (Q18, Q21–Q23) and column variables (Q10–Q17) would
suggests some proportional relations. The fact is, that almost in all situations (where the questions Q18,
Q21–Q23 were answered “No opinion”, respectively “I don’t know”), the proportion of respondents
who answered the questions Q10–Q17 negatively is greater compared to the proportion of respondents
who answered these questions positively. We argue that such statistical evidence of inability to form
an opinion or express expectation stems from obvious lack of information. Stentoft et al. [45] also
conclude that the lack of information and knowledge about Industry 4.0 and the lack of employee’s
readiness are among the main barriers for Industry 4.0. On the contrary, proportion of respondents
who answered the questions Q10–Q17 positively is greater compared to the proportion of respondents
with negative answers, if we are considering answers “very important” or “fairly important” regarding
questions Q18 and Q21–Q23. A possible and logical explanation could be that respondents realize
importance of successful transformation of the industries due to previous, at least basic, knowledge
about questioned aspects. The most attention grabbing at this stage was, however, finding relations
between answers “not at all important” to questions Q18, Q21–23, and questions Q10–Q17 that were
answered as “No”. The proportion of respondents answering questions Q12, Q14, and Q15 as “No”
that also answered Q22 (regarding approaching smart manufacturing from SMEs perspective) as “Not
at all important” was significantly higher than the proportion of respondents answering Q12, Q14, and
Q15 as “Yes”. In total, 10.3% of respondents answered Q22 as “Not at all important”, 14.4% answered
“Slightly important”, and 24.1% answered “No opinion” (or “I don’t know”), which makes together
48.8%. We can observe a similar relationship between answers “No” to Q12 and Q14 and answers
“Not at all important” to question Q18, addressing importance of implementation of I4.0 from SMEs
perspective. Additionally, the relationship between respondents answering Q13 regarding I4.0 as “No”
and Q21 addressing investing in training workers answering as “Not at all important” is alarming.
This could be seen as a lack of information about inevitable changes in the coming future translating
into unclear thoughts about crucial education and training for current and potential employees. This
is in contrast with consensus among the authors [46–48] that proper education and requalification is
necessary, especially regarding current dynamics throughout the industries.
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Responds to the questions Q19, Q20, and Q25 are presented further in the Figure 4. The respondents
were able to choose one of five options: “No”; “Rather no”; “No opinion” (referring also to “I don’t
know”); “Rather yes”; “Yes”. In each of these questions, we can see a high proportion of respondents
who replied to all questions with the “No opinion” (“I don’t know”). In Q19, it was more than 32%
of respondents, in Q20 more than 33%, and in Q25 more than 21%. This again points towards a
lack of information resulting in an inability to form an opinion regarding the issue. On the other
hand, the answers “No” and “Rather no” opened further questions that we attempted to examine.
Within the age group “25 or below”, more than 16% of respondents think that IoT concept will be
ineffective for South India’s SMEs. Almost 34% of the respondents within this group reported “No
opinion”. Examining performance of this group also on other questions, we observed nearly 17% of
the respondents claiming the SMEs in South India are not ready to implement IoT and I4.0 concept,
and as many as 36% of the respondents were unable to make a judgement. For more than 27% of
the respondents aged “25 or below”, the I4.0 concept is personally unimportant. More than 24% of
respondents from the whole sample do not consider the IoT and I4.0 concept as important from a
personal point of view.

Figure 4. The answers to the questions Q19, Q20, and Q25.

These results are further examined against general awareness in the Table 4. Similarly, we applied
column proportions test. For each combination of testing, we also point to the value of the asymptotic
significance statistic (Sig.), which in all cases is less than 0.05 * level, and thus variables are related.
This table includes also a comparison of the answers to question Q27, which is focused on whether
respondents expect any Smart City in South India within the next 10 years. In proportional testing, we
found that in three cases (Q12, Q14, and Q17), the Sig. value is higher than the confidence level 0.05 *
(0.100; 0.091; 0.234). In such cases, we consider these variables as independent.
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We highlight the high portion of “No opinion” (“I don’t know”) answers observed within the
set of questions Q19, Q20, and Q25, related to answers “No” (questions Q10–Q17). A similar pattern
was observed and described in Table 2. One concern could be potential complexity or difficulty of
questions Q19 and Q20, therefore forming a substantiated opinion could be harder for respondent.
On the contrary, inability to take a personal stance towards I4.0 and related IoT, we explain as lack of
sufficient information, as described previously. Additionally, on a personal level, implementation of
I4.0 and IoT (Q25) is not important for respondents answering Q12 and Q13. In total, 24.3% (7.6%) of
respondents answered “No” (“Rather no”) to a question Q25.

Regarding question Q27, where respondents were asked if they see any Smart City within the
region in the next 10 years, in total almost 74% answers were positive, which is rather overconfident,
especially in contrast to other studies [28] examining current state of art in India. Putting this question
in the context of questions Q10–Q17 results in similar outcomes as for previous sets of questions, where
negative answer to Q10–Q17 are related to negative answer addressing Smart City. On the other hand,
proportion of respondents answering Q27 positively, that answered also Q10–Q17 positively, is higher
on the statistically significant basis than the proportion of those who answered Q10–Q17 negatively.

Thus, we find implementation of any I4.0 related features difficult from non-technical point of
view, if respondents’ expectations are negative towards companies. On the other hand, throughout
each set of questions, we observe a significantly higher proportion of respondents expecting rather
positive impacts within questioned aspects, that have previous knowledge or information (which
should be also considered as a part of intellectual capital [51]) about key terms addressed in the first
part compared to those without such information. To add on, respondents with previous experience
with IoT and I4.0 expressed positive expectations with higher frequency compared to those without
such experience. On the contrary, we consider some responds to questions addressing Smart cities in
South India (Q27), or readiness of SMEs for implementing IoT and I4.0 (Q20), as rather over-confident,
considering the current state of art not only in South India [28]. Such observations could however
stem from possible drawbacks as sampling error. Other possible limitations could be that only main
results are presented. The survey was prepared only in South India’s region with high representation
of people of state Tamil Nadu, which could lead to possible biasedness. Additionally, authors realize
that a higher proportion of employees of SMEs in the survey could lead to more valuable outcomes.
Thus, we recommend further examination of the mentioned region because of its huge demographic
potential. Possible improvement of the conducted research should be expanding the sample, or expert
surveys with representatives of employee associations and other social parties.

5. Conclusions

In this paper, we attempted to examine general awareness, opinions, and attitudes of South India’s
inhabitants towards Industry 4.0 and its features. Contrary to the majority of studies examining I4.0
readiness and implications, we oriented our research towards citizens rather than SMEs. Conducting
a survey using a questionnaire, we gathered unique answers containing crucial information about
current state of art regarding addressed issues, the same as future expectations. Besides simple counts
of answers, we provided also testing of interdependences between general awareness questions, and
several sets of questions addressing various issues.

The main findings suggest that general awareness is quite low (almost 50% of respondents have
no prior information of Industry 4.0), which consequently leads to inability to form any opinion
regarding effects of such new trends on working and personal life, the same as on living and business
environment. Respondents with insufficient knowledge of I4.0 and related IoT then tend to answer
negatively regarding questions about possible transformation of SMEs towards I4.0, or they are
unable to form any opinion regarding addressed aspects. On the contrary, respondents possessing
prior information or knowledge regarding I4.0 and related IoT as its crucial part expressed positive
expectations in general. We argue that this approach provides us with important information described
in detail in previous section, that should serve as steppingstone in forming a sustainable strategy of
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implementing I4.0 features for both large enterprises and SMEs. From the perspective of sustainability
of the transformation process towards competitive and functional I4.0 environment, we therefore
highlight the importance of proper skills, education, working conditions, and informational level,
which we consider, to some extent, in line with other studies examining sustainable management
and development as a part of I4.0 linked research [6,26,39]. To conclude, improving education and
providing proper information is crucial from the authors’ perspective.

Based on examined interdependences, we argue that proper education and relevant information
dissemination is non-technical, however crucial, in order to achieve a sustainable transformation
process of the current environment in South India towards Industry 4.0 and its features. Since we
find this approach rather extraordinary, similar survey-based studies in other regions should provide
comparable results, and consequently form a broader picture of inhabitants’ preparedness and
awareness of I4.0.
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Abstract: Improving service logistics is crucial in order to reciprocate customer needs. The paper aims
to validate the Logistics Service Provider (LSP) Lifecycle Model for re-designing logistics service in
three LSP case studies in Thailand. The lifecycle-stage evaluation was adapted to identify the current
status in its lifecycle. Afterward, logistics service strategies were implemented according to the voice
of the customer by Quality Function Deployment (QFD). The study combined the Logistics Service
Provider (LSP) Lifecycle Model with the application of Industry 4.0 (I4.0) to improve service logistics.
Case studies showed the implementation of the service logistics strategies with the feasibility solution
of Industry 4.0.

Keywords: LSP Lifecycle Model; Industry 4.0; Quality Function Deployment; Best-Worst Method

1. Introduction

Global enterprises fulfill customer satisfaction with trust and royalty [1,2]. The service sector is
extremely significant in this competition [3,4]. In addition, the Logistics Service Provider (LSP) has
become a role for smoothing cooperation, progressing association, and improving the value-added
throughout the entire supply chain [5,6]. After the Industrial Revolution, LSPs have been essential to
managing the supply chain in the global economy. It is a task for LSPs to offer what customer needs
to compete in the service outsourcing that has arisen around the world [7]. Service innovation and
efficiency improvement are needed to respond to the complexity of customer requirements [8]. The LSP
Lifecycle Model was created to improve customer satisfaction throughout the whole lifecycle of the
logistics services, comprising such states of the lifecycle as design, test, logistics operation, after-sales
service, service evaluation, and decomposition. There are three phases [9]: the Beginning of Life (BOL),
the Middle of Life (MOL), and the End of Life (EOL) [10]. The evaluation is needed to classify the
phase of logistics service, which can be recognized to improve logistics services. The development and
re-designing are important parts for examining service innovation in response to customer needs [11].
Quality Function Deployment (QFD) is a well-known methodology for design and re-design to
acknowledge customer requirements [12–14]. Yet, implementing QFD with LSPs for re-designing
appropriate services in order to extend the service lifecycle is questionable and, indeed, challenging.
Customer satisfaction can be recorded as Customer Requirements (CRs), which is translated into
Engineering Characteristics (ERs) to offer what customer needs [15,16]. Logistics service can be
improved or develop new service from the Voice of Customer (VOC) [14,17–20].

Whilst the LSPs’ end-customer lifestyles have changed due to technological advancement, their
requirements have become more complicated and sophisticated than ever before. On-demand delivery,
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real-time information, and Circular Economy (CE) [21] are now among the basic customer requirements.
Furthermore, customer behavior has changed too. Quick and immediate responses are expected.
Information Technology (IT) has been increasingly used in the global business to satisfy the customer in
terms of supply [22,23]. Today, Industry 4.0 is being used to accomplish the customer target, operation,
and improvement in manufacturing [24,25]. Some examples of the advancement of Industry 4.0 are
applying to self-learning automation, big data analytics, real-time information, Internet of Things
(IoT), and smart sensors [26,27]. This improvement expands to the logistics industry in the form of,
for example, on-demand delivery which offers an abrupt response to the customer [28,29]. The trend
has changed rapidly around the world and the logistics service is demanded to support it. Therefore,
LSPs need to innovate and create new service to address these complicated customer trends [30]. This
paper demonstrates the use of the LSP Lifecycle Model to re-design the logistics service using three
case-study LSPs in Thailand. It aims to address the research questions of whether the developed LSP
Lifecycle Model is valid and if the Industry 4.0 concept is applicable and can be beneficial for LSPs.
Firstly, the study identified the stage of the service. Secondly, services were re-designed using QFD.
Thirdly, customer requirements were prioritized using the Multiple-Criteria Decision-Making (MCDM)
tool. Finally, the Industry 4.0 concept was mapped to address these demands.

2. Literature Review

The goal of this literature review is to review if the LSP Lifecycle Model can be integrated with
the Industry 4.0 concept. Whilst the Industry 4.0 is common and recognized to be beneficial to the
industry and manufacturing sectors, the solid approach in logistics sectors is otherwise. In addition
to maintaining service quality [31,32] and a standardized management system [33], re-designing the
logistics service is required to extend its lifecycle.

2.1. LSP Lifecycle Model

LSPs play an important role in smooth operation and increasing the value-added in supply-chain
management [34]. LSPs must satisfy customer requirements by collecting and analyzing data and
managing the operations to resolve problems and to develop services that can support the whole
lifecycle. The complexity of the logistics service is separated into activities which are based on what
LSPs attempt to offer to match the customer needs. The level of party LSP is determined based
on a set of characteristics that correspond to five levels, namely, 1PL, 2PL, 3PL, 4PL, and 5PL [10].
The level of service and commitment are incremental to the level of cooperation and adaptation of
IT [35,36]. Agility is a highly important determinant of impressing the target group. The LSP Lifecycle
Model cooperates with the physical flow (material flow) and information flow throughout each phase
from forward and backward. The LSP Lifecycle Model is created by combing the logistics service
characteristics of the entire lifecycle to fulfill customer requirements. The model comprises of three
lifecycle phases: the Beginning of Life (BOL), the Middle of Life (MOL), and the End of Life (EOL).
Creating and designing the logistics service is the first stage of implementing a new service to satisfy
the customers [37]. Collecting and analyzing information data can assist in accommodating all of the
requirements and lead to suggestions for service innovation. Evaluation and decomposition are the
last phases of improving the service to satisfy customer needs throughout the lifecycle (see Figure 1).
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Figure 1. Interactions and relations in the Logistics Service Provider (LSP) Lifecycle Model [10]. Three
lifecycle phases: BOL, Beginning of Life; MOL, Middle of Life; and EOL, End of Life.

2.2. Industry 4.0

Information Technology (IT) has been widely applied in manufacturing and the supply
chain [22,23]. Industry 4.0 (I4.0) was first recognized in 2011 for progressing high-technology to
advance the competitiveness in quality, cost, operation, and risk [38–41]. Supporting quick response,
the phenomenon to offer customer satisfaction through “the right product at the right time and
suitable cost” is now compulsory. The attractiveness of I4.0 is influenced by self-automation, Artificial
Intelligence (AI), virtual technology, and real-time information [42]. Demand prediction and sales
forecasting are examples of how to address customer expectations [43]. The main segments of I4.0
consist of Cyber-Physical Systems (CPSs), Internet of Things (IoT), Internet of Service (IoS), and smart
factories or smart manufacturing. Real-time information, track, and trace technology are imperative
parts of the logistics service, leading to trust and loyalty in the business market. Axiomatic Design
and I4.0 were adapted to create service innovation using the LSP Lifecycle Model which creates new
activities [44]. Figure 2 shows the strategies created based on I4.0 through the entire lifecycle of the
logistics service. Figure 2 presents the Design Parameters (DP) in the Axiomatic Design, responding to
customer need based on the LSP Lifecycle Model [44].
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Figure 2. The implementation of Industry 4.0 (I4.0) in the LSP Lifecycle Model [44]. DP, Design
Parameter.

3. Methodology

This section examines the two phases of the research methodology (see Figure 3). The first phase
identified and evaluated the stage of the logistics service lifecycle. The second phase was the validation
of the LSP Lifecycle Model. The study selected three case-study LSPs in Thailand.
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Step 1: Identify and Evaluate the stage of the logistics 
service lifecycle of each service in LSP’s company by 
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Step 2: Evaluate effectiveness and competitiveness based 
on GE-Mckinsey and BCG Matrix 

Step 3: Evaluate the stage of lifecycle by fuzzy 
interference EOL scoring to analyze the questionnaire 
and data report from expert employees of the LSP’s 

company 

Step 4: Use LSP’s Lifecycle Model in QFD to re-design 
service and select important criteria from Best-Worst 

method  

Step 5: Discussion and conclusion to re-design and 
implement a service logistics by Industry 4.0   

Figure 3. Phases of the research methodology. PLC, Production Lifecycle; QFD, Quality Function
Deployment.

3.1. Phase I: Identification and Evaluation of the Lifecycle

The identification and evaluation of logistics service lifecycles involve recognizing the “As-Is”
status of the product or service from the current status. “As-Is” is imperative in finding the correct
way to be competitive in the global market [45,46]. A stage of the lifecycle can be evaluated using
Production Lifecycle Analysis (PLC Analysis), Pareto analysis, and matrix analysis to estimate the
current status of the lifecycle.

Step 1. PLC Analysis: The analysis consists of four stages of the lifecycle: introduction, growth,
maturity, and decline. These four stages are analyzed in the market size, prime cost, profits,
target customer, competitor, marketing strategy, product variety, and selling price.

Step 2. Matrix Analysis for qualitative evaluation: The effectiveness and competitiveness of the service
are evaluated. GE-Mckinsey and BCG matrix can be used to estimate the target-market in
business [47]. GE-Mckinsey matrix can evaluate the performance of product transition point
by industry attractiveness (x-axis) and business strength (y-axis). It shows if any are weak,
medium, or strong. BCG matrix has four fields in the market: question marks, dogs, stars,
and cash cows. Question marks (problem child) products are those of high growth in the
market but low in the market share. This field appears for new products to launch in the
market. Dogs represent a low-growth product and low market share. This field is low-profit
but normally is highly produced with high inventory costs. The company should get rid of this
product. Cash-cow products are the products with a high market share in the slow-growing
environment. This field can be a high-profit product but the company must determine if
their product is mature in the market. The company should either improve or re-design these
products to respond to customer requirements. Star products are those with high market
demand in the rapid-growth industry. The company needs these products.
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Step 3. Fuzzy Inference model: Qualitative information can be extracted from previous steps to quantify
numbers using fuzzy logic. Fuzzy logic consists of three steps: fuzzification, rule evaluation,
and defuzzification. The Fuzzy Inference model processes three main inputs: fuzzy of the
BCG matrix, fuzzy of the GE matrix, and fuzzy of the EOL scoring. At first, the fuzzification
determines the quantitative input as a value of 0 or 1. The membership function is to define the
graph of the fuzzy set. For example, a fuzzy graph for the BCG matrix shows brand awareness
on X-axis and sale volumes on Y-axis. Figure 4 shows the membership function on the BCG
matrix, which separates 2 levels on X-Axis and Y-axis; low and high (Figure 4a,b). The second
step, “If . . . Then rules,” shows “If . . . Then rules” to find the relationship of the service. The
last step, defuzzification, is used to evaluate and find the numerical values of the membership,
using center of gravity techniques to compute defuzzification, namely, dogs, question marks,
cash cows, and stars (Figure 4c). The evaluation of EOL scoring combines the analytics of the
BCG matrix (X-axis) and the GE matrix (Y-axis) to classify the stage of logistics service.

  
(a) Fuzzy membership function on X-axis (b) Fuzzy membership function on Y-axis 

 
(c) Fuzzy membership function on BCG matrix 

Figure 4. Fuzzy interference model in membership function for the BCG matrix.

The identification and evaluation of logistics service is a key part to detecting the current status
and positioning in the global market. This information is vital to improving and developing service
that meets customer requirements and strengthens loyalty.

3.2. Phase II: Re-Designing Logistics Service

After identifying the stages of the logistics service, the selected logistics service in maturity and
decline stages is then used as the case of re-design. The adaptation of the Best-Worst Method is for
reflecting customer requirements and interest (Step 4). In Step 5, service is re-designed based on
customer requirements using QFD and the application I4.0 in technical requirements.
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3.2.1. Step 4: Best-Worst Method

Best-Worst method (BWM) is a recent Multi-Criteria Decision-Making (MCDM) method, developed
to reduce the complexity of pairwise criteria in the AHP (Analytic Hierarchy Process) method [48–53].
Compared to AHP, BWM uses less comparison (BWM= 2n − 3, AHP= n(n − 1)/2), yet the consistency
is better [48,54]. BWM is used to solve various problems, namely, supplier selection [55], location
selection [50,53,56], service quality improvement [57], product design selection [49,58,59], supply-chain
management [60], and performance evaluation [52,61]. BWM allows the decision-maker to select the
best and the worst criteria to be transformed into the weight of each criterion using linear programming.

3.2.2. Step 5: Quality Function Deployment (QFD)

QFD is a famous product design technique that considers whether to address customer requirement
and improve product quality or reduce costs and time [62–65]. The method translates “Voice of
Customer” (VOC) or Customer requirement (CRs) into Engineering Characteristics (ECs) to create
Design Requirements (DRs) for each phase of product development and production [64,65]. QFD
adapts the CRs within the product to improve the quality of products, reduce time, costs, resources,
and control the capability of production. Complete QFD consists of four phases: the product planning
matrix, the part planning matrix, the process planning matrix, and the production/operation planning
matrix. Information is required for both forward and backward data to develop a traceability method
in all of the various phases [66]. VOC (WHATs) is combined with quality characteristics (HOWs) to
create new products or to estimate costs and quality of production. This paper uses QFD to improve
the matured or declined service by re-designing an appropriate lifecycle transition. VOC is defined
from internal and external requirements and the service lifecycle requirement of what the customer
needs [16].

4. LSP Companies and Service Re-Design: Case Study

In 2019, LSPs in Thailand have grown by 7–9% YoY according to the report from the Kasikorn
Research Center [67]. This paper summarizes the results of three case studies of small, medium,
and large LSP companies in Thailand. The companies provide several logistics services from local and
national-wide transportation to moving services in the city area. The results of the identification and
evaluation stages of the lifecycle (Step 1) are shown in Table 1. The results will be discussed in the
following section. Then, the developing service logistics (Step 2) is described.

Table 1. The results of the identification and evaluation stage of the lifecycle of the case study LSP.

Service PLC
GE
(X)

GE
(Y)

GE
GE

Score
BCG
(X)

BCG
(Y)

BCG
BCG
Score

EOL
EOL
Score

Case
Study 1 Growth 75 80 Investment/

Growth 77.31 70 65 Stars 57.82 Medium 61.15

Case
Study 2 Growth 70 55 Selectivity/

Growth 53.15 15 70 Question
Mark 39.44 Medium 50.00

Case
Study 3 Maturity 65 75 Selectivity/

Growth 62.45 70 15 Cash
cows 39.44 Medium 52.24

4.1. Case Study 1: Small Moving Service LSP

Case study 1 is a small LSP in the North of Thailand. The company offers a moving service
which can be for office, house, or exhibition. Target groups are local customers, for example, students,
schools, and offices in the Chiang Mai area. The questionnaire was answered by a senior manager in
the company.
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4.1.1. Identification and Evaluation Stage of the Lifecycle: Case Study 1

The results of the PLC analysis shows that the service is at the growth stage due to positive
customer feedback and constant sales growth. The service is highly profitable and there are few
competitors in the market. In addition, the company has a strong market strategy that guarantees
package delivery. The company also offers a variety of services to fulfill customer requirements. Figure 5
shows the company is positive in the GE-Mckinsey matrix. The service is in the Investment/Growth
stage due to the business strength stemming from the fully equipped moving service compared to
other competitors. The service attractiveness is also high due to the demand in the exhibition market.
Home and office movings are also growing as a result of the urbanization trend. The GE score is 77.31,
which shows the attractiveness of this moving business. The service is in the stars stage in the BCG
matrix due to high sales volume and brand awareness based on the history of the business. This service
and business unit are spun off from the LSP mother company, providing service since 1988. The BCG
score is 57.82. From these evaluations, it is found that the stage of the lifecycle of this service is in the
medium stage, with an EOL score of 61.15. The results show the company responds well to customer
needs in the industry (see Table 1).

Figure 5. The analysis of GE Mckinsey and BCG matrix for Case Study 1.

4.1.2. Service Re-Design: Case Study 1

To improve the service by fulfilling customer requirements, the evaluation of the factor is conducted
using the BWM (weight scale 1–9). The factors are prioritized from most to least important in Table
3. Design service to meet customer requirement criteria is the most significant criterion. The least
important criterion is the evaluation of customer satisfaction. It leads to optimized weight for main
attributes, shown in Tables 2 and 3.

Table 4 illustrates the scores on the Important Rate (IMP), analyzed by the BWM, which are
allocated in QFD. The concern is in creating and re-designing the service to respond to customer needs.
The aim is to build up loyalty by offering tracking service after sales, which will support fulfilling and
delivery service. The high competition in the moving market is the main part that needs innovation.
I4.0 suggests the following tools: text response, real-time tracking, and real-time monitoring of moving
operation. This will help the customer to manage their plans easily. Moreover, IT is adapted to replace
paper and to increase customer satisfaction. Engineering Characteristics and target setting are shown
in Table 5.
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Table 5. Details of service re-design and improvement: Case Study 1.

Engineering Characteristics Target Setting

FR2. Design and test service to satisfy customer
requirements

Simulation and virtual technologies to create and
test company strategies

FR2.1 Understand the added value for the
customer in service innovation

Using simulation software to predict and create
strategic positioning

FR2.2 Design the new/adapted service offer Using simulation software and other tools to
model the new service

FR2.3 Test the new service for practical
applicability

Using simulation software and virtual reality to
test the new service in practice

FR4. Reduce logistics cost
Horizontal/vertical data integration to enable
sophisticated business intelligence for cost
controlling, use paperless strategies to reduce cost

FR1. Create service innovation Big data analytics to collect and analyze customer
requirement data and marketing demand

FR1.1 Identify customer requirements and
opportunities to generate new service

Using Big Data Analytics to collect marketing/
demand information on internet and website

FR1.2 Innovate existing service to increase
customer satisfaction

Using Big Data Analytics to analyze customer
requirement data and evaluation data from the
customer to improve existing service

4.2. Case Study 2: Courier Service Provider

Case study 2 is a medium-sized LSP offering courier services. The company uses passenger buses
to move passengers and parcels within the routes mostly in the North of Thailand. The prominent
point of the company is the specific route and time, which the customer can use to specify the departure
and arrival times. The service of interest is parcel service. Targeted customers are local businesses,
people, students, and hospitals. The questionnaire was answered by a senior manager of the company.

4.2.1. Identification and Evaluation Stage of the Lifecycle: Case Study 2

The service is identified and evaluated as a growth stage due to the continuous growth of sales
and profit. The service is strong with the strategy of on-time delivery and flexibility of service,
from agriculture products to motorcycles. The GE-Mckinsey matrix shows that the service is at the
selective-growth stage. Business strength is medium due to the limitation of vehicles and its fixed
route. The customer can pick the delivery up at the station only. Industry attractiveness is at the high
stage due to the popularity of e-commerce. The service area is specific to its northern route. Thus,
the parcel can be delivered quickly. For the BCG matrix, the service is in the question mark stage. Sale
volume is high but the brand awareness of the product is low because of several competitors in the
market, both domestic and overseas. The price is the key factor. From these evaluations, the service is
considered to be at the medium stage of its lifecycle. Details are shown in Table 1.

4.2.2. Service Re-Design: Case Study 2

To improve service, fulfillment is suggested. The focus is to enhance the delivery service
(see Table 5). A long-term relationship is the most important factor. Evaluation of customer satisfaction
and financial performance are among the most important factors. The decision-maker decides to
improve on these issues to gain trust and loyalty from the customer. At the start, the company will
survey for suggestions and use this information to improve the service. I4.0 is applied by developing
the website. Evaluation and improving service is highly recommended to increase customer satisfaction.
The data can be collected from several available platforms such as social media. The feedback data
is a critical part of re-designing the service. For example, if tracking is not online and updated on
the platform, the customer cannot check the delivery status. GPS and RFID can be used to address
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the issue. Then the customers will be able to access real-time information. On-time delivery will be
possible to satisfy customer expectations; the customer should be able to access real-time information.
In addition, parcel tracking and tracking information can be sent to the customer (via SMS), informing
them when their package is due to arrive. Table 6 shows an example of the measurements to improve
the service life cycle for the case-study company.

Table 6. Details of service re-design and improvement: Case Study 2.

Engineering Characteristics Target Setting

FR7 Evaluate and improve the service life cycle Big data analytics and simulation

FR7.1 Evaluate the service life cycle Collecting Data from the branch, application online
(Facebook, line) and feedback data

FR7.2 Re-design and improve service after evaluation Simulation software to model the improved service

4.3. Case Study 3: Large LSP

Case study 3 is a large LSP in the North of Thailand. The company has more than 500 trucks and
more than 1000 employees. The service is the delivery of mass products between Chiang Mai and
Bangkok. Most of the customers in Chiang Mai are local small and medium Enterprises (SMEs) and
farmers who sent their goods to Bangkok. On the contrary, most of the products from Bangkok are
industry products, shipped to wholesalers and retailers in Chiang Mai. From the surveying of the
senior manager who is responsible for the company strategy, the results are as follows.

4.3.1. Identification and Evaluation Stage of the Lifecycle: Case Study 3

The service is at the maturity stage due to the market size and low prime costs. Profit is high
but is declining. Selling price is competitive-edged but it cannot be reduced because there is not
much profit. The GE-Mckinsey matrix suggests that the service is at the selectivity growth stage.
Industry attractiveness is at the middle stage. As a result, this business may face a lot of competition.
Business strength is at a high level due to the variety of vehicles such as trucks and trailers, as well as a
refrigerated container which can cater to a larger variety of customer requirements. The BCG matrix
identifies the service at the cash cow stage. BCG(X) shows the middle volume of sales but BCG(Y)
shows high brand awareness because the company has been in business for a long time and has gained
loyalty from their customers. Identification and evaluation showed that the stage of the lifecycle is
medium. Details are shown in Table 1.

4.3.2. Service Re-Design: Case Study 3

The improvement to satisfy the customer is significant and the data is suggesting that the company
should re-design its delivery service. From BWM, long-term relationship criterion is the most important
one. The least important criterion is end of life decomposition. Table 7 shows an example of CRM
implementation for the case-study company.
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Table 7. Details of service re-design and improvement: Case Study 3.

Engineering Characteristics Target Setting

FR3 Implement CRM initiation Internet of Things/service and real-time autonomous service to
support customer

FR3.1 Focus long term partnership Real-time service, track and trace technology for support
product delivery

FR3.2 Respond quickly to the customer Autonomous service for quick response to support customers,
Application Technology to offer the client

FR3.3 Increase supplier relationship
Internet of Things/Service to improve efficiency and
transparency in the collaboration along the supply chain (e.g.,
responsive information platform)

5. Discussion

The study confirms the significance of technology advancement in business competitiveness.
In the case of logistics management, Industry 4.0 can fulfill the needs of Smart Logistics [42,68–70].
However, in the case of LSPs, limited research has clearly demonstrated the benefits of implementing
the Industry 4.0 concept [71,72], especially for re-designing service to accommodate customer needs
depending on their lifecycle stages.

It can be seen from the case studies that the Industry 4.0 concept can be applicable for re-designing
logistics services. With different growth stages and business strengths, the lifecycle stage of the
service can be identified. As a result, a suitable measurement can be suggested based on customer
requirements and technology readiness. Industry 4.0 tools, such as IoT, Big Data Analytics, and Virtual
Technology, are found to be supportive if the LSP wishes to accommodate their customers. This will
increase their competitiveness in the highly ambitious market. The implementation can be costly and
complicated [73], however further study must be conducted to determine if the measures are feasible.

6. Conclusions

In the Fourth Industrial Revolution, the customers require high-quality service from LSPs. Service
innovation is an important tool to compete in the world economy. This paper identified and investigated
each stage of the LSP service re-design. In the first step, the status of a lifecycle state was evaluated using
PLC analysis, Pareto analysis, matrix analysis (GE, BCG matrix), and fuzzy interference. The second
step re-designed the matured services for attaining customer satisfaction. QFD was used to create
and re-design logistics services. In the significant evaluation of criteria, BWM was applied to estimate
the important criteria in LSP’s Lifecycle Model that had eight criteria. The paper showed the results
from three logistics services which were at the maturity stage and that each company needed Industry
4.0 to improve their service quality. For case study 1, the most important factor was to design service
that meets customer requirements. To create new service and increase information, responsiveness is
an important factor to advance their operations. There are available tools of Industry 4.0 to address
these issues such as simulation, virtual technology, horizontal/vertical data integration, and Big Data
Analytics. As a result, the new service can be modeled and tested. The costs can be reduced. Data
can be analyzed to improve the existing service to meet customer requirements. For case study 2,
on-time delivery was the main point of competitiveness in the business. A long-term relationship was
also the main interest. Therefore, it was suggested that the service data should be used and analyzed
in order to improve service. The data should also be shared with the customers to improve their
satisfaction. For case study 3, the main focus was concerned with CRM initiation. Fulfilling customer
satisfaction to sustain their clients and to generate loyalty and trust was recommended. Here, IoT, IoS,
and autonomous service are a few examples of what can be used for that purpose.
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The paper shows that Industry 4.0 can be applied to re-design logistics service, but with caution.
Although the developed LSP Lifecycle Model and the presented methodology can provide suggestive
measures for LSP per their service requirements, there are some limitations. Whilst the first phase of
identification and evaluation can give contemplative and multi-dimensional observation of the service
of interest, the second phase of new service re-design can only be suggestive and the result is rather
dynamic. The implementation of the measures to solidly validate the model is required, which can be
even more challenging.
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Abstract: Industry is currently undergoing a revolution (called Revolution 4.0) related to the
far-reaching integration of all production areas through the digitization and the creation of new
communication channels. The Polish economy generated a GDP of USD 524.5 billion in 2017, of
which small and medium enterprises generated about 50% of revenue and in which microenterprises
accounted for the largest share in generating GDP; i.e., around 30.2%. The aim of the research is
to determine the adaptation possibilities of the small and medium-sized enterprises (SME) sector
to Industry 4.0 solutions. Pilot research was carried out in the Czestochowa Industrial District.
Enterprises from the SME sector were asked to provide an information about the used technologies
and to determine the level of their organization’s readiness for sustainable development through
technological transformation. Financial resources as well as a lack of specialized support in obtaining
new technologies were defined as problems as far as transformation is concerned. The solution of the
diagnosed problem is the development of a platform aimed at integrating the potential of enterprises
from the SME sector in order to undertake joint actions for sustainable development.

Keywords: sustainability; Industry 4.0; SMEs; e-business modelling

1. Introduction

Each enterprise works in a turbulent environment. Such conditions apply to different spheres of
business activity. It is important for an enterprise to observe such changes and, if necessary, to react
accordingly. Only an appropriate reaction allows an enterprise to adapt to this situation. The global
industrial landscape has changed dramatically over the past few years due to the rapid technological
development and innovation in production processes [1]. In recent years, many initiatives have been
launched for intelligent production in the world in order for a significant share of industry in the
economy to be stored and regained [2,3].

In recent years, a new, large industrial revolution can be observed, affecting the functioning of
enterprises in the market and resulting in different changes. This is the fourth wave of socio-economic
evolution, called Industry 4.0 [4,5]. The development towards Industry 4.0 has a significant impact
on the production industry. It presents the latest trends in automation technologies that are gaining
popularity in the manufacturing industry. Additionally, Industry 4.0 has become a new topic for
scientists dealing in disciplines such as management and business economics; thus, many publications
on this subject have appeared [6]. Industry 4.0 seems to be one of the most promising ideas in terms of
boosting industrialization and industrial competitiveness in EU countries [7].

The fourth industrial revolution differs from the previous ones because it applies to all aspects of
our lives. Within its framework, industry processes and commercializes the exchange of information
between people and between people and objects, as well as between the objects themselves [8]. Industry
4.0 gives the industry a new perspective that allows it to work with new technologies to achieve
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maximum efficiency with the minimal use of resources in the manufacturing industry. It affects the
strategies and operations of enterprises, as well as the relationships between enterprises, customers
and suppliers. In addition, decentralized production processes play an important role in Industry 4.0
through intelligent products that know their destinations, history, etc. [9].

The beginnings of Industry 4.0 stemmed from the strategy the German government started in 2013,
focusing on achieving greater operational efficiency and productivity through automation. The first
information about the Industry 4.0 concept appeared in 2014 at the World Economic Forum conference
in Davos [10–12].

The horizontal and vertical integration of production systems are the foundations of Industry
4.0. These systems are based on real-time data exchange and flexible production to enable customized
production [13,14]. The pillars of this evolution are, among others, the Internet of Things (allowing
global access to data and machines coupled into the network), autonomous robots/systems (autonomy of
production processes that allows for the full adjustment of production to the needs of the individualized
market), cyber security, huge amounts of data fpr processing (analysis of big data sets, Big Data
and Cloud Computing), additive printing (3D), advanced simulations, and virtual and extended
reality [8,15–18].

One of the main elements of Industry 4.0 is the Internet of Things. Since the end of the 20th century,
it has been possible to observe the progressive digitization of everything that surrounds us, as well as
the rapid development of the Internet. Currently, most European enterprises have access to the Internet,
and many of them offer their products via the Internet. Due to global communication, products and
components will be able to exchange data with any IoT devices, thus significantly expanding their
functions [19]. Digital transformation has not only changed the way the organization works, but, as a
result, the market is also transforming into a full value chain. Industry 4.0 causes essential changes to
issues such as the economy, work environment and skill development [20].

Virtual and extended reality is yet another significant element of Industry 4.0. It allows the
collection of large amounts of data and the creation of various types of platforms by a larger group
of enterprises. It also facilitates the exchange of a variety of information by employees within one
enterprise, but also within a group of enterprises. This exchange does not take place in the real world,
but a virtual one, which can be accessed from different places in the world.

Such changes take into account certain elements related to the concept of sustainable development.
From the environmental point of view, they allow for a smaller impact on the natural environment
and better use of materials. From the economic point of view, however, they are associated with
large financial expenditures, in particular the purchase of modern, highly developed machines, which
for many enterprises is unfortunately impossible. Intelligent machines can reduce the demand for
employees in the labor market, which indicates a social aspect. The growing trend in the literature
towards sustainable development within the Industry 4.0 model highlights the importance of this
topic, as well as various aspects that can be reliably resolved [21].

End-to-end engineering, which covers the entire product life cycle, should include an intelligent
network and digitization relating to individual stages of the product life cycle: it should start from the
raw material to the production system, then be applied to the use of the product, and only end with
decommissioning [22].

Many researchers have contributed to the concept of Industry 4.0 by describing the theoretical
aspects of this issue and then supporting them with practical solutions [12,22–28]. Nevertheless, there
are many topics related to Industry 4.0 that require deeper analysis. One of these issues is linking
Industry 4.0 with the concept of sustainable development, especially in the SME sector.

The development of enterprises using the assumptions of Industry 4.0 results in significant
opportunities for implementing sustainable production, all due to the use of the omnipresent
infrastructure of information and communication technologies (ICT). An important aspect in the
time of the fourth industrial revolution is that the SME sector has not been destroyed; therefore, the
doctrine of sustainable development is bound to work here. In current literature, it is an important
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determinant of the environmental dimension of sustainable development. Main resources such as
products, materials, energy and water and their allocation can be implemented by smart-linked value
creation modules [22]. Scientists still have to wait to determine how the implications of implementing
Industry 4.0 will affect local and global economies. It should be pointed out that no more than 7% of
research on Industry 4.0 focuses on the issue of sustainable development [1].

The industry has contributed to social welfare, which means that very high-quality products that
meet virtually all customers’ needs are produced, but at the same time, employees are also provided
with the proper working conditions. Simultaneously, it can be observed that the current production
structure still lacks adequate environmental sustainability. However, it is important that the industrial
sector produces in an economically, environmentally and socially sustainable manner to achieve
sustainable development [29].

Owing to Industry 4.0, new models of industrial management have been developed for small
and medium-sized enterprises (SMEs). This concept, supported by, among others, numerous new
technologies, is more flexible and cheaper compared to traditional IT systems used in enterprises; e.g.,
ERP (enterprise resource planning) and MES (manufacturing execution system). Unfortunately, small
and medium-sized enterprises are insufficiently equipped to make use of the new opportunities that
can aid production planning and control [30].

Sustainable development in the aspect of Industry 4.0 for the SME sector is, however, a very
complex issue, not only from the technical point of view, but also from a non-technical standpoint;
i.e., considering organizational factors and human resources. The generational change resulting from
the natural state of affairs results in the appearance of employees with new competences and skills in
the market, while, simultaneously, such abilities are often ahead of the adaptation possibilities of the
technological infrastructure of the SME sector [7,31,32].

Such a situation can be observed in the research region. In total, 80% of the analyzed enterprises
have problems with human resources. There are no specialists such as operators of universal devices
available on the market. The available staff are able to operate advanced processing equipment which
is unavailable for economic reasons for SMEs. This is the cause of the closure of economic activity by
almost 80% of business entities that have opened their economic activity in the SME sector over the
last three years [33].

Some of the production enterprises have changed into redistributive enterprises, outsourcing
production—mainly to China, where they can deal with the real revolution of robotization and
production automation resulting from the established priorities of the 5th Five Year Plan, as well as
the objectives of the Made in China 2025 program. A considerable problem related to sustainable
development in the SME sector, which is extremely noticeable due to economic factors and human
resources, has been detected. It is possible to observe the liquidation of jobs and the transfer of
production to China, where there is a large concentration of production and the exchange of the
structure of business entities [34,35].

However, it should be emphasized that the Chinese market is also subject to dynamic changes
and a significant increase in production robots per employee. In Poland, there are 20–30 robots per
10,000 employees. In the Czech Republic and Slovakia, this ratio is almost three times higher, and in
Germany, this number is 10 times higher. In China, where there is a very rapid increase in wages, it is
estimated that, by 2020, there will have been 100 robots per 10,000 employees. In 2017, the Digital
Economy and Society Index (DESI) reported that Poland was 23rd in the group of 28 EU Member
States. In 2016, 8.2% of Polish enterprises used Cloud Computing services.

In order to maintain sustainable development in the SME sector of the metal industry, taking into
account the economic factor, external funds should be obtained to change the technological equipment.
There is, however, a problem related to the product portfolio, which may be unsatisfactory in relation
to the new machinery. The production load may be insufficient to obtain a positive financial result.

The main aim of the conducted research is to analyze the level of automation and robotization and
to assess the current state of enterprises from the SME sector and to check whether these enterprises
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would be interested in using modern communication channels based on the platform structure, enabling
the optimization of the product portfolio of producers based on a consolidation and optimization of the
investment strategy in terms of obtaining modern flexible technologies compliant with the Industry
4.0 standard.

In this article, the results of pilot research related to the impact of changes in Industry 4.0 on small
and medium-sized enterprises in the Czestochowa Industrial District were presented.

This paper concerns a very important issue related to the implementation of Industry 4.0 in small
and medium enterprises. The survey that was used for the study was created on the basis of the
initial analysis (preliminary questionnaire and expert interview). The major problems related to the
implementation of Industry 4.0 in enterprises of the SME sector which were mentioned most often by
respondents have been summarized. The survey was created as a result of initial analysis and was
sent to the research enterprises. The set of questions that were used in the research and which are
presented in the paper can be used by other scientists for similar research. The results of the pilot
research themselves, presented in this paper, indicate the level of encountered problems and may form
the basis for further research carried out by other research centers.

The remaining part of the article is organized as follows: Section 2 presents the problem description,
which was the basis for further research. Section 3 includes the presentation of the research materials
and method. In Section 4, the main results with their discussion are presented, while in Section 5, the
main conclusions of the paper are presented.

2. Problems Description

The Czestochowa Industrial District is the third largest industrial district of the Silesian Voivodship.
The basis of this district is the metallurgical and metal industries. It should also be emphasized that, in
this district, enterprises from the SME sector are the most numerous. In many cases, they are family
enterprises which have been passed from generation to generation.

Many enterprises from this district are old and have a lasting tradition. They have established
a reputation on the market and created a group of their own customers. Unfortunately, they are
equipped with old devices, which often break down. Due to the low profit, low productivity and low
production level, they cannot afford to buy new, modern machines which are already fully automated.
Often, it may also turn out that, even if it was possible to buy a machine, it would not be economically
viable, because the efficiency of such a machine would be too high for a given enterprise. Enterprises
from the SME sector in Poland are poorly equipped in terms of both computers and Internet access.

Generally, all over the world, small and medium-sized enterprises often do not have sufficient
funds to invest in the latest technologies and must allocate capital very effectively and carefully. [17,36].
Other problems are difficulties in hiring staff, the high cost of staff and big competition.

Old equipment is primarily a problem from the production and economic point of view for a
given enterprise. Old machines often break down, require a great deal of renovation, are not very
efficient and often cause incompatibilities from the point of view of employees and are also dangerous
to use. This affects the costs of the enterprise’s operation, especially the cost of repairs and thus result
in high prices of the sold products. Moreover, old equipment also has a greater impact on the natural
environment surrounding such enterprises, increasing waste and emissions to the atmosphere. It
should be mentioned that Czestochowa and the surrounding area are part of the Cracow-Czestochowa
Upland; i.e., green and tourist areas. However, there is a continuous increase in investment outlays for
new and used fixed assets [37].

Another problem that is common in the whole country as well as in the region is the lack of
employees. Currently, the employees more often dictate conditions and the employers try to convince
them to work for them. This is due to the fact that many people, after Poland’s accession to the
European Union, left the country to look for a job abroad. Many of these people are qualified
employees—specialists who were not satisfied with their salary in Poland. Consequently, there are
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almost no people who can handle specialized machines. The outflow of employees also affects the
economics of the research region.

More and more employees from other countries are hired: employees from Ukraine, Turkey
or Serbia, however, do not have all the necessary skills. Workers from China, despite having such
skills, are, however, not very flexible, and the cost of their transport and stay in Poland is very high.
Also, communicating with such employees poses a problem as most of them do not speak Polish, and
they often do not even know any of the congress languages, which would facilitate communication.
It should also be emphasized that the Polish language is one of the most difficult to learn; furthermore,
the forecasts indicate that many employees—for example, from Ukraine—may soon leave Poland to
work in German enterprises due to the liberalization of the German labor market for that country.

One of the ideas that would help solve the above problems would be a platform in which several
enterprises would buy machines together in order to reduce the purchase costs per enterprise and
make better use of their production capacity. A group of employees should be employed to operate the
machines, and both would be paid by all the involved enterprises on the basis of the capacity utilization.
The platform could also offer sales of production capacities to other interested entrepreneurs, as well
as taking advantage of the possibility of co-employing employees or exchanging information.

The idea of creating a platform is not new. It was used by other enterprises from other industrial
sectors. In many cities in eastern Europe, stationary versions of such platforms are created; i.e.
technology parks, special branches at industry chambers or clusters. They bring together enterprises
with similar production and gather good practices and experience focused on specific industries.
However, it should be checked whether the enterprises of the research region would be willing to take
part in the described platform.

Research on Industry 4.0 in the SME sector has been conducted by scientists in other countries.
According to Turkish researchers, most Turkish SMEs currently use sensor systems, automation and
preventative maintenance. Nevertheless, at the same time, many enterprises do not have knowledge
about the Internet of Things, additive (3D) production, augmented reality and large data. Most
enterprises believe that high costs are unfortunately the main barrier to the implementation of Industry
4.0 technology. Research has also pointed out that SMEs need more information on the adoption of
Industry 4.0 [38].

The Chinese government wants to build intelligent production systems that will become
competitive on the global market and which will be at the level of ubiquitous information systems
and communication systems. China’s goal is to reduce their dependence on imported products by
purchasing technologies for production; for example, in the automotive sector [39,40].

European Member States and their individual regions are involved in adapting their innovation
systems to the objectives of Industry 4.0, and Europe as a whole faces the challenge of striking a balance
between elements such as promoting excellence in research and innovation, sustainable development
and the positioning of less developed regions to make the most of the benefits of the ongoing industrial
revolution [41].

The patronage of the European Union is a centralized guideline regarding the implementation of
Industry 4.0. Several important programs have been created at the European level, but many European
countries have come out with their own initiatives and their own funding objectives and programs.
The US is working on technology for future production. The consortium also includes important
German companies such as Siemens and Bosch. The main focus is on IoT and the connection of future
factories. According to Industry 4.0, production should be more efficient while value-added processes
should be optimized. In addition, enterprises want greater machine availability as well as a high level
of customized production [39].

Researchers from Estonia emphasize the relationship between networking, organizational
development, structural framework conditions and sustainable development in the context of Industry
4.0. Many production facilities never develop a mature organizational culture, so employees often
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lack a common organizational way of thinking, which may cause organizational inefficiencies in the
production plant, as well as impede communication and cooperation [7].

3. Methodology

Pilot research was carried out in the production enterprises of the SME sector in the area of
the Silesian Voivodship. The industry, which is located in this voivodship, has been experiencing
huge changes in recent years. Previously, this was a region in which mines and enterprises from the
metallurgical industry predominated; currently, production companies prevail.

The results presented in this paper concern enterprises from the Czestochowa Industrial District.
As a test sample, 200 business entities from the selected area were involved. The aim of the research
was to identify areas and problems in the field of Industry 4.0 and to identify opportunities to find
potential solutions in the field of Industry 4.0 for manufacturing enterprises from the SME sector. The
classification for the research sample was a minimum of 10 years of production activity and the size of
employment that classified the enterprise in the SME sector.

Based on the results of the preliminary questionnaire, supplemented by an expert interview,
the main areas and problems in the case of enterprises of the SME sector from our region related
to the implementation of solutions in the field of Industry 4.0 were defined. The solutions used in
Germany have been adopted as a reference point. Activities related to the implementation of Industry
4.0 are supported at a government level, as evidenced by the implementation of the recommendations
issued [42]. A special Internet platform has even been created [43]. Therefore, one should expect
significant progress in these activities in the coming years. Previously defined problems and solutions
used in Germany were the basis for the research presented in the paper.

The research consists of three stages (Figure 1): In the first part, the characteristics of the enterprises
participating in the research were made and their current status was assessed. This stage had a form of
a survey. The second stage took the form of an expert interview with the enterprises who agreed to
share information on the problems in Industry 4.0 they had encountered. In the third stage, a survey
was again used—this time, to assess the possibility of creating a platform to facilitate Industry 4.0.
Both surveys were completed by the same enterprises (in an electronic way).

 

Figure 1. Stages of the research.

Part I. Characteristics of research objects and assessment of their current status.
This part concerned issues related to the type, form of production, automation and the used

software. This part took the form of a questionnaire survey. This part of the research was conducted in
spring 2018. The question area concerned the following:

1. Type of production organization used in the enterprise: unit, serial, mass–serial, mass;
2. The level of automation and robotization of production, assembly, transport and

storage operations;
3. Use of industrial robots;
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4. Use of an autonomous transport system;
5. Use of the product modeling programs;
6. Use of the modeling production processes programs;
7. Use of the CIM system (Computer Integrated Manufacturing);
8. JIT (Just in Time) and KANBAN integration with suppliers and customer;
9. VSM (Value Stream Mapping) studies for the current state of the enterprise;
10. Measurement and monitoring of the value stream and the manner of performing these operations

(manually, computer system);
11. Independence or integrating the operation of a computer system in an enterprise;
12. Use of the TPM method (Total Productive Maintenance);
13. Use of OEE indicators (Overall Equipment Effectiveness);
14. Identification of products, tools and materials in the system; e.g., the use of chips, bar codes or

RFID (Radio-frequency identification);
15. Possibilities for sending commands directly by the system to particular elements;
16. Types of process database, database servers (own or Cloud) and their security;
17. Use of 3D printing technology during product prototyping;
18. Use of 3D printing technology during the production process;
19. Individualization of the product, mass customization and application of modular structure

of products;
20. Use of AI or artificial intelligence in an enterprise.

Due to the fact that different rating scales were used, it was decided to use the methodology
proposed by R. Kolman in quality engineering for the overall assessment of product quality [44]. For
this purpose, one of the transformational methods was chosen—i.e., grading gradually (used for
both measurable and non-measurable features)—and then the individual groups of responses were
transformed to the interval (0.1), where 1 means the full modernity of the enterprise. In this way, it
was possible to compare the responses and assess the overall current status of the research enterprises.

In the case of area 2, the respondents were asked to assess the level of automation and robotization
of individual operations on a scale of 1–5, where 1 meant manual machine processes and meant 5 full
automation and robotization. Then, the assessments were transformed as follows: 1, 0.1; 2, 0.3; 3, 0.5; 4,
0.7, 5: 0.9.

In the case of areas 3–10 and 12–20, respondents could indicate whether such an instrument is
used in their enterprise, choosing one of the following responses: I do not know, no, sometimes, yes.
In this case, the transformation was the following: I do not know, 0.1; no, 0.3; sometimes, 0.7; yes, 0.9.

Additional information was obtained for areas 10 and 16. In area 10, people were asked whether
metering and monitoring was carried out manually (0.3) or by a computer (0.9), while in the case of
area 16, they were asked whether the enterprises’ databases were their own databases (0.3) or the
Cloud (0.9). A separate scale was given to area 11. Enterprises were asked about the operation of a
computer system: an independent system (0.3) or an integrated system (0.9).

Part II. Problems encountered in Industry 4.0.
The second part of the research took the form of an expert interview. It concerned the identification

of obstacles and problems related to the use of various types of instruments aimed at modernizing
the enterprise. This part of the research was conducted in summer and autumn 2018. The following
questions were asked:

1. What are the obstacles associated with increasing the level of automation and robotization of
production processes?

2. What are the obstacles associated with increasing the level of automation and robotization of
warehouse processes?
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3. What are the obstacles associated with increasing the level of automation and robotization of
transport processes?

4. What are the obstacles associated with the use of robots and process simulation programs?
5. Is there a need to monitor processes in real time?
6. What are the obstacles associated with the monitoring of the processes in real time?
7. Does the enterprise see the need to switch to a pull system and use JIT, KANBAN or other systems?
8. What are the problems associated with the implementation of JIT, KANBAN or other systems or

on the side of the system itself, people or integration with external entities?
9. What are the problems with monitoring processes, documenting and selling data and their use in

the field of process improvement and optimization?
10. What are the problems with the implementation and use of TPM?
11. What are the problems with monitoring and supervision over the material, product and tool

during the process?
12. What problems did the enterprise encounter when individualizing the product?

Due to the fact that these were open questions, the grouping methodology proposed in the CIT
method was applied [45,46] and used in the assessment of the service quality, but without any division
into positive and negative answers. The responses for individual areas were grouped according to
their similarity, and so it was possible to indicate which responses (groups of responses) were the
most common.

Part III. Industry 4.0 in enterprises from the SME sector.
Based on the expert interview and the most frequently indicated problems, a second questionnaire

was developed to obtain the answer to whether creating a platform aimed at initiating activities to
facilitate Industry 4.0 is justified in the opinion of entrepreneurs from the SME sector. Then, the survey
was sent to companies that agreed to take part in the first research. The research was conducted from
January to April 2019. The questions from the second questionnaire concerned the following:

1. The average age of owned production machines;
2. The production capacity in relation to the expectations and the level of its possible increase or the

sale of a possible surplus;
3. Planning the purchase of new production equipment;
4. Problems related to planning the purchase of such equipment;
5. Possible problems with the number of employed employees and actions eliminating shortages

in employment;
6. Willingness to participate in a platform that would bring together similar enterprises;
7. Willingness to share the purchase and use of machines within the platform;
8. Willing to co-employ employees within the platform;
9. Exchange of information regarding machines and employees within the platform;
10. Willingness to sell/buy production capacity as part of the platform;
11. Willingness to jointly develop a product within the platform.

The research was conducted among the enterprises whose headquarters are located in the
Czestochowa Industrial District. The research was addressed to enterprises from the SME sector;
however, large enterprises employing over 250 people were also included in the characteristics of
the respondents. In this way, surveys completed by enterprises not from the SME sector could be
eliminated. The results were obtained from 194 enterprises; however, seven of them were rejected.

In total, 28% of the surveyed objects were enterprises in which there was a unit type of production,
53% of respondents declared serial production, 8% mass–serial production, and 11% mass production.
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4. Results and Discussion

The analysis of pilot research in the field of evaluation of production entities in the aspect of
preparation for Industry 4.0 allowed us to draw interesting results. The assessment of the current
status of surveyed enterprises is shown in Figure 2.
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Figure 2. (a) The level of automation and robotization of individual operations; (b), (c), (d) assessment
of the current state in the research enterprises.

From the analysis of Figure 2a, it can be concluded that the lowest level of automation and
robotization among individual operations was recorded in the case of the storage operations (over
0.1). In the case of the other three types of operations, this level was similar but still low (about 0.3).
The research enterprises are equipped with old, non-automated devices, which often break down. In
general, the level of automation and robotization of Polish enterprises from the SME sector is lower
than similar enterprises from other European Union countries.

Some of the research enterprises indicated that they sometimes use different programs for product
modeling and for modeling production processes. They also secure process databases and database
servers, but it should be emphasized that this results from the new provisions of the GDPR (General
Data Protection Regulation) in force in the European Union.

Most instruments are used very rarely by a small number of enterprises. It was not known
whether enterprises do not know these instruments or have problems using them. The expert interview
examined the reason for this situation.

Summarizing the first part of the study, it can be pointed out that the average assessment of the
current state of the surveyed enterprises of the SME sector in the range (0; 1) is 0.38, which is low.
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The research enterprises are equipped with old, non-automated equipment, which often breaks down.
Only a few of them use a variety of instruments supporting production processes. Many of them have
no idea about the existence of such instruments or do not know their names.

Based on the obtained results, it can be concluded that production systems in the SME sector are
characterized by a low level of system integration as well as a low level of robotization and automation.
This is mainly caused by the size of these enterprises and the lack of capital for investments.

The next part of the study (expert interview) concerned the identification of obstacles and problems
related to the use of various types of instruments aimed at modernizing the enterprise. The most
important results are presented in Figures 3–5.
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Figure 3. Obstacles associated with increasing the level of automation and robotization of different
processes in enterprises.
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Figure 4. Problems with monitoring processes, documenting and selling data and their use in the field
of process improvement and optimization, and monitoring and supervision of the material, product
and tools during the process.
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Figure 5. Problems when implementing various systems.

During the expert interview, the research enterprises showed that there is a need to monitor
individual processes in real time. This is mainly related to the need to constantly control the course
of these processes. These enterprises can also see the need to switch to a pull system and use JIT,
KANBAN or other systems. This is related to the type of production that takes place in these facilities,
which depends on the customers’ orders and the sizes of these enterprises, because most enterprises
from the SME sector cannot afford freezing capital.

The enterprises indicated many problems related to the implementation or use of various
instruments aimed at improving their business. The resistance of employees is an important problem.
Management must convince employees that changes are good and important and explain the need to
implement them, but in the beginning, the same management must be convinced of such changes.

The problem with staff is a significant problem in Poland, including among research enterprises.
It is an important social aspect of the functioning of enterprises, which determines the success of the
entire enterprise and the introduced changes.

During the research, the enterprises pointed to the lack of specialists—operators who are able to
handle the so-called analog production systems and the lack of specialists in the field of automation,
robotics and IT. The employment of people especially from the second group is associated with high
costs of obtaining and paying for this professional group.

Currently, enterprises hire specialists mainly from Turkey, Serbia and Ukraine; however, there are
language barriers, sometimes cultural barriers, and a lack of infrastructure for foreign workers.

The results of the expert interview suggest that a certain solution may be the integration of SME
sector production entities in the transition to Industry 4.0 through the development of a common
product portfolio based on technological similarity. As a result, it is possible to reduce the costs of
purchasing technical resources, reduce costs, and increase productivity through the optimal use of a
universal machine park and greater individualization of the product.

The most important part of the research concerned the creation of a platform aimed at initiating
actions to facilitate Industry 4.0 and especially its success among enterprises from SME sector. These
results are shown in Figures 6–9.
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Figure 6. (a) Current production capacity in relation to the expectations of the enterprise; (b) if the
production capacity is too small, then, how much would the enterprise like to increase it?

Only 27% of the research enterprises assessed their production capacity as just right. For 62%,
the production capacity was too small. 32% of respondents would willingly increase their production
capacity to 25%, and another 47% of respondents would increase their capacity even by up to 50%.
However, they are not able to do this at their own expense. All companies with overcapacity are
interested in its possible sale, and those with too little production capacity are interested in its
possible purchase.
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Figure 7. (a) Is the company interested in purchasing new equipment? (b) If they cannot, why?
(possibly more than one answer).

Over 80% of all respondents were interested in purchasing new, more advanced equipment.
Unfortunately, 65% of them, despite their willingness, were unable to do it. The most important
reasons for this situation are the lack of adequate capital and the impossibility of obtaining a loan.
Without the capital, the purchase of new equipment is not possible.
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Figure 8. (a) Does the enterprise have problems with a lack of employees? (b) What is done in case of a
lack of employees? (possibly more than one answer).

In total, 68% of respondents have problems with a lack of employees, while another 23% indicated
the occurrence of this problem periodically. The enterprises are trying to solve this problem in various
ways. Among the most common solutions were large expenditures on advertisements, searching for
foreign employees and cooperation with employment offices.

It should be reminded that there is a lack of specialists in Poland. After Poland’s accession to the
European Union, there was a huge outflow of employees of all types from the domestic market, which
resulted in the labor market changing from an employer’s market to an employees’ market. Perhaps
these enterprises should be interested in cooperation with local high schools, universities, which could
educate students in the subjects indicated by them.
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Figure 9. (a) Is the enterprise interested in taking part in a platform bringing together similar enterprises
with similar problems? (b) Would the enterprise within such a platform be interested in the joint
purchase and use of machines? (c) Would the enterprise within such a platform be interested in
co-employing employees e.g. to operate these machines? (d) Would the enterprise within such a
platform be interested in exchanging information on machines and employees? (e) Would the enterprise
within such a platform be interested in selling/buying production capacity? (f) Would the enterprise
within such a platform be interested in jointly development of a product?

In total, 63% of the research enterprises expressed their willingness to take part in a platform
bringing similar enterprises with similar problems, while another 16% were also interested, although
not completely sure of this decision. In total, 63% of respondents would be interested in the joint
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purchase and use of machines, while another 24% were not sure about this until the end. According
to the respondents, co-employing employees would be a good idea (72% answered yes and 13%
inclined towards yes). This would help to solve problems with employment, especially regarding
the employment of specialists. The enterprises were also interested in exchanging information on
machines and employees within such a platform. An important point was the ability to sell/buy
production capacity, which was declared by 74% of the research enterprises (plus 23% who were not
entirely certain).

The enterprises were least interested in the joint development of products (only 25% of indications
for yes, and 39% were not entirely certain). This may be related to the fact that these enterprises belong
to different industries and produce different products, or it is possible that these enterprises may also,
despite their willingness to cooperate, want to remain competitive in the market.

From the conducted research, it can be concluded that enterprises from the SME sector from the
Czestochowa Industrial District are focused on changes, but they cannot always afford them. However,
if it were possible, they would like to cooperate with similar enterprises to invest in new equipment
or employees.

5. Conclusions

As Herzog, Buchmeister, Beharic, et al. wrote [47], radical changes and transformations of various
types of production systems, which are oriented on the assumptions of Industry 4.0, are possible
mainly due to the development of disruptive technologies and the digital era. The fourth industrial
revolution is a fact based on digitization; it has a variety of uses, from everyday tasks in the home to
the automation of production processes. This industry is based on the systematic use of information
technology. This situation is affected by many elements, including the development of automation, data
processing and exchange, manufacturing techniques and the management organization of all processes.
The key solutions that are used in Industry 4.0 can have a significant impact on the overall situation
of the enterprise. The most important factors include increasing productivity and the availability
of production resources, increasing equipment and production efficiency, and increasing value per
employee [48].

However, it should be remembered that Industry 4.0 is not only about technology, but also about
new ways of working and the role of people in industry. The Internet plays an increasingly important
role in everyday life—not only of ordinary people, but above all of enterprises. E-enterprises are
becoming more and more popular, which is caused by growing social awareness with relation to the
role of the Internet. Activities that are undertaken by electronic means may reach a greater number of
customers over a much faster time period and at a lower cost [49].

An important element which is often overlooked in the case of research on Industry 4.0 is
sustainable development. It should be remembered that the structure of sustainable management
can be introduced in different ways [50,51]. Two important elements of sustainable development are
economics and society, from which it can be concluded that employees and their proper motivation are
the key issue here.

Whether a management team successfully develops its enterprise and increases its competitiveness
and income depends on many factors [52]. This is much more difficult for small and medium-sized
enterprises, as enterprises in this sector have at their disposal less capital, fewer employees, less
productivity, and less of much else besides. They may be supported in their effort by specific-oriented
models [53], a deeper analysis of a process [54] and special technologies [55] or approaches [56,57]
giving them a competitive advantage.

It is not easy for small and medium-sized enterprises to transform according to Industry 4.0. First
of all, this is due to the economic aspect and the human factor. The product and technology portfolio
available to small and medium enterprises is not adapted to the following industrial transformation.
Therefore, they must look for solutions that, to some extent, may allow them to do this.
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In this paper, analyses of the level of automation and robotics, an assessment of the current state
of enterprises from the SME sector and a verification of whether these enterprises would be interested
in using modern communication channels based on the platform structure, enabling the optimization
of the product portfolio of producers based on a consolidation and optimization of the investment
strategy in terms of obtaining modern flexible technologies compliant with the Industry 4.0 standard,
were presented. In this paper, the results of pilot research were included. This research took the form
of a survey and expert interview. Pilot research was carried out in the Czestochowa Industrial District.

As a result of the conducted research, a hypothesis can be put forward, whose confirmation
requires additional, further research. The determinants of implementing Industry 4.0 in the SME sector
are difficult and demanding. The reason for this situation is the fragmentation of the technological and
product portfolio in this sector, as well as the high level of costs of automation and robotization of
production processes.

The human factor is another factor determining the effectiveness of the transformation process.
Unlike in the case of China, where automation and robotization are perceived through the
human–machine or the machine–human perspectives, in the research area presented in this paper, this
process equals the loss of a job, hence the resistance of employees to making changes.

The summary of this research results is the determination of the three main barriers to Industry 4.0
in the SME sector. The first barrier is the narrow product portfolio of SMEs, which does not guarantee
full use of the efficiency of automated and autonomous production systems. The second barrier is
the cost of obtaining money; i.e., the funds for a given investment. An adverse condition is also the
turbulence of the environment from the micro and macro aspect.

The results presented in the paper are not without limitations. The research survey was created
on the basis of a preliminary survey and expert interview with a small group of enterprises of the SME
sector. The authors could not find the main problems in the field of the Industry 4.0; therefore, some
factor could have been omitted. Only the most important results are presented, and consequently,
some elements might be overlooked, which may affect the understanding of the results. The pilot
research will allow minor changes to be made to the survey form before proceeding to the next stage of
the study.

The research presented in the paper will be continued in other parts of Poland and later will also
be continued in other European countries. Additionally, the results of these research works will be
compared with each other.
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8. Ślusarczyk, B. Industry 4.0—Are We Ready? Pol. J. Manag. Stud. 2018, 17, 232–248. [CrossRef]
9. Kagermann, H.; Lukas, W.; Wahlster, W. Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4.0

industriellen Revolution. VDI Nachrichten 2011, 13, 2.
10. Strandhagen, J.W.; Alfnes, E.; Strandhagen, J.O.; Vallandingham, L.R. The fit of Industry 4.0 applications in

manufacturing logistics: A multiple case study. Adv. Manuf. 2017, 5, 344–358. [CrossRef]
11. Liao, Y.; Deschamps, F.; Loures, E.D.F.R.; Ramos, L.F.P. Past, Present and Future of Industry 4.0—A Systematic

Literature Review and Research Agenda Proposal. Int. J. Prod. Res. 2017, 55, 3609–3629. [CrossRef]
12. Lasi, H.; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242.

[CrossRef]
13. Li, G.; Hou, Y.; Wu, A. Fourth Industrial Revolution: Technological Drivers, Impacts and Coping Methods.

Chin. Geogr. Sci. 2017, 27, 626–637. [CrossRef]
14. Thoben, K.D.; Wiesner, S.; Wuest, T. Industrie 4.0 and Smart Manufacturing—A Review of Research Issues

and Application Examples. Int. J. Autom. Technol. 2017, 11, 4–16. [CrossRef]
15. Pereira, A.C.; Romero, F. A review of the meanings and the implications of the Industry 4.0 concept.

Procedia Manuf. 2017, 13, 1206–1214. [CrossRef]
16. Zhou, K.; Liu, T.; Zhou, L. August. Industry 4.0: Towards Future Industrial Opportunities and Challenges.

In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD), Zhangjiajie, China, 15–17 August 2015; IEEE: Piscataway, NJ, USA, 2015.

17. Erol, S.; Jaeger, A.; Hold, P.; Ott, K.; Sihn, W. Tangible industry 4.0: A scenario-based approach to learning for
the future of production. Procedia Cirp 2016, 54, 13–18. [CrossRef]

18. Wittenberg, C. Cause the trend industry 4.0 in the automated industry to new requirements on user interfaces?
In Human–Computer Interaction: Users and Contexts. Lecture Notes in Computer Science; Kurosu, M., Ed.;
Springer: Cham, Switzerland, 2015; Volume 9171, pp. 238–245.

19. Hitpass, B.; Astudillo, H. Editorial: Industry 4.0 Challenges for Business Process Management and
Electronic-Commerce. J. Theor. Appl. El. Commer. Res. 2019, 14, 1–3.

20. Sony, M. Industry 4.0 and lean management: A proposed integration model and research propositions.
Prod. Manuf. Res. Open Access J. 2018, 6, 416–432. [CrossRef]

21. Bonilla, S.H.; Silva, H.R.O.; da Silva, M.T.; Goncalves, R.F.; Sacomano, J.B. Industry 4.0 and Sustainability
Implications: A Scenario-Based Analysis of the Impacts and Challenges. Sustainability 2018, 10, 3740.
[CrossRef]

22. Stock, T.; Seliger, G. Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia CIRP 2016, 40,
536–541. [CrossRef]

23. Cheng, G.J.; Liu, L.T.; Qiang, X.J.; Liu, Y. Industry 4.0 development and application of intelligent
manufacturing. In Proceedings of the 2016 International Conference on Information System and Artificial
Intelligence (ISAI), Hong Kong, China, 24–26 June 2016; IEEE: Berrechid, Morocco, 2016.

24. Fonseca, L.M. Industry 4.0 and the digital society: Concepts, dimensions and envisioned benefits.
In Proceedings of the International Conference on Business Excellence, Bucharest, Romania, 22–23 March
2018; Sciendo: Bucharest, Romania, 2018.

25. Kagermann, H. Change through digitization—Value creation in the age of Industry 4.0. In Management of
Permanant Change; Albach, H., Meffert, H., Pinkwart, A., Eds.; Springer Gabler: Wiesbaden, Germany, 2015;
pp. 23–45.

26. Rubmann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; Justus, J.; Engel, P.; Harnisch, M. Industry 4.0: The Future
of Productivity and Growth in Manufacturing Industries; Boston Consulting Group: Boston, MA, USA, 2015;
pp. 1–20.

27. Yen, C.T.; Liu, Y.C.; Lin, C.C.; Kao, C.C.; Wang, W.B.; Hsu, Y.R. Advanced manufacturing solution to Industry
4.0 trend through sensing network and Cloud Computing technologies. In Proceedings of the 2014 IEEE
International Conference on Automation Science and Engineering (CASE), Taipei, Taiwan, 18–22 August
2014; IEEE: Piscataway, NJ, USA, 2014.

182



Sustainability 2020, 12, 217

28. Bertola, P.; Teunissen, J. Fashion 4.0. Innovating Fashion Industry Through Digital Transformation. RJTA
2018, 22, 352–369. [CrossRef]

29. Ingaldi, M.; Jursova, S. Economy and Possibilities of Waste Utilization in Poland. In Proceedings of the
METAL 2013 22nd International Conference on Metallurgy and Materials, Brno, Czech Republic, 15–17 May
2013; TANGER Ltd.: Ostrava, Czech Republic, 2013.

30. Moeuf, A.; Pellerin, R.; Lamouri, S.; Tamayo-Giraldo, S.; Barbaray, R. The industrial management of SMEs in
the era of Industry 4.0. Int. J. Prod. Res. 2018, 56, 1118–1136. [CrossRef]

31. Müller, J.M.; Voigt, K.I. Sustainable Industrial Value Creation in SMEs: A Comparison between Industry 4.0
and Made in China 2025. IJPEM-GT 2018, 5, 659–670.

32. Müller, J.M.; Buliga, O.; Voigt, K.I. Fortune Favors the Prepared: How SMEs Approach Business Model
Innovations in Industry 4.0. Technol. Forecast. Soc. 2018, 132, 2–17. [CrossRef]

33. Glowny Urzad Statystyczny. Available online: www.stat.gov.pl (accessed on 10 August 2018).
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Abstract: Assembly supply chain systems are becoming increasingly complex and, as a result, there is
more and more need to design and manage them in a way that benefits the producers and also
satisfies the interests of community stakeholders. The structural (static) complexity of assembly
supply chain networks is one of the most important factors influencing overall system complexity.
Structures of such networks can be modeled as a graph, with machines as nodes and material flow
between the nodes as links. The purpose of this paper is to analyze existing assembly supply chain
complexity assessment methods and propose such complexity metric(s) that will be able to accurately
reflect not only specific criteria for static complexity measures, but also selected sustainability aspects.
The obtained results of this research showed that selected complexity indicators reflect sustainability
facets in different ways, but one of them met the mentioned requirements acceptably.

Keywords: assembly supply chain; sustainability; complexity indicators; testing criteria

1. Introduction

In the past decades, product and manufacturing process developments have faced rapidly
changing market needs. This global trend has resulted in more complex products and manufacturing
processes to produce them. As is well known, assembly processes play a key role in production
systems. Therefore, any effort for the improvement and optimization of the assembly process is vital to
manufacturing competitiveness, since about 50% of the product cost should be ascribed to the assembly
phase [1]. One possible way to improve manufacturing competitiveness is to reduce assembly process
complexity and the associated cost. Even though the system complexity is inherent and cannot be
avoided, it has to be kept affordable. Before defining system complexity for specific purposes, it is
important to present some background on complexity as such. According to Flood and Carson [2],
“complexity does not solely exist in things, to be observed from their surface and beneath their surface”.
Flood [3] adds that if systems are tangible things, then complexity and system are synonymous,
where system is prime. According to Faulconbridge and Ryan [4], “a system necessarily has a
boundary through which it or its elements interact with elements or systems outside the boundary”.
This system-inherent property allows us to adopt graph complexity measures for the complexity
quantification of engineered systems [5]. Reynolds [6] points out that the structural modeling approach
is applicable for clearly structured systems, in contrast to the behavioral approach, where structure is
not assumed a priori. In the context of the architectural design, system complexity is proportional to
the risk that the functional requirements cannot be met [7]. In order to briefly introduce a structural
complexity measurement problem, it would be useful to mention the fact that prevalent approaches
toward measuring system complexity are based on entropy theory (see, e.g., [8–11]). Entropy can
be interpreted in different ways, but in terms of technical systems, it is construed as a measure of
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information. This entropy measure was introduced by Shannon and Weaver [12], who reduced the
concept of entropy to pure probability theory. Their considerations were adopted by Frizelle and
Woodcock [13] in order to define static and dynamic system complexity. In regard to the scope of this
paper, our primary concern is static system complexity, defined as the amount of information needed
to specify the system and its components. System complexity belongs to general systems theory,
because it has been applied to different kinds of systems, including technical, social, and biological
networks [14–16].

The purpose of this paper is to analyze existing complexity assessment methods to measure
assembly supply chain (ASC) complexity and propose accurate complexity metric(s) that will include
not only specific criteria for static complexity measures, but also sustainability viewpoints.

2. Related Works

The recent literature offers several different views on the relation between the sustainability
and complexity of manufacturing systems, including ASCs. For instance, Peralta et al. [17] argue
that it is necessary to establish new approaches that reduce increasing complexity of manufacturing
systems in the design and management stage in order to promote their sustainability. For that purpose,
they developed a so-called fractal model for sustainable manufacturing. Moldawska [18] proposed
a complexity-based model of sustainable manufacturing, assuming that sustainable manufacturing
organization tends to maintain its own sustainability, as well as contribute to the sustainability of the
world. Relations between supply chains and sustainability were also treated in works [19,20] in which
the authors analyzed the effect of distributed manufacturing systems on sustainability. The study [21]
explored the influence of mass customization strategy on the configuration complexity of assembly
systems, and their authors proposed bounds for configuration complexity scale. ASCs in terms of
mass customization can lead to very complex systems due to the high number of product variants.
It has been proved that variety itself also has a significant impact on productivity, increased costs,
and quality [22,23]. Therefore, such companies need to consider integrating their business practices
with sustainability and reducing supply chain costs to achieve a competitive advantage [24–26].

3. Methodology Framework

When exploring the relation between ASC structural complexity and sustainability, one has to
consider the fact that lower ASC structural complexity has a positive implication on material costs,
energy costs, and organizational costs. Moreover, it is rather clear that the first of the two items
are directly related not only to economic burden, but also to environmental quality. Therefore, the
two fundamental elements of sustainability practice, i.e., economic prosperity and environmental
protection, is further the main subject of our interest in the context of ASCs. Because it is rather
complicated to sufficiently estimate the relation between the structural complexity of ASCs and social
implications, the social aspect of sustainability in our approach is omitted. Nevertheless, it has to
be mentioned that increasing organizational complexity can cause positive implications on social
advancement [27]. When comparing the three cost items (material, energy, and organizational), the first
two of them can be empirically considered to be more important from a sustainability viewpoint than
organizational costs. However, organizational costs have to be perceived as relevant in a given nexus
of sustainability practice, since any organizational activity uses materials and energy.

With the aim to fulfill the goal of this research defined in the introduction section with the
encompassing above outlined relation between ASC complexity and sustainability, the following
methodological framework is proposed and used (see Figure 1).
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Figure 1. The sequence of the methodological procedures for the selection of the most suitable
complexity indicator.

4. Description of Possible ASC Structural Complexity Indicators

In order to identify reliable and consistent complexity indicator(s), four relevant complexity
methods were described and mutually compared, namely index of vertex degree, modified flow
complexity, system design complexity, and process complexity indicator.

4.1. Index of Vertex Degree

This indicator was originally developed by Bonchev [28] to quantify the structural complexity of
general networks. He adopted Shannon’s information theory by applying the entropy of information
H (α) in describing a message of N symbols. Further it is assumed that such symbols are distributed
according to some equivalence criterion α into k groups of N1, N2, . . . , Nk symbols. Then, entropy of
information H (α) is calculated by the formula:

H(α) = −
∑k

i=1
pilog2pi = −

∑k

i=1

Ni
N

log2
Ni
N

, (1)

where pi specifies the probability of the occurrence of the elements of the ith group.
Further, he substituted symbols or system elements for the vertices, and defined the probability

for a randomly chosen system element i to have the weight wi as pi = wi/
∑

wi with
∑

wi = w, and
∑

pi = 1.
Then, the probability for a randomly chosen vertex i in the complete graph of V vertices to have a

certain degree deg (v)i can be expressed by the formula:

pi =
deg(v)i∑V

i=1 deg(v)i

(2)
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Assuming that the information can be defined, according Shannon [29], as I=Hmax −H, where Hmax

is the maximum entropy that can exist in a system with the same number of elements, the information
entropy of a graph with a total weight W and vertex weights wi can be expressed in the form of the
equation:

H(W) = Wlog2W −
V∑

i=1

wilog2wi (3)

Since the maximum entropy is when all wi = 1, then Hmax = Wlog2W, and by substituting
W =

∑
deg(v)i and wi = deg(v)i, the information content of the vertex degree distribution of a network,

called the vertex degree index (Ivd), is expressed as follows [28]:

Ivd =
V∑

i=1

deg(v)ilog2deg(v)i (4)

The vertex degree index was subsequently applied to measure the structural complexity of
assembly supply chains, and compared with other existing complexity measures [30].

The selected complexity indicator was applied on the following examples of ASCs by Hamta et al. [31]
(see Figure 2). All the five ASCs had the same number of input components, but they differed in the
number of operations and the number of machines.

 
Figure 2. The possible assembly supply chain (ASC) network with four input components and the
corresponding structural alternatives.

The complexity values obtained by using Equation (4) are shown in Table 1.

Table 1. Obtained complexity values by Ivd.

Graph (a) (b) (c) (d) (e)

Ivd 8 bits 10 bits 9.51 bits 11.51 bits 11.51 bits

4.2. Process Complexity Indcator

An additional ASC structural complexity measure that was considered was the so-called process
complexity indicator (PCI), which was introduced for the purpose of enumerating the operational
complexity of manufacturing processes. Its expression is as follows [32]:

PCI = −
M∑

i=1

P∑
j=1

O∑
k=1

pijk · log2 pijk, (5)

where pijk means the probability that part j is being proceeded by operation k by individual machine i
based on the scheduling order; O is the number of operations according to parts production; P is the
number of parts produced in the manufacturing process; and M is the number of all machines of all
types in the manufacturing process.

It is assumed that machines in a given manufacturing process are organized in a serial and/or
parallel manner in Equation (5). The probability that part j is being processed due to operation k
on an individual machine i is calculated in the following way. In the case when a part is processed
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on machines in a serial manner, then pijk equals 1/Ms, where Ms presents the number of machines
organized in serial. In the case when a part is processed on machines in a parallel manner, then
pijk = 1/Mp, where Mp represents the number of machines organized in parallel. In the case where we
have a serial/parallel arrangement of machines and a part is processed on one of the parallel machines,
then pijk equals 1/Ms.Mp.

The complexity values obtained by using Equation (5) are shown in Table 2.

Table 2. Obtained complexity values by process complexity indicator (PCI).

Graph (a) (b) (c) (d) (e)

PCI 0 bits 3 bits 2 bits 4 bits 4.17 bits

4.3. System Design Complexity

Guenov [33] proposed three indicators for architectural design complexity measurement based on
Boltzmann’s entropy theory (see, e.g., [34]) and axiomatic design theory [35]. Those indicators can be
principally applied also as ASC complexity measures. However, only one of them has been treated as
a potential indicator to measure ASC structural complexity [36]. Its description is as follows. Let us
denote N as the number of interactions within a design matrix, and N1, N2, . . . , Nk as the numbers of
interactions per each design parameter (DP) of the same matrix. Then, the so-called degree of disorder
W can be expressed by the formula:

Ω = CN1
N ∗CN2

N−N1
∗CN3

N−N1−N2
. . . ∗ . . .CNK

N−N1−...−NK−1
=

N!
N1!N2! . . .NK!

, (6)

where:
CN1

N =
N!

(N −N1)!N1!
(7)

The multiplicity Ω in Equation (6) is often called the degree of disorder.
The state of gas body g at a given time t where the gas body consists of N molecules, each

characterized by n magnitudes ϕj was considered by Boltzmann. For each magnitude ϕj, its interval of
admitted values is divided into small intervals of equal length Δj. Then, the n-dimensional space, also
known as μ-space or module space, can be divided into a system of cells of equal volume: υμ = Δi, . . . ,
Δn. K is the number of these cells in the total range of admitted values, Rμ; then: υμ = Vμ/K, where Vμ

is the volume of Rμ. The μ-cells are analogous to the cells Qj (j = 1, . . . , K) in the classification system.
fj means the density in Qj, i.e., the number of molecules per unit of μ-volume: fj = Nj/υ

μ. The function
defined by Boltzmann for a statistical description is:

H =
K∑

j=1

[
f jln fj

]
υu (8)

According to Equation (8) and fj = Nj/υ
μ, where the volume is assumed equal to unity, the

following formula for complexity measure can be derived:
∑

NjlnNj (9)

where Nj is interpreted as the number of interactions per single DP.
Its application to measure the structural complexity of ASC was provided by Modrak and

Soltysova [37], where the model of assembly process is structured with two groups of objects, while the
first group is denoted as input components (ICs) and the second group as workstations. The input
components are assembled at these workstations. Then, for the purpose of measuring process
complexity, the following transformation is proposed: ICs are substituted by DPs, according to
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relation DPs = B. PVs (where PVs mean process variables and B is the design matrix that defines
the characteristics of the process design) and workstations are considered as PVs. Subsequently,
the assembly process structure is transformed into design matrix (DM) with DP–PV relations and
finally, the structural complexity of ASC can be enumerated.

The complexity values obtained by using Equation (9) are shown in Table 3.

Table 3. Obtained complexity values by system design complexity (SDC).

Graph (a) (b) (c) (d) (e)

SDC 5.55 nats 8.84 nats 6.93 nats 8.32 nats 10.23 nats

4.4. Modified Flow Complexity

The next possible ASC complexity indicators were developed by Crippa [38]. The most suitable
indicator of these is considered to be the so-called modified flow complexity (MFC) indicator. The MFC
indicator enumerates all tiers (including Tier 0), nodes, and links and adds all these counts, weighted
with determined α, β, and γ and coefficients. Nodes and links are counted only once, even if they are
repeated in the graph. Node and link repetition is included in coefficients. The MFC indicator can be
enumerated by the following equations [38]:

MFC = α.T + β.N + γ.L (10)

α = MTI =
TN −N
(T − 1).N

(11)

β = MTR =
TN
N

(12)

γ = MLR =
LK
L

(13)

where MTI is multi-tier index; MTR is multi-tier ratio; MLR is multi-link ratio; N is the number of
nodes; TN is the number of nodes per ith tier level; L is number of links; LK is number of links per ith
tier level; T is the number of tiers.

The complexity values obtained by using Equation (10) are shown in Table 4.

Table 4. Obtained values enumerated by modified flow complexity (MFC).

Graph (a) (b) (c) (d) (e)

MFC 9 11 11 13 13

5. Definition of Testing Rules for ASC Complexity Indicators

To prove the selected complexity indicators, all of them were verified through defined criteria for
complexity measures that might also be taken into account to assess their validity. Such rules were
specified and proposed for static complexity metrics by Deshmuk et al. [9] and Olbrich et al. [39].
Deshmuk et al. [9] analyzed different factors influencing the static complexity of manufacturing systems,
and defined four conditions that the static complexity metric must satisfy. They are as follows [9]:

Rule#1: Static complexity should increase with the number of parts and the number of machines and
operations required to process the part mix.

Rule#2: Static complexity should increase with increases in sequence flexibility for the parts in the
production batch.

Rule#3: Static complexity should increase as the sharing of resources by parts increases.
Rule#4: If the original part mix is split into two or more groups, then the complexity of processing

should remain constant.
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Due to the fact that Rule#3 and Rule#4 are not relevant for assembly supply chains, only two of
them were adopted in terms of ASC systems.

Olbrich et al. [39] studied how static complexity measures behave if the system size is increased
and explored three special cases of adding an independent element, two independent subsystems,
and two identical copies. In this context, the authors proposed three specific requirements or rules for
a reliable complexity measure that must be met:

Rule#1: Additional independent element: The element has no structure itself, so it has no complexity of
its own. Because it is independent of the rest of the system, the complexity should not change.

Rule#2: Union of two independent systems: Because there are no dependencies between the two
systems, the complexity of the union should be simply the sum of the complexities of
the subsystems.

Rule#3: Union of two identical copies: Because there is no need for additional information to describe
the second system, one could argue that the complexity should be equal to the complexity of
one system. One has, however, to include the fact in the description that the second system is a
copy of the first one. At least this part should not be extensive with respect to the system size.

However, any of the three rules appear to be impactful for ASC complexity metrics, and therefore
were not directly used for the purpose of testing and comparing the complexity indicators.

After deeper consideration, the two rules by Deshmuk et al. [9], namely Rules 1 and 2, were
adopted by us into the four testing criteria (C). Moreover, we added one additional criterion (C#5)
based on the increasing number of echelons. The criteria are summarily shown as follows:

C#1: Static complexity should increase with the number of parts required to process the part mix.
C#2: Static complexity should increase with the number of machines required to process the part mix.
C#3: Static complexity should increase with the number of operations required to process the part mix.
C#4: Static complexity should increase with increases in sequence flexibility for the parts in the

production batch.
C#5: Static complexity should increase with the number of echelons while the number of parts,

machines, and operations is constant.

6. Analysis of Testing Criteria from Sustainability Viewpoint

Our description of relations between ASC structural complexity and sustainability seems to be
useful to categorize the abovementioned testing criteria based on their importance to the sustainability
objectives. In any given case, it was expected that the complexity indicators would reflect the three
sustainability facets, i.e.:

• (Direct) energy costs;
• (Direct) material costs;
• (Direct) organizational costs.

Therefore, each of the criteria might validate at least one of the three cost items. By analyzing how
these criteria reflect the abovementioned cost items, it can be found that they cover a different number
of the cost items. Summarily, these differences are shown in Table 5.

Table 5. Testing criteria and their reflection on cost items.

Testing Criteria Material Costs Energy Costs Organizational Costs

C#2 � � �

C#3 - � �

C#1 - - �

C#4 - - �

C#5 - - �
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As can be seen, all criteria include in themselves organizational costs. C#3 moreover covers energy
costs and C#2 relates to all of the cost items. This viewpoint was further applied for the purpose of
comparing the usability of ASC complexity indicators.

7. Testing and Comparison of ASC Complexity Indicators

This part of the paper is focused on the comparison of two assembly supply chains, ASC1(i,j,k)
and ASC2(i,j,k). One of them is more complex according to the defined criteria (C#1–C#5). P represents
parts, j is the number of parts, O represents operations, k is the number of operations, M represents
machines, and i is the number of machines.

These criteria were tested using the theoretical examples shown in Figures 3–7. In C#1, #2, #4,
and #5, the number of machines was equal to the number of operations. In C#3, the number of
operations was increasing.

7.1. Testing of C#1

C#1 is proposing the following statement:
If i is constant (i = k) and j is increasing, then the structural complexity of ASC(i,j-1,k) < ASC(i,j,k).
Let us test ASC1(3;4;3) and ASC2(3;5;3), shown in Figure 3. While in Figure 3a, ASC1 consists of

three machines and operations (i = k = 3), and the number of parts equals four (j = 4), in Figure 3b,
ASC2 contains three machines and operations (i = k = 3), and the number of parts equals five (j = 5).

Figure 3. ASC consisting of: (a) three machines, three operations, and four parts; (b) three machines,
three operations, and five parts.

Applying Equation (4), according to complexity indicator Ivd, we obtained the following results
for static complexity using Ivd1 (for ASC1) and Ivd2 (for ASC2):

Ivd1 = 3 × log23 + 3 × log23 + 2 × log22 = 11.51 bits

Ivd2 = 3 × log23 + 4 × log24 + 2 × log22 = 14.76 bits

Applying Equation (5), according to complexity indicator PCI, we obtained the following results
for PCI1 and PCI2:

PCI1 = −(0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5) = 4 bits

PCI2 = −(0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5)= 5 bits

Applying Equation (9), according to complexity indicator system design complexity (SDC),
we obtained the following results for SDC1 and SDC2:

SDC1 = 4 × ln4 + 2 × ln2 + 2 × ln2 = 8.32 nats

SDC2 = 5 × ln5 + 2 × ln2 + 3 × ln3 = 12.73 nats
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Applying Equation (10), according to complexity indicator MFC, we obtained the following results
for MFC1 and MFC2:

MFC1 = 0 × 3 + 1 × 7 + 1 × 6 = 13

MFC2 = 0 × 3 + 1 × 8 + 1 × 7 = 15

According to these complexity indicators, it was proved that the complexity of ASC1(3,4,3) <
ASC2(3,5,3), then ASC(i,j−1,k) < ASC(i,j,k).

7.2. Testing of C#2

C#2 is proposing the following statement:
If j is constant and i is increasing (i = k), then the structural complexity of ASC(i−1,j,k) < ASC(i,j,k).
Let us test ASC1(3,4,3) and ASC2(4,4,4), shown in Figure 4. While in Figure 4a, ASC1 consists of

three machines and operations (i = k = 3), and the number of parts equals four (j = 4), in Figure 4b,
ASC2 contains four machines and operations (i = k = 4), and the number of parts equals four (j = 4).

 
Figure 4. ASC consisting of: (a) three machine, three operations, and four parts; (b) four machines,
four operations, and four parts.

Applying Equation (4), according to complexity indicator Ivd, we obtained the following results
for Ivd1 and Ivd2:

Ivd1 = 3 × log23 + 3 × log23 + 2 × log22 = 11.51 bits

Ivd2 = 3 × log23 + 3 × log23 + 3 × log23 + 3 × log23 = 19.02 bits

Applying Equation (5), according to complexity indicator PCI, we obtained the following results
for PCI1 and PCI2:

PCI1 = −(0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5) = 4 bits

PCI2 = −(0.5 × log20.5 + 0.5 × log20.5 + 0.25 × log20.25 + 0.25 × log20.25 + 0.5 × log20.5 +
0.25 × log20.25 + 0.25 × log20.25 + 0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5) = 5 bits

Applying Equation (9), according to complexity indicator SDC, we obtained the following results
for SDC1 and SDC2:

SDC1 = 4 × ln4 + 2 × ln2 + 2 × ln2 = 8.32 nats

SDC2 = 4 × ln4 + 2 × ln2 + 2 × ln2 + 2 × ln2 = 9.7 nats

Applying Equation (10), according to complexity indicator MFC, we obtained the following results
for MFC1 and MFC2:

MFC1 = 0 × 3 + 1 × 7 + 1 × 6 = 13

MFC2 = 0 × 3 + 1 × 8 + 1 × 9 = 17

According to these complexity indicators, it was proved that ASC1(3,4,3) < ASC2(4,4,4),
then ASC(i−1,j,k) < ASC(i,j,k).
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7.3. Testing of C#3

C#3 is proposing the following statement:
If i and j are constant and k is increasing, then the structural complexity of ASC(i,j,k−1) <ASC(i,j,k).
Let us test ASC1(3,4,3) and ASC2(3,4,4), shown in Figure 5. While in Figure 5a, ASC1 consists of

three machines and operations (i = k = 3), and the number of parts equals four (j = 4), in Figure 5b,
ASC2 contains three machines (i = 3), four operations (k = 4), and the number of parts equals four (j = 4).

 
Figure 5. ASC consisting of: (a) three machines, three operations, and four parts; (b) three machines,
four operations, and three parts.

Applying Equation (4), according to complexity indicator Ivd, we obtained the following results
for Ivd1 and Ivd2:

Ivd1 = 3 × log23 + 3 × log23 + 2 × log22 = 11.51 bits

Ivd2 = 5 × log25 + 3 × log23 + 2 × log22 = 18.37 bits

Applying Equation (5), according to complexity indicator PCI, we obtained the following results
for PCI1 and PCI2:

PCI1 = −(0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5) = 4 bits

PCI2 = −(0.25 × log20.25 + 0.25 × log20.25 + 0.5 × log20.5 + 0.25 × log20.25 + 0.25 × log20.25 +
0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5) = 5 bits

Applying Equation (9), according to complexity indicator SDC, we obtained the following results
for SDC1 and SDC2:

SDC1 = 4 × ln4 + 2 × ln2 + 2 × ln2 = 8.32 nats

SDC2 = 4 × ln4 + 2 × ln2 + 2 × ln2 = 8.32 nats

Applying Equation (10), according to complexity indicator MFC, we obtained the following results
for MFC1 and MFC2:

MFC1 = 0 × 3 + 1 × 7 + 1 × 6 = 13

MFC2 = 0 × 3 + 1 × 7 + 1 × 7 = 14

According to the three complexity indicators Ivd, PCI, and MFC, it was proved that the structural
complexity of ASC1(3,4,3) < ASC2(3,4,4), then ASC(i,j,k−1) < ASC(i,j,k).

7.4. Testing of C#4

C#4 is proposing the following statement:
If i, j, and k are constant and the number of routings is increasing, then the structural complexity

of ASC(i,j,k) < ASC(i,j,k) with an increasing number of routings.
Let us test ASC1(3,4,3) and ASC2(3,4,3), shown in Figure 6. While in Figure 6a, ASC1 consists of

three machines and operations (i = k = 3), and the number of parts equals four (j = 4), in Figure 6b,
ASC2 consists of three machines and operations (i = k = 3), and the number of parts equals four (j = 4),
but P2 and P3 can be processed on M1 or M2.
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Figure 6. ASC consisting of: (a) three machines, three operations, and four parts; (b) three machines,
three operations, and four parts.

Applying Equation (4), according to complexity indicator Ivd, we obtained the following results
for Ivd1 and Ivd2:

Ivd1 = 3 × log23 + 3 × log23 + 2 × log22 = 11.51 bits

Ivd2 = 4 × log24 + 4 × log24 + 2 × log22 = 18 bits

Applying Equation (5), according to complexity indicator PCI, we obtained the following results
for PCI1 and PCI2:

PCI1 = −(0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5) = 4 bits

PCI2 = −(0.5 × log20.5 + 0.5 × log20.5 + 0.25 × log20.25 + 0.25 × log20.25 + 0.5 × log20.5 +
0.25 × log20.25 + 0.25 × log20.25 + 0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5) = 5 bits

Applying Equation (9), according to complexity indicator SDC, we obtained the following results
for SDC1 and SDC2:

SDC1 = 4 × ln4 + 2 × ln2 + 2 × ln2 = 8.32 nats

SDC2 = 4 × ln4 + 3 × ln3 + 3 × ln3 = 12.14 nats

Applying Equation (10), according to complexity indicator MFC, we obtained the following results
for MFC1 and MFC2:

MFC1 = 0 × 3 + 1 × 7 + 1 × 6 = 13

MFC2 = 0 × 3 + 1 × 7 + 1 × 8 = 15

According to these complexity indicators, it was proved that the complexity of ASC1 < ASC2,
then ASC(i,j,k) < ASC(i,j,k) with an increasing number of routings.

7.5. Testing of C#5

C#5 is proposing the following statement:
If i, j, and k are constant and the number of echelons is increasing, then the complexity of ASC(i,j,k)

< ASC(i,j,k) with an increasing number of echelons.
Let us test ASC1(3,4,3) and ASC2(3,4,3), shown in Figure 7. While in Figure 7a, ASC1 consists of

three machines and operations (i = k = 3), the number of parts equals four (j = 4), and the number
of echelons equals two, in Figure 7b, ASC2 contains three machines (i = 3), four operations (k = 4),
the number of parts equals four (j = 4), and the number of echelons equals three.
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Figure 7. Manufacturing system consisting of: (a) three machines, three operations, four parts, and
two echelons; (b) three machines, three operations, four parts, and three echelons.

Applying Equation (4), according to complexity indicator Ivd, we obtained the following results
for Ivd1 and Ivd2:

Ivd1 = 3 × log23 + 3 × log23 + 2 × log22 = 11.51 bits

Ivd2 = 3 × log23 + 3 × log23 + 2 × log22 = 11.51 bits

Applying Equation (5), according to complexity indicator PCI, we obtained the following results
for PCI1 and PCI2:

PCI1 = −(0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5 + 0.5 × log20.5) = 4 bits

PCI2 = −(0.33 × log20.33 + 0.33 × log20.33 + 0.33 × log20.33 + 0.33 × log20.33 + 0.33 × log20.33
+ 0.33 × log20.33 + 0.5 × log20.5 + 0.5 × log20.5 + 1 × log21) = 4.17 bits

Applying Equation (9), according to complexity indicator SDC, we obtained the following results
for SDC1 and SDC2:

SDC1 = 4 × ln4 + 2 × ln2 + 2 × ln2 = 8.32 nats

SDC2 = 4 × ln4 + 3 × ln3 + 2 × ln2 = 10.23 nats

Applying Equation (10), according to complexity indicator MFC, we obtained the following results
for MFC1 and MFC2:

MFC1 = 0 × 3 + 1 × 7 + 1 × 6 = 13

MFC2 = 0 × 4 + 1 × 7 + 1 × 6 = 13

According to the three complexity indicators PCI, SDC, and MFC, it was proved that the complexity
of ASC1 < the complexity of ASC2, then ASC(i,j,k) < ASC(i,j,k) with an increasing number of echelons.

7.6. Comparison and Selection of ASC Complexity Measure

A mutual comparison of ASC complexity methods is shown in the following Table 6:

Table 6. Mutual comparison of ASC complexity methods.

Criteria Ivd SDC MFC PCI

C#2 � � � �

C#3 � X � �

C#1 � � � �

C#4 � � � �

C#5 X � X �

Based on the obtained results, it can be seen that PCI for ASCs could be considered as the
most suitable.
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8. Discussion of Results, Implications and Limitations

Summarizing the obtained results from the testing of the ASC complexity indicators, the following
statements can be provided:

(i) All described indicators sufficiently reflect organizational aspects of ASCs.
(ii) Three of the complexity indicators, namely, Ivd, MFC, and PCI, can be effectively used to measure

ASC complexity in order to identify how ASC structural variants are influencing organizational
costs, as well as energy costs.

(iii) The PCI complexity measure reflects all of the three cost items and covers the two crucial
dimensions of sustainability, economic and environmental.

In addition, it has to be emphasized that the impact of ASC complexity on social development can
only be anticipated based on the theoretical assumption that higher organizational complexity, induced
by a company’s favorable development, could positively influence social sustainability. In such a case,
it would be expected that organizational complexity is growing not only along various dimensions,
such as production volume, but also with the increasing number of employees [40,41]. However, the
related literature is more or less ambivalent about whether organizational complexity has positive or
negative effects on firm performance [42]. Moreover, if we consider that organizational complexity is
frequently defined as “the amount of differentiation that exists within different elements constituting
the organization” [43], then it is rather clear that any of the structural complexity indicators can identify
organizational complexity changes within a company. Thus, it cannot be excluded that changes of
the internal structural complexity will not impact the organizational complexity. Based on the above
formulations, it can be concluded that, when comparing two or several ASC alternative solutions, the
one with the lowest structural complexity can be considered as the most sustainable and cost-effective
approach. Therefore, structural complexity measures can be primarily used as potential indicators
for the indirect assessment of material costs and related energy consumption. This drawback of
the presented approach can be seen as the main limitation of the analyzed indicators to reflect ASC
complexity along with the sustainability issues.

This evaluation method can be effectively used, especially in terms of small and medium size
enterprises (SMEs), since it has been found that SMEs are particularly sensitive to the internal complexity
environment, as well as to the external complexity environment [44]. For this reason, SMEs need to pay
attention also to the complexity management approach in order to entirely manage their sustainability
in a turbulent business environment.

9. Conclusions

Finally, it is useful to emphasize that the presented research construct and obtained findings are
pertinent for ASCs for the completion of standard products, i.e., not for those that are mass customized.
Mass customization, as a new paradigm, also brings significant changes into the assembly process
principles. For example, ASCs in terms of mass customization have to be as modular as possible,
and it means that modularity has to be considered as a primary property of ASCs. Taking this fact
into consideration, the structural complexity of ASCs can be seen as only a complementary indicator
to optimize ASCs. Accordingly, the featured related research could be oriented specially to study
relations between the complexity and modularity of ASCs in terms of mass customization.
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Abstract: In the light of several national advanced manufacturing strategies such as Industry 4.0
in Germany or the Made in China 2025 initiative in China, this article examines the challenges of
Industry 4.0 adoption of Japanese small and medium-sized manufacturing firms. A technology
adoption model for Industry 4.0 is developed and empirically tested with 38 manufacturing companies.
The results yield that the market uncertainty of the firm’s business is a significant driver for adoption
in the short, medium, and long-term. Relative competitive advantage matters in the short term and
top management support in the long-term. No support has been identified concerning advanced
manufacturing complexity and market transparency of Industry 4.0 solutions.

Keywords: advanced manufacturing; industry 4.0; SME; technology adoption model

1. Introduction

Manufacturing is the backbone of large economies such as the U.S., Europe, China, or Japan.
Changing demographics, globalization, scarcity of resources, the challenges of climate change, and
mass customization are the megatrends that challenge the future of manufacturing [1]. These changes
imply volatile, uncertain, complex, and ambiguous environments for firms and affect them across their
strategic environment [2]. Various initiatives emphasized the urgency for advanced manufacturing
strategies to tackle those challenges and support economic growth [3].

Industry 4.0 facilitates the balancing act of internal and external complexity by shifting traditional
production systems from a structured centralized control to decentralized control. It is a specific
deployment of an advanced manufacturing strategy. The core principles of Industry 4.0 are
modularization, self-regulation, and digital integration across business functions and within and
beyond the organizational boundaries. Industry 4.0 induces product innovation based on the usage
of intelligent sensor and actor systems to facilitate context-sensitive production processes and ICT
based process innovation to integrate production processes across the value chain, value network, and
product lifecycle.

While the manufacturing industry is the backbone of large economies such as the U.S., Europe,
China, or Japan, small and medium-sized enterprises (SMEs) are the foundation for manufacturing
industries. Small and medium-sized enterprises are very flexible in adapting new technologies and
catering niche markets, while large corporates are better on scale efficiencies but slower in adapting
innovations [4]. Therefore, it is essential to study the challenges of information technology adoption
concerning the concept of Industry 4.0 for small and medium-sized enterprises to accelerate the
diffusion of advanced manufacturing.

This article contributes to the body of knowledge in two ways. First, a technology adoption model
is presented that accounts for the particularities of Industry 4.0 information technologies, and second,
this model is empirically tested, and the results are discussed.

Sustainability 2019, 11, 5807; doi:10.3390/su11205807 www.mdpi.com/journal/sustainability201
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2. Technology Characteristics of Industry 4.0

Industry 4.0 is defined as the “[ . . . ] integration of cyber-physical-systems in production and
logistics as well as the application of the Internet of Things in industrial processes. This includes the
consequences for the value chain, business models, services, and work environment” [5]. While some
advanced manufacturing strategies include the usage of new materials, advanced human-machine
interaction, assistive (ambient) systems, and factory virtualization, the common element in all
definitions is the linkage of physical systems and virtual systems using information and communication
technologies for facilitating manufacturing processes.

It consists of two innovation types: product and process innovation. On the product innovation
side, it is the integration of cyber-physical systems (CPS) to integrate context-aware and self-adaptive
production processes. Using machine learning techniques on higher ICT levels, the monitored data from
sensors can be used to control embedded actors to respond to environmental changes (self-regulatory).
This is depicted in the stages of the 5C architecture of a CPS, ranging from smart connections to data
conversion, cyber integration, cognition, and self-configuration [6]. Based on technology such as
the Internet of Things (machine-to-machine communication), Internet of Service (machine-to-human
communication), and Internet of People (virtual human-to-human communication), CPS integrates
the physical world of productions vertically. Successful implementation of CPS is based on “[ . . . ]
horizontal integration through value networks, end-to-end digital integration of engineering across
the entire value chain, vertical integration, and networked manufacturing systems” [5]. This implies
that product and process innovation has to be implemented in combination and not separately.

From a technical perspective, these two elements of the advanced manufacturing strategies,
cyber-physical systems, and digital integration of production and business processes are not new in the
industrial context. Notably, both parts are the core principles of a so-called Smart Factory. The Smart
Factory idea is based on transferring the ubiquitous (wireless) computing to an industrial context [7].

A Smart Factory is a “[ . . . ] Factory that context-aware assists people and machines in execution
of their tasks [ . . . ] by systems working in background, so-called Calm-systems and context-aware
applications” [8]. A Smart Factory masters the complexity challenge by modularization of its
components and self-regulating mechanics based on context-aware applications. A self-adaptive
system, such as the Smart Factory, addresses the complexity issue by automatically modifying itself in
response to changes in its operating environment. A Smart Factory is robust and increases production
efficiency by enabling communication flows among humans, machines, and resources, just like
communication flow in social networks [5].

The key implication of linking production processes with business functions using context-aware
systems is the ubiquitous real-time availability and analysis of data for self-regulatory behavior [9].
Other authors refer to the Smart Factory concept as Industrial Internet, Intelligent Manufacturing,
Digital Factory, Ubiquitous Factory, or Factory 4.0 [10,11].

The technological enablers for deploying cyber-physical systems and ICT-integrated
production-business processes are advanced technologies in Big Data Analytics, Cloud Computing,
Internet of Things, and virtualization/simulation technologies for education and assistance [2,12].
However, not all enablers have reached a certain readiness level [13]. Due to the uncertainty of
economic rents involved with each technological readiness level, SMEs will adopt mature technologies,
likely adopt technologies that reached the evaluation stages and hesitate to adopt technologies in its
infancy. Specifically, maturity models for small-and-medium-sized enterprises should be different
from multinational-enterprises due to their specific requirements [13].

3. Technology Adoption Models

A list of models, tailored to the particular product and process innovation characteristics and the
SME context, is added to the annex of this article. General concepts differentiate between the adoption
perspective of an organization and an individual, where this study takes the firm’s view.

202



Sustainability 2019, 11, 5807

Roger’s innovation diffusion theory (IDT) states that potential adopters evaluate the following
technical characteristics to assess the adoption of an innovation: first, the relative advantage of the
innovation compared to the competition and its compatibility with the existing infrastructure are the
most significant adoption determinants [14]. Second, in terms of complexity and trialability, a firm also
evaluates the external organizational context to suppliers, customers, or governmental authorities in
terms of efficiency gains or possible constraints from the adopted innovation [15].

The Technology, Organization and Environment framework (TOE) [16] is a widely accepted
framework [17] which identified three constructs that are vital to adopt an innovation: (1) availability,
best practices, and equipment, (2) firm size, communication processes and managerial structure, and
(3) industry characteristics, market characteristics, and technology support.

Following the arguments by Scott [18], institutional environments such as business partners or
competitors shape organizational structures and actions, which leads to the inter-organizational model
(IO) based on the constructs of (1) perceived benefits, (2) organizational readiness, and (3) external
pressure. Raymond [19] underlines this approach and postulates that IDT and TOE frameworks “[ . . . ]
need[s] to be enriched when the innovation relates to complex technologies with an inter-organizational
locus of impact, for which adoption decisions are linked (e.g., when imposed by business partners)
and when the innovation is adopted by organizations” [19].

This has been implemented by Chau and Tam [15], where the authors propose a model based on
the TOE framework and added product-specific characteristics to study the adoption of open (software)
system standards: (1) external environment e.g., market uncertainty, (2) organizational technology
such as complexity of IT infrastructure, satisfaction with existing system, formalization on system
development & management, and (3) open system characteristics like perceived benefits, perceived
barriers, interoperability, and interconnectivity.

While Iacovou et al. [20] incorporated inter-organizational aspects, Chatterjee et al. [21] argued that
the adoption of specific information and communication technologies are guided by intra-organizational
cooperation. Following the argumentation by Swanson [22], the adoption decision must be coordinated.
This is reflected in their model, which incorporates top management factors such as beliefs towards
innovation, participation in the adoption process, and strategic investment rationale.

4. Method

For the development of the technology adoption model, Industry 4.0 is defined as the digital
integration of the production system with the company’s business functions using self-regulatory
sensor-actor networks (CPS) in combination with information and communication technologies.
The constituting constructs are: (1) the usage of technologies which continuously monitor processes
from inbound logistics, production and outbound logistics to regulate the respective processes
autonomously depending on changes in the environment, (2) the real-time availability and analysis of
the monitored data to other business functions such as administration, research and development,
service, marketing and sales and, (3) the usage of software system for automatic data exchange between
business functions such as administration, research and development, service, marketing and sales.
For the sake of ease use in a survey, these elements are summarized as self-adaptive technologies and
digitalized processes in the individual survey items.

On the one hand, a CPS is considered as product innovation due to its technological foundation.
On the other hand, the aligned software-oriented information technologies are considered process
innovation because they combine, align, and integrate the CPS components with the existing business
processes. This study follows the approach of Fichman and Kemerer [23] and Chau and Tam [15],
where the authors highlight that a complicated technological innovation, such as Industry 4.0, should
add innovation specific adoption characteristics in addition to the traditional ones. Therefore, the
research model builds on the TOE framework and incorporates independent variables from other
models to match the context of small and medium-sized enterprises and the characteristics of the
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innovations. The dependent variable is a construct of adoption intention and the early stages of
technology assimilation as defined by the Guttman scale.

Specific characteristics, which stifle or foster the adoption of advanced manufacturing by SMEs,
are highlighted in the study by Wischman et al. [12]. Although the study looks at the broader context
of Industry 4.0 in Germany, the factors are assumed to be transferable to the defined advanced
manufacturing context in this article because the core elements are identical. According to Wischmann
et al. [12], the main hurdles for SMEs to adopt Industry 4.0 are based on (1) financial constraints, (2) an
immature IT to support a smooth integration of Industry 4.0 technologies, (3) lack of top management
support to lead and digital vision and provide the necessary budget, (4) lack of skills of the workforce, or
(5) resistance due to technological uncertainty and immature standards and protocols. The institutional
theory is incorporated in this model because, based on the determinants of Swanson’s framework [22],
Industry 4.0 is a core business function innovation [21]. This study includes only intra-organizational
factors and excludes inter-organizational factors because, contrary to EDI, the interconnectivity of firms
is not a necessity for cyber-physical systems and data exchange within the organization (Figure 1).

 
Figure 1. The Industry 4.0 Adoption Model proposing the hypotheses from H1 to H11.

4.1. General Technological Factors

4.1.1. Complexity

Complexity is the degree to which the technologies are perceived as challenging to understand
and use [24,25], and it is typically negatively correlated with adoption [25]. The lack of knowledge
is the second major obstacle for Industry 4.0 adoption for SMEs [12]. Complexity can be measured
in terms of number and diversity of relationships and number and diversity of elements within a
given. Cyber-physical systems consist of multiple specialized heterogeneous devices and operate in a
changing environment. In combination with data analysis and ICT integration with business functions,
product innovation is considered to be complex. Technological communication standards and protocols
must be established to guarantee a smooth integration of data exchange across business functions.
The orchestration of multiplicity of hardware and software is a complex task [25]. Based on established
measures by Premkumar and Roberts [25] and Jeon et al. [26] the indicator is operationalized as:
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• The skills required to use self-adaptive technologies and digitalized processes are too complex for
our employees.

• Integrating self-adaptive technologies and digitalized processes in our current work practices will
be very difficult.

Hypothesis H1. The lower the perceived complexity of the advanced manufacturing technologies, the more
likely they will be adopted.

4.1.2. Compatibility

Compatibility is the degree to which technological innovation can be easily integrated with the
existing infrastructure and processes [24]. If the innovation is compatible with current practices and
technological infrastructure, adoption is more likely, according to Cooper and Zmud [27]. The shift
from centralized controlled production to decentralized (self-adaptive) controlled production is a
substantial change for the organization. According to Premkumar and Roberts [25], it is essential for
small businesses that the changes are compatible with the organizational culture. Otherwise, it may
result in resistance. Chatterjee et al. [21] highlight, in the context of e-business, that higher technological
compatibility of the innovation with the existing system implies higher adoption capability of the
organization. Old production systems are strong inhibitors to adopt Industry 4.0. Based on these
measures, this indicator is operationalized as:

• The changes introduced by self-adaptive technologies and digitalized processes are consistent
with the firm’s existing beliefs/values.

• The self-adaptive technologies and digitalized processes are compatible with existing
IT infrastructure.

• The self-adaptive technologies and digitalized processes are compatible with the firm’s existing
experiences with similar systems.

Hypothesis 2 (H2). The greater the perceived compatibility of the advanced manufacturing technologies with
current infrastructure, values, and beliefs, the more likely they will be adopted.

4.1.3. Relative Advantage

Relative advantage is the degree of additional benefit for the organization from adopting the
innovation compared to the status quo, according to Roberts [24]. A recent study by Commerzbank [28]
on the impact of the digital trend on manufacturing firms revealed that firms tend to accelerate ICT
integration to establish new business models and innovations to counter the competitive pressure
and short product life cycles. Relative advantages are referred to in recent models as a perceived
benefit [20]. Roger’s and Iacovou’s model indicate both that understanding the relative advantage
increases the likelihood of adoption. Therefore, advanced manufacturing is expected to be able to give
organizations a better competitive advantage. Based on established measures by Iacovou et al. [20],
Premkumar and Roberts [25], Hsu et al. [29], Gibbs and Kraemer [30] and Oliveira and Martins [31],
the indicator is operationalized as:

• Self-adaptive technologies and digitalized processes will allow us to better respond to
customer needs.

• Self-adaptive technologies and digitalized processes will allow us to cut costs in our operations.
• Implementing self-adaptive technologies and digitalized processes will increase the profitability

of our business.
• Self-adaptive technologies and digitalized processes provide timely information for

decision making.

Hypothesis 3 (H3). The greater the perceived relative advantage of the advanced manufacturing technologies,
the more likely they will be adopted.
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4.1.4. Cost

Tornatzky and Klein [14] state that technologies that are perceived to be low in cost are more
likely to be adopted. Also, Premkumar and Roberts [25] highlight that for small businesses, the cost of
hardware/software is a sever inhibitor for adoption. The study by Wischmann et al. [12] revealed that
lack of resources, both financial and human resources, is the major obstacle for small and medium-sized
companies. Based on established measures by Premkumar and Roberts [25] and Jeon et al. [26], the
indicator is operationalized as:

• The costs of adoption of these self-adaptive technologies and digitalized processes are far greater
than the benefits.

• The cost of maintenance and support of these self-adaptive technologies and digitalized processes
are very high for our business.

• The amount of money and time invested in training employees to use these self-adaptive
technologies and digitalized processes is very high.

Hypothesis 4 (H4). The smaller the perceived cost/benefit ratio of the advanced manufacturing technologies,
the more likely they will be adopted.

4.2. Environmental Factors

4.2.1. Market Uncertainty

External organizational factors like megatrends or economic fluctuations affect the way business
is conducted. Market uncertainty stems from all technological, social, ecological, and political areas
such as technological disruptions, degree of competition, volatility in demand, uncertain supply, and
political [15]. This market uncertainty induces tension to the outer and inner complexity of a firm,
which as to be balanced [2]. Self-adaptive systems such as the Smart Factory facilitate the balancing
act [10]. The authors explain how cyber-physical systems support mass customization and handle
market uncertainties. Therefore, it is assumed that a higher degree of market uncertainty is positively
correlated with the likelihood of adopting advanced manufacturing technologies. In other studies,
this construct is represented by competitive pressure [25,26], perceived industry pressure [32], or
competition intensity [29]. Based on established measures by Chau and Tam [15], this indicator is
operationalized as:

• The market for firms’ products/services is stable.
• The competition of firms’ products/services is stable.
• The demand for firms’ products/services is stable.
• The degree of loyalty of their major customers is stable.
• The frequency of price-cutting in the industry is stable.

Hypothesis 5 (H5). The higher the market uncertainty for the company’s business, the more likely the advanced
manufacturing technologies will be adopted.

4.2.2. Industry Cluster

Since the first industrial revolution, it has been observed that firms tend to cluster in specific
geographic regions. While this has been driven by the availability of resources in the first place and the
need to secure them, this changed with the second industrial revolution when the infrastructure (power
and transportation) allowed firms to settle independently of large cities. With the rise of automation
and machinery-based manufacturing, access to the labor market, and close proximity to suppliers
became more critical [33]. This clustering of firms creates externalities such as reduced labor cost
or knowledge spillover because, in a reciprocal way, it attracts more people to the region, which in
turn reduces the cost of labor [34]. However, the degree of those positive externalities depends on
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the affinity of the firm to the existing cluster. A cluster of similar manufacturing SMEs (similar/same
industry) will benefit from a large specialized workforce to a greater extent than SMEs from different
industries due to labor pooling and sharing of inputs. In the Marshall-Arrow-Romer model [35], this is
described as externalities due to specialization, where this leads to knowledge spillovers, and if similar
firms collocate in one region (cluster), it fosters innovation due to competition.

On the other hand, in Jacob’s model [36], SMEs from different industries strive for innovation
due to knowledge spillovers based on different labor skills in high-tech industries [34]. In addition
to industry affinity externalities, whether based on specialization or diversification, Alacer and
Chung [37] highlight the importance of firm size on the agglomeration effects. Large firms typically
experience a higher knowledge drain than SMEs, which benefit from it (knowledge gain). Based on
this argumentation, the indicator for this construct is defined as:

• The company resides in a geographic, industrial area.
• The companies within the geographic, industrial area stem from many diversified industries.

Hypothesis 6 (H6). The higher diversity in an industry cluster, the more likely the advanced manufacturing
technologies will be adopted.

4.3. Organizational Factors

4.3.1. Top Management Support and Championship

According to Chatterjee et al. [21], top management championship is an important factor for
assimilating information technologies, such as Web technologies, because it defines institutional
norms and values how the company perceives the innovation. If the top management believes in the
innovation and actively shapes the vision and strategy, this serves as a strong signal to the organization
to overcome obstacles in the assimilation process. The significance of top management beliefs and
active participation has been demonstrated in various studies [21]. Thus, top management support is
positively related to adoption [25]. This is supported by Wischmann et al. [12], which highlight that
the lack of a digital vision by the top management is an inhibitor to implement Industry 4.0. Based on
established measures by Chatterjee et al. [21], this indicator is operationalized as:

• The top management is likely to invest funds for self-adaptive technologies and
digitalized processes.

• The top management is willing to take risks in the adoption process of self-adaptive technologies
and digitalized processes.

• The top management is likely to be interested in adopting the self-adaptive technologies and
digitalized processes.

• The top management is likely to consider the adoption of the self-adaptive technologies and
digitalized processes as strategically important.

• The top management has articulated a vision or strategy for the organizational use of self-adaptive
technologies and digitalized processes.

Hypothesis 7 (H7). The higher the top management support and championship for advanced manufacturing
technologies, the more likely they will be adopted.

4.3.2. Satisfaction with the Existing System

The shift from centralized production to decentralized (self-adaptive) production is a substantial
change for the organization. As highlighted by McGaughey and Snyder [38], human resistance to
change was one major factor that hampered the success of computer integrated manufacturing in
the 1990s. Resistance to change or motivation for change stems from two sources: lack of skills or
satisfaction with the existing system. Because a lack of skills is already covered by the complexity
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construct, this construct follows the argument by Rogers [24] that a low satisfaction level with the
existing system is perceived as a performance gap and will motivate the organization to improve
performance. Based on established measures by Chau and Tam [15], this indicator is operationalized as:

• The existing production system serves the needs of the company.
• The existing IT system serves the needs of the company.
• The cost/performance of the production system satisfies the top management.
• The cost/performance of the current IT system satisfies the top management.

Hypothesis 8 (H8). The higher the satisfaction with the existing system, the less likely the advanced
manufacturing technologies will be adopted.

4.3.3. Organizational Structure

The effect of organizational structures such as centralization (degree of organizational hierarchy)
and decision-making processes is debatable according to Kimberly and Evanisko [39]. A centralized
organizational structure can be positively or negatively correlated with technology adoption behavior.
In the context of advanced manufacturing technologies, this study follows the argument by
Chatterjee et al. [21]: To successfully implement a complex technology, which affects multiple
organizational entities, the needed intensity of interactions and collaborations among the managers
of these entities is a critical factor in the adoption of advanced manufacturing technologies. Thus,
it is expected that a decentralized organizational structure with flatter decision structures will be
associated with the adoption of new technologies. Based on these established measures this indicator
is operationalized as:

• The company decision making is highly concentrated at top management levels.
• The company extensively utilizes cross-functional work teams for managing the day to

day operations.
• The company has reduced the formal organizational structure to integrate operations more fully.

Hypothesis 9 (H9). The more decentralized the organization, the more likely the advanced manufacturing
technologies will be adopted.

4.4. Specific Technological Factors

4.4.1. Market Transparency for Advanced Manufacturing Technologies

Market transparency refers to the availability of information and solutions to implement
the technologies. It is reflected in governmental efforts to promote information, establish
public-partnerships, and establish measures to compare technologies solutions of different provides.
A highly fragmented market, with various isolated solution providers, with every one having its
standard, implies an immature industry.

Thus, market transparency is a proxy for technological maturity. Small and medium-sized
companies are more likely to adopt mature Industry 4.0 technologies than an immature one. The study
by Wischmann et al. [12] also highlights that a lack of user-transparency, technological standards, and
availability of solutions are severed obstacles for small and medium-sized enterprises. Based on this
argument, the following indicators are proposed:

• Information about products and services on self-adaptive technologies and digitalized processes
are widely available.

• The market for self-adaptive technologies and digitalized processes is transparent concerning
product and service features.

• The market for self-adaptive technologies and digitalized processes is transparent concerning
product and service costs.
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• Information on standards and protocols for self-adaptive technologies and digitalized processes is
widely available.

Hypothesis 10 (H10). The higher the market transparency, the more likely advanced manufacturing technologies
will be adopted.

4.4.2. Security Concerns of Advanced Manufacturing Technologies

Cyber-physical systems and its digital integration along the business function share are a unique
feature with e-business security concerns. Firms conducting Internet-based e-business have less control
over data as in legacy systems. Also, the integration along the value chain implies the diffusion of
core corporate data, and even if its access restricted, its several physical access points for fraud usage
as increased.

These security concerns are even more prevalent in the context of self-regulating factories.
According to Bauer et al. [2], information security based on confidentiality, integrity, and availability is
a prerequisite or even the decisive factor in adopting Industry 4.0 technologies. Based on established
measures by Zhu et al. [40], this indicator is operationalized as:

• The company is very concerned about the security and privacy of data and transactions using
self-adaptive technologies and digitalized processes.

• Our trading partners are very concerned about the security of data and privacy using self-adaptive
technologies and digitalized processes.

Hypothesis 11 (H11). The higher the security concerns, the less likely advanced manufacturing technologies
will be adopted.

4.5. Dependent Variable

Advanced manufacturing technologies are currently in its evaluation stage for scale based
industrial applications, and many public-private initiatives have just recently been planned or have
just been set up to promote prototypes and technology champions [41]. Thus, it is way too early to
investigate general adoption stages.

Therefore, this study follows first the approach by Tsai et al. [42] and investigates the general
intention to adopt advanced manufacturing strategies and subsequently includes only the early stages
of technology assimilation based on the Guttman scale in Fichman and Kemerer [23]. On a five-point
Likert scale ranging from strongly agree to disagree the intention to adopt is measured according to
Tsai et al. [42]:

• The company is seriously contemplating to adopt self-adaptive technologies and digitalized
processes within one to three years from now.

• It is critical for the company to adopt self-adaptive technologies and digitalized processes within
one to three years from now.

• My firm is likely to adopt self-adaptive technologies and digitalized processes within one to three
years from now.

5. Results

A survey has been sent out to 38 selected manufacturing SMEs in Japan according to the relative
representation. The descriptives of the firms are presented in Table 1. The company sizes range
between 10 (12 firms), 50 (13 firms), 100 (eight firms), and more than 200 employees (five firms).
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Table 1. Manufacturing Industries.

Industry Number of Firms

Automated Equipment and Robots 2
Basic Metals 2

Computer, Electronics and Optical Products 4
Control Equipment 2

Electrical Equipment 4
Fabricated Metal Products 1
Machinery and Equipment 9

Motor vehicles, trailers, and semi-trailers 1
Non-metallic mineral products 1

Transport Equipment 1
Paper Products 1

Pipes and Pumps 1
Mold Manufacturing 1

Precision Manufacturing 5
Other Manufacturing 3

The survey has been translated to Japanese and back to English to ensure semantic consistency.
The survey consists of the statements described in the previous section, and the interviewees indicated
to which extent, on a five-point Likert scale, they agree or disagree with each statement.

The model is evaluated for reliability, convergent validity, and discriminant validity. The Construct
reliability is assessed by computing Cronbach’s alpha. Cronbach’s alpha is a measure to check the
internal consistency of a construct based on the average correlations between the construct items
(Table 2). Cronbach’s alpha should be above 0.7. If the Cronbach’s alpha value is below 0.7, this is an
indicator that the items measure different concepts, or the items are not understandable/are ambiguous.
Therefore, only the constructs Complexity, Compatibility, Relative Advantage, Market Uncertainty, Top
Management Support, Market Transparency, and the dependent variables are considered. Based on
the remaining constructs a principal component analysis (correlation matrix, varimax) is used to assess
the convergent and discriminant validity. The Compatibility construct had to be dropped because of
too many over-loadings and insignificancy (loading > 0.5).

The remaining five components explain 72% of the variance and have significant loadings in their
respective parts and are uncorrelated across the components. Heteroskedasticity, the variance of the
error term, has been tested with the Breusch-Pagan/Cook-Weisberg, yielding a chi2 = 0.18. This means
that the variance of the error terms does not change with the observations.

After the determinants have been validated, the regression analysis is performed on the adjusted
model. A linear regression analysis is performed for the three scenarios of short-term (one year),
medium-term (two years), and long-term (three years) adoption intention.

Table 2. Cronbach’s Alpha.

Technology Adoption Construct Cronbach’s Alpha

Relative Advantage 0.86
Complexity 0.74

Compatibility 0.79
Cost 0.64

Top Management Support and Championship 0.79
Satisfaction with Existing Systems 0.5

Organizational Structure 0.82
Market Uncertainty 0.69

Industry Cluster 0.34
Market Transparency 0.88

Security Concerns 0.67
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The final regression model is shown in Figure 2. The regression shows that Market Uncertainty
(of the company’s business) is a significant driver for adoption intention in the short, medium, and
long-term. Also, while the Relative Advantage matters in the short-term, strong indicators for adoption
intention in the long-term are Top Management Support of a company. No support has been identified
for the other constructs. This indicates that the adoption of advanced or smart manufacturing for SMEs
is market-driven, whether there is a strong need to change and build a strong relative competitive
advantage or not. This is facilitated in the long-term by the top management. Therefore, this study
highlights that the adoption of Industry 4.0 technologies and processes is primarily driven by external
factors and less by internal drivers. This is aligned with the results obtained in [43], where the authors
highlight that Industry 4.0 in SMEs is typically related to Cloud Computing to improve operational
efficiency and only to a smaller degree used in real business cases for digital transformation.

Figure 2. The resulting Industry 4.0 Adoption Model. NS=No support. The number in brackets shows
the beta coefficients for one, two, and three years adoption levels.

The consequences of external pressure as the main driver has advantages and disadvantages.
Especially for small and medium-sized enterprises, it could lead to late adoption of Industry 4.0,
because compared to mass markets catered by large enterprises, niche markets are less competitive.
Thus, external pressure signals could be misinterpreted or necessary technology adoption could be
deferred. However Industry 4.0 standards and protocols have not reached a unified maturity level,
thus being a late adopter could refrain SMEs to tap into additional costly investments. Especially in
the light of interoperability challenges [44] and unsolved cyber-security concerns [45], late adoption
for SMEs might be beneficial.
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Abstract: Energy-efficient manufacturing is an important aspect of sustainable development in
current society. The rapid development of sensing technologies can collect real-time production data
from shop floors, which provides more opportunities for making energy saving decisions about
manufacturing systems. In this paper, a digital twin-based bidirectional operation framework is
proposed to realize energy-efficient manufacturing systems. The data view, model view, and service
view of a digital twin manufacturing system are formulated to describe the physical systems in
virtual space, to perform simulation analysis, to make decisions, and to control the physical systems
for various energy-saving purposes. For online energy-saving decisions about machines in serial
manufacturing systems, an event-driven estimation method of an energy-saving window based on
Max-plus Algebra is presented to put the target machine to sleep, considering real-time production
data of a system segment. A practical, simplified automotive production line is used to illustrate
the effectiveness of the proposed method by simulation experiments. Our method has no restriction
on machine failure mode and predefined parameters for energy-saving decision of machines. The
proposed approach has potential use in synchronous and asynchronous manufacturing systems.

Keywords: energy efficient operation; manufacturing system; stochastic event; digital twin; Max-plus
Algebra; MATLAB-Simulink

1. Introduction

Industrial activities are the most important factor that leads to carbon dioxide (CO2) emissions
in the world. The manufacturing industry in China accounts for 58.27% of the total CO2 emissions,
which increased by approximately 220.77% in the past twenty years [1]. With the increased sustainable
consensus, many emission reduction policies were issued to undertake environmental responsibility
and duty in China. More and more manufacturers take effort to reduce energy costs. Energy-efficient
manufacturing has been paid more attention considering productivity, flexibility, efficiency and
environmental effect in production management [2].

A discrete manufacturing system is a kind of complex, stochastic, and dynamic system with
interactions among machines and buffers. It is very common that many machines stay in an idle state,
resulting from starvation or blockage during a working day. Statistically, the machine at an idle state
consumes about 70% energy of their processing state [3]. Many modern Computerized Numerical
Control (CNC) machines and robots have multiple idle states with different energy consumptions. An
important strategy for energy-saving operations is to put the idle machine to sleep and to wake it up
again at an appropriate time point without sacrificing the system productivity. The machine control
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requires real-time production data. New, emerging Internet of Things (IoT) technology, e.g., smart
sensors and meters, provide multilevel monitoring of manufacturing system (almost) in real time [4].
The collected data provide more opportunities for energy-saving decisions at the machine, process,
and system levels.

Usually, discrete event simulation can be used to evaluate system performances including energy
cost [5]. However, discrete event simulation is computationally expensive and time consuming, which
is not suitable for online decision-making. As a new, emerging technology for modeling, simulation,
and optimization, digital twin can reflect real-time states of physical systems [6]. Based on various
models, digital twin not only can carry out simulations in virtual space before production but also can
deliver decisions from virtual space to physical space during production, which realizes closed-loop
feedback and interactions between physical systems and virtual systems. In this paper, a framework
of digital-twin-based energy-efficient operation of manufacturing systems is proposed to support
bidirectional interactions between virtual and physical systems. An event-driven Max-plus Algebra
method is presented and validated online to predict the dynamic sleep duration of a machine for
energy-saving operations at the system level.

The rest of this paper is organized as follows. The literature review is given in Section 2. Section 3
describes an operation framework for energy-efficient manufacturing systems based on digital twin
technology. An event-driven energy-saving window approach for online machine state decision is
proposed using Max-plus Algebra in Section 4. In Section 5, a practical serial manufacturing system
is used to demonstrate the effectiveness of our method and discussions are given. Conclusions and
future works are drawn in Section 6.

2. Literature Review

2.1. Modeling and Simulation of Energy-Efficient Manufacturing

Modeling and simulation are important methods for performance evaluation and optimization of
energy-efficient manufacturing [7]. The simulation models of machine tools, processes, systems, or
products can be used to carry out various what-if analyses. The production manager can understand
the impacts of different manufacturing parameters on energy consumption and, thus, make decisions
to optimize the parameters for energy-efficient manufacturing.

From the machine tool and process view, Lee et al. [8] proposed a simulation method based on a
virtual machine tool to estimate the machining condition considering the energy consumption function
or component model. Based on dynamic and kinematic behaviors of machine tools, Bi et al. [9] explored
relations of machining parameters (cutting force, depth, and feed rate) and energy consumption.
Kim et al. [10] proposed an additive regression algorithm to formulate the relationships between CNC
machine energy consumption and machining parameters. From the product aspect, Seow et al. [11]
built a simulation model to evaluate the total embodied product energy based on direct and indirect
consumed energy.

At the production or manufacturing system levels, simulation-based prediction of energy
consumption can support a manager in making decisions considering dynamic changes of
production plans, energy prices, and environmental impact. Process chain simulation was an
energy-oriented manufacturing system simulation approach [12]. The EnergyBlocks simulation
method integrated energy-efficiency criteria with evaluation and decision processes during production
system planning and scheduling [13]. Prabhu et al. [14] presented a simulation model that
continuously integrated variable power consumption at the machine level and discrete nature at the
production level to characterize energy dynamics in discrete manufacturing systems. By integrating a
sustainability-enabled product lifecycle management information model with energy-consumption
metrics, Zhao et al. [15] estimated the impact of energy control on actual energy consumption of a
heating, ventilation, and air conditioning system; a ventilation system; and a production system.
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The current modeling and simulation approaches focused on offline evaluation, prediction, and
optimization for energy-efficient manufacturing. In order to incorporate real-time production data of
shop floors, a data-driven method was always adopted for alleviating the burden of modeling and
simulation [16].

2.2. Energy-Aware Manufacturing System Scheduling and Control

Taking energy consumption as one objective in scheduling; a multi-objective optimization problem
can be formalized, and near-optimal job sequences can be searched by heuristic algorithms or exact
methods [17]. Shrouf et al. [18] presented a mathematical model to minimize energy costs for a single
machine system, and genetic algorithm technology has been used to obtain optimal solutions. For a
two-machine system, Fang et al. [19] proposed a mathematical programming model that considered
peak power load, energy consumption, and associated carbon footprint in addition to cycle time.
In a flow shop with a reference schedule, Bruzzone et al. [20] built a mixed integer programming
model where the reference schedule was modified to account for energy consumption without
changing the jobs’ assignment and sequencing. An energy-efficient flexible job shop scheduling model
considering total production energy consumption and makespan was formulated in Reference [21],
and a non-dominated sorting genetic algorithm-II was adopted to solve the model. Luo et al. [22]
developed an ant colony optimization meta-heuristic to optimize both makespan and electric power
cost with the presence of time-of-use electricity prices in a hybrid flow shop.

Quantitative policies and fuzzy rules can describe the operation knowledge of machine/system for
energy-efficient manufacturing. Mouzon et al. [23] described several switch-off dispatching policies to
minimize total energy consumption in a one-buffer, one-machine system. For a single machine system
with stochastic inter-arrival times, the N-policy, Upstream Policy, and Downstream Policy were defined
to switch the machine offwhen the conditions of the policies were satisfied [24]. By formulating four
ON–OFF control rules in serial production lines with Bernoulli machines, Jia et al. [25] analyzed system
performance measures in order to achieve high energy efficiency while maintaining high productivity.
Wang et al [26] designed a fuzzy controller considering real-time data of buffers/machines in order to
switch machine states and realize energy-efficient production.

Some works used an analytical method to study energy-saving opportunities of manufacturing
systems. Chang et al. [27] proposed an energy opportunity window of a machine, which was predicted
based on an approximated analytical model considering random downtime events. Sun and Li [28]
presented an analytical estimation of energy control opportunities considering buffer utilization.
Zou et al. [29] developed a stochastic analytical model which could predict shutdown time and
recovery time of machines based on discrete-time Markov Chains in a stochastic production system.
Li et al. [30] developed an analytical approach to quantitatively predict the system level production
loss resulting from an energy-saving control event.

The multi-objective scheduling methods of energy-aware manufacturing are usually used to
optimize operation plans before actual production. The complex and stochastic events of real shop
floors are simplified or ignored in scheduling algorithms. It is noted that the control policies or rules
for real-time energy-saving operation of production systems have many parameters to be determined
and adjusted with time-consuming work. The advantage of the analytical models is its mathematical
theory. Most of the analytical models did not consider the associated events during energy-saving
operation, and only a constant energy opportunity window was predicted.

2.3. Digital Twin of Cyber-Physical Manufacturing and Production System

Digital twin [31], a near-real-time virtual representation of a physical component, product or
system enriched with sensing data, is a digital and dynamic model in the cyber-space that is Digital
twin [31], a near-real-time virtual representation of a physical component, product, or system enriched
with sensing data, is a digital and dynamic model in cyberspace that is completely consistent with its
physical ones in real space. It is considered a key technology in realizing cyber–physical production
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systems (CPPS) for Industry 4.0 [32]. Digital twin can simulate the characteristics, behavior, and
performance of its physical counterpart in a timely fashion, which shows gigantic application potential
in manufacturing system analysis and control [33,34].

In the aspects of production management, optimization, and control, Zhuang et al. [35] proposed
a framework of digital-twin-based smart production management and control approach for complex
product-assembly shop-floors. By using Plant simulation software, Vachálek et al. [36] built a digital
twin for the optimization of production plans, which was designed in a way that it triggered physical
and virtual productions as well. Coronado et al. [37] described the development and implementation of
a new manufacturing execution system that combines MTConnect data with production data collected
from operators. The work was integral to realizing a complete digital model of the shop floor for
production control and optimization.

Considering digital-twin-based energy consumption evaluation and optimization of a production
plan, Karanjkar et al. [38] presented an IoT-driven digital twin for energy optimization in an automated
printed circuit-board assembly line. A digital twin of the line was built, and a buffering-based
solution for improving energy efficiency was evaluated using simulations. Lu et al. [39] proposed
an open system architecture for energy-efficient cyber–physical production network for facilitating
distributed manufacturing. A cyber twin of a physical manufacturing asset was built, and the
energy consumption of feature-based machining process models were evaluated in connected virtual
factories. Zhang et al. [40] proposed a framework of equipment energy consumption management for a
digital-twin shop floor. The data and models were discussed for monitoring, analysis, and optimization
of equipment energy consumption.

It can be concluded that the most current works on digital twin of manufacturing or production
system are used to monitor, evaluate, and visualize the real system based on unidirectional mapping
from physical space to digital space. There is little research on models of online real-time production
control from digital space to physical space, which is the main contribution in this paper considering
energy consumption and productivity.

3. Digital Twin Based Operation Framework of Energy-Efficient Manufacturing System

Energy-efficient operation decisions of production systems require data from shop floors, carries
out evaluations in virtual space, and makes control actions on the shop floor. Digital twin is the
digital representation of a physical object. The main purpose of a production system digital twin is
to facilitate decision-making activities based on simulation or computation before, during, and after
production. The real-time monitoring, simulation, prediction, and control of production systems
are vital to improving productivity, efficiency, and flexibility. At present, the interaction between
physical and digital production systems is mainly offline interactions, lacking continuous and online
interaction [33]. In this section, an operation framework with a three-view representation (Figure 1),
i.e., data view, model view, and service view, is proposed to digitalize a manufacturing system, which
enables us to perform simulations, to make decisions, and to control the physical system for different
energy-saving purposes.

In the physical space of Figure 1, the real manufacturing/production system is a complex, diverse,
and dynamic system with sensible ability in the context of Industry 4.0. The multisource and
heterogeneous data (e.g., behavior, event, and state) of physical objects (e.g., machines, materials,
and parts) are monitored and transmitted to databases based on IoT sensors (e.g., smart meters,
radio frequency identification reader, and tags), which enhance the perception ability for physical
manufacturing systems. The energy-efficient decisions made in virtual space based on digital twin
are implemented through actuators of machines on the shop floor. A three-view digital twin of
manufacturing systems for energy-saving operations is described as follows, which enables two-way
direct or indirect mapping and interaction between the physical and the virtual manufacturing systems.
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Figure 1. Framework of digital-twin based energy efficient operation of manufacture systems. eKPIs =
energy-related key performance indicators.

3.1. Data View

The data of energy-efficient manufacturing collected from different sources has the “4V”
characteristics (i.e., volume, velocity, variety, and value) of big data considering the spatial and
time dimensions. The big data for energy-efficient operation of manufacturing system includes
real-time and non-real-time data. The real-time data, such as electrical power of device, location of
parts, buffer level, and machine throughput, is monitored and collected during production, which
is the most important data source for online energy-saving decisions. The layout data, process plan,
maintenance plan, and job schedule are the non-real-time data of the system collected or generated
from the physical and cyber space before production. The energy-related key performance indicators
(eKPIs), such as energy demand, energy cost, and energy efficiency, are also non-real-time data
mined or acquired based on simulation after production. The energy big data can be structured or
semi-structured. For example, the data of a machine, such as rated power, spindle speed, and cutting
rate, is structured data. The process plan of a part is semi-structured data which has several flexible
aspects (e.g., feature sequence, operation type, and machine selection).

The methods for cleaning, reduction, integration, and storage of energy-efficient manufacturing
data can be referenced in Reference [41] and is not the focus of the paper. The high real-time processing
ability of the storm real-time computing framework [42] can be adopted to process the time-series
energy data. The Hadoop computing framework [43] can be used to process the non-real-time data. In
order to efficiently store the big data of energy-efficient manufacturing, the Not only Structured Query
Language [44] can be chosen for these large-scale structured and semi-structured datasets.
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3.2. Model View

In digital space, the parameter correlations of the objects/systems are represented in simulation or
computation models, which are core components of digital twin and the base of the application services.
The models describe the working principle of machines with power supply, the energy consumption
resources of the machining process, and the state space evolution of production systems. The models
at three different levels are built for energy-efficient decisions in this framework.

At the device level, the physics-based energy model is required to formulate power consumption
and dynamic behavior of industrial robot and CNC machine [40,45], and thus the energy-efficient
trajectory planning, operating parameters, and power state of machine components can be completed.
At the process level, the machining parameters, e.g., spindle speed, feed rate, and depth of cut, have
a notable influence of energy consumption for the same job features [9]. The mathematical cutting
equations or learning algorithms should be constructed for energy-consumption calculation and
prediction of machining process.

The models at the system level depict the interaction among the objects in production
systems. Various models such as knowledge-based models, mathematical models, and discrete
event simulation models are established for different decisions of energy-efficient manufacturing.
The policies/rules [23–25] and fuzzy logic [26] are expert knowledge for the energy-saving operation
of production systems. The big data analysis models [46], e.g., neural networks, rough set theory,
and deep learning, can mine implicit relationships of production parameters considering energy cost
and productivity. The stochastic process [28] and algebra mathematical models [47] usually are used
to evaluate the system eKPIs. The heuristic models (e.g., simulated annealing, genetic algorithm,
and particle swarm optimization algorithm) for multi-objective optimization [17] are important for
production scheduling. The discrete event simulation models are very popular for system evaluation
and optimization as stated in the review section. The complex relations among entities, events, and
activities of a production system are scheduled based on queuing theory in simulation models.

3.3. Service View

At the top of Figure 1, many kinds of application services are provided for online and offline
scheduling, evaluating, forecasting, visualizing, monitoring, and controlling of energy-efficient
manufacturing based on simulation or computation models.

The offline services are usually initiated on-demand by managers to determine the appropriate
energy-efficient process parameters or job sequences in advance before production. The simulation
services allow managers to perform what-if analyses on various production plans and to optimize
schedules for minimizing total energy cost while maintaining higher productivity. After production,
the future energy management [48,49], such as energy policy, energy benchmark, energy recycle, and
manufacturing process/production schedule, can also be analyzed based on the collected data. The
data-mining application services [46] can be formulated to discover hidden valuable information and
knowledge from the enormous production datasets with energy indicators.

From the online services view, a near-real-time dynamic visualization application of production-
and energy-related information can be generated based on discrete event simulation models with
collected data, which provide more direct perceptions of the physical shop floor status. By creating
the latest snapshot of the physical manufacturing system status based on the data-driven simulation
method [16], the forecasting application is adaptive and flexible to any change in terms of actual
production settings and can provide prediction services of system performances and eKPIs using
online forward simulation experiments. Feedback control based on decisions in virtual space is the
distinct characteristic of digital twin. The energy-saving opportunities during production come from
the transient states of manufacturing system [27]. An online, event-driven energy-saving decision
service for machine state control is proposed in this paper to execute short-term analysis by mapping
the exact state of a physical system into the digital world at run time. The decision results will be sent
to physical machines for realizing energy-efficient production.
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4. Event-Driven Online Decision Model of Energy Saving Window Using Max-Plus Algebra

4.1. Physical Manufacturing System and Modeling Assumptions

In this paper, a typical serial production system (Figure 2) is used to illustrate energy efficient
operation at the system level based on the above described digital twin framework. In order to build
the mathematical model of the physical system for energy saving decision and control, the following
assumptions are made.

1. A physical serial production system is composed of m machines and m−1 buffers. There is one
buffer between each adjacent machine.

2. Each buffer Bi (i = 1, 2, . . . , m−1) has a finite capacity Ci and its real-time level is Ii.
3. Each machine Mi (i = 1, 2, . . . , m) has a constant cycle time Pi.
4. The reliability model of machines can be any probability distribution.
5. The bottleneck machine (BN) of the system is denoted as Mb (1 ≤ b ≤ m).
6. The first machine M1 is never starved, and the last machine Mm is never blocked.
7. The transportation time between machines and buffers is not considered.

M1 M2B1 B2 ... Bm-1Mi Mm... Bi-1

Figure 2. Typical serial production system.

4.2. Methodology of Event-Driven Online Energy Saving Decision and Control of Machine States

Usually, time-based scheme is adopted at shop floor to collected production data with predefined
sampling intervals and data-driven method is used to make operation decisions [41]. Generally
speaking, the idle activities during production bring energy-saving opportunities. The idle activities
generate from the events of blockage or starvation. Thus, event-based scheme can be more effective
and economical considering the big data processing burden of time-based scheme [50]. Event-driven
decision has shown many potential applications in manufacturing, such as manufacturing information
system architecture [51], make-to-order production [52], and manufacturing execution system [53]. The
most related research of event-based energy efficient production control is conducted by Li et al. [30,54],
where a sequence of disruption events was defined to estimate the production loss for energy saving
operation. In this paper, four traditional events of a machine, i.e., blockage event (BE), starvation event
(SE), failure event (FE) and recover event from failure (RE), are monitored at the physical shop floor,
which trigger energy-saving decision in digital space and control machines in physical system.

Based on previous works [27,55–57], an energy-saving window (ESWi) of a target machine Mi
is defined as a time length of Mi being purposely put to sleep without bringing production loss to
the system in this study. A system segment (SGi) of a target machine Mi is defined as the partial
system including all machines and buffers between the target machine and bottleneck machine. The
estimation of ESW in the next section will consider the bottleneck machine of the system, of which
the production interruption will most likely result in system production loss [57]. The main flow of
event-driven online energy-saving decision and control is shown in Figure 3 and explained as follows.
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Figure 3. Event-driven online machine energy saving decision and control flow. Note: Abbreviations
defined before Figure 2.

As shown in Figure 3, the main decision flow (rectangle 1) will be triggered if there is a BE or
SE of a target machine Mi during production. The ESW of this target machine is estimated based on
the current states of SGi. Then, the physical machine is switched into sleep mode. During the sleep
duration of a target machine, different events of machines will be monitored and machine states will be
controlled for energy-saving operation. In the flow of rectangle 2, the FE and then the RE of a machine
in SGi are monitored. If an RE occurs on a machine, the main decision flow is retriggered to estimate a
new ESW of the target machine. The underlying principle is that the failure of a machine in SGi can
provide more energy-saving time for the target machine. In the flow of rectangle 3, different machines
of the system are monitored according to the place of SGi, considering the bottleneck Mb. If the target
machine Mi is before Mb, a new system segment before SGi is named as BSGi. The BE of machines in
BSGi and the SE of machines in SGi are monitored. For each machine, from near to distant, related to
the target machine, the machine in BSGi or SGi will be put to sleep if it is blocked or starved. If the
target machine Mi is after Mb, a new system segment after SGi is named ASGi and similar decisions
are made on each machine before the target machine ends its sleep. All the machines that were put to
sleep will be woken when the ESW of the target machine is exhausted and a decision round ends.

Compared with time-based data sampling in the fuzzy logic method [26], our event-driven
method greatly eases the burden of data collection and conforms to the stochastic of the system. The
dynamic updating of the ESW of the target machine during one round decision is more reasonable
compared with the constant opportunity windows [27,29,55–57] and will be illustrated in Section 5.

From the flow in Figure 3, our event-driven energy-saving decision method is also different
from the event-based energy-efficient production control in References [30,54], which used predefined
energy-saving control events to analyze the system performances.

4.3. Estimation of Energy Saving Window Based on System Segment using Max-Plus Algebra

Discrete event simulation is usually time consuming and cannot be used as the online tool
for real-time decisions. Max-plus Algebra is a mathematical tool that can model discrete event
systems in linear equations analogous to traditional state space dynamic equations [58] and has higher
computation efficiency. Some works used Max-plus Algebra to model and analyse manufacturing
systems, such as parametric analysis of mixed-model assembly lines [59], makespan calculation of a
job-shop [60], and flow shop scheduling problems [61]. In this section, Max-plus Algebra is used to
estimate the ESW of a target machine for energy saving operation based on previous work [62].
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As aforementioned, ESW represents the sleep time of the target machine without affecting the
production of Mb. If the target machine Mi is located before the bottleneck Mb (1 ≤ i < b), the sleep of
the target machine will result in the starvation of the Mb. We define TEi as the time length that all
work-in-processes (WIP) in buffers of SGi are cleared out. In order to recover the production of Mb

immediately after waking the target machine, the time length from entering the target machine to
arriving at buffer Bb−1 must be eliminated and donated as TRi. If the target machine Mi is located after
the bottleneck Mb (b < i ≤m), putting the target machine to sleep will cause a blockage of the Mb if all
buffers in SGi are full. We define TFi as the time duration that all buffers in SGi are filled from their
current levels. The ESW of the target machine Mi is estimated as follows:

ESWi =

{
TEi − TRi (1 ≤ i < b)
TFi (b < i ≤ m)

(1)

The time length TEi, TRi, and TFi can be estimated using the Max-plus Algebra method, which
can calculate the time instant of a system state. Here, the estimation of TEi is illustrated as an example.
The following variables are defined to describe the system states for target machine Mi (1 ≤ i < b).

• The total number of WIP in all buffers of SGi is denoted as n.
• uj (k) is the time instant when the kth (1 ≤ k ≤ n) part in SGi is available to Mj (i + 1 ≤ j ≤ b).

• uj is an column vector of uj (k).
• xj (k) is the time instant when Mj starts processing the kth part.

Apparently, we can get the following formula if the current time clock is zero.

TEi = xb(n) (2)

where xb (n) means the time instant that bottleneck machine Mb starts processing the last part in SGi.
At a decision time point, there are Ij−1 parts in buffer Bj−1 that are available to machine Mj. After

the processing activity of Mj, a new part will be sent to Bj and will be available to machine Mj+1. The
vector uj is formulated as follows:

ui+1 = [0, 0, . . . , 0︸�����︷︷�����︸
Ii

]T (3)

ui+2 = [0, 0, . . . , 0︸�����︷︷�����︸
Ii+1

, xi+1(1) + Pi+1, xi+1(2) + Pi+1, . . . , xi+1(Ii) + Pi+1]
T (4)

ub = [0, 0, . . . , 0︸�����︷︷�����︸
Ib−1

, xb−1(1) + Pb−1, xb−1(2) + Pb−1, . . . , xb−1(Ii + Ii+1 + . . .+ Ib−2) + Pb−1]
T (5)

For each part in buffers of SGi, the time instant that Mj starts processing the part is as follows:

xi+1(k) = max(ui+1(k), xi+1(k− 1) + Pi+1, xi+2(k− 1 + Ii+1 −Ci+1)) (6)

xi+2(k) = max(ui+2(k), xi+2(k− 1) + Pi+2, xi+3(k− 1 + Ii+2 −Ci+2)) (7)

xb−1(k) = max(ub−1(k), xb−1(k− 1) + Pb−1, xb(k− 1 + Ib−1 −Cb−1)) (8)

xb(k) = max(ub(k), xb(k− 1) + Pb) (9)

In state space form, it can be described as follows:

x(k) = A⊗ u(k) ⊕D⊗ x(k− 1) ⊕ F1 ⊗ xi+2(k− 1 + I1+1 −Ci+1)

⊕F2 ⊗ xi+3(k− 1 + Ii+2 −Ci+2) ⊕ . . .⊕ Fb−i ⊗ xb(k− 1 + Ib−1 −Cb−1)
(10)
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The coefficient matrices A, D and F are formulated as follows:

A ∈ R(b−i+1)×(b−i+1)
ε , D ∈ R(b−i+1)×n

ε , Fl ∈ R(b−i+1)×(b−i+1)
ε

A = (aij) =

{
e i = j;
ε otherwise

(11)

D = (dij) =

{
Pi i = j;
ε otherwise

(12)

Fl = (fij) =

{
e i = l, j = l + 1 (l = 1, 2, . . . , b− i)
ε otherwise

(13)

where e is the null element and ε is the identity element in Max-plus Algebra.
Based on the above method, the state equations of the system segment will be quickly initialized

using real time production data collected from shop floor and the ESW of a machine can be estimated
for online energy saving decision and control.

5. Simulation Experiments and Discussion

5.1. Simulation Case of a Serial Manufacturing System

The event-driven energy saving decision model in our digital twin of an energy efficient
manufacturing system can be used to control the physical system online under Industry 4.0 environment
in the future, which realizes the communication from virtual space to physical space. In order to
imitate the operation procedure of the physical production system, the model of the real production
line is built in MATLAB-Simulink [63]. The running process of the modeled system generates real-time
production data and events, which are monitored, collected and sent to digital twin. The energy-saving
decision based on Max-plus Algebra is built in digital space as a service. The decision is driven
based on defined events and the decision results are sent to the mimetic physical production system
in MATLAB-Simulink, where the machines are controlled for energy-saving operation. The whole
process simulates the bidirectional communication between physical space and virtual space.

A typical serial manufacturing system including six machines and five buffers (6M5B) in
References [26,29] is taken to illustrate the effectiveness of our method. This system is a simplified
version of a real automotive production line. The parameters are presented in Tables 1 and 2, where
mean time between failure (MTBF) and mean time to repair (MTTR) are assumed as exponential
distribution for this case. The simulation duration is three weeks, i.e., 30,240 min. The electricity
rate is assumed to be $0.2/kWh. It is assumed that no power is consumed in machine sleep mode for
comparing performances with the methods in References [26,29].

Table 1. Machine parameters of the 6M5B serial automotive production line.

Machine M1 M2 M3 M4 M5 M6

MTBF (min) 5422 6301.2 11,872.2 5440.2 6412.8 6250.8
MTTR (min) 130.8 208.2 409.8 279.6 205.2 250.8

Cycle time (min) 3.5 4.3 2.7 9.4 1.1 5.9
Power rate (kW) 450 300 240 288 660 360

Table 2. Buffer parameters of the 6M5B serial automotive production line.

Buffer B1 B2 B3 B4 B5

Capacity 120 150 160 50 150
Initial Level 70 30 50 40 50
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Three scenarios are simulated as follows: baseline scenario with no energy saving decision and
control (S1), only one machine being controlled for energy saving (S2), and multi-machine except the
bottleneck machine being controlled for energy saving (S3). These three scenarios are simulated for 20
trials-each. After simulation of baseline scenario S1, machine M4 is recognized as the system bottleneck.

5.2. Experiment Results and Analysis

The simulation results of system performances, i.e., System throughput (STP), System throughput
Loss (STPL), Total system energy cost (TSEE), Energy cost per part (ECPP), and Energy cost saving per
part (ECSPP), are shown in Table 3 with 95% confidential interval (CI). It can be seen that the energy
cost saving per part is remarkable based on an event-driven digital twin model of the machine control
method. When multiple-machines are controlled in S3, there is almost 57.24% energy-cost saving and
only 2.20% system throughput is lost compared with baseline scenario S1.

Table 3. Simulation results of the three scenarios.

STP
with 95% CI

STPL
(%)

TSEE ($) with 95% CI
ECPP ($)

with 95% CI
ECSPP

(%)

S1
3168.45 - 225,732.57 71.25 -

[3150.06, 3186.84] [225,070.14, 226,395.00] [70.81, 71.70]

S2 (M3) 3162.40
0.19%

183,762.24 58.08
18.48%[3144.77, 3180.03] [175,341.88, 192,182.59] [55.60, 60.55]

S2 (M5) 3114.80
1.96%

155,183.59 49.83
30.06%[3096.59, 3133.01] [154,795.41, 155,571.78] [49.61, 50.05]

S3
3098.70

2.20%
94,424.29 30.47

57.24%[3078.35, 3119.05] [93,875.72, 94,972.87] [30.31, 30.64]

Figure 4 shows the machine states time in three scenarios, where the machine states include
processing (PR), blockage (BL), starvation (ST), failure (FL), and sleep (SL). For machine M1, M2, and
M3 before the BN (M4), the blockage time gradually decreases and the sleep time (energy-saving time)
gradually increases in S2 and S3 compared with S1. The processing time of the machines almost remain
unchanged, which means the energy-saving control does not affect processing work and converts the
blockage time to sleep time. For machines M5 and M6 after the BN (M4), the energy-saving decision
and control method can effectively change the starvation time into sleep time. For example, the total
starvation time of M5 in S1 is 86.37% of simulation time. In S3, the starvation time of M5 is entirely
converted to sleep time. The total processing time of M5 in S1 (3438.2 min) and S3 (3376.6 min) almost
remain the same, while the sleep time of M5 is 86.57% of simulation time in S3. The control of machine
states results in the energy-cost reduction as shown in Table 3.

We recorded the data of an event-driven energy-saving decision process during simulation
experiments. Table 4 shows some data from S3, and the meanings are explained as follows.

An SE of M3 is monitored at 19,772.1 min, and M3 is taken as the target machine. An energy-saving
decision is triggered based on the system segment SG3 (i.e., M3-B3-M4), and the ESW of M3 is estimated
as 110.1 min. At the same time, the M3 is put to sleep. No energy-saving event is monitored following
110.1 min, and then M3 is woken at 19,882.2 min. For M5, an SE is monitored at 20,679.6 min and the
target machine is set as M5. The ESW5 is calculated as 470.0 min, considering system segment SG5 (i.e.,
M4-B4-M5) in record No.4. Before the end of sleep time, there is a failure event of M4 at time 20,757.8
(No.5) and then a recover event of M4 at time 20,813.3 (No.6). Therefore, the energy-saving decision
process of M5 is retriggered at time 20,813.3 and a new ESW5 is estimated as 385.4 min. The ESW5 is
updated dynamically based on the event-driven method. Later, M6 in ASG5 (i.e., B5-M6) has an SE and
is put to sleep at time 20,944.8. The sleep states of M5 and M6 are ended at time 21,198.7 (No.9). M5

and M6 have another decision round shown in record No.10, 12, and 14. For M3, a BL is monitored at
21,065.4 min and taken as the target machine. The ESW3 is calculated as 1501.3 min (No.8). At the later
procedure, M2 and M1 are put to sleep in succession because of the BE in BSG3 (i.e., M1-B1-M2-B2). At
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the end of the sleep time of M3 (i.e., 22,566.7 min), M1, M2, and M3 are woken up together. It can be
seen that multiple machines can be controlled for energy-saving operation based on the event-driven
method considering online production data.

Figure 4. The state time distribution of machines in three scenarios.

Table 4. Event-driven energy-saving decision process in scenario S3.

No. Time (min.) Event-Machine Control Action ESWi (min.) Segment

1 19,772.1 SE - M3 Sleeping M3 110.1 (ESW3) SG3
2 19,882.2 - Wakening M3 - SG3

3 From 19,882.2
to 20,679.6 - - - -

4 20,679.6 SE-M5 Sleeping M5 470.0 (ESW5) SG5
5 20,757.8 FE-M4 - - -
6 20,813.3 RE-M4 Sleeping M5 385.4 (ESW5) SG5
7 20,944.8 SE-M6 Sleeping M6 - ASG5
8 21,065.4 BE-M3 Sleeping M3 1501.3 (ESW3) SG3
9 21,198.7 - Wakening M5, M6 - -
10 21,259.2 SE-M5 Sleeping M5 470.0 (ESW5) SG5
11 21,517.3 BE-M2 Sleeping M2 - BSG3
12 21,524.3 SE-M6 Sleeping M6 - ASG5
13 21,648.8 BE-M1 Sleeping M1 - BSG3
14 21,729.2 - Wakening M5, M6 - -
15 22,566.7 - Wakening M1, M2, M3 - -

Figure 5 shows the changing process of machine states (M5) in S1 and S3, which is randomly
selected from the experiments between 20,000 to 24,000 min. In baseline S1 with no energy-saving
decision and control, there are many interval starvations and processing times of M5 due to the empty
state of buffer B4. For example, there is one part in B4 at time 20,158.6 (S1) and in M5 that begins to
process the part for 1.1 min. After time 20,159.7, the frequent starvation and processing state occurs
alternately. Therefore, many normal starvation states of M5 with short duration consume a lot of
non-value-added energy. In controlled scenario S3, the M5 is put to sleep until time 20,619.2. At time
20,619.2, M5 is woken up and processes parts continuously for 61.6 min until time 20,680.7. Then, M5

is put to sleep again in a new event-driven decision round. Comparing the states of M5 in S1 and
S3, it can be concluded that control of machine energy-saving states brings energy-cost reduction of
manufacturing systems.
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Figure 5. The machine state changing process of M5: (a) S1 and (b) S3.

The eKPIs of the system under multi-machine control scenario in this paper are compared with
fuzzy logic method [26] and mathematical model [29] in Table 5. The three methods of energy-saving
control all result in reduction of system throughput less than 3%, which is acceptable in practical
manufacturing systems. Our method achieves the most energy-cost reduction per part (57.23%)
compared with the other two methods, and the effectiveness of this paper is proved.

Table 5. Comparision of the system eKPIs in different methods.

Method
Reduction of System

Throughput (%)
Reduction of System

Energy Cost (%)
Reduction of Energy

Cost per Part (%)

This paper 2.20% 58.17% 57.23%
[26] 0.23% 51.76% 51.66%
[29] 2.70% 27.00% 24.98%

Except for the better performances, our method has some advantages for practical use in shop
floors. The first advantage is that there is no restriction on the failure mode of machines in our method.
The mathematical models [24,25,29] for energy-saving decision are all based on specific failure modes
of machines. When the machine recovers from failure, the event-driven method will re-estimate the
ESW of the machine. Non-predefined control parameter is the second advantage of our method. In
fuzzy logic method [26], the threshold values and decision intervals of the machines should be defined
in advance for energy-saving control. The method in Reference [29] should assume the subjective
value of discount ratio and collaboration ratio. The third advantage is that our method can be used
in synchronous manufacturing systems and asynchronous manufacturing systems. The method in
Reference [29] can only be used in an asynchronous line.

6. Conclusions

With the development of IoTs, energy-efficient manufacturing is provided more opportunities in
an Industry 4.0 environment, where the digital twin plays an important role for real-time production
monitoring, simulation analysis, and feedback control of physical systems. Considering most current
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works focus on the uniderection mapping from physical space to virtual space, a digital-twin-based
bidirectional operation framework of energy-efficient manufacturing system is proposed to digitalize
the physical manufacturing systems, to perform simulations and decisions for different energy-saving
purposes in virtual space, and to control the power states of physical machines. The three views, i.e.,
data view, model view, and service view, are described to map the physical system to digital system. An
online event-driven energy-saving decision method based on Max-plus Algebra is presented to switch
machines to sleep mode with consideration of maximum energy saving and minimum effect on system
throughput. The Max-plus Algebra model is used to snapshot the states of system segment and to
estimate the ESW of the machines. A simplified real automotive production line is taken as an example
to carry out simulation experiments, and the results illustrate the effectiveness of the proposed method
compared with other methods in literatures. Not relying on machine failure mode and non-predefined
parameters in our method makes it simple to be used in synchronous and asynchronous systems.
The potential application of our method in more complex line, e.g., parallel line, assembly line, or
disassembly line, will be experimented in the future.
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Abbreviations

IoT Internet of Things
CNC Computerized Numerical Control
CPPS cyber-physical production systems
eKPIs energy-related key performance indicators
BN bottleneck machine
BE Blockage event of a machine
SE Starvation event of a machine
FE Failure event of a machine
RE Recover event from failure of a machine
ESW Energy saving window of a machine
SGi System segment between target machine Mi and bottleneck machine
BSGi System segment before SGi
ASGi System segment after SGi
WIP Work-in-process
TEi The time length that all the WIP in buffers of SGi is cleared out
TRi The time length of a part from entering target machine to arriving buffer Bb−1
TFi The time duration that all buffers in SGi are filled from their current levels
STP System throughput
STPL System throughput loss
TSEE Total system energy cost
ECPP Energy cost per part
ECSPP Energy cost saving per part
PR Processing state
BL Blockage state
ST Starvation state
FL Failure state
SL Sleep state
MTBF Mean time between failure
MTTR Mean time to repair
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Abstract: Due to the shift from mainly manual labor to an increased portion of cognitive tasks in
manufacturing caused by the introduction of cyber-physical systems, there is a need for an updated
collection of adequate design principles for user interfaces between humans and machines. Thus,
we developed a method for the determination and evaluation of such design principles. It is based on
human factors methods and facilitates the assessment of specific work design elements which
are supposed to have a significant effect on work performance and the perception of work
in cyber-physical production systems (CPPS). Within the application of the developed method,
we derived an overview of key design elements in CPPS, developed an experimental platform,
and conducted two empirical studies with a total of n = 68 participants. This way, three design
elements were investigated, and the findings transferred into preliminary design principles. We can
state that the method can be used both for a better understanding of the mechanisms between human
factors and work in CPPS. Besides, it helps to provide a catalogue of design principles applicable to
SMEs to promote more efficient and successful integration of workers into CPPS.

Keywords: human factors; Industry 4.0; cyber-physical systems; cyber-physical production systems;
anthropocentric design; Operator 4.0; human–machine interaction

1. Introduction

Cyber-physical systems (CPS) describe a new type of technological systems in which physical
elements are equipped with computers (embedded systems). These are networked with each
other and can exchange information. Thus, real objects and processes are associated with virtual
objects and processes [1]. This results in an increasing intelligence of products and systems [2].
These smart products are characterized by the fact that they are equipped with computers for storing
product-specific information which can be used for data exchange and localization. The intelligent
products can thus influence their own manufacture, use, or disposal [3].

In the field of manufacturing environments, intelligent systems include intelligent machine tools,
test equipment, transport vehicles, and products. They continuously collect data about their condition
and share it with other cyber-physical systems. The analysis and use of these data [1] reveal great
potential for process improvements [4–6]. An example is the Smart Production, whose functionalities
are made possible as a result of data exchange [7,8]. In detail, there are various applications for
cyber-physical systems in production. For example, autonomous cooperating production processes,
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use of a collaborative robot, preventive maintenance or virtual reality/augmented reality systems
can be used and implemented [3,5,6]. Many of these ideas are not new and therefore not entirely
attributable to Industry 4.0, but can now unfold their potential as a result of the greater amount
of data available [6]. The reorganization of manufacturing as a result of automation or changes in
work systems will have an impact on existing jobs. It can be assumed that people in the Industry 4.0
environment both perform different activities and require different qualifications for these tasks [5].

How should the Work 4.0 associated with Industry 4.0 be designed in a both socially and
economically sustainable way? This question is of main interest in the present paper. Section 1 provides
background information and existing fundamentals on the change of work systems, human-oriented
work design, human–machine interaction, and human factors both in general and in cyber-physical
production systems (CPPS). In Section 2, we outline the underlying method of carrying out a human
factors study and analyze available human-centered research in CPPS to determine their level of
integrating human factors principles and methods. Section 3 is separated into four subsections and
presents the results of our research. Firstly, work design elements for Human–machine interfaces
in CPPS are proposed (Section 3.1). Further, a method for the integration of human factors into
human-oriented work design in CPPS is shown. It facilitates the assessment of the proposed work
design elements and quantifies their effect on work performance and the perception of work in CPPS
and thus leads to design principles (Section 3.2). Then, an experimental platform designed to carry
out these CPPS-related human factors studies easily is presented (Section 3.3). Finally, we apply
and validate the developed method. This includes the hypothesis of key design elements out of
the proposed work design elements, the design and implementation of representative work tasks
as a human factors study, the execution, and evaluation of the human factors study, and the final
development of design principles for interfaces in CPPS (Section 3.4). Conclusively, in Section 4,
the followed approach is summarized and interpreted. We also point out subsequent future
research ideas.

1.1. Change of Human Work in Manufacturing

Work in future manufacturing systems will be transformed by cyber-physical systems due to
the technical and organizational shift described above. Despite the increased computerization and
automation, studies say that human work is considered to remain very important for the future [9].
As a result, these studies expect the development of hybrid production systems, which involve
collaborative work between people and machines. The specific application of the physical and mental
abilities of humans can generate further added value [9,10]. Hirsch-Kreinsen [10] described the design
of the human–machine interface as a central challenge. Only if the operators, which are part of the
CPPS, can control and comprehensively understand them, decisions can be made that are consistent
with the automated system (cf. Ironies of Automation [11]).

Further, CPPS lead to rationalization effects through digitization, networking, and automation [12].
Therefore, experts expect less simple, repetitive work and more qualified work in relation with the
cyber-physical systems [9]. As a result, the type of work that will be required in the future is likely to be
different. According to a study by the Prognos Institute, increasing demand for highly qualified workers
and decreasing demand for low-skilled work and auxiliary activities can be assumed [13]. This effect is
typical for technical and organizational change processes [12]. Additionally, Brossardt [14] highlighted
changes in particular task areas: production-related occupations are declining. Here, technological
development has an impact on the form of rationalization and automation. An increase can be observed
for the knowledge-oriented field of occupation. This reflects the tendency towards a knowledge society
with a lower need for manual but a higher need for knowledge-based activities [14].

1.2. Anthropocentric Work Design in CPPS

Work organization deals with actions that contribute to changing existing work systems or
creating new ones. These actions include the design of work organization, links to other work
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systems, work tasks, equipment, workplaces, or working environment. They can be distinguished by
different perspectives:

• From an economic or engineering perspective, the work design aims at improving the performance
and efficiency of the value creation process.

• From a human factors perspective, work design deals with the creation of work systems that
enable safe work that is neither physically nor mentally exhaustive [15].

Significant contributions to human-oriented work design were made by Hackman and
Oldham [16], Luczak [17], Rohmert [18], and Ulich [19]. Their criteria include both physical and
mental human needs and attributes. For example, the employees’ work should be designed in a way
that feasibility, non-harmfulness, and appropriateness of the tasks is ensured, along with satisfaction
and personal development. Various standards (e.g., DIN 6385 [20] and DIN EN 894 [21]) also include
principles and approaches in the ergonomic design of (interactive) work systems. The work systems
must be designed to be compatible with the performance of the person, the expectations of the operator,
and the type of work task.

1.2.1. Human–Machine Interaction

Human–machine interaction is a part of every socio-technical work system in which people and
technology collaborate. This refers both to systems in which the machines are merely human work
equipment and to systems in which humans and machines act as collaborating, independent actors.
It enables two-way dependent communication between humans and machines, so called dialogues.
Each dialogue process consists of several interfaces: Input and output, dialogue, and tools. DIN EN
ISO 9241 provides a set of rules in this regard, which serves to design and evaluate these dialogues [22].
They should, therefore, be appropriate, self-explanatory, faithful to expectations, adaptable, robust,
and conducive to learning. Further design principles were proposed by Butz and Krüger [23].
They provided basic design rules that focus on the accessibility of human–machine interfaces and
intuitive operation. Regarding human–machine interaction in CPPS,Peissner and Hipp [24] identified
further challenges and preliminary solutions. They considered human-oriented design, the role of the
humans, multimodal interaction, the design of automation, and individualization as essential success
factors. Table 1 provides an overview of these measures and gives examples for each.

Table 1. Approaches to human–machine interaction in CPPS according to Peissner and Hipp [24].

Approach Exemplary Measures

Human-oriented
design

Attractive design of user interfaces to increase user acceptance
and work performance
Human-oriented development of work systems through early
involvement of the work force
Iterative design processes of the work areas
Improving the user experience and work motivation through the
use of gamification or innovative tools

Role of human actors Clear Presentation and Context-Sensitive Display of Information
for Complexity Reduction and Error Avoidance
Mobile workstations for fast reactions to events
Availability of manifold information through real-time data,
assistance systems, and flexible tools
Use of physical analogies and consistency in interface design
Active error avoidance through use of constraints and plausibility
checking
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Table 1. Cont.

Multi-modal
interaction

Use of different input and output methods for usability
improvement and error avoidance

Design of automation Use of comprehensible automation for improved acceptance and
error avoidance

Individualization User-dependent design of interfaces

1.2.2. Human Factors

In addition to the disciplines of work design and human–machine interaction, the area of human
factors also covers issues raised by the design of CPPS. Human factors can be understood as all physical,
psychological, and social characteristics of the humans, which influence the action in socio-technical
systems [25]. The associated scientific discipline is also referred to as human factors, and it deals
with the role of humans in complex systems, the design of work equipment, and the human-oriented
adaptation of the working environment [26]. On the one hand, it aims to carry out basic research in the
field of the interaction between people and technology and, on the other hand, to produce solutions for
practical problems. The aim is to avoid the negative consequences that can arise from this interaction.
As a result, human well-being can be increased, and the safety and function of the human–machine
system improved [25]. Human-oriented design of the CPPS is thereby of high importance.

In the area of manufacturing systems, the human factors address the workers who operate or
monitor production machines. The gain of knowledge is mainly achieved through social scientific
research methods such as behavioral observations, interviews, or questionnaires. A combination of
these methods enables the recording of externally observable actions and utterances as well as the
acquisition of “inner” information, such as action strategies, satisfaction, or expert knowledge [25].

1.2.3. Human Factors in CPPS

For CPPS in particular, cognitive ergonomics play an essential role. In contrast to conventional
ergonomics, it is less concerned with physical and anthropometric characteristics than with the
cognitive, emotional, and motivational needs and abilities of people. It does not only affect those
informational processes that occur during task processing. Rather, through the design of the work
equipment or the task, it also has an impact on how the work is organized by the worker. It affects the
entire work process, starting with the task preparation and ending with the completion of the task [27].
Part of cognitive ergonomics with regard to human–computer interaction is also the consideration
of emotional and motivational aspects. For example, researchers investigate how assistance systems
should give hints or recommendations to workers in order to trigger the desired consideration and
response from users, but avoid defense reactions or ignorance [25].

CPPS show a high process and work complexity as well as an increased level of automation.
These aspects need to be considered more closely about human factors. Complex situations have
specific characteristics. First, they are extensive in terms of recording and processing the work task.
They contain a large number of variables that have to be included in the consideration. These variables
are not isolated from each other but interlinked. As a result, they influence each other in direction,
type, and intensity. Measures on one variable may, therefore, have (undesirable) side-effects on other
variables. Furthermore, complex situations are characterized by opacity, which can cause parts of the
overall situation to remain hidden for the acting person. For example, variables may be unknown,
their interlinking unclear, or their current state not determinable. Consequently, actions must be
taken under uncertainty. Finally, complex situations are dynamic. The variables and their interaction
change over time. Thus, the states of the variables can change even without the influence of the acting
person or show a different state at the time of implementation of a measure than at the time of the first
observation [28]. While in everyday life, many tasks can be met by routines, complex conditions lead to
the necessity to actively organize tasks. There are, therefore, various ways of dealing with complexity:
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behavioral prevention and structural prevention. Behavioral prevention aims to provide strategies
to deal with new and complex situations by training. Thus, it increases the flexibility of the workers.
Structural prevention tries to reduce complexity by design in the best possible way. The reduced
complexity then shows a higher similarity with standard situations and can be handled better [28].

The change of work as a result of the introduction of CPPS leads to the computerization of
workplaces and further automation of processes (see also Section 1.1). Therefore, many of the future
workplaces present themselves as human–machine systems. Consequently, in these cases, tasks are
not carried out by only one person but by the interaction of (several) workers and machines. At this
point, the term machine includes both production machines and cyber-physical assistance systems.
The design of these systems in terms of a human-oriented work is in the area of interest of the human
factors. Automation is the process of transferring activities from humans to machines. The automated
activities can be manual or cognitive: Manzey [29] mentioned manual work, manual control,
and control activities on the one hand, and judgment and decision-making activities on the other
hand. An important design issue of automated systems lies in the distribution of tasks among the
various actors of the human–machine system. This applies both to the allocation of tasks to different
people and the assignment of tasks to workers or machines. The assignment of tasks to machines
serves different purposes: utilization of economic advantages, error reduction, quality improvement,
or improvement of work for humans.

The quality of the division of tasks between people and machines in practice depends crucially
on the interaction between them [29]. There are various approaches to answering these allocation
questions. The first approach is an automation strategy with a focus on technology and costs: according
to this strategy, all tasks which can be easily and cost-effectively automated are transferred to machines.
Humans are left with those tasks where automation is impossible or costly. The goals of this strategy
are primarily to increase the efficiency and reliability of processes. There is little consideration given
to the impact of this strategy on workers [26,29]. A second approach is an automation strategy
that focuses on the capabilities of the actors. They should be relevant to the tasks assigned to them.
Often, however, an isolated view of people on the one hand and machines, on the other hand, cannot
meet the idea of a system-wide perspective. As a result of this criticism, a third approach regards people
and automation as a complementary, hybrid work system. According to this idea, humans always
bear the responsibility for the systems and thus take on the role of a so-called “leading control” [30].
Their tasks include:

• the planning of the tasks of the machines;
• the transfer of tasks to the machines;
• the monitoring of the execution of the activities;
• the intervention in case of unintended outcomes; and
• the learning from experience in handling the machines.

Examples of implementing this human role in the design include the creation of active
involvement of humans and the access to complete information about the activities of the automation.
Humans and machines should be considered as equal and independent actors of the system [29,30].
The usability and performance of a human–machine system which contains automated components
depend to a large extent on humans having a reasonable degree of confidence in automation.
An appropriate situational awareness is present when the operator is informed about the current
system status and can foresee its further development [29,31]. Various reasons can lead to a lack
of situational awareness. Examples are a lack of monitoring of the automation, changed feedback
channels (for example, haptic or visual impressions of the production machine may no longer exist
when the task is changed to leading control), or lack of transparency of the automation. Often a lack of
situational awareness goes hand in hand with a loss of manual skills. This can be critical if operators
need to regain control of the system or have to identify errors (see again [11]).
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2. Materials and Methods

The application of methods is an elementary part of human factors research. They are utilized
to conduct evaluations and predictions on the interaction among humans and machines concerning
productivity, safety, and work satisfaction [32]. In this way, the performance of a human–machine
system can be evaluated, and the requirements and effects of the work on the working persons can
be assessed. The findings can be used to develop new and improved systems [32,33]. In many cases,
the starting point for a human factors research project lies in the need to improve a human–machine
system in terms of work conditions and efficiency. In addition, the objective may be to describe
fundamental relationships in the interaction of humans and machines that are detached from a concrete
problem [32]. Thus, research can be fundamental or applied. Fundamental studies are used to
understand the factors that influence the function of the human–machine system. The results of
these studies are basic principles of action and theories [32,34]. Applied research aims to transfer the
results of fundamental research into the development and evaluation of human–machine systems [32].

2.1. Design and Analysis of Experiments

A standard method of human factors are experimental studies [32]. They can be used to show
whether there are causal relationships between the design of a human–machine system and effects
on the humans involved, the system, or the system performance. Therefore, in an experimental
study, one or more variables are modified in order to induce observable effects [32,33]. The goal of
a subsequent statistical evaluation of the experiments is to answer the question whether the selected
independent variables (factors) have an influence on the dependent variables. Both descriptive and
closing statistics methods are used. While the former summarizes and presents the collected data,
the latter concludes whether the identified differences are significant or only the result of a random
variation [33]. Descriptive statistics in the field of human factors often include the representation of
mean values and standard deviations. Typically, the values of the dependent variables are determined
for the respective levels of the independent variables and statements are made about their variance [33].
If there is a factorial design with several independent variables, the main effect of an independent
variable and interaction effects between several independent variables can be determined [35].
For experimental designs that follow a factorial design with several independent variables in different
levels, an analysis of variance (ANOVA) is often performed (if different conditions are met, see [35]).
ANOVA provides a statistical test that takes into account the observed mean values of the different
groups. It allows a decision to be made whether these differences are large enough to conclude that
there are similar differences in the underlying populations [36].

2.2. Available Human Factors Research in CPPS

In the past, several research projects have dealt with the effects of human-oriented working
conditions on the physical and mental condition of employees on the one hand and the
economical parameters of companies on the other hand. These works revealed connections between
human-oriented measures (e.g., ergonomic design or cognitive simplification) and their positive
consequences (e.g., increased job satisfaction and improved product quality) [37–41]. In addition,
a cost–benefit assessment of ergonomic measures in companies showed mostly positive effects of these
measures by their ergonomic intentions as well as short amortization phases [42]. While the majority
of these studies were carried out based on a classical understanding of ergonomics, in the context of
Industry 4.0, the human factor is currently once again the subject of research. Various papers deal
with the analysis, potential, and impact of human factors [43–46]. In addition, an interdisciplinary
approach to the implementation of the human factors, the consideration of social changes in product
development, and the role of technology acceptance by users has been discussed.

According to the previous explanations in Section 1.1, the work systems in semi-automated
production systems are characterized by intensive use of the interface between humans and machines.
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Here, cognitive assistance systems are used to establish this connection between the automated
production parts and the workers. In a study by Rauch et al. [47], existing research and contributions
were identified using a systematic literature review, which pursued a human-oriented approach in
the development of cognitive assistance systems. These research contributions are examined in more
detail below in order to evaluate them in terms of considering human factors in the design process of
the cognitive assistance systems.

Chen et al. [48] developed a framework for early consideration of human factors during the
planning process of an assembly system. By integrating ergonomics analyses into a virtual assembly
system, the expected stress on the employees can be evaluated. The result of the work of Yang et al. [49]
is a concept for a human-oriented virtual factory in which work-relevant issues, such as ergonomics,
collaboration, or training, are integrated into the planning process at an early stage. These factors are
taken into account both in the product design process and in factory and process planning. Santochi
and Failli [50] considered possible approaches for sustainable work in production, which is the result
of the interplay of physical and mental working conditions and motivational influencing factors.
They also suggested possible approaches for improving a typical assembly workplace using cognitive
assistance systems. Romero et al. [51] proposed a human-centered reference architecture for the
conception of semi-automated systems. They intended to develop production systems which are
characterized by adaptable automation and thus support employees meeting their needs, for example,
the requirements of elderly employees or trainees. Hold et al. [52] described a procedure for integrating
physical and cognitive assistance systems into CPPS. They aimed to uncover suitable application
possibilities and potentials.

Ohtsuka et al. [53] described a cognitive assistance system for collaboration with robots.
The system recognizes the desired operation of the employee and provides support. This results
in faster task processing. The work of Weiss et al. [54] contains the idea of a collaborative work system
between humans and robots. For the developed system, studies were carried out to determine the
interaction between the actors and to derive improvement potentials. The authors used human factors
methods. They proposed an assistance system integrated into the worker’s clothing for robot control
and monitoring. Soffker et al. [55] presented a method for mapping human–process interaction in
manufacturing work. It can be used to develop intelligent assistance systems, which contribute to
an in-depth process of awareness. The authors proposed an assessment of suitable channels to be
used to interact with workers (e.g., auditory or visual channels). Pacaux-Lemoine et al. [56] proposed
starting points for cognitive assistance systems to be used by workers with control tasks in autonomous
production systems. A prototypical implementation led to both a reduction of the energy consumption
and of the throughput times.

The work of Gorecky et al. [57] deals with the development of virtual training and knowledge
transfer systems for worker qualification and for improving communication in production systems.
The authors described the prototypical implementation of two exemplary systems. Paelke [58]
considered the development of an augmented reality assistance system to support employees in part
selection and assembly during an assembly process. Different visualization concepts are developed
for the information to be displayed. In addition, a test of the system with a large number of study
participants is described. Another augmented reality system was presented by Rauh et al. [59]. Here,
an augmented reality assistance system is developed to support employees during maintenance
activities in the production process. This work includes a human-oriented development and evaluation
of the prototype system by involving the users in different phases of the design process.

Level of Integration of Human Factors

The presented research works deal with cognitive assistance systems, which can be used
either in the planning process of production systems or during the manufacturing process of the
products. They aim to improve working conditions for employees and to optimize process quality.
A human-oriented approach was followed in each case. These ideas were evaluated concerning the
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type and extent of consideration of human-oriented design principles and methods of human factors.
They were checked qualitatively for the fulfillment of the following criteria:

• Explicit consideration of designing a human-oriented assistance system (use of design principles
of human-oriented work design and human–machine interaction in general and for automated
systems in particular)

• Explicit consideration of the interface between worker and cognitive assistance system
• Methodical integration of human factors into the design process of assistance systems (use of

an approach which integrates human factors concepts and standard methods)

Table 2 shows the results. A checked research paper indicates the fulfillment of a corresponding
criterion. It can be noted that only a low level of criteria compliance could be found. Only two out
of twelve research papers fulfill one of the criteria. Altogether, we can conclude that the focus of
the contributions is mainly on the technical and organizational development of cognitive assistance
systems, but only to a limited extent on the methodological integration of the human factors.

Table 2. Analysis of research papers taken out of a review by Rauch et al. [47] on available
human-oriented approaches for the development of cognitive assistance systems: Design, explicit
consideration of designing a human-oriented assistance system; Interface, explicit consideration of the
interface between worker and cognitive assistance system; and Methods, methodical integration of
human factors into the design process of assistance systems.

Contribution Design Interface Methods

Chen et al. [48]
Yang et al. [49]
Santochi and Failli [50]
Romero et al. [51] x
Hold et al. [52]
Ohtsuka et al. [53]
Weiss et al. [54] x
Soffker et al. [55] x
Pacaux-Lemoine et al. [56]
Gorecky et al. [57]
Paelke [58] x
Rauh et al. [59] x x

3. Integration of Human Factors into Human-Oriented Work Design in Cyber-Physical
Production Systems

The results of the presented work can be separated in four parts: First, we derived crucial work
design elements in CPPS (Section 3.1). Second, we developed a method for the integration of human
factors into human-oriented work design in CPPS, which is based on the evaluation of the impact
of work design elements on humans in a work environment (Section 3.2). Third, we developed
an experimental platform for carrying out human factors studies as a part of the presented method
(Section 3.3). Fourth, we applied and validated the method using the developed platform (Section 3.4).

3.1. Design Elements for Human–Machine Interfaces in CPPS

The findings presented in the previous sections on work in CPPS and on human factors
in human–machine systems show the availability of a wide range of research work in this area.
The consideration of work design in CPPS, however, shows only a few findings thus far. In addition,
the applicability of many standards and design rules of work design for conventional production
systems must be questioned. Since most of this research has been done before the introduction of
cyber-physical work systems, it often involves an outdated understanding of work in production
systems. Due to new tasks, a changed allocation of tasks between humans and machines as well as new
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assistance systems, cognitive work, in particular, becomes predominant, while the share of physical
work decreases. As a result, an overview of new design elements was developed to meet the changing
requirements of cyber-physical work systems. The basis is formed partly by research contributions on
the current and future development of work in CPPS and partly by research on the human-oriented
design of human–machine systems. Table 3 shows the areas of origin of these references and the
contribution they provide to the finding of new design principles. We also refer to the corresponding
sections of this publication, which contain detailed information on the specific areas. The subject of
this discussion are always working systems in CPPS, which are designed as semi-automated systems.

Table 3. Basis of the new design elements concerning human factor-oriented work in CPPS and their
corresponding contributions.

Area Contribution Reference

Cyber-physical
production systems

technological capabilities,
new products and processes

Section 1

Change of work New requirements, changed division of labour,
new work equipment

Section 1.1

Human–Machine-
Interaction

Interface Design Principles for
hybrid, semi-automated cyber-physical systems

Section 1.2.1

Human factors Human needs and abilities as part of
cyber-physical, socio-technical systems

Section 1.2.2

An overview of the new design principles is shown in Figure 1. It represents an excerpt of the
aspects that work design in the sense of human-oriented work in CPPS must additionally take into
account. Due to the thematic overlap of the subject areas, the design elements may originate from one
or more of these areas. During their derivation, a maxim was set that they are of special relevance in
the practical context of work systems in CPPS. In the context of this paper, they represent a basis for
Phase 1 of the method (see Section 3.2), in which crucial design elements for the present work system
are derived and selected for the subsequent phase steps, respectively. In the following, the design
principles are referred to as design elements. They are explained briefly below:

Usability describes a facilitated usage of the interface for the worker. This is characterized by
increased effectiveness, efficiency, and satisfaction when using the interface [60]. For example, usability
can be increased by improving the readability of information or the simplicity of its presentation,
as well as by placing dialog elements intuitively. The design element Attractive Design goes beyond the
previously described aspect of usability and wants to create an additional positive experience for the
working person when using the interface. Work tasks are perceived as easier if they can be performed
with the help of attractive work equipment [61]. This can be achieved, for example, by exceptional
design or the implementation of new technologies [26]. The Adaptability of the human–machine
interface describes the possibility on behalf of the worker to individualize it. For example, special
individual requirements can be taken into account by setting options such as font size, language,
or contrast. Besides, adaptability can be used to personalize the use of existing assistance systems
according to the skill level [22,62].

The design element Robustness describes the tolerance of the interface against wrong inputs
and errors. Consequently, the design should aim to minimize the impact of errors on the outcome of
the work. This can be done, for example, by automatic plausibility checks or the use of an “Undo”
function [23,62]. Affordance describes the “invitation” of an object to use it for specific actions.
For example, three-dimensionally designed buttons could be used, which seem to protrude spatially.
Thus, they motivate the worker to click or press them, since they look like buttons on physical
devices [23]. Constraints are (physical) restrictions of the interaction with an object [23]. For example,
a drag and drop operation might only allow an object that has been picked up to be placed in the
designated areas. This way, hints can be given on the intended processing of the work task, and errors
are avoided. Mapping is a design element that provides a suitable assignment of real objects to
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the interface [23]. For example, with spatial mapping, the arrangement of production machines
in production would be transferred in the same way to the arrangement of sensor data for these
production machines on the interface.

Attractive Design Participation

Gamification

Assistance System

Multimodal Interaction

Affordance

Mapping

Feedback

Physical Analogies

Consistency

Amount of Information

Robustness

Usability

Adaptability

Constraints

Design Principles

in Automated Systems

Dialogue Design

Adaptability

Amount of Information

Change of
Human Work

CPPS

Human-
Machine-
Interaction

Complexity

Human
Factors

Work Allocation

Figure 1. Design elements for human–machine interfaces in CPPS.

The element Consistency refers to the use of constant layouts, colors, or terminology for same and
similar issues. For workers, this results in greater reliability in identifying functions and predicting their
effects [23,62]. Physical analogies describe the behavior of buttons based on physics [63]. For example,
activated buttons could be shown as pushed in buttons. Thus, the activation can be intuitively perceived
by the worker. By using Assistance systems, workers should be supported in the processing their
work tasks. A typical example is an augmented reality goggle that complements the perceived reality
with helpful support. Such tools can represent the human–machine interface themselves but can also
be designed as a function on an existing interface (e.g., on a tablet computer) and thus support the
worker in different ways [64,65]. This kind of assistance system could, for example, be designed as
color highlighting of valid areas when placing objects within a user interface.

The design element Amount of information describes the provision of the appropriate amount of
information which is necessary and useful for solving the work tasks [66]. Only such information shall
be displayed that contributes to an improved or simplified problem-solving process. ViaFeedback
workers can be offered feedback both about the activities of the cyber-physical work system
and about the quality of their work results. For example, this design element can range from
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confirmations or process status information to details on the user’s goal achievement during or
after task processing [22,23].

Gamification links work with elements from the field of computer games. For instance, it describes
the use of virtual rewards (badges), a high score list, or different game levels in the remote context of
a work system. This way, the intrinsic motivation of the workers can be increased, as the rewards lie in
the work system itself and are not brought in externally [67,68]. The design element Multimodal
interaction intends the use of several ways of communication between humans and machines.
As a consequence, input and output should not only be carried out one way, for example by using
a touch display but should also include other types of communication such as speech, gestures or
facial expressions. This allows the human–machine interaction to be approximated to the natural
communication between humans and their environment, and thereby to improve the information
flow [69].

By Participation of the workers in the design process of interfaces, the interaction quality can be
improved, and the efficiency of the design process can be increased. On the one hand, this participation
can provide a complete picture of the work system during the requirements analysis and, on the
other hand, can improve the acceptance of the interface at its introduction and operation [70,71].
Work allocation deals with the assignment of tasks within the human–machine system and allocates
them to humans and automation [29]. This division of functions follows the present automation
strategy and influences the quality of use and acceptance of CPPS [72]. The Complexity of a work
task is a consequence of the required action and the available information and determines the work
performance [73]. Complex conditions in terms of work design can be addressed by behavioral
prevention (training) or structural prevention (reduction of complexity) [28].

Actions derived for the new design elements should be evaluated in terms of their effects
on human work. Existing evaluation possibilities in the field of conventional ergonomics are
somatographic aids. These are human-shaped models used to check the anthropometric design
of workplaces. This procedure may also be implemented with the help of computers as an Augmented
Reality application [74]. Furthermore, digital human models can be used in CAD models of
workstations for vision or accessibility checks. These evaluation methods increase productivity
and lead to cost reductions [75]. In addition to conventional ergonomics, usability engineering
can be used in the evaluation of human–machine systems. It describes the process of continuously
considering the usability and user-friendliness of work systems already during their design process [74].
Here, observations and user surveys are carried out frequently. The goal is to design a suitable
user interface that avoids unnecessary complexity and maps the required functionalities of the work
system [76]. In these types of tests, the users are confronted with representative work tasks. During and
after processing, key data on effectiveness, efficiency, and user satisfaction can be collected [74].

To be able to check a large number of different design elements, a flexible way of conducting
human factors studies is required. It should be usable for various derived actions. As a part of the
method presented in the following section on the integration of human factors into the work design of
CPPS, the development of an experimental platform is carried out.

3.2. Method for the Integration of Human Factors into Human-Oriented Work Design in CPPS

The method aims to support the understanding of the mechanisms between human factors and
work in CPPS. It focuses on the area of work design. Here, the design of interfaces between humans
and machines in manufacturing serves as a research subject. A method shall be designed to enable
the assessment and evaluation of specific work design elements. The method should be capable of
providing a first catalogue of rules regarding the interface design in CPPS.

We postulate that the integration of the new design elements presented in Section 3.1 has
a significant effect on work performance and the perception of work. Our method is designed
to assess and evaluate this expected effect. Its basic idea is to conduct experiments in which workers
interact with cyber-physical systems via human–machine interfaces. The participants are asked to
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solve work tasks. Here, various key figures and inputs are recorded. At the same time, questionnaires
are used during the experiments to gather personal, work psychological information about the test
persons. Consequently, quantitative data on the task-specific achievement of objectives and personal
status information is determined in the experiments.

If a design element is active when performing a first work task, but inactive when performing
a second work task, the difference in the outcome variables can be linked to the design element.
For example, a measure derived from a design element could be the illustration of a task description.
In combination with suitable study design, this allows research to show the effects of design elements
or draft work designs. These data enable a statistical analysis of the relationship between particular
elements of work design, the perception of work, and the achieved performance. Thus, the hypotheses
on essential design elements in CPPS can be tested and transformed into design principles that
correspond to the particular effect.

The methodology provides a stepwise procedure in four phases:

• Phase 1: Hypothesis of key design elements;
• Phase 2: Design and implementation of representative work tasks as a human factors study;
• Phase 3: Execution and Evaluation of the human factors study; and
• Phase 4: Development of design principles for interfaces in CPPS.

Figure 2 summarizes a simple run of the method. A rectangle symbolizes an operation and
an ellipse the end of the process. The method is presented in detail in the following.

Hypothesis of key design elements

Design and implementation of
representative work tasks as a human 

factors study

Development of design principles
in CPPS

Catalogue of principles for
interface design in CPPS

Execution and evaluation of the human 
factors study

1

2

3

4

Operation

End of process

Figure 2. Method-schematic overview.

3.2.1. Phase 1: Hypothesis of Key Design Elements

Phase 1 of the method aims at identifying the key design elements in the present cyber-physical
work system. At this point, the term “key” refers to the design elements that may have a significant
effect on work performance or the perception of work. The selection of these elements will be initiated
by a collection of potentially important design elements for human–machine interfaces in CPPS.
This collection originated from previous research in the fields of human–machine interaction and
human factors as presented in Section 3.1. The collection of possible key design elements is presented in
the overview (see Section 3.1). These design elements will be evaluated in the next steps of the method.
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3.2.2. Phase 2: Design and Implementation of Representative Work Tasks as a Human Factors Study

Phase 2 of the method implements the identified representative work tasks and the key design
elements as a work design draft. This is carried out in a way that enables its implementation and
subsequent use for a human factors study. Consequently, the design and preparation of the study is also
part of Phase 2. First, the identified design elements and the representative work tasks are implemented
on the experimental platform (see Section 3.3). As a representative work task, a model CPPS work
system is used that does not originate from any concrete application case. The result is a work
design draft that offers the possibility of modular integration of various design elements. This way,
the design of experiments by a full factorial design is possible (see Section 2.1). Second, the design
of the experiment is defined. This design of experiments includes the determination of the variables
of the study and the preparation of a test plan. In the following third step, the work tasks realized
on the experimental platform are transferred into a human factors study according to the design
of experiments.

3.2.3. Phase 3: Execution and Evaluation of the Human Factors Study

In Phase 3 of the method, the human factors study is carried out, and the study results
are evaluated statistically. As a first step, a sufficient number of adequate participants must be
recruited for the study corresponding to the design of experiments. Within the study, the participants
perform predefined work tasks. Here, the target variables (dependent variables) are automatically
recorded by the experimental platform. Finally, the study results are provided for subsequent analysis.
While carrying out the experiments, it is necessary to observe the test plan as well as the experimental
conditions in order to achieve consistent and unbiased results. In a second step, the statistical evaluation
of the study results takes place. Statistical analysis is performed to display significant differences in
dependent variables caused by the design elements (independent variables or factors). The result
provides the effect intensity of the design elements on the dependent variables (key figures).

3.2.4. Phase 4: Development of Design Principles for Interfaces in CPPS

Finally, Phase 4 aims to develop corresponding design principles for work design in CPPS
based on the determined effect strengths and effect directions of the design elements. Therefore,
differentiation between “Yes” and “No” rules will be made, which indicate whether an implementation
of the respective design element can be recommended. The entirety of all key figures examined is
explicitly considered. In the event of conflicting effects concerning individual factors, a division
into “Yes” and “No” rules will also be made if a predominantly positive or negative effect can be
identified. In all other cases, a “Maybe” rule is defined, which requires further investigations. Based
on the study results, the effect sizes for each dependent variable are used as effect indicators for all
examined design elements. Table 4 shows the generation of effect indicators for absolute or assessment
variables. These are key figures where an increase or decrease are the possible changes, for instance,
the processing time of a work task or the evaluation of the task difficulty on a rating scale. If the
desired effect direction is a reduction (e.g., processing time), the effect indicator E− is used; otherwise,
E+ is used for an increase. An observed reduction of the processing time by 12%, for example,
would lead to an effect indicator of + (see Table 4). The sums of the effect indicators are then compared.
If a homogenous pattern of the effects can be identified for both aspects (work performance and
perception of work), a “Yes” rule is assigned for a positive effect and a “No” rule for a negative effect.
In the case of an indifferent pattern of effects, a “Maybe” rule is assigned.
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Table 4. Generation of effect indicators for absolute and assessment variables.

Effect Size E+/E− Effect Indicator E+ Effect Indicator E−

E > +50% +++ −−−
+25% < E ≤ +50% ++ −−
+10% < E ≤ +25% + −
−10% < E ≤ +10% 0 0
−25% < E ≤ −10% − +
−50% < E ≤ −25% −− ++

E ≤ −50% −−− +++

3.3. Conception and Development of an Experimental Platform

A platform needs to provide an interface to the investigator and the participant. The investigator
configures the setup of the experimental platform to set up and configure the investigation.
This includes the realization and customization of the work tasks, the design elements, as well
as the set-up of the study. Once the experiment is finished, the experimental platform makes the
recorded results available to the investigator. The test participant uses his or her interface to the system
for task processing and answering of questionnaires. All entries and responses made are recorded.
The described functionality of the interfaces is shown in Figure 3.

Participant

Investigator

questionnaire answers
work tasks

setup

resultsconfiguration

task processing 

personal informationinterviews

Experimental platform

Figure 3. Functional diagram of the interfaces between the experimental platform and the users.

To meet the requirement that the experimental platform should be designed as flexible as possible
to cope with different design elements, the setup and configuration of the experiments should be
implemented as easy as possible. For example, including a new design element in a work task should
be easy to integrate. In addition, there should be a set of modules which can serve as building blocks
to sequentially assemble the experiment. The modules are implemented as pages (similar to a website
or app page), which are displayed on a touch screen display and can be viewed by a test person
in a sequence. A sequence consists of pages that can be used for task description, task processing,
or interviews. There can also be additional pages for the information supply (e.g., title pages or
introductory pages).

During task processing, the experimental platform can measure various key figures and record
information. This information can be observable and non-observable. The observable variables are:

• the number of display touches;,
• the time used to solve a work task; and
• the outcome of the work task.

Non-observable variables are assessed using questionnaires. Depending on the chosen test design,
questions can be asked about the perceived complexity of the task or the satisfaction with the own
outcome. The collected data are recorded by the system and made accessible to the investigator.
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The experimental platform is based on a Raspberry Pi 2 B single board computer combined with
a 7-inch touch display. Further components are shown on the right side of Figure 4 as a cross-section
of the system. Due to the use of common electronic components such as a Raspberry Pi 2 B or a USB
power bank, a cost-effective implementation of the experimental platform is possible. The total price
of a system is 233 Euro (as of 2019). The total price is in the range of commercially available tablet
computers, which can be a possible alternative to this system. Due to its modular structure, however,
the platform can be flexibly extended and adapted. The use of a Raspberry Pi, for example, provides
extensive connection options (e.g., for operating the LED strip). The perspex box can be used to easily
accommodate additional components. Thus, the use of the experimental platform is preferred over the
use of a tablet. The left side of Figure 4 shows a photo of the system.

Figure 4. Photo and cross section of the experimental platform.

The software of the experimental platform is a self-developed Python 3 program. The operating
system used is Linux for Raspberry Pi. Requirements for the software and its use cases from the
perspective of the involved users were derived as follows [77]:

1. The system has to implement the representative work tasks and the design elements from Figure 1
and represent the interface between human and machine within a cyber-physical work system.

2. The system has to supply the necessary input and the required output regarding the representative
work tasks to the workers.

3. The system has to facilitate the solution of the work task.
4. The system has to provide questionnaires regarding the query of work psychological indicators

and personal information.
5. The system has to display feedback on the completed representative task.
6. The system has to independently record the desired target values of work performance and

perception of work and make them available to the investigator.
7. The system has to be modular in order to be able to flexibly compose and adapt the experiment out

of different modules (e.g., tasks, feedback, questionnaires) following the design of the experiment.

These requirements can be assigned to the users involved (participants and investigator).
Requirements 2–5 represent the use cases of the participants, while Requirements 6 and 7 are attributed
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to the investigator. Requirement 1 represents the main function of the experimental platform and,
therefore, cannot be assigned exclusively to the participants or the investigator. Figure 5 shows these
use cases.

read information

input 
information

process tasks

read feedback

answer 
questionnaires

adjust tasks

receive data

configure 
experiments

participant investigator

Figure 5. Use cases of the software of the experimental platform.

3.4. Application and Validation of the Method

The method developed in Section 3.2 was applied and validated (see below). For this purpose,
the necessary parts, the overview of design elements in CPPS (see Section 3.1) and the experimental
platform (see Section 3.3), were realized. Some design elements were selected from the overview
provided and implemented on the experimental platform using representative work tasks from the
field of machine scheduling. Subsequently, an extensive experimental study was conducted and
analyzed, which was then used to evaluate the design elements. Finally, on this basis, initial design
principles for interfaces in human–machine systems in cyber-physical work systems are proposed.

3.4.1. Phase 1: Hypothesis of Key Design Elements

The following three design elements from the overview in Section 3.1 were selected: “Feedback”,
“Assistance system”, and “Usability”. Since these design elements represent starting points for
human-oriented design measures only, a further specification of these measures was necessary.
The design element “Feedback” was implemented as a results feedback to the worker. For the
integration of the design element “Assistance system”, two different measures were used: firstly,
a display of detailed information on incorrect actions by the worker and, secondly, visual support for
operation and decision-making. The “Usability” design element was addressed by color differentiation
of dialog elements. We postulate for all three design elements that the respective design measures
would have a positive effect on work performance and perception (see Section 3.1). These hypotheses
are examined below.

3.4.2. Phase 2: Design and Implementation of Representative Work Tasks as a Human Factors Study

The explanations in Section 1 of CPPS, the change of work and the existing research work
on human-oriented work design results the following profile of a typical, semi-automated and
cyber-physical work system:

• The worker performs a predominantly cognitive activity that takes place in interaction with
automated systems.

• The human–machine interface is implemented as a cyber-physical assistance system.
• The task involves the understanding of a high process complexity resulting from the use of

cyber-physical systems.

This profile was met by using a representative work task from the area of machine scheduling.
The selected task confronted the participants of the study with a machine scheduling problem (a flexible
flow shop problem) consisting of several production machines of different types that can be used to
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process several multi-step orders. The work objective was to complete all orders as soon as possible.
We chose this scenario as it corresponds to the characteristic of a complex cognitive task that takes
place in the manufacturing context. It was implemented on the developed experimental platform,
which can be seen as an interface between human and machines within a cyber-physical assistance
system. Other representative work tasks could also be considered for further applications of the
method. The work tasks appeared in different versions: first, as an active task in which the machine
scheduling problem is solved from scratch by the worker; and, second, as a reviewing and correcting
task in which a predefined solution is evaluated and can be changed. This second version represents
supervisory work tasks in CPPS, such as the monitoring of an automated production process.

The given jobs and their sets of operations (referred to as partial jobs in the following) served
as input for the processing of the work task. Besides, the kind and characteristics of the production
machines were mentioned (type, processing time). The predefined allocation for reviewing and
corrective work tasks (referred to as corrective tasks in the following) varied according to different
status: optimal, needs minor improvement, and needs major improvement. The expected output for
both task versions consisted first of the capturing of the job and machine situation. This was followed
by the machine scheduling (active) or the assessment of the need for changes and modifying the
predefined scheduling (corrective). No other information or tools were provided to solve the tasks
apart from the outlined input, and there is no time limit.

Design of Work Tasks on the Experimental Platform

The work tasks consisted both in the active and in the corrective version of two pages on
the experimental platform: the task description page and the task processing page. This basis was
supplemented by interview pages, which were used to record the perception of work and sometimes
by a feedback page (depending on the design of experiments).

The task description page listed the existing jobs (A1, A2, ..., An) and the corresponding partial
jobs (a, b, c, d). Each job contained at least one and a maximum of four partial jobs. A separate table
showed the available production machines (M1, M2, ..., Mn) and indicated for which partial job they
could be used and which processing time was required. Furthermore, the available machine network
was represented by an illustration. Figure 6 shows a screenshot of the task description page.

Figure 6. Task description page.

For active tasks, the task processing page contained all partial jobs of the jobs (for example,
A1.a, A1.b, A2.a, etc.) as drag-and-drop elements. These could be picked up by the study participant
and placed on the machine scheduling plan. For corrective tasks, the worker started here with
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predefined scheduling and had the option of making changes. On the task processing page,
the processing time and the number of display touches made were measured and the final solution
was saved. Figure 7 shows the task processing page.

Figure 7. Task processing page.

The interview page was used to collect information about the participants’ perception of work.
For active tasks, the interview was conducted after task completion. The interview contained questions
on the perceived difficulty of the problem, the satisfaction with the user’s own final solution and the
estimation of the quality of the solution. For corrective work tasks, a two-part questionnaire was
presented. The first interview took place after the predefined scheduling plan had been assessed, and
the second after the changes had been made. The first interview dealt with questions about the quality
of the predefined solution and the certainty of this rating. The second interview was similar to the
interview for active work tasks and contained questions on satisfaction with the solution and the
evaluation of the quality of the solution.

The feedback page allowed a comparison of the participant’s work results with an optimal solution.
It compared the makespan of the achieved solution with that of an optimal solution. In addition,
the machine scheduling plan for an optimal solution was displayed graphically. With the help of
a button, the participant could switch it to the achieved solution to compare the placement of particular
partial jobs.

The design elements selected in the previous phase or their respective measures were embedded
in the four page types described above. The design element “Feedback” was implemented by using
the feedback page for selected work tasks. If this design element was activated, the feedback page was
displayed; otherwise, this page was skipped. Thus, the study participants only received feedback on
the solution of a work task when this design element was activated. To implement the design element
“Assistance system”, a function was developed that displays details of the type of error in the event of
incorrect actions during machine scheduling processing, e.g., “Production machine already occupied”
or “Sequence of the work steps of the order not observed”. Alternatively, visual support was provided
to the operator for the placement of partial orders on the machine scheduling plan. The (re-)placement
of drag-and-drop elements was supported by color highlighting. If an element was picked up, possible
production machines on which this element can be placed (i.e., the appropriate machine type for the
selected partial job) were marked by color shading. “Usability” was implemented by color coding of
the jobs. All partial jobs that belong to a single job were represented by a color and were thus delimited
from other jobs.
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The machine scheduling problems were of comparable difficulty. For each of these tasks,
CPLEX Optimizer was used to determine an optimal solution. In addition, predefined solutions were
prepared in three levels: a solution without any need for improvement (no shorter completion time
possible), a solution with medium improvement potential (approximately 10 percent) and a solution
with high improvement potential (approximately 20 percent).

Experimental Design and Preparation of a Human Factors Study

Two experimental human factors studies were performed to illustrate the effects triggered by the
design elements. Here, the three design elements selected in Phase 1 served as independent variables
(factors), which were either set to “active” or “inactive”. In Study 1, the display of error details was
varied for the design element “Assistance system”, while in Study 2 the visual operating support was
varied. This resulted in eight experimental conditions of a factorial 23 design for both studies [32,33,35].
The dependent variables represented the aspects of work performance and perception of work to
be examined.

The work performance was represented by:

• the number of display touches during task processing;
• the time required for task processing; and
• the quality of the solution (ratio of optimal makespan to achieved makespan).

The perception of work was represented by:

• the quality evaluation of the solution;
• the deviation between the solution quality and the quality evaluation;
• the satisfaction with the solution; and
• the evaluation of the task difficulty.

The dependent variables chosen are out of the areas of human–machine system performance
and human subjective perception [32,78]. The solution quality in terms of the deviation from the
optimal completion time can be seen as a direct indicator for work performance. The number of
display touches and the time required for task processing can be seen as indirect indicators of work
performance. They enable direct conclusions on the efficiency of task processing and the handling
of the human–machine interface. The dependent variables concerning the perception of work were
indirect indicators. Here, the quality evaluation, as well as the deviation between the solution quality
and the quality evaluation, reflected the situation awareness of the participant. The evaluation of the
task difficulty served as an indicator of cognitive support. Finally, the measurement of satisfaction with
the user’s own, final solution enabled an assessment of job satisfaction. The automatic and objective
recording of the display touches and the time spent took place invisibly for the study participants in
the background.

A combination of objective and subjective techniques was used for data recording. By a hidden,
non-participating, and systematic observation, the objective measurement of the dependent variables
on work performance took place [32,33,74,79]. Based on a questionnaire with standardized questions
and answers, the subjective measurement of the dependent variables regarding the perception of
work was carried out [80]. To determine the effects triggered by the design element “Feedback”,
the subsequent work task was used. The assignment of the study participants to the experimental
conditions was performed as a within-subjects design with repeated measures [35]. Further, various
randomizations were carried out: the problems generated occurred in random order for each study
participant. Within these tasks, each experimental condition occurred at least once in a randomized
sequence. Besides, there was a random sequence of active and corrective work tasks for each
study participant. Finally, the order of the study participants was also randomized. The various
randomizations were undertaken to minimize learning and fatigue effects [32,35].
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3.4.3. Phase 3: Execution and Evaluation of the Human Factors Study

The experiments were carried out under constant environmental conditions to control external
influences. Furthermore, the procedure and duration of participating in the experiment followed
an identical pattern for all participants:

1. reception of the experimental platform;
2. start of the experiment and run of a test task;
3. processing of the tasks; and
4. end of the experiment after 45 min.

The studies were conducted as laboratory experiments to control the experimental conditions
in the best possible way with the goal of determining basic rules for the design of human–machine
interfaces in CPPS. A total of 68 persons participated in the studies (n1 = 33, n2 = 35). In a pilot study
with nine participants, first insights were gained and problems regarding the experimental platform
itself and the procedure of the experiment were identified [81]. These results were incorporated into
the design of the main studies. Students from the University of Bremen and external participants
were acquired as study participants. Due to their affiliation to different disciplines, professional
heterogeneity of the group could be achieved, which mirrored the various application possibilities of
the method. All study participants were assured an anonymous use of the results. Mostly automated
execution of the experiments as well as the hidden data collection should avoid unintended external
effects. In addition, the suitability of the empirical method was confirmed in advance based on various
application examples (design of production cells [82], design of a multimodal user interface [83],
and evaluation of different supply methods for material and work descriptions [84]).

The analysis was performed separately for each of the two studies (in the following, referred
to as Study 1 and Study 2) as well as for each type of work task (in the following referred, to as
Type A and Type B tasks). The studies differws regarding the chosen measure for the design element
“Assistance system” (Study 1: error messages; Study 2: color highlighting) as well as the complexity of
the work tasks. The work tasks occurred either as active tasks (Type A) or as corrective tasks (Type B).
After completion of the studies, initially, data preparation was carried out. Here, we aimed to remove
incomplete tasks from the results. All tasks in which the study participants spent less than 15 s on the
assessment of the predefined solution and the task processing were removed. This threshold was set at
approximately 10 percent of the average processing time. Then, 147 valid and completely solved Type
A tasks and 135 Type B tasks remained for Study 1 and 106 and 68 for Study 2, respectively.

The statistical significance of the independent variables was assessed utilizing a subsequent
three-factor variance analysis performed with the Minitab 18 software. Table 5 shows a selection
of the resulting p-values. In the sense of a practical significance, all effects showing p < 0.15 were
used for further consideration. If p < 0.15 is present, this entry is marked in gray color in Table 5.
Only significant effects were used for further analysis and interpretation. A complete overview of all
p-values of both studies can be found in t Appendix A.

Following the results of the analysis of variance in Table 5, the main effects of the factors are
presented in Figure 8. They show the mean values of the dependent variables for each factor by
level [35]. For example, the main effects graph at the upper left (processing time, Type A) shows
a mean value of 190 s for the active factors “Feedback” (+1) and a mean value of 268 s for the inactive
factor (−1). Consequently, there is an effect of the factor “Feedback” on the processing time of
78 s. Similarly, the factor “Assistance system” reduces the processing time by 66 s, while there is no
significant effect for the factor “Usability” (p = 0.61, see Table 5).
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Table 5. Selected Results of the analysis of variance (Study 1, Type A, significant results are marked
with a gray background).

Dependent Variable Usability Assistance System Feedback

Display touches F(1,144) = 0.06, p = 0.802 F(1,144) = 0.43, p = 0.511 F(1,144) = 3.12, p = 0.079

Processing time F(1,144) = 0.26, p = 0.61 F(1,144) = 4.37, p = 0.038 F(1,144) = 5.98, p = 0.016

Satisfaction F(1,144) = 6.91, p = 0.009 F(1,144) = 0, p = 0.979 F(1,144) = 0.55, p = 0.459

Quality evaluation F(1,144) = 3.25, p = 0.074 F(1,144) = 0.11, p = 0.735 F(1,144) = 0.75, p = 0.389

Usability Assistance
system

Feedback Usability Assistance
system

Feedback

30
35
40
45
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1 -1 1 -1 1 -1
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280
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processing time [sec.] satisfaction [1: not at all; 7: completely]
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4.5
4

3.5
3
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Figure 8. Selected main effects (Study 1, Type A); “+1” indicates an active design element, while “−1”
indicates an inactive design element; significant results are marked with a gray background.

Furthermore, for the selected factors and dependent variables in Table 5 and Figure 8,
further significant effects could be identified. There is an effect of the factor “Feedback” on the
number of display touches of about 10 units. “Usability” led to an increase in the evaluation of the
satisfaction with the user’s own, final solution of approximately 0.7 steps on the seven-step rating
scale. A similar effect was observed for the evaluation of the quality of the solution (approximately
0.5 steps). The size of these effects can be expressed as regression equations in addition to the main
effect graphs. In the following, the equations are shown, again corresponding to the selected cases
in Table 5 and Figure 8. Here, yd refers to the number of display touches, yp to the processing time,
ys to the satisfaction with the solution [1: very low; 7: very high], yq to the quality evaluation of the
study [1: very low; 7: very high], xu to “Usability”, xa to “Assistance system”, and x f to “Feedback”.
Each consists of a constant baseline to which the respective effects of the independent factors are added
or subtracted. For example, the combination of an active “Usability” (+1), an active “Assistance system”
(+1) and an inactive “Feedback” (−1) would result in an expected number of 46.3 display touches
(= 40.25 − 0.70 · (+1) + 1.82 · (+1)− 4.93 · (−1)). A complete overview of all main effect graphs can
be found in Appendix A of this paper.

yd = 40.25 − 0.7 · xu + 1.82 · xa − 4.93 · x f

yp = 229.3 − 8.1 · xu + 33.0 · xa − 39.0 · x f

ys = 3.648 + 0.341 · xu + 0.003 · xa + 0.097 · x f
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yq = 3.713 + 0.225 · xu + 0.042 · xa + 0.108 · x f

In summary, all significant effects (with p < 0.15) of both studies for task Types A and B are
presented in Figure 9. It can be seen that the design elements “Usability” and “Feedback” in particular
induce several effects. For “Usability”, nine significant observations could be made in the four areas
examined (Study 1, Type A; Study 1, Type B; Study 2, Type A; and Study 2, Type B). It led to a reduction
of the processing time, to a reduction of the number of display touches, to higher quality evaluation,
a lower perceived difficulty and to an overestimation of the quality of the own solution compared to
the actual solution quality (deviation of solution quality < 0).

Usability

Assistance 
system

Feedback

+0.682 satisfaction
+0.450 quality evaluation

+66 seconds

-78 seconds

Usability
-34 seconds
+0.520 quality evaluation
-0.718 deviation of solution quality

Usability

Feedback
-94 seconds
-0.446 difficulty evaluation

Assistance 
system

Feedback
-82 seconds
+0.872 deviation of solution quality

-1.018 satisfaction
-0.820 quality evaluation

Study 1

Study 2

A

B

-0.662 deviation of solution quality
-20 display touches
-128 seconds
-0.852 difficulty evaluation

A

A

A

A

B

B

Figure 9. Summary of significant effects.

“Feedback” led to five significant observations consisting of a shorter task processing time and
perceived task difficulty. The deviation in solution quality was positive at 0.872; consequently, the actual
solution quality was underestimated. For the design element “Assistance system”, three significant
observations were made. Initially, an increase in the time required to solve the work tasks was observed.
Additionally, the evaluation of satisfaction with the work result decreased, and the quality of the own
solution was rated lower.

3.5. Phase 4: Development of Design Principles for Interfaces in CPPS

In the fourth phase of the method, the effect sizes and directions determined were transferred into
design rules. Based on the effects summarized in Figure 9, the design rules were derived according to
the scheme shown in Section 3.2.4.

In Table 6, the first step of this procedure is shown: the corresponding effect indicators were
determined for all dependent variables for which significant effects were found. The existing scheme
for deriving the effect indicators could be used for the key figures display touches, processing time,
satisfaction, and difficulty rating, since these variables are absolute or rating figures. Here, the effect
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strengths E+ and E+ were calculated by dividing the main effects by the baseline values of the
regression equations and then reading the corresponding effect indicators in Table 4. For the variable
deviation of solution quality, however, a different scheme was used to determine the effect indicators.
This variable is a relating figure where the possible change is a change in the distance between the
related variables. A distance as small as possible represents the desired direction of change. Table 7
shows the schema we used here.

Table 6. Implementation: Effect sizes of the design elements.

Work Performance Perception of Work

Display
Touches

Processing
Time

∑ Satisfaction
Evaluation
of Difficulty

Deviation
of Solution
Quality

∑

Study 1, Type A
Assistance system −− −−

Feedback ++ ++
Usability + +

Study 1, Type B
Assistance system

Feedback
Usability + + ++ ++

Study 2, Type A
Assistance system

Feedback + + − −
Usability ++ ++ ++++ − ++ +

Study 2, Type B
Assistance system −− −−

Feedback ++ ++ ++ ++
Usability

Table 7. Caption on the formation of effect indicators for solution quality deviation.

Effect Size E Effect Indicator

E > 3.00 −−−
2.50 < E ≤ 3.00 −−
2.00 < E ≤ 2.50 −
1.50 < E ≤ 2.00 0
1.00 < E ≤ 1.50 +
0.50 < E ≤ 1.00 ++
−0.50 < E ≤ 0.50 +++
−1.00 < E ≤ −0.50 ++
−1.50 < E ≤ −1.00 +
−2.00 < E ≤ −1.50 0
−2.50 < E ≤ −2.00 −
−3.00 < E ≤ −2.50 −−

E ≤ 3.00 −−−

Due to the mentioned differences between Study 1 and Study 2 as well as the task Types A and B,
separate analyses were again carried out. By transferring the aggregated effect indicators, we can now
compare the effects on work performance and perception of work in Table 8. This results in five “Yes”
rules, in which either both aspects show positive effect indicators or only one area shows a positive
effect indicator. The “Yes” rules here refer to the design elements “Usability” and “Feedback”. For work
tasks with Type A, there is an additional “Maybe” rule for “Feedback”, since work performance (+)
and perception of work (−) lead to a conflicting situation. Finally, two “No” rules result for “Assistance
system”; here, analogous to the “Yes” rule, either one or two negative effect indicators occurred.
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Table 8. Implementation: Determination scheme of design principles, Yes-Rules: green background,
No-Rules: red background, and Maybe-Rules: yellow background.

∑ Work Performance ∑ Perception of Work Yes-Rule No-Rule Maybe-Rule

Study 1, Type A
Assistance system −− x

Feedback ++ x
Usability + x

Study 1, Type B
Assistance system

Feedback
Usability + ++ x

Study 2, Type A
Assistance system

Feedback + − x
Usability ++++ + x

Study 2, Type B
Assistance system −− x

Feedback ++ ++ x
Usability

4. Discussion and Conclusions

Numerous approaches to human-oriented design are available from many disciplines associated
with human factors [25]. In the present work, a linking of human-oriented design approaches to
cyber-physical production systems enables us to focus on the cognitive elements which are essential
for future work systems. The presented overview of work design elements, which we expect to be
crucial for work design in CPPS, in Section 3.1 sets a starting point on the way to the development
of work design principles for CPPS work systems, respectively. However, although the overview
covers essential areas, it cannot be considered exhaustive. The selection, which has been made from
the design elements (i.e., “Feedback”, “Assistance system” and “Usability”), could be successfully
implemented and converted into (first) work design principles using the method. Besides, we assume
that, for further design elements of the presented overview, corresponding measures are conceivable
as well.

The developed method provides a step-by-step procedure that keeps the applicability threshold
for investigators low by subdividing the necessary steps into four phases. Further, necessary resources
for the application of the method are available, since they were jointly developed within the scope
of this research (i.e., starting points for work design elements in CPPS, the experimental platform).
The method could meet the research goal and led to the desired quantification of work performance
and perception of work (see also the following part regarding the application results).

The experimental platform was well received by the study participants and could thus contribute
to the later acceptance of the human–machine interface to be developed. It led to a higher level of
attention than would have been attained for a web application or similar. Besides, the modular design
allows a variety of adaptations (e.g., use of other interfaces with multi-modal interaction, acoustic
signals, classic input devices or conventional buttons). Thus, it can be seen as an enabler for future
human factors studies, which might follow a different research goal and require a different setup,
respectively. In addition, the platform is robust and could be used successfully and without issues
across several studies.

With regard to the outcome of the two human factors studies conducted, significant effects of
all three design elements investigated could be determined. We interpret the results in such a way
that the participants received valuable information via “Feedback”, which resulted in a quicker
and more efficient way of finding a solution to the given tasks. The studies led to three significant
observations of a faster task processing (Study 1, Type A: −78 s; Study 2, Type A: −94 s; and Study 2,
Type B: −82 s) (see Figure 9). Since this effect occurred in both studies and both types of tasks,
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we assume, that “Feedback” should play a key role in CPPS work design. Besides, in terms of the effect
indicators, two ++ and one + ratings support this conclusion (see Table 6). We also conclude that the
differentiation by the color of the work orders (“Usability”) supported the perception of information
and thus helped to place the work orders in a meaningful way. Here, several significant effects could
be observed: a higher evaluation of satisfaction (Study 1, Type A: +0.682), a shorter task processing
(Study 1, Type B: −34 s; and Study 2, Type A: −128 s), and fewer display touches (Study 2, Type A).
These effects have predominantly occurred more intensively in Study 2. We attribute this to the more
complex work tasks given in this study. Again, regarding the effect indicators, two ++ and two +

ratings support this finding (see Table 6). Finally, “Assistance system” led to two negative observations:
first, it extended the processing time (Study 1, Type A: +66 s) and, second, the satisfaction evaluation
was lower (Study 2, Type B: −1.018). This resulted in two −− ratings in terms of the effect indicators,
respectively. Here, we assume that the intended idea of the worker assistance (Study 1: display of
error details, Study 2: visual operating support) did not meet the user’s requirements. A possible
explanation is that the measures led to confusion.

Other observed significant effects for all design elements, as shown in Figure 9, do not point
into a clearly positive or negative direction (“Usability”, Study 1, Type A: +0.450 quality evaluation;
Study 1, Type B: +0.520 quality evaluation; −0.718 deviation of solution quality; Study 2, Type A:
−0.662 deviation of solution quality; −0.852 difficulty evaluation; “Feedback”, Study 2, Type A: −0.446
difficulty evaluation; “Assistance system”, Study 2, Type B: −0.820 quality evaluation; and “Feedback”,
Study 2, Type B: +0.872 deviation of solution quality). However, they can provide valuable information
in combination with other effect observations. We consider the combined analysis of key performance
indicators for work performance and work perception to be meaningful and necessary, as significant
results could often only be obtained for a part of the dependent variables examined. Consequently,
a consideration of a limited number of parameters would possibly lead to an inconsiderate rejection
or confirmation of particular design elements. If, for example, a significant result was achieved as
part of a work performance measurement, an equivalent effect on the perception of work cannot
be assumed necessarily as well. Following this idea, we compared the effect indicators for work
performance and work perception to derive the final design principles (see Table 8). Summarizing,
we recommend the implementation of the design element “Usability”. For “Feedback”, we recommend
a further examination in light of the “Maybe” rule. An implementation of “Assistance System” is
not recommended.

These findings need to be considered in the context of the two studies with regard to the
representative work tasks and the chosen measures and the limited number and variety of study
participants. Thus, we do not claim general applicability to all CPPS work design use cases.
Nevertheless, the results indicate effect sizes and directions of work design elements which can
serve as starting points for future investigations.

As possible next research steps, we see the widening of the scope for deriving design elements
through a focus extension. As mentioned previously, we do not expect the overview to be complete.
Here, a broad review of other human factors related areas could reveal further design elements.
Besides, we consider a variation of the method to enable a more practical research as very promising.
This could be carried out such that the method does not start with a representative work task but
with an industrial use case, which then will be transferred into a use case-specific representative
task. Since human factors research is often used not only for basis research but also for applied
research (e.g., to make design decisions out of several alternatives [45]), this variation could serve
as a decision-making tool for SME practitioners. Additionally, a practical evaluation would provide
information on a further development of the method as well. Here, experiences and insights could be
used in terms of increasing the relevance of the results with regard to basic research and increasing the
accessibility of the method with regard to applied research.

Further, collaborative processing of work tasks in the sense of human–machine-networks could
open up promising new research possibilities. Here, the establishment of a communication link

257



Sustainability 2019, 11, 4508

between the platforms (by using an already available XBee module, see Figure 4) as a basis for
the implementation of collaborative tasks could lead to an investigation of design elements in
a collaborative environment.

Finally, we see the conduction of further studies as another possible next research step. By using
a different set of design elements according to Section 3.1, insights on other design elements could be
achieved as well, which were not part of the presented studies. In addition, the use of other measures
and representative tasks for the design elements already used in the presented studies could increase
the generalizability of the results.

Overall, a set of results could be presented (work design elements, method, experimental platform,
and first application results) which prove the functional capability of the procedure and expand the
knowledge about human-oriented work design in CPPS. As presented in Section 3.2, the method aims
to support the understanding of the mechanisms between human factors and work in CPPS and the
design of interfaces between humans and machines. It can assess and evaluate specific work design
elements to provide first design principles regarding the interface design in CPPS. We consider this
as a valuable step for manufacturing companies to improve the integration process of CPPS ideas.
This way, already at an early stage of the design and implementation process, unnecessary or even
counterproductive work design measures can be minimized, and beneficial ones maximized instead
at an early stage of the design and implementation process. This way, both social and economic
sustainability of CPPS can be promoted.
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Appendix A

Appendix A.1. Main Effects Graphs
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Figure A1. Main effects of Study 1; “+1” indicates an active design element, while “−1” indicates
an inactive design element.
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Figure A2. Main effects of Study 2; “+1” indicates an active design element, while “−1” indicates
an inactive design element.
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Appendix A.2. Results of the Analysis of Variance

Table A1. Results of the Analysis of Variance (Study 1, Type A).

Dependent Variable Usability Assistance System Feedback

display touches F(1,144) = 0.06
p = 0.802

F(1,144) = 0.43
p = 0.511

F(1,144) = 2.12
p = 0.079

processing time F(1,144) = 0.26
p = 0.61

F(1,144) = 4.37
p = 0.038

F(1,144) = 5.98
p = 0.016

solution quality F(1,144) = 0.11
p = 0.737

F(1,144) = 0.6
p = 0.441

F(1,144) = 0.36
p = 0.551

difficulty evaluation F(1,144) = 0.06
p = 0.808

F(1,144) = 0.29
p = 0.591

F(1,144) = 0.01
p = 0.938

satisfaction F(1,144) = 6.91
p = 0.009

F(1,144) = 0
p = 0.979

F(1,144) = 0.55
p = 0.459

quality evaluation F(1,144) = 2.25
p = 0.074

F(1,144) = 0.11
p = 0.735

F(1,144) = 0.75
p = 0.389

deviation of solution quality F(1,144) = 0.00
p = 0.952

F(1,144) = 0.11
p = 0.745

F(1,144) = 0.00
p = 0.953

Table A2. Results of the Analysis of Variance (Study 1, Type B).

Dependent Variable Usability Assistance System Feedback

display touches F(1,132) = 0.76
p = 0.384

F(1,132) = 0.24
p = 0.627

F(1,132) = 1.2
p = 0.276

processing time F(1,132) = 2.61
p = 0.109

F(1,132) = 0.64
p = 0.426

F(1,132) = 0.66
p = 0.418

solution quality F(1,132) = 0.33
p = 0.569

F(1,132) = 0.23
p = 0.629

F(1,132) = 0.73
p = 0.395

satisfaction F(1,132) = 1.64
p = 0.202

F(1,132) = 1.06
p = 0.306

F(1,132) = 0.04
p = 0.841

quality evaluation F(1,132) = 2.98
p = 0.048

F(1,132) = 0.83
p = 0.365

F(1,132) = 0.26
p = 0.609

deviation of solution quality F(1,132) = 2.60
p = 0.060

F(1,132) = 0.04
p = 0.851

F(1,132) = 0.05
p = 0.830

Table A3. Results of the Analysis of Variance (Study 2, Type A).

Dependent Variable Usability Assistance System Feedback

display touches F(1,103) = 4.63
p = 0.034

F(1,103) = 1.18
p = 0.28

F(1,103) = 2.01
p = 0.159

processing time F(1,103) = 9.22
p = 0.003

F(1,103) = 0.05
p = 0.826

F(1,103) = 5.16
p = 0.025

solution quality F(1,103) = 0.03
p = 0.867

F(1,103) = 0.58
p = 0.45

F(1,103) = 0
p = 0.956

difficulty evaluation F(1,103) = 12.44
p = 0.001

F(1,103) = 0.26
p = 0.61

F(1,103) = 2.46
p = 0.066

satisfaction F(1,103) = 1.46
p = 0.23

F(1,103) = 0.33
p = 0.569

F(1,103) = 1,3
p = 0.256

quality evaluation F(1,103) = 1.09
p = 0.299

F(1,103) = 0.33
p = 0.564

F(1,103) = 0.57
p = 0.45

deviation of solution quality F(1,103) = 2.56
p = 0.113

F(1,103) = 0.43
p = 0.512

F(1,103) = 1.00
p = 0.320
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Table A4. Results of the Analysis of Variance (Study 2, Type B).

Dependent Variable Usability Assistance System Feedback

display touches F(1,63) = 0.67
p = 0.415

F(1,63) = 1.66
p = 0.203

F(1,63) = 1.52
p = 0.223

processing time F(1,63) = 1.77
p = 0.188

F(1,63) = 0.51
p = 0.478

F(1,63) = 2.53
p = 0.116

solution quality F(1,63) = 0.01
p = 0.915

F(1,63) = 1.08
p = 0.302

F(1,63) = 0.42
p = 0.518

satisfaction F(1,63) = 0.2
p = 0.66

F(1,63) = 6.59
p = 0.013

F(1,63) = 0.07
p = 0.795

quality evaluation F(1,63) = 0.03
p = 0.874

F(1,63) = 4.37
p = 0.041

F(1,63) = 1.14
p = 0.291

deviation of solution quality F(1,63) = 0.00
p = 0.963

F(1,63) = 0.12
p = 0.729

F(1,63) = 2.18
p = 0.145
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Abstract: As the adoption of information technologies increases in the manufacturing industry,
manufacturing companies should efficiently manage their data and manufacturing processes in
order to enhance their manufacturing competency. Because smart factories acquire processing
data from connected machines, the business process management (BPM) approach can enrich the
capability of manufacturing operations management. Manufacturing companies could benefit from
the well-defined methodologies and process-centric engineering practices of this BPM approach
for optimizing their manufacturing processes. Based on the approach, this paper proposes
a similarity-based hierarchical clustering method for manufacturing processes. To this end, first we
describe process modeling based on the BPM-compliant standard so that the manufacturing processes
can be controlled by BPM systems. Second, we present similarity measures for manufacturing process
models that serve as a criterion for the hierarchical clustering. Then, we formulate the hierarchical
clustering problem and describe an agglomerative clustering algorithm using the measured similarities.
Our contribution is considered on the assumption that a manufacturing company adopts the BPM
approach and it operates various manufacturing processes. We expect that our method enables
manufacturing companies to design and manage a vast amount of manufacturing processes at
a coarser level, and it also can be applied to various process (re)engineering problems.

Keywords: manufacturing process model; business process management; hierarchical clustering;
similarity; BPMN

1. Introduction

Thanks to the evolution of manufacturing systems, manufacturing companies can efficiently plan,
design, and produce their products. However, as the adoption of the internet of things (IoT) and
manufacturing information systems increases, the complexity and interactivity of communications
within information systems is expected to expand. Furthermore, there may be large volumes of data
stored in a database, because IoT devices constantly transmit data of identified objects [1]. Because
of these circumstances, it is still challenging for manufacturing companies to manage a vast array of
their manufacturing data and processes. Although information and communication technologies have
been introduced to promote technical support for manufacturing operations management (MOM),
a more comprehensive methodology should be adopted to fully support manufacturing-process-centric
management activities.

The business process management (BPM) approach can be a solution to tackle this hurdle by
continually improving processes through automation and optimization. Manufacturing companies
could also benefit from the well-defined methodologies and process-centric engineering practices
of the BPM approach for optimizing their manufacturing processes. In particular, various analysis
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techniques which come from the BPM research field may be fruitful for efficiently managing a large set
of manufacturing processes [2].

Based on the BPM approach, we propose a similarity-based hierarchical clustering method for
manufacturing process models to facilitate managerial activities of manufacturing processes at a group
level (e.g., the design and engineering tasks). To this end, modeling of manufacturing processes and
enabling the measuring similarities must be performed beforehand. Therefore, this paper exploits the
business process model and notation (BPMN) standard and its extension for modeling of manufacturing
processes. The novel manufacturing process of modeling with the adaptation of the BPMN helps
human understanding by a visual diagram and machine understanding is helped by a converted
textual form that is executable in the BPM system. Measuring similarities, in this study, is performed
by calculating the operation similarity and structural similarity between the models of manufacturing
processes, respectively. The hierarchical clustering method this paper proposes operates based on
the measured similarities between the models. We note that the contributions of this paper assume
that a manufacturing company adopts the BPM approach and it operates a variety of manufacturing
process models on a scale that is difficult to manage manually.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce previous
works related to this work. Next, in Section 3, we describe the adaptation of the BPM approach to the
MOM area and its primary activities derived from this combined environment. Section 4 includes
details of BPMN-based manufacturing process modeling. As the main work of this paper, Section 5
presents a similarity method for BPMN-based manufacturing process models, and Section 6 describes
a hierarchical clustering phase of manufacturing process models based on the similarities we propose.
Finally, this work will be concluded with future research in Section 7.

2. Related Works

The main elements of the method we propose in this paper are the similarity measures and
clustering based on such similarity. We, therefore, organize the content of this section into two
parts: process model similarity and clustering. Due to the lack of studies addressing similarity for
manufacturing processes, a series of studies that propose similarity measures for business process
models are mainly introduced and summarized in the similarity part. On the other hand, the
clustering part includes related works applying clustering methods to the field of production research,
and a comparison between them and this study.

Many similarity measures have been proposed in the field of BPM to handle a large collection
of process models. Jung et al. [3] presented a similarity measure which is based on the execution
probability and structural features of business process models. Dijkman et al. [4] investigated the
similarity problem of process models centered on the structural aspect and proposed graph-matching
algorithms for measuring similarities. They considered business process models as graphs and defined
the structural feature between graphs, namely the graph-edit distance, as the criterion of similarity.
Many different similarity concepts have been proposed from other studies, and a few comprehensive
studies suggested that similarity measures between business process models can support the search
and reuse of similar process models [5–7]. Despite a rich set of previous studies contributing to the
process similarity research, there is still a lack of proper methods for manufacturing processes since
the BPM approach has not been actively discussed in manufacturing industry. As slightly different
applications, in [8], the similarity concept was applied to the problems of machine groupings for the
design of manufacturing systems. Compared to our similarity, this study focused on relations between
machines and components and therefore such measures are not process-centric.

On the other hand, clustering methods have been applied in manufacturing to address various
manufacturing engineering problems including the machine grouping [9,10], CAD model grouping [11],
product variants management [12], and product release planning [13]. The machine grouping problem
has traditionally been the subject of manufacturing systems, especially cellular manufacturing.
Dimopoulos and Mort [9] presented the machine-grouping technique based on the combination of
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genetic programming and hierarchical clustering. Likewise, Park and Suresh [10] addressed the
part-machine grouping to identify families of parts with similar routing sequences. The hierarchical
clustering method, considered as a solution of the grouping problem, is supported by using the
Fuzzy ART neural network. Their experiments showed the compelling performance of hierarchical
clustering for large data sets. These two studies provided prerequisites for the implementation of
cellular manufacturing. As a different kind of grouping problem, Li and Xie [11] proposed a module
partition approach with the hierarchical clustering of components to group CAD models into modules
based on component dependencies. In addition, hierarchical clustering methods have also been applied
to engineering applications, such as product variety management [12] and the optimization problem
of deciding the contents of product releases [13].

As described above, hierarchical clustering methods have been applied for grouping elements
that are part of a manufacturing process—such as machines, components, and CAD models—or to
engineering applications that are irrelevant to the process grouping. This paper tries to combine
the BPM approach to the field of MOM and proposes a hierarchical clustering method based on
the similarity for grouping manufacturing process models, eventually enabling process group-level
operations and engineering applications. Therefore, we believe that our work is distinguished from
the previous works mentioned above.

3. Applying the BPM Approach to Manufacturing Operations Management

MOM is a methodology with the aim of optimizing the manufacturing operations in the stages
including the creation, planning, production, and distribution of products. Because of the significance of
each operation stage, there are well-established MOM systems (e.g., manufacturing execution systems)
that have been developed to provide systematic support to the stage-level operations. In general,
MOM systems are broadly classified into the following categories: production management system,
performance analysis system, quality and compliance system, and human–machine interface system.

Despite the merits from such MOM methodology and systems, we believe that there is still
a necessity to apply a process-centered approach to the manufacturing processes to concentrate the
optimization efforts. Manufacturing companies have their own manufacturing processes as their
core assets. Therefore, the management capability of such processes has a significant impact on the
performance of manufacturing to a greater or lesser extent. It emphasizes that the collaboration
capability supporting people-to-people, people-to-systems, and systems-to-systems interactions
in performing manufacturing operations should be incorporated in order to meet technological
requirements that emerge from trends in MOM systems.

The BPM approach [14] covers management methodologies and systems for business processes.
However, it can also be an effective way to integrate and align the capabilities of manufacturing
operations with the manufacturing processes. While existing MOM systems are intended to increase the
efficiency of operations associated with the product lifecycle, BPM systems can be a valuable addition to
MOM since they offer comprehensive capabilities for manufacturing process management. Therefore,
manufacturing companies can achieve advantages of the BPM approach through the modeling and
efficient implementation of their manufacturing processes.

The process model is a central concept of BPM, formed from the contents created during the
process design, and can be executed automatically by the process engine. Relating to the manufacturing
processes, Figure 1 represents details of the activities and expected outcomes based on manufacturing
process models that correspond to each stage consisting in the BPM lifecycle.

• Design Stage—This stage includes a series of steps from the establishment of initial development
plan for the product to the redesign of existing manufacturing processes. From the view of
process, this stage specifies which manufacturing operations should be taken to produce the
desired product, and which components are required for each operation. Basic production-related
data—such as bill-of-materials (BOM), operation process charts, and other specifications—are the
expected outcomes of this stage and will serve the modeling stage of manufacturing processes.
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• Modeling Stage—Through the modeling of manufacturing processes, we can shift the
manufacturing processes to the management area of BPM and ensure their automated execution.
The outstanding standards for modeling processes, such as the BPMN and BPEL (Business Process
Execution Language), can be applied in order to make manufacturing processes into the form of
standard-compliant and executable models.

• Execution Stage—Modeled manufacturing processes can be automatically executed by
BPM systems under the assumption that manufacturing execution and control capabilities
(e.g., manufacturing execution systems) are integrated or communicated with the BPM system.
Each task of a manufacturing process model implements an individual manufacturing operation
on the shop floor. During executions of manufacturing processes, event log data containing
detailed records of manufacturing operations are generated and stored. Collected event log data
are used in various analytics stages (e.g., process monitoring and optimization).

• Monitoring Stage—As event logs are generated while manufacturing processes are being executed,
it is possible to monitor the status of running manufacturing processes or process instances in
real time [15]. The well-established data formats for event logging can support the monitoring
stage. For example, the XES (eXtensible Event Stream) standard, which has been widely adopted
in the BPM field, has extensible data schema to incorporate specialized attributes of processes
from various industry domains. As the result of this stage, manufacturing process reports help
process administrators to take appropriate actions.

• Optimization Stage—Based on event logs, process mining [16,17] and post-analysis techniques
provide us with opportunities to investigate the quality and performance of completed
manufacturing process executions and related operations and improve those inefficient parts.
The derived requirements for manufacturing process improvement will be referenced in the
process design or redesign stage of the next cycle.

 
Figure 1. BPM lifecycle including the core stages in managing processes and details of activities and
outcomes expected from the adoption of BPM into the MOM area.

Through continuous repetition of the BPM lifecycle applied into the MOM, manufacturing
processes aligned with this management cycle can be expected to be constantly optimized to reflect
the requirements that are derived by internal and external management factors. To take advantage of
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the convergence of these two management methodologies, modeling of the manufacturing process is
a mandatory task. Therefore, the next section describes how to model the manufacturing process so
that it complies with BPM-related standards from document-based manufacturing process data.

4. BPMN-Based Manufacturing Process Modeling

BPMN is one of the most widely used standards for modeling business processes. It provides
a rich set of element types that can fully represent the context of a business process. Moreover, this
standard can be easily extended, and it has been applied to modeling problems in various domains,
such as wireless sensor network [18], healthcare processes [19], and manufacturing processes [20,21].
This section describes a construction procedure for manufacturing process models from the fundamental
data of manufacturing processes.

Manufacturing companies conventionally possess operation process charts and BOM specifications
to define and manage their manufacturing processes. In the Republic of Korea, the KS-A-3002
standard [22], which is for manufacturing process charts, has been used in manufacturing industries.
However, it provides only a set of graphical notations, and there is no technical support for the
modeling and automatic executions for manufacturing processes. Figure 2 shows an example of
a manufacturing process chart for a thermocouple probe product.

A BOM specification is an essence of defining a manufacturing process that contains detailed
data about the components (e.g., raw materials, parts, subassemblies, and end products) of each
needed to manufacture a certain product. However, it is not sufficient to express the production
flow of the manufacturing process. A manufacturing process consists of a set of manufacturing
operations, which require a collection of components to manufacture and have prior relationships
with other preceding and/or successive operations. In this regard, we additionally exploit the BOMO
(Bill of Material Operations) concept, which is presented in [23] to define production-flow-oriented
information of manufacturing process examples.

As shown in Table 1, each operation, such as wire welding, consumes a set of components and
produces an intermediate component or end product. The preceding operation information provides
an execution ordering of the operations within a manufacturing process. For example, the wire welding
(OP1) and quartz tube winding (OP2) operations can be performed in parallel, but they must precede
the wire injection operation (OP3) according to their ordering relationships. Through these basic
ingredients of manufacturing process data (manufacturing process chart, BOM, and BOMO), we can
organize structures for manufacturing processes.

Table 1. BOMO data of the product examples [2].

End Product
Operation

Component
Intermediate
Component

Preceding
OperationID name

PROBE-01

OP6 Packaging SUB-05, PACK-01, PACK-04,
PACK-06, PACK-13, PACK-17 PROBE-01 OP5

OP5 Insulation (cement) SUB-04, MATL-11 SUB-05 OP4

OP4 Housing SUB-03, PART-08, PART-18, PART-19 SUB-04 OP3

OP3 Wire injection SUB-01, SUB-02 SUB-03 OP1, OP2

OP2 Quartz tube winding PART-15, MATL-02, MATL-04 SUB-02 -

OP1 Wire welding MATL-03, MATL-05, MATL-06 SUB-01 -

To create manufacturing process models, we apply the BPMN standard, with an extension
of notations. The BPMN standard has a variety of its extensions, but it lacks modeling notations
for the manufacturing domain. Although a few studies presented extensions for manufacturing
processes [20,21], their extensions do not cover the full context of the manufacturing domain due to
the absence of uniformity. Accordingly, we define a BPMN extension that has a minimal set of element
types but suffices to model the examples we present in this paper.
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Figure 2. Operation process chart for a thermocouple probe product.

Every manufacturing process model essentially contains a start event and end event indicating their
starting/terminating points. An operation refers to a primitive work within a manufacturing process.
This type has precedence and/or successive relationships with other operations through connecting
objects of sequence flows. Also, it is related to particular components through connecting objects of
component associations, and production-related information such as operating cost. A component
refers to an input of a particular operation and it can be a raw material, part, and subassembly.

Regarding the control-flow aspect, the notations of Table 2 are limited to focus on the examples
including only sequential and parallel control-flow patterns. However, it is necessary to add extra
notations for other patterns, such as selective, repetitive, and other complex patterns to facilitate
modeling of advanced types of manufacturing processes and systems (e.g., flexible manufacturing
systems and reconfigurable manufacturing systems). Figure 3 shows a result of the BPMN
manufacturing process modeling for the thermocouple product specified as Table 1.
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Table 2. BPMN notations for manufacturing process models [2]

Notation Element type Description

 Start event A ‘start event’ indicates where a particular manufacturing
process will start.

 End event An ‘end event’ indicates where a manufacturing process
will terminate.

 
Operation

An ‘operation’ is a generic term for manufacturing tasks.
Each ‘operation’ can be performed by machines and/or

human workers.

Component A ‘component’ is a generic term for raw materials,
assemblies, and parts needed to manufacture a product.

 
Parallel gateway A ‘parallel gateway’ is used to create and synchronize

disjunctive flows which proceed in parallel fashion.

Sequence flow A ‘sequence flow’ is used to show the order that operations
will be performed in a manufacturing process.

Component association A ‘component association’ is used to link components
(e.g., material, part) and operations.

 
Figure 3. An exemplary model of a transformed BPMN manufacturing process.

The BPMN model is represented by a visual diagram (see Figure 3), while at the same time
it is converted to a textual form (see Figure 4) that is executable by BPM systems. Figure 4
represents fragments of the textual content of the manufacturing process model example. This content
represents detailed information, including definitions of operations, components, and connecting
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objects (e.g., gateway, sequence flow, and component association). When the manufacturing process
model is instantiated, the execution engine of the BPM system interprets the information and creates a
process instance to execute the manufacturing process with full control.

 

<?xml version="1.0" encoding="UTF-8"?>
<bpmn:definitions xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL">

<bpmn:process id="_q1GEAP5u" name="BT Probe">
<bpmn:componentSet id="btprobe_componentSet">

<bpmn:component id="_q1xZcP5u" name="MATL-03"/>
<bpmn:component id="_q3EZ8P5u" name="MATL-05"/>
<bpmn:component id="_q5g7YP5u" name="MATL-06"/>

</bpmn:componentSet>
<bpmn:startEvent id="_q2AqAP5u" name="Start BT probe process"/>
<bpmn:parallelGateway id="_q4J_EP5u" name="AND-Split Gateway-01"/>    
<bpmn:operation id="_q2VaIP5u" name="Wire welding">

<bpmn:documentation>Cutting and welding a platinum wire.</bpmn:documentation>
</bpmn:operation>
<bpmn:operation id="_q4ogMP5u" name="Quartz tube winding">

<bpmn:documentation>Bending a quartz tube using oxygen and LPG.</bpmn:documentation>
</bpmn:operation>
<bpmn:parallelGateway id="_q_9QMP5u" name="AND-Join Gateway-01"/>                  
<bpmn:operation id="_q4eIIP5u" name="Wire injection">

<bpmn:documentation>Injecting the welded wire into the quartz tube.</bpmn:documentation>
</bpmn:operation>

<bpmn:endEvent id="_q4UXIP5u" name="Terminate BT probe process"/>
<bpmn:sequenceFlow id="_rAI2YP5u" name="OP1-to-G01" sourceRef="_q2VaIP5u" targetRef="_q_9QMP5u"/>
<bpmn:sequenceFlow id="_rAUckP5u" name="OP2-to-G01" sourceRef="_q4ogMP5u" targetRef="_q_9QMP5u"/> 
<bpmn:sequenceFlow id="_rAUckP5u" name="G01-to-OP3" sourceRef="_q_9QMP5u" targetRef="_q4eIIP5u"/> 

<bpmn:componentAssociation id="_rBAZEP5u" name="MATL-03-to-OP1" 
sourceRef="_q1xZcP5u" targetRef="_q2VaIP5u"/>       
<bpmn:componentAssociation id="_rBN0cP5u" name="MATL-05-to-OP1" 
sourceRef="_q3EZ8P5u" targetRef="_q2VaIP5u"/>       
<bpmn:componentAssociation id="_rBEC2P5u" name="MATL-06-to-OP1" 
sourceRef="_q5g7YP5u" targetRef="_q2VaIP5u"/>

</bpmn:process>
</bpmn:definitions>

Figure 4. An example of textual representation of the BPMN manufacturing process model.

5. Similarity Measure

Modeled manufacturing processes can be efficiently executed, tracked, and analyzed by the
abundant toolsets in the BPM field. In this section, we describe similarity measures for manufacturing
process models that serve as a basis of hierarchical clustering. Specifically, in order to capture the
characteristics of manufacturing process, we define and explain two sub-types of similarity: operation
similarity and structural similarity.

5.1. Preliminaries

We denote a set of manufacturing process models as M = M1, . . . , Mn with n indicating the
number of manufacturing process models, a set of operations as OP = OP1, . . . , OPm with m indicating
the number of operations, and a set of components as C = C1, . . . , Cl with l indicating the number of
components. We also introduce a mapping function δ(OP)→ ℘(C) that maps from an operation OPi

k
to input components of OPi

k which are a subset of total components, where OPi
k ∈ OP is the operation

OPk in the process model Mi.

5.2. Operation Similarity

Although many similarity measures have been proposed for business processes, the manufacturing
process has distinguishing features from business processes. In particular, production-related

274



Sustainability 2019, 11, 2560

factors—which determine the characteristics of a manufacturing process—must be taken into account
in measuring similarities.

The operation similarity we introduce in this paper is a similarity concept based on associations
between operations and components that is one of these influential factors. Mostly, a manufacturing
operation consumes a group of certain components to produce end products or intermediate
components. Based on this feature, operation similarities between operations of the same type
in different processes can be quantified. If two operations are the same type but have associations with
different set of component types, these two operations are considered to have different characteristics.
Mathematically, this similarity is based on the Jaccard coefficient, which is calculated by the division of
the number of elements in the intersection set by the number of elements in the union set. Accordingly,
the operation similarity between each operation OPk in the process models Mi and Mj is calculated by
Equation (1).

J
(
OPi

k, OPj
k

)
=

∣∣∣∣δ(OPi
k

)
∩ δ
(
OPj

k

)∣∣∣∣∣∣∣∣δ(OPi
k

)
∪ δ
(
OPj

k

)∣∣∣∣ (1)

For example, there are two ‘Packaging’ operations (OP6) of the same type that is included in
two different process models M1 and M2 as shown in Figure 5. The ‘Packaging’ operation in M1

(Figure 5a) is associated with the set of input components δ
(
OP1

6

)
= {PACK-01, PACK-04, PACK-06,

PACK-13, PACK-17}, that is different from the set of input components of the ‘Packaging’ operation
in M2 (Figure 5b), δ

(
OP2

6

)
= {PACK-01, PACK-03, PACK-10, PACK-14, PACK-17}. Accordingly, the

operation similarity between these two operations is J
(
OP1

6, OP2
6

)
= 2

8 = 0.25.

Figure 5. Operation–component associations.

We can measure operation similarities of the example models by calculating Jaccard coefficients
based on the component association relationships of common operations (OP1, OP2, OP3, OP4, OP5,
and OP6). In this regard, an operation similarity matrix including operation similarity measurements

for all pairs of process models is defined as X = (xrk) ∈ R
n(n−1)

2 ×m, where an element xrk represents
an operation similarity measure J

(
OPi

k, OPj
k

)
between two operations of OPk for the rth process

model pair of the process models Mi and Mj. The index of the process model pair r is calculated by
r = (

∑i
a=1 n− 1) − (n− j), where i < j.

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1,1 · · · x1,m

...
. . .

...
x n(n−1)

2 , 1
· · · x n(n−1)

2 , m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

Based on the above, let M1 and M2 be two process models as specified in Table 3. The
operation similarity matrix of the example equals to the row vector represented by X =

[0.67, 1, 0, 0.40, 0, 0.25, . . . , 0] since the example contains only two process models. Measured
operation similarities affect the total similarity between two process models.
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Table 3. Example of two process models including operation–component associations

Process Model Operation
Components

(without subassemblies)

Model 1 (M1)

OP1 (wire welding) MATL-03, MATL-05, MATL-06

OP2 (quartz tube winding) PART-15, MATL-02, MATL-04

OP3 (wire injection) -

OP4 (housing) PART-08, PART-18, PART-19

OP5 (insulation) MATL-11

OP6 (packaging) PACK-01, PACK-04, PACK-06,
PACK-13, PACK-17

Model 2 (M2)

OP1 (wire welding) MATL-05, MATL-06

OP2 (quartz tube winding) PART-15, MATL-02, MATL-04

OP3 (wire injection) -

OP4 (housing) PART-02, PART-04, PART-18,
PART-19

OP5 (insulation) MATL-09, MATL-10, MATL-13

OP6 (packaging) PACK-01, PACK-03, PACK-10,
PACK-14, PACK-17

OP7 (fastening) PART-10, MATL-01, MATL-07

OP8 (bar welding) PART-09, PART-19

OP9 (sealing) PACK-02, PACK-05

5.3. Structural Similarity

In this paper, we employ the similarity concepts of the activity vector and transition vector
similarities, both are presented in [3]. We redefine these similarity concepts to fit manufacturing
process models and call them structural similarity. As compared to the operation similarity based on
the associations between operations and components, the structural similarity focuses on the existence
of operations and the control dependency between operations. The structural similarity has two parts:
operation vector similarity and transition vector similarity, and these concepts are slightly different
from the similarity concepts for business process models in [3]. The total similarity is measured by
putting these two similarities together.

5.3.1. Operation Vector Similarity

A manufacturing process comprises multiple operations that consume certain components and
produce intermediate components or end products. Therefore, information indicating whether a specific
operation is included in the process is the salient feature that characterizes manufacturing processes in
terms of structural aspect. An operation vector vO

i is an m-dimensional vector, where each element vO
k, i

is a binary value (0 or 1) indicating whether the operation OPk is included in the process model Mi.

vO
i =

[
vO

1,i, vO
2,i, . . . , vO

m,i

]
(3)

For example, Figure 6 represents two operation vectors vO
1 and vO

2 corresponding process models
M1 and M2.
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Figure 6. Representation of two operation vectors.

The operation vector similarity simov
(
Mi, Mj

)
is measured based on the Cosine coefficient and

operation similarity. Given two operation vectors corresponding to two different manufacturing
process models respectively (Mi and Mj), the following equation quantifies the similarity between
these two operation vectors.

simov
(
Mi, Mj

)
=

∑m
k=1 vO

k,i vO
k, j xrk√∑m

k=1

(
vO

k,i

)2 √∑m
k=1

(
vO

k, j

)2 (4)

xrk is the measured operation similarity of OPk between Mi and Mj and it is a part of the numerator
in the above equation. It implies that even if these vectors equal to each other, according to the
operation similarities, the operation vector similarity varies from 1 to 0. For the example of Figure 6,
the measured operation vector similarity is simov(M1, M2) ≈ 3.32

5.48 ≈ 0.61.
In [3], activity vectors contain not only the inclusion of activity but also the execution probability

that is varied based on the routing patterns in business process models. Fundamentally, there are four
basic routing patterns: sequential, parallel, selective, and iterative routings. Among them, the selective
routing patterns such as OR-split and XOR-split decide execution probabilities of activities.

On the other hand, in cases of manufacturing processes, we empirically found that the
manufacturing processes we investigate are composed of only sequential routings and parallel
routings (less frequently), and they intrinsically have no selective and iterative routing patterns.
Conventionally, manufacturing processes proceed only according to the predefined operations and
their stationary execution orderings without any decision points that cause splitting control-flows
patterns. However, in state-of-the-art manufacturing systems (e.g., flexible manufacturing systems),
where process routing and machine assignments are flexible to react in case of changes, it is necessary to
support the concept of the routing patterns not considered in this paper and supplement the definition
of operation vector.

5.3.2. Transition Vector Similarity

The transition is the fundamental property of all classes of process models which is formally
represented as a directed acyclic graph. The causality of tasks (including operations) in a process
model is established based on transitions between the tasks, and it is a main structural property of
process models including manufacturing processes. For example, the starting task in a process model
precedes all other tasks including a succeeding task directly following it. Therefore, for manufacturing
processes, causal relationships between operations are quantified and weighted through calculations
of distance weights, and these are represented as a transition vector.

Let vT
i be a transition vector of manufacturing process model Mi. vT

i is a row vector containing
m×m elements for all pairs of operations, where each element vT

kl, i represents a causal relationship

between OPk and OPl, measured by the reverse of distance weight dT
kl, i between OPk and OPl.

vT
i =
[
vT

11,i, vT
12,i, . . . , vT

mm,i

]
(5)

vT
kl,i =

1
dT

kl,i

(6)
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The Cosine coefficient-based transition vector similarity simtv
(
Mi, Mj

)
is measured by the

following equation.

simtv
(
Mi, Mj

)
=

∑m
k=1
∑m

l=1 vT
kl,i vT

kl, j√∑m
k=1
∑m

l=1

(
vT

kl,i

)2 √∑m
k=1
∑m

l=1

(
vT

kl, j

)2 (7)

Based on the above equation, the result of measuring transition vector similarity between M1 and
M2 represented in Figure 7 is simtv(M1, M2) ≈ 4.9

7.16 ≈ 0.684.
The total similarity between process models Mi and Mj is measured by putting these two vector

similarities simov
(
Mi, Mj

)
and simtv

(
Mi, Mj

)
together and adding a balancing parameter α ∈ [0, 1] to

blend them.
sim
(
Mi, Mj

)
= α·simov

(
Mi, Mj

)
+ (1− α)·simtv

(
Mi, Mj

)
(8)

 
Figure 7. Representation of two transition vectors.

6. Similarity-Based Hierarchical Clustering

Based on the similarity measures, this section describes a hierarchical clustering algorithm of
manufacturing process models. The hierarchical clustering is a useful technique that allows us to
build a hierarchy of data clusters from similarities (or dissimilarities) between data. Hierarchical
clustering methods generally fall into two types: the agglomerative (bottom-up) approach [24] and
divisive (top-down) approach [25]. In this paper, we exploit an agglomerative approach, which is
more common to the hierarchical clustering than the divisive approach, and we devise a clustering
algorithm based on this approach.

6.1. Hierarchical Clustering Algorithm

The agglomerative clustering method builds a hierarchy from the n process models being clustered
(see the algorithm below). Initially, each model is assigned to its own cluster (line 4–7) and then the
clustering algorithm proceeds iteratively, at each step merging the two most similar clusters, continuing
until all the models are merged into a single cluster (line 10–25).
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Algorithm: Agglomerative Clustering using Process Similarity

Input: M, Set of manufacturing process models (M1, . . . , Mn).
Output: H, Hierarchy of clusters (Λ1, . . . , Λh).
1: begin

2: l← 1 ; //level of hierarchy
3: Λl ← ∅ ;
4: for Mi ∈M //initialize a cluster set in level 1
5: Λl ← ∅ ;
6: Λl ← Λl ∪Mi ; //assign each model to its own cluster
7: end for

8: H← ∅ ;
9: H← H∪Λl ; //add the cluster set in level 1 to the hierarchy
10: while (|Λl| > 1) //continue until all clusters are merged
11: χm ← ∅ ; //a cluster for two clusters to be merged
12: max← 0 ; //a variable for the global maximum similarity
13: for χi ∈ Λl //find a maximum similarity between all pairs of clusters
14: for χ j ∈ Λl, where χi � χ j;
15: if simC

max

(
χi, χ j

)
> max then //compare the global and local maximum similarities

16: χm ← ∅ ;
17: χm ← χi ∪ χ j ; //a set for the merged clusters
18: max← simC

max

(
χi, χ j

)
; //update the global maximal similarity

19: end if

20: end for

21: end for

22: Λl+1 ← ∅ ; //a cluster set in the next level
23: Λl+1 ←

(
(Λl − χi) − χ j

)
∪ χm , where χi, χ j ⊆ χm; //subtract χi and χ j, and add their merged cluster

χm

24: H← H∪Λl+1 ; //add the cluster set in level l + 1 to the hierarchy
25: l← l + 1 ; //increase the level of hierarchy
26: return H;

There are linkage-criteria, each of which determines a way to compute similarities between
clusters. The complete-linkage method [26] takes the lowest similarity value (or farthest distance)
between data included in the pair of clusters as a cluster similarity. Conversely, the single-linkage
method [26] merges two clusters based on the highest similarity value (or closest distance) between
pairs of clusters. These two representative linkage methods have slight differences in terms of time
and space complexities. We accordingly use the single-linkage method that can easily be adapted to
agglomerative clustering problems. Therefore, the manufacturing clustering algorithm calculates local
maximum similarities, each of which indicates the maximum similarity observed from a pair of model
clusters (line 13–18).

simC
max

(
χi, χ j

)
= max

{
sim(Ma, Mb) : (Ma, Mb) ∈ χi × χ j

}
(9)

In the next step, the two model clusters having the global maximum similarity are selected to be
merged. For example, let us three of model clusters χ1, χ2, and χ3 at the level l. The algorithm calculates
local maximum similarities of all pairs of clusters, simC

max(χ1, χ2), simC
max(χ1, χ3), and simC

max(χ2, χ3).
In case of the cluster pair of χ1, χ2, a local maximum similarity of this pair can be obtained by finding
a maximal value of similarity among all possible pairs of process models, ∀(Ma, Mb) : Ma ∈ χ1, Mb ∈ χ2,
included in χ1 and χ2. If the cluster pair of χ2 and χ3 has the global maximum similarity, these two
clusters are joined into a new cluster χ4 for the next level of the hierarchy. In this way, the algorithm
merges the two closest clusters at each level and eventually completes the entire hierarchy of clusters.
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6.2. Running Example

To confirm the applicability of the hierarchical clustering method for manufacturing process
models, we present a running example with manufacturing process models. These models are selected
models from real-life manufacturing processes for thermocouple probe products (see Figure 8) and
obtained by the BPMN modeling phase from process charts, BOM and BOMO data. The details of the
model examples are partially omitted or simplified for the security reasons. Specifically, the running
example contains 8 process models (M = M1, . . . , M8), 15 operations (OP = OP1, . . . , OP15), and 57
components (C = C1, . . . , C57). According to the characteristics of the routing patterns of manufacturing
processes, all the models have only sequential and parallel routing patterns in terms of control-flow.

 
Figure 8. Manufacturing process models for the running example.

At the first step, an operation similarity matrix, X = (xrk) ∈ R28×15, between operations of the
same type are calculated based on Equation (1). For example, the operation OP4 is the operation of
the same manufacturing task that is commonly included in all the process models. For the case of
OP4 in the model M3, this operation is associated with the input components, C12, C16, C17, C29, and
C36. Due to the different operation–component associations from other process models, the measured
operation similarities for OP3

4 are

[0, 0, 1, 1, 0.11, 0.14, 0.29, 0]

Operation similarities affect the similarities between operation vectors, and Tables 4 and 5 represent
the measured operation/transition vector similarities, respectively. The model pair (M5, M6) has the
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highest operation vector similarity, simov
(
Mi, Mj

)
= 0.6709, while the two most similar models on the

transition vector similarity are M3 and M8 with the topmost value of 0.828. Ultimately, the measured
total similarities with the balancing parameter α = 0.5 are shown in Table 6. This result shows that the
two most similar models are M5 and M6 with the similarity value of 0.6998.

Table 4. Measured operation vector similarities.

Process model M1 M2 M3 M4 M5 M6 M7 M8

M1 - 0.4518 0.1000 0.0343 0.3791 0.3289 0.0730 0.1134
M2 - 0.0454 0.0720 0.2725 0.3056 0.0596 0.1375
M3 - 0.0955 0.1055 0.0794 0.2313 0.3945
M4 - 0.4152 0.3916 0.1197 0.1103
M5 - 0.6709 0.1768 0.1515
M6 - 0.1839 0.1229
M7 - 0.2914
M8 -

Table 5. Measured transition vector similarities.

Process model M1 M2 M3 M4 M5 M6 M7 M8

M1 - 0.7792 0.0154 0.0769 0.2873 0.3206 0.1276 0.0346
M2 - 0.0120 0.0354 0.2239 0.2502 0.0995 0.0336
M3 - 0.3553 0.1906 0.0415 0.4119 0.8280
M4 - 0.4492 0.5320 0.1317 0.3138
M5 - 0.7287 0.0812 0.2638
M6 - 0.0982 0.0447
M7 - 0.3414
M8 -

Table 6. Total similarities with α = 0.5.

Process model M1 M2 M3 M4 M5 M6 M7 M8

M1 - 0.6155 0.0577 0.0556 0.3332 0.3247 0.1003 0.0740
M2 - 0.0287 0.0537 0.2482 0.2779 0.0796 0.0855
M3 - 0.2254 0.1480 0.0604 0.3216 0.6113
M4 - 0.4322 0.4618 0.1257 0.2120
M5 - 0.6998 0.1290 0.2077
M6 - 0.1410 0.0838
M7 - 0.3164
M8 -

Through the hierarchical clustering, we can expect to build a hierarchy of clusters of manufacturing
process models using the measured similarities. Figure 9 shows the hierarchical clustering result for the
running example, visualized as a heat map with dendrograms. As mentioned above, the hierarchical
clustering method operates in the bottom-up agglomerative way and finds and merges a pair with
the highest similarity (as Equation (9)) among all model pairs at each stage. In addition, by cutting
the hierarchy at a certain level, an intended number of clusters can be obtained. This means that it is
possible to determine the desired scale in managing manufacturing processes. For example, at the
level 5 of the hierarchy, there are four clusters χ1 = {M1, M2}, χ2 = {M3, M7, M8}, χ3 = {M4}, and
χ4 = {M5, M6}. As clusters χ3 and χ4 have the global maximum similarity simC

max(χ3, χ4) = 0.4618
resulted from the model pair (M4 ∈ χ3, M6 ∈ χ4), these two closest clusters are merged, resulting in
a total of three clusters χ1 = {M1, M2}, χ2 = {M3, M7, M8}, and χ3 = {M4, M5, M6} at the next level.
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Figure 9. Hierarchical clustering result visualized as a heat map with dendrograms.

7. Conclusions

In the era of Industry 4.0, lots of manufacturing companies tend to have a vast array of
manufacturing processes. With the attention of a need of manufacturing process management, this
paper proposes a similarity-based hierarchical clustering method for manufacturing processes operated
by manufacturing companies where the BPM methodology applied in. Specifically, the contributions of
this paper are summarized as two-fold: (1) The manufacturing process modeling with the adaptation
of the BPM approach. (2) The similarity measures for such manufacturing process models, and the
hierarchical clustering based on the similarity. As the validation result of this work, the applicability of
our clustering method was confirmed through the running example including real-life manufacturing
processes for thermocouple products. In terms of manufacturing operation management, implications
and possible applications are defined as follows:

BPM-compliant manufacturing process modeling—The process modeling standards generally
provide visual notations and schema for storing textual information (e.g., BPMN). Thus, manufacturing
process models that are visually standardized can help communications among related persons (e.g.,
process designers and stakeholders), at the same time, the textual information are interpreted by the BPM
system to automatically execute manufacturing processes. Therefore, BPM-compliant manufacturing
process models can be fully controlled in accordance with the BPM lifecycle. For example, process
mining is an enabling technology to monitor status of entire manufacturing processes by analyzing
event logs generated from the executions of process models.

Similarity-based hierarchical clustering of manufacturing process models—Clustering techniques
aggregate similar objects into the same cluster. Thus, these facilitate group-level operations. For the
manufacturing domain, operations in relevance with the production scheduling [27], resource planning
and distribution can be performed effectively, centering on clustered manufacturing process groups.
If there exist deficiencies such as bottleneck and low yield, which must be improved in the manufacturing
process, the company may consider extending its reengineering task to the whole manufacturing
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processes of the same cluster from the corresponding single process. For unexpected situations,
especially, the alternation operation of a manufacturing process or related resources (e.g., machines,
components, and human resources) is also one viable application which is activated by manufacturing
process clustering. Assuming a certain company operating a large-scale set of manufacturing
processes that is the target environment of this paper, our clustering method can support in designing
manufacturing processes for new products. By searching based on the similarity measures, process
designers can find a matched process or partial information, valuable to be referred or reused.

In conclusion, we believe that our method will support manufacturing companies so as to design
and manage a vast amount of manufacturing processes at a coarser level. However, in order for our
method to be more realistic, the following points should be supplemented in a follow-up study. First,
the BPMN modeling is insufficient to capture the other important characteristics of the manufacturing
process. Machines and human resources are also important entities that steer the manufacturing
process, therefore the modeling functionality supporting them should also be added. In addition, we
need to review other similarity techniques (e.g., graph similarity) and apply it to make our method
more reasonable and effective. Second, this work does not address the evaluation of how the proposed
clustering method can contribute to quantitative and qualitative positive effects on manufacturing
operation management and engineering problems. Therefore, our future works will cover the following
subjects:

• Studying process modeling and similarity techniques for better capturing the characteristics of
manufacturing processes.

• Conducting a case study applying the proposed clustering methods to a large set of real-life
manufacturing processes and investigating its effects.

• Design and implementation of a system supporting decision-making in various engineering
problems based on clustering results.

We are looking into implanting the BPM approach and systems into the manufacturing company
of thermocouple products. In a broad sense, the ultimate objective of our future works is to
establish realistic applications that provide an effective means supporting BPM-based manufacturing
operation management.
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Abstract: The properties of small- and medium-sized enterprises (SMEs) make them one of the most
important categories of enterprises for the economics of challenging world. SMEs, in most countries,
are still enterprises with marketing and financial challenges. In addition, most of these challenges are
related to their production and product characteristics. On the other hand, SMEs should fulfil the
costumer’s demands. In order to reach these goals, SMEs must reach the highest level of production
quality and quantity and successfully sustain them. Consequently, various manufacturing paradigms
have been offered by an Industry 4.0 concept, which offers a variety of solutions to increase the
productivity and enhance the performance of SMEs. It should be noted that implementation of these
manufacturing paradigms for SMEs is quite difficult and sometimes risky for several reasons. Still,
amidst all these difficulties and challenges, the benefits and idealism of the Industry 4.0 paradigms
prevail. From productivity to market, it is difficult to deny that SMEs are frightened by the challenges
they face and fleeing from the potential of overcoming them. This paper is an extended version of the
research by Ghafoorpoor Yazdi et al. (2018) and conducts a hybrid methodology to satisfy the SMEs
by validating and verifying any optimization idea before implementing the Industry 4.0 concept.
To reach the study goals, an intelligent Material Handling System (MHS) with agent-based control
architecture has been developed. The developed MHS has been utilized for auto parts distribution.
The system performance has been evaluated, and some solutions have been provided to optimize the
performance of system. To evaluate the target system’s performance, an analytical time study method
has been utilized. The time study has an Overall Equipment Effectiveness (OEE) standard approach
to identifying the matters that need to be resolved and optimized to increase system performance.
The other part of the methodology is generating a simulation model of the real system by use of
ARENA® software to evaluate the system’s performance before implementing the optimization idea
and modifying the real system. Furthermore, as the sustainability strategies create many synergistic
effects for SMEs, after evaluating the effects of the optimization ideas on OEE percentage, the influence
of the OEE changes on manufacturing sustainability has been investigated. The results show that
optimizing the OEE in SMEs with sustainability approaches can create competitive advantages, rather
than simply focusing on reducing unsustainability.

Keywords: small and medium sized enterprises; material handling systems; simulation;
ARENA®, time study; overall equipment effectiveness; manufacturing performance; Industry 4.0;
manufacturing sustainability
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1. Introduction

Nowadays, having businesses with increasing globalization and rapid technological changes
requires more firms known as small- and medium-sized enterprises (SMEs), characterized by tight
resources [1]. Industrial and commercial sectors, and large enterprises in particular, are changing
due to globalization. These types of enterprises aim to shift and maintain their production, which
are distributed to various regions abroad. For this reason, the impact of SMEs have become more
prominent in an ever-changing globalized market [2,3]. SME firms need to produce admirable
products with low cost, fast delivery to market, and appropriate quality. This strategy to meet
these highly varying demands has made manufacturing systems more complex, dynamic, and
demanding [4]. However, a manufacturing system including the mentioned capabilities requires
proper control architecture, decision-making, and experts [5]. Moreover, it is difficult and quite risky
for SMEs to utilize these systems before validation and verification of the possible advantages and
disadvantages of these changes and its effects on their productivity [3]. Therefore, modelling, analysis,
and simulation are essential aspects which can ensure the successful implementation and utilization of
a new manufacturing system for SMEs [6].

One of the most important resources of a successful manufacturing system is the Material
Handling System (MHS), which has a high level of influence on productivity [7]. Recently, automation
of MHS has been focused on as an important feature of this type of system [8]. However, for a few
SMEs which are currently utilizing automated/smart MHS, it would be risky and sometimes not
feasible to apply any changes or optimization idea before validating and verifying their effects on
different manufacturing aspects [9].

Many researchers have worked to develop a method to choose the right equipment and control
architecture for MHS. Chan et al. (2011) proposed a model for improving MHS, called the Material
Handling Equipment Selection Advisor (MHESA) [10]. Bhattacharya et al. (2002) also proposed
another method, which is called the Multi-Criteria Decision-Making (MCDM) environment [11].
Shen et al. (2003) developed a new control architecture on their target MHS [12]. However, Fax
and Murray (2004) proposed the use of a decentralized manufacturing control system which has
the definition of an agent [13]. Durieux and Pierreval (2004) have proposed a study to design an
automated manufacturing control system which is composed of machines working in parallel with
MHS resources [14]. Schröder et al. (2016) developed an efficient way to manufacture products
using automated MHS [15]. Johnstone et al. (2010) applied the concept behind the low-level control.
This concept plays a huge role in preventing material collision in the considered MHS [16]. An
operator-designed element-routing methodology for MHS was developed by Lau and Woo [17].

An increase in productivity and less rejections are the possible outcomes of increasing equipment
effectiveness. The mentioned improvement is a major effect of the Industry 4.0 implementation on
enterprises [18]. Considering the challenging market for SMEs, performance of the manufacturing
system and reliable manufacturing equipment are currently considered the most important factors for
increasing profitability [19]. Therefore, OEE is one of the best analytical methods for evaluating the
performance of SMEs [20]. Generally, OEE focuses on the relationship between the loading time and
the valuable time of the operations in manufacturing systems. Operating time can be defined as the
time in which the equipment produces sufficient products, and loading time is the time in which the
equipment needs to perform in a given period [21].

Many studies have been done about utilizing OEE to evaluate the performance of the enterprises.
Nakajima (1988) introduced the total productive maintenance (TPM) concept. Overall Equipment
Effectiveness (OEE) was the outcome of this concept as a quantative metric for measuring the
productivity of individual equipment in an enterprise [22]. The quality rate, availability, and
performance were the target aspects of OEE to be identified and measured. Huang et al. (2003)
stated that the OEE concept has been widely used as a quantitative tool essential for the measurement
of the manufacturing system’s productivity [23].
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Nakajima (1988) stated that the effectiveness of the equipment in manufacturing systems can
be evaluated by OEE standards to detect the system’s problems and limitations [22]. Jonsson
and Lesshammar (1999) investigated the reason for losses during the production in manufacturing
systems [24]. Muchiri et al. (2008) stated that there were six major losses available in manufacturing
systems, which are downtime, Speed, Idling, and minor stoppage and losses due to speed
reduction [25].

Calculation of performance, availability, and quality result in an obtainment of the OEE
percentage [26]. The procedure for obtaining the percentage of each of these factors is illustrated in
Figure 1 [27].

Figure 1. Overall Equipment Effectiveness (OEE) calculation procedure [27].

As stated previously, time is the most important factor when analyzing OEE. Consequently, a
comprehensive time study can track each of the equipment and evaluate their behavior to identify
the factors which might increase the system’s performance. To reach this goal, the manufacturing
process can be divided into sub-processes. A summation of the time study for each part of the process
leads to an obtainment of the overall system’s timing. Many studies have stated that utilization of a
proper time study will identify the system’s waste time and limitations which might occur during the
production process [27–31].

There are several time study techniques and methods, and there are many studies available in
regard to each of them. Patel (2015) performed a stopwatch time study to calculate the cycle time
for labor tasks, Overall Equipment Effectiveness (OEE), and in regard to minimizing the cycle time
of the overall shifts [32]. Elnekave (2006) conducted a time study in a textile factory to obtain the
standard time for a printing machine to calculate the system performance [33]. Bon and Daim (2010)
investigated time as a measuring tool for the performance evaluation of a company [34]. Longo and
Mirabelli (2009) utilized the Method Time Measurement (MTM) to analyze the primary model of the
assembly line. Since the study was based on a nonexistent assembly line, a simulation tool was used to
model the manufacturing system [35]. Kuhlang et al. (2011) presented a study on an assembly line and
production-logistic process which aims to create more added-value elements in the process within a
fixed time [36].
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Simulation has played a significant role in evaluating, validating, and verifying any optimizing
idea or modifications for a manufacturing system’s hardware, software, and layout design [37]. The
operational performance of manufacturing systems could be obtained after any changes in simulation
models before implementation on a real system [38,39]. There are different concepts in the investigation
of the relationship between simulation and optimization, which are “simulation and optimization”,
“simulation-based optimization”, and “simulation for optimization” [40–42]. ARENA simulation can
be utilized to model different systems with different configurations to be subjected to optimization
solutions and modifications. Therefore, ARENA is a proper simulation tool that can be used to validate,
verify, and evaluate manufacturing systems which are modified by any optimization solution [43–45].

Manufacturing Sustainability Improvement

In order to evaluate the sustainability of the target manufacturing systems, the missions of the
Organization for Economic Cooperation and Development (OECD) have been considered (Table 1).
Based on OECD missions, a new business and production method, which is known as Sustainable
Manufacturing, includes different types of green products and processes [46]. In addition, the concept
of a sustainable manufacturing system is about decreasing the risk of business and increasing the
chances which comes from the manufacturing system and process improvements [47].

Table 1. The Organization for Economic Cooperation and Development (OECD) requirements for
sustainable manufacturing [27,46].

Steps Description

Pr
ep

ar
at

io
n

Mapping impact and set priorities

In this step, the manufacturing, environmental impact of
small- and medium-sized enterprises (SMEs) should be

reviewed. Also, the priorities of each should be defined. Based
on the detected and the priorities of these environmental

impacts, sustainability objectives should be defined.

Select useful performance
indicators

Indicators that are essential for SMEs to increase the
performance and learn about what data should be collected to

help drive continuous improvement should be identified.

M
ea

su
re

m
en

t Measure the inputs used in the
production

The ways in which materials and components used in SMEs
production processes influence environmental performance

should be identified.

Assess operations of the SMEs
facility

The impact and efficiency of the operations in SME facilities,
such as energy intensity, greenhouse gas generation, and

emissions to air and water should be considered.

Im
pr

ov
em

en
t Evaluate your products

Factors such as energy consumption in use, recyclability, and
use of hazardous substances that help determine the

sustainability of SME end-products should be identified.

Understand measured results
Reading and interpreting the SME indicators and the methods

for understanding trends in their performance should be
learned.

Take action to improve
performance

Opportunities to improve SME performance and creating
action plans to implement them should be chosen.

According to the OECD, there are eight key factors that have to be considered during any
sustainability investigation (Figure 2).

According to Yazdi et al. (2018), Figure 2 can be simplified to the energy intensity relation with
manufacturing sustainability. In the other word, out of the effective factors related to manufacturing
sustainability, energy consumption of the system and its related resources can be focused on [27].

As mentioned previously, time is the main effective factor when evaluating the OEE percentage
of manufacturing systems. Thus, the relationship between time and manufacturing sustainability
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for SMEs is one of the targets in this research. However, to have a comprehensive evaluation of the
effectiveness of a manufacturing system and its energy efficiency, considering time as the only factor
of focus is not enough. Therefore, to evaluate the energy efficiency of a manufacturing system, the
relationship between the energy consumption of a manufacturing system in a specific period of time
and its power requirements should too be considered, so that it is possible to conduct an action plan to
reduce the time and energy consumption in parallel [48,49].

 

Figure 2. Considerable factors in manufacturing sustainability [27].

This study is predominantly about assessing the challenges and possible difficulties that SMEs
might face during the implementation of Industry 4.0. However, SMEs have a fear of utilizing these
solutions until the management layer, being convinced of the possible performance improvements
and effects. On the other hand, for the category of SMEs in which the Industry 4.0 is adopted, they
are likely to want to improve their current manufacturing system by new control architectures and
optimization ideas and some other manufacturing paradigms. Hence, the proposed methodology in
this research is likely to make SMEs able to evaluate the system before and after implementation of the
new control architecture and optimization idea.

In general, the study had two stages and used a hybrid methodology for the possible industrial
category target (SMEs). The Overall Equipment Effectiveness (OEE) standard analysis was conducted
to determine an appropriate relationship between performance evaluation and optimization in such
material handling systems for SMEs.

In the first stage of the research, the proposed hybrid methodology was implemented on an
educational manufacturing system at the German University of Technology in Oman (GUtech) [50].
Before any changes were made, the system was a semi-automated material handling system for
part/product distribution. In order to represent the essence and effect of the adoption of Industry 4.0
and the way in which the system’s processes, operations, and overall performance could be improved,
a new control architecture with a unique algorithm was developed. The reason behind this type of
control architecture was to transform the target MHS from a semi-automated to an intelligent one, as
this is significant for Industry 4.0 integration. To reach to an intelligent MHS, an agent-based control
architecture was developed. The developed control architecture, including an algorithm for the target
MHS, became a suitable solution due to the improvement in production planning and scheduling, as
well as monitoring and control. Agent-based control architecture implementation resulted in improved
decision-making and an effectively facilitated system.
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In the second stage and in this paper, two categories of enterprises have been considered as
the ones where the proposed method might be applicable for them. The first category included
the enterprises which were going to initiate the production and which did not have a fixed control
architecture, resources (hardware and software), or layout design. The other category was for the
enterprises that were already producing and functioning, and where it was hard and risky to modify
any of the hardware and software resources and layout design, especially the control architecture.
Performance measurement of the system with new control architecture and the developed algorithm
is indispensable to the target MHS, because if the efficiency of the control architecture cannot be
measured, it cannot be properly modified and optimized. It is obvious that if the new proposed control
architecture cannot improve the performance, some other hardware, software, and layout design
problems will exist. Furthermore, these possible problems which may affect the system performance
should be differentiated from the control architecture’s possible problems and limitations.

The first stage of the study established that considering the second category of the SMEs, time,
as the main performance indicator will determine most of the problems and limitations in relation to
the hardware, software, control architecture, and layout design [27]. The study made use of timing as
the main key factor for OEE. Quantitative required data were collected using “ProTime” Estimation
software as the time study tool. The selected time study method is a combination of different time
study techniques to obtain the required information for OEE calculation. Implementation of the
proposed methodology for target MHS required a comprehensive overview of the system functionality
and tasks, such that the MHS with new control architecture were separated into a different district,
including the available tasks for each of them. OEE was calculated for the target MHS before any
modification. The OEE result was analyzed, and the system hardware, software, and layout design
obtained for each district and each task.

In the second stage and in this paper, out of the detected problems and limitations available in
the system with new control architecture, several influencing factors have been identified. In order to
optimize the system in regard to these three categories of problems, the distance between the devices
and speed was considered as the optimization objective function. To investigate the effect of the
optimization idea, the target intelligent MHS was modelled on an ARENA simulation to investigate
any possible changes in system performance. The study’s conclusion is that there were partial, as well
as overall improvements in the systems. As the final stage of the research, the effect of the proposed
methodology and optimization ideas on the sustainability of the target system were obtained.

2. Methodology

An intelligent material handling system, including the Master-Slave agent-based control
architecture, was developed as the first stage of this research. The system layout and its agent-based
control architecture and functionality has been described by Yazdi et al. in detail [27] (Figures 3 and 4).

 

Figure 3. System overview [27].
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Figure 4. Layout design, top view [27].

Referring to Figures 3 and 4 and research done by Yazdi et al. [27], the system includes four
phases. Phase 1 includes the storage, main conveyor, and its control unit (slave1). Phase 2 includes a
robot arm and its control unit (slave6). Phases 3 and 4 include a slider with a control unit (Slave4 and
5), and a conveyor and its control units (Slave 2 and 3) and buffers [27].

A time study was done on the developed intelligent material handling system by Yazdi et al. [27]
for each part of the process and the entire system. Detailed results of the time study in a previous part
of the research is illustrated in Table 7, which is available in [27]. Obtaining the utilization time for all
of the available resources in the system was the main target in doing the time study. In addition, with
the selected time study technique, a comprehensive investigation of the difference between similar
devices with the same functionalities was done. The time study results have been utilized to obtain the
required factors for calculating the OEE percentages for every resource, as well as the entire system.
Also, identification of the problems and limitations in hardware, software (control agents), and layout
design was the result of the time study of the system. A combination of the outcomes of the time
study and OEE evaluation led to the provision of proper optimization solutions for enhancing system
performance. Due to the target system’s characteristics as an educational manufacturing system, as
well as its limitations, the time study evaluation was done for a short functioning period of the system,
and expanded for a long period theoretically.

The time study results and its associated Gantt chart showed the overall system performance
within the entire sections of the system, including the utilization time of each resource and the conflicts
that occur when two or more resources are working at the same time. A more detailed Gantt chart and
explanation is given by Yazdi et al. in [27].

Since part of the previous objectives of this research was to obtain methods for optimizing the
system, it was essential to point out the issues and problems related to the system’s performance and
prepare a comprehensive overview of them. It has been stated by Yazdi et al. that a particular aspect
which needs to be optimized in the system is idle time, since it affects the overall system utilization
rate [27]. Thus, the authors presumed that there should be a direct relationship between a decrease
in Busy time, Idle time, and overall production time [27]. As a result, all of the detected issues and
possible solutions for enhancing system performance with the time study and visual observation point
of view are listed in a Table in [27].
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Once the problems and limitations and simulation model with functional specifications of the
real system were clearly defined in the first stage of the research, it was possible to detect and gather
the data, which was essential for verifying the simulation model with the same characteristics and
properties of the real system. Once the necessary data were identified, determination of where the data
came from was required. In utilizing the time study, the required data which needed to be collected
manually was obtained.

In this research, the objective of the simulation was verification of the detected problems by time
study and validation of the effects of implementation of the optimization method before execution on
the real system.

When building the simulation model in ARENA, defining the primary aspects of the real
manufacturing system plays an important role. These primary aspects include Resources, Variables,
Attributes, and other elements. Once the fixed aspects have been defined, the simulation model’s
control logic can be generated by utilizing ARENA’s flowchart-modelling methodology (Figure 5).

If the model’s behavior makes sense and it is functioning like the real system—for instance, when
entities are moving in the path that they should, and process steps are taking place as expected—we
can be sure that the model has been verified. To achieve system verification, functional specification
should be followed properly during the model-building phase.

Here, in the second stage of research, validation means users’ approval about the output of the
simulation model matching with the real system outputs. In this case, the model input may use real
system data, and its output from the simulation model will be compared with the real system’s results
(time study results). In all cases, the changes in the existing system are amended to reflect on the
simulation model.

To achieve behavior most similar to the real system by way of the simulation mode, it is mandatory
to consider every hardware, software, and layout design specification in the model as they are in the
real system. For this reason, the model was divided into different districts, which were the entrance of
the system and the points at which parts were being loaded onto the system, main conveyor, Right
and Left Conveyor, Right and Left Slider units, and Robotic arm (identical to the available resources in
the first stage of research).

Visualization was applied in ARENA simulation that provided graphics and animation of the
system’s functionality. Through the use of graphics in the simulation, the user can gain better
understanding of the system which has been modeled. As long as the implementation of any
optimization and change in the existing real system which has been modeled is not possible before
validation and verification, visualization of the system in ARENA provides one of the best methods
for validating and verifying system optimization methods (Figure 6).

To generate an accurate model by ARENA and achieve similar behavior as it would be in a real
system, Busy Time was considered as a target. Obtaining the Busy Time for each resource and related
task/s required measurements of time, velocity, and distance between the resources for every section.
For this reason, five participants with proper knowledge of the system and its functionality contributed
to making this measurement have high-accuracy instrumentations. It is necessary to mention that the
target factors required for creating the simulation model were obtained by human observation from
the real system, meaning that human error may have affected the accuracy of the data. This means that
as much as the observations, trials, and number of participants increases, the error will consequently
be decreased.
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Figure 6. ARENA visualization of the real system.

The velocity of objects and resources was measured by utilizing a motion sensor. In this method,
an electrostatic transducer in the face of the Motion Sensor transmitted a burst of 16 ultrasonic pulses
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with a frequency of about 49 kHz. The sensor measured the time between the trigger-rising edge and
the echo-rising edge to measure the velocity. The distance between the resources and the displacement
of the objects was measured with a laser distance meter to get the most accurate results. Each
participant did the measurement individually and was asked to calculate the time while considering
the velocity and measured distance (Table 2).

Table 2. Distance and speed measurements by participants.

From To Among Resource
Distance

(Free Unit)

Speed
(Distance Unit

Per Second)

Entrance/Sensor 1 Sensor 2 Main Conv. Main Conv. 53 9.3

Sensor 2 Sensor 3&4 Main Conv. Main Conv. 12 3.35

Sensor 3&4 Sensor 5
Main Conv.
And Right

Conv.
Robot Arm 34 12.9

Sensor 3&4 Sensor 6 Main Conv.
And Left Conv. Robot Arm 29 10.4

Sensor 5 Sensor 7/Right
Slider Entrance

Right Conv.
and Right

Slider
Right Conv. 85 9

Sensor 7/Right
Slider Entrance Red Buffer Right Slider Right Slider 8 8

Sensor 7/Right
Slider Entrance Yellow Buffer Right Slider Right Slider 39 10

Sensor 8/Left
Slider Entrance Green Buffer Left Slider Left Slider 7 8

Sensor 8/Left
Slider Entrance Blue Buffer Left Slider Left Slider 39 10

Sensor 6 Sensor 8/Left
Slider Entrance

Left Conv. and
Left Slider Left Conv. 75 9

Right Slider Red Buffer Right Slider
and Red Buffer Right Slider 1 2

Right Slider Yellow Buffer
Right Slider
and Yellow

Buffer
Right Slider 1 3.13

Left Slider Blue Buffer Left Slider and
Blue Buffer Left Slider 1 3.13

Left Slider Green Buffer Left Slider and
Green Buffer Left Slider 1 2.39

The result was imported into the simulation model, just as it was measured in the real system.
Table 3 shows the obtained average Busy time for each task measured by the participants. Table 3 also
shows the difference between the real system’s Busy time and average Busy time by the simulation, in
which the model’s input data is from the participants’ measurements. The absolute time difference
shows there is a 0.5 second difference between the Busy time in the simulation model and in the real
system (Figure 7). Thus, the simulation model has the functional specifications of the real system, and
is reliable for applying any modification.
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Table 3. Time difference between “Busy” times of the real system and simulation model.

Busy Time (s)

Task No. Task Description
Real

System

Average of
Participants
Observation

Absolut
Deference

1 Main conveyor handling Red object to Robot 9.81 9.50 0.31

2 Robot arm picking The Red Object from Main Conveyor 3.55 3.84 0.29

3 Robot arm placing Red object to Right Conveyor 3.56 3.66 0.10

4 Right conveyor handling Red object to Right Slider 9.22 9.40 0.18

5 Robot arm moves to its home position after placing Red object 2.62 2.50 0.12

6 Main conveyor handling Blue object to Robot 9.04 9.50 0.46

7 Right Slider transfers Red object to Red buffer 3.98 3.90 0.08

8 Right Slider unloading the Red object to Red buffer 4.5 4.50 0.00

9 Robot arm picking The Blue Object from Main Conveyor 3.88 3.55 0.33

10 Robot arm placing Blue object to Left Conveyor 3.82 3.66 0.16

11 Right Slider moves to its home position after unloading Red object 4.01 4.08 0.07

12 Left conveyor handling Blue object to Left Slider 7.94 8.33 0.39

13 Robot arm moves to its home position after placing Blue object 2.78 2.50 0.28

14 Main conveyor handling Yellow object to Robot 9.86 9.50 0.36

15 Left Slider transfers Blue object to Blue buffer 4.09 4.09 0.00

16 Left Slider unloading the Blue object to Blue buffer 4.42 4.40 0.02

17 Robot arm picking The Yellow Object from Main Conveyor 4.05 3.84 0.21

18 Left Slider moves to its home position after unloading Blue object 4.43 4.43 0.00

19 Robot arm placing Yellow object to Right Conveyor 3.63 3.66 0.03

20 Right conveyor handling Yellow object to Right Slider 9.3 9.40 0.10

21 Robot arm moves to its home position after placing Yellow object 2.57 2.50 0.07

22 Main conveyor handling Green object to Robot 9.62 9.50 0.12

23 Right Slider transfers Yellow object to Yellow buffer 0.98 0.99 0.01

24 Right Slider unloading the Yellow object to Yellow buffer 4.32 4.32 0.00

25 Robot arm picking The Green Object from Main Conveyor 3.84 3.55 0.29

26 Right Slider moves to its home position after unloading yellow object 1.25 1.25 0.00

27 Robot arm placing Green object to Left Conveyor 3.6 3.66 0.06

28 Left conveyor handling Green object to Left Slider 7.88 8.33 0.45

29 Robot arm moves to its home position after placing Green object 2.5 2.50 0.00

30 Left Slider transfers Green object to Green buffer 1.07 0.71 0.36

31 Left Slider unloading the Green object to Green buffer 4.33 4.32 0.01

32 Left Slider moves to its home position after unloading Green object 1.44 1.44 0.00

 
Figure 7. Time difference between “Utilization” time of the real system and simulation model.
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The designed and implemented intelligent material handling system, with its related time study
result and analysis, were evaluated by using the OEE standard to get the overall system performance.
Detailed results of the OEE percentage for each resource and the entire system [27] have been illustrated
by Yazdi et al. in [27], as well as in Table 5. This percentage provided an accurate view of how effectively
the manufacturing process was running, and made it easier to track problems and improvements in
the system over time. A detailed analysis of the OEE [27] results has been provided by Yazdi et al.
in [27].

OEE Analysis after Optimization

After OEE analysis of the existing system and identifying the problems and limitations of the
system which affected the OEE percentage, it was possible to modify the system to compensate and fix
these issues and optimize the system. In order to reach this goal, an objective function was considered
to evaluate the optimal methods and ideas.

For this reason, all of the system parameters which can be modified to optimize the system were
formed as a parameter vector:

p = [p1, p2, p3] (1)

where p is the objective function, p2 is the distance between the stations or segments, and p3 is the
devices’ speed of motion.

p1 is the production time, including Idle and Busy times:

Ti, Tb ∈ p1 (2)

where Ti is the Idle Time and Tb is the Busy time.
Time is influenced by the velocity and distance between the considered object, meaning that:

p1 =
p2

p3
(3)

p1,min =
p2,min

p3,max
(4)

It is obvious that by decreasing the tasks’ durations (Busy time), the system’s resource Idle times
will be subsequently decreased. In addition, Idle time will be affected by many other parameters, such
as the quality of the products and production planning. This means that idle time varies by changing
different parameters. C1 is the effectiveness coefficient of idle time, and shows that in different systems,
Idle time has different effects. C2 is the effectiveness coefficient of Busy time, which was evaluated
internally for each resource and rarely affected by other parameters which are not related to the
resources itself.

p1 =
T

∑
t=0

C1 Ti + C2Tb (5)

The proposed optimization methods in this study focused on time, speed, velocity, and layout
design of the system. These parameters simultaneously affected Idle and Busy time. However, the
influence of the changes in Busy time was more than the Idle time. Thus, to investigate the influence of
each of the proposed optimization ideas, C1 was assumed as 1 so as to only investigate the effects on
Busy time.

C1 = 1 → p1 = ∑T
t=0 C2Tb (6)

Since the aim of this study was to evaluate the optimization ideas and their effects on the OEE
percentage, and as mentioned previously, time has been selected as the key affecting factor on OEE,
optimization of timing was the outcome of the objective function. The time, p1, which is the production
time, should be minimized. As mentioned previously, to reach the minimum p1, p2 (Distance) should
be minimized and p3 (Velocity) should be maximized.
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Following the instructions above and to verify the optimization ideas, the velocity of the resources
was modified to the maximum possible value in the simulation model. The increasing of the velocity
was based on the real resource’s capacity, and the properties and limitation of the proposed control
architecture. For instance, the velocity of the conveyors was increased to the point that the conveyor
could handle the objects accurately with less vibration during the transportation. For this reason,
without changing the system layout, several tests have been done practically on the similar conveyor
to get the maximum velocity value.

The effects of the layout design and distance between the segments were investigated by changing
the place of the sensors, instead of changing the length of conveyors in the simulation model. Table 4
and Figure 8 show the simulation model modifications for investigating the effect of the optimization
ideas on the system resource’s Busy times. In addition, a comprehensive comparison between the
Busy times before and after implementing the optimization idea on the simulation model has been
visualized in Figure 8.

Table 4. System modification and “Busy” times after the optimization methods.

Task Description Real

Average of
Participant
Observation

with
Simulation

2/3 of the
Real

Distance
Change

1/2 of the
Real

Distance
Change

Speed
Limit

Change
to

Maximum

Main conveyor handling Red object to Robot 9.81 9.50 6.63 5.32 8.20

Robot arm picking The Red Object from Main Conveyor 3.55 3.84 3.84 3.84 3.25

Robot arm placing Red object to Right Conveyor 3.56 3.66 3.66 3.66 3.20

Right conveyor handling Red object to Right Slider 9.22 9.40 5.60 4.47 8.80

Robot arm moves to its home position after placing Red object 2.62 2.50 2.50 2.50 1.99

Main conveyor handling Blue object to Robot 9.04 9.50 6.63 5.32 8.20

Right Slider transfers Red object to Red buffer 3.98 3.90 2.64 2.03 3.70

Right Slider unloading the Red object to Red buffer 4.50 4.50 4.50 4.50 4.24

Robot arm picking The Blue Object from Main Conveyor 3.88 3.55 3.55 3.55 3.34

Robot arm placing Blue object to Left Conveyor 3.82 3.66 3.66 3.66 3.30

Right Slider moves to its home position after unloading Red object 4.02 4.08 2.68 2.06 3.90

Left conveyor handling Blue object to Left Slider 7.94 8.33 5.68 4.47 7.50

Robot arm moves to its home position after placing Blue object 2.78 2.50 2.50 2.50 1.99

Main conveyor handling Yellow object to Robot 9.86 9.50 6.63 5.32 8.20

Left Slider transfers Blue object to Blue buffer 4.09 4.09 2.72 2.00 4.02

Left Slider unloading the Blue object to Blue buffer 4.42 4.40 4.40 4.40 4.20

Robot arm picking The Yellow Object from Main Conveyor 4.05 3.84 3.84 3.84 3.25

Left Slider moves to its home position after unloading Blue object 4.43 4.43 2.95 2.27 4.06

Robot arm placing Yellow object to Right Conveyor 3.63 3.66 3.66 3.66 3.20

Right conveyor handling Yellow object to Right Slider 9.30 9.40 5.60 4.47 8.80

Robot arm moves to its home position after placing Yellow object 2.57 2.50 2.50 2.50 1.99

Main conveyor handling Green object to Robot 9.62 9.50 6.63 5.32 8.20

Right Slider transfers Yellow object to Yellow buffer 0.98 0.99 0.62 0.49 0.70

Right Slider unloading the Yellow object to Yellow buffer 4.32 4.32 4.32 4.32 4.10

Robot arm picking The Green Object from Main Conveyor 3.84 3.55 3.55 3.55 3.34

Right Slider moves to its home position after unloading yellow object 1.25 1.25 0.78 1.20 1.00

Robot arm placing Green object to Left Conveyor 3.60 3.66 3.66 3.66 3.30

Left conveyor handling Green object to Left Slider 7.88 8.33 5.68 4.47 7.50

Robot arm moves to its home position after placing Green object 2.50 2.50 2.50 2.50 1.99

Left Slider transfers Green object to Green buffer 1.07 0.71 0.62 0.49 0.66

Left Slider unloading the Green object to Green buffer 4.33 4.32 4.32 4.32 4.10

Left Slider moves to its home position after unloading Green object 1.44 1.44 1.03 0.82 1.07
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Figure 8. Comparison of “Busy” times before and after the optimization idea.

In order to investigate the effect of optimization solutions on OEE percentage, calculating the
availability, performance, and quality are essential. As mentioned previously, the quality of the objects
was considered as 100% because of the real system’s characteristic (parts distribution). The factors
required to obtain the Availability and Performance percentages were calculated individually for each
system modification and each resource (Table 5).
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To obtain the effect of each optimization solution in each resource and choose the most effective
one, Figure 9a–h have been provided to ease the investigation by visualizing the outcome of the system
OEE and related factors after the optimization solution. Each part of Figure 9 shows the percentages of
Availability, Performance, and OEE, respectively, for each resource.

 
(a) 

 

(b) 

 

(c) 

Figure 9. Cont.
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(d) 

 

(e) 

 

(f) 

Figure 9. Cont.
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(g) 

 

(h) 

Figure 9. Comparison of OEE and its related factors’ percentages.

Analyzing the outcome of the system modification on the simulation model verified that the
overall equipment effectiveness (OEE) was significantly improved by each category of the optimization
methods. However, this improvement has a direct relationship with system performance and
availability. In almost all of the resources, all of the optimization methods increased the performance
of the resources, but not equally.

Figure 9a–h shows that the layout design and changing the distance of the segments (decreasing
the distances to 2/3 and 1

2 of the actual distance in the simulation model) by modifying the resources’
layout design improves the OEE percentages of all of the resources which are connected, along with
the conveyor units.

In the main conveyor, due to having two different segments (between sensors 1 and 2 and sensors
2 and 3) with different speeds, modifying the speed had the most effect on the OEE percentage. The
OEE percentage of the conveyor was increased between 1.8% to 8.8%, in which the minimum effect
was due to decreasing the distances to 2/3 of the actual size, and the maximum effect was due to
increasing the speed of the conveyor segments.

The same behavior of the OEE percentage changes was observed for the robot arm. However, it
was not as significant, compared to the main conveyor. As long as the robot arm performance was
affected by the main conveyor performance, it showed similar improvement to the main conveyor.
Furthermore, the robot’s motion speed is the only factor that can change the robot OEE percentage,
but the speed depends on the robot’s pick-and-place point distances to move the objects. This means
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that the distance and speed modification affected the Robot OEE percentages, and was between 2.21%
and 4.48%.

The results which have been observed for the side conveyors are mostly like the main conveyor.
The improvement in OEE percentage is between 0.79% to 2.41%, where the maximum improvement
was the result of speed change. Negatively, the OEE percentage significantly improved in the left
conveyor to between 12.4% to 18.12%. This considerable range of improvement is because of the
equalization of the left conveyor length (this issue was discussed in the first stage of research).

Sliders have different behaviors in regard to the performance improvements by optimization
methods. The percentage of OEE improves by changing the distance of the segments more than
changing the speed. The right and left sliders are same in regard to the effectiveness of optimization
methods for a short range of movement.

In the right slider, the OEE percentage of short-range transfer improved between 3.58% to 5.03%.
The minimum and maximum values were the result of changing the distances to 2/3 and 1

2 of the
actual distance. On the other hand, the OEE percentage improvement for the Left slider for a short
range is between 4.64% to 7.26% for Speed and 1

2 of the actual distance, respectively.
The left slider for short-range transfer had a 9.99% to 15.69% improvement for speed and 1

2 of the
actual distance change. Simultaneously, for the long range, there was a 12.66% to 15.71% improvement
for modifying the speed to maximum limit and the distance to 1

2 of the actual distance.
Table 6 shows the OEE percentage improvement in detail as the result of the optimization method,

considering the most effective parameter as the mentioned objective function parameters.

Table 6. OEE improvement percentage for each resource.

OEE Improvement %

Resource
1
2 of the Actual
Distance (p2-1)

2/3 of the Actual
Distance (p2-2)

Speed to Maximum
Limit (p3)

Priority of the
Effectiveness

Main Conv. 5.28 1.30 8.86 p2-1 (2) p2-2 (3) p3 (1)

Right side Conv. 0.99 0.79 2.41 p2-1 (2) p2-2 (3) p3 (1)

Left Side Conv. 13.86 12.4 18.12 p2-1 (2) p2-2 (3) p3 (1)

Robot arm 2.89 2.20 4.48 p2-1 (3) p2-2 (2) p3 (1)

Right Slider for Red Obj. 5.03 3.58 4.48 p2-1 (1) p2-2 (3) p3 (2)

Right slider for Yellow Obj. 15.69 11.19 9.90 p2-1 (1) p2-2 (2) p3 (3)

Left Slider for Blue Obj. 7.26 4.36 4.46 p2-1 (1) p2-2 (2) p3 (3)

Left Slider for Green Obj. 15.71 10.56 12.66 p2-1 (1) p2-2 (3) p3 (2)

As the table above shows, all of the proposed optimization methods have improved the OEE
percentage of the system simulation model. In addition, it is obvious that the Improvement percentages
are not equal for all of the methods and neither for all of the resources. In order to generalize the
solution to select the best method, a priority has been considered for all of the methods. This priority
is based on the OEE percentage improvement amount.

As the general solution, to optimize the system for the main conveyor, right-side conveyor,
left-side conveyor, and robot arm, the speed of the resources should be increased to the maximum
limit, and there is no need to modify the distances between the segments due to the OEE percentage
improvement being at the highest level. However, in some cases, increasing the speed is not a sufficient
method because of the system control architecture limitations. This means that changing the distances
between the segments will be the only solution, and as Table 6 shows, it is suggested to select the
minimum distances between the segments by considering the layout design of the system.

This optimization of OEE could be generalized to all the systems, including resources which have
material interaction by the conveyor and robot arm acting as the material handling system.

For slider units, or for the system generally containing a unit which slides a resource (i.e., Slider
Robot arm), the optimization method will be different for a short and long range of motions. As Table 6
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shows, for a short range of motions for both right and left sliders, changing the speed has the last
priority. However, changing the distance between the segments further increases the OEE percentage.
On the other hand, a long range of motion for the speed of both right and left sliders has second
priority. This means that if the distance optimization is limited because of the layout design, hardware
limitations make it impossible to decrease the distances to the minimum possible value, and changing
the speed to the maximum limit is the most effective parameter to optimize the system.

It is worth mentioning that, as a general solution, it is possible to implement all the optimization
methods if the enterprise has enough flexibility to handle all the modifications. However, in this
research, SMEs are the target, where they are limited and less flexible to handle all of the proposed
optimization methods, and it should be the chance for management to select the most effective method
for increasing the OEE in the system.

The sustainability of the system is the next target to be evaluated after the investigation of the
importance of time in the evaluation of OEE with utilizing simulation. To accomplish this task, the
requirement to obtain sustainability has been illustrated. Identification of the environmental impacts
on the target system is the first step toward the evaluation of sustainability. Yazdi et al. (2018) stated
that out of the available environmental impacts (Table 7), energy consumption has the highest priority.
The authors also stated that they selected this impact as the only effective one, due to the property
of the target manufacturing system [27]. The authors also identified the most effective factors to
consuming energy in each part (resource) of the target system (Table 8).

Table 7. Mapping impact and set priorities of the selected manufacturing system [27].

Mapping Impact and Set Priorities

Impacts Definition Priorities

Water intensity Consumption of water per unit of output Not Selected 0

Residuals intensity Generation of wastes per unit of output Not Selected 0

Energy intensity Energy consumed per unit of output Selected 1

Renewable proportion of
energy consumed

Used Energy from Sustainable
Resources (%) Not Selected 0

Greenhouse gas (GHG)
intensity

GHGs produced during production per
unit of output Not Selected 0

Intensity of residual
releases to air Release of air emissions per unit of output Not Selected 0

Intensity of residual
releases to surface water Release of effluents per unit of output Not Selected 0

Natural Cover The proportion of land occupied that is
natural cover Not Selected 0

Table 8. Measurement layer of the investigation of manufacturing sustainability [27].

Manufacturing System Related Devices Energy Consumption Reason Energy Resource

Intelligent material
handling system

Conveyors Motors related to conveyor motions

Electricity
Sliders Motors related to Slider motions

Robot Arm Motors Related to Robot Motions

Control units processing the data

Sensors excitation signal

Results of the time study and properties of the target system shows that there is a direct
relationship between the system efficiency and time. In other words, any improvement in the system
with consideration of the proposed optimization ideas will directly affect the system times. It is again
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worthy of mentioning that there is a direct relationship between the energy consumption and system
functional time. An OEE percentage evaluation of the system shows that consideration of the proposed
control architecture and, in most cases, increasing the busy times and decreasing the idle time increases
the OEE percentage. However, Table 6 shows that all the optimization ideas have different effects on
increasing the OEE percentage. This means that, with considering the priority of the effectiveness
on Table 6, the optimization methods which would further increase the sustainability of the system
will be highlighted. In this case, in order to have more sustainable manufacturing, the amount of
consumed electricity should be minimal (Figure 10). The way in which to reach this goal in the target
system is by reducing the idle times and increasing the busy times. In addition, in most of the cases in
which the idle time is not unpreventable, there should be some alternative solution. Running a device
continuously on the system, when the devices are in idle time, drives up energy use and maintenance
costs, which impacts on the sustainability of the manufacturing system.

Figure 10. Manufacturing sustainability based on OEE and the Organization for Economic Cooperation
and Development (OECD).

However, due to the property of the selected manufacturing system, and considering that as an
example of SMEs and the energy resource which has been utilized, some limitations will show up.
Calculations of energy consumption, OEE percentage evaluation, and its effects on sustainability of
the target system require modification on the target system for it to perform for a longer time and
consume more energy.

3. Conclusions

In the first stage of this research, an intelligent material-handling system for product differentiation
was designed and implemented. A specific algorithm was created to deploy an agent-based control
architecture across the system. The system was considered as the case study for this research and also
as an example of SMEs with the same production cell. Different manufacturing aspects of the system
were also evaluated. Time was focused on as the target manufacturing aspect. In order to evaluate
the manufacturing system performance, OEE standards have been utilized. Due to the importance of
time in the calculation of OEE percentages, the system was subjected to a proper time study. The OEE
percentage was obtained for each resource available in the system, as well as the entire system. The
results of the time study extracted some issues and limitations in the system during its performance.
These problems and limitations were investigated in order to find a proper solution for them. They
were categorized into different categories, and the effective parameters for each category have been
achieved. Based on these achievements, some optimization methods have been proposed. In the
second stage of the research, due to the SMEs being the target category of the enterprises, as well
as their limitation and the difficulties which they might face in the implementation of the proposed
methods, a simulation solution using ARENA software was considered. Each of the optimization
methods were implemented on the simulation model to verify and validate the effects on the OEE
percentage. A comprehensive solution was proposed for selecting the best optimization method
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and obtaining the best OEE percentage for SMEs. Finally, according to OECD definitions about the
relationship between the time and energy consumption, manufacturing sustainability has also been
investigated and described.

As mentioned previously, the system is a small-scale educational manufacturing system with
a limited functionality period. Because of this selection, in the proposed methodology, system
observation and data collection were conducted in a short period of time to prevent any system
damage. As future work based on this research, the proposed methodology can be extended on such
systems as a case study in order to execute all the evaluations over a long period of time.
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Abstract: When knowledge is developed fast, as it is the case so often nowadays, one of the main
difficulties in initiating new research in any field is to identify the domain’s specific state-of-the-art and
trends. In this context, to evaluate the potential of a research niche by assisting the literature review
process and to add a new and modern large-scale and automated dimension to it, the paper proposes
a methodology that uses “Latent Semantic Analysis” (LSA) for identifying trends, focused within the
knowledge space created at the intersection of three sustainability-related methodologies/concepts:
“virtual Quality Management” (vQM), “Industry 4.0”, and “Product Life-Cycle” (PLC). The LSA
was applied to a significant number of scientific papers published around these concepts to generate
ontology charts that describe the knowledge structure of each by the frequency, position, and causal
relation of associated notions. These notions are combined for defining the common high-density
knowledge zone from where new technological solutions are expected to emerge throughout the PLC.
The authors propose the concept of the knowledge space, which is characterized through specific
descriptors with their own evaluation scales, obtained by processing the emerging information as
identified by a combination of classic and innovative techniques. The results are validated through
an investigation that surveys a relevant number of general managers, specialists, and consultants in
the field of quality in the automotive sector from Romania. This practical demonstration follows each
step of the theoretical approach and yields results that prove the capability of the method to contribute
to the understanding and elucidation of the scientific area to which it is applied. Once validated,
the method could be transferred to fields with similar characteristics.

Keywords: latent semantic analysis; virtual quality management; concept investigation; concept
disambiguation; knowledge discovery; sustainable methodologies

1. Introduction

In the paradigm of the knowledge-based society, knowledge becomes an indispensable resource
in the further development of the contemporary social and economic status. Hence, in recent years,
for supporting the required advancements of modern society, the speed through which knowledge
is generated increased exponentially. Yang Lu in Reference [1] associates this phenomenon with the
Fourth Industrial Revolution and the emergence of the “Internet-of-Things”, “Cyber-Physical Systems”,
and “Enterprise Integration”; however, the increasing computational capacity and connectivity of
computers could be mentioned as facilitators. Often, this high dynamic in research (knowledge
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generation), especially in interdisciplinary fields, brings the need to express new specific contents,
meanings or trends under a linguistic form. In this way, new syntagmas or concepts are brought to light
and adopted by professionals as part of the specific jargon in the field. Even if their creators endowed
them with a clear meaning at an incipient stage, when they become more popular in an emerging area,
these concepts are quickly surrounded by a large amount of new knowledge that is developed with
an amazing speed, enriching and enlarging their initial sphere.

The “virtual Quality Management” (vQM) concept could be a significant example for the
circumstances described previously. It is born through a semantic operation, joining two established
and mature concepts: “virtual” and “QM”, thus it is representative for an area which is in a period of
high dynamic development and of interest for companies preoccupied with sustainability from the
perspective of operations management and organizational culture.

In this context in which the amount of information relating to new concepts quickly reaches
unmanageable levels, regardless of the field, solutions that can analyze extended documentation with
the purpose of disambiguating information and capturing the essentials, thus creating knowledge,
become the focus of attention and gain in importance. Traditional solutions for that purpose lay in
the literature review process, trying to collect, select, filter, and structure the existing and relevant
information in a synthetic way. However, this solution has limits: on one hand the large amounts of
data can lead to a decrease in the ability of a research team to handle that information and on the other,
the selection and interpretation of the chosen references is exposed to strong subjectivity.

Natural Language Processing (NLP), a field of computational linguistics, can be considered
as a possible alternative for the above stated issues making users capable of going through large
amounts of information fast, retaining only important data. It deals with translating human language
to computers, enabling them to summarize and essentialize inputted information from an unlimited
number of references. The computer programs deployed for this task use various algorithms, each with
their own advantages and disadvantages. Among these worth mentioning are: Part-of-Speech Tagging;
Named Entity Recognition; Semantic Role Labeling; and Latent Semantic Analysis (LSA).

The current paper proposes a framework for identifying trends, based on LSA by analyzing the
knowledge space resulting from the intersection of two knowledge structures given by the vQM and
Industry 4.0 concepts.

The investigatory process for these two concepts was done by applying LSA to a significant
number of scientific papers published around them, selected after they underwent an initial raw
filtration process proposed by the authors. As a result of this analysis, the generated ontology charts
defined the knowledge structures of the two concepts by the frequency, position in text, and causal
relation of associated notions. Combining these notions with one another resulted in senseful
descriptors. The common ones were retained and further used for identifying new technological
solutions and industrial applications, which are considered to emerge from this particular intersection
of concepts. They were finally sorted and ranked within the PLC stages using the affinity diagram
(KJ diagram) and the matrix diagram.

The intended added value of this approach is to supersede the classic literature review in
the state-of-the-art analysis with automated information processing tools, both classic (affinity
diagramming, conceptual mapping and analysis—based on ontology charts) and modern (Latent
Semantic Analysis) for investigating complex knowledge spaces born at the intersection of new
concepts. The illustration of this endeavor was done with the help of the vQM and Industry 4.0
concepts, and its end result is the current and emerging practical Industry 4.0 applications related to
vQM throughout the entire PLC stages, particularly in the automotive industry.

2. Objective of the Research

The main objective of the research presented in this paper is to develop an innovative and
expedient approach to evaluate the result potential and dissemination outlook of a research topic
at the beginning of an investigation endeavor, especially in emerging scientific domains that are
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characterized by a high degree of entropy and uncertainty. The presented methodology relies on
the use of information processing tools, techniques, and methods (combing both classic and new) to
address the most common concerns of research teams and help them arrive at a timely answer with
an acceptable degree of validity to the issue concerning the relation between invested resources (time,
staff, equipment, etc.) and foreseeable impact.

In this regard, the research approached in the current paper proposes, firstly, to analyze the
knowledge density zone obtained by intersecting two knowledge structures, represented here by the
vQM and Industry 4.0 axis, throughout the PLC stages (Figure 1).

Figure 1. Knowledge density zone between vQM and Industry 4.0 along the PLC stages.

Secondly, in addition to concept investigation and disambiguation, it aims to identify and
hierarchize industrial applications (or new technological solutions) that are expected to emerge.

Finally, the paper intends to validate the proposed methodology through an online survey.
The need to develop this algorithm appeared to the authors due to their involvement in high

dynamic manufacturing research demarches, where they were compelled to generate practical solutions
for companies before the theories were settled. As such, the validation included in this paper was also
based on vQM and Industry 4.0 concepts but can be transferred to any domain.

Contributing to the achievement of these endeavors the following stages were established:

• In the first stage an identification of relevant papers and scientific references was carried out
for each of the two main concepts individually: vQM and Industry 4.0. After that, a filtration
process was performed for limiting as much as possible the amount of irrelevant information.
The ontology charts, which were both similar in nature as two knowledge structures, both for
vQM and Industry 4.0, were determined by applying LSA (using a dedicated software program)
on the final sets of bibliographic references.

• The second stage was reserved for weighting notions that were in relation with the main concepts.
Based on the ontology charts and other information provided by the software each notion
relating to vQM and Industry 4.0 was ranked by calculating their CN (correlation number).
Next, associations were made between them with the scope of obtaining syntagmas (descriptors)
that characterized the two main concepts. A score was also calculated for each of them signifying
their importance to both concepts.

• The third stage began with extracting the common meaningful descriptors between the two
main concepts. Based on these expressions, applications were identified using search engines.
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This way the focus was kept only on those applications that were in close reference to vQM and
Industry 4.0.

• The fourth stage, firstly, was focused on identifying the product life cycle stages and secondly,
on the construction and completion of the matrix diagram. It had, as inputs on the left, the product
life cycle stages together with identified applications and above the common descriptors between
vQM and Industry 4.0 (associated by their weighted importance). It illustrates not only the
hierarchy of the main categories of applications throughout the product life cycle stages, but also
the rank of every sub-category application within the main categories.

• Within the fifth stage, an online questionnaire was applied for checking results obtained
from the matrix diagram against an average rating coming from experts from Romania’s
automotive industry.

The research methodology is summarized in the following figure (Figure 2) showing also inputs
and outputs for all its phases in the form of an extended flowchart:

 
Figure 2. Proposed methodology overview.

3. The Review of the Scientific Literature

Considering the objectives set forth by the paper (detailed previously), in this section the
authors assembled the elements relating to the background and literature review into two categories:
aspects relating to the need to assist the literature review process with modern instruments and
techniques; and background and aspects which related to the main concepts forming the analyzed
knowledge space.

3.1. The Need for New Approaches

If the statement that the development of the current society is strongly linked to that of knowledge
is already a truism, what seemed fascinating to scientists was and is its speed of growth. The study
of knowledge growth has enjoyed attention starting with Price’s theory on the exponential growth
of science [2], passing through Buckminster Fuller’s knowledge doubling curve [3], and arriving at
recent works such as Reference [4] which summarizes mathematical models for knowledge growth or
References [5,6] which focus on modern digital knowledge spreading channels, to mention just some
of the countless publications on this topic in these last years.

At the communication level, new knowledge is asking usually for new concepts to formalize
its significance. The emergence of new concepts or concept groups generate in their semantic
proximity domain-specific or interdisciplinary knowledge spaces. Any connected new research pass by
an exploratory phase when a preliminary investigation of the mentioned spaces is necessary to identify
the state-of-the-art, directions or the trending elements in its area. This exploratory investigation is often
carried out with the help of literature reviews, which are complex, laborious, and time-consuming
tasks, whose results are strongly dependent on the author’s critical thinking ability, experience,
and competence in the domain. The unprecedented increase in the amount of information that needs
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to be processed to capture the relevant aspects of the knowledge space in question leads to either the
reduction of the reference sample with the risk of losing important inferences from the analysis result,
or the use as support of modern computer-assisted tools able to deliver a primary structure of the
conceptual framework for the targeted knowledge spaces.

3.2. Literature Review Methods and Tools

A scientific literature review “has become the most common way of acquiring knowledge and
oftentimes sets the direction for a study” [7]. Alongside the methods used and inputted constraints,
the type of review can differ. The authors [8] identified a typology set of 14 main reviews for investigating
and evaluating specialized literature, out of which worth mentioning are: “critical review”; “mapping
review”; “rapid review”; “state-of-the-art review”; and “systematic search and review”.

From the tools and techniques’ perspective, two categories are identifiable: classic tools and those
that use computer-assisted instruments. One might argue that, currently, literature reviews are carried
out using tools from the latter category; however, some that have more of a classic background are still
promoted: concept mapping (structuring the knowledge from a certain area based on main concepts in
the form of highly-visual impact maps) [9,10]; affinity diagramming (structuring main ideas extracted
from an initial literature search) [11]; snowball sampling (finding a network of professionals specific to
a certain area by conducting interviews and asking them for other references) [12]; and literature tables
used both for managing and ensuring the traceability of identified references, and for summarizing
information and extracting main ideas.

The computer assisted tools are comprised of software programs, that help the user in making
this review more efficient considering the following points:

• Researching and identifying relevant literature: Google Scholar; Distiller; arXiv; Citavi; Delve
Health; LitAssist;

• Managing references: EndNote; Aigaion; Mendeley; Zotero; LiteRat; Bookends;
• Completing an automated text analysis and recognition (known as natural language processing

(NLP)) for assisting the reviewer in classifying, tagging, parsing, semantic reasoning, and reducing
the amount of information to a manageable size [13–15], but at the same time keeping its
coherence, intelligibility, and meaning of the analyzed text: WordStat; QDA Miner; Carrot2;
RapidMiner; Tropes.

3.3. Natural Language Processing Approaches

Natural Language Processing (NLP), a field of computational linguistics, deals with translating
human language to computers enabling them to understand, summarize, and essentialize inputted
information from an unlimited number of references. An analysis of the specialty literature categorized
mainly used models and algorithms (incorporated into software solutions) into ones that complete
a basic text processing (part-of-speech tagging; named entity recognition), ones that use statistical
language models (bag-of-words model; n-gram models; neural network language model), and ones
that discern the text based on the semantical meaning of words within (semantic role labeling; latent
semantic analysis). Based on these, the software assists the user by increasing the quality of the review
and the amount of information subjected to the analysis, while it reduces the time in which the user
can process individually that same amount of text (literature).

Part-Of-Speech (POS) Tagging assigns parts of speech to words from a text body, allowing words
having the same written form, but different meanings in different contexts to be understood accordingly
by the software. Developed by Reference [16] and later advanced by other contributors [17–19],
the method is enjoying recent applications regarding the analysis of written information on social
media websites [20–22], dealing with grammar related aspects [23,24], identifying plagiarism [25],
or even acting as a human–machine interface [26].
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Named Entity Recognition enables the localization and categorization of “important and proper
nouns in a text” [27], helping the reviewer to focus on important concepts that characterize the
text. According to Reference [28], “this is an important task because its performance directly affects
the quality of many succeeding NLP applications such as information extraction”. Its application
recently gained popularity for processing semi-structured knowledge bases regarding entity
disambiguation/mapping [29–31] and extracting/retrieving information [32] or for analyzing content
generated on social media [33–35].

The Bag-of-Words Model identifies and represents by histograms the frequency of words appearing
in the text [36] enabling the reviewer to conduct an initial text categorization. Although its application is
grounded in NLP (e.g., opinion mining on information generated by social media users [37,38]), recent
approaches prove its utility in other fields as well, such as image processing [39–41].

n-Gram Models help determine the probability of a sequence of words in a sentence or in a text.
Their application varies from identifying patterns in text [42] to data extraction [43], automatic speech
recognition, machine translation, and spell checking [44,45]. Neural Network Language models offer
an improved version [46], both having the potential to be integrated into computer-assisted tools for
supporting text reviewers.

Semantic Role Labeling traditionally uses a shallow parsing algorithm that identifies “arguments
within the local context of a predicate” [47] enabling the software solutions, to a certain degree,
to summarize information [48]. However, recent advancements, presented by References [49] and [50]
outline the possibility for using this technique without syntactic parsing.

Latent Semantic Analysis (LSA) analyzes the relationship between terms contained in several
documents and outputs a set of concepts that are semantically related to the terms and documents
subjected to the analysis, and has multiple applications in the fields of information processing and
knowledge discovery [51–53]. It uses Single Value Decomposition (SVD), a mathematical tool that
allows the reduction of matrix rows, without seriously compromising the structure of columns.
The matrix rows m (constructed out of the body of text) are the individual word types and the columns
n represent the meaning of that word encoded into sentences and paragraphs. The cells that result
contain information about the reoccurrence of a word in a paragraph [54]. After applying the SVD,
and based on information obtained from it, an additional step is carried out, “sentence selection”,
in which the “most characteristic parts of text” are selected to illustrate ideas that are essential in the
body of text [55].

3.4. Virtual Quality Management (vQM)

The expansion of applications in the virtual domain opened new horizons also in the case of
“Quality Management”, which evolved alongside the trends from modern industry. A new concept
was thus born called “virtual Quality Management” (vQM).

The concept of vQM is based on, but not limited to, simulation studies, which are efficiently
deployed for the sole purpose of “generating resilient knowledge and dimensioning quality
techniques” [56] that can be applied either to products or processes, before they physically exist.
By doing so, products and processes reach a certain level of maturity in the planning stage, so they can
be introduced straight into production, having an increased level of performance compared to ones
developed using conventional methods.

As identified from several references approaching the virtual area of quality management in
manufacturing, simulation also plays an important role for vQM in developing models capable to
foresee, adapt to, and optimize different scenarios by analyzing existing data [57], to increase efficiency
and implement sustainable development [58] or even to reproduce measurement uncertainty due
to temperature, humidity or other external influences [59]. Moreover, the approach proposed by
Reference [60], regarding stochastic simulations for tolerance analysis “contributes to the improvement
of virtual quality assessment”, which in this case, takes place already in the design stage of a product’s
life cycle.
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The combination between “simulation” and “virtual reality” allows operators to interact virtually
with the fabrication process [61], which in term enables virtual control and even virtual inspection
of the manufacturing flow [62]. Immersive virtual reality applications can also be used efficiently in
problem-solving activities, as demonstrated by Reference [63].

The nature of vQM is highly innovative as it is capable to provide the necessary information for
deploying quality management techniques before the actual start of the manufacturing processes [59].
Quality and process parameters are obtained with the help of advanced modeling and simulation tools,
all contributing to the process design of a manufacturing system. The architecture of vQM, presented
in Figure 3, illustrates precisely the above stated particularities.

 
Figure 3. Architecture of vQM. Adapted from Reference [65].

Another important side of vQM is communication. The development of virtual channels
(supported by the internet) brought several advantages in this field, such as improving the way
we interact with each other or even with machines. They also increased the speed of information
transfer, narrowed the gap between supplier and customer, and enabled product developers to provide
their contributions remotely by forming “virtual teams” [64].

Although the definition of the concept is quite clear, the impact vQM has on current production
engineering and quality management related concepts and how it interacts with them is yet to be found.

A possible research instrument that can exactly capture and contribute to the disambiguation of
the vQM concept is LSA. This type of instrument is proposed because the clarification process should
begin right at the semantic value of the expression, by analyzing it in the already used or possible
contexts, put forth by the specialty literature of the latest years.

3.5. Industry 4.0

The forth industrial revolution (smart automation) is on the verge of unfolding and the driver of
it will be the integration of physical objects in the information network. The main promoter of this
leap in manufacturing industry is Germany, who introduced its own term “Industry 4.0” (or Industrie
4.0 in German) in 2011 at the Hannover Messe trade fair.

The year 2013 brought a clear definition of what the requirements are for the next industrial
leap. In this sense, in Germany it was published the “Recommendations for Implementing the
Strategic Initiative Industry 4.0” report, written by the German Communication Promoters Group of
the Industry-Science Research Alliance, in collaboration with the National Academy of Science and
Engineering and sponsored by the Federal Ministry of Education and Research. According to this
report (also referred to as the Industry 4.0 National Working Group report), every physical object that
is connected with the manufacturing process will be interlinked into a single network through the
IoT. This network will incorporate everything starting from the factory floor to the delivery process,
i.e., multiple systems that are outlaid as “Cyber-Physical Systems”, forming the so-called “Smart
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Factory”. This sort of system has the capability to be self-aware, thus it can actively intervene in the
manufacturing processes to prevent potential faults [66]. Its self-awareness is given by the sensory
data collected within the system. Actions that are precisely ordered are based on previously stored
information, this way making the system not only self-aware, but self-maintained and self-learning.
Due to all these technological advancements, Industry 4.0 is viewed as one of the fastest developing
trends in production engineering.

4. Research Questions, Methods, and Results

4.1. Research Questions and Rationale

Within this context, the current research demarche begins with the following set of questions
that have been developed starting from the main premise that has been stated, that under severe
time constraints complex and resource intensive scientific investigations should only be initiated after
a preliminary analysis of available information arrives at the conclusion that there will be sufficient
return on investment in the end. The authors laid out in a concentrated form the possible formulation
of these questions:

• What is it and how can an ontology chart that depicts the layout of a concept be obtained?
• How can one evaluate the relationships between the main studied concept and associated notions?
• How can a knowledge density zone be defined by intersecting two or more highly volatile

(new and ambiguous) concept domains over time?
• Which are the main areas in which this type of information processing can be capitalized upon?

4.2. Creation of Ontology Charts Using Latent Semantic Analysis

4.2.1. Theoretical Aspects (Identifying and Filtering the Documentation)

The input selection in the case of the two main concepts was made in the same way. Mostly,
the authors focused on gathering references with the help of search engines that have access to large
databases of scientific research that offer the possibility to access full-text articles (Elsevier’s Scopus,
Elsevier’s Science Direct and Google Scholar). However, if additional documents were found with the
help of traditional search engines (like Google or Yahoo) they were not disregarded but retained only
if they were considered to be relevant after the first filtration process. This type of documentation was
manually converted to a format supported by the LSA software (typically .pdf or .txt).

As search engines work with keywords, the challenge was to determine those words that
accurately represent the studied concepts. In the first instance, the search was limited to identifying
references in relation with the name of the concept, then it was extended to include certain keywords
obtained from the top ten most cited scientific papers. These were restricted to six at the most for
avoiding the display of insignificant documentation. The timeframe was also preset to the last 7 years
for limiting outdated information. It was considered that documentation outside this framework
cannot accurately capture state-of-the-art advancements in the studied fields. After a brief revision
(the focus was kept on the abstract of the paper, but not limited to it) of displayed papers, a total
number of 35 references were considered to be sufficient for illustration purposes for each main
concept. They were downloaded and saved in separate folders. The brief review was chosen instead
of an extensive literature browsing due to two reasons: the latter one would not serve to the proposed
objective, which is quick identification of trending elements and concepts from a specific field of
interest (meaning it was much more time consuming); and secondly, there were no guarantees that by
reading the paper entirely it could be used in the semantic analysis, so there was the chance that after
the review it would be disregarded. We point out the fact that the choices made here represent one of
the limitations of the proposed methodology, that for making these decisions relating to the scope of
the research it must rely on the experience and expertise of the reviewers, the quantity and quality
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of available literature, and on the relative positioning of the studied notions within the processed
material when performing the first quantitative evaluation.

Making sure that every selected paper was indeed relevant for the analysis, the methodology
included an additional filtration process performed by the review team. Each key word (mentioned
above) was analyzed from its distribution perspective, throughout all the 35 papers. If the maximum
number out of all keyword frequencies for each paper was not greater than five (viewed as a minimal
threshold considering that all of the studied papers were more than five pages in length), the paper
was considered to be irrelevant and it was removed from the analysis folder, where all were saved in
the convened format. For this, the following condition had to be fulfilled:

max
i

(xi) ≤ 5 (1)

where x represents the frequency of the i keyword (i = {1,8})
For illustration purposes, Figure 4 contains the frequency of mentioned keywords in a certain paper:
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Figure 4. Occurrence of keywords in one identified paper.

The above figure contains the occurrence number of each keyword for one of the 35 papers.
As it can be seen, the keywords “management” and “organization” are the two least frequent ones.
Although “management” appears only two times it is not sufficient to consider this paper irrelevant;
for a certain scientific reference to be entirely removed from the analysis it must be scarce in all key
words (their maximum must be lower than or equal to five). It can happen that a certain paper is
scarce in one key word, but rich in others; in this case, the paper is taken into account, as it is the case
of this example, again appealing to the reviewers’ competence, but to a reduced degree compared to
the classic literature review. After this final filtration process a set of 30 papers remained, which were
subject to the LSA.

The semantic analysis was carried out using a software program called Tropes v8.4 (English
version) which is available free of charge and is capable of processing and perceiving, to a sufficiently
advanced level, relationships between words, identifying or disregarding words specific to a domain
of interest (based on input settings), counting the reoccurrence of words within different contexts,
and retrieving neighboring concepts for certain notions or words.

4.2.2. Practical Implications (Defining the Ontology Charts)

As a direct result of the semantic analysis, an ontology chart of vQM was obtained and is presented
in the following figure (Figure 5):
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Figure 5. vQM ontology chart.

The vQM ontology chart (Figure 5) contains notions that are strongly related to quality
management (measurement, control, quality, innovation, SPC). Some make references to instruments
deployed through virtual means (such as simulation, modeling and optimization) and introduces
“communication” and “collaboration” as notions linked with vQM (although having a low frequency;
in sentences they were used closely together with vQM).

For “Industry 4.0”, there appeared considerably more related notions on the ontology chart
(Figure 6) than in the case of vQM, which can be explained by the fact that although the two concepts
are considered to be relatively new, “Industry 4.0” is more developed and established in the scientific
community as it is promoted to be the next generation of production engineering. Also, the known
information on this subject reached a more mature level due to a higher number of publications.

 
Figure 6. “Industry 4.0” ontology chart

The related notions in this chart include the main pillars of Industry 4.0, such as IoT (Internet of
Things), cyber (making reference to “Cyber-Physical Systems”), “Big Data”, and “Cloud Computing”;
some design principles of Industry 4.0 as stated in Reference [67] (interoperability, decentralization,
virtualization), and some notions which are also common to vQM.

The correlation degree of each current notion (denominated k) with regards to the main concept is
reflected in its position on the chart. The position can be expressed as a function of the causal relation
(the x-axis) and the concentration of relations—or frequency of association (the y-axis) [68]. Thus,
the graph supports a visual comparison of the weight of relations between all concepts present on the
chart with the main one.
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On the x-axis, the number of words separating one concept from another in sentences can be
considered as a direct reference for establishing their causal relation. Taking this into account, for
quantifying the causal relation for both the “actant” (predecessor, enabler or source) and “acted”
(successor, consequence or attribute) concepts, a scale from 0 to 1 was attributed from the center to
both ends of the chart. As a certain k notion is further apart (closer to the value 1) on the chart from
the main concept, it means that in sentences a significant number of words are placed between them.
This value, called the “Causal Relationship Value” (CRV) takes values from 0 to 1:

CRVk = [0 . . . 1] (2)

On the y-axis, a fraction is represented between the total number of relations (or association) that
each k concept has with the main one and the number of different relations. This value is called the
“Concentration Value” or CV. The chart shows the minimum (bottom) and maximum (top) values,
as they were calculated by the software program used to complete the semantic analysis. The formula
for expressing the CV is:

CVk =
A

A − Bk
(3)

where A is the total number of relations and Bk is the number of relations that each concept has with
the main one.

4.3. Weighting Related Notions Based on Ontology Charts

4.3.1. Theoretical Aspects

As a consequence of attributing the two scales for the “actant” and “acted” concepts their strength
of the causal relation with the main concept is inversely proportional.

The CV and the inverse of CRV having completely different calculation rules but comparable in
terms of magnitude, a correlation number (CN), obtained by the product of the two, was considered to
be significant for expressing the importance of each concept in relation with the main one. The formula
used for determining the CN is presented as follows:

CNk = CVk × 1
CRVk

(4)

4.3.2. Practical Implications

The CN of each notion from the ontology charts are centralized in Tables 1 and 2, starting from
the highest and descending to the lowest:

Table 1. Correlation number of “actant” and “acted” notions regarding vQM.

Actant Score Acted Score

Virtual 37 Model/Modeling 24
Simulation 20 Procedure (referring to process) 20
Information 9 Control 17.4

Quality 8.3 Optimization 12.4
Innovation 5.8 Communication 12.1

Statistical Process Control (SPC) 4.4 Knowledge 9.4
Knowledge management 3 Measurement 5.8

Collaboration 5.3
Product 4.8

Development 3.6
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Table 2. Correlation number of “actant” and “acted” notions regarding “Industry 4.0”.

Actant Score Acted Score

IoT (Internet of Things) 31.4 Cloud_computing 17.9
Smart 27.6 Big_data 17.8

Virtualization 19.5 Optimization 17.0
Cyber 13.6 Measurement 12.7

Interoperability 11.5 Procedure 8.3
Simulation 10.0 Model 7.6

Digital 8.2 Collaborative 6.4
Information 5.3 Product 5.8
Innovation 5.0 Development 4.6

Decentralization 4.6 Control 4.0
Quality 3.6

In the next step, combinations between the “actant” and “acted” notions were made for assuring
increased homogeneity between all the terms of each concept. This action was taken for bringing the
specific notions of each concept more closely together with the scope of finding common grounds
between them.

A cumulative score can be calculated for each resulting association by multiplying the individual
correlation values of the two forming notions, thus focusing on their conceptual intersections.
This score can be used to determine the hierarchy between the obtained associations. However,
only the meaningful associations were retained (thus becoming descriptors for each concept) and
ordered in a descending manner in Tables 3 and 4:

Table 3. Cumulative scores of descriptors regarding vQM.

Descriptor Cumulative Score Descriptor Cumulative Score

Virtual model/modeling 888.0 Innovation model 139.2
Virtual control 634.8 Virtual development 133.2

Simulation and modeling 480.0 Process innovation 116.0
Virtual optimization 458.8 Measurement through sim. 116.0

Virtual communication 447.7 Optimization information 111.6
Process simulation 400.0 Quality optimization 102.9
Virtual knowledge 347.8 Quality communication 100.4

Virtual measurement 214.0 Quality knowledge 78.0
Virtual collaboration 196.1 Innovation knowledge 54.5

Simulation knowledge 188.0 Measurement information 52.2
Information control 156.6 Product innovation 27.8

Quality control 144.4 Innovative development 20.9

Table 4. Cumulative scores of descriptors regarding “Industry 4.0”.

Descriptor Cumulative Score Descriptor Cumulative Score

IoT cloud 560.1 Cyber collaboration 87.0
Big_data from IoT 559.1 Process simulation 82.5

Smart cloud (computing) 494.0 Decentralized cloud 82.2
Smart measurement 352.1 Virtual(ized) control 78.4

Big_data virtualization 347.1 Decentralized optimization 78.3
Virtual(ized) optimization 331.1 Simulation & modeling 76.7
Virtual(ized) measurement 247.8 Measurement information 66.8

Cloud interoperability 205.0 Cyber development 62.3
Collaboration through IoT 199.6 Quality optimization 60.7

Interoperability optimization 195.2 Product simulation 58.2
Simulations on big_data 178.3 Cyber control 55.0

Smart collaboration 176.1 Interoperable develop. 52.3
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Table 4. Cont.

Descriptor Cumulative Score Descriptor Cumulative Score

Virtual(ized) modeling 149.3 Digital collaboration 51.8
Digital (big_)data 145.2 Development through sim. 45.6

Development through IoT 143.0 Process innovation 40.5
Digital optimization 138.4 Innovation model 37.6

Measurement through sim. 127.3 Digital development 37.1
Control through IoT 126.3 Digital control 32.8
Smart development 126.1 Collaborative innovation 31.2

Virtual(ized) collaboration 123.9 Decentralized collaboration 29.3
Smart control 111.4 Product innovation 28.5
Cyber model 104.8 Quality model 27.4

Digital measurement 103.6 Innovative development 22.4
Process interoperability 94.7 Information control 21.1

Cloud information 93.8 Decentralized develop. 21.0
Optimization information 89.3 Decentralized control 18.5

Virtual(ized) develop. 88.8 Quality control 14.4

In the case of the two concepts, the expressions obtained by pair-wise associations were filtered
for redundancies and were verified if they have real-life applicability with the help of search engines.
In some cases, connection words were added to further refine the expressions and to assure their
coherence related to the main concept.

4.4. Features of the vQM x Industry 4.0 Knowledge Space

4.4.1. Theoretical Aspects

Based on the above steps, we can now characterize the previously ambiguous knowledge space, found
at the intersection of the two notions, that are connected through a common goal, namely, sustainability.
Overlapping the tables containing the descriptors of vQM and Industry 4.0 (Tables 3 and 4) it can be
observed that there are common ones between them. These are used for determining common ground
between two apposed concepts. Ranking them was done by calculating their weighted average (thus, still
respecting their importance to each main concept) and consequently their weighted importance obtained
in percentages.

4.4.2. Practical Implications

As seen in the table below, it can be the case that there is a considerable difference between the
total scores of vQM and Industry 4.0. The weighted average provides an aggregate that accurately
reflects the importance of each descriptor to both main concepts, regardless of their score difference.
Although each common notion has its own LSA score depending on the main concept (vQM or
Industry 4.0), the ranking presented in the above table was made according to the calculated weighted
average of the score pairs.

These theoretical results can be further expanded for the use of practitioners by mapping onto the
knowledge space the adequate concrete implementations that were found in industry. The proposed
solution for identifying industrial applications uses the authors’ expertise and is similar to identifying
relevant papers for the LSA. Firstly, the top five most important common descriptors (obtained from
the LSA—see Table 5) were entered into search engines followed by keywords extracted from the
top 10 most cited “Industry 4.0” references together with the “application” keyword that was added
to limit the amount of retrieved information. This way it is assured that the search was focused on
practical applications and were related to “Industry 4.0” as its representative keywords were used.
As “Industry 4.0” is considered to be the new trend in production engineering, applications related to it
are also categorized as emergent. The retained applications were focused on those that had connections
with—or can be used in relationship to vQM. A list of applications is obtained, but they are not sorted
in any way.
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Table 5. Common notions between vQM and Industry 4.0.

Common Descriptors LSA Score
Weighted
Average

Weighted
Importance %

vQM Industry 4.0

Virtual modeling 888.00 149.30 271.87 40.45%
Virtual optimization 458.80 331.10 78.95 11.75%

Simulation and modeling 480.00 76.70 152.74 22.73%
Process simulation 400.00 82.50 56.93 8.47%

Virtual measurement 214.00 247.80 62.27 9.27%
Quality optimization 102.92 60.70 7.35 1.09%

Measurement through simulation 116.00 127.30 11.83 1.76%
Virtual development 133.20 88.80 5.61 0.84%
Process innovation 116.00 40.50 16.88 2.51%
Innovation model 139.20 37.60 6.27 0.93%

Product innovation 27.84 28.50 0.88 0.13%
Innovative development 20.88 22.40 0.53 0.08%

TOTAL 3096.84 1293.2 672.10 100%

4.5. Grouping and Ranking Applications Along Time Stages (e.g., the PLC Stages)

4.5.1. Theoretical Aspects

Focusing on the theoretical connections uncovered before, this last step of the research
methodology deploys the new structure of the two-fold common knowledge space into workable
results that can be applied in companies. In other words, by using the proper applications in the proper
manner, based on the guidelines below, firms can employ vQM tools to rip the competitive benefits of
Industry 4.0. Taking into account the development (the third) dimension, to the two axes (vQM and
Industry 4.0) another axis is added, the PLC, along which identified applications are grouped into its
stages (see Figure 1 for an overview).

There are many views when it comes to defining precisely the product life cycle stages. For this
reason, the authors synthesized information from an internationally accepted standard which
inclusively covers all stages of a product life cycle: Reference [69]. The stages were grouped into main
stages and sub-stages accordingly. These are presented in Table 6:

Table 6. Product life cycle stages, according to ISO/IEC/IEEE 15288:2015.

Main Stage Sub-Stage

I. Planning, design, and development Stakeholder requirement definition/analysis
Product design and validation

II. Realization
Procurement

Manufacturing
Measurement and control

III. Utilization
Delivery

Customer assistance
Maintenance

IV. Disposal Retirement
Recycling

4.5.2. Practical Implications

The affinity diagram (also known as a KJ diagram) was applied for grouping the set of applications
into the corresponding life cycle stages, defining both categories and sub-categories of applications.
The matrix diagram (presented in Table A1 in the Appendix A Section) contains both these and the
common notions with their weighted importance (expressed in percentages).
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The cells resulted at the intersection between main or sub-category applications and the common
notions were filled out according to the correlation between them, with a number on a scale of 0 to
3 (0 means that there is no relation between the two and 3 signifies a strong relation). The sum of
products between these correlation numbers and the weighted importance of the common notions was
calculated on each line, thus obtaining an aggregate number that can be viewed as the importance of
each application. If a main category application contains more sub-category items, its score is provided
by the average of them (indicated in bold in Table A1).

Having the importance scores for every sub- or main-category application, they can be
hierarchized for all the stages of the product life cycle (in Table A1 the applications are already ranked).
Thus, the matrix diagram contains a ranking of identified vQM applications in the context of Industry
4.0, that are or will become essential in each stage of the product life cycle. Where blank squares exist
corresponding to a life cycle stage it means that there were no suitable applications identified that fit
the previously mentioned search conditions (see Section 4.3). All identified applications grouped into
the PLC stages are presented in Figure 7:

 
Figure 7. Industrial applications along the PLC stages.

1—Social networking data analysis
2—Google analytics for
customer targeting
3—Google Trends analysis used for
product benchmarking
4—Plant layout design used for
production flow optimization
5—Manufacturability analysis
6—Work instructions design
7—Worker ergonomics planning
and design
8—Work time study analysis
9—CAD used for product modeling
10—Kinematics simulation, analysis
and optimization
11—Assembly and part finite element
structural analysis
12—Simulation software used for
process planning and flow analysis
13—Virtual commissioning used for
equipment automation

14—Automated process optimization
15—Automated process
robustness prediction
16—Preventive actions taken based on
collected data
17—Automated real-time
process optimization
18—Mobile device applications used
for process monitoring and control
19—Smart glasses employing AR used
for displaying product/process data
20—Remote process monitoring
and control
21—Edge computing
22—Remote equipment control
and assistance
23—Vision system used for part
inspection
24—Smart glasses employing AR
used for operator empowerment

25—Real-time inventory monitoring
26—Automated raw material order
and purchase
27—Automated raw
material approval
28—Smart supplier evaluation
and selection
29—Virtual CMM used for evaluation
of uncertainty estimates
30—Inline metrology used for fault,
defect and deviation detection
31—Absolute multiline technology for
online precision monitoring
32—Knowledge base used for
problem solving for known issues
33—Remote access used for diagnostics
and trouble ticket resolution
34—FAQ web page used for
fault/defect identification and self-help
35—Automated online assistant used
for tech support through live chat
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The above representation combines PLC stages with the identified significant notions and
their potential applicability degree to provide an overview for potential academic and industrial
users. The circles represent the main categories of applications and their size is proportional with
their importance as calculated in the matrix diagram (Table A1). The squares correspond to actual
applications and their size also represents their priority in reference to the category they belong to.
The denomination of each application is presented below the figure.

5. Research Implications

The main implication of the current research is uncovered by carrying out a validation stage of
the proposed LSA-based methodology. This was done through an online questionnaire, applied to
groups of professionals with relevant knowledge connected to the actual technological developments
from the automotive industry, which is considered in Romania to have the highest degree of quality
management and industrial practices proficiency and is also subjected to the most intense competition
on a European scale.

The validation demarche raised the following challenges:

• covering the important companies from the automotive sector such that even if statistical relevance
is not reached, this will be reflected by including within the survey all/most of the major actors
from this field;

• selecting the target group such that it has access to relevant information;
• designing and constructing the questionnaire.

Statistically speaking, there are 510 automotive companies (NACE code 29) in Romania (according
to the online database of Reference [70]), but in terms of our analysis not all of them present the same
relevance. An analysis of the technological level of these companies clearly leads to the conclusion of
an inhomogeneity of their relevance in relation to our analysis. One can expect not to obtain similar
information on new technological developments regarding Industry 4.0/vQM from Renault or Ford
(big players, global auto makers) and from a small firm that supplies low complexity parts. For this
reason, the focus of this study was aimed at those few major manufacturers from this industry branch
and questioning consultants, specialists, quality auditors or managers that draw their expertise from
not just one, but several important companies and can provide answers with a high degree of relevance.
This way, the answers of one individual can represent feedback from more than one company.

Considering the above-mentioned aspects, the companies were grouped into three main
categories: the first two categories (A. automotive manufacturers and B. manufacturers of major
components—e.g., Dacia–Renault, Ford, Bosch, Continental, Leoni, Rombat, Daimler, Pirelli, RAAL)
represent manufacturers with international notoriety; all other companies were left for a third (C)
category. The first category had 10 representatives, the second had around 150, and in the third
category 350 companies were included.

The investigation was guided towards the first two categories, but there was also a concern about
obtaining some samples as well from the third category companies, mainly from those which were
preoccupied with new technologies. The reason behind this approach is that SME-type companies
(from the C category) are mostly focused on concrete measures of physical QM due to resource
constraints, lack of maturity, and limited openness towards adopting new technologies and due to the
need to obtain quick and measurable results, with a noticeable impact on their process performance
and bottom line.

The surveyed target group consisted of consultants, specialists, quality auditors or even managers
that drew their expertise from not just one, but several important companies and could provide answers
with a high degree of relevance. An important issue addressed was information confidentiality, as the
research team made sure that the expertise and feedback of the focus group was captured but that
company specific information was filtered out.
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Within the survey, the abovementioned groups were provided with a list of 41 applications
determined through the LSA (presented in the Matrix Diagram—Tables 2 and A1) and they had to
rate them considering their implementation or future implementation into the companies whose
manufacturing processes they were familiar with. Responders also had the possibility to name and
rate additional applications that were not included, but were considered to be important by them
(centralized in Table 3).

The scale for rating each application was kept the same as in the case of the matrix diagram, from
0 to 3, thus enabling an objective and direct comparison between the score calculated from the matrix
diagram and the average score obtained from the survey (0–“it’s not likely to be used by manufacturing
companies”; 1—“only some manufacturing companies have or will implement it”; 2—“most of the
manufacturing companies have or will implement it”; 3—“all manufacturing companies have or will
implement it”).

Table 7 includes the number of responses, the number of companies covered from each type and
the percentage of coverage:

Table 7. Number of responses and percentage of coverage.

Target Group Responses
Type A Companies

Covered
Type B Companies

Covered
Type C Companies

Covered

Top management 6 0 10 9
Technical

consultants 8 7 55 28

Specialists 5 2 35 11
Quality auditors 6 1 25 15

TOTAL 25 10 out of 10
(100% coverage)

125 out of 150
(83.3% coverage)

63 out of 350
(18% coverage)

As it can be seen, not all of the 510 companies were covered; however, all of the type A and most
of the type B companies were reached within the study.

For analyzing the responses, the chosen reference values were the ones obtained from the
questionnaire because they are considered to be the “voice” of the industry. A margin of error
was calculated for each score obtained from the matrix diagram and findings showed that it was not
more than ±8% (representing the deviation from the reference). The average margin of error was even
better, being just under 4% (representing the mean of the deviation modulus values).

The list of applications alongside their rating and margins of error can be consulted in Table 2. It
presents not only the accuracy of the research methodology approached within this paper, but also
prioritizes trending applications that companies will need for their own development, thus defining
the emerging research directions.

6. Conclusions

The current paper focused on analyzing the common knowledge space in specific areas by
intersecting the knowledge structures obtained through a concept disambiguation process. The results
of this analysis were further used to determine the technological solutions that are expected to emerge
from that concept intersection space. Particularly, it was analyzed the possibility of identifying
emergent industrial applications by intersecting the knowledge structures of two concepts: Industry
4.0 and vQM.

The investigation and disambiguation process were achieved with the help of a fairly new
knowledge extraction method called latent semantic analysis (applied by a specialized software
program), which is capable of analyzing large amounts of text and quickly identify the relationship,
causality, and frequency of words, thus providing an interpretation of the state-of-the-art literature
(in close connection with the two main concepts—vQM and Industry 4.0). By applying this technique,
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the common areas of interest (common knowledge space) were identified in the form of descriptors
that were further used for identifying applications that are defined by or relate to them.

The set of applications was grouped into the stages of the product life cycle according to the
ISO/IEC/IEEE 15288:2015 standard (with the help of a classic sorting tool—Affinity Diagram) and
ranked considering their importance scores resulting from applying a matrix diagram. These calculated
scores reflect the weighted importance of common descriptors between vQM and Industry 4.0, as they
also served as inputs into the matrix diagram.

The research loop was closed with a survey that focused on obtaining information from experts
(from the field of quality) with close ties to the automotive industry, that confirms the reliability of the
presented methodology with an average margin of error of just under 4%.

As illustrated through the course of this paper, one can note the important advantages of this
LSA-based methodology:

• Emerging technological trends can be identified from the common knowledge space of two or
more concepts;

• The state-of-the-art knowledge discovery process (concept disambiguation) is based upon an
exponentially greater number of scientific references and it is reduced to a few seconds;

• The outputs of the LSA can be further analyzed, sorted, and grouped by deploying various tools
and techniques, thus obtaining more useful information.

Considering the abovementioned key points of the methodology, it can be stated that the resulting
applications are the product of current research concerns in the two analyzed fields, vQM and
Industry 4.0. The constructed matrix diagram also provides a useful preview of industrial applications
throughout the product life cycle and ranks them to depict those that are more critical to quality based
on their importance scores.

The current framework has a high degree of portability and it can be applied to other concept
associations as well for determining common areas or emergent aspects in a specific context.

In a broader understanding, the model can make forecasts for applications that are more likely to
become popular in the next period of time. Organizations that are capable to foresee them and focus
on their development and implementation have a clear competitive advantage towards achieving
sustainable growth and advancement. The applicability of the methodology and the results described
in this paper are two-fold. From an academic point of view, they can provide the clarification of the
concepts for the use in training and instruction as well as an approach to investigate the two domains
in the future to gauge their development. On the other hand, industrial users could benefit from the
identified ranking of potential applications to simplify and make more efficient their implementation
projects, allowing them to keep the focus on the bottom line and on the concrete results that are needed
for market success.
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Table 2. List of rated applications.

Applications
Average of
Responses

Calculated
from LSA

Error
(max. 8%)

Absolute multiline technology used for online precision monitoring 1.33 1.38 3.57%
Assembly and part finite element structural analysis 2.13 2.08 −2.70%

Automated online assistant used for tech support through live chat 0.87 0.84 −2.96%
Automated process optimization 2.00 1.84 −7.94%

Automated process robustness prediction 2.00 1.84 −7.94%
Automated raw material approval 1.33 1.34 0.57%

Automated raw material order and purchase 1.53 1.42 −7.42%
Automated real-time process optimization 1.87 1.97 5.44%

CAD used for product modeling 2.47 2.43 -1.40%
CRM systems used for requirement analysis and sorting 1.80 1.86 3.02%

E-communication: e-mail, e-conference, instant messaging,
file transfers 2.87 2.82 −1.53%

Edge computing 1.33 1.30 −2.60%
FAQ page used for fault/defect self-identification and self-help 0.93 0.88 −6.08%

Google analytics for consumer targeting 1.47 1.45 −1.07%
Google trends analysis for product benchmarking 1.33 1.25 −5.91%

Inline metrology used for fault, defect and deviation detection 2.13 2.10 −1.56%
Kinematics simulation, analysis and optimization

through software 2.27 2.43 6.71%

Knowledge base used for problem solving for known issues 2.07 1.95 −5.53%
Manufacturability analysis 2.53 2.56 0.88%

Mobile devices used for process monitoring and control 1.87 1.73 −7.40%
Smart glasses employing AR used for displaying

product/process data 1.60 1.65 3.12%

Online surveys and questionnaires 2.47 2.43 −1.41%
Plant layout design used for production flow optimization 2.53 2.64 4.20%

Preventive actions taken based on collected data 2.67 2.76 3.31%
Rapid prototyping (3D printing) 2.27 2.27 0.22%
Real-time inventory monitoring 1.93 1.85 −4.20%

Recycling assistance platform providing info for customers
for recycling 1.40 1.30 −7.26%

Remote access used for diagnostics and trouble ticket resolution 1.40 1.33 −5.14%
Remote equipment control and assistance 1.87 1.73 −7.59%
Remote process monitoring and control 1.33 1.33 −0.15%

Simulation software used for process planning and flow analysis 2.47 2.54 2.74%
Smart and preventive maintenance for equipment 2.20 2.07 −5.93%

Smart glasses used for operator empowerment 1.47 1.38 −5.66%
Smart supplier evaluation and selection 1.33 1.25 −6.59%

Social networking data analysis for requirement and
stakeholder identification 1.47 1.55 5.50%

Virtual commissioning used for reliable equipment automation 2.00 2.02 0.89%
Virtual coordinate measuring machines 2.20 2.24 1.72%
Vision system used for part inspection 1.53 1.42 −7.59%

Work instruction design 2.40 2.43 1.28%
Work time study analysis 2.27 2.15 −5.16%

Worker ergonomics planning and design 2.27 2.30 1.51%

Average error 3.98%

Table 3. List of applications nominated by survey responders.

Applications Average of Responses

Risk analysis applications 2.5
SAP Smart Data Access 2

Materials Management Operations Guideline/Logistics
Evaluation—MMOG/LE 1.5

Design for Lean Six Sigma (DFLSS) used for product development 1
Eight Disciples (8D) problems solving 2
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