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the Founder of “Process Systems Engineering”
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In Memoriam

Roger W.H. Sargent

1926–2018

In September 2018, the global chemical engineering community lost a true pioneer in the field. 
This Special Issue is in celebration of Roger Sargent’s influence, contributions and legacy as a founder of 
the field of ‘Process Systems Engineering’ (PSE). His many years, initially at Air Liquide in Paris, 
and subsequently at Imperial College London laid a foundation that has been built upon by many who 
did not personally know him, but have benefited through his insights and sustained vision.

Besides his research and industry focus, he was also influential within education and the 
engineering profession. He held leadership positions such as head of the Department of Chemical 
Engineering Imperial College, Dean of the City and Guilds College and President of The Institution of 
Chemical Engineers (UK) and director of the Centre for Process Systems Engineering.

The papers in this issue represent areas that, in many ways, were pioneered by Roger as he and his 
many students developed new approaches to the integrated design, mathematical modelling and the 
optimization of complex industrial processes. These developments were facilitated by computer-based 
tools and a wide range of advanced numerical methods. A number of his direct PhD students and 
some of their academic descendants are authors of these contributions.

Processes 2020, 8, 405; doi:10.3390/pr8040405 www.mdpi.com/journal/processes1
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In remembering his impact, there follows a personal tribute from Arthur Westerberg, one of 
Roger’s PhD students in the early 1960s. Professor Westerberg himself continued ground-breaking 
contributions in PSE at Carnegie Mellon University (USA).

In the late 1970s, both of us were privileged to complete our PhD degrees under Roger’s expert 
and constructive guidance. We were thankful for his time, patience and encouragement during that 
period and his ongoing friendship.

He will be missed by family, friends and a host of those within his academic family tree. However, 
he will not be forgotten.

Rafiqul Gani and Ian Cameron.

Tribute to Roger Sargent

by

Arthur W. Westerberg

I am going to steal part of the following tribute to Roger Sargent from a message I sent to his son,
Philip, just after I learned, sadly, that Roger had passed away.

Many have and will summarize Roger’s many contributions to the Process Systems Engineering
area. This tribute will be more personal. I was Roger’s sixth PhD student, from 1961 to 1964, and,
of course, he was a lifelong friend.

Having done a two month summer tour organized for college students in 1959 with Shel Thompson,
my roommate at the University of Minnesota, and having Neal Amundson as my undergraduate
advisor, who knew just about everyone in academia in the UK, pushed me to apply to go to the UK for
my PhD. Negotiations with Kenneth Denbigh, then chairman of the teaching side of the department at
Imperial College, garnered me an Assistant Lectureship offer to provide support. After spending a
year at Princeton to obtain first an MS degree, I stepped off the ship (on which, incidentally, I met my
wife Barbara) knowing no one in London in September of 1961. I remember first visiting the main
office of the department at Imperial College and meeting Kenneth Denbigh. After first presenting me
his topics, he sent me around to the rest of the department. I entered Roger Sargent’s office shortly
thereafter, and, of course, Roger had a project for someone who had on his resume experience in using
the computer, on projects both at Minnesota and at Princeton. No one in those days would likely have
had any computer experience. Furthermore, as we now know, Roger was into computers and their use
in process design and control, with his several years at Air Liquide in Paris in the 1950s. Mind you the
computers anyone would have had then were toys by today’s standards, but he could see the potential
and wanted to be in the business of developing that area as a research area. As I came with an Assistant
Lectureship, an entry level faculty position, he insisted I join the faculty for morning coffee, lunch and
coffee, and afternoon tea. Thus I saw him at least three times almost every day and had lots of time to
interact with him on my project. Our paper from that work was really two parts: a core dump of his
ideas on how computers would contribute to design and control in our field and a presentation of the
ideas in my work on how to shoehorn a flowsheeting calculation onto a vastly undersized computer.
Many people in industry told me they were in the modeling departments of their companies because
they mentioned they had read that paper in their interviews.

I worked for two years with Control Data in San Diego before joining the Chemical Engineering
Faculty at the University of Florida in 1967. By then Roger had given a well appreciated talk at the
invitation of the AIChE and then published as a paper in CEP. This talk and the resulting paper again
presented his views on PSE. If memory serves, it had about 50 references to relevant papers from many
different fields. I remember going on a hunt to collect and review all those papers. It got me off to a
running start on my career when I joined the faculty in Florida.

A bit of humor: In 1990 Roger received the CAST Division Computing in Chemical Engineering
Award and gave his acceptance speech at the November AIChE meeting. As all know who have

2
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heard Roger give a presentation, his talks were seldom if ever done within the prescribed time limit.
We were all sitting at the tables listening and, by this time, consuming our desserts and drinking coffee.
I remember clearly lifting my coffee cup for a sip. When I looked down, the wait staff has taken away
the saucer. Our table lit up with laughter. The wait staffwere ready to go home.

Over the years I had many occasions to interact with Roger. We were at many meetings together.
I visited Imperial College to give the annual Sargent lecture, Roger came to Carnegie Mellon University
to give a departmental seminar (we have three former and current faculty members who are his
students: the oldest: me, Ignacio Grossmann and Erik Ydstie). In the late 1980s, as we were just starting
our Engineering Design Research Center at CMU, Roger led a group at Imperial College to create a
related organization aimed at process systems engineering. As director of our center, I reviewed his
proposal and others, and clearly this was the project to fund among those I saw. After, I had many
occasions to visit his centre. I have to admit, he seemed to tolerate administration (certainly much more
eagerly that I did) and held many significant such positions at Imperial College and in the Institute of
Chemical Engineers, as well as running this centre. So his legacy is much more than his research.

Finally, he is the top node of a huge academic family tree (http://titan.engr.tamu.edu/Sargent_tree/
index.php), that is “the tree” for all of us lucky enough to have been on his.

We will all miss him.

Author Contributions: R.G. and I.C. wrote the In Memoriam preface. A.W. wrote the personal tribute to Professor
Roger Sargent. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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Towards the Grand Unification of Process Design,
Scheduling, and Control—Utopia or Reality?

Baris Burnak 1,2, Nikolaos A. Diangelakis 1,2 and Efstratios N. Pistikopoulos 1,2,*

1 Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845, USA
2 Texas A&M Energy Institute, Texas A&M University, College Station, TX 77845, USA
* Correspondence: stratos@tamu.edu

Received: 3 June 2019; Accepted: 17 July 2019; Published: 18 July 2019

Abstract: As a founder of the Process Systems Engineering (PSE) discipline, Professor Roger W.H.
Sargent had set ambitious goals for a systematic new generation of a process design paradigm based
on optimization techniques with the consideration of future uncertainties and operational decisions.
In this paper, we present a historical perspective on the milestones in model-based design optimization
techniques and the developed tools to solve the resulting complex problems. We examine the progress
spanning more than five decades, from the early flexibility analysis and optimal process design under
uncertainty to more recent developments on the simultaneous consideration of process design, scheduling,
and control. This formidable target towards the grand unification poses unique challenges due to
multiple time scales and conflicting objectives. Here, we review the recent progress and propose future
research directions.

Keywords: process design; scheduling; process control; integration

1. Introduction

It has been over half a century since Professor Roger W.H. Sargent envisioned a paradigm shift
in chemical process design methodologies, from ad hoc engineering judgment for specific problems to
fully computerized systematic approaches based on complex mathematical models [1]. He conceived the
notions of “explicitly formulating the techniques” and “precisely defining the objectives” for engineering
design problems, which used to be considered to be “an activity not worthy of higher minds” because of
the lack of scientific and systematic tools and methodologies. With the advent of computers, he further
emphasized the opportunity to expand the process design problem to account for foreseeable variations
in the plant environment over its life cycle to achieve more reliable and robust operations. “(During the
process design phase) Many parameters are left available for adjustment during plant operation, such
as flow rates, tank levels, operating pressures, etc., but here also the design places limits on the range of
variation possible.” stated Professor Sargent to underpin the interdependence between the design and the
uncertainty of future operational decisions.

The Process Systems Engineering (PSE) community has been accumulating formidable knowledge
and know-how on mathematical modeling techniques in the fields of process design and operations,
and developed efficient tools to solve these advanced models since Professor Sargent had outlined
the future of PSE in his 1967 perspective article [1]. Moreover, it has been long established that the
early design problem should be studied simultaneously with the operational time-variant decisions
to improve the operability and flexibility of the process under variable internal and external plant
conditions, and consequently to achieve more reliable, economically more favorable, and inherently

Processes 2019, 7, 461; doi:10.3390/pr7070461 www.mdpi.com/journal/processes
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safer processes. The most recent efforts towards simultaneous consideration of design and operational
decisions explore effective methodologies to integrate the short-term process regulatory decisions
(process control) and longer-term economical decisions (scheduling) through mixed-integer dynamic
optimization (MIDO) formulations. The proposed solution tools and techniques for this class of integrated
problems include (i) discretizing the dynamic high-fidelity representation of the process through
orthogonal collocation on finite elements followed by solving a mixed-integer nonlinear programming
problem [2], (ii) “back-off” approach to ensure constraint satisfaction under some assumed worst-case
scenario [3–5], and (iii) multiparametric programming to explicitly represent the operational strategies to
derive tractable and equivalent MIDO formulations [6].

In this paper, we present a historical perspective on the development and progress of modern
process design techniques that account for the dynamic variability introduced by the process control and
scheduling decisions. In retrospect, we observe the evolution of methodologies from fundamental analyses
on design and process uncertainty at steady state to dynamic complex models that explicitly encapsulate
the scheduling and control decisions, as illustrated in Figure 1, and summarized as follows.

i Flexibility analysis and flexibility index. The early stages for design optimization under uncertainty.
The studies here analyze the steady-state feasibility of a nominal process design under a set of unknown
process parameters and unrealized operating decisions, as we will discuss in Section 2.

ii Dynamic resilience and controllability analysis. Here, the researchers investigate the dynamic response
of a system in closed loop, its interdependence with process design, and attempt to develop the
“perfect controller” simultaneously the process that the controller can act on. Such attempts will be
demonstrated in Section 3.

iii Complete integration of design, control, and operational policies. The focus of the most recent studies in
the field. The goal is to model tractable dynamic design optimization problems that account for the
scheduling and control decisions to guarantee the operability and even profitability of the operation
under all foreseeable conditions. These approaches will be discussed in Section 4.

Clearly, it would be inaccurate and redundant trying to reduce the individual research efforts to
a single category. The literature is noticeably diverse in this field with numerous different approaches.
However, we find it useful to classify into certain schools of thought that are also in alignment with
the historical progress of the field. In Section 5, we further seek to pose the pivotal questions on future
challenges and opportunities for the seamless integration of the design, scheduling, and control problems
based on the cumulative knowledge of the PSE community and the current trends in the academia.

Steady state 
flexibility

Dynamic 
flexibility

Controllability

Profitability

Figure 1. A Venn diagram representation of major operability indices and their relationship with process
economics. It is interesting to note that the design optimization approaches started from the outermost layer,
and with the advance of modeling techniques, they have progressed towards the center for guaranteed
operability, which delivers the optimal process economics.

6
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2. Early Efforts in Design Optimization under Uncertainty

The ongoing collective efforts towards the grand unification of design, scheduling, and control was
inaugurated through steady-state design under uncertainty in plant conditions. Takamatsu et al. (1970) [7]
estimated the undesirable effects of variations in system parameters, measured process disturbances,
and manipulated variables on plant performance by sensitivity analysis on a linearized model. Nishida et al.
(1974) [8] adopted the notion of sensitivity analysis to structure a min-max problem for design optimization,
presented by Equation (1).

min
des

max
θ

C(x, des, θ)

s.t. h(x, des, θ) = 0

g(x, des, θ) ≤ 0

θ ≤ θ ≤ θ

(1)

where x is the vector of states of the system, des is the vector of design variables including the steady-state
manipulated variables, θ is the vector of parameters that agglomerates the system uncertainties and
process disturbances. Equation (1) is one of the first notable attempts to systematically assess the trade-off
between minimizing the investment cost and improving the flexibility of the process design. However,
this strategy yields conservative solutions since it does not distinguish the time-invariant design variables
and time-variant manipulated variables. Grossmann and Sargent (1978) [9] remedied this issue by treating
the time-sensitive variables (i.e., manipulated actions and design variables that can be modified in the
future) and fixed design variables separately. They further adopted the parametric optimal design problem
proposed by Kwak and Haug (1976) [10], and formulated an objective function to minimize the average
cost over the expected range of parametric uncertainty, as presented by Equation (2).

min
u,des

E{C(x, u, des, θ)}

s.t. max
θ∈Θ

gi(x, u, des, θ) ≤ 0, i = 1, 2, . . . , t
(2)

where the expected cost function is defined the joint probability distribution of the parameter set θ. Equation (2)
requires solving infinite nonlinear programming (NLP) problems. Grossmann and Sargent (1978) [9]
proposed an efficient solution procedure for a special case of Equation (2), where each constraint gi
is monotonic in θ, through discretization of the problem over the parameter space. However, solving
the NLP problem at a finite number of θ realizations does not ensure the feasibility of the design. This
issue was addressed by Halemane and Grossmann (1983) [11] through reformulating an equivalent design
feasibility constraint as presented by Equation (3).

max
θ∈Θ

min
u∈U

max
i∈I

gi(x, u, des, θ) ≤ 0 (3)

The max-min-max problem in Equation (3) mathematically expresses the feasibility question “For all
the uncertainty realizations Θ, does there exist a control action u such that the constraint set g is feasible?”.
Equation (3) was employed in a multiperiod design optimization problem, where the deterministic
uncertain parameter θ was allowed to vary within a prespecified range [11]. The feasibility constraint then
laid the foundation for the concept of feasibility index, F, proposed by Swaney and Grossmann (1985) [12],
as given by Equation (4).

7
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F = max δ

s.t. max
θ∈Θ

min
u∈U

max
i∈I

gi(x, u, des, θ) ≤ 0

T(δ) = {θ | (θnom − δΔθ−) ≤ θ ≤ θ | (θnom + δΔθ+}
(4)

where T is the hyperrectangle for the uncertain parameters, δ is the scaled parameter deviation, and the
superscript nom denotes nominal conditions. Equation (4) is the first significant attempt to quantify the
degree of flexibility of a process design, and has been exploited by numerous studies on design optimization
and process operability. However, Equation (4) constitutes a nondifferentiable global optimization problem
and is still quite challenging to solve. Therefore, it requires simplifying assumptions and approximations
to maintain a tractable problem. Swaney and Grossmann (1985) [13] introduced a heuristic vertex search
method and an implicit enumeration scheme for the special case where the critical uncertainty realizations
are assumed to lie at the vertices of the hyperrectangle T(δ). Clearly, this assumption fails to hold when
the feasible space of the design problem is non-convex. Grossmann and Floudas (1987) [14] relaxed this
assumption by developing a mixed-integer nonlinear programming (MINLP) problem for the feasibility
test presented by Equation (3). They further proposed an active constraint strategy for the solution of
the resulting MINLP. The mixed-integer formulation also provides a systematic approach to consider all
possible critical uncertainty realizations without exhaustive enumeration. The proposed formulation was
used for synthesis of a heat exchanger network with uncertain stream flow rates and temperatures [15].
The case of linear constraints reduces to an MILP problem, for which global solution is attainable by
standard branch and bound enumeration techniques [14,16,17]. Bansal et al. (2000) [18] developed a
computationally efficient theory and algorithm based on multiparametric programming techniques for
this special case of flexibility analysis problems. The authors derived explicit expressions for the flexibility
index as explicit functions of the continuous design variables. Pistikopoulos and Grossmann (1988a, 1988b,
1988c) used the flexibility test with linear constraints for optimal retrofit design [19–22] and redesign under
infeasible nominal uncertainties [23]. Although these approaches are effective and promising to handle
the design uncertainty, they require solving nested optimization problems, which poses a major challenge
to solve complex and large-scale problems in a reasonable time. Raspanti et al. (2000) [24] proposed
replacing the complementarity conditions of the lower level optimization problems with a well-behaved,
smoothed nonlinear equality constraints, namely Kreisselmeier and Steinhauser function [25] and Chen
and Mangasarian smoothing function [26].

One of the common assumptions in these approaches is the known bounds of the uncertainties,
which is rarely the case in real world industrial applications. Pistikopoulos and Mazzuchi (1990) [27]
and Straub and Grossmann (1990, 1993) [28,29] extended the flexibility test by assuming a probability
distribution model for the parameter uncertainty, which improved the economic performance of the design
optimization problem by addressing the “conservativeness” of the solution.

Another common assumption of these approaches is the steady-state operation of the plant design,
which creates a significant limitation on the applicability of the methodologies. Although steady-state
assumption holds true for the dominant life cycle of the plant operation, design optimization problem
may fail to ensure the operability under transient behaviors such as startup or shutdown and transitions
between different operating conditions. Dimitriadis and Pistikopoulos (1995) [30] proposed a dynamic
feasibility index for the systems that are described by differential algebraic equations (DAE) subject to
time-varying constraints. However, the time-dependent uncertainty in their formulation dictates to solve
infinitely many dynamic optimization problems. Therefore, the authors assumed that the critical scenarios
of uncertainties are known and lie on the vertices of the time-varying uncertainty space, similar to Swaney

8
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and Grossmann (1985) [12]. The simplifying assumption reduced the problem to the form given by
Equation (5).

DF(des) = max
δ,u(t),t

δ

s.t. ẋ = f (x(t), u(t), des, θ(t), t), x(0) = x0

g(x(t), u(t), des, θ(t), t) ≤ 0

θ(t) = θN(t) + δΔθc(t)

δ ≥ 0, u(t) ≤ u(t) ≤ u(t)

(5)

where the time dependence of the variables constitutes a dynamic optimization problem, and the
solution was determined by control vector parameterization techniques [30]. Dynamic flexibility
has been widely used in numerous design optimization applications including batch processes [31],
separation systems [32–36], reaction systems [37], and heat exchanger network synthesis [38–40].

The dynamic assessment of the plant feasibility under uncertainty has been also studied through exploiting
the multiperiod design optimization formulation proposed by Halemane and Grossmann (1983) [11].
Varvarezos et al. (1992) [41] implemented an outer-approximation approach to solve the multiperiod
multiproduct batch plant problems operating with single product campaigns, which was formulated as an
MINLP. Pistikopoulos and Ierapetritou (1995) [42] considered stochastic process uncertainty and proposed
a two-stage decomposition that can handle convex nonlinear problems.

As presented in this section, the early studies on integrated design optimization have primarily
focused on (i) investigating the range of operation (flexibility) of a nominal design configuration under
foreseeable conditions, and (ii) determining the “best” possible trade-off between the investment cost
and the capability of handling variations in the internal and external operating conditions. These studies
mostly considered open loop processes, under the traditional assumption that controller design is a
sequential task to process design. However, most processes in industry are operated in closed loop, and the
controller schemes inherently alter the process dynamics, rendering the open loop flexibility analyses of
lesser relevance. In other words, an “attainable” operating point according to open loop flexibility analysis
may actually be an infeasible point in closed loop. Realizing the shortcomings of open loop flexibility
analyses, researchers began investigating the “controllability” of process systems, and the interdependence
of process control and design decisions. In the following section, we present a retrospective background
on the integration of process control in the design optimization problem.

3. Integration of Process Control in Design Optimization

The initial efforts towards the integration of process control and design problems established a
fundamental understanding on the interdependence of the two decision making mechanisms. The most
pronounced school of thought in the early years to evaluate the controllability of the process design is
“dynamic resilience”, as conceptually defined by Morari (1983a, 1983b) [43,44].

Morari (1983) [43] described dynamic resilience as “the ability of the plant to move fast and smoothly
from one operating condition to another and to deal effectively with disturbances”. This depiction implies
that there is not a clear-cut distinction between flexibility, which was discussed in Section 2, and resilience.
However, Grossmann and Morari (1983) [45] pointed out the main difference as “resiliency refers to the
maintenance of satisfactory performance despite adverse conditions while flexibility is the ability to handle
alternate (desirable) operating conditions”. This distinction is the primary motive for most of the flexibility
analyses to study steady-state operations, while the resilience deals with the dynamic operations, as we
will discuss in this section.

Dynamic resilience, as described by Morari (1983) [43], aims to find the “perfect controller” that is
allowed by the physical limitations of the system to assess the controllability of the process by using the
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internal model control (IMC) structure. The proposed technique decomposes the system transfer function
G̃ into (i) a non-singular matrix G̃− to design the perfect controller G̃−1− , and (ii) a singular matrix G̃+ to
generate dynamic resilience indices based on (i) bounds on control variables, (ii) presence of right half
plane transmission zeroes, (iii) presence of time delays, and (iv) plant-model mismatch. The proposed
indices were used to improve the operability of numerous process, including heat integrated reactor
networks [46–48], separation systems [49], heat exchanger networks [50].

Among the four aforementioned resilience indices, Perkins and Wong (1985) [51] studied the last two
by adapting the “functional controllability” theorem proposed by Rosenbrock (1970) [52]. The authors
further define a system to be functionally controllable if there exists a manipulated action u(t) that can
generate any process output y(t) at any time t. Psarris and Floudas studied the dynamic resilience
and functional controllability of multiple input multiple output (MIMO) closed-loop systems with time
delays [53–55], and transmission zeroes [54,55]. Barton et al. (1991) [56] investigated the open loop process
indicators, namely minimum singular value and right half plane zeroes, to assess the interactions between
different design configurations and their operability with the best possible control configurations.

In the context of simultaneously assessing the process controllability in process design, one of the first
significant contributions is the “back-off approach” introduced by Narraway et al. (1991) [57]. Narraway
and Perkins (1994) [58] used this approach to systematically assess the trade-offs between all possible
controlled and manipulated variable pairs in a mixed-integer formulation. Bahri et al. (1995) [59] employed
the back-off approach to handle process uncertainties in an optimal control problem. The proposed
approach is applicable to design linear and mildly nonlinear processes, and relies on three key steps,
namely (i) perform a steady-state nonlinear process optimization, (ii) linearize the process at the optimum
point, and (iii) “back-off” from the optimal solution by some distance to ensure the feasibility of the
operation under some structured disturbance profile. The proposed approach was shown to be effective to
select between alternative flowsheets as well as alternative control structures.

With the burgeoning interest in exploring the simultaneous design and control problem,
the International Federation of Automatic Control (IFAC) organized the first workshop on
“Interactions between Process Design and Process Control” in the Center for Process Systems Engineering
at Imperial College London in 1992. The workshop laid the groundwork for a plethora of approaches with
a wide range of diversity. Walsh and Perkins (1992) [60] implemented a PI loop in the flexibility analysis,
where the input–output loop is selected by an exhaustive screening procedure. Luyben and Floudas
(1992) [61] formulated a multiobjective MINLP problem to simultaneously consider the disturbance
rejection capacity of the control loop through disturbance condition number and relative gain array to
evaluate the interactions between the inputs and outputs of a MIMO system, while designing the process.
Shah et al. (1992) [62] used the State-Task Network (STN) representation [63] to simultaneously consider
the scheduling and design problems in a batch plant. Thomaidis and Pistikopoulos (1992) [64] introduced
a framework to consider the design problem simultaneously with (i) the process flexibility through
stochastic flexibility index, (ii) the effect of equipment failures to the overall performance by combined
flexibility-reliability index, and (iii) the impact of equipment availability by combined flexibility-reliability
index. These aforementioned novel approaches were shown to be promising concepts and techniques to
address multiple facets of operational decisions simultaneously with the process design problem. As a
result, succeeding studies after this workshop expanded these techniques and branched out to explore
further opportunities.

Integrating PI controllers in the design optimization problem was one of the prominent outcomes
of the workshop and became the most attractive option for the following research. The literature on PI
controllers was already abundant and well-established by the time. Moreover, the explicit form of the
controller structure made the integration relatively easy and intuitive, which significantly accelerated
the research in closed-loop design optimization. Walsh and Perkins (1994) [65] presented an integrated
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PI control scheme and process design for wastewater neutralization. Although the proposed approach
was effective for the SISO process, it was reported that it entails further challenges for more complex
processes. One major drawback of PI control is its inability to tackle MIMO systems without any advanced
modifications in the feedback loop structure. Narraway and Perkins (1993, 1994) [58,66] developed an
MILP-based formulation to systematically evaluate the economic performance of every input–output pair
combination. Luyben and Floudas (1994a, 1994b) [67,68] adapted a similar approach in a multiobjective
framework to determine the best performing input–output pair based on the controllability indices
introduced by them, earlier (1992) [61]. The proposed framework was showcased on the design of a heat
integrated distillation system [67] and a reactor-separator-recycle system [68]. Mohideen et al. (1996) [32]
formulated a multiperiod design and control problem to account for the dynamic variations in the
operation, while including the input–output pairing superstructure in the problem. Moreover, the authors
used the flexibility index to account for the uncertain parameters in the model and presented a
decomposition algorithm for the resulting complex problem. Bansal et al. (2000) [69] constructed a
similar formulation as a mixed-integer dynamic optimization (MIDO) problem, which was solved by
a Generalized Benders Decomposition (GBD)-based algorithm. The MIDO formulation was presented
as follows.

min
u,des

∑
i∈NS

wiC
(
ẋi(t), xi(t), ui(t), desi)

s.t. ẋi(t) = hd
(
xi(t), ui(t), desi, θi, t

)
, x(t) = x0

yi(t) = ha
(
xi(t), ui(t), desi, θi, t

)
g
(
ẋi(t), xi(t), yi(t), ui(t), desi, θi, t

) ≤ 0

(6)

where wi is the discrete probability of a scenario i and NS is the discretized set of scenarios.
The discretization of uncertainty in the process was first proposed by Grossmann and Sargent (1978) [9].

Although the aforementioned PI-based design and control frameworks are applicable on nonlinear
processes, the range of operability is usually limited due to the mismatch between the nonlinear process
model and the linearized control model. Ricardez-Sandoval et al. (2008, 2009) [70,71] used robust control
tools and the back-off approach to integrate PI control and ensure its stability while solving the design
optimization problem. The proposed approach was also tested against the Tennessee Eastman Process [72].
The back-off approach was later generalized for control structure selection in nonlinear processes by
Kookos and Perkins (2016) [73]. Ricardez-Sandoval & co-workers have extensively studied back-off
approach for simultaneous process design and control under uncertainty [74–76].

One main limitation of integrating PI control in the design optimization in a dynamic formulation
is the increasing problem size and complexity. Kookos and Perkins (2001) [77] developed an algorithm
for the integrated PI control and design optimization problem, where the size of the search space
was reduced systematically in each successive iteration. Malcolm et al. (2007) [78] proposed an
“embedded control optimization” procedure, where the authors introduced a two-stage decomposition
scheme that approximates the complete integrated problem. The proposed approach reduced the problem
size and complexity, and was showcased on larger scale problems including a reactor-separator system [79].

Apart from the inability to naturally handle MIMO systems, PI controllers do not explicitly
account for any process constraints stemming from operational, environmental, and safety limitations.
Model predictive control (MPC) overcomes these shortcomings by postulating a constrained dynamic
optimization problem subject to an explicit model of the process [80]. One of the first remarkable efforts to
integrate an MPC scheme in a nonlinear design problem was published by Brengel and Seider (1992) [81].
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Here, the authors postulate a bi-level optimization problem, where the leader has an economic objective,
while the follower is the MPC formulation, as presented by Equation (7).

min
des

Cdes
(
des

)
+ κCκ

(
x(t), y(t), u(t), des, θ(t)

)
s.t. fdes

(
des, θ(t)

)
= 0

gdes
(
des, θ(t)

) ≤ 0

min
u(t)

Cu
(
x(t), y(t), u(t), des, θ(t)

)
s.t. ẋ = fu

(
x(t), y(t), u(t), des, θ(t)

)
gu

(
x(t), y(t), u(t), des, θ(t)

)
= 0

hu
(
x(t), y(t), u(t), des, θ(t)

) ≤ 0

(7)

where κ is the design and control integration parameter that scales the trade-off between the controllability
of the system and the investment cost. The bi-level problem presented in Equation (7) is challenging
to solve without appealing to simplifications. Therefore, the authors proposed replacing the follower
problem by complementary slackness equations. However, the solution strategy was still intractable for
more complex systems due to the numerical calculation of the second derivatives [81]. As a consequence,
integration of the MPC scheme in the design optimization had been rather limited in the literature for
almost a decade, until the invention of multiparametric MPC (mpMPC/explicit MPC).

Bemporad et al. (2002) [82] proposed formulating the MPC problem as an explicit function of the
initial conditions of the system. This novel strategy allowed for deriving piecewise affine explicit control
laws by treating the initial conditions as parameters. The proposed approach formulated the explicit MPC
problem as presented by Equation (8).

ut(θ) = arg min
ut

‖xN‖2
P +

N−1

∑
t=1

‖xt‖2
Q +

N−1

∑
t=1

‖yt − ysp
t ‖2

QR +
M−1

∑
t=0

‖ut − usp
t ‖2

R +
M−1

∑
t=0

‖Δut‖2
R1

s.t. xt+1 = Axt + But + Cdt, yt = Dxt + Eut + Fdt

xt ≤ xt ≤ xt, y
t
≤ yt ≤ yt, ut ≤ ut ≤ ut, Δut ≤ Δut ≤ Δut, dt ≤ dt ≤ dt

θ = [xt=0, ut=−1, dt, ysp
t , usp

t ]T

(8)

where N is the prediction horizon, M is the output horizon, superscript sp denotes set point, Q, QR,
R, and R1 are the corresponding weight matrices determined by tuning, P is calculated by discrete
algebraic Riccati equation, and ‖·‖ψ denotes weighted vector norm with a weight matrix ψ. Different than
conventional MPC, Equation (8) formulates the optimal control problem exactly and completely offline as
a function of the set of parameters θ. The solution of this problem can be determined by multiparametric
programming techniques, which express the solution space as a piecewise affine function, as presented
by Equation (9).

ut(θ) =Knθ + rn, ∀θ ∈ CRn

CRn :={θ ∈ Θ | CRAθ ≤ CRb}, ∀n ∈ {1, 2, . . . , NC}
(9)

where CRn is referred as a critical region and it is the active polyhedral partition of the feasible parameter
space, Θ is a closed and bounded set, and NC is the number of critical regions.

The control law given by Equation (9) reduces the complexity of solving an online optimization
problem to a simple look-up table algorithm (also known as point location problem) and function
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evaluation, all of which are affine operations. Hence, the complexity of implementing an MPC scheme is
similar to that of a PI controller.

Sakizlis et al. (2003) [83] exploited the explicit nature of the mpMPC solution in the context of design
and control integration. The authors formulated a bi-level mixed-integer dynamic optimization problem
similar to Equation (7), where the leader accounted for the investment and operating costs in the objective
function subject to the dynamic high-fidelity model, and the follower MPC problem was substituted by the
affine control law Equation (9). The proposed formulation offered an elegant and systematic methodology
to reduce the complexity of the bi-level Equation (7) into a single level dynamic optimization problem.
However, the solution strategy still required repetitive linearizations and solving a multiparametric
programming problem at every iteration, which can be restrictive for large-scale complex problems.
Diangelakis et al. (2017) [84] alleviated that limitation by deriving a “design dependent offline controller”,
which allowed for solving a single MIDO problem after integrating the control law in the high-fidelity
model. Eliminating the linearization step and formulating a single synergistic design and control problem
also improved the economic performance of the resulting process compared to the approach proposed
by Sakizlis et al. (2003) [83]. The proposed formulation was also showcased on a tank, a continuous
stirred tank reactor, and a residential scale combined heat and power unit. The cost effectiveness of
the MPC integrated optimal design was also reported to be superior than PI integrated approaches in
the literature. Diangelakis and Pistikopoulos (2017) [85] reported that the mpMPC integrated optimal
combined heat and power unit operated more fuel efficient in closed loop than PI integrated design.
Similarly, Sanchez-Sanchez and Ricardez-Sandoval (2013) [86] showcased a system of CSTRs, where the
MPC integrated framework reduced both the operating and the investment costs compared to the PI
control integrated approach.

One common aspect of the studies on simultaneous design and control optimization is the assumption
that the process will be operated around the same steady-state point throughout the entire life cycle of the
plant. However, the external plant conditions, such as market conditions, may dictate a considerably wider
operating region with multiple steady-state points [1]. The increasing competition among the businesses
impacts the volatility of the market, which creates rapid fluctuations in the energy and raw material prices
as well as their availability. Moreover, the demand rate on the product is also subject to considerable
variations during the plant operation. Therefore, it is clear that there exists a “best” operating strategy
under the knowledge available to the operator, which necessitates the operability of the plant across a
wider range. For example, high production rates may be less profitable during the night time because
of increased energy prices and hence, operating the energy intensive processes during the daytime may
reduce the operating costs. This indicates that the operating level of a processing unit might vary drastically
by the choice of the operator. However, the integrated design and control frameworks discussed in this
section usually assume a single operating point around which a controllability and flexibility analysis is
conducted. Consequently, these frameworks do not attempt to provide any means of guaranteeing the
operability of the process at different regions. In the next section, we will discuss several approaches that
account for multiple operating regions in a plant, and their scheduling during the operational optimization.

4. Towards the Grand Unification of Process Design, Scheduling, and Control

Process design, scheduling, and control problems are traditionally constructed to address different
objectives and they span widely different time scales. In a nutshell, the plant design problem dictates
the capacity of processing and it usually comprises the most uncertainty due to its years long lifecycle.
The scheduling problem addresses the allocation of the resources and time, as well as the operating
level of processing units and their maintenance based on some economic criteria over days/months long
horizons. Lastly, the control problem maintains the performance of the plant, while satisfying any physical
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limitations such as the environmental and safety constraints. The discrepancy in the objectives and
time scales creates a challenging problem to systematically evaluate and determine the optimal trade-off
between different decision makers.

Process scheduling is more critical in batch operations than continuous operations, as the
former are inherently dynamically operated. Accordingly, the initial efforts focused primarily
on the batch processes for the integration of the operational optimization and design problems.
Birewar and Grossmann (1989) [87] formulated NLP models to incorporate the scheduling decisions in
the batch sizing and timing problem in a multiproduct plant for unlimited intermediate storage and
zero wait policies. Shah et al. (1992) [62] tackled a similar problem by using the STN representation.
White et al. (1996) [88] investigated the switchability of continuous processes between different operating
points through formulating an optimal control problem that accounts for the terminal criteria and path
constraints within a range of design parameters. Bhatia and Biegler (1996, 1997) [89,90] formulated
a dynamic optimization problem, where an economic objective function was subject to a dynamic
high-fidelity model of the process described by differential algebraic system of equations. The authors
proposed a solution strategy based on discretizing the process model by orthogonal collocation over finite
elements, followed by solving the resulting NLP by using a standard solver. The proposed modeling
and solution strategy was shown to be promising to satisfy the path constraints, which is a crucial
benefit for dynamic systems. Terrazas-Moreno et al. (2008) [2] extended this integration approach
to account for the binary decisions in the scheduling problem by formulating a MIDO. Similar to
Bhatia and Biegler (1996, 1997) [89,90], the authors first discretized the problem by orthogonal collocation,
followed by solving the resulting MINLP.

The early studies that explore the interactions between the scheduling and process control decisions
have a significant role in shaping today’s approaches for the integrated design optimization problem.
In their excellent review article, Baldea and Harjunkoski (2014) [91] classified these attempts to integrate
the scheduling and control decisions as (i) “top-down approaches”, where the process dynamics and
control elements are incorporated in a scheduling skeleton, and (ii) “bottom-up approaches”, where the
process economics are implemented in the plant-wide control decisions.

In terms of characterizing the transitions between different products in a single operating unit,
Mahadevan et al. (2002) [92] introduced a unique “top-down” perspective on the operational optimization
problem, revealing that a simultaneous approach on the scheduling and control problem can identify and
eliminate the fundamental limiting behavior during the transitions, as showcased on a polymer grade
transition process. However, the presented approach requires case specific heuristic decisions to select the
“best” fitting scheduling and control configuration and hence, it is not suitable for different applications in
the general sense. Chatzidoukas et al. (2003) [93] studied a similar polymerization reactor, and formulated
a MIDO problem to determine the time optimal transition between different polymer grades and best
performing control structure simultaneously. Flores-Tlacuahuac and Grossmann (2006) [94] introduced a
monolithic approach on a multiproduct cyclic CSTR, where the profit was maximized by manipulating
the production sequence, transition times, production rates, length of processing times, and amounts
manufactured of each product. In contrast to the earlier studies [92,93], the authors focused on the
manipulated actions rather than the optimal control configuration. They formulated a MIDO problem,
which was solved by discretization of the differential algebraic equations by orthogonal collocation on finite
elements followed by solving the resulting MINLP. The presented approach has been extensively studied
in the following years to broaden its scope and effectiveness. Terrazas-Moreno et al. (2007) [95] applied
this approach on two industrial polymerization reactors. Terrazas-Moreno et al. (2008) [2] formulated a
design optimization problem accounting for the scheduling and open loop control trajectories using this
approach. Flores-Tlacuahuac and Grossmann (2010, 2011) extended the formulation to partial differential
equation systems, and showcased on tubular reactors with single [96] and multiple production lines [97].
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This monolithic approach usually generates open loop control trajectories, i.e., no feedback loop is
assumed to develop the input and output profiles. However, the processing units are subject to internal
process disturbances, and the mismatch between the process and the model leads to deviations in the
targeted operations. Zhuge and Ierapetritou (2012) [98] implemented the monolithic approach in closed
loop, where the authors initiate a readjustment procedure to solve the integrated problem online if the
states deviate from their reference trajectories. This approach does not completely resolve the issue of
handling the process disturbances or the process/model mismatch; however, it was shown to mitigate
these concerns to a great extent. Gutiérrez-Limón et al. (2014) [99] also implemented a similar closed-loop
strategy with a nonlinear model predictive control scheme, while extending the scope of the problem
statement to account for an extended horizon production policy. However, both approaches require
solving a complex and large-scale MINLP problem at the time steps of the controller, which makes it
unsuitable for the processes with fast dynamics.

Low-order representation of fast process dynamics in the scheduling problem has been an
effective approach to reduce the computational burden of solving complex optimization problems.
Du et al. (2015) [100] proposed a time scale-bridging model that describes the closed-loop input–output
behavior of a process in the scheduling formulation, postulated as a MIDO problem. The low-order
representation also maintains the stability of the process in the existence of process/model mismatch and
handles disturbances. Baldea et al. (2015) [101] extended this approach to MPC governed systems.

Burnak et al. (2018) [102] also addressed the online computational burden of “top-down” approaches
by developing a multiparametric programming-based approach, where the authors explicitly mapped
(i) the closed-loop dynamic process behavior in a “control-aware” scheduling problem, and (ii) the
continuous and binary scheduling level decisions such as the operating level and operational mode of the
system in a “schedule-aware” MPC scheme (iii) to yield the optimal operational decisions. The offline
nature of the integrated scheduling and control scheme allows for determining the feasible operating
space prior to actualizing the operation. Furthermore, reducing the problem complexity from solving
online optimization problems to a simple look-up table and affine function evaluation, the framework is
well-suited for fast process dynamics. Charitopoulos et al. (2019) [103] employed a similar multiparametric
programming approach to include the planning decisions in their framework.

In the “bottom-up” approaches, on the other hand, incorporating the economic objectives in the plant
control structures has been perceived as the key for seamless integration of scheduling and control. For this
purpose, MPC formulations provide the flexibility to account for a spectrum of objectives in the control
level due to their optimization-based structures. Loeblein and Perkins (1999) [104] presented an economic
analysis of unconstrained MPC scheme operating under constrained systems. The authors determined the
most cost-effective model predictive regulatory control structure by using the back-off approach to satisfy
the constraints. Zanin et al. (2002) [105] addressed the discrepancy between the real-time optimization
(RTO) and control layers by incorporating the economic optimization problem in the controller and feeding
the same piece of information in both layers. The proposed formulation diminishes the discrepancy
between the decision layers to yield more economical operations, but the resulting control scheme does
not guarantee the stability of the process for the entirety of operations. Rawlings and Amrit (2009) [106]
developed asymptotic stability criteria by formulating the so-called “economic MPC” (or EMPC), where
the objective function of the MPC is designed to minimize the operational costs instead of maintaining the
steady state of the process. This approach aims to replace the conventional two-layer structure with RTO
and dynamic regulatory control by a single control layer, where the economic optimization and process
regulation are conducted simultaneously. Amrit et al. (2011) [107] further extended the stability criteria
by (i) imposing a region constraint on the terminal state instead of a point constraint, and (ii) adding a
penalty on the terminal state to the regulator cost.
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Similar to the monolithic “top-down” scheduling and control approach, EMPC has been shown
to be too complex to be solved in the control time steps. This limitation has led the researchers to
develop decomposition algorithms for faster computational times. Würth et al. (2011) [108] proposed
a decomposition framework for the single layer dynamic RTO formulation, where the slow trends
and process uncertainty is handled in the upper layer, while the lower layer accounts for the fast
disturbances acting on the process. Ellis and Christofides (2014) [109] focused on selecting a suitable input
configuration for such two-layered dynamic RTO structures such that the asymptotic stability is guaranteed.
Jamaludin and Swartz (2017) [110] and Li and Swartz (2019) [111] employed a convex MPC problem in
the lower level regulatory control, which enabled its exact substitution with KKT optimality conditions.
Simkoff and Baldea (2019) [112] used the same substitution strategy on a production scheduling problem.

Design optimization accounting for the scheduling and control decisions with closed-loop
implementation is relatively recent in the literature. Patil et al. (2015) [3] modeled the product transitions
in design optimization, while maintaining the stability of the closed-loop system governed by a PI
control scheme. The authors formulated an MINLP similar to Equation (6) with the contribution of the
criterion, eig(Az

i (xlin)) < 0, which enforces the stability of the linearized states for all products i in a
multiproduct unit under all critical scenarios z. Due to the linearization of the controllers around the
operating point, this approach requires repetitive identification of the states at every optimization iteration.
Koller and Ricardez-Sandoval (2017) [4] improved this approach by applying orthogonal collocation on
finite elements on the integrated problem, and Koller et al. (2018) [5] employed the back-off method to
satisfy the constraints under uncertainty by using Monte Carlo sampling techniques to determine the
back-off terms.

Recently, Burnak et al. (2019) [6] introduced a multiparametric programming-based theory and
framework for the integration of process design, scheduling, and control. The authors derived offline
design dependent control and scheduling schemes that can be incorporated in a MIDO formulation in a
multi-level fashion, as presented by Equation (10).

min
u,s,des

∫ τ

0
C(x(t), y(t), u(t), s(t), des, d(t))dt

s.t. ẋ(t) = f (x(t), y(t), u(t), s(t), des, d(t), t)

y ≤ y(t) = g(x(t), y(t), u(t), s(t), des, d(t), t) ≤ y
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y
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θs ≤ θs = [xT
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c ∑
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y
tc
≤ ytc = Dtc xtc + Etc utc + Ftc dtc ≤ ytc

utc ≤ utc ≤ utc , dtc ≤ dtc ≤ dtc

θc ≤ θc = [xT
tc=0, yT

tc=0, dtc , des]T ≤ θc

(10)
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where s and u denote the scheduling and control decisions, respectively. Note that the proposed
formulation postulates explicit expressions for the scheduling and control strategies as functions of
a set of parameters, θ, which includes the design of the process. The design dependence of the operational
strategies allows for their direct integration in the MIDO formulation. The postulated formulation has
two main benefits, (i) due to the explicit form of the follower problems, the multi-level MIDO problem
is reduced to a single level, and (ii) only the design variables are left as the degrees of freedom of the
problem, since the remaining are determined as a function of the design.

5. Current Challenges and Future Directions

The PSE community has achieved unequivocally remarkable progress in realizing and
advancing the set goals of Professor Sargent on systematic design optimization in five
decades. Today, using design optimization tools to at least some extent has long become
the standard practice in many industries. Commercial modeling and simulation software tools
such as gPROMS (https://www.psenterprise.com/products/gproms) and Aspen Plus Dynamics
(https://www.aspentech.com/en/products/pages/aspen-plus-dynamics) have been featuring robust
and efficient solvers for dynamic optimization problems for a few years. Despite these milestones in PSE,
we still must make significant assumptions and simplifications regarding the operational decisions in
the process design phase, even though the impact of their interdependence on process economics and
operability has been articulated in numerous studies. Hence, the academia still needs to mature the
theoretical foundations and the applicability of unified design optimization approaches before it gains
wide industrial recognition. Here, we discuss some of the bottlenecks and potential directions to improve
the state-of-the-art for industrial practice.

5.1. The Need for an Industrial Benchmark Problem

As we have presented in this paper, there is a plethora of proposed modeling techniques and solution
approaches for the next generation unified design optimization problems. Therefore, it is clear that we
need a generally accepted benchmark problem, preferably in industrial scale, to validate the effectiveness
of proposed methodologies. The PSE community has benefited greatly from such standardized problems,
such as the famous Tennessee Eastman Process detailed by Downs and Vogel (1993) [113] for process
control studies. We believe that a well-defined problem will clarify the objectives in unified design
optimization and accelerate the research towards industrial expectations. The problem should describe at
least the following.

1. A high-fidelity model that describes the dynamics of the process. The model should feature appropriate
design variables to exhibit the dynamic consequences of scaling up/down the process. Furthermore,
considering the reduction in capital investment that the multipurpose and multiproduct operating
units provide, the process should comprise such units to examine the scheduling/design
and scheduling/control trade-offs. Recent research that consider process design, scheduling,
and closed-loop control problems simultaneously [3,5,6] have studied only a single processing unit,
which reflects a limited fraction of the overall benefit that the grand unification can provide.

2. Cost relations for investment, utility, and raw materials. A functional form of the investment cost with
respect to the capacity of the process is required to have standardized comparable results. Also, utility
costs and raw materials may vary significantly, which inevitably impacts the optimal scheduling
decisions. For instance, grid electricity costs are known to exhibit considerable differences during
the day and night times. Thus, operational loads in energy intensive processes may fluctuate heavily.
The impact of such changes in operating levels on design and control decisions were discussed
in Section 3.
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3. Product demand and availability of the utility, raw materials, and operating units over a time horizon. Production
allocation and timing is a key aspect of scheduling problem, which are heavily dictated by the product
demand and availability of resources. However, it is not a trivial practice to estimate the future of these
quantities. Therefore, probability distributions of these components will be beneficial to determine
their expected values, while being able to take into account their worst-case scenarios.

5.2. Robust Advanced Control and Scheduling Strategies

Incorporation of advanced control schemes seamlessly in the design optimization problem
requires the controller to capture the dynamics of the process for the entire range of design variables.
Burnak et al. (2019) [6] attempted to approximately model the design configuration as a right-hand
uncertainty in the constraint set, validated by closed-loop simulations and closed-loop MIDO problems.
However, the design variables impose uncertainty in the left-hand side of the constraints, as well as the
nonlinear and bilinear terms in the objective function. Therefore, robust control strategies need to be
developed for accurate predictions of future states in the control level prior to the realization of the design,
and to guarantee the stability of the closed-loop operations in simultaneous approaches.

Analogously, scheduling schemes should be robustified in the design optimization to minimize the
rescheduling due to unexpected disruptive events, such as unit failure, drastic changes in product demand
rate and raw material availability. Excluding these events in the scheduling scheme may result in steep
changes in the target operation, and thus unattainable set points for the controller.

5.3. Considering Flowsheet Optimization, Process Intensification, and Modular Design Opportunities

Optimization-based plant design techniques have been used and developed for more than four
decades [114,115]. These techniques postulate “superstructures” that systematically simulate and compare
every combination of flowsheet possibility to determine the optimal process. More recently, superstructures
have been formulated at the phenomena level to capture the fundamental relations between the mass
and energy, which in turn yields intensified processes [116–122]. Such intensified processes are expected
to deliver significantly increased operational efficiency and decreased unit volumes, making them very
attractive options both in academia and industry [123]. This rapidly growing interest in intensified
processes is one of the most pronounced directions that the PSE community has been taking. Therefore,
studying these intensified processes in the context of unified design optimization will attract a wider
audience from the industry. Clearly, modeling the spatial (synthesis/intensification) and temporal
(scheduling/control) decisions simultaneously in a single problem formulation will capture even more
synergistic interactions, which will increase the process profitability.

Furthermore, the researchers studying process intensification can benefit from the tools and
methodologies on unification of design, scheduling, and control. Baldea (2015) [124] reported a theoretical
justification for the loss of control degrees of freedom due to process intensification, which poses a
significant limitation on intensification activities. Tian and Pistikopoulos (2019) [125] and Dias and
Ierapetritou (2019) [126] discuss the limitations on the operability of such intensified systems and potential
directions to overcome these limitations in their excellent review papers. The researchers on process
intensification technologies can adopt the techniques, ranging from steady-state and dynamic flexibility to
integration of scheduling and control decisions, in order to address the operability issues.

5.4. Theoretical and Algorithmic Developments in MIDO

The most limiting bottleneck of the simultaneous approaches is the size of the integrated
MIDO problems. The time component of the problem significantly increases the computational
complexity, yielding infinitely many NP-hard problems to acquire an optimal solution profile. However,
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tailored algorithms can be developed by using the special structure of such integrated problems.
For instance, the open loop design optimization problem is relatively simpler than the integrated MIDO,
and constitutes a lower bound on the optimal solution of the overall problem. Such properties can
be exploited in decomposing the MIDO into subproblems to significantly reduce the search space for
faster algorithms.

5.5. Software Development

Despite the theoretical and practical advances in the unified design problem among the academia,
there is no commercially available platform or a software prototype. Such a tool will make the integrated
approaches more accessible to the process designers in industry who are not necessarily experts on process
control and scheduling, and it will attract more researchers from different disciplines and backgrounds.
Pistikopoulos et al. (2015) [127] introduced the PARametric Optimization & Control (PAROC) framework
to design explicit controllers based on high-fidelity models, which can be a viable option to address the
grand unification challenge [6,84,102,128,129]. However, it is clear that more progress is needed to engage
a wider audience.
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Abstract: Scheduling is a major component for the efficient operation of the process industries.
Especially in the current competitive globalized market, scheduling is of vital importance to most
industries, since profit margins are miniscule. Prof. Sargent was one of the first to acknowledge this.
His breakthrough contributions paved the way to other researchers to develop optimization-based
methods that can address a plethora of process scheduling problems. Despite the plethora of
works published by the scientific community, the practical implementation of optimization-based
scheduling in industrial real-life applications is limited. In most industries, the optimization of
production scheduling is seen as an extremely complex task and most schedulers prefer the use of
a simulation-based software or manual decision, which result to suboptimal solutions. This work
presents a comprehensive review of the theoretical concepts that emerged in the last 30 years.
Moreover, an overview of the contributions that address real-life industrial case studies of process
scheduling is illustrated. Finally, the major reasons that impede the application of optimization-based
scheduling are critically analyzed and possible remedies are discussed.

Keywords: process scheduling; optimization; process system engineering; mixed-integer
programming

1. Introduction

Scheduling is concerned with the allocation of scarce resources among competing activities over
time. It is a decision-making process aiming to optimize one or more objectives by taking into account
the processes taking place and their interactions with the environment. Scheduling problems exist in
many manufacturing and production systems, in transportation and distribution of people and goods,
and in other types of industries. The three elements which need to be mapped out are time, tasks and
resources: The time at which the tasks have to be performed needs to be optimized considering the
availability and restrictions on the required resources. The resources may include processing, material
storage and transportation equipment, manpower, utilities (e.g., steam, electricity), any supplementary
equipment and so on. The tasks typically include processing operations (e.g., reaction, separation,
blending, packaging) as well as other activities like transportation, cleaning in place, changeovers, etc.
Both external and internal elements of the production need to be considered. The external element
originates from the need to co-ordinate manufacturing and inventory levels based on a given demand,
as well as arrival time of raw materials and even maintenance activities. The internal element considers
the execution of tasks in an appropriate sequence and time, while taking into account all external
considerations and resource availabilities. Overall, the sequencing and timing of tasks over time and
the assignment of appropriate resources to the tasks must be performed in an efficient manner, that
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will, as far as possible, optimize an objective. Typical objectives include the minimization of cost or
maximization of profit, the maximization of throughput, the minimization of tardy jobs, etc.

Flexible multipurpose plants are able to produce a wide range of different products using a
variety of production routes. This characteristic makes such plants particularly effective for the
manufacture of classes of products that exhibit a large degree of diversity and which are subject to
fast-varying demands. Due to their inherent flexibility, the scheduling of such plants is a problem
of high complexity. Compared to other parts of the supply chain management (e.g., distribution
management and inventory control), the production scheduling is often by far the most computationally
demanding part. The most general “multipurpose” plants can be viewed as collections of production
resources (e.g., raw materials, processing and storage equipment, utilities, manpower) shared by a
number of processing operations manufacturing a number of products over a given time horizon.
The process may involve intermediates shared among two or more products, recycles of unconverted
material, and multiple routes to the same end product. Single or multiple stage multi-product plants
are thus special cases of multipurpose plants.

Roger Sargent was one of the first researchers in chemical engineering who foresaw the value of,
and need for optimization in the design, control, and operation of process systems. One of the major
steps in his research was in the area of multipurpose batch and continuous process scheduling, where
the introduction of the state-task network (STN) concept was a major breakthrough. This generic
representation allowed researchers to efficiently address arbitrary configurations of recipe-based
batch operations. The major novelty was that equipment was not preassigned, like in previous
contributions [1]. The utilization of the STN representations for the production scheduling problem
resulted to a discrete time mixed-integer linear programming (MILP) model. Despite its novelty,
that paper was rejected twice, since at that time MILP algorithms were considered inefficient and
incapable of solving large-scale problems, which of course has changed drastically over the last
decades [2]. Furthermore, progress with the STN modelling approach was also due to the improved
formulation proposed by Nilay Shah in which big-M constraints were replaced by fewer and tighter
sets of constraints [3].

An indicative example of the impact of Sargent’s research work in the process scheduling area is
his paper, “A General Algorithm for Short-Term Scheduling of Batch-Operations. 1. MILP Formulation”
by E. Kondili, C. C. Pantelides, and R. W. H. Sargent, Computers & Chemical Engineering, 17, 211–227
(1993). This is one of the most widely cited contributions in the PSE (Process Systems Engineering)
community (over 800 citations in SCOPUS as of April 2019), and has been recognized by researchers all
over the world as the major framework for mathematically modeling batch and continuous operations
through the state-task-network representation.

The formulation of Kondili et al. [4] relies on binary variables that specify whether a task starts in
an equipment at the start of each time period. Other key variables denote the amount of material in
each state, and the amount of utility required for processing tasks over each time interval. Equipment
and utility usage constraints as well as material balances and capacity constraints are considered in the
formulation. A common, discrete time grid is employed to capture all plant resource utilizations in a
straightforward manner. This approach was hindered in its ability to handle large problems mainly
due to the limitations of discrete-time approaches that require relatively large numbers of grid points,
thus resulting to large-sized models.

Inspired by the work of Kondili et al. [1] a number of contributions appeared in the literature
utilizing the STN representation and the overall mathematical programming framework to address
general classes of batch and continuous process scheduling problems. Shah et al. [3] was able to
generate the smallest possible integrality gap for this type of formulation by efficiently modifying the
allocation constraints. They additionally proposed a tailored branch-and-bound solution procedure
that uses a significantly smaller LP (Linear Programming) relaxation in order to further improve
integrality at each node. In the same research, authors addressed the cyclic scheduling problem, where
they simultaneously derived optimal schedules as well as the frequency at which they should be
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repeated [5]. Papageorgiou and Pantelides [6,7] further expanded this work to cover the case of multiple
campaigns. Yee and Shah [8,9] also considered variable elimination to improve the performance of
general discrete-time scheduling models. More specifically, they recognized that only about 5–15% of
the variables are active at the integer solution, and it would be beneficial to identify and eliminate
as far as possible inactive variables prior to solving the scheduling problem. To achieve that, they
introduce an LP-based heuristic, alongside a flexibility and sequence reduction technique and a formal
branch-and-price method.

Pantelides et al. [10] presented an STN-based approach for the scheduling problem of pipeless
plants, where material is transferred between processing stations in vessels, thus requiring the
simultaneous scheduling of the movement and processing operations. Pantelides [11] criticized the
STN, arguing that despite its advantages, it inherently suffers from a number of drawbacks. For example,
the fact that each equipment if treated as a distinct entity that results to solution degeneracy in case of
multiple equivalent items exist. Therefore, he proposed a differentiated representation, the resource-task
network (RTN), which is based on the equable description of all resources [11]. Contrary to the STN
representation, where different states are consumed or produced by a task utilizing the equipment
and the utilities, in this approach even the items of equipment or the plants’ utilities are considered
as resources. Production units are assumed to be consumed at the start and produced at the end
of a task. Furthermore, different equipment conditions (e.g., “clean” or “dirty”) can be treated as
separate resources, with different activities (e.g., “processing” or “cleaning”) consuming and generating
them—this allows for a simple representation of changeovers. Pantelides illustrated that the integrality
gap of RTN formulations is never worse than the most efficient form of STN formulation, and the
ability to adapt additional problem features in a straightforward way, made it a favorable framework
for future research.

The review above has mainly focused on the development of discrete-time models. As pointed
out by Schilling [12], while discrete-time models have been capable to handle numerous
industrially-relevant problems (see, e.g., [13]), they are characterized by a number of inherent
drawbacks:

1. A large number of time periods is required to capture all significant events and extract a high
quality solution—this usually results to extremely large models;

2. Operations in which the processing time is dependent on the batch size are difficult to be modelled;
3. The modelling of continuous and semi-continuous operations must be approximately modelled.

In order to address these issues a number of researchers have attempted to develop scheduling
models that employ a continuous representation of time. As a result, fewer grid points are required
leading to fewer variables and smaller model sizes.

Dimitriadis et al. [14] describe two rolling horizon procedures for medium-term planning and
scheduling, based on the more general RTN formulation. They take advantage of the unique properties
of Wilkinson et al. [15] and aggregation in this context. In the forwards rolling horizon algorithm,
the horizon is divided into two-time blocks. The first is relatively short and modelled in detail, while
the second is relatively long and modelled using the aggregate scheduling formulation. The solution
of this MILP gives rise to a detailed solution for the first period and an aggregate one for the second.
Dimitriadis et al. [14] recognized that, rather than fix all the variables in the first period at the next
iteration of the procedure, it makes sense only to fix the complicating integer variables and leave the
continuous ones free for further optimization. At the next iteration, there are three time blocks, the first
one with fixed integer variables, the second one modelled in detail and the third (the remainder of the
horizon) modelled at an aggregate level. The algorithm proceeds until a detailed solution is obtained
for the entire horizon.

As noted in the excellent review by Shah [16] a common conclusion in most PSE contributions is
that one of the most important advances in the area of process scheduling over the past 25 years has been
the increasing usage of rigorous mathematical programming approaches. In addition, the importance
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of the establishment of frameworks for process scheduling which can be used for the description of a
wide variety of processes and for the development of general solution algorithms has been emphasized.

The contributions described above, inspired many researchers from the PSE community to
further investigate the production scheduling problem. Numerous novel approaches have been
proposed by different research teams, providing novel efficient models and solution techniques.
Network representations [17], event-based formulations [18] and precedence-based models [19]
have been developed. Furthermore, a high interest has been expressed for real-life industrial study
cases and problem specific solutions have been generated for real industrial facilities. Moreover,
the ever-increasing computational power, allowed the handling of larger problem instances. However,
there is still a significant gap between the academic research and the industrial practice, as only a few
contributions have been successfully applied in real-life scheduling problems.

The rest of this paper is organized as follows. In Section 2, a detailed analysis of the theoretical
concepts of optimization-based process scheduling is presented, including a classification of the
different mathematical models, as well as a characterization of the problems they are able to address.
Section 3 illustrates a systematic review on the application of optimization methods in real-life industrial
scheduling problems in the process industries. The main modelling features and the industrial case
study characteristics are summarized. In Section 4, we highlight the major challenges in applying
optimization methods in real industrial problems and discuss potential remedies to close the existing
gap between theoretical advancements and practical implementations. Finally, Section 5, draws up the
main concluding remarks of this work

2. Theoretical Aspects of Optimization-Based Process Scheduling

As noted by Gabow [20], all scheduling problems are NP-hard, meaning that no known solution
algorithms exist that are of polynomial complexity in the problem size. Therefore, the development of
efficient optimization-based solution strategies for production scheduling has been a great challenge to
the research community. As a result, a significant contribution emerged in the last decades aiming to
develop either tailored algorithms for specific problem instances or efficient generic methods.

2.1. Classification of Scheduling Problems

Main goal of all scheduling problems is to propose a schedule that reaches the production targets,
while respecting all operational, logistical and technical constraints, and achieves a certain objective,
such as the maximization of profit, the minimization of the total cost, earliness and/or tardiness,
and production makespan.

The general scheduling problem seeks to optimally answer the following questions (Figure 1):

• What tasks must be executed to satisfy the given demand (batching/lot-sizing)?
• How should the given resources be utilized (task-resource assignment)?
• In what order are batches/lots processed (sequencing and/or timing)?

Note that depending on the specifics of the problem in hand, some of these decisions are
not considered in the scheduling level. When developing a model for the optimal scheduling all
characteristics of the production must be considered to ensure the feasibility of the proposed schedules.
However, the production needs to be portrayed in an abstract way to reduce the computational
complexity of the problem. This is even more crucial when dealing with real-life industrial applications,
which are typically characterized by complex structures, ever-expanding product portfolios and a huge
number of constraints that must be considered.
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Figure 1. Decisions of production scheduling in the process industries.

Traditionally, scheduling problems are defined in terms of a triplet α/β/γ [21]. The α field describes
the production environment, while the β field denotes the special characteristics and production
constraints. Finally, field γ describes the problem’s objective, e.g., minimization of cost. The entries of
this triplet can be extremely diverse between process industries, since a great variety of aspects needs
to be considered when developing optimization models for process scheduling. As a result, many
classes of scheduling problems exist. However, the general production scheduling problem can be
summarized as follows:

• Facility data; e.g., processing stages and units, storage vessels, processing rates, unit to
task compatibility.

• Production targets that need to be satisfied.
• Availability of raw materials and resource limitations; e.g., maintenance of units, availability

of utilities.

The first term denotes the characteristics of the facility and can be considered static input to the
scheduling problem, since it remains the same for all problem instances of a facility, unless any redesign
studies are considered. The remaining terms are inputs from other decision-making processes in the
manufacturing environment. Scheduling is not a standalone problem; it is part of the manufacturing
supply chain and has strong connections to other planning functions. Production targets and materials
availability come from the planning level, while resource availability is an output of the control level,
thus there is a significant flow of information from other planning functions to scheduling (Figure 2).

Figure 2. Information flow towards scheduling level.

Scheduling is a critical decision-making process in all process industries, from the chemical and
pharmaceutical to the food and beverage and the petrochemical sector. Besides the aforementioned
general description of scheduling, industrial applications display strong differences to each other, due
to the facility itself, the production policy or market and business considerations. First step when
approaching an industrial scheduling problem is to identify its problem specifics, in order to accurately
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portray the problem in hand. Moreover, a strong correlation between different classes of scheduling
problems and the available mathematical modelling frameworks exist. The scheduling problems found
in process industries are classified in terms of: (a) The production facility, (b) the interaction with the
rest of the production supply chain, and (c) the specific processing characteristics and constraints.
A short description of these terms follows, the interested reader can find details in the excellent reviews
of Maravelias [22] and Harjunkoski et al. [23].

2.1.1. The Production Facility

At this point we should note that the following analysis focuses on production scheduling.
However, many scheduling problems in the process industries target to the optimization of material
transfer operations rather than production operations. Characteristic examples are crude oil and
pipeline scheduling. With this in mind, the production facility is classified based on the type of process
(batch/continuous) and the production environment (sequential or network).

Process Type

The type of production processes found in the process industries can be defined as continuous
or batch. In the continuous mode, units are continuously fed and yield constant flow. Continuous
processes are appropriate for mass production of similar products, since they can achieve consistency
of product quality, while manufacturing costs are reduced, due to economies of scale. The main
characteristic of batch processes is that all components are completed at a unit before they continue
to the next one. Batch production is advantageous for production of low-volume high-added value
products, or for production of seasonal demands which are difficult to forecast. One of the main
advantages of batch production is the reduced initial capital investment, therefore, it is especially
profitable for small business or trial runs of new facilities. From a scheduling point-of-view, both batch
and continuous processes require the same type of decisions. Tasks can be characterized as batches or
lots. Assignment (batches/lots to units), sequencing (between batches/lots) and timing (of batches/lots)
decisions are identical, while selection and sizing of tasks (batching/lot-sizing) display more degrees of
freedom in continuous processes. Capacity restrictions in continuous processes refer to processing
rates and processing times and are usually unrestricted, thus a given order can be satisfied in a single
lot (campaign) or multiple shorter ones. On the other hand, batch production is capacitated by the
amount of processed material that a unit can process, thus affecting the number and size of batches to
be scheduled. Another difference lies in the way inventory levels are affected. At this point, it is worth
mentioning that many facilities are characterized by more than one type of processes. A characteristic
example is the “make-and-pack” type of production, where several batch or continuous processing
stages are followed by a packing (continuous) stage. This production flow is very common in the
food and beverage and the consumer goods industries and requires the consideration of both the
characteristics of batch and continuous production processes [24,25].

Production Environment

Production facilities can be classified as sequential or network based on the material handling
restrictions. In sequential processing, each batch/lot follows a sequence of stages based on a specific
recipe. Throughout its recipe a batch retains its identity, since it cannot be mixed with other batches
or split into multiple downstream batches. Network facilities are characterized as more general and
complex and have usually an arbitrary topology. Moreover, no restrictions exist for the handling
of input and output materials, thus mixing and splitting operations are included. Based on their
topological characteristics, sequential facilities can be further categorized into the following:

• Single stage: Production facility that consists of just one processing stage, which may consist of a
single unit or multiple parallel units. The product to unit compatibility may be fixed (batch can be
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processed in a single unit) or flexible (batch can be processed in multiple units), but in all cases
each batch must be processed in a single unit.

• Multistage: Each batch must be processed in more than one processing stages, each consisting of a
single unit or multiple parallel units. The multistage environment can be further categorized into
multiproduct and multipurpose, depending on the imposed routing restrictions. Multiproduct
facilities are equivalent to flowshop environments in discrete manufacturing, where all products
go through the same sequence of processing stages. In contrast, a facility is characterized as
multipurpose when the routings are product-specific, or when a processing unit belongs to different
processing stages depending on the product, thus being equivalent to jobshop environments in
discrete manufacturing.

Early studies mainly focused on scheduling problems that are characterized as sequential [26,27].
Process industries with a sequential environment are very similar to discrete manufacturing, from a
scheduling point-of-view. Sequential facilities can be easily modelled in terms of batches and production
stages, like jobs and operations in discrete manufacturing. However, this does not hold true for network
facilities, thus they cannot be modelled in a similar straightforward manner. Kondili et al. [1] followed
by Pantelides [11] were the first to propose general representations of network facilities (STN, RTN),
allowing the development of optimization models for scheduling problems of such complex structures.
A classification of the production environments for process industries is illustrated in Figure 3.

Figure 3. Categorization of scheduling problems based on the production environment.

2.1.2. Interaction with Other Planning Functions

Scheduling is strongly interconnected to the rest of the planning functions of the manufacturing
supply chain; therefore, it cannot be approached as a standalone problem. The interactions between
scheduling and the other decision making processes in a manufacturing environment must be accounted
for, since they determine significant aspects of the scheduling problem; in particular: (a) the input
parameters of the scheduling problem, (b) the decisions to be optimized by the scheduler, (c) the type
of scheduling problem to be solved and (d) the problem’s objective.

Planning and scheduling are two interdependent, however, distinct decision-making processes.
Their differences lie in the level of detail of the used models, the time horizon and the problem’s
objective. In contrast to production scheduling, aggregate models are usually employed in planning,
in order to specify the required produced amounts and storage levels that are able to satisfy a given
demand at the minimum cost. Moreover, the planning horizon is much larger as it spans from weeks
to months. The solution of planning determines the input of the scheduling problem in terms of
production targets like order sizes, due dates and release dates. Additionally, batching/lot-sizing
decisions can be made in the planning level, thus affecting the type of decisions that needs to be made
in the scheduling level. In that case batching/lot-sizing decisions are pre-fixed and the scheduling
decisions are narrowed down to just unit to task assignment, sequencing and timing of tasks. There is
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also an important flow of information between scheduling and control; more specifically, the optimized
schedule provides the reference points to the control level while resource availability is in turn provided
to the scheduling level. Most studies until the early 2000s, approach production scheduling as a
standalone problem. However, the scientific community acknowledged the importance of integrating
the decision-making process of the various functions (planning, scheduling and control) that comprise
the supply chain of a process industry [28]. The integrated planning and scheduling problem has been
studied in multiple works in the last decades [29,30] and also implemented in industrial case studies
with great success [31]. In contrast the integrated scheduling and control and integrated planning,
scheduling and control problems have been only recently examined [32,33].

The demand volume and variability defined by the market environment in which an enterprise
operates plays a pivotal role, since it specifies the type of the scheduling problem to be solved. On the
one hand, high-volume production with relative constant demand based on forecasting favors a
“make-to-stock” production policy, while the low-volume production with irregular demand follows
a “make-to-order” policy. In the former the generated schedule is repeated periodically (“cyclic
scheduling”), while in the latter a short-term schedule must be frequently generated. The choice of a
meaningful objective for any production scheduling problem is a challenging task due to the numerous
competing goals. The production characteristic that usually imposes the objective function is the
relation between the capacity of the plant and the demand to be satisfied. In particular, when the
demand overcomes the capacity of the plant, then objectives such as, the minimization of backlogs
or the maximization of throughput are favored. On the contrary, if the capacity is enough to satisfy
the demand, then the minimization of total cost is usually preferred as the overarching production
goal. However, the definition of the production scheduling objective also strongly depends on market
considerations and goals originating from other planning functions. For example, the maximization
of throughput cannot be a valid objective in a production that must be fixed to the amounts defined
in the planning level. It must be also noted that production scheduling is an inherently dynamic
process, so the objective can be adjusted at any time due to market-related reasons, e.g., new or changed
contracts or fluctuations in the demand.

2.1.3. Processing Characteristics and Constraints

Scheduling problems may refer to facilities that exhibit various special processing characteristics
and constraints. These aspects complicate the problem but must be considered, in order to ensure the
feasibility of the generated production schedules. In the next section we will shortly review some of
them and further details can be found in [34].

Resource considerations, aside from task-unit assignments and task-task sequences, are of great
importance. These may involve auxiliary units (e.g., storage vessels), utilities (e.g., steam and water)
and manpower. Resources are mainly classified into renewable (recover their capacity after being used
in a task, e.g., labor) and non-renewable (their capacity is not recovered after being consumed by a task,
e.g., raw materials). Renewable resources can be further classified into discrete (e.g., manpower) and
continuous (e.g., electricity, cooling water). Another important characteristic in process industries is
the handling of storage, which is usually referred to as the storage policy. Depending on the duration a
material can be stored, the storage policies are described as (i) unlimited intermediate storage (UIS),
(ii) non-intermediate storage (NIS), (iii) finite intermediate storage (FIS) and (iv) zero wait (ZW).
Setups are a critical factor in most processing facilities as they represent operations like re-tooling of
equipment, cleaning or transitions between steady states. They are associated with a specific downtime
that can be sequence-independent or sequence-dependent (changeovers) and a cost is induced to the
production process. To reduce the complexity associated with the consideration of setups, products are
categorized into families. In that case setups exist only between products of different families.

This classification illustrates the complexity of scheduling problems and the tremendous diversity
of aspects that must be accounted for when dealing with real industrial applications (Figure 4).
The inherent diversification of scheduling problems in the process industries hindered the initial efforts
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of the academic community to propose a unified general mathematical framework. Therefore, research
turned into the development of less general methods that can address industrial cases that share
similar characteristics. As a result, a multitude of efficient specialized methods for the optimization of
scheduling in the process industries have been proposed in the last 30 years.

Figure 4. Information extracted from problem characteristics.

2.2. Classification of Modelling Approaches

As mentioned in the previous subsection, scheduling problems in the process industries are
defined by extremely diverse features (e.g., production environment, processing characteristics etc.),
while different aspects need to be taken into account based on external parameters, like the market
environment in which the industry under study operates. Therefore, the initial attempts of proposing a
mathematical framework that would constitute a panacea to all scheduling problems, were unsuccessful
and soon solutions that take advantage of the problem-specific characteristics emerged. The struggle to
overcome the computational complexity associated with scheduling problems, gave rise to numerous
scheduling models. It should be noted that in this work we focus on optimization-based approaches,
more specifically, the models presented are mixed-integer programming (MIP) models. Nevertheless,
we should mention that an abundance of alternative solution approaches, e.g., constraint programming
models [35,36], heuristics [37] and metaheuristics [38], exist in the literature. These methods can
provide fast and feasible solutions, thus being a very attractive option for industrial case studies.
However, their superiority in terms of computational complexity comes with a cost, since optimality
of the generated schedules is not ensured. To combine the advantages of both optimization and
non-optimization approaches, hybrid methods have emerged that are able to provide near-optimal
solutions in low computational time [39].

The three main aspects that describe all optimization models for scheduling are: (i) The
optimization decisions to be made, (ii) the modelling elements and (iii) the representation of time
(Figure 5).
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Figure 5. Main aspects of models for optimal production scheduling.

2.2.1. Optimization Decisions

The optimization decisions are affected by the handling of batches/lots. As we underlined in
Section 2.1.2, batching decisions may be optimized in the planning level, thus be prefixed and be an
input to the scheduling problem. Even if this is not the case, the scheduler has the flexibility to decide
whether the batching decisions will be part of the optimization model. For example, the decision-maker
can heuristically specify the number and size of batches and then utilize an optimization approach for
the unit allocation, sequencing and timing decisions. Usually models for sequential environments
favor this two-step approach. In contrast, a monolithic approach, consisting of batching/lot-sizing, unit
assignment, sequencing and timing decisions, is used for network environments. Few recent works have
proposed a monolithic approach to deal with scheduling problems in sequential environments [40–42].
In some special cases, like in the single machine problems, only sequencing and timing decisions are
optimized, thus reducing the scheduling problem to a traditional travelling salesman problem.

2.2.2. Modelling Elements

According to the entity used to ensure the resource constraints on processing units, modelling
approaches are classified into two categories: Batch-based and material-based. In sequential
environments, where the identity of each batch remains the same throughout the processing stages,
batch-based approaches are used. On the contrary a material-based approach is favoured, when
dealing with network environments, where batches are mixed or split. It is important to mention that
the modelling elements used are tied to the optimization decisions. More specifically, in monolithic
approaches the scheduling problems are modelled using a material-based approach, while a batch-based
approach is followed, whenever the batching decisions are known a priori.

The modelling elements are strongly tied with the representation of the manufacturing process,
which is the core of every scheduling model. The goal of a successful representation is to translate the
real problem (orders, units, stages) into mathematical entities (variables, constraints) in an abstract way,
that will allow for the fast generation of optimal and feasible schedules. Even a simple manufacturing
process may consist of multiple operations, therefore, the use of a simplified representation is essential.
The oldest type of manufacturing process representation is utilized to model scheduling problems
of sequential production environment and is based on (i) processing stages, (ii) processing units
in each stage and (iii) batches or products (depending on whether batching decisions are prefixed
or not). The second type of representation emerged in the early 1990s from the novel works of
Kondili [1] and Pantelides [11], who introduced the STN and RTN, both based on the modelling of
materials, tasks, units and utilities. The STN represents manufacturing processes as a collection of
material states (feeds, intermediate final products) that are consumed or produced by tasks. The main
difference between STN and RTN is that in the latter states, units and utilities are represented
uniformly as resources that are produced and consumed by tasks. While originally introduced for
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scheduling problems in network environments, recent works have addressed problems in sequential
environments [43,44] using the RTN representation.

2.2.3. Time Representations

The most studied topic and the one that mostly differentiates optimization models for scheduling
is the representation of time. Depending on the way sequencing and timing of tasks are considered,
modelling approaches are categorized in two broad approaches, in particular precedence-based and
time-grid-based. Based on their type, precedence-based models are classified into general, immediate
and unit-specific general precedence models and time-grid-based into discrete and continuous.
Continuous-time formulation may employ single or multiple-time grids. Figure 6 illustrates the various
time representation approaches in optimization models for scheduling.

Figure 6. Categorization of modelling approaches based on time representation.

All precedence-based models consist of unit-task allocation and task-task sequencing
constraints [45]. The latter are expressed as precedence relationships between tasks processed
in the same unit, while the former ensure that each batch/lot is processed by exactly one unit in each
stage. Binary sequencing variables are introduced to enforce the precedence relationships and ensure
the generation of a feasible schedule (no processing of multiple tasks simultaneously in the same unit).
Another main characteristic of any precedence model is that the timing variables are not mapped
onto an external time reference, rather their exact values are specified within the scheduling horizon
based on the interactions (timing constraints) between pairs of batches/lots or between processing
stages of the same batch. Two types of precedence variables exist: (i) General, where precedence
relationships are established between all pairs of batches/lots and (ii) immediate, where they are
established only between consecutive pairs. General precedence models require fewer variables,
so they are more computationally efficient. However, these models do not identify subsequent tasks,
making it difficult to consider changeover costs and heuristics, such as pre-fixing or forbidding certain
processing sequences. To overcome this limitation, Kopanos et al. [39] proposed the unit-specific
general precedence approach that combines both general and immediate sequencing variables. In all
cases precedence-based models can provide high quality solutions with low computational cost, thus
being an attractive alternative when dealing with real-life industrial problems. One of the main
disadvantages of this approach is the quadratic increase of the size of the model with the number
of batches/products considered. The use of information such as product families or pre-fixing of
sequences mitigates this phenomenon and vastly improves the efficiency of the models [46].

Time-grid-based models enforce timing and sequencing constraints through the utilization of a
single or multiple time grids, onto which events (e.g., starting or completion of task) are mapped. A great
variety of time-grid-based approaches exist depending on the representation of events (time slots,
global periods, time points or events), which are classified into discrete and continuous. In discrete-time
models the time-grid is portioned into a pre-fixed number of global time periods of a known duration,
both of which need to be specified by the modeler. Most discrete formulations use a common time frame
for all shared resources. However, Velez and Maravelias [47] proposed a discrete model that employs
multiple time frames. One of the main challenges when setting up discrete models is the proper
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selection of the number of time periods that needs to be employed. A fine grid results to solutions of
higher quality but in cost of larger less computationally efficient models. An advantage of discrete-time
models is their capability of monitoring inventory and backlog levels, material balances, as well as the
availability and consumption of utilities without introducing nonlinearities. Moreover, time-dependent
utility-pricing and holding and backlog costs can be linearly modelled, while integration with higher
planning levels is straightforward [48]. Additionally, discrete-time formulations are superior to their
continuous counterparts in terms of solution quality [49]. Nevertheless, discrete formulations result
in very large, however tight, models, especially when small discretization of time is mandatory.
In continuous models, the horizon is subdivided into a fixed number of periods of variable length,
which is defined as part of the optimization procedure. Single, common and multiple, unit-specific
time frames have all been successfully employed to continuous-time models. Continuous formulations
can alleviate some of the computational issues associated with discrete-time models, since fewer time
periods, thus variables, are required for the representation of the same scheduling problem. However,
they are not necessarily more computationally efficient compared to their discrete counterparts. Finally,
it should be mentioned, that few models that utilize multiple ways of representing time have been
proposed, thus combining both the advantages of discrete- and continuous-time formulations [29,50].

2.3. Alternative MILP Models for Process Scheduling

We already illustrated a classification of the various scheduling problems as well as the main
modelling approaches that have been suggested in the last 30 years. A scheduling model is determined
by both externally specified (problem class) and user selected (modelling approach) factors. On the
one hand, the model should be suitable for the examined problem environment and the processing
specifics of the facility under study, and on the other, it should be developed in terms of the chosen
modelling approach’s characteristics. A given problem can be represented in multiple ways, however
there is a significant relationship between these two aspects. In this subsection we will demonstrate the
basic aspects of the mathematical models that have been proposed by the scientific community. More
specifically, we present an overview of the models based on the problems they are used for and we
analyse the basic constraints and variables of representative models. Further details on the different
mathematical models for production scheduling can be found in the excellent review of Méndez et al. [34].

2.3.1. Models for Network Production Environments

In network environments batches do not maintain their identity, since mixing and splitting of
batches is allowed. Therefore, the problem is presented utilizing either the STN or the RTN process
representation (batch-based approaches). Moreover, the complexity of the production arrangement,
with tasks consuming or producing multiple materials and materials being processed in different tasks
and units, requires the proper monitoring of material balances, status of units and utility and inventory
levels. This necessitates the utilization of a time-grid based approach.

A plethora of modelling formulation emerged after the introduction of the discrete STN and
RTN models. Reklaitis and Mockus [51] were the first to propose a continuous-time STN formulation.
A single common grid is used, in which the timing of the grid points (“event orders”) was determined
by the optimization. The model is an MINLP, which can be further simplified to a mixed integer
bilinear problem that is solved using an outer-approximation algorithm. Zhang and Sargent [52,53]
developed an RTN-based continuous time formulation that can address both batch and continuous
operations. The ensued MINLP model is solved using a local linearization procedure in combination
with a column generation algorithm.

One of the major drawbacks of the first models developed according to the continuous STN
and RTN mathematical frameworks was the large integrality gap. This deficiency was addressed by
Schilling and Pantelides [12,54]. They modified the formulation of Zhang and Sargent [53], simplifying
it and improving its general solution characteristics, while they developed a hybrid branch-and-bound
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solution method which branches in the space of the interval durations as well as in the space of the
integer variables.

Castro et al. [17] proposed a relaxation of Schilling’s formulation [12], allowing tasks to last
longer than the actual processing time. Consequently, their model is less degenerate and less CPU
time is required. Some of the co-authors further improved this formulation in [55], allowing the
optimization of continuous processes. A novel common-grid STN-continuous formulation was
introduced by Giannelos and Georgiadis [56]. They utilized a non-uniform time grid, that eliminates
any unnecessary time events, thus leading to small MILP models. Maravelias and Grossmann [57]
suggested a general continuous STN-model that accounts for various processing characteristics such as
different storage policies, shared storage, changeover times and variable batch sizes. The contribution
of Sundaramoorthy and Karimi [58] is another well-known continuous MILP model that introduced
the idea of several balances (resource, time, masses etc.).

The concept of multiple unit-specific time grids was first proposed by Ierapetritou and Floudas [18].
This approach decouples the task events from the unit events, thus less slots are required. As a result,
smaller MILP models are generated, leading to a significant decrease in computational effort. Multiple
works have been proposed ever since, improving the computational characteristics and expanding the
scope of the initial formulation [59–61].

Velez and Maravelias [47] were the first to introduce the concept of multiple, non-uniform discrete
time grids. The multiple grids can be unit-, task- and material-specific. The same authors extended
this work in [62] with the consideration of general resources and characteristics like changeovers and
intermediate storages. It should be noted that while these formulations were initially proposed for
network facilities, they can be also used for the scheduling of sequential environments.

We will now focus our attention on two representative scheduling models for network
environments. First, we will consider the continuous common-grid model by Castro et al. [55].
Here an RTN representation is employed, while the model utilizes a common grid to express the timing
constraints. More specifically, a set of global time points T is predefined throughout the scheduling
horizon. The major decisions are expressed through the binary allocation variable Ni,t,t′ that is enabled
whenever a task starts at time point t and is completed at or before point t′. The rest of the decision
variables are continuous and express the exact time that corresponds to each time point Tt, the size of a
batch/lot of a task ξi,t and the amount of resource being consumed at each time point Rr,t. The major
constraints of the model can be summarized as follows:

Tt′ − Tt ≥
∑
i∈Ir

(αi ·Ni,t,t′ + βi · ξi,t,t′), ∀r ∈ RJ, t ∈ T, t′ ∈ T, t ≤ t′ (1)

Tt′ − Tt ≤ H ·
⎛⎜⎜⎜⎜⎜⎜⎝1−

∑
i∈Ir

Ni,t,t′

⎞⎟⎟⎟⎟⎟⎟⎠+
∑
i∈Ir

(
αi ·Ni,t,t′ + βi · ξi,t,t′

)
, ∀r ∈ RJ, t ∈ T, t′ ∈ T, t ≤ t′ (2)

Vmin
i ·Ni,t,t′ ≤ ξi,t,t′ ≤ Vmax

i ·Ni,t,t′, ∀i ∈ I, t ∈ T, t′ ∈ T, t ≤ t′ (3)

Vmin
i ·Ni,t,t+1 ≤

∑
r∈RST

i

Rr,t ≤Vmax
i ·Ni,t,t+1, ∀i ∈ I, t ∈ T (4)

Vmin
i ·Ni,t−1,t ≤

∑
r∈RST

i

Rr,t ≤Vmax
i ·Ni,t−1,t, ∀i ∈ I, t ∈ T (5)

Rmin
r ≤ Rr,t ≤ Rmax

r ∀r ∈ R, t ∈ T (6)
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Rr,t = Rr,t−1 +
∑
i∈Ir

[ ∑
t′<t

(μ
p
r,i ·Ni,t,t′ + vp

r,i · ξi,t,t′) +
∑

t′>t
μc

r,i ·Ni,t,t′ + vc
r,i · ξi,t,t′

]
+∑

i∈IST

(
μ

p
r,i ·Ni,t−1,t + μ

c
r,i ·Ni,t,t+1

)
, ∀r ∈ R, t ∈ T, t > 1

(7)

Assuming that no more than one task can be executed in each unit at a certain time (unary resource),
constraint sets (1) and (2) guarantee that the time difference between any pair of time points t and
t’ must be at least equal to the processing time of all tasks starting and finishing at those points.
Furthermore, the batch/lot size is bounded by the unit capacity (3), while constraints (4) and (5) impose
the storage constraints. They ensure that in case of a resource excess at time t, the corresponding
storage task has to take place for both t − 1 and t. Finally, constraint (7) guarantees that the resource
balance considerations are not violated.

Next, we present the model of Janak et al. [60]. In contrast to the previous model, an
STN-representation is chosen. Tasks are mapped onto multiple time grids through the concept
of event points. These are time instances located along the time axis of each unit that represent the
starting of a task. Due to the incorporation of a unit-specific grid, fewer time points are required
compared to common-grid formulations, thus the number of binary variables is significantly reduced.
The main variables of the model are Wi,t, Ws

i,t and W f
i,t denoting that a task i is active, started or finished

at event point t, accordingly. This formulation is one of the most general of the ones that employ a
unit-specific grid, since it has the ability to account for various storage policies, batch splitting and
mixing, changeovers and variable batch sizes. As a result, it involves a huge number of constraints,
hence only the major ones will be presented here.∑

i∈Ij

Wi,t ≤ 1, ∀ j ∈ J, t ∈ T (8)

Wi,t =
∑
t′≤t

Ws
i,t′ −

∑
t′≤t

W f
i,t′, ∀i ∈ I, t ∈ T (9)

∑
t∈T

Ws
i,t =

∑
t∈T

W f
i,t, ∀i ∈ I (10)

Bs
i, j,t ≤ Bi, j,t, ∀i ∈ I, j ∈ Ji, t ∈ T (11)

Bs
i, j,t ≤ Vmax

i ·Ws
i,t, ∀i ∈ I, j ∈ Ji, t ∈ T (12)

Bs
i, j,t ≥ Bi, j,t −Vmax

i ·
(
1−Ws

i,t

)
, ∀i ∈ I, j ∈ Ji, t ∈ T (13)

Ss,t = Ss,t−1 +
∑
i∈IP

s

ρi,s · B f
i, j,t−1 +

∑
iST∈IST

s

BST
iST ,t−1

−
∑
i∈IC

s

ρi,s · B f
i, j,t +

∑
iST∈IST

s

BST
iST ,t

, ∀s ∈ S, t ∈ T, t > 1 (14)

T f
i, j,t ≥ Ts

i, j,t ∀i ∈ I, j ∈ Ji, t ∈ T (15)

T f
i, j,t ≤ Ts

i, j,t + H ·Wi,t, ∀i ∈ I, j ∈ Ji, t ∈ T (16)

Ts
i, j,t ≥ T f

i′, j,t−1 + H · (1−Wi′,t−1), ∀ j ∈ J, i ∈ Ij, i′ ∈ Ij, i � i′, t ∈ T, t > 1 (17)

Ts
i, j,t ≥ T f

i′, j′,t−1 + H ·
(
1−W f

i′,t−1

)
, ∀s ∈ S, i ∈ Ic

s , i′ ∈ Ip
s , j ∈ J,

j ∈ Ji, j′ ∈ Ji′, j � j′, t ∈ T, t > 1
(18)

The major assignment constraints (8)–(10) impose that: (i) At most, one task can be executed by
unit j at time t (unary resource), (ii) the assignment variable Wi,t will be active only if the task i has
started but not finished at or before time t and (iii) each task i must start and finish within the given
scheduling horizon. Batch-size considerations are employed by constraints (11)–(13). In particular,
they bound the amount of material starting processing at time t, Bs

i, j,t
according to the unit capacity
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and relate it to the amount undertaking task i in unit j at time t, Bi, j,t. Constraint set (14) enforces the
material balances, stating that the amount of state s at time t, Ss,t, is increased by the amount produced
and stored at time t − 1 and decreased by the amount consumed or stored at time t. The timing
constraints (15) and (16) relate the starting Ts

i, j,t
and completion T f

i, j,t times of a task i in unit j and at time
t. More specifically, they impose that the completion time must be larger or equal to the starting time,
and that if the task i is not processed in unit j at time t, the completion time is set equal to the starting
time. Constraint (17) ensures that if task i finishes at time t − 1 and task i starts at time t in the same
unit, then task i must start after the completion of task i′. Finally, let us consider a task i′ that produces
a state s at time point t − 1 that is used by task i in time t. To respect the production recipe task i must
start after the completion of task i′. This sequencing consideration is enforced by constraint (18).

2.3.2. Models for Sequential Production Environments

Scheduling problems of sequential environments do not share the same complexity, in terms
of problem representation, with the ones encountered in network environments. Therefore, both
precedence-based and time-grid based approaches can be employed. Each of these approaches display
specific advantages and drawbacks. On the one hand, precedence-based models generate smaller,
more intuitive models that provide high quality solutions, on the other hand time-grid based models
are usually tighter and computationally superior. As a result, a great variety of models have been
proposed to address sequential production environments.

One of the most impactful time-grid based models is [63] from Pinto and Grossmann.
They described an MILP model for the minimization of earliness of orders for a multiproduct
plant with multiple equipment items at each stage. The interesting feature of the model is the
representation of time, where two types of individual time grids are used: One for units and one
for orders. Castro and Grossmann [64] proposed a non-uniform time grid representation for the
scheduling problem of multistage multiproduct plants. They tested their formulation for various
objectives, e.g., minimization of makespan, total cost and total earliness and compared it with other
known formulations, concluding that the efficiency of a model highly depends on the objective and
the problem characteristics. The same authors extended their work in [43] with the consideration of
sequence-dependent setup times.

Unlike to most of the other contributions, which propose continuous-time models, the work
of Maravelias and co-workers thoroughly investigated the employment of discrete-time models in
sequential environments. Sundaramoorthy et al. [65] suggested a discrete time model to incorporate
utility constraints for the scheduling problem of multistage batch processes. Merchan et al. [66]
developed four novel formulations, two of them based on the STN and RTN representation and two
more inspired by the resource-constrained project scheduling problem (RCPSP). Moreover, the authors
introduced tightening constraints and reformulations that allowed for significant computational
enhancements. Recently, Lee and Maravelias [67] presented two new MIP models for scheduling
in multipurpose environments using network representations. Interestingly, states and tasks were
defined based on batches instead of materials, making possible the consideration of material handling
constraints in sequential production environments. The authors displayed the potential of the proposed
models by incorporating important process features, such as time-varying data and limited shared
resources, and by solving medium-size problem instances to optimality.

The concept of precedence has been extensively studied by the PSE community [68–70]. Numerous
unit-specific immediate [71], immediate [72] and general precedence [19,73] models have been proposed
for scheduling problems in sequential environments. In initial studies the batches to be scheduled
was a problem data, however later contributions suggested models for the simultaneous batching and
scheduling problem [74].

Let us consider the general scheduling problem of a multistage multiproduct facility with multiple
units operating in parallel in each stage. Moreover, we assume that the batching decisions are fixed and
provided to the scheduler from the planning decision level. This problem can be efficiently tackled by
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numerous precedence-based models. Here we use the formulation proposed by Méndez et al. [19] and
present its core constraints. The main decision variable of all precedence-based models is a Boolean
indicating the sequential relation between any pair of orders. More specifically, in the presented
formulation Xo,o′,l defines whether an order o is processed prior to order o′ at stage s. Other characteristic
decision variables are the binary allocation variable Yo, j, defining whether an order o is executed by
unit j or not, and Co,l that denotes the completion of order o in each stage. The main constraints of the
model are illustrated below: ∑

j∈Jol

Yo, j = 1, ∀o ∈ O, l ∈ L (19)

Co,l ≥
∑
j∈Jo,l

[
Yo, j ·

[
pto, j + suo, j

]]
, ∀o ∈ O, l ∈ L (20)

Co′,l − pto′ j ≥ Co,l + suo′, j + τo,o′, j −M ·
(
1−Xo,o′,l

)
−M ·

(
2−Yo, j −Yo′, j

)
,

∀o, o′ ∈ O, o′ > o, l ∈ Lo,o′, j ∈ Jo,o′,l
(21)

Co,l − pto′ j ≥ Co′,l + suo, j + τo′,i, j −M ·Xo,o′,l −M ·
(
2−Yo, j −Yo′, j

)
,

∀o, o′ ∈ O, o′ > o, l ∈ Lo,o′, j ∈ Jo,o′,l
(22)

Co,l ≤ Co,l+1 −
∑

j∈Jo,l+1

(pto, j ·Yo, j) (23)

Constraint (19) ensures that each order o is processed by exactly one unit j in each stage l. The main
timing considerations are specified by constraint (20), which enforces the completion time of an order o
executed by unit j to be at least equal to the required processing and setup time. Big-M parameters
are employed to express the sequencing constraints (21) and (22), between any pair of orders o in
each stage l. A major difference to immediate precedence models, is that here only one sequencing
variable is defined for every pair of orders, as a result the size of the model is significantly reduced.
Moreover, both constraints become active only when both orders are processed by the same unit,
i.e., Yo, j = Yo′, j = 1, therefore the unit index is omitted from the precedence variables. If order o
is processed before order o′ in the same unit, constraint (21) becomes active, ensuring that order o′
will be completed after the completion of order o plus the required processing time of o′ and any
sequence-dependent or -independent setup times, while constraint (22) becomes redundant. In the
opposite case where order o is processed earlier than o’, constraint (22) is activated and (21) becomes
redundant. Finally, constraint (23) guarantees the correct sequence between processing stages for the
same order.

At this point we should emphasize that no modelling approach exists that is computationally
superior to the others in every type of scheduling problem. While discrete-time approaches generate
tighter models, their continuous-time counterparts (precedence-based, continuous time-grid-based)
require less variables, thus generating smaller-sized models. Extensive comparative studies on
scheduling problems in sequential environments conclude that time-grid-based models tend to be
generally superior to precedence-based ones [43,64]. However, we must note that the computational
efficiency of a model can drastically change even with small alterations in the facility characteristics
and the final objective. This will be more evident in our analysis in Section 3, which accentuates
the case-specific nature of the problem. Finally, consider that most modelling developments have
been tested in small or medium sized study cases, that usually do not represent real-life industrial
scheduling problems. Consequently, the computational efficient of any optimization-based model
itself is not sufficient enough to address large-sized industrial problems. Thus, as we present in the
following section, the introduction of techniques, such as heuristics and decomposition algorithms,
is inevitable.
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3. Real-Life Process Systems Industrial Applications

As described in the previous section, a plethora of different mathematical models has been
proposed for tackling the production scheduling problem. Except from solving literature problem
examples, several researchers, mainly from the PSE community, expressed a high interest for handling
real-life industrial case studies. Numerous modelling approaches and methods can be found in the
open literature, addressing a great variety of industrial process scheduling problems. A categorization
based on the industrial sectors, such as chemical, pharmaceutical, petrochemical, steel, food and
consumer goods industries, is presented below, along with the proposed modeling approaches. We
focus our attention on MILP-based approaches for the offline scheduling problem, excluding other
solution methods (e.g., heuristic rules, metaheuristic algorithms etc.).

3.1. Chemical Industries

One of the main industrial sectors widely studied, considers chemical plants, where a variety of
new products is produced via the chemical transformation of multiple raw materials. The use of mixed
batch and continuous processes, the special equipment technologies and the necessity to achieve a
specific quality of products are the main challenges in these problems. In chemical plants, various
types of products can be manufactured via the same or a similar sequence of operations by sharing
the several plant’s production units, intermediate materials, and other production resources. Lin and
Floudas [75] proposed a continuous time, event-based MILP scheduling model and a decomposition
methodology, to solve large-scale industrial cases of multiproduct batch plants. A real-life study case
of a chemical plant, including 3 stages, 35 final products and 10 pieces of equipment is considered.
To systematically apply the proposed approach, a graphical user interface is developed. Depending
on each problem instance, the computational time of the proposed approach ranges from 15 min
to 7 h. Janak et al. [76] extended the previous approach, by adapting intermediate due dates and
other technical constraints. A unit specific, event-based formulation is applied in parallel with a
decomposition-based approach, utilizing the rolling horizon technique. Problem instances with up to
67 product orders have been considered and a termination criterion of 3 h CPU time has been used.
Westerlund et al. [77] introduced a mixed discrete-continuous time formulation to tackle short-term
and periodic scheduling problems of multi-product plants, including intermediate storage constraints.
As the suggested approach is focused on industrial applications, good quality solutions are targeted in
reasonable computational times instead of global optimal solutions. The mixed discrete-continuous
model provides better solutions in smaller computational times, in comparison with the discrete-time
approach. A strategic planning tool was developed based on the proposed model and applied to an
industrial plant, importing demand data from the plant’s ERP (Enterprise Resource Planning) system.
Additionally, four scheduling approaches have been developed by Velez et al. [78]. Here the idea of
multiple discrete-time grids is utilized, as each material, task and unit has its own time grid. Upper
bounds on the total production of each material are defined using the concept of the effective time
window for the executed tasks. Further extensions are adapted in order to solve a variety of different
problems. The introduced methods have been applied to benchmark problem instances that can be
found in literature [79] and to a real case study from Dow company [80], including five main product
lines. Near optimal solutions are achieved in 1 h CPU time on average. A comparison of the proposed
approaches and four other continuous time formulations has been also presented. The results indicate
that the discrete time models generate better solutions in less computational time.

3.2. Pharmaceutical Industries

A special subsector of the chemical plants is the pharmaceutical industry. The majority of
the operations taking place in these facilities are batch, as there is a high necessity to ensure the
quality of the final products. Moniz et al. [81] motivated by a real-world scheduling problem of a
chemical-pharmaceutical industry, developed a case-specific discrete-time MILP scheduling model,
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for batch plants. All the data used by the mathematical formulation, is taken automatically from
a decision-making tool and a process representation, developed as a prototype in Microsoft Visio.
A representative industrial case, including four products, nine shared processing units and 40 tasks,
has been studied. The solutions can be generated in acceptable computational times according to
the plant operators and even for larger problem instances, suboptimal but good quality solutions
are provided in 1 h CPU time. Stefansson et al. [82] studied a large-scale industrial case study
from a pharmaceutical company, including even 73 products and 35 product families. Mathematical
frameworks based both on discrete and continuous time representations have been proposed and
a comparison of them is illustrated. The initial problem is decomposed into two subproblems and
the stage which constitutes the main production bottleneck is scheduled first. The continuous-time
formulation can provide better solutions even for larger problem instances. Case studies with up
to 400 orders can be solved by utilizing the continuous time formulation and schedules with 9.8%
integrality gap are generated in 1408 min. Optimal schedules for smaller case studies, involving up to
150 product orders, can be generated in less than 1 h. On the other hand, only up to 75 products can
be scheduled to optimality by utilizing the discrete time formulation, as suboptimal solutions with
10% integrality gap are generated for instances with up to 300 products. Castro et al. [83], presented a
decomposition-based algorithm for tackling the high complexity of large-scale problems of multiproduct
facilities. The production orders are inserted iteratively into the generated schedule, allowing some
flexibility to provide better solutions. A case study comprising of 50 production orders, 17 units and
six stages is efficiently solved in less than 1 min. The same pharmaceutical study case has been also
considered by Kopanos et al. [39]. They proposed a decomposition-based solution strategy relying
on two precedence-based MILP models in order to optimize different objectives, such as makespan,
changeover-time and cost minimization. A feasible schedule is rapidly generated, and it is enhanced by
applying an improvement algorithm. High quality solutions are provided for industrial cases with up
to 60 products allocated to 17 units. Liu et al. [84] focused on the production and maintenance planning
problem of biopharmaceutical process, consist of a fermentation and a purification stage. Maintenance
activities related to the regeneration of the column resin, taken place in the purification stage, are
considered. Two industrial indicative problem instances are illustrated to assess the applicability
of the proposed MILP model and global optimal solutions are found, without exceeding the time
limitation of 1 h CPU time. An event-based continuous time mathematical framework based on the
STN representation has also been proposed for a general multiperiod biopharmaceutical scheduling
problem [85]. Optimal solutions can be found in computational time in the range of 1–2 min.

3.3. Petrochemical Industries

A special interest is expressed for the scheduling problem of oil refineries or petroleum industries.
A variety of products are produced by this specific industrial sector, such as gasoline, diesel jet fuel
and others. Many different and complex processes are taken place in the oil refineries; therefore, their
efficient scheduling constitutes a great challenge. Shah et al. [86] motivated by a study case provided
by Honeywell Process Solutions (HPS), considered an MILP based heuristic algorithm. The initial
oil refinery problem is spatially decomposed into two subproblems, one considering the production
and blending and the other the delivery of the finished products. Feasible solutions are generated
by solving the two subproblems iteratively, via a six-step heuristic algorithm as the resolution of the
direct proposed MILP model is characterized by a high computational cost. Ten different problem
instances were presented, for the production of diesel and jet fuel and nearly optimal solutions were
generated within less computational time. In particular, the computational time ranged from 2 s to
1 h depending on the cases’ complexity. Zhang and Hua [87] deployed a plant-wide multi-period
planning model, aiming to the integration of the plant processes and the utility system, in order
to reduce the energy consumption. The plant-wide model is extended by considering the utility
system model and constraints referring to the utilities’ balances such as steam, fuel oil and gas are
adapted. The maximization of the total profit of the whole refinery plant is considered as the objective.
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The optimal operation modes of units and stream flow are defined by the model. Product blending
and maintenance activities are taken into account. As the process system and the utility system
are optimized separately by the suggested hierarchical method and the subproblems’ complexity
decreased, good quality, but not global optimal solutions are generated in acceptable computational
times. The applicability of the approach was illustrated in a real study case that considers a refinery
industry, located in South China. The refinery, except from importing of electricity to cover its power
needs, was also able to export the surplus power back to the network or other power companies.
The integrated problem of investment planning and operation scheduling of offshore oil facilities was
also addressed, by utilizing a multiperiod MILP model in order to maximize the general profit [88].
Various operational nonlinear constraints related to the reservoir performance and to other resources
are efficiently adapted into the proposed model which was solved by utilizing a decomposition
algorithm in order to handle the high complexity. A real-life, large-scale illustrative example was
considered. Although a feasible solution can’t be returned by solving the exact MILP model, a feasible
solution within 6600 s was obtained, by utilizing the proposed decomposition algorithm. The operation
scheduling of a crude oil terminal has been considered by Assis et al. [89]. A real-life case study,
oriented by the national refinery of Uruguay was considered and near optimal solutions were obtained
by using an iterative two step MILP-NLP algorithm within a time limit of 3600 s. A domain reduction
relaxation was also adapted for handling the emerging bilinear terms.

Other than the processes taking place in the refinery industries, a special interest has been also
expressed from the PSE community, in the scheduling of liquid transportation via pipeline systems in
petroleum supply chain. The crude oil is gathered and transported to the refineries, as the final refined
products are sent to the retail market and distributed to customers. In order to reduce the transportation
time, pipelines are preferred instead of using trucks or other means of transport, providing also more
safety and lower CO2 emissions. Castro and Mostafaei [90] motivated by the scheduling problem of
liquid transportation, proposed an event-point MILP formulation for treelike transportation systems,
where a single input node leads to multiple outputs. A continuous time representation was utilized and
novel constraints for ensuring the avoidance of forbidden product sequences were adapted. A real-life
study case from the Iranian Oil Pipelines and Telecommunication Company network was considered
and the optimal schedules could lead to even a 6.2% capacity increase, as the given demand can be
efficiently covered fourteen hours earlier. A comparison with previous methods, proposed from one
of the co-authors [91], indicates the efficiency of the approach. A time termination criterion of 5 h
has been used for the proposed formulation. The number of the event points has been identified as
key parameter with high impact on the computational time and solution quality. Nearly optimal
solutions can be generated in less than 1 h by reducing the available event points. A similar problem,
referring to the scheduling of a transportation system of petroleum products, produced from a single
oil refinery industry was tackled by Cafaro and Cerdá [92]. They proposed an MILP continuous time
model in order to define the optimal lot size, the batch sequence, as well as the delivery time of batch
order. A variety of constraints were taken into account, such as tank availability and quality control
operations. A real-life study case consisting of six different oil derivatives produced by a unique oil
refinery to a single distribution center was scheduled, and the results indicated that better solutions
were produced in comparison with other approaches for the same problem, in less than 60 s CPU time.
The same problem was also addressed by Cafaro et al. [93], but now allowing simultaneous product
deliveries, thus providing more realistic solutions. The proposed two-level MILP-based solution
technique aimed for the minimization of the total number of operations in order to reduce the number
of restarts and stoppages of the pipeline. On the upper level, the feasibility of the problem was ensured,
as more detailed decisions such as lot sizing, lot sequencing and timing decisions were defined on
the lower level. A study case related to REPLAN refinery industry, consisting of five distribution
centers at Brazil, is used to illustrate the applicability of the model. Significant savings were noticed in
CPU time using the multiple delivery policy, as the illustrative examples under consideration can be
solved in less than 125 s CPU time. Rejowski and Pinto [94], inspired also from the REPLAN refinery,
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proposed two discrete-time, MILP-based models, to solve a real-life problem, including the distribution
of various petroleum products to five depots. An indicative instance of a 75-h time horizon that is
discretized in 5-h intervals was presented. A good quality solution with integrality gap of 5.8% was
returned within the time limit of 10,000 CPU s. Boschetto et al. [95], proposed an MILP-based solution
algorithm for solving a large scale real-life pipeline network problem, by determining the delivery
and the pumping times of 14 different oil products and ethanol, to a number of distribution centers.
Efficient heuristic rules were utilized in parallel with a continuous time representation, for tackling the
daily scheduling problem, in reasonable computational times within 3–5 min. The generated solution
for various studied cases, have been also validated by the planners.

3.4. Food Industries

The PSE community has also shown significant interest for the scheduling of food industries.
Common characteristics of food processing industrial facilities, such as intermediate due dates, shelf life
considerations and multiple mixed batch and continuous processing stages, substantially complicate
the optimization of scheduling decisions. The above combined with market trends that enforce the
gradual increase of the product portfolio, the demand profile (high variability-low volumes), and the
multiple identical machines and shared resources, make the consideration of real-life industrial cases
extremely challenging.

As the food industry focuses mainly on the production of perishable final products a make-to-stock
production policy is not efficient, as the generation of high inventory levels should be avoided.
A plethora of industrial study cases have been considered from various subsectors of the food industry.
Baldo et al. [96] motivated by a real study case from a Portuguese brewery industry, proposed a novel
MILP-based relax and fix heuristic algorithm, for the integrated fermentation and packing problem.
The time horizon is discretized in two subperiods. The first subperiod is scheduled in detail, as for the
second subperiod only the main planning decisions, such as the inventory levels, are optimized. Small
and big sized problem instances have been considered, with five filling lines and up to 40 products.
Although a direct comparison with the company plan was not possible, good quality schedules were
generated, using a termination criterion of runtime limit equal to 3600 s or 7200 s. An immediate
precedence-based MILP formulation for the packing stage of a brewery company was developed using
a mixed discrete-continuous time representation in [29]. The scheduling decisions were defined in a
continuous manner, while material balances were expressed at each discrete time period to ensure
the generation of feasible schedules. The idea of grouping the products into product families leads to
significant reduction of the computational cost. Changeover times among sequential time periods were
also taken into account. The industrial study case under consideration consists of eight processing units
and 162 products are produced in total, which are grouped into 22 product families. The generated
solutions were better than the ones extracted by commercial tools. An upper bound of 300 s CPU
time was utilized, for all cases under consideration. Abakarov and Simpson [97] investigated the
scheduling problem of food canneries focusing on the sterilization stage and allowing the possibility of
the simultaneous sterilization of different products in the same retort. A graphic user interface, able to
identify the nondominated simultaneous sterilization vectors, was connected to the proposed MILP
model. Different cases were solved, including 16 products with randomly generated product demand
values, depicting a reduction of up to 25% in total plant operation time. The usage of COIN-OR as
software tool can decrease the model’s computational time to 7.38 s. Georgiadis et al. [98] studied the
integrated sterilization and packing stage scheduling problem in a large-scale canned fish Spanish
industry. An MILP based decomposition algorithm was utilized to tackle the high computational cost,
as the products are inserted in an iterative way until the final schedule was generated. A general
precedence model efficiently describes the batch (sterilization) and the continuous (packing) processes
of the plant. Nearly optimal schedules of a large-scale problem instance, with 100 final products
and 362 product batches, have been generated for both stages, in less than 20 min. A study case of
a real-world edible-oil deodorized industry was studied by Liu et al. [99]. The plant was described
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as a single-stage multiproduct batch process. The final products were grouped into product families
having the same due date. The proposed approaches relied on mixed discrete and continuous MILP
mathematical formulations and classic TSP (travelling salesman problem) constraints. A real study
case of 128 hours’ time horizon of interest was studied. 70 product orders of 30 different final products
of seven groups of different release time were scheduled. The new formulations are shown to be more
efficient than previously proposed methods found in the literature. Solutions with approximately 2%
integrality gap can be generated in 20 CPU s without allowing the backlog generation and 1075 CPU s
by allowing the possibility of backlogs. Polon et al. [100] studied a sausage production industry aiming
to the profit maximization by solving an MILP scheduling model for batch processes. The packaging
stage, which often constitutes the main production bottleneck has not been considered. The plant
operates in a single campaign mode and eight products are produced in total.

A special subsector of food industries is dairy manufacturing. Numerous products are
produced, such as yoghurt, cheese and butter and distributed to customers worldwide. Doganis
and Sarimveis [101] solved the scheduling problem of a single yoghurt production line taking into
account inventory, manpower and capacity restrictions. The model was tested using data from a
yoghurt production line of a Greek dairy industry, where 18 products were produced and global
optimum schedules have been generated in less than 15 s. The integrated planning and scheduling
problem of a small size Balkan type semi-continuous yoghurt facility, with eight final product types,
produced by three intermediates has also been investigated [102]. The evaluation of the proposed MILP
approach has been utilized via a simulation model. Thirty-two different scenarios were considered
and a significant decrease in the total waste and makespan was achieved in approximately 1 h of CPU
time. Touil et al. [103] deployed an MILP model for a small multiproduct milk industry, located in
Morocco, aiming at the minimization of makespan. The stages of homogenization, pasteurization and
packaging were scheduled for four final products, seven packing lines, two pasteurization units and
one homogenizer. Efficient solutions were illustrated for the cases under consideration, as optimal
schedules can be found in 2 min CPU time. A novel mixed discrete-continuous MILP formulation was
deployed by Kopanos et al. [104] for the scheduling problem of a Greek yoghurt production facility.
The idea of “product families” was adapted similarly to the other aforementioned works from the
same authors. The packing stage was scheduled in detail, but mass balance constraints related to the
production stage were also adapted, using a discrete time representation. Ninety-three final products
(grouped into 23 product families) were allocated in four packing lines. Novel resource constraints can
adapt realistic limitations to various types of resources (e.g., manpower) and ensure the generation of
feasible optimal solutions in less than 10 min, depending on the case complexity. Based on a similar
approach, the scheduling problem of another large-scale Greek dairy industry has been studied [105].
A rolling horizon technique was embedded to reactively adjust the schedule in case of disturbances,
like the cancellation or modification of orders, or the sudden arrival of new orders or any digressions
from the planned production. One hundred and fifty-eight final products (grouped into 44 product
families) were allocated to six parallel packing lines, while the time horizon of interest was five days.
A total cost decrease of 20% was achieved in comparison with the schedules generated by the company.
An integrated software tool with a user-friendly graphical interface has been developed to connect the
proposed MILP model to the input data, located in excel files (parameter values such as changeover
times etc.) and the ERP system (providing the demand values). As a result, optimal solutions can be
generated automatically in less than 10 min.

3.5. Consumer Goods Industries

Consumer goods, or final goods, are described as products consumed by the average customer.
Depending on the shelf-life duration, they can be further categorized to durable goods (such as
detergents) and nondurable (e.g., beverages). One of the main consumer goods group is the fast-moving
consumer goods (FMCG), which are characterized by frequent purchases, rapid consumption and
low prices. Elzakker et al. [106], presented a problem-specific model for the short-term scheduling
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problem, considering a fast-moving consumer goods (FMCG) industry. An algorithm based on a
unit-specific, continuous time interval MILP model is proposed. Dedicated time intervals to specific
product types are adapted to decrease the computational time. In order to assess the efficiency and
the applicability of the proposed formulation ten industrial case studies are considered, as provided
by Unilever, related to an ice cream production process. Optimal schedules have been generated for
problem instances of up to 73 batches of eight products allocated to six storage tanks and two packing
lines within 170 s. The time-horizon under consideration was 120 h. The production scheduling
problem of an ice cream facility has also been tackled by Kopanos et al. [107]. A real-life study case of
eight final ice cream products, two packing lines and six aging vessels is addressed. The simultaneous
optimization of all processing stages is achieved, and 50 problem instances are optimally solved.
An MILP-based decomposition strategy is proposed to handle scheduling problems of large-scale food
process industries. High quality solutions were generated for larger cases of up to 24 final products
utilizing the proposed decomposition technique. Industry related needs imposed the adaptation of
a 600 CPU s as a time limit, but global optimal solutions can be found in less than 10 s for smaller
problem instances.

Giannelos and Georgiadis [108] developed an MILP model to address the scheduling problem
in fast consumer goods manufacturing processes. The proposed MILP model relied on the STN
process representation and a continuous time formulation was used to reduce the computational
complexity of the problem. The formulation was tested on a medium-sized industrial consumer goods
manufacturing process, considering cases with up to 35 final products and 5 packing lines. Feasible
schedules were generated within a 5–10% integrality gap in computational times, smaller than 5 min.
Méndez and Cerdá [109] proposed a general precedence MILP formulation based on a continuous
time representation, while they introduced constraints related to sequence dependent setup times and
products’ due dates. Furthermore, efficient preordering rules were considered in order to provide
solutions for industrial study cases of up to 18 final products, produced from five intermediates over a
scheduling period of five days. The CPU time needed was gradually depleted to less than 10 s for
small problem instances and even to 10 min to larger ones, by applying the proposed approaches
and the suggested preordering rules. Baumann and Trautmann [110] proposed a hybrid method
for large-scale, short-term scheduling problems of packed consumer goods products. A subset of
the operations were scheduled iteratively by solving a general precedence MILP model [24]. Also,
an iterative improvement step is applied to the initial schedule, by following a reinsertion policy
identifying some critical operations. Ten large-sized instances provided by The Procter and Gamble
Company that consisted of up to 1391 operations have been solved within reasonable CPU times of
less than 1 h, as a 5 s time limit has been set for each iteration [111]. Smaller-scale problem instances
with known optimal solutions, have also been considered, and optimal or near-optimal schedules
were generated by applying the aforementioned hybrid method. Elekidis et al. [112] investigated the
short-term scheduling problem of a large-scale consumer’s goods industry. An immediate-general
precedence-based model was illustrated, focusing mainly on the packing stage. Constraints related
to the previous stages were also taken into account. The production orders are inserted iteratively,
utilizing a decomposition algorithm. Various real-life study cases have been considered that include
up to six packing lines and 130 final products. Near optimal schedules are generated and significant
savings in the changeover time are noticed within a CPU time of 10 min.

Georgiadis et al. [113] presented two different scheduling approaches, based on the RTN
and the STN representations respectively. The work was focused on the scheduling problem of
large-scale manufacturing industries of electrical appliances. A case study provided from a large
manufacturing company located in Greece was used to assess the applicability of the proposed
approaches. The generated schedules can be visualized via the Microsoft Excel application. A significant
decrease in the operational cost was reported in a variety of problem instances. Although, the necessary
computational time was in the range of some seconds, this could differ as the considered problem
instances are described as data-driven.

46



Processes 2019, 7, 438

3.6. Steel Plants

Another important field of interest is the steel-making process industries. Various challenges
arise, due to the large variety of final products, the complex process that take place and the volatile
electricity prices. The steel production is often divided into three stages: Molten steel is produced
first (melt shop) and then the produced slabs are transformed (the hot rolling) into intermediate or
final-products, (e.g., coils, billets etc.). In the last stage (cold casting), the dimensions and the desired
mechanical properties are achieved. Biondi et al. [114], studied the scheduling problem of a hot rolling
mill in a steel plant. Strict production constraints related to metallurgic production were taken into
account. Decisions regarding the production planning on a hot rolling mill were taken, by applying
intelligent heuristics, resulting to efficient production programs. A slot-based MILP formulation was
proposed and the sequence of the aforementioned programs was defined. The technique described
above, has also been implemented as a web-service, that gathers information from both the ERP system
and the DCS (Distributed Control System). Rolling programs including up to 3000–5000 coil orders
can be generated within some seconds. Yang et al. [115], proposed an MILP mathematical formulation
to tackle the scheduling problem by optimizing the byproduct gas systems in steel plants. Optimal
solutions can be found in approximately 10 s. A representative case study from a steel plant in China
has been considered to illustrate the proposed approach. A significant reduction of even 7.8% in the
operation cost was noticed. Li et al. [116] considered the scheduling problem of steel making industries,
focusing mainly on the steelmaking continuous casting process, as it constitutes the main production
bottleneck. A novel unit-specific event-based continuous-time MILP model was proposed, relied on
material continuity and other technological requirements constraints in order to ensure the generation
of feasible schedules. An extension of previous rolling horizon approaches [75,76] is also applied due
to the high complexity of the large-scale problems under consideration. Four representative industrial
problems have been considered, to assess the efficiency of the proposed approach. Although, not even
a feasible solution could be returned by solving the MILP model for the two larger problem instances
within the time limit of 80,000 s, good quality solutions were generated by using the new proposed
approach in 3 s and 12,287 s respectively.

Gajic et al. [117] studied the integrated scheduling and electricity optimization problem of a hot
rolling mill, taking also into account electricity costs and prices. An MILP-based model was proposed
in parallel with intelligent heuristics, aiming to group the individual heats into casting sequences
and decompose the large problem into several sub-problems with lower complexity. The proposed
approach has been successfully implemented via offline tests and it has been deployed in the melt
shop at Acciai Speciali Terni S.p.A., a member of ThyssenKrupp AG and one of the world’s leading
producers of stainless steel based in Italy. The scheduling solutions could be generated within a few
minutes and it has been shown that the electricity costs can be reduced by 3% as the coordination
among the different production stages was significantly improved. Hadera et al. [118] proposed a
new general precedence MILP scheduling model adapting energy awareness. Optimal production
schedules were generated, simultaneously optimizing the electricity purchase and solving the load
commitment problem. The case of selling electricity back to the grid was also taken into account.
In order to handle large-scale industrial problem instances of a melt shop section of a stainless-steel
plant, a bi-level heuristic algorithm was used. Solutions in the range of 9% and 25% integrality gap
were obtained within the time limit of 600 s.

The scheduling problem of multiproduct plants with parallel units, implementing energy intensive
tasks has also been considered. Continuous and discrete time RTN-based mathematical formulations
have been proposed and tested to a few study cases from a real industrial problem [119]. Efficient
solutions were generated and optimality gaps of 1% were achieved within 5 min of computational time.
Significant savings of electricity costs, even up to 20%, were reported [120]. The same problem was
also considered by Kong et al. [121]. The authors proposed an MILP model, targeting the minimization
of the operational cost by optimizing the by-product gas distribution. The proposed MILP model
has been successfully tested in a real-life case study, provided by an iron and steel plant located in
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China. The results show that the operational cost was reduced by up to 6.2% by applying the proposed
approach. Wang et al. [122] investigated the bi-objective single machine batch scheduling problem of a
real-world scheduling problem in a glass company located in Shanghai, China. An exact ε-constraint
method was adapted to the MILP model in order to minimize the makespan and the total energy
costs. Two heuristic methods were proposed to tackle the high complexity of larger scale problems.
A representative real-life case study, including 13 batches has been studied and a pareto curve was
generated, illustrating the tradeoffs between the two objectives. Not even a feasible solution can be
obtained after 31,823.64 CPU s by utilizing the direct ε-constraint method. However, approximate
Pareto fronts, including 11 different solution points, can be generated in 5648.05 and 6359.25 CPU s, by
using the two proposed heuristic methods respectively.

3.7. Paper Industries

A special interest has been expressed for the problem of trim loss minimization, mainly in
the paper industry. In case the final products are to be divided in sizes of specific dimensions,
significant trim losses are unavoidably generated, leading to important increase in the operational cost.
Westerlund et al. [123] studied the trim-loss problem of a Finnish paper-converting mill. A two-step
optimization procedure based on an MILP model was solved by CPLEX solver in fractions of a second,
resulting to waste savings of 2% of the turnover. A sequential updating procedure [124] has been also
presented. The researchers proposed that by resolving an MILP model iteratively, feasible schedules
can be promptly extracted. A case with up to 10 products and three machines was tackled and the
provided solutions are better than the ones generated manually. According to Roslöf et al. [125] various
sophisticated heuristics can be utilized in large scale industrial problems to provide feasible suboptimal
solutions in reasonable computational times. Extending the previous approach, an extra improvement
reordering step was introduced that can lead to nearly optimal solutions. Various problem instances
have been considered and the proposed approach has been compared with a heuristic based policy,
and manually generated schedules. Better solutions can be provided by targeting at tardiness and
makespan minimization utilizing the proposed method. A real-life case study provided by a Finnish
paper mill included 61 scheduling jobs and a single processing unit was solved in 3755.1 s of CPU
time. Giannelos and Georgiadis [126] proposed a slot-based MILP scheduling model, which relied on
a continuous time representation, to examine the problem of cutting operations on parallel slitting
machines. A CPU time limit of 1500 s has been adapted, and good quality solutions have been obtained
within 6% to 9% integrality gap. The proposed approach has been applied to an industrial case study,
provided by a paper mill company (Macedonian Paper Mills, S.A., Greece), including eight final
products and consisting of three parallel cutting machines. Castro et al. [127] proposed an MILP
and an MINLP mathematical model, which were based on a continuous and a discrete time RTN
representation. The non-linearity of the second formulation can be eliminated assuming a constant
throughput. The aforementioned frameworks were applied to an industrial case study from a pulp mill
plant, located in Portugal. According to the detailed comparisons, the discrete time formulation seems
to be more efficient, as optimal schedules can be generated in less than 600 s of CPU time, depending on
the different level of discretization and the differentiation of the problem instances. On the other hand,
the computational cost of the continuous time formulation seems prohibitively high, as by increasing
the number of the event points by one, an increase of one order of magnitude appeared also to the
computational time. Castro et al. [128] proposed an RTN-based formulation and showcased a detailed
comparison between continuous and discrete time models by applying them in an industrial problem
consisting of three raw materials, five intermediates and five product qualities. Novel recycling policies
were also adapted and as a result, significant reduction of raw materials can be achieved, providing
higher profits and lower waste. On the contrary, with the previous research, the proposed continuous
time formulation led to a better quality and faster solution than the discrete one. A similar pattern also
appeared in the computational time, as an increase of one order of magnitude appeared by increasing
the number of the event points by one.
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Table 1 presents the contributions reviewed in this section, illustrating the industrial sector for
which the optimization method has been developed, as well as their main features.

Table 1. Summary of the industrial applications using optimization-based scheduling approaches.

Author Industrial Sector Main Research Features

Lin and Floudas [75] Chemical industry
• Continuous time event-based mixed-integer linear
programming (MILP)
• Decomposition methodology

Janak et al. [129] Chemical industry • Graphical user interface development
• Rolling horizon approach

Westerlund et al. [77] Chemical industry • Planning tool connected with the plant’s ERP system

Velez, Merchan
and Maravelias [78] Chemical industry •Multiple discrete-time grids

• A real case study from Dow company

Moniz et al. [81] Pharmaceutical industry • A Visio-based decision-making tool development

Stefansson et al. [82] Pharmaceutical industry • Discrete and continuous time representations
• Stage decomposition

Castro, Harjunkoski
and Grossmann [83] Pharmaceutical industry • Decomposition-based algorithm

Kopanos, Méndez
and Puigjaner [39] Pharmaceutical industry • Precedence-based MILP models

• Decomposition-based solution strategy

Liu et al. [84] Pharmaceutical industry •Maintenance planning
• 1 h CPU time

Kabra et al. [85] Pharmaceutical industry • State-task network (STN) representation
• Computational time in the range of 1–2 min.

Shah, Sahay
and Ierapetritou [86] Oil refineries • Six-step MILP based heuristic algorithm

• A case study provided by Honeywell Process Solutions (HPS).

Zhang and Hua [87] Oil refineries • Integration of the plant processes and the utility system

Iyer et al. [88] Oil refineries • Decomposition algorithm
• Feasible solutions within 6600 s are obtained

Assis et al. [89] Oil refineries • Scheduling of a crude oil terminal
• A case study by the national refinery of Uruguay

Casrto and Mostafei [90] Pipeline systems
• A case study from the Iranian Oil Pipelines and
Telecommunication Company
• 6.2% capacity increase

Cafaro et al. [93] Pipeline systems • Simultaneous product deliveries are allowed
• A case study, related to REPLAN refinery

Rejowski and Pinto [94] Pipeline systems • Integrality gap of 5.8% in 10,000 CPU s
• A case study, related to REPLAN refinery

Boschetto et al. [95] Pipeline systems • Heuristic rules
• Computational times within 3–5 min.

Baldo et al. [96] Food industries • A novel MILP-based relax and fix heuristic algorithm
• A case study from a brewery industry

Kopanos, Puigjaner
and Maravelias [29] Food industries • An immediate precedence-based MILP formulation

• A case study from a brewery industry

Abakarov andSimpson [97] Food industries • A food cannery case study
• Scheduling of the sterilization stage

Georgiadis et al. [98] Food industries • A case study from a large-scale canned fish industry case study
•MILP based decomposition algorithm

Liu, Pinto
and Papageorgiou [99] Food industries • An edible-oil deodorized industry case study

•Mixed discrete and continuous MILP mathematical

Polon et al. [100] Food industries • A case study from a sausage production industry
• Scheduling of the production stage

Doganis and Sarimveis [101] Dairy industry • A single yoghurt production line

Sel, Bilgen and
Bloenhof-Ruwaard [102] Dairy industry • Integrated planning and scheduling of a yoghurt facility

Touil, Echchatbi
and Charkaoui [103] Dairy industry • A case study from a milk industry

Kopanos, Puigjaner
and Georgiadis [104] Dairy industry • A case study from a yoghurt industry

• Novel resource constraints
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Table 1. Cont.

Author Industrial Sector Main Research Features

Georgiadis et al. [105] Dairy industry
• An integrated software tool connects the plant’s ERP system
with the proposed MILP model
• A total cost decrease of 20% is achieved

Giannelos
and Georgiadis [108] Consumer goods industry

• STN continuous time formulation
•Medium-size industrial consumer goods manufacturing
process

Baumann and Trautmann [110] Consumer goods industry
• General precedence MILP hybrid method
• 10 large-scale problem instances provided by The Procter and
Gamble Company

Elzakker et al. [106] Fast-moving consumer
goods (FMCG) industry

• A unit-specific, continuous time interval-based algorithm
• Ice cream production process of Unilever

Kopanos, Puigjaner
and Georgiadis [107]

Fast-moving consumer
goods (FMCG) industry • Ice cream production process

Elekidis, Corominas
and Georgiadis [112] Consumer goods industry • An immediate-general precedence-based decomposition

algorithm

Georgiadis et al. [113] Manufacturing industries
• Resource task network (RTN) and STN based models
• A comparison with a PSE scheduling tool and an MILP model
• Development of a middleware interface for data transfer

Biondi, Saliba
and Harjunkoski [114] Steel industry • Slot-based MILP formulation

• communication with ERP and DCS

Li et al. [116] Steel industry • A unit-specific event-based continuous-time MILP model

Gajic et al. [117] Steel industry
• Integrated scheduling and electricity optimization problem
• A melt shop case study
• 3% electricity cost reduction

Hadera et al. [118] Steel industry
• A melt shop case study
• Integrated scheduling and electricity optimization problem
• A general precedence MILP scheduling model

Castro, Harjunkoski
and Grossmann [120] Steel industry

• Integrated scheduling and energy optimization problem
• RTN-based MILP model
• 20% electricity cost reduction

Wang et al. [122] glass company • Bi-objective optimization problem
•Makespan and the total energy cost minimization

Westerlund, Isaksson
and Harjunkoski [123] Paper Industry • Trim-loss problem of a paper converting mill

Roslöf et al. [124] Paper Industry •MILP based decomposition algorithm

Giannelos and
Georgiadis [126] Paper Industry • A slot-based MILP model

• A paper mill company case study

Castro, Barbosa-Povoa
and Matos [127] Paper Industry • Continuous and discrete time RTN representation

• A case study from a pulp mill plant

Castro, Westerlund
and Forssell [128] Paper Industry • RTN-based formulation

• Novel recycling policies

4. Industrial Applications of Optimization-Based Scheduling—Challenges

In the previous section, a wide range of real-life applications using various scheduling frameworks
have been described. It can be noticed that most of the methods have efficiently handled small or
medium sized problem instances, with just a few of them addressing large scale industrial problems.

A major issue, referred to the applicability of the scheduling approaches, is the accuracy of
the input data. In many cases the generated schedules are manually modified by the planners in a
time-consuming process, as some important information is missing [111]. If the data given by the
plant managers are not accurate, the assessment of the model’s efficiency is extremely difficult or
even impossible. We can conclude that the connection of the proposed solution method with the
plants’ ERP and the other plant systems, plays a key role for a successful model implementation.
Integrated software should be developed, to provide an easy way to transport the necessary input
data to the model solver in an automated way. In addition, the direct communication between the
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mathematical model and the ERP systems, could also make possible the consideration of the several
planning decisions of the plant (e.g., planned cleaning or maintenance activities).

The aforementioned suggestion could also give the chance to solve and analyze a plethora of
different cases, in order to test the efficiency of the model. All possible operational scenarios should be
provided from the plant managers to the model developers. Further important production parameters
could also be identified by checking the feasibility of the schedules generated by the model during the
test runs.

The proposed models could efficiently solve all problem cases. The company should identify the
largest or the most complex cases of the plant. Different models could also be addressed for different
problem instances. Also, as the scheduling and planning decisions are strongly connected, there is a
high necessity to ensure that the planning decisions are feasible. For example, the customer’s demand,
given usually by the ERP systems, must be covered by the plant’s capacity during the available time
horizon. Otherwise, not even a feasible solution could be returned from the model. However, even in
cases when the optimization fails, an output should be exported [130].

The model’s output should also be visualized in an interactive way. The planners should be able
to modify the schedules by hand, or adding late order deliveries. We have to keep in mind that the
planners are the ones responsible for the final schedule and an optimization model can provide a
suggested solution to them. Flexible Gannt charts, allowing the right or left swift movement of the
production orders, could also be an efficient tool for the planners. Also, in that way, a number of
modifications, based on the planners’ experience can be easily adapted to the final schedule [23].

Moreover, as the industrial environment is highly dynamic and it is characterized by a high
level of uncertainty, a lot of daily modifications should be applied. Therefore, efficient rescheduling
methods should also be provided, utilizing fast execution models. The utilization of decomposition
algorithms or heuristic rules in parallel with the MILP models could also be a good quality option, as
nearly optimal solutions can be generated in reasonable computational times [96,107]. It should also
be noticed, that the updated schedule has to consider the previous schedule as an initial condition.
In this way more realistic solutions can be provided.

As in the majority of the plants, production scheduling is done on a daily basis, the computational
time of the utilized models should not be extremely high. Even good quality suboptimal solutions could
be acceptable in time limitations defined by the company. Moreover, in practice due to unexpected
events, the initial schedule rarely is completely applied.

An analysis of the expected savings could also be accomplished. The consideration of case studies
of past weeks could provide a good estimation of the optimization savings range. The company should
analyze the investment that has to be made to install a new integrated software and the possible time
or cost savings of it. The necessary investment has to lead to higher profits. The company personnel
should also be trained to use and modify efficiently the new optimization tools.

The proposed model approach should also be able to adapt new information or different types
of modifications. New products could be inserted, by identifying their basic production features, as
well as new pieces of equipment. Parameter values, such as, units’ production rates, or new product
allocation policies should be easily changed by the planners. The new integrated software should be
flexible enough to adapt to the plant’s changes, as otherwise the solution approach could be considered
obsolete. The optimization tools should be easily used, and modified by the planners in a daily basis,
without the supervision of experts in model development [131].

5. Conclusions

Prof. Sargent is one of the greatest personalities in the area of chemical engineering. He is the
pioneer and father of the field of process system engineering. He was one of the first researchers who
foresaw the value of the need for the optimization of process scheduling. His contributions inspired
numerous researches in the last three decades, resulting in a plethora of mathematical programming
formulations for general classes of process scheduling problems. This work presents a review of the
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theoretical modelling aspects and solution approaches for the process scheduling problem. Although
there is no single comprehensive approach for handling all possible industrial problems, and the
majority of the proposed models are characterized as problem-specific, a categorization is possible
by identifying basic common features. Various problem instances, as well as different optimization
models are classified, presenting their most important characteristics and the main contributions of
them. Furthermore, an overview on the applications of the modeling formulations in real-life industrial
case studies is presented. The industrial studies under consideration are categorized according to
the different process industries subsectors, focusing on chemical, pharmaceutical, food, consumer
goods, steel and paper industries. It is concluded that only a limited number of the contributions
are able to solve large-scale industrial problems. In most of the large-scale problem instances, a
variety of decomposition techniques and heuristic rules are applied in parallel with the mathematical
programming models, and as a result; good but suboptimal solutions are obtained. A very small
number of the generated solutions were directly compared with the plant’s schedules. The development
of integrated software tools, aiming to the direct data transfer between the mathematical models and
the plant’s ERP systems, according also and to the general trend of digitalization, was identified as
a crucial step for the successful industrial applications of scheduling methods. Another scheduling
challenge to be confronted is the efficient and flexible visualization of the generated solutions, allowing
also for manual modifications.
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Nomenclature

Indices/Sets
i ∈ I processing tasks
o ∈ O orders to be processed
j ∈ J units
t, t′ ∈ T time events
l ∈ L processing stages
r ∈ R resources
s ∈ S states
iST storage tasks
Ir tasks requiring resource r
Ij tasks that can be executed in unit j
IST
s storage tasks for state s

IP
s tasks that produce state s

IC
s tasks that consume state s

RJ resources corresponding to unit j
RST

i resources corresponding to storage that can be used for task i
Ji units that can perform task i
Jo,o′,l units that can execute both order i and order i’ at stage l
Jo,l units that can execute order i at stage l
Lo,o′ stage required for the production of order o and o’

Parameters

αi constant term for the processing time of task i
βi proportional term for the processing time of task i
H time horizon
Vmin

i minimum batch size of task i
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Vmax
i maximum batch size of task i

Rmin
r minimum available resource r

Rmax
r maximum available resource r
μ

p
r,i fixed term for the production of resource r at the end of task i
μc

r,i fixed term for the consumption of resource r at the beginning of task i
vp

r,i variable term for the production of resource r at the end of task i
vc

r,i variable term for the consumption of resource r at the beginning of task i
ρi,s proportion of state s consumed/produced by task i
pto, j processing time of order o in unit j
suo, j setup time for order o in unit j
τo,′, j changeover time between orders o and o’ processed in unit j

Variables

Tt exact time of event point t
Ni,t,t′ defines a task I that starts at event point t and ends at time point t’
ξi,t,t′ amount of material processed by task I, that starts at t and ends at t’
Rr,t amount of resource r consumed at event point t
Ws

i,t denotes that a task i starts at event point t

W f
i,t denotes that a task i ends at event point t

Wi,t denotes that a task i is active at event point t
Bs

i, j,t batch size of the task i in unit j started at event point t
Bi, j,t batch size of the task i in unit j being processed at event point t

B f
i, j,t batch size of the task i in unit j finished at event point t

BST
iST , j,t batch size of storage task ist at event point t

Ts
i, j,t time at which the execution of task i by unit j at event point t starts

T f
i, j,t time at which the execution of task i by unit j at event point t ends

Yo, j binary variable denoting that order o is allocated to unit j
Co,l completion time of order o in unit j
Xo,o′,l binary variable that is activated when order o is processed before order o′ at stage l
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Abstract: The oil industry operates in a very uncertain marketplace, where uncertain conditions
can engender oil production fluctuations, order cancellation, transportation delays, etc. Uncertainty
may arise from several sources and inexorably affect its management by interfering in the associated
decision-making, increasing costs and decreasing margins. In this context, companies often must make
fast and precise decisions based on inaccurate information about their operations. The development
of mathematical programming techniques in order to manage oil networks under uncertainty is thus
a very relevant and timely issue. This paper proposes an adjustable robust optimization approach for
the optimization of the refined products distribution in a downstream oil network under uncertainty
in market demands. Alternative optimization techniques are studied and employed to tackle this
planning problem under uncertainty, which is also cast as a non-adjustable robust optimization
problem and a stochastic programing problem. The proposed models are then employed to solve
a real case study based on the Portuguese oil industry. The results show minor discrepancies in
terms of network profitability and material flows between the three approaches, while the major
differences are related to problem sizes and computational effort. Also, the adjustable model shows
to be the most adequate one to handle the uncertain distribution problem, because it balances more
satisfactorily solution quality, feasibility and computational performance.

Keywords: distribution; planning; oil supply chain; robust optimization; uncertainty

1. Introduction

In the oil industry, companies develop a set of activities and processes so that crude oil can be
duly transformed into oil products demanded by final consumers such as petrochemical industries,
airports and individual users [1]. The associated decision-making process is framed within a deeply
complex context and addresses the oil exploration, production and transportation at upstream, oil
refining at midstream, and oil product distribution and marketing at the downstream segments [2].
Most of these activities are difficult tasks and need to be properly accomplished. Decision-support
tools based on mathematical programming techniques are often applied to assist such activities and
processes across the oil supply chain [3]. These optimization tools are tailored to cover the underlying
reality under study, and hence they are often stochastic large-scale programs, which normally increases
the problem complexity [4].

In management sciences and engineering, the most widely-used modeling framework to cope
with uncertainty has been two-stage stochastic programming [2], where the first-stage variables must
be decided before the uncertainty realizations and the second-stage variables are decided in accordance
with the uncertainty outcomes [5]. When either the information is missing or even the probability
distribution of the uncertainty is not available, fuzzy programming could be an alternative framework
to handle uncertainty in optimization problems by considering random parameters as fuzzy numbers
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and treating constraints as fuzzy sets [6]. Robust optimization (RO) can be used, which also requires
moderate information about uncertainty described by means of uncertainty sets, i.e., the key building
blocks in this modeling framework [7]. Other frameworks have also been proposed to support decision
making under uncertainty such as parametric programming, which relies on sensitivity analysis theory,
and also chance-constrained programming, which uses probabilistic theory [8]. Currently, data-driven
optimization methods are a new and timely research line to investigate the decision-making process
under uncertainty, supported not only by the crescent access to uncertainty data, but also by the
development in machine learning approaches [9]. Data-driven methods aims at building uncertainty
sets directly from uncertainty [10]. In general, the choice of the mathematical modeling framework
to solve a particular problem under uncertainty relies on the specific characteristics of this problem,
as well as on the level of information about uncertainty.

The use of decision-support tools specifically for the DOSC problem under uncertainty has been a
research challenge [11], and different approaches have been proposed in this direction. These include
stochastic programming [1,2,4,8,12–21]; fuzzy programming [22,23]; and robust optimization [16,24].
In these optimization models, demand, supply, price, cost, process capacity, product yield, conversion
rate and technology development are regarded as uncertain parameters [3].

Nowadays, RO has become attractive to solve optimization problems under uncertainty as it
only requires the mean and range of the uncertain data, and other probabilistic information can be
gradually incorporated when it becomes available [25]. In addition, it balances adequately solution
quality, feasibility and computational performance [26], being formulated to hedge the optimization
problem against any disturbances in the input data series [27]. As single-stage non-adjustable robust
optimization (NARO) models may lead to over-conservative solutions [28–30], some authors have
been emphasizing the need of exploring other methods such as the two-stage or multistage adjustable
robust optimization (ARO) models, since less conservative solutions can be [28]. The first-stage and
second-stage decisions are robust against all uncertain realizations of the random parameters, as well
as the second-stage solution has full adaptability to the uncertainty [25].

Against this background, the purpose of this paper is to address the problem of refined products
distribution under demand uncertainty in the downstream oil supply chain (DOSC). Extending
previous work developed by the authors [1], where a stochastic programming approach was used
considering uncertainty on price and demand for crude oil. Scenarios were built by using time series
analysis. In the present work a robust modeling framework is developed that considers the problem as
a two-stage adjustable robust optimization (ARO), aiming to conclude on the model conservativeness
as well as on the associated solution performance. The framework includes a polyhedral uncertainty
set, where the first-stage decision refers to purchase of oil volumes and the second-stage decisions
include oil refining planning, oil product distribution planning, inventory management, international
trade, and customer fulfillment. To evaluate the proposed model, a real-case study in the Portuguese
oil industry is used. Results are compared with those obtained using the equivalent non-adjustable,
stochastic and deterministic models. The robust model proposed in this paper is, to the best of
the authors’ knowledge, the first model to consider an adjustable robust framework to deal with
uncertainty in DOSC and, therefore, an academic contribution for this area.

The rest of the paper is structured as follows: Section 2 describes the problem under study.
In Section 3, the background on two-stage ARO modeling framework is explained. Section 4 proposes
the ARO mathematical formulation. In Section 5, the case study based on the Portuguese oil industry
is explored. In Section 6, the obtained numerical results are discussed. Finally, Section 7 draws some
conclusions and presents some directions for future research.

2. Problem Description

The problem under study consists of determining the robust tactical and operational planning
of a downstream oil network under uncertainty over a planning time horizon. It must be modeled
satisfactorily in a robust optimization framework so as to maximize the worst-case DOSC profit. Profit
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is computed as the difference between the total cost of oil purchase associated with the first-stage
decisions, and the worst-case operational profit associated with the second-stage recourse decisions,
in order to satisfy the uncertain product demand, subject to material balance, refining capacity, product
yield, supply availability, stock limitations and transportation capacity constraints.

The network under study is composed by three echelons: oil refineries, storage depots and
local markets. Crude oil is acquired by oil refineries, which process it into oil products in order to
satisfy the internal and external demands. The oil products are adequately stored across the network
facilities, and thus conveyed by pipelines, tanker ships, tank wagons and tank trucks from oil refineries
through the primary distribution, and by tank trucks from storage depots in the secondary distribution.
Oil refineries are allowed to import and export oil products, while storage depots can only import.
In summary, the problem can be generally defined as follows:

Given a downstream oil system, in which an oil company manages the refining processes, storage
activities, logistics, distribution, and marketing;

Determine the robust tactical and operational planning under uncertainty so as to define the
production levels, yield fractions, material flows, inventory levels, demand fulfillment, transport
assignment and international trade throughout the network;

Subject to material balance, product yield, equipment capacities, supply limitations,
and transportation capacity constraints;

So as to maximize the worst-case network profit that comprises the worst-case recourse profit
minus the total cost of crude oil procurement.

To solve this problem, a two-stage adjustable robust modeling framework, considering uncertainty
in demand for refined products, is developed.

3. Two-Stage ARO Formulation

In the two-stage ARO modeling framework, the first-stage variables comprise the set of decisions
that shall be made before the uncertainty is revealed and the second-stage variables include the set of
decisions that must be made after the uncertainty is disclosed. The second-stage decision variables
have fully adaptability to any realization of the uncertainty [25]. Considering a linear formulation
and let x and y be the corresponding first-stage and second-stage decision variables, whileU is either
a polyhedral or a discrete uncertainty set, according to Zeng and Zhao [28], the general form of a
two-stage ARO formulation can be defined as follows:

max
x

cTx + min
u∈U max

y∈F(x,u)
bTy (1)

s.t.Ax ≤ d, x ∈ Sx (2)

where F(x, u) =
{
y ∈ Sy : Gy ≤ h− Ex−Mu

}
with Sx ∈ R

n
+ and Sy ∈ R

m
+. If the uncertainty set U

is continuous, the optimization problem (Equations (1) and (2)) will have an infinite number of
constraints in the second-stage problem [27]. However, whenU is a polyhedral uncertainty set, only its
extreme points, i.e., its vertices, might belong to an optimal solution of that second-stage problem [25].
In accordance with Zeng and Zhao [28], when considering only a finite and discrete set of extreme
points U = {u1, . . . , ur}, as well as the set of the respective recourse decision variables

{
y1, . . . , yr

}
,

the prior optimization problem can be recast as presented below:

max
x

cTx + η (3)

s.t.Ax ≤ d (4)

η ≤ bTyv, v = 1, . . . , (5)

Ex + Gyv ≤ h−Muv, v = 1, . . . , r (6)
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x ∈ Sx, yv ∈ Sy, v = 1, . . . , r. (7)

consequently, we can find a solution for the two-stage ARO model (Equations (1) and (2)) through
solving its mixed-integer linear program counterpart (Equations (3)–(7)). However, defining this
equivalent formulation and determining its solution can often be difficult and dependent on the size of
the finite and discrete uncertainty setU = {u1, . . . , ur} [28].

4. Adjustable Robust Mathematical Programming Model

Having defined in a generic form the two-stage ARO approach, the tactical and operational
planning for the DOSC is now considered, which aims at maximizing the worst-case network profit
under refined product uncertainty. In the established two-stage ARO problem, the first-stage decisions,
i.e., the here-and-now decisions, comprise the crude oil purchase, while the second-stage decisions,
i.e., the recourse (wait-and-see) decisions, include production levels, product yields, material flows,
inventory levels, demand fulfillment, transport allocation and international trade, which are made in
accordance with the realization of the product demand uncertainty. The two-stage ARO model for the
general distribution problem under uncertain demand for refined products is formulated hereinafter.

4.1. Robust Objective Function

The notation used to formulate the two-stage ARO model is outlined in Table A1 of Appendix A.
As shown in Equation (8), the objective function aims at maximizing the worst-case network profit
(WCP), which can be stated as follows:

max
XCO

WCP =−
∑

i∈I,t∈T

XCOi,tPOt +QU(XCO) (8)

s.t.XCOi,t ≤ DOi,t∀i ∈ I, t ∈ T (9)

where XCOi,t represents the crude oil purchase at oil refinery i in time point t and refers to the first-stage
decisions. QU(·) is defined as a function of the first-stage (here-and-now) decisions and denotes the
worst-case recourse profit, which must be determined for the worst-case scenario of the uncertain
product demands in the second-stage problem. Here, uncertainty is modeled through a polyhedral
uncertainty set U, where the uncertain parameters can take values in, because such fact guides to
define a robust counterpart that corresponds to a linear programming problem [27]. Equation (9)
limits the amount of crude oil purchased by each oil refinery i at time point t by the corresponding
oil demand.

The worst-case recourse profit QU(·) is equal to the objective function value of the next robust
formulation, Equation (10), which can be formulated as follows:

QU(·) = min
ΔDPk,p,t∈U

max
R∈F (H ,ΔDPk,p,t)

⎛⎜⎜⎜⎜⎝ ∑
i∈I,t∈T

RRi,t +
∑

j∈J,p∈P,t∈T
MDj,p,t +

∑
k∈K,p∈P,t∈T

MCk,p,t

− ∑
i∈I,p∈P,t∈T

CEi,p,t − ∑
h∈H,p∈P,t∈T

CIh,p,t − ∑
i∈I,p∈P,t∈T

CPDi,p,t

− ∑
j∈J,p∈P,t∈T

CSDj,p,t − ∑
i∈I,t∈T

CIOi,t − ∑
i∈I,p∈P,t∈T

CIRi,p,t

− ∑
j∈J,p∈P,t∈T

CIDj,p,t − ∑
k∈K,p∈P,t∈T

CIMk,p,t − ∑
k∈K,p∈P,t∈T

CUDk,p,t

⎞⎟⎟⎟⎟⎠
(10)

whereU represents the polyhedral uncertainty set that is used to describe the stochastic parameters,
R ∈ R+ denotes the set of recourse decisions, i.e.,R= {XR,XOP,XCO,XP,XS,XRP,XU,XE,XI,IO,IR,ID,IM},
H ∈ R+ depicts the set of here-and-now decisions,H = {XCO}, and F is a set defined as a function of
the set of here-and-now decisionsH and the worst-case realization of the deviations ΔDPk,p,t from the

nominal values D̂Pk,p,t. Notice that the set of recourse decisions R is made after the outer minimization
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problem selects the worst-case realization of the deviations of the product demands ΔDPk,p,t. In other
words, the min-max problem picks the worst realization of the demand that minimizes the network
profit. Therefore, the robust modeling framework concerns with the maximization of the recourse
profit in the worst-case scenario of the random parameter within the uncertainty setU. In summary,
the two-stage RO model addresses the volumes of exported and imported products, refined oil, product
yield fractions, primary and secondary product distributions, inventories of oil and products, and met
and unmet demand as the second-stage decisions, which are adjusted to the volumes of purchased oil,
i.e., the first-stage decisions, after uncertainty is disclosed.

The worst-case recourse profit QU(·), i.e., Equation (10), includes the revenues from the sales
of refined products by the oil refineries, margins from buying and selling refined products by the
storage depots and local markets, and costs for exporting, importing, transporting, and storing refined
products throughout the network. Before presenting the equations of the recourse optimization
problem QU(·), the associated revenues, margins and costs are now discussed, being outlined by the
set of Equations (11)–(22) below:

RRi,t =
∑
p∈P

[
XRi,p,t ×

(
PPa,p,t − TNr,p

)]
∀i ∈ I, t ∈ T, a = r == re f inery (11)

MDj,p,t =
∑

(k,m)∈Routei, j,m

XSj,k,m,p,t ×
(
PPa,p,t − TNr,p

)
− ∑

(i,m)∈Routei, j,m

XPi, j,m,p,t × PPa2,p,t

∀ j ∈ J, p ∈ P, t ∈ T, a = r = depot, a2 = re f inery (12)

MCk,p,t =
[(

XRPk,p,t −XUk,p,t
)
×
(
PPa1,p,t − TNr,p

)]
−[( ∑

(i,m)∈Routei,k,m

XPi,k,m,p,t) × PPa2,p,t + (
∑

( j,m)∈Routej,k,m

XSj,k,m,p,t) × PPa3,p,t]

∀k ∈ K, p ∈ P, t ∈ T, a1 = r = retail, a2 = re f inery, a3 = depot (13)

CEi,p,t = XEi,p,t × TNr,p ∀i ∈ I, p ∈ P, t ∈ T, r = export (14)

CIh,p,t = XIh,p,t ×
(
PPa,p + TNr,p

)
∀h ∈ H, p ∈ P, t ∈ T, a = r = import (15)

CPDi,p,t =
∑

(l,m)∈Routei,l,m

(
XPi,l,m,p,t ×CTm,p ×Disti,l,m

)
∀i ∈ I, p ∈ P, t ∈ T (16)

CSDj,p,t =
∑

(k,m)∈Routej,k,m

(
XSj,k,m,p,t ×CTm,p ×Distj,k,m

)
∀ j ∈ J, p ∈ P, t ∈ T (17)

CIOi,t = CKI × IOi,t × POt ∀i ∈ I, t ∈ T, p = oil (18)

CIRi,p,t = CKI × IRi,p,t × PPa,p,t ∀i ∈ I, p ∈ P, t ∈ T, a = re f inery (19)

CIDj,p,t = CKI × IDj,p,t × PPa,p,t ∀ j ∈ J, p ∈ P, t ∈ T, a = depot (20)

CIMk,p,t = CKI × IMk,p,t × PPa,p,t ∀k ∈ K, p ∈ P, t ∈ T, a = retail (21)

CUDk,p,t = XUk,p,t × TNr,p ∀k ∈ K, p ∈ P, t ∈ T, r = unmet (22)

Equation (11) defines the refinery revenues obtained from the sales of refined products. Equations
(12) and (13) determine the storage depot margins and the local market margins, respectively, being
the difference between the revenues from selling refined products and the costs for buying these ones.
Equations (14) and (15) specify, respectively, the costs of exporting and importing refined products.
Equations (16) and (17) determine the costs for dispatching refined products through the primary
and secondary distributions, in that order. Equation (18) defines the crude oil inventory costs at oil
refineries, whereas Equations (19)–(21) define, respectively, the refined product inventory costs at oil
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refineries, storage depots and local markets. Equation (22) represents the costs for not supplying the
required product demand.

4.2. Equations of the Recourse Problem QU(·)
Equations (23)–(45) of the second-stage problemQU(·) depend on the worst-case realization of the

stochastic parameters and are used to model the refinery operation, network flow allocation, inventory
policy, and so on:

XOPi,t ≤ PCi ∀i ∈ I, t ∈ T (23)

XRi,p,t = XOPi,t ×YFi,p ∀i ∈ I, p ∈ P, t ∈ T (24)

IOi,t = ISOi + XCOi,t −XOPi,t ∀i ∈ I, t ∈ T, t = t1 (25)

IOi,t = IOi,t−1 + XCOi,t −XOPi,t ∀i ∈ I, t ∈ T, t > t1 (26)

IRi,p,t = ISPi,p + XRi,p,t + XIi,p,t −
∑

(l,m)∈Routei,l,m

XPi,l,m,p,t −XEi,p,t

∀i ∈ I, p ∈ P, t ∈ T, t = t1 (27)

IRi,p,t = IRi,p,t−1 + XRi,p,t + XIi,p,t −
∑

(l,m)∈Routei,l,m

XPi,l,m,p,t −XEi,p,t

∀i ∈ I, p ∈ P, t ∈ T, t > t1 (28)

IDj,p,t = ISPj,p + XIj,p,t +
∑

(i,m)∈Routei, j,m

XPi, j,m,p,t −
∑

(k,m)∈Routej,k,m

XSj,k,m,p,t

∀ j ∈ J, p ∈ P, t ∈ T, t = t1 (29)

IDj,p,t = IDj,p,t−1 + XIj,p,t +
∑

(i,m)∈Routei, j,m

XPi, j,m,p,t −
∑

(k,m)∈Routej,k,m

XSj,k,m,p,t

∀ j ∈ J, p ∈ P, t ∈ T, t > t1 (30)

IMk,p,t = ISPk,p +
∑

(i,m)∈Routei,k,m

XPi,k,m,p,t +
∑

( j,m)∈Routej,k,m

XSj,k,m,p,t + XUk,p,t −XRPk,p,t + ΔDPk,p,t

∀k ∈ K, p ∈ P, t ∈ T, t = t1 (31)

IMk,p,t = IMk,p,t−1 +
∑

(i,m)∈Routei,k,m

XPi,k,m,p,t +
∑

( j,m)∈Routej,k,m

XSj,k,m,p,t + XUk,p,t −XRPk,p,t + ΔDPk,p,t

∀k ∈ K, p ∈ P, t ∈ T, t > t1 (32)

XRPk,p,t ≤
(
D̂Pk,p,t + ΔDPk,p,t

)
∀k ∈ K, p ∈ P, t ∈ T (33)

SSOi × SCOi ≤ IOi,t ≤ SCOi ∀i ∈ I, t ∈ T (34)

SSPi × SCi,p ≤ IRi,p,t ≤ SCi,p ∀i ∈ I, p ∈ P, t ∈ T (35)

SSPj × SCj,p ≤ IDj,p,t ≤ SCj,p ∀ j ∈ J, p ∈ P, t ∈ T (36)

SSPk × SCk,p ≤ IMk,p,t ≤ SCk,p ∀k ∈ K, p ∈ P, t ∈ T (37)∑
l∈Routei,l,m

XPi,l,m,p,t ≤ ASPDi,m,p ∀i ∈ I, m ∈M, p ∈ P, t ∈ T (38)∑
k∈Routej,k,m

XSj,k,m,p,t ≤ ASSDj,m,p ∀ j ∈ J, m ∈M, p ∈ P, t ∈ T (39)

∑
p∈P

XPi,l,m,p,t ≤ ACPDi,l,m ∀(i, l, m) ∈ Routei,l,m, t ∈ T (40)∑
p∈P

XSj,k,m,p,t ≤ ACSDj,k,m ∀( j, k, m) ∈ Routej,k,m, t ∈ T (41)
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∑
(i,m)∈Routei, j,m

XPi, j,m,p,t + XIj,p,t ≤ SCj,p × TCMj,p ∀ j ∈ J, p ∈ P, t ∈ T (42)

∑
(i,m)∈Routei,k,m

XPi,k,m,p,t +
∑

( j,m)∈Routej,k,m

XSj,k,m,p,t ≤ SCk,p × TCMk,p ∀k ∈ K, p ∈ P, t ∈ T (43)

XPi,l,m,p,t = 0 ∀i ∈ I, l ∈ L, p ∈ P, t ∈ T, m = road,μi, j,m >MTD (44)

XSj,k,m,p,t = 0 ∀ j ∈ J, k ∈ K, p ∈ P, t ∈ T, m = road,μ j,k,m >MTD (45)

Equation (23) limits the oil processed at oil refineries. Equation (24) defines the fractions obtained
through the crude oil distillation process. Equations (25) and (26) control the crude oil balance, as well
as Equations (27) and (28) handle the refined product balance, at oil refineries. Likewise, Equations
(29) and (30) control the refined product balance at storage depots, as well as Equations (31) and
(32) do it at local markets. Equation (33) limits the product supply at local markets by the nominal
product demand plus the associated deviation. Equations (34)–(37) determine the storage capacities
for the facilities in the network. Equation (38) limits the capacity of supplying refined products in
the primary distribution, as well as Equation (39) does so in the secondary distribution. Equation
(40) defines the arc capacities for the primary distribution, whereas Equation (41) for the secondary
distribution. Equations (42) and (43) determine the receiving capacities for the storage depots and
local markets, respectively. Equation (44) and (45) suppress the primary and secondary distributions
for long distances, respectively.

4.3. Definition of Uncertainty SetU
The uncertainty set is the key building block of the robust modeling framework [7]. It is assumed

that the deviation of the product demand ΔDPk,p,t takes values within a convex and budget uncertainty
set (Equations (46)–(48)) as follows—see [31]:

ΔDPk,p,t = D̃Pk,p,t − D̂Pk,p,t ∀k ∈ K, p ∈ P, t ∈ T (46)∣∣∣ΔDPk,p,t
∣∣∣ ≤ ΔDPmax

k,p,t ∀k ∈ K, p ∈ P, t ∈ T (47)

∑
t

∣∣∣ΔDPk,p,t
∣∣∣

ΔDPmax
k,p,t

≤ Γk,p ∀k ∈ K, p ∈ P (48)

Equation (46) defines the demand deviation ΔDPk,p,t as the difference between the uncertain value

of the product demand D̃Pk,p,t and the nominal value of the demand D̂Pk,p,t. Equation (47) models
the symmetrical and bounded range for the deviations of the product demand ΔDPk,p,t. Equation (48)
ensures that the sum of the normalized absolute values of the demand deviations for each pair of
location and product, across all time points t, must not exceed the user-defined budget of uncertainty
Γk,p. Notice that the normalized absolute value corresponds to the quotient between the absolute and
maximum values of the demand deviation, while the uncertain value of the product demand refers to
the unknown realization of the product demand. Appendix E includes an example showing how to
define the vertices of a polyhedral budget uncertainty set.

4.4. The Adaptive Robust Formulation

In this section, the above robust formulation, that is, the set of Equations (8)–(48), is reformulated to
be fully adaptive to the realizations of the uncertain deviations of the product demands ΔDPk,p,t. In order
to transform the prior robust formulation into a single-level approach, the worst-case recourse profit
QU(·) may be denoted by an auxiliary variable α, which must be lower or equal to the difference among
the financial items—see Equation (49). Moreover, the set of recourse decisions of the second-stage
problem QU(·) is reformulated as a function of the uncertain deviations of the product demands
ΔDPk,p,t, which are defined by the uncertainty setU (Equations (46)–(48)). Because this uncertainty set
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U defines a polyhedron with infinite number of points, this reformulation would result in a recourse
problem with an infinite number of variables and equations. For this reason, the uncertainty setU
must be partitioned into K parts in order to make the resulting formulation tractable. According to
Bertsimas et al. [25], only an extreme point (i.e., a vertex) of the defined polyhedron can be part of the
optimal solution of the recourse problem QU(·). Hence, only the set of vertices v ∈ V of the polyhedron
defined through the uncertainty setU is considered in this adjustable robust formulation. Therefore,
the adjustable robust formulation is defined in the following set of Equations (49)–(86):

max
R,H ,α

WCP =−
∑

i∈I,t∈T

XCOi,t × POt + α (49)

s.t.XCOi,t ≤ DOi,t∀i ∈ I, t ∈ T (50)

α ≤ min
ΔDPk,p,t∈U

max
R∈F (H ,ΔDPmax

k,p,t )

⎛⎜⎜⎜⎜⎝ ∑
i∈I,t∈T

RRi,t,v +
∑

j∈J,p∈P,t∈T
MDj,p,t,v

+
∑

k∈K,p∈P,t∈T
MCk,p,t,v − ∑

i∈I,p∈P,t∈T
CEi,p,t,v − ∑

h∈H,p∈P,t∈T
CIh,p,t,v

− ∑
i∈I,p∈P,t∈T

CPDi,p,t,v − ∑
j∈J,p∈P,t∈T

CSDj,p,t,v − ∑
i∈I,t∈T

CIOi,t,v

− ∑
i∈I,p∈P,t∈T

CIRi,p,t,v − ∑
j∈J,p∈P,t∈T

CIDj,p,t,v − ∑
k∈K,p∈P,t∈T

CIMk,p,t,v

− ∑
k∈K,p∈P,t∈T

CUDk,p,t,v

⎞⎟⎟⎟⎟⎠
∀v ∈ V (51)

RRi,t,v =
∑
p∈P

[
XRi,p,t,v ×

(
PPa,p,t − TNr,p

)]
∀i ∈ I, t ∈ T, v ∈ V, a = r = re f inery (52)

MDj,p,t,v =
∑

(k,m)∈Routei, j,m

XSj,k,m,p,t,v ×
(
PPa,p,t − TNr,p

)
−

∑
(i,m)∈Routei, j,m

XPi, j,m,p,t,v × PPa2,p,t

∀ j ∈ J, p ∈ P, t ∈ T, v ∈ V, a = r = depot, a2 = re f inery (53)

MLk,p,t,v =
[(

XRPk,p,t,v −XUk,p,t,v
)
×
(
PPa1,p,t − TNr,p

)]
−[( ∑

(i,m)∈Routei,k,m

XPi,k,m,p,t,v) × PPa2,p,t + (
∑

( j,m)∈Routej,k,m

XSj,k,m,p,t,v) × PPa3,p,t]

∀k ∈ K, p ∈ P, t ∈ T, v ∈ V, a1 = r = retail, a2 = re f inery, a3 = depot (54)

CEi,p,t,v = XEi,p,t,v × TNr,p ∀i ∈ I, p ∈ P, t ∈ T, v ∈ V, r = export (55)

CIh,p,t,v = XIh,p,t,v ×
(
PPa,p + TNr,p

)
∀h ∈ H, p ∈ P, t ∈ T, v ∈ V, a = r = import (56)

CPDi,p,t,v =
∑

(l,m)∈Routei,l,m

(
XPi,l,m,p,t,v ×CTm,p ×Disti,l,m

)
∀i ∈ I, p ∈ P, t ∈ T, v ∈ V (57)

CSDj,p,t,v =
∑

(k,m)∈Routej,k,m

(
XSj,k,m,p,t,v ×CTm,p ×Distj,k,m

)
∀ j ∈ J, p ∈ P, t ∈ T, v ∈ V (58)

CIOi,t,v = CKI × IOi,t,v × POt ∀i ∈ I, t ∈ T, v ∈ V, p = oil (59)

CIRi,p,t,v = CKI × IRi,p,t,v × PPa,p,t ∀i ∈ I, p ∈ P, t ∈ T, v ∈ V, a = re f inery (60)

CIDj,p,t,v = CKI × IDj,p,t,v × PPa,p,t ∀ j ∈ J, p ∈ P, t ∈ T, v ∈ V, a = depot (61)

CIMk,p,t,v = CKI × IMk,p,t,v × PPa,p,t ∀k ∈ K, p ∈ P, t ∈ T, v ∈ V, a = retail (62)

CUDk,p,t,v = XUk,p,t,v × TNr,p ∀k ∈ K, p ∈ P, t ∈ T, v ∈ V, r = unmet (63)
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XOPi,t,v ≤ PCi ∀i ∈ I, t ∈ T, v ∈ V (64)

XRi,p,t,v = XOPi,t,v ×YFi,p ∀i ∈ I, p ∈ P, t ∈ T, v ∈ V (65)

IOi,t,v = ISOi + XCOi,t −XOPi,t,v ∀i ∈ I, v ∈ V, t ∈ T, t = t1 (66)

IOi,t,v = IOi,t−1,v + XCOi,t −XOPi,t,v ∀i ∈ I, v ∈ V, t ∈ T, t > t1 (67)

IRi,p,t,v = ISPi,p + XRi,p,t,v + XIi,p,t,v −
∑

(l,m)∈Routei,l,m

XPi,l,m,p,t,v −XEi,p,t,v

∀i ∈ I, p ∈ P, v ∈ V, t ∈ T, t = t1 (68)

IRi,p,t,v = IRi,p,t−1,v + XRi,p,t,v + XIi,p,t,v −
∑

(l,m)∈Routei,l,m

XPi,l,m,p,t,v −XEi,p,t,v

∀i ∈ I, p ∈ P, v ∈ V, t ∈ T, t > t1 (69)

IDj,p,t,v = ISPj,p + XIj,p,t,v +
∑

(i,m)∈Routei, j,m

XPi, j,m,p,t,v −
∑

(k,m)∈Routej,k,m

XSj,k,m,p,t,v

∀ j ∈ J, p ∈ P, v ∈ V, t ∈ T, t = t1 (70)

IDj,p,t,v = IDj,p,t−1,v + XIj,p,t,v +
∑

(i,m)∈Routei, j,m

XPi, j,m,p,t,v −
∑

(k,m)∈Routej,k,m

XSj,k,m,p,t,v

∀ j ∈ J, p ∈ P, v ∈ V, t ∈ T, t > t1 (71)

IMk,p,t,v = IMk,p,t−1,v +
∑

(i,m)∈Routei,k,m
XPi,k,m,p,t,v +

∑
( j,m)∈Routej,k,m

XSj,k,m,p,t,v

+XUk,p,t,v −XRPk,p,t,v + ΔDPk,p,t,v
(72)

∀k ∈ K, p ∈ P, v ∈ V, t ∈ T, t > t1 (73)

XRPk,p,t,v ≤
(
D̂Pk,p,t,v + ΔDPk,p,t,v

)
∀k ∈ K, p ∈ P, t ∈ T, v ∈ V (74)

SSOi × SCOi ≤ IOi,t,v ≤ SCOi ∀i ∈ I, t ∈ T, v ∈ V (75)

SSPi × SCi,p ≤ IRi,p,t,v ≤ SCi,p ∀i ∈ I, p ∈ P, t ∈ T, v ∈ V (76)

SSPj × SCj,p ≤ IDj,p,t,v ≤ SCj,p ∀ j ∈ J, p ∈ P, t ∈ T, v ∈ V (77)

SSPk × SCk,p ≤ IMk,p,t,v ≤ SCk,p ∀k ∈ K, p ∈ P, t ∈ T, v ∈ V (78)∑
l∈Routei,l,m

XPi,l,m,p,t,v ≤ ASPDi,m,p ∀i ∈ I, m ∈M, p ∈ P, t ∈ T, v ∈ V (79)

∑
k∈Routej,k,m

XSj,k,m,p,t,v ≤ ASSDj,m,p ∀ j ∈ J, m ∈M, p ∈ P, t ∈ T, v ∈ V (80)

∑
p∈P

XPi,l,m,p,t,v ≤ ACPDi,l,m ∀(i, l, m) ∈ Routei,l,m, t ∈ T, v ∈ V (81)

∑
p∈P

XSj,k,m,p,t,v ≤ ACSDj,k,m ∀( j, k, m) ∈ Routej,k,m, t ∈ T, v ∈ V (82)

∑
(i,m)∈Routei, j,m

XPi, j,m,p,t,v + XIj,p,t,v ≤ SCj,p × TCMj,p ∀ j ∈ J, p ∈ P, t ∈ T, v ∈ V (83)

∑
(i,m)∈Routei,k,m

XPi,k,m,p,t,v +
∑

( j,m)∈Routej,k,m

XSj,k,m,p,t,v ≤ SCk,p × TCMk,p ∀k ∈ K, p ∈ P, t ∈ T, v ∈ V (84)

XPi,l,m,p,t,v = 0 ∀i ∈ I, l ∈ L, p ∈ P, t ∈ T, v ∈ V, m = road,μi, j,m >MTD (85)
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XSj,k,m,p,t,v = 0 ∀ j ∈ J, k ∈ K, p ∈ P, t ∈ T, v ∈ V, m = road,μ j,k,m >MTD (86)

5. Case Study

The ARO model is applied to a real case study on a refined products network distribution in the
Portuguese oil industry, which was originally characterized by Lima et al. [1]. Figure 1 represents the
network under study.

Figure 1. Portuguese downstream oil supply chain (from Lima et al., 2018).

The network comprises two oil refineries (Sines and Matosinhos), three distribution centers
(Boa nova, CLC and Mitrena), 278 local markets (Portuguese cities) and four transportation modes
(pipeline transport, railway, roadway and waterway). In this network, the oil refineries import the
same type of crude oil and produce eight refined products, namely, jet fuel, diesel, propane, butane, fuel
oil, gas oil, gasoline 95 and gasoline 98. These refined products are then transported using pipelines,
tanker ships, tank wagons and tank trucks from the oil refineries, and using only tank trucks from
the distribution centers. Roadway is only considered for distances less than or equal to 250 km. The
planning horizon considered is 6 months, which is discretized into monthly cycles. For the sake of
comparison, the same database employed by Lima et al. [1] is used in the case study.

6. Results and Discussion

The proposed two-stage ARO model is implemented in GAMS 24.5.6 and solved using CPLEX
12.6 on an Intel(R) Xeon(R) processor CPU E5-2660 v3 @ with 2.60 GHz (two processors) and 64 GB
RAM memory.

6.1. Setup of the ARO Model

In the practical application, the ARO model was run under a specific configuration of the budget
uncertainty set (Equations (46)–(48)). In other words, the ARO model was solved after specifying the

70



Processes 2019, 7, 507

parameters of the polyhedral uncertainty set, namely, the nominal value D̂Pk,p,t and the maximum
deviation in absolute value ΔDPmax

k,p,t of the uncertain product demand D̃Pk,p,t, besides the budget
of uncertainty Γk,p. The values of these parameters were estimated from the dataset described by
Lima et al. [1]. Therefore, the maximum deviation ΔDPmax

k,p,t was estimated as 10% of the nominal value

D̂Pk,p,t, while the budget of uncertainty Γk,p was set to the average of the total relative deviations over
the time horizon for the pairs of local market and product. To be more precise, for each pair of location
and product (k, p), the absolute value of the product demand deviation ΔDPk,p,t is normalized to the
associated maximum deviation ΔDPmax

k,p,t at each time point. We then sum of all the so normalized
deviations over the time horizon. Finally, we average these normalized values over all pairs of
products and locations, and the result (let’s denote it by Γ̂k,p) is considered as the value of the budget of

uncertainty, that is, Γ̂k,p for all (k, p). This results in Γ̂k,p = 0.895, for all (k, p), which leads to uncertainty
sets (i.e., Equations (46)–(48)) consisting in polyhedrons of 12 vertices.

6.2. Comparison with the Developed Approaches

In this section, we compare the results given by the proposed adjustable robust optimization
(ARO) model with those obtained using the equivalent non-adjustable robust optimization (NARO),
stochastic programming (SP) and the deterministic (DM) models. The mathematical formulations,
the model notations and the specific settings for the DM, NARO and SP models can be found in
Appendix B, Appendix C, Appendix D, respectively.

6.2.1. Computational Performance

Table 1 presents the problem size, economic performance and solving time for all the
optimization models.

Table 1. Statistics.

Variables

Cases Scenarios Tree Nodes Binary Continuous Equations Profit (€) Solution Time (s)

ARO 1 - - 4,721,774 2,291,857 2,775,311,076 95.300
NARO 1 - 1 395,730 214,388 2,753,378,686 11.880

SP 243 364 - 7,249,759 3,052,522 2,779,767,979 236.800
DM 1 - - 393,493 190,999 2,791,797,659 1.484

From Table 1, we can conclude that the economic performance (i.e., the profit) declines when
uncertainty in demand for refined products is taken into consideration by the optimization model.
On the other hand, a model in which all the parameters are considered as deterministic (DM) is not
realistic, and it should consider random parameters to provide robustness and consistency to the
decision maker.

In this way, the SP model aims at maximizing the expected profit for a set of scenarios, while the
robust approaches maximize the total profit of the worst-case scenario. Compared to the ARO approach,
the profit is higher about 0.16% for the SP approach. When comparing both robust approaches, the ARO
model shows a better economic performance, providing a profit that is almost 0.80% higher than the
one returned by the NARO model, which is the most conservative approach.

The problem size is also different for all the considered formulations. That is, the size of the
deterministic model is smaller than the other methods, and thus it requires less computational
time (1.484 CPU seconds). The NARO model does not increase too much the problem size and
the computational time, because its size raises as more dual variables and robust constraints are
incorporated into the problem, and such an increase is at the same scale as the number of the added
random parameters, which in this case is only the demand for refined products. Nevertheless, much
more computational burden is demanded to solve the much bigger ARO and SP models (95.3 and
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236.8 CPU seconds, respectively). The size of the ARO model relies on the size of the polyhedral
uncertainty set (Equations (46)–(48)), which in turn is determined by the budget of uncertainty Γk,p
in Equation (48). The size of the scenario-based SP model depends on the number of the considered
scenarios, which in this case amounts to 243, in order to model the uncertainty in the stochastic
parameter. All in all, the ARO approach does not increase the problem size as much as the SP approach
when compared with the nominal problem (i.e., DM), having better solution performance, while it
approximates better the economic result of the SP when comparing to the NARO approach.

6.2.2. Insights about the Network Profitability

The contribution of the different activities to the network profitability is illustrated in Figure 2
for all the optimization models. The oil procurement costs and the refinery revenues are all included
into the margins of the refinery sector, so that the comparisons can be possible with the margins of the
distribution and market sectors. In general, the profit breakdown is not too affected when the case
study is solved by the different models. As the only difference in these approaches is how uncertainty
is modeled, the reason comes from that. Firstly, the same uncertainty set U is considered by both
robust optimization approaches. Secondly, the stochastic approach provides an average result of the
considered scenarios, which are properly defined in accordance with the level of uncertainty considered
by the robust approaches. Lastly, the product demand uncertainty does not actually interfere too much
in the profit breakdown.

 

Figure 2. Contribution margins of the network echelons to the profitability.

As it can be seen in Figure 2, the market sector delivers the largest contribution to the network
profitability, followed by the refining and distribution sectors, respectively. When comparing both
robust approaches, the profit breakdown differs. The NARO model increases the shares of the refining
and market sectors and decreases the contribution of the distribution sector when compared with
the ARO model. The SP and DM models result in the same profit breakdown, which is slightly
different from the one determined by the ARO model, where the market contribution rises 1% and the
distribution sector diminishes 1%, whereas the share of the refining sector remains unaltered.

Figure 3 compares the effective profitability contribution of the network sectors among the different
optimization models. All the optimization approaches provide quite similar results for the refining
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sector. The same fact is not observed in the distribution and market sectors, where the NARO model
returns the lowest economic performance. These facts corroborate that the NARO model is the most
conservative approach to handle uncertainty in this case study.

Figure 3. Comparison of profitability contributions among the optimization models.

In order to get more insights about the network profitability, the cost breakdown information is
also investigated. As abovementioned, refinery margins comprise the revenues for selling oil products
and the cost for acquiring crude oil. The oil procurement cost is the major cost item, and accounts for at
least 78.53% of the overall cost in all the developed approaches, while the other costs together account
for at most 21.47% of the same total. The oil procurement cost amounts to 78.53%, 80.92%, 78.94% and
78.54% of the total network cost in the ARO, NARO, SP and DM approaches, respectively. The cost
breakdown information of the studied models is illustrated in Figure 4. Even though the exportation
and lost demand costs are included in the estimation of the cost breakdown, their slices of the overall
cost are quite small, i.e., almost 0%, and hence they have been omitted to enhance the readability of the
charts without loss of generality.

As shown in Figure 4, the total network cost is divided into the same proportions for both ARO
and DM approaches, while the proportions are much different for the other approaches. For instance,
the SP and NARO approaches have increased the oil procurement cost by 1% and 3%, respectively,
and have decreased the total of the other costs by 1% and 3%, respectively, when compared with the
previous approaches. In most cases, the importation cost is the second most relevant cost item, followed
by the secondary and primary transportation costs, respectively. The inventory cost aggregates the
costs for keeping inventories of oil and refined products at the network facilities and amounts to 1% of
the overall cost.

Figure 5 compares the absolute values of the cost items among the optimization methods. Notice
that the oil procurement cost is not displayed, because it is much larger than the other cost items,
and assumes quite similar values in all the methods, i.e., €2,408,811,163 on average. As it can be seen
in Figure 5, the ARO and DM methods have much similar network costs, which are usually higher
than the cost items for the NARO and SP models. Notice that the export and unmet demand costs are
much smaller than the other cost items, and hence they are displayed in a different scale. Even though
the NARO presents the best performance with regards to the network costs, its poorer performance
in the network margins makes it as the most conservative approach. In turn, the SP model is the
less conservative model, but it is not so efficient as the others in order to fulfill the required demand,
and thus the lost demand is larger.
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Figure 4. Cost breakdown for the optimization models.

 
Figure 5. Cost items for the optimization models.
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6.2.3. Network Planning for the Refined Products Distribution

Figure 6 shows how the total volume, which is transported over the network, is divided into
different proportions by using the optimization models. As it can be observed, the ARO and DM
models return the same volume portions, what is fully consistent with the cost breakdown information
in Figure 4. However, the SP and NARO models provide different results when compared with the
previous models, but some similarities are also observed. For instance, the amount of oil processed also
corresponds to the largest slice of the total network volume, and the associated percentages are 26%
and 28% in the SP and DM models, respectively. The oil delivery refers to the second biggest piece of
the total volume, and accounts for 23% in the ARO, SP and DM models and 24% in the NARO model.
Notice that, at all the volume charts, the oil processed is higher than the oil delivery due to the initial oil
inventory at oil refineries in the first-time point, which is consumed throughout the planning horizon.

 

Figure 6. Proportions of the total network volumes among the optimization models.

As it can be seen in Figure 6, the portion of volumes conveyed through primary distribution is
considerably bigger than the piece of volumes distributed via secondary distribution. The secondary
distribution costs are much bigger than the primary distributions cost as displayed in Figures 4 and 5,
because the former is only performed via roadway, i.e., the most expensive way to convey refined
products in the network, while the latter can be undertaken by any transportation mode. Similarly,
the importation volumes are lower than the exportation volumes, but they generate much bigger costs
due to the importation tariffs that are paid to bring the refined product into the Portuguese network.
The inventory volumes also present a certain relevance in the network and account for 3% or 4% of the
total network volume.

Figure 7 displays the actual volumes determined by solving the case study using the optimization
approaches. The NARO model presents the most different network flows among the optimization
models, as well as the worst overall performance. Although the NARO model defines to purchase
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and process the same volumes of crude oil seen in the other models, the network flows through the
primary and secondary distributions are significantly shorter, besides the inventories are sensibly
higher. Hence, the NARO model does not provide a network that is so profitable as the other models
do — see Table 1. Notice that these other models present much similar performances. However, the SP
model is the only one that has a so evident lost demand.

Figure 7. Network flows by solving the case study with different optimization models.

6.2.4. General Aspects about the Developed Modeling Frameworks

All the proposed approaches are useful to handle uncertainty in DOSC problems, and some
conclusions can be withdrawn from the previous analyses. Under a second-stage stochastic
programming approach, the decision variables are separated into two different groups, i.e., the first-
and second-stage variables. This is a troublesome task, which depends on the decision maker’s
knowledge about the problem under study [8]. Nonetheless, once this separation is successfully
performed, it may improve the model robustness against infeasibilities caused by the realization of the
random parameters, because the second-stage variables might be properly adjusted to any particular
realization of uncertainty [6]. In general, stochastic programming with recourse might be a good
option when the probability distribution of the random parameters can be obtained from the historical
data, such that a set of scenarios, i.e., a scenario tree, can be generated to represent the underlying
uncertainty [32]. The decision maker can precisely model uncertainty by eliminating the undesirable
scenarios and specifying the most adequate scenarios. However, the assignment of probabilities
to scenarios, as well as the definition of scenario tree frameworks, could not be easy. Additionally,
a wide range of scenarios should be considered to model uncertainty adequately, which could result in
large-scale or even intractable mathematical programs [31]. Hence, the use of decomposition methods
and approximation schemes for their solution are usually employed to solve this class of optimization
problems [33].

In contrast to stochastic programming, robust optimization does not assume that uncertainty has
a probability distribution [27], but alternatively it assumes that uncertainty is represented through
uncertainty sets [29]. In this way, the decision maker can represent uncertainty in the random parameters
by defining their nominal values and variation amplitudes from the historical data. Another advantage
of employing robust optimization is the computational tractability for solving numerous classes of
uncertainty sets and problem types [25]. In this methodology, the decision maker aims at establishing
a feasible solution for any realization of the random parameters in a given uncertainty set [34], while
the decision maker can control the trade-off between robustness and performance by using a budget
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of uncertainty that is introduced in the prescribed set [35]. However, a single-stage (non-adjustable)
robust optimization approach tends to be very conservative because all decisions are made before
uncertainty is revealed [27] while a two-stage adjustable robust optimization has a higher modeling
capability, in which the second-stage problem models decision making after the first-stage decisions
are made and uncertainty is disclosed [28].

Generally, the proposed modeling frameworks showed to be efficient and effective to cope with
DOSC problems under uncertainty. These methodologies present different goals and consider specific
assumptions and simplifications to represent uncertainty. Therefore, the most adequate methodology
depends on the considered problem, the dataset and the decision maker preferences.

7. Conclusions

In this paper, a two-stage adjustable robust optimization model is developed to deal with demand
uncertainty in the tactical planning of refined products distribution in a downstream oil supply chain.
The adjustable robust model is then compared with its non-adjustable, stochastic and deterministic
counterparts, whose objectives are different, that is, the robust approaches concern to maximize the
profit at the worst-case scenario, the stochastic approach aims at maximizing the expected profit
for a set of scenarios, and the deterministic approach at maximizing the total profit of the nominal
problem. However, all the optimization approaches provide comparable results in terms of economic
performance and material flows, and the major discrepancies occur with regards to problem sizes and
computational properties.

Specifically, the obtained results show that the non-adjustable model is the most conservative,
while the stochastic model is in turn the least conservative. However, the main drawback of the
stochastic approach is the limitation of problem size due to the computational burden, while the
major advantage of the non-adjustable robust approach is that the problem size is not overly enlarged
with regards to the nominal deterministic approach. In comparison, the adjustable robust model
establishes a problem that is not as short as its non-adjustable counterpart, as well as is not so big as
its stochastic counterpart, so that the model tractability issues are reasonable. All the optimization
approaches provide different network flows, but too comparable. The adjustable approach presents the
best performance in this respect among the developed approaches to cope with uncertainty, because
it provides the highest service level in order to fulfill the required demand for refined products.
In contrast, the non-adjustable approach has the most inferior performance over the supply chain,
whose network flows are majorly lower in the primary and secondary distributions, for example.

In summary, all the developed optimization approaches are valuable to deal adequately with
refined products distribution under uncertainty. Each approach has a specific objective and assumes
distinct assumptions and simplifications in order to model and represent adequately uncertainty.
Hence, the most appropriate method depends on the problem under study, as well as on the available
dataset and on the decision maker preferences.

As future work, and as a direct extension of the present work, the two-stage ARO model could be
further explored to include other uncertainty sets, as well as modeling more than one uncertainty type
simultaneously, ex. crude oil and product prices. Also, other approaches to deal with uncertainty could
be explored such as fuzzy programming and chance-constrained programming. In addition, Markov
chain and game theory might be investigated and employed to cope with the stochastic parameters.
Finally, the studied approaches to deal with uncertainty could be also applied to the strategic and
tactical problem of the downstream oil network allowing for the design and planning of such system.
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Appendix A. Nomenclature

Table A1. Model notation.

Sets
a ∈ A Set of developed activities
d ∈ D Set of route distances
m ∈M Set of transportation modes
n, o ∈ N Set of all network nodes

p ∈ P Set of products
r ∈ R Set of resources and network stages

t, τ ∈ T Set of time points
v ∈ V Set of vertices of the polyhedral uncertainty set

Subsets
i ∈ I ⊆ N Set of refineries
j ∈ J ⊆ N Set of depots

k ∈ K ⊆ N Set of markets
Subset unions

h ∈ H = I ∪ J Set of refineries and depots
l ∈ L = J ∪K Set of depots and markets

Parameters

ACPDn,o,m
Arc capacity between nodes n and o when transportation mode m is considered at
primary distribution

ACSDn,o,m
Arc capacity between nodes n and o when transportation mode m is considered at
secondary distribution

ASPDi,m,p
Availability of supplying product p from refinery i by transportation mode m
through the primary distribution

ASSDj,m,p
Availability of supplying product p from depot j by transportation mode m
through the secondary distribution

CKI Cost of keeping inventory defined as a percentage of the inventory value
CTm,p Transportation cost per transportation mode m and product p

Distn,o,m Distance between nodes n and o depending on transportation mode m
DOi,t Demand of oil at refinery i at time point t

D̃Pk,p,t,v True value of demand of product p per market k at time point t and vertice v
D̂Pk,p,t,v Nominal value of demand of product p per market k at time point t and vertice v

ISOi Initial stock of oil at refinery i
ISPn,p Initial stock of product p at node n
MTD Maximum travel distance in meters allowed in the road transportation mode
PCi Processing capacity at refinery i
POt Price of oil at time point t

PPa,p,t Price of product p at activity a at time point t
Routen,o,m Route between nodes n and o connected by transportation mode m

SCn,p Storage capacity of product p at node n
SCOi Storage capacity of oil at refinery i

SSOi
Safety stock of oil at refinery i defined as a percentage of the overall oil storage
capacity

SSPn
Safety stock of products at node n defined as a percentage of the overall storage
capacity

TNr,p Tariff per network stage r and product p
TCMn,p Throughput capacity multiplier per node n and product p

YFi,p Yield fractions by refinery i of product p per cubic meters of oil
Γk,p Budget of uncertainty for deviations of the demand for product p at market k

ΔDPk,p,t,v Deviation of the demand of product p at local market k at time point t and vertice v

ΔDPmax
k,p,t,v

Maximum deviation of the demand of product p at local market k at time point t
and vertice v
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Table A1. Cont.

Positive continuous variables
CEi,p,t,v Cost of exporting product p by refinery i at time point t and vertice v
CIh,p,t,v Cost of importing product p by refinery or depot h at time point t and vertice v

CIDj,p,t,v Cost of inventory at depot j for product p at time point t and vertice v
CIMk,p,t,v Cost of inventory at market k for product p at time point t and vertice v
CIOi,t,v Cost of inventory for oil at refinery i at time point t and vertice v
CIRi,p,t,v Cost of inventory at refinery i for product p at time point t and vertice v

CPDi,p,t,v
Cost of primary distribution from refinery i for product p at time point t and
vertice v

CSDj,p,t,v
Cost of secondary distribution from depot j for product p at time point t and
vertice v

CUDk,p,t,v Cost of unsatisfied demand for product p at market k at time point t and vertice v
IDj,p,t,v Inventory of product p at depot j at time point t and vertice v
IMk,p,t,v Inventory of product p at market k at time point t and vertice v
IOi,t,v Inventory of oil at refinery i at time point t and vertice v
IRi,p,t,v Inventory of product p at refinery i at time point t and vertice v

XCOi,t,v Volume of crude oil received by refinery i at time point t and vertice v
XEi,p,t,v Volume of product p exported by refinery i at time point t and vertice v
XIh,p,t,v Volume of product p imported by refinery or depot h at time point t and vertice v
XOPi,t,v Volume of oil processed by refinery i at time point t and vertice v

XPi,l,m,p,t,v
Volume of product p sent by refinery i to location l by transportation mode m at
time point t and vertice v

XRi,p,t,v Volume of product p yielded by refinery i at time point t and vertice v
XRPk,p,t,v Volume of product p delivered to market k at time point t and vertice v

XSj,k,m,p,t,v
Volume of product p sent by depot j to market k by transportation mode m at time
point t and vertice v

XUk,p,t,v
Volume of unsatisfied demand per market k and product p at time point t and
vertice v

Continuous variables
MDj,p,t,v Margin per depot j and product p at time point t and vertice v
MCk,p,t,v Margin per local market k and product p at time point t and vertice v
RRi,t,v Revenue per refinery i at time point t and vertice v
QU(·) The worst-case recourse profit
WCP The worst-case profit for the downstream oil network

Appendix B. Deterministic Mathematical Formulation

The deterministic formulation is briefly reported below through its objective function (Equations
(A1)–(A13)), network equations (Equations (A14)–(A37)) and model notation (Table A2). For the sake
of brevity, the descriptions of the equations are omitted, but the adjustable robust optimization (ARO)
counterpart can be consulted within the full paper for further details.

Objective function

maximize
Θ

π =
∑

i∈I,t∈T
MRi,t +

∑
j∈J,p∈P,t∈T

MDj,p,t +
∑

k∈K,p∈P,t∈T
MCk,p,t − ∑

i∈I,p∈P,t∈T
CEi,p,t

− ∑
h∈H,p∈P,t∈T

CIh,p,t − ∑
i∈I,p∈P,t∈T

CPDi,p,t − ∑
j∈J,p∈P,t∈T

CSDj,p,t

− ∑
i∈I,t∈T

CIOi,t − ∑
i∈I,p∈P,t∈T

CIRi,p,t − ∑
j∈J,p∈P,t∈T

CIDj,p,t

− ∑
k∈K,p∈P,t∈T

CIMk,p,t − ∑
k∈K,p∈P,t∈T

CUDk,p,t

(A1)

MRi,t =
∑
p∈P

[
XRi,p,t ×

(
PPa,p,t − TNr,p

)]
− [XCOi,t × POt] ∀i ∈ I, t ∈ T, a = r = re f inery (A2)

MDj,p,t =
∑

(k,m)∈Routei, j,m
XSj,k,m,p,t ×

(
PPa,p,t − TNr,p

)
−∑(i,m)∈Routei, j,m

XPi, j,m,p,t × PPa2,p,t

∀ j ∈ J, p ∈ P, t ∈ T, a = r = depot, a2 = re f inery
(A3)
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MCk,p,t =
[(

XRPk,p,t −XUk,p,t
)
×
(
PPa1,p,t − TNr,p

)]
− [(∑(i,m)∈Routei,k,m

XPi,k,m,p,t)

×PPa2,p,t + (
∑

( j,m)∈Routej,k,m
XSj,k,m,p,t) × PPa3,p,t]

∀k ∈ K, p ∈ P, t ∈ T, a1 = r = retail, a2 = re f inery, a3 = depot
(A4)

CEi,p,t = XEi,p,t × TNr,p ∀i ∈ I, p ∈ P, t ∈ T, r = export (A5)

CIh,p,t = XIh,p,t ×
(
PPa,p + TNr,p

)
∀h ∈ H, p ∈ P, t ∈ T, a = r = import (A6)

CPDi,p,t =
∑

(l,m)∈Routei,l,m

(
XPi,l,m,p,t ×CTm,p ×Disti,l,m

)
∀i ∈ I, p ∈ P, t ∈ T (A7)

CSDj,p,t =
∑

(k,m)∈Routej,k,m

(
XSj,k,m,p,t ×CTm,p ×Distj,k,m

)
∀ j ∈ J, p ∈ P, t ∈ T (A8)

CIOi,t = CKI × IOi,t × POt ∀i ∈ I, t ∈ T, p = oil (A9)

CIRi,p,t = CKI × IRi,p,t × PPa,p,t ∀i ∈ I, p ∈ P, t ∈ T, a = re f inery (A10)

CIDj,p,t = CKI × IDj,p,t × PPa,p,t ∀ j ∈ J, p ∈ P, t ∈ T, a = depot (A11)

CIMk,p,t = CKI × IMk,p,t × PPa,p,t ∀k ∈ K, p ∈ P, t ∈ T, a = retail (A12)

CUDk,p,t = XUk,p,t × TNr,p ∀k ∈ K, p ∈ P, t ∈ T, r = unmet (A13)

Network equations
XOPi,t ≤ PCi ∀i ∈ I, t ∈ T (A14)

XRi,p,t = XOPi,t ×YFi,p ∀i ∈ I, p ∈ P, t ∈ T (A15)

XCOi,t ≤ DOi,t ∀i ∈ I, t ∈ T (A16)

IOi,t = ISOi + XCOi,t −XOPi,t ∀i ∈ I, t ∈ T, t = t1 (A17)

IOi,t = IOi,t−1 + XCOi,t −XOPi,t ∀i ∈ I, t ∈ T, t > t1 (A18)

IRi,p,t = ISPi,p + XRi,p,t + XIi,p,t −
∑

(l,m)∈Routei,l,m

XPi,l,m,p,t −XEi,p,t ∀i ∈ I, p ∈ P, t ∈ T, t = t1 (A19)

IRi,p,t = IRi,p,t−1 + XRi,p,t + XIi,p,t −
∑

(l,m)∈Routei,l,m

XPi,l,m,p,t −XEi,p,t ∀i ∈ I, p ∈ P, t ∈ T, t > t1 (A20)

IDj,p,t = ISPj,p + XIj,p,t +
∑

(i,m)∈Routei, j,m
XPi, j,m,p,t −∑(k,m)∈Routej,k,m

XSj,k,m,p,t

∀ j ∈ J, p ∈ P, t ∈ T, t = t1
(A21)

IDj,p,t = IDj,p,t−1 + XIj,p,t +
∑

(i,m)∈Routei, j,m
XPi, j,m,p,t −∑(k,m)∈Routej,k,m

XSj,k,m,p,t

∀ j ∈ J, p ∈ P, t ∈ T, t > t1
(A22)

IMk,p,t = ISPk,p +
∑

(i,m)∈Routei,k,m
XPi,k,m,p,t +

∑
( j,m)∈Routej,k,m

XSj,k,m,p,t + XUk,p,t −XRPk,p,t

∀k ∈ K, p ∈ P, t ∈ T, t = t1
(A23)

IMk,p,t = IMk,p,t−1 +
∑

(i,m)∈Routei,k,m

XPi,k,m,p,t +
∑

( j,m)∈Routej,k,m

XSj,k,m,p,t + XUk,p,t −XRPk,p,t

∀k ∈ K, p ∈ P, t ∈ T, t > t1

(A24)

XRPk,p,t ≤ DPk,p,t ∀k ∈ K, p ∈ P, t ∈ T (A25)

SSOi × SCOi ≤ IOi,t ≤ SCOi ∀i ∈ I, t ∈ T (A26)

SSPi × SCi,p ≤ IRi,p,t ≤ SCi,p ∀i ∈ I, p ∈ P, t ∈ T (A27)

SSPj × SCj,p ≤ IDj,p,t ≤ SCj,p ∀ j ∈ J, p ∈ P, t ∈ T (A28)
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SSPk × SCk,p ≤ IMk,p,t ≤ SCk,p ∀k ∈ K, p ∈ P, t ∈ T (A29)∑
l∈Routei,l,m

XPi,l,m,p,t ≤ ASPDi,m,p ∀i ∈ I, m ∈M, p ∈ P, t ∈ T (A30)∑
k∈Routej,k,m

XSj,k,m,p,t ≤ ASSDj,m,p ∀ j ∈ J, m ∈M, p ∈ P, t ∈ T (A31)

∑
p∈P

XPi,l,m,p,t ≤ ACPDi,l,m ∀(i, l, m) ∈ Routei,l,m, t ∈ T (A32)∑
p∈P

XSj,k,m,p,t ≤ ACSDj,k,m ∀( j, k, m) ∈ Routej,k,m, t ∈ T (A33)∑
(i,m)∈Routei, j,m

XPi, j,m,p,t + XIj,p,t ≤ SCj,p × TCMj,p ∀ j ∈ J, p ∈ P, t ∈ T (A34)

∑
(i,m)∈Routei,k,m

XPi,k,m,p,t +
∑

( j,m)∈Routej,k,m
XSj,k,m,p,t ≤ SCk,p × TCMk,p ∀k ∈ K, p ∈ P, t ∈ T (A35)

XPi,l,m,p,t = 0 ∀i ∈ I, l ∈ L, p ∈ P, t ∈ T, m = road,μi, j,m >MTD (A36)

XSj,k,m,p,t = 0 ∀ j ∈ J, k ∈ K, p ∈ P, t ∈ T, m = road,μ j,k,m >MTD (A37)

Table A2. Model notation.

Sets
a ∈ A Set of developed activities
d ∈ D Set of route distances
m ∈M Set of transportation modes
n, o ∈ N Set of all network nodes

p ∈ P Set of products
r ∈ R Set of resources and network stages

t, τ ∈ T Set of time points

Θ ∈ R+
Set of optimization variables:
Θ = {XR, XOP, XCO, XP, XS, XRP, XU, XE, XI, IO, IR, ID, IM}

Subsets
i ∈ I ⊆ N Set of refineries
j ∈ J ⊆ N Set of depots

k ∈ K ⊆ N Set of markets
Subset unions

h ∈ H = I ∪ J Set of refineries and depots
l ∈ L = J ∪K Set of depots and markets

Parameters

ACPDn,o,m
Arc capacity between nodes n and o when transportation mode m is considered at primary
distribution

ACSDn,o,m
Arc capacity between nodes n and o when transportation mode m is considered at
secondary distribution

ASPDi,m,p
Availability of supplying product p from refinery i by transportation mode m through the
primary distribution

ASSDj,m,p
Availability of supplying product p from depot j by transportation mode m through the
secondary distribution

CKI Cost of keeping inventory defined as a percentage of the inventory value
CTm,p Transportation cost per transportation mode m and product p

Distn,o,m Distance between nodes n and o depending on transportation mode m
DOi,t Demand of oil at refinery i at time point t

DPk,p,t Demand of product p per market k at time point t
ISOi Initial stock of oil at refinery i

ISPn,p Initial stock of product p at node n
MTD Maximum travel distance in meters allowed in the road transportation mode
PCi Processing capacity at refinery i
POt Price of oil at time point t

PPa,p,t Price of product p at activity a at time point t
Routen,o,m Route between nodes n and o connected by transportation mode m

SCn,p Storage capacity of product p at node n
SCOi Storage capacity of oil at refinery i
SSOi Safety stock of oil at refinery i defined as a percentage of the overall oil storage capacity
SSPn Safety stock of products at node n defined as a percentage of the overall storage capacity
TNr,p Tariff per network stage r and product p

TCMn,p Throughput capacity multiplier per node n and product p
YFi,p Yield fractions by refinery i of product p per cubic meters of oil
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Table A2. Cont.

Positive continuous variables
CEi,p,t Cost of exporting product p by refinery i at time point t
CIh,p,t Cost of importing product p by refinery or depot h at time point t

CIDj,p,t Cost of inventory at depot j for product p at time point t
CIMk,p,t Cost of inventory at market k for product p at time point t
CIOi,t Cost of inventory for oil at refinery i at time point t
CIRi,p,t Cost of inventory at refinery i for product p at time point t
CPDi,p,t Cost of primary distribution from refinery i for product p at time point t
CSDj,p,t Cost of secondary distribution from depot j for product p at time point t
CUDk,p,t Cost of unsatisfied demand for product p at market k at time point t

IDj,p,t Inventory of product p at depot j at time point t
IMk,p,t Inventory of product p at market k at time point t
IOi,t Inventory of oil at refinery i at time point t
IRi,p,t Inventory of product p at refinery i at time point t

XCOi,t Volume of crude oil received by refinery i at time point t
XEi,p,t Volume of product p exported by refinery i at time point t
XIh,p,t Volume of product p imported by refinery or depot h at time point t
XOPi,t Volume of oil processed by refinery i at time point t

XPi,l,m,p,t
Volume of product p sent by refinery i to depot or market l by transportation mode m at
time point t

XRi,p,t Volume of product p yielded by refinery i at time point t
XRPk,p,t Volume of product p delivered to market k at time point t

XSj,k,m,p,t Volume of product p sent by depot j to market k by transportation mode m at time point t
XUk,p,t Volume of unsatisfied demand per market k and product p at time point t

Continuous variables
MDj,p,t Margin per depot j and product p at time point t
MCk,p,t Margin per consumer market k and product p at time point t
MRi,p,t Margin per refinery i at time point t
π Deterministic objective function

Appendix C. Non-Adjustable Robust Optimization (NARO) Mathematical Formulation

The non-adjustable robust formulation considers the same polyhedral budget uncertainty set of
its equivalent ARO model, presented in the full paper. Hereinafter, the NARO model is introduced
through its objective function (Equations (A38)–(A50)), network equations (Equations (A51)–(A77))
and model notation (Table A3). The presentation of the ARO model in the full paper must be consulted
for details on the descriptions of the equations.

Objective function

maximize
pro f it, Θ,

ξ+
demand

k,p,t , ξ−demand

k,p,t , ηdemand
k,p

pro f it

s.t. pro f it− ∑
i∈I,t∈T

MRi,t +
∑

j∈J,p∈P,t∈T
MDj,p,t +

∑
k∈K,p∈P,t∈T

MCk,p,t − ∑
i∈I,p∈P,t∈T

CEi,p,t

− ∑
h∈H,p∈P,t∈T

CIh,p,t − ∑
i∈I,p∈P,t∈T

CPDi,p,t − ∑
j∈J,p∈P,t∈T

CSDj,p,t

− ∑
i∈I,t∈T

CIOi,t − ∑
i∈I,p∈P,t∈T

CIRi,p,t − ∑
j∈J,p∈P,t∈T

CIDj,p,t

− ∑
k∈K,p∈P,t∈T

CIMk,p,t − ∑
k∈K,p∈P,t∈T

CUDk,p,t ≤ 0

(A38)

MRi,t =
∑
p∈P

[
XRi,p,t ×

(
PPa,p,t − TNr,p

)]
− [XCOi,t × POt]∀i ∈ I, t ∈ T, a = r = re f inery (A39)

MDj,p,t =
∑

(k,m)∈Routei, j,m

XSj,k,m,p,t ×
(
PPa,p,t − TNr,p

)
− ∑

(i,m)∈Routei, j,m

XPi, j,m,p,t × PPa2,p,t

∀ j ∈ J, p ∈ P, t ∈ T, a = r = depot, a2 = re f inery
(A40)
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MCk,p,t

=
[(

XRPk,p,t −XUk,p,t
)
×
(
PPa1,p,t − TNr,p

)]
−[( ∑

(i,m)∈Routei,k,m

XPi,k,m,p,t) × PPa2,p,t + (
∑

( j,m)∈Routej,k,m

XSj,k,m,p,t)

×PPa3,p,t

]

∀k ∈ K, p ∈ P, t ∈ T, a1 = r = retail, a2 = re f inery, a3 = depot

(A41)

CEi,p,t = XEi,p,t × TNr,p ∀i ∈ I, p ∈ P, t ∈ T, r = export (A42)

CIh,p,t = XIh,p,t ×
(
PPa,p + TNr,p

)
∀h ∈ H, p ∈ P, t ∈ T, a = r = import (A43)

CPDi,p,t =
∑

(l,m)∈Routei,l,m

(
XPi,l,m,p,t ×CTm,p ×Disti,l,m

)
∀i ∈ I, p ∈ P, t ∈ T (A44)

CSDj,p,t =
∑

(k,m)∈Routej,k,m

(
XSj,k,m,p,t ×CTm,p ×Distj,k,m

)
∀ j ∈ J, p ∈ P, t ∈ T (A45)

CIOi,t = CKI × IOi,t × POt ∀i ∈ I, t ∈ T, p = oil (A46)

CIRi,p,t = CKI × IRi,p,t × PPa,p,t ∀i ∈ I, p ∈ P, t ∈ T, a = re f inery (A47)

CIDj,p,t = CKI × IDj,p,t × PPa,p,t ∀ j ∈ J, p ∈ P, t ∈ T, a = depot (A48)

CIMk,p,t = CKI × IMk,p,t × PPa,p,t ∀k ∈ K, p ∈ P, t ∈ T, a = retail (A49)

CUDk,p,t = XUk,p,t × TNr,p ∀k ∈ K, p ∈ P, t ∈ T, r = unmet (A50)

Network equations
XOPi,t ≤ PCi ∀i ∈ I, t ∈ T (A51)

XRi,p,t = XOPi,t ×YFi,p ∀i ∈ I, p ∈ P, t ∈ T (A52)

XCOi,t ≤ DOi,t ∀i ∈ I, t ∈ T (A53)

IOi,t = ISOi + XCOi,t −XOPi,t ∀i ∈ I, t ∈ T, t = t1 (A54)

IOi,t = IOi,t−1 + XCOi,t −XOPi,t ∀i ∈ I, t ∈ T, t > t1 (A55)

IRi,p,t = ISPi,p + XRi,p,t + XIi,p,t −
∑

(l,m)∈Routei,l,m

XPi,l,m,p,t −XEi,p,t ∀i ∈ I, p ∈ P, t ∈ T, t = t1 (A56)

IRi,p,t = IRi,p,t−1 + XRi,p,t + XIi,p,t −
∑

(l,m)∈Routei,l,m

XPi,l,m,p,t −XEi,p,t ∀i ∈ I, p ∈ P, t ∈ T, t > t1 (A57)

IDj,p,t = ISPj,p + XIj,p,t +
∑

(i,m)∈Routei, j,m

XPi, j,m,p,t − ∑
(k,m)∈Routej,k,m

XSj,k,m,p,t

∀ j ∈ J, p ∈ P, t ∈ T, t = t1

(A58)

IDj,p,t = IDj,p,t−1 + XIj,p,t +
∑

(i,m)∈Routei, j,m

XPi, j,m,p,t − ∑
(k,m)∈Routej,k,m

XSj,k,m,p,t

∀ j ∈ J, p ∈ P, t ∈ T, t > t1

(A59)

IMk,p,t = ISPk,p +
∑

(i,m)∈Routei,k,m

XPi,k,m,p,t +
∑

( j,m)∈Routej,k,m

XSj,k,m,p,t + XUk,p,t −XRPk,p,t

∀k ∈ K, p ∈ P, t ∈ T, t = t1

(A60)

IMk,p,t = IMk,p,t−1 +
∑

(i,m)∈Routei,k,m

XPi,k,m,p,t +
∑

( j,m)∈Routej,k,m

XSj,k,m,p,t + XUk,p,t −XRPk,p,t

∀k ∈ K, p ∈ P, t ∈ T, t > t1

(A61)
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XRPk,p,t −DPk,p,tYg + DPmax
k,p,t

(
ξ+

demand

k,p,t + ξ−demand

k,p,t

)
+ Γdemand

k,p ηdemand
k,p ≤ 0

∀k ∈ K, p ∈ P, t ∈ T, g = |I|+ 1
(A62)

ξ+
demand

k,pt +
ηdemand

k,p

DPmax
k,p,t
≥ +Yg ∀i ∈ I, g = |I|+ 1, t ∈ T (A63)

ξ−demand

k,p,t +
ηdemand

k,p

DPmax
k,p,t
≥ −Yg ∀i ∈ I, g = |I|+ 1, t ∈ T (A64)

Yg = 1g = |I|+ 1 (A65)

SSOi × SCOi ≤ IOi,t ≤ SCOi ∀i ∈ I, t ∈ T (A66)

SSPi × SCi,p ≤ IRi,p,t ≤ SCi,p ∀i ∈ I, p ∈ P, t ∈ T (A67)

SSPj × SCj,p ≤ IDj,p,t ≤ SCj,p ∀ j ∈ J, p ∈ P, t ∈ T (A68)

SSPk × SCk,p ≤ IMk,p,t ≤ SCk,p ∀k ∈ K, p ∈ P, t ∈ T (A69)∑
l∈Routei,l,m

XPi,l,m,p,t ≤ ASPDi,m,p ∀i ∈ I, m ∈M, p ∈ P, t ∈ T (A70)∑
k∈Routej,k,m

XSj,k,m,p,t ≤ ASSDj,m,p ∀ j ∈ J, m ∈M, p ∈ P, t ∈ T (A71)

∑
p∈P

XPi,l,m,p,t ≤ ACPDi,l,m ∀(i, l, m) ∈ Routei,l,m, t ∈ T (A72)∑
p∈P

XSj,k,m,p,t ≤ ACSDj,k,m ∀( j, k, m) ∈ Routej,k,m, t ∈ T (A73)∑
(i,m)∈Routei, j,m

XPi, j,m,p,t + XIj,p,t ≤ SCj,p × TCMj,p ∀ j ∈ J, p ∈ P, t ∈ T (A74)

∑
(i,m)∈Routei,k,m

XPi,k,m,p,t +
∑

( j,m)∈Routej,k,m
XSj,k,m,p,t ≤ SCk,p × TCMk,p ∀k ∈ K, p ∈ P, t ∈ T (A75)

XPi,l,m,p,t = 0 ∀i ∈ I, l ∈ L, p ∈ P, t ∈ T, m = road,μi, j,m >MTD (A76)

XSj,k,m,p,t = 0 ∀ j ∈ J, k ∈ K, p ∈ P, t ∈ T, m = road,μ j,k,m >MTD (A77)

Table A3. Model notation.

Sets
a ∈ A Set of developed activities
d ∈ D Set of route distances
m ∈M Set of transportation modes
n, o ∈ N Set of all network nodes

p ∈ P Set of products
r ∈ R Set of resources and network stages

t, τ ∈ T Set of time points

Θ ∈ R+
Set of optimization variables:
Θ = {XR, XOP, XCO, XP, XS, XRP, XU, XE, XI, IO, IR, ID, IM}

Subsets
i ∈ I ⊆ N Set of refineries
j ∈ J ⊆ N Set of depots

k ∈ K ⊆ N Set of markets
g = |I|+ 1 Auxiliary set used in the robust formulation

Subset unions
h ∈ H = I ∪ J Set of refineries and depots
l ∈ L = J ∪K Set of depots and markets
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Table A3. Cont.

Parameters

ACPDn,o,m
Arc capacity between nodes n and o when transportation mode m is considered at
primary distribution

ACSDn,o,m
Arc capacity between nodes n and o when transportation mode m is considered at
secondary distribution

ASPDi,m,p
Availability of supplying product p from refinery i by transportation mode m
through the primary distribution

ASSDj,m,p
Availability of supplying product p from depot j by transportation mode m
through the secondary distribution

CKI Cost of keeping inventory defined as a percentage of the inventory value
CTm,p Transportation cost per transportation mode m and product p

Distn,o,m Distance between nodes n and o depending on transportation mode m
DOi,t Demand of oil at refinery i at time point t

DPk,p,t Demand of product p per market k at time point t
ISOi Initial stock of oil at refinery i

ISPn,p Initial stock of product p at node n
MTD Maximum travel distance in meters allowed in the road transportation mode
PCi Processing capacity at refinery i
POt Price of oil at time point t

PPa,p,t Price of product p at activity a at time point t
Routen,o,m Route between nodes n and o connected by transportation mode m

SCn,p Storage capacity of product p at node n
SCOi Storage capacity of oil at refinery i

SSOi
Safety stock of oil at refinery i defined as a percentage of the overall oil storage
capacity

SSPn
Safety stock of products at node n defined as a percentage of the overall storage
capacity

TNr,p Tariff per network stage r and product p
TCMn,p Throughput capacity multiplier per node n and product p

YFi,p Yield fractions by refinery i of product p per cubic meters of oil
Positive continuous variables

CEi,p,t Cost of exporting product p by refinery i at time point t
CIh,p,t Cost of importing product p by refinery or depot h at time point t

CIDj,p,t Cost of inventory at depot j for product p at time point t
CIMk,p,t Cost of inventory at market k for product p at time point t
CIOi,t Cost of inventory for oil at refinery i at time point t
CIRi,p,t Cost of inventory at refinery i for product p at time point t
CPDi,p,t Cost of primary distribution from refinery i for product p at time point t
CSDj,p,t Cost of secondary distribution from depot j for product p at time point t
CUDk,p,t Cost of unsatisfied demand for product p at market k at time point t

IDj,p,t Inventory of product p at depot j at time point t
IMk,p,t Inventory of product p at market k at time point t
IOi,t Inventory of oil at refinery i at time point t
IRi,p,t Inventory of product p at refinery i at time point t

XCOi,t Volume of crude oil received by refinery i at time point t
XEi,p,t Volume of product p exported by refinery i at time point t
XIh,p,t Volume of product p imported by refinery or depot h at time point t
XOPi,t Volume of oil processed by refinery i at time point t

XPi,l,m,p,t
Volume of product p sent by refinery i to depot or market l by transportation
mode m at time point t

XRi,p,t Volume of product p yielded by refinery i at time point t
XRPk,p,t Volume of product p delivered to market k at time point t

XSj,k,m,p,t
Volume of product p sent by depot j to market k by transportation mode m at time
point t

XUk,p,t Volume of unsatisfied demand per market k and product p at time point t
Continuous variables

Profit Profit for the downstream oil supply chain over the planning horizon
MDj,p,t Margin per depot j and product p at time point t
MCk,p,t Margin per consumer market k and product p at time point t
MRi,p,t Margin per refinery i at time point t

Binary variable

Yg
Auxiliary variable to aid the robust formulation to handle product demand
uncertainty, where g = |I|+ 1
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Table A3. Cont.

Robust parameters
Γdemand

k,p Budget parameter to adjust the robustness of product demand
DPmax

k,p,t Maximum variation in product demand for market k and product p at time point t
Robust dual variables

ηdemand
k,p

Dual variable associated with the establishment of the budget parameter of
product demand

ξ+
demand

k,p,t
Quantify the sensitivity to positive deviation in product demand for market k and
product p at time point t

ξ−demand

k,p,t
Quantify the sensitivity to negative deviation in product demand for market k
and product p at time point t

Appendix D. Stochastic Mathematical Programming Formulation

The two-stage stochastic programming (SP) model is formulated using node-variable formulation,
where the decision variables of the optimization problem are associated with the nodes of the scenario
tree. The objective function (Equations (A78)–(A92)), network equations (Equations (A93)–(A117)) and
model notation (Table A4) of the SP model are presented below. The scenario tree to represent
the evolution of the product demands is established considering an optimistic growth of 5%
with 0.35 probability, a realistic and unchangeable occurrence of 0% with 0.50 probability and a
pessimistic decrease of 10% with 0.15 probability, in accordance with the reasoning developed by
Fernandes et al. [36]. For more details about the SP formulation, the interested reader is referred to
Lima et al. [1].

Objective function
maximize

XCO
−

∑
i∈I,t∈T

XCOi,tPOt +Q(XCO) (A78)

s.t. XCOi,t ≤ DOi,t∀i ∈ I, t ∈ T (A79)

Q(XCO) = maximize
XCO,Θ

∑
s∈S

Ps

⎛⎜⎜⎜⎜⎝ ∑
i∈I,t∈T

RRi,t +
∑

j∈J,p∈P,t∈T
MDj,p,t +

∑
k∈K,p∈P,t∈T

MCk,p,t

− ∑
i∈I,p∈P,t∈T

CEi,p,t − ∑
h∈H,p∈P,t∈T

CIh,p,t − ∑
i∈I,p∈P,t∈T

CPDi,p,t

− ∑
j∈J,p∈P,t∈T

CSDj,p,t − ∑
i∈I,t∈T

CIOi,t − ∑
i∈I,p∈P,t∈T

CIRi,p,t

− ∑
j∈J,p∈P,t∈T

CIDj,p,t − ∑
k∈K,p∈P,t∈T

CIMk,p,t− ∑
k∈K,p∈P,t∈T

CUDk,p,t

⎞⎟⎟⎟⎟⎠
(A80)

RRi,t =
∑
p∈P

[
XRi,p,t,s ×

(
PPa,p,t − TNr,p

)]
∀i ∈ I, (t, s) ∈ TS, a = r = re f inery (A81)

MDj,p,t,s = [
∑

(k,m)∈Routej,k,m
XSj,k,m,p,t,s ×

(
PPa,p,t − TNr,p

)
] − [∑(i,m)∈Routei, j,m

XPi, j,m,p,t,s × PPa2,p,t]

∀ j ∈ J, p ∈ P, (t, s) ∈ TS, a = r = depot, a2 = re f inery
(A82)

MCk,p,t,s =
[(

XRPk,p,t,s −XUk,p,t,s
)
×
(
PPa1,p,t − TNr,p

)]
− [(∑(i,m)∈Routei,k,m

XPi,k,m,p,t,s)

×PPa2,p,t + (
∑

( j,m)∈Routej,k,m
XSj,k,m,p,t,s) × PPa3,p,t]

∀k ∈ K, p ∈ P, (t, s) ∈ TS, a1 = r = retail, a2 = re f inery, a3 = depot
(A83)

CEi,p,t,s = XEi,p,t,s × TNr,p ∀i ∈ I, p ∈ P, (t, s) ∈ TS, r = export (A84)

CIh,p,t,s = XIh,p,t,s ×
(
PPa,p,s + TNr,p

)
∀h ∈ H, p ∈ P, (t, s) ∈ TS, a = r = import (A85)

CPDi,p,t,s =
∑

(l,m)∈Routei,l,m

(
XPi,l,m,p,t,s ×CTm,p ×Disti,l,m

)
∀i ∈ I, p ∈ P, (t, s) ∈ TS (A86)
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CSDj,p,t,s =
∑

(k,m)∈Routej,k,m

(
XSj,k,m,p,t,s ×CTm,p ×Distj,k,m

)
∀ j ∈ J, p ∈ P, (t, s) ∈ TS (A87)

CIOi,t,s = CKI × IOi,t,s × POa,s ∀i ∈ I, (t, s) ∈ TS, a = procurement (A88)

CIRi,p,t,s = CKI × IRi,p,t,s × PPa,p,t ∀i ∈ I, p ∈ P, (t, s) ∈ TS, a = re f inery (A89)

CIDj,p,t,s = CKI × IDj,p,t,s × PPa,p,t ∀ j ∈ J, p ∈ P, (t, s) ∈ TS, a = depot (A90)

CIMk,p,t,s = CKI × IMk,p,t,s × PPa,p,t ∀k ∈ K, p ∈ P, (t, s) ∈ TS, a = retail (A91)

CUDk,p,t,s = XUk,p,t,s × TNr,p ∀k ∈ K, p ∈ P, (t, s) ∈ TS, r = unmet (A92)

Network equations
XOPi,t,s ≤ PCi ∀i ∈ I, (t, s) ∈ TS (A93)

XRi,p,t,s = XOPi,t,s ×YFi,p ∀i ∈ I, p ∈ P, (t, s) ∈ TS (A94)

IOi,t,s = ISOi + DOi,t −XOPi,t,s ∀i ∈ I, (t, s) ∈ TS, t = t1 (A95)

IOi,t,s = IOi,t−1,s + DOi,t −XOPi,t,s ∀i ∈ I, (t, s) ∈ TS, t > t1, s ∈ SS (A96)

IRi,p,t,s = ISPi,p + XRi,p,t,s + XIi,p,t,s − ∑
(l,m)∈Routei,l,m

XPi,l,m,p,t,s −XEi,p,t,s

∀i ∈ I, p ∈ P, (t, s) ∈ TS, t = t1

(A97)

IRi,p,t,s = IRi,p,t−1,s + XRi,p,t,s + XIi,p,t,s − ∑
(l,m)∈Routei,l,m

XPi,l,m,p,t,s −XEi,p,t,s

∀i ∈ I, p ∈ P, (t, s) ∈ TS, t > t1, s ∈ SS
(A98)

IDj,p,t,s = ISPj,p + XIj,p,t,s +
∑

(i,m)∈Routei, j,m
XPi, j,m,p,t,s −∑(k,m)∈Routej,k,m

XSj,k,m,p,t,s

∀ j ∈ J, p ∈ P, (t, s) ∈ TS, t = t1
(A99)

IDj,p,t,s = IDj,p,t−1,s + XIj,p,t,s +
∑

(i,m)∈Routei, j,m

XPi, j,m,p,t,s − ∑
(k,m)∈Routej,k,m

XSj,k,m,p,t,s

∀ j ∈ J, p ∈ P, (t, s) ∈ TS, t > t1, s ∈ SS
(A100)

IMk,p,t,s = ISPk,p +
∑

(i,m)∈Routei,k,m
XPi,k,m,p,t,s +

∑
( j,m)∈Routej,k,m

XSj,k,m,p,t,s + XUk,p,t,s −XRPk,p,t,s

∀k ∈ K, p ∈ P, (t, s) ∈ TS, t = t1
(A101)

IMk,p,t,s = ICk,p,t−1,s +
∑

(i,m)∈Routei,k,m
XPi,k,m,p,t,s +

∑
( j,m)∈Routej,k,m

XSj,k,m,p,t,s + XUk,p,t,s −XRPk,p,t,s

∀k ∈ K, p ∈ P, (t, s) ∈ TS, t > t1, s ∈ SS
(A102)

DPRk,p,t,s = DPk,p∀k ∈ K, p ∈ P, (t, s) ∈ TS, t = t1 (A103)

DPRk,p,t,s = DPRk,p,t−1,sχ
pψs ∀k ∈ K, p ∈ P, (t, s) ∈ TS, t > t1, s ∈ SS (A104)

XRPk,p,t,s ≤ DPRk,p,t,s ∀k ∈ K, p ∈ P, (t, s) ∈ TS (A105)

SSOi × SCOi ≤ IOi,t,s ≤ SCOi ∀i ∈ I, (t, s) ∈ TS (A106)

SSPi × SCi,p ≤ IRi,p,t,s ≤ SCi,p ∀i ∈ I, p ∈ P, (t, s) ∈ TS (A107)

SSPj × SCj,p ≤ IDj,p,t,s ≤ SCj,p ∀ j ∈ J, p ∈ P, (t, s) ∈ TS (A108)

SSPk × SCk,p ≤ IMk,p,t,s ≤ SCk,p ∀k ∈ K, p ∈ P, (t, s) ∈ TS (A109)∑
l∈Routei,l,m

XPi,l,m,p,t,s ≤ ASPDi,m,p ∀i ∈ I, m ∈M, p ∈ P, (t, s) ∈ TS (A110)

∑
k∈Routej,k,m

XSj,k,m,p,t,s ≤ ASSDj,m,p ∀ j ∈ J, m ∈M, p ∈ P, (t, s) ∈ TS (A111)
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∑
p∈P

XPi,l,m,p,t,s ≤ ACPDi,l,m ∀(i, l, m) ∈ Routei,l,m, (t, s) ∈ TS (A112)

∑
p∈P

XSj,k,m,p,t,s ≤ ACSDj,k,m ∀( j, k, m) ∈ Routej,k,m, (t, s) ∈ TS (A113)

∑
(i,m)∈Routei, j,m

XPi, j,m,p,t,s + XIj,p,t,s ≤ SCj,p × TCMj,p ∀ j ∈ J, p ∈ P, (t, s) ∈ TS (A114)

∑
(i,m)∈Routei,k,m

XPi,k,m,p,t,s +
∑

( j,m)∈Routej,k,m

XSj,k,m,p,t,s ≤ SCk,p × TCMk,p ∀k ∈ K, p ∈ P, (t, s) ∈ TS (A115)

XPi,l,m,p,t,s = 0 ∀i ∈ I, l ∈ L, p ∈ P, (t, s) ∈ TS, m = road, Disti, j,m >MTD (A116)

XSj,k,m,p,t,s = 0 ∀ j ∈ J, k ∈ K, p ∈ P, (t, s) ∈ TS, m = road, Distj,k,m >MTD (A117)

Table A4. Model notation.

Sets
a ∈ A Set of activities developed
d ∈ D Set of route distances
m ∈M Set of transportation modes
n, o ∈ N Set of all network nodes

p ∈ P Set of products
r ∈ R Set of resources and network stages

s, s ∈ S Set of nodes/states in the scenario tree
t ∈ T Set of time points

Θ ∈ R+ Set of optimization variables: Θ = {XR, XOP, XCO, XP, XS, XRP, XU, XE, XI, IO, IR, ID, IM}
Subsets

i ∈ I ⊆ N Set of refineries
j ∈ J ⊆ N Set of depots

k ∈ K ⊆ N Set of markets
Subset unions

h ∈ H = I ∪ J Set of refineries and depots
l ∈ L = J ∪K Set of depots and markets

Routen,o,m Possible route combination between network nodes n and o connected by transportation mode m
SS Set of predecessors s of nodes/states s in the scenario tree: SS =

{
(s, s) : s ∈ S(t), s ∈ S(t− 1)

}
TS Set of nodes/states s that belong to each time point t: TS =

{
(t, s) : t ∈ T, s ∈ S(t)

}
Parameters

ACPDn,o,m
Arc capacity between network nodes n and o when transportation mode m is considered at
primary distribution

ACSDn,o,m
Arc capacity between network nodes n and o when transportation mode m is considered at
secondary distribution

ASPDi,m,p
Availability of supplying product p from refinery i by transportation mode m through the
primary distribution

ASSDj,m,p
Availability of supplying product p from depot j by transportation mode m through the
secondary distribution

CKI Cost of keeping inventory defined as a percentage of the inventory value
CTm,p Transportation cost per transportation mode m and product p

Distn,o,m Distance between network nodes n and o depending on transportation mode m
DOi,t Demand of oil at refinery i at time point t
DPk,p Demand of product p per market k

DPRk,p,t,s Demand realization of product p for market k in time point t and state s
ISOi Initial stock of oil at refinery i

ISPn,p Initial stock of product p at network node n
MTD Maximum travel distance in meters allowed in the road transportation mode
NTP Number of time points

Ps Probability of each state s in the scenario tree approach
PCi Processing capacity at refinery i
POt Price of oil at activity a at time point t

PPa,p,t Price of product p at activity a and time point t
SCn,p Storage capacity of product p at network node n
SCOi Storage capacity of oil at refinery i
SSOi Safety stock of oil at refinery i defined as a percentage of the overall oil storage capacity
SSPn Safety stock of products at network node n defined as a percentage of the overall storage capacity
TNr,p Tariff per network stage r and product p

TCMn,p Throughput capacity multiplier per network node n and product p
YFi,p Yield fractions by refinery i of product p per cubic meters of oil
χp Market tendency per product p
ψs Market tendency per state s
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Table A4. Cont.

Positive continuous variables
CEi,p,t,s Cost of exporting product p by refinery i at time point t and state s
CIh,p,t,s Cost of importing product p by refinery or depot h at time point t and state s

CIDj,p,t,s Cost of inventory at depot j for product p in time point t and state s
CIMk,p,t,s Cost of inventory at market k for product p in time point t and state s
CIOi,t,s Cost of inventory for oil at refinery i in time point t and state s
CIRi,p,t,s Cost of inventory at refinery i for product p in time point t and state s
CPDi,p,t,s Cost of primary transportation from refinery i for product p in time point t and state s
CSDj,p,t,s Cost of secondary transportation from depot j for product p in time point t and state s
CUDk,p,t,s Cost of unsatisfied demand for product p at market k in time point t and state s

IDj,p,t,s Inventory of product p at depot j in time point t and state s
IMk,p,t,s Inventory of product p at market k in time point t and state s
IOi,t,s Inventory of oil at refinery i in time point t and state s
IRi,p,t,s Inventory of product p at refinery i in time point t and state s
XCOi,t Volume of crude oil received by refinery i at time point t
XEi,p,t,s Volume of product p exported by refinery i at time point t and state s
XIh,p,t,s Volume of product p imported by refinery or depot h at time point t and state s
XOPi,t,s Volume of oil processed by refinery i at time point t and state s

XPi,l,m,p,t,s
Volume of product p sent by refinery i to depot or market l by transportation mode m at time
point t and state s

XRi,p,t,s Volume of product p yielded by refinery i at time point t and state s
XRPk,p,t,s Volume of product p delivered to market k at time point t and state s

XSj,k,m,p,t,s
Volume of product p sent by depot j to market k by transportation mode m at time point t and
state s

XUk,p,t Volume of unsatisfied demand per market k and product p at time point t and state s
Continuous variables

MDj,p,t,s Margin per storage depot j and product p at time point t and state s
MCk,p,t,s Margin per consumer market k and product p at time point t and state s
RRi,p,t,s Revenue per refinery i at time point t and state s

Appendix E. Considerations about a Typical Polyhedral Budget Uncertainty Set

In this part, we demonstrate how to enumerate all the possible vertices v ∈ V in the budget
uncertainty setU for a generic pair of location k and product p, and a specific budget of uncertainty
Γk,p over a time horizon T. Consider the Equations (A118) and (A119) below:∣∣∣ΔDPk,p,t

∣∣∣ ≤ ΔDPmax
k,p,t,∀k ∈ K, p ∈ P, t ∈ T (A118)

∑
t

∣∣∣ΔDPk,p,t
∣∣∣

ΔDPmax
k,p,t

≤ Γk,p,∀k ∈ K, p ∈ P (A119)

Equation (A118) determines symmetrical intervals for the deviation of the product demand
from the nominal value, while the total deviation across all time points are limited by the budget of
uncertainty in Equation (A119). We can omit the indices k and p in Equation (A120) once they could
refer to any pair of location and product. Consider a budget of uncertainty Γk,p = 1 and a time horizon
covering two time points as follows:

|ΔDP1|
ΔDPmax

1
+
|ΔDP2|
ΔDPmax

2
≤ 1 (A120)

Equation (A120) ensures that if the deviation of product demand at time point t = 1 is at the
lower or upper bound of the range defined by Equation (A118), i.e., |ΔDP1| = ΔDPmax

1 , the deviation
of the product demand at time point t = 2 will be necessarily zero, |ΔDP2| = 0. Inversely, when the
deviation of product demand at time point t = 2 is at the lower or upper bound of the range defined
by Equation (A118), i.e., |ΔDP2| = ΔDPmax

2 , the deviation of the product demand at time point t = 1
will be certainly zero, |ΔDP1| = 0. In such a way, we have enumerated all the possible scenarios v ∈ V
inU, i.e., four vertices, where V =

{
(ΔDP1, 0); (−ΔDP1, 0); (0,−ΔDP2); (0, ΔDP2)

}
. Note that the size
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of the set of vertices V depends on the value of the budget of uncertainty Γk,p, which takes values in
the range [0; 2]. When Γk,p = 1.5, there are eight vertices within the set V, as shown below:

V =

⎧⎪⎪⎨⎪⎪⎩
(
ΔDP1,−ΔDP2

2

)
;
(
ΔDP1, ΔDP2

2

)
;
(ΔDP1

2 ,−ΔDP2
)
;
(ΔDP1

2 , ΔDP2
)
;(

−ΔDP1,−ΔDP2
2

)
;
(
−ΔDP1, ΔDP2

2

)
;
(
−ΔDP1

2 ,−ΔDP2
)
;
(
−ΔDP1

2 , ΔDP2
) ⎫⎪⎪⎬⎪⎪⎭

We can generalize that when Γk,p = 0, the uncertainty setU has a just one vertex, corresponding to
the nominal deterministic case. As Γk,p increases, the size of the uncertainty setU enlarges. As shown
before, when Γk,p takes any value in the interval [0.01; 1], the polyhedron will have four vertices, while
if Γk,p assumes any value within the interval [1.01; 1, 99], the polyhedron will have eight vertices. On the
other hand, when Γk,p = 2, the polyhedron will have four vertices again.

It is important to highlight that this is just a generic illustration to show how to enumerate the
vertices of a budget uncertainty set, and it was not used in the case study shown in the full paper.
On the other hand, such instance can easily be extended to include a longer time horizon, such that the
vertices of more complex polyhedral uncertainty sets can be determined.
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Abstract: Models involving decision variables in both discrete and continuous domain spaces are
prevalent in process design. Generalized Disjunctive Programming (GDP) has emerged as a modeling
framework to explicitly represent the relationship between algebraic descriptions and the logical
structure of a design problem. However, fewer formulation examples exist for GDP compared
to the traditional Mixed-Integer Nonlinear Programming (MINLP) modeling approach. In this
paper, we propose the use of GDP as a modeling tool to organize model variants that arise due to
characterization of different sections of an end-to-end process at different detail levels. We present
an illustrative case study to demonstrate GDP usage for the generation of model variants catered
to process synthesis integrated with purchasing and sales decisions in a techno-economic analysis.
We also show how this GDP model can be used as part of a hierarchical decomposition scheme.
These examples demonstrate how GDP can serve as a useful model abstraction layer for simplifying
model development and upkeep, in addition to its traditional usage as a platform for advanced
solution strategies.

Keywords: process design; process modeling; mathematical programming; MINLP; generalized
disjunctive programming

1. Introduction

Mathematical programming is a powerful tool for process design and optimization, allowing the
modeler to consider both continuous and discrete decisions. In process design, discrete degrees of
freedom often determine topological structure (selection/activation/ordering of nodes and edges)
while continuous variables determine system states such as flow rates or qualities. In the general
case, these process design problems can involve nonlinear variable relationships and are addressed as
Mixed-Integer Nonlinear Programming (MINLP) problems.

min z = f (x, y)

s.t. g(x, y) ≤ 0

h(x, y) = 0

x ∈ X ⊆ R
n

y ∈ Y ⊆ Z
m

(MINLP)

The general form for these optimization models is given in (MINLP). An objective function f (x, y)
is minimized by selecting values for continuous variables x and integer variables y, subject to satisfying
inequality constraints g(x, y) ≤ 0 and equality constraints h(x, y) = 0. In processes, the continuous
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variables usually represent flows, pressures, and temperatures. The integer variables are commonly 0–1
variables for the selection of units, but can also represent the number of units. The inequalities usually
describe process and equipment limitations while equality constraints describe physical property
relationships. An abundant literature exists for the formulation and solution of MINLP models [1–4].
Particularly in chemical engineering, many models are now formulated using algebraic relationships.
Such equation-oriented modeling is becoming progressively more common [5], with differential
equations used to describe temporal and spatial dynamics. For process design problems, postulation of
alternatives is also an important consideration, with several approaches described in literature [6–15].
However, even with the growth of more complex models, there has been limited emphasis on the link
between algebraic relationships and model logic.

Generalized Disjunctive Programming (GDP) represents one effort to systematize the relationship
between algebraic relations and logical clauses [2,16,17], in pursuit of a framework to simplify both
model formulation and solution of the eventual mathematical programming problem. GDP can be
seen as the extension of theoretical work in disjunctive programming from the operations research
community [18,19] to formulations involving nonlinear algebraic relationships. GDP gives the modeler
a mathematical framework to express high-level logical statements without needing to immediately
translate them into algebraic form. The general form for GDP optimization models is given in (GDP).

min obj = f (x, z)

s.t. g(x, z) ≤ 0

∨
i∈Dk

[
Yik

rik(x, z) ≤ 0

]
∀k ∈ K

∨
i∈Dk

Yik ∀k ∈ K

Ω(Y) = True

x ∈ X ⊆ R
n

Yik ∈ {True, False} ∀i ∈ Dk, ∀k ∈ K

z ∈ Z ⊆ Z
m

(GDP)

As with the MINLP formulation, an objective function f (x, z) is minimized. Continuous decisions
variables are still represented by x, but Boolean variables Y now describe selection among discrete
alternatives. Remaining integer variables are denoted by z. This is preferable, as the conditional
constraints rik(x, z) ≤ 0 corresponding to selection of alternative Yik can be grouped together and
separated from the globally valid constraints g(x, z) ≤ 0 that must hold true for any selection of
alternatives. Note that equality constraints are implicitly captured in (GDP) through the use of
two inequality constraints. We term these groupings of a Boolean indicator variable with relevant
conditional constraints a “disjunct”, as they each constitute one term of a disjunction ∨ (logical “OR”
relationship). Next, we state that for each disjunction k ∈ K, exactly one of the disjuncts i ∈ Dk will be
selected, a generalization of the logical XOR ∨. Finally, GDP also allows the explicit specification of
logical propositions Ω(Y) = True to describe logical relationships between selection of the discrete
alternatives. These logical propositions are key to the modeling strategies addressed later in this work.

GDP offers two major advantages over the traditional MINLP modeling approach. First,
it facilitates more intuitive modeling of process decision-making by allowing explicit specification
of logical relationships [20]. The grouping of related constraints in disjuncts also helps to keep GDP
models more organized. Second, by exploiting explicit logical structure provided by GDP models [21],
advanced solution algorithms can reap benefits in convergence speed and robustness [22–24]. In this
work, we focus on the modeling implications of GDP use.

While long-time practitioners of MINLP modeling approaches may sometimes find logical
propositions too verbose, we contend that explicit logic is more readable and better preserves
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a modeler’s original intent. Take for example the logical statement in Equation (1), which may
correspond to the following process specification: if we purchase the cheap feed (Y1 = True), then we
will need to install a pretreater (Y2 = True) or install an additional separation unit (Y3 = True). That is,
Y1 implies Y2 or Y3.

Y1 =⇒ (Y2 ∨ Y3) (1)

This resolves to the equivalent algebraic constraint in Equation (2), using binary variables y [20,25].

− y1 + y2 + y3 ≥ 0 (2)

Both descriptions are valid, but the logical statement is self-documenting and is much clearer
to a new modeler. Expert MINLP modelers are accustomed to automatically preprocessing their
formulation to encode relevant problem logic in the algebraic constraints. With GDP, this mental
overhead and the associated potential for human error is eliminated. As a result, GDP models promise
to be easier to develop and maintain.

Compounding this effect is the fact that mathematical programming is frequently an analysis
tool in a larger process design procedure [26]. Business needs and customer expectations are not
always initially stated in a form amenable to formulation as an algebraic objective or constraint [27].
A process design problem therefore involves several iterations of reassessing assumptions and
adjusting constraints to match new business needs or revised customer expectations. This means that
neither the data nor the structure for a model formulation can be regarded as static throughout the
design workflow. As a result, the optimization model may be rewritten or revised several times in the
course of tackling a single process design problem [28]. Considerations such as environmental/social
impacts, safety, and operability may also be added to the model as constraints or secondary objectives.
Moreover, multiple versions of the same model are often necessary to trade-off process detail versus
model tractability for different process sections, increasing the number of model formulations that must
be developed and maintained. By separating model logical structure from the underlying algebraic
descriptions, GDP reduces the work necessary to revise a model. In doing so, it aims to advance
the state-of-the-art in process design [26,29–32]. Later, we also show how GDP can help manage
model variants.

GDP can be viewed in a broader context as a logic-based model abstraction layer, facilitating
intuitive expression of the discrete decision spaces. These abstractions are a necessary response to
complexity [33], to make mathematical programming capabilities accessible to a broader range of
process modelers. The ubiquity of commercial chemical process simulators is attributable to their
ability to abstract large-scale mathematical computations from chemical engineering decision-making.
They provide a drag-and-drop interface to assemble a process structure and a drop-down menu to
pick among standard physical property packages. Similar efforts to provide high-level modeling
capabilities underpinned by mathematical programming—such as Egret [34] for power systems design,
ICAS [35] for process and product design, MIPSYN [36] for process synthesis, and IDAES [37] for
advanced energy systems design—can benefit from the logical abstraction provided by GDP. Note
that modeling in GDP does not preclude the use of MINLP solution methods. Instead, it can offer a
systematic yet flexible approach to generate the appropriate MINLP formulation via reformulation.
For instance, Castro and Grossmann [38] derive several traditional scheduling formulations using
standardized reformulations of GDP models.

The two most popular ways to reformulate a GDP model as an MINLP model are the
Big-M (BM) [16] and Hull Reformulation (HR) [39] methods. BM and HR trade-off problem size
(number of variables and constraints) and the tightness (quality) of the continuous relaxation.
Other reformulations are also possible [40–43] with different tradeoffs in problem size, relaxation
tightness, and computational cost to generate the reformulation. In general, multiple valid MINLP
formulations exist to describe the same problem logic, and there exists no general way to determine a
priori the most tractable formulation [17]. Direct formulation as an MINLP requires the modeler to
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commit to a single formulation approach, while GDP allows multiple algebraic formulations to be
systematically generated from a single logical description, so that the most advantageous variant may
be utilized.

Despite theoretical progress, lack of computational tools to support GDP modeling has hindered
its adoption in both academic and industrial settings. The GAMS algebraic modeling language [44]
provides support for GDP models through its Extended Mathematical Programming syntax, with
the ability to generate the BM and HR reformulations. Prior to version 23.7, GAMS also supported
solution of GDP models using the LOGMIP 1.0 solver [45]. However, as a closed-source commercial
platform, academic interest has been limited. More recently, Pyomo.GDP [46] has emerged as an
open-source ecosystem for GDP modeling and development, built on top of the Pyomo algebraic
modeling language [47] in Python. As an open-source platform, it has been able to incorporate recent
innovations in reformulation strategies [48] and logic-based solution algorithms [22]. Powerful options
now exist for formulating and solving GDP models. However, compared to the MINLP literature,
relatively few formulation examples exist for GDP. This paper aims to address that gap.

In this paper, we focus on GDP as a modeling tool to manage model variants. We demonstrate its
use for two modeling use cases: (1) end-to-end analysis with focus on various portions of the overall
process, and (2) a single solution scheme involving use of models at different detail levels. In Section 2,
we describe these use cases and their modeling challenges in detail. In Section 3, we discuss application
of these techniques on an illustrative example and the resulting implications. We present concluding
remarks in Section 4.

2. Problem Statement

We examine two scenarios in which GDP is useful as a model management platform.

• Case 1: Generate model variants that focus on various portions of an end-to-end process;
• Case 2: Use higher-level (approximate) models to do preliminary analysis, and drill down into

increasing model detail for promising options as part of the solution scheme.

In the first case, complex value chains often result in a process being subdivided among major
process sections, assigned to different modeling teams. Each of these modeling teams may develop
specialized, detailed models that describe decision points and specifications relevant to their portion of
the overall process. However, as sequential optimizations of process sections may yield a suboptimal
overall result, coordination is necessary. Each section therefore needs to model the secondary impact
of their decisions on the rest of the process. Ideally, the detailed models for each section could simply
be linked together to produce a single optimization formulation. However, this formulation is often
intractably large. Therefore, a less-detailed surrogate is often employed to model nonfocal portions of
the process.

Consider an illustrative chemical production process consisting of three sections: procurement,
production, and sales, displayed in Figure 1. We examine this process in more detail in Section 3.
Multiple discrete options are available as decision variables for each section, denoted by the Boolean
variables Yi, Yj, and Yk for each section, respectively. For procurement, these discrete decisions
may describe selection among several available supply contracts from various vendors. For sales,
there might exist several sales opportunities corresponding to different customers. In production,
selection among various production modes and capital purchases are often key decisions. For our
illustrative process, Y12 = True describes the selection of the second procurement contract, for example.

In typical industrial practice, models at varying detail levels are often developed separately
from each other, with interoperability suffering as a result. By making use of GDP, the choice of
modeling detail can be integrated within a single framework, allowing related models to be developed
in proximity to each other. Note that care should still be taken to define appropriate interconnections
between the process sections so that relevant phenomena can be described (e.g., time dependence).
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Figure 1. Example process illustrating the embedding of multiple detail levels within discrete options
for each process section.

In the second case, a modeler may wish to use approximate models in a preliminary analysis
to identify promising candidates among numerous alternatives, then drill down into progressively
more detailed representations for remaining alternatives. For chemical processes, making assumptions
that restrict temperatures, transport phenomena, or thermodynamic complexity can greatly simplify a
model representation. However, variations in degrees of freedom and relevant physical phenomena
should be subsequently revisited. In specialized simulation software, provisions for changing the
thermodynamic assumptions of a chemical process are commonplace. However, the ability to do so is
less common in equation-oriented optimization frameworks. Instead, a new model must frequently be
developed at the desired complexity level. With GDP, the imposition or relaxation of these assumptions
may be made by setting the value of Boolean variables. For a broader perspective, by imposing the
implication that selection of unit u requires its modeling at a low detail level, Yu =⇒ Ylow

u , we can
restrict consideration to the approximate models. Conversely, for a deeper perspective, we can consider
only more rigorously modeled alternatives by imposing the use of high detail models Yu =⇒ Yhigh

u .
Note that at high fidelity, some alternatives may themselves involve selection among a discrete decision
space. For example, selection of a distillation column in a chemical process may involve deciding on
the number of trays. This discrete decision could itself be treated at various levels of modeling fidelity.
Fortunately, with GDP, this decision can simply be nested within the higher-level selection as a nested
disjunction [49].

3. Case Study

To demonstrate the principles of GDP as a tool for model management, we propose an illustrative
end-to-end methanol synthesis process example adapted from literature [22]. As previously stated, the
process consists of three sections: procurement, production, and sales (see Figure 2). Procurement must
source the syngas from one of two different vendors, each of which offers a different purity-dependent
cost schedule per unit feed. Production must select the optimal equipment configuration and
operating conditions (temperatures, pressures, flows, and compositions) to convert syngas to methanol.
This includes the discrete decision between single and two-stage compression for both the feed and
recycle streams, as well as the choice between a higher-conversion, higher-cost reactor and a cheaper
variant. Sales then contracts with one of two different customers, who are willing to pay a unit
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price that depends on the product purity. Each of these sections may be modeled at a high, medium,
and low level of detail. The production section superstructure appears in Figure 3, with unit 9 as
the cheap reactor alternative with low conversion and unit 10 denoting the expensive reactor with
high conversion. Amendments to the literature methanol process synthesis model are presented in
Appendix C.

Procurement

?
?

?

Production

?
?

?

Sales

?
?

?

Figure 2. Simplified process diagram for the illustrative example. Three sections exist: procurement,
production, and sales. In each section, decisions must be made in both discrete and continuous
variable domains.
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Figure 3. Methanol process flowsheet superstructure, adapted from [22], showing stream numbers
in blue.

Below, we present a generic formulation for an end-to-end techno-economic analysis model and
demonstrate how it may be adapted to our methanol synthesis example. In the following subsections,
we lay out the relevant sets, parameters, decision variables, and functions before presenting the
formulation. We then discuss manipulations of the formulation for both use cases from Section 2.

3.1. Sets

The chemical process involves a set of components C, which include the relevant raw materials,
reaction intermediates, inerts, and products. For the methanol process, we have feed components H2

and CO, inert CH4, and product CH3OH. The process is subdivided into three major process sections
I: procurement, production, and sales. Of all possible process section alternatives J, a subset Ji ⊆ J is
available for selection for each section i ∈ I. In the production section of the methanol process, two of
these alternatives are single-stage feed compression, and two-stage feed compression. The process
also involves a set of streams K that describe flows of material between process sections. Finally, for
each process alternative, a set of modeling detail levels l ∈ L are available. We consider in our example
three detail levels: “low”, “medium”, and “high.”

c ∈ C Set of components (feeds, intermediates, inerts, and products)
i ∈ I Set of end-to-end process sections
j ∈ J Set of process section alternatives

Ji Set of alternatives available for process section i
k ∈ K Set of streams
l ∈ L Set of detail levels
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3.2. Variables

The decision variables include characterization of each process stream k ∈ K: total molar flowrate
Fk and component molar flowrate fkc for each component c ∈ C, as well as the stream temperature Tk
and pressure Pk. A profit or cost (negative) contribution from each section i ∈ I is given by zi. This,
in turn, may be influenced by the contribution ζij from selection of alternative j ∈ Ji for section i ∈ I.
Other continuous state variables x may also be relevant for internal calculations within the alternatives.
In the methanol case study, these variables include conversion rates in the reactors and shaft work
required in the compressors. Finally, the Boolean variables Y govern selection among the process
alternatives and modeling detail levels. Yij determines whether alternative j ∈ Ji is active for section
i ∈ I. Yl

i determines whether process section i ∈ I is modeled at detail level l ∈ Li. Finally, for each
process alternative j ∈ Ji in section i ∈ I, Boolean Yl

ij determines the modeling detail level l ∈ Lij.

fck molar flow of component c on stream k
Fk total molar flow of stream k
Tk temperature of stream k
Pk pressure of stream k
zi profit or cost contribution from section i
ζij profit or cost contribution from alternative j in section i
x other continuous state variables

Yij Boolean selection of process alternative j for section i
Yl

i Boolean selection of detail level l for modeling process section i
Yl

ij Boolean selection of detail level l for modeling process alternative j in section i

3.3. Functions

The problem-specific variable relationships for the end-to-end process are represented by several
functions. The globally relevant constraints g( f , F, T, P, x) describe variable relationships that must
be satisfied regardless of discrete selections of the process alternatives or modeling detail levels.
These include the linking constraints that equate stream flow properties between different process
sections. That is, the exit stream from the procurement section should be equivalent to the inlet stream
to the production section. The constraints rij( f , F, T, P, x) describe the relationships that are enforced
regardless of the selected detail level when alternative j ∈ Ji is selected for section i ∈ I. For each
section i ∈ I, the constraints hl

i( f , F, T, P, x) describe variable interactions at each detail level l ∈ Li
that are relevant regardless of the selected process alternatives. These constraints include potential
equality relationships that link different process alternatives in a section with each other. For each of
these alternatives j ∈ Ji, the constraints sl

ij( f , F, T, P, x) describe the variable relationships at detail
level l ∈ Lij. Here are included the kinetic calculations for the reactor conversion, or the shaft work
calculation for the compressors. The cost functions are computed using φl

i ( f , F, T, P, x, ζ) at the section
level, and ψl

ij( f , F, T, P, x) for each process alternative. One common interpretation of φl
i ( f , F, T, P, x, ζ)

is given in Equation (3), where the section cost is simply equal to the sum of the contributions ζij from
each alternative j ∈ Ji, but more complex relationships are possible.

g( f , F, T, P, x) globally relevant constraints

rij( f , F, T, P, x)
constraints relevant to selection of alternative j ∈ Ji for process section i ∈ I for
any detail level

hl
i( f , F, T, P, x) constraints describing process section i ∈ I at detail level l ∈ Li

sl
ij( f , F, T, P, x)

constraints describing alternative j ∈ Ji for process section i ∈ I at detail level
l ∈ Lij

φl
i ( f , F, T, P, x, ζ) calculation of profit or cost contribution for section i ∈ I

ψl
ij( f , F, T, P, x)

calculation of profit or cost contribution for selecting alternative j ∈ Ji in section
i ∈ I

Ω(Y) Logical propositions between Boolean selections
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zi = φl
i ( f , F, T, P, x, ζ) = ∑

j∈Ji

ζij (3)

3.4. Formulation

The overall generic problem formulation is given in Problem (P1). The objective is to maximize
the profit, denoted by Z, equal to the summation of profit (or negative cost) contributions from each
section i ∈ I. In the methanol process, we consider revenue from the methanol sales, purchase costs
from the syngas feed, utility costs for the heaters and coolers, electricity costs for the compressors,
fuel credit for the purge stream, and annualized capital costs for equipment purchases.

max Z = ∑
i∈I

zi (P1.1)

s.t. g( f , F, T, P, x) ≤ 0 (P1.2)

∨
j∈Ji

[
Yij

rij( f , F, T, P, x) ≤ 0

]
∀i ∈ I (P1.3)

∨
l∈Li

⎡
⎢⎢⎣

Yl
i

hl
i( f , F, T, P, x) ≤ 0

zi = φl
i ( f , F, T, P, x, ζ)

⎤
⎥⎥⎦ ∀i ∈ I (P1.4)

Yij =⇒ ∨
l∈Lij

⎡
⎢⎢⎣

Yl
ij

sl
ij( f , F, T, P, x) ≤ 0

ζij = ψl
ij( f , F, T, P, x)

⎤
⎥⎥⎦ ∀i ∈ I, ∀j ∈ Ji (P1.5)

∨
l∈Li

Yl
i ∀i ∈ I (P1.6)

Yij =⇒ ∨
l∈Lij

Yl
ij ∀i ∈ I, ∀j ∈ Ji (P1.7)

Yl
ij =⇒ Yij ∀i ∈ I, ∀j ∈ Ji, ∀l ∈ Lij (P1.8)

Ω(Y) = True (P1.9)

zi ∈ R ∀i ∈ I (P1.10)

zij ∈ R ∀i ∈ I, ∀j ∈ Ji (P1.11)

f ∈ R
|C||K| (P1.12)

F ∈ R
|K| (P1.13)

T ∈ R
|K| (P1.14)

P ∈ R
|K| (P1.15)

x ∈ X ⊆ R
nX (P1.16)

Y ∈ {True, False}p (P1.17)

(P1.2) describes global constraints that are enforced independent of any alternative or detail
selection. Disjunction (P1.3) governs the selection among the process alternatives j ∈ Ji for each section
i ∈ I. Disjunction (P1.4) gives the detail level l ∈ Li at which the major process sections i ∈ I are
modeled. Implication (P1.5) states that the selection of an alternative j ∈ Ji implies the choice of a
detail level l ∈ Lij. For each section, the exclusive-OR relationship (P1.6) states that exactly one detail
level l ∈ Li is used to model alternative-independent interactions. Similarly, for a selection of process
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alternative j ∈ Ji, Implication (P1.7) governs selection of exactly one detail level l ∈ Lij for modeling
each alternative. Implication (P1.8) enforces that selection of a modeling detail level for an alternative
implies that the alternative is selected. Other logical propositions are expressed using Ω(Y). Finally,
the continuous variable definitions are given in lines (P1.10)–(P1.17).

Note that this illustrative example is meant to give a sense of the complexity that is possible
to represent in a process design problem using GDP modeling techniques. GDP modeling easily
supports augmentation of the model to consider, for example, methane reforming as another process
section. Other process relationships and logical expressions are also possible to include, as the
problem demands.

3.5. Discussion

The GDP model in Section 3.4 captures both the choice among discrete process alternatives as
well as the level of modeling detail used to describe each alternative. The observant reader may note
that the MINLP resulting from the reformulation of this GDP is more complex than simply modeling
the entire process in high detail. While true, the power of GDP lies in the ability to systematically
activate or deactivate entire blocks of related constraints. The intention of formulation (P1) is not to
solve the monolithic GDP model, but rather to systematically generate models that trade off fidelity
and tractability for different analyses from a single source of truth by imposing the relevant logical
implications. As a result, Problem (P1) could be regarded as a parametric optimization in which the
modeler prespecifies the values of Yl

i to satisfy Equation (P1.6) for each section i ∈ I and provides
logical implications to tie selection of an alternative Yij to selection of the desired detail level Yl

ij for
each alternative j ∈ Ji.

Once these decisions are made, model simplifications driven by logical inference are applied to
generate a process model at the desired level of detail for each of its constituent sections. For example,
the production team may want to adopt a simplified view of the procurement and sales sections while
preserving a high-fidelity view of production section alternatives. To accomplish this, the logical
statements in Equation (4) may be appended to the model.

Yi =⇒ Ylow
i , i ∈ {procurement, sales}

Yi =⇒ Yhigh
i , i ∈ {production}

Yij =⇒ Ylow
ij , i ∈ {procurement, sales}, ∀j ∈ Ji

Yij =⇒ Yhigh
ij , i ∈ {production}, ∀j ∈ Ji

(4)

Due to the exclusive-OR-type relationship between different levels of modeling detail established
by logical statements (P1.6) and (P1.7), this forces the implied level of detail to be selected for its
corresponding alternative or section. Applying standard principles of logical inference [21], we arrive at
the model shown in Problem (P2), with the sets Ilow = {procurement, sales} and Ihigh = {production}.

max Z = ∑
i∈I

zi (P2.1)

s.t. g( f , F, T, P, x) ≤ 0 (P2.2)

∨
j∈Ji

[
Yij

rij( f , F, T, P, x) ≤ 0

]
∀i ∈ I (P2.3)

Ylow
i = True

hlow
i ( f , F, T, P, x) ≤ 0

zi = φlow
i ( f , F, T, P, x, ζ)

⎫⎪⎪⎬
⎪⎪⎭ ∀i ∈ Ilow (P2.4)
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Yl
i = False ∀i ∈ Ilow, ∀l ∈ Li \ {low} (P2.5)

Yhigh
i = True

hhigh
i ( f , F, T, P, x) ≤ 0

zi = φ
high
i ( f , F, T, P, x, ζ)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∀i ∈ Ihigh (P2.6)

Yl
i = False ∀i ∈ Ihigh, ∀l ∈ Li \ {high} (P2.7)

Yij =⇒

⎧⎪⎪⎨
⎪⎪⎩

Ylow
ij

slow
ij ( f , F, T, P, x) ≤ 0

ζij = ψlow
ij ( f , F, T, P, x)

⎫⎪⎪⎬
⎪⎪⎭ ∀i ∈ Ilow, ∀j ∈ Ji (P2.8)

Yl
ij = False ∀i ∈ Ilow, ∀j ∈ Ji, ∀l ∈ Li \ {low} (P2.9)

Yij =⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Yhigh
ij

shigh
ij ( f , F, T, P, x) ≤ 0

ζij = ψ
high
ij ( f , F, T, P, x)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∀i ∈ Ihigh, ∀j ∈ Ji (P2.10)

Yl
ij = False ∀i ∈ Ihigh, ∀j ∈ Ji, ∀l ∈ Li \ {high} (P2.11)

Yl
ij =⇒ Yij ∀i ∈ I, ∀j ∈ Ji, ∀l ∈ Lij (P2.12)

Ω(Y) = True (P2.13)

zi ∈ R ∀i ∈ I (P2.14)

zij ∈ R ∀i ∈ I, ∀j ∈ Ji (P2.15)

f ∈ R
|C||K| (P2.16)

F ∈ R
|K| (P2.17)

T ∈ R
|K| (P2.18)

P ∈ R
|K| (P2.19)

x ∈ X ⊆ R
nX (P2.20)

Y ∈ {True, False}p (P2.21)

Problem (P2) now describes the decision space of the overall process with a focus on the
production section. Changing the logical implications in Equation (4), we can easily shift focus
in model fidelity to other sections of the process. By imposing different logical relationships on the
general GDP model and applying easily automated principles of logical inference, we are able to derive
multiple model variants from a single source of truth. Different levels of detail can also be evaluated
as a post-solve solution quality check. The modeler can hold constant the production section decisions
and increase modeling detail in the other sections to examine impacts of their decision-making on other
sections. While this type of analysis may be possible under other engineered frameworks, GDP offers
the formalism of an end-to-end perspective that is tied together by mathematical theory.

3.6. Solution Strategies

After generating a variant such as Problem (P2), a solution approach may be selected to obtain
the optimal decision values. As previously introduced, the BM and HR reformulations to MINLP
are the most popular approaches [2], trading off formulation size versus tightness of the continuous
relaxation. The BM formulation for Problem (P2) may be found in Appendix A. For BM, equality
constraints in the disjuncts are replaced by their corresponding two inequalities to facilitate relaxation
of the constraint. BM results in a smaller problem size, as it does not require the introduction of
new variables. However, the use of the Big-M parameter M results in a looser continuous relaxation.
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Note that the relaxation may be improved by selecting unique values of M for each constraint [48].
For a tighter continuous relaxation, the HR formulation found in Appendix B may be used. HR
requires additional disaggregated variables to be defined for each disjunct, so the problem size may
be significantly larger than BM. However, the tighter HR formulation may require fewer iterations to
converge. Once the reformulation to MINLP is made, the model can be sent to the user’s solver of
choice. Direct logic-based decomposition approaches [22,39] are also possible for solving GDP models,
with implementations available in Pyomo.GDP via the GDPopt solver [46].

We solve the methanol synthesis model described in Problem (P2) and obtain a solution with
annual profit of $1.8 million using two-stage feed compression, the cheap reactor, and single-stage
recycle compression, see Figure 4. We can now fix the production section discrete decisions and
evaluate the solution at varying detail levels for the procurement and sales sections. The results are
given in Table 1.
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Figure 4. Solution flowsheet for Problem (P2), using two-stage feed compression, the cheap reactor,
and single-stage recycle compression. At low procurement modeling detail, no feed selection decisions
are made.

Table 1. Profit (1000 USD) at the fixed production section design of two-stage feed compression, the
cheap reactor, and single-stage recycle compression compared to the profit achievable when the design
is allowed to vary.

Procurement Detail Sales Detail Fixed Design Best Design Difference

low low 1793 1793
low med 1564 1614 single-stage feed compression
low high 2617 2667 single-stage feed compression
med low 1793 1793
med med 1564 1614 single-stage feed compression
med high 2617 2667 single-stage feed compression
high low 1709 1832 single-stage feed compression
high med 1746 1850 single-stage feed compression
high high 3133 3183 single-stage feed compression

Notice that the solution profit tends to increase at higher modeling details for the feed and sales.
This is due to the additional flexibility in adjusting coordinating purity levels across procurement,
production, and sales. In the high-detail solutions, a higher purity syngas is purchased to enable
production of a higher purity methanol product. The supplier and customer contracts are also selected
to facilitate the purity decision. The procurement contract is selected with a higher base cost, but lower
incremental cost for improved purity. Conversely, the customer contract is chosen where a higher
purity is more valued. Thus, despite an increase in feed cost of $4.3 million vs. $3.4 million in the
low-detail solution, the product revenue rises to $10.6 million rather than $7.7 million.

The Problem (P2) solution is also compared in Table 1 to the profit possible when the production
section configuration is allowed to change at higher procurement and sales modeling detail levels.
Here, we see that at higher levels of modeling detail, the single stage feed compressor becomes more
advantageous, but only by the $50 thousand margin that accounts for the difference in annualized
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capital cost. In general, this analysis may not be possible, as the formulation for solving all decision
degrees of freedom at a high level of modeling detail may be intractable. However, even at a medium
level of sales modeling detail, it is possible to notice that the choice of single-stage feed compression
may be relevant in the optimal production configuration.

As an illustration of the flexibility of GDP modeling, another solution approach that can be
utilized is to emulate traditional process design strategies. GDP model (P1) is compatible with a
design analysis akin to the hierarchical decomposition approach described by Douglas [50], by solving
sequentially at different detail levels. First, the overall process (P1) is solved with a low detail level in
iteration iter = 0, enforcing the implications in Equation (5).

Y0
i =⇒ Y0,low

i , ∀i ∈ I

Y0
ij =⇒ Y0,low

ij , ∀i ∈ I, ∀j ∈ Ji
(5)

The solution to this overview problem gives high-level decisions among the process alternatives and
defines the following sets for the iteration iter = 1. Let J1

i = {j ∈ Ji : Y0
ij = True} denote the selected

alternatives from the overview problem from iteration iter = 0. In the next iteration, we enforce for
(P1) the implications in Equation (6) such that these alternatives are evaluated at a progressively higher
detail level.

Y1
i =⇒ Y1,med

i , ∀i ∈ I

Y1
ij =⇒ Y1,med

ij , ∀i ∈ I, ∀j ∈ J1
i

Y1
ij =⇒ Y0,low

ij , ∀i ∈ I, ∀j ∈ Ji \ J1
i

(6)

The algorithm would terminate at iteration iter = N when all selected alternatives are evaluated
at a high detail level: Yhigh

ij = True, ∀i ∈ I, ∀j ∈ Ji. Note that solutions at lower detail levels can
be used to initialize the higher fidelity models for each alternative, aiding in algorithm robustness.
The amount of backtracking done by the algorithm to evaluate other alternatives can be tuned by
applying a penalty factor to alternatives modeled at lower detail levels.

We apply this algorithm to the methanol synthesis. In the base iteration (iter = 0), all alternatives
are modeled at a low detail level. The solution gives a configuration of the cheap reactor with two-stage
feed compression and single-stage recycle compression at a profit of $1.1 million. The structure for
this solution is identical to that shown in Figure 4. We increase the modeling detail level for these
selections and solve iteration 1.

Solving the low-detail overview problem, we obtain a configuration using the cheap reactor,
two-stage feed compression, and single-stage recycle compression, yielding a profit of $1.1 million.
We then increase the level of modeling detail for the selected alternatives. Solving again, we obtain a
profit of $0.4 million with the expensive feed alternative, the cheap reactor, two-stage feed compression,
single-stage recycle compression, and the high-purity sales option. At this intermediate level of
modeling detail, the solution profit decreases because physical constraints are more tightly enforced,
but not as many optimization degrees of freedom are made available to the solver yet. For some
analyses, it may be advantageous for intermediate detail levels to produce a monotonically tightening
approximation of the high-detail representation, but we do not address that consideration in this work.
At the next iteration (iter = 2), we increase the detail level again, obtaining now a profit of $3.1 million,
using the contract with supplier 1, the cheap reactor, two-stage feed compression, single-stage recycle
compression, and the contract with customer 1. At this point, the algorithm terminates, as all selected
alternatives are modeled at the highest possible level of detail.

4. Conclusions

In this paper, we present GDP not only as a mathematical modeling framework supporting
advanced solution strategies, but also as a modeling tool to organize model variants. We demonstrate
through an illustrative case study that GDP is a useful model abstraction that separates algebraic and
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logical relationships within a process design problem. From a single GDP model capturing discrete
design alternatives as well as alternatives in modeling fidelity, variants can be generated to suit the
modeling scope and focus for different process sections by specifying appropriate logical implications.
As a result, model interoperability is improved, facilitating simplified post-solution validation analysis.
Preservation of model logical structure in GDP also offers the modeler flexibility to reformulate the
problem as an MINLP or to apply a variety of automated decomposition methods.
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Appendix A. Big-M Reformulation (BM)

The Big-M reformulation for GDP model in Problem (P2) is presented in Equations (A1)–(A31).
All variables’ domains for BM are assumed to be a subset of the non-negative real numbers.

max Z = ∑
i∈I

zi (A1)

s.t. g( f , F, T, P, x) ≤ 0 (A2)

rij( f , F, T, P, x) ≤ M(1 − yij) ∀i ∈ I, ∀j ∈ Ji (A3)

∑
j∈Ji

yij ≥ 1 ∀i ∈ I (A4)

ylow
i = 1 ∀i ∈ Ilow (A5)

hlow
i ( f , F, T, P, x) ≤ 0 ∀i ∈ Ilow (A6)

zi = φlow
i ( f , F, T, P, x, ζ) ∀i ∈ Ilow (A7)

yl
i = 0 ∀i ∈ Ilow, ∀l ∈ Li \ {low} (A8)

yhigh
i = 1 ∀i ∈ Ihigh (A9)

hhigh
i ( f , F, T, P, x) ≤ 0 ∀i ∈ Ihigh (A10)

zi = φ
high
i ( f , F, T, P, x, ζ) ∀i ∈ Ihigh (A11)

yl
i = 0 ∀i ∈ Ihigh, ∀l ∈ Li \ {high} (A12)

ylow
ij = yij ∀i ∈ Ilow, ∀j ∈ Ji (A13)

slow
ij ( f , F, T, P, x) ≤ M(1 − ylow

ij ) ∀i ∈ Ilow, ∀j ∈ Ji (A14)

ζij ≥ ψlow
ij ( f , F, T, P, x) + M(1 − ylow

ij ) ∀i ∈ Ilow, ∀j ∈ Ji (A15)

ζij ≤ ψlow
ij ( f , F, T, P, x)− M(1 − ylow

ij ) ∀i ∈ Ilow, ∀j ∈ Ji (A16)

yl
ij = 0 ∀i ∈ Ilow, ∀j ∈ Ji, ∀l ∈ Li \ {low} (A17)

yhigh
ij = yij ∀i ∈ Ihigh, ∀j ∈ Ji (A18)

shigh
ij ( f , F, T, P, x) ≤ M(1 − yhigh

ij ) ∀i ∈ Ihigh, ∀j ∈ Ji (A19)

ζij ≤ ψ
high
ij ( f , F, T, P, x) + M(1 − yhigh

ij ) ∀i ∈ Ihigh, ∀j ∈ Ji (A20)

ζij ≥ ψ
high
ij ( f , F, T, P, x)− M(1 − yhigh

ij ) ∀i ∈ Ihigh, ∀j ∈ Ji (A21)

yl
ij = 0 ∀i ∈ Ihigh, ∀j ∈ Ji, ∀l ∈ Li \ {high} (A22)

Ω̂y = b (A23)

zi ∈ R ∀i ∈ I (A24)
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zij ∈ R ∀i ∈ I, ∀j ∈ Ji (A25)

f ∈ R
|C||K| (A26)

F ∈ R
|K| (A27)

T ∈ R
|K| (A28)

P ∈ R
|K| (A29)

x ∈ X ⊆ R
nX (A30)

y ∈ {0, 1}p (A31)

Appendix B. Hull Reformulation (HR)

The Hull Reformulation model for Problem (P2) is presented in Equations (A32)–(A70). Note that
in HR, the conditional nonlinear functions, Equations (A34), (A55), (A56), (A59), and (A60) use a
perspective function formulation. To avoid the singularity at a zero value of the indicator binary
variable, various reformulations have been proposed in literature [39,43,51] and are available in
Pyomo.GDP.

max Z = ∑
i∈I

zi (A32)

s.t. g( f , F, T, P, x) ≤ 0 (A33)

yijrij

(
f̂ij

yij
,

F̂ij

yij
,

T̂ij

yij
,

P̂ij

yij
,

x̂ij

yij

)
≤ 0 ∀i ∈ I, j ∈ Ji (A34)

∑
j∈Ji

yij ≥ 1 ∀i ∈ I (A35)

f lbyij ≤ f̂ij ≤ f ubyij ∀i ∈ I, ∀j ∈ Ji (A36)

Flbyij ≤ F̂ij ≤ Fubyij ∀i ∈ I, ∀j ∈ Ji (A37)

Tlbyij ≤ T̂ij ≤ Tubyij ∀i ∈ I, ∀j ∈ Ji (A38)

Plbyij ≤ P̂ij ≤ Pubyij ∀i ∈ I, ∀j ∈ Ji (A39)

xlbyij ≤ x̂ij ≤ xubyij ∀i ∈ I, ∀j ∈ Ji (A40)

fij = ∑
j∈Ji

f̂ij ∀i ∈ I (A41)

Fij = ∑
j∈Ji

F̂ij ∀i ∈ I (A42)

Tij = ∑
j∈Ji

T̂ij ∀i ∈ I (A43)

Pij = ∑
j∈Ji

P̂ij ∀i ∈ I (A44)

xij = ∑
j∈Ji

x̂ij ∀i ∈ I (A45)

ylow
i = 1 ∀i ∈ Ilow (A46)

hlow
i ( f , F, T, P, x) ≤ 0 ∀i ∈ Ilow (A47)

zi = φlow
i ( f , F, T, P, x, ζ) ∀i ∈ Ilow (A48)

yl
i = 0 ∀i ∈ Ilow, ∀l ∈ Li \ {low} (A49)

Yhigh
i = 1 ∀i ∈ Ihigh (A50)

hhigh
i ( f , F, T, P, x) ≤ 0 ∀i ∈ Ihigh (A51)
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zi = φ
high
i ( f , F, T, P, x, ζ) ∀i ∈ Ihigh (A52)

yl
i = 0 ∀i ∈ Ihigh, ∀l ∈ Li \ {high} (A53)

ylow
ij = yij ∀i ∈ Ilow, ∀j ∈ Ji (A54)

yijslow
ij

(
f̂ij

yij
,

F̂ij

yij
,

T̂ij

yij
,

P̂ij

yij
,

x̂ij

yij

)
≤ 0 ∀i ∈ Ilow, ∀j ∈ Ji (A55)

ζij = yijψ
low
ij

(
f̂ij

yij
,

F̂ij

yij
,

T̂ij

yij
,

P̂ij

yij
,

x̂ij

yij

)
∀i ∈ Ilow, ∀j ∈ Ji (A56)

yl
ij = 0 ∀i ∈ Ilow, ∀j ∈ Ji, ∀l ∈ Li \ {low} (A57)

yhigh
ij = yij ∀i ∈ Ihigh, ∀j ∈ Ji (A58)

yijs
high
ij

(
f̂ij

yij
,

F̂ij

yij
,

T̂ij

yij
,

P̂ij

yij
,

x̂ij

yij

)
≤ 0 ∀i ∈ Ihigh, ∀j ∈ Ji (A59)

ζij = yijψ
high
ij

(
f̂ij

yij
,

F̂ij

yij
,

T̂ij

yij
,

P̂ij

yij
,

x̂ij

yij

)
∀i ∈ Ihigh, ∀j ∈ Ji (A60)

yl
ij = 0 ∀i ∈ Ihigh, ∀j ∈ Ji, ∀l ∈ Li \ {high} (A61)

Ω̂y = b (A62)

zi ∈ R ∀i ∈ I (A63)

zij ∈ R ∀i ∈ I, ∀j ∈ Ji (A64)

f ∈ R
|C||K| (A65)

F ∈ R
|K| (A66)

T ∈ R
|K| (A67)

P ∈ R
|K| (A68)

x ∈ X ⊆ R
nX (A69)

y ∈ {0, 1}p (A70)

Appendix C. Methanol Model

The methanol synthesis model examined in this paper is adapted from the description in
Example 3 of [22]. In this appendix, we describe the main differences between the literature
model and the presented variant. We consider the original unit models to be the high-detail
version, except for the feed and product description. The original feed model is considered to be
the medium-detail description, and the original product sales model is considered the low-detail
description. Linking constraints for stream flows and material balance equations are preserved from
the original formulation.

Appendix C.1. Feed Procurement

Appendix C.1.1. High Detail

The high-detail feed model involves the choice between two different suppliers,
with purity-dependent costs for the syngas feed.
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Supplier 1

f1,H2 = 0.7(F1 − f1,CH4) (A71)

f1,CO = 0.3(F1 − f1,CH4) (A72)

0.03F1 ≤ f1,CH4 ≤ 0.20F1 (A73)

z1 = −425.712 + 194.973(ln f1,CH4 − ln F1)F1 (A74)

Supplier 2

f2,H2 = 0.7(F2 − f2,CH4) (A75)

f2,CO = 0.3(F2 − f2,CH4) (A76)

0.03F2 ≤ f2,CH4 ≤ 0.20F2 (A77)

z1 = −400 + 210(ln f2,CH4 − ln F2)F2 (A78)

Appendix C.1.2. Medium Detail

The medium-detail feed model is the same as in [22], with the choice between a cheaper and a
more expensive feed stream.

Cheap Feed

f1,H2 = 0.6F1 (A79)

f1,CO = 0.25F1 (A80)

f1,CH4 = 0.15F1 (A81)

z1 = −795.6F1 (A82)

f1,H2 = 0.65F1 (A83)

f1,CO = 0.30F1 (A84)

f1,CH4 = 0.05F1 (A85)

z1 = −1009.8F1 (A86)

Appendix C.1.3. Low Detail

The low-detail feed model simply defaults to the expensive feed option from the medium-detail
case, with no other option available.

f1,H2 = 0.65F1 (A87)

f1,CO = 0.30F1 (A88)

f1,CH4 = 0.05F1 (A89)

z1 = −1009.8F1 (A90)
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Appendix C.2. Product Sales

Appendix C.2.1. High Detail

Customer 1

0.85F23 ≤ f23,CH3OH ≤ 0.98F23 (A91)

z3 = 1682.92 − 2275.6(ln( f23,H2 + f23,CO + f23,CH4)− ln F23)F23 (A92)

Customer 2

0.85F23 ≤ f23,CH3OH ≤ 0.98F23 (A93)

z3 = 1700 − 2265(ln( f23,H2 + f23,CO + f23,CH4)− ln F23)F23 (A94)

Appendix C.2.2. Medium Detail

Low purity product

0.85F23 ≤ f23,CH3OH (A95)

z3 = 6000F23 (A96)

High purity product

0.95F23 ≤ f23,CH3OH (A97)

z3 = 8500F23 (A98)

Appendix C.2.3. Low Detail

0.9F23 ≤ f23,CH3OH (A99)

z3 = 7650F23 (A100)

Appendix C.3. Compressors

0 ≤ Pratio ≤ 1.74 (A101)

0 ≤ W ≤ 50 (A102)

Appendix C.3.1. High Detail

Tout = PratioTin (A103)

W =
0.72(Pratio − 1)TinFin
(10)(0.75)(0.23077)

(A104)

P0.23077
out = PratioP0.23077

in (A105)

109



Processes 2019, 7, 839

Appendix C.3.2. Medium Detail

Pratio =

{
1.3 if feed compressor

1.1 if recycle compressor
(A106)

Tout =

{
1.3Tin if feed compressor

1.1Tin if recycle compressor
(A107)

W ≥

⎧⎪⎪⎨
⎪⎪⎩

0.72(0.3)TinFin
(10)(0.75)(0.23077)

if feed compressor

0.72(0.1)TinFin
(10)(0.75)(0.23077)

if recycle compressor
(A108)

P0.23077
out =

{
1.3P0.23077

in if feed compressor

1.1P0.23077
in if recycle compressor

(A109)

Appendix C.3.3. Low Detail

Pratio =

{
1.3 if feed compressor

1.1 if recycle compressor
(A110)

Tout =

{
1.3Tin if feed compressor

1.1Tin if recycle compressor
(A111)

W ≥ 0.54Fin (A112)

Pout = 3.8Pin (A113)

Appendix C.4. Expansion Valve

Appendix C.4.1. High Detail

ToutP0.23077
in = TinP0.23077

out (A114)

Pout ≤ Pin (A115)

Appendix C.4.2. Medium Detail

[
Tout = 0.94Tin

0.75Pin ≤ Pout ≤ 0.9Pin

]
∨
[

Tout = 0.9Tin

0.6Pin ≤ Pout ≤ 0.75Pin

]
(A116)

Appendix C.4.3. Low Detail

Tout = 0.94Tin (A117)

Pout = 0.77Pin (A118)
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Appendix C.5. Cooler

Appendix C.5.1. High Detail

Q = 0.00306(35.0)(FinTin − FoutTout) (A119)

Appendix C.5.2. Medium Detail

[
Q = 1.61(Tin − Tout)

10 ≤ Fin ≤ 20

]
∨
[

Q = 0.80(Tin − Tout)

5 ≤ Fin ≤ 10

]
∨
[

Q = 0.54(Tin − Tout)

0 ≤ Fin ≤ 5

]
(A120)

Appendix C.5.3. Low Detail

Q = 1.0(Tin − Tout) (A121)

Appendix C.6. Heater

Appendix C.6.1. High Detail

Q = 0.00306(35.0)(FoutTout − FinTin) (A122)

Appendix C.6.2. Medium Detail

[
Q = 1.8(Tout − Tin)

10 ≤ Fin ≤ 20

]
∨
[

Q = 0.80(Tout − Tin)

5 ≤ Fin ≤ 10

]
∨
[

Q = 0.11(Tout − Tin)

0 ≤ Fin ≤ 5

]
(A123)

Appendix C.6.3. Low Detail

Q = 1.0(Tout − Tin) (A124)

Appendix C.7. Reactors

Appendix C.7.1. High Detail

P2 Psq,inv = 1 (A125)

T Tinv = 1 (A126)

r = X fin,H2 (A127)

(FinTin − FoutTout)(35.0) = 0.01ΔHrxnr (A128)

Xeq = 0.415(1 − (26.25e−18Tinv)Psq,inv) (A129)

X Fin =

{Xeq(1 − e−10)( fin,H2 + fin,CO + fin,CH3OH) expensive reactor

Xeq(1 − e−5)( fin,H2 + fin,CO + fin,CH3OH) cheap reactor
(A130)
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Appendix C.7.2. Medium Detail

T = 5.23 (A131)

P2 Psq,inv = 1 (A132)

r = X fin,H2 (A133)

Xeq = 0.415(1 − (26.25e−18/5.23Psq,inv)) (A134)

X Fin =

{Xeq(1 − e−10)( fin,H2 + fin,CO + fin,CH3OH) expensive reactor

Xeq(1 − e−5)( fin,H2 + fin,CO + fin,CH3OH) cheap reactor
(A135)

Appendix C.7.3. Low Detail

T ≥ 5.23 (A136)

X =

{
0.35 expensive reactor

0.30 cheap reactor
(A137)

P ≥ 14.3 (A138)

r = X fin,H2 (A139)

Appendix C.8. Flash

Appendix C.8.1. High Detail

(13.6333 − ln(7500.6168Pvap
H2

))(100T − 3.19) = 164.9 (A140)

(14.3686 − ln(7500.6168Pvap
CO ))(100T + 13.15) = 530.22 (A141)

(18.5875 − ln(7500.6168Pvap
CH3OH))(100T + 34.29) = 3626.55 (A142)

(15.2243 − ln(7500.6168Pvap
CH4

))(100T + 7.16) = 897.84 (A143)

ξH2(ξCOPvap
H2

+ (1 − ξCO)Pvap
CO ) = Pvap

H2
ξCO (A144)

ξH2(ξCH3OH Pvap
H2

+ (1 − ξCH3OH)Pvap
CH3OH) = Pvap

H2
ξCH3OH (A145)

ξH2(ξCH4 Pvap
H2

+ (1 − ξCH4)Pvap
CH4

) = Pvap
H2

ξCH4 (A146)

f21,H2 = ξH2 f20,H2 (A147)

f21,CO = ξCO f20,CO (A148)

f21,CH3OH = ξCH3OH f20,CH3OH (A149)

f21,CH4 = ξCH4 f20,CH4 (A150)

PF22 = Pvap
H2

f22,H2 + Pvap
CO f22,CO + Pvap

CH3OH f22,CH3OH + Pvap
CH4

f22,CH4 (A151)
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Appendix C.8.2. Medium Detail

Pvap
H2

= 73.332 (A152)

Pvap
CO = 64.232 (A153)

Pvap
CH3OH = 3.722 (A154)

Pvap
CH4

= 60.125 (A155)

ξH2(73.332ξCO + 64.232(1 − ξCO)) = 73.332ξCO (A156)

ξH2(73.332ξCH3OH + 3.722(1 − ξCH3OH)) = 73.332ξCH3OH (A157)

ξH2(73.332ξCH4 + 60.125(1 − ξCH4)) = 73.332ξCH4 (A158)

f21,H2 = ξH2 f20,H2 (A159)

f21,CO = ξCO f20,CO (A160)

f21,CH3OH = ξCH3OH f20,CH3OH (A161)

f21,CH4 = ξCH4 f20,CH4 (A162)

PF22 = 73.332 f22,H2 + 64.232 f22,CO + 3.722 f22,CH3OH + 60.125 f22,CH4 (A163)

Appendix C.8.3. Low Detail

ξH2 = 0.99 (A164)

ξCO = 0.99 (A165)

ξCH3OH = 0.85 (A166)

ξCH4 = 0.99 (A167)

f21,H2 = 0.99 f20,H2 (A168)

f21,CO = 0.99 f20,CO (A169)

f21,CH3OH = 0.85 f20,CH3OH (A170)

f21,CH4 = 0.99 f20,CH4 (A171)

T = 4 (A172)
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Abstract: Process systems engineering (PSE), after being proposed by Sargent and contemporary
researchers, has been fast developing in various domains and research communities around the
world in the last couple of decades, with energy systems engineering featuring a typical yet still
fast propagating domain, and the Chinese PSE community featuring a typical community with its
own unique challenges for applying PSE theory and methods. In this paper, development of energy
systems engineering and process systems engineering in China is discussed, and Sargent’s impacts on
these two fields are the main focus. Pioneering work conducted by Sargent is firstly discussed. Then,
a venation on how his work and thoughts have motivated later researchers and led to progressive
advances is reviewed and analyzed. It shows that Sargent’s idea of optimum design and his work on
nonlinear programming and superstructure modelling have resulted in well-known methods that are
widely adopted in energy systems engineering and PSE applications in tackling problems in China.
Following Sargent’s pioneering ideas and conceptual design of the PSE mansion, future development
directions of energy systems engineering are also discussed.

Keywords: process systems engineering; energy systems engineering; process design; optimization;
nonlinear programming

1. Introduction

Process systems engineering (PSE) is an interdiscipline of chemical engineering and systems
engineering. It aims at providing a systematic methodology for chemical engineering decisions [1,2].
Energy systems engineering (ESE) is a branch of PSE, applying theories from PSE to analyses of energy
systems. Since the beginning of PSE and ESE, their application to the industry has produced significant
benefits. Researchers are putting more and more emphasis on these two disciplines.

Professor Sargent is entitled the father of PSE, since he had made great contributions to design,
boost, and lead the PSE field. His work and impact can almost be found in every corner of PSE,
including process design, process control, and others. In addition, his thoughts have a leading role for
the development of PSE. A tribute of Sargent, which summarized his important work and his impact
had been written by Doherty et al. [3]. However, there seems to be a lack of review work on Sargent’s
impact on ESE. Moreover, Sargent’s work has inspired many research communities around the world
with their unique yet challenging PSE problems. Furthermore, a study on Sargent’s impact on the
Chinese PSE development is chosen in this review.

The remaining part of the paper is organized as follows. Firstly, Sargent’s major contributions,
especially those with direct impact with energy systems engineering and PSE applications in China,
are discussed. Development of energy systems engineering, guided by the framework set by Sargent,
and applications in solving local challenging problems of China, inspired by Sargent’s work, are then
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summarized. Last, future directions of energy systems engineering are proposed, following the PSE
framework set up by Sargent, and based on characteristics of energy systems which are unique from a
generic process system.

2. Contributions of Professor Sargent

Over his research career, Professor Sargent made tremendous contributions to the field of PSE.
His work can be found in almost every discipline, including system decomposition, optimal design,
process control, solution of nonlinear algebraic equations (NAE), differential algebraic equations
(DAE), and others. In addition, it is more creditable that Professor Sargent does not only make great
achievements in his own research, but also acts as a leader of PSE researchers, providing guiding
light for the development of the whole field. In 1967, he published an inspiring and insightful article,
pointing out possible directions for future research [4]. The most important one in this article might
be the idea of integrated design, i.e., combining design and optimization instead of regarding them
as two separate tasks. Sargent also pointed out the need for future work in better understanding of
physical mechanisms of chemical process, in development of model simplification techniques, and
in exploration of dynamic behaviour. In 1971, he presented another review article as a supplement
of the former one [4], in which he pointed out that much work remained to be done in the solution
of large-scale NAEs, stochastic optimal control, nonlinear filtering, and the automatic determination
of model structure [5]. Those research directions he had mentioned have almost all become research
frontends in the next few decades. With such significant contributions, Professor Sargent is regarded
as the father of PSE. In this part, his contributions in several specific disciplines are discussed, whilst
some of the significant work are further elaborated in the following sections.

In early years, Sargent had made much effort in system decomposition techniques. In 1964,
Sargent and Westerberg developed two algorithms, one for decomposing a system into sequential
groups, and the other for determining the computational order within a group, based on dynamic
programming [6]. Later Sargent extended the research to systems of equations. In his article in 1977 [7],
Sargent studied the connection between decomposition of systems of procedures and systems of
equations, and extended Leigh’s algorithm [8] to recognizing linear subsets.

In terms of optimization, Sargent mainly focused on solution methods for nonlinear programming
(NLP) problems. In 1969, based on the Davidon–Fletcher–Powell (DFP) method for unconstrained
nonlinear optimization [9,10] and Rosen’s gradient projection method for dealing with constraints [11],
Sargent and Murtagh developed the variable-metric projection (VMP) method for NLP [12]. In 1973,
they further improved the VMP method in situations of nonlinear constraints [13]. Sargent also did
much work to discuss the convergence property of the method, such as Sargent and Murtagh in
1970 [14], Sargent and Sebastian in 1973 [15], and Sargent in 1973 [16]. In 1978, Sargent proposed an
efficient implementation of the Lemke algorithm, which could be used to solve quadratic programming
(QP) problems [17]. Later this algorithm was used to derive an SQP algorithm in 2001 [18]. Sargent was
also one of the first to study process design under uncertainty. In 1978, Grossmann and Sargent
proposed an efficient method for NLP problems with uncertain parameters [19]. Their method aimed
to design a plant that could meet the specifications over a bounded range of values of parameters,
which was essentially the idea of robust optimization.

In process design, a proper representation of the model could make the analysis more convenient.
Sargent had done much profound work in this area. In 1976, Sargent and Gaminibandara proposed
the superstructure representation for synthesis of distillation columns [20]. In 1993, Sargent and his
co-workers introduced the state-task-network (STN) representation for batch scheduling [21]. And in
1998, Sargent further applied the STN representation method to distillation systems [22].

The steady-state simulation of chemical processes usually involved the solution of large systems
of NAEs. In 1980, Sargent presented a review of various methods for this problem, such as Newton’s
method and least-change secant methods [23]. In addition, since solving the whole set of NAEs
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is rather difficult, development of equation-oriented decomposition techniques was motivated, as
discussed above.

When it comes to dynamic simulation, the problem becomes the solution of large systems of DAEs.
Sargent and co-workers had studied various solution methods, such as Cameron’s work on diagonally
implicit Runge–Kutta (DIRK) methods and backward differentiation formulae (BDF) algorithms in
1981 [24]. In 1988, Sargent and his co-workers put this problem in a general mathematical formulation,
and they used a BDF-based software to solve the problem of a plate distillation column described by
index two DAEs [25].

3. Energy Systems Engineering

Energy systems engineering (ESE) is usually regarded as a branch of PSE, which aims to apply PSE
methodologies to analyse energy systems. The concept of ESE was first proposed by Pistikopoulos and
co-workers at the sixth European Congress of Chemical Engineering in 2007 [26]. According to their
definition, energy systems engineering provides a methodological framework to address the complex
energy and environmental problems by an integrated systematic approach, which accounts complexities
of very different scales, ranging from technology, plant, to energy supply chain, and megasystem [27].
Typical methodologies include mixed integer programming (MIP), superstructure-based modelling,
and others. In this chapter, the development of such techniques as related to Sargent’s ideas is discussed,
and a venation on how researchers came to realize the usability and helpfulness of those PSE methods
in energy systems research is given.

3.1. Development of Optimum Design and Synthesis

The venation on how Sargent’s original work in optimum design was gradually developed to
commonly-used methods in ESE nowadays is illustrated in Figure 1. Detailed description of the
relevant work is given in the following.

Professor Sargent was one of the first researchers to recognize the importance of optimization in
PSE. Although his article in 1967 [4] was the most well-known for this idea, Sargent had actually come
to it much earlier. In 1964, Sargent and Westerberg published an article describing their SPEED-UP
program for analysis and design of chemical processes [6]. The main topic of the article is about
decomposition techniques. However, it was mentioned that, at that time, design and optimization
were usually treated as two separate tasks, which meant that a feasible design of the system would
first be worked out, and then attempts would be made to change the parameters of the model for
better performance, and that in optimization, no published work had discussed modifying plant
structure to achieve optimum performance. Sargent and co-workers were attempting to develop a
program called SPEED-UP, which could automatically make the optimum design of chemical systems,
in which both the parameters and the structure would be modifiable. In the 1967 article [4], Sargent
expressed this idea in more details. He defined process design as the determination of the fixed
parameters for a process so that it meets the specifications as well as being optimum in some sense,
and the criterion for being optimum is to maximize (or minimize) an objective function. In addition,
he pointed out that it had become common practice to assume a fixed process flow diagram at the
outset of design, but with the development of the computer it was hoped that the process structure
could be decided automatically.

This idea was soon embodied in Sargent’s work. In 1969, Sargent and Murtagh described a
program for performance calculation of distillation columns [28], and they pointed out that the program
could be used in an integrated optimum design, forming an optimization problem where several
degrees of freedom, such as the number of plates and the positions of the feeds, are to be fixed to
minimize a specific objective function. This is a pioneering work in optimum design, and since it
became necessary to solve optimization problems, usually NLP problems, Sargent began to conduct
much research in this field. In 1969, Sargent and Murtagh developed the VMP method for solving NLP
problems [12] and further developed it in 1973 [13]. The VMP method was one of the first algorithms
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for NLP that could handle both linear and nonlinear constraints. However, when applied to large-scale
systems, it would show some shortcomings. Motivated by these deficiencies, in 1978, Murtagh and
Saunders developed an algorithm for solving large-scale NLP problems with linear constraints, and a
code was written based on it, which was now one of the widely used NLP solvers, MINOS [29].

Figure 1. The development of Sargent’s work in optimum design to methods used in energy systems
engineering (ESE).

For conventional design problems, the process flow diagram is fixed, and equations can be easily
written according to the diagram. However, in optimum design, the structure and thus the flow
diagram are modifiable, making it difficult for mathematical analysis. Drawing all functionally possible
configurations and writing corresponding sets of equations is certainly an effective way, but such a
combinatory problem requires too much effort and is of poor efficiency. Faced with this question,
Sargent and Gaminibandara proposed the superstructure representation of the system in 1976 [20].
For the design of a separation system with multiple distillation columns, they concluded all possible
configurations to one general system—superstructure, from which any particular configuration could
be obtained by deleting some of the components in the system. Such deletions could be done through
direct optimization of the superstructure, solving continuous NLP problems [30]. With Sargent’s idea
of superstructure, tedious combinatory problems were avoided, and the optimum design problem
could be solved using mathematical programming (MP).

In the meantime, research on the synthesis of heat exchanger network (HEN) emerged. HEN can
be defined as a heat recovery system consisting of a set of heat exchangers [31]. By suitable arrangement
of heat exchangers, the resulting HEN can have higher heat efficiency and make better use of thermal
energy, leading to reduced energy consumption and costs. Around 1970, energy price became higher
and higher, and thus researchers came to pay more attention to such a synthesis problem. The first
one to tackle this problem was Rudd, who in 1967 presented an article discussing process synthesis
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with an example about the synthesis of a system of heat exchangers [32]. In addition since the HEN
synthesis is for energy-saving purposes, Rudd’s work could also be regarded as the origin of ESE.
In the current view, there are mainly two kinds of methods for the HEN synthesis problem, one based
on thermodynamics and the other based on pure MP [33]. Rudd’s method [32] belongs to the latter,
in which he formulated the problem as an unconstrained optimization problem. At first, Sargent
did not pay much attention to this problem. However, his student Grossmann was obviously very
interested in it. As was shown in Sargent’s retrospect [34], Grossmann obtained his Ph.D. at Imperial
College in 1977, and during his doctoral research, he had involved Sargent in newer areas of the HEN
synthesis, batch scheduling, and integer programming. Their cooperative work on optimum design
of HEN was published in 1978 [35]. In addition, since Sargent had made great efforts in NLP-based
process design, it is not surprising that in this paper NLP optimization was performed to solve the
problem, which is a pioneering work in applying MP to the HEN synthesis. This work was also the
first step into the MINLP-based HEN synthesis, as discrete variables were introduced to determine the
configuration [36].

Since then Grossmann had been studying the solution of MINLP and its application. In 1979,
Sargent and Grossmann considered the design of sequential multiproduct batch plants and formulated
the problem as a mixed integer nonlinear programming (MINLP) one [37]. However, at that time
no efficient methods for MINLP existed, so they used the VMP method to solve a relaxed NLP
version of the problem, obtaining a practically satisfactory solution though it might be suboptimal
rather than exactly optimal. Since MINLP was difficult to solve, in 1980, Grossmann and Santibanez
suggested to reformulate those process synthesis problems as mixed integer linear programming
(MILP) problems [38]. In 1983, Papoulias and Grossmann did so to the HEN problem and used the
standard Branch & Bound (BB) technique to solve it [39].

The difficulty in MINLP has aroused much research interest. In 1986, Duran and Grossmann
proposed the outer-approximation (OA) algorithm for solving MINLP [40]. Their algorithm was
designed to solve MINLP problems in which integer variables are in linear form and the nonlinear
functions are convex. In addition, on problems of this kind, OA would perform better than generalized
benders decomposition (GBD) and BB, since it fully takes advantage of the problem structure.
The requirements of OA are often satisfied in process synthesis problems. However, OA cannot
explicitly handle nonlinear equality constraints. In the same year, Kocis and Grossmann developed
an equality-relaxation (OA/ER) algorithm that could handle such constraints as well as preserve the
advantages of OA [41]. In 1989, the two authors further wrote a computer code to implement OA/ER,
and showed that it could solve MINLP problems efficiently [42]. Their code, DICOPT, has become
one of the most commonly used solvers for MINLP nowadays. As efficient tools for MINLP had been
well developed, the process synthesis problems were no longer restricted to MILP forms. In 1990,
Grossmann reviewed the current MINLP strategies and algorithms, and illustrated their use in process
synthesis [43].

The superstructure representation proposed by Sargent is naturally a method to formulate design
problems as MINLP ones, since it covered all possible choices for equipment, pathways and others.
As a result, with the rapid development of MINLP methodologies, superstructure-based modelling
became more and more widely-known. Grossmann had made great contributions in spreading this
method. In 1983, Papoulias and Grossmann proposed a superstructure for process synthesis problems
of utility systems, which provide electricity, power and steam for the facilities in the plant [39]. What is
worth mentioning is that their superstructure is a more detailed one than the Sargent–Gaminibandara
superstructure [20], as the latter only included the possible configurations of the system, while theirs
included the configurations as well as the available types of the equipment. However, at that time
MINLP techniques were still immature, so the problem was in the form of MILP. In his 1990 paper [43],
Grossmann gave a clear scheme for solving process synthesis problems, providing a systematic way to
use superstructure representation and MINLP techniques in design problems. The scheme includes
three steps, i.e., one should first postulate a superstructure involving all the feasible alternatives,
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then model the superstructure as an MINLP problem, and finally solve the problem to obtain the
optimal design. Later this year, Yee et al. implemented this scheme in simultaneous synthesis of the
process and its HEN [21]. Their work was ground-breaking, as it was the first time process synthesis
problems were solved using superstructure-based MINLP modelling, showing the feasibility and
usefulness of this method. In addition more importantly, as the HEN synthesis is to a large extent an
energy problem, the work also showed the potential of this method in the field of ESE. After Sargent
and his co-workers introduced the state-task-network (STN) representation for batch scheduling in
1993 [21], and for synthesis of distillation systems in 1998 [22], Yeomans and Grossmann presented
a general framework of superstructure optimization in 1999 [44]. In their paper, two fundamental
representations of superstructure, STN and its complementary, state-equipment-network (SEN), were
given. Then they used generalized disjunctive programming (GDP) to model the superstructure, and
reformulated the GDP problem as an MILP problem, which could be steadily solved. This systematic
approach was widely adopted in Grossmann’s later research. Furthermore, the STN superstructure
representation proposed in this paper, combined with Grossmann’s systematic scheme for design
problems [43], became a commonly used method in ESE research. This method is especially useful in
energy generating systems, as the production process of energy products is naturally in such a form,
including states from feedstocks, intermediates to finals, and the technologies linking these states.
Typical application will be discussed in the following sections.

3.2. Development of Environmentally Conscious Process Design

Pollution minimization is also an important topic in the field of ESE. As people were more aware
of the importance of environmental protection and thus relevant regulations became stricter, the costs
of pollution treatment to comply with these regulations were increasing rapidly [45]. These costs
were so high that pollution prevention seemed to be a better way than pollution disposal. As many
researchers had shown, reduction in pollution can lead to cost savings, and thus bring an increase in
profits [46]. This led to a new objective in design problems, i.e., to minimize the wastes generated in
the process. Furthermore, since there was no appropriate way to convert the amount of pollution to
numerical values that were comparable with economic costs, it was infeasible to include pollution
and costs in one objective function. Thus, environmentally conscious process design problems were
inevitably multi-objective optimization problems.

Multi-objective optimization (MOO) was at first an economic problem, whose concept was
proposed by Pareto in 1896. Several decades later, it became a popular topic in engineering. Methods
for solving these problems were well developed, such as the ε-constrained method, which was proposed
by Haimes et al. in 1971 [47], and the parametric programming method. However, it was not until
1980s that MOO was implemented in chemical engineering [48]. Additionally, as is stated above, such
implementation could be attributed to the awareness of pollution reduction. One of the first attempts
to include environmental considerations in design problems by MOO is the work by Grossmann and
his co-workers in 1982 [49]. In their paper, the traditional optimal design framework was combined
with the newly introduced environmental factors. To be specific, the considered type of pollution
was the toxicity of the chemicals, and the two objectives were maximizing net present value (NPV)
and minimizing a toxicity index. The ε-constrained method was adopted to solve this MOO problem.
However, they only took into account the toxicity of material flows in the system, while ignoring
the environmental impacts that had already been made before these materials flew into the system.
This led to an unreasonable conclusion that the production of all intermediates should be carried out
by suppliers [45].

Such a problem can be avoided by the life cycle assessment, also known as life cycle analysis
(LCA), which is a methodology considering the environmental impact of a product in every stage of its
life cycle. The first paper using LCA as a tool for process design was published in 1995 by Stefanis et
al. [50]. They presented a method for minimizing environmental impact (MEI), which took advantage
of LCA to give a systematic quantification of the wastes generated. Contrary to conventional design
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problems that only considered energy generation processes, in this method, the system boundary was
expanded to include energy generation processes as well as raw material extraction processes, so that
the pollution produced in the latter would not be neglected. Moreover through a case study, they found
that minimizing pollution within the expanded system boundary led to lower operation costs than
those obtained by minimizing pollution within the conventional boundary, which showed that LCA
was a potentially useful tool in optimal design. One year later, Stefanis et al. applied this method of
MEI in solvent design and reaction path synthesis problems [51]. This time they posed the problem in
MOO, with a performance indicator and several environmental indices as the set of objective functions.
In 1997, they extended this method to the optimal design and scheduling of batch processes, and
similarly, formulated the problem as a MOO problem with economic costs and environmental criteria
as two objectives [52]. The ε-constrained method was used to solve such problems, resulting in Pareto
curves based on which compromise solutions could be obtained. Motivated by these researches, in
1999, Azapagic and Clift reviewed the application of LCA in process optimization [53]. In this article,
they gave a formal definition of LCA and showed that MOO coupled with LCA could provide a
powerful tool for balancing economic and environmental performance of a process from cradle to crave.
Since then, MOO and LCA had become two common methodologies used for environmental problems
in the field of ESE. These years, some software has also been developed to perform MOO and LCA in
environmentally conscious process design, such as SustainPro [54] and LCSoft [55], both developed by
Gani and co-workers. Although such software is still novel, it is believed that they will be put into
wide use in the near future, bringing convenience to the implementation of sustainable design.

3.3. Other Techniques

Sargent has also made great contributions in many other fields of PSE, such as optimization under
uncertainty, solution of NAEs and DAEs, optimal control, and others. In this part, his work on the
former problems, which has been developed by later researchers to create widely-known algorithms or
software nowadays, is given a detailed discussion.

When planning for a long future period, it is likely that changes will happen in the environment
of the system. For example, the situation of the market might change for the better. Revolutions
might happen in existing technologies. Such uncertainties should be involved in optimization, leading
to a new field—optimization under uncertainty. One preferable approach to perform optimization
under uncertainty is stochastic programming. In addition, Sargent was one of the first to propose a
method of this kind. In 1978, Grossmann and Sargent proposed an efficient method for NLP problems
with uncertain parameters [19]. In their work, the uncertainty was expressed by a bounded range of
values of the parameters, and the objective of their method was to design the plants that could meet
the specifications over such bounds, while obtaining the optimum value of a weighted cost function.
Their model was a two-stage stochastic programming model, and the requirement that the process
should be feasible under all possible realizations of the uncertain parameters was essentially the idea
of robust optimization. In 1982, Halemane and Grossmann gave a new mathematical formulation of
Sargent and Grossmann’s strategy so that the feasible operation under all possible situations could
be rigorously ensured [56]. In 1985, Swaney and Grossmann considered another method to take into
account uncertainty in their paper [57], in which an index of flexibility was proposed. Based on this
work, in 1993, Straub and Grossmann proposed a method to maximize the stochastic flexibility [58].
Moreover, in this work, the uncertainty considered was in the form of probability distribution functions,
rather than specific bounds. In 1995, Ierapetritou et al. proposed a combined multiperiod/stochastic
programming formulation for optimization problems with uncertain parameters including both
deterministic (expressed in bounded ranges) and stochastic (expressed in probability distribution
functions) ones [59]. In the same year, Acevedo and Pistikopoulos gave several integration schemes for
the approximation of the expected profit, which could be used in Ierapetritou et al.’s framework to
find a trade-off between economic optimality and design flexibility [60]. These methods are widely
applied to optimization problems under uncertainty.
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Solution of systems of NAEs or DAEs is also a problem that frequently occurs in PSE research,
and Sargent has made great contributions to this area. In terms of solution of NAEs, Sargent had
presented a comprehensive article in 1980 [23], in which he discussed the existing solution methods
of NAEs, the methods for ensuring global convergence, and the decomposition techniques for large
problems. In addition, he also showed great interest in the way to facilitate the solution of NAEs
through automatic algebraic manipulation. This idea was later further developed, giving rise to
algorithms in the program developed by Sargent and his co-workers, SPEED-UP [3]. With regard to
DAEs, Sargent and his co-workers were the first to point out the need for solving DAEs in PSE [61].
Since then Sargent and co-workers have made much effort to study available solution methods of
DAEs [24] and to apply them to dynamic simulation of chemical processes [25]. Many of the algorithms
they had developed were also incorporated in SPEED-UP. Around 1988, many researchers that had
participated in the development of SPEED-UP started to design a new software, which is now one of
the most frequently-used tools for process simulation, gPROMS [62]. This software is used in a large
number of ESE studies, especially in modelling of energy-related devices. Typical applications include
Kikkinides et al.’s work on hydrogen storage tanks [63], Kouramas and Pistikopoulos’s work on wind
turbines [64], and others. There are also many other useful tools for dynamic simulation. In 1988,
Cameron and Gani developed an adaptive Runge–Kutta algorithm for solution of ordinary differential
equation systems [65]. This algorithm was incorporated in an equation-oriented dynamic simulator,
DYNSIM, developed by Sorensen and co-workers in 1990 [66]. Later Gani et al. applied this software
to solve simulation problems in the design and analysis of chemical processes [67].

3.4. Typical Work in ESE

In the above paragraphs, the development history of ESE has been combed, especially on how
researchers came to apply PSE methods, including superstructure, MIP, LCA, MOO, optimization
under uncertainty, and others, to dealing with energy and environmental problems. In this part,
typical work in ESE will be listed. The work to be mentioned is only a little portion of the numerous
volumes of ESE research, but it is possible to see from it the wide application of those methods that
was developed from Sargent’s work or thoughts.

As mentioned above, energy problems and environmental problems are the two main questions in
the field of ESE. These two kinds of problems are not separate problems. As many studies have already
shown, the increase in energy efficiency has important impacts on the decrease in environmental
pollution. As a result, the application of methods that can improve energy efficiency is paid much
attention to.

One way to improve energy efficiency is to adopt co-generation. For processes that share the
same intermediates, such as liquid fuel synthesis and combined cycle power generation, co-production
can be made to achieve higher efficiency, which is the concept of polygeneration energy systems.
In 2007, Liu et al. built a model for strategic decisions in the development progress of a polygeneration
energy system [68]. The model was presented in a superstructure method, and the problem was first
formulated as an MINLP one, while linearization techniques were adopted to convert it into an MILP
one which could be solved more efficiently. The model was used to analyze the investment planning
of polygeneration energy systems co-producing methanol and electricity in China between 2010 and
2035. In addition, it was shown that polygeneration technologies were indeed superior to stand-alone
technologies. In 2009, based on the previous work, Liu et al. further studied the design optimization
of polygeneration energy systems [69]. The problem was formulated as a superstructure-based
non-convex MINLP problem. Moreover, the model was used for detailed analysis of a polygeneration
plant for electricity and methanol. In 2010, Liu et al. presented a framework for optimal design
of polygeneration energy systems under uncertainty [70]. They incorporated uncertainty in their
previous model, leading to a two-stage stochastic programming program, which was then converted
to a large-scale multiperiod MINLP problem through a decomposition-based strategy. A case study
was conducted, in which uncertainty in the price of coal and the price and demand of methanol and
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electricity was considered. In 2011, Liu et al. studied the strategic planning of polygeneration energy
systems in the supply chain level and conducted a case study for the UK [71].

In power generation, some energy will be inevitably discarded as waste heat. Combined heat
and power (CHP) system is a system that co-generates electricity and heat so that a portion of waste
heat can be used for heat supply, thus leading to higher energy efficiency. Further development of
CHP systems led to combined cooling, heat and power (CCHP) systems, which use the waste energy
not only for heat supply, but also as the driving power for refrigerators to produce cooling. Since the
produced heat or cooling cannot be transported for a long distance, CHP or CCHP systems are usually
distributed energy systems (DES), with the consumption of energy close to the production. In 2007,
Arcuri et al. studied the optimal design of the CCHP system in a hospital complex by performing MILP
optimization [72]. Their model was rather simple, in which only the energy provided by fuel was
taken into account. In 2010, Liu et al. used the ESE framework to deal with the optimal design of DES
in a supermarket [73]. In their model, fuel as well as other available energy sources were considered,
including wind, solar and biomass energy. In 2013, Zhou et al. proposed an even more elaborate model,
including six types of energy resources and twenty types of equipment [74]. Their model was used for
optimal design of DES for a hypothetic hotel in Beijing, and it was shown that the system described
by their model did better than centralized systems and traditional, simpler CCHP systems. In 2013,
Kopanos et al. considered uncertainty in the scheduling of household CHP (or called micro-CHP)
systems, and used parametric programming methods for solution [75].

The use of clean energy, such as hydrogen, is also given serious attention to. Since hydrogen was
a novel kind of energy, its whole supply chain was to be designed. In 2005, Hugo et al. performed
superstructure-based multi-objective MILP to study the optimal design of hydrogen infrastructure [76].
In every stage of the infrastructure, including production, transmission, storage and others, various
technological options were considered. Greenhouse gas (GHG) emissions were evaluated using
LCA, and MOO was solved to find the set of optimal trade-off solutions between investment and
environmental pollution. In 2008, Li et al. extended this model for application to case studies in
China [77]. Due to high transportation costs of hydrogen, they put emphasis on methanol pathway,
which means methanol was to be produced and delivered as an alternative energy carrier, and hydrogen
would be produced onsite from it. They found that methanol pathway had great potential for future
Chinese hydrogen economy. In 2018, Ogumerem et al. developed a model similar to that of Hugo
et al. [76], and deployed it for a case study in the state of Texas [78]. A creative point of their work
was that they considered the possibility to collect and sell oxygen as a source of revenue, which was
a by-product from electrolysis. They found that the processing of oxygen for selling could make
electrolysis a more economically viable choice for hydrogen production.

Improvement in technology will inevitably lead to the need to construct new power plants and
decommission old ones. The scheduling of such tasks has received wide attention. In 2012, Zhang et al.
studied the planning of China’s power sector with consideration of carbon dioxide (CO2) emission [79].
In their research, renewable energy was paid much attention to, and plants with application of
integrated gasification combined cycle plants (IGCC) or carbon dioxide capture and sequestration
(CCS) were considered. CO2 mitigation was considered by incorporating CO2 emission costs in the
objective function, and the problem was solved through single objective optimization. One year
later, Zhang et al. further studied the problem under uncertainty using the levelized optimization
method [80]. However, in Zhang et al.’s research, the power system of China was considered as a
whole, in which energy transmission was neglected. However, in reality, the transmission losses could
lead to very high costs, especially when serious mismatches happened among the distribution of
power generation and power demand. In 2014, Koltsaklis et al. developed a spatial MILP model for
optimal planning of Greek’s power system [81]. The whole Greek was divided into five geographical
zones, and energy transmission and resource transportation among zones were taken into account.
In 2015, Cheng et al. also developed a multi-regional planning model for China’s power system [82],
in which China was modelled as 10 regions. Additionally, as was in Zhang et al.’s research [79,80],
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their research featured the consideration of renewable energy as well as application of IGCC and CCS.
Guo et al. further considered the transmission capacity between regions [83]. They also further divided
China into seventeen regions [84]. Furthermore, in previous research electricity supply and demand
were balanced on a yearly basis, while Guo et al. sub-divided one year into several time blocks so that
variations in the availability of various energy resources could be considered [85].

The operation or scheduling problems of existing plants can also be tackled using MIP optimization.
However, when developing the model of the plant, it is necessary to determine the design variables
from the plant’s measurement data, and since given data are usually not satisfactory, data reconciliation
techniques are usually adopted to improve their accuracy. One of the earliest works to use data
reconciliation for modelling was conducted by Papalexandri et al. in 1996. They applied data
reconciliation methods to the modeling of a steam production network, and performed multi-period
MINLP optimization based on this model to get optimal operating schemes of the network under
various demands. Such technologies are also widely studied and applied in ESE research. In 2014,
Jiang et al. used the data reconciliation method for gross error detection in a real-life coal-fired power
plant [86]. In 2016, Guo et al. proposed an inequality constrained nonlinear data reconciliation
framework, applied it in real-life power plants, and found that their approach could lead to more
accurate operational data and better estimates of parameters than the equality constrained approach [87].
In 2017, Li et al. [88] adopted Guo et al.’s data reconciliation method [87] to preprocess the operating
data of a thermal power unit under various working conditions, and thus developed a mathematical
model for the unit, after which operation optimization was performed.

4. Process Systems Engineering in China

The development of PSE in China can be generally divided into three periods. From 1973 to
1980, the discipline was introduced into China, and much fundamental research was conducted.
In early and middle 1980s, people came to pay more attention to this field, and began to explore more
fields such as process synthesis. Since the late 1980s, Chinese researchers have strengthened their
communication with researchers all over the world. In addition, Sargent’s idea of superstructure and
NLP/MIP optimization has begun to be embodied in Chinese research. Some important events in the
development of PSE in China are illustrated in Figure 2.

Figure 2. Important event in the development of process systems engineering (PSE) in China.
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4.1. Before and In 1970s: Origin of PSE in China

From an international perspective, process systems engineering (PSE) can be traced back to 1959,
when Williams delivered his lecture at the University of Texas with the title, “Systems Engineering
for the Process Industries” [89], marking the beginning of the application of systems engineering to
chemical engineering. In 1963, the exact term “process systems engineering” first appeared, as the
title of the CEP Symposium Series Volume 59 [90]. The first textbook in PSE was “Strategy of Process
Engineering” by Rudd and Watson in 1968 [91]. Next year, Japanese scientists Yagi and Nishimura
published another book, “chemical process engineering” [92]. These two earliest textbooks had a
significant impact on the spread of PSE, and their appearance could be regarded as the beginning of
PSE as a discipline.

China was also amongst the earliest communities to recognize the PSE discipline. In 1973, the
Research Institute of Petroleum Processing of Ministry of Fuel and Chemical Industries published the
paper “Mathematical Simulation of Chemical Engineering Processes—A Brief Introduction of Process
Systems Engineering Methodology” on the Conference on Computer Applications in Chemical Refining
held in Lanzhou, China [93,94]. In the first paragraph of this paper, it was stated that, mathematical
simulation of chemical processes was a rapidly developing method which had already shown great
impacts on the industry, for which a new discipline had been formed, which was called “process
systems engineering” in western countries. This article marked the point at which PSE was first
introduced to China. Furthermore, the main focus of this paper is the concept, method and application
of mathematical simulation to the analysis of chemical processes. Though problems in optimal design
and optimal control were touched upon, they were not paid much attention to. In addition, the content
about optimal design in this article was mostly from the two early textbooks in PSE [91,92], while
Sargent’s ideas were barely recognized. As a result, in the first few years after PSE was introduced in
China, Chinese researchers were mainly conducting research in the field of process simulation, while
little work in optimal design had been done, not to mention recognizing the importance of Sargent’s
work and thoughts in this field.

In reality, before 1973, a few companies had already been contacting PSE theories from abroad,
compiling internal documentation. However, it was since 1973 that PSE gradually became well-known
among Chinese universities and companies, in which researchers started to pay attention to the
field of PSE. In the 1970s, much work had been done. Chinese researchers introduced advanced
process flowsheeting systems from foreign countries and reviewed the development of PSE theories.
For example, the research institute of Nanjing Chemical Industries Company introduced the GIPS
synthetic ammonia simulation system from Denmark [93]. Li reviewed the methods for synthesis
of heat exchanger networks [95]. Creative work had also been conducted in both application and
theoretical areas. The designing institute of Lanzhou Chemical Industries Company invented the
process flowsheeting system for petroleum gas compression separation, which is the first chemical
process flowsheeting system independently developed by China [96]. Researchers from Shanghai
Research Institute of Chemical Industry and East China Institute of Chemical Engineering (now
named East China University of Science and Technology) cooperated to apply the theory of PSE to
the simulation and analysis of combined production of synthetic ammonia and urea [97]. Chen and
Chen conducted research in process decomposition, studying the criterion of optimal tearing [98].
The country was putting more and more emphasis on this discipline. In 1979, receiving the commission
from Bureau of Science and Technology of Ministry of Chemical Industry, Tsinghua University held
the first “chemical systems engineering course”, and compiled the first Chinese textbook in PSE [99].
This decade witnessed the introduction of PSE in China and its application in Chinese industry.
However, during this period, consensus understanding on this new discipline was not reached. In the
1978–1985 development layout for chemical engineering, PSE was placed as a subtitle under “chemical
engineering dynamics and optimal process control” [93], which showed that the importance of PSE
had still not been fully recognized in China.
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Furthermore, in terms of Sargent’s impact, although his research on optimal design was barely
recognized, his work in other fields was gradually inspiring Chinese researchers. A typical example was
Chen and Chen’s research in process decomposition in 1979 [98]. In the field of system decomposition,
one of the first research results is Sargent and Westerberg’s tearing method based on dynamic
programming, which was proposed in 1964 [6]. However, their method had the deficiency that it
aimed at breaking the recycle streams with the minimum number of variables, but as some variables
might have poorer convergence properties than others, such an approach didn’t necessarily result in a
minimum iteration time. Motivated by such shortcomings, in 1975, Upadhye and Grens developed a
method for selecting the set of torn streams that could lead to a minimum number of iterations [100].
They found that multi-tearing a stream would lead to degradation of the convergence rate, so their
method aimed to minimize the number of tearing that was made. Chen and Chen carefully studied
this criterion and thought that it didn’t take into account the convergence properties of the loops.
They formulated a generalized expression of the eigen-polynomial of the iteration equations, and
derived a new criterion for optimal tearing. They found that Upadhye and Gren’s criterion was only
a special case of their criterion. Later in 1983, Zhang et al. adopted their method to propose a new
plate-to-plate method for calculating distillation processes [101].

4.2. In 1980s: Rapid Development of PSE in China

The 1980s saw the rapid development of PSE in China. Chinese universities began to set up
courses on PSE, and pioneer institutes such as Tsinghua University and Tianjin University, founded
their teaching and research group on PSE [102]. The first generation of Chinese PSE experts made
great efforts to enlighten students on this subject. Famous textbooks, such as Yagi and Nishimura’s
“Chemical Process Engineering” [92] and Takamatsu’s “Chemical Process Systems Engineering” [103], were
translated into Chinese. Various textbooks compiled by Chinese researchers were also published, such
as Zhang’s “Process Systems Engineering” [104] and Yang’s “Practical Process Systems Engineering” [105].

Before 1980, the research on PSE in China was mainly about the simulation of chemical processes.
Since 1980, Chinese researchers had paid attention to new problems, such as process synthesis. As in
western countries, the earliest studies in this field dealt with the synthesis problem of HEN. The first
work in China was made in 1977 by researchers from Institute of Computing Technology of Chinese
Academy of Sciences and Technical Laboratory of Design Institute of Beijing General Petrochemical
Plant [106]. As mentioned above, there were generally two types of methods for the HEN synthesis,
one using pure MP, another based on thermodynamics. Their work belongs to the former, in which
they put the problem into an assignment problem, which was a special case of MILP, and solved it
using Munkres assignment algorithm. In 1980s, Chen et al. conducted another pioneering study in
the HEN synthesis [107]. They adopted a method based on thermodynamics, instead of MILP-based
methods as in the previous work [106], which was because they thought that using MP to solve
this problem required complicated computation and could be very different from reality. A worth
mentioning point is that, since China put much emphasis on energy saving, Chen et al. formulated
the problem as a multi-objective one, using energy consumption and equipment investment as two
objectives, so that the weight on energy consumption could be adjusted according to China’s energy
policies. However, at that time, when foreign researchers studied this problem, they usually just added
together the costs of energy and the investment on equipment to obtain a total cost which was to be
minimized, which meant that they put equal weight on energy and other costs. Back to Chen et al.’s
work, they used the linear combination method, i.e., adding the two objective functions together with
respective weighting factors. However, this aggregate objective function was not to be minimized
directly. According to thermodynamic analysis, they required that heat flows and cold flows should
exchange their heat in a countercurrent way. So under any specific value of energy consumption, they
designed the optimal structure of HEN based on this requirement, and calculated the corresponding
value of the objective function. Then they changed the value of energy consumption, designed the
structure and calculated the function value time and again, until they found the minimum objective
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function value. In their method, the optimization problem was not solved on a mathematical basis, but
through making thermodynamic analyses in trial and error. Two years later, Chen et al. further studied
this problem, and this time they required low sensibility of the HEN [108]. As in the earlier research,
the problem was a multi-objective one, and requirements based on thermodynamics were put forward.
Furthermore, to achieve low sensibility, they concluded some empirical requirements from several
examples, and added them to the original thermodynamic ones. Then the design process could be
done in a similar way. Their research was applied to improve the HEN structures of oil refining plants
in China. Meanwhile, as problems were usually formulated as MOO ones in China, strategies for
solving these problems were studied. Shen et al. discussed the MOO methods, which could be used in
optimal scheduling of oil refining plants [109]. In this problem, the two objectives were maximizing
profits and minimizing energy consumption. Motivated by various deficiencies in traditional methods
for MOO, Shen et al. proposed a new method, in which they used two parameters to represent the
difference between the energy consumption or the profit under any feasible solution and the minimum
energy consumption or the maximum profit. The sum of the two parameters was the final objective
function, and its value closer to zero, the system closer to the optimum. This method was later used in
a computer software designed for optimal management of oil refining plants.

As mentioned above, during this period Sargent was also conducting much research in process
synthesis. Grossmann and his work in 1978 [35] had already taken the first step into MINLP-based
process synthesis, in which both the structure and the parameters could be decided through one pure
MP problem, though computational techniques were still immature for solution. However, in China,
such methods were regarded as impractical, and thus didn’t receive much attention. Actually, it was
not until Grossmann and his co-workers successfully solved process synthesis problems using MIP
that Chinese researchers started to lay emphasis on MP-based design, which will be discussed in the
following section.

4.3. Since Late-1980s: Sargent’s Ideas Integrated into Development of PSE in China

Since 1980, a large number of international conferences had been held, strengthening the
communication between researchers from different countries. In 1982, the first International Symposia
on PSE was held in Kyoto, Japan. From then on it was held every three years. In addition, it was
recorded that one of the pioneering institute in China PSE, Tsinghua University, began to attend this
series of conferences in 1988, when the 3rd International Symposia on PSE was held. Furthermore,
through a literature search, which might be not that sufficient, it seemed that the first cooperative
work by Chinese and foreign researchers is that published in 1986 by Chen and Westerberg [110].
As a result, although it is hard to identify the exact point at which Chinese researchers began to
have extensive contact with foreign researchers, the approximate time should be in middle or late
1980s. Back to Chen and Westerberg’s paper, they studied the structural flexibility of heat integrated
distillation processes. Flexibility is the property that the system be able to work properly when
variations in parameters occur. As in the article by Grossmann et al. in 1987 [111], one way to introduce
flexibility is to design the process for a number of different operating conditions, for which a pioneering
work was done by Grossmann and Sargent in 1979 [37], or to design under uncertainty, which was
explored by Grossmann and Sargent in 1978 [19]. Another way is to derive an index of flexibility,
such as in Swaney and Grossmann’s work in 1985 [57], and this idea served as the motivation for
Chen and Westerberg’s research. More importantly, Papoulias and Grossmann’s success in using
superstructure-based mixed-integer optimization in the design of utility systems [39] inspired Chinese
researchers to pay more attention to MP methods for optimal design. In 1988, researchers in Tsinghua
University combined such MP-based methods with the thermodynamic method they had developed
before, and managed to apply it to the optimization of the operation of Jinxi Oil Refining Plant [99].
Under the above facts, it is reasonable to say that the integration of Sargent’s idea of optimal design
into China PSE research did occur in late 1980s.
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With more and more successful application of PSE in industry, the importance of this discipline
became widely recognized in China. In 1991, affiliated to the Systems Engineering Society of China,
the Process Systems Engineering Committee was established, which greatly strengthened exchanges in
China and cooperation between Chinese and foreign researchers [112]. Since the beginning of the 1990s
decade, Sargent’s work had affected Chinese researchers much, embodied in the fact that the methods
derived from his ideas began to be widely adopted and developed. In process design, Sargent was one
of the first to recognize the importance of optimization in process engineering, and he had conducted
significant work on NLP and superstructure. This research was further developed by his descendants,
giving rise to systematic process synthesis methods combining superstructure-based modelling with
NLP/MIP optimization. Such technologies were widely applied in China. One traditional as well as
popular problem in process design is the synthesis of HEN. Chinese researchers have made great
efforts for more efficient and reliable solution of such problems. In 1995, Yin et al. proposed a
superstructure-based MINLP model, through which multiple objectives could be optimized, such as
utility cost, exchanger areas and number of units [113]. In 1999, Wang et al. [114] proposed a new
superstructure-based MINLP model for synthesis of large-scale HEN without stream splitting, and
adopted the improved genetic algorithm (GA) they developed earlier [115] for solution. In 2000, Li et al.
formed a superstructure representation of HEN with stream splitting based on expert systems and
presented the corresponding MINLP model [116]. In 2004, Wei et al. proposed a hybrid method of
GA and simulated annealing algorithm (SA) to solve the MINLP problem in the HEN synthesis [117].
In 2008, Ma et al. [118] used the MINLP model for multi-period synthesis of multi-stream HEN and
adopted the GA/SA algorithm developed by Wei et al. [117] for solution. In 2015, Peng et al. developed
a two-level method for simultaneous HEN synthesis using SA mechanism [119].

Similar methods can also be found in research on design of chemical processes or their operating
units. In 1995, Wang et al. studied the optimization of operation for multipurpose batch chemical
plants with multiple production routes. In their work, a MILP model for production plan was
proposed [120]. In 2011, Jiao et al. presented a multi-objective superstructure-based model for design of
hydrogen network in refineries [121]. In 2012, Jin et al. proposed a double-level optimization method
for superstructure-based synthesis of reactor network composed of continuous stirred-tank reactors
and plug flow reactors [122]. In 2017, Cui et al. developed a superstructure of 4-column methanol
distillation systems (MDSs), based on which they performed simultaneous MINLP optimization
for the system as well as its HEN and work exchanger network (WEN) [123]. Qian et al. used
superstructure and NLP to deal with the synthesis of a reactor system composed of rotating packed
bed reactors and traditional packed bed reactors, and demonstrated their method through a case
study on the desulfurization process for crack gas in refineries [124]. In 2018, Zhang et al. proposed a
method combining superstructure-based modelling and the GDP optimization method, developed by
Grossmann and co-workers [44], for design of reaction and separation processes [125]. In addition,
they applied the method to two important chemical industrial processes—cyclohexane oxidation
process and benzene chlorination process. Furthermore, the idea of superstructure and MIP is also
embodied in other fields, such as biology, pharmacy and others. In 2000, Hou et al. performed NLP
optimization for the leaching process of angelica, showing that a 20% increase in profit could be
achieved [126]. The authors commented that PSE methodology was useful in herb leaching processes,
encouraging the modernization of traditional Chinese medicine production. In 2015, Du et al. adopted
superstructure-based MINLP optimization for optimal synthesis of reverse osmosis networks with split
partial second pass design for seawater desalination [127]. In 2016, Yan et al. proposed a superstructure
representation of biomass to biomethane system through digestion and formed a multi-objective
MINLP problem, which was solved using the nondominated sorting genetic algorithm (NSGA-II) [128].
Additionally, they concluded that the superstructure optimization method they proposed could be a
useful tool for improving the performance of biomethane production process.

Moreover, ESE was also developing fast. As is mentioned above, as soon as PSE was introduced
into China, Chinese researchers began to use its methodology to solve problems considering the costs
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(or profits) as well as the energy consumption of the system. As a result, the origin of China ESE was
almost at the same time of the origin of China PSE. Since 1980, much research had been done on the
modelling of energy systems in the scope of plants, districts and the whole country, amongst which
many of the results were used for making energy policies [129]. For example, Li et al. proposed a
combined approach of thermodynamic analysis and MILP for optimal design of steam-power energy
system in 1992 [130]. They set up the superstructure of system by thermodynamic rules, formulated
the problem as MILP one, and solved it using the BB method. Since the concept of ESE was formally
proposed in 2007 [26], Chinese researchers have made significant contributions in this field, conducting
a great amount of pioneering work to apply the systematic methodology from PSE to the research
of various energy systems. Typical work in polygeneration energy systems [68–71], CHP/CCHP
systems [73,74], hydrogen infrastructure [77], power systems [79–85] and data reconciliation [86–88]
has already been mentioned in Section 3.4.

5. Industrial Applications of PSE and ESE Methods

The PSE and ESE methods mentioned above have also been widely applied to the chemical industry
and led to significant economic and environmental contributions. In this part, some representative
industrial practices are presented, showing the feasibility and helpfulness of PSE and ESE theories in
real-life industries.

As is mentioned above, Sargent’s work has led to tools that are widely used in the industry.
Based on Sargent’s work on NLP/MIP optimization, researchers developed the NLP solver, MINOS [29],
and the MINLP solver, DICOPT [42], both of which can now be founded in GAMS. In addition, Sargent
and his co-workers in Imperial College developed the SPEED-UP software, in which many algorithms
they had proposed were incorporated, such as the decomposition techniques and the solution methods
for DAEs. Many of these developers later participated in the research and development of gPROMS [62].
In addition, they founded PSE Limited with gPROMS as a major product. gPROMS is undoubtedly a
huge success, which is used for design and optimization tasks in a large number of universities and
companies all over the world [131].

In addition to those commercialized packages, some theoretical methodologies, which were
originally proposed in academic research, have been popularized and applied in real-life projects.
In 1996, Siirola [132] pointed out that the systematic process synthesis technologies, such as the
superstructure-based MIP approach developed by Sargent, Grossmann and others and the pinch
analysis method proposed by Linnhoff and colleagues, had been put into industrial practice and
achieved great success. Typically, the application of these technologies could lead to a 50% saving of
energy and a 35% reduction in costs. In their paper in 2003, Dunn and El-Halwagi also presented many
industrial applications of those process synthesis methods, including projects on energy conservation,
optimization of utility systems, and others [133].

Applications of PSE and ESE methods in China have also achieved great success. In 2008,
Gao et al. proposed a hybrid MOO method combining SQP and NSGA-II for the periodic operation of
the naphtha pyrolysis process [134]. Their algorithm was incorporated in a new software for simulation
and optimization of ethylene cracking furnace, which was developed by researchers from Tsinghua
University, PetroChina Research Institute of Petrochemical Technology and Lanzhou Petrochemical
Company. This software, EPSOS, was used in a 240 kt/a ethylene plant of the Lanzhou Petrochemical
Company and resulted in a 1.08% increase in production [135]. According to Wang’s paper in 2009 [136],
petrochemical companies in China have been positively applying PSE technologies, including modern
control, process synthesis and others, to the restructuring of the plants and facilities and have made
great progress. From 2005 to 2009, the two leading petrochemical enterprises in China, Sinopec and
PetroChina, had on average achieved a 12.5% reduction in the energy consumption of their oil refining
processes. In addition, Sinopec’s overall energy consumption had decreased by 15.4% in this period.
In the field of ESE, the monitoring and optimization methods for power units via data reconciliation,
developed by researchers from Tsinghua University [86–88], have been applied to several Chinese
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power plants, making contributions to their energy saving. Furthermore, much of the strategic research
on development strategies of China’s power sector has been incorporated into the National Energy
Development Strategy by 2030, whose effects will be seen with the restructuring of China’s energy
system in the future.

6. Conclusions

In his research career, Professor Sargent had made great contributions to the field of PSE, and his
work surely took a guiding role in the development of ESE and China PSE. Sargent is one of the first
to recognize the importance of optimization in process design. His attempts to apply optimization
in chemical engineering and to develop computational techniques for NLP problems, have led to a
combined superstructure representation and MIP modelling framework for design problems, which is
widely applied in ESE. With people becoming more conscious of environmental protection, pollution
minimization was regarded as an important objective by more researchers, giving rise to much work
on MOO and LCA, which are now common methods in ESE research. Sargent and co-workers’ work
in other fields, such as optimization under uncertainty and solution of DAEs and NAEs, have also led
to useful algorithms and software that are frequently adopted in the field of ESE.

The beginning of the discipline of PSE in China was not much later than that in other countries.
However, during the initial period, Sargent’s idea of optimal design did not receive much attention in
China. In early research on HEN synthesis problems, Chinese researchers preferred thermodynamic
methods, while regarding MP methods as infeasible. However, Sargent’s work in other aspects was
gradually inspiring Chinese researchers, such as in system decomposition. It was in late 1980s that
Sargent’s ideas became integrated to China PSE research. Since then, methods developed under his
leadership have been widely studied and applied in the industry. Chinese researchers also paid much
attention to the field of ESE, resulting in advanced achievements.

Looking forward to the future, the pioneering concepts and methodological contributions of
Sargent are still inspiring new research directions. Taking energy systems for instance, operation at a
more intermittent mode, in a much wider range, and with more severe pollutants and greenhouse-gas
emissions constraints, pose great challenges for design and operation of these systems. However,
increasing availability of operational data, improving data quality, and higher computational capability,
when integrated with mathematical programming, provide opportunities to tackle these challenges,
giving rise to a merging research direction of integrated mathematical programming and data analytics.
This fits well with the idea of using increasingly powerful mathematical and computational methods
to tackle unprecedented problems with process design and operation, originally proposed by Sargent
and developed by his co-workers and followers.
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Abstract: Due to increasingly stringent legal requirements and escalating environmental control costs,
chemical industries have paid close attention to sustainable development without compromising
their economic performance. Thus, chemical industries are in need of systematic tools to conduct
sustainability assessments of their process/plant design. In order to avoid making costly retrofits
at later stages, assessments during the preliminary design stage should be performed. In this
paper, a systematic framework is presented for chemical processes at the preliminary design stage.
Gross profit, Health Quotient Index (HQI), Inherent Safety Index (ISI) and the Waste Reduction (WAR)
algorithm are used to assess the economic performance, health, safety and environmental impact of
the process, respectively. The fuzzy optimization approach is used to analyse the trade-off among the
four aspects simultaneously, as they often conflict with each other. Deviation between the solution
obtained from mathematical optimization model and process simulator is determined to ensure the
validity of the model. To demonstrate the proposed framework, a case study on 1, 4-butanediol
production is presented.

Keywords: input-output model; fuzzy optimization; process synthesis; preliminary stage design

1. Introduction

Process design is a core element in the field of chemical engineering. It can be considered a
centre point, bringing together all chemical engineering components as a whole. Process design
is associated with creating processes or improving existing processes. An integral part of process
design is process synthesis. Process synthesis is defined as “the discrete decision-making activities of
conjecturing (1) which of the many available component parts one should use, and (2) how they should
be interconnected to structure the optimal solution to a given design problem.” [1]. The field of process
synthesis has seen significant developments since its inception in the 1960s led by the late Roger W.
H. Sargent [2]. Most notably, key pioneering contributions have been an integral part of establishing
what process synthesis is and what it entails. For instance, Nishida et al. [3] provided an important
overview of developments within the boundary of process synthesis and defined process synthesis
as “an act of determining the optimal interconnection of processing units as well as the optimal type
and design of the units within a process system”. Meanwhile, the Onion model [4] was proposed as a
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systematic overview and guide to process synthesis thinking. The Onion model emphasized that a
reactor is designed first followed by separation and recycle streams, heat recovery systems and utility
systems [4]. Foo and Ng [5] then extended the Onion model further by incorporating material recovery
and treatment systems (see Figure 1). On the other hand, Douglas’ model is another well-accepted
decision hierarchy approach that was proposed for process synthesis in the late 80s [6].

Figure 1. The extended Onion Model [5]. Reproduced with permission from Foo, D.C.Y.; Ng, D.K.S.,
Process Integration for Cleaner Process Design; In Handbook of Process Integration: Minimisation of
Energy and Water Use, Waste and Emissions; published by Elsevier Science, 2013.

To date, there has been a vast number of developed process synthesis methodologies.
Often, these methodologies pay close attention to the technical and economic performance of a
process design. Meanwhile, other aspects such as safety, occupational health and environmental
impacts are typically considered at the later/final stages of design [7,8]. However, several papers argue
that these aspects should be considered at the preliminary stage of process synthesis as the cost of
process improvement and operational risks can be significantly lowered compared to at the later stages
(detailed design) [9,10]. In this respect, several alternative methods for evaluating occupational health,
safety and environmental impacts have been presented.

In the area of safety evaluations, Edwards and Lawrence [11] developed the earliest method
for assessing inherent safety in a given process. This method is known as Prototype Index of Inherent
Safety (PIIS). PIIS ranks the inherent safety level of alternative chemical process routes based on main
reactions and parameters such as pressure, temperature, yield, heat of reaction, inventory, flammability,
toxicity and explosiveness. Despite considering the mentioned parameters, PIIS focuses solely on
the main reaction of a process and not the other parts of the process. In view of this, Heikkila [12]
proposed an alternative approach called the Inherent Safety Index (ISI). ISI considers the same factors as
in the PIIS along with additional ones such as corrosions, side reactions, and inventory for both inside
and outside the battery limits, types of equipment and process structure. Later, Palaniappan et al. [13]
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added a few supplementary indexes such as worst reaction index, overall chemical index and total
chemical index to the previously proposed ISI to form i-Safe.

Aside from safety, various methods have been developed to evaluate occupational health.
For example, Hassim and Edwards [14] developed Process Route Healthiness Index (PRHI) to rank the
process alternatives based on the potential of working activities and process conditions that may harm
workers. However, PRHI is not suitable for assessment in the preliminary design stage, as it requires
complete process information (e.g., points for manual handling etc.). In this respect, Hassim et al.
developed the Inherent Occupational Health Index (IOHI) [10], which is suitable for application at the
initial stage of the process research and development (R&D). This work was then extended to a more
detailed assessment called the Health Quotient Index (HQI), which uses detailed process information
available in the preliminary design stage [15]. HQI is able to rank the process alternatives based on
health risk values from the fugitive emissions and to calculate the risk of a given process.

Apart from occupational health, there are many well-established approaches reported in the
literature on environmental impact assessments. The Environmental Hazard Index (EHI) [16] and
Atmospheric Hazard Index (AHI) [17] are among the early methods that assess inherent environmental
performance of chemical process routes. Later, Gunasekera and Edwards [18] integrated EHI with
AHI into a new method which is known as Inherent Environmental Toxicity Hazard (IETH). IETH can
estimate the inherent environmental friendliness of a chemical plant in all media including air, soil and
aquatic due to total loss of contaminants. Cabezas et al. [19] then introduced the generalized Waste
Reduction (WAR) algorithm. This algorithm determines the total environmental impacts based on the
Potential Environmental Index (PEI) balance, which assigned environmental impact values to different
pollutants. Young and Cabezas [20] extended PEI balance to integrate the energy consumption of the
chemical process into the environmental evaluation. Similarly, Andiappan et al. [21] presented the
incremental environmental burden assessment (IEBA), which used the concept of economic potential
assessment method developed by Seider et al. [22] to determine the new environmental burden for
each process.

It is essential to note that the abovementioned evaluation methods focus only on assessing
the performance of a process design based on just one aspect (e.g., safety or occupational health
or environmental impact) and not addressing them simultaneously. In this respect, there have
been attempts to develop process synthesis approaches that address safety, occupational health and
environmental impacts simultaneously. For instance, Azapagic et al. [8] and Othman et al. [23] presented
sustainable assessment and design selection approaches that consider economic, environmental,
and social aspects. Besides, Al-Sharrah et al. [24] presented a multi-objective optimization model
which considers environmental impact, economic performance and operational risk simultaneously
for the petrochemical industry. Liew et al. [25] developed a systematic approach to the screening of
sustainable chemical reaction pathways at the research and development (R&D) stage. Based on the
proposed approach, fuzzy optimization is used to trade-off economic performance, health, safety and
environmental impact. Similarly, Ng et al. [26] presented a multi-objective process synthesis approach
which considered economic performance, health, safety and environmental impact for biorefineries.
Following this, a visualization tool called the Piper diagram was also proposed for considering economic,
safety and environmental aspects simultaneously [27]. However, due to its graphical nature, the Piper
diagram is unable to consider process optimization.

It is clear that the abovementioned work presents approaches to evaluate safety, occupational
health and environmental impacts at the preliminary stage of design. However, these approaches focus
on preliminary screening without considering operating conditions in a given process. The choice of
process operating conditions has a process direct impact on screening decisions and this should be
given closer attention. To address this, process simulators can be used to analyse operating conditions
for a given process. Process simulators can be used to represent chemical processes in terms of
mathematical models and solve them to attain insights on their performance [28]. Process simulation
is an essential and complementary task of process synthesis, as it predicts how a process design
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would behave under defined operating conditions [29,30]. Despite the benefits of process simulators,
they suffer from various limitations. For instance, simulators are limited to considering a single
objective (e.g., product yield or production rate) at a given run. This limitation disables simulators
from finding a trade-off between multiple aspects such as process economics, occupational health,
safety and environmental impacts for a given process design. In order to consider multiple aspects
simultaneously, multi-objective optimization is required.

As such, this paper presents a systematic framework which combines the benefits from both
process simulation and multi-objective optimization to address economic, environmental, health and
safety aspects simultaneously at the preliminary design stage. This paper is structured as follows:
First, a formal problem statement is given in Section 2. A systematic framework for preliminary process
design is presented in Section 3; To illustrate the proposed framework, a case study on the screening of
1,4-butanediol production processes is presented in Section 4; and the work is finally concluded in
Section 5.

2. Problem Statement

The problem addressed in this work is stated as follows; given a set of alternative processes k to
produce chemical product (in a given output stream) p. Each alternative process k has a set of unit
operation j with operating capacities, xj,k and a set of (output) stream p to or from unit operation j
represented by matrix ap,j,k. Alongside this, each alternative process k differs in economic performance,
health, safety and environment impacts. In this work, four objectives are considered for performing a
preliminary evaluation and screening of alternative process k. The economic performance is determined
based on the gross profit of alternative process k (GP). The health impacts of process alternative k are
evaluated using Health Quotient Index (HQI). Meanwhile, the safety and environmental impact of
each alternative process k are determined via Inherent Safety Index (ISI) and Potential Environmental
Index (WAR) respectively.

This work combines the advantages of process simulation, input-output modelling (IOM) and
fuzzy optimization to determine the trade-off between the GP, HQI, ISI and WAR objectives. In fuzzy
optimization, the degree of satisfaction (λk) is introduced to quantify the degree of satisfaction for four
objectives in each alternative process k. Following this, the alternative process k with the highest λk
will be selected. A detailed description of the proposed framework to address the stated problem is
presented in the following section.

3. Framework for Preliminary Process Design

Figure 2 presents the proposed framework for preliminary process design, which considers
economic performance, health, safety and environment impacts simultaneously. As shown,
the proposed framework begins by identifying the product i that is expected to be produced.
Next, alternative process k which produce product i is determined. In order to analyse the performance
of each alternative process k, process simulation tools (e.g., Aspen HYSYS, SuperPro Designer, PRO/II,
etc.) can be used to simulate the process. Based on the simulation results, process data such as mass
flow rates and energy requirements for each process unit j can be determined. These data are then
used to develop an input-output model for each process. Input-output model was presented by
Leontief [31,32] to analyse the relationship among the raw materials requirement, goods production
and the exchange of materials within different economic sectors. Tan et al. [33] extended the usage
of input-output model in life cycle assessment and ecological footprint analysis. Aviso et al. [34]
integrated the approach with optimization framework to analyse the eco-industrial supply chain
under a water footprint constraint. Recently, the input-output model has been used to describe the
material and energy balance of processes in a system [35]. Based on the approach [35], the optimal
operational adjustment in multi-functional energy systems in response to process inoperability can be
determined. Kasivisvanathan et al. [36] also used the input-output model with robust optimization for
process synthesis and design of multi-functional energy systems with uncertainties. Most recently,
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Foong et al. [37] extended the use of the input-output model for sustainable oil palm plantation
development. A detailed description on the procedure to develop an input-output model is presented
with an example in Andiappan et al. [38]. The input-output model for each alternative process k,
given as in Equation (1)

J∑
j=1

ap, j,kxj,k = yp,k∀p∀k (1)

k 
p

k

xj,k

p

k xj,k

END

START

 
Figure 2. Systematic design framework for preliminary process design.

In Equation (1), ap,j,k represents the matrix of input or output mass flow rate of stream p to/from
unit operation j in process k. xj,k represents the capacity or size of the unit operation j in process k and
yp,k is the net output of stream p in process k. A positive value of yp,k indicates that it is an output
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stream which is either product or effluent stream whereas a negative value indicates that it is an input
stream and a value of zero denotes that it is an intermediate stream.

Meanwhile, the lower and upper limits of the capacity of unit operation j in process k are presented
in Equation (2):

xL
j,k ≤ xj,k ≤ xU

j,k∀ j∀k (2)

In addition to Equations (1) and (2), the economic, environmental, health and safety impact
for each process k is determined. Firstly, in this work, economic performance for each process k is
measured via gross profit as shown in Equation (3):

GPk =

⎛⎜⎜⎜⎜⎜⎜⎝
P∑

p=1

yProd
p,k CProd

p,k +
P∑

p=1

yRaw
p,k CRaw

p,k

⎞⎟⎟⎟⎟⎟⎟⎠AOTk∀k (3)

where yProd
p,k and yRaw

p,k are the mass flow rate of the products and raw materials in process k respectively;

CProd
p,k and CRaw

p,k are the product price and cost of raw materials in process k respectively; AOTk is

the annual operating time for process k. Note that yRaw
p,k is obtained from the input-output model

as a negative value. This is because it is an input stream into the system, as stated previously in
Equation (1).

On the other hand, the environmental impact of each process k is also evaluated. For this work,
the WAR algorithm is adapted to evaluate the environmental impact because it can determine the
average possible impact of a chemical process on the environment, based on environmental impact
values of different pollutants and their respective mass flows. According to the WAR algorithm,
the total environmental impact generated by process k, WARk can be expressed as in Equation (4)
as follows.

WARk = i(cp), out
k + i(cp), in

k + i(ep), out
k ∀k (4)

where i(cp),in
k and i(cp),out

k are the input and output rates of impact in the process k, i(ep),out
k is the

power consumption for process k. The value of i(cp),out
k , i(cp),in

k and i(ep),out
k are determined through

Equations (5)–(9) respectively:

i(cp),out
k =

I∑
i=1

yOut
i,k

A∑
a=1

J∑
j=1

wa, j,kPEIa∀k (5)

i(cp),in
k =

I∑
i=1

yIn
i,k

A∑
a=1

J∑
j=1

wa, j,kPEIa∀k (6)

i(ep),out
k =

I∑
i=1

−yElec
i,k PEIElec∀k (7)

PEIa =
L∑

l=1

αlPEIa,l∀k (8)

PEIElec =
L∑

l=1

αlPEIElec
l ∀k (9)

where yElec
i,k is the power consumption of process k; PEIa and PEIElec are the score of the potential

environmental impact of chemical component a and electricity respectively; αl is the weighting factor
of the impact at category l; PEIa,l and PEIElec

l are the potential environmental impact score of chemical
component a and electricity at each of the category l respectively. Note that a total of eight categories are
considered for PEI, that is, human toxicity potential by exposure, both dermal and inhalation (HTPE),
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human toxicity potential by ingestion (HTPI), aquatic toxicity potential (ATP), terrestrial toxicity
potential (TTP), ozone depletion potential (ODP), global warming potential (GWP), acidification
potential (AP) and photochemical oxidation potential (PCOP).

In order to evaluate the health impact of process k, the Hazard Quotient Index (HQI) is selected for
this work. This is because HQI can be used for simple process flow diagrams (PFDs) containing limited
information, namely process drawings and process descriptions. Such method is suitable for the case
of preliminary process design optimization as it allows for the comparison of alternative processes by
ranking them based on the risk value based on minimal available information. The calculation of HQI
consists of four parts, i.e., estimation of fugitive emissions, air volumetric flow rate, airborne chemical
concentration and the health risk (HQI) value. Fugitive emission of each of the chemical components a
in process k, ma,k can be calculated via Equation (10):

ma,k =

J∑
j=1

P∑
p=1

x0.5
j,k wa, j,kFEp, j,k∀a∀k (10)

where xj,k, wa,j,k and FEp,j,k are the capacity of the unit operations j, weight composition of chemical
component a and the estimated fugitive emission rates in stream p to or from unit operation j respectively.
The pre-calculated fugitive emission rates database for the unit operation stream can be obtained from
Hassim et al. [15]. The air volumetric flow rate is determined by the following Equations (11)–(14).

AT
k =

J∑
j=1

A j,k∀k (11)

sk =
(
AT

k

) 1
2∀k (12)

Ac
k = hksk∀k (13)

Qk= vAc
k∀k (14)

where AT
k and Aj,k are the total process floor area and the floor area of each unit operations j in process

k respectively; sk is the side length of the process k; Ac
k is the cross-sectional area of the process; hk is the

average height of the main unit operations in process k; Qk is the air volumetric flow rate; v is the wind
speed. The average concentration of the chemical components in the air at the downwind edge of the
plot area, Ca,k can be determined using Equation (15):

Ca,k =
ma,k

Qk
∀a∀k (15)

HQI of component a in process k can be calculated using Equations (16) and (17):

HQIa,k =
Ca,k

CEL
a
∀a∀k (16)

HQIk =
A∑

a=1

HQIa,k∀k (17)

where HQIa,k is the HQI of each chemical components a; CEL
a is a constant which represents the

threshold limit of the chemical component a; HQIk is the total HQI of process k.
The safety impact of a process is assessed via Inherent Safety Index (ISI). ISI is selected because

it is a simple scoring method that can be incorporated into an optimization framework. Moreover,
ISI considers all parts of the process and equipment, unlike the PIIS method. The total ISI score for
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process k is represented by ISIk. ISIk is calculated by summing the Chemical ISI, Ik
CI and Process ISI,

Ik
PI as shown in Equation (18):

ISIk = ICI
k + IPI

k ∀k (18)

The sub-index for Chemical ISI, Ik
CI is expressed as below:

ICI
k = IRM, max

k + IRS, max
k + IINT, max

k + IFL, max
k + IEX, max

k + ITOX, max
k + ICOR, max

k ∀k (19)

where IRM, max
k , IRS, max

k , IINT, max
k , IFL, max

k , IEX, max
k , ITOX, max

k and ICOR, max
k are the sub-index for the

factor of the heat of main reaction, heat of side reaction, chemical interaction, flammability, explosiveness,
toxic exposure and corrosiveness of the chemical components present in the process k respectively.
The sub-index for process ISI, Ik

PI is given as:

IPI
k = II

k + IT, max
k + IP, max

k + IEQ, max
k + IST, max

k ∀k (20)

where II
k, IT, max

k , IP, max
k , IEQ, max

k and IST, max
k are the sub-index for the factor of inventory,

process temperature, process pressure, equipment safety and safe process structure, respectively.
The calculations for both Ik

CI and Ik
PI are performed on the basis of the worst-case scenario. Among all

chemical components present in the process, the scores of the chemical with the most severe hazard in
terms of flammability, explosiveness and toxicity are used in the Ik

CI calculation. Besides, the highest
temperatures of the main and side reaction and the worst possible chemical substance interaction
in the process are considered. Meanwhile, the maximum expected values for inventory, process
temperature, and pressure and the worst process structure are taken into account for the calculation
of Ik

PI. The sub-index for inventory is influenced by the total output of the process, yOut
k which is

calculated using Equation (21):

yOut
k =

P∑
p=1

yOut
p,k ∀k (21)

where yOut
p,k is the mass flow rate of the output stream for product and effluent streams. The score of the

sub-index for inventory is assigned using Equations (22) and (23) [39]. In Equation (22), Lk,r and Uk,r
are the lower and upper bounds of a given criteria r. The criteria r can often be in the form of a range.
For instance, r = 1 may refer to the criteria where mass flowrate is between the range of 300 – 500 kg/hr.
In this context, 300 kg/hr would be Lk,r and 300 kg/hr would be Uk,r. If yOut

p,k falls between this range r
= 1 or meets this criteria, Equation (22) will assign a specific score Sk,r, which is activated by binary
variable bk,r.

(Lk,r −Uk,r) × bk,r < yOut
k −Uk,r < (Lk,r+1 −Uk,r) × (1− bk,r)∀r∀k (22)

II
k =

R∑
r=1

bk,r × Sk,r∀k (23)

Although several objectives are considered simultaneously in this work, it is important to
note that these objectives conflict with each other. To address such conflict, this work employs a
multi-objective approach known as fuzzy optimization. Fuzzy optimization is a simple multi-objective
optimization approach that was founded upon the fuzzy decision-making approach introduced
by Bellman and Zadeh [40]. Zimmermann [41] then extended the fuzzy approach to deal with
linear and non-linear programming problems that contain multiple objectives. In this approach,
a continuous interdependence variable,λ, which is also known as the degree of satisfaction, is introduced.
Every fuzzy constraint will be satisfied partially at least to λ. Thus, the multi-objective functions in the
optimization can be integrated into a single objective function within the optimization framework.
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Fuzzy optimization has been widely used to determine the optimum process alternative that considers all
aspects simultaneously based on the pre-defined limits. The fuzzy optimization model is expressed as:

λ =
K∑

k=1

λkbk (24)

K∑
k=1

bk = 1 (25)

where integer variable, bk is used to indicate the existence (or absence) of λk of process k. Note that the
formulation in Equation (24) results in the model being non-linear. The optimization objective of λ is
maximized, subject to the predefined upper and lower bounds. All flexible targets (GP, HQI, ISI and
WAR) are predefined as fuzzy goals which are given by a linear membership function bounded by the
upper (GPU, HQIU, ISIU, WARU) and lower limits (GPL, HQIL, ISIL, WARL). λ of each processes k is
determined using Equations (26)–(29):

GPk −GPL

GPU −GPL
≥ λk ∀k (26)

WARU −WARk

WARU −WARL
≥ λk ∀k (27)

ISIU − ISIk

ISIU − ISIL
≥ λk ∀k (28)

HQIU −HQIk

HQIU −HQIL
≥ λk ∀k (29)

Following this, the model is solved via fuzzy optimization to select a more sustainable process
configuration based on the aforementioned four objectives. Based on the optimized solution,
the operating capacities, xj,k of the selected process configuration are then examined. If the operating
capacities do not differ from the values used in the preliminary simulation, then the selected process k
can be recommended for the next process design phase. However, if the operating capacities do differ
from the preliminary simulation, the selected process k would be re-simulated in accordance to the
optimized operating capacities. Once the selected process k is re-simulated, the operating capacities
are checked. In the event where the operating capacities in the simulation exceed an allowable error
margin (i.e., ≥10%), the preliminary simulation must be revisited for troubleshooting. For cases where
the operating capacities are within the allowed error margin, the re-simulated conditions for process k
can be recommended for the next process design phase. Note that the error margin can be changed
based on several factors such as type of industry, experience and knowledge of the decision-maker,
and type of equipment used.

4. Case Study

To illustrate the proposed framework, a case study on 1,4-butanediol (C4H10O2) production
process is presented. 1,4-butanediol is a colorless and non-corrosive solution which is widely used as a
solvent in the industry to manufacture elastic fibers, technical plastics and polyurethanes [42]. Based on
literature review, Reppe [42] and Davy [43,44] processes are the two common and well-established
alternative processes available to produce 1,4-butanediol. Table 1 shows the reaction pathway for
both processes.
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Table 1. Reaction pathway for the production of 1,4-Butanediol (C4H10O2).

Path Reaction Chemical Reaction

Reppe Process Hydrogenation of Acetylene and Formaldehyde C2H2 + 2 CH2O→ C4H6O2
2 H2 + C4H6O2 → C4H10O2

Davy Process Hydrogenation of Dimethyl Maleate C6H8O4 + 5H2 → C4H10O2 + 2 CH3OH

As shown in Table 1, the raw materials needed for Reppe process are formaldehyde (C2H2),
acetylene (CH2O) and hydrogen (H2). Formaldehyde and acetylene are fed into two batch reactors
which operate at 5 bar, 80 ◦C and are arranged in parallel. Formaldehyde is reacted with acetylene in
the presence of copper, bismuth and silicon dioxide supporting catalyst to produce 1,4-butynediol as
an intermediate product with a conversion rate of 60%. Aqueous sodium hydroxide and hydrochloric
acid are used to maintain the pH of the medium in the reactor within the range of pH 6 to 8. Based on
the reaction, process synthesis is started by establishing the remaining unit operations in the process.
For example, the product from the batch reactors is sent to a buffer tank and is stored for approximately
1–30 h before feeding to a distillation column for further separation. After separation, the bottom
product stream of the distillation column is rich in 1,4-butynediol and is fed to a trickling and
hydrogenation reactor for further reaction to produce 1,4-butanediol as the main product with a
conversion rate of 90%. The operating condition of this reactor is 160 ◦C and 150 bar. Figure 3 shows
the process flow diagram for the Reppe process.

For the Davy process, the raw materials are dimethyl maleate (DMM), C6H8O4 and hydrogen, H2.
DMM is completely vaporised with H2 before feeding into the first fixed bed reactor. The fixed bed
reactor operates at 15 bar, 150 ◦C and consists of two bed of catalysts which are palladium on alumina
and copper-zinc oxide. In the reactor, DMM is fully converted into dimethyl succinate (DMS) through
hydrogenation process in the presence of palladium on alumina as catalyst in the first reaction stage.
In the second reaction stage, DMS is mainly converted into gammabutyrolactone (GBL) with trace
amounts of tetrahydrofuran (THF) and 1,4-butanediol in the presence of copper-zinc oxide as catalyst.
The conversion rate of the second reaction is 97%. Based on these two reactions, process synthesis is
conducted to list all the other required unit operations. For instance, the vapour-phase product from
the reactor is condensed at 30 ◦C and is fed into a gas-liquid separator to remove the unreacted H2.
The unreacted H2 is then being recycled to the fixed bed reactor for further reaction. Then, the GBL
rich stream from the first reactor is fed into the second hydrogenation reactor for further reaction
to produce 1,4-butanediol with trace amounts of methanol and THF as by-products. The operating
condition of the second reactor is 210 ◦C and 75 bar. The catalyst used in the second hydrogenation
reactor is copper-zinc oxide and the conversion of GBL to 1,4-butanediol is around 95%. The PFD
for the Davy process is shown in Figure 4. The annual production rates for both Reppe and Davy
process are assumed to be 60,000 tonnes of 1,4-butanediol, operating at 8000 h/y. The acceptable
range of fluctuation on the amount of the product output given by the decision maker is within
±30%. The average height of the main unit operations in the process is assumed to be below 7 m [45].
Wind speed is assumed to be 4 m/s, which is a typical value for outdoor facilities, since local average
wind speed is not available [45].

Based on the information mentioned above, process simulation can be performed to analyse the
performance for both Reppe and Davy processes. In this work, both processes are simulated with the
aid of commercial process simulation software, Aspen HYSYS version 8.8 (Aspentech, Bedford, MA,
USA, 2014) [46] (see simulation flowsheets in Figures S1,S2 and simulation files in Supplementary
Materials respectively). Settings and parameters used for both simulations are summarized in Tables
S1 and S2 (Supplementary Materials) respectively.

Based on the simulation result, data such as input and output mass flow rates and energy
consumption are then extracted. The extracted data was then used to develop the input-output models
for both processes (see Tables S3 and S4 in Supplementary Materials).
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In the following step, the input-output models are evaluated based on economic, environmental,
health and safety aspects. For the environmental aspects, the weighting factor of the impact at category
l,αl is assumed as one. This indicates that the impact for each category is equally important. Meanwhile,
Table 2 shows the information obtained for both Reppe and Davy processes prior to the optimisation
step. As shown in Table 2, the Davy process has higher initial GP and WAR; however, with a lower
score of HQI and ISI, compared with the Reppe process. The latter has a lower initial GP mainly due to
its higher cost of raw materials. Its higher HQI score is mainly due to the presence of harmful chemical
components in the process, such as formaldehyde and 1,4-butynediol. Note that the threshold limit
(TLV) of formaldehyde and 1,4-butanediol are very low, that is, 1.228 mg/m3 and 0.5 mg/m3 respectively.
Besides, the higher ISI score for the Reppe process is mainly due to its highly exothermic side reaction
involving formaldehyde, acetylene and hydrogen to form 2-propanol. Note that the Reppe process has
a lower score of WAR (i.e., it is safer) because it converts the hazardous raw material (formaldehyde)
to a product (1,4-butanediol) with a lower environmental impact. As such, the selection between these
two processes is complex, particularly when four different aspects are considered simultaneously.
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Table 2. Data obtained for Reppe and Davy processes before optimisation.

Aspects Reppe Process Davy Process

GPk (106 USD/y) 45.633 123.408
HQIk 0.484 0.025
ISIk 36 28

WARk 2.091 33.679

In order to determine the optimum process with consideration of all aspects simultaneously, fuzzy
optimisation is used. Based on Equations (26)–(29), it is noted that lower and upper limits for GP, HQI,
ISI and WAR are required. To obtain these values, GPk is first maximized to determine the upper limit
GPU. The corresponding values for HQIk, ISIk and WARk are used as upper limits in HQIU, ISIU and
WARU respectively. Following this, WARk is minimized to determine WARL. The corresponding GPk,
ISIk and WARk values were taken as lower limits GPL, HQIL and ISIL respectively. The obtained values
for GPU, GPL, HQIU, HQIL, ISIU, ISIL, WARU and WARL are 185.112 × 106 USD/y, 22.817 × 106 USD/y,
0.593, 0.017, 36, 27, 50.519 and 1.045 respectively. The model is then solved by maximizing λ in
Equation (24) with constraints in Equations (1)–(23) and (26)–(29). The model was solved using
LINGO version 14.0 (Lindo Systems, Chicago, IL, USA, 2015) on a Lenovo P700 with 8 GB RAM and
Intel®Core™ i7, 2.60 GHz Processor. The mixed integer non-linear programming (MINLP) model
consists of 187 variables, 6 integers and 341 constraints.

Based on the results obtained, the Davy process was selected as it has a higher value of λ,
that is, 0.467, as compared to that of the Reppe process (0.111). The production of 1,4-butanediol after
optimisation is scaled down from 7.9 ton/h to 7.64 ton/h, which is within the acceptable range for
the amount of product output. Table 3 shows the comparison of the four aspects before and after
optimisation for the Davy process.

Table 3. Comparison of the four aspects for the Davy process before and after optimisation step.

Aspects Before After

Capacity of process, xj,k 1 0.967
GPk (106 USD/y) 123.408 119.293

HQIk 0.0246 0.0242
ISIk 28 28

WARk 33.679 32.556

After optimisation, it is observed that the operating capacity of the process has been scaled
down by 3.3% from the target production to obtain a trade-off among economic, health, safety and
environmental aspects. The reason for this is that, in order to achieve the trade-off solution shown
in Table 3, the operating capacity for the Davy process has to be scaled down by 3.3%. From here,
the new scaled down operating capacity of the Davy process is re-simulated to study the deviations.
The net output of the process streams obtained from the developed model has a slight difference to the
solution generated from process simulator with a deviation of less than 10%. This is mainly due to the
different models used in generating the solution. The solution obtained by the mathematical model is
linear, while that used by the process simulator is in rigorous mode. Since the deviation obtained is
small, the selected Davy process with its optimized operating capacity can be recommended for the
next stage of design.

5. Conclusions

In conclusion, this work presented a systematic framework to screen and select a sustainable
chemical process at the preliminary design stage. The presented framework consists of three main
tasks. First, process simulation was carried out to analyse the performance of each alternative process.
Based on the simulation, process data such as mass flow rates and energy requirements for each process
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unit were determined. These data were then used in the next task, which is to develop an input-output
model for each process. Each input-output model was formulated to address four conflicting objectives.
These four objectives, namely economic performance, health, safety and environment aspects were
assessed using gross profit (GP), the Health Quotient Index (HQI), the Inherent Safety Index (ISI)
and the WAR algorithm respectively. Following this, fuzzy optimization was used in the third task
to optimize the abovementioned aspects simultaneously and to select the most sustainable process.
A sustainable process in this context refers to the process with the highest degree of satisfaction (λ)
among all four aspects considered. The proposed framework was illustrated with a case study on
1,4-butanediol production, where the proposed framework was used to determine the most sustainable
process to produce 1,4-butanediol. Two processes, namely the Reppe and Davy processes were
considered. Each process was simulated using Aspen HYSYS Version 8.8 and subsequently underwent
input-output modelling. The developed input-output models were then optimized using fuzzy
optimization. Results from the case study indicate that the Davy process is more sustainable compared
to the Reppe process. In particular, the Davy process had the highest λ value. Furthermore, the results
suggest that the operating capacity of the Davy process should be scaled down by 3.3% to meet
the trade-off scores determined by the λ value obtained. Based on this recommendation, the Davy
process was re-simulated. It was found that there was a small percentage of deviations between the
mathematical and process simulation models. This proved that the developed model is feasible for
determining a more sustainable process configuration. For future work, a selection of different unit
operations may be incorporated into the model to determine their impact on flowsheet selection.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/7/4/200/s1,
Figure S1: Simulation Flowsheet of Davy Process via Aspen HYSYS version 8.8; Figure S2: Simulation Flowsheet of
Reppe Process via Aspen HYSYS version 8.8; Table S1: Simulation Settings for Davy Process; Table S2: Simulation
Settings for Reppe Process; Table S3: Input-Output Table for Reppe Process; Table S4: Input-Output Table for
Davy Process; Simulation File for Davy Process (Filename: Davy Process); Simulation File for Reppe Process
(Filename: Reppe Process).
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Nomenclature

Index/Subscript
p Index for stream of input or output
j Index for unit operations
k Index for alternative process
a Index for chemical components
l Index for environmental impact category
r Index for criteria with a given range
Parameters
ap,j,k Matrix of input or output mass flow rate for stream p to or from unit operation j of process k
xL

j,k Lower limit of the capacity for unit operation j in process k

xU
j,k Upper limit of the capacity for unit operation j in process k

AOTk Annual operating time for process k
CProd

p,k Product price of output p (products) in process k

CRaw
p,k Cost of input p (raw materials) in process k
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EPL Lower limit for gross profit
EPU Upper limit for gross profit
WARL Lower limit for environmental impact
WARU Upper limit for environmental impact
ISIL Lower limit for inherent safety index
ISIU Upper limit for inherent safety index
HQIL Lower limit for health quotient index
HQIU Upper limit for health quotient index
PEIa Score of potential environmental impact for chemical component a
PEIa,l Score of potential environmental impact for chemical component a at each of the category l
PEIElec Score of potential environmental impact for electricity
αl Weighting factor of the impact at category l
FEi,j,k Estimated fugitive emission rates in stream i to or from unit operation j in process k
AT

k Total process floor area in process k
Aj,k The floor area of each unit operations j in process k
sk Side length of the process k
Ac

k Cross-sectional area of process k
hk Average height of the main unit operations in process k
Qk Air volumetric flow rate in process k
V Wind speed
Ca,k Average concentration of chemical components a in the air at downwind edge of the plot area
CEL

a Threshold limit of the chemical component a
Lk,r Lower bound for a given criteria r in process k
Uk,r Upper bound for a given criteria r in process k
Sk,r Score of sub-index for inventory in process k based on a given criteria r
Variables
xj,k Capacity or size of the unit operation j in process k
yp,k Net input or output of stream p in process k
yOut

p,k Net output of stream p in process k

yIn
p,k Net input of stream p in process k

yElec
p,k Power consumption of process k

wa,j,k Weight composition of chemical component a from unit j in process k
ma,k Fugitive emission of each of the chemical components a in process k
GPk Gross profit for process k
WARk Total environmental impact generated by process k

i(cp),out
k Output rates of impact in the process k

i(cp),in
k Input rates of impact in the process k

i(ep),out
k Impact of power consumption for process k

Ik
CI Chemical ISI score of process k

Ik
PI Process ISI score of process k

IRM, max
k Sub-index for the factor of the heat of main reaction in process k

IRS, max
k Sub-index for the factor of the heat of side reaction in process k

IINT, max
k Sub-index for the factor of chemical interaction in process k

IFL, max
k Sub-index for the factor of flammability in process k

IEX, max
k Sub-index for the factor of explosiveness in process k

ITOX, max
k Sub-index for the factor of toxic exposure in process k

ICOR, max
k Sub-index for the factor of corrosiveness of the chemical components in process k

II
k Sub-index for the factor of inventory in process k

IT, max
k Sub-index for the factor of process temperature in process k

IP, max
k Sub-index for the factor of process pressure in process k

IEQ, max
k Sub-index for the factor of equipment safety in process k

IST, max
k Sub-index for the factor of safe process structure in process k

ISIk Total ISI score of process k
HQIa,k HQI of each chemical components a in process k
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HQIk Total HQI score of process k
λk Degree of satisfaction for multiple objectives in each alternative process k
bk Existence of alternative process k
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Abstract: Symmetry in mathematical optimization may create multiple, equivalent solutions.
In nonconvex optimization, symmetry can negatively affect algorithm performance, e.g., of
branch-and-bound when symmetry induces many equivalent branches. This paper develops
detection methods for symmetry groups in quadratically-constrained quadratic optimization
problems. Representing the optimization problem with adjacency matrices, we use graph theory to
transform the adjacency matrices into binary layered graphs. We enter the binary layered graphs into
the software package nauty that generates important symmetric properties of the original problem.
Symmetry pattern knowledge motivates a discretization pattern that we use to reduce computation
time for an approximation of the point packing problem. This paper highlights the importance
of detecting and classifying symmetry and shows that knowledge of this symmetry enables quick
approximation of a highly symmetric optimization problem.

Keywords: symmetry; quadratic optimization; quadratically-constrained quadratic optimization

1. Introduction

When the optimization variables can be permuted without changing the structure of the
underlying optimization problem, we say that the formulation group of an optimization problem is
symmetric [1,2]. For motivation, consider the circle packing problem illustrated in Figure 1 [3]. Given an
integer n > 0, the circle packing problem asks: what is the largest radius r for which n non-overlapping
circles can be placed in the unit square? Costa et al. [3] show that the formulation group, i.e., a
subgroup of symmetry group generated by permuting variables and constraints, is isomorphic to a
symmetry group created by permuting the variable indices and switching the two coordinates in a unit
square (C2 × Sn). Solution methods for nonconvex optimization problems lacking symmetry-aware
formulations and/or solution procedures may end up exploring all of these equivalent solutions.
In other words, symmetry may cause classical optimization methods such as branch-and-bound to
explore many unnecessary subtrees.

More generally, a number of authors have considered a range of symmetry detection
methods, e.g., for constraint programming [4], integer programming [1,5–8], and mixed-integer
nonlinear optimization [2]. These automatic symmetry detection methods can then be used
to mitigate the computational difficulties caused by symmetries, e.g., with symmetry-breaking
constraints [9–11], objective perturbation [12], specialized branching strategies [13,14], cutting
planes [15,16], and extended formulations [17]. The recent computational comparison of Pfetsch
and Rehn [18] indicates that these state-of-the-art symmetry handling methods expedite the solution
process for the MIPLIB 2010 instances and additionally enable more instances to be solved in a
time limit.

Processes 2019, 7, 838; doi:10.3390/pr7110838 www.mdpi.com/journal/processes157
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Figure 1. Given an integer n > 0, the circle packing problem asks: what is the largest radius r for which
n non-overlapping circles can be placed in the unit square? Already for n = 2, there are four equivalent
solutions [3]; these solutions are related to one another via rotations and reflections.

Researchers have also developed symmetry-handling methods for specific applications including
covering design [19], circle packing [3,20], scheduling [21], transmission switching [22], unit
commitment [23–26], and heat exchanger network synthesis [27,28]. As a concrete example of the
type of contributions researchers have made, consider a job shop scheduling problem that minimizes
makespan on two identical machines. Good scheduling formulations and/or solution procedures, e.g.,
Maravelias and Grossmann [29], Maravelias [30], and Mistry et al. [31], will implicitly exclude two of
the three equivalent solutions diagrammed in Figure 2.
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Figure 2. To observe symmetries that may arise in scheduling, consider a job shop scheduling problem
that minimizes makespan on two identical machines. Lacking symmetry-aware formulations and/or
solution procedures, a solution procedure may end up exploring all three of these equivalent solutions.

This paper develops detection methods for symmetry groups in quadratically-constrained
quadratic optimization problems. Representing the optimization problem with adjacency matrices,
we use graph theory to transform the adjacency matrices into binary layered graphs. We enter the
binary layered graphs into the software package nauty that generates important symmetric properties
of the original problem. Symmetry pattern knowledge motivates a discretization pattern that we use
to reduce computation time for an approximation of the point packing problem.

2. Formulation Symmetry for Quadratically-Constrained Quadratic Optimization Problems

Consider the quadratically-constrained quadratic optimization problem (QCQP):

min
x∈Rn

f0(x)

s.t. fk(x) ≤ 0 ∀ k = 1, . . . , m

xi ∈
[

xL
i , xU

i

]
∀ i = 1, . . . , n,

(QCQP)

where:

fk(x) =
n

∑
i=1

n

∑
j=1

αk
ijxixj +

n

∑
i=1

αk
i0xi + αk

00 ∀ k = 0. . . . , m, (1)

with finite variable bounds xL
i , xU

i ∈ R, ∀i and coefficients αk
ij ∈ R for i, j ∈ {0, . . . , n}, k ∈ {0, . . . , m}.

To represent symmetry in the QCQP formulation, consider Sn, the symmetric group of order n
formed by the n! possible permutation operations. The formulation group of QCQP , or GQCQP, is the set
of variable index permutations that preserve the objective and constraint structure [2]. For a variable
index permutation π ∈ Sn, we seek the constraint index permutations σ ∈ Sn that maintain both the
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objective value and the constraint structure on the feasible domain dom( f ) where f = [ f1, . . . , fm].
More formally:

Definition 1 (Formulation group of QCQP).

GQCQP = {π ∈ Sn | ∀x ∈ dom( f0) f0(πx) = f0(x) ∧ ∀x ∈ dom( f ) ∃σ ∈ Sm (σ f (πx) = f (x))} .

Because dom( f ) may be nonconvex and difficult to compute, this paper considers a GQCQP
restriction that enforces symmetry on the entire box bounds, i.e., we assume that dom( f ) =

[
xL, xU]

for the purpose of computing GQCQP. The next subsections represent formulation symmetry in two
ways: (i) expression graphs in Section 2.1 and (ii) tensors in Section 2.2. Representing formulation
symmetry using expression graphs is due to Liberti [2] and the tensor representation is new to
this paper.

2.1. Symmetry Detection with Expression Graphs

One option to compare two functions is to compare their expression trees, i.e., a directed
acyclic graph representation of each function that incorporates the relevant operations, constants,
and variables [2]. These expression tree models were first developed for mixed integer nonlinear
optimization (MINLP) by Smith and Pantelides [32] and are common in most global MINLP
solvers [33–39] and other MINLP-related software [40–42]. Figure 3 illustrates a simple example
of an expression tree for 3x1 + 2x2

4 + 2x2x3. A tree comparison algorithm may recursively compare
two trees to determine equivalence [2]. More advanced implementations may detect equivalent but
differently-formulated expressions, e.g., (x1 + x2)

2 versus x2
1 + 2x1x2 + x2

2.

+

* **

2

2

23 X

X

X X1 2 3

4

^

Figure 3. Example of an expression tree for 3x1 + 2x2
4 + 2x2x3.

With a directed acyclic graph representation, Liberti [2] computes the formulation symmetry
group using the graph isomorphism problem, i.e., a problem that can be solved using off-the-shelf
software nauty [43]. Liberti [2] also proves how to map the automorphism group of a directed acyclic
graph to the formulation group of the original MINLP.

2.2. Symmetry Detection with Tensors

As an alternative to the expression tree representation, Figure 4 illustrates that QCQP can
be represented as a tensor: AQCQP ∈ R

(n+1)×(n+1)×(m+2n). Each of the two dimensions (n + 1)
corresponds to a constant term and the variables. Each two-dimensional slice of the tensor corresponds
to the constant, linear, and quadratic terms in a constraint. The first m slices correspond to Equation (1)
and have entries ak

ij. The next 2n slices correspond to the box constraints, i.e., xi ≥ xL
i and xi ≤ xU

i , ∀i.
The formulation group of this representation is:

GQCQP,T =
{

π ∈ Sn | ∀x ∈ dom( f0) f0(πx) = f0(x) ∧ ∀x ∈ dom( f ) ∃σ ∈ Sm
(

AQCQP(π, π, σ) = AQCQP
)}

.
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Figure 4. Tensor representation of the symmetry.

2.2.1. Sparse Tensor Representation

For a given tensor AQCQP, consider a sparse representation, illustrated in Figure 5, that reduces
the memory required to store the tensor. Instead of storing the entire tensor, we store arrays of length s
where s is the number of nonzero entries in QCQP. The first array, M = (M1, . . . , Ms) stores all nonzero
entries αk

ij of QCQP. The next three arrays, I = (I1, . . . , Is), J = (J1, . . . , Js), K = (K1, . . . , Ks) represent

the indices corresponding to the nonzero αk
ij entries. The maximum size of s is (n + 1)2(m + 2n), but, in

practice, most arrays will be significantly shorter.

Figure 5. Sparse tensor representation models AQCQP as 4 arrays with the nonzero entry αk
ij in M and

arrays I, J, K holding the index.

2.2.2. Converting Matrices to Edge-Labeled, Vertex-Colored Graphs

We convert the sparse tensor representation of AQCQP into an edge-labeled, vertex-colored
graph. Given the edge-labeled, vertex-colored graph, generating graph automorphisms to the original
problem symmetries is well-known [1,5,44,45]. To construct the edge-labeled, vertex-colored graph,
consider a graph G = (V, E, c) corresponding to an instance M, I, J, K. The function c : E → r,
for r ∈ {0, . . . , �− 1} is an edge coloring where � ∈ Z

+ is the number of different coefficients in M.
Each unique element in M is stored in a vector U ∈ R�. We also partition (color) the vertex set into
four subsets: a set VF representing the objective function, VC nodes for the constraints, a constant
node VS, and VR variable nodes. The automorphism definition prevents vertices from being mapped
onto a vertex of a different color, so these colors prevent, for example variables becoming constraints.
The equivalence relation is [2]:

∀u, v ∈ VP u ∼ v =⇒ (u, v ∈ VF ∧ �(u) = �(v)) ∨ (u, v ∈ VC ∧ �(u) = �(v))

∨ (u, v ∈ VS ∧ �(u) = �(v)) ∨ (u, v ∈ VR ∧ �(u) = �(v)) .

Figure 6 illustrates the edge-labeled, vertex-colored graph. Initially, the edge set is empty E = ∅.
For i = {0, . . . , s} where s = |M|, add an edge v(r)Ii

to v(r)Ki
, i.e., from a vertex in the set that represents

the constant element / variables to a vertex in the set of the objective function / constraints, with the
relevant color. The graph construction incorporates edges between variable nodes VR for the quadratic
bilinear terms. For i = {0, . . . , s}:

• If Ii = Ji, i.e., a quadratic term, then E = E ∪ {{(vIi , vKi )
r} ∩ {(vIi )

r}}.
• else for bilinear term, Ii �= Ji, then E = E ∪ {{(vIi , vKi )

r} ∩ {(vJi , vKi )
r} ∩ {(vIi , vJi )

r}}.
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Figure 6. The tensor AQCQP as an edge-labeled, vertex-colored graph.

3. Formulation Symmetry Detection via Binary Layered Graphs

The software nauty [43], which detects symmetry, accepts vertex-colored graphs but does not
accept the Section 2.2.2 edge-labeled, vertex-colored graphs. Thus, we associate edge colors with
layers in a graph and transform the edge-labeled, vertex-colored graph into a vertex-colored graph.
Since the transformation from an edge-labeled, vertex-colored graph to a vertex-colored graph is
isomorphic [43], the transformation does not lose anything. Using the resulting binary layered graphs,
we generate the automorphism group and find symmetry in the original QCQP.

To convert a graph G = (V, E, c) with � colors into an � - layered graph [43], we replace each vertex
vj ∈ V with a fixed connected graph of � vertices v(0)j , . . . , v(�−1)

j . If an edge (vj, vj′) has color r, add

an edge from v(r)j to v(r)j′ . Finally, we partition the vertices by the superscripts, Vr = {v(r)0 , . . . , v(r)n−1}.
Alernatively, a binary representation avoids too many layers in G when the number of colors is large.

Definition 2 (Binary Layered Graph). Let � ∈ Z
+ be the number of edge labels of G. A binary layered graph

is a vertex-colored graph where the number of layers L = �log2 (�+ 1)� matches a binary representation.

We assign a unique positive integer μ(z) to each z ∈ U and map edge labels μ(z) to a binary
representation that switches on/off parameters ct to represent the edge colors as layers. If ct = 1, add
a new edge from vt

i to vt
j for every ct ∈ {c1, . . . , cL−1}:

μ(z) = 2L−1 · cL−1(z) + 2L−2 · cL−2(z) + · · ·+ 20 · c0(z), for ct ∈ {0, 1}, t = {0, . . . , L − 1}. (2)

Figure 7 illustrates the resulting binary labeled graph with its L = �log2 (�+ 1)� + 2 layers.
There are vertices for the objective function and each constraint and layers of copies of these constraints
(connected with vertical edges). The horizontal edges encode the problem coefficients. On the upper
part of Figure 7, there are vertices for a constant element and each variable and a layer of variable
copies (connected with vertical edges). Here, the horizontal edges and loops distinguish the linear and
bilinear terms. Algorithms 1 and 2 summarize computing the vertex and edge sets, respectively.

objective 
function +  constraints

identity  +

2

bilinear 
relations

Figure 7. Binary layered graph representation of QCQP using the tensor representation AQCQP.
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Algorithm 1 Algorithm constructing the vertex set

1: procedure G=(V, E)
2: V ← ∅, Vs ⊂ V ← ∅ ∀ s, E ← ∅
3: L ∈ Z, L = �log2 (|U|+ 1)�+ 2 � Define L ∈ Z

+ the number of layers
4: for s = 0 → L − 3 do � Partition of vertices representing the constraints
5: for k = 0 → m do
6: Vs ← Vs ∪ {v(s)k } � Copies of vertices representing the constraints
7: end for
8: V ← V ∪ Vs
9: end for

10: for s = L − 2, L − 1 do � Partition of vertices representing the variables
11: for i = 0 → n do
12: Vs ← Vs ∪ {v(s)i } � Copies of vertices representing the variables
13: end for
14: V ← V ∪ Vs
15: end for
16: return G
17: end procedure

Algorithm 2 Algorithm constructing the edge set

1: procedure G=(V, E)
2: V ← V
3: E ← ∅
4: for s = 0 → L − 4 do � Vertical edges between copies of vertices
5: for k = 0 . . . m do � Copies of vertices representing the constraints
6: E = E ∪ E ∪ (v(s)k , v(s+1)

k )
7: end for
8: end for
9: � Vertical edges between copies of vertices

10: for j = 0 . . . n do � Copies of vertices representing the variables
11: E = E ∪ (v(L−2)

j , v(L−1)
j )

12: end for
13: for F = 0, . . . N − 1 do � Bilinear terms
14: if IM(F) = JM(F) then � Add a loop
15: E = E ∪ (v(L−1)

IM(F), v(L−1)
IM(F))

16: else
17: if IM(F) < JM(F) then � Add an edge
18: E = E ∪ (v(L−1)

IM(F), v(L−1)
JM(F))

19: else
20: E = E ∪ ∅
21: end if
22: end if
23: end for
24: for F = 0 . . . N − 1 do
25: for k = 0 . . . m do
26: if KM(F) = k then
27: if IM(F) = 0 then
28: E = E ∪ (v(s)k , v(L−2)

JM(F))
29: else
30: E = E ∪ (v(L−1)

IM(F), v(L−1)
JM(F))

31: end if
32: end if
33: end for
34: end for
35: return G
36: end procedure
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4. Numerical Discussion and Comparison to the State-of-the-Art

The following example incorporates the algorithms proposed in this paper. We construct the
binary labeled graph and then enter it into nauty through the dreadnaut command line interface:

max
x1,x2,x3,x4∈[0,1]

3x1 + 3x4 + 2x2x3 (c0),

x2 + x1
2 + 1 ≤ 0 (c1),

x3 + x2
4 + 1 ≤ 0 (c2),

x2 + x3 + 1 ≤ 0 (c3).

The optimization problem has sparse matrix representation: M = (3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1),
I = (0, 0, 2, 0, 0, 1, 0, 0, 4, 0, 0, 0), J = (1, 4, 3, 0, 2, 1, 0, 3, 4, 0, 2, 3), K = (0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3),
vector of unique elements U = [1, 2, 3], and L = �log2 4� = 2 layers.

Equation (2) computes the binary representation of each unique element, e.g., 3 = 21 + 20

indicates that there is an edge between vertices on layer zero and another edge between the same
vertices on layer 1. The graph consists of four layers and |V| = 18, one associated with a constant
element and one with the objective function and the rest for the problem variables and constraints.
The left-hand side of Figure 8 illustrates the graph representation. Nauty generates permutations:
π = (1, 2)(5, 6)(9, 12)(10, 11)(14, 17)(15, 16). To see how these Nauty-generated permutations usefully
explain the symmetry properties of the entire problem, observe: (i) Permutations (1, 2)(5, 6), as shown
in Figure 8, permute the constraints c1, c2 and (ii) Permutations (9, 12)(10, 11) are associated with the
variables x1, x4 and x2, x3 with (14, 17)(15, 16) their copies. These permutations therefore allow us to
automatically calculate the formulation group G = (x1x4)(x2x3).

I X1 X2 X3 X4

C1C0 C2 C3

+ + + +

* * * 2 2

3X 1 114 3 X 41^

Figure 8. Illustration of the example problem using the binary labeled graph representation (left) and
the directed acyclic graph representation (right).

The right-hand side of Figure 8 uses Section 2.1 to develop a directed acyclic graph representation
for the same problem. The graph colors represent the vertex partitioning that enables node exchanges.
In this case, the directed acyclic graph representation uses a smaller number of vertices and edges than
the tensor-based representation. However, the representations generate the same formulation group.

Comparison. To evaluate the trade-offs between the tensor and directed acyclic graph
representations, observe that both methods will search for the same formulation group symmetries.
However, the tensor representation may be especially useful when working with problems with
many differently-valued coefficients, i.e., the logarithmic number of layers may reduce the number of
nodes. The function assigning integer values to the problem coefficients lets us work not only with 0–1
coefficients, but also with any other value.
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5. Exploiting Symmetry in the Point Packing Problem

Once symmetry has been detected, we can use our knowledge of the symmetry to mitigate
the computational difficulties caused by symmetry. Here, we focus on solving the point packing
problem [46–49]. The point packing problem concerns packing n points to a unit square. The aim is to
maximize the in-between distance between any two points:

max θ

subject to (xi − xj)
2 + (yi − yj)

2 ≥ θ 1 ≤ i < j ≤ n,

0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1 1 ≤ i ≤ n,

where θ denotes the minimum distance between any two points. To approximate this problem, consider
a grid approach that approximates the optimal solution by adding grid lines to the unit square and
forcing the points to be placed only to the vertices generated by these grid lines. Note that the point
packing problem has significant applications, e.g., in placing mobile phone towers.

For n points, there will be at most a k ∗ ×k∗ grid, where k∗ is the smallest number whose square
is the least integer that is greater than n, i.e., (k ∗ −1)2 < n and k∗2 ≥ n. In other words, we add at
most 2k∗ grid lines. On this k ∗ ×k∗ grid, points will occupy most of the vertexes and the unit length
of spacing has been maximized. This approach, unfortunately, has the potential of missing the optimal
solution. Consider fitting six points to the square. The most fitting grid is 3 × 3 and the optimal θ

we achieve is 0.5. However, the optimal solution of 0.6009 is achieved by the arrangement shown in
Figure 9, which is not available on a 3 × 3 grid. Although an approximation, k∗ is still a useful pruning
tool, e.g., points need to be at least 1

k∗−1 away from any other point.

Figure 9. Optimal arrangement of six points.

Exhaustive Search and 2D Symmetry Removal

First, consider Algorithm 3, an exhaustive search method. To break the symmetries, start by
calculating how many grids can possibly have points and the upper limit on the number of points on
any occupied grid lines. Once calculated, the complete set of all possible combinations on the x-axis is
calculated. For example, on a 5 × 5 grid, one possible x-coordinate setup is (2, 0, 1, 0, 2). If we label the
five horizontal grid lines from 1 to 5, this setup means that there are two points on grid 1, no points on
grid 2, one point on grid 3, no points on grid 4 and two points on grid 5. To remove x-axis symmetries,
we consider reflections as a duplication, i.e., only one of (1, 0, 2, 0, 2) and (2, 0, 2, 0, 1) are considered.

Algorithm 3 Algorithm 1—Exhaustive Search
Input: number of points n, number of grids k, number of occupied grids m.
Output: The optimal solution d∗

1: Step1 Calculate the upper bound of number of points on each occupied grid u
2: Step2 Generate complete set of combinations of x-coordinate
3: Step3 Symmetries removal on x-coordinates
4: Step4 Generate all y-coordinate sets based on binomial coefficient
5: Step5 Y-coordinates pruning
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Algorithm 3 considers the unique x-axis combinations. The y-axis, i.e., the horizontal grid lines,
should preserve the same characteristics. Thus, in the improved Algorithm 4, we generate the set O of
possible point arrangement such as (2, 0, 1, 0, 2), and this is applied to both horizontal and vertical grid
lines; in other words, we now consider the product O × O to give the exact coordinates of all n points.

Algorithm 4 Algorithm 2—2D Symmetry Removal
Input: number of points n, number of grids k, number of occupied grids m.
Output: The optimal solution d∗

1: Step1 Calculate the upper bound of number of points on each occupied grid u
2: Step2 Generate complete set of combinations of x-coordinate
3: Step3 Symmetries removal on x-coordinates
4: Step4 Use the x-coordinate set to determine y-coordinate
5: Step5 Y-coordinates pruning

Example 1. Consider for five points on a 5 × 5 grid where we have O as {O1 = (1, 0, 2, 0, 2), O2 =

(1, 2, 0, 0, 2), O3 = (1, 0, 0, 2, 2), O4 = (2, 1, 0, 0, 2), O5 = (2, 0, 1, 0, 2)}. The finalized set of full coordinates
would contain 25 elements where the product of O with itself is taken. One particular point setup generated by
this approach is for example, O3 × O4. If we call the vertical grids as V1 to V5, respectively, and the horizontal
grids as H1 to H5, respectively, O3 × O4 would mean that we have the following point locations:

1. One point on V1, 2 points on V4 and 2 points on V5. This is from O3.
2. Two points on H1, 1 point on H2 and 2 points on H5. This is from O4.

For O3 × O4, we would have five complete point setups, as shown in Figure 10. In the last setup, we have
also added the labels for grids to match what we defined earlier. This diagram contains all possible arrangements
of points under this particular orbit partitioning.

(a) (b) (c) (d) (e)

Figure 10. Five point setups for O3 × O4. (a) point setup1; (b) point setup2; (c) point setup3; (d) point
setup4; (e) point setup5.

To improve further, we can implement pruning mechanisms such as using the bound 1
k∗−1 to

prune the non-optimal setups. In this particular example, we would have pruned all five setups as
none of them satisfy the 0.5 bound from the most fitting grid. This means that O3 × O4 is not the
optimal point setup for five points on a 5 × 5 grid.

6. Results and Comparisons

Both algorithms have been implemented and run on the same devices (HP EliteDesk 800 G2 TWR
Intel Core i7-6700 3.4 GHz) to provide effective comparisons. Figure 11 shows the experimental results
of 2D Symmetry Removal for packing 6 points. We eliminated the result from Exhaustive Search as it is
clear that 2D Symmetry Removal outperforms Exhaustive Search in terms of run-time. We notice that
m, the number of occupied grids (in the diagram, this corresponds to the occupied vertical grids), has
an impact on the run-time. To a reasonable extent, the larger the m, the more choices we have regarding
where we place the points so it in general takes longer time to compute. Although our strategies
effectively convert the point packing QCQP into a mixed-integer linear optimization problems, we
could have alternatively designed a branch-and-bound algorithm that is symmetry aware.
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Figure 11. Run-time for six points on different grids with different number of occupied grids. The line
m = 4 is above the line m = 3.

7. Conclusions

This paper has explored alternative representations for finding symmetry in formulation groups
of a quadratically-constrained optimization problem. We also show that, after knowing the symmetry,
we can design significantly better methods to solve the optimization problems. The contributions in
this paper are relevant to industrial problems that contain a point packing element [50–52].
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Abstract: A coal-based coproduction process of liquefied natural gas (LNG) and methanol (CTLNG-M)
is developed and key units are simulated in this paper. The goal is to find improvements of the
low-earning coal to synthesis natural gas (CTSNG) process using the same raw material but producing
a low-margin, single synthesis natural gas (SNG) product. In the CTLNG-M process, there are
two innovative aspects. Firstly, the process can co-generate high value-added products of LNG
and methanol, in which CH4 is separated from the syngas to obtain liquefied natural gas (LNG)
through a cryogenic separation unit, while the remaining lean-methane syngas is then used for
methanol synthesis. Secondly, CO2 separated from the acid gas removal unit is partially reused for
methanol synthesis reaction, which consequently increases the carbon element utilization efficiency
and reduces the CO2 emission. In this paper, the process is designed with the output products of
642,000 tons/a LNG and 1,367,800 tons/a methanol. The simulation results show that the CTLNG-M
process can obtain a carbon utilization efficiency of 39.6%, bringing about a reduction of CO2 emission
by 130,000 tons/a compared to the CTSNG process. However, the energy consumption of the new
process is increased by 9.3% after detailed analysis of energy consumption. The results indicate that
although electricity consumption is higher than that of the conventional CTSNG process, the new
CTLNG-M process is still economically feasible. In terms of the economic benefits, the investment is
remarkably decreased by 17.8% and an increase in internal rate of return (IRR) by 6% is also achieved,
contrasting to the standalone CTSNG process. It is; therefore, considered as a feasible scheme for
the efficient utilization of coal by Lurgi gasification technology and production planning for existing
CTSNG plants.

Keywords: coproduction; Lurgi syngas; cryogenic separation; methanol synthesis; LNG

1. Introduction

China is the main source of global energy growth as well as the largest energy consumer in the
past 20 years [1]. In 2016, China’s natural gas production was 148.7 billion Nm3, with a yearly rate
increase of 8.5%. Meanwhile, the total imports are 92 billion m3, with an annual growth rate of 27.6%.
However, the total yearly gas consumption is 237.3 billion m3, which is 15.3% higher than that of
2015 [2]. If keeping with the same growth rates, the natural gas will be in insufficient supply in the
near future. To alleviate such an energy shortage, the Chinese government encourages the build and
operate (B&O) development of coal to conduct synthetic natural gas (CTSNG) projects. Therefore,
many CTSNG projects have been launched recently and are being run successfully all over the country,
as shown in Table 1.
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Table 1. B&O CTSNG projects in China (2018).

Project Status Company
Capacity

(109 Nm3/a)
Location

Keqi Coal-based Gas
Project Phase I Operating Datang International Power

Generation Company 1.33 Chifeng, Inner Mongolia

Xinjiang Kingho SNG
Project Phase I Operating Xinjiang Kingho Energy Group

Co., Ltd. 1.38 Yili, Xinjiang

Huineng Ordos SNG
projects Phase I Operating Inner Mongolia Huineng Coal

Chemical Industry Co., Ltd. 4 Ordos, Inner Mongolia

Yili Xintian SNG Project Operating Yili Xintian Coal Chemical Co.,
Ltd. 2 Yili, Xinjiang

Keqi Coal-based Gas
Project Phase II/III Building Datang International Power

Generation Company 2.67 Chifeng, Inner Mongolia

Datang Fuxin SNG
Project Building Datang International Power

Generation Company 4 Fuxin, Liaoning

Xinjiang Kingho’s SNG
Project Phase II Building Xinjiang Kingho Energy Group

Co., Ltd. 4.13 Yili, Xinjiang

Huineng Ordos SNG
Projects Phase II Building Inner Mongolia Huineng Coal

Chemical Industry Co., Ltd. 1.6 Ordos, Inner Mongolia

Xinjiang Zhundong SNG
Demonstration Project Building Suxin Energy Hefeng Co., Ltd. 4 Changji, Xinjiang

Beijing Enterprises JT
Ordos SNG Project Building

Inner Mongolia Beijing
Enterprises JT Energy
Development Co., Ltd.

4 Ordos, Inner Mongolia

However, CTSNG projects face some challenges. Firstly, the market price of synthetic natural
gas (SNG) products is not based on its cost structure, nor according to the guidance from a market
mechanism. Departments of China offer a rather lower price to the public, and priority is given to
civil use, transportation field, etc. Thus, lower economic returns are common to all CTSNG projects.
The price of natural gas has fallen sharply since November 2015 in the country after the National
Development and Reform Commission issued a report about price adjustment [2]. In Figure 1, it shows
that, during 2015 to 2018, the price of SNG is reduced from 2.75 to 1.82 CNY/Nm3. After 2018, the price
further decreased to 1.78 CNY/Nm3. In such case, the market price of SNG is 0.97 CNY/Nm3 lower
than that of 2015. Taking Keqi Coal-Based Gas Project Phase I for an example, in 2017, it produced 1.03
billion Nm3 SNG products, yet with a big deficit of 650 million CNY. It can be seen that if natural gas
price keeps fluctuating at a low-price level, these CTSNG projects are likely to face severe losses.

Figure 1. China’s synthesis natural gas (SNG) market price recording (2014–2018).
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Secondly, the SNG product is mainly supplied for civil use like urban heating in the winter. Thus,
there is a peak–valley difference of natural gas demand between winter and summer. In most of the
northern cities of China, the top demand of natural gas in the heating period is from November to
March of the following year. In contrast, the demand in the non-heating period remains at a lower level
from April to October. According to statistics from Ji [3], the consumption in the heating period is up
to 10 times of that in the non-heating period. Taking the winter of 2018 as an example, the gap between
supply and demand of natural gas is about 24 billion m3. Since natural gas cannot be stored for a long
time, coal-based gas projects are facing production cuts during the non-heating period, which brings
huge economic losses.

Further, in many CTSNG projects, a Lurgi gasification technology has been employed to produce
qualitative coal-based syngas for synthesis reaction. Major units in the process can be seen in Figure 2,
including coal gasification, water–gas shift, acid gas removal, and methanation synthesis units [4,5].

Figure 2. Flowchart of the CTSNG process.

However, the hydrogen:carbon ratio of crude syngas from Lurgi gasifier is about 2.7 [6]. According
to the requirement of synthesis gas reaction, it is necessary to use water–gas shift technology to increase
that ratio to 3.1 for methanation. However, as the Equation (1) of water–gas shift reaction shows, CO2

emission is inevitably increased in that process [7,8].

CO + H2O(vapor) = CO2 + H2, ΔH = 41.19 kJ/mol (1)

The coproduction process alternative is a practical way to address this challenge. As known,
traditional CTSNG processes have a single gaseous coal-based natural gas product. However, it
is possible that the same raw materials can be converted to various designed products under the
coproduction process structure. Till now, there are different studies devoted to comprehensive
processing of coal syngas. These studies prove that coproduction systems can improve the resource
utilization and energy efficiencies. Some works are also being proven by demonstration projects.

Yi et al. (2017) studied the modelling and optimization theories of coproduction systems. In
their studies, the coproduction process can be very flexible for its integration of technologies and
raw material distribution. Besides, it is pointed out that systematic design can improve the process
performance like better carbon conversion ratio and improved energy saving size [9–11].

Hao et al. (2015) proposed a coproduction process of methanol and electricity with coal and coke
oven gas as raw materials. The new system is compared with the process based on CH4/CO2 dry
reforming technology, in terms of exergy efficiency, exergy cost, and CO2 emissions. Through the new
system, the exergy efficiency can be increased by 7.8%. Besides, the exergy cost can be reduced by 0.88
USD/GJ and the CO2 emission can be reduced by 0.023 kg/MJ [12–14]. Han et al. (2010) introduced
a methanol production and integrated gasification combined cycle power generation system using
coal and natural gas as fuel. The syngas derived from natural gas and coal is firstly used for methanol
synthesis. The unreacted syngas is used in the power plant as fuel. Comparing with the single
production system, the coproduction system can save about 10% of fossil fuels [15]. Tu et al. (2015)
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found that a methanol and electricity coproduction system can obtain the best benefit when the recycle
ratio of unreacted gas is assigned with the value between 2.17 and 4.44, with relative energy saving
rate and unit energy production approaching an optimum [16]. Huang et al. (2018) introduced a
low-energy CO2 capture process after the water–gas shift unit in a poly-generation process. A part of
the unreacted syngas is used to generate power. Energy consumption for CO2 capture is 0.7 GJ/t-CO2,
bringing a 40.6% reduction compared to that of the coal-to-methanol process [17].

In addition, Bai et al. (2015) studied a poly-generation system of generating methanol and power
with the solar thermal gasification of the biomass. The syngas from the biomass gasification is used to
produce the methanol via a synthesis reactor. The un-reacted gas is used for the power generation
via a combined cycle power unit. The thermodynamic and economic performances of the system are
investigated. A portion of the concentrated solar thermal energy can be chemically stored into the
syngas. The highest energy efficiency of the poly-generation system is approximately 56.09%, which
can achieve the stable utilization of the solar energy and the mitigation of CO2 emission [18].

Many researchers from outside China are also interested in this field. You et al. (2011) studied
the optimal distribution of raw materials in different production routes to maximize the benefit of
the coproduction process. A superstructure optimization model is formulated as a mixed-integer
nonlinear program to determine the optimal process design, and the proposed framework is applied to
a comprehensive superstructure of an integrated shale gas for chemical processing, which involves
steam cracking of ethane, propane, n-butane, and i-butane [19,20].

The above studies are mainly based on thermodynamics to reach a higher energy utilization,
achieve a reduction on energy consumption, and realize the optimization of reaction conditions, like
gas recycle ratio, operating temperature and pressure, etc. However, studies are less focused on
matching products proposal and syngas component ratio, like (H2 − CO2)/(CO + CO2) ratio, which is
specified for chemical synthesis.

Considering all difficulties that existing B&O CTSNG projects are facing, this paper studies a
coproduction process with LNG and methanol (CTLNG-M). The CTLNG-M process is developed
based on a rational distribution study on hydrogen and carbon elements in the processing, which
reduce CO2 emission by converting more carbon to chemicals and increase unit product income for a
high valued liquefied natural gas (LNG) product. Section 2 gives the description of the new process on
what measures have been taken. Section 3 gives the detailed modeling and simulation with respect
to key parameters of added units in the CTLNG-M process. In Section 4, a discussion about the
carbon utilization efficiency, energy efficiency, energy consumption, and economic performance of the
CTLNG-M process is given.

2. LNG and Methanol Coproduction Process

The syngas from a Lurgi gasifier contains 12% to 18% methane [21]. Because of this high
composition of methane, Lurgi gasification technology is usually used in CTSNG projects [22,23].
However, from another point of view, LNG products can also be obtained by separating methane from
the syngas through an added cryogenic separation technology. LNG is a relatively high value-added
product form of coal-based natural gas, whose price can reflect the supply and demand mechanism. In
Figure 3, it can be seen that LNG prices have shown an upward trend from 3206 CNY/tons to 5373
CNY/tons in heating period time (January in each year) since 2017, with an average price of 3122
CNY/tons and a highest price up to 5613 CNY/tons. In addition, LNG can be transported and stored in
a more flexible way [24].

Thus, use of a separation unit to remove methane from syngas out of the Lurgi gasifier is taken
into consideration, as the remaining syngas can be used for methanol synthesis. In this paper, two
units are added, the cryogenic separation unit is placed before a methanol synthesis unit. Thereby,
the content of effective gas in methanol synthesis reaction is increased, and the production efficiency
also improved.
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Figure 3. China’s liquefied natural gas (LNG) market price recording (January 2017–January 2019).

This paper proposes a coproduction process for matching the product distribution of Lurgi
gasification technology. The CTLNG-M process is highlighted through a schematic diagram as shown
in Figure 4. In this process, the syngas from the Lurgi gasifier is separated to get LNG product by
cryogenic separation unit. The remaining syngas has the H:C ratio close to 2.4. An additional carbon
source is needed to decrease that ratio near to 2.1 before methanol synthesis. In that case, the additional
carbon resource can be provided by CO2 extracted from the acid gas removal unit. Thereby, the carbon
emission of the system is also reduced.

Figure 4. Flowchart of coal to liquefied natural gas (LNG) and methanol (CTLNG-M)
coproduction process.

There are different gases that are present as impurities in crude syngas. Amongst them, sulfides
can cause deactivation of methanol synthesis catalysts, while carbon dioxide can reduce the conversion
of methanol synthesis. These impurities, as well as tar, phenol, and ammonia, can be removed by
acid gas removal unit [10]. After that and heat recovery, the molecular sieve process is used to further
reduce the content of carbon dioxide and methanol to less than 1 ppm and then meet feed requirements
of the cryogenic separation [25].

The new process employs nitrogen cycle refrigeration technology to separate the methane [26].
Nitrogen provides most of the cooling capacity through the adiabatic expansion cycle in the turbine
expander. A double column cryogenic distillation process is used for separation of syngas and LNG [27],
as shown in Figure 5. In the double column process, the washing column and the CH4-CO distillation
column are packed columns. The top outlet of the washing tower is syngas with methane content less
than 1%. The cold energy is recovered through a heat exchanging system before sending to methanol
synthesis and be used for exchange heat from input gas.
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Figure 5. Process flow diagram of CTLNG-M.

The stream extracted from the bottom of the washing tower mainly consists of methane and
carbon monoxide. It is sent to the CH4-CO distillation column for methane separation.

In the CH4-CO distillation column, the condensed liquid stream at the top of the column is
partially used as the reflux, and the other part enters the washing column as recycling stream at the top
of the column. The main component of the non-condensable gas at the top of this column is CO with
the concentration of 70%. In the bottom of tower, a part of LNG returns to the circulation inside the
tower for improving product quality with higher CH4 content. The other part is cooled to −163 ◦C
through the heat exchanger.

The syngas from the Lurgi gasifier reaches the standard for methanol synthesis through the use
of Rectisol and the cryogenic separation unit. After compression, components in syngas react to the
product methanol with copper-based catalyst. The main equations are shown as below.

CO + 3H2 = CH3OH + H2, ΔH = −90.64 kJ/mol. (2)

CO2 + 3H2 = CH3OH + H2O, ΔH = −49.47 kJ/mol. (3)

3. Modeling and Simulation

As has been mentioned above, there are four main units involved in the CTLNG-M process.
Namely coal gasification, acid gas removal, cryogenic separation, and methanol synthesis unit. The
detailed simulation of coal gasification and the acid gas removal unit can be found in our group’s
previous work [28–30]. Consequently, this paper gives modelling and simulation results for two added
units, as the cryogenic separation and methanol synthesis unit.

The coal quality parameters are shown in Table 2.

Table 2. Proximate and ultimate analyses of Shenmu coal. HHV: high heating value.

Proximate Analysis (wt.%, ad) Ultimate Analysis (wt.%, ad)
HHV, MJ kg−1

M FC V A C H O N S

Coal 18.6 50.7 34.28 7.02 66.48 4.29 13.16 1.00 0.50 26.73

3.1. Cryogenic Separation Unit

The role of the cryogenic separation unit used in the new process is to obtain purified LNG
products [31]. As illustrated in Figure 6, the clean syngas is firstly introduced to an absorption tower
for H2O and methane removal. After that, the resulted syngas (S1) is cooled into liquid phase. Most of
the remaining carbon monoxide component in S2 is sent to the methanol synthesis unit. Stream S4
from the bottom of T2-W mainly consists of CO and CH4, which needs further distillation in T3-D [32].
Stream S5 is then separated in to two parts, one is recycled to the top of T2-W, and another for methanol
synthesis. Stream S8 obtained from the bottom of the T3-D is the LNG product.
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Figure 6. Flow diagram of the cryogenic separation process.

In this paper, the SRK method is used to predict the physical properties of streams. T1-A is
modeled by the SEP module, T2-W and T3-F by the RadFrac module and T4-F by the Flash module.
The pressure of the top of T2-W is 36 bar, and the theoretical number of tower plates is set to 30, which
is twice the minimum theoretical number calculated by Aspen’s succinct calculation. The feeding
position is stage 14. In the T3-D, its pressure is 34 bar, and drop pressure is 7 bar. In order to maintain
the quality of the LNG product, the CH4/(CH4 + C2) ratio of steam gas in the bottom is less than 97.5%
(GB/T 19204-2003), which is controlled by adjusting the reflux ratio.

After compression, the nitrogen is liquefied. Through the throttle valve, the high-pressure liquid
nitrogen is expanded to a low-pressure state. In this process, the gas absorbs heat from the environment.
Therefore, this expansion process provides cooling capacity for the T2-W and the T3-D. The cryogenic
system uses two-stage nitrogen circulation expansion refrigeration, which is shown in Figure 7 [33].

Figure 7. Flow diagram of the nitrogen circulation refrigeration process.

Simulation results are given in Table 3. Steam S4 consists of 38.8% CH4 and 55.1% CO. Stream S4
is liquefied as the LNG product and outputted from the bottom of T3-D. In the LNG product, the purity
of CH4 can approach up to 97.6%, with the impurity content of CO and C2 less than 1%. The separation
is modeled and simulated compared with the data in the reference [34], with the error less than 5%.
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Table 3. Simulation results of the cryogenic separation unit.

Stream S1 S2 S3 S4 S5 S6 S7 S8

Temperature (◦C) 40 −169 −168 −162.3 −140.7 −158 −158 −93.5
Pressure (bar) 36 36 34 35 34 34 34 34

Mole Flow (kmol/h) 28,310 23,215 23,511 8950 8000 315 7685 4790
Mole Fraction (%)

N2 0.3 0.3 0.3 0.3 0.7 0.6 0.7 543 ppb
AR 0.1 0.2 0.2 0.3 0.6 0.3 0.6 18 ppm
CO 23.7 28.3 28.5 38.9 85 50.3 86.4 147 ppm
CO2 24 ppm 0 0 0 0 0 0 0
H2 58.5 70.7 70.4 4.1 7.3 47.6 5.6 0

CH4 17 0.6 0.6 55.1 6.4 1.2 6.6 97.6
C2H6 0.4 0 0 1.3 0 0 0 2.4
C2H4 5 ppm 0 0 15 ppm 0 0 0 27 ppm

3.2. Methanol Synthesis Unit

The flow chart of the methanol synthesis is shown in Figure 8. Methanol synthesis gas is, at first,
mixed with the stream of CO2 from the acid gas removal unit to adjust the H:C ratio. This is because
the syngas is rich in hydrogen and additional carbon source for methanol synthesis is needed until that
H:C ratio decreased to around 2.1 [35,36].

Figure 8. Flow diagram of the methanol synthesis unit.

According to the practical process in Datang Keqi project, the Lurgi low-pressure methanol
synthesis method is employed. The methanol syngas enters the reactor with the recycling gas. After
heat recovery of the outlet stream, the gas–liquid steam is separated by a separator to recycle the
unreacted syngas. The liquid part is the input stream of the methanol rectification unit. A small part of
unreacted gas is discharged as purge gas.

In this unit, the PR property method was selected in Aspen for modelling the methanol synthesis
unit. The purified syngas is pressurized to 8.2 MPa by the compressor modeled by the COMP
module [37]. The synthesis reactor was modeled by a plug flow model of RPlug. Table 4 shows the
simulation result of the process.
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Table 4. Simulation results of the methanol synthesis unit.

Stream SYNGAS CO2 UNREACT RECY PURGE MEOH

Temperature (◦C) 45 30 40 40 40 63.5
Pressure (bar) 82 34 71 71 71 6

Mole Flow (kmol/h) 23,408 710 54,875 47,193 1121 6573
Mole Frac (%)

N2 0.3 2 PPM 0.9 0.9 0.9 134 ppm
AR 0.2 61 PPM 0.6 0.6 0.6 209 ppm
CO 28.6 0 22.3 22.3 22.3 0.5
CO2 2.8 99 4.9 4.9 4.9 1.4
H2 68.7 0 69.9 69.9 69.9 1.4

CH4 0.2 0 0.6 0.6 0.6 284 ppm
CH3OH 0 0 0 0 0 99.7

The methanol synthesis gas with a H:C ratio of 2.1 is compressed to 82 bar and sent to the
reactor [28]. In this syngas, the CO2 volume fraction is less than 3%, which is in line with industrial
practice. During the process, 86% unreacted gas is recycled back to the reactor to improve the overall
conversion. As a result, the CTLNG-M process produces a total of 6573 kmol/h methanol product.

The key parameters in the CTLNG-M process are listed in Table 5. The carbon element conversion
ratio in the coal gasification unit is 99.9%. In the acid gas removal unit, the H2S removal ratio is 99.5%,
and the pressure is under 50 bar. In the cryogenic separation unit, the CH4 mole fraction is 97.5%, the
recycle ratio and purge ratio in the methanol synthesis unit are set as 0.86 and 0.05 separately.

Table 5. Main design parameters in the CTLNG-M simulation.

Unit Condition Design Parameters

Coal Gasification
Pressure (bar) 48

Temperature (◦C) 1400
Carbon Element Conversion Ratio (%) 99.9

Acid Gas Removal
H2S Removal Rate (%) 99.5

Pressure (bar) 50

Cryogenic Separation CH4 Mole Fraction (%) >97.5
Absorption Series 2

Methanol Synthesis
Temperature (◦C) 240
Recycling Ratio 0.86

Purge Ratio 0.05

3.3. Parameters Analysis

There are two important operation parameters in the new process. One is the temperature and
pressure at the bottom of the gas–liquid separation tower in the cryogenic separation unit, and another
one is the unreacted gas recycle ratio in the methanol synthesis unit. These two parameters are highly
corelated with the composition of syngas and methanol production. These two parameters have
significant impact on the composition of syngas and methanol production, which are analyzed in detail
as follows.

Figure 9a,b shows the effect of operating temperature and pressure of T4-S on the composition of
syngas out from the cryogenic separation unit. For analysis, we fix the recycling ratio to 0.86.

It can be seen from Figure 9a that when the operating pressure of the tower is 31.1 bar, the H:C
ratio of syngas decreases from 2.25 to 2.1, and the content of inert gas increases from 0.68% to 0.88% as
the temperature rises from −175 to −155 ◦C. When the tower operating pressure is 21.1 bar, as shown
in Figure 9b, the H:C ratio is from 2.25 to 1.95, and the content of inert gas increased from 0.68% to
0.95%. The trend of syngas composition changing is similar under different operating pressures.
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(a) 

 
(b) 

Figure 9. (a,b) Effect of temperature and pressure on the H:C ratio and inert gas concentration.

However, the H:C ratio of syngas for methanol synthesis should not exceed 2.1 [38]. When the
H:C ratio decreases to 2.1 and the pressure is 31.1 bar, the increase of inert gas content is less than that
at 21.1 bar. Considering that accumulation of inert gas in syngas will reduce methanol production [17],
in this paper the operating pressure is set to 31.1 bar, and the operating temperature is set to −158 ◦C.

We then study the effect of the unreacted gas recycling ratio to the conversion (a) and the
compression duty for gas recycling (b), as shown in Figure 10a,b.

The productivity of methanol shows an upward tendency with the recycling ratio increasing,
which indicates that a higher carbon utilization efficiency can be achieved by adjusting that ratio. The
results confirm a good match with the previous study of Man et al. (2016) [39]. However, with more
gas recycled, the units will consume more compression duty, as shown in Figure 10b.

Figure 10a shows that, when the recycle ratio increases from 0.50 to 0.86, the methanol production
increases slowly, and when the cycle ratio is more than 0.86, the methanol production increases
rapidly and the energy consumption increases rapidly. In order to balance the capacity and energy
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consumption of the system, in this paper, 0.86 is chosen as the recycle ratio of unreacted methanol gas
in this unit.

(a) 

(b) 

Figure 10. (a,b) Effect of recycling ratio on methanol productivity and compressor duty.

All results at key points of the CTLNG-M process are shown in Table 6. After dehydration and
cooling, the crude syngas of 42,338 kmol/h is sent to the acid gas removal unit. In this unit, the CO2 is
removed and the content of CO2 is reduced to 20 ppm and that of the H2S less than 1 ppm. The clean
syngas flow (SNYGAS-C) is 28,310 kmol/h with the H:C ratio of 2.47. This stream enters the cryogenic
separation unit and is cooled to −168 ◦C. CH4 is separated out of this unit as the LNG product of
4790 kmol/h, denoted by stream S8 in this figure. The yearly output of LNG is 642,000 tons. After
separation, CH4 content in the syngas is reduced to 0.6% before entering the methanol reactor. This
input stream is mixed in this new process with the CO2 stream from the acid gas removal unit. Finally,
the syngas has its H:C ratio at 2.1 and the total yearly methanol output of 1.368 million tons.
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4. Discussion

The CTLNG-M process input consists of 4.656 million tons/a raw coal, which remains the same
amount as a benchmark CTSNG process, meanwhile, the outputs consist of 1,367,800 tons/a of methanol
and 642,000 tons/a of LNG. The benchmark has the same input amount of coal and outputs consisting
of 2 billion Nm3 nature gas only. Based on the simulations, we compare these two processes with
respect to energy efficiency, carbon element utilization rate, energy consumption, and economic benefit,
as given in Table 7. In the following section, we explain the definition of the indexes and analyze the
performances of these two processes.

Table 7. System performances parameters of CTLNG-M and CTSNG.

Items CTLNG-M CTSNG Units

Input
Coal 4656.0 4656.0 103 tons/a

Steam 1343.9 1856.8 103 tons/a
Electricity 109.5 77.3 MW

Output
Methanol 1367.8 0 103 tons/a

LNG 642.1 0 103 tons/a
SNG 0 20.0 108 NM3/a

CO2 Emission 580.0 710.8 103 tons/a
Element Utilization (C) 39.6% 34.7% -

Product Energy 9157.7 7850.0 GJ/h
Energy Efficiency 53.1% 50.4% -

4.1. Energy Efficiency

According to the first law of thermodynamics, energy efficiency is defined as the ratio of the
energy of effective products (E0) to the energy of input raw materials (Ei), as given by Equation (4). [40].

η =

∑
EO∑
Ei
× 100%, (4)

where E0 is the product energy (MW) of chemical process and Ei is the raw material energy (MW) of
chemical process. In this paper, the energy of raw materials and products is calculated by the high
heating value (HHV). In the CTLNG-M process, the source of input energy includes raw coal, electricity,
and steam. Thereby, the outputs of energy are LNG and methanol. Methanol is a widely-used platform
chemical product with a high calorific value of 22.7 GJ/ton. LNG is an energy product and mainly used
for urban gas or power generation. It has a high calorific value of 54.6 GJ/ton. Methane is also used as
fuel, and the high heating value of the gas conforms to the natural gas GB17820-2012 standard which is
31.4 MJ/m3.

According to Equations (3) and (4), the product energy of the CTLNG-M process is 9158 GJ/h, and
the energy efficiency is 53.1%. The product energy of the CTSNG process is 7850 GJ/h, and its energy
efficiency is 50.4%. It shows that the new CTLNG-M process has a higher efficiency of 3% than that of
the conventional CTSNG process.

4.2. Element Utilization Ratio

In a coal-based chemical process, the C element in coal is transformed into a chemical product.
Thus, it is important to analyze the C resource utilization efficiency to represent the resource utilization.
The element C converted into methanol in coal is defined as the effective C, and the element C
discharged in the form of CO2 or waste residue is defined as the ineffective C. The ratio of the carbon
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mole flow in the product to the mole flow in the raw material is defined as carbon efficiency λ, which
can be represented by Equation (5) [41].

λ =

∑
FO∑
Fi
× 100%, (5)

where F0 is the mole flow of carbon in methanol and LNG products and Fi is the mole flow of carbon
in coal.

Figure 11 shows the carbon elemental balance in the new process. It shows that the input molar
flow in raw material coal of CTLNG-M system is 27,416 kmol/h. The molar flow of carbon in the crude
syngas is 27,141 kmol/h after gasification, and gets 11,749 kmol/h carbon elements when washed with
methanol at a low temperature. In the cryogenic separation unit, the molar flow of carbon in the LNG
product is 4284 kmol/h. Remaining clean syngas is mixed with the pure CO2 from the acid gas removal
unit and the molar flow of carbon in the methanol syngas is 6967 kmol/h. In this case, CO2 through the
acid gas removal process, is separated into two parts. Partial CO2 is then removed from gas emission,
and recycled in the synthesis process to convert the final methanol product. The methanol syngas
re-enters the methanol synthesis unit which contains 6573 kmol/h carbon in the methanol products.

Figure 11. Carbon element flow in the process of GTLNG-M.

According to Equation (5), the carbon element efficiency of the new process is 39.6%. This ratio is
5.2% higher than that of the CTSNG process. This is mainly because CO2 emission has been partially
converted into product. In the conventional process, all syngas has to be converted to only synthesized
natural gas (SNG), which requires the H:C ratio of 3.1 using the element balance equation. This is
higher than the ratio in the syngas output from the Lurgi gasification as 2.7. It is necessary for the
CTSNG process to use the water–gas shift unit to increase the ratio to 3.1 for methanation reaction.
In this course, CO2 emission is increased. However, in the new coproduction process, methanol is
present as a suitable product from chemical synthesis through which product methane is separated
and cryogenically cooled to directly produce the LNG product. The remaining syngas is only used
for methanol synthesis, which requires a lower H:C ratio of 2.1. In this case, the syngas has excessive
hydrogen. We then introduce CO2 into the syngas to adjust the ratio. In this study, 209 kmol/h CO2 is
converted to methanol.

4.3. Energy Consumption Analysis

As has been stated in the above discussion, the CTLNG-M process has a higher energy and
carbon utilization ratio than CTSNG process. Moreover, considering the new process is under a
coproduction design with an added cryogenic separation unit, which is specially needed at low
temperature environment and; therefore, consumes more electricity, quantitative analysis for energy
use is a necessity.

The energy consumption is defined as utilities consisting of steam cost and electricity cost.
According to our calculation, the steam cost in CTLNG-M is 1.34 million tons/a, and the electricity
consumption is 110 MW, while the same in the CTSNG process are, respectively, 1.86 million tons/a and
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77 MW. For a more convenient comparison, both steam cost and electricity consumption are converted
to the same units as MJ/a, as shown in Figure 12.

Figure 12. Energy consumption of the CTLNG-M and CTSNG processes.

In Figure 12, the CTLNG-M process consumes 4.3 × 109 MJ of steam and 9.5 × 109 MJ of electricity
for a year, and the CTSNG process consumes 5.9 × 109 MJ of steam and 6.7 × 109 MJ of electricity. It
shows that the coproduction system has a lower steam cost of about 1.6 × 109 MJ for per year, which
is mainly because of a flexible way to integrate heat exchange when there is not only one route for
product processing [42]. However, more electricity is consumed in the new process. It is because the
nitrogen circulation refrigeration process needs more power assistance, as modelling data indicates.
Since there is no power that can be generated within the system, it takes more capital investment,
which needs to be further analyzed.

To summarize, the total energy consumption in general increased by 8.7%. The coproduction
process has an advantage on utility usage due to integration of a heat exchanger and flexible distribution
flow between different product processing. However, in the specific case of CTLNG-M, a higher
electricity consumption is due to compression work in the added cryogenic separation unit. In total,
the increased electricity consumption cannot be outweighed by the decrease in the steam cost, and the
energy demand gap is 1.2 × 109 MJ/a, which indicates more investment on various costs in the new
coproduction process and a further economic analysis is needed for profitability measurement.

4.4. Economic Analysis

4.4.1. Total Capital Investment

The total capital investment (TCI) for a given construction project mainly includes fixed capital
investment and variable cost. The investment for manufacturing and plant facilities are defined as
the fixed capital investment, while those for the plant operation are the working capital [43]. The
equipment investment of the system can be calculated by Equations (6) and (7) based on the benchmark
investment of the major equipment listed. The total investment can then be derived from the scale
factor ( (See Tables A1 and A2 in Appendix.).

EI =
∑

j

θ·EIr
j ·(

Sj

S r
j
)sf, (6)
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TCI = EI·
⎛⎜⎜⎜⎜⎜⎝1+

n∑
i=1

RFi

⎞⎟⎟⎟⎟⎟⎠, (7)

where EI is the equipment investment (CNY), θ is the localization factor, EIr
j is the benchmark equipment

investment of the j unit, Sj is the scale of the j unit, S r
j is the base scale of the j unit, TCI is the total

investment, and RFi is the proportionality factor of the investment composition i.
As shown in Figure 13, based on the same input of raw coal, the total investment of the CTSNG

project is 16.62 billion CNY, and the CTLNG-M project is 13.66 billion CNY, which is 17.8% lower
than CTSNG. This is because the new process eliminates the water–gas shift unit compared to the
single-production coal gasification process, so that the carbon emission is less and the amount of gas
processed by the acid gas removal unit is decreasing compared to the original CTSNG process. The
corresponding investment is also reduced. At the same time, the CTLNG-M process uses a nitrogen
expansion refrigeration process, with mature technology and low investment. Therefore, the cryogenic
unit equipment and related investment are relatively low, and the total amount of process investment
is correspondingly reduced, which is more suitable for CTSNG projects and has economic advantages.

Figure 13. Capital investment of CTLNG-M and CTSNG.

4.4.2. Internal Rate of Return

Internal rate of return (IRR) is another important index for evaluation of economic performance,
which takes into account the net present value and the service life of processing route into account [44].
A dynamic evaluation method is taken in this paper, the calculation is as follows.

NPV =
m∑

t=0

(CI −CO)t

(1 + i)t , (8)

NPV =
m∑

t=0

(CI −CO)t

(1 + IRR)t = 0, (9)

where CI is the net cash inflow in the t year, CO is the net cash outflow; m is the project’s life time; i is
the benchmark rate of return. NPV stands for net present value (NPV), which refers to the net cash
flow generated annually by a technical solution throughout its life cycle. The net cash flow generated
each year is converted to the present value at the base time by a specified base discount rate i0.
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Inner rate of return (IRR) can usually be calculated by interpolation method. It represents the
discount rate when the cumulative present value of the net cash flow of the project is equal to zero
in the whole calculation period. IRR is a dynamic index to evaluate the economic feasibility of new
projects. It is usually compared with the base rate of return to determine whether the new chemical
process is feasible. In this paper, i is set to 12% [45]. If the IRR is larger than the base rate of return i,
the process is economically feasible and achieves the lowest level of return on investment. In addition,
with the increase of internal rate of return, the obtained benefit of the process will also increase.

The IRRs of the CTLNG-M and CTSNG processes are compared in Figure 14, which are higher
than the industrial criterion of 12%. Specifically, the IRR of the CTSNG process is 13%, which is slightly
higher than 12%, and accords with the current status of the CTSNG project. However, the IRR of the
CTLNG-M process is 19%, which increased by 6%, so this process has higher profit.

 
Figure 14. Inner rate of return (IRR) of the CTLNG-M and CTSNG processes.

5. Conclusions

This paper proposes a system of coproduction for LNG and methanol. The aim was to find
improvements to the low-earning CTSNG process using the same raw material but producing a
low-margin, single SNG product. In the new coproduction process, there are two innovative aspects.
On the one hand, the syngas is firstly separated to the LNG product and the lean-methane syngas
is then used for methanol synthesis. To realize this improvement, a cryogenic separation unit is
added. Besides, the syngas with little CH4 has a higher hydrogen component than that for methanol
synthesis. Thereby, CO2 is used to supply an additional carbon element to the methanol synthesis.
On the other hand, the methanation unit is removed, while the process still outputs a product of
the high-valued form of methane as the LNG. In the case study, we modeled and simulated the key
units of the CTLNG-M process with 642,000 tons/a LNG and 1.368 million tons/a methanol product,
compared to the CTSNG process with the same coal processing coal capacity and 2 billion NM3/a SNG.
In element efficiency analysis, the carbon efficiency of the new process increases from 34.7% to 39.6%,
with corresponding decrease of carbon emission by 130,000 tons per year. Because of the additional
energy consumption for gas compression, the energy efficiency of the new process is at the same level
with the CTSNG process.

In economic analysis, the IRR of the CTSNG process is 13% while the IRR of the CTLNG-M process
is 19%. The new process brings much higher economic benefits. This is because the new process
produces a higher valued product and saves the carbon resource during methanol synthesis. Moreover,
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the new process has 17.8% reduction of investment compared to the CTSNG process. Thus, this is
a promising solution for coal chemical processes based on Lugri gasification technology, with more
economic benefit and less investment.
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Appendix A

Table A1. Summary of investment data for main equipment components.

Unit Scaling Parameter EIr
j Sj θ SCTLNG-M SCTSNG

Gasification Coal Input 4.84 39.2 0.8 161.7 161.7
Acid Gas Removal CO2 Absorption 2.03 2064.4 0.65 1201.1 1174.5

Cryogenic Separation Output Flow Rate 3.23 21.3 0.5 21.79 0
Methanol Synthesis Syngas Flow Rate 1.26 10,810 0.65 6628.6 0

Water–Gas Shift MAF Coal Input (LHV) 3.18 1377 0.67 0 4322.2
Methanation Syngas Flow Rate 1.26 10,810 0.65 0 8011

Table A2. Ratio factors for capital investment.

Component Ratio Range (%) Factor (%)

1. Direct Investment

Equipment 15~40 21
Installation 6~14 10
Instruments and Controls 2~8 5
Piping 2~20 12
Electrical 2~10 6
Building (including Service) 3~18 15
Land 1~2 1

2. Indirect Investment

(2.1) Engineering and Supervision 4~21 10
(2.2) Construction Expenses 3~16 9
(2.3) Contractor’s Fee 2~6 4
(2.4) Contingency 5~15 7

3. Fixed Capital Investment Direct + Indirect 100
4. Working Capital 10~20 17
5. Total Capital Investment Fixed + Flow 117
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44. Krawczyk, P.; Howaniec, N.; Smoliński, A. Economic efficiency analysis of substitute natural gas (SNG)
production in steam gasification of coal with the utilization of HTR excess heat. Energy 2016, 114, 1207–1213.
[CrossRef]

45. NBS (National Bureau of Statistics). China Energy Statistics Yearbook; China Statistics Press: Beijing, China,
2013; pp. 22–25. (In Chinese)

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

188



processes

Article

Statistical Process Monitoring of the Tennessee
Eastman Process Using Parallel Autoassociative
Neural Networks and a Large Dataset

Seongmin Heo and Jay H. Lee *

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and
Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
* Correspondence: jayhlee@kaist.ac.kr

Received: 3 May 2019; Accepted: 21 June 2019; Published: 1 July 2019

Abstract: In this article, the statistical process monitoring problem of the Tennessee Eastman process
is considered using deep learning techniques. This work is motivated by three limitations of the
existing works for such problem. First, although deep learning has been used for process monitoring
extensively, in the majority of the existing works, the neural networks were trained in a supervised
manner assuming that the normal/fault labels were available. However, this is not always the case in
real applications. Thus, in this work, autoassociative neural networks are used, which are trained in
an unsupervised fashion. Another limitation is that the typical dataset used for the monitoring of the
Tennessee Eastman process is comprised of just a small number of data samples, which can be highly
limiting for deep learning. The dataset used in this work is 500-times larger than the typically-used
dataset and is large enough for deep learning. Lastly, an alternative neural network architecture,
which is called parallel autoassociative neural networks, is proposed to decouple the training of
different principal components. The proposed architecture is expected to address the co-adaptation
issue of the fully-connected autoassociative neural networks. An extensive case study is designed
and performed to evaluate the effects of the following neural network settings: neural network size,
type of regularization, training objective function, and training epoch. The results are compared with
those obtained using linear principal component analysis, and the advantages and limitations of the
parallel autoassociative neural networks are illustrated.

Keywords: process monitoring; nonlinear principal component analysis; parallel neural networks;
autoassociative neural network; big data

1. Introduction

Statistical process monitoring is one of the most intensely-studied problems for the modern
process industry. With the rising need for sustainable operation, it has been attracting extensive
research effort in the last few decades [1,2]. The key step of statistical process monitoring is to define
normal operating regions by applying statistical techniques to data samples obtained from the process
system. Typical examples of such techniques include principal component analysis (PCA) [3–6], partial
least squares [7–9], independent component analysis [10,11], and support vector machine [12,13]. Any
data sample that does not lie in the normal operating region is then classified as a fault, and its root
cause needs to be identified through fault diagnosis.

Recently, deep learning and neural networks have been widely used for the purpose of
statistical process monitoring, where both supervised and unsupervised learning algorithms have
been implemented. In designing process monitoring systems in a supervised manner, various types of
neural networks have been used, such as feedforward neural networks [14], deep belief networks [15],
convolutional neural networks [16], and recurrent neural networks [17]. In the case of unsupervised
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learning, the autoassociative neural network (also known as an autoencoder), which has been proposed
as a nonlinear generalization of PCA [18], is typically used [19–21]. While the traditional statistical
approaches typically rely only on the normal operating data to develop the process monitoring
systems, most of the deep learning-based process monitoring studies have adopted supervised learning
approaches. However, in the real industrial processes, it is difficult to obtain a large number of data
samples for different fault types, which can be used for the training of deep neural networks. Thus, it
is important to examine rigorously the potential of autoassociative neural networks as a basis for the
design of process monitoring systems.

In the process systems area, the Tennessee Eastman (TE) process, a benchmark chemical process
introduced by Downs and Vogel [22], has been a popular test bed for process monitoring techniques.
There already exist a few studies where the process monitoring systems for this process are designed
on the basis of autoassociative neural networks [23–25]. However, considering the complexity of
the neural network training, these studies have two limitations. First, a rigorous case study has not
been performed to evaluate the effects of different neural network settings, such as neural network
hyperparameters and training objective functions, which can have great impact on the performance of
the process monitoring systems. Furthermore, a few thousand normal training samples were used to
train neural networks with much more parameters, ranging from a hundred thousand to a million
parameters. A larger dataset is required to investigate the effectiveness of unsupervised deep learning
for the statistical process monitoring. In addition to the above limitations, there is another issue that is
directly related to the structure of autoassociative neural networks. It has been reported that there is a
high chance for the principal components, which are extracted using autoassociative neural networks,
to be redundant due to the co-adaptation in the early phase of neural network training [18]. The
objective of this work is to address these limitations.

The rest of the article is organized as follows. First, the concept of linear PCA is briefly explained,
and how it can be used for the statistical process monitoring is discussed. Then, the information
on autoassociative neural networks is provided, and the parallel autoassociative neural network
architecture, which was proposed in our previous work [26] to alleviate the co-adaptation issue
mentioned above, is described. This is followed by the description of the statistical process monitoring
procedure using autoassociative neural networks. Finally, a comprehensive case study is designed
and performed to evaluate the effects of different neural network settings on the process monitoring
performance. The dataset used in this study has 250,000 normal training samples, which is much larger
than the ones considered in the previous studies.

2. Principal Component Analysis and Statistical Process Monitoring

2.1. Linear Principal Component Analysis

Let us first briefly review the concept of linear PCA. PCA is a statistical technique that decorrelates
the original variables, resulting in a set of uncorrelated variables called principal components. Let
x be a sample vector of m variables and X be a data matrix whose rows represent n sample vectors.
Assuming that each column of X has zero mean and unit variance, the singular value decomposition
can be applied to the sample covariance matrix:

1
n− 1

XTX = PΛPT (1)

where Λ is a diagonal matrix that contains the eigenvalues of the sample covariance matrix on its
main diagonal and P denotes an orthogonal matrix whose columns are the eigenvectors of the sample
covariance matrix. In the context of PCA, P is called the loading matrix since its column vectors can be
used to extract principal components from the original data as follows:

T = XP (2)
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where T represents the score matrix whose elements are the principal component values.
Let λi be the diagonal element in the ith row of Λ, and let us assume that Λ is arranged in a

descending order (i.e., λ1 ≥ λ2 ≥ · · · ≥ λm) so that the jth column of P corresponds to the direction with
the jth largest variance in the principal component space. Then, we can partition the loading matrix
into two blocks as below:

P =
[

PPC PR
]

(3)

where PPC and PR contain the first l columns and the remaining columns of P, respectively. These two
submatrices can be respectively used to map the original data onto the lower dimensional principal
component space and residual space (of dimension l and dimension n-l, respectively):

TPC = XPPC
TR = XPR

(4)

where TPC and TR are the first l columns and the remaining columns of T, respectively. In what follows,
we explain how linear PCA can be used for statistical process monitoring.

2.2. Statistical Process Monitoring Using Linear PCA

In the PCA-based process monitoring, a new data sample is first projected onto the lower
dimensional principal component space and the residual space [27]. Then, it is evaluated whether
the new sample lies in the normal operating range in both spaces. Hotelling’s T2 and Q (or squared
prediction error) statistics are typically used to define the normal operating range in the principal
component space and the residual space, respectively, for such evaluation. These statistics can be
computed by the following equations:

T2 = xPPCΛ−1
PCPT

PCxT

Q = xPRPT
RxT (5)

where ΛPC represents a diagonal matrix formed by the first l rows and columns of Λ.
The upper control limit for the T2 statistic is given as [28]:

T2
α =

l(n2 − l)
n(n− l)

Fα(l, n− l) (6)

where Fα(l, n− l) represents the α percentile of the F-distribution with l and n-l degrees of freedom.
The Q statistic has the upper limit of the following form [29]:

Qα = gχ2
α(h) (7)

where:
g = θ2/θ1

h = θ2
1/θ2

θi =
m∑

k=l+1
λi

k, i = 1, 2
(8)

and χ2
α(h) is the α percentile of the χ2-distribution with h degrees of freedom.

If a very large number of data samples is available, the mean and covariance estimated from the
data will be very close to the true values of the underlying probability distribution. In this case, the
upper control limit for T2 statistic takes the following form [30]:

T2
α = χ

2
α(l) (9)
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while the upper control limit for the Q statistic can be approximated by the following equation [29]:

Qα = gχ2
α(h)

g =
σ2

R
2μR

h =
2μ2

R
σ2

R

(10)

where μR and σR are the mean and standard deviation of the squared prediction errors (i.e., Q values)
obtained from the training dataset.

If any of the above control limits is violated, the new sample is classified as a fault. Once a fault is
detected, its root cause needs to be identified. The contribution plot is typically used to this end, where
the contribution of each variable to the T2 or Q statistic is calculated [31–33].

It is also important to select a proper number of principal components to be retained in the PCA
model. For such selection, various criteria are available in the literature including cumulative percent
variance [34], residual percent variance [35], parallel analysis [36], and cross-validation [37]. For a
detailed discussion on this subject, the readers are referred to the work by Valle et al. [38].

3. Statistical Process Monitoring Using Autoassociative Neural Networks

3.1. Nonlinear Principal Component Analysis Using Autoassociative Neural Networks

We now describe neural network-based nonlinear principal component analysis (NLPCA).
Kramer [18] proposed to use a special type of neural network, called the autoassociative neural network,
for NLPCA. As shown in Figure 1, an autoassociative neural network consists of five layers: input,
mapping, bottleneck, demapping, and output layers. Its goal is to learn the identity mapping function
to reconstruct its input data at the output layer. The problem of learning identity mapping becomes
non-trivial if the dimension of the bottleneck layer, f, is smaller than that of the original data, m.

Figure 1. Network architecture of the autoassociative neural network.

The first three layers of autoassociative neural network approximate the mapping functions,
which project the original data onto the lower dimensional principal component space, while the last
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two layers approximate the demapping functions, which bring back the projected data to the original
data space. The mathematical model of the autoassociative neural network has the following form:

ym = a(xW1 + b1)

t = ymW2 + b2

yd = a(tW3 + b3)

x̂ = ydW4 + b4

(11)

where x, ym, t, yd, and x̂ represent the vectors of input, mapping, bottleneck, demapping, and output
layers, respectively. W and b are weight matrices and bias vectors, respectively. The dimensions of all
the matrices and vectors are summarized in Figure 1. a denotes the nonlinear activation function. The
objective of autoassociative neural network training is to find optimal parameter values (i.e., optimal
values of W and b) that minimize the difference between the input and the output, i.e.:

E =

n∑
i=1

m∑
j=1

(
xij − x̂i j

)2
nm

(12)

which is also called the reconstruction error.

3.2. Alternative Neural Network Architecture: Parallel Autoassociative Neural Networks

It was pointed out by Kramer [18] that principal components extracted from an autoassociative
neural network can be redundant, as multiple principal components are aligned together in the
early stage of network training. To this end, in our previous work [26], we proposed an alternative
neural network architecture to address this limitation, which decouples the training of different
principal components. Such decoupling can be achieved by alternating the network architecture of the
autoassociative neural network as shown in Figure 2.

Figure 2. Alternative neural network architecture for parallel extraction of principal components.

In this network architecture, all the hidden layers are decomposed into f sub-layers to form f
decoupled parallel subnetworks. Each subnetwork extracts one principal component directly from the
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input and reconstructs the pattern that it captures. Then, the outputs from all the subnetworks are
added up to reconstruct the input. The mathematical model of this network architecture has the same
form as the one in Equation (11) with the structural changes to the weight matrices and bias vectors as
below:

W1 =
[

W11 W12 · · · W1 f
]

W2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
W21 0 · · · 0

0 W22 · · · 0
...

...
. . .

...
0 0 · · · W2 f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
W31 0 · · · 0

0 W32 · · · 0
...

...
. . .

...
0 0 · · · W3 f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
W41

W42
...

W4 f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b1 =

[
b11 b12 · · · b1 f

]
b2 =

[
b21 b22 · · · b2 f

]
b3 =

[
b31 b32 · · · b3 f

]
b4 = b41 + b42 + · · ·+ b4 f

(13)

The readers are referred to [26] for more detailed information on the parallel autoassociative
neural networks (e.g., the systematic approach for the network decoupling and the advantages of the
decoupled parallel neural networks). The proposed network architecture has two potential advantages
over the existing one, which are relevant to the statistical process monitoring. First, due to the
decoupling, the proposed network architecture is expected to extract more independent (i.e., less
correlated) principal components and result in smaller reconstruction errors compared to the existing
architecture. If we can achieve smaller reconstruction error using the same number of principal
components, it can imply that the more essential information of the original data is captured. Thus,
there is a potential for small reconstruction error to translate into high process monitoring performance.
The other advantage is that the proposed network architecture requires much fewer parameters
compared to the existing architecture, given that the networks have the same size (i.e., the same number
of hidden layers and nodes). As a result, the proposed architecture is expected to be more robust to
network overfitting, which can lead to more consistent process monitoring performance. Furthermore,
the proposed architecture is more suitable for online implementation since it can compute the values
of the T2 and Q statistics more quickly than the existing architecture.

3.3. Objective Functions for Autoassociative Neural Network Training

Besides the reconstruction error in Equation (12), there exist several objective functions available
for the autoassociative neural network training. Here, we provide a brief description of two alternative
objective functions: hierarchical error and denoising criterion. Hierarchical error was proposed by
Scholz and Vigário [39] to develop a hierarchy (i.e., relative importance) among the nonlinear principal
components, which does not generally exist for the principal components obtained by using the
reconstruction error as the objective function. In linear PCA, it can be shown that the maximization of
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the principal component variance is equivalent to the minimization of the residual variance. Motivated
by this, the following hierarchical reconstruction error can be defined:

EH =

f∑
k=1

αkEk (14)

where Ek represents the reconstruction error calculated by using only the first k nodes in the bottleneck
layer and αk is a hyperparameter that balances the trade-off among the different error terms. The
problem of selecting the optimal values of αk can be computationally expensive, especially in the case
of a large bottleneck layer (i.e., large number of principal components). It was illustrated that setting
the values of αk to one can robustly balance the trade-off among the different error terms [39].

The denoising criterion was proposed by Vincent et al. [40] to extract more robust principal
components. To apply the denoising criterion, the corrupted input x̃ is generated by adding a noise,
such as Gaussian noise and masking noise, to the original input x. Then, the autoassociative neural
network is trained such that it can recover the original input from the corrupted input. It was
shown that, using the denoising criterion, autoassociative neural networks were able to learn a lower
dimensional manifold that captures more essential patterns in the original data. The three objective
functions are schematically summarized in Figure 3.

Figure 3. Schematic representation of different objective functions: (a) reconstruction error; (b)
hierarchical error; (c) denoising criterion.

3.4. Statistical Process Monitoring Using NLPCA

We can design a similar procedure for statistical process monitoring using autoassociative neural
networks. First, the original data matrix, which contains only the normal operating data, is partitioned
into two disjoint sets, one for the training and the other for the testing of neural networks. Then, an
autoassociative neural network is trained using the training dataset. Once the network training is
complete, a new data sample is provided to the trained autoassociative neural network to compute
principal components and residuals. The T2 and Q statistics can then be calculated as follows:

T2 =
f∑

k=1

t2
k
σ2

k

Q = (x− x̂)(x− x̂)T
(15)
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where tk is the value of the kth principal component for the new data sample and σk represents the
standard deviation of the kth principal component calculated from the training dataset.

Note that the upper control limits presented in the previous section are obtained by assuming
that the data follow a multivariate normal distribution. In the case of linear PCA, if the original
data are normal random vectors, the principal components and residuals also have multivariate
normal distributions. Thus, the limits in Equations (6)–(10) can be directly applied to the statistical
process monitoring using linear PCA. However, in the case of NLPCA, it is not guaranteed that the
principal components follow a multivariate normal distribution since they are obtained by nonlinear
transformations. Therefore, in this work, we take an alternative approach, where the upper control
limits for two statistics are directly calculated from the data without assuming a specific type of
probability distribution, given that a large dataset is available. For example, with 100 normal training
data samples, the second largest T2 (or Q) value is selected to be the upper control limit to achieve the
false alarm rate of 0.01.

4. Process Monitoring of the Tennessee Eastman Process

Let us now evaluate the performance of the NLPCA-based statistical process monitoring with the
Tennessee Eastman (TE) process as an illustrative example. The TE process is a benchmark chemical
process [22], which involves five major process units (reactor, condenser, compressor, separator, and
stripper) and eight chemical compounds (from A–H). A data sample from this process is a vector
of 52 variables, and there are 21 programmed fault types. In this work, Faults 3, 9, and 15 are not
considered since they are known to be difficult to detect due to no observable change in the data
statistics [41]. The large dataset provided by Rieth et al. [42] is used in this study, and the data structure
is summarized in Table 1. Note that Fault 21 is not included in this dataset, and thus not considered in
this study. This dataset includes data samples from 500 simulation runs as the training data of each
operating mode (normal and 20 fault types) and from another 500 simulation runs as the test data of
each operating mode. From each simulation run, 500 data samples were obtained for training, while
960 data samples were recorded for testing. Different types of faults were introduced to the process
after Sample Numbers 20 and 160 for the fault training and fault testing, respectively.

Table 1. Number of samples in each data subset.

Normal Training Normal Test Fault Training Fault Test

Simulation runs 500 500 500/fault type 500/fault type

Samples/run 500 960
20 normal 160 normal

480 faulty 800 faulty

All the neural networks were trained for 1000 training epochs with the learning rate of 0.001. The
rectified linear unit (ReLU) was used as the nonlinear activation function, which is defined as max(0,x).
The ADAM optimizer [43] and the Xavier initialization [44] were used for the network training. The
results reported here are the average values of 10 simulation runs.

In what follows, we first check the validity of the upper control limits estimated using the data
only. Then, the performance of the process monitoring using NLPCA is evaluated by analyzing the
effects of various neural network settings. Finally, the performance of the NLPCA-based process
monitoring is compared with the linear-PCA-based process monitoring.

4.1. Upper Control Limit Estimation

Let us first compare the upper control limits calculated from the F- and χ2-distributions and
from the data distribution. The objective of this analysis is to show that the dataset used in this study
is large enough so that the upper control limits can be well approximated from the data. Another
dataset, which contains only 500 normal training samples, is also used for illustration purposes and
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was obtained from http://web.mit.edu/braatzgroup/links.html. This dataset and the large dataset from
Rieth et al. [42] will be denoted as the S (small) dataset and L (large) dataset, respectively.

Equations (9) and (10) were used to calculate the upper control limits for the L dataset on the
basis of the F- and χ2-distributions, while those for the S dataset were computed using Equations
(6)–(8). Linear PCA was used to calculate the upper control limits in the principal component space
and the residual space with α = 0.99, and the results are tabulated in Table 2. Note that, for the L
dataset, the control limits obtained directly from the data had almost the same values as the ones
from the F- and χ2-distributions, while large deviations were observed for the S dataset. Thus, in the
subsequent analyses, the control limits obtained directly from the data will be used for both linear
PCA and nonlinear PCA.

Table 2. Upper control limits calculated from the probability distributions and the data.

L Dataset

l
T2 Statistic Q Statistic

F-Distribution Data Difference χ2-Distribution Data Difference

5 15.09 15.17 0.53% 54.89 54.99 0.20%
10 23.21 23.34 0.56% 42.06 41.85 0.51%
15 30.58 30.63 0.16% 34.46 34.41 0.15%
20 37.57 37.55 0.07% 27.23 27.23 0.02%
25 44.32 44.25 0.17% 19.82 19.90 0.44%
30 50.90 50.82 0.17% 12.99 13.03 0.31%
35 57.35 57.28 0.12% 7.13 7.21 1.14%

S Dataset

l
T2 Statistic Q Statistic

F-Distribution Data Difference χ2-Distribution Data Difference

5 15.43 14.47 6.20% 57.86 56.32 2.67%
10 24.05 21.41 11.00% 43.52 41.12 5.51%
15 32.10 28.14 12.34% 33.67 31.65 6.00%
20 39.93 36.62 8.31% 25.55 24.11 5.65%
25 47.70 43.38 9.06% 18.60 17.05 8.32%
30 55.46 49.55 10.65% 12.54 11.52 8.16%
35 63.27 55.58 12.15% 7.19 6.96 3.08%

4.2. Neural Network Hyperparameters

In this work, two neural network architectures were used to evaluate the NLPCA-based process
monitoring. The NLPCA methods utilizing the networks shown in Figures 1 and 2 will be referred to
as sm-NLPCA (simultaneous NLPCA) and p-NLPCA (parallel NLPCA), respectively. The performance
of the process monitoring was evaluated by two indices, fault detection rate (FDR) and false alarm rate
(FAR). The effects of the following hyperparameters were analyzed:

• Number of hidden layers
• Number of mapping/demapping nodes
• Number of nonlinear principal components

We designed four different types of neural networks to evaluate the effects of the hyperparameters
listed above. Types 1 and 2 had five layers (three hidden layers), while seven layers (five hidden layers)
were used for Types 3 and 4. In Types 1 and 3, the numbers of mapping/demapping nodes were fixed
at specific values, while they were proportional to the number of principal components to be extracted
for Types 2 and 4. The number of parameters for different network types are summarized in Table 3.
The numbers for the network structures represent the number of nodes in each layer starting from the
input layer. Note that, for the same network type, p-NLPCA always had fewer parameters compared
to sm-NLPCA due to the network decoupling.
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Table 3. Number of parameters for different neural network types.

Neural Network Structure
Number of Parameters

sm-NLPCA p-NLPCA

Network type 1 52-100-f -100-52 210f + 10,652 f + 10,852
Network type 2 52-100f -f -100f -52 200f 2 + 10,601f + 52 10,801f + 52
Network type 3 52-100-50-f -50-100-52 101f + 20,752 f + 10,852 + 10,000/f
Network type 4 52-100f -50f -f -50f -100f -52 10,100f 2 + 10,701f + 52 20,801f + 52

Tables 4 and 5 show the process monitoring results for Types 1 and 2 and Types 3 and 4, respectively.
Note that, in this analysis, only the average value of FDR (over all the fault types) is reported for brevity.

Table 4. Process monitoring results with varying the neural network size (with five layers).

Network Type 1: 52-100-f -100-52

sm-NLPCA p-NLPCA

T2 Q T2 Q

f FDR FAR FDR FAR FDR FAR FDR FAR

5 0.4019 0.0085 0.7340 0.0144 0.4360 0.0091 0.7332 0.0136
10 0.5060 0.0089 0.7357 0.0146 0.5191 0.0094 0.7366 0.0141
15 0.4614 0.0097 0.7459 0.0156 0.5807 0.0094 0.7383 0.0146
20 0.4975 0.0093 0.7487 0.0174 0.5773 0.0094 0.7443 0.0160

Network Type 2: 52-100f -f -100f -52

sm-NLPCA p-NLPCA

T2 Q T2 Q

f FDR FAR FDR FAR FDR FAR FDR FAR

5 0.4754 0.0098 0.7440 0.0221 0.4501 0.0094 0.7445 0.0190
10 0.5861 0.0081 0.7889 0.0661 0.5433 0.0087 0.7507 0.0229
15 0.6232 0.0081 0.8427 0.1698 0.5850 0.0083 0.7603 0.0295
20 0.6254 0.0081 0.9038 0.3610 0.5953 0.0091 0.7737 0.0364

Table 5. Process monitoring results with varying the neural network size (with seven layers).

Network Type 3: 52-100-50-f -50-100-52

sm-NLPCA p-NLPCA

T2 Q T2 Q

f FDR FAR FDR FAR FDR FAR FDR FAR

5 0.4393 0.0086 0.7382 0.0141 0.3748 0.0088 0.7413 0.0143
10 0.4942 0.0085 0.7376 0.0142 0.4701 0.0090 0.7600 0.0140
15 0.5078 0.0088 0.7479 0.0157 0.4911 0.0099 0.7572 0.0134
20 0.5264 0.0088 0.7423 0.0146 0.5060 0.0093 0.7429 0.0122

Network Type 4: 52-100f -50f -f -50f -100f -52

sm-NLPCA p-NLPCA

T2 Q T2 Q

f FDR FAR FDR FAR FDR FAR FDR FAR

5 0.4439 0.0079 0.8018 0.0895 0.3769 0.0090 0.7500 0.0254
10 0.5821 0.0069 0.9796 0.8005 0.4683 0.0095 0.7744 0.0470
15 0.6057 0.0075 0.9997 0.9928 0.4916 0.0089 0.7841 0.0537
20 0.6032 0.0078 1.0000 0.9993 0.5283 0.0093 0.8138 0.0961
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The main trends to note are:

• The FDR in the residual space always showed a higher value than that in the principal component
space, which matches the results reported in the literature where different techniques were
utilized [45,46].

• In all network types, the FDR in the principal component space was improved with diminishing
rates as the number of principal components increased.

• On the other hand, the number of principal components, which resulted in the best FDR value in
the residual space, was different for different types of neural networks. As the size of the network
became larger, the FAR in the residual space increased significantly, and sm-NLPCA completely
failed when Network Type 4 was used, classifying the majority of the normal test data as faults.
The main reason for this observation was the overfitting of the neural networks. Despite the
network overfitting, the FDR in the principal component space was increased by adding more
nodes in the mapping/demapping layers, while the FAR in the principal component space was
not affected by such addition.

Regarding the last point, in the case of the demapping functions, the input had a lower dimension
than the output, which made the problem of approximating demapping functions ill-posed. Thus,
it can be speculated that the network overfitting mainly occurred during the reconstruction of the
data (i.e., demapping functions were overfitted), leaving the results in the principal component space
unaffected by the network overfitting. In addition to this, it was observed that, by including more
nodes in the mapping/demapping layers, the average standard deviation of the principal components
was increased by a factor of 2~8. This implies that, in Network Types 2 and 4, the normal operating
region in the principal component space was more “loosely” defined (i.e., the normal data cluster had a
larger volume) compared to Network Types 1 and 3, which can make the problem of approximating the
demapping functions more ill-posed. It can also be a reason why the FAR in the principal component
space was consistently low regardless of the network size and the degree of network overfitting.

Table 6 shows the FDR values obtained by adjusting the upper control limits such that the FAR
became 0.01 for the normal test data. The following can be clearly seen:

• sm-NLPCA performed better than p-NLPCA in the principal component space, while p-NLPCA
was better in the residual space.

Table 6. Fault detection rates with adjusted upper control limits (FAR = 0.01 for normal test data).

Network Type 1 Network Type 2

sm-NLPCA p-NLPCA sm-NLPCA p-NLPCA

f T2 Q T2 Q T2 Q T2 Q

5 0.4082 0.7246 0.4406 0.7256 0.4767 0.7214 0.4526 0.7268
10 0.5098 0.7265 0.5208 0.7285 0.5917 0.7262 0.5472 0.7293
15 0.4629 0.7341 0.5823 0.7289 0.6284 0.7257 0.5891 0.7303
20 0.4992 0.7316 0.5791 0.7313 0.6305 0.7253 0.5975 0.7331

Network Type 3 Network Type 4

sm-NLPCA p-NLPCA sm-NLPCA p-NLPCA

f T2 Q T2 Q T2 Q T2 Q

5 0.4441 0.7297 0.3787 0.7314 0.4523 0.7225 0.3804 0.7234
10 0.4997 0.7294 0.4737 0.7507 0.5920 0.6951 0.4706 0.7245
15 0.5116 0.7350 0.4916 0.7490 0.6128 0.6887 0.4967 0.7261
20 0.5297 0.7327 0.5079 0.7377 0.6096 0.6866 0.5307 0.7251

By comparing the results from Network Types 1 and 3, adding additional hidden layers was shown
to improve the FDR in the principal component space for sm-NLPCA and the FDR in the residual
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space for p-NLPCA. However, the effects of such addition cannot be evaluated clearly for Network
Types 2 and 4. Thus, in what follows, we apply the neural network regularization techniques to
Network Types 2 and 4 and evaluate the effects of such techniques on the performance of NLPCA-based
process monitoring.

4.3. Neural Network Regularization

In this analysis, we consider three different types of neural network regularization: dropout and L1
and L2 regularizations. Dropout is a neural network regularization technique, where randomly-selected
nodes and their connections are dropped during the network training to prevent co-adaptation [47]. L1
and L2 regularizations prevent network overfitting by putting constraints on the L1 norm and L2 norm
of the weight matrices, respectively.

The process monitoring results for Network Types 2 and 4 are tabulated in Tables 7 and 8,
respectively. In the case of Network Type 2, dropout did not address the problem of overfitting for
p-NLPCA, and therefore, the results obtained using dropout are not presented here.

Table 7. Process monitoring results with neural network regularization (Network Type 2).

sm-NLPCA

No Regularization L1 Regularization L2 Regularization

T2 Q T2 Q T2 Q

f FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR

10 0.5861 0.0081 0.7889 0.0661 0.4870 0.0096 0.7358 0.0155 0.5151 0.0093 0.7358 0.0249
15 0.6232 0.0081 0.8427 0.1698 0.4867 0.0099 0.7411 0.0274 0.5288 0.0095 0.7403 0.0175
20 0.6254 0.0081 0.9038 0.3610 0.5352 0.0100 0.7448 0.0208 0.5867 0.0088 0.7443 0.0204

p-NLPCA

No Regularization L1 Regularization L2 Regularization

T2 Q T2 Q T2 Q

f FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR

10 0.5433 0.0087 0.7507 0.0229 0.5201 0.0087 0.7532 0.0234 0.5065 0.0087 0.7503 0.0237
15 0.5850 0.0083 0.7603 0.0295 0.5711 0.0087 0.7649 0.0321 0.5532 0.0086 0.7647 0.0333
20 0.5995 0.0091 0.7737 0.0364 0.5905 0.0090 0.7769 0.0401 0.5868 0.0090 0.7796 0.0420

Table 8. Process monitoring results with neural network regularization (Network Type 4).

sm-NLPCA

No Regularization L1 Regularization L2 Regularization Dropout

T2 Q T2 Q T2 Q T2 Q

f FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR

10 0.5821 0.0069 0.9796 0.8005 0.4086 0.0088 0.7360 0.0142 0.4881 0.0089 0.7535 0.0292 0.5091 0.0082 0.7435 0.0141
15 0.6057 0.0075 0.9997 0.9928 0.5507 0.0098 0.7375 0.0143 0.5697 0.0087 0.7685 0.0412 0.4866 0.0081 0.7600 0.0197
20 0.6032 0.0078 1.0000 0.9993 0.5870 0.0087 0.7331 0.0128 0.6159 0.0087 0.7975 0.0817 0.5346 0.0083 0.7852 0.0405

p-NLPCA

No Regularization L1 Regularization L2 regularization Dropout

T2 Q T2 Q T2 Q T2 Q

f FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR

10 0.4683 0.0095 0.7744 0.0470 0.4469 0.0090 0.7695 0.0363 0.4721 0.0085 0.7715 0.0452 0.4988 0.0091 0.7577 0.0208
15 0.4916 0.0089 0.7841 0.0537 0.4671 0.0092 0.7774 0.0412 0.4940 0.0094 0.7903 0.0638 0.5120 0.0095 0.7602 0.0191
20 0.5283 0.0093 0.8138 0.0961 0.5114 0.0096 0.7774 0.0347 0.5433 0.0086 0.8034 0.0766 0.5481 0.0094 0.7714 0.0216

• In most cases, neural network regularization degraded the process monitoring performance in the
principal component space with p-NLPCA of Network Type 4 regularized by dropout being the
only exception.
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• On the other hand, it dramatically reduced the FAR values in the residual space for sm-NLPCA,
while such reduction was not significant for p-NLPCA (the FAR in the residual space even
increased for Network Type 2). This indicates that overfitting was a problem for the residual space
detection using sm-NLPCA.

Table 9 shows the process monitoring results obtained by adjusting the upper control limits as
mentioned in the previous analysis. Overall, p-NLPCA performed better than sm-NLPCA, while
sm-NLPCA was better than p-NLPCA in the principal component space when Network Type 4 was
used. By comparing the results provided in Tables 6 and 9, it can be seen that having more nodes in
the mapping/demapping layers is only beneficial to the process monitoring in the principal component
space. Putting more nodes implies the increased complexity of the functions approximated by neural
networks. Thus, it makes the problem of approximating demapping functions more ill-posed and
has the potential to be detrimental to the performance of process monitoring in the residual space.
Although neural network regularization techniques can reduce the stiffness and complexity of the
functions approximated by neural networks [48], they seem to be unable to define better boundaries
for one-class classifiers.

Table 9. Process monitoring results with network regularization and adjusted upper control limits
(FAR = 0.01 for the normal test data).

Network Type 2

sm-NLPCA p-NLPCA

No
Regularization

L1 L2 Dropout
No

Regularization
L1 L2 Dropout

f T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q

10 0.5917 0.7262 0.4884 0.7254 0.5173 0.7248 - - 0.5472 0.7293 0.5239 0.7309 0.5113 0.7280 - -
15 0.6284 0.7257 0.4872 0.7266 0.5304 0.7268 - - 0.5891 0.7303 0.5746 0.7316 0.5577 0.7300 - -
20 0.6305 0.7253 0.5357 0.7236 0.5904 0.7248 - - 0.5975 0.7331 0.5932 0.7319 0.5897 0.7321 - -

Network Type 4

sm-NLPCA p-NLPCA

No
Regularization

L1 L2 Dropout
No

Regularization
L1 L2 Dropout

f T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q

10 0.5920 0.6951 0.4145 0.7279 0.4922 0.7249 0.5148 0.7357 0.4706 0.7245 0.4517 0.7285 0.4780 0.7235 0.5015 0.7372
15 0.6128 0.6887 0.5519 0.7294 0.5737 0.7244 0.4928 0.7419 0.4967 0.7261 0.4705 0.7309 0.4936 0.7245 0.5134 0.7422
20 0.6096 0.6866 0.5908 0.7277 0.6194 0.7225 0.5404 0.7492 0.5307 0.7251 0.5133 0.7338 0.5476 0.7256 0.5499 0.7483

4.4. Network Training Objective Function

Let us now evaluate the effects of different objective functions on the process monitoring
performance. For illustration purposes, only Network Type 4 was considered in this analysis. All the
values of αk were set to one for the hierarchical error, and the corrupted input was generated by using
a Gaussian noise of zero mean and 0.1 standard deviation for the denoising criterion. L2 regularization
and L1 regularization were used to prevent overfitting for sm-NLPCA and p-NLPCA, respectively.
Tables 10 and 11 summarize the process monitoring results obtained by using the autoassociative
neural networks trained with different objective functions.

The following are the major trends to note:

• The monitoring performance of sm-NLPCA in the principal component space became more
robust by using the hierarchical error, showing similar FDR values regardless of the number of
principal components.

• However, the FDR value in the principal component space scaled better with the reconstruction
error objective function. On the other hand, the monitoring performance of p-NLPCA in the
principal component space became more sensitive to the number of principal components with the
hierarchical error as the objective function. As a result, the FDR value in the principal component
space was improved when the number of principal components was 20.
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• While the hierarchical error provided a slight improvement to the monitoring performance in the
residual space for sm-NLPCA, it degraded the performance of p-NLPCA in the residual space.

• The denoising criterion was beneficial to both NLPCA methods in the residual space, improving
the FDR values when the upper control limits were adjusted. The monitoring performance of
p-NLPCA in the principal component space was not affected by using the denoising criterion,
while that of sm-NLPCA deteriorated.

Table 10. Process monitoring results with different neural network training objective functions.

sm-NLPCA

Reconstruction Error Hierarchical Error Denoising

T2 Q T2 Q T2 Q

f FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR

10 0.4881 0.0089 0.7535 0.0292 0.5869 0.0099 0.7312 0.0137 0.4203 0.0096 0.7347 0.0147
15 0.5697 0.0087 0.7685 0.0412 0.5940 0.0084 0.7367 0.0161 0.5253 0.0090 0.7393 0.0150
20 0.6159 0.0087 0.7975 0.0817 0.5918 0.0082 0.7628 0.0398 0.5821 0.0084 0.7483 0.0181

p-NLPCA

Reconstruction Error Hierarchical Error Denoising

T2 Q T2 Q T2 Q

f FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR

10 0.4469 0.0090 0.7695 0.0363 0.3854 0.0092 0.7705 0.0428 0.4260 0.0093 0.7374 0.0121
15 0.4671 0.0092 0.7774 0.0412 0.4736 0.0085 0.7877 0.0572 0.4749 0.0095 0.7445 0.0123
20 0.5114 0.0096 0.7774 0.0347 0.5397 0.0089 0.7975 0.0658 0.5122 0.0093 0.7469 0.0121

Table 11. Process monitoring results with different neural network training objective functions and
adjusted upper control limits (FAR = 0.01 for normal test data).

sm-NLPCA

Reconstruction Error Hierarchical Error Denoising

f T2 Q T2 Q T2 Q

10 0.4922 0.7249 0.5874 0.7241 0.4223 0.7258
15 0.5737 0.7244 0.5985 0.7259 0.5292 0.7295
20 0.6194 0.7225 0.5975 0.7281 0.5879 0.7315

p-NLPCA

Reconstruction Error Hierarchical Error Denoising

f T2 Q T2 Q T2 Q

10 0.4517 0.7285 0.3890 0.7235 0.4291 0.7323
15 0.4705 0.7309 0.4797 0.7258 0.4766 0.7393
20 0.5133 0.7338 0.5429 0.7245 0.5146 0.7412

4.5. Neural Network Training Epochs

In this analysis, the effects of neural network training epochs are analyzed. To this end, Network
Type 4 with 15 principal components was trained, and the neural network parameters were saved
at every 10 epochs. Figure 4 shows how different values evolve as the neural networks are trained.
For the reference case, the neural networks were trained without any regularization and with the
reconstruction error as the objective function. It can be clearly seen that the network overfitting (which
is captured by the difference between the solid and dashed black lines) resulted in high FAR values in
the residual space (which is captured by the difference between the solid and dashed red lines), while
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it did not affect the FAR values in the principal component space (which is captured by the difference
between the solid and dashed blue lines).

Figure 4. Change in the process monitoring results with respect to the training epoch.

Note the following:
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• Despite the decrease in the reconstruction error over a wide range of training epochs, the adjusted
FDR value in the residual space increased during only the first few training epochs and was kept
almost constant in the rest of the training.

• In some cases, there was even a tendency that the adjusted FDR value in the principal component
space decreased as the network was trained more.

Thus, during the network training, it was required to monitor both reconstruction error and
process monitoring performance indices, and early stopping needed to be applied as necessary to
ensure high monitoring performances. Nonetheless, from the above observations, it can be concluded
that the objective functions available in the literature, which focus on the reconstruction ability of the
autoassociative neural networks, may not be most suitable for the design of one-class classifiers. This
necessitates the development of alternative training algorithms of autoassociative neural networks to
improve the performance of neural-network-based one-class classifiers.

4.6. Comparison with Linear-PCA-Based Process Monitoring

Let us finally compare the NLPCA-based process monitoring with the linear-PCA-based one. For
the linear-PCA-based process monitoring, based on the parallel analysis [35], the number of principal
components to be retained was selected as 15. The same number of principal components was used in
the NLPCA-based process monitoring. For sm-NLPCA, the following setting was used: Network Type
2, no regularization, reconstruction error as the objective function. For p-NLPCA, the following setting
was used: Network Type 3, no regularization, reconstruction error as the objective function.

Table 12 tabulates the process monitoring results obtained using three different PCA methods.
Note that the upper control limits were adjusted to have FAR values of 0.01. The main trends
observed were:

• Compared to the linear PCA, the process monitoring results in both spaces were improved slightly
by using sm-NLPCA. The most significant improvements were obtained for Faults 4 and 10 in the
principal component space and Faults 5 and 10 in the residual space.

• On the other hand, p-NLPCA showed a lower performance than linear PCA in the principal
component space, while the performance in the residual space was significantly improved. The
adjusted FDR value in the residual space from p-NLPCA was higher than that from the linear
PCA for all the fault types, with Faults 5, 10, and 16 being the most significant ones.

Let us consider two cases that illustrate the advantages of p-NLPCA over the linear PCA as the
basis for the process monitoring system design. Figure 5 shows the Q statistic values (black solid
line) for one complete simulation run with Fault 5, along with the upper control limit (dashed red
line). Although both linear PCA and p-NLPCA detected the fault very quickly (fault introduced after
Sample Number 160 and detected at Sample Number 162), in the case of the linear PCA, the Q statistic
value dropped below the upper control limit after around Sample Number 400. The Q statistic value
calculated from p-NLPCA did not decrease much, indicating that the fault was not yet removed from
the system.
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Table 12. Detailed process monitoring results obtained using linear PCA and two NLPCA methods
(FAR = 0.01 for normal test data).

Fault ID
Linear PCA sm-NLPCA p-NLPCA

T2 Q T2 Q T2 Q

1 0.9926 0.9965 0.9931 0.9963 0.9891 0.9967
2 0.9848 0.9864 0.9849 0.9863 0.9841 0.9870
4 0.0916 0.9939 0.1375 0.9830 0.0939 0.9983
5 0.2404 0.1192 0.2461 0.2028 0.3312 0.7922
6 0.9896 1.0000 0.9939 1.0000 0.9968 1.0000
7 1.0000 0.9998 0.9994 1.0000 0.9990 1.0000
8 0.9637 0.9541 0.9634 0.9651 0.8827 0.9656
10 0.1960 0.1586 0.2436 0.1896 0.0860 0.2195
11 0.2953 0.6901 0.2995 0.6670 0.1415 0.7141
12 0.9785 0.9563 0.9773 0.9769 0.9008 0.9810
13 0.9353 0.9425 0.9378 0.9436 0.8974 0.9452
14 0.9549 0.9995 0.9457 0.9995 0.7661 0.9996
16 0.0706 0.0974 0.0944 0.1131 0.0361 0.1547
17 0.7177 0.8816 0.7173 0.8779 0.6200 0.8922
18 0.9270 0.9337 0.9270 0.9345 0.9131 0.9358
19 0.0819 0.0845 0.0431 0.1114 0.0222 0.1003
20 0.2535 0.4395 0.2775 0.4420 0.1271 0.4737

Average 0.6278 0.7196 0.6342 0.7288 0.5757 0.7739

The contribution plots of Q statistic for Fault 1, which involves a step change in the flowrate of the
A feed stream, are provided in Figure 6. In the case of the linear PCA, the variables with the highest
contribution to the Q statistic were Variables 4 and 6, which are the flowrates of Stream 4 (which
contains both A and C) and the reactor feed rate, respectively. Note that although these variables were
also highly affected by the fault, they were not the root cause of the fault. On the other hand, in the
case of p-NLPCA, the variables with the highest contribution to the Q statistic were Variables 1 and
44, which both represent the flowrate of the A feed stream, the root cause of the fault. Thus, it can be
concluded that the process monitoring using p-NLPCA showed some potential to perform better at
identifying the root cause of the fault introduced to the system.
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Figure 5. Process monitoring results in the residual space for Fault 5: (a) linear PCA; (b) p-NLPCA.

Figure 6. Contribution plots of Q statistics for Fault 1.
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5. Conclusions

The statistical process monitoring problem of the Tennessee Eastman process was considered in
this study using autoassociative neural networks to define normal operating regions. Using the large
dataset allowed us to estimate the upper control limits for the process monitoring directly from the
data distribution and to train relatively large neural networks without overfitting. It was shown that
the process monitoring performance was very sensitive to the neural network settings such as neural
network size and neural network regularization. p-NLPCA was shown to be more effective for the
process monitoring than the linear PCA and sm-NLPCA in the residual space, while its performance
was worse than the others in the principal component space. p-NLPCA also showed the potential of
better fault diagnosis capability than the linear PCA, locating the root cause more correctly for some
fault types.

There still exist several issues that need to be addressed to make autoassociative neural networks
more attractive as a tool for statistical process monitoring. First, a systematic procedure needs to be
developed to provide a guideline for the design of optimal autoassociative neural networks to be used
for the statistical process monitoring. Furthermore, a new neural network training algorithm may
be required to extract principal components that are more relevant to the process monitoring tasks.
Finally, the compatibility of different techniques to define the upper control limits, other than the T2

and Q statistics, needs to be extensively evaluated.
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Abstract: An intensified three-step reaction-separation process for the production of bio-jet diesel
from tryglycerides and petro-diesel mixtures is proposed. The intensified reaction-separation process
considers three sequentially connected sections: (1) a triglyceride hydrolysis section with a catalytic
heterogeneous reactor, which is used to convert the triglycerides of the vegetable oils into the
resultant fatty acids. The separation of the pure fatty acid from glycerol and water is performed by a
three-phase flash drum and two conventional distillation columns; (2) a co-hydrotreating section
with a reactive distillation column used to perform simultaneously the deep hydrodesulphurisation
(HDS) of petro-diesel and the hydrodeoxigenation (HDO), decarbonylation and decarboxylation
of the fatty acids; and (3) an isomerization-cracking section with a hydrogenation catalytic reactor
coupled with a two-phase flash drum is used to produce bio-jet diesel with the suitable fuel features
required by the international standards. Intensive simulations were carried out and the effect of
several operating variables of the three sections (triglyceride-water feed ratio, oleic acid-petro-diesel
feed ratio, hydrogen consumption) on the global intensified process was studied and the optimal
operating conditions of the intensified process for the production of bio-jet diesel were achieved.

Keywords: bio-jet diesel; co-hydrotreating; hydrodesulphurisation; hydrodeoxigenation;
reactive distillation

1. Introduction

The area of process system engineering (PSE) has been rapidly developing since the 1950s,
reflecting the remarkable growth of the oil, gas, petrochemical and biotechnological industries and
their increasing economical and societal impact. It can be said that the roots of this field go back to
the Sargent’s pioneering school in United Kingdom [1,2]. Modelling, simulation and optimization
(MSO) of large-scale (product or process) systems is a core technology to deal with the complexity
and connectivity of chemical processes and their products at multiple scales [3,4]. These technologies
have been implemented in easy-to-use software systems that allow the systematic solution for problem
solving practitioners. The systematic (explicit or implicit) generation, evaluation and integration
of a comprehensive set of design alternatives is considered a key concern for the optimal design.
This systematic integration associates the PSE strongly with its traditional focus in complete plants for
both, process intensification [5,6] and to chemical product design [7]. Specifically, process intensification
involves the development of novel apparatuses and techniques that, in comparison with those
commonly used, are expected to bring enhancements in manufacturing and processing, substantially
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reducing the equipment-size/production-capacity ratio, energy consumption, or waste production,
and ultimately resulting in cheaper, sustainable technologies [5]. Also, it is known that the whole scope
of process intensification generally can be divided into two areas: (i) process-intensifying equipment, such
as novel reactors, and exhaustive mixing, heat and mass transfer devices and, (ii) process-intensifying
methods, such as new or hybrid separations, integration of reaction and separation, heat exchange
or phase transition (i.e., reactive distillation), techniques using alternative energy sources (light,
ultrasound, etc.), and new process-control methods (such as intentional unsteady-state operation).

The concerns about energy demand are obliging the oil-based fuels consumer countries to
reconsider their energy policies to promote the investigation on trustworthy alternatives to conventional
fuels. Thus, the bio-jet diesel has arisen as an alternative for petro-diesel jet fuels used in the aviation
enterprises. Specifically, for the jet fuel, the International Air Transport Association (IATA) estimated
that the consumption of the jet diesel would increase every year by 5% till 2030 [8]. Also, due to the
growing of the flight demand and the strong regulations to diminish the CO2, IATA established a
carbon neutral reduction up to 50% by 2050. In this way, the bio-jet fuel obtained from vegetable oils of
from mixtures of vegetable oils and petro-diesel, can be contemplated as one of the most favourable
solutions to satisfy the global demand. To now, there has been identified four main routes to obtain
the bio-jet diesel: (i) oil-to-jet (deoxygenation of triglyceride and consequent hydrocracking), [9] (ii)
gas-to-jet (gasification/Fischer-Tropsch reaction followed by hydrocracking), [10] (iii) alcohol-to-jet
(dehydration of alcohols and successive oligomerization), [11] and (iv) sugar-to-jet (several catalytic
conversions of sugars) [12]. Table 1 shows the key conversion steps, the catalyst used, the companies
producing the jet-fuel and the feedstocks considered for each route to obtain bio-jet fuel.

For the conversion of oil to bio-jet fuel (OTJ), different type of oil feedstock has various converting
pathways. The common pathways include the hydrogenated esters and fatty acids (HEFA) and
catalytic hydrothermolysis (CH). The feedstocks for HEFA are non-edible vegetable oils, used cooking
oil, and animal fats. While the feedstocks for CH are algal oils or oil plant. HEFA is a process to
hydrotreat the triglycerides, saturated or unsaturated fatty acids in the non-edible vegetable oils,
used cooking oils and animal fats to produce bio-jet fuels. The process is generally divided into
two steps. The first step is converting unsaturated fatty acids and triglycerides into saturated fatty
acid by catalytic hydrogenation, the triglycerides occur a β-hydrogen elimination reaction to yield a
fatty acid during the process. The saturated fatty acid is converted to C15–C18 straight chain alkanes
by hydrodeoxygenation and decarboxylation. The co-products are propane, H2O, CO and CO2.
The early-developed catalysts for this step are noble metals supported with zeolites or oxides, and later
shifted to other transition metals, such as Ni, Mo, Co, Mo or their supported bimetallic composites due
to catalyst deactivation by poisoning, production of cracking species and process costs. The second
step of HEFA is the cracking and isomerization reactions: the deoxygenated straight chain alkanes
are further selectively hydrocracked and deep isomerized to generate highly branched alkanes mixed
liquid fuels. The common catalysts for this step are Pt, Ni or other precious metals supported by
activated carbon, Al2O3, zeolite molecular sieves. The bio-jet fuels produced by HEFA, as high energy
biofuels, can be directly used in flight engine even without blending. The fuel has high thermal
stability, good cold flow behaviours, high cetane number, and low tailpipe emissions, while has low
aromatic content, which would cause fuel low lubricity and fuel leakage problems. Another pathway
to convert algal or oil plant to jet fuel is CH, which is also named hydrothermal liquefaction (HTL).
The integrated process has three steps, including pretreatment of triglycerides, CH conversion and
post-refining steps. The pretreatments including conjugation, cyclization, and cross-linking, which
are aiming to improve the molecular structures. The products undergo a cracking and hydrolysis
reaction with the help of water and catalysts. Then it occurs catalytic decarboxylation and dehydration
during the CH process. Last, post-refining hydrotreating and fractionation are designed to convert
straight-chain, branched and cyclo-olefins into alkanes. The conversion process of lignocellulosic
biomass to jet-fuel have advantages in lowering cost, feasible availability and no competition with
food supplies. Hydroprocessed depolymerized cellulosic jet (HDCJ) is an oil upgrading technology
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to convert bio-oils produced from the pyrolysis or hydrothermal of the lignocellulose into a jet
fuel by hydrotreating. The main technology for bio-oil upgrading is a two-step hydroprocessing.
First, the bio-oil is hydrotreated with the help of catalyst under mild conditions. Organic could be
used to promote hydrodeoxygenation of bio-oil and overcome coke formation. Second, conventional
hydrogenation setup and catalyst were used under high temperature for obtaining hydrocarbon fuel.
The HDCJ process could produce high aromatic content, low oxygen content and few impurities jet
fuel. However, there is high hydrogen consumption and deoxygenation requirements in this process,
which can make a considerable expense. Moreover, the short catalyst lifetime and modest hydrocarbon
yields can be challenges for used in aviation.

For the conversion of gas to bio-jet fuel (GTJ) the Fischer-Tropsch (FT) process has been
commercially implemented. Fischer-Tropsch (FT) is a process to produce liquid hydrocarbon fuels from
syngas. The common process for FT could be divided into six procedures: feedstock pretreatments,
biomass gasification, gas conditioning, acid gas removal, FT synthesis and syncrude refining. The FT
synthesis can also be divided into high temperature FT and low temperature FT. The temperature for
high temperature FT is around 310–340 ◦C, and the products are main gasoline, solvent oil and olefins;
the temperature for low temperature FT is around 210–260 ◦C, the products are main kerosene, diesel
oil, lubricating base oil and naphtha fractions. Too low temperature of FT will format high quantities
of methane as a by-product. Typical pressures of FT process are in the range of one to several tens of
atmospheres. The high pressures will result the formation of long-chain alkanes. The FT fuel is free of
sulphur, nitrogen, has high specific energy, high thermal stability, and cause low emissions when used
for aviation. However, the disadvantages for the fuel are low aromatic content and less energy density,
which would also cause a low efficiency and high production cost for the process.

For the conversion of sugar to bio-jet fuel (STJ) the biotechnological process of convert sugars to
alkane-type fuels directly instead of firstly converting to ethanol intermediate, which is called Direct
Sugar to Hydrocarbons (DSHC) has been implemented commercially (see Table 1). The feedstock
for the DSHC are similar to the feedstock of ethanol production, including the sugar cane, beets and
maize. DSHC is a process to produces alkane-type fuels directly from sugars via fermentation. It is
different from the alcohol to jet pathway, which needs an alcohol intermediate. The technology is
developed based on the development of genetic engineering and screening technologies that enable to
modify the way microbes metabolize sugar. A complete conversion process of DSHC, involving six
major steps: pretreatment and conditioning, enzymatic hydrolysis, hydrolysate clarification, biological
conversion, product purification and hydroprocessing has been proposed [13]. The DSHC has a low
energy input due to the low temperature of the fermentation, while the fuel blend is limited (10%)
and not meet some performances standards and it is also identified as more suitable for production
high-value chemicals.

Finally, the conversion route to convert alcohols to bio-jet fuel (ATJ) use several processes
depending of the feedstock. The process of production hydrocarbons in the jet fuel range from the
alcohols generally undergoes a four-step upgrading process. First is the alcohol dehydration to
generate olefins, then the olefins are oligomerised in the presence of catalysts to produce a middle
distillate. Next, the middle distillates are hydrogenated to produce the jet-fuel-ranged hydrocarbons
and a final step is the distillation to purify the bio-jet fuel product. Commercial production always use
ethanol, butanol and isobutanol to be the intermediate to converse biomass to jet fuel. The economics
of alcohol to jet process is mainly affected by the way to produce alcohol, while the biochemistry way
has relatively smaller minimum jet fuel selling price (MJSP), the sugar cane and starch are suitable
feedstock from an economics prospective. Complete reviews of the technologies described above
considering the techno-economic analysis are given in [14–17].
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Table 1. Summary of bio-jet fuel production pathways. Data obtained from [14].

Category Pathway
Key Conversion

Steps
Catalyst FeedStock Companies

Alcohol to Jet
(ATJ)

Ethanol to Jet Ethanol
dehydration

Al2O3,
Transition

metal
oxides

Sugar cane
Corn grain

Terrabon; Swedish
biofuels; Coskata

Butanol to Jet Butanol
dehydration

Zirconia,
Solid acid
catalyst

Lignocellulose Gevo; Byogy;
Solazyme

Oil to Jet (OTJ)

Hydroprocessed renewable Jet
(HEFA)

Catalytic
hydrogenation

Noble
metals,

Transition
metals

Camelina oil
Spybean oil
Jatropha oil
Waste oils
Animal fat
Microalgae

UOP; SG biofuels;
Neste oil; PEMEX;
Syntroleum-Tyson
Food PetroChinaCracking and

isomerization

Pt, Ni,
Precious
metals

Catalytic hydrothermolysis
(CH)

Catalytic
hydrothermolysis

Zinc
Acetate

Camelina oils
Lignocellulose

Aemetis/Chevron
Lummus global

Decarboxylation-
Hydrotreating Nickel

Hydrotreated Depolymerized
Cellulosic Jet

(HDCJ)
Hydrodeoxygenation MoCx/C,

Pd-Mo Lignocellulose

Kior/Hunt;
Refining/Petrotech;

Envergent;
Dinamotive

Gas to Jet
(ATJ)

FT Synthesis FT Process Fe, Co, Ni
and Ru Lignocellulose Syntrolleum;

SynFuels; Shell

Sugar to Jet
(ATJ)

Direct sugar biological to
hydrocarbons

Acid Condensation
Hydrodeoxygenation

Acid
catalyst

Ru/C

Sugar cane
Lignocellulose

Amyris/Total;
Solazyme, LS9

Considering the above technologies, the (i) oil-to-jet and (ii) gas-to-jet are contemplated as the most
convincing alternatives in the short term. In fact, the bio-jet fuels produced with these technologies are
now allowed by ASTM specification D7566-14 for blending into commercial jet fuel at concentrations
up to 50% [18]. Recently [19], a hydrotreating reactive distillation column (RDC) for the production
of green-diesel from sulphured petro-diesel and non-edible vegetable oils mixtures was proposed.
From this work, it was concluded that the deep hydrodesulphurisation (HDS) of petro-diesel is strongly
affected by feeding high amounts of triglycerides to the RDC, while it is not affected when only fatty
acids are fed. Also, an integrated reactive separation process for the production of jet-diesel was
developed but the assumptions about the conversion of tryglycerides to fatty acids and the yield of
isomerization-cracking of the linear hydrocarbon chains lead to an oversimplified reactive separation
process [20]. Therefore, in this work, from a process intensification context, an innovative intensified
three-step reactive separation process for bio-jet diesel production is proposed.

Thus, the intensified three-step reactive separation process consist of: (1) a triglyceride hydrolysis
section where a catalytic heterogeneous reactor is used to convert the triglycerides to the resultant fatty
acids, followed by a three-phase separation device and a sequence of two distillation columns
to obtain pure fatty acid and glycerol; (2) a hydrotreating section with a reactive distillation
column used to simultaneously carried out the deep hydrodesulphurisation (HDS) of petro-diesel
and the hydrodeoxigenation, decarbonylation and decarboxylation of the fatty acids; and (3) an
isomerization-cracking section with a hydrogenation fixed bed reactor connected to a two phase
flash separator to produce bio-jet diesel with the required fuel properties. It should be pointed out
that the conversion and yield assumptions used in [20] are not considered here and the appropriate
reaction kinetics found in the open literature [21,22] is used to perform the rigorous simulation of the
intensified process.

2. The Intensified Reactive Separation Process

The production of bio-jet fuel can be described by the subsequent reactions (see Figure 1): (i)
hydrogenation of the C=C bonds present in the tryglycerides, (ii) hydrogenolysis of the tryglycerides to
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produce the respective fatty acids, (iii) deoxygenation of the resultant fatty acids to obtain n-paraffins
and (iv) hydroisomerization and hydrocracking of the n-paraffins to produce a mixture containing
mainly isomerized shorter chains (i-C8−i-C16) that are appropriate as jet fuel. The first three reactions
can be carried out using a metal catalyst or a MoS2-based catalyst. For the hydroisomerization and
hydrocracking reaction (iv), a metal/acid bifunctional catalyst is recommended. Figure 1 shows the
reaction pathways for the hydroconversion of tryglycerides into bio-jet fuel. It has been shown [23]
that the direct hydrogenation of tryglycerides may be very expensive due to the price of the hydrogen
at high pressures. Thus, the conventional hydrolysis of tryglycerides with high pressure steam is
preferred. An alternative to the hydrogenation and hydrolysis at high pressure is to use a heterogeneous
hydrolysis catalytic reactor [24] at moderated pressures. Thus, in the present work this technological
alternative is considered.

 

Figure 1. Reaction pathways of the hydroconversion of tryglycerides into biojet fuel.

Figure 2 shows a simplified flow sheet of the intensified three-step reactive separation process
for bio-jet diesel production. The first section (hydrolysis) consists of two pumps operating from 1 to
30 atm and two heat exchangers where the exit temperature is set to 280 ◦C. The heterogeneous
hydrolysis reactor operates at 30 atm and it consists of two 25 m length tubes with 0.5 m of
diameter. Further, a sequence of a three-phase flash and a two-phase drum are used to separate
the fatty acid-glycerol-water mixture and the unconverted glycerides that are recycled to the
hydrolysis reactor. Finally, two distillation columns are used to separate the pure fatty acid from
a low concentration glycerol-water mixture and to produce pure glycerol. The second section,
hydrodesulphurisation-hydrodeoxigenation (HDS-HDO) consists of a reactive distillation column
(RDC) where a mixture of petro-diesel and fatty acid is fed to the RD column at stage 9 and excess
hydrogen is fed at the bottom. The gases produced by the HDS-HDO reactions are released from the
two-phase condenser. The exit liquid mixture of C11–C12 linear hydrocarbon chains is mixed with
the exit stream containing C17–C18 hydrocarbons produced by the HDO reactions and the ultra-clean
petro-diesel products. The third section consists of a heterogeneous hydro-conversion reactor where
the long linear hydrocarbon chains (C11–C18) are isomerized and cracked to attain the bio-jet diesel.
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Figure 2. Simplified three-step reaction-separation process for bio-jet diesel production.

2.1. The Triglycerides Hydrolysis Section

Vegetable oils and fats have been considered as one of the most used renewable raw materials in
the chemical industry. These can be hydrolyzed to produce free fatty acids (FFA) with a high degree of
purity to be used in the synthesis of chemically pure compounds [25]. However, in the present work,
the proposed technological alternative to produce bio-jet fuel considers non-edible oils, waste oils and
animal fats as feedstock, which are not in conflict with food resources. Fatty acids are used in a wide
variety of industries, for example in the pharmaceutical and cosmetics industry. Also, fatty acids can be
utilised to produce n-alkane chains through a decarboxylation process [26]. These hydrocarbons work
properly in internal combustion engines as substitutes for petro-diesel. Actually, the hydrolysis of
fats and vegetable oils, composed mainly of triglycerides, has been practiced in the industry for many
years. In general, the hydrolysis of the esters occurs through the acyl-oxygen break [27] with an excess
of water at high temperature or using an appropriate acid catalyst to hydrolyze the glycerol pillar in
the ester group of any triglyceride (TG), diglyceride (DG) or monoglyceride (MG) [28]. The result of
the hydrolisis reactions is the production of three moles of FFA and one mole of glycerol (Gly). In this
work, triolein is considered as the main triglyceride compound and oleic acid as the correspondent
fatty acid. The three consecutive reversible reactions can be written as:

triolein + H2O⇔ diolein + oleic acid (1)

diolein + H2O⇔mono-olein + oleic acid (2)

mono-olein + H2O⇔ glycerol + oleic acid (3)

Commonly, the pure fatty acids are obtained from the reaction of vegetable oils and/or animal
fats with superheated steam. The commercial hydrolisis conditions are around 100–260 ◦C and
10–7000 kPa using a 0.4–1.5 wt % water-to-oil ratio. Several variants of this technology have been
used by industry [29,30]. In this work, the hydrolisis kinetics reported in the open literature [21] is
used for the numerical simulation of the catalytic reactor using tungstated zirconia (WZ) and the solid
composite SAC-13 as catalyst.
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2.2. The HDS-HDO Reactive Distillation Section

The hydrotreatment of non-edible vegetable oils, waste oils or animal fats, this is, oils and
fats that are not used for food and others medical applications, to produce renewable fuels has
several advantages: (i) flexibility in the disposal of raw materials due to the great variety of
oils available from vegetables on the earth; (ii) the process can be carried out using the existing
infrastructure in petro-refineries and (iii) the bio-fuels produced can be used in conventional internal
combustion machines since these bio-fuels have properties similar to those obtained from mineral
oil [31]. The hydrotreatment of vegetable oils can be accomplished using traditional catalysts,
for example with NiMo/Al2O3 catalysts. The hydrotreatment mainly produces n-paraffins through the
hydrodecarboxylation, hydrodecarbonylation and hydrodeoxigenation reactions. From the refining
point of view, the hydrodecarboxylation reaction is better than the hydrodeoxygenation reaction since
it consumes less hydrogen. However, the large amount of CO (or CO2) generated represents a problem
for refining, since CO2 can form carbonic acid with liquid water [32]. This means that the risk of
carbonic corrosion of the reactive separation equipment is a key design problem. In general, vegetable
oils can be hydrotreated as pure compounds or can be mixed with petro-diesel to be co-hydrotreated,
in such a way that the hydrodesulphurisation (HDS) and hydrodeoxygenation (HDO) reactions are
carried out simultaneously in a single unit. Therefore, the reactions considered for the HDS of the
sulphured petro-diesel can be written in a simplified form as:

Thiophene (Th) + 2 H2 → Butadiene + H2S (4)

Benzothiophene (BT) + 3 H2 → Ethylbenzene + H2S (5)

DBT + 2 H2 → Biphenyl + H2S (6)

For the HDS reactions only the hydrogenolysis reaction pathway is considered (Equation (6)).
The simplified HDO reactions of the oleic acid can be written as:

C18H34O2 + 4 H2 → n-C18H38 + 2 H2O (hydrodeoxygenation) (7)

C18H34O2 + 2 H2 → n-C17H36 + H2O + CO (decarbonylation) (8)

C18H34O2 + H2 → n-C17H36 + CO2 (decarboxylation) (9)

The reaction rate equations for the HDS reactions can be obtained from [19] and, due to the
absence of reliable kinetic expressions for the complex HDO reactions, a 99% conversion of oleic acid
is assumed.

2.3. The Isomerization-Hydrocracking Section

In general the processes of isomerization and cracking through hydrogenation occur
simultaneously. When hydrogenation favours isomerization it is called hydro-isomerization and when
it promotes cracking it is called hydro-cracking. Depending on the characteristics of the hydrocarbon
chains to be hydrotreated, the selection of the appropriate catalyst for this purpose can be made
in a wide range of possibilities [33]. Specifically, for the production of jet diesel, the catalysts are
bifunctional and are characterized by having acid sites that allow the selective function of isomerization
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and cracking simultaneously. Experimental evidence [34] indicate that the conversion of the n-paraffins
can be described by the following reactions network:

where each single reaction is irreversible and follows a pseudo first-order kinetic. (A) is the concentration
of the n-paraffin; (B) is the concentration of the iso-paraffin; (C), (D) and (E) are the concentrations of
the cracking products. Following the linear reaction sequence path: A–>B–>C the hydro-conversion
reactions could be written as:

n-C11H24 → i-C11H24 (10)

n-C12H26 → i-C12H26 (11)

n-C13H28 → i-C13H28 (12)

n-C14H30 → i-C14H30 (13)

n-C16H34 → i-C16H34 (14)

n-C17H36 → i-C17H36 + H2 → i-C8H18 + i-C9H20 (15)

n-C18H38 → i-C18H38 + H2 → i-C8H18 + i-C10H22 (16)

The kinetic equations for the isomerization and cracking of the linear hydrocarbon chains were
taken from [16] and a catalyst of Pt supported on a nano-crystalline large-pore BEA zeolite is used [28].

3. Results and Discussion

In order to determine the best operating conditions of the intensified three-step hydrotreating
reactive-separation process, the effect of different design and operating variables on the performance
of the global process was investigated and analysed through intensive simulations. The intensive
simulations of the intensified hydrotreating reactive separation process were carried out in the
commercial Aspen-Plus simulator environment. Thus, heat and mass transfer phenomena and mixing
issues were not taken into account.

3.1. Hydrolysis Section

Different amounts of triolein-water feed ratio were used for the simulation of the intensified process.
The numerical results shown in Table 2 are for the reference case (production of 70 kmol/h of pure oleic
acid). From such numerical results it is found that total conversion of triolein is attained at 553 K and
excess water (265 kmol/h). This water flow corresponds to 1/9 triolein/water feed ratio. The three-phase
flash that separates water, oleic acid-water-glycerol and triolein-diolein mixture operates at 5 atm and
410 K, and the flash drum for the separation of the water-oleic acid-glycerol-unconverted glycerides
operates at 1 atm. The two distillation columns to produce pure oleic acid and pure glycerol operate at
1 atm. It should be pointed out that the non-ideality of the reactive polar mixture is modelled using the
RK-ASPEN equation of state.
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Table 2. Simulation results for the reference case (hydrolysis section).

Stream Triolein Water 7 8 9 Glycerol 11

Mole Flow kmol/h

Triolein 30 0.0 30 5.21 5.21 0.0 0.0
Oleic acid 0.0 0.0 0.0 70.83 70.83 1.11 × 10−26 70.00

Water 0.0 265 265 194.16 47.00 9.27 × 10−3 1.44 × 10−33

Glycerol 0.0 0.0 0.0 21.89 21.55 21.54 1.67 × 10−16

Diolein 0.0 0.0 0.0 0.62 1.06 ×
10−14 0.0 0.0

Monolein 0.0 0.0 0.0 2.25 2.25 0.0 0.0

Mass fraction

Triolein 1.0 0.0 0.8476 0.1474 0.1634 0.0 0.0
Oleic acid 0.0 0.0 0.0 0.6385 0.7077 1.58 × 10−27 1.00

Water 0.0 1.0 0.1524 0.1166 0.0300 8.41 × 10−5 1.29 × 10−36

Glycerol 0.0 0.0 0.0 0.0643 0.0702 0.9999 7.60 × 10−19

Diolein 0.0 0.0 0.0 0.0123 2.29 ×
10−16 0.0. 0.0

Monolein 0.0 0.0 0.0 0.0257 0.0284 0.0. 0.0

Total Flow (kg/h) 26,563.47 4774.049 31,337.52 31,337.52 28,255.39 1985.16 19,772.67
Temperature (K) 298.15 298.15 494.26 553.15 410.28 557.18 631.04
Pressure (atm) 1.0 1.0 30.0 30.0 5.0 1.0 1.0

Effect of the Triolein-Water Feed Ratio

The effect of the triolein-water feed ratio was studied in order to verify the maximum conversion
of triolein to oleic acid. Figure 3a shows the effect of the feed ratio on the hydrolysis reactor exit
composition. It can be observed that as the feed ratio increases, the triolein composition decreases to
zero at 1/7 triolein-water feed ratio, approximately. However, it should be noted that, as the feed ratio
increases, the hydrolysis reactor exit mixture contains less fatty acid (oleic acid). This is expected due
to the excess of water fed to the reactor. Also, it can be observed that after a feed ratio of 1/7, the final
reactor exit mixture contains only water, oleic acid and glycerol. Figure 3b shows the effect of the
triolein-water feed ratio on the distillation column bottom flow (stream 11 in Figure 2). It can be noted
in Figure 3b that as the feed ratio increases, the amount of oleic acid produced increases to a constant
value of 88 (kmol/h). The production of 70 (kmol/h) at the bottom of the distillation column at a feed
ratio of 1/9 has been taken as a reference study case.

(a) (b) 

Figure 3. (a) Effect of the triolein-water feed ratio on the hydrolysis reactor exit composition. (b) Effect
of the triolein-water feed ratio on the distillation column bottom flow (stream 11).

219



Processes 2019, 7, 655

3.2. HDS-HDO Section

In order to perform the deep hydrodesulphurisation of the sulphured petro-diesel and the
reactions involved in the hydrodeoxigenation of the fatty acid, a two-zone reactive distillation column
(RDC) is recommended [13]. Figure 4 shows the sizing details of the RDC, as well as the basic
information for the simulation of the reference case. The RDC consists of 14 stages with two sections of
reactive stages (5–7, 9–11) operating at 30 atm. It can be observed in Figure 4 that the liquid streams
C11–C12 and C13–C18 contains mainly the larger linear hydrocarbon chains. Table 3 displays the
numerical simulation results for the HDS-HDO section with 70 kmol/h of oleic acid and 100 (kmol/h)
of petro-diesel fed at stage 9. Hydrogen feed was set to 400 (kmol/h) in order to accomplish full
conversion of oleic acid and deep HDS of petro-diesel.

Table 3. Simulation results of the HDS-HDO section in ASPEN-PLUS (reference case).

Stream Petro-Diesel Hydrogen
Oleic Acid

(11)
Light-G C11–C12 C13–C18

Mole Flow kmol/h

H2 0.0 400 0.0 202.2064 0.0415 14.4201
H2S 0.0 0.0 0.0 9.8951 0.0157 0.0884
Th 0.8699 0.0 0.0 0.8363 0.0108 0.0228
BT 0.8699 0.0 0.0 0.0798 0.0122 0.7779

DBT 9.9999 0.0 0.0 6.73 × 10−7 9.72 × 10−7 7.61 × 10−4

Biphenil 0.0 0.0 0.0 0.0390 0.0126 9.9476
n-C16 5.8899 0.0 0.0 7.79 × 10−5 9.84 × 10−5 5.8898
n-C14 0.1500 0.0 0.0 5.84 × 10−5 3.57 × 10−5 0.14990
n-C13 0.8899 0.0 0.0 3.46 × 10−3 1.24 × 10−3 0.8852
n-C12 31.6599 0.0 0.0 0.9127 0.2000 30.5477
n-C11 49.6699 0.0 0.0 8.9238 1.2100 39.5333

Oleic-Acid 0.0 0.0 70 0.0 0.0 0.0
n-C18 0.0 0.0 0.0 4.06 × 10−6 1.17 × 10−5 23.3332
n-C17 0.0 0.0 0.0 5.05 × 10−5 1.02 × 10−4 46.6665
Water 0.0 0.0 0.0 68.7544 0.2980 0.9470
CO2 0.0 0.0 0.0 23.2247 0.0224 0.08615
CO 0.0 0.0 0.0 23.2884 7.72 × 10−3 0.03714

Mole fraction

H2 0.0 1.0 0.0 0.5979 0.0226 0.0831
H2S 0.0 0.0 0.0 0.0292 8.55 × 10−3 5.10 × 10−4

Th 0.0087 0.0 0 2.47 × 10−3 5.90 × 10−3 1.31 × 10−4

BT 0.0087 0.0 0.0 2.36 × 10−4 6.6.E-03 4.44 × 10−3

DBT 0.1 0.0 0.0 1.99 × 10−9 5.30 × 10−7 4.41 × 10−6

Biphenyl 0.0 0.0 0.0 1.15 × 10−4 6.84 × 10−3 0.0573
n-C16 0.0589 0.0 0.0 2.31 × 10−7 5.36 × 10−5 0.0339
n-C14 0.0015 0.0 0.0 1.73 × 10−7 1.94 × 10−5 8.64 × 10−4

n-C13 0.0089 0.0 0.0 1.02 × 10−5 6.78 × 10−4 5.10 × 10−3

n-C12 0.3166 0.0 0.0 2.69 × 10−3 0.1087 0.1762
n-C11 0.4967 0.0 0.0 0.0263 0.6608 0.2280

Oleic-Acid 0.0 0.0 1.0 0.0 0.0 0.0
n-C18 0.0 0.0 0.0 1.20 × 10−8 6.37 × 10−6 0.1346
n-C17 0.0 0.0 0.0 1.49 × 10−7 5.54 × 10−5 0.2692
Water 0.0 0.0 0.0 0.2033 0.1626 5.46 × 10−3

CO2 0.0 0.0 0.0 0.0686 0.0122 4.97 × 10−4

CO 0.0 0.0 0.0 0.0688 4.20 × 10−3 2.15 × 10−4

Total Flow (Kg/h) 16,717.09 806.35 19,772.67 5296.10 235.52 31,764.49
Temperature (K) 513 533 513 458.15 458.15 746.89
Pressure (atm) 30 30 30 30 30 30
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Figure 4. Hydrotreating two-zone reactive distillation column. Oleic acid premixed with sulphured
petro-diesel fed at stage 9.

3.2.1. Effect of the Oleic Acid-Petro-Diesel Feed Ratio

The temperature profile along the reactive distillation column (RDC) assuming that oleic acid is
premixed with the petro-diesel and fed in stage 9 is shown in Figure 5a. The co-hydrotreating process
starts with a low concentration of oleic acid (10 kmol/h) in the mixture fed and it was continuously
augmented up to 70 (kmol/h). It can be seen in Figure 5a that as the content of oleic acid increases,
the temperature at the reactive zone I is reduced. The temperature reduction can be explained by
considering that the boiling point of oleic acid is higher than the boiling point of most hydrocarbons
present in the sulphured petro-diesel. The effect of the oleic acid composition in the feed on the deep
HDS of the sulphured petro-diesel is shown in Figure 5b. It can be noted in Figure 5b that, even for a
high content of oleic acid (70 kmol/h), the deep HDS of petro-diesel is accomplished. The analysis of
these results leads to the conclusion that the performance of the reactive distillation column (RDC),
initially used for deep hydrodesulphurisation of petro-diesel, is not affected by the introduction of a
vegetable oil with a high content of fatty acid (oleic acid).

(a) (b) 

Figure 5. (a) Temperature profile along the RDC. (b) DBT liquid composition profile.
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3.2.2. Hydrogen Consumption and Liquid Water Production

The molar flow of hydrogen required for the HDS and HDO reactions as a function of the oleic acid
content in the feed is shown in Figure 6a. It can be noted in Figure 6a that, for an oleic acid feed flow
greater than 10 (kmol/h), the temperature of the condenser is reduced to 215 ◦C, and for a feed flow of
70 (kmol/h), the required hydrogen is increased to 400 (kmol/h) and the temperature of the condenser
should be diminished to 185 ◦C. It should be pointed out that, if the temperature of the condenser is
not decreased, the numerical convergence of the RDC simulation is not reached. Thus, a control loop
between the source of vegetable oil (oleic acid) and the hydrogen supplied should be linked to the
temperature of the condenser. The liquid water composition profiles along the RDC for different oleic
acid feed flows are shown in Figure 6b. It can be noted in Figure 6b that the concentration of liquid
water increases from reactive zone I (steps 5–7) to the upper part of the RDC. Liquid water is mainly
produced in reactive zone II (reactive stage 9–11) by the hydrodeoxygenation and decarbonylation
reactions and its molar fraction increases continuously from stage 9 to the upper part of the RDC,
as the concentration of oleic acid in the feed is augmented. Therefore, in order to minimize catalyst
deactivation and corrosion of the RDC equipment, the amount of oleic acid in the mixture fed should
not be higher than 70 (kmol/h).

(a) (b) 

Figure 6. (a) Hydrogen feed flow required on stage 12. Oleic acid-petro-diesel mixture fed at stage 9.
(b) Water liquid composition profile.

3.2.3. Hydrocarbon Distribution and Release of Generated Gases

Figure 7a shows the hydrocarbon liquid composition distribution. It can be noted in Figure 7a that
the bottom exit stream contains mainly the linear hydrocarbons C17, C18, C16, C14, and C13. At the top of
the RDC a rich liquid mixture of C11 and C12 linear hydrocarbons is obtained. It should be pointed out
that such linear hydrocarbons (C11–C18) are further mixed and fed to the isomerization-hydrocracking
reactor (see Figure 2). Figure 7b shows the gas composition profile along the RDC. In the case of the
hydrotreating RDC, the gases produced are mainly driven in the vapour phase at each equilibrium
stage and released from the partial condenser at the top of the RDC. It can be noted in Figure 7b that the
gases produced by HDS and HDO reactions: CO2, CO, steam and H2S and the unconverted excess of
hydrogen are released at the top of the column. It is interesting to observe that the vapour composition
of C11 and C12 decreases at the top of the column.
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(a) (b) 

Figure 7. (a) RDC profiles for oleic acid-petro-diesel blend fed at stage 9 at 30 atm. (b) Gas compositions
profile along the RDC. Reproduced with permission from García-Sánchez et al., Proceedings of the 28th
European Symposium on Computer Aided Process Engineering; Published by Elsevier B.V., 2018. [20].

3.2.4. Operability and Controllability of the HDO-HDS Reactive Distillation Section

Reactive distillation column mathematical models are highly nonlinear, and multiple steady states
(MSS) solutions have been reported by many researchers [35–37]. However, none of these works have
addressed the HDO-HDS reactive distillation process, most of them studied the MTBE and TAME
cases. In the present work, the MSS solutions are only briefly described. Two multiplicity types can
be found: input and output multiplicities, but a combined input–output multiplicity may also be
present. Output multiplicity occurs when one set of input variables (manipulated variables) results
in two or more unique and independent sets of output variables (measured variables). In chemical
reactors and reactive distillation columns there are usually three steady states associated to ignition
(high conversion), extinction (low conversion) and medium unstable conversion. On the other hand,
input multiplicity occurs when two or more unique sets of input variables produce the same output
condition. This type of multiplicity has important implications for close loop control since it is related
to the so-called zero dynamics of the system, which is associated with unusual, unexpected, or inverse
responses of the outputs after a step change, has been applied to the inputs. As RDC share some
common features with chemical reactors and conventional (non-reactive) distillation columns, the RDC
behavior may exhibit input–output multiplicity with three steady states or output multiplicity, with
a large number of different steady states induced by ignition and extinction of every single reactive
column tray [38]. Thus, in the present work, from the intensive simulation results, it was found that the
reflux ratio is a key parameter for an appropriate RDC design and operation. Additionally, an increment
in the hydrocarbon feed (sulphured diesel) flowrate leads to lower conversions of the organo-sulfur
and fatty acid compounds with the reduction of the H2/HC feed ratio. In addition, it was found that,
the DBT conversion was highly affected by the variations of the reboiler heat duty, while the fatty
acid conversion was practically constant (~99%). However, DBT conversion design target (99.9%) was
achieved at four different reboiler duties, indicating the existence of input-output multiplicities. It was
also determined that the amount of catalyst loaded at the reactive zones must be greater than 8000 kg
in order to achieve an ultra low sulfphur diesel (ULSD) production and a complete conversion of the
fatty acids. This is, if a suitable excess of H2 is present in the reaction zones, the behavior of the RDC is
very likely to a HDS conventional catalytic reactor. Therefore, it may be said that the multiplicities
found in the intensive simulations are highly related to the specific phenomena (reaction-separation)
involved. It should be pointed out that the accurate determination of the thermodynamic properties of
all species participating in the reacting mixture must be taken carefully. The correct determination of
the boiling points, critical properties, etc. of all species involved in the reactive separation process and
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the computation of the complex phase equilibrium in the intensified reactive separation process is a
key step. This is, for example, for the HDO-HDS section, the inaccuracy of the property values (boiling
point of the fatty acids) can lead to multiple steady states and unstable operation and control of the
reactive distillation process. The analysis of the intensive simulation results suggest that, under optimal
design and operating conditions, reactive distillation can be considered as a viable technological
alternative to produce bio-jet diesel trough a RDC co-hydrotreating process.

3.3. The Isomerization-Cracking Section

The numerical simulation results with the final composition of the bio-jet diesel obtained in the
hydro-conversion reactor are shown in Table 4. It should be mentioned that an excess of hydrogen
must be fed to the reactor in turn to accomplish the complete isomerization and cracking of the longer
hydrocarbon chains. The total pressure of the reactor is set at 80 atm and a 5:1 hydrogen-hydrocarbon
feed ratio was considered. The exit stream from the isomerization-cracking reactor is further flashed
to eliminate the hydrogen excess and the light hydrocarbons produced during the cracking step.
The isomerization-cracking kinetics and reactor arrangement were taken from the open literature [34].
From Table 3 it can be observed that the bio-jet-diesel produced contains mainly i-C8 to i-C16

hydrocarbons indicating that a light bio-jet diesel is produced.

Table 4. Simulation results of the isomerization-cracking section in ASPEN-PLUS (reference case).

Component To Iso-Crack Bio-Jet Diesel Component To Iso-Crack Bio-Jet Diesel

Mole Flow (kmol/h)
Mole

Fraction
n-C16 5.8899 0.0 n-C16 0.03968 0.0
n-C14 0.1500 0.0 n-C14 0.00101 0.0
n-C13 0.8899 0.0 n-C13 0.00600 0.0
n-C12 30.7472 0.0 n-C12 0.20716 0.0
n-C11 40.7460 0.0 n-C11 0.27453 0.0
n-C18 23.3333 0.0 n-C18 0.15721 0.0
n-C17 46.6666 0.0 n-C17 0.31441 0.0
i-C16 0.0 5.8899 i-C16 0.0 0.02697
i-C14 0.0 0.15 i-C14 0.0 0.00069
i-C13 0.0 0.8899 i-C13 0.0 0.00407
i-C12 0.0 30.7472 i-C12 0.0 0.14077
i-C11 0.0 40.7460 i-C11 0.0 0.18655
i-C10 0.0 23.3333 i-C10 0.0 0.10682
i-C9 0.0 46.6666 i-C9 0.0 0.21365
i-C8 0.0 69.9999 i-C8 0.0 0.32048

Total Flow (kmol/h) 148.423 218.4228
Temperature (K) 653

4. Conclusions

An intensified three-step hydrotreating reaction-separation process for the production of bio-jet
diesel from triolein and petro-diesel mixtures has been developed. Through intensive simulations
the effect of different operating variables (triglyceride-water feed ratio, oleic acid-petro-diesel feed
ratio, hydrogen consumption) on the performance of the intensified reactive separation process was
studied. By analysing the simulation results, it can be established that, a 1/9 triolein-water feed ratio
guarantee the complete conversion of triolein to oleic acid at moderated pressures (30 atm) at the
hydrolysis section. For the HDS-HDO section, it can be mentioned that a mixture containing up to
70 (kmol/h) of oleic acid in the hydrocarbon feed of the RDC is the optimal mixture composition in
order to achieve the deep hydrodesulphurisation of petro-diesel. Also, with this mixture composition,
any change to the basic structure (reactive and non-reactive stages) of the RDC is not required. It should
be pointed out that the HDS-HDO RD column should operate at moderated pressures (30 atm) in
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order to allow the fast vaporization of the light gases produced and avoid the corrosion problem with
carbonic acid generated by the reaction of CO or CO2 with water. For the isomerization and cracking
section, a low-pressure flash separator, after the hydro-conversion reactor is required to eliminate
the undesirable side products. Therefore, it can be concluded that the key design and operating
parameters for the production of the bio-jet diesel are: (i) in the hydrolysis section, the water excess
and the total pressure for the heterogeneous catalytic hydrolysis reactor; (ii) for the HDS-HDO section,
if high molar flows of fatty acid are considered, it is mandatory to have more reactive stages in the
HDS-HDO reactive distillation column in order to achieve ultra-clean (no-sulphur) petro-diesel at the
bottom of the column. Finally, the absence of light compounds in the exit stream of the heterogeneous
isomerization-cracking reactor is required in order to circumvent undesirable side products and
reach the suitable fuel properties required by the international standards. Finally, the economic and
sustainability analysis of the intensified reactive separation process to produce bio-jet diesel is being
carried out.
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Abstract: Since the 1950s, Process Systems Engineering (PSE) concepts have traditionally been applied
to the process industries, with great effect and with significant benefit. However, the same general
approaches and principles in designing complex process designs can be applied to the design of
higher education (HE) curricula. Curricula represent intended learning journeys, these being similar
to the design of process flowsheets. In this paper, we set out the formal framework and concepts
that underlie the challenges in design of curricula. The approaches use generic and fundamental
concepts that can be applied by any discipline to curriculum design. We show how integration of
discipline-specific concepts, across time and space, can be combined through design choices, to create
learning journeys for students. These concepts are captured within a web-based design tool that
permits wide choices for designers to build innovative curricula. The importance of visualization of
curricula is discussed and illustrated, using a range of tools that permit insight into the nature of
the designs. The framework and tool presented in this paper have been widely used across many
disciplines, such as science, engineering, nursing, philosophy and pharmacy. As a special issue in
memory of Professor Roger W.H. Sargent; we show these new developments in curriculum design
are similar to the development of process flowsheets. Professor Sargent was not only an eminent
research leader and pioneer, but an influential educator who gave rise to a new area in Chemical
Engineering, influencing its many directions for more than 50 years.

Keywords: process systems engineering; design; higher education; curricula; visualization

1. Introduction

Curriculum design stands at the heart of all education. It is a multiscale challenge across
different time and space scales—from whole-of-curriculum design considerations, to distinct learning
units or modules, down to the day-to-day learning elements at the lowest level of consideration.
It spans sequential stages of learning—from early learners, primary, secondary, tertiary and continuing
professional development (CPD). By necessity, curriculum designs seek to embody stated intended
outcomes for learners that address knowledge domains, application of knowledge, and personal- and
professional-attribute development.

It might seem strange to some that curriculum design could be intimately related to Process
Systems Engineering (PSE) thinking and application. In what follows, we show the development of
complex curricula from the basic underlying concepts and building blocks that mirror many aspects of
PSE. In doing so, we emphasize that PSE possesses a much broader interpretation and application than
has traditionally been adopted.

In 1967, Roger Sargent wrote in Chemical Engineering Progress a review on “Integrated Design and
Optimization of Processes”. He stated the following: “Although we are in sight of a truly integrated
approach to design of complete processes, a great deal of work remains to be done. With the need for
more sophisticated analysis of larger complexes, it is more important than ever to join hands with those
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working in the fields of control engineering, operational research, numerical analysis and computer
science” [1].

The discipline area of PSE arose from the application of systems engineering concepts to industrial
processes [2,3]. The 1960s was a period of rapid digitalization in industry, affording significant
advances in modeling, control, optimization and new computer-based numerical methods. The focus
on “engineering” of “systems” that were primarily within the “process” industries drove PSE as
a new focus within Chemical Engineering. The concept of “engineering” as ingenuity in design,
using thinking and practices around a set of things that work together (‘system’), can be applied to
the general idea of any “process”. That liberates PSE from the narrow confines of industrial and
manufacturing sectors.

The 1967 statements of Roger Sargent, adapted to the case of curricular design, ring true. The tasks
require an integrated approach that ensures the final curriculum design is “fit-for-purpose”. It is a
complex set of tasks dealing with many interconnected learning units, their attributes and intended
outcomes. The appropriate sequencing of learning, as well as generating deep insights into the nature
and behavior of the design, is essential. It is also a task where the skills and insights of numerous
people are necessary to arrive at designs that deliver the requisite outcomes. In short, it bears many
resemblances to traditional PSE thinking and practices.

Curriculum design practice has a long and important history. The rapid expansion of human
knowledge in all professional domains has increased the need for learning designs that must meet the
demand of current and future work demands in ever-changing environments. That is a long-standing
challenge, and one that continues to challenge educators.

Early work by Dewey [4] and others, such as Tyler [5], set the scene for modern curriculum
considerations. The expanding digitalization trends across society, with the creation and growth
of the internet, have brought the need to use enabling information technologies, visualizations and
user-centered web systems, to improve curriculum designs and their deployment. These information
and communication technologies (ICT) can enhance the curriculum design process. The design process
relies on structured information and its use to create educational pathways for learners.

In what follows, we outline why curriculum design and deployment is important, the basic
concepts and processes that help engineer the learning system and our ability to assess designs in both
qualitative and quantitative ways. Section 2 deals with design purpose and practice, before turning in
Section 3 to the fundamental concepts and building blocks that permit designers to assemble a range
of desired learning pathways. Section 4 shows the principles in practice, using an actual case study
in Chemical Engineering at The University of Queensland. The final section considers how many
other disciplines have derived benefit from a systems design environment that was pioneered within
Chemical Engineering.

2. Curriculum Design: Purpose and Practice

2.1. Purpose

Curriculum designs set out the key learning pathways that an educational organization places
before a learner. That is, curricula represent learning journeys, hence the title of this paper:
“Journey Making”.

“Curriculum” is related to the Latin word “currere”, meaning “to run”. As such, it speaks of a
pathway or a course traversed by participants to reach a goal. End-goals and intermediate goals are
crucial outcomes within curricula. The attainment of such goals is incremental.

In the last few decades, the underlying principles of curricula have been revisited and emphasized
by prominent educational researchers across many disciplines [6,7]. These researchers and practitioners
have enhanced earlier understandings of the role of curricula, the educational psychology around
learning and the science of learning [8,9].
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Barnett and Coate [6] recognized “that curricula have distinctive, but integrative components, as
well as allowing for different weightings of each domain within any one curriculum” (p. 70).

It is not just academic researchers who are interested in curriculum design and outcomes. Due to
the professional nature of engineering registration, practice and graduate mobility, global organizations
such as the International Engineering Alliance (IEA), as represented by the Washington Accord [10],
“establish and enforce internationally bench-marked standards for engineering education and expected
competence for engineering practice”.

In the case of the IEA, 29 countries that span the globe are signatories to that agreement.
The professional engineering bodies or accreditation agencies in each country administer the
accreditation of programs and curricula for higher education institutions that produce graduate
engineers. In the USA, the Accreditation Board of Education & Technology (ABET, Baltimore, MD,
USA) administers undergraduate degree programs [11]. Other organizations such as the European
Network for Accreditation of Engineering Education (ENAEE), administer the EUR-ACE accreditation
system for engineering graduates [12].

This means that, for accreditation of engineering programs across most of the globe, there are
necessary learning outcomes that must be seen within the curriculum design, and importantly the
evidence gathered to show that graduate engineers display those outcomes to an acceptable level.
As well as the professional incentives for curriculum design, there are important institutional incentives
in terms of developing curricula that sets apart one institution from another. This is often seen
in terms of the learning pathways that students travel through during their undergraduate and
graduate programs.

This raises the importance of excellence in curricular design and delivery. PSE-type approaches
can provide the rigor necessary to achieve innovative, accredited curricula that provide flexibility
in learning pathways to reach intended outcomes. PSE principles related to output requirements,
integrated system and quality control through measurement and assessment strategies naturally fit
into curriculum considerations.

2.2. Practice

Curriculum design practice across the higher education (HE) sector is extremely varied in the
processes adopted to imagine what needs to be done, as well as the tools that might aid in developing,
understanding and displaying designs. Many institutions struggle to properly design and document
outcomes. Many designs are done by a small group of discipline experts with little ‘buy-in’ from
colleagues. Many academics are not aware of the design principles and how their specific learning
units integrate into the whole curriculum.

In recent years, a number of tools have been developed to help disciplines address the design
activities in a structured manner. These primarily are mapping tools for learning outcomes (LOs),
and they are limited in scope for doing comprehensive curriculum design across all higher education
disciplines [13–15]. Some systems such as SOFIA have more pathway features [16]. Early comprehensive
work in this space was done by the authors within Chemical Engineering [17]. PSE approaches can
help in organizing curriculum around key elements that are combined to address intended learning
outcomes and tracking those outcomes through the curriculum. This can help with the design process.

3. Curriculum Design: Underlying Concepts, Building Blocks and Pathways

In this section, we investigate the fundamental concepts upon which curriculum design rests.
We consider the following questions:

1. What are the overarching outcomes that underlie curricular designs?
2. What are the fundamental building blocks that help generate learning designs?
3. What are the vital pathways that are to be considered and embedded as part of the design?
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3.1. Basic Concepts

What are we trying to achieve in curriculum design? This is a crucial question to consider before
undertaking any design activities. It mirrors the focus of Requirements Engineering in seeking to
define a functional specification of the needs and desires of stakeholders [18]. The general equivalent
in curriculum is the Intended Learning Outcomes (ILOs). A survey of the key literature, including
national and international accrediting agencies and research monographs, shows that educational
program requirements are in three major areas [11,19–21]. Figure 1 displays the schema of Barnett and
Coate [6] that covers these requirements.

1. Knowing: this is the engagement of learning with knowledge;
2. Acting: this is the performative character in learning, namely putting knowledge to work in

various circumstances and changing contexts;
3. Being: this is the personal and professional development of the learner. It addresses

self-relationships, the educational setting and the outside world.

There is an intentional overlap in this schema, emphasising that all three elements combine
synergistically toward the development of graduate capabilities. This schema is not confined to
engineering disciplines, but has universal application.

 

Figure 1. Educational schema as the major focus of educational designs.

Figure 2 shows the engineering program outcomes schema for Engineers Australia, the peak
professional body in Australia. The accreditation frameworks in the USA and Europe, including
The Washington Accord signatories, have a similar schema.

 

Figure 2. Engineers Australia, Stage 1 competency schema.

From this high-level schema, it is clearly necessary to develop more detailed outcomes at the level
of the individual learning-unit level and show how integration across learning units addresses the
outcomes within the Knowing, Acting and Being schema.
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3.2. Building Blocks

Similar to flowsheet development that deals with processing units and the connected streams,
curriculum development requires description of the learning units or modules. In some institutions,
these are called “courses” or “subjects”. They represent the lowest-level learning and teaching element
in a degree program. The connections between units show required prior learnings (RPL). Besides these
topological elements, the development of Intended Learning Outcomes (ILOs) for individual learning
units, and subsequently the whole curriculum, require a wide range of other important elements.
Figure 3 shows the key elements related to the process leading to the “curriculum as designed” stage.

 

Figure 3. Curriculum design building blocks and information.

It should be noted that, beyond “curriculum as designed”, there are two further concepts:
“curriculum as delivered” and “curriculum as experienced”. These concepts relate to the actual
delivery of the curriculum by instructors and staff to student engineers, and the curriculum as actually
experienced by the students. These are important concepts, but discussion of these is beyond the focus
of this paper.

It should be noted that, in many higher education institutions, students have the ability to
design their own personalized curriculum. Currently, for many students, it is difficult for them to
see the connections between learning unit choices, sometimes leading to fragmentation in the overall
curriculum. Moreover, over time, well-designed curricula can fragment, as learning units change with
little consideration given to the implication of those changes on other integrated learning units.

3.2.1. Information Management

In order to gain maximum benefit from the development of a computer-aided environment for
curriculum design, it is important that the information contained in these elements is both organized
and extensible within data structures. We can classify the elements into two main categories:

1. Generic concepts;
2. Specific concepts.
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Generic concepts are not discipline-specific, but need to be extensible and editable. They could
include learning activities, attainment levels or assessment strategies. They are vital in developing the
learning-outcome statements. Specific concepts relate to the discipline area considered in the design.
Obvious specific areas would be discipline knowledge and application.

Taxonomies can be used to capture and utilize the important terms within an area. For example,
the concept of “attainment level” can be organized as a multilevel taxonomy that is fully editable and
extensible with the ability to select synonyms as needed. Figure 4 shows part of an attainment taxonomy
within a design environment. It shows three key taxonomies often used in building learning outcomes.

Figure 4. Part of an “attainment” taxonomy for building ILOs.

Similar approaches can lead to taxonomies for all the elements within Figure 3. Of particular
interest are the discipline-specific knowledge taxonomies. Figure 5 shows a taxonomy for Chemical
Engineering that is both extensible and editable within the design environment. It consists of levels
that express a domain, sub-domain and topic taxonomy. This is clearly a multilevel view.

 

Figure 5. Knowledge taxonomies for Chemical Engineering (domain/sub-domain/topic).
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3.2.2. Learning Unit Design

The key object in any curriculum design is the learning unit. This requires the integration of many
elements in Figure 3:

1. The intended learning outcomes (ILOs);
2. The required prior learning (RPL);
3. The assessment of ILOs: what, when, how and weightings;
4. The attainment objects within the unit;
5. The learning activities;
6. The knowledge domain, sub-domain and specific topics;
7. The complexity of the topics and tasks;
8. The learning spaces or places to be utilized;
9. The chosen andragogies.

This object is complex and could be regarded as analogous to a process engineering unit of a
flowsheet. Learning outcomes can be built by using a defined but flexible syntax that uses the various
taxonomies displayed in Figure 3. Structuring the ILOs provides significant power to reason over the
completed curriculum and also visualize the characteristics of the curriculum. An example ILO from
an advanced modeling course introducing the theory and practice of hybrid modeling is shown in
Figure 6.

Figure 6. Example of intended learning outcomes (ILOs) (left) and the structured text ILO builder (right).

Moreover, the various tabs on the course profile show the other course-building options that are
used in fully specifying the course characteristics. They include assessment items, learning activities,
prior learning for the course and important mappings to professional competences.

3.3. Pathways

Curriculum designs ultimately lay down a series of learning pathways, professional attributes
and competency development. As noted previously in the introduction, the program schema elements
are developed incrementally across the length of the program. The representation and tracking of this
incremental development are a crucial part of the design process.

For example, we often desire to understand the linkages within years and across years. This is
similar to process streams passing through operating units. A simple visual illustration of course
integration via learning outcomes is shown in Figure 7 [17].
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Figure 7. Example of knowledge domain outcome linkages for process system courses. (By permission
of Engineers Australia [17]).

4. Curriculum Design: The Journey Maker Computer-Aided Design Environment

In the previous sections, we described the importance and challenges of complex curriculum
design. The key goals were discussed, as well as the design information and processes required to
build curricula. The development of a comprehensive web-based design tool which is adaptable,
extensible and editable provides for design across all disciplines across higher education. Importantly,
it was also developed for student use in building personalized curricula and visualizing the impact of
choices. This is particularly important in the Arts and Humanities disciplines.

The functionality of this curriculum environment includes the following [17]:

• The ability to describe knowledge and skill domains and their interlinking across space and time;
• The ability to describe and track intended learning outcomes (ILOs) and attainment levels across

space and time;
• The ability to describe the context and complexity of the planned learning;
• The ability to describe the spaces and places where learning is planned to happen;
• Linking assessment activities to ILOs and learning activities for promoting learning and

proving outcomes;
• Ease of use by program coordinators and academic staff;
• Use by students to gain insight into the characteristics of a designed curriculum, and potentially

to design and track the “experienced” curriculum;
• The ability to interface to other systems, such as institutional course and subject profiles;
• The ability to embed within the environment current “best practice” concepts and design processes

as a vehicle for innovative curricula and better-informed academic use;
• The ability to adapt the environment across disciplines.

The majority of this functionality was developed in 2011/2012 as a standalone application [17].
The further development expanded activity across all university faculties, resulting in a web-based
environment called The Journey Maker. The environment has two major components: a design
component and a visualization component called “The Visual Journey”. Figure 8 shows the entry
page to the development environment, showing the design functions available for use in building and
visualizing curricula.
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Figure 8. Overview of The Journey Maker design-environment functionality.

Elements of this environment are illustrated in the next section, using the design of some selected
learning units, as well as showing an overall five-year curriculum design.

5. Case Study in Curriculum Design: A Five-Year Chemical Engineering Program

As a case study to display the development of a curriculum, we use the design of a five-year
combined Bachelor and Masters Chemical Engineering program (BE/ME) at The University of
Queensland. This is sufficiently complex, to demonstrate the design tools and the visualization
tools that give deep insight into the design. The overall program structure is shown in Figure 9. This
program typically has four learning units per semester, including elective options, which are shown as
“+” options in each semester. These are chosen by students to fulfill their degree requirements, build
specializations and address personal interests. There are 10 semesters in this program, with industry
placements in Year 4, Semester 2.

 
Figure 9. Compulsory course requirements for five-year BE/ME program.
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As shown in Section 3.2.2, all the course profiles have been built by using the course builder, and
so they have a rich description of the learning within each module and also the connectivity throughout
the curriculum. It is possible to investigate this particular design through the use of the visualization
facilities within “The Visual Journey” web environment.

Overall Curriculum Characteristics

The visualization is able to view the overall picture of the curriculum as seen through the ILOs.
Figure 10 shows the relative frequency of ILOs across the principal domains of the program. Clearly,
the knowledge domain of Chemical Engineering dominates, but we also see the relative emphases
around professional competences and the basic sciences: mathematics and chemistry. These insights
might lead to unit-level or curriculum-level redesigns, depending on overall outcomes requirements.
The visualizations can be presented in many ways: frequency, weighted frequencies and the like.

Figure 10. ILO frequencies for major knowledge domains across whole curriculum.

For further insights, the individual domains can be expanded, as seen in Figure 11, which focuses
on the sub-domains within the Chemical Engineering domain. The thumbnail of the whole curriculum
can be viewed to see where a specific focus might occur. In this case, process design can be seen within
the ILOs across a series of courses starting in Year 1.

Figure 11. Lower-level domain knowledge visualization and location within the curriculum.
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This form of visualization, and many others, can also be applied to other aspects of the learning
outcomes, such as cognitive objectives as described by Bloom’s taxonomy. Figure 12 shows the
distribution of ILOs where “synthesis” is a major objective within courses. In particular, the issue of
synthesis described by “design” can be seen in later years of the curriculum. If some redistribution of
that attainment to earlier years was considered important, then the visualization helps in redesign.

Figure 12. Attainment levels and distribution across the curriculum.

As well as considering issues around where knowledge, use of knowledge and personal attributes
are developed, it is important to understand the linkages through the curriculum. This is particularly
important as curriculum evolves, and in many cases, fragmentation occurs over time due to loss
of integration. Figure 13 shows the connections of a particular ILO into following courses. Loss of
that ILO due to changes in the learning unit could be important. The alluvial plots also allow unit
instructors to see the position of the unit in relation to other units from a learning perspective. They see
the required prior learning and also the future use of learning outcomes.

Figure 13. Tracking the linkages of a specific learning outcome through courses in the curriculum.

Figure 14 shows how course integration occurs across the curriculum. It shows key linkages along
important learning pathways and identifies what might be “orphaned” courses within the curriculum.

Figure 14. Tracking linkages between courses that have specified required prior learning.

Many other tabular and graphical views can be generated due to the structured descriptions and
taxonomies embedded within the design environment. Within the approach, there is a very extensive
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subsystem for designing the assessment strategies. Figure 3 shows the extent of all the curriculum
components, which cannot all be discussed in this paper.

These provide the ability for any discipline to develop curricula that is sharable, easily updated
and extensible for the specific issues often dealt with in higher education programs.

The effects of using these formalized approaches, as described in these developments, are that now
staff and students can clearly see the interconnections within curricula and are able to see the flow of
knowledge and skills that are needed for future learning. It also allows curriculum changes to be easily
mapped and tracked over time, providing easy access to professional accreditation organizations to see
the impact of those changes. The ability to visualize learning outcomes and the forms of assessment
used to provide evidence of attainment levels is an important aspect of the design.

Due the structured, extensible nature of all the curriculum building blocks outlined in Figure 3,
it is relatively easy to export a wide range of reports, visualizations, curriculum data and statistics for
numerous purposes.

6. Conclusions

This work has shown the use of certain PSE principles in developing complex curricula. The design
of curricula resembles in many ways the basic ideas of process design and flow sheet development, since
curricula design is an educational process. Through the understanding of the crucial building blocks
for curricula and the structured manner of developing learning units, it is possible to produce whole
curricula designs that capture the many characteristics that make up complex learning environments.

By using structured information management approaches, the final designs can be visualized to
understand the whole integrated curriculum. The fundamental concepts, organization and deployment
started within Chemical Engineering, but they have now been adopted and used in many other
disciplines, including nursing, science, agriculture, pharmacy, veterinary science, medicine and
philosophy. It is significant that the idea of the importance of an integrative approach rather than
disparate designs was at the heart of the PSE efforts of Roger Sargent from the very beginning of his
long and distinguished career.

The application of PSE ideas to bring an integrative approach to curriculum design now yields
similar benefits to many other disciplines that have already been realized within the PSE community.
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