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Abstract: Pharmacogenomics is one of the emerging approaches to precision medicine, tailoring
drug selection and dosing to the patient’s genetic features. In recent years, several pharmacogenetic
guidelines have been published by international scientific consortia, but the uptake in clinical
practice is still poor. Many coordinated international efforts are ongoing in order to overcome
the existing barriers to pharmacogenomic implementation. On the other hand, existing validated
pharmacogenomic markers can explain only a minor part of the observed clinical variability in the
therapeutic outcome. New investigational approaches are warranted, including the study of the
pharmacogenomic role of the immune system genetics and of previously neglected rare genetic
variants, reported to account for a large part of the inter-individual variability in drug metabolism.
In this Special Issue, we collected a series of articles covering many aspects of pharmacogenomics.
These include clinical implementation of pharmacogenomics in clinical practice, development of tools
or infrastractures to support this process, research of new pharmacogenomics markers to increase
drug efficacy and safety, and the impact of rare genetic variants in pharmacogenomics.

Keywords: pharmacogenomics; personalized medicine; human genetics; pharmacology

Precision medicine has the ultimate goal of exactly matching each therapeutic intervention with
the patient’s molecular profile. Over the last twenty years, the study of human genetics has been fueled
by cutting-edge sequencing technologies leading to a deeper understanding of the relationship between
genetic variation and human health [1]. The study of genetics has been widely applied in precision
medicine, and one of the emerging applications is pharmacogenomics-informed pharmacotherapy,
tailoring drug selection and dosing to the patient’s genetic features. To date, pharmacogenomic variation
has an established role in drug efficacy and safety, enabling the creation of treatment guidelines by
international scientific consortia aimed at creating medical guidance for the clinical application of
pharmacogenomics. Specifically, the Clinical Pharmacogenetics Implementation Consortium (CPIC)
and the Dutch Pharmacogenetics Working Group (DPWG) have developed validated guidelines for
several drug-gene interactions that are made freely available as an on-line resource (www.pharmgkb.org) [2].
However, the uptake of pharmacogenomics into routine clinical care remains limited. A range of major
barriers has been identified, spanning from basic pharmacogenomics research through implementation.
The study of previously neglected rare genetic variants and the validation of their functional and
clinical impact through the development of pre-clinical models and in silico tools is warranted to
improve pharmacogenomic knowledge. On the other hand, ongoing international coordinated efforts
set up to overcome the existing barriers to pharmacogenomic implementation will provide new tools
and insights into the clinical application of pharmacogenomics, thus helping to pave the way for
widespread adoption [3]. In this Special Issue, eleven papers are published, covering different aspects
of research and clinical application in the field of pharmacogenomics.
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Six papers report original results on the discovery of new genetic markers of the outcome
of a pharmacological treatment in terms of either efficacy or toxicity. Two papers focus on the
pharmacogenomics of platinum derivatives. Dugo and colleagues [4] report the results of the
bioinformatic revision of a dataset of radically resected ovarian cancer patients from TCGA, treated with
an adjuvant platinum-based treatment. They focus on tumor tissue genetic alterations and specifically on
somatic copy number alteration, highlighting a significantly different pattern of genomic amplification
in platinum resistant patients versus platinum sensitive. The paper underscores the importance
of considering the tumor tissue genome when approaching the issue of pharmacogenomics in
cancer treatment. Moreover, it points out the great opportunity offered by the large amount of
genomic data produced by international consortia like TCGA that could be mined to highlight
innovative pharmacogenomic markers. The research paper by Zazuli and colleagues [5] addresses
the issue of predictive markers of nephrotoxicity due to cisplatin treatment. They attempt to validate
some previously investigated genetic polymorphisms in SLC22A2 and ERCC2. Quite interestingly,
they aim to define whether different clinical definitions of nephrotoxicity (adjusted-AKI or CTCAE-AKI
designation) could have contributed to previous inconsistent results on the predictive role of the
analyzed variants. They report that the association with the polymorphisms was only significant
when considering the nephrotoxicity definition according to CTCAE v4.03. This paper raises the
important issue of the definitions of clinically relevant outcomes in pharmacogenomics, which may
have hindered the generation of solid and reproducible data among various studies in the field.
More generally, heterogeneity in ethnicity, demographic characteristics and treatment modalities
(dose or co-treatment) could affect comparability among studies. Yanqui Xu and colleagues [6] describe
an original analysis of publicly available data investigating effective drugs for breast cancer using
a system approach. The analysis is focused on identifying molecules effective in particular breast
cancer subtypes by considering the impact of potentially effective drugs on the pathway crosstalk
mediated by miRNAs. In their integrated analysis, the authors point out, for example, sorafenib as
a medication potentially effective on the basal subtype, or irinotecan for Her2-positive subtype.
Al-Eitan and colleagues [7] evaluate the association between a panel of seven polymorphic variants
in the well-established candidate genes CYP2C9 (three variants) and VKORC1 (four variants) and
warfarin anticoagulant effects, in a cohort of unrelated Jordanian-Arab patients with cardiovascular
disease. Warfarin response was evaluated in terms of the achievement of a coagulation level in the
therapeutic range during therapy and of the drug dose required by the patient. Variants of both genes
were associated with warfarin effects and dose requirement. Interestingly, the haplotype derived
by the combination of the variants of each gene were also associated with the effects of warfarin,
confirming the relevance of the multilocus CYP2C9/VKORC1 genotype to improving warfarin therapy
for Arab patients also. Lucafò and colleagues [8] evaluated the contribution of a panel of candidate
genetic variants on the efficacy and pharmacokinetics and of azathioprine in a cohort of young Italian
patients with inflammatory bowel disease. These variants included those well established in TPMT,
but also in two highly polymorphic glutathione transferase enzymes, in particular the GST-A1 and
GST-M1 isoforms. Interestingly, all variants affected azathioprine efficacy in this cohort. In particular,
TPMT polymorphisms, associated with reduced enzymatic activity, determined improved response to
azathioprine, due to reduced inactivation of the drug. On the other hand, variants determining reduced
activity of GST-A1 or GST-M1 determined reduced azathioprine efficacy, likely because of a lower drug
activation. The effect on azathioprine metabolite concentration and dose was confirmed for GST-M1
and TPMT. Bise and colleagues [9] evaluate the potential involvement of miRNAs in determining the
variation in expression levels of drug transporters or enzymes involved in the activation or inactivation
of cytarabine and other analogs, an important mechanism potentially determining drug resistance.
The authors evaluate miRNA and gene-expression levels of cytarabine metabolic pathway genes in
8 AML cell lines and the TCGA database, demonstrating that miR-34a-5p and miR-24-3p regulate
DCK, an enzyme involved in activation of cytarabine, and DCTD, an enzyme involved in metabolic
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inactivation of cytarabine expression, respectively. The authors also confirmed the binding of these
mRNA–miRNA pairs on the basis of gel shift assays.

Three papers report the results of research work aimed at investigating how to improve
pharmacogenomic implementation in clinical practice. The work of Lunenburg and colleagues [10]
approached the theme of rare genetic profiles that are not included in the current version of
pharmacogenomic guidelines, and the importance of integrating phenotyping strategies into genotyping
in these cases. Specifically, they investigated seven cases of rare occurrence of DPYD compound
heterozygosity for two of the four DPYD genetic polymorphisms with a validated effect on
fluoropyrimidines safety. The most difficult task in these cases is the phasing of the genotypes in order to
obtain a proper translation of genotype to phenotype. Since currently available phasing strategies are
difficult to translate into a diagnostic routine, the authors point out the necessity in these sporadic cases
of performing DPD phenotyping based on the measurement of DPD activity, in order to define the real
enzymatic capacity of each individual. The paper by Roncato et al. [11] describes the development of
FARMAPRICE, an IT-based clinical decision support system (CDSS) for the user-friendly application
of existing pharmacogenomic guidelines in the clinical practice of drug prescription in Italy. The lack
of dedicated IT tools is an acknowledged barrier to the implementation of pharmacogenomics. Even if
the usability of electronic health records must be greatly improved in order to allow an effective
translation of genetic information into routine drug prescription in Italy, the development of tools
like FARMAPRICE can be helpful in facilitating the process. Another paper by Van Der Wouden and
colleagues [12] investigated the up-take of a similar tool in a different European health care system.
A pharmacogenomic CDSS is currently in use in the Netherlands and is fully integrated with patients’
electronic health records. Specifically, the study reports the results of the uptake of this tool within
a prospective pilot study with community pharmacies (the Implementation of Pharmacogenetics into
Primary care Project (IP3) study). Two hundred patients were pre-emptively genotyped for eight
pharmacogenes, and the genotypes were embedded in the electronic health records. The data were
used by pharmacists and general practitioners for the purposes of drug prescription. The approach
was demonstrated to be feasible in the context of primary care and manageable for pharmacists and
general practitioners. Almost all of the patients had the opportunity to re-use their genetic data more
than once and about one fourth of the patients had at least one actionable piece of information in their
pharmacogenetic passport.

This special issue also includes two outstanding literature reviews. Davila-Fajardo’s [13] revision is
focused on implementation/cardiology. Indeed, drugs used in this clinical setting have a huge interindividual
variability, which is reflected in highly impactful under- or over-treatment, which severely affects
the safety of the patients. The choice of the drug and the dose is often critical, and strict clinical
monitoring is required to adjust the treatment, as in the case of warfarin. Many gene–drug interactions
are available that have been validated by large prospective clinical trials with the opportunity to
integrate clinical and genetic information in predictive pharmacogenetic algorithms. Cost-effectiveness
studies were also conducted supporting the application of PGx information in the dose adjustment.
In conclusion, PGx tests for clopidogrel in high-risk patients and warfarin in patients including all
indications could begin to be implemented in daily clinical practice, similar to simvastatin tests.
Acenocoumarol should be limited to patients who do not reach the INR after a certain period of
treatment. The algorithm could improve acenocoumarol dosage selection for patients who will begin
treatment with this drug, especially in extreme-dosage patients. Further studies are necessary to confirm
that the PGx test for acenocoumarol is ready for use. Pavlovic and colleagues [14] summarized the
contribution of high-throughput technologies, including microarrays and next-generation sequencing,
to the pharmacogenomics and pharmacotranscriptomics of pediatric acute lymphoblastic leukemia
(ALL). Emerging molecular markers responsible for the efficacy, adverse effects and toxicity of the
drugs commonly used for pediatric ALL therapy, i.e., glucocorticoids, vinka alkaloids, asparaginase,
anthracyclines, thiopurines and methotrexate are presented in the review. For instance, among the
most promising, the authors describe CEP72 rs924607 TT genotype and its association with vincristine
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induced neuropathy. The authors underline that while a significant amount of data has been generated
using high-throughput technologies, the clinical implementation of these findings is still limited.
To increase clinical implementation of this outstanding research, the authors discuss the relevance of
data analysis and of designing prediction models using bioinformatics, machine learning algorithms
and artificial intelligence.

In conclusion, the studies collected in this volume underline the potential of innovative molecular
approaches, including multilocus genotyping, sequencing of rare variants and epigenetic features,
in identifying genetic determinants of interindividual variability in the effects of drugs in several
important clinical settings, including chemotherapy of breast cancer and leukemia and anticoagulant
therapy for cardiovascular diseases. The integration of multiple layers of pharmacological information,
including variation in gene expression and function of drug targets, pharmacokinetic profiles,
also obtained through innovative statistical and bioinformatic approaches, holds the potential
of explaining the predictable sources of interpatient variability in drug effects, which properly
implemented will bring to precision therapy.
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Abstract: High grade serous ovarian cancer (HGSOC) retains high molecular heterogeneity and
genomic instability, which currently limit the treatment opportunities. HGSOC patients receiving
complete cytoreduction (R0) at primary surgery and platinum-based therapy may unevenly experience
early disease relapse, in spite of their clinically favorable prognosis. To identify distinctive traits of the
genomic landscape guiding tumor progression, we focused on the R0 patients of The Cancer Genome
Atlas (TCGA) ovarian serous cystadenocarcinoma (TCGA-OV) dataset and classified them according
to their time to relapse (TTR) from surgery. We included in the study two groups of R0-TCGA patients
experiencing substantially different outcome: Resistant (R; TTR ≤ 12 months; n = 11) and frankly
Sensitive (fS; TTR ≥ 24 months; n = 16). We performed an integrated clinical, RNA-Sequencing, exome
and somatic copy number alteration (sCNA) data analysis. No significant differences in mutational
landscape were detected, although the lack of BRCA-related mutational signature characterized the R
group. Focal sCNA analysis showed a higher frequency of amplification in R group and deletions
in fS group respectively, involving cytobands not commonly detected by recurrent sCNA analysis.
Functional analysis of focal sCNA with a concordantly altered gene expression identified in R group
a gain in Notch, and interferon signaling and fatty acid metabolism. We are aware of the constraints
related to the low number of OC cases analyzed. It is worth noting, however, that the sCNA identified
in this exploratory analysis and characterizing Pt-resistance are novel, deserving validation in a wider
cohort of patients achieving complete surgical debulking.

Keywords: ovarian cancer; platinum resistance; focal copy number alterations; whole
exome sequencing

1. Introduction

High grade serous ovarian cancer (HGSOC) is the most common and lethal epithelial ovarian
cancer (EOC) subtype, causing 70–80% of ovarian cancer deaths worldwide [1]. Due to the lack of
specific symptoms it is generally diagnosed at advanced stages when it has diffusely metastasized
into the peritoneal cavity. Standard treatment includes aggressive primary debulking surgery (PDS)
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followed by platinum (Pt)-based therapy; but, despite the improvement of surgical approaches and
drug development, survival rate has changed little in the last decades [2].

Pt-based therapy remains the cornerstone treatment type and, currently, BRCA1/2 mutation status
is the only biomarker that allows up-front identification of patients with Pt-sensitive or resistant
disease [3]. As a consequence, around 30% of patients undergoing Pt-based chemotherapy do not
respond to treatment. Also, around 80% of those patients achieving complete response will relapse
with a median progression-free survival of 18 months, developing a disease that progressively becomes
Pt-resistant, a largely incurable state [2,3].

The opportunity to effectively treat and control HGSOC progression is limited by tumor
heterogeneity and genomic instability. HGSOC following p53 mutation undergo multiple sequential
mutational processes that shape a complex genome, strongly dominated by somatic copy number
aberrations (sCNA). As a result, HGSOC like other CNA driven tumors, as esophageal cancer,
non-small-cell lung cancer and triple negative breast cancer, have a low frequency of recurrent
oncogenic mutations and a few recurrent sCNA [4]. These multiple mutational forces acting on HGSOC
cause difficulties in the identification of targetable genetic lesion(s).

At present, no residual tumor (R0) after PDS is the most important prognostic factor for survival
in advanced stage disease [2]. Analyzing clinical data of The Cancer Genome Atlas (TCGA) ovarian
serous cystadenocarcinoma (TCGA-OV) we observed that in the group of patients experiencing early
relapse were included also those who received optimal clinical treatment (Pt-based therapy and no
residual disease after PDS) supporting the notion that intrinsic characteristic(s) of the tumor play a
major role in the lack of responsiveness.

The aim of the present pilot study is to decipher the genomic landscape characterizing the highly
selected cohort of HGSOC patients who experienced an early relapse, in spite of their expected
favorable outcome as assessed by clinical parameters.

2. Materials and Methods

2.1. Data Source and Samples Selection

Mutational and copy number data of TCGA-OV samples were downloaded from the Broad
Institute Firehose web portal (https://gdac.broadinstitute.org/) with data version 2016_01_28. Clinical
data were obtained from the ovarian cancer landmark paper [5]. RNA-Seq raw counts data were
obtained from the Genomic Data Commons data portal (https://portal.gdc.cancer.gov/) with accession
date 12th March 2019.

For genomic analyses we selected patients with: (i) no residual disease (R0) after PDS;
(ii) whole-exome sequencing data available; (iii) sCNA data available; (iv) a follow-up time≥ 12 months.
Forty-eight patients having these characteristics were then classified according to their time to relapse
(TTR). Since the time of end-of-treatment was not recorded, the disease-free interval was calculated
from the date of surgery. Patients were categorized on the basis of disease-free period length and
we identified two subgroups having very different TTR: the refractory/resistant (R) group with
TTR ≤ 12 months (n = 11), and the frankly Sensitive (fS) groups with TTR ≥ 24 months (n = 16).
These 27 patients (5.9% of the entire TCGA-OV cohort) constitute the TCGA-OV27 cohort, analyzed in
the present study. All analyses described in the following sections were performed in the R environment
version 3.5.2.

2.2. RNA-Seq Data Analysis

RNA-Seq data were available for 23 patients (9 R and 14 fS) of the TCGA-OV27 dataset. Raw read
counts were normalized using the Trimmed Mean of M-values (TMM) method [6], implemented in
the edgeR Bioconductor package [7]. TMM estimates a scaling factor used to reduce technical bias
between samples due to differences in library size. Normalized data were then filtered removing
genes with at least 1 count per million reads in less than 5% of samples. The final dataset included
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23391 unique genes. Differential expression between R and fS was performed using the limma/voom
pipeline [8]. p-values were corrected for multiple testing using the Benjamini–Hochberg false discovery
rate (FDR) method. Ensembl gene IDs were associated to HUGO gene symbols using the GENCODE
v22 annotation. Gene Set Enrichment Analysis [9] between R and fS was performed using the Fast
Gene Set Enrichment Analysis (fgsea) package ranking genes according to the t-statistic obtained with
limma. Gene sets of the “Hallmark” collection from the Molecular Signatures Database (MSigDB,
http://software.broadinstitute.org/gsea/msigdb/) were tested. Gene sets with an FDR < 0.05 were
considered significant.

2.3. Mutational Data Analysis

Mutation Annotation Format (MAF) files used to store somatic variants detected were summarized,
analyzed, annotated, and visualized using the maftools Bioconductor package [10]. Only variants
assumed to have high or moderate (disruptive) impact in the protein, probably causing protein
truncation, loss of function or triggering nonsense mediated decay were included in the analysis of
most frequently mutated genes. For the calculation of tumor mutational load we considered both
high/moderate impact mutation and all somatic mutations.

The DeconstructSigs package [11] was used to perform the mutational signature analysis. This tool
evaluates the contribution of 30 signatures reported in COSMIC (https://cancer.sanger.ac.uk/cosmic/
signatures) [12] to the mutational profile of each sample. Mutational signatures were calculated
considering all somatic mutations in a given sample. The obtained signature scores were then analyzed
in association with sensitivity class using Wilcoxon rank-sum test. Samples were grouped according
to the top-5 most contributing mutational signatures using unsupervised hierarchical clustering
performed with Euclidean distance and Ward linkage.

To identify mutations associated to sensitivity class we used the clinicalEnrichment function of
maftools package [10] that performs Fisher’s exact tests to identify mutated genes associated with the
class of interest. Analysis at the level of oncogenic pathways described in Sanchez-Vega et al. [13]
was performed using the OncogenicPathways function of maftools. For each sample we classified each
pathway as mutated if at least one of its genes carried a mutation. We then associated mutated
pathways to sensitivity class using Fisher’s exact test. The same analysis was repeated using the
“Hallmark” gene sets from MSigDB.

2.4. sCNA Data Analysis

Genomic Identification of Significant Targets in Cancer (GISTIC) [14] algorithm was used to
analyze sCNA data.

Segmented copy number data were analyzed using GISTIC [14] to identify significantly recurrent
sCNA in the whole TCGA-OV27 cohort, independently of sensitivity class. GISTIC output was
parsed using the maftools package [10]. In addition to the regions recurrently affected by sCNA,
GISTIC provides a gene-level copy number status for all genes of the genome in each sample
(all_thresholded.by_genes.txt output file). Thus, we tested the association with sensitivity class both
for recurrently amplified or deleted regions (GISTIC FDR < 0.1) and for each single gene. For these
analyses amplifications and deletions were analyzed separately. For amplifications, a region was
assigned a value of 1 if amplified or 0 if the region was not altered or deleted. The same criterion
was applied to deletions. The binary amplification and deletion data were then analyzed in relation
to sensitivity class using Fisher’s exact test. p-values were corrected for multiple testing using the
Benjamini-Hochberg FDR method.

Per sample genomic instability was calculated according to: (i) The number of segments in the
segmented copy number data; (ii) the total number of genes with a copy number alteration; (iii) the sum
of deleted or amplified genes. Association between genomic instability and sensitivity class was
assessed by Wilcoxon rank-sum test.
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2.5. Statistical Power and Sample Size Calculation

The statistical power for Fisher’s exact test applied to the TCGA-OV27 cohort for mutational
and sCNA data analyses was calculated using the power2x2 function of the exact2x2 R package.
From TCGA-OV27 data we observed that the genes mostly associated to the phenotype of interest were
altered (mutated, amplified or deleted) in 27% and 94% of R and fS patients, respectively. Considering
these proportions and hypothesizing to test 20,000 genes, the present study has a statistical power of
2.4% of detecting at least one significant finding at an FDR threshold of 5%. To achieve a power of 80%
at the same FDR threshold at least 31 patients per group are required. This sample size was calculated
using the ss2x2 function of the R-package.

2.6. Integrated sCNA and RNA-Seq Functional Analysis

Functional analysis was carried out on a subset of genes that showed coherent copy number status
and differential expression in R compared to fS patients. Over-representation of molecular and cellular
functions in the list of selected genes was carried out using: (i) Reactome canonical pathways gene
sets from the C2 collection of MSigDB (http://software.broadinstitute.org/gsea/msigdb/annotate.jsp)
to map the genes in known functional pathways; (ii) Ingenuity® Pathway Analysis (IPA®, Qiagen;
Bioinformatics, Redwood City, CA, USA; http://www.qiagen.com/ingenuity) to derive predictions
about the activation status. Enrichments with an FDR < 0.05 were considered statistically significant.

3. Results

From TCGA-OV dataset we selected patients with no residual disease (R0) after PDS with WES
and sCNA data available and with a follow-up time ≥ 12 months.

Then, considering that the subgroup of R0 patients is expected to have a good prognosis, for the
pilot analysis we further refined the cohort selecting Resistant (R, n = 11) with an unfavorable outcome
and frankly Sensitive (fS, n = 16) patients. Overall 27 patients, the TCGA-OV27 cohort, were included
in the study and their associated clinical data are summarized in Table 1.

Table 1. Clinical characteristics of The Cancer Genome Atlas (TCGA) ovarian serous cystadenocarcinoma
(TCGA-OV) 27 cohort.

Total (n = 27) R (n = 11) Fs (n = 16)

Stage

III 23 9 14

IV 4 2 2

Grading

G2 3 0 3

G3 23 10 13

NA 1 1 0

Relapse

yes 18 11 7

no 9 0 9

R = Resistant; fS = frankly Sensitive.

Transcriptomic analysis of TCGA-OV27 cohort did not reveal differentially expressed genes
between R and fS patients at an FDR < 0.05. However, when we considered a nominal p-value < 0.05
and a fold-change of 2, 210 and 214 genes were down- and up-regulated respectively, in R patients.
Comparison of the two groups using GSEA highlighted 29 hallmark gene sets significantly enriched
in one of the two groups at an FDR < 0.05. (Figure S1). In particular, 1 gene set related to oxidative
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phosphorylation was positively enriched in fS patients while the remaining 28 gene sets were positively
enriched in the R group. Overall, gene sets positively enriched in R patients are supporting of a more
aggressive phenotype for this subset of tumors but did not highlighted specific mechanisms possibly
associated with Pt-resistance.

3.1. Mutational Landscape of TCGA-OV27 Cohort

To identify genomic features associated with early relapse we then analyzed mutational data of
the selected cohort. Consistent with genome landscape studies of the whole TCGA-OV cohort and
most recent studies on ovarian cancer [15,16], p53 is mutated in 89% of TCGA-OV27 patients (Figure 1).
Among the prevalent mutated genes we found, as expected, CDK12, NF1, and RB1, together with
CSMD1, NOTCH4, and TMEM132D genes, which seem to be a specific trait of this cohort. Considering
genes mutated in at least three patients we did not observe any significantly unbalanced distribution
of these predominantly mutated genes within R/fS classes (Figure 1A).

Figure 1. Mutational spectrum of TCGA-OV27 samples. (A) Oncoplot of the top-10 most frequently
mutated genes in cytoreduction (R0) patients of the TCGA-OV27 dataset, grouped according to
sensitivity class. Each column represents a sample and each row a different gene. Colored squares
show mutated genes, while grey squares show no mutated genes. Different type of mutations are
colored according to the variant type as indicated in the legend at the bottom. Genes annotated as
“Multi_Hit” have more than one mutation in the same sample. The barplot at the top shows the
number of mutated genes for each patient colored according to the mutation type. The barplot on the
right reports the number of mutated patients for each gene, colored according to the mutation type.
(B) Boxplot showing the tumor mutational load of R and fS samples, calculated both considering only
mutations with high/moderate impact (upper panel) or all somatic mutations (lower panel). P-value
was calculated by Wilcoxon rank-sum test.

We compared the tumor mutational load in the two sensitivity classes considering either
only mutations with high/moderate impact (Figure 1B upper panel) or all somatic mutations
(Figure 1B lower panel); even if fS patients tend to have a slightly higher number of mutations,
we did not detect significant differences between the two classes.

Overall, we identified in at least one sample 1115 variants with high/moderate impact affecting
1005 unique genes. To reduce the high inter-patient heterogeneity of mutational data we grouped genes
into pathways and compared pathways mutated in R or fS patients. For this analysis we considered
50 gene sets from the ‘Hallmark’ collection of MSigDB database that summarize well-defined biological
states or processes and ten canonical oncogenic pathways [13]. We called a pathway mutated if at
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least one of its genes was mutated. According to our analysis, none of the pathways tested was
found to be significantly associated to sensitivity class, even at a less stringent nominal p-value < 0.05
(Tables S1 and S2).

3.2. Mutational Signatures of TCGA-OV27 Cohort

Basing on the relative frequency of somatic base substitution events, 30 distinct mutational
signatures, reflecting distinct mutational process associated with specific biological status and/or
altered functions have been described (COSMIC; https://cancer.sanger.ac.uk/cosmic/signatures) [12].
These mutational signatures were analyzed in the TCGA-OV27 cohort considering all somatic variants
independently of their functional consequences. A hierarchical clustering based on the scores of the
five most represented mutational signatures identified two major clusters mainly driven by different
contribution of Signature 1 (related to endogenous mutational processes) and Signature 3 (related to
defective homologous repair of double-strand DNA break). Even if the association between these
clusters and sensitivity was not significant (Fisher’s exact test p-value = 0.054), we observed a clear
trend of enrichment of R patients in the cluster driven by Signature 1 and an enrichment of fS patients
in the cluster driven by Signature 3 (Figure 2). The comparison of each signature’s score between
the two classes is reported in Table S3 and a nominal p-value < 0.05 (Wilcoxon rank-sum test) was
observed for Signature 3 only.

Figure 2. Mutational signatures in TCGA-OV27 cohort. Heatmap showing the contribution of the
top-5 most represented COSMIC signatures in the mutational profiles of TCGA-OV27 samples.

3.3. Genomic Instability and sCNA Landscape of TCGA-OV27 Cohort

On the basis of recent studies defining sCNA as the prevalent genomic alteration affecting
HGSOC [17], we assessed whether R or fS patients of our selected cohort could be distinguished by
specific sCNA.

We used sCNA data to obtain a measure of genomic instability for each patient, using different
approaches all based on the GISTIC algorithm. We firstly considered the number of regions with
different copy number (number of segments; Figure 3A), with the assumption that a higher number
of segments should describe a more fragmented (instable) genome. We next considered within each
sample either the total number of genes affected by sCNA (Figure 3B) or, separately, the total number
of amplified or deleted genes (Figure 3C,D). Overall, we observed a trend for higher sCNA in fS
compared to R patients. This trend was significant when we considered the number of genes affected
by aberrations in general (Wilcoxon rank-sum test p-value = 0.03) and this difference was mainly
driven by deletions (Wilcoxon rank-sum test p-value = 0.034).
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Figure 3. Association between genomic instability and sensitivity class in TCGA-OV27 dataset.
As measure of genomic instability for each sample we considered: (A) the number of segments that
represents the number of regions with different copy number levels within a genome; (B) the total
number of amplified or deleted genes; the total number of amplified genes only (C) or deleted genes
only (D). P-values are according to Wilcoxon rank-sum test.

To identify recurrent sCNA we applied GISTIC to copy number data of the TCGA-OV27 cohort.
We identified 10 regions significantly amplified and 12 regions significantly deleted across samples
(Figure 4A). All sCNA events, as well as detail in category, chromosome location genes in the region
and cytobands are in Table S4.

The frequency plot distribution of sCNA detected in the TCGA-OV27 cohort (Figure 4B),
shows that 3q26.2 gain, 17q11.2, 19p13.3, and 4q34.3 loss were the most frequently altered regions
(>80% of patients). The frequency of samples positive for the recurrently amplified or deleted regions
in the two subgroups (R and fS) of patients is showed in Figure S2. However, when we compared
the frequency of the recurrent sCNA identified by GISTIC between the two sensitivity classes, no
significant association to Pt-sensitivity was observed (Table S5).

We repeated the analysis of sCNA at the gene-level, considering 23110 amplified or deleted genes.
Due to the low number of samples available for each class, no significant findings were detected
after multiple-testing correction, while we detected 1270 genes more frequently altered at a nominal
p-value < 0.05 (Fisher’s exact test) in R or fS patients (166 amplified and 1104 genes deleted, Table S6).
Considering the explorative nature of this pilot study, we further explored the genes list being aware
of the limitations associated with analysis of small group of patients and the high risk of detecting
false positive hits (see Materials and Methods, Section 2.5 for power calculation of the present study).
Among these genes we observed that amplifications were more frequently detected in R rather than in
fS group (median percentage of patients with amplified genes: 57% in R vs 12% in fS; Range: 36–82% in
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R group, 0–37% in fS group). On the other side deletions were more frequently detected in fS patients
(median percentage of patients with deleted genes: 15% in R vs 62% in fS group; Range: 0–63% in R
group, 19–87% in fS group).

Figure 4. Recurrent somatic copy number alterations (sCNA) in R0 patients of TCGA-OV27 cohort.
(A) Plot of G scores (defined as the amplitude of the copy number multiplied by its frequency across
samples) calculated by Genomic Identification of Significant Targets in Cancer (GISTIC) for genomic
regions recurrently amplified (red) or deleted (blue) in the TCGA-OV27 dataset, at an FDR < 0.1.
(B) Barplot showing the frequency of samples positive for the recurrently amplified (left) or deleted
(right) regions identified by GISTIC.

3.4. Association between sCNA and Altered Gene/Pathways Expression in Pt-Sensitivity Classes

We investigated the relationships between sCNA, alteration of genes’ expression and relevant
functional pathways possibly affected by these alterations.

The complete decision tree for gene selection is shown in Figure 5A. We first removed genes that
were not assessed by RNA-Seq from the list of 1270 genes significantly amplified or deleted in R or
fS patients. We next filtered this list according to the observed relative frequency of amplification or
deletion for each sensitivity class. Finally, we removed genes whose log2 fold change (FC) was not
compatible with its copy number status (e.g., a gene preferentially amplified but down-regulated in R
group) and among the concordant genes we selected those with a log2 FC of at least 0.5 between R
and fS patients. The final gene list included 128 genes (Table S7), consisting of 16 genes preferentially
amplified and up-regulated in R group and 112 genes more frequently deleted and down-regulated in fS
patients. The relative frequency of associated altered cytobands is reported in Figure 5B. Interestingly,
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these cytobands were not included among the significantly recurrent aberrant regions identified
by GISTIC.

Figure 5. Association between sCNA and altered gene expression in Pt-sensitivity classes. (A) Selection
of significant focal sCNA with concordant alteration of gene expression. Gene expression was assessed
by RNA-sequencing (RNASeq) data, and for each altered gene, the logFC expression ratio of R vs fS
patients was calculated. The workflow guiding selection of both amplified and deleted genes with
concordant expression is shown. (B) Cytobands associated with significant sCNA and altered gene
expression. In the plot are reported the cytobands affected by significant amplification (upper panel,
red bars) and deletions (lower panel, blue bars). For each type of alteration, the relative frequency of
each cytoband affected is shown.

To map the 128 altered genes into known functional pathways we firstly assessed
over-representation of Reactome canonical pathways included in the C2 gene set collection of MSiGDB.
Seven gene sets, related to interferon (IFN) and cytokine signaling, fatty acid and lipid metabolism,
were found significantly over-represented (FDR < 0.05) and 23 out of the 128 genes overlapped with at
least one of them (Figure 6).
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Figure 6. Over-representation analysis of the 128 genes with concordant sCNA and expression. Network
showing the 7 Reactome gene sets significantly over-represented in the list of 128 genes. Yellow nodes
represent gene sets and the size of the node is proportional to the number of genes catalogued in the
gene set. The significance of the over-representation is represented by a dark-to-light red color scale.
Blue nodes represent genes and are connected to a gene set if they are among its gene members.

Then, to examine biological relationship and investigate functional effects related to sCNA
of these 128 genes, we run Ingenuity Pathway Analysis. Canonical pathways analysis confirmed
a significant modulation in IFN signaling, mostly related to IFIT and OAS2 genes deletion, and
fatty acid metabolism dependent on alterations in desaturase genes (FADS1 and FADS2). We also
observed significant modulation of G-alpha proteins signaling pathways (Table 2). The most significant
Regulatory Networks affected by the altered gene expression are listed in Table 3.

Table 2. Canonical Pathways identified by Ingenuity® Pathway Analysis (IPA).

Ingenuity Canonical Pathways -Log(p-Value) Genes

Interferon signaling 2.87 OAS1, IFIT1, IFIT3
Oleate biosynthesis II (animals) 2.8 FADS1, FADS2

Graft-versus-host Disease signaling 2.62 IL1RN, IL36RN, FAS
Gαs signaling 2.4 CNGB3, GNG3, HCAR3, HCAR2

γ-linolenate biosynthesis II (animals) 2.33 FADS1, FADS2
Gαi signaling 2.15 APLNR, GNG3, HCAR2, CHRM4
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Table 3. Top regulatory networks identified by IPA. Genes detected in the TCGA-OV27 cohort are
shown in bold.

Top Diseases and Functions Molecules in Network Score Focus Molecules

Dermatological diseases and
conditions, Organismal

injury and abnormalities,
immunological disease

ACTA2, ADM, APLNR, Akt, CCKBR, CD6, ERK,
ERK1/2, FAS, GLI2, HCAR2, IFIT1, IFIT3, IL1RN,
ILK, Interferon alpha, Jnk, MAPK8IP1, Mek, NFkB
(complex), OAS1, OAS2, OAS3, P38 MAPK, PI3K

(family), PPP1CC, Raf, SH2B3, SLC15A3, SLC43A3,
TCR, TRIM22, UBE2L6, UNG, WEE1

44 24

Gastrointestinal disease,
organismal injury and

abnormalities, cell death and
survival

ADM, AHNAK, ATG7, C3, CFTR, CLDN7, CST5,
CTSS, DENND5A, DUSP10, FADS1, FADS2, HAS1,
HCAR3, HLA-B, IFNGR1, IL13, IL1B, IL36RN, LBP,
MAFF, MS4A4A, NFKBIE, NRIP3, PQLC3, SEL1L3,
SLC43A3, SMARCA4, STK33, STMN2, SYT7, TNF,

TP63, TUB, WWP1

27 17

Gene expression, cell cycle,
cellular growth and

proliferation

ACAD10, BAG1, CBS/CBSL, CCNB2, CDK17,
CORO1C, CTR9, DCHS1, ESR1, FGD6, GREB1,

HAUS8, HDAC1, HLTF, LTB, NEDD1, NFYB,
NR1D1, NR2C1, NR3C1, NUPR1, PLK1, PRMT6,

SCUBE2, SMARCE1, SMYD2, SMYD3, SP1, TBX3,
TEAD1, TFAP2C, TNFAIP6, TRAFD1, YWHAG,

estrogen receptor

19 13

Cellular development,
cellular growth and

proliferation, cell cycle

CCND1, CDCA2, CDK5, CHD7, CMKLR1, Ctbp,
DRAM1, E2F5, ERBB2, GCN1, HCAR1, HEY1,

JAG1, LINC-ROR, LIPF, MAFB, MED13L, NOTCH2,
NOTCH4, NUAK1, NUMB, OIP5-AS1, PCLAF,
PPARGC1A, RFC1, RMST, RUNX3, SLC16A1,

SMTN, SOX2, SUV39H1, TMEM119, TMPO, TP53,
let-7a-5p

17 12

Gene expression, cell
signaling, cellular

development

26s Proteasome, ACACB, ACTA2, AR, ASCL1,
ATP6V0D2, BAG1, CD55, CDK5, CDKN1C,

CHRM4, CHST1, CKAP4, DAB2, DLL4, FSH, GBP1,
H2AFY, HES1, HRK, IER3, LYVE1, Lh, MED12,

MTOR, NOTCH1, PGR, PRKD1, PRKD2, SMARCE1,
SMTNL1, SSH1, TOP1, TP53I11, YWHAB

17 12

DNA replication,
recombination, and repair,
cell morphology, cellular

function and maintenance

ACTG1, CHPT1, CLOCK, DDX11, DDX5, DTX4,
EIF4G2, EP300, FEN1, GATA1, HBB, HNRNPC,

HNRNPD, HNRNPU, HUS1, MAX, MYB, OAS3,
OTUB1, PARPBP, PCLAF, PCNA, RAD51, RAD9A,

RFC1, RHOA, Rnr, SATB1, TMEM241, TP53BP1,
TRPV4, USP44, UTP20, XRN2, YBX1

15 11

The top-scoring Network (Dermatological Diseases and Conditions, Organismal Injury and
Abnormalities, Immunological Disease) whose graphical representation is reported in Figure 7, shows
a number of molecular relationships centered on interferon, in accordance with previously described
pathway analysis. Interestingly, among the top regulatory networks we also identified a number of
networks whose functions are mainly related to cell growth and proliferation and cell development.
Accordingly, Cellular Development, Cell Morphology, Cellular Growth and Proliferation were the
most significantly modulated Molecular Cell Function (Table S8), while Invasion, Migration and Cell
Movement were the only Disease and Functions significantly predicted to be increased in R patients
(Table S9).
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Figure 7. IPA analysis of the 128 significantly altered genes. The top-scoring regulatory network
built from Core Analysis and named Dermatological Diseases and Conditions, Organismal Injury
and Abnormalities, Immunological Disease is shown. Colored nodes are the genes of the dataset
participating to the network.

4. Discussion

The relationship between post-operative residual tumor burden and clinical outcome is
consolidated for ovarian cancer [2,18]. Consequently, the concept of optimal cytoreduction is evolving
along time and, although the metric for optimal debulking is still defined as tumor nodules not greater
than 1 cm, the literature and meta-data analysis clearly show that R0 patients, those with no residual
tumor after primary surgery, have the best overall outcome. Nevertheless, some of those R0 patients
with an expected favorable clinical outcome still experience early disease relapse, due to intrinsic
molecular characteristics of their tumors. We focused our attention on this small, poorly characterized
subgroup of patients with an unexpectedly unfavorable prognosis (R patients; PFS < 12 months from
surgery). To possibly identify molecular traits associated with Pt-resistant disease in R0 patients we
analyzed their genomic portrait in comparison to those of R0 patients with good prognosis (fS patients;
PFS > 24 months from surgery).

The approach to compare the gene expression of two series of patients with marked opposite
outcomes, with the assumption that this selection may enhance discovering relevant molecular
pathways associated to sensitivity to pt- or cetuximab/pt-based treatment was previously applied
with some success to small cohorts of gastric [19] and head and neck cancers [20]. Comparison of
transcriptomes in the two R0 HGSOC Pt-sensitivity classes, showed in R patients modifications that
could be commonly referred to an increased aggressiveness of tumors but were not directly suggestive
of specific actionable alterations. Similarly, the mutational profile of the R0 cohort did not substantially
differ from the overall TCGA study population, where, apart the prevalent p53 mutation, few other
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genes were commonly mutated and in a small fraction of patients, thus confirming the high mutational
heterogeneity of this tumor type. Also, none of these prevalently mutated genes was significantly
associated with Pt-sensitivity classes. Interestingly, from the overall analysis of the somatic mutational
status we did not observe any enrichment for BRCA1/2 mutations in the fS group and not all fS
patients were characterized by mutational Signature 3 related to defective Homologous Repair of
double-strand DNA breaks. These findings are substantially in agreement with recent data obtained on
long term survivor ovarian cancer patients [15] where the authors propose that the BRCA-associated
signature alone could not be prognostic of Pt-sensitivity in HGSOC. Nevertheless, the analysis of
genomic instability in our R0 cohort disclosed a higher number of sCNA in fS patients as compared
to R ones. Since genomic instability can be attributed to defects in HR pathway [21] these data are
in accordance with the observed enrichment of fS patient in the cluster characterized by mutational
Signature 3 and overall support their Pt-sensitivity. This trend appeared to be mainly driven by
deletions rather than amplification, in accordance with data obtained from focal (gene-level) sCNA
analysis, which described deletions as the prominent event distinctive of the fS group. At the same
time these observations confirm that the maintenance of potential oncogenic pro-survival functions
is a requirement for Pt-resistance and, concordantly, their inactivation might be an opportunity to
overcome Pt-resistance. Noteworthy, the sCNA profile of the R0, fS patients of the TCGA-OV27 cohort
appeared to be different from the HR-deficient TCGA-OV cohort [5], possibly because of the specific
molecular setting of R0 tumors, which have been shown to be intrinsically different from those ovarian
tumors more massively diffused in the peritoneal cavity and less-likely to be completely removed at
primary surgery [22].

sCNA are known drivers of HGSOC development and progression [17]. Interestingly, in a recent
paper studying the spatial and temporal heterogeneity of HGSOC [23], the authors suggest that in this
tumor type the relapsed disease is mostly related to the emergence of pre-existing rather than de-novo
clones and observe that sCNA maintain a low level of intra-patient heterogeneity. Therefore, sCNA
analysis promises to be an effective strategy to identify cancer-causing genes, which could be used for
treatment decisions. Accordingly, Cyclin E (CCNE1) amplification is a known trait in ovarian cancers
with intact HR. It occurs in around 20% of all HGSOC and since it is mutually exclusive with BRCA1/2
mutation [24], patients harboring CCNE1 amplification will not benefit from PARPi treatment and will
likely be less responsive to Pt treatment [5,17]. Nevertheless, these finding provided the rationale for
the development of therapeutic approach that specifically exploit the tumor dependence upon CCNE1
amplification, for instance by targeting CDK2 and AKT activities [25].

CCNE1 locates on chr19q12 cytoband, which we identified to be amplified in the whole TCGA-OV27
cohort. However, possibly due to the small number of samples analyzed, we did not identify any
significant enrichment of 19q12 amplification in the R subgroup of patients and, concordantly, we did
not have any evidence about significant enrichment of CCNE1 amplification in the same subgroup
when we performed the analysis at gene-level. Of note, none of the cytobands identified as significantly
altered in both R and fS class of R0 patients at gene level is comprised in the recurrent chromosomal
aberrations identified and only 5 genes (FAS, HEY1, SH2B3, TBX3, USP44) were included in the
COSMIC (Catalogue of Somatic Mutations in Cancer) Cancer Gene Census list, suggesting that new
information can be acquired with this approach.

Among these newly identified genes, we found HEY1, to be amplified in the R group. Interestingly,
HEY1 is a downstream mediator of Notch-dependent signals [26], it has a putative role as oncogene
(COSMIC) and its expression was recently associated with an EMT phenotype, increased invasion
and cell migration as well as Pt resistance in head and neck cancers [27]. These observations are in
agreement with IPA describing a predicted increase in functions (cell growth and proliferation and
cell development) overall suggestive of a stemness program. Also, Notch1 signaling pathway has
been described to contribute to chemoresistance in ovarian cancer [28], it is a key for maintenance of
cancer stem cell in ovarian cancer [29] and the development of new treatment strategies targeting these
pathways to control stem-cell replication is a current active field of research.
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Pt-resistance is recognized to be a multifactorial event and the search for determinants (genes)
guiding response to Pt treatments still continues to be a key issue in ovarian cancer translational
research. In this context, it has been proven the involvement of aberrant DNA methylation and
modification of histone marks [17,30] in the development of Pt-resistance and a number of synthetically
lethal approaches are under investigation, with cell cycle check points (CHK1, Wee1, DNA-PK) and
related cyclins inhibitors being among the most promising (see [31,32] for an overview).

To our knowledge, this is the first study of R0 HGSOC that specifically investigates sensitivity
to Pt-based therapy by transcriptomics and genomics analyses and biology behind. We are aware
that our study has to be considered explorative. The major limit rests in the small number of samples
included in the TCGA-OV27 cohort, which account for about 6% of the entire TCGA-OV cohort.
This limitation is inherently related to the reduced number of ovarian cancer patients having these
clinical characteristics and with full molecular data available. The statistical power of our analyses is
constrained to 2.4% by the sample size of the TCGA-OV27 cohort, which should triplicate to endow a
statistical significance. Our results should be interpreted with caution. Nevertheless, the overall data
presented here, based on tumors with marked opposite treatment outcomes, are suggestive of a specific
Pt-resistance molecular trait driven by sCNA, and these observations deserve to be further explored
in wider cohort of patients with selected clinical characteristics. If verified and upon appropriate
independent validation, it could possibly drive toward the development of a new tool based on the
sCNA pattern, which may help clinicians in defining sensitivity to Pt treatment.
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Abstract: Although previous research identified candidate genetic polymorphisms associated with
cisplatin nephrotoxicity, varying outcome definitions potentially contributed to the variability in the
effect size and direction of this relationship. We selected genetic variants that have been significantly
associated with cisplatin-induced nephrotoxicity in more than one published study (SLC22A2 rs316019;
ERCC1 rs11615 and rs3212986; ERCC2 rs1799793 and rs13181) and performed a replication analysis
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to confirm associations between these genetic polymorphisms and cisplatin nephrotoxicity using
various outcome definitions. We included 282 germ cell testicular cancer patients treated with
cisplatin from 2009–2014, aged >17 years recruited by the Canadian Pharmacogenomics Network
for Drug Safety. Nephrotoxicity was defined using four grading tools: (1) Common Terminology
Criteria for Adverse Events (CTCAE) v4.03 for acute kidney injury (AKI) or CTCAE-AKI; (2) adjusted
cisplatin-induced AKI; (3) elevation of serum creatinine; and (4) reduction in the estimated glomerular
filtration rate (eGFR). Significant associations were only found when using the CTCAE v4.03 definition:
genotype CA of the ERCC1 rs3212986 was associated with decreased risk of cisplatin nephrotoxicity
(ORadj = 0.24; 95% CI: 0.08–0.70; p = 0.009) compared to genotype CC. In contrast, addition of allele A
at SLC22A2 rs316019 was associated with increased risk (ORadj = 4.41; 95% CI: 1.96–9.88; p < 0.001)
while genotype AC was associated with a higher risk of cisplatin nephrotoxicity (ORadj = 5.06; 95% CI:
1.69–15.16; p = 0.004) compared to genotype CC. Our study showed that different case definitions led
to variability in the genetic risk ascertainment of cisplatin nephrotoxicity. Therefore, consensus on a
set of clinically relevant outcome definitions that all such studies should follow is needed.

Keywords: pharmacogenetics; cisplatin; nephrotoxicity; kidney injury; genetic polymorphisms

1. Introduction

Cisplatin remains one of the most widely prescribed antineoplastic therapies due to its effectiveness
as a component of first-line regimens against various types of cancers, including carcinomas, germ cell
tumours, lymphomas and sarcomas [1,2]. In Europe, the 1- and 5-years survival rate in testicular cancer
patients was 98% and 97%, respectively [3]. However, the dose-limiting toxicities of cisplatin, such as
nausea and vomiting, hematotoxicity, ototoxicity and nephrotoxicity, hinder its potential antineoplastic
effect. Nephrotoxicity is the most prevalent of these adverse effects caused by cisplatin, resulting in a
two-fold risk of acute kidney injury and an increase in serum creatinine levels [4,5]. Approximately one
third of all patients treated with cisplatin develop renal dysfunction after a single dosage of cisplatin
(50–100 mg/m2) [6]. In addition, concerns about long-term renal side effects are rising especially in
cancers that occur in young patients and have a high chance of being successfully treated such as
testicular cancer [7]. A previous study suggested that circulating platinum is still detectable in the
plasma of testicular cancer survivors even 20 years after the last administration of cisplatin [8].

Cisplatin is mainly excreted through the kidneys. Therefore, renal tubular injury is a common
clinical manifestation of cisplatin accumulation in renal tubular cells. Cisplatin levels in tubular
epithelial cells may increase up to five times higher levels than blood levels [9]. After uptake via
organic cation transporter 2 (OCT2) and high-affinity copper transporter 1 (CTR1) in the renal tubules,
multiple mechanisms lead to cytotoxicity: complex intracellular pathways lead to DNA damage
and cell death and an inflammatory response speeds up renal damage even more [10]. Cisplatin
may induce vascular injury as well, which accelerates tubular cell death. These multifactorial
processes lead to tubular necrosis and eventually loss of kidney function [10]. This loss of function
manifests itself in multiple ways: acute kidney injury (as measured by decreased glomerular filtration
rate (GFR)), decreased magnesium and potassium levels and increased serum creatinine (SCr) are
paramount but cisplatin may also cause hypocalcaemia, renal salt wasting and even chronic kidney
disease [10]. Various patient-related (e.g., age, gender, chronic comorbid illness, pre-existing kidney
disease) and treatment-related factors (cisplatin dose per cycle, cumulative dosage, hydration) have
been associated with cisplatin nephrotoxicity [11]. In addition, previous studies also suggest that
variations in genes involved in cisplatin pharmacodynamics and pharmacokinetics contribute to
cisplatin nephrotoxicity [12–18].
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Genetic variations have been reported to play a role both as protective and as risk factors for
cisplatin nephrotoxicity. In a recent systematic review we reported that variants in ERCC1, ERCC2
and SLC22A2 genes were associated with cisplatin nephrotoxicity and replicated in at least one other
study [19]. ERCC1 and ERCC2 polymorphisms have been associated with alterations of DNA repair
process in cells [20–22] including possibly the nephron following cisplatin exposure [19]. In addition,
ERCC1 polymorphisms may alter cell sensitivity to cisplatin [23]. Polymorphisms in SLC22A2, a
gene which product is the organic cation transporter OCT2 responsible for cellular cisplatin uptake
in renal proximal tubule cells [24,25], affects the severity of tubular injury process due to cisplatin
accumulation. However, variability in effect size and direction of association have been reported.
Consequently, this complicates the understanding of the true impact of genetic variants. Differences in
clinical characteristics for example, age, type of cancer, cisplatin dose and ethnicity might be related to
variability of results. We expect that differences in how cisplatin nephrotoxicity is defined contribute
to the variability in results as no widely accepted single cisplatin nephrotoxicity definition exists.

Our aim is to validate the use of already associated genetic variants to predict cisplatin
nephrotoxicity and to determine if different cisplatin nephrotoxicity definitions contributed to
the variability in effect size and direction of already published associations between these genetic
polymorphisms and cisplatin nephrotoxicity. This approach was important to highlight the need of
consensus on a set of clinically relevant cisplatin nephrotoxicity definitions that future studies is able
to follow.

2. Materials and Methods

This study is reported according to Strengthening the Reporting of Genetic Association Studies
(STREGA) guidelines [26].

2.1. Study Design and Participants

The retrospective study included males (≥17 years old) diagnosed with germ cell testicular
cancer treated with cisplatin between January 1979 and February 2013. These patients were part of
a previously conducted study on cisplatin-induced adverse events and were recruited through the
Canadian Pharmacogenomics Network for Drug Safety (CPNDS) in multiple Canadian centres in
Ontario and British Columbia from 2009–2013 [27].

Patients were included if they had normal kidney function, were treatment-naïve and had
received 100 mg/m2 cisplatin per cycle. Patients suffering from other diseases than testicular cancer,
non-genotyped patients, patients with pre-existing electrolyte disorders or patients that had received
abdominal radiation were excluded from this study. All subjects gave their informed consent for
inclusion prior their participation in the study. The study was conducted in accordance with the
Declaration of Helsinki and the protocol was approved by the UBC C&W Research Ethics Board (ethics
certificate no. H04-70358).

2.2. Clinical Data Collection

Information concerning co-medication, chemotherapy protocols, duration of the treatment,
cumulative dosage of platinum, serum magnesium levels (Mg), serum potassium levels (K), serum
sodium levels (Na), serum phosphate levels (PO4) and serum creatinine (SCr) levels was obtained
from the medical records. The glomerular filtration rate (GFR) was not available in all patient records.
Therefore, estimated glomerular filtration rate (eGFR) was calculated using the CKD-EPI equation [28]
as per the KDIGO recommendation [29].
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Only cisplatin-induced nephrotoxicity related variables were included as covariates in our analysis
(i.e., disease-related variables were excluded). Height and body weight were not included as covariates,
as the dosage was already adjusted for this (mg/m2). Alcohol consumption, family history of cancer,
prior surgery and albumin levels were not available in the medical records and were therefore not be
included in the genetic association analyses. All patients in our cohort were cisplatin-naïve at the time
of testicular cancer diagnosis.

Age was calculated at the start date of cisplatin treatment. Ethnicity was analysed through ancestry
proportions and principal components (PCs) using EIGENSOFT v.5.0 (Harvard and Massachusetts
Institute of Technology, Cambridge, MA, USA) and ADMIXTURE. Cardiovascular disease and
diabetes data were not available in the database and were for that reason determined based on
co-medications [30–34]. Potentially nephrotoxic co-medications were identified from the start until the
end date of cisplatin treatment and grouped according to their mechanism of action [35]. The amount
of hydration depended on standardized chemotherapy regimen and was derived from Canadian
protocols for testicular cancer [36,37]. Cumulative dose was assessed and where carboplatin had been
substituted for cisplatin, a conversion factor of 1:4 for cisplatin: carboplatin was used [1,38]. For the
baseline SCr and electrolyte measurement, the measurement closest to the start date within 30 days
prior to start was taken.

2.3. Outcome Definition

To assess the relationship between cisplatin-induced nephrotoxicity and genetic variants, multiple
outcomes were studied. Multiple outcomes were used to determine if different cisplatin nephrotoxicity
definitions contributed to the variability in effect size and direction of already published associations
between these genetic polymorphisms and cisplatin nephrotoxicity. A new tailored definition for
cisplatin-induced nephrotoxicity was formulated based on expert opinions to optimize clinical relevance
(see below “Adjusted Acute Kidney Injury” Outcome Definition). Since the results for this definition
were not comparable with previously published studies, CTCAE-AKI grading and the differences in
SCr and eGFR before and after cisplatin-treatment (ΔSCr and ΔeGFR) were assessed as well.

2.3.1. “Adjusted Acute Kidney Injury” (Adjusted-AKI) Outcome Definition

The definition of cisplatin-induced nephrotoxicity combines SCr-based staging and electrolyte
disturbances (i.e., National Cancer Institute Common Terminology Criteria for Adverse Events
(NCI-CTCAE) v.4.03 definitions for electrolyte disturbances) [39] (Table 1). Measurements from start
date up to 90 days after the end of cisplatin treatment were collected. The measurement closest to the
start date with a cut-off of 30 days was taken as the baseline value when calculating the increase in SCr.

Hyperhydration during administration may cause a hypervolemic state which may provoke
hyponatremia [40]. To increase sensitivity and decrease false-positive or overestimated results,
hyponatremia must have persisted for longer than two consecutive months. For further statistical
analyses, these categories were divided into case, control and ambiguous groups (Table 2). Two
separate investigators designated the patients in one of three categories and discrepancies were resolved
through discussion between a clinical pharmacologist and nephrologist.
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Table 1. Adjusted Acute Kidney Injury (Adjusted-AKI) grading.

Grade Definition Characteristic(s)

0

An increase in serum creatinine, up to 1.5 times baseline value
AND

Electrolyte disorders grade 0 CTCAE:
• Hypomagnesemia: ≥LLN–1.2 mg/dL; <LLN–0.5 mmol/L, OR

• Hypokalaemia: ≥LLN–3.0 mmol/L, OR
• Hypophosphatemia: ≥LLN–2.5 mg/dL; <LLN–0.8 mmol/L, OR

• Hyponatremia: ≥LLN–130 mmol/L (>2 months)

Asymptomatic

1

Between 1.5–1.9 times baseline SCr
OR

≥0.3 mg/dL (≥26.5 μmol/L) increase in SCr
OR

Electrolyte disorders grade 1 CTCAE:
• Hypomagnesemia: <LLN–1.2 mg/dL; <LLN–0.5 mmol/L, OR

• Hypokalaemia: <LLN–3.0 mmol/L, OR
• Hypophosphatemia: <LLN–2.5 mg/dL; <LLN–0.8 mmol/L, OR

• Hyponatremia: <LLN–130 mmol/L (>2 months)

Possible Symptomatic

2

An increase in serum creatinine between 2.0–2.9 times baseline SCr
ORElectrolyte disorders grade 2 CTCAE:

• Hypomagnesemia: <1.2–0.9 mg/dL; <0.5–0.4 mmol/L, OR
• Hypokalaemia: <LLN–3.0 mmol/L, OR

• Hypophosphatemia: <2.5–2.0 mg/dL; <0.8–0.6 mmol/L, OR
• Hyponatremia: <LLN–130–120 mmol/L (>2 months)

Clinically relevant,
required intervention

3

An increase in serum creatinine at least 3.0 times baseline
OR

Increase in serum creatinine to ≥4.0 mg/dL (≥353.6 μmol/L)
OR

Initiation of renal replacement therapy, OR
OR

Electrolyte disorders ≥grade 3 CTCAE:
• Hypomagnesemia: <0.9 mg/dL; <0.4 mmol/L, OR

• Hypokalaemia: <3.0 mmol/L; hospitalization indicated, OR
• Hypophosphatemia: <2.0 mg/dL; <0.6 mmol/L, OR
• Hyponatremia: <LLN–120 mmol/L (>2 months)

Required close
monitoring

Table 2. Case-control designation according to Adjusted-AKI outcome definition.

Case Control Ambiguous

Acute nephrotoxicity ≥ grade 1
OR

Received electrolyte
supplementation

Acute nephrotoxicity
< grade 1

AND
No supplementation

No lab values available during the time frame
(3 months before initiation and 3 months after the

last administration of cisplatin)
OR

Incomplete data e.g., initiation and end date of
cisplatin therapy

OR
Pre-existing renal disease (electrolyte

disturbances, not SCr or eGFR)

SCr: serum creatinine; eGFR: estimated glomerular filtration rate.

2.3.2. CTCAE-AKI Outcome Definition

The SCr-based CTCAE v.4.03 definition of “Acute Kidney Injury” was also used to define
cisplatin-induced nephrotoxicity [39]. Patients were divided into cases (≥grade 1) and controls
(<grade 1) (Table 3). The lowest SCr measurement up to 30 days before start of cisplatin treatment was
taken as baseline. The follow up value used was the highest SCr value within 90 days after the end of
cisplatin treatment.

27



Genes 2019, 10, 364

Table 3. Case-control designation according to Common Terminology Criteria for Adverse Events
(CTCAE)-AKI Outcome Definition.

Case Control Ambiguous

Acute kidney injury ≥
grade 1

Acute kidney injury <
grade 1

No lab values available during the time frame
(3 months before initiation and 3 months after

the last administration of cisplatin)
OR

Incomplete data e.g., initiation and end date of
cisplatin therapy

2.3.3. “ΔSCr and ΔeGFR” Outcome Definition

To calculate the differences between baseline and follow up SCr and eGFR (ΔSCr and ΔeGFR), the
same procedure of creatinine serum measurements was applied as with the CTCAE outcome definition.

2.4. Genotype Data

2.4.1. Candidate Genes

The list of candidate genes and related variants was selected from a systematic review [19].
Candidate genes were included if they were found to be significantly associated with nephrotoxicity
(any outcome definition) in a published study and the relationship had been replicated at least once.
The following five single nucleotide polymorphisms (SNPs) meeting these criteria were included in this
study: ERCC1 rs11615 (chr19:45420395; A>G; a synonymous variant) and rs3212986 (chr19:45409478;
C>A/C>G/C>T; non-coding transcript variant), ERCC2 rs13181 (chr19:45351661; T>A/T>G; stop gained)
and rs1799793 (chr19:45364001; C>A/C>T; a missense variant)) and SLC22A2 rs316019 (chr6:160249250;
A>C; a missense variant).

2.4.2. Genotyping

DNA was collected from saliva using Oragene collection kits (DNK Genotek Inc., Ottawa, ON,
Canada) and was extracted according to the manufacturer’s protocol. Genomic DNA samples for
all patients were genotyped for 7907 variants located within absorption, distribution, metabolism,
excretion (ADME) gene regions using the Illumina Infinium Panel (Illumina, San Diego, CA, USA),
according to the manufacturer’s instructions at the Canadian Pharmacogenomics Network for Drug
Safety at the University of British Columbia. The genotyping details and the ADME custom panel
used have been described in previously [27].

2.4.3. Quality Control of Genotype Data

Variants are filtered on SNP call rate (>95%), sample call rate (samples missing ≥2 SNPs excluded),
Hardy-Weinberg equilibrium (HWE, p-value > 0.05, in controls) and minor allele frequency (MAF,
>0.05, in patients with a European proportion ancestry ≥80%). HWE was calculated using Fisher’s
exact test.

2.5. Statistical Analyses

The genetic association between SNPs and the categorical clinical outcomes reflecting
nephrotoxicity (i.e., adjusted-AKI and CTCAE-AKI) were examined using logistic regression assuming
an additive model. MAFs for the whole cohort in both designations were calculated for each SNP.
An allele frequency lower than 0.5 indicated the minor allele and was also classified as the risk allele.
Power analyses were performed assuming a 0.05 significance level, assuming 5% MAF and with an
OR > 3 as effect size with the goal of achieving a power of at least 80%. To assess differences between
cases and controls (adjusted AKI and CTCAE-AKI designation) for continuous clinical variables, a
Mann-Whitney U test was used. The differences between categorical clinical variables and cases
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and controls (adjusted AKI and CTCAE-AKI designation) were evaluated using a Chi-squared tests.
A logistic regression model analysis that included potential confounders (counting subject ancestry)
was used to calculate adjusted odds ratios (OR) and the 95% confidence intervals (95% CI) separately
for outcomes defined using an adjusted-AKI and CTCAE-AKI designation. Cochran-Armitage trend
test was conducted to test the assumption of an additive genetic model. Multiple linear regression was
performed to assess the association between genetic variants and the continuous variables ΔeGFR and
ΔSCr, adjusting for potential confounders. Key assumptions for multiple linear regression analysis—for
example, multivariate normality, no multicollinearity and homoscedasticity—were fulfilled. Clinical
variables which caused changes of the crude regression coefficient by 10% or more is considered a
confounder and is added to the model. Multiple testing was accounted for using Bonferroni adjustments
(p = 0.05/5 = 0.01). Statistical analyses were performed using SPSS v.25 (IBM Corporation, Armonk,
NY, USA).

3. Results

3.1. Study Population

The study included 282 testicular-cancer patients from five adult oncology centres in British
Columbia and Ontario through active surveillance of the Canadian Pharmacogenomics Network for
Drug Safety (CPNDS) [41]. Ambiguous patients (Tables 2 and 3) or patients with missing SCr or eGFR
data were excluded from further analyses. From the primary cohort, 72 patients were excluded because
they were not genotyped (N = 61), had received abdominal radiation (N = 4) or because they were
not diagnosed with testicular cancer (N = 7). From the secondary cohort (N = 210), 47 patients were
excluded for the adjusted-AKI analyses due to pre-existing renal disease, incomplete data regarding
the start- and/or end date of cisplatin therapy or absence of laboratory values. For the CTCAE-AKI
outcome and ΔSCr analyses, 51 patients were excluded due to lack of SCr data. For the ΔeGFR analyses,
52 patients were excluded due to lack of eGFR data.

For genetic association analyses 167, 159, 158 and 159, patients were eligible for the adjusted
AKI designation, the CTCAE-AKI designation and ΔeGFR and ΔSCr analyses, respectively (Figure 1).
These patient cohorts were similar with respect to baseline characteristics. The mean age (± standard
deviation) of the testicular-cancer patients was 31.8 ± 10.2 (Table 4). European has the highest ancestry
proportion in our dataset (0.72 ± 0.26) followed by South Asian, East Asian, American and African.
The detailed of ancestry analysis has been published elsewhere [27]. Patients had a low number of
comorbidities: 1.0% (N = 2) suffered from diabetes and 3.3% (N = 7) from a cardiovascular disease.
Only 2.9% (N = 6) of the patients received carboplatin within 90 days after cisplatin treatment ended
(these dosages were included in the calculation of total platinum exposure). A majority of patients
received the regimen of cisplatin with bleomycin and etoposide (BEP; 65%, N = 136). Because data on
phosphate levels were missing for 207 patients, this electrolyte was excluded from further analyses.

3.2. Genotyping Results

The lowest SNP call rate was 97.5% for SLC22A2 rs316019 (Table S2). HWE was fulfilled in the
control group of all evaluated SNPs for adjusted-AKI outcome (p > 0.05) but not in the control group of
ERCC1 rs1799793 for the CTCAE-AKI outcome (p = 0.013) (Tables S1 and S2).
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Figure 1. Flowchart of patient inclusion in statistical analyses.

Table 4. Clinical characteristics testicular cancer patients included in nephrotoxicity analyses (N = 210).

Characteristics

Age at start treatment, mean ± SD, years 31.8 ± 10.2
Ancestry, mean ± SD, proportion European 0.72 ± 0.26

East-Asian 0.09 ± 0.23
American 0.05 ± 0.10

African 0.03 ± 0.03
South-Asian 0.11 ± 0.15

Cardiovascular disease, no. (%) 7 (3.3)
Diabetes, no. (%) 2 (1.0)

Potentially nephrotoxic co-medications, mean ± SD, total number per patient 2 ± 2
Potentially nephrotoxic co-medications,

no. (%) ACEIs a 3 (1.4)

Aminoglycosides 4 (1.9)
ARBs b 1 (0.5)

Benzodiazepines 30 (14)
NSAIDs c 6 (2.9)

Betalactams 26 (12)
PPIs d 25 (12)

Quinolones 29 (14)
Statins 2 (1.0)

Acetaminophen 29 (14)
Other 104 (50)

Baseline [SCr], mean ± SD, umol/L 84 ± 16
Baseline [K+], mean ± SD, mmol/L 4.1 ± 0.4

Baseline [Mg2+], mean ± SD, mmol/L 0.85 ± 0.10
Baseline [Na+], mean ± SD, mmol/L 138 ± 2.49
Baseline [PO4-], mean ± SD, mmol/L 1.09 ± 0.23

Cumulative platinum dose, mean ± SD, mg/m2 380 ± 123
Duration cisplatin treatment, mean ± SD Weeks 8.7 ± 3.3

Cycles 3.8 ± 1.1
Chemotherapy protocol, no. (%), BEP 136 (65)

Chemotherapy hydration, mean ± SD, L/cycle 10.7 ± 0.5
a ACEIs: Angiotensin-converting enzyme inhibitors, b ARBs: Angiotensin-II-Receptor Blockers, c NSAIDs:
non-steroidal anti-inflammatory drugs, d PPIs: proton-pump inhibitors, BEP: bleomycin, etoposide, and cisplatin.

30



Genes 2019, 10, 364

3.3. Adjusted AKI Analysis

For this outcome, 75 cases and 88 controls were identified (Table S3). Cases had significantly
lower baseline magnesium compared to controls (0.83 vs. 0.88 mmol/L, p = 0.008). Quinolone usage
was significantly higher in cases versus controls (24% vs. 5.7%, p = 0.001). Cases received significantly
more platinum (400 vs. 300 mg/m2, p = 0.001) and were treated longer with platinum (4 vs. 3 cycles,
p = 0.001) compared to controls.

Genetic association analyses on the adjusted AKI designation were corrected for quinolone usage,
cumulative dose, baseline magnesium and ancestry using principal components (PC’s) to account for
population structure. None of the genetic variants were found to be significantly associated with the
risk of nephrotoxicity using this definition (Tables 5 and 6). In addition, Cochran-Armitage trend test
also showed no significant trend to confirm the additive effect of minor allele (Table 6).

Table 5. Strength of genotypic association between genetic polymorphisms and cisplatin nephrotoxicity
in adjusted-AKI outcome (N = 163).

Gene–SNP OR 95% CI p-Value ORadj 95% CIadj p-Valueadj

ERCC1 rs11615
GG 1 # 1 #

GA 1.30 0.63–2.67 0.48 1.45 0.64–3.27 0.38
AA 1.24 0.51–3.02 0.63 1.47 0.50–4.28 0.48

ERCC1 rs3212986
CC 1 # 1 #

CA 0.71 0.37–1.36 0.31 0.63 0.30–1.34 0.23
AA 1.00 0.30–3.37 1.00 1.44 0.32–6.43 0.63

ERCC2 rs13181
AA 1 # 1 #

CA 0.84 0.42–1.66 0.61 0.59 0.26–1.33 0.20
CC 1.60 0.65–3.93 0.31 1.43 0.50–4.07 0.51

ERCC2 rs1799793
AA 1 # 1 #

CA 1.00 0.49–2.03 1.00 0.92 0.40–2.15 0.85
CC 0.50 0.21–1.17 0.11 0.55 0.21–1.43 0.22

SLC22A2 rs316019
CC 1 # 1 #

AC 1.15 0.51–2.57 0.71 1.10 0.43–2.79 0.85
AA 2.46 0.22–27.78 0.47 1.70 0.11–25.57 0.70

adj Adjusted for: cumulative dose, quinolone usage, all ancestries (from four PCs) and baseline magnesium.
# Reference category.

Table 6. Odds ratio of minor allele addition in adjusted-AKI outcome (N = 163) and Cohcran-Armitage
trend test result for additive model assumption.

Gene–SNP OR 95% CI p-Value ORadj 95% CIadj p-Valueadj
Cohcran-Armitage
Trend Test p-Value

ERCC1 rs11615
GG vs. GA vs. AA 1.13 0.73–1.75 0.586 1.23 0.73–2.05 0.436 0.586

ERCC1 rs3212986
AA vs. CA vs. CC 0.86 0.54–1.40 0.551 0.89 0.51–1.54 0.669 0.537

ERCC2 rs13181
CC vs. CA vs. AA 1.19 0.75–1.88 0.461 1.04 0.61–1.78 0.875 0.497

ERCC2 rs1799793
CC vs. CA vs. AA 0.70 0.45–1.09 0.114 0.73 0.44–1.19 0.206 0.280

SLC22A2 rs316019
AA vs. CA vs. CC 1.28 0.64–2.59 0.488 1.17 0.53–2.60 0.702 0.502

adj Adjusted for: cumulative dose, quinolone usage, all ancestries (as PC’s) and baseline magnesium.
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3.4. CTCAE-AKI Analysis

For this outcome, 36 cases and 123 controls were identified (Table S4). Cases were significantly
older compared to controls (35 vs. 29 years old, p = 0.002) and differed from controls in ancestry:
cases had a lower proportion who were of East-Asian ancestry (0 vs. 0.023, p = 0.041) and higher
proportion who were of European ancestry (0.853 vs. 0.811, p = 0.017). Cases used proton-pump
inhibitors (PPIs) significantly more often compared to controls (25% vs. 8%, p = 0.015). Cases received
significantly more platinum (400 vs. 300 mg/m2, p = 0.005) and were treated longer with platinum
(4 vs. 3 cycles, p = 0.007) compared to controls. Furthermore, therapy regimens varied between cases
and controls: cases were less often treated with a bleomycin-etoposide-platinum (BEP) protocol (53%
vs. 72%, p = 0.041) and cases received chemotherapy hydration less often (10.75 (IQR = 10.50–10.75) vs.
10.75 (IQR = 0) L/cycle, p = 0.004).

The results of genotypic logistic regression are provided in Table 7. When corrected for age,
ancestry from four PCs, chemotherapy protocol, cumulative dosage, hydration and PPI usage, patients
carrying ERCC1 rs3212986 heterozygous genotypes were found to have fewer nephrotoxicity events
when compared with patients carrying the homozygous wildtype (ORadj = 0.24, CI = 0.08–0.70,
p = 0.009). Patients carrying SLC22A2 rs316019 heterozygous genotypes were found to have a greater
number of nephrotoxicity events than patients who carrying the wildtype (normal) genotype before
and after adjusting for the same covariates (ORadj = 5.06, CI = 1.69–15.16, p = 0.004). Besides this, the
SLC22A2 rs316109 homozygous variant carriers had more nephrotoxicity events than patients carrying
the wildtype genotype, however after Bonferroni correction this was no longer statistically significant
(ORadj = 38.12, CI = 1.89–767.51, p = 0.017).

Table 7. Strength of genotypic association between genetic polymorphisms and cisplatin nephrotoxicity
in CTCAE-AKI designation (N = 159).

Gene–SNP OR 95% CI p-Value ORadj 95% CIadj p-Valueadj

ERCC1 rs11615
GG 1 # 1 #

GA 1.30 0.57–2.99 0.55 1.23 0.45–3.39 0.68
AA 0.48 0.14–1.65 0.24 0.53 0.12–2.37 0.41

ERCC1 rs3212986
CC 1 # 1 #

CA 0.45 0.20–1.02 0.06 0.24 0.08–0.70 0.009 *
AA 0.48 0.10–2.36 0.37 0.43 0.07–2.47 0.34

ERCC2 rs13181
AA 1 # 1 #

CA 1.16 0.49–2.73 0.74 0.59 0.20–1.76 0.37
CC 3.16 1.17–8.58 0.02 1.72 0.53–5.65 0.35

ERCC2 rs1799793
AA 1 # 1 #

CA 1.52 0.65–3.54 0.33 2.39 0.84–6.77 0.10
CC 0.57 0.18–1.79 0.33 0.66 0.16–2.64 0.56

SLC22A2 rs316019
CC 1 # 1 #

AC 3.24 1.36–7.74 0.008 * 5.06 1.69–15.16 0.004 *
AA 9.18 0.80–105.80 0.08 38.12 1.89–767.51 0.02

adj Adjusted for: age, all ancestries (as PC’s), chemotherapy protocol, cumulative dosage, hydration and PPI usage,
# Reference category, * significant (p < 0.01).

Additive effect of risk allele was found significant only on SLC22A2 rs316109. The OR was even
higher after adjustment (ORadj = 4.41, CI = 1.96–9.88, p < 0.001). In contrast, addition of minor allele
on ERCC1 rs3212986 produce protective effect although the result was not significant (ORadj = 0.52,
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CI = 0.26–1.07, p = 0.076). The additive effect of minor allele was confirmed by Cochran-Armitage
trend test but only for SLC22A2 rs316019 and ERCC2 rs13181 (Table 8).

Table 8. Odds ratio of minor allele addition in CTCAE-AKI designation (N= 159) and Cohcran-Armitage
trend test result for additive model assumption.

Gene–SNP OR 95% CI p-Value ORadj 95% CIadj p-Valueadj
Cohcran-Armitage
Trend Test p-Value

ERCC1 rs11615
GG vs. GA vs. AA 0.78 0.46–1.33 0.364 0.92 0.50–1.68 0.777 0.368

ERCC1 rs3212986
AA vs. CA vs. CC 0.57 0.30–1.06 0.077 0.52 0.26–1.07 0.076 0.067

ERCC2 rs13181
CC vs. CA vs. AA 1.84 1.07–3.15 0.027 1.39 0.75–2.58 0.293 0.039 *

ERCC2 rs1799793
CC vs. CA vs. AA 0.81 0.48–1.38 0.447 0.85 0.47–1.53 0.578 0.473

SLC22A2 rs316019
AA vs. CA vs. CC 3.29 1.60–6.81 0.001 ** 4.41 1.96–9.88 <0.001 ** 0.001 **

adj Adjusted for: age, all ancestries (as PC’s), chemotherapy protocol, cumulative dosage, hydration and PPI usage,
* significant (p < 0.05); proof of trend, ** significant (p < 0.01).

3.5. ΔSCr and ΔeGFR Analysis

Multiple linear regression was used to predict ΔSCr and ΔeGFR based on genotype for each SNP
before and after adjustment for confounding variables. The analysis did not reveal any statistically
significant results (Table 9). However, there was a very slight trend for the ERCC1 rs3212986 variant to
be protective and the SLC22A2 rs316019 homozygous variant to be a risk factor, based on box-plots
(Figures S1 and S2).

Table 9. Multiple linear regression analysis results between genetic polymorphisms and ΔSCr
and ΔeGFR.

Gene–SNP
ΔSCr a ΔeGFR b

R2 p-Value R2
adj p-Value adj R2 p-Value R2

adj p-Value adj

ERCC1 rs11615
GG vs. GA vs. AA 0.01 0.218 0.055 0.17 0.006 0.347 0.042 0.20

ERCC1 rs3212986
AA vs. CA vs. CC 0.008 0.268 0.058 0.16 0.013 0.167 0.052 0.12

ERCC2 rs13181
CC vs. CA vs. AA 0.001 0.652 0.046 0.28 0 0.796 0.035 0.29

ERCC2 rs1799793
CC vs. CA vs. AA 0.001 0.77 0.046 0.27 0.001 0.668 0.036 0.29

SLC22A2 rs316019
AA vs. CA vs. CC 0.002 0.599 0.047 0.27 0.006 0.343 0.039 0.25

a adjusted for cardiovascular disease, duration (weeks), aminoglycoside users and baseline magnesium, b adjusted
for duration (weeks), baseline potassium and beta-lactams use.

4. Discussion

4.1. Main Findings

Previous studies assessing the associations between ERCC1 rs3212986 and SLC22A2 rs316019
genotypes and cisplatin-induced nephrotoxicity have reported conflicting results. In this study,
associations between genetic variants and multiple definitions of cisplatin-induced nephrotoxicity were
analysed in the same dataset and demonstrated that different definitions of cisplatin nephrotoxicity
contributed to variability of results. We could not reproduce the same genetic associations that were
previously reported, when using the adjusted-AKI or continuous outcomes [13,16,18,42]. In contrast,
when using the CTCAE-AKI outcome in the same patient sample, the ERCC1 rs3212986 heterozygous
genotype was reno-protective whilst the SLC22A2 rs316019 homozygous genotype was a risk factor for
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cisplatin-induced nephrotoxicity. We also found that additive effect of risk allele was found significant
only on SLC22A2 rs316109.

Several published studies could not detect any significant associations between the CTCAE-AKI
outcome definition of cisplatin-induced nephrotoxicity and ERCC1 rs3212986 [14,43–45]; the reasons
for this lack of association include lack of study power, population stratification or phenotypic
heterogeneity. However, studies carried out by Tzvetkov et al. and Khrunin et al. did reveal
associations between ERCC1 rs3212986 genotypes and cisplatin-induced nephrotoxicity. Tzvetkov et al.
found that homozygous variants were not associated with a decrease of eGFR, while the C allele
carriers (major allele) had mean decrease of 11.5 ± 1.8% of eGFR (p = 0.004) [13]. By applying the same
genetic model, we also found that the C allele carriers of this SNP have higher mean eGFR reduction
than the homozygous variant subjects although the result was not statistically significant (18.9 ± 22.6
vs. 13.5 ± 23.0 mL/min/1.73 m2; p = 0.412). This finding suggested protective effect of the variant
genotype of rs3212986. Furthermore, we found that variant genotypes were protective against cisplatin
nephrotoxicity when applying the CTCAE-AKI definition of nephrotoxicity: heterozygous carriers of
the ERCC1 rs3212986 had an ORadj of 0.24 (95% CI: 0.08–0.70) while the homozygous variant had an
ORadj of 0.43 (95% CI: 0.07–2.47; p = 0.341). Addition of minor allele on this SNP produce protective
effect although the result was not significant (ORadj = 0.52, CI = 0.26–1.07, p = 0.076). In contrast
to these findings, Khrunin et al. reported a higher prevalence of cisplatin-induced nephrotoxicity
among heterozygous genotypes compared with homozygous wildtype (OR = 3.29, 95% CI = 1.40–7.73,
p = 0.009) [12].

The relationship between SLC22A2 rs316019 genotypes and cisplatin-induced nephrotoxicity has
been assessed in multiple studies. Filipski et al. reported a significant increase in SCr compared to
baseline in homozygous wildtype patients after the first cycle (p = 0.0009) but found no significant
increase in heterozygous patients (p= 0.12) [18]. Iwata et al. reported a significant higher increase in SCr
in homozygous wildtype patients compared to heterozygous patients (0.34 ± 0.33 vs. 0.14 ± 0.12 mg/dL,
p = 0.04, respectively) [16]. In addition, Zhang et al. observed a higher increase of cystatin C
in homozygous wildtype patients compared to heterozygous and homozygous variant patients
(0.043 ± 0.107 vs. −0.013 ± 0.120 mmol/L, p = 0.009, respectively) [46]. These results indicate that the
homozygous wildtype genotype may be a risk factor for developing cisplatin-induced nephrotoxicity.
In contrast, our results suggest that both homozygous and heterozygous variant carriers have an
increased risk of cisplatin-induced nephrotoxicity when using the CTCAE-AKI definition. This finding
also supported by significant additive effect of risk allele on SLC22A2 rs316109 when applying additive
genetic model. However, our study identified a possible greater risk of nephrotoxicity as defined
by ΔSCr in patients carrying the homozygous variant (Figure S1); these data are consistent with
Zhang et al. and Hinai et al., who reported a higher increase of SCr in heterozygous and homozygous
variant than in homozygous wildtype subjects, although the result is not statistically significant
(0.83 ± 7.39 vs. 2.09 ± 6.30 mmol/L, p = 0.35 and 0.30 ± 0.30 vs. 0.40 ± 0.53 mg/dL, p = 0.25,
respectively) [46].

Other factors could also contribute to the discrepancy in results between our study and previous
studies. Our results suggest that cisplatin-induced nephrotoxicity is confounded by ethnic origin.
The CTCAE-AKI outcome was related to East-Asian and European ancestry. Our results suggest
that East-Asian ancestry may be a protective factor and European ancestry may be a risk factor for
cisplatin-induced nephrotoxicity. This may also explain the differences of results between our study and
the studies of Iwata et al. and Hinai et al. that included subjects of East Asian ancestry. Discrepancies
regarding the ΔSCr—and hence, ΔeGFR—among those studies could also be explained by the age
of the population. Hinai et al. and Iwata et al. both studied an older population: 68.0 ± 9.7 and
65.8 ± 7.7 years old (mean ± SD) [16,42]. As highlighted before, older age could attribute to a higher
increase in SCr [47]. This may explain the elevated SCr levels in the wildtype homozygous group
of SLC22A2 rs316019 found by Iwata et al. and Hinai et al. compared to our study. Furthermore,
our population received a high dose cisplatin (100 mg/m2 per cycle) compared to dosages used
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in other indications and compared to the other studies [16,42]: patients analysed by Hinai et al.
received 80 mg/m2 per cycle and Iwata et al. treated their patients with 60–80 mg/m2 cisplatin per
cycle. The higher cisplatin-dose in our study could have attributed to a possible higher incidence of
cisplatin-induced nephrotoxicity.

This study further shows that different outcome definitions produce different results. The main
difference in the outcomes definitions is the inclusion of electrolyte disturbances in the adjusted AKI
outcome definition (Table 10). Our results suggest that the genetic associations were found when
the SCr based definition was used but not when using an electrolyte-based definition that forms the
adjusted AKI outcome definition. Acute kidney injury caused by cisplatin mainly manifests itself
as renal tubular injury and is therefore characterized earlier by electrolyte abnormalities (phosphate,
magnesium, potassium and sodium) [48]. However, incorporating serum abnormalities with creatinine
serum levels in one single definition of cisplatin nephrotoxicity should be further validated.

Table 10. Multiple outcome definitions of cisplatin-induced nephrotoxicity used in this study.

Adjusted-AKI CTCAE-AKI ΔeGFR ΔSCr

Basis of
Determination

SCr +
Mg/K/PO4/Na SCr CKD-EPI equation

(SCr+age+sex+ethnicity) SCr

Data
Characteristics

Categorical Categorical Continuous Continuous

Advantage
Tailored on

cisplatin-induced
nephrotoxicity

• Mostly used in clinics
and studies in cancer

subjects
• Easily calculated

• Easily calculated
• CKD-EPI is the

equation recommended by
KDIGO

• Routinely measured in
patients

Disadvantage

• Not comparable
with other studies
• Not validated

yet

• Is ≥ grade 1 cut-off
clinically relevant?

• SCr often increase late
resulting in failing to

detect early stage
nephrotoxicity

• Could not correct for
cystatin-C due to

unavailable data in routine
practice

• Disregarding the
clinical value of baseline

eGFR

• Highly influenced by various
individual factors (e.g., age,

gender, body weight, diet etc.)
• SCr often increase late

resulting in failing to detect early
stage nephrotoxicity

• Disregarding the clinical value
of baseline SCr

4.2. Gene Expression and Regulation

ERCC1 rs3212986, located at the 3′ UTR (non-coding region) was not associated with changes
in protein and mRNA expression [49,50]. However, the tissue expression quantitative trait loci
(eQTL) analysis from the Genotype-Tissue Expression (GTEx) Project reported a significant association
between rs3212986 and gene expression in various tissues [51]. Unfortunately, no association has
been found between rs3212986 and ERCC1 expression in kidney cortex tissue. SLC22A2 rs316019, a
nonsynonymous missense mutation (p.270Ala>Ser), is the only common coding polymorphism of
SLCC2A2 with an allele frequency ranging from 9–16% and is reported to cause changes in transporter
function [52]. No significant eQTLs were found for rs316019 in the eQTL tissues database [51]. Specific
functional validation of ERCC1 rs3212986 and SLC22A2 rs316019 in kidney tubular tissue is needed
to elucidate their role in cisplatin nephrotoxicity and how they affect protein expression involved in
cisplatin nephrotoxicity pathway (e.g., OCT2).

4.3. Strength and Limitations of the Study

Compared to the previously published studies, our study was conducted in an appropriate
population of relatively young adult male patients, who had a low number of comorbidities. By
studying a dataset of testicular cancer patients, we minimized the influence of gender, older age,
comorbidities and long-term use of medications that could have affected the renin-angiotensin systems
(e.g., angiotensin converting enzyme inhibitors and angiotensin receptor blockers) and nephrotoxic
compounds (e.g., non-steroidal anti-inflammatory drugs).

Our study had several limitations. The retrospective design led to several potential but unavoidable
bias. Since laboratory measurements that were available were mostly measured in patients who were
monitored more intensively, any missing data was non-random. Hence, the measurements that were
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available more likely to found individuals who were prone to cisplatin-induced nephrotoxicity. This
resulted in selection bias and a possible overestimation of the amount of cases. The relatively small
sample size was also a possible cause of failing to detect an association in this candidate gene study.
A large prospective cohort study with a genome-wide approach is recommended to explore additional
genetic variants that might be of importance. Furthermore, slightly different number of cohorts were
used for each outcome. This may also have influenced the associations observed with each outcome.

5. Conclusions

In conclusion, the results of this study imply that the use of different outcome definitions lead to
altered results. Consensus on a set of clinically relevant outcome definitions that future studies can
follow are needed. The adjusted acute kidney injury definition that includes electrolyte imbalances
seems more appropriate for cisplatin-induced nephrotoxicity. However, further validation of the
definition and staging is necessary before it can be applied in further research or clinical settings.
Furthermore, this study provides more evidence for associations between genetic variants and
cisplatin-induced nephrotoxicity by using serum creatinine-based grading. These findings imply that
genetic variations are involved in the inter-individual susceptibility to cisplatin-induced nephrotoxicity.
Thus, in the future genotyping will make it possible to optimize therapy with cisplatin for the individual
patients by improving cisplatin dosage selection–lower doses for patients prone to renal toxicity and
higher doses for patient not susceptible to developing renal toxicity.
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Abstract: Breast cancer has become the most common cancer that leads to women’s death. Breast
cancer is a complex, highly heterogeneous disease classified into various subtypes based on histological
features, which determines the therapeutic options. System identification of effective drugs for each
subtype remains challenging. In this work, we present a computational network biology approach to
screen precision drugs for different breast cancer subtypes by considering the impact intensity of
candidate drugs on the pathway crosstalk mediated by miRNAs. Firstly, we constructed and analyzed
the subtype-specific risk pathway crosstalk networks mediated by miRNAs. Then, we evaluated
36 Food and Drug Administration (FDA)-approved anticancer drugs by quantifying their effects on
these subtype-specific pathway crosstalk networks and combining with survival analysis. Finally,
some first-line treatments of breast cancer, such as Paclitaxel and Vincristine, were optimized for
each subtype. In particular, we performed precision screening of subtype-specific therapeutic drugs
and also confirmed some novel drugs suitable for breast cancer treatment. For example, Sorafenib
was applicable for the basal subtype treatment, Irinotecan was optimum for Her2 subtype treatment,
Vemurafenib was suitable for the LumA subtype treatment, and Vorinostat could apply to LumB
subtype treatment. In addition, the mechanism of these optimal therapeutic drugs in each subtype of
breast cancer was further dissected. In summary, our study offers an effective way to screen precision
drugs for various breast cancer subtype treatments. We also dissected the mechanism of optimal
therapeutic drugs, which may provide novel insight into the precise treatment of cancer and promote
researches on the mechanisms of action of drugs.

Keywords: breast cancer subtype; miRNA; pathway; crosstalk network; precision drugs

1. Introduction

Breast cancer is the most common cancer type that leads to women’s death, especially in China.
The high heterogeneity of breast cancer makes it a great challenge to adopt therapeutic options [1],
because a heterogeneous group of diseases may exhibit distinct features in terms of histological,
prognostic, and clinical outcomes [2]. At present, breast cancer can mainly be classified into four
primary subtypes, including her2-enriched, luminal A, luminal B, and basal-like [3,4], distinguished
by the expression of some signature genes such as the estrogen receptor (ER), progesterone receptor
(PR), and HER2. Different subtypes have distinct biological behaviors and prognosis, and also exhibit
various responses to drug therapy [5,6]. Thus, further research on the biological heterogeneity of each
subtype of breast cancer will be an effective way to improve the therapeutic efficacy and prognosis of
breast cancer [7].

The oncogenesis processes may result from the dysregulations of a series of important biological
pathways [8]. Some studies have shown that the pathway crosstalk exists extensively in the processes
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of development and cell fate [9–11]. Cancer cells have been found to be able to establish alternative
signaling pathways through crosstalk to adapt to drug treatment. In addition, crosstalk can also
promote cancer therapy by inhibiting the main oncogenic pathways. The inhibition of functional
redundancy and pathway crosstalk that promotes the survival of cancer cells can prevent the resistance
in tumor treatment [12]. Therefore, it is essential to dissect the crosstalk of dysfunctional pathways
and further capture the key molecules that mediate this functional crosstalk in breast cancer.

MicroRNAs are endogenous, non-coding RNA molecules that have been widely regarded as
important post-transcriptional regulators by damping the expression level of their target genes. In
recent years, studies have indicated that miRNAs are important component elements of biological
pathways [13]. They regulate the function of biological pathways through target genes, and then work
together with them to disrupt the pathways of diseases. According to estimates, many microRNAs
play vital roles by regulating processes that are implicated with the development of cancer [14], such as
proliferation, apoptosis, cell cycle, angiogenesis, etc. Some studies suggest that the crosstalk between
miRNAs and the Wnt pathway may impact oncogenesis, cancer metastasis, and even drug-resistance
processes [15]. Furthermore, miRNAs can also mediate the functional crosstalk of pathways related
with oncogenic processes by targeting their shared or interacted genes, thus promoting the initiation
and progression of tumors.

In recent years, miRNAs have shown great promise to serve as a target for drug therapy of cancer.
More importantly, some studies have nominated miRNA-based therapy as a promising strategy for the
treatment of breast cancer [16]. Some evidence demonstrates that drugs could modulate the expression
of miRNAs in various diseases as well. For example, an experiment has validated that simvastatin
could lead to cell death of breast cancer by up-regulating miR-140-5p [17]. Triiodothyronine has been
demonstrated to modulate miR-204 and thus facilitate the proliferation process in breast cancer [18].
Especially, Shenoda et al. have also demonstrated that miRNA could mediate the expression of genes
related with drug metabolism [19]. Furthermore, Liu et al. have established a database SM2miR [20],
which provides a comprehensive resource about the influences of drugs on miRNA expression and
offers unprecedented opportunities for researchers on the screening and action mechanism of drugs
for disease treatment. In addition, our previous research also displays that miRNA participates
in the crosstalk among pathways that play important roles in cancer development [21], indicating
that it might be more effective for screening cancer treatment to evaluate the effects of drugs on the
miRNA-mediated crosstalk between pathways.

In order to match the best treatment for breast cancer, in the present study, we firstly integrated
the disease high-throughput molecular profiles, miRNA regulation data, and pathway and drug data
to construct and analyze the miRNA-mediated pathway crosstalk network for various breast cancer
subtypes. Then, we derived a novel computational method to screen precision drugs for different
breast cancer subtypes by quantifying the impact intensity of candidate drugs on the pathway crosstalk
mediated by miRNAs. Finally, survival analysis was combined for further screening and optimization
of the drugs for breast cancer treatment (Figure 1). In summary, our study proposes an effective
method to screen precision drugs for various breast cancer subtype treatments. We also dissected
the mechanism of optimal therapeutic drugs, which may promote the shift from inexact medicine to
precision life science.
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Figure 1. The workflow of optimizing drugs for different subtypes of breast cancer. (A) In this
work, breast cancer was taken as the research model. Firstly, we integrated related data resources,
including gene/miRNA expression profile of each breast cancer subtype and matching patients’ survival
information, miRNA-target relationship data, PPI network and pathway data, and drug and drug
target data. (B) We identified the differential genes/miRNAs of each breast cancer subtype, and then
reconstructed KEGG pathway based on miRNA-target interactions, which contained both genes and
miRNAs. We also screened the target genes and target miRNAs of Food and Drug Administration
(FDA)-approved anticancer drugs. (C) Identification of breast cancer subtype-associated risk pathways
based on the differential genes/miRNAs, and calculated crosstalk for any two interrelated risk pathways.
Furthermore we constructed miRNA-mediated specific pathway crosstalk networks in different
subtypes of breast cancer, respectively. (D) The effectiveness assessment of drugs on dysfunction
crosstalk network to screen candidate drugs, combined with survival analysis to optimize drugs for
each breast cancer subtype. (See Methods section for details.)
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2. Material and Methods

2.1. Sample Matched miRNA/Gene Expression Profiles and Clinical Data

The matched miRNA and gene expression data of breast cancer were downloaded from TCGA
(The Cancer Genome Atlas) database (http://tcga-data.nci.nih.gov/), including 553 human breast cancer
samples and 87 normal samples. These breast cancer samples were divided into four subtypes,
including basal-like (n= 97), Her2 (n = 47), luminal A (n = 291) and luminal B (n = 118) according to
the guidelines in Cirielloet et al. [22]. All selected expression datasets were log2-transformed, then
standardized. Furthermore, clinical survival data of these samples in each subtype were also obtained.

2.1.1. miRNA-Target Relationship Data

In this study, we collected experimentally verified miRNA-target interactions data from four
well-known data resources: miRTarBase [23], mir2Disease [24], miRecords (V4.0) [25], and TarBase
(V6.0) [26]. MiRNA-target relationships in homo species were extracted and combined together to
obtain a more comprehensive dataset. In total, 57,863 miRNA-target relationships involving 579
miRNAs and 14,652 target genes were collected and used for further analysis.

2.1.2. PPI Network and Pathway Data

The protein–protein interaction (PPI) network data used in this study were integrated from two
databases, HPRD (Human Protein Reference Database) and STRING (Search Tool for the Retrieval of
Interacting Genes/Proteins) [27,28]. The interactions stored in HPRD were mainly from experimental
validation and text mining. For each recorded entry in the STRING database, a weighted score was
given to measure their confidence of interaction by considering multiple factors. To collect high-quality
interaction data, we only extracted interactions with a confidence score ≥900. Then, we combined
interactions from the HPRD and STRING databases. The pathway data used in this study for functional
analysis were obtained from the KEGG (Kyoto Encyclopedia of Genes and Genomes) database [29].

2.1.3. Drug and Drug Target Data

In this study, according to our research purpose, in order to improve the practicability of our
study, the candidate drugs need to satisfy two requirements simultaneously. Firstly, existing gene
targets and regulatory effects on miRNA have to be confirmed. Secondly, the drugs have to have been
approved by US Food and Drug Administration (FDA, https://www.fda.gov/), which are prescribed for
cancer treatment. We extracted drugs and drug targets from DrugBank [30] and SM2miR [20]. Finally,
a total of 36 anticancer drugs were used in this study. The complete information of the 36 anticancer
drugs can be found in Supplementary Table S1, including drug ID and drug targets.

2.2. Reconstructed KEGG Pathway Graphs

The reconstructed KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway graphs contained
both genes and miRNAs, replicating real biological pathways. We firstly collected 220 KEGG pathway
data and converted them into undirected graphs with genes as nodes and their interactions as edges
by using our previously developed R package “iSubpathway Miner” [31]. Then, we reconstructed
these pathways by wiring miRNAs into these pathways through integrating miRNA-target relations
and pathway data. More details, if target genes of a specific miRNA were over-represented within
a pathway, the miRNA was wired into the pathway by connecting with target genes within the
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pathway. The hypergeometric test was used to evaluate the significance of enrichment. The formulas
is as follows:

P = 1−
q−1∑
t=0

(
l
t

)(
n− l
m− t

)
(

n
m

)

where n represents the number of background genes (all genome-wide genes), m is the number of
genes involved in a given pathway, l is the number of target genes for a specific miRNA, and q is the
number of miRNA target genes annotated in the given pathway.

2.3. Identification of Risk Genes and miRNAs Related to Breast Cancer Subtypes

For each breast cancer subtype, we identified significant differentially expressed genes/miRNAs
by comparing the tumor with normal samples in each subtype. The unpaired Student’s t-test and
fold-change methods were simultaneously used to evaluate differentially expressed genes/miRNAs.
Then, the significance p-values from the t-test were calibrated by Benjamini-Hochberg multiple tests
to obtain the false discovery rate (FDR) values. Finally, we applied p < 0.01 and

∣∣∣log2 FC
∣∣∣ > 2 as

thresholds to identify differentially expressed genes/miRNAs. These significant differentially expressed
genes/miRNAs were regarded as breast cancer subtype-associated genes, which were also defined by
us as risk genes and miRNAs, respectively.

2.4. Mining Risk Pathways Associated with Breast Cancer Subtypes

In order to explore the roles of these risk genes and miRNAs in the occurrence and development
of breast cancer, we performed them to conduct pathway enrichment analysis to dig out the pathways
closely related to breast cancer. We identified pathways with significant enrichment results as risk
pathways for each subtype based on risk genes and miRNAs. The cumulative hypergeometric test
was used to calculate the significance of each pathway that enriched by risk genes and miRNAs. The
formula of the cumulative hypergeometric test is as follows:

P = 1−
m∑

k=0

(
n
k

)(
N − n
M− k

)
(

N
M

)

where N represents the number of background genes (all genome-wide genes), M is the number of a
given pathway’s genes and miRNAs that are annotated in the N genes, n is total number of the risk
genes and miRNAs of a given subtype of breast cancer, and m is the number of risk genes and miRNAs
in the given pathway.

2.5. Establishing the Risk Pathways’ Crosstalk of Breast Cancer

In each breast cancer subtype, we calculated the crosstalk of each pair of risk pathways based on
the correlation strength of genes and miRNAs between them according to previous studies [21]. The
Pearson’s product moment correlation coefficient and unpaired Student’s t-test were performed to
measure correlation strength for any two interrelated pathways. As for genes and miRNAs presenting
both in pathway i and j, we reckoned their correlation strength only if they interact with other genes or
miRNAs in the PPI network. Then, we used correlation strength to construct and assess risk pathways’
crosstalk. The formula of calculating correlation strength is as follows:

CS(i, j) = F
(
P(i), P( j)

∣∣∣Expi, Expj
)
= −2 ∗ (logeP(i) + logeP( j) + logeP(i, j))
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where i is the gene that is annotated in pathway a is the gene that is annotated in pathway b; Expi and
Expj are the expression values of genes i and j in samples, respectively; P(i) and P( j) are the differential
significance p-values of genes i and j calculated using the unpaired Student’s t-test, respectively; and
P(i, j) is the significant p-value of expression correlation coefficient between a and b genes/miRNAs
based on the Pearson’s product moment correlation coefficient.

The crosstalk of any pair of risk pathways was gained by adding up all the correlation strengths
between them, and crosstalk of risk pathways i and j was developed based on formula as follows:

Crosstalk(a,b) =
n∑
a

CS

where n presents the number of all gene–gene, gene–miRNA, and miRNA–miRNA interactions between
any two pathways.

In order to strengthen the differences of risk pathways in different subtypes, we constructed
specific dysfunctional crosstalk networks based on the specific crosstalk relationship in each subtype
for subsequent calculation and research, which means that when a pair of crosstalk pathways only
exist in a certain subtype, they will be selected to construct the subtype crosstalk network.

2.6. Evaluating the Impacts of Drugs on Crosstalk

We integrated the drug information from the DrugBank and SM2miR databases and screened
them for Food and Drug Administration (FDA)-approved anticancer drugs that contain both target
genes and target miRNAs, and a total of 36 anticancer drugs were screened. Research has shown that
the crosstalk among the signaling pathways plays a key role in the occurrence and development of
breast cancer. Thus, evaluating the impact of drugs on pathway crosstalk based on the expression
of drug targets could help to optimize the treatment of various subtypes of breast cancer. From this
standpoint, in order to assess the impacts of drug on dysfunction crosstalk network, for each drug, we
first removed its target genes and miRNAs from the specific risk pathway crosstalk of a given subtype.
Next, we recalculated the crosstalk to quantify the destructive effects of drugs on different subtypes. At
the same time, a formula was designed and developed. The destructive score (DS) of drug to crosstalk
was gained using the following formula:

DS(d) =

∑k
i

∣∣∣∣1− Crosstalkd
Crosstalk

∣∣∣∣
k

where Crosstalkd is the crosstalk after drug action, and k presents the number of all specific crosstalks
in the subtype.

We determined the destructive score (DS) of all anticancer drugs to specific crosstalk networks in
each subtype to assess the impacts of drugs on pathway crosstalk of the drugs. A higher DS score
indicates the greater effects of the drug on crosstalk between risk pathways. In each subtype, we only
screened anticancer drugs that could impact the crosstalk between dysregulated pathways (DS score
greater than zero) as candidate drugs, and we ranked candidate drugs of each subtype by DS score
from high to low in various subtypes of breast cancer.

2.7. Survival Analysis

We performed survival analysis based on the targets of candidate drugs that were implicated in the
specific pathway crosstalk of each subtypes of breast cancer to evaluate the effects for patient survival
of candidate drugs. For a given drug, we extracted its target genes and miRNAs that target a specific
crosstalk network as drug target signatures. Each candidate drug target signature was performed for
survival analysis in patients of each subtype separately, and we used the K-mean clustering method
to stratify patients into shorter survival time and longer survival time groups based on the level of
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these drug target molecules’ expression. In this project, we used 100 as the maximum number of
iterations of k means algorithm, and randomly started k means algorithm 20 times to return the best
result. Then Kaplan–Meier estimate method was used to evaluate the survival difference of these two
classified groups in each subtype, respectively. Finally, the significance p-value of survival difference
was estimated using the log-rank test.

3. Results

3.1. Identifying Breast Cancer Subtype-Associated Risk Pathways

We identified the risk miRNAs and genes by comparing tumor samples in each subtype with
normal controls, respectively. The differentially expressed genes and miRNAs were detected using
t-test and fold-change methods, and then multiple testing correction by the Benjamini–Hochberg
procedure was used. Genes/miRNAs with adjusted p-values < 0.01and |log_2 FC| > 2 were identified as
differential expression (risk genes/miRNAs). In total, we obtained 4096 risk genes (2284 from basal-like
subtype, 2192 from her2-enriched subtype, 1831 from luminal A subtype, and 2487 from luminal B
subtype) and 223 risk miRNAs (148 from basal-like subtype, 72 from her2-enriched subtype, 76 from
luminal A subtype, and 116 from luminal B subtype). Unsupervised hierarchical clustering analysis
was performed to observe discrepancy of the expression of risk genes and miRNAs between case
samples and normal samples, as shown in Figure 2A. We also performed the degree of overlap of risk
genes and miRNAs between subtypes, displayed in Figure 2B. These results indicate that genes and
miRNAs exhibit widespread expression disorder in the various breast cancer subtypes.

Breast cancer is affected by multiple factors and pathways. In order to veritably and accurately
reflect the changes of the pathways of breast cancer, we used the methods that we developed previously
to reconstruct all biological pathways among KEGG, and miRNAs were added into the signaling
pathway to form a more abundant signaling pathway. To discover the biological function of these risk
genes and miRNAs, we used pathway enrichment analysis to identify risk pathways in each subtype.
A pathway is identified as a risk pathway only if risk genes and miRNAs are enriched in it under the
significance level p < 0.05. In total, there were 32 risk pathways in basal-like subtype, 29 risk pathways
in her2-enriched subtype, 21 risk pathways in luminal A subtype, and 26 risk pathways in luminal B
subtype. We show the top ten pathways of each breast cancer subtype in Figure 2C. We found that
some risk pathways such as the Chemokine signaling pathway, ECM–receptor interaction, the PPAR
signaling pathway, and Tyrosine metabolism were simultaneously identified in different breast cancer
subtypes. Furthermore, we found some subtype-specific risk pathways in each subtype of breast cancer.
Amoebiasis, drug metabolism–other enzymes, fatty acid metabolism, the p53 signaling pathway, and
salivary secretion were found in basal-like, cell adhesion molecules (CAMs) in her2-enriched, histidine
metabolism in Luminal A, and glycerolipid metabolism and TGF-beta signaling pathway in Luminal B
subtypes. These subtype-specific risk pathways may be one of the reasons that resulted in distinct
molecular mechanisms and clinical outcomes of breast cancer subtypes.
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Figure 2. Global view of risk genes and miRNAs in each subtype of breast cancer. (A) Heat maps show
risk genes and miRNAs in four breast cancer subtypes. Unsupervised hierarchical clustering analysis
is used, which divided genes and miRNAs into two clusters, the lower and higher expression values
are represented by green and the red colors, respectively. (B) Venn plots of risk genes and miRNAs
associated with breast cancer subtypes separately. (C) Results of top 10 pathways with significant
enrichment result of each subtype. Note: Basal, basal-like subtype; Her2, her2-enriched subtype; LumA,
luminal A subtype; LumB, luminal B subtype.

3.2. Constructing Risk Pathway Crosstalk Networks for Various Subtypes of Breast Cancer

The occurrence of breast cancer is complex and there is crosstalk between different functional
biological pathways in the process of cancer development. Thus, it is necessary to dissect the crosstalk
of dysfunctional pathways related to breast cancer. To elucidate the molecular mechanism of various
breast cancer subtypes, we analyzed the crosstalk between dysfunctional pathways that are related to
breast cancer. In our study, the risk pathway crosstalk networks for each breast cancer subtype were
constructed. The quantification of crosstalk was conducted by calculating both the correlation strength
and the dysfunction degree of genes and miRNAs in any two risk pathways of each breast cancer
subtype, and the expression correlation coefficient between genes and miRNAs and the unpaired
Student’s t-test of genes and miRNAs were used for assessment of crosstalk.

Our results showed that there were crosstalks with significant differences in the extent of crosstalk
between risk pathways in each subtype (Figure 3). For example, ‘calcium signaling pathway’ and ‘focal
adhesion’ have more crosstalk relationships with other pathways in basal-like subtype. ‘Pathways in
cancer’ and ‘focal adhesion’ crosstalk more with other pathways in her2-enriched subtype. In luminal
A subtype, ‘Jak−STAT signaling pathway’ has the greatest crosstalk with ‘cytokine−cytokine receptor
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interaction’. In luminal B subtype, ‘pathways in cancer’ and ‘cytokine−cytokine receptor interaction’
possess larger crosstalk values with other pathways.

Figure 3. The crosstalk for each two interrelated risk pathways in breast cancer subtypes. Heat maps of
crosstalk between risk pathways for comparing the heterogeneity of crosstalk across different subtypes
of breast cancer. The color of the box represents the crosstalk between the two pathways, the lower and
higher crosstalk are represented by blue and the red colors, respectively.

Moreover, we found some subtype-specific crosstalk of pathways in breast cancer. We extracted
the specific crosstalk risk pathways of each subtype and used them to construct the specific crosstalk
network of the risk pathway in four subtypes (Figure 4). There are 197 specific crosstalk relationships
in basal-like, 56 specific crosstalk relationships in her2-enriched, 41 specific crosstalk relationships in
luminal A, and 74 specific crosstalk relationships in luminal B subtypes. The above results indicate that
these subtype-specific crosstalks of risk pathways may be one of the molecular mechanisms that lead
to distinct clinical outcomes of breast cancer patients, which will help us to understand the discrepancy
between subtypes and points a new way to optimize the treatment of breast cancer patients.
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Figure 4. The specific crosstalk network of each breast cancer subtype. The yellow rectangle represents
the pathways of the specific crosstalk network. The thickness of edges represents the intensity of
crosstalk between pathways; the larger the crosstalk value, the thicker the edge.

3.3. Screening Candidate Therapeutic Drugs for Each Subtype of Breast Cancer Based on DS Score

Previous experimental studies have demonstrated that cancer cells could adapt signaling pathway
circuits under drug treatment by establishing alternative signaling routes through crosstalk [32,33].
Based on this point of view, we developed an evaluation method to optimize the therapeutic drugs for
each subtype of breast cancer by assessing the impact of drugs on crosstalk among risk pathways. The
drug targets of each drug were removed from risk pathways and we reconstructed crosstalk networks
targeted by drugs to evaluate the perturbance effects of those drugs. Next, we recalculated the crosstalk
to measure the perturbance effects of drugs on different subtypes and optimize the drug use for each
subtype of breast cancer. We obtained 36 anticancer drugs that target both genes and miRNAs, and the
results of evaluation of anticancer drugs are shown in Table 1. We only screened anticancer drugs of
each subtype with a DS score greater than zero as candidate drugs, and ranked candidate drugs of
each subtype by DS score from high to low. A higher DS score indicates the greater effects of the drug
on crosstalk between risk pathways. In total, there are 33 drugs in basal-like, 32 drugs in her2-enriched,
22 drugs in luminal A, and 30 drugs in luminal B subtypes.
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Table 1. Screened candidate drugs for various subtypes of breast cancer based on DS score.

DS Score Ranking Basal Her2 LumA LumB

1 5-Fluorouracil Arsenic trioxide Arsenic trioxide Arsenic trioxide
2 Arsenic trioxide Adriamycin 5-Fluorouracil Adriamycin
3 Tamoxifen 5-Fluorouracil Adriamycin 5-Fluorouracil
4 Trastuzumab Trastuzumab Trastuzumab Trastuzumab
5 Etoposide Paclitaxel Etoposide Etoposide
6 Cisplatin Temozolomide Tamoxifen Cisplatin
7 Paclitaxel Etoposide Vorinostat Topotecan
8 Vorinostat Gemcitabine Bicalutamide Irinotecan
9 Gemcitabine Everolimus Cisplatin Paclitaxel

10 Adriamycin Sunitinib Vemurafenib Tamoxifen

11 Temozolomide Tamoxifen Medroxyprogesterone
acetate Vemurafenib

12 Cyclophosphamide Vorinostat Gemcitabine Gemcitabine
13 Bicalutamide Cisplatin Temozolomide Sunitinib
14 Sunitinib Sorafenib Everolimus Vorinostat
15 Vemurafenib Cyclophosphamide Sunitinib Temozolomide

16 Medroxyprogesterone
acetate Goserelin Paclitaxel Everolimus

17 Everolimus Vemurafenib Oxaliplatin Lenalidomide
18 Vinblastine Bicalutamide Cyclophosphamide Cyclophosphamide
19 Lenalidomide Vinblastine Sorafenib Bicalutamide
20 Oxaliplatin Lenalidomide Irinotecan Goserelin
21 Sorafenib Imatinib mesylate Topotecan Rapamycin
22 Goserelin Bortezomib Lenalidomide Oxaliplatin
23 Irinotecan Oxaliplatin Vinblastine

24 Mitoxantrone Medroxyprogesterone
acetate Sorafenib

25 Topotecan Melphalan Vincristine

26 Imatinib mesylate Gefitinib Medroxyprogesterone
acetate

27 Vincristine Rapamycin Bortezomib
28 Gefitinib Vincristine Imatinib mesylate
29 Docetaxel Irinotecan Mitoxantrone
30 Bortezomib Topotecan Melphalan
31 Melphalan Mitoxantrone
32 Rapamycin Docetaxel
33 Epirubicin

3.4. Dissecting the Effects of Candidate Therapeutic Drugs for Patient Survival in Each Subtype of
Breast Cancer

A drug could specifically interact with a target molecule to modulate a physiological process and
further impact the progression of a disease [34]. In order to further screen drugs for breast cancer
patients, we got the patients’ clinical survival information in each breast cancer subtype. For each
candidate therapeutic drug that was screened based on DS score in different subtypes, we evaluated
the drug target signature’s influence on patient survival. Patients from each subtype of breast cancer
were divided into two groups (shorter survival time group and longer survival time group) based on
the expression of drug target signatures. As shown in Figure 5, we found that there were, in total, six
candidate therapeutic drugs screened based on DS score (DS score greater than zero) that significantly
correlated with overall survival (OS) in the different subtypes of breast cancer patients. Paclitaxel,
Vincristine, and Sorafenib in basal-like, Irinotecan in her2-enriched, Vemurafenib in luminal A, and
Vorinostat in luminal B subtypes. These six dugs not only impacted the crosstalk of risk pathways,
but they also had an effect on the patients’ survival in their corresponding subtypes. This indicates
that they may be more suitable treatment candidates for the corresponding subtypes of breast cancer.
More details, according to drug target signatures of Paclitaxel and Sorafenib in the basal-like subtype,
these 97 patients were divided into a shorter survival group (n = 5) and a longer survival group
(n = 92), respectively. Vincristine drug target signatures divided 97 patients in the basal-like subtype
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into a shorter survival group (n = 63) and a longer survival group (n = 55). The 47 patients in the
her2-enriched subtype were separated into a shorter survival group (n= 10) and a longer survival group
(n = 37) by Irinotecan drug target signatures. Based on the drug target signatures of Vemurafenib in
luminal A subtype, the 287 patients (survival information was missing in four patients) were stratified
into a shorter survival group (n = 78) and a longer survival group (n = 209), and Vorinostat drug target
signatures stratified 118 luminal B subtype patients into a shorter survival group (n = 63) and a longer
survival group (n = 55). Here, drugs’ signatures stratified the patients into two groups in a statistically
significant manner and their expression direction were not considered.

Figure 5. Kaplan-Meier survival curves of patients at shorter survival time group or longer survival
time group stratified by drug target signatures of candidate drugs of each breast cancer subtype.

3.5. Dissecting the Mechanism of Candidate Drugs for Each Subtype

In our drugs’ optimization results, Paclitaxel, Sorafenib, and Vincristine were found to have
potential therapy effect in the basal-like subtype of breast cancer. Consistent with clinical findings,
Paclitaxel and Vincristine were the optimal adjuvant therapy for triple-negative breast cancer [35,36].
Sorafenib is a multiple targeted agent which can inhibit tumor cell proliferation and angiogenesis
by inhibiting the activation of multiple different kinases [37], and our results indicate that Sorafenib
plays a therapeutic role in the basal-like subtype of breast cancer mainly through affecting specific
risk pathway crosstalk mediated by hsa-miR-30a, hsa-miR-222, and hsa-miR-193a. Some studies have
confirmed that hsa-miR-30a, hsa-miR-222, and hsa-miR-193a play key roles in breast cancer [38–40].
Irinotecan, an antitumor enzyme inhibitor mainly used for the treatment of colorectal cancer [41], is
suitable for the her2-enriched subtype, which mediates the specific crosstalk among the risk pathways
of the her2-enriched subtype through regulating hsa-miR-23a and hsa-miR-324. In accordance with the
result of WT Kuo and Eissa [42,43], hsa-miR-324 and hsa-miR-23a have distinct biological functions in
breast cancer. Vemurafenib has long been approved for the treatment of metastatic melanoma with
BRAF mutation [44], and our results showed that this drug had a damaging effect on the specific
crosstalk of risk pathway of the luminal A subtype through action on hsa-miR-145. Just as some
researches have shown that miR-145 is a potential cancer biomarker and serves as a novel target for
cancer therapy, including breast cancer [45]. Vorinostat as an anticancer agent that inhibits histone
deacetylases, approved for cutaneous T-cell lymphoma [46], and plays a key role in the epigenetic
regulation of gene expression. Vorinostat could act on the specific risk pathways crosstalk of the luminal
B subtype via 14 miRNAs (Figure 6), which have been found to play important roles in the occurrence
and development of breast cancer, such as hsa-miR-155, hsa-miR-34a, hsa-miR-17, hsa-miR-22, and
hsa-miR-140 [47–51].

52



Genes 2019, 10, 657

Figure 6. The mechanism of optimal therapeutic drugs in each subtype of breast cancer. Sorafenib,
Paclitaxel, and Vincristine were applicable for the basal-like subtype treatment, Irinotecan was optimum
for the her2-enriched subtype treatment, Vemurafenib was suitable for the luminal A subtype treatment,
and Vorinostat was applied to the luminal B subtype treatment.

4. Discussion

Breast cancer is a complex disease with high heterogeneity in terms of the underlying molecular
alterations, the cellular composition of tumors, and even the clinical outcomes. Different subtypes
exhibit distinct biological behavior, prognosis, and usually different responses to drug treatment [52],
yet identifing applicable drugs for each subtype still largely remains limited. Therefore, it is urgently
needed to develop a systematic pipeline to identify medications for different subtypes of breast cancer.

The occurrence and development of tumors is a complex process involving many steps, links, and
factors. It is mostly the action of a single molecule (gene or miRNA) that leads to poor therapeutic
effect among many chemotherapeutic regimens [53]. In recent years, many researches have revealed
that the occurrence of tumors is closely related to the abnormality of biological pathways, and crosstalk
of abnormal pathways is one of the prime reasons for the poor outcomes of tumor treatment [54].
Studies have shown that regulatory molecules such as non-coding RNA participate in the anomaly of
biological pathways through the regulation of genes, adding to the difficulty of cancer treatment [55].
In order to actually reflect the intricate crosstalk of pathways, we have developed a new method based
on biological pathways—that is, reconstruction of biological pathways which include both genes and
miRNAs. We have also identified the optimal drugs by quantifying the effect of candidate drugs on
miRNA-mediated crosstalk of pathways. We have successfully identified the specific crosstalk of
pathways in each subtype of breast cancer and revealed their pathogenesis respectively by applying
this method. Moreover, we also screened applicable drugs for each subtype of breast cancer. We
successfully screened the most suitable drugs for each subtype of breast cancer, including Paclitaxel
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and Vincristine, which are breast cancer treatment drugs in clinical application. On the basis of the
original application, we accurately identified their applications in each subtype, such that Paclitaxel
and Vincristine were best for basal-like, Irinotecan was suitable for her2-enriched, and Vorinostat was
the optimal drug for luminal B subtypes. We also identified other anticancer drugs application in each
subtypes of breast cancer. The results show that our approach could help doctors to further improve
treatment strategies with the current menu of chemotherapy options.

Currently, several methods have been proposed to optimize drugs for human cancers. For example,
Lamb et al. provided a computational method to connect diseases and their potential therapeutic
small molecules based on gene expression profiles form disease and cultured human cells treated with
bioactive small molecules respectively [56]. Gottlieb et al. predicted novel drug indications based on
multiple drug–drug and disease–disease similarity measures [57]. Furthermore, Malas et al. prioritized
drugs using the semantic information between drug and disease concepts [58]. Comparing with these
methods, our study has some unique features. First, we considered the role of non-coding RNAs in
our approach. Second, our study optimized anticancer drugs by measuring their effects for mediating
the crosstalk between risk pathways, which was an important molecular mechanism in the initiation
and progression of human cancers. Finally, we optimized candidate drugs for different breast cancer
subtypes, which may further promote the precise use of drugs for human cancer.

There are also several limitations in our study. First of all, drugs targeting miRNAs for therapeutic
purposes are limited, and there are many drugs without miRNA targets. Secondly, miRNAs affected
by the drugs are required for further study. We believe that more and more drugs that regulate
miRNAs and drug-regulated miRNAs will be discovered with the development of in-depth study
on the interaction of drugs and miRNAs, and our method can identify the optimal therapeutic agent
for complex diseases more accurately and comprehensively. In summary, the results in this study
highlight that dissecting subtype-specific risk pathway crosstalk could provide novel insights into the
underlying molecular mechanisms and thus promote the drug discovery for various breast cancer
subtype. Moreover, we focused on breast cancer in this study, but the method proposed here could also
be applied to many other complex diseases, as pathway crosstalk is widespread in biological systems
and the dysregulation of which play a critical role in the occurrence of disease.
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Abstract: Warfarin is an oral anticoagulant frequently used in the treatment of different cardiovascular
diseases. Genetic polymorphisms in the CYP2C9 and VKORC1 genes have produced variants
with altered catalytic properties. A total of 212 cardiovascular patients were genotyped for
17 Single Nucleotide Polymorphisms (SNPs) within the CYP2C9 and VKORC1 genes. This study
confirmed a genetic association of the CYP2C9*3 and VKORC1 rs10871454, rs8050894, rs9934438, and
rs17708472 SNPs with warfarin sensitivity. This study also found an association between CYP2C9 and
VKORC1 genetic haplotype blocks and warfarin sensitivity. The initial warfarin dose was significantly
related to the CYP2C9*3 polymorphism and the four VKORC1 SNPs (p < 0.001). There were significant
associations between rs4086116 SNP and TAT haplotype within CYP2C9 gene and rs17708472 SNP
and CCGG haplotype within VKORC1 gene and warfarin responsiveness. However, possessing a
VKORC1 variant allele was found to affect the international normalized ratio (INR) outcomes during
initiation of warfarin therapy. In contrast, there was a loose association between the CYP2C9 variant
and INR measurements. These findings can enhance the current understanding of the great variability
in response to warfarin treatment in Arabs.

Keywords: CYP2C9; VKORC1; warfarin; warfarin initiation phase of therapy; INR; pharmacogenetics study

1. Introduction

Warfarin is a commonly prescribed oral anticoagulant that is employed for the treatment of venous
and arterial thromboembolic disorders and cardiac valve replacements [1]. However, interindividual
genetic variation causes great variability in dosage requirements, making the latter a problematic
issue for physicians. A higher or lower dose than needed could lead to bleeding and thrombotic risk,
respectively [2,3]. Two-thirds of warfarin dose variation was due to environmental factors like age,
body mass index, smoking status, gender, and diet, among others, while the remaining one-third is
caused by genetic factors such as the CYP2C9 and VKORC1 genes [4–6].

Belonging to the cytochrome P450 superfamily, the CYP2C9 gene is involved in the metabolism
and clearance of S-warfarin, the latter of which is a racemic form of warfarin together with
R-warfarin [7,8]. CYP2C9 is located on the long arm of chromosome 10, and like other members
of CYP2C, CYP2C9 is highly polymorphic [9–11]. Although there are over 50 single nucleotide
polymorphisms (SNPs) located in the regulatory and coding region of the CYP2C9 sequence, the most
studied CYP2C9 polymorphisms are CYP2C9*2 (R144C) and CYP2C9*3 (I359L) [12,13]. It was found
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that individuals carrying the CYP2C9 *2 *3 alleles reduced the elimination of S-warfarin and, therefore,
plasma concentrations of the latter increased significantly compared to the wild-type allele and the
individuals with these variant alleles need a lower warfarin maintenance dose [14].

Similarly, the VKORC1 gene encodes the vitamin K epoxide reductase complex subunit 1 and
it is a warfarin target [5]. The vitamin K epoxide reductase complex subunit 1 normally catalyzes
the carboxylation reaction of the vitamin K-dependent protein glutamic acid residues in order to
activate it, the latter of which are responsible for catalyzing the clotting factor pathway [15]. Several
genetic studies conducted in different populations suggest that the G3673A (rs9923231), C6484T
(rs9934438), and G9041A (rs7294) polymorphisms of the VKORC1 gene are the most common and
well-studied [7,16].

Analysis of CYP2C9 and VKORC1 gene polymorphisms revealed that they were responsible for
10% and 40% of warfarin dose requirement variance, respectively [17]. Combined with clinical data,
both of the aforementioned genes can explain up to 60% of the warfarin variance [18,19]. More than
50 years ago, the dose of warfarin was determined by trial and error, with an initial dose (2–10 mg/day)
dependent on the indication of warfarin and clinical factors, regardless of the effect of the genetic
factor [20]. Patients are treated with warfarin in two stages, the first called the initiation phase of
treatment, which is considered as the stage in which the initial international normalized ratio (INR)
value of the patient is unstable and fluctuates up and down. With the second (maintenance) stage of
the therapy, the patient is within the therapeutic INR for at least two consecutive visits [21]. However,
pharmacogenetics for specific populations including Jordanian Arabs is necessary. Therefore, the
objective of this study was to recognize genetic variations within the CYP2C9 and VKORC1 genes that
are involved in warfarin sensitivity and responsiveness in Jordanian cardiovascular patients of Arab
descent during initiation of treatment.

2. Materials and Methods

2.1. Patient Population and Study Design

The study population consisted of 212 unrelated warfarin intake patients selected from the
Jordanian-Arab population, from the Anticoagulation Clinic at the Queen Alia Heart Institute (QAHI)
in Amman, Jordan. Informed consent was obtained from all subjects. The study protocol was approved
by the Human Ethics Committee at Jordan University of Science and Technology in Irbid, Jordan, and
the Royal Medical Services in Amman, Jordan. Ethical approval code: 13/78/2014.

In this study, patients have cardiovascular diseases and are prescribed warfarin as an anticoagulant
therapy. Inclusion criteria involved patients being 18 years or older and having received warfarin
for at least three months. Patients who did not provide informed written consent, did not visit the
anticoagulation clinic regularly, took CYP2C9 inducers or inhibitors, or did not have a complete data
set were excluded.

Initially, 350 patients were screened and, based on the aforementioned inclusion and exclusion
criteria, 300 patients were approached to participate in this study (Figure 1). 80 patients were
subsequently excluded because of inability to complete the treatment program or refusal. Of the
remaining patients, 220 accepted to be part of this study, after which an additional eight patients were
excluded from the final analysis because of a failure in genotyping. In total, whole sets of data were
obtained from 212 patients with cardiovascular disease who were being treated with warfarin. Data
was collected on demographic (age, gender, and body mass index) and lifestyle (smoking status and
diet) characteristics as well as medical history (diseases and clinical features of warfarin therapy).
Clinical features included the target INR, mean weekly warfarin doses required to reach the target
INR, and the use of concomitant medication, all of which are required to be known in order to
adjust warfarin doses. All data were blinded and obtained through semi-standardized interviews and
medical records.
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Figure 1. Flow chart depicting study design. INR: international normalized ratio.

All subjects in this study received warfarin anticoagulant therapy according to RMS
anticoagulation protocol, which began with 2.5 to 10 mg nightly doses. INR monitoring is required at
least once a week for the first three to four weeks after the initiation of therapy. After three consecutive
visits, a patient with stable INR reaches the maintenance dose and is monitored for warfarin treatment
administration by clinic protocol.

2.2. Outcome Measurement

Oral anticoagulant therapy was mandated by the prothrombin time (PT) that is, evaluated using
an automated method over STAGO coagulometric unit in the QAHI laboratory. To calculate INR,
there was a blood coagulation (clotting) test. INR monitoring for dose adjustments was determined
by the physician and pharmacist. INR values between January 2014 and November 2015 were
obtained from medical records, and these values were then used to divide the patients according to
warfarin responsiveness into: (1) good responders, with an INR value within the target range; (2) poor
responders, with an INR value under the target range; and (3) extensive responders, with an INR
above the target range.
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Further, based on their warfarin sensitivity, patients were divided into resistant, normal, or
sensitive to warfarin as follows: (1) warfarin resistance (or Poor metabolizer), largest daily doses
were required to keep a patient’s INR within a therapeutic range (dose required > 49 mg/week);
(2) warfarin normal patient (or Intermediate metabolizer), intermediate doses required (doses between
21–49 mg/week); and (3) warfarin sensitive patient (or Extensive metabolizer) lowest doses required
(required dose <21 mg/week) [22].

2.3. SNP Selection, DNA Extraction, and Genotyping

In this study, 17 SNPs in the CYP2C9 and VKORC1 genes were selected from public databases
and genotypes. Information about the aforementioned SNPs is shown in Table S1. Genomic DNA
was extracted within one week of blood collection using the commercially available Wizard Genomic
DNA Purification Kit (Promega Corporation, Madison, WI, USA) according to the manufacturer’s
instructions. After extraction, the DNA was diluted in 96-well plates using an automated robotic
system to achieve concentrations of 20 ng/μL (50–500 μL). Concentrations were confirmed with the
Nano-Drop ND-100 (Thermo Scientific, Wilmington, DE, USA). Genotyping was carried out by means
of the MassARRAY®system (iPLEX GOLD) (Sequenom, San Diego, CA, USA), which was carried out
at the Australian Genome Research Facility (AGRF) (Sequenom).

2.4. Statistical Analysis

Discrepancy and call rates were calculated using Microsoft Excel, and the deviation from Hardy
Weinberg Equilibrium (HWE) was assessed using the Pearson X2 test. Minor allele frequencies (MAF)
and HWE p-values for genotypic distribution were calculated via the Court lab-HW calculator. To test
which of the chosen SNPs is associated with warfarin response, various statistical genetic association
analyses were conducted, such as the chi-square, nonparametric correlation tests (Kruskal-Wallis and
Tukey Pairwise comparison) and haplotype genetic analysis test. The Statistical Package for the Social
Sciences (SPSS) version 21.0 and the SNPStat Web Tool (https://www.snpstats.net/start.htm) were
used to perform all analyses.

3. Results

3.1. Study Group

The study group comprised of 212 unrelated Jordanian-Arabs patients treated with warfarin, with
a mean age (±SD) of 56.03 (±17.68) years, a median age of 60, and an age range of 18 to 85 years. There
were 34 poor responders (16%), 146 moderate responders (68.9%), and 32 extensive responders (15.1%).
Table 1 summarizes the demographic, lifestyle, and medical characteristics of each of the three groups.

In total, 17 SNPs (100%) passed the quality control measures for throughput genotyping and were
analyzed by the MassARRAY®system (iPLEX GOLD) with high accuracy and a 97% average success
rate. The genotypic discrepancy average (±SD) rate over the 17 loci was only 0.06% (±0.0004%) out of
the entire cohort (212 subjects). Genotypic and allelic frequencies are shown in Table S2.

For the 17 SNPs examined in this study, all were in accordance with the HWE. Ten polymorphisms
(rs104894539, rs104894540, rs104894541, rs104894542, and rs61742245 in VKORC1, and rs28371685,
rs28371686, rs72558191, rs9332131, and rs9332239 in CYP2C9) were non-polymorphic. In contrast, the
seven remaining SNPs (rs10871454, rs8050894, rs9934438, and rs17708472 located in VKORC1, and
rs1799853, rs4086116, and rs1057910 located in CYP2C9) were polymorphic and thus included in the
study. The minor alleles and their frequencies for the successful genotyped SNPs are shown in Table S3.

3.2. Effect of CYP2C9 and VKORC1 Polymorphisms on Warfarin Sensitivity during Initiation Phase
of Therapy

Regarding the association of VKORC1 and CYP2C9 SNPs with warfarin sensitivity among the
three inclusion groups, significant differences in proportions among genotypes were observed at

62



Genes 2018, 9, 578

all tested VKORC1 SNPs (p < 0.001) (Table 2). Significant differences were also observed between
two SNPs of the CYP2C9 gene (rs4086116 (p = 0.012) and rs1057910 (p < 0.001)), as shown in Table 2.
Moreover, there was a significant association observed between VKORC1 and CYP2C9 haplotypes and
warfarin sensitivity (p < 0.0001) (Table 3).

Table 1. Descriptive analysis of demographics and clinical characteristics of 212 cardiovascular patients
treated with warfarin at the Queen Alia Heart Institute.

Category Subcategory
Extensive

Metabolizer
Good

Metabolizers
Poor

Metabolizers

Demographics

Patients (N, %) (32/212) 15.1% (146/212) 68.9% (34/212) 16%
Age a (years) 56.0 (17.68) 55.0 (14.64) 48.29 (15.09)

BMI a 27.87 (3.72) 27.7 (4.85) 27.42 (3.45)
Smoking (N, %) 31.25% 18.6% 41.2%

Male 59.4% 51.4% 67.6%
Female 40.6% 48.6% 32.4%

Concomitant Disease

Co morbidity 56.3% 68.5% 55.9%
Hypertension 34.4% 42.5% 23.5%

Diabetes mellitus 18.8% 21.9% 26.5%
CHD b 28.1% 25.3% 29.4%

Thyroid 0% 3.4% 2.9%
Lipid 3.1% 6.8% 2.9%

Medication Aspirin 62.5% 65.8% 76.5%

Indication of Treatment

MVR c 18.8% 10.3% 20.6%
AVR d 6.3% 24.0% 20.6%
AF e 34.4% 19.2% 20.6%

DVR f 9.4% 15.8% 11.8%
Others 9.4% 7.5% 0.0%

Target INR 2–3 43.8% 39.7% 38.2%
2.5–3.5 56.3% 60.3% 61.8%

Mean weakly dose a 16.699 (2.79) 35.896 (7.39) 67.44 (42.48)

Mean INR a 2.82 (0.72) 2.38 (0.75) 2.44 (0.83)
a Mean Standard deviation in square brackets. b CHD: Chronic heart disease. c MVR:Mitral valve replacement.
d AVR: Aortic valve replacement. e AF: Atrial Fibrillation. f DVR: Double valve replacement.

Table 2. Association of VKORC1 and CYP2C9 single nucleotide polymorphism (SNPs) with warfarin
sensitivity during the initiation phase of therapy of 212 cardiovascular patients.

Gene SNP ID Genotype Sensitive Moderate Resistance p-Value *

VKORC1

rs10871454
CC 4.3% 57.4% 38.3%

<0.001CT 10.0% 76.4% 13.6%
TT 34.5% 63.6% 1.8%

rs8050894
CC 2.3% 60.5% 37.2%

<0.001CG 10.9% 74.5% 14.5%
GG 32.2% 64.4% 3.4%

rs9934438
CC 4.2% 58.3% 37.5%

<0.001CT 9.9% 76.6% 13.5%
TT 35.8% 62.3% 1.9%

rs17708472
CC 18.1% 68.8% 13.1%

<0.001CT 6.1% 73.5% 20.4%
TT 0.0% 0.0% 100%

CYP2C9

rs1799853
CC 14% 70.1% 15.9%

0.744CT 19.6% 63% 17.4%
TT 0.0% 100% 0.0%

rs4086116
CC 8.1% 73.2% 18.7%

0.012CT 24.1% 62.0% 13.9%
TT 30.0% 70.0% 0.0%

rs1057910
AA 8.8% 72.5% 18.7%

<0.001AC 41.5% 53.7% 4.9%

* Chi-Square Test with p-value < 0.05 is considered significant.
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Table 3. Frequencies of the haplotypes of VKORC1 and CYP2C9 genes among the 212 warfarin
sensitive patients.

Gene Haplotypes Frequency * (%) Odds Ratio (95% CI) p-Value **

VKORC1

TGAG 0.512 0.00 ——
CCGG 0.324 0.32 (0.2–0.43) <0.0001
CCGA 0.129 0.38 (0.23–0.54) <0.0001
CGGG 0.028 0.34 (0.03–0.66) 0.034
TCGG 0.007 0.21 (−0.38–0.8) 0.48

CYP2C9

CAC 0.767 0.00 —–
TAT 0.116 −0.05 (−0.21–0.11) 0.53
TCC 0.094 −0.45 (−0.64–−0.27) <0.0001
TAC 0.021 0.01 (−0.34–0.37) 0.95
TCT 0.002 −1.11 (−2.14–−0.08) 0.037

* Genetic haplotype frequency of 212 warfarin intake patients, ** p-value < 0.05 is considered significant.

3.3. Effect of CYP2C9 and VKORC1 Polymorphisms on Warfarin Required Dose during Initiation Phase
of Therapy

Carriers of CYP2C9 and VKORC1 polymorphisms had a significantly increased required dose
compared with wild-type subjects or carriers of only one polymorphism of CYP2C9 or VKORC1
(Table 4).

Table 4. Association of VKORC1 and CYP2C9 SNPs with variability on warfarin required doses and
with INR treatment outcome.

SNP ID Initiation Dose p-Value * Initiation INR p-Value *

rs10871454

38.1 (23.02)

<0.001

2.46 (0.77)

0.006
rs8050894 <0.001 0.008
rs9934438 <0.001 0.009
rs17708472 <0.001 0.511
rs1799853 0.118 0.184
rs4086116 0.001 0.08
rs1057910 0.001 0.572

* Kurskal Wallis test with p-value < 0.05 is considered significant, Mean Standard deviation in square brackets.

3.4. Effect of CYP2C9 and VKORC1 Polymorphisms on Warfarin Responsiveness during Initiation of Therapy

There were no significant differences in patient responder groups regarding the VKORC1 and
CYP2C9 SNPs except for the VKORC1 rs17708472 (p = 0.042) and the CYP2C9 rs4086116 (p = 0.005)
SNPs (Table 5). However, significant associations were found between genetic haplotypes of CCGG
VKORC1 and TAT CYP2C9 and warfarin sensitivity, with p = 0.02 and p = 0.018, respectively (Table 6).

3.5. Effect of CYP2C9 and VKORC1 Polymorphisms on INR Treatment Outcome

There were no significant differences observed between the CYP2C9 SNP genotypes and INR
values measured at start of treatment for 212 cardiovascular patients treated with warfarin. In contrast,
significant differences were observed between INR values measured at the initiation phase of therapy
and certain VKORC1 SNPs, namely rs10871454 (p = 0.006), rs8050894 (p = 0.007), and rs9934438
(p = 0.009), as shown in Table 4.
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Table 5. Association of VKORC1 and CYP2C9 SNPs with response to warfarin during the initiation
phase of therapy of 212 cardiovascular patients.

Gene SNP ID Genotype
Poor

Responder
Good

Responder
Extensive

Responder
p-Value *

VKORC1

rs10871454
CC 55.3% 36.2% 8.5%

0.171CT 40.9% 45.5% 13.6%
TT 30.9% 54.5% 14.5%

rs8050894
CC 53.5% 39.5% 7%

0.235CG 41.8% 43.6% 14.5%
GG 32.2% 54.2% 13.6%

rs9934438
CC 54.2% 37.5% 8.3%

0.226CT 40.5% 45% 14.4%
TT 32.1% 54.7% 13.2%

rs17708472
CC 38.1% 50.6% 11.3%

0.042CT 55.1% 28.6% 16.3%
TT 0.0% 66.7% 33.3%

CYP2C9

rs1799853
CC 45.1% 44.5% 10.4%

0.076CT 28.3% 52.5% 19.6%
TT 50.0% 0.0% 50.0%

rs4086116
CC 45.5% 43.9% 10.6%

0.005CT 39.2% 49.4% 11.4%
TT 10.0% 40.0% 50.0%

rs1057910
AA 42.1% 45.0% 12.9%

0.910AC 39% 48.8% 12.2%

* Chi-Square Test with p-value < 0.05 is considered significant.

Table 6. Frequencies of the haplotypes of VKORC1 and CYP2C9 genes among the 212 warfarin
responsiveness patients.

Gene Haplotypes Frequency * (%) Odds Ratio (95% CI) p-Value **

VKORC1

TGAG 0.512 0.00 ——
CCGG 0.326 −0.18 (−0.33–−0.03) 0.02
CCGA 0.129 −0.08 (−0.28–0.12) 0.46
CGGG 0.026 −0.05 (−0.47–0.36) 0.8
TCGG 0.007 0.55 (−0.22–1.32) 0.16

CYP2C9

CAC 0.767 0.00 ——
TAT 0.115 0.25 (0.04–0.45) 0.018
TCC 0.094 0.06 (−0.17–0.3) 0.59
TAC 0.021 0.44 (−0.01–0.89) 0.059
TCT 0.003 0.4 (−0.9–1.71) 0.55

* Genetic haplotype frequency of 212 warfarin intake patients, ** p-value < 0.05 is considered significant.

3.6. Correlation Between Warfarin Dose and Clinical Data

Finally, there was no significant correlation between warfarin dose and body mass index, age,
gender, co-morbidities, or the treatment indication (p = 0.505).

4. Discussion

Earlier studies on warfarin pharmacogenetics provide evidence that common VKORC1 and
CYP2C9 polymorphisms with clinical and environmental factors are responsible for over half of the
variability in warfarin required dose [23,24]. Genotyping patients who are carriers of VKORC1 and
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CYP2C9 variant alleles has been proven to reduce the risk of over-anticoagulation compared to the
traditional initial dose approach [25,26].

In this study, our goal was to identify genetic factors associated with sensitivity and responsiveness
to warfarin treatment during the initiation phase of treatment in Jordanian-Arab patients with
cardiovascular disease. The results of the current pharmacogenetic study strongly suggest that there is
a significant association of the VKORC1 rs8050894, rs10871454, rs9934438, and rs17708472 SNPs and
the CYP2C9 rs4086116 and rs1057910 SNPs and their haplotypes with the required warfarin dosage
and warfarin sensitivity. This study also reported that there is a genetic association between VKORC1
rs17708472 SNP and CCGG genetic haplotype block and CYP2C9 rs4086116 SNP and TAT genetic
haplotype block with warfarin responsiveness during the initiation phase of therapy.

The allelic frequencies of CYP2C9 and VKORC1 SNPs in our population were similar to those
found in other ethnic groups, as in the case of CYP2C9*2, with 10% in our population, 6% in American
and European populations, and 1% in Africans [27]. However, allelic frequencies of VKORC1 SNPs
were found to differ drastically from other populations. For example, rs10871454 was 52% in our
population compared to 41% in Americans, 39% in Europeans, and 6% in African populations [27].
With regard to the association of CYP2C9 polymorphisms with warfarin sensitivity, our results are
consistent with the study by Takahashi et al. (2001) which shows that CYP2C9 *2 and *3 polymorphisms
reduce warfarin clearance [28] as CYP2C9 is the major metabolizing enzyme of warfarin, therefore,
reduction of activity results in lower required doses needed to achieve the therapeutic INR. We found
a strong association of CYP2C9*3 (rs1057910 A>C) and CYP2C9 (rs4086116 C>T) genotypes with
warfarin sensitivity during the initiation stage of treatment with p < 0.001 and p = 0.012, respectively
(Table 2). This study reported that individuals with one variant allele were associated with an increased
risk of warfarin sensitivity. For example, 41.5% of the patients who carried the rs1057910 A>C variant
allele were sensitive to warfarin, compared to 8.8% of the wild-type patients were sensitive. Moreover,
carrying a CYP2C9 TCC genetic haplotype block was significantly associated with warfarin sensitivity
with p < 0.0001 (Table 3).

In disagreement with other studies, the CYP2C9*2 variant did not show a significant association
with warfarin sensitivity (p = 0.744). This can possibly be explained by the genotypic frequency
having an impact on the association; in our population only two patients were homozygous for the
variant allele (TT), 32 were heterozygous patients (CT), and 105 patients were homozygous for the
wild-type allele (CC) (Table 2). Moreover, it has been proposed that patients who carry one CYP2C9* 2
allele results in a dose reduction compared with the wild-type dose [14,29,30]. Although the allelic
frequency of CYP2C9*2 (rs1799853) in our samples was in agreement with the American and European
populations [27], this study did not find significant differences between this SNP and variability in
required doses in the initiation phase of therapy (p = 0.366) as shown in Table 4 and Figure 2.

Clinical pharmacogenetic studies suggested that patients who carry the CYP2C9*3 (rs1057910)
C allele leads to a dose reduction of 28–41% [12,29,30] in the Caucasian American population and
from 12–38% of the Asian population compared to the wild-type [31–34]. In alignment with the
aforementioned studies, we revealed that there is a 34.3% reduction in warfarin dose. Patients carrying
one variant allele (C) required 41.75 mg/week, in comparison with the wild-type allele which required
27.43 mg/week (p < 0.001), as shown in Table 4 and Figure 2. Therefore, in our study the CYP2C9*3
allele has a greater effect on variation in warfarin dose during the initiation phase of therapy compared
with CYP2C9*2. In the case of individuals carrying rs4086116 C>T variant allele, this resulted in 23.9%
and 37.9% reduction on warfarin dose compared to wild-type with p = 0.016, as shown in Table 4
and Figure 2.
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Figure 2. The distribution of warfarin dose by CYP2C9 genotypes during the initiation phase of
therapy for 212 Jordanian cardiovascular patients: X axis represents different CYP2C9 genotypes, Y axis
represents the proportion of patients across each genotype, Blue column represents a sensitive group
who required the lowest warfarin dose (<21 mg/week), Purple column represents the intermediate
group who required moderate warfarin dose ((21–49) mg/week), Yellow column represents a resistant
group who required the highest warfarin dose (>49 mg/week). (A) Distribution of warfarin dose by
rs1799853 variant. (B) Distribution of warfarin dose by rs1057910 variant. (C) Distribution of warfarin
dose by rs4086116 variant.

For the four studied VKORC1 SNPs, we observed a strong association of VKORC1 SNPs with
warfarin sensitivity (p < 0.001). For example, patients with the T allele for rs10871454 C>T showed
a high risk of warfarin sensitivity with 25.5% (CT) and 48.3% (TT) reduction of the required dose,
respectively. In this case, the drug target enzyme could be expressed in smaller amounts and, therefore,
low doses of the drug can obtain a therapeutic INR in an initial phase of therapy (Table 2). Furthermore,
VKORC1 genetic haplotype analysis showed a significant association between three VKORC1 genetic
haplotype blocks and sensitivity to warfarin with p < 0.0001 (Table 3). Moreover, Schelleman et al.
(2007) and Wadelius et al. (2005) reported that a correlation exists between VKORC1 SNP 1173 C> T
(rs9934438), and the variation in warfarin dose patients carrying the variant allele of this SNP is related
to a reduction in the required dose compared to the wild-type [5,35]. In alignment with these results,
we found that patients who carry one variant allele required an average dose of 39.47mg/week and
two variant allele carriers needed an average of 26.82 mg/week, while patients carrying the wild type
CC needed an average dose of 53.02 mg/week with p < 0.001 as shown in Figure 3. Limdi et al. (2007)
and Shrif et al. (2011) showed that VKORC1 rs8050894 (1542G>C) were associated with lower warfarin
doses in European Americans and Sudanese patients, respectively [36,37]. Accordingly, our results
found a significant association between lower required warfarin dose and this SNP at an initial phase
of therapy with p < 0.001 as shown in Figure 3.
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Figure 3. The distribution of warfarin dose by VKORC1 genotypes during the initiation phase of
therapy for 212 Jordanian cardiovascular patients: X axis represents different VKORC1 genotypes, Y axis
represents the proportion of patients across each genotype, Blue column represents a sensitive group
who required the lowest warfarin dose (<21 mg/week), Purple column represents the intermediate
group who required moderate warfarin dose ((21–49) mg/week), Yellow column represents a resistant
group who required the highest warfarin dose (>49 mg/week). (A) Distribution of warfarin dose by
rs10871454 variant. (B) Distribution of warfarin dose by rs9934438 variant. (C) Distribution of warfarin
dose by rs8050894 variant. (D) Distribution of warfarin dose by rs17708472 variant.

For the last VKORC1 SNP VKORC1*4 C<T (rs17708472), our study is similar to the study by Haug
et al. (2008), which reported that this SNP was associated with higher dose requirements [38]. Our
results showed that this variant was associated with significant differences in initial warfarin required
dose; patients who were homozygous for the variant allele (TT) genotype required an average dose
of 57.8 mg/week, heterozygous (CT) patients required an average dose of 41.63 mg/week, while
wild-type (CC) patients required an average dose of 33.65 with p < 0.001 (Table 4).

With regard to the correlation of CYP2C9 and VKORC1 SNPs and warfarin responsiveness, we
compared SNP genotypes with the warfarin responder groups (poor, good, and extensive responders).
Significant differences were found between VKORC1 rs17708472 (C>T) genotypes and the three
different responder groups (Table 5); 33.3% of the patients carrying the variant allele (TT) were
within the extensive responder group (meaning this variant allele was associated with increased
risk of over-anticoagulation), compared to 11.3% of the wild-type (CC) patients who were extensive
responders (p = 0.042). Accordingly, Kringen et al. (2011) have also shown that patients who carry this
SNP are associated with an increased risk of the existence of therapeutic INR (over-anticoagulation) [39].
Otherwise, VKORC1 rs10871454, rs8050894, and rs9934438 alleles show no significant differences
between SNP genotypes within the three responder groups in our population, with p = 0.171, 0.235,
and 0.226, respectively (Table 5). In contrast, VKORC1 CCGG genetic haplotype block showed a
significant association with warfarin responsiveness with p = 0.02 (Table 6).

Moreover, significant differences were observed between VKORC1 rs10871454, rs8050894, and
rs9934438 SNPs and INR value during the initiation phase of therapy (p = 0.006, 0.007, and 0.009,
respectively), while rs17708472 SNP showed no significant differences (p = 0.493). Therefore, in our
population the VKORC1 SNP genotypes are associated with the generation of a high or low INR during
the initiation phase of therapy (Table 4).
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Taube et al. (2000) reported that an individual carrying an allelic variant of CYP2C9 was not
associated with an increased incidence of severe over-coagulation during long-term treatment [40].
Correspondingly, our results show no significant differences between the CYP2C9*2 and *3 genotypes
within the three responder groups with p = 0.076 and 0.910, respectively (Table 5). Conversely, our
study reported significant differences between the proportion of CYP2C9 rs4086116 (C>T) genotype
and the three different responder groups; 50% of TT carriers were within the extensive responder
group compared with 10.6% of wild type CC carriers (p = 0.005), which means that TT carriers are
associated with increased risk of over-anticoagulation (Table 5). Moreover, significant association was
observed between CYP2C9 TAT genetic haplotype block and warfarin responsiveness with p = 0.018
(Table 6).

In addition, we did not observe significant differences in the three studied SNPs (CYP2C9*2, *3,
and CYP2C9 (C> T) rs4086116) and the INR value during the initiation phase of therapy. Therefore, in
our population CYP2C9 is not associated with the generation of a high or low INR as shown in Table 4.

Confirmation of our results and ongoing research including additional factors will be
accomplished in a larger patient cohort, including genetic factors such as OATP transporters (mediates
the uptake of warfarin into hepatocytes), CYP3A4, CYP1A1, and CYP1A2 enzymes (metabolizing of
R-warfarin), or GGCX encoded gamma-glutamyl carboxylase (the reduced vitamin K–form to activate
coagulation factors) [5,41]. Application for individualized warfarin treatment will be both beneficial
and efficient for cardiovascular patients in the future. Finally, the majority of the population included
in this study is elderly, with only 15% of the subjects under 40 years of age. Therefore, additional study
is needed in children and young adults.
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Abstract: The contribution of candidate genetic variants involved in azathioprine biotransformation
on azathioprine efficacy and pharmacokinetics in 111 young patients with inflammatory bowel
disease was evaluated. Azathioprine doses, metabolites thioguanine-nucleotides (TGN) and
methylmercaptopurine-nucleotides (MMPN) and clinical effects were assessed after at least 3 months
of therapy. Clinical efficacy was defined as disease activity score below 10. Candidate genetic
variants (TPMT rs1142345, rs1800460, rs1800462, GSTA1 rs3957357, GSTM1, and GSTT1 deletion)
were determined by polymerase chain reaction (PCR) assays and pyrosequencing. Statistical analysis
was performed using linear mixed effects models for the association between the candidate variants
and the pharmacological variables (azathioprine doses and metabolites). Azathioprine metabolites
were measured in 257 samples (median 2 per patient, inter-quartile range IQR 1-3). Clinical efficacy
at the first evaluation available resulted better in ulcerative colitis than in Crohn’s disease patients
(88.0% versus 52.5% responders, p = 0.0003, linear mixed effect model, LME). TGN concentration and
the ratio TGN/dose at the first evaluation were significantly higher in responder. TPMT rs1142345
variant (4.8% of patients) was associated with increased TGN (LME p = 0.0042), TGN/dose ratio (LME
p < 0.0001), decreased azathioprine dose (LME p = 0.0087), and MMPN (LME p = 0.0011). GSTM1
deletion (58.1% of patients) was associated with a 18.5% decrease in TGN/dose ratio (LME p = 0.041)
and 30% decrease in clinical efficacy (LME p = 0.0031). GSTA1 variant (12.8% of patients) showed a
trend (p = 0.046, LME) for an association with decreased clinical efficacy; however, no significant effect
on azathioprine pharmacokinetics could be detected. In conclusion, GSTs variants are associated
with azathioprine efficacy and pharmacokinetics.

Keywords: azathioprine; inflammatory bowel disease; glutathione-S transferase; pharmacogenetics;
pharmacokinetics
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1. Introduction

Inflammatory bowel disease (IBD) is a chronic, relapsing and remitting disease of the
gastrointestinal tract that comprises two main entities, Crohn’s disease (CD) and ulcerative colitis
(UC). The disease has a peak onset in subjects 15 to 30 years old, and its incidence is rising in the
pediatric population [1]. Despite the recent introduction in therapy of biologicals, thiopurines continue
to be widely used in this disease; indeed, these are cheap drugs, and maintain at least 20% of patients
in a state of stable long term steroid free clinical remission [2]. Among thiopurines, azathioprine
is mainly used as an immunosuppressant in IBD, and, although it has a well described risk benefit
profile, adverse drug reactions are relatively common, occurring in 15–18% of patients, and can be
severe enough to require the withdrawal of therapy [3,4] In addition, a significant proportion of
patients does not respond to therapy with this agent [5–7]. The reasons of this high heterogeneity in
clinical response is not clear yet [8]; however, variability in azathioprine metabolism can be important;
indeed, azathioprine is a prodrug that requires metabolic conversion to its active form. The first step
in this metabolic conversion is mediated by conjugation with glutathione, resulting in the formation
of mercaptopurine. This reaction is in part nonenzymatic but it is even controlled, as demonstrated
by recent publications, by the enzyme glutathione S-transferase (GST in particular by the isoforms A
and M [9]. The latter is also inactive and is converted by the enzymes of the purine salvage pathway
to the active thioguanine nucleotides, which are responsible of the cytotoxic and apoptotic effect of
these drugs [10]. Mercaptopurine is metabolized by the enzyme xanthine oxidase in the liver, and
by thiopurine methyltransferase (TPMT) and inosine triphosphatase (ITPA), mainly in extra hepatic
tissues [10]. Polymorphisms in genes involved in azathioprine metabolism can hence influence the
efficacy and toxicity of this drug [6].

In this study, we aimed to evaluate the contribution of candidate genetic variants involved in
azathioprine biotransformation on azathioprine efficacy and pharmacokinetics in young patients
with IBD.

2. Materials and Methods

2.1. Patient Characteristics

111 patients with IBD were enrolled by the Gastroenterology Unit of the Pediatric Hospital “Burlo
Garofolo” in Trieste, Italy between March 2004 and February 2015. The study was conducted in
accordance with the Declaration of Helsinki, and the protocol was approved by the Institutional
Ethics Committee (Projects RC 23/2005 and 12/2013). All subjects and parents gave their informed
consent for inclusion before they participated in the study. The inclusion criteria were age less than
30 years, previous diagnosis of IBD and treatment with azathioprine for at least 3 months. The patients
enrolled are all the patients taking azathioprine at “Burlo Garofolo” in Trieste in the time-frame of the
study. Blood samples for azathioprine metabolites measurement and for genotyping were taken at the
appropriate clinic visit. Timing of metabolite level measurement was determined by the clinical setting
of azathioprine administration at the hospital: generally, azathioprine metabolites levels were measured
after 3, 6, and 12 months of treatment and then every year. Patients were treated with a dose-escalating
strategy to reduce the risk of adverse events starting, however, from a relatively high dose (median of
2 mg/kg). At subsequent follow-up visits (every 3 months), the dose was increased or reduced so as to
obtain the optimal clinical response; the criteria used to increase or reduce the dose of azathioprine
were the level of disease activity and laboratory parameters used to monitor azathioprine toxicity
(in particular leukocyte, erythrocyte and platelet counts, hemoglobin concentration, mean corpuscular
volume, liver enzymes alanine aminotransferase, aspartate aminotransferase andγ-glutamyltransferase,
and amylase levels). According to current guidelines, genotyping information was shared with the
clinicians only for patients presenting TPMT variant alleles, in order to allow increased monitoring of
adverse events.
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Clinical response was assessed using Pediatric Crohn’s Disease Activity Index and Pediatric
Ulcerative Colitis Activity Index, respectively [11], for CD and UC patients at the time of blood sample
collection for the first metabolites’ measurement, which occurred at least 3 months since the beginning
of therapy. The disease was considered inactive if the disease activity index was <10 at the time of
sample collection.

2.2. Measurement of Azathioprine Metabolites

Metabolites (TGN and MMPN) were measured in patients’ erythrocytes using the high performance
liquid chromatography assay by Dervieux and Boulieu [12]. The ratio between TGN and the dose of
azathioprine was calculated considering, for each individual measurement of the metabolites, the dose
the patients took the day the blood sample was recorded.

2.3. Genotypes

Genomic DNA was extracted from peripheral blood samples using a commercial kit (Sigma, Milan,
Italy), to characterize genetic polymorphisms in the candidate genes TPMT (rs1142345, rs1800460 and
rs1800462), GSTA1 (rs3957357), GSTM1 (deletion), and GSTT1 (deletion). The considered genotypes
and method of analysis are described in Table 1. Genotypes for TPMT rs1800462 was determined
by polymerase chain reaction (PCR) with allele specific oligonucleotides (ASO). Primers used were,
for the wild-type allele, as forward P2W 5′-GTATGATTTTATGCAGGTTTG-3′ and as reverse P2C
5′-TAAATAGGAACCATCGGACAC-3′; primers. For the variant allele, a second tube was used
with P2M 5′-GTATGATTTTATGCAGGTTTC-3′ as forward primer and the above-mentioned P2C
5′-TAAATAGGAACCATCGGACAC-3′ as reverse. PCR protocol for these primers were: initial
denaturation 5 min at 94 ◦C, followed by 37 cycles with 30 s at 94 ◦C, 30 s at 57 ◦C, and 2 min at
72 ◦C, with a final extension for 10 min at 72 ◦C. PCR product was visualized on a 2% agarose gel.
In case of a patient carrying the wild type allele, the product (254 bp) was present with the P2W
and P2C primers; in case of patients carrying the variant allele, with the P2M and P2C primers for
TPMT rs1800460 and rs1142345, PCR- restriction fragment length polymorphism (RFLP) was used. For
rs1800460, primers used were: forward 5′-AGGCAGCTAGGGAAAAAGAAAGGTG-3′ and reverse
5′-CAAGCCTTATAGCCTTACACCCAGG-3′. PCR protocol for these primers was: initial denaturation 5
min at 94 ◦C, followed by 37 cycles with 30 s at 94 ◦C, 30 s at 55 ◦C, and 2 min at 72 ◦C, with a final extension
for 10 min at 72 ◦C. The DNA amplification produces an amplicon of 694 bp, which is subsequently
digested enzymatically with the enzyme Mwol (concentration of 1 U/10 μl) incubated for 90 min at 60
◦C. The enzyme recognizes the wild-type site and cuts the DNA strand into two fragments of 443 bp
and 251 bp, while it does not cut the variant fragment. A 2% agarose gel was prepared for visualization.
For rs1142345, primers used were forward 5′-AATCCCTGCTGTCATTCTTCATAGTATTT-3′ and reverse
5′-CACATCATAATCTCCTCTCC-3′. PCR protocol was the same as TPMT rs1800460. PCR produces a
401 bp amplicon, which is subsequently digested enzymatically with the Accl enzyme (concentration 1
U/10 μl) and incubated for 90 min at 37 ◦C. The enzyme recognizes the variant site and cuts the DNA
strand into two 252 pb and 149 pb fragments while the wild-type strand is not cut. A 2% agarose gel was
prepared for visualization. GSTM1 and GSTT1 genotypes were determined by MULTIPLEX-PCR-ASO
as previously described [13], in which three pairs of primers were used simultaneously: a specific
pair for the T isoform, one for the M isoform and one for the β-globin gene, which acts as an internal
positive control in order to verify the amplification. The three pairs of primers lead to three fragments
of different sizes: 480 bp (GSTT), 286 bp (β-globin), and 219 bp (GSTM). The primers used have
the following sequence: GSTM Forward: 5′-GAACTCCCTGAAAAGCTAAAGC-3′; GSTM Reverse:
5′-GTTGGGCTCAAATATACGGTGC-3′; β-GlobinForward: 5′-GAAGAGCCAAGGACAGGT-3′; β-Globin
Reverse: 5′-CAACTTCATCCACGTTCACC-3′; GSTT Forward: 5′-TTCCTTACTGGTCCTCACATCTC-3′;
GSTT Reverse: 5′-TCACCGGATCATGGCCAGCA-3′. PCR protocol for these primers were: initial
denaturation 5 min at 94 ◦C, followed by 37 cycles with 30 s at 94 ◦C, 30 s at 57 ◦C, and 2 min at 72 ◦C,
with a final extension for 7 min at 72 ◦C. All PCR reactions described were carried out using RedTaq
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polymerase (Sigma, Milan, Italy), with the addition of dNTPs 0,25 nM and with a primer concentration of
1 mM.

Table 1. Assay used for genotyping of the considered variants.

Gene
Polymorphism

rs Number Primary Locus Alleles [14] Genotyping Method

TPMT
rs1800462 C > G missense PCR-ASO [13]
rs1800460 C > T missense PCR-RFLP [13]
rs1142345 T > C missense PCR-RFLP [13]

GSTM1 No rs number Deletion MULTIPLEX-PCR-ASO [13]
GSTT1 No rs number Deletion MULTIPLEX-PCR-ASO [13]
GSTA1 rs3957357 A > G (5′-UTR) Pyrosequencing [15]

ASO: allele specific oligonucleotides; GST: glutathione-S-transferase, TPMT: thiopurine-S-methyl transferase; RFLP:
restriction fragment length polymorphism. PCR: polymerase chain reaction.

For GSTA1, pyrosequencing was employed (Table 1), since this genotyping method was
already validated in the laboratory. The primers used for the pyrosequencing were: forward
5′-ATCCAGTAGGTGGCCCCTTG-3′, reverse 5′-ACCGTCCTGGCTCGACAA-3′ (biotinylated).
Sequencing primer was: 5′-GCTTTTCCCTAACTTGAC-3′. PCR protocol for these primers were: initial
denaturation 10 min at 95 ◦C, followed by 40 cycles with 30 s at 95 ◦C, 30 s at 66 ◦C, and 30 s at 72 ◦C
and with a final extension for 10 min at 72 ◦C. PCR produces a 148 bp amplicon. For pyrosequencing,
we used PSQ96MA (Qiagen, Hilden, Germany). PCR amplifications were performed in an Eppendorf
Mastercycler gradient, with TaqGold DNA Polymerase (AB Applied Biosystems, Foster City, CA, USA).

2.4. Statistical Analysis

Statistical analysis was performed using the software R (version 2.15). The association between
pharmacological phenotypes of interest (i.e., clinical efficacy of treatment, dose of azathioprine, TGN
metabolites concentrations, MMPN metabolites concentrations, ratio TGN/dose) and the considered
demographic variables, IBD type, cotreatment or genotypes in a univariate analysis, was evaluated
using linear mixed effects model built using the phenotype as the dependent variable, each covariate
as the fixed effect and the patients as the random effect in the model. For clinical efficacy, the first
available measurement was used, while for other pharmacological variables, all available measurements
were used.

Multivariate analysis was carried out to test the independence of the effects of the genotypes
significant in the univariate analysis on the phenotypes considered (i.e., TGN or MMPN concentrations,
dose of azathioprine, ratio TGN/dose); for this multivariate analysis generalized linear models of the
Gaussian family were used considering individually each phenotype from the univariate analysis as
the dependent variable and the covariates significant in the univariate analysis as the independent
variables. Normality of the phenotype was tested by the Shapiro test and log10 transformation was
applied if needed, in order to adjust the normality of the distribution.

3. Results

3.1. Patients Enrolled and Samples Collected

111 patients were enrolled from March 2004 to February 2015; median age was 15.05 years (IQR
12.28–16-82), 52 (46.8%) were females. Clinical and demographic characteristics of the enrolled patients
are reported in Table 2.
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Table 2. Demographic and clinical characteristics of the patients enrolled in the study.

All Patients (n = 111)

Age (Years) at Time of Sample Collection 15.1, 12.3–16.8

Gender
Female (%) 52 (46.8%)
Male (%) 59 (53.2%)

Type of IBD Crohn’s disease (%) 61 (55.0%)
Ulcerative colitis (%) 50 (45.0%)

Length (days) of treatment with azathioprine 533, 245–917

For continuous variables, median, 1st–3rd quartiles values are reported. To report age and length of treatment
median and interquartile range are provided; for patients with more than one measurement of azathioprine
metabolites, median age and length of treatment were used.

Azathioprine metabolites were measured in 257 samples (median 2 per patient, IQR 1-3). Among
these, 89 were obtained during treatment with azathioprine alone and 161 during treatment with
azathioprine and other medications and in particular: 93 with an aminosalicylate, 18 with an
aminosalicylate and a glucocorticoid, 15 with infliximab, 10 with an antibiotic, 4 with an aminosalicylate
and an antibiotic, 4 with an antibiotic and a glucocorticoid, 3 with an aminosalicylate, an antibiotic
and a glucocorticoid, 2 with an infliximab and a glucocorticoid, and 1 with an aminosalicylate and
infliximab; for 7 patients, information about concomitant treatment could not be retrieved.

3.2. Measurement of Azathioprine Metabolites: Association with Demographic and Clinical Covariates

Results of measurements together with azathioprine dose are shown in Table 3.

Table 3. Summary of azathioprine’s dose and metabolites’ concentrations.

TGN
(pmol/8 × 10ˆ8
Erythrocytes)

MMPN
(pmol/8 × 10ˆ8
Erythrocytes)

Dose (mg/kg)
TGN/Dose

((pmol/8 × 10ˆ8
Erythrocytes)/(mg/kg))

Mean 361.6 1698.1 2.0 192.8
Median 345.0 1044.0 2.1 179.4

Interquartile range 240.1–465.1 431.2–2079.7 1.7–2.3 120.1–227.9

MMPN indicated methylated nucleotides, TGN indicates thioguanine nucleotides.

Concentration of TGN metabolites were associated with IBD type, with UC patients showing
slightly increased concentrations (Supplementary Figure S1, LME p = 0.047), but not with gender or
treatment length. Azathioprine dose was strongly associated with age, with younger patients taking
higher doses (Supplementary Figure S2, LME p = 0.0001), but not with gender, IBD type or treatment
length. Concentration of MMPN metabolites or the ratio between TGN concentration and azathioprine
dose were not associated with IBD type, gender, or treatment length. Interestingly, the ratio between
TGN concentration and azathioprine dose was strongly associated with azathioprine dose when the
analysis was limited to pediatric patients (i.e., with age less than 18, Supplementary Figure S3, LME
p = 0.0043). Clinical efficacy, defined as disease activity score below 10 at the time of first sample
collection for measurement of azathioprine metabolites, was assessed in all patients. Azathioprine
was more effective in UC than in CD patients (88.0% versus 52.5% responders, LME p = 0.0003), while
gender, age, and duration of azathioprine treatment were not associated with azathioprine efficacy.
A higher concentration of TGN metabolites at the first evaluation was observed in patients in remission
(Figure 1, LME p = 0.0099), similarly a positive correlation was observed with TGN/dose ratio (Figure 1,
LME p = 0.0023).
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n= 35 n= 76 n= 34 n= 72

Figure 1. Response to azathioprine (AZA) and thioguanine nucleotides (TGN) concentration, as
pmol/8 × 10ˆ8 erythrocytes (left panel) or ratio between TGN concentration/daily azathioprine dose as
pmol/8 × 10ˆ8 erythrocytes/mg/kg/day (right panel). p-values are from linear mixed effect model (LME).

On the contrary, azathioprine dose and the concentration of MMPN metabolites were not associated
with a clinical response (data not shown).

3.3. Genotyping

Results of genotyping are reported in Table 4.

Table 4. Genotype distribution in the 111 patients enrolled in the study.

Gene

Polymorphism Genotyping Result

rs Number Wild-Type Hetero-zygous
Homozygous

Variant
Not

Available
p-value Hardy

Weinberg

TPMT rs1800462 105 (100%) 0 0 6 NA
TPMT rs1800460 101 (97.1%) 3 (2.9%) 0 7 0.88
TPMT rs1142345 100 (95.2%) 5 (4.8%) 0 6 0.81
GSTA1 rs3957357 38 (44.2%) 37 (43.0%) 11 (12.8%) 25 0.77

Gene Polymorphism
Genotyping Result

Not Deleted Deleted Not Available

GSTM1 Deletion 42 (41.9%) 61 (58.1%) 8
GSTT1 Deletion 78 (75.7%) 25 (24.3%) 8

GST indicates glutathione-S-transferase, TPMT indicates thiopurine-S-methyl transferase.

All polymorphisms evaluated respected Hardy-Weinberg equilibrium and their distribution was in
accordance with literature data for subjects of Caucasian ethnicity. For the association between genetic
variants and azathioprine pharmacokinetics, TPMT rs1142345 variant (4.8% of patients) was associated
with increased TGN (LME p = 0.0042), TGN/dose ratio (LME p < 0.0001), decreased azathioprine dose
(LME p = 0.0087) and MMPN (LME p = 0.0011; Figure 2), as well established [2]. Interestingly, all
patients with variant TPMT were in remission at the first evaluation of thiopurine metabolites, in
comparison to 65% of patients with wild-type TPMT (LME p = 0.041, Figure 2).
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Figure 2. TPMT rs1142345 and azathioprine (AZA) dose, thioguanine (TGN) and methylmercaptopurine
(MMPN) metabolites and efficacy. Concentration of azathioprine metabolites is expressed as
pmol/8 × 10ˆ8 erythrocytes (U). p-values are from linear mixed effect model (LME).

GSTM1 deletion (58.1% of patients) was associated with a 18.5% decrease in TGN/dose ratio (LME
p = 0.041, Figure 3) and 30% decrease in clinical efficacy (LME p = 0.0031; Figure 3). Additionally,
MMPN was reduced in patients with deletion of GSTM1 (LME p = 0.039; Figure 3).

GS TM
n= 42 n= 61

GST M
n= 42 n= 61

G ST M
n= 42 n= 61

G STM
n= 42 n= 61

GS TM

Figure 3. GSTM1 deletion and azathioprine (AZA) dose, thioguanine (TGN), and methylmercaptopurine
(MMPN) metabolites and efficacy. Concentration of azathioprine metabolites is expressed as
pmol/8 × 10ˆ8 erythrocytes (U). p-values are from linear mixed effect model (LME).

GSTA1 variant (12.8% of patients) showed a trend for an association with decreased clinical
efficacy (LME p = 0.046, Figure 4); however, no significant effect on azathioprine pharmacokinetics
could be detected (Figure 4).

G STA
n= 75 n= 11

G STA
n= 75 n= 11

GS TA
n= 75 n= 11

GST A
n= 75 n= 11

GST A

Figure 4. GSTA1 rs3957357 variant and azathioprine (AZA) dose, thioguanine (TGN) and
methylmercaptopurine (MMPN) metabolites and efficacy. Concentration of azathioprine metabolites is
expressed as pmol/8 × 10ˆ8 erythrocytes (U). p-values are from linear mixed effect model (LME).
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GSTT1 deletion was not associated with azathioprine pharmacokinetics and efficacy (data not
shown). Multivariate analysis supported the results of the univariate analysis (Table 5).

Table 5. Multivariate analysis considering for each pharmacological dependent variable covariate
significant in the univariate analysis.

Azathioprine Related
Pharmacological Phenotype

(Dependent Variable)

Independent Variable in
Multivariate Generalized

Linear Model
Comparison Effect p-Value

Efficacy of azathioprine at the
first metabolite measurement

IBD type UC versus CD 1.96 0.0019
GSTM1 genotype Deletion versus Normal −1.49 0.019
GSTA1 genotype AA versus GG/GA −1.30 0.095
TPMT genotype AG versus GG 24.7 0.43

TGN metabolites
concentrations

IBD type UC versus CD 0.061 0.074
TPMT genotype AG versus GG 0.23 0.0049

MMPN metabolites
concentration

GSTM1 genotype Deletion versus Normal −0.21 0.014
TPMT genotype Heterozygous versus wild-type −0.72 0.0004

Azathioprine dose Age Each year −0.035 <0.0001
TPMT genotype Heterozygous versus wild-type −0.58 0.0056

Ratio TGN/dose TPMT genotype Heterozygous versus wild-type 0.41 0.0001
GSTM1 genotype Deletion versus Normal −0.072 0.055

GST: glutathione-S-transferase, IBD: inflammatory bowel disease, UC: ulcerative colitis, CD: Crohn’s disease,
MMPN: methylated nucleotides, TGN: thioguanine nucleotides, TPMT: thiopurine-S-methyl transferase. The effect
size represents the increase (positive value) or decrease (negative value) in the value of the dependent variable for
each independent variable listed. p-values are from linear mixed-effect models.

4. Discussion

Despite the introduction of new and effective biologics in the therapy of IBD, the thiopurine
drugs azathioprine and mercaptopurine continue to be frequently used for maintaining remission in
these diseases. The problem with these drugs is that they are ineffective in a significant percentage of
patients, and also induce side effects that can be severe [2]. The reasons for this variability are not clear;
however, a number of studies have suggested that variations in enzymes involved in their metabolism
can be involved.

For azathioprine, this agent is the prodrug of mercaptopurine, and has to be converted to produce
its pharmacological activity. This conversion can occur spontaneously, but is also catalyzed by the
enzymes GST, in particular the A and M isoforms [16]. In rat liver homogenates, Kaplowitz et al. have
demonstrated that, while at high pH (pH = 8.0) the nonenzymatic and enzymatic reactions occur at
similar levels, at pH closer to physiological values, the enzymatic reaction prevails [17]. In addition, in
homogenates of human livers obtained from transplant donors, treatment with furosemide, an inhibitor
of soluble GSTs [18], inhibited the conversion of azathioprine to mercaptopurine [19]. Additional
evidence of a role of GSTs in azathioprine metabolism has been obtained in animal models; indeed,
pretreatment of rats with the GST inhibitor probenecid increased the proportion of azathioprine in
rat liver and reduced GSH consumption. Similarly, less hepatic GSH depletion was observed after
azathioprine treatment in Gunn rats, a model of hyperbilirubinemic rat [17]. Of interest, bilirubin is
also a GST inhibitor, with some studies indicating a stronger inhibitory effect of bile acids on GSTM1 in
comparison to other isoforms [20].

We previously showed that the frequency of GSTM1 deletion was significantly lower in patients
that developed an adverse event in comparison to patients that tolerated azathioprine treatment, in
agreement with a model in which patients with GSTM1 deletion are less sensitive to the effects of
azathioprine, putatively because of the contribution of this enzyme on the conversion of azathioprine
to mercaptopurine [13]. Moreover, in a recent previous study [21], we evaluated the effects of GST
polymorphisms on azathioprine biotransformation in a cohort of young patients with IBD, tolerant
to azathioprine therapy and taking the drug for more than 3 months. Patients with the deletion of
GSTM1 tolerated a dose of azathioprine significantly higher in comparison to patients with normal
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GSTM1. Moreover, the amount of active TGNs generated in patients with the deletion of GSTM1
was significantly decreased in comparison to patients with a normal genotype. Multivariate analysis
confirmed that this effect was independent from that of other genes with a significant effect, such as
TPMT, the main gene known to influence mercaptopurine metabolism [22].

The present study is the first report of an association between azathioprine efficacy and GSTM1 and
GSTA1 variants in young patients with IBD. Moreover, we confirmed the reduced TGN/azathioprine
dose ratio in patients with GSTM1 deletion we previously reported, which may be associated with the
described lower efficacy of azathioprine in patients with this genotype. This could support the need
for genotype adjusted tailored therapy, possibly testing the efficacy of strategies leading to higher TGN
concentration in patients with GSTM1 deletion, such as increased azathioprine dose or co-treatment
with an aminosalycilate [23], even if prospective studies are needed to further support these strategies.

Therefore, all these studies support a role of GSTM1 on azathioprine efficacy, mediated by an
increased conversion of azathioprine to mercaptopurine. The reaction catalyzed by GSTM1 likely
occurs after oral administration mainly in the intestine and the liver, modulating the amount of
mercaptopurine and TGNs that are released in the main circulation [24].

Azathioprine dose is strongly associated with patients’ age in the present study, an observation
consistent with our previous results in children with IBD, showing that these patients require higher
doses of azathioprine to achieve similar therapeutic efficacy and TGN concentration [25]. TPMT activity
indeed is significantly higher in children than in adults [26]; interestingly, in pediatric patients (age less
than 18 years), we could observe a lower ratio of TGN/azathioprine dose, as in our previous report.
However, when the analysis was extended to young adults (age less than 30 years), the correlation
between age and the TGN/dose ratio was lost. This may be related to environmental factors, including
epigenetic determinants, even if more studies are needed to elucidate the mechanisms underlying
these observations [27].

Considering studies by other groups, our results are in agreement with a recently published
paper describing a lower efficacy of azathioprine in patients with GSTM1 deletion, even if the results
were not fully significant [28]. Moreover, in our study, we observed reduced concentration of MMPN
nucleotides during azathioprine treatment in patients with GSTM1 deletion: this result is consistent
with a recent study by Broekman et al. [29]; this study also supports a lack of effect of GSTA1 variants
on azathioprine TGN and MMPN concentrations. The clinical implications of these observations need
to be further explored. Additionally, age may affect the association of GSTs variants with thiopurine
effects; indeed, studies in adult patients could not identify a consistent effect of GSTM1 variants
on thiopurines induced adverse effects [30], and therefore, other studies in the pediatric population
are needed.

A recent study investigated the association among GST polymorphism, enzyme activity and
azathioprine-related adverse drug reactions in Chinese Han patients with IBD, finding that the patients
who became neutropenic had a significantly higher GSTs activity when compared with patients who
did not develop toxicity [31]. The authors found, in the univariate analysis, that GSTM1 wildtype
genotype had a relationship with leukopenia and flue like symptoms, while GSTP1 variant was strongly
associated with leukopenia. Following adjustment for other potential risk factors, it was shown that
GSTP1 variants only were associated with increased risks of leukopenia. In our current study, we
did not consider the effect of GSTP1 polymorphisms on azathioprine effects and metabolism, since
in our previous studies no significant association with adverse effect [13] or biotransformation [21]
could be detected. The lack of association may be due to the tissue distribution of GSTP1 and GSTT1,
which are not highly expressed in the liver, but even to the lack of specific activity of these enzymes
toward the catalysis of the reaction of azathioprine with glutathione [9,16]. Since the GSTP isoform
does not catalyze the biotransformation of azathioprine to mercaptopurine [16], other mechanisms
could be involved in the association observed by Liu and collaborators, such as induction of oxidative
stress or modulation of apoptosis [24]. The study by Liu et al. reporting an effect of GSTP1 variants
on azathioprine induced adverse events, with a milder effect of GSTM1, seems to underline that the
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effects of GSTs on azathioprine pharmacogenetics may be influenced by ethnicity. Indeed, it is already
known that variants frequent in Asian patients but uncommon in other ethnic groups, are associated
with increased sensitivity to thiopurines, such as MRP4 and NUDT15 [32,33].

One limitation of our study is its retrospective design and the consequent difficulty of properly
assessing phenomena such as drug interaction, which should rely on data collection from patients’
charts. Drug interactions between azathioprine and other agents employed in IBD have been described;
in particular, a significant decrease in TGN levels after discontinuation of aminosalicylates has been
previously reported [23]. Moreover, for GSTA1, a marginal effect on thiopurine efficacy was observed
but this was not supported by an effect on thiopurine pharmacokinetics: this may be related to
the limited number of patients homozygous for the GSTA1 variant enrolled. Another limitation is
the fact that the current assay for thiopurine metabolites quantifies two main species (thioguanine
nucleotides and methyl-mercaptopurine nucleotides), without distinguishing between monophosphate,
diphosphate, and triphosphate nucleotides. Innovative mass spectrometry based assays are now
available to quantify thiopurine metabolites [34], allowing quantification of phosphorylation of
thionucleotides [35] and they could be applied to evaluate differences in thiopurine biotransformation
in patients with various GST genotypes. Evaluation of the combined effects of genotypes in this
study is limited. Indeed, multivariate analysis indicates independency in the effects of the candidate
genotypes considered on the pharmacological variables in the present cohort. A larger cohort is needed
to detect significant effects by combined genotypes. For demographic covariates, in particular gender,
no significant effect was identified in the univariate analysis; to further evaluate interactive effect of
gender and the considered genotypes, a larger cohort is needed.

In conclusion, GSTs variants were associated with azathioprine efficacy and pharmacokinetics;
more studies, both clinical and molecular are still needed to apply this evidence to improve outcomes
of therapy with azathioprine in young patients with IBD.
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Abstract: Nucleoside analog, cytarabine (ara-C) is the mainstay of acute myeloid leukemia (AML)
chemotherapy. Cytarabine and other nucleoside analogs require activation to the triphosphate form
(ara-CTP). Intracellular ara-CTP levels demonstrate significant inter-patient variation and have been
related to therapeutic response in AML patients. Inter-patient variation in expression levels of drug
transporters or enzymes involved in the activation or inactivation of cytarabine and other analogs is
a prime mechanism contributing to development of drug resistance. Since microRNAs (miRNAs)
are known to regulate gene-expression, the aim of this study was to identify miRNAs involved
in regulation of messenger RNA expression levels of cytarabine pathway genes. We evaluated
miRNA and gene-expression levels of cytarabine metabolic pathway genes in 8 AML cell lines and
The Cancer Genome Atlas (TCGA) data base. Using correlation analysis and functional validation
experiments, our data demonstrates that miR-34a-5p and miR-24-3p regulate DCK, an enzyme
involved in activation of cytarabine and DCTD, an enzyme involved in metabolic inactivation of
cytarabine expression, respectively. Further our results from gel shift assays confirmed binding of
these mRNA-miRNA pairs. Our results show miRNA mediated regulation of gene expression levels
of nucleoside metabolic pathway genes can impact interindividual variation in expression levels
which in turn may influence treatment outcomes.

Keywords: nucleoside analogs; microRNAs; gene expression; drug resistance; AML

1. Introduction

Nucleoside analogs (NA) are a class of chemotherapeutic agents that structurally resemble
the endogenous purine or pyrimidine nucleosides. These therapeutic agents mimic the endogenous
nucleosides with respect to their uptake and metabolism and are incorporated into the newly synthesized
DNA leading to inhibition of DNA synthesis and chain termination. Some of the nucleoside analogs
also inhibit or block the enzymes that are required for the synthesis of purine or pyrimidine nucleotides
and RNA synthesis, leading to the activation of the caspase cascade and cell death. The nucleoside
analogs are extensively used for the treatment of both hematological malignancies and solid tumors.
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The pyrimidine nucleoside analog, cytarabine, is one of the most widely used chemotherapeutic drugs
for the treatment of acute myeloid leukemia (AML).

One of the major obstacles in the treatment of AML is development of resistance to nucleoside
analogs. There is a growing need to understand the mechanisms that lead to development of
resistance to these nucleoside analogs in order to help identify strategies that would effectively
treat patients with relapsing or refractory diseases. One of the primary mechanisms of resistance to
nucleoside analogs is insufficient intracellular concentration of the active triphosphate metabolite. This
insufficient triphosphate levels could be due to inefficient cellular uptake of the drug, reduced levels
of the activating enzyme, increased levels of inactivating enzymes and/or due to increased levels of
endogenous deoxynucleotide (dNTP) pools [1–4]. Resistance could also develop due to inability to
achieve sufficient alterations in the DNA strands or the dNTP pools, either due to altered interaction
with DNA polymerases or by a lack of inhibition of ribonucleotide reductases, or due to inadequate
p53 exonuclease activity. Since the expression and activity of drug transporters and metabolizing
enzymes in the activation pathway of nucleoside analogs plays an important role in development of
resistance to the NAs, it is essential to understand the factors influencing the expression and activity of
these proteins.

MicroRNAs (miRNAs) are a group of novel gene regulators, which have been recently recognized
to play an important role in cancers due to their tumor suppressive and oncogenic functions [5].
MiRNAs are known to regulate the expression of the target genes by binding to the specific sequence
mainly on the 3’ untranslated region on the genes. Role of miRNAs in regulating the expression
of various drug-metabolizing enzymes like cytochrome P450 3A4 (CYP3A4) etc., drug transporters
like BCRP and various drug targets [6–8] have been established. However, there have not been any
studies that have comprehensively evaluated the effect of miRNAs on the important genes involved
in the transport, activation and inactivation of nucleoside analogs. Hence, the aim of this study was
to assess the effect of miRNAs on the expression of nucleoside analog pharmacokinetic (PK) and
pharmacodynamic (PD) pathway genes and in turn assessing their potential impact on resistance to
nucleoside analogs.

2. Materials and Methods

2.1. Cell culture and Reagents

The AML cell lines HL-60, MV-4-11, Kasumi-1, THP-1, AML-193 and KG-1 cell lines were obtained
from American Type Culture Collection (ATCC) (Manassas, VA, USA), while MOLM-16 and ME-1
cell lines were obtained from DSMZ (Braunschweig, Germany). Kasumi-1, ME-1 and MOLM-16 cell
lines were cultured in Roswell Park Memorial Institute (RMPI)-1640 medium supplemented with 20%
fetal bovine serum (FBS), THP-1 cell line was cultured in RPMI-1640 medium supplemented with
10% FBS, HL-60 and KG-1 cell lines were cultured in IMDM medium supplemented with 20% FBS,
while AML-193 cell lines was cultured in IMDM medium supplemented with 5% FBS, 0.005 mg/mL
insulin, 0.005 mg/mL transferrin and 5 ng/mL granulocyte/macrophage colony stimulating factor
(GM-CSF). All the cell lines were maintained in a 37 ◦C humidified incubator with 5% CO2. The cells
were passaged every two to three days in order to maintain them in logarithmic growth phase.

2.2. RNA Isolation

Total RNA was isolated from the AML cell pellets using RNeasy Plus Mini Kit (Qiagen, Valencia,
CA, USA) according to the manufacturer’s protocol and stored in −80 ◦C until further analysis. The
RNA quality and concentration were measured using NanoDrop 2000 UV-Vis spectrophotometer
(Thermo Scientific, Wilmington, DE, USA). The ratio of absorbance at 260 nm and 280 nm was used to
assess RNA sample purity and A260/A280 ratio of 1.8–2.1 was considered to be indicative of highly
purified RNA. RNA was normalized to 0.2 μg/μL with nuclease-free water before being used for
performing reverse transcription reactions, as recommended by the manufacturer. The total RNA was
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reverse transcribed to complementary DNA (cDNA) using High Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, Foster City, CA, USA) according to manufacturer’s protocol.

2.3. Gene Expression Analysis

The expression of nucleoside analog genes was determined using the TaqMan® Low Density
Array (TLDA) cards (Applied Biosystems). Each TLDA card was custom designed with pre-loaded
gene expression assays for measuring the messenger RNA (mRNA) expression of selected nucleoside
analog metabolic pathway genes- (n = 14) deoxycytidine kinase (DCK), cytidine deaminase (CDA),
solute carrier family 29, member 1 (SLC29A1), solute carrier family 28, member 1 (SLC28A1), solute
carrier family 28, member 3 (SLC28A3), deoxycytidylate deaminase (DCTD), 5’-nucleotidase, cytosolic
II (NT5C2), 5’-nucleotidase cytosolic III (NT5C3), cytidine 5’-triphosphate synthase (CTPS), cytidine
monophosphate kinase (CMPK), nucleoside diphosphate kinase 1 (NME1), ribonucleotide reductase
M1 (RRM1), ribonucleotide reductase M2 (RRM2), ribonucleotide reductase M2B (RRM2B). Each TLDA
card consists of eight separate loading ports that fill into 48 separate wells, for a total of 384 wells per
card. Thus, each card could analyze the expression of 24 different genes for eight different samples in
duplicates. Each cDNA sample was added to equal volume of 2X TaqMan Universal PCR Master Mix
(Thermo Scientific) and 100 μL of the sample-specific PCR mix was added to the fill reservoir on the
TLDA card. The card was centrifuged twice for one minute at 1200 rpm to distribute the sample-specific
PCR reaction mix to the reaction wells. The card was sealed using the TaqMan Array Micro Fluidic
Card Sealer (Thermo Scientific) and placed on microfluidic card thermal cycling block of Applied
Biosystems 7900HT Fast Real-time PCR System (Applied Biosystems). Thermal cycling conditions
were as follows: 2 min at 50 ◦C, 10 min at 94.5 ◦C, 30 s at 97 ◦C, 1 min at 59.7 ◦C for 40 cycles. The
target mRNA expression levels were normalized to GAPDH and the expression values of nucleoside
analogs pathway genes were calculated using ΔΔCT method [9].

2.4. MicroRNA Expression Analysis

For determination of miRNA expression, total RNA was isolated using mirVana™miRNA Isolation
kit (Life Technologies, Carlsbad, CA, USA) as per the manufacturer’s protocol. The RNA quality and
concentration were measured using NanoDrop 2000 UV-Vis spectrophotometer (Thermo Scientific).
A total of 100 ng of purified total RNA was used for nCounter miRNA sample preparation reactions
according to manufacturer’s instructions and was assayed for determination of 800 human miRNA
expression using the nCounter Human v2 miRNA Expression Assay kit (Nanostring Technologies,
Seattle, WA, USA). Preparation of small RNA samples involved multiplexed ligation of specific tags
(miRtags) to the target miRNAs that provide unique identification for each miRNA species. After
ligation, the detection was done by hybridization to microRNA: tag specific nCounter capture and
barcoded reporter probes. Data collection was carried out using the nCounter Digital Analyzer
(Nanostring Technologies) at The University of Minnesota Genomics Center, following manufacturer’s
instructions to count individual fluorescent barcodes and quantify the target miRNA molecules present
in each sample. MiRNA expression data normalization was performed using the nSolver™ Analysis
Software (Nanostring Technologies) according to the manufacturer’s instructions. In particular, initially
the data was normalized using the expression of the top 100 code sets. Further, to account for the
background correction, mean of negative controls plus two-standard deviation (SD) method was
used. In order to avoid using the miRNAs with a very low expression, we further filtered out the
miRNAs with expression counts < 30 (2 times the mean ± 2 SD of negative control value), in order to
account for the background noise. Total 412 miRNAs with expression counts > 30 were included for
further analysis.

2.5. Acute Myeloid Leukemia Patient Sample Data from The Cancer Genome Atlas

The miRNA expression and mRNA expression of the nucleoside analog pathway genes in AML
patients was extracted from The Cancer Genome Atlas (TCGA) Data Portal (cancergenome.nih.gov) [10].
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Out of the 200 AML patients in TCGA database, 197 patients had gene expression profiling data
available and 187 patients had miRNA expression data available. 186 patients had both gene expression
and miRNA expression data available.

2.6. Electrophoretic Mobility Shift Assays

The functional validation for binding efficiencies between miRNAs and mRNAs was performed
using the electrophoretic mobility shift assays (EMSAs). The binding free energy between the respective
mRNA and miRNA pair was predicted using the RNAhybrid software. The miRNA oligonucleotides
were labeled with cy5™ dye on their 5’ ends. The 2’ O-methyl-modified mRNA oligonucleotides were
labeled with IRDye®800 (LI-COR Biosciences, Lincoln, NE, USA) dye on their 5’ ends. The labeled
oligonucleotides were synthesized by Integrated DNA Technologies (Coralville, IA, USA). RNA EMSA
experiment was performed using the LightShift Chemiluminescent RNA EMSA Kit (Thermo Scientific)
according to the manufacturer’s protocol. The mRNA oligonucleotide was heated for 10 min at 80 ◦C
and then placed on ice in order to relax the secondary structures. In each 20 μL binding reaction, 200 nM
miRNA oligonucleotide and/or mRNA oligonucleotide were mixed with RNA EMSA binding buffer
and incubated at 25 ◦C for 25 min. The reaction mixtures were separated on a 12% polyacrylamide
gel by electrophoresis at 4 ◦C. The binding reactions were transferred onto nylon membrane and the
resulting mobility shifts were imaged using and Odyssey CLx Infrared System (LI-COR Biosciences).

2.7. Bioinformatic Analysis

Prediction of miRNA binding sites was performed using multiple prediction programs, which
use different criteria for prediction of binding sites: TargetScan (www.targetscan.org), miRanda
(www.microRNA.org), PICTAR (pictar.mdc-berlin.de), miRWalk (www.umm.uni-heidelberg.de/apps/
zmf/mirwalk). Binding free energy calculations were performed using RNAhybrid software [11].
The 3’UTR (3’ untranslated region) sequence of mRNA was obtained from the UCSC Genome
browser (https://genome.ucsc.edu/) and miRNA sequence was obtained from miRBase software
(http://www.mirbase.org/).

2.8. Statistical Analysis

The nonparametric Spearman correlation was used to measure the correlation of mRNA expression
with miRNA expression. Statistical significance was determined when p-value was < 0.01.

3. Results

3.1. Effect of Micro RNA on the Expression of Nucleoside Analog Pathway Genes in Acute Myeloid Leukemia
Cell Lines

We determined expression of 800 miRNAs and 13 genes involved in PK/PD pathway of nucleoside
analogs (Figure 1) in cytogenetically different AML cell lines (n = 8). In order to identify the miRNAs
associated with the expression of nucleoside analog pathway genes, we correlated the miRNA
expression and mRNA expression using the spearman correlation analysis. Table 1 lists the negative
correlations of nucleoside analog pathway genes and respective miRNAs at p <0.01. We further
used CyTargetLinker software [12] to establish the network of miRNAs correlated with the respective
PK/PD pathway genes of the nucleoside analogs. Figure 2 shows the miRNA-mRNA pairs identified
by CyTargetLinker.

The expression of DCK (the rate-limiting enzyme in the nucleoside analog pathway) correlated
with the expression of miR-34a-5p expression (spearman r = −0.88; p-value < 0.01) and miR-96-5p
expression (spearman r = −0.91; p-value < 0.01). The expression of deactivating enzyme DCTD was
found to be correlated with miR-24-3p expression (spearman r = −0.93; p-value < 0.01). Interestingly,
in our previous study, we identified that expression of miRNA miR-24-3p was correlated with
cytarabine-induced cell cytotoxicity (spearman r = −0.81, p-value < 0.05) [13] which is in agreement
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with the current observation. The expression of CMPK, a kinase responsible for phosphorylation
of the monophosphate form of nucleoside analog was negatively correlated with the expression
of miR-1301, miR-1323, miR-320e, miR-381, miR-507, miR-584-5p, miR-605, miR-762, miR-769-3p,
miR-891a (all p-values < 0.01). RRM2 expression was found to be negatively associated with the
expression of miR-151a-3p (p-value < 0.01). Figure 3 shows correlation plots between DCTD-miR-24,
DCK-miR34 and NT5C3-miR149 pairs.

Figure 1. Disposition pathway of nucleoside analogs, cytarabine and clofarabine. DCTD:
Deoxycytidylate deaminase, DCK: Deoxycytidine kinase, CDA: Cytidine deaminase, NT5C2/3:
5’-Nucleotidase, cytoplasmic, CTPS: CTP synthase, RRM1/2: Ribonucleotide reductase, SLC29A:
Solute carrier family 29, SLC28A: Solute carrier family 28, MPK: Monophosphate kinase, NDK:
Nucleoside diphosphate kinase

Figure 2. MicroRNA-mRNA network constructed using CyTargetLinker [12]. MiRNAs associated with
the nucleoside analog metabolic pathway genes are shown in yellow and the mRNAs are depicted in
red. Blue lines indicated positive and red indicated negative associations.
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Figure 3. Correlation of miRNAs with nucleoside analog pathway gene expression in acute myeloid
leukemia (AML) cell lines and patient samples from The Cancer Genome Atlas (TCGA) database.
(A) Correlation between DCTD and hsa-miR-24a-3p. (B) Correlation between DCK and hsa-miR-34a-5p.
(C) Correlation between NT5C3 and hsa-miR-149.

3.2. Bioinformatic Prediction of Binding of Micro RNAs and Messenger RNAs

MiRNAs are known to guide the RNA-induced silencing complex (RISC) to the specific sequence
(usually in located in the 3’UTR) on the target mRNA. Using various bioinformatic prediction programs
(TargetScan, miRanda, PICTAR, miRWalk) we determined if the miRNAs that were correlated with
gene expression had binding sites on 3’-UTR of target genes. MiRNAs miR-1323, miR-30d-5p, miR-381,
and miR-605 were predicted to have binding sites on CMPK gene, while miRNA miR-24-3p was
found to have binding site on DCTD by multiple prediction programs. Supplementary Figure S1
shows comparisons of different miRNA prediction programs for genes involved in nucleoside
analog pathways.

3.3. Effect of Micro RNAs on the Expression of Nucleoside Analog Pathway Genes in Acute Myeloid
Leukemia Patients

In order to validate the significant correlations between miRNAs and mRNAs identified in
AML cell lines, we evaluated the correlation between miRNA expression and nucleoside analog
pathway gene expression in AML patient samples from TCGA database (n = 186). We extracted
the miRNA expression data and nucleoside analog pathway gene expression data for AML patients
from TCGA database and performed spearman correlation to identify the significant mRNA-miRNA
pairs. Consistent with results from AML cell lines miR-24-3p was inversely correlated with the
expression of both the probes for DCTD in AML patient samples (r = −0.22; p-value < 0.01 and r = −0.21;
p-value < 0.01, Figure 3A). DCK-mir-34a pair unfortunately did not show significant association within
the TCGA data-set. miR-149 was significantly correlated with expression of NT5C3 in AML patients
(r = −0.25; p-value < 0.01, Figure 3C).
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Validation of Binding Efficiencies between Messenger RNAs and Micro RNAs

MiRNAs are known to bind to the specific seed sequence on the 3’UTR of the mRNAs, thereby
regulating the expression of their target genes. In order to validate the binding between the
mRNA-miRNAs identified from the in vitro studies and in AML patient samples, we performed RNA
EMSA assays. We validated the interaction between DCTD and miR-24, since we identified this
mRNA-miRNA pair to be significantly inversely correlated in both AML cell line and AML patient
samples. In addition, various prediction databases predicted miRNA miR-24 to have binding site on the
3’UTR of DCTD mRNA. In silico analysis predicted miR-24-3p and miR-34a-5p might form complexes
with target sequences in the 3’UTR of DCTD and DCK respectively with minimum free energies of
binding of −27.2 kcal/mol for DCTD and miR-24-3p (Figure 4A and Table 1) and -25.6 kcal/mol for
DCK and miR-34a-5p (Figure 5A and Table 1). The RNA EMSA results for IRD-800®-labeled DCTD
and Cy-5-labeled miR-24-3p show miR-24a-3p was able to bind to its target sequence on DCTD 3’UTR
(Figure 4B, lane 3) as seen by the band shift. The thermodynamic stability of this complex correlated
with binding observed in the RNA EMSA assays. In addition, we found that mRNA-miRNA complex
formed by DCTD and miR-24a-3p could be eliminated by adding excess unlabeled hsa-miR-24a-3p
probe (Figure 4B, lane 4), but not by adding excess unlabeled non-specific probe (Figure 4B, lane 6).
Adding excess unlabeled mRNA probe resulted in binding of all the labeled miRNA giving a greater
intensity signal (Figure 4B, lane 5).

Similar to the interaction observed between DCTD and miR-24a-3p, we observed that miR-34a-5p
binds to DCK 3’UTR as seen by shift in the band (Figure 5B, lane 3) and this interaction was eliminated
by addition of unlabeled probe (Figure 5B, lane 4). Since the minimum free energy of binding for
NT5C3- miR-149 pair was not strong (Table 1), we did not pursue EMSA assays for this pair.

Figure 4. Validation of binding interaction between DCTD mRNA and has-miR-24-3p by RNA
electrophoretic mobility shift assays (EMSAs). RNA EMSA with cy5-labeled has-miR-24-3p
oligonucleotide and 2’-O-methyl modified and IRD-800 labeled DCTC mRNA oligonucleotide. Lanes 1
and 2 show the mobility of the labeled mRNA or miRNA oligonucleotide. Lane 3 shows the mobility of
the labeled has-miR-24-3p oligonucleotide with DCTD mRNA oligonucleotide. Lanes 4 and 6 show the
mobility of labeled DCTD mRNA oligonucleotide in presence of unlabeled excess specific competitor
(has-miR-24-3p) ad excess unlabeled non-specific competitor (NC).
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Figure 5. Validation of binding interactions between DCK and mRNA and has-miR-34a-5p by RNA
EMSAs. RNA EMSA with cys5-labeled has-miR-34a-5p oligonucleotide and 2’-O-methyl modified and
IRD-800 labeled DCK mRNA oligonucleotide. Lanes 1 and 2 show the mobility of the labeled mRNA or
miRNA oligonucleotide. Lane 3 shows the mobility of the labeled has-miR-34a-5p oligonucleotide with
DCK mRNA oligonucleotide. Lanes 4 and 6 show the mobility of labeled DCK mRNA oligonucleotide
in presence of unlabeled excess specific competitor (has-miR-34a-5p) and excess unlabeled non-specific
competitor (NC).

Table 1. MiRNAs with significant negative association (as reflected by r value) with nucleoside analog
pathway genes in AML Cell lines.

Pathway
Genes

MiRNAs Spearman r p Value
Minimum Free Energy (mfe)

mRNA-miRNA Pair (kcal/mol)

DCTD hsa-miR-24-3p −0.9341 0.0011 −27.2
DCK hsa-miR-96-5p −0.9048 0.0046 −25.6
DCK hsa-miR-34a-5p −0.881 0.0072 −24.3

NT5C3 hsa-miR-149-5p −0.881 0.0072 −21.4
RRM2 hsa-miR-151a-3p −0.9524 0.0011 −26.4

RRM2B hsa-miR-194-5p −0.881 0.0072 −21.6
CMPK hsa-miR-1301 −0.9762 0.0004 −23.6
CMPK hsa-miR-320e −0.9524 0.0011 −20.1
CMPK hsa-miR-1323 −0.9286 0.0022 −22.3
CMPK hsa-miR-584-5p −0.9286 0.0022 −23.7
CMPK hsa-miR-381 −0.881 0.0072 −25.8
CMPK hsa-miR-507 −0.881 0.0072 −19.1
CMPK hsa-miR-605 −0.881 0.0072 −23.1
CMPK hsa-miR-762 −0.881 0.0072 −29.2
CMPK hsa-miR-769-3p −0.881 0.0072 −27.6
CMPK hsa-miR-891a −0.881 0.0072 −22.9
NME1 hsa-miR-514b-5p −0.9286 0.0022 −22
NME1 hsa-miR-542-3p −0.9286 0.0022 −19.3
NME1 hsa-miR-570-3p −0.9048 0.0046 −22.2
NME1 hsa-miR-646 −0.9048 0.0046 −25.9
NME1 hsa-miR-224-5p −0.881 0.0072 −17.9
NME1 hsa-miR-761 −0.881 0.0072 −24.3
NME1 hsa-miR-767-5p −0.881 0.0072 −28.8

SLC28A1 hsa-miR-548aa −0.9643 0.0028 −16.3
SLC28A3 hsa-miR-448 −0.9643 0.0028 −23.8

92



Genes 2019, 10, 319

We further evaluated the association of the in vitro chemosensitivity of ara-C (defined previously
Bhise et al, 2015 [13] with the three top miRNAs in the AML cell lines. As shown in Supplementary
Figure S2. consistent with our results of miR-24-DCTD pair, we observed cell lines that were sensitive
to ara-C has significantly higher levels of miR-24 as compared to cell lines that are resistant to ara-C
(p = 0.03). These results suggest that high miR-24 in ara-C sensitive cell lines might be resulting in
lowering DCTD levels and given that DCTD is involved in inactivation of ara-C, its low levels will
result in better response.

4. Discussion

Nucleoside analogs are synthetic analogs of endogenous nucleosides that largely used for the
treatment of hematological malignancies and solid tumors. Cytarabine, a pyrimidine nucleoside analog
is the backbone of AML chemotherapy, while clofarabine is a second-generation purine nucleoside
analog that is currently being investigated for treatment of AML in various clinical trials. Both
cytarabine and clofarabine require active transport into the cell by nucleoside transporters, followed by
activation by various kinases to form active di- and tri-phosphate metabolites that are incorporated in
growing DNA strand and/or inhibit various enzymes involved in synthesis of endogenous nucleotides
(Figure 1). However, despite being the backbone of treatment regimen used in AML patients, there is
variability in response to cytarabine and other nucleoside analogs. In our previous study, we have
demonstrated that miRNA expression is predictive of response to cytarabine therapy in AML patients
and is also significantly associated with in vitro chemosensitivity of cytarabine in AML cell lines [13].
Recent studies are expanding on therapeutic relevance of miRNAs in AML. Recent review article
by Wallace et al, 2017, have summarized the miRNAs that are deregulated in AML and thus hold
potential as AML biomarkers. Further, mimics for miR-22, miR29b and miR-181 and antagomiRs
for miR-21/miR-196b and miR-126 are currently under investigation for their therapeutic potential in
AML [14]. However, given that cytarabine a nucleoside analog is the mainstay of AML chemotherapy
for decades, in the current study, we wanted to determine if miRNA mediated regulation of expression
of the transporters, activating and inactivating genes involved in the metabolic pathway of nucleoside
analogs, could contribute to development of resistance to nucleoside analogs in AML patients. We
hypothesized that miRNAs could bind to the 3’UTR of the mRNAs of nucleoside analog metabolic
pathway genes, thereby altering their expression, which in turn would result in lower intracellular
levels of active nucleoside analog triphosphate, resulting in chemo-resistance.

In our current study, DCK expression was negatively correlated with the expression of
hsa-miR-34a-5p and hsa-miR-96-5p in AML cell lines (p-value < 0.01). DCK is a rate-limiting
enzyme that is involved in activation of cytarabine and clofarabine. Studies have reported that
decreased or complete loss of DCK activity results in cellular resistance to cytarabine [15–17]. Also,
DCK mRNA expression has been shown to be positively associated with AML patient outcome, AML
patients with higher DCK mRNA expression demonstrated longer event-free survival than those
with lower DCK mRNA expression [18]. Using EMSA, we were able to show that hsa-miR-34a-5p by
binding to the 3’-UTR regulates expression of DCK. MiRNA hsa-miR-34a has been extensively studied
in various cancers [19–23] and it has been shown to play an important role as a tumor suppressor
by targeting various genes. However, the effect of miR-34a on DCK expression has not yet been
studied. Identification of this additional regulatory mechanism for an important enzyme in the
activation of nucleoside analogs could help in better prediction of chemosensitivity of these drugs.
Unfortunately, we did not observe any significant correlation between DCK mRNA and miR-34a levels
in TCGA dataset.

We also identified hsa-miR-24-3p to be negatively correlated with the expression of DCTD in
both AML cell lines and in AML patient samples (p-value < 0.01). In addition, multiple bioinformatic
prediction programs identified a binding site for hsa-miR-24-3p on the 3’UTR of DCTD. Our
RNA EMSA results confirmed the binding interaction between DCTD and miR-24-3p. DCTD is
an enzyme involved in deamination of the monophosphate form of the nucleoside analog, thus
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inactivating the drug. The levels of DCTD could thus affect the levels of the intracellular active
triphosphate metabolites of nucleoside analogs. However, the role of DCTD in chemosensitivity of
nucleoside analogs is poorly defined. Various studies have demonstrated a significant role of DCTD in
metabolism of the monophosphate metabolite of the nucleoside analogs in human leukemia cells [24–26].
Sequencing of this gene identified a nonsynonymous SNP affecting the activity of DCTD in vitro [27].
Hence, the limited data on the regulation of DCTD gene warrants the need to evaluate additional
mechanism regulating gene-expression. MiRNA miR-24 is has also been extensively studied in various
cancers [28–34] and has been shown to enhance metastasis and invasion. Increased expression of
miR-24 has been associated with increased risk of relapse and poor survival in acute lymphoblastic
leukemia (ALL) [32]. In addition to miR-24 and hsa-miR-34a-5p, we also identified multiple other
miRNAs that correlated with multiple genes in the PK/PD pathway (Table 1). We acknowledge
the limitation of use of different platforms of miRNA and mRNA quantification between cell lines
and the TCGA data-set which warrant the need for future prospective study to validate our results.
Additionally, given that gel-shift assays do not consider interactions with argonaute which can impact
thermodynamics of target recognition future in-depth mechanistic validation considering these factors
are needed to establish miRNA-mRNA regulatory pairs of significant therapeutic implications in AML.

In summary, we identified several miRNAs, which were significantly associated with the expression
of nucleoside analog pathway genes. Identification of these additional mechanisms of regulation
would help provide a better understanding of the variability in the expression of these enzymes and
transporters and in turn, help in better prediction of therapeutic response in AML patients. While
additional functional studies are required to gain mechanistic understanding of these miRNA-mRNA
interactions and its effect on the protein levels and activity, this study helps identify candidate miRNAs
for further studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/4/319/s1,
Figure S1: Comparison of microRNA prediction programs for predicting binding sites on nucleoside analog
pathway genes. Figure S2: A) Eight AML cell lines were treated with varying concentration of ara-C for 48 hrs
followed by measuring cell viability using MTT assays using as described previously (Bhise et al, 2015). Area
under the survival was calculated using Graphpad Prism and cell lines were classified as sensitive or resistant to
ara-C. B) miR24-3p levels were observed to be higher in cell lines sensitive to ara-C as compared to ara-C resistant
cell lines.
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Abstract: DPYD genotyping prior to fluoropyrimidine treatment is increasingly implemented in
clinical care. Without phasing information (i.e., allelic location of variants), current genotype-based
dosing guidelines cannot be applied to patients carrying multiple DPYD variants. The primary
aim of this study is to examine diagnostic and therapeutic strategies for fluoropyrimidine
treatment of patients carrying multiple DPYD variants. A case series of patients carrying multiple
DPYD variants is presented. Different genotyping techniques were used to determine phasing
information. Phenotyping was performed by dihydropyrimidine dehydrogenase (DPD) enzyme
activity measurements. Publicly available databases were queried to explore the frequency and
phasing of variants of patients carrying multiple DPYD variants. Four out of seven patients carrying
multiple DPYD variants received a full dose of fluoropyrimidines and experienced severe toxicity.
Phasing information could be retrieved for four patients. In three patients, variants were located
on two different alleles, i.e., in trans. Recommended dose reductions based on the phased genotype
differed from the phenotype-derived dose reductions in three out of four cases. Data from publicly
available databases show that the frequency of patients carrying multiple DPYD variants is low
(< 0.2%), but higher than the frequency of the commonly tested DPYD*13 variant (0.1%). Patients
carrying multiple DPYD variants are at high risk of developing severe toxicity. Additional analyses
are required to determine the correct dose of fluoropyrimidine treatment. In patients carrying
multiple DPYD variants, we recommend that a DPD phenotyping assay be carried out to determine a
safe starting dose.

Keywords: pharmacogenomics; pharmacogenetics; genotype; phenotype; alleles; precision medicine

1. Introduction

Fluoropyrimidines (including 5-fluorouracil (5-FU) and capecitabine) are the cornerstone of
treatment for various types of cancer and are used by millions of patients worldwide each year [1–3].
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However, up to one-third of treated patients experience severe toxicity (Common Terminology Criteria
for Adverse Events (CTC-AE) grade ≥ 3), such as diarrhea, hand–foot syndrome, or mucositis upon
treatment with fluoropyrimidines [4,5]. These adverse events can lead to mortality in approximately 1%
of patients who experience severe toxicity [4,6]. Dihydropyrimidine dehydrogenase (DPD) is the key
enzyme in the metabolism of 5-FU and its decreased activity is strongly associated with toxicity [7,8].
Variants in DPYD, the gene encoding DPD, can lead to decreased DPD enzyme activity [9–12].
Prospective DPYD genotyping of four main DPYD variants followed by dose reductions in patients
carrying any of these four DPYD variants is safe, cost-effective, and feasible in clinical practice [13–15].
These DPYD variants are DPYD*2A (rs3918290, c.1905+1G>A, IVS14+1G>A); DPYD*13 (rs55886062,
c.1679T>G, I560S); c.1236G>A/HapB3 (rs56038477, E412E); and c.2846A>T (rs67376798, D949V).
For these four variants, convincing evidence has been provided warranting implementation in clinical
practice [4,5,12,15–17].

An increasing number of hospitals apply prospective DPYD genotyping when treating patients
with fluoropyrimidines [18]. Individual dosing guidelines for the abovementioned four DPYD
variants are provided by the Dutch Pharmacogenetics Working Group (DPWG) and the Clinical
Pharmacogenetics Implementation Consortium (CPIC) [19,20]. Dosing guidelines are based on the
expected remaining DPD enzyme activity and can be applied to patients who are heterozygous
carriers of a single DPYD variant. For homozygous DPYD variant allele carriers (two identical
variants) and compound heterozygous DPYD variant allele carriers (two or more different variants),
dosing guidelines are not yet available (or treatment with an alternative drug is advised), although safe
treatment with low-dose fluoropyrimidines in these homozygous DPYD patients was demonstrated
by a recent case series [21].

Patients who carry multiple variants (compound heterozygous) can carry the variants on a
single allele (in cis) or on different alleles (in trans). In the first case, one functionally active allele
remains, whereas in the latter case, both alleles are affected, which may result in a proportionally
decreased enzyme activity (Figure 1). With currently used genotyping techniques, the allelic location
of variants (phasing) cannot be determined. This uncertainty hampers adequate interpretation of
the pharmacogenetic test result in compound heterozygous patients and makes it impossible to give
an appropriate dose recommendation based on the genotype alone. Since it is likely that in the
future, even more DPYD variants will be tested, the probability of finding compound heterozygous
DPYD variant allele carriers will increase. The aims of this study are to examine diagnostic and
therapeutic strategies for fluoropyrimidine treatment of patients carrying multiple DPYD variants
and the frequency and phasing of variants of compound heterozygous DPYD patients in publicly
available databases.
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Figure 1. Illustration of zygosity and clinical interpretations. Black stars represent variants; boxes
represent alleles. A wild-type patient carries no variants, resulting in normal-activity alleles (green).
A heterozygous patient carries one variant, resulting in one reduced or inactive allele (red) and one
active allele (green). A partly reduced enzyme activity is expected, since there is still one active allele
left. For homozygous patients, both variants result in a reduced or inactive allele (red). Depending on
the effect of the variants on the protein, a reduced or absent enzyme activity is expected. Compound
heterozygous patients can carry variants on different alleles (in trans) or on one allele (in cis), resulting
in differences in enzyme function, either like that of a heterozygous patient or a homozygous patient.

2. Materials and Methods

In this study, we present seven compounds heterozygous DPYD variant allele carriers as clinical
cases. In addition, we have performed in silico research in publicly available databases.

2.1. Patients

Data and DNA from patient cases carrying multiple DPYD variants were collected. Patients
were identified either after development of severe toxicity from fluoropyrimidine-containing therapy,
by additional retrospective genotyping in a clinical trial (clinicaltrials.gov identifier NCT00838370, [13]),
or prior to treatment in routine clinical care. The study was reviewed and approved by the institutional
review board of the Leiden University Medical Centre (LUMC, G18.015). Patient data from the
electronic medical records was handled following the codes of proper use and proper conduct in the
self-regulatory codes of conduct [22]. Toxicity to fluoropyrimidine-containing therapy was graded
by the treating physicians using the National Cancer Institute CTC-AE version 4.03 [23], and severe
fluoropyrimidine-induced toxicity was defined as CTC-AE grade ≥ 3. In some cases, additional patient
material to determine the phasing of the DPYD variants was collected. In these cases, additional
patient consent was obtained.

2.2. Dihydropyrimidine Dehydrogenase Enzyme Activity Measurements

For all patients, DPD enzyme activity was determined. This could be either prior to treatment
or retrospectively after the occurrence of severe toxicity. DPD enzyme activity measurement in
peripheral blood mononuclear cells (PBMCs) [24,25] was used as a reference to assess DPD activity,
and has been used previously to determine dosages in DPYD variant-carrying patients [21,26].
A validated method [27] was used, containing radiolabeled thymine as a substrate and consisting
of high-performance liquid chromatography (HPLC) with online radioisotope detection using
liquid scintillation counting. Normal values for healthy volunteers are 9.9 ± 2.8 nmol/(mg×h),
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for DPD-deficient patients are 4.8 ± 1.7 nmol/(mg×h), and reference values range from 5.9 to
14 nmol/(mg×h) [28]. Dose reductions based on DPD enzyme activity were performed in a one-to-one
ratio, as was previously described by Henricks et al. [21]. Thereafter, toxicity-guided dosing was used.

2.3. Molecular Methods for Estimation of Phasing

In regard to the size of the DPYD gene, the location of the variants, and the material available
(DNA, RNA) from the patients, three molecular methods to determine the phasing of the variants could
be used in this study. In four patients, we could execute one or more of these methods. These methods
are explained and illustrated in the supplementary material (Figure S1). Details on these techniques
have been published elsewhere [29–31].

2.4. Frequencies of Compound Heterozygous DPYD Carriers

To investigate the incidence of compound heterozygous DPYD variant allele carriers (of the four
genotyped DPYD variants), large databases were queried [32,33]. The incidence was calculated
using minor allele frequencies (MAFs) of each variant identified in the databases separately.
Since the determined variants are not in the same haplotype, it was assumed that the inheritance
of these individual DPYD variants is independent. All genotypes from the databases were
calculated to be in Hardy–Weinberg equilibrium, except for DPYD*2A and c.1236G>A for the Exome
Aggregation Consortium (ExAC, http://exac.broadinstitute.org/) [32] and Genome Aggregation
Database (gnomAD, http://gnomad.broadinstitute.org/) [33] due to a slight overrepresentation of
homozygous cases. The calculated frequencies were compared to frequencies from databases in which
phasing could be determined.

Exome Aggregation Consortium and Genome Aggregation Database

Both the ExAC [32] and gnomAD [33] databases collect exome sequencing data and aggregate the
data for public use. The ExAC dataset (v0.3.1) contains sequenced data of 60,706 unrelated individuals.
The gnomAD dataset (v2.0) contains sequenced data of 123,136 exomes and 15,496 genomes from
unrelated individuals. In ExAC, 2791 DPYD variants, and in gnomAD, 2190 DPYD variants were
found. MAFs of DPYD variants from these databases reflect those of the population due to the large
group size in the databases. Since both ExAC and gnomAD do not contain individual matched or
phased data, it is not possible to search for compound heterozygous patients in these databases.

2.5. Phasing in Compound Heterozygous DPYD Carriers

Three databases were used to identify compound heterozygous DPYD variant allele carriers and
determine the phasing, i.e., allelic location, of variants.

2.5.1. Genome of the Netherlands Datasets

The Genome of the Netherlands (GoNL, http://www.nlgenome.nl/) trio datasets contain
information of related fathers, mothers, and children, and phasing information is therefore available.
Datasets were previously processed and phased using trio-aware variant calling [34]. After the
exclusion of children, phased variant call format (VCF) files for 496 subjects (fathers and mothers) were
obtained from the GoNL repository. The toolset Bedtools (https://bedtools.readthedocs.io/en/latest/,
v2) was used to extract all variants found in the DPYD locus (chr1:97,543,300–98,386,615). Next, for all
individuals, the carrier status of DPYD*2A, DPYD*13, c.1236G>A, and c.2846A>T was examined.
Individuals who carry at least one of the four actionable DPYD variants were identified, and using a
custom Python [35] script, the phasing of variants was assessed for individuals with multiple variants.
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2.5.2. 1000 Genomes Database

The 1000 Genomes Project (http://www.internationalgenome.org/) is the largest publicly
available catalogue of human variation and genotyped phased data. It originally ran from 2008
until 2015, and thereafter it was maintained and expanded by the International Genome Sample
Resource (IGSR) [36]. On 27 October 2016, phased data of the DPYD gene (chr1: 97,543,300–98,386,615)
was downloaded from the 1000 Genomes ftp server (phase 3; GRCh37; chr1: 97,543,300–98,386,615)
using Tabix (v1.1) [37]. The statistical program R (v3.2.5) [38] was used to select the genotypes at four
DPYD risk alleles in unrelated individuals of Caucasian descent.

2.5.3. Exome Trios Leiden University Medical Centre Database

This diagnostic database of the clinical genetics department of LUMC contains 433 complete
exome trios (father, mother, and child). The exome was enriched by the Agilent sureselect v5 kit and
sequenced using various Illumina (San Diego, CA, USA) sequencers (Hiseq 2000, 2500, 4000, Nextseq).
Carrier status of the abovementioned DPYD variants was established by querying the trio VCF files.
We also investigated all samples with sufficient coverage of this region to obtain a reliable frequency
estimate. In the case of trios, only parents were taken into account.

3. Results

3.1. Patient Cases and Clinical Implications

Details of the demographics and clinical characteristics of the seven cases are described in the
supplementary material (patient cases). All patients received treatment with fluoropyrimidines and
were identified as compound heterozygous DPYD variant allele carriers either prior to the start of
treatment or retrospectively. Table 1 shows an overview of the cases. Table 2 shows all genotype and
phenotype results. With additional genetic testing, phasing could be determined in four out of seven
patients. In three patients, the variants were located in trans, and one patient carried the variants in cis.
With the phasing information available, it is possible to calculate a dose recommendation using publicly
available pharmacogenetic dosing guidelines [19,20]. For example, patient 1 carried DPYD*2A and
c.1236G>A in trans. The gene activity values range from inactive (0) to fully active (1). DPYD*2A and
c.1236G>A/HapB3 have values of 0 and 0.5, respectively. As this patient carries the variants in trans,
each allele contains one variant and no fully functional allele remains. Therefore, the cumulated gene
activity score (GAS) is 0.5. The GAS can be used to determine dose recommendations according to the
genotype, as was previously described [12]. The GAS ranges from 0 to 2, and a score of 0.5 corresponds
to a dose recommendation of 25%. The DPD enzyme activity of patient 1 was 0.9 nmol/(mg×h).
This was divided by the mean of the reference value (9.9), which results in a theoretical DPD activity of
9%. For each patient for whom phasing details were known, the GAS was determined and compared to
the theoretical DPD activity. Dose recommendations according to the GAS (genotype) and theoretical
DPD activity (phenotype) were divergent in almost all cases, as shown in Table 2.

3.2. Preventing Toxicity

Three of the seven case patients were identified as carriers of one or more DPYD variants prior
to the start of therapy. For one patient, the DPD enzyme activity was determined prior to the start
of therapy. Based on their genotype or phenotype, these three patients received initially reduced
fluoropyrimidine dosages of 50%. They experienced limited and reversible toxicity (CTC-AE grades
0–2). The dose of one patient was increased to 70% in the second treatment cycle, after which CTC-AE
grade 3 toxicity occurred.

Four of the seven case patients received a full dose, since their genotype was unknown prior to
the start of therapy. These patients all experienced severe toxicity (CTC-AE grades 3–5), and three
of them were admitted to the hospital for 7–14 days. An overview of cases, including the toxicity,
is shown in Table 3.
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3.3. Frequencies of Compound Heterozygous DPYD Carriers without Phasing Information

The ExAC and gnomAD databases revealed an average MAF for DPYD*2A, DPYD*13, c.1236G>A,
and c.2846A>T of 0.55%, 0.03%, 1.43%, and 0.27%, respectively. MAFs for ExAC and gnomAD
separately are summarized in Table 4. The probability of identifying a compound heterozygous DPYD
patient for two variants according to these databases was ≤ 0.008%, as was calculated using frequencies
of combinations of DPYD variants. Results for each combination of DPYD variants are shown in
Table 5. With several million fluoropyrimidine users each year, thousands of patients worldwide are
compound heterozygous for a subset of these four DPYD variants.

3.4. Frequencies of Compound Heterozygous DPYD Carriers with Phasing Information

In the GoNL database, genetic data from 496 subjects (fathers and mothers only) was reviewed.
One subject was found who carried two DPYD variants. This subject was a carrier of the DPYD
c.1236G>A and DPYD c.2846A>T variants, both of which were located on a single allele (in cis). Based
upon the data in GoNL, the probability of having compound heterozygosity of the four DPYD variants
is <0.2%.

In the 1000 Genomes database, data of 2513 individuals were available. After the selection of
unique, unrelated individuals, 407 individuals remained. One subject was found who carried two
DPYD variants. This subject was a carrier of DPYD c.1236G>A and DPYD c.2846A>T, both of which
were located on different alleles (in trans). Based upon the data in 1000 Genomes, the probability of
having compound heterozygosity of the four DPYD variants is <0.3%.

In the LUMC clinical genetics database (exome trios LUMC), the analysis was restricted to the
children, since this would allow phasing. None of the 433 children carried more than one DPYD
variant, thus compound heterozygosity in this database is <0.2%.

Despite the low frequency, compound heterozygous patients were identified in all databases
except the LUMC clinical genetics database. However, the low frequency did not allow to determine
the probability of in cis or in trans phasing of variants in a patient.
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Table 5. Calculated frequencies for compound heterozygous DPYD patients. Using the average MAFs
of the ExAC and gnomAD databases (for DPYD*2A, DPYD*13, c.1236G>A, and c.2846A>T, these are
0.55%, 0.03%, 1.43%, and 0.27%, respectively), possible combinations for two out of four currently
genotyped DPYD variants are shown. Abbreviations: MAF: minor allele frequency; ExAC: Exome
Aggregation Consortium; gnomAD: Genome Aggregation Database.

Combination of DPYD Variants Calculated Frequency

DPYD*2A + DPYD*13 0.0002%
DPYD*2A + c.1236G>A 0.008%
DPYD*2A + c.2846A>T 0.001%
DPYD*13 + c.1236G>A 0.0005%
DPYD*13 + c.2846A>T 0.0001%

c.1236G>A + c.2846A>T 0.004%

4. Discussion

Prospective genotyping of DPYD variants followed by individual dose adjustments is increasingly
applied as the standard of care for patients starting fluoropyrimidine therapy. Standard dose reductions
from CPIC and DPWG guidelines cannot be applied in patients who carry more than one DPYD
variant, as the phasing of the variants is unknown. Despite the low population frequency of < 0.2%,
the absolute number of identified compound heterozygous patients will increase as the number
of genotyped patients increases and the panel of tested variants is expanded. To the best of our
knowledge, this is the first study that describes a case series of compound heterozygous DPYD variant
allele carriers and investigates diagnostic and therapeutic strategies for these patients.

Our study shows the clinical need for further information on the genotype, as four patients
were identified as compound heterozygous carriers retrospectively and all of them experienced
severe toxicity. These compound heterozygous DPYD variant allele carriers have an increased
risk of developing severe fluoropyrimidine-induced toxicity if dosages are not adequately adjusted.
Previously, compound heterozygous patients have been described with severe or even lethal side effects
after fluoropyrimidine treatment [39,40]. Three patients in this study were prospectively identified as
compound heterozygous carriers, received initial dose reductions, and developed only mild toxicities.

Out of the four patients for whom we were able to retrieve phasing information, three were in
trans and one was in cis orientation. Data from publicly available databases also showed that both in
cis and in trans orientations exist. However, the recently updated CPIC guidelines on DPYD assumes
in trans phasing for compound heterozygous patients [20]. The DPWG guidelines do not mention
phasing; however, the dosing recommendations of the DPWG use the GAS, a score based on the
activity of individual alleles [19]. This implies the need for phasing information. The assumption
of in trans phasing could result in the underdosing of patients with variants phased in cis, and thus
exemplifies the need for the determination of the phasing of variants.

In this study, we looked at different diagnostic strategies to determine the phasing of DPYD
variants in compound heterozygous patients. In four patients, the phasing of DPYD variants could be
determined using one of three different molecular methods. These methods are in the early phases of
development, not routinely available, quite expensive, and not always conclusive. For two of these
techniques, patient RNA is used, which degrades quickly after the blood draw unless specifically
designed blood tubes are used. Compound heterozygous patients are rare, yet here we describe seven
patients heterozygous for multiple DPYD variants. A limitation of our study is that most patients
were identified retrospectively and in different institutions. Because of this, not enough of or not the
right material was available for analysis, thus not all genotyping techniques could be executed in
each patient. For two samples, tests failed or produced inconclusive results. For this reason, a formal
comparison of their suitability to identify phasing was not possible. However, of the three explored
molecular methods, PacBio sequencing seems most promising. While phasing improved the prediction
of DPD enzyme activity, patients with identical combinations of DPYD variants and identical phasing
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showed considerable differences in DPD enzyme activity, which could potentially limit the added
value of the determination of the phasing of DPYD variants. However, larger numbers of compound
heterozygous DPYD variant allele carriers would be necessary to draw a firm conclusion.

The measurement of DPD enzyme activity in PBMCs was used as a reference to assess DPD
activity. The method is well-established, commonly available, and shows limited intra- and interpatient
variability [27]. However, recently, differences in intrapatient variability in DPD enzyme activity related
to circadian rhythm were shown [41], which can result in the under- or overestimation of DPD enzyme
activity. In this study, we present one patient with extremely low DPD enzyme activity, which could
possibly be influenced by the presence of severe neutropenia, as DPD activity is normally measured in
mononuclear cells. Therefore, DPD enzyme activity can differ depending on the clinical condition of
the patient and should thus be measured prior to treatment.

A major question is whether genotyping or phenotyping is the best method to determine DPD
activity to guide fluoropyrimidine dosing in patients carrying multiple DPYD variants. Despite the
low population frequency, we present seven patients carrying multiple DPYD variants, of which
three received initially reduced fluoropyrimidine dosages. However, based on these data, it is
not possible to determine if a dose recommendation based on phased genetic information or
DPD enzyme activity measured in PBMCs is safer. In three out of four cases, differences were
observed between the theoretically calculated DPD activity using genotyping or phenotyping.
These differences would result in different dosing recommendations. For example, there is a
considerable interpatient variability in DPD enzyme activity in carriers of the DPYD variant
c.1236G>A/HapB3 [12]. Due to this variability, genetic dose recommendations are categorized
(e.g., 25 or 50%) on the average of the phenotypes. This categorization could explain the observed
dosing differences derived from genotyping and phenotyping. Other variants of DPYD currently
not routinely tested for or variants in other genes, e.g., MIR27A [42], might also be involved
in reducing DPD activity or explaining fluoropyrimidine-induced toxicity. DPD enzyme activity
measurements are well-established, and additional molecular methods to resolve phasing are still
in early phases of development. Therefore, in our opinion, the current therapeutic strategy for
compound heterozygous DPYD variant allele carriers should be to determine initial dose reductions
based on a DPD phenotyping test, for example, by measuring enzyme activity in PBMCs. Dosing
could be adjusted by the treating physician in subsequent cycles based on observed severe toxicity
(or lack thereof).

5. Conclusions

In conclusion, patients carrying multiple DPYD variants are at high risk of developing severe
toxicity. Additional analyses are required to determine the correct dose of fluoropyrimidine treatment.
In patients carrying multiple DPYD variants, we recommend that a DPD phenotyping assay be carried
out to determine a safe starting dose. The dose could be titrated in subsequent cycles based on
observed toxicity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/12/585/s1;
Description of patient cases (1 to 7) and Figure S1 illustration of molecular methods.
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Abstract: Pharmacogenetic (PGx) guidelines for the precise dosing and selection of drugs remain
poorly implemented in current clinical practice. Among the barriers to the implementation process is
the lack of clinical decision support system (CDSS) tools to aid health providers in managing PGx
information in the clinical context. The present study aimed to describe the first Italian endeavor to
develop a PGx CDSS, called FARMAPRICE. FARMAPRICE prototype was conceived for integration
of patient molecular data into the clinical prescription process in the Italian Centro di Riferimento
Oncologico (CRO)-Aviano Hospital. It was developed through a coordinated partnership between
two high-tech companies active in the computerization of the Italian healthcare system. Introducing
FARMAPRICE into the clinical setting can aid physicians in prescribing the most efficacious and
cost-effective pharmacological therapy available.

Keywords: CDSS; pharmacogenetics; implementation

1. Introduction

The response to drugs is highly variable among individuals. Indeed, genetic variants are estimated
to affect between 20–95% of the response variability, depending on the drug [1]. Germline genetic
variants can influence drug Adsorption, Distribution, Metabolism, and Elimination (ADME) and they
can be responsible for reduced drug efficacy or increased toxicity. Patients might benefit from using
pharmacogenetics (PGx) to inform treatment decisions regarding drug selection and dosing. The PGx
approach has the potential of improving drug efficacy and/or avoiding unwanted side effects; these
improvements could lead to better treatment adherence and outcomes [2]. An inherently personalized
approach to medicine could provide non-negligible offsets to Healthcare system costs [3,4].

PGx guidelines for drug dosing have become available for a wide range of medications associated
with gene-drug interactions that could potentially be clinically actionable. To date, over 160 medications,
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ranging from heart disease medications to psychiatric drugs, currently have PGx labeling registered
with the US Food and Drug Administration (FDA) [5]. The publicly available online knowledge
base, PharmGKB [6], is an interactive tool that collects PGx recommendations. It includes PGx-based
drug dosing guidelines established by the Clinical Pharmacogenetics Implementation Consortium
(CPIC), the Royal Dutch Association for the Advancement of Pharmacy—Pharmacogenetics Working
Group (DPWG), the Canadian Pharmacogenomics Network for Drug Safety (CPNDS) and other
professional societies.

PGx tests have been used in the past, but mainly as a reactive approach to an aberrant clinical
outcome in individual patients. Physicians typically ordered PGx tests on an “as needed” basis, after
the occurrence of unexpected severe toxicity or a lack of response. Currently, the use of PGx as a tool
for evidence-based medication management is gaining acceptance among many healthcare providers.
PGx tests can be used to predict drug efficacy and side effects in individual patients. Consequently,
PGx testing has moved to the pre-therapeutic setting, where the test is typically ordered at the first
prescription of a drug that is associated with a PGx guideline.

Despite a recent survey, which showed that 97.6% of clinicians agreed that genetic variations
might influence drug response, only 12.9% of clinicians had ordered a PGx test during the prior six
months. In fact, translating PGx knowledge into clinical practice has been slow and hindered by many
barriers that have prevented its large-scale implementation. Apart from the established statistical
associations between PGxs and drug therapy outcomes (clinical validity), large scale implementation
of PGx translation requires evidence of clinical-utility and cost-effectiveness. Moreover, that evidence
will likely result in favorable reimbursement decisions from payers [7]. Additionally, to aid the
implementation of PGx in clinical practice, we need to set up a straightforward workflow from the test
prescription to the application of the guidelines, combined with appropriate training and education
programs about the clinical use of PGx for healthcare practitioners [8].

The poor application of PGx in the clinical routine is related to the need for a “physician-friendly”
electronic “educational resource” that aids clinicians in managing PGx results during routine clinical
practice [9]. The implementation of a point-of-care electronic clinical decision support system (CDSS)
is urgently needed to guide drug prescriptions in a community-based practice setting [10].

In recent years, a growing body of literature has been produced in developing and implementing
PGx CDSSs for improving patient care. A PGx CDSS is a critical tool that can address some of the
barriers to implementing PGx guidelines into the clinical routine. They are computer-based systems
intended to improve medical decision-making at the point-of-care by supporting physicians in decisions
regarding prescriptions. The CDSS infrastructure was designed to store the patient’s genomic data
and create filtered PGx information, such as pop-up alerts, to inform physicians and other healthcare
providers when a gene-drug interaction is available for a specific patient [11]. Thus, this information
technology (IT) tool can translate genetic information into practical therapeutic recommendations.
It can be used to customize, as much as possible, pharmacological treatments, in terms of drug selection
and dosing. The dynamic nature of PGx guidelines warrants long-term maintenance and continuous
updating of the PGx CDSS, as new evidence becomes available. To that end, PGx CDSS tools must be
fully scalable and sustainable in an automated way [12].

With the aim of providing clinicians with an IT infrastructure (CDSS) for the automated
management of patient molecular data, which could be translated into specific prescription indications
the FARMAPRICE partnership was created. The partnership comprises the Clinical and Experimental
Pharmacology unit of the Centro di Riferimento Oncologico (CRO)-Aviano Hospital and two high-tech
companies, InSilicoTrials Technologies, Trieste, Italy, and GPI company, Trento, Italy, which are active
in developing solutions for the healthcare system. They put forth a coordinated effort to bring together
scientific, clinical and technological expertise in the PGx field. In 2017, the FARMAPRICE partnership
proposed a project that was financed by POR FESR 2014–2020, which aimed to promote innovation in
the drug prescription process by implementing the preemptive PGx approach in Italy.
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The present article aimed to describe the Italian project, FARMAPRICE, a CDSS designed for
integration into the clinical prescription process in the Italian CRO-Aviano Hospital.

2. Materials and Methods

FARMAPRICE CDSS was designed to aid clinicians in prescribing the most efficacious and
cost-effective pharmacological therapy available by providing support for prescribing drugs within
available PGx guidelines. Prescribing physicians can interrogate the FARMAPRICE platform to get
specific dosing recommendation. To that end, the FARMAPRICE platform queries two repositories:
The first is the patient’s complete genetic data; the second is the list of all PGx guidelines based on
validated gene-drug interactions (Figure 1).

Figure 1. FARMAPRICE platform workflow. (A) The prescribing physician interrogates FARMAPRICE
platform to discover if the drug to be prescribed presents validated gene-drug interactions and if that
specific patient has a potentially clinically actionable genotype. In the negative case instructions are given
for a pharmacogenetic (PGx) test prescription. In the affirmative case, a PGx-based recommendation
integrated with its level of evidence and clinical impact will be provided. This will allow prescribers
to weigh the strength of evidence available and to decide whether to follow the recommendation or
not. A PGx-based recommendation will be first delivered as a “first level message” briefly describing
the involved risk (inefficacy or toxicity) for that specific patient at standard dosage. A “second level
message” (complete PGx-based drug selection or dosing recommendation) is displayed by clicking
on “first level message”. (B) Clinical impact of a specific gene-drug interaction is delivered with a
different colors flag icon basing on Swen et al. [13]. Correspondence between rating from AA to F
and the color code is here defined. Conversely, the level of evidence will be delivered as a three-star
icon basing on both Clinical Pharmacogenetics Implementation Consortium (CPIC) and Royal Dutch
Association for the Advancement of Pharmacy—Pharmacogenetics Working Group (DPWG) latest
guidelines available for that gene-drug interaction as herein described.
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The development of the project was divided into three phases: First, the selection of actionable
gene-drug pairs to be integrated into the CDSS; second, the development of a CDSS prototype; and third,
an evaluation of the IT platform prototype in a medical setting.

2.1. First Phase: The Selection of Actionable Gene-Drug Pairs to be Integrated into the CDSS

Between January and June 2018, the PGx team of the Experimental and Clinical Pharmacology Unit
of CRO-Aviano elaborated a list of gene-drug interactions based on the most recent PGx guidelines [6].

In the first phase of the project, the PharmGKB website was consulted to obtain the most complete,
up-to-date list of all available PGx guidelines. The PharmGKB summarizes guidelines from the two
most widely recognized consortia, CPIC and DPWG. Although these consortia are currently working
on harmonizing their clinical recommendations, controversial information might arise from different
guidelines, which could generate uncertainty in treatment decisions. Within the FARMAPRICE
development project, the PGx-based recommendations provided by the CPIC and DPWG consortia
were merged into a unique therapeutic recommendation. In cases of discrepancies, the software
provides prescribing physicians with the most restrictive/conservative recommendation, to ensure
patient safety, and it adds the following statement: “Further modification of the therapy is advised,
based on the patient’s individual response”.

Gene-drug pairs to be integrated were selected based on their actionability and on the availability
of the drug in Italy. The genetic variants of these pharmacogenes were selected based on the most
recent scientific publications and the level of evidence on the functional effect of the genetic variant
on the encoded protein, according to the most updated CPIC guidelines [14]. These genetic variants
were classified according to their functional impact. Then, they were combined to obtain all possible
genotypes and diplotypes that could be linked to a specific therapeutic recommendation, consistent
with published guidelines [15].

2.2. Second Phase: Development of the FARMAPRICE Prototype

A series of synoptic tables was created that linked genotypes to phenotypes and therapeutic
recommendations for each selected drug. These tables were forwarded to IT developers for the
configuration of the CDSS prototype. The IT tools for collecting medical-molecular data were
configured together with corresponding protocols for the acquisition and integration of molecular data
in a standardized form. To guarantee greater longevity, open source solutions were implemented:
The application was developed using Protected Health Information (PHI) Technology, an open-source
framework based on Eclipse IDE (Integrated Development Environment). It provides tools and
components to design eHealth applications (named PHI Solutions) to be executed in a runtime
environment independent from the underlying operating system. It adopts Model Driven Architecture
(MDA) and Business Processes Management (BPM) tools combined with Service Oriented Architecture
(SOA), completely based on the latest open standards (HL7, IHE, DICOM, XDS).

These elements assure the longest lifetime of the applications and back the whole diagnostic,
therapeutic and processes. This choice guarantees a high level of interoperability, in view of potential
integration into systems of production and in complex environments, such as hospital information
systems, including the EHR [16].

2.3. Third Phase: FARMAPRICE User Experience

Ideally, the genetic reports and the service provided should be formatted and focused, based on
feedback from clinicians. Maximizing the effectiveness of the alerts will aid in the integration of CDSSs
and their adoption by practitioners [17]. The IT companies involved in FARMAPRICE development
carried out a study to determine the software requirements for the most effective user experience
on: (i) Platform usability, (ii) functional specifications and content requirements, (iii) information
architecture, and (iv) Information design, interface design, and navigation.
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Software requirements were gathered by the project partners to collect, analyze and document the
System Requirements Specification. The approach adopted was not the usual waterfall model where
software development follows a linear succession of steps to the final product. A prototypal approach
was implemented, instead. The development of a prototype with a minimum set of functionalities
made the formalization of the requirements easier and the adaptation to the users’ real needs through
consecutive approximation. The partners carried out a study to determine the best software Graphical
User Interface (GUI) using the designing tools of the User Experience (UX). Users were separated into
two classes of archetypical users (so called personas) who represent the needs of a larger group of users,
i.e., “clinicians” and “researchers”. The observation of these two classes was realized considering
the environment in which a persona operates, which tools it uses, its background information, and
the behavior working patterns. As a result, the study output gives back slightly different users’
interactions with the software that will be considered in further implementations. The use of REST
(Representational State Transfer) services ensures the separation between the application back-end and
front-end. Process execution, information classes and the persistence management (permanent data
storage) are then unlinked by the front-end that can be migrated to other frameworks (Angular JS,
React etc.) with no impact on the application business logic.

The study outcome indicated the necessity of two different interfaces and two different sets of
data access and access privileges, due to privacy concerns. About the latter, “clinicians” have data
access to all the information (i.e., they can see all the data without modification of genomic data),
while “researchers” have data access constraints to patient personal data, but have access privileges
to modify all genetic information (i.e., they cannot see who the patient is, but can update/modify
the data, the PGx guidelines, etc.). The “clinicians” GUI is oriented to the clinical aspects, similarly
to an EHR presenting the evidence-based therapeutic recommendations, together with the actual
clinical impact; the “researchers” GUI is designed for the collection, modification, integration of the
background information.

3. Results

3.1. First Phase: The Selection of Actionable Gene-Drug Pairs to be Integrated into the CDSS

The selection process of gene-drug pairs based on both their actionability and availability of the
drug in Italy resulted in the inclusion of 46 drugs in the final selection. FARMAPRICE drugs span several
pharmacological classes, including anti-neoplastic agents, anti-viral agents, anti-coagulant agents,
oral contraceptives, analgesics, anti-emetics, immunosuppressives, anti-epileptics, anti-arrhythmics,
anti-gout drugs, anti-depressants (SSRI, TCA and other), psychostimulants, anti-psychotics,
anti-hypertensive drugs, drugs for cystic fibrosis treatment, cholesterol-lowering drugs, and anti-fungals
(Table 1). Among the pharmacogenes that impacted the outcome of the identified drugs, 14 were
included in the final selection. This selection process identified 374 variants with documented impact
on gene transcription.

Table 1. Drugs included in FARMAPRICE clinical decision support system (CDSS).

Drug Classification Drugs

Analgesics Codeine, Tramadol
Anti-arrhythmics Propafenone, Flecainide
Anti-coagulant agents Acenocoumarol, Phenprocoumon, Clopidrogel, Warfarin
Antidepressant Venlafaxine
Antidepressant (SSRI) Citalopram, Escitalopram, Sertraline, Paroxetine
Anti-depressants (TCA) Amitriptyline, Clomipramine, Nortriptyline, Trimipramine
Anti-emetics Ondasetron, Tropisetron
Anti-epileptics Carbamazepine, Phenytoin, Oxacarbamazepine
Anti-fungals Voriconazole
Anti-gout drugs Allopurinol, Rasburicase
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Table 1. Cont.

Drug Classification Drugs

Anti-hypertensive drugs Metoprolol

Anti-neoplastic agents 5-Fluorouracil, Capecitabine, Irinotecan, Tamoxifen, Tioguanine,
Mercaptopurine, Azathioprine

Anti-psychotics Aripiprazole, Haloperidol, Zuclopenthixol
Anti-viral agents Abacavir, Atazanavir, Ribavirin, PEG-IFN
Cholesterol-lowering drugs Atorvastatin, Simvastatin
Cystic fibrosis treatment Ivacaftor
Immunosuppressives Tacrolimus
Oral contraceptives Hormonal contraceptives for systemic use
Psychostimulants Atomoxetine

3.2. Second Phase: Development of the FARMAPRICE Prototype

FARMAPRICE was developed as an active PGx CDSS functional prototype integrated with PGx
guidelines and patient genetic information in a web service platform. It was considered that the
Italian health care system is currently lacking a common EHR platform among its different regions,
thus resulting in a fragmented healthcare delivery system with limited EHR interoperability. Since
sharing healthcare data among different providers is hampered, FARMAPRICE was conceived as a
stand-alone system that could be eventually integrated into the EHR system. Specific requirements
were then to guarantee a correct exchange of data, in particular the checking of data entry (in support
of the researchers and the clinicians to eliminate any input errors), the certification of the prescription
algorithm (avoiding the risk of incurring possible modifications), and the verification of the output
data (to have indications for further improvement of the effectiveness of the guidelines underlying
the system itself). Specifically, the solution has been designed as a web application, implemented
using open-source components and technologies: The integration with an EHR can be reached through
integration profiles that manage HL7 input/output messages. It is designed to be a module: It defines
and enforce logical boundaries, it is pluggable with another module that expects its interface, and it is
a single unit to be easily deployed, overcoming fragmentation issues.

The prototype is structured into four principal parts. The section “Patients” provides the
prescribing physician access to the patient’s genetic data (genetic data repository). Moreover, in this
section, the prescriber can configure a new patient record and input the relevant genetic data. In the
section “Prescription”, the clinician can interrogate the system to obtain a specific recommendation
for a selected patient that requires a new drug prescription. An alphabetically ordered drug list will
pop-up. Once a new drug prescription is selected, the dosing recommendation will be provided,
based on the patient’s genetic profile. When relevant genetic data are missing, the system will request
input of additional information to ensure the correct drug recommendation is provided. In addition,
the user can track a patient’s clinical history to obtain information about all the drugs previously
prescribed through FARMAPRICE. Other sections (e.g., “File configuration” and “Drug configuration”)
are reserved for developers and researchers that update the FARMAPRICE CDSS with the latest
PGx guidelines.

Due to the security risks associated with storing large quantities of personal data, specifically
genetic data, the CDSS prototype was implemented on a “research and development” project setting,
meaning that all the genetic data were handled anonymously. For future developments, an electronic
register has been designed for the safe storage and management of acquired genetic data, and for
qualitative-quantitative analysis, aiming to enlarge the register with new data deriving from other
hospital structures present in the region. The OpenClinica technology (OpenClinica, LLC, Waltham,
MA, USA), representing the first open source clinical trial software in the world for the management
of clinical data (CDM) of Electronic Data Capture (EDC), was chosen for the underlying electronic
database. The underlying technologies of the OpenClinica web application are: Java as a programming
language, Spring Framework as an application framework and PostgreSQL as a report database.
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The early modular design was prepared for integration with security technologies on the cloud, such as
Microsoft Azure, to benefit from safety and compliance in the healthcare field with the latest standards
of anonymization, security, and data maintenance as required by the European Medicine Agency
(EMA) and the Food and Drug Administration (FDA) USA.

FARMAPRICE employs both types of alert messages typically used by CDSS: “Pre-test” and
“Post-test” alerts. Pre-test alerts can be useful for reminding clinicians when a PGx test is necessary
to ensure that a specific drug is safe for the patient. When prescribing a medication that is affected
by a PGx guideline, the alert informs the clinician that the patient record lacks genotyping results.
Conversely, a post-test alert appears when the PGx test results are available. This alert informs the
prescribing physician that the patient has an actionable genotype and recommends a corresponding
therapy [18]. This alert includes patient-specific dosing recommendations and highlights the strength
of supporting evidence.

 

Figure 2. Demo prescription using FARMAPRICE tool. (A) the physician prescribes 5-fluorouracil to a
patient who is DihydroPYrimidine-Dehydrogenase (DPYD) poor metabolizer. (B) This action triggers a
pop-up with a first level message. (C) This in turn can trigger the real PGx-based recommendation of
drug selection or dosage by clicking directly on the first level message.

Post-test alerts consist of two levels of messages. At the time a drug is ordered, a pop-up alert
(first level message) appears when the patient has an actionable genotype listed in the PGx results
repository. This first level message is a standardized text that describes the expected clinical effect of
a specific genotype-drug interaction. This text was designed to be concise, and it includes the most
important information needed for a prescription. Next to the first level text message, FARMAPRICE
places stars and flags to indicate the level of evidence and the clinical impact, respectively, of the proposed
dosing guideline. The level of evidence refers to the strength of the literature-based evidence that links
the genotype to the phenotype. FARMAPRICE indicates the level of evidence with one to three stars to
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indicate the lowest to highest levels of evidence, respectively. The clinical impact is related to the clinical
relevance of the potential adverse drug event. The clinical impact is indicated with colored flags: Yellow
for low clinical impact (scored AA to C in the DPWG guidelines); red for high clinical impact (D to Fin
the DPWG guidelines [13]); and green for no clinical impact. Thus, a green flag combined with the
first level message, “no recommendation, start with the standard dosage”, indicates that no actionable
genotype-drug interaction is available. For red and yellow flags, the prescribing physician can click
on the first-level message to activate a hypertext link that will redirect to a second-level message.
This message gives a recommendation on drug dosing and alternate drug selection. This second level
message contains a more extensive text explanation, with details on the recommended changes in drug
dosing and selection (Figure 2).

3.3. Third Phase: FARMAPRICE User Experience

Once the prototype was ready, the graphical interface was accurately reviewed and modified
according to the medical doctors feed-back. The software GUI was implemented using PHI Technology
GUI Designer which provides web-based user interfaces created on the underlying processes.
This capability to render a GUI model is owed to the modeling framework of Eclipse, combined with
the templating framework and guarantee a framework based on the logical processes of the software
user, to consider all the crucial information. Yet this does not ensure the intuitiveness of the UI: Icons
symbolize common actions which are consistent for homogeneous groups of users (i.e., “clinicians”
and “researchers”). The feedback provided by the users led to the selection of an alternative set of icons
understandable to the CDSS users, namely “clinicians” and “researchers”. Warning messages were also
implemented to allow prescribers to better weigh the strength of evidence available and decide whether
to follow the recommendation or not [2]. The FARMAPRICE prototype is currently in experimental
use by the medical oncologists of the Medical Oncology Department of the CRO-Aviano Hospital.
These physicians have agreed to provide feed-back on their user experience, which will inform the
developers on ways to optimize the software graphical interface and its operative performance.

4. Discussion

The preemptive PGx approach is typically used only for single gene-drug pairs with a relevant
clinical impact, as is the case for highly toxic drugs, such as capecitabine, 5-fluorouracil, or
6-mercaptopurine. Preferably, in the future, this type of preemptive testing will be integrated
into clinical practice. In that context, patients could be screened for drug-related genes in anticipation
of future prescription events, consistent with the lifetime value of PGx testing. Then, in decisions
regarding prescriptions, PGx results will be considered an inherent patient characteristic, like age,
weight, renal function, and allergy status. Indeed, physicians are in a front-line position to handle the
potential volume of such information by reviewing, interpreting, and delivering PGx test results and
providing follow-up to the patient. Moreover, in future, the PGx knowledge base is likely to increase
with the discovery of new gene-drug interactions, as next generation sequencing (NGS) continues to
advance. In this study we have presented the results of an Italian coordinated effort to develop a CDSS
tool, FARMAPRICE, that could help the PGx implementation in the current clinical practice.

Many initiatives both in Europe and the United States are and have been trying to address this
hurdle. The main research networks involved in the integration of genetic data into the EHR are
the Electronic Medical Records and Genomics Network (eMERGE) and the Implementing Genomics
in Practice (IGNITE) [19]. The eMERGE network was formed by a partnership between eMERGE
and the Pharmacogenomics Research Network (PGRN), which involves ten US sites. One of its
main goals is to integrate clinically validated PGx genotypes into the EHR and associated CDSSs
and to assess the process and clinical outcomes of implementation [20]. A few medical institutions
have pilot projects that have surpassed “reactive genotyping” to include “preemptive genotyping”.
For example, the Mayo Clinic, with the RIGHT project, the Icahn School of Medicine at Mount Sinai,
with CLIPMERGE, and Vanderbilt University Medical Center (VUMC), with PREDICT. These projects
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aim to drive point-of-care CDSSs with the integration of clinically actionable PGx variants into the
EHR [21–23].

The Mayo clinic Biobank enrolled 1013 participants within 3 years into the “Right Drug, Right
Dose, Right Time” project. The study aimed at optimizing preemptive genotyping in patients with
a high probability of initiating statin therapy during the study period. One result of that study was
the integration of PGx results into the EHR and the development of a point-of-care CDSS, including:
(i) Pre-test and post-test alerts; and (ii) a CDSS integrated with additional PGx educational support
links to aid clinicians. In addition, the Mayo Clinic developed a long-term maintenance strategy,
with a CDSS that could automatically update itself with newly discovered gene-drug interactions.
Moreover, that CDSS could automatically send an email to the technical team when an unreadable
result occurred [11,19,21,24,25].

A member of the eMERGE network, the CLIPMERGE PGx program at Mount Sinai Medical
Center, developed an active CDSS that delivered post-PGx-test alerts to clinicians at the point-of-care.
That project aimed to implement the use of PGx testing by integrating it in CDSS and EHR using a DNA
biobank-derived cohort (BioMe). Initially, 1500 pilot participants were recruited and preemptively
genotyped for known variants associated with the use of warfarin, clopidogrel, simvastatin, and
several types of antidepressants [22,25,26].

As mentioned previously, another relevant network involved in the integration of patient genetic
data into clinical care is the IGNITE network. This network includes six US sites, and of these,
three deal with PGx implementation: The University of Florida’s Personalized Medicine Program;
Indiana University’s INGENIOUS program; and Vanderbilt University’s I3P program [27]. Other
initial efforts that aim to implement PGx in clinical care include Cleveland Clinic’s Personalized
Medication Program, St. Jude Children’s Research Hospital’s PG4KDS program, the University
of Chicago’s 1200 Patient Project, and the University of Maryland’s Personalized Anti-Platelet
Pharmacogenetics Program [18,28–30]. In Europe the PREemptive Pharmacogenomic testing for
prevention of Adverse drug Reactions (PREPARE) clinical trial was conducted within the European
Ubiquitous Pharmacogenomics (U-PGx) project [26,31]. They selected a panel of 50 variants in
13 pharmacogenes. This project put together different implementation sites in different European
countries, with widely varying health care systems. In this context a spectrum of complementary CDSS
solutions was developed, with the unique implementation experience of a portable CDSS, the “Safety-
Code card”.

For many years, genotyping was limited by the single-gene approach. The recent introduction of
genotyping array technologies in the clinical practice made it possible to simultaneously evaluate several
relevant pharmacogenes [32]. This technological approach has led to high-quality and economically
affordable results. Indeed, the genotyping method for preemptive testing that has been adopted by
ongoing implementation programs is mainly based on the use of array genotyping platforms [33].
These platforms offer robust interpretations of the results, and they are well-suited to automation, where
PGx results are automatically uploaded into a structured IT system. The most suitable genotyping
approach should be selected from the currently available commercial and custom panels. This selection
is guided by features of feasibility and cost-effectiveness, such as: The turnaround time from isolated
DNA to genotype; the instrumental and technical equipment of the laboratory involved in generating
the genotype; the potential number of samples per array; the cost of the array; and the content and
potential flexibility of the array [34].

A CDSS can be designed as an active or passive system. In the passive (or asynchronous) CDSS,
the information is available only when the clinician specifically requests it, and it is reported as
a static warning note. In contrast, the active (or synchronous) CDSS processes information and
interacts with clinical data by following rules and issuing alerts [12,24]. Indeed, FARMAPRICE can
be interrogated by healthcare providers at the point-of-care by accessing the web-based platform
to determine whether a specific drug has a potentially clinically actionable gene-drug interaction.
Rules will predict phenotype-predicted genotype and interactive alerts will be triggered both when a
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high-risk drug is prescribed and when a specific PGx result should be obtained before prescribing the
intended drug.

PGx CDSSs are typically developed as stand-alone systems that function autonomously as a web
service or a mobile application, rather than being integrated into the existing local hospital infrastructure.
However, because PGx results are relevant throughout a patient’s life, ideally, they should be stored in
a time-independent manner to ensure accessibility to future providers [12]. Currently, the long-term
availability of PGx results at the point-of-care can only be guaranteed by a CDSS that is embedded into
an Electronic Health Record (EHR) [35]. With this method, PGx results can be shared among different
healthcare providers (pharmacists, general practitioners, specialists), and they can be used at different
stages of the clinical workflow to guide clinical decision-making processes [19]. However, linking the
EHR to the CDSS is challenging; thus, it is not yet a common practice. Caraballo et al pointed out that
modern EHRs have not been designed for long-term storage of genetic data. Due to the lack of a specific
repository, to date, PGx data have been stored in EHRs on either a “problem list“ or an “allergy list”,
which provides time-independent documentation of possible gene-drug interactions. Other issues that
make it challenging to incorporate PGx results into the EHR are the increasing amount of genetic data
and the unstandardized formats of available data, which makes them difficult to share in a multi-center
setting [19,24]. The Italian health care system is currently lacking a common EHR platform among its
different regions. This lack has resulted in a fragmented healthcare delivery system with limited EHR
interoperability. Thus, sharing healthcare data among different providers is hampered. Consequently,
FARMAPRICE was conceived as a stand-alone system that could be eventually integrated into the
EHR system.

Indeed, successful implementation of a CDSS is not only related to its clinical utility in terms
of improving treatment safety and efficacy, but also to its perceived feasibility and usability by
the prescribing physicians. When looking at the software requirements for the most effective user
experience, clinicians considered that excess alerts (e.g., not relevant or repeated alerts, a phenomenon
termed “alert fatigue”) could put a strain on the clinician’s workload, and this could have adverse
effects on patient care [36]. In the evaluation of FARMAPRICE prototype, a user-friendly design
was sought and designed to ensure that the interruptions would not overload busy clinicians [24].
The user experience is now in the experimental evaluation phase by prescribing physicians in the
CRO-Aviano hospital.

It must be further considered that, in the first place, the use of this kind of tool is primarily
related to the health practitioners personal motivation and of their awareness of the opportunity to use
PGx in their everyday routine. Other implementation experiences have demonstrated that although
physicians may perceive the benefit of using PGx, the lack of formal training about PGx, together
with concerns regarding feasibility, clinical utility, and integration in the clinical workflow have been
reported by physicians as the major barriers to a more routine use of PGx [8]. It must be not forgotten
that education is a crucial step for implementing PGx into the clinic. Educational and training programs
must be offered to health practitioners in an interprofessional context to drive interest and continuous
learning about PGx, to allow a critical and conscious use of PGx in the clinical practice also with the
aid of innovative IT tools, such as FARMAPRICE.

5. Conclusions

Patients and healthcare providers are important stakeholders in the implementation of PGx.
Among the provider-perceived barriers to adopting this information are inadequate knowledge about
PGx, the lack of clear guidelines for many drugs, and the absence of convincing cost-effectiveness data
to support PGx clinical utility. In addition, an emerging barrier to the PGx clinical implementation
process is the lack of user-friendly tools to integrate genetic information and their interpretation into
the clinical prescription workflow.

Health-related ITs, such as the CDSS, are designed to support clinicians in the decision-making
process; to address the growing information pool, which overloads clinicians; and to provide a platform
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for incorporating evidence-based knowledge into care delivery. An Italian consortium has been set up
to create FARMAPRICE, a CDSS designed to be used in the clinical setting to facilitate the use of PGx
in the drug prescription process in Italy. A prototype has been created and is ready to be presented
to clinicians for use in their routine practice. It is likely that, in the next few years, pre-treatment
patient genotyping will become a more common clinical practice, and FARMAPRICE will represent a
user-friendly, stand-alone system that can be integrated into every clinical context to manage genetic
data and optimize patient treatments.
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Abstract: Logistics and (cost-)effectiveness of pharmacogenetic (PGx)-testing may be optimized when
delivered through a pre-emptive panel-based approach, within a clinical decision support system
(CDSS). Here, clinical recommendations are automatically deployed by the CDSS when a drug-gene
interaction (DGI) is encountered. However, this requires record of PGx-panel results in the electronic
medical record (EMR). Several studies indicate promising clinical utility of panel-based PGx-testing
in polypharmacy and psychiatry, but is undetermined in primary care. Therefore, we aim to quantify
both the feasibility and the real-world impact of this approach in primary care. Within a prospective
pilot study, community pharmacists were provided the opportunity to request a panel of eight
pharmacogenes to guide drug dispensing within a CDSS for 200 primary care patients. In this
side-study, this cohort was cross-sectionally followed-up after a mean of 2.5-years. PGx-panel results
were successfully recorded in 96% and 68% of pharmacist and general practitioner (GP) EMRs,
respectively. This enabled 97% of patients to (re)use PGx-panel results for at least one, and 33% for up
to four newly initiated prescriptions with possible DGIs. A total of 24.2% of these prescriptions had
actionable DGIs, requiring pharmacotherapy adjustment. Healthcare utilization seemed not to vary
among those who did and did not encounter a DGI. Pre-emptive panel-based PGx-testing is feasible
and real-world impact is substantial in primary care.

Keywords: pre-emptive; pharmacogenetics; panel

1. Introduction

An individual’s response to a drug can be predicted by their pharmacogenetic (PGx) profile [1,2].
Incorporation of an individual’s PGx profile into drug prescribing promises a safer, more effective
and thereby more cost-effective drug treatment [3,4]. Several randomized controlled trials (RCTs)
demonstrate the clinical utility of pre-emptive single gene tests to guide dosing [5–7], and drug
selection [8], for individual drug-gene interactions. These studies are perceived as a proof-of-concept
supporting the clinical utility of pre-emptive PGx testing, and may therefore also be applied to
other drug-gene interactions, for which evidence of the same rigour may lack [9,10]. The Dutch
Pharmacogenetics Working Group (DPWG) was established in 2005 to devise clinical guidelines for
individual drug-gene interactions based on a systematic review of literature [11,12]. These guidelines
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provide clinicians with recommendations on how to manage drug-gene interactions. To date,
the DPWG has developed guidelines for 97 drug-gene interactions, of which 54 are actionable
drug-gene interactions, many of which are encountered principally in primary care. In parallel,
the Clinical Pharmacogenetics Implementation Consortium (CPIC) has also devised guidelines for
more than 40 drugs [13]. The DPWG and CPIC guidelines have ongoing efforts to harmonize the
two [14]. In the Netherlands, the DPWG guidelines are incorporated into a nationwide clinical decision
support system, called the “G-standaard”, providing pharmacists and general practitioners (GPs)
with relevant clinical recommendations at the point of care when an actionable drug-gene interaction
is encountered.

Significant debate persists regarding the optimal approach for implementing PGx testing in clinical
care; where some support using a pre-therapeutic single gene approach and others a pre-emptive
panel-based approach [15]. The pre-therapeutic single gene approach has several drawbacks. In this
one-at-a-time strategy, an individual gene is tested in response to a first prescription of an interacting
target drug. If, however, patients receive prescriptions for multiple interacting target drugs over
time, they may require testing for multiple single genes. Here, pharmacotherapy may be delayed in
awaiting the PGx results. Furthermore, the costs of single gene testing may be allocated a multitude of
times, while the marginal cost of testing and interpreting additional pharmacogenes simultaneously
is near-zero [16,17]. These logistical and cost-effectiveness issues may be overcome and optimized
when delivering PGx in a panel-based approach [18]. Here, a panel of variants within multiple genes,
which are associated with drug response, are tested and saved for later use in preparation of future
prescriptions [15]. In this way, the panel-results can be reused over time, as multiple drugs which
interact with multiple variants are prescribed [19]. When an interacting target drug is prescribed,
the corresponding PGx guideline can be deployed by the clinical decision support system at the point
of care, thereby providing clinicians with the necessary information to guide prescribing by PGx,
without any delay. Alternatively, a combination of the two strategies may be the optimal approach for
delivering PGx. Here, a panel test is ordered reactively in response to an incident prescription and is
saved in the electronic medical record (EMR) for pre-emptive use in future prescriptions. However,
in order for the clinical decision support system to be enabled, it is crucial that the PGx results are
recorded and preserved in the EMR. If this fails, a potential drug-gene interaction may go unnoticed.
As a result, the added value of testing multiple genes is lost. A recent study showed that PGx results for
CYP2D6 were sparsely recorded; only 3.1% and 5.9% of reported PGx results were recorded in EMRs
by general practitioners (GPs) and pharmacists, respectively, within a mean follow-up of 862 days [20].
This indicates that correct record of PGx results in the EMR may be a remaining barrier preventing the
realization of panel-based testing. However, this is yet undetermined when reporting the results for
multiple genes simultaneously. Therefore, we sought to investigate whether pharmacists and GPs
are able to record PGx panel testing results within their EMR, in order to enable life-long use of PGx
results through a clinical decision support system.

Another barrier preventing implementation of panel-based PGx testing is the lack of evidence
demonstrating its clinical utility. Although there is a firm evidence base supporting the clinical
utility of pre-emptive single gene PGx testing, evidence of similar quality supporting a panel-based
approach is lacking [21]. Even so, several smaller studies report promising results indicating that
pre-emptive panel-based PGx guided prescribing is indeed (cost-)effective in preventing adverse drug
reactions among polypharmacy and psychiatry patients. However, this is yet to be determined within
primary care [22–27]. Alternatively, the clinical impact of population-wide panel-based testing has
previously been modelled by using Medicare prescription data; indicating half of patients above
65 will use at least one of the drugs for which PGx guidelines are available during a four year
period, and one fourth to one third, will use two or more of these drugs [28]. Another study showed
that more than 60% of the population would benefit from PGx guided prescribing within a 5-year
period [19]. However, the clinical impact is yet undetermined in a real-world setting. This may
differ from modelled estimations since the patients selected by pharmacists to receive panel testing
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may differ from those included in prescription datasets. Therefore, we aim to quantify the potential
real-world impact of implementation of PGx panel in a clinical decision support system within
a side-study of the Implementation of Pharmacogenetics into Primary care Project (IP3 study). In this
side-study, the primary outcome is the frequency at which patients receive newly initiated prescriptions,
with possible drug-gene interactions, for which PGx results are available in the EMR. To explore which
target groups may benefit most from panel testing, we aim to investigate which patient sub-groups
may more frequently initiate newly prescribed drugs within follow-up. Secondary outcomes include
their downstream impact on healthcare utilization. Firstly, we hypothesize that patients who encounter
an actionable drug-gene interaction and adhered to the DPWG guidelines will have a similar healthcare
utilization compared to those who did not encounter an actionable drug-gene interaction. Secondly,
we hypothesize that patients who encounter an actionable drug-gene interaction, but did not adhere to
the DPWG guidelines, have a higher healthcare utilization compared to those who did not encounter
an actionable drug-gene interaction.

2. Materials and Methods

2.1. Study Design, Participants

We performed a cross-sectional follow-up of The Implementation of Pharmacogenetics into Primary
care Project (IP3 study) cohort, as a side-study. The IP3 study is a prospective multicenter observational
pilot study with the objective to test the feasibility of pharmacist-initiated pharmacogenetics testing
within a clinical decision support system in primary care. The study design, rationale and main
study findings have previously been described elsewhere [29]. In brief, community pharmacies in
the vicinity of Leiden, The Netherlands, were invited to participate in the study. Pharmacists who
agreed on participation were provided with the opportunity to request free PGx tests for a panel of
40 variants in eight pharmacogenes (see Supplementary Table S1), to guide drug dispensing based
on the DPWG guidelines, for a maximum of 200 patients. The genes selected to be tested were
based on genes for which DPWG guidelines are available and which are either included in the
Affymetrix Drug Metabolizing and Transporters (DMET) array (CYP2C9, CYP2C19, CYP2D6, CYP3A5,
SLCO1B1, TPMT and VKORC1) or determined in clinical care (DPYD). This panel can be used in
combination with the DPWG guidelines to guide drug prescribing for 41 drugs. Here, a combination
of reactive and pre-emptive panel testing is implemented. A PGx panel is ordered reactively in
response to an incident prescription and is saved in the EMR for pre-emptive use is future prescriptions.
Adult patients receiving a first prescription (defined as no prescription for the first drug within the
preceding 12 months) for at least 28 days for one of 10 drugs (amitriptyline, atomoxetine, atorvastatin,
(es)citalopram, clomipramine, doxepin, nortriptyline, simvastatin or venlafaxine) in routine care were
eligible. Additional in- and exclusion criteria are reported elsewhere [29]. After identification of the
patients through automated queries, the participating pharmacists manually checked whether patients
fulfilled the in- and exclusion criteria. Finally, patients not recruited within 14 days after dispensing
the first prescription were excluded. When patients were eligible, pharmacists were able to select
these patients for ordering a PGx panel. The panel test result could be used reactively for the drug of
enrolment and pre-emptively for future prescriptions of 41 drugs with potential drug-gene interactions.

2.2. Healthcare Setting

In the Dutch healthcare system, patients are typically listed with one GP and one pharmacy. The GP
plays a gatekeeping role in the provision of healthcare. The GP is consulted for all initial healthcare
problems and may refer to specialized care when appropriate. Typically, GPs maintain EMRs for their
patients and contain prescription history, lab results, correspondence with specialized physicians and
reports regarding ER (emergency room) visits and hospitalizations. In parallel, pharmacists maintain
a separate EMR containing dispensing history, relevant contra-indications and drug allergies and are
used for medication surveillance at drug dispensing.
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In routine care, PGx testing is predominantly performed within hospital pharmacy or clinical
chemistry laboratories. Hospitals additionally maintain a separate EMR for registered patients.
Generated PGx results are typically recorded in the hospital’s EMR and are communicated with
requesting pharmacists of physicians in primary care by paper or electronic reports.

2.3. Ethics Approval

All subjects gave their written informed consent for enrolment before they participated in the
study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of Leiden University Medical Center (LUMC) (P14.081). Patients
provided informed consent for data collection regarding their medication and related outcomes from
both pharmacy and GP EMRs within 3 years of enrolment.

2.4. DNA Collection, Isolation, Extraction and Genotyping

After providing signed informed consent, pharmacists collected a 2mL saliva sample from
participating patients using the Oragene DNA OG-250 (DNA Genotek Inc). The samples were
transported to the PGx laboratory in Leiden University Medical Center by research staff or mail. DNA
was extracted in accordance to Oragene DNA OG-250 isolation procedure, where a solution volume
of 100μL, instead of 200 μL, was used. The DNA concentration was quantified in each sample with
NanoDropPhotometer (Thermo Fisher Scientific), and DNA quality was assessed with the use of the
260 nm/280 nm absorbance ratio. Genotypes of CYP2C9, CYP2C19, CYP2D6, CYP3A5, DPYD, SLCO1B1,
TPMT and VKORC1 were determined using the Drug Metabolizing and Transporters (DMET) Plus
Array (Affymetrix, Santa Clara, CA). CYP2D6 copy number variants were detected with qPCR (Thermo
Fisher Scientific, Massachusetts, USA). The DMET array was supplemented with the DPYD 1236G>A
and 2846A>T variants which were routinely tested in clinic at the LUMC. Validation of the assays is
described elsewhere [29].

2.5. Translation of Genotype to Phenotype and Return of Results

Genotypes for the eight pharmacogenes were translated into predicted phenotypes using the
DPWG guidelines. A paper report holding the genotypes, predicted phenotypes and the DPWG
therapeutic recommendation for the drug of enrollment was devised and sent to the patients’ general
practitioner (GP) and pharmacist by mail and/or fax (see Supplementary Figure S1 for an example
report). The report held the request to record the entire PGx profile in the EMR to enable the clinical
decision support system when drug-gene interaction is encountered during drug prescribing or
dispensing (see Figure 1). Predicted phenotypes must be recorded in the EMR in a contra-indication
format to enable deployment of the relevant guideline through the clinical decision support system.
Even if patients are predicted to be extensive metabolizers (EM), we recommend that they still be
recorded as contra-indications to record the performance of this test. However, pharmacy EMRs can
hold a maximum of 10 contra-indications. It is important to note that the pilot study is initiated through
the pharmacists and therefore the GPs who receive the paper report may have had no prior knowledge
about the existence of the IP3 pilot study.
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Figure 1. Clinical decision support during drug dispensing. A patient who is CYP2D6 PM (as noted in the
electronic medical record (EMR) as contra-indication, as indicated by “CIN” (contra-indication) receives
a prescription for venlafaxine (a) which triggers a pop-up with the relevant Dutch Pharmacogenetics
Working Group (DPWG) recommendation directing selection of alternative drug (b).

2.6. Healthcare Provider Incorporation of PGx Results in Drug Prescribing and Dispensing

When an actionable drug-gene interaction is encountered, the DPWG guideline directs adjustment of
drug, dose or vigilance of pharmacotherapy to avoid potential adverse drug reactions or lack of efficacy.
However, pharmacists are free to choose whether to adhere to the DPWG guidelines. In The Netherlands,
and within the IP3 study, pharmacists must discuss pharmacotherapy alteration, resulting from medication
surveillance, with the prescribing physicians before the prescription can be altered.

2.7. Groups for Analysis

Patients have been stratified into three groups for comparison (see Table 1): 1) those who did not
encounter an actionable drug-gene interaction for the drug of enrolment, 2) those who encountered
an actionable drug-gene interaction for the drug of enrolment and whose health care providers chose
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to adhere to the DPWG guideline, and 3) those who encountered an actionable drug-gene interaction
for the drug of enrolment and whose health care providers chose not to adhere to the DPWG guideline.

2.8. Outcomes and Analyses

In this side-study, the primary outcome for quantifying the feasibility of the panel-based approach
is whether the PGx panel results were recorded as a contra-indication in both the GP and pharmacist
EMRs at the time of follow-up.

In this side-study, the primary outcome for quantifying the real-world impact of the panel-based
approach is the number of newly initiated drugs for which potential drug-gene interactions are
encountered, since enrolment, and whether these interactions are actionable. A potential drug-gene
interaction is encountered when a patient, regardless of their phenotype (e.g., CYP2D6 PM, IM or
EM), receives a new prescription for a drug for which an actionable DPWG guideline is available and
the interacting gene was included in the IP3 panel (e.g., metoprolol-CYP2D6 guideline). A potential
drug-gene interaction becomes an actionable when the patient’s predicted phenotype directs adjustment
of pharmacotherapy, based on the relevant DPWG guideline (e.g., patient is CYP2D6 PM and initiates
metoprolol). See Supplementary Table S2 for a list of drugs for which actionable DPWG guidelines are
available and IP3 panel results can be used to identify potential and actionable drug-gene interactions.
To explore which target group may benefit most from panel testing, we investigate whether baseline
demographic variables (gender, age, BMI, number of comorbidities and number of comedications) are
associated with an increasing number of prescribed drugs with potential drug-gene interactions within
follow-up by using univariate negative binomial regression. The secondary outcome is healthcare
utilization as a result of pre-specified drug-gene interaction associated adverse drug reactions within
12 weeks of enrolment. This is a composite endpoint of GP consults (in person, by phone or by e-mail),
emergency department (ED) visits, and hospitalizations. These drug-gene interactions associated
adverse drug reactions were defined before data collection was initiated and are based on the literature
underlying the DPWG guidelines. For example, if a patient enrolled on simvastatin with a SLCO1B1
TC genotype consults their GP regarding muscle pain symptoms within 12 weeks of initiation, this is
considered a drug-gene interaction associated adverse drug reactions since SLCO1B1 TC and CC
carriers are at higher risk for statin-induced myopathy [30]. See Supplementary Table S3 for an overview
of pre-specified drug-gene interaction associated adverse drug reactions and underlying literature.
We compare the frequency of the composite endpoint among patients who encounter an actionable
drug-gene interaction and adhered to the DPWG guidelines (group 2) to those who did not encounter
an actionable drug-gene interactions associated adverse drug reactions(group 1), using binomial logistic
regression in a non-inferiority analysis. We have set a non-inferiority at a margin of 1.2. Secondly,
we compare the frequency of the composite endpoint among patients who encounter an actionable
drug-gene interaction, but did not adhere to the DPWG guidelines (group 3), to those who did not
encounter an actionable drug-gene interaction (group 1), using binomial logistic regression.

3. Results

3.1. IP3 Cohort and Follow-Up

Overall 200 patients were enrolled in the IP3 study between November 2014 and July 2016.
Patient characteristics are presented in Table 1. The database containing the genotypes and predicted
phenotypes is available at https://databases.lovd.nl/shared/individuals (patient IDs 184080-184279).
62 (31.0%) patients encountered an actionable drug-gene interaction for the drug of enrolment,
as previously reported by Bank et al. [29]. Of these, health care providers chose to adhere to the DPWG
guideline in 49 (79.0%) cases. Data collection was performed retrospectively between April 2018 and
September 2018 in both pharmacy and GP EMRs; from pharmacy EMRs between May 4th 2018 and
May 29th 2018; and from GP EMRs between April 3rd 2018 and September 28th 2018. Data could be
retrospectively collected cross-sectionally from 200 (100%) and 177 (88.5%) pharmacy and GP EMRs,
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respectively (see Figure 2). The mean follow-up from pharmacy EMRs was 933 days (range 649–1279),
approximately 2.5 years. The mean follow-up from GP EMRs was 917 days (range 622–1238).

Table 1. Summary of patient characteristics in Implementation of Pharmacogenetics into Primary care
Project (IP3) cohort stratified by groups for analysis

Overall IP3 Study
Cohort (n = 200)

Groups for Analysis

Actionable Drug-Gene Interaction for
the Drug of Enrolment

(n = 62, 31.0%)

1) No Drug-Gene
Interaction for the

Drug of
Enrolment

(n = 138, 69.0%)

2) Health Care
Provider Adhered

to DPWG
Guideline

(n = 49, 24.5%) *

3) Health Care
Providers did not
Adhere to DPWG

Guideline
(n = 9, 4.5%) *

Gender

Female, n (%) 103 (51.5) 74 (53.6) 25 (51.0) 3 (33.3)
Male, n (%) 97 (48.5) 64 (46.4) 24 (49.0) 6 (66.8)

Age in years, Mean (SD) 61.6 (11.2) 62.3 (11.0) 60.9 (11.5) 56.8 (13.3)

BMI (kg/m2), Mean (SD) 28.3 (14.9) 28.9 (17.7) 27.1 (4.5) 27.4 (2.4)

Self-reported ethnicity father, n (%)

Caucasian 187 (93.5) 128 (92.8) 47 (95.9) 9 (100.0)
Other 13 (6.5) 10 (7.2) 2 (4.1) 0 (0.0)

Self-reported ethnicity mother, n (%)

Caucasian 188 (94.0) 129 (93.5) 47 (95.9) 9 (100.0)
Other 12 (6.0) 9 (6.5) 2 (4.1) 0 (0.0)

Drug of enrolment, n (%)

Amitriptyline 15 (7.5) 9 (6.5) 5 (10.2) 0 (0.0)
Atorvastatin 115 (57.5) 80 (58.0) 28 (57.1) 5 (55.6)
Citalopram 7 (3.5) 5 (3.6) 1 (2.0) 0 (0.0)
Escitalopram 3 (1.5) 2 (1.4) 1 (2.0) 0 (0.0)
Nortriptyline 17 (8.5) 10 (7.2) 5 (10.2) 2 (22.2)
Simvastatin 29 (14.5) 26 (18.8) 2 (4.1) 1 (11.1)
Venlafaxine 14 (7.0) 6 (4.3) 7 (14.3) 1 (11.1)

Number of comorbidities at
baseline, Mean (SD) **

4.6 (2.5) 4.4 (2.4) 4.9 (2.6) 4.4 (2.3)

Number of comedications at
baseline, Mean (SD) **

4.0 (3.3) 3.93 (3.4) 4.0 (2.9) 4.4 (3.0)

IP3: Implementation of Pharmacogenetics into Primary care Project; SD: standard deviation; BMI: body mass index;
* Excluding others (n = 4): Recommendation given after drug was discontinued (n = 1); same dose (n = 1); dose
increased and ECG unknown (n = 1); no drug-gene interaction and no action (n = 1). ** Based on n = 177 for whom
data collection from GP records was completed.

Figure 2. Flow chart or IP3 participant enrolment and follow-up.
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3.2. Feasibility: Record of PGx Panel Results in the Pharmacy and GP EMRs

Record of PGx panel results by both pharmacists and GPs are shown in Figure 3. Pharmacists
were able to record predicted phenotypes (including EMs) in 96.0% (n = 192) of pharmacy EMRs. In all
cases they were recorded as contra-indications (100%, n = 192). Pharmacists failed to document the
PGx results in 4.0% of cases (n = 8). The most common reason for failure of documentation (2.0%, n = 4)
was merely due to PGx paper reports being lost in the pharmacy. The second most common reason
was that the individual did not carry any aberrant variant, and was therefore predicted wildtype for
all genes; this was the case for three patients (1.5%, n = 3). Pharmacists, therefore, felt it was not
necessary to record EM phenotypes. Only one set of PGx results was failed to be documented in the
EMR since the pharmacist did not know how to (0.5%). A discrepancy between the reported results
and documented results was found in the records of two patients (1.0%). This was due to a manual
error on account of the pharmacist.

General practitioners were able to record the PGx results in 67.8% (n = 120) of patient records.
Of these, 34% (n = 59) were recorded as contra-indications and 35% (n = 61) in another format such as
a PDF file.

Figure 3. Record of pharmacogenetic panel results in the pharmacy and general practitioner (GP)
electronic medical records (EMRs).

3.3. Real-World Impact: Frequency of Newly Prescribed Drugs for Which PGx Results Were Available in the EMR

Table 2 shows the frequency of newly initiated drugs for which there were potential drug-gene
interactions and PGx results were available in the EMR. 97.0% (n = 194) of patients received at least
one subsequent drug for which PGx results were in the EMR. Within the follow-up time, a mean
of 2.71 drugs for which the PGx results were available were prescribed, of these 0.66 (24.2%) were
actionable drug-gene interactions, requiring pharmacotherapy adjustment. The most commonly
prescribed drugs for which PGx results were available were atorvastatin (14.4%), simvastatin (9.4%)
and pantoprazole (9.4%). The most common drugs which were actionable drug-gene interactions,
however, were atorvastatin (28.2%), metoprolol (13.0%) and amitriptyline (8.4%). To explore who may
benefit most from PGx-panel testing, Table 3 presents baseline demographics stratified by an increasing
number of newly initiated drugs for which there were potential drug-gene interaction. It seems that
the number of newly initiated prescriptions increases with age, number of comorbidities and number
of comedications, but this could not be statistically concluded.
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Table 2. Frequency of newly initiated drugs for which there were potential drug-gene interactions
in subsequent prescriptions after pharmacogenetics panel in 200 primary care patients with a mean
follow-up of 933 days (=2.56 years).

Number
of Patients

(%)

Three Most Commonly
Prescribed with Potential

Drug-Gene Interaction,
N (%)

Actionable
Drug-Gene
Interaction

(%)

Three Most Commonly Prescribed
with Actionable

Drug-Gene Interactions,
N (%)

Subsequent
drug 1

194 (97%)
1. atorvastatin, 69 (35.6%)
2. omeprazole, 26 (13.4%)

3. pantoprazole, 20 (10.3%)
47 (24.2%)

1. atorvastatin, 19 (40.4%)
2. amitriptyline, 11 (23.4%)

3. citalopram, 6 (12.8%)

Subsequent
drug 2

166 (83%)
1. atorvastatin, 32 (19,3%)
2. metoprolol, 29 (17.5%)
3. simvastatin, 21 (12.7%)

46 (27.7%)
1. atorvastatin, 14 (30.4%)
2. metoprolol, 10 (21.7%)

3. codeine, 6 (13.0%)

Subsequent
drug 3

115 (57.5%)
1. pantoprazole, 20 (17.4%)
2. omeprazole, 19 (16.5%)
3. simvastatin, 15 (13.0%)

23 (20.0%)
1. metoprolol, 7 (30.4%)
2. simvastatin, 4 (17.4%)

3. codeine/venlafaxine, 3 (13.0%)

Subsequent
drug 4

66 (33%)
1. simvastatin, 15 (22.7%)

2. pantoprazole, 11 (16.7%)
3. atorvastatin, 9 (13.6%)

15 (22.7%)

1. atorvastatin, 4 (26.7%)
2. venlafaxine/simvastatin/

clopidogrel, 2 (13.3%)
3. citalopram/omeprazole/codeine/

flecainide/metoprolol, 1 (6.7%)

Overall 541
1. atorvastatin, 78 (14.4%)
2. simvastatin, 51 (9.4%)

3. pantoprazole, 51 (9.4%)
131 (24.2%)

1. atorvastatin, 37 (28.2%)
2. metoprolol, 17 (13.0%)

3. amitriptyline, 11 (8.4%)

Mean per
patient (SD)

2.71 (1.1) - 0.66 (0.8) -

SD: standard deviation.

Table 3. IP3 cohort stratified by number of newly initiated drugs with a potential drug-gene interaction
within follow-up.

Overall IP3
Study Cohort

(n = 200)

0
(n = 6, 3%)

1
(n = 27, 13.5%)

2
(n = 52, 26%)

3
(n = 50, 25%)

≥4
(n = 65, 32.5%)

p-Value *

Gender

0.775Female, n (%) 103 (51.5) 4 (66.7) 12 (44.4) 24 (46.2) 27 (54.0) 36 (55.4)
Male, n (%) 97 (48.5) 2 (33.3) 15 (55.6) 28 (53.8) 23 (46.0) 29 (44.6)

Age in years, Mean (SD) 61.6 (11.2) 53.3 (16.3) 59.4 (10.6) 61.0 (11.5) 63.0 (10.5) 62.8 (11.1) 0.442

BMI (kg/m2), Mean (SD) 28.3 (14.9) 25.6 (2.6) 29.1 (5.8) 27.4 (4.5) 27.6 (4.8) 29.6 (25.2) 0.854

Number of
comorbidities at
baseline, Mean (SD) **

4.6 (2.5) 3.4 (1.1) 4.0 (2.2) 4.0 (2.5) 4.6 (2.3) 5.4 (2.6) 0.232

Number of
comedications at
baseline, Mean (SD) **

4.0 (3.3) 3.0 (2.1) 3.4 (3.4) 3.3 (3.4) 3.8 (2.7) 5.1 (3.4) 0.279

SD: standard deviation; BMI: body mass index; * Univariate negative binomial regression; ** Based on n = 177 for
whom data collection from GP records was completed.

3.4. Real-World Impact: Downstream Effects of Actionable Drug-Gene Interactions on Healthcare Utilization

Table 4 shows that patients who encountered an actionable drug-gene interaction and whose
health care providers adhered to the DPWG guidelines had a similar healthcare utilization as a result
of a drug-gene interactions associated adverse drug reaction (40.0%) to those who did not carry
an actionable drug-gene interaction (30.0%). This in line with our initial hypothesis. The 95%-CIs of
the incidence of composite endpoint drug-gene interactions associated adverse drug reaction of groups
1 and 2 overlap. We therefore observe that there is no difference between the two groups. However,
we cannot demonstrate non-inferiority since the upper limit of the 95%-CI of the OR of group 1 is not
lower than the non-inferiority margin of 1.2.
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We observed a much lower healthcare utilization as a result of a drug-gene interactions associated
adverse drug reactions among patients carrying an actionable drug-gene interaction but whose health
care providers did not adhere to the DPWG guidelines (0.0%) to those who did not carry an actionable
drug-gene interaction (30.0%). This is in contrast to our initial hypothesis.

Table 4. Healthcare utilization as a result of drug-gene interaction associated adverse drug reactions
within 12 weeks of enrolment.

Overall IP3
Study Cohort

n = 200

Actionable Drug-Gene Interaction for
the Drug of Enrolment

1) No Drug-Gene
Interaction for the

Drug of
Enrolment

n = 138 (69.0%)

2) Health Care
Provider Adhered

to DPWG
Guideline

n = 49 (24.5%)

3) Health Care
Provider did not

Adhere to DPWG
Guideline

n = 9 (4.5%)

GP EMR follow-up completed (%) 177 (88.5%) 120 (87.0%) 45 (91.8%) 8 (88.9%)
Number of patients experiencing drug-gene
interactions associated adverse drug reactions 56 (31.6%) 37 (30.8%) 19 (43.2%) 0 (0.0%)

Composite endpoint drug-gene interactions
associated adverse drug reactions

Number of patients, n (%) 54 (30.5%) 36 (30.0%) 18 (40.0%) 0 (0.0%)

95% CI 66.0%–80.6% 47.1%–73.7%

GP consults as a result of drug-gene
interactions associated adverse drug reactions

Number of patients, n (%) 52 (29.4%) 35 (29.2%) 17 (37.8%) 0 (0.0%)
Number of GP consults, Mean (SD) 53, 2.19 (2.11) 35, 2.06 (1.99) 18, 2.44 (2.36) 0, 0 (0)

ER visit as a result of drug-gene interactions
associated adverse drug reactions

Number of patients, n (%) 3 (1.7%) 1 (0.8%) 2 (4.4%) 0 (0%)
Number of ER visits, Mean (SD) 3, 1 (1) 1, 1 (1) 2, 1 (1) 0, 0 (0)

Hospitalization as a result of drug-gene
interactions associated adverse drug reactions

Number of patients, n (%) 1 (0.6%) 1 (0.6%) 0 (0.0%) 0 (0.0%)
Number of hosp., Mean (SD) 1, 1 (1) 1, 1 (1) 0, 0 (0) 0, 0 (0)

Binomial Logistic Regression (group 1 and 2)

OR [95%CI] * 1.81 [0.89, 3.67]

GP: general practitioner; OR: odd ratio; CI: confidence interval; * Including gender, age, and BMI as covariates.

4. Discussion

We report what is, to our knowledge, the first assessment of the real-world impact of pharmacist-
initiated pre-emptive panel-based testing in primary care. This side-study demonstrates that recording
of PGx panel results in the EMR is feasible and enables health care providers to (re)use these results to
inform pharmacotherapy of newly initiated prescriptions. 96% of PGx panel results were successfully
recorded in the pharmacy EMR, enabling 97% of patients to (re)use these results for at least one,
and 33% of patients for up to four newly initiated prescriptions, within a relatively short 2.5-year
follow-up. Of all newly initiated prescriptions with a potential drug-gene interaction (n = 541), 24.2%
(n = 131) were actionable drug-gene interactions, requiring pharmacotherapy adjustment. We expect
the potential impact of pre-emptive panel-based testing to further increase with time as the likelihood
of additional subsequent prescriptions increases.

With their dedication to medication surveillance, pharmacists are leading candidates to manage
requesting of PGx testing, recording of PGx results and application of the PGx guidelines. This is
confirmed by other pilot studies performed in pharmacy settings [31–35]. However, we found that
both pharmacists and GPs are very able to record PGx results in their EMRs as contra-indications
(96% and 33% of pharmacists and GPs, respectively); enabling deployment of relevant guidelines by
the clinical decision support system when a drug-gene interaction is encountered both at prescribing
and dispensing. An advantage of applying this double-verification is the minimization of the risk
of missing a drug-gene interaction. As a result, it is not disastrous that GPs also recorded them in
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other formats, thereby not enabling the clinical decision support system at prescribing, in 35% of
cases. In contrast, a recent study showed that genotyping results were sparsely communicated and
recorded correctly; only 3.1% and 5.9% of reported genotyping results were recorded by GPs and
pharmacists, respectively, within a similar follow-up time [20]. The discrepancy between these could
be due to the pilot study setting or differences in PGx reporting methods. IP3 study researchers
have visited the participating IP3 pharmacies multiple times within the follow-up period; possibly
unintentionally reminding or motivating pharmacists to record PGx results, which they may otherwise
have not performed. However, it is important to note that GPs were outside the scope of the pilot
study setting, as they were not the enrolling health care providers, and therefore provide a less biased
perspective on recording frequency. Still, it is much higher than that reported by Simoons et al. [20].
Surprisingly, 1.5% of PGx results were not recorded by pharmacists because they did not include
actionable genotypes. However, it is still of importance to document these results to avoid unnecessary
re-testing of the patient. Finally, the fact that discrepancies between reported results and the recorded
result were only observed in 1% of pharmacy EMR cases, indicates that the current manual system
of recording is error prone. Regardless of the low error rate, PGx results are static and therefore
life-long. It is therefore imperative that errors in the recording of PGx results are avoided. Future
initiatives should focus on the development of automated sharing of PGx results across EMRs. In the
Netherlands, such an initiative has been the launched but requires patient consent before it can be
utilized. The National Exchange Point (“Landelijk Schakel Punt” (LSP)) is a nationwide secured EMR
infrastructure to which nearly health care providers access [36]. Only when a patient has provided
written consent for the LSP, can a professional summary of the local pharmacy or GP EMR, including
PGx results, be downloaded by another treating health care provider in the same region; unless the
patient chose to shield this information. Alternatively, providing the PGx results directly to patients
may resolve the issue in terms of communicating and recording PGx results; for example, utilizing the
Medication Safety-Code card [37,38].

In the face of a time in which health care providers are confronted with an increasing number
of variables to optimize clinical decision making, it is of utmost importance that this information
is presented in a structured fashion; this is achieved by a clinical decision support system [39,40].
PGx testing results differ from other laboratory testing results because they remain applicable over
a patient’s lifetime. We have demonstrated that, even within a relatively short follow-up, the real-world
impact of a panel-based approach combined with a clinical decision support system is immense;
almost all (97%) of patients used PGx results for at least one, and 33% of patients for up to four
prescriptions within a relatively short 2.5-year follow-up. Of these, 24.2% (n = 131) were actionable
drug-gene interactions. Similar proportions of actionable drug-gene interactions in primary care were
found by Bank et al. (unpublished) [41]. Here, investigators overlaid the frequencies of phenotypes
as observed within the IP3 cohort with nationwide prescription data spanning one year and found
that 3.6 million incident prescriptions encountered a potential drug-gene interactions and of these,
856,002 (23.6%) encountered an actionable drug-gene interaction [41]. We observed drugs for which
results were useful; these were primarily statins and proton pump inhibitors. This finding is in
accordance with Samwald et al. [28]. The observed frequencies of potential drug-gene interactions,
however, are much higher than reported by others previously [19,28]. Samwald et al. indicated half
of the patients above 65 will use at least one of the drugs for which PGx guidelines are available
during a four year period, and one fourth to one third will use two or more of these drugs [28].
Schildcrout et al. reported that 60% of the population would benefit from PGx guided prescribing
within a 5-year period [19]. The higher frequency we observed could be a result of different target
populations and drugs. Our sample consisted of patients selected by pharmacist and who initiated one
of ten drugs, and therefore at higher risk for initiating subsequent drugs. Several promising studies
indicate the effectiveness and effect of PGx panel-based testing on healthcare utilization in psychiatry
and polypharmacy [22–27]. For example, Brixner et al. studied the effect of panel-based PGx testing
with 6 genes on the healthcare utilization within polypharmacy patients. Results showed that the
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PGx screened cohort had a lower rate of ER visits (RR = 0.29, 95% confidence interval (CI) = 0.15–0.55,
p = 0.0002) and a lower rate of hospitalizations (relative risk (RR) of 0.61, 95% CI = 0.39–0.95, p = 0.027).
With this decrease in ER visits and hospitalizations, the authors concluded that PGx panel-based testing
could potentially lead to cost-savings [23]. These cost savings may be potentially higher than that
observed in primary care since polypharmacy patients have a higher a priori risk of hospitalization,
as it increases with the number of comedications [42]. In this study we aimed to assess the downstream
effects of an actionable drug-gene interaction on healthcare utilization. Although we did not observe
a statistically significant difference between groups 1 (40%) and 2 (30%), we were not able to conclude
non-inferiority, since this is a side-study by design and therefore was underpowered for a non-inferiority
analysis. In contrast to our initial hypothesis we observed a much lower healthcare utilization among
group 3 (0%) patients when compared to group 2 (30%). However, this cannot be concluded, since the
adherence rate of HCPs was high, thereby resulting in a relatively low number of patients carrying
an actionable DGI but whose HCPs did not adhere to the DPWG guidelines. Another limitation to
this analysis is the retrospectively collected data from GP EMRs, which is prone to reporting bias.
Nonetheless, gold-standard evidence demonstrating (cost-)effectiveness of this approach is required to
convince stakeholders of population-wide implementation. An RCT aiming to generate such evidence
is underway [21].

However, questions regarding who should be tested, and when it is most cost effective to
perform pre-emptive panel testing, remain unanswered. In this side-study, we have chosen to
perform pre-emptive panel testing among those who received a first prescription for one of ten drugs.
Here, there is an initial delay of PGx testing results for the first prescription, but PGx results can be used
uninterrupted, if recorded in the EMR, when future drug-gene interactions are encountered. On the one
hand, it may be more cost-effective to perform population-wide testing at birth, to ensure maximization
of instances in which a PGx result is available when a drug-gene interaction is encountered. In contrast
to our approach, not one prescription will be delayed as a result of PGx testing. On the other hand, some
may never encounter drug-gene interactions, thereby unintentionally wasting resources on PGx testing.
To shed light on this issue, some have predicted which patients may benefit from PGx testing in the near
future algorithmically and using prescription data [43,44]. Others have modelled the cost-effectiveness
of testing a 40-year old for life-long prevention of adverse drug reactions using a Markov model [45].
Overall, a consensus has not been reached regarding whom and when to test [16]. Within this side-study
we observe the number of newly initiated prescriptions, and thus potential benefit of panel testing,
increases with age, number of comorbidities and number of comedications, although this was not
statistically significant. However, since 97% of this cohort made re-use of their panel results, we may
conclude that the in- and exclusion criteria of this study may be successful criteria in selecting patients
who will further benefit from panel testing. The most cost-effective target groups applicable for panel
testing must be further investigated.

In addition to unanswered timing and application of testing, the variants selected to be included
in a PGx panel also require additional curation. Recently, the DPWG has provided a suggested
panel (van der Wouden et al., unpublished) [46]. Here, variants included in the panel reflect the
entire set of existing DPWG guidelines and are continuously updated as the field of PGx expands.
It will be of utmost importance to record the version number of the tested panel, so that it can be
retrieved which variants were tested within a specific gene. Moreover, the most cost-effective technique
used to determine the PGx profile is also undetermined. As the cost of next-generation sequencing
decreases, we envision a future in which we may be able to extract relevant PGx variant alleles from
sequencing data [47], possibly making genotype based testing redundant. If this is to come into fruition,
the determining the cost-effectiveness of implementing PGx testing will become redundant, as the
information on PGx variants become secondary findings, free of additional costs. In this case, only
effectiveness will be of interest. Overall, the cost-effectiveness of a panel-approach is a dependant on
many variables including the target population, timing, tested variants and testing technique.
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5. Conclusions

Both pharmacists and GPs are very able to record PGx results into their respective EMRs,
thereby maximizing the potential benefits of PGx results when deployed by the clinical decision
support system in future prescriptions. Within this cohort, almost all patients were able to benefit from
the availability of the PGx-panel results in their EMR, indicating that the real-world impact of a panel
approach is immense. The downstream impact on healthcare utilization was unable to be concluded
due to the small sample size. Ongoing research will quantify the effects of pre-emptive panel-based
testing on patient outcomes [21]. Future research should focus on assessing the most cost-effective
approach regarding timing, target population, variants and techniques for PGx testing. Regardless,
we argue that in terms of logistics, delivery through a clinical decision support system is most feasible.
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Abstract: There is a special interest in the implementation of pharmacogenetics in clinical practice,
although there are some barriers that are preventing this integration. A large part of these
pharmacogenetic tests are focused on drugs used in oncology and psychiatry fields and for antiviral
drugs. However, the scientific evidence is also high for other drugs used in other medical areas, for
example, in cardiology. In this article, we discuss the evidence and guidelines currently available on
pharmacogenetics for clopidogrel, warfarin, acenocoumarol, and simvastatin and its implementation
in daily clinical practice.
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1. Introduction

In recent years, there have been important advances to understand how genetic variations are
associated with the efficacy and/or toxicity of medicines. Some of these studies have been randomized
clinical trials (RCT) for a variety of drug–gene combinations that have shown that the performance
of pharmacogenetic tests before prescribing a medication can improve patient health outcomes [1–5].
For this reason, nowadays, there is an important need to generalize the clinical implementation of
genomic medicine and pharmacogenetics (PGx).

There are some barriers that are preventing the integration of PGx in daily clinical practice [6].
Among them, we can highlight the lack of correlation between the different PGx guidelines and
those published by other professional organizations (oncology, cardiology, etc.) [7], the lack of a
clinically relevant PGx test panel, the need for training of health personnel and patients, and the
lack of information on cost-effectiveness studies [8,9]. All of those reasons prevent physicians from
demanding a proactive approach to PGx.

The most important PGx-based drug dosing guidelines are published by the Clinical
Pharmacogenetics Implementation Consortium (CPIC), the Royal Dutch Association for the
Advancement of Pharmacy—Pharmacogenetics Working Group (DPWG), and the Canadian

Genes 2019, 10, 261; doi:10.3390/genes10040261 www.mdpi.com/journal/genes141
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Pharmacogenomics Network for Drug Safety (CPNDS). In general, there is enough agreement
between the guidelines in terms of pharmacotherapeutic recommendations, but there are some aspects
in which there are discrepancies due to the methodology used to support the dose recommendations
that should be taken into account [10]. A large part of these PGx tests are focused on drugs used in
oncology, antiviral drugs [11], and psychiatry fields. However, the scientific evidence is also high for
other drugs used in other medical areas, for example, in cardiology. In our opinion, clinical pharmacists
are ideal candidates to translate the PGx to clinical practice since they are qualified to lead efforts to
guide optimal drug selection and drug dosing based on those results. However, most of them are
not fully aware of the advance in the knowledge of PGx and some advanced pharmacist functions in
applying clinical pharmacogenetic may require specialized education, training, or experience.

In this article we discuss the most relevant evidence currently available on PGx of cardiovascular
drugs, focusing on those drugs with available PGx information and genetic tests, and its implementation
into daily clinical practice. In order to provide a thorough analysis, we chose well-defined criteria.
We decided to use the Pharmacogenomics Knowledgebase (PharmGKB) [12], where strength of
evidence is rated in levels ranging from 1–4, with level 1 meeting the highest criteria. Thus, for this
review, we focused on clopidogrel, warfarin, acenocoumarol, and simvastatin, as all of them are
considered as level 1 for at least one variant (Table 1).

Table 1. Drug-genes interactions reported in this article and the corresponding PGx guidelines and
the level of evidence. CPIC: Clinical Pharmacogenetics Implementation Consortium, DPWG: Dutch
Pharmacogenetics Working Group, CPNDS: Canadian Pharmacogenomics Network for Drug Safety.

Drugs Genes PGx Guidelines Level of Evidence

Clopidogrel CYP2C19 CPIC, DPWG 1A

Warfarin CYP2C9, VKORC1 CPIC, CPNDS 1A

Acenocoumarol CYP2C9, VKORC1, CYP4F2 DPWG 1B

Simvastatin SLCO1B1 CPIC 1A

2. The Most Relevant Evidence in Pharmacogenetics of Drugs Used in Cardiology

2.1. Clopidogrel

Clopidogrel is a prodrug used as an antiplatelet in combination with acetylsalicylic acid in the
treatment of acute coronary syndrome (ACS), including patients undergoing stent implantation after
percutaneous coronary intervention (PCI) [13,14]. However, there is significant interpatient variability
in the response of clopidogrel as a significant number of patients show high incidence of secondary
cardiovascular events [15]. Several mechanisms were proposed for explaining the variable response to
the drug, particularly when patients undergo PCI [16]. Subsequently, different genetic variants were
associated with variability in response to the drug. The higher level of evidence is focused on the
CYP2C19 polymorphisms [17–21].

After absorption, 85% of the prodrug is inactivated by plasma esterases, and the remaining prodrug
is activated in the liver by hepatic cytochrome isoenzymes. The conversion to its active metabolite
depends partially on the CYP2C19 enzyme. Loss of function (LOF) CYP2C19 alleles (*2 (rs424485),
*3 (rs4986893), *4 (rs28399504), *5 (rs56337013), *6 (rs72552267), *7 (rs72558186), *8 (rs41291556),
*9 (rs17884712), *10 (rs6413438), *22 (rs140278421), *24 (rs118203757), and *35 (rs12769205), mainly the
CYP2C19*2 variant due to the higher frequency, were associated with lower levels of active clopidogrel
metabolite, reduced platelet inhibition, and higher rates of cardiovascular events [22]. The variant
CYP2C19*17 (rs12248560) is associated with a higher enzymatic activity, which means a lower
on-treatment platelet reactivity [23–26] in response to clopidogrel when compared with homozygous
wild-type carriers. However, CYP2C19*2/*17 carriers exhibited an increased platelet reactivity in
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response to clopidogrel, as compared with CYP2C19*1/*1 carriers [27], although data need to be
consistently replicated.

For this reason, in 2010, The US Food and Drug Administration (FDA)-approved drug label for
clopidogrel warned that tests are available to identify patients who were CYP2C19 poor metabolizers
and suggested an alternative treatment in these patients, as they may have reduced effectiveness of the
drug, therefore increasing the chance of secondary cardiovascular event rates in ACS and PCI patients,
compared with patients with normal CYP2C19 function [28]. The European Medicines Agency (EMA)
was positioned in a very similar way.

Nowadays, there have been some published clinical trials, meta-analyses, intervention studies,
and many observational studies supporting the evidence of genotyping patients for clopidogrel use in
ACS and PCI (Tables 2 and 3).
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2.1.1. Large-Scale Studies in High-Risk Patients

Several large-scale studies in high-risk patients (PCI–stent) have evaluated the clinical implications
of genetic variations in patients with coronary artery disease (CAD). In an article published at the
beginning of 2009, Collet et al. [29] examined 259 patients <45 years with a first ACS with clopidogrel
for at least one month, with 73% undergoing PCI. CYP2C19*2 carriers had a higher risk of death, ACS,
and urgent revascularization (p = 0.0005, HR = 3.69) compared with non-carriers.

During this period, 2208 patients were enrolled in the French Registry of Acute ST-elevation and
non-ST-elevation Myocardial Infarction (FAST-MI) [30], with 68.7% undergoing PCI. They evaluated
whether some genes previously associated with altered pharmacokinetics of clopidogrel were also
associated with cardiovascular events during the first year after ACS. Patients with two allelic variations
ABCB1 (TT) had a higher risk of cardiovascular events than those without allelic variation (CC) (Hazard
ratio, HR = 1.72, 95%CI: 1.20–2.47). The risk of death, ACS, or stroke in patients with PCI was 3.58
times higher in patients who carry two copies CYP2C19 LOF alleles compared to subjects without
this allele.

In a Genome Wide Association Study (GWAS) performed in a large Amish population [32], it was
seen that patients with increased age, greater BMI, higher triglycerides levels, and lower high-density
lipoprotein cholesterol were associated with a poorer clopidogrel response; these variables explained
less than 10% of the variation. In contrast, the heritability of ADP-stimulated platelet aggregation
in response to clopidogrel was 73%, suggesting a substantial genetic component. They showed that
in 277 ACS–PCI patients, the CYP2C19*2 polymorphism was associated with poorer cardiovascular
outcomes (HR = 2.42, 95%CI: 1.18–4.99, p = 0.02).

Genetic Post-Hoc Substudies of the TRITON 38 Trial

The efficacies of clopidogrel and prasugrel were compared in the TRITON 38 trial [42] where
13,608 ACS–PCI–stent patients were included. Prasugrel reduced the percentage of cardiovascular
death, ACS, or stroke at 15 months post-ACS, although it increased cases of bleeding.

Two genetic post-hoc studies of the TRITON-TIMI trial have been published by Mega et al. [17,22].
In a first approach [22], they evaluated the association between genetic polymorphisms in CYP450
and secondary cardiovascular events in the clopidogrel subgroup. Patients who carried LOF alleles
showed higher risk of cardiovascular death, ACS, or stroke compared with non-carriers (HR 1.53,
95%IC: 1.07–2.19, p = 0.01) and a higher risk of stent thrombosis (HR = 3.09, 95%CI: 1.19–8.00, p = 0.02).
Months later, in a second article [17], they assessed the effect of the ABCB1 polymorphism by itself and
alongside variants in CYP2C19 on cardiovascular outcomes. Both variants (CYP2C19*2 and ABCB1)
were significant independent predictors of cardiovascular death, ACS, or stroke (ABCB1 3435 TT vs.
CT/CC, HR 2.01, 95% CI: 1.30–3.11, p = 0.0017; CYP2C19 LOF alleles carriers vs. non-carriers, HR 1.77,
IC95%: 1.11–2.80, p = 0.0155). When the participants were divided into four groups on the basis of
ABCB1 3435 C > T and CYP2C19 status, those who did not carry at-risk genotypes in either gene had a
significantly lower rate of cardiovascular death, ACS, or stroke at 15 months compared to those who
were either carriers of CYP2C19 LOF alleles, ABCB1 3435 TT homozygotes, or both (p = 0.0002).

During this period, another post-hoc study was published by Sorich et al. [31]. Individuals with a
CYP2C19 LOF genotype had a higher risk of cardiovascular death, ACS, or stroke than non-carriers in
the clopidogrel group (RR 1.62, 95%CI: 1.27–2.06).

Genetics Post-Hoc Substudy of PLATO

In the PLATO trial [43], ticagrelor and clopidogrel were compared in patients with ACS, of whom
only 64% had undergone PCI. In the genetic substudy including 10285 [33], PLATO demonstrated an
increased rate of cardiovascular events in CYP2C19 LOF carriers in the first 30 days of treatment with
clopidogrel than in those with normal alleles, but they didn’t find significant difference in outcomes
over the full follow-up period. Although ABCB1 polymorphism was also genotyped, the combination
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of both variants (CYP2C19 and ABCB1) comparing LOF carriers versus non-carriers in the clopidogrel
group was not compared.

2.1.2. Meta-Analyses of Large-Scale Studies

These studies and others were combined in several meta-analyses. In 2015, a systematic review
of them was published by Osnabrugge et al. [44]. Most of the studies included in the meta-analysis
showed statistical significance between polymorphisms and clinical endpoints, e.g., major adverse
cardiovascular events (MACE) and stent thrombosis. However, the meta-analysis concluded that the
association between CYP2C19 LOF alleles and clinical efficacy of clopidogrel differed widely with
regard to assessment, interpretation of high heterogeneity, and publication bias. Also, personalizing
antiplatelet management based on genotyping is not supported by the currently available evidence [44].

2.1.3. Non-Randomized Clinical Trials

Others prospective, non-RCTs of CYP2C19 genotype-guided clopidogrel therapy with clinical
outcomes have been performed. In 2016, our group published a study with the aim of analyzing if the
CYP2C19/ABCB1 genotype-guided approach, in which the choice of antiplatelet therapy is based on the
genetic test, could reduce the rates of cardiovascular events and bleeding compared to a non-tailored
approach in 719 patients (more than 86% with ACS) who had undergone PCI with stent [35,45].
The primary endpoint (composite of cardiovascular death, ACS, or stroke during 12 months after
intervention) occurred in 10.1% in the genotyping group and in 14.1% in the control group (HR 0.63,
95% CI (0.41–0.97), p = 0.037). The results showed that there was no difference in major and minor
bleeding between the two groups (4.1% vs. 4.7%, HR = 0.80, 95%CI (0.39–1.63), p = 0.55) [35].

2.1.4. Clinical Trials

In 2016, Shen et al. published a study where 628 CAD patients undergoing PCI were divided into a
control group (n = 319) and an intervention group (n = 309), which were tested for CYP2C19 [36]. In the
intervention group, extensive metabolizer patients received 75 mg daily of clopidogrel, intermediate
metabolizer patients received 150 mg daily of clopidogrel, and poor metabolizer patients received
ticagrelor 90 mg twice daily. The control group received clopidogrel 75 mg daily. The rates of MACE
in the intervention group were lower than those in the control group at 1, 6, and 12 months (P = 0.010).
There were no differences in the rates of bleeding between both groups (P > 0.05).

In 2012, a clinical trial testing this strategy was published (RAPID GENE Study, NCT01184300) using
a novel point-of-care genetic test to identify carriers of the CYP2C19*2 allele, which aimed to assess a
pharmacogenetic approach to dual antiplatelet treatment after PCI [37]. The CYP2C19*2-pharmacogenetic
strategy after PCI was effective in reducing high on-treatment platelet reactivity at day 7 in CYP2C19*2
carriers. Recently, the same group confirmed that the identification of these genetic variants in patients
with STEMI receiving PCI is feasible at the bedside and demonstrated that treatment of CYP2C19*2, *17,
and ABCB1 TT carriers with prasugrel resulted in a significant reduction in high platelet reactivity after
1 month compared to an augmented dosing of clopidogrel [38].

In 2013, 600 patients with CAD undergoing PCI randomly received a personalized antiplatelet
therapy or conventional antiplatelet treatment and followed for the 180-day period after randomization.
In the intervention group, the antiplatelet therapy was chosen according to CYP2C19 phenotype. In the
control group, the patients received conventional antiplatelet treatment. The incidence of the primary
end point (MACE) was 9.03% for patients assigned to conventional treatment and 2.66% for patients
assigned to personalized therapy (p < 0.01), without differences in bleeding events between the 2
groups [39].

The PHARMCLO RCT is another clopidogrel pharmacogenetic study published in 2018 [40]. It is
a prospective, multicenter RCT achieved in Italy between 2013 and 2015. 888 patients hospitalized
for ACS were randomly assigned to standard of care or the PGx intervention arm, which included
the genotyping of ABCB1, CYP2C19*2, and CYP2C19*17 using an ST Q3 system that provides data
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within 70 min at each patient’s bedside. The patients were followed up for 12 months for the primary
composite endpoint of cardiovascular death and the first occurrence of nonfatal myocardial infarction,
nonfatal stroke, and major bleeding was defined according to Bleeding Academic Research Consortium
type 3 to 5 criteria. The study was prematurely stopped at only 25% of prespecified enrollment, because
of the lack of in vitro diagnosis certification of the genotyping instrument. However, despite only
enrolling a fraction of the anticipated sample size, the primary endpoint occurred in 15.9% in the
intervention arm and in 25.9% in the standard-of-care arm (HR: 0.58; 95% CI: 0.43 to 0.78; p < 0.001).

In the Netherlands, a multicenter trial named Cost-effectiveness of Genotype Guided Treatment
With Antiplatelet Drugs in STEMI Patients: Optimization of Treatment (POPular Genetics,
NCT01761786) started in 2011 to assess the efficacy, safety, and cost-effectiveness of the CYP2C19
genotype-guided antiplatelet treatment strategy, using clopidogrel in non-carriers of the CYP2C19*2 or
*3 allele and ticagrelor or prasugrel in carriers of the CYP2C19*2 or *3 allele in 2500 STEMI patients. [41].
Similarly, the Tailored Antiplatelet Therapy Following PCI (TAILOR-PCI) is a multi-site, open label,
prospective, randomized trial, where 5000 patients with ACS or stable CAD who underwent PCI with
stent will be recruited and randomized to receive a conventional therapy or a CYP2C19 genotype-based
anti-platelet therapy approach (NCT01742117).

2.1.5. Meta-Analyses

In 2018, a meta-analysis performed by Kheiri et al. [46] was published, including six RCTs with a
total of 2371 patients. Of those studies, only three trials included ACS patients [39,40,47], Tuteja et al. [48]
was not published and included CAD patients, Tomaniak et al. [49] included stable CAD patients, and
Robert et al. [37] mainly included CAD (only 37% ACS). The results showed that the rate of MACEs
was not significantly different between intervention groups and control groups (8.9% vs. 12.8%, RR0.67
IC 0.35–1.27, p = 0.22, I2 = 74%). The high heterogeneity was due to inconsistency in definitions of
MACE among the trials, different follow-up times, different genotype testing systems with varied
tested alleles, and a variety of dosing algorithms. Sensitivity analysis by excluding the unpublished
trial [48] resulted in a significant reduction of MACE in favor to the genotype-guided group with
almost no heterogeneity (RR 0.55, 95%CI 0.41–0.74, p < 0.01, I2 = 2%). Similarly, a sensitive analysis by
including only the three trials that assessed genotype testing exclusively in ACS patients suggested a
significant reduction of MACE.

2.1.6. Guidelines

Taking into account all the commented information, clopidogrel should be considered as an ideal
target for pharmacogenetic intervention, at least in high-risk patients, due to the high level of evidence
associated with the reduction of cardiovascular events rates and because there are other alternatives of
antiplatelet drugs which are not affected by CYP2C19 polymorphisms. This is supported by CIPC and
DPGW guidelines, which have labelled the clopidogrel–CYP2C19 interaction as 1A. The CPIC and the
DPWG recommend the use of genetic information to guide clopidogrel therapy, especially in ACS
patients who have undergone PCI [50–53]. Both guidelines recommend considering an alternative
drug for CYP2C19 poor or intermediate metabolizers due to increased risk for reduced response
to clopidogrel.

In low-risk patients (no PCI–stent), no relationship was found between CYP2C19*2 status and
adverse outcomes [34,54]. Despite the evidence and the PGx guidelines, the current guidelines for the
treatment of ACS by the American Heart Association/American College of Cardiology (AHA/ACC)
and the guideline recommendations by European Society of Cardiology do not make references to the
possibility of carrying out the pharmacogenetic test even in high-risk patients (ACS–PCI–stent) and, in
consequence, they contradict the CPIC and DPGW guidelines and the FDA and EMA recommendations.
A recent and very good review of the lack of updating of the American and European cardiology
guidelines of ACS with respect to the clopidogrel test has been published by Luzum and Cheung [7].
The AHA/ACC recommends against routine pharmacogenetic testing for clopidogrel because no RCTs
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have demonstrated the testing improves patient’s outcomes [55]. According to the authors of this
article [7], the level of evidence supporting by CYP2C19 genotype-guided clopidogrel therapy in
patients that received PCI is at least as strong as the other genetic tests recommended by the AHA/ACC.
Fortunately, several institutions have implemented pharmacogenetic testing for clopidogrel despite
the negative recommendation by AHA/ACC [35,45,56,57] and they found improvement in the clinical
results of patients [58,59].

2.1.7. Cost-Effectiveness Studies

There are different cost-effectiveness studies supporting that preventive genotyping test of
CYP2C19 is cost-effective and could be applicable in clinical practice [60–63]. In collaboration
with The Golden Helix Foundation, in 2018 we performed a cost-effectiveness analysis of
pharmacogenomic-guided antiplatelet treatment using the data published [60] by our team regarding
Spanish ACS patients who underwent PCI [35]. This study is one of the very few that aims to
compare the cost-effectiveness of antiplatelet treatment modalities retrospectively versus prospectively
genotyped patients for the CYP2C19*2, CYP2C19*3, and CYP2C19*17 alleles. Our analysis suggests
that the prospective treatment strategy costs slightly less and has a marginally higher effectiveness
compared to the retrospective group.

In 2015, Johnson et al. [64] estimated the financial impact of CYP2C19 genotyping in a theoretical
cohort of 1000 patients with ACS who received PCI–stent implantation and were treated with
clopidogrel, prasugrel, or ticagrelor in a managed care setting. The budget-impact analysis used
published event rates from primary literature to estimate costs of events analysis for three different
scenarios: Scenario A, no CYP2C19 genotyping; Scenario B, 50% of patients received CYP2C19
genotyping with appropriate treatment based on genotype; and Scenario C, 100% of patients received
CYP2C19 genotyping with appropriate treatment based on genotype. They concluded that important
financial benefits may be realized through use of genotype-guided antiplatelet therapy to reserve
prasugrel or ticagrelor use for patients with reduced CYP2C19 activity to avoid costs associated with
adverse cardiac events.

A systematic review of economic evaluation of pharmacogenetic testing for prevention of adverse
drug reactions was published in 2016 [65]. There was evidence supporting the cost effectiveness of
testing for different drugs, including clopidogrel.

2.2. Warfarin

Warfarin is an anticoagulant widely used for the prevention of thromboembolic and hemorrhagic
episodes [66,67]. The drug decreases the activation of vitamin K-dependent coagulation factors by
inhibiting the enzyme epoxide reductase [68]. Due to the great variability in the individual response
and a narrow therapeutic window, there is a significant risk of thromboembolism if the doses are less
than adequate, or of hemorrhage in case of overdose [69] for patients with the same International
Normalized Ratio (INR) target [67].

Different algorithms based on clinical parameters such as age, weight, and height were published,
but these are inaccurate and explain only 12–22% of the dose variation [70]. In recent years, different
algorithms also including genetic polymorphisms that affect enzymes that mediate the metabolism
of the drug were published. The most popular variants are the genes that encode CYP2C9 and the
epoxide reductase of vitamin K in the VKORC1 gene, which affect the properties pharmacokinetics and
pharmacodynamics of warfarin [71].

The CYP2C9 gene has many allelic variants. Individuals homozygous for the wild-type
allele (CYP2C9*1) have a “normal metabolism” of S-warfarin, the most potent form of this drug.
The *2 (rs1799853) and *3 (rs1057910) alleles have a reduced enzymatic activity for the excretion of the
drug, which entails a decrease of around 30% and 80%, respectively [67].
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On the other hand, the enzyme encoded by VKORC1 catalyzes the reduction of vitamin K,
a necessary step to activate the coagulation factors. Its polymorphism, -1639G > A (rs9923231),
is associated with an increased sensitivity to warfarin and the decrease in the amount required [67].

2.2.1. Genotype-Guided Algorithms

Gage et al. [72] published the first warfarin genotype-guided algorithm, including 369 patients
who had a stable dose of warfarin. As genetic variants they only included CYP2C9*2 and *3 and as
demographic and clinical variants they included age, body surface area, gender race, target INR, and
comedication (amiodarone and simvastatin). The algorithm presented a coefficient of determination
(R2) of 39%. In 2008, the same group published a new algorithm [70] which improved the R2 = 54%.
They increased the number of patients to 1015 and included another genetic variant, VKORC1 1639G>A,
smoking status, and the indication of the drug [70].

For these reasons, in 2007, the FDA approved the inclusion in the drug’s data sheet of a dosage
table that recommends taking into account polymorphisms -1639G>A in the VKORC1 gene and *2
and *3 in the CYP2C9 gene, to set the initial dose [73]. The decision was made because many studies
showed that these polymorphisms were associated with great variability in the response to warfarin.

Other pharmacogenetic algorithms have been proposed that take into account both the genetic
polymorphisms and the clinical variables of the patients to estimate the maintenance dose of
warfarin [70,74–76], which seem to have greater accuracy than the tables in the technical data
sheet [77]. However, they do not evaluate whether the pharmacogenetic algorithm can lead to the
improvement of clinical results, such as % INR out of range, time to reach the INR, and frequency of
appearance of thrombotic or hemorrhagic events. These algorithms explain about 50% of the dose
variation [70,77], with greater benefit at the end of the dosage [74].

2.2.2. Clinical Trials

Different clinical trials have been published in recent years, measuring in these cases clinical
outcomes such as thrombotic and hemorrhagic adverse events, time to reach the INR, and time in
therapeutic range (Table 4). Among all of them we would like to highlight two pharmacogenetic
trials of warfarin therapy, European Pharmacogenetics of Anticoagulant Therapy (EU-PACT), and
Clarification of Optimal Anticoagulation through Genetics (COAG), reported by Pirmohamed et al. [3]
and Kimmel et al. [78], respectively, that were published at the same time with contradictory messages.
Pirmohamed et al. [3] recruited 455 patients with atrial fibrillation (AF) or venous thromboembolism.
For patients assigned to the genotype-guided group, warfarin doses were prescribed according to a
PGx algorithm for the first five days. Patients in the control group received a 3-day loading-dose regime
(fixed-dose strategy). After the initiation period, the treatment of all patients was managed according
to routine clinical practice. The primary outcome was the percentage of time in the therapeutic range
(TTR) of 2.0 to 3.0 for the INR during the first 12 weeks after warfarin initiation. The mean percentage
of time in the therapeutic range was 67.4% in the genotype group as compared with 60.3% in the
control group (p < 0.001). The mean time to reach a therapeutic INR was 21 days in the genotype group
as compared with 29 days in the control group (p < 0.001).

Kimmel et al. [78] recruited 1015 patients, 80% with AF or deep-vein thrombosis or pulmonary
embolism. The dose of warfarin during the first five days of therapy was determined according to
a dosing algorithm that included both clinical variables and genotype data, or to one that included
clinical variables only. The primary outcome was the percentage of TTR from day 4 or 5 through day
28 of therapy. At 4 weeks, the mean percentage of TTR was 45.2% in the genotype group and 45% in
the control group (p = 0.91). In North Africans patients, the mean percentage of time in the therapeutic
range was less in the genotype group than in the control group.

One possible explanation could be the difference observed in the genotyping results [79], as the
prevalence of homozygotes, who required the most significant dosing changes, was 17% in EU-PACT
versus 11% in the COAG trial for the VKORC1 variant and 3.4% in EU-PACT versus 1% in the COAG
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trial for the CYP2C9*2 and CYP2C9*3 variants. According to Shaw et al. [80] some key differences
between the two studies were length of follow-up time (12 weeks for EU-PACT and 4 weeks for
COAG), determination of dose in the non-genotype group (fixed dose in EUPACT and clinical dosing
algorithm in COAG), patient ancestry (2% non-European in EU-PACT and 33% non-European in
COAG), and the availability of genetic test results (EU-PACT genotype results were available in
approximately 2 h, COAG genotype results were not available before the first dose for 55% of patients).
Another possible explanation could be the different diseases affecting the patients which could also
affect the warfarin dosing.

After these trials, others have been published in which it was demonstrated that the
pharmacogenetic algorithm could reduce the time to reach the maintenance dose [81] or that a
lower number of thrombotic or hemorrhagic events was achieved [82]. In 2017, the GIFT randomized
clinical trial was published [82] to determine if genotype-guided dosing improves the safety of warfarin
initiation among undergoing hip or knee arthroplasty. The results showed that genotype-guided
warfarin dosing, compared with clinically guide dosing, reduced the combined risk of major bleeding,
INR of 4 or greater, venous thromboembolism, and death. Further research is necessary to determine
the cost-effectiveness of personalized warfarin dose.
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2.2.3. Meta-Analyses

The efficacy of the different algorithms published has been analyzed in different meta-analyses.
In 2014, Goulding et al. [83] performed a meta-analysis including nine RCTs which evaluated
genotype-guided warfarin dosing. Analysis of the percentage of TTR showed a statistically significant
benefit in favor of genotype-guided warfarin dosing (mean difference = 6.67; 95% CI 1.34, 12.0,
I2 = 80%). Similarly, they found a statistically significant reduction in minor bleeding, major bleeding,
and thromboembolism associated with genotype-guided warfarin dosing, RR 0.57 (95% CI 0.33, 0.99;
I2 = 60%). As conclusion, they considered that the genotype-guided warfarin dosing algorithm could
improve the clinical effectiveness.

In 2015, Liao et al. [84] performed a meta-analysis including seven trials. In total, 1910 patients
were included, 960 patients who received genotype plus clinical algorithm of warfarin dosing and
950 patients who received clinical algorithm only. The results showed that the percentage of TTR in
the genotype-guided group improved compared with the standard group in the RCTs when the initial
standard dose was fixed (95% CI 0.09–0.40; I2 = 47.8%), but not when the studies were using no fixed
initial doses. They did not find any difference in the incidences of adverse events (RR 0.94, 95% CI
0.84–1.04; I2 = 0%, p = 0.647) and death rates (RR 1.36, 95% CI 0.46–4.05; I2 = 10.4%, p = 0.328) between
the two groups.

In 2014, Tang et al. [85] performed a systematic review and meta-analysis including ten studies
with a total of 5299 patients. The control groups were treated with fixed dose or clinical algorithms.
The results showed that patients in the genotype-guided group had higher percentage of TTR than the
control group (I2 = 84%) and reduced risk for hemorrhagic complications (I2 = 0%).

In 2015, Belley-Cote et al. [86] performed a systematic review and a meta-analysis including 12 studies
(3217 patients) (11 studies with warfarin and 1 study with acenocoumarol and phenprocoumon).
The control group was treated with fixed dose or clinical algorithms. They concluded that the
genotype-guide approach compared to the non-genotype guide was not found to decrease a composite
of death, thromboembolism, and major bleeding (I2 = 10%), but the results improved the TTR (I2 = 79%)
in comparison with fixed vitamin K-antagonist dosing, but not with the clinical algorithms.

In 2015, Li et al. [87] conducted a meta-analysis of the published RCTs comparing PGx
algorithm-based warfarin dosing with clinical variants or standard protocols (control group). A total
of ten RCTs were retrieved for the meta-analysis, including 2601 participants. No heterogeneity was
found for the primary or subgroup analyses of major bleeding and thromboembolic events (I2 ≤ 25%).
The results showed that major bleeding and thromboembolic events were significantly lower in the
PGx group than in the control group. Similarly, there was a trend towards increased percentage of TTR
(p = 0.05) in the PGx group, but no difference was observed for over-anticoagulation (INR > 4).

In 2015, Dahal et al. [88] performed a meta-analysis including ten RCTs, which included
2505 patients, and compared PGx algorithm-based warfarin dosing with clinical variants or standard
protocols (control group). After one month, improved percentage of TTR and major bleeding
incidence (I2 = 26%) was observed, making this a cost-effective strategy in patients requiring longer
anticoagulation therapy.

In 2015, Shi et al. [89] included 11 trials involving 2678 patients in a meta-analysis. The results
showed that the PGx approach did not improve the TTR compared to control group (I2 = 82%), although
it significantly shortened the time to maintenance dose and the time to first therapeutic INR. Moreover,
the PGx approach significantly reduced the risk of adverse events and major bleeding (I2 = 15%).

2.2.4. Guidelines

In 2017 an update of the CPIC guidelines for pharmacogenetics-guided warfarin dosing was
published [90]. Evidence from the literature has permitted including another variant (CYP4F2
rs12777823), related to the limitation of the excessive accumulation of vitamin K that improves
the accuracy of dose prediction [91]. Similarly, the CPNDS clinical recommendation group has
published guidelines for the use of pharmacogenetic testing for variants in VKORC1 and CYP2C9 in
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adult and pediatric patients with an indication for warfarin [80]. They recommend testing for the
VKORC1 SNP (Single nucleotide polymorphism) -1639G>A (rs9923231) and the CYP2C9 alleles *2 and
*3 in order to better guide warfarin dosage.

2.2.5. Cost-Effectiveness Studies

Similar to clopidogrel, there are different cost-effectiveness studies supporting that preventive
genotype testing for warfarin is cost-effective. Most of the studies have demonstrated that the
genotype-guided dosing approach can lead to reduced bleeding and improve quality-adjusted life-years
(QALYs) gained. In 2009, Eckman et al. [92] examined the cost-effectiveness of genotype-guided
dosing (CYP2C9*2, CYP2C9*3, and/or VKORC1) versus standard induction of warfarin therapy for
patients with nonvalvular AF using the Markov decision model. Effectiveness was measured in QALYs.
They concluded that warfarin-related genotyping is unlikely to be cost-effective for typical patients
with nonvalvular AF, but may be cost-effective in patients at high risk for hemorrhage who are starting
warfarin therapy.

In 2009, Leey et al. [93] evaluated the potential clinical and economic outcomes of genotype-guided
warfarin therapy in elderly patients newly diagnosed with AF. A decision tree was designed to represent
the medical decision (pharmacogenetic testing or not) and the main clinical outcomes (embolic stroke,
bleeding). They found that any reduction in major bleeding as a result of pharmacogenetic testing
would lead to improved utility.

In 2013, Pink et al. [94] compared the cost-effectiveness of a variety of clinical dosing algorithms,
pharmacogenetic dosing algorithms, and new anticoagulant-based therapies. Warfarin pharmacogenetic
algorithms were more cost-effective than clinical-based dosing algorithms. Neither dabigatran nor
rivaroxaban were cost-effective options, but apixaban appeared to be the most cost-effective treatment
when warfarin therapy was poorly controlled.

2.3. Acenocumarol

Acenocoumarol is a vitamin K epoxide reductase inhibitor. The drug inhibits recycling of the
inactive oxidized to the active reduced form of vitamin K. It is used for the prevention of thromboembolic
and hemorrhagic episodes [95]. As with warfarin, different polymorphisms in CYP2C9 and VKORC1
genes have been associated with the efficacy of the drug.

2.3.1. Pharmacogenetics Algorithms

In the last years, several pharmacogenetics algorithms have also been published for acenocoumarol
in diverse populations. Verde et al. constructed an “acenocoumarol-dose genotype score” based on
the number of alleles associated with a higher acenocoumarol dosage carried by each participant for
each polymorphism [96]. They concluded that this approach could discriminate patients requiring
high acenocoumarol doses to achieve the target. Rathore et al. [97] and Krishna et al. [98] published
two algorithms for Indian populations, including demographic, clinical, and genetic variants, and the
coefficients of determinations obtained were 41% and 61.5%, respectively [97,98]. Four algorithms
were developed for European populations. In 2011, the European Pharmacogenetics of Anticoagulant
Therapy (EU-PACT) study group published an algorithm including CYP2C9 and VKORC1 variants and
clinical variables (age, sex, weight, height, and amiodarone use). The PGx algorithm explained 52.6%
of the dosage variance, whereas the non-genotype algorithm explained 23.7% [99]. Borobia et al. [100]
developed an algorithm for a cohort of 147 patients with thromboembolic venous disease who
were on stable doses including clinical variables (age, body mass index (BMI), amiodarone use, and
enzyme-inducer use) and genetic variations of CYP2C9, VKORC1, CYP4F2, and APOE. The clinical
factors explained 22% of the dose variability, which increased to 60.6% when pharmacogenetic
information was included (p < 0.001) [100]. Cerezo-Manchado et al. [101] published an algorithm
including 973 patients undergoing anticoagulation therapy. The algorithm was composite of clinical
factors (age and BMI) and genetic variants (VKORC1, CYP2C9, and CYP4F2 variants). The algorithm
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explained 50% of the variance in the acenocoumarol dosage, whereas the clinical algorithm explained
16% [101].

In 2016, a new algorithm including clinical (age, weight, amiodarone use, enzyme inducer
status, international normalized ratio target range) and genetic variables (CYP2C9*2 (rs1799853),
CYP2C9*3 (rs1057910), VKORC1 (rs9923231), and CYP4F2 (rs2108622)) to predict the most appropriate
acenocoumarol dosage for stable anticoagulation in a cohort of 685 Spanish patients was published
by our team in collaboration with Hospital de la Paz [102]. The R2 explained by the algorithm was
52.8% in the generation cohort and 64% in the validation cohort. When the patients were classified into
three dosage groups according to the stable dosage (<11 mg/week, 11–21 mg/week, >21 mg/week), the
percentage of correctly classified patients was higher in the intermediate group, whereas differences
between pharmacogenetic and clinical algorithms increased in the extreme dosage groups.

The utility of PGx-guided acenocoumarol and phenprocoumon prescribing during therapy
initiation was investigated in a prospective trial: EU-PACT [2]. The genotype-guided dosing algorithm
included clinical variables and genotyping for CYP2C9 and VKORC1 and the control-dosing algorithm
included only clinical variables for the initiation of acenocoumarol or phenprocoumon treatment in
patients with AF or venous thromboembolism. The primary outcome was the percentage of TTR in the
12-week period after the initiation of therapy. The intervention arm showed no statistically significant
difference in the mean percentage of time in the therapeutic INR range compared with the control
group. (p = 0.52). Some years later, to explore the potential reasons for these findings, the same team
performed subanalyses stratifying the data by the VKORC1 and CYP2C9 genotypes [103]. They realized
that the EU-PACT genetic-guided dose initiation algorithms for acenocoumarol and phenprocumon
could have predicted the dose overcautiously in the VKORC1 AA-CYP2C9*1/*1 subgroup.

2.3.2. Meta-Analyses

Recently, a meta-analysis has been published [104] including 15,754 patients. The CYP4F2*3
polymorphism was consistently associated with an increase in mean coumarin dose (+9% (95% CI
7–10%), with a larger effect in females, in patients taking acenocoumarol, and in Europeans.
The inclusion of the CYP4F2*3 in dosing algorithms slightly improved the prediction of stable coumarin
dose. New pharmacogenetic equations potentially useful for clinical practice were derived [104].

2.3.3. Guidelines

The DPWG recommends checking INR more frequently after initiating or discontinuing NSAIDs
in individuals taking acenocoumarol with at least one CYP2C9*2 or *3 allele. While VKORC1 genotype
has been found to contribute to acenocoumarol dose variability, there are no dosing recommendations
at this time because of strict INR monitoring by the Dutch Thrombosis Service. They recommend
checking INR more frequently in patients with the AA genotype [52,53].

2.4. Simvastatin

Simvastatin is a lipid-modifying agent used in the treatment of different kinds of
hypercholesterolemia, one of the most significant risk factors in cardiovascular disease. Furthermore,
it has shown a decrease of morbimortality in atherosclerotic cardiovascular disease patients, even those
with normal cholesterol levels.

Simvastatin has been significantly associated with skeletal muscle toxicity (myalgia, myopathy,
and rhabdomyolysis) [105], especially a high risk of myopathy with a dose of 80 mg daily [106].

Simvastatin inhibits the cholesterol production by competitive inhibition of HMG-CoA reductase,
increasing the number of LDL receptors on liver cells. Its metabolism is mediated by many CYP
isoenzymes (CYP3A4, CYP3A5, CYP2C9, CYP2C19, etc.) and its movement depends on SLCO1B1 and
ABCB isoforms [12]. The FDA approved a drug label for simvastatin indicating that simvastatin is
a substrate for the transport protein SLCO1B1. Genetic variants contained in genes encoding these
transporters and metabolic enzymes expression may affect a patient’s simvastatin response.
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2.4.1. Observational Studies

The SLCO1B1 enzyme, encoded by the SLCO1B1 gene, is involved in the simvastatin carriage from
intestinal to liver cells [12]. In this gene, there may be a variant, the c.521T>C (rs4149056), considered
in SLCO1B1*5, *15, and *17 haplotypes, which is the only one which has reached the highest level of
evidence about its association with interindividual differences in simvastatin patients’ responses [107].

Among healthy individuals, the SLCO1B1 521 CC genotype has been associated with higher
plasma concentration of simvastatin [108,109]. This genotype has been also significantly related to an
increased likelihood of muscular disease in patients treated with simvastatin after ACS (OR = 16.9;
95%CI = 4.7–61.1; p = 6.0E-4) and with a higher risk of muscular disease in occlusive vascular disease
or diabetes patients (RR = 2.6; 95%CI = 1.3–5; p = 0.004) [110] when compared with CT or TT genotypes.
Furthermore, CC compared to CT genotype confirmed these results, with SLCO1B1*5 CC individuals
showing a higher risk of muscular disease.

2.4.2. Clinical Trials

The STRENGTH study was a pharmacogenetics study of statin efficacy and safety. 509 patients were
randomized to atorvastatin, simvastatin, or pravastatin. The composite adverse event (discontinuation
for any side effect, myalgia, or CK > 3× baseline during follow-up) occurred in 99 subjects. SLCO1B1*5
genotype and female sex were associated with mild statin-induced side effects. In patients with
hypercholesterolemia, the C allele was associated with increased risk of adverse drug events when
treated with atorvastatin, pravastatin, or simvastatin (OR = 1.7; 95%CI = 1.04–2.08; p = 0.03) [111].
Furthermore, regarding patients with hyperlipidemia treated with simvastatin only, carrying the
SLCO1B1*5 (CC/CT vs. TT) allele was associated with higher risk of muscular diseases [112].

2.4.3. Guidelines

The FDA recommends against 80 mg daily simvastatin dosage. In patients with the C allele at
SLCO1B1 rs4149056, there are modest increases in myopathy risk even at lower simvastatin doses (40 mg
daily); if optimal efficacy is not achieved with a lower dose, alternate agents should be considered.
This annotation is based on the CPIC guideline for simvastatin and SLCO1B1 [107].

3. Discussion

There are many barriers that hinder the implementation of PGx in daily clinical practice. In our
opinion, once the regulatory agencies recommend doing the pharmacogenetic test, their implementation
should not be delayed. However, as we have shown in this review, it is not performing at the expected
rate as there is a disconnection between drug labels and the standard of care in daily clinical practice.

Regulators are often confronted with challenges involved in translating data from
pharmacogenomic studies into clinically relevant and meaningful product information, starting
with the level of scientific evidence required to justify the inclusion of PGx data in the product
information [11]. In case of the new drugs, there are two guidelines on pharmacogenomics during
drug development and the post-authorization phase, respectively [113].

With them, the EMA intends further to enable the potential of PGx during drug development
and surveillance and to gain insight into the associated scientific challenges and discuss potential
solutions. The guidelines are expected to improve genomic data-informed drug development and
clinical experience, thereby promoting understanding of interindividual drug response variations and,
consequently, providing guidance towards more personalized treatments in the interest of patients
and the public.

However, older drugs, such as warfarin, acenocoumarol, simvastatin, and clopidogrel, have been
subject to pharmacogenomic scrutiny by the EMA after their authorization [11]. So, the implementation
of the PGx test should be easy.
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Knowing the evidence commented above for clopidogrel, it would appear therefore that
genotype-directed therapy with clopidogrel would more likely benefit a population with the greatest
risk (PCI–stent). Administration of stronger antiplatelet drugs in low-risk patients would probably
not reduce the thrombotic risk, but would increase the risk of bleedings [114]. However, prescribing
stronger antiplatelet drugs only to the high-risk patients resistant to clopidogrel could add to a new era
of personalized medicine. The old “one size fits all” regime should come to an end; tailored antiplatelet
therapy is taking over, based on the patient’s individual risk factors for atherothrombotic events such
as HPR (High platelet reactivity), diabetes, ACS, and genetic polymorphisms.

The AHA/ACC guidelines recommend against routine pharmacogenetic testing because there
are no clinical trials published yet [14,55], but, before the no recommendation to do the PGx test of
clopidogrel by the AHA/ACC due to the lack of RCT, there was already one published by Xie et
al. [39], in which it was shown that the incidence of secondary cardiovascular events was lower in
the intervention group with respect to the control group, as we have commented in this review. It is
probably necessary to wait for the clinical results of the rest of RCTs discussed in this review and wait
for the next update of the AHA/ACC.

In our opinion, the level of evidence supporting CYP2C19 genotype-guided clopidogrel therapy
in patients undergoing PCI is high enough and endorsed by the regulatory agencies for the AHA/ACC
guide to include it, given that the AHA/ACC recommends other PGx tests in absence of prospective
clinical trials. The evidence showed by large-scale observational studies in high-risk patients suggests
that the CYP2C19 LOF alleles are associated with MACE. The meta-analysis published by Osnabrugge
et al. [44] showed that there is high heterogeneity between studies and publication bias and since the
validity of the overall conclusion of a meta-analysis depends, to a large extent, on the homogeneity
of the studies included, in our opinion this should be considered as an important limitation of
the meta-analysis [115]. Regarding clinical trials, one non-RCT [35] and five RCTs [36,37,39–41]
(and TAILOR-PCI) show that PGx tests can improve results in the health of patients. Similarly, the
meta-analysis including these RCTs [46] showed high heterogeneity due to inconsistency in definitions
of MACE, different follow-up time, different genotype systems, etc. Despite this, when an unpublished
article [48] was excluded from the meta-analysis, there was almost no heterogeneity and the results
showed that the intervention group reduced MACE and was statistically significant. Moreover, several
studies have shown that the application of PGx to clopidogrel is cost-effective.

Regarding warfarin, several PGx algorithms, including clinical variables, have been published
and considered efficient methods for determining individual stable warfarin dose. Although there is
enough information to show the association between genetic variants and warfarin dose, the results
published in RCTs are controversial, mainly because of the complexity, the important differences in
the design, the differences observed in the prevalence of the genotyping results [79], and the different
diseases included, all of which could affect warfarin dosing. In spite of this, most of the meta-analyses
of RCTs show at least an improvement of percentage of TTR when using the pharmacogenetic algorithm
compared with the standard protocol.

Sample size in genotyping trials (e.g., Tailored Antiplatelet Initiation to Lessen Outcomes Due
to Decreased Clopidogrel Response after Percutaneous Coronary Intervention [TAILOR-PCI trial,
ClinicalTrials.gov number, NCT01742117) should probably be calculated on the basis of the prevalence
of reduced-function or loss-of-function alleles that affect the phenotype, since we do not anticipate a
difference in outcomes in patients without such mutations [116].

In our opinion, the greatest benefit of the implementation of the PGx test for warfarin would be in
those patients who initiate the treatment; then we could anticipate if the drug is going to work or if it is
better to prescribe a new oral anticoagulant drug and in those patients who, after a reasonable period,
do not manage to maintain the INR in order to justify that it is due to poor metabolism of the drug.

Observational evidence suggests that the use of a genotype-guided dosing algorithm may increase
the effectiveness and safety of acenocoumarol therapy. Although it’s important to note that the
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published algorithms differ in the kind of patients and diseases, the clinical and genetic included
variables, and the methods used to develop the predictive models.

However, the only clinical trial achieved reported initially that genotype-guided dosing of
acenocoumarol (and phenprocoumon) did not improve the percentage of time in the therapeutic INR
range during the 12 weeks after the initiation of therapy. After performing subanalyses stratifying the
data by the VKORC1 and CYP2C9 genotypes [103], they realized that the EU-PACT genetic-guided
dose initiation algorithms for acenocoumarol (and phenprocumon) could have predicted the dose
overcautiously in the VKORC1 AA-CYP2C9*1/*1 subgroup.

This trial had limitations that could have influenced the final result; on the one hand, it is important
to know that the CYP2C9 enzyme has much less influence on the pharmacokinetics of phenprocoumon
than on the pharmacokinetics of warfarin [117], but on the other hand, the number of patients included
was lower than the number required according to the power calculation.

In our opinion, those patients who fail to reach or maintain the INR after a period of treatment
could benefit from the PGx test. More studies are necessary to implement the PGx test before the
prescription for guiding the dose of acenocoumarol.

Regarding simvastatin, an RCT showed that SLCO1B1*5 genotype and female sex were associated
mild statin-induced side effects. As the FDA and CPIC guidelines recommend the PGx test, this should
at least be used when symptomatology of myopathy starts.

In conclusion, PGx tests for clopidogrel in high-risk patients and warfarin in patients including
all indications could begin to be implemented in daily clinical practice, similar to simvastatin tests.
Acenocoumarol should be limited to patients who do not reach the INR after a certain time of treatment.
The algorithm could improve acenocoumarol dosage selection for patients who will begin treatment
with this drug, especially in extreme-dosage patients. Further studies are necessary to confirm that the
PGx test for acenocoumarol is ready for use.
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Abstract: Personalized medicine is focused on research disciplines which contribute to the
individualization of therapy, like pharmacogenomics and pharmacotranscriptomics. Acute
lymphoblastic leukemia (ALL) is the most common malignancy of childhood. It is one of the pediatric
malignancies with the highest cure rate, but still a lethal outcome due to therapy accounts for 1–3%
of deaths. Further improvement of treatment protocols is needed through the implementation
of pharmacogenomics and pharmacotranscriptomics. Emerging high-throughput technologies,
including microarrays and next-generation sequencing, have provided an enormous amount of
molecular data with the potential to be implemented in childhood ALL treatment protocols. In the
current review, we summarized the contribution of these novel technologies to the pharmacogenomics
and pharmacotranscriptomics of childhood ALL. We have presented data on molecular markers
responsible for the efficacy, side effects, and toxicity of the drugs commonly used for childhood
ALL treatment, i.e., glucocorticoids, vincristine, asparaginase, anthracyclines, thiopurines, and
methotrexate. Big data was generated using high-throughput technologies, but their implementation
in clinical practice is poor. Research efforts should be focused on data analysis and designing
prediction models using machine learning algorithms. Bioinformatics tools and the implementation
of artificial intelligence are expected to open the door wide for personalized medicine in the clinical
practice of childhood ALL.

Keywords: pharmacogenomics; pharmacotranscriptomics; high-throughput analysis; childhood
acute lymphoblastic leukemia

1. Introduction

Emerging high-throughput technologies, which enable the analysis of individual genomes,
epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes, so called “omics”, have
brought great advancements in the field of biomedical sciences [1]. Moreover, multiple genomic,
epigenomic, transcriptomic, and proteomic markers have already been included in routine diagnostic,
prognostic, and therapeutic protocols for a great number of diseases [2,3]. This is important for
designing new therapies, like molecular and gene therapy, which is the basis of personalized medicine.

Pharmacogenetics and pharmacogenomics are staples of personalized medicine. The goal of
pharmacogenomics is to create an effective therapy strategy based on the genomic profile of a patient.
Pharmacotranscriptomics is a field of study which investigates associations between variations in the
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transcriptome with the pharmacokinetics and the pharmacodynamics of drugs to detect interindividual
differences between patients, so that a more efficient dose regimen of a drug can be established.

There are two main approaches in pharmacogenomics and pharmacotranscriptomics:
One based on candidate pharmacogenes/pharmacotranscripts, the other based on testing the
entire genome/transcriptome (genome-wide association studies/transcriptome-wide association
studies (GWAS/TWAS)) for pharmacogenomic/pharmacotranscriptomic markers. Candidate
genes/transcripts studies have high statistical power, but their weakness is the fact that they lack the
capacity to discover new genes or transcripts. On the contrary, the strength of GWAS/TWAS lies in
the ability to identify relevant pharmacogenomic or pharmacotranscriptomic markers regardless of
whether their function was previously known, but they have low statistical power due to the number
of independent tests performed [4].

Acute lymphoblastic leukemia (ALL) is the most common malignancy of childhood, accounting
for around 30% of all childhood cancers and around 80% of all childhood leukemia. It is one of the
pediatric malignancies with the highest cure rate [5]. However, more than 10% of patients experience
an unfavorable outcome.

Considering that more efficient treatment of pediatric ALL has not been achieved by the
introduction of novel drugs into the treatment protocols, but instead by trying to diminish the
adverse effects of the drugs that are already included in the protocols, it is understandable that
pharmacogenomics and pharmacotranscriptomics have become very important in this field.

In the current review, we present the results of pharmacogenomics and pharmacotranscriptomics
studies conducted in pediatric ALL using high-throughput technologies. We aim to summarize the
contributions of these novel technologies in this field to find out what additional opportunities they
offer and to suggest future directions.

2. Childhood Acute Lymphoblastic Leukemia

Acute lymphoblastic leukemia (ALL) is a rare disease, representing about one fourth of all cancers
in children. The incidence rate of ALL among children aged up to 14 years is about 41:1,000,000, with a
peak in children aged 2–7 years. Biologically, the disease originates from T- and B-lymphoid precursors
of the bone marrow [6].

In childhood ALL, almost all patients achieve remission, and about 85% of the patients are
expected to be cured with modern treatment protocols [7]. The treatment of the patients with
ALL is usually tailored according to risk group stratification defined by clinical and laboratory
features [8]. Standard treatment options for childhood ALL encompass historically validated cytotoxic
agents grouped into so called therapeutic phases or elements. These include remission induction
chemotherapy agents—vincristine, a corticosteroid drug, anthracyclines, and asparaginase [9].
Post-induction (or consolidation) treatment options for childhood ALL include cyclophosphamide,
cytarabine, 6-mercaptopurine, and high-dose methotrexate. Most protocols also include an
intensification phase, utilizing the same drugs, namely vincristine, corticosteroids, anthracyclines, and
cytarabine, combined with another thiopurine, such as 6-thioguanine [10]. After completing intensive
treatment phases, the patient is due for maintenance therapy, whose backbone is based on daily oral
6-mercaptopurine and weekly oral methotrexate.

Hematopoietic stem cell transplantation also has a role in the treatment of ALL patients, such as
those with unfavorable clinical and laboratory features as well as patients with relapsed disease.

Efficient therapy causes side effects in 75% of childhood ALL patients [11]. Aside from this,
chemotherapy leads to delayed side effects and even permanent sequelae [12,13]. It is estimated that
1–3% of pediatric ALL patients have a lethal outcome due to the consequences of treatment side effects
and not due to the consequence of the disease [8,14].

It is necessary to emphasize that a patient with a malignancy has two genomes: The constitutional
genome, characteristic for all cells except the tumor clone; the other is the tumor genome that contains
acquired genetic variants and which changes during the evolution of tumor clones. Variants in the
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constitutional genome and germinative variants influence the transport and the metabolism of drugs,
making them responsible for the efficacy of the drugs and the side effects, while somatic mutations are
responsible for the resistance of the tumor to drugs [15].

The side effects of therapy in pediatric ALL are a consequence of the insufficient specificity of
drugs, the small therapeutic index of drugs, and the high exposure and long-term application of drugs.
The most frequent complications are hypersensitive reactions, neuro-, cardio-, and hepatotoxicity, the
toxicity of the digestive tract and kidneys, as well as myelosuppression and osteonecrosis [11]. General
toxicity can be diminished by patient stratification, while individual patient toxicity caused by genetic
variants of the genes responsible for drug metabolism can be prevented with specific genetic tests and
individually tailored chemotherapy [16,17].

3. Glucocorticoid Drugs

Synthetics glucocorticoids (GCs) are some of the most frequently used drugs in the treatment
of immune or inflammatory diseases, like inflammatory bowel disease, asthma, allergic rhinitis, etc.
The capability of GCs to induce apoptosis in thymocytes, monocytes, and peripheral T cells makes
them a central component in chemotherapeutic protocols in the treatment of leukemia, lymphomas,
and myelomas. GCs drugs, prednisone and dexamethasone, represent the basis of chemotherapy in
childhood ALL. The cytotoxic effect of GCs is connected with their antiproliferative effect, which is
realized in specific cell types using the glucocorticoid receptor (GR) [18]. A proposed mechanism
of action of GCs in lymphoblasts is that they activate the Bim protein, which induces apoptosis and
deactivates NF-κB and AP1, thus leading to a negative modulation in cell survival [19]. The most
important side effects of GCs drugs are osteonecrosis, sepsis, diabetes, myopathy, hypertension, and
behavioral disorders.

The mechanisms of the GCs response in childhood ALL are not well-known yet. Despite confusing
results of candidate genes studies, some variants in pharmacogenes could be considered as possible
pharmacogenomic markers of the GCs response in ALL.

One of the most important pharmacogenes is the NR3C1 gene that encodes the GR. Most frequently
studied variants in this pharmacogene, like rs6189/rs6190 (ER22/23EK) and rs56149945 (N363S), have
not shown a significant association with the therapeutic response to GCs in ALL [20,21]. Another
extensively studied variant, rs41423247 (BclI variant), has shown an association with the therapeutic
response [22].

It has been shown that the presence of the minor allele of variant rs6198 in the 3’UTR region
of the NR3C1 gene is associated with a poor response to GCs in pediatric ALL [23]. The variants,
rs33389 and rs33388, have shown to affect the GCs response only when they act as a haplotype [23,24].
On the other hand, the rs33389 C allele and rs33388 T allele as a part of NR3C1 ACT haplotype
(rs41423247-rs33389-rs33388) are strongly associated with GCs sensitivity.

ABCB1 is another pharmacogene relevant to the GCs response that has deserved special attention
in candidate gene studies. It encodes for a membrane transporter, P-glycoprotein, an efflux transporter
that ejects xenobiotics. The haplotype, ABCB1 CGT (rs1128503-rs2032582-rs1045641), was found to be
associated with a poor GCs response and increased the risk of relapse in the induction remission phase
of childhood ALL therapy [25,26]. Until now, only the ABCB1 C3435T variant was associated with
adverse effects, i.e., bone marrow toxicity [25] and grade 1 and grade 2 infections [27].

Glutathione S-transferases (GSTs) are genes of the same gene family that encode detoxification
enzymes, which initiate the process of elimination of xenobiotics. Three enzymes of this enzyme family
have been studied extensively in the context of the GCs response in childhood ALL: GSTM1, GSTT1,
and GSTP1. When it came to GSTT1, conflicting results were reported [23,28–30]. Variants in GSTM1
were shown to be associated with the severity of infections [27] and an increased risk of relapse [30].
In one study, it was shown that the GSTP1 GCs (rs1695-rs1138272) haplotype was associated with a
good response to GCs in the remission induction phase of childhood ALL therapy [23].
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A variant, rs1876829, in the CRHR1 gene was shown to be associated with GCs-induced
hypertension in childhood ALL [31]. While there are other candidate genes (ST13, STIP1, FKBP5)
whose products participate in the GCs pathway, they have not been studied in the context of the GCs
response in childhood ALL. Generally, there are not many pharmacogenomics studies related to the
GCs response in childhood ALL using the candidate gene approach.

As for candidate transcripts studies, they are even fewer. A higher expression of ABCB1, related
to the ABCB1 CGT (rs1128503-rs2032582-rs1045641) haplotype, was found to be associated with GCs
resistance [23].

Unlike the candidate gene approach, using high throughput methods in association studies
of the GCs response could point to relevant variants or clusters of variants that could be quite
important in determining the differences in the GCs response between childhood ALL patients. Novel
pharmacogene variants in pediatric ALL could be essential as prognostic and/or predictive biomarkers
for selecting the best dose and the right time for GCs treatment of this malignancy [32].

In one GWAS study [33], 440,044 single nucleotide polymorphisms (SNPs) which contributed to
the risk of relapse were studied in 2535 childhood ALL patients, after adjusting the studied cohort
of patients for genetic ancestry and therapeutic regimens. Of the 134 newly found SNPs associated
with the risk of relapse, four SNPs (rs6007758, rs41488548, rs10264856, rs4728709) were found to be
associated with a higher clearance of dexamethasone, two of which (rs10264856, rs4728709) were
located in the ABCB1 gene, which was also considered as a pharmacogene for GCs therapy using the
candidate gene approach.

In another GWAS [34], it was found that the single region of chromosome 14, which contains
SERPINA6/SERPINA1 genes, accounts for around 1% of the variance of plasma cortisol levels. Using
an Illumina Exome chip and the meta-analysis of GWAS, one SNP, rs12589136, was found to influence
the binding activity of the reactive center loop of the corticosteroid-binding globulin. This led to higher
plasma cortisol levels and higher cortisol binding activity. Thus, variant rs12589136 was shown to
influence plasma cortisol levels, which could be a future potential target of investigation when it comes
to GCs therapy outcomes in childhood ALL patients.

The toxicity of GCs treatment is a generally acknowledged problem in the remission induction
therapy of childhood ALL. Osteonecrosis due to the administration of dexamethasone for treating
high-risk ALL patients is one of the most dangerous toxicity events of GCs treatment in childhood
ALL. One GWAS study [35] found that the SNP, rs10989692, near the glutamate receptor gene, GRIN3A,
was associated with osteonecrosis. This association was supported by two replication studies of
independent cohorts of patients treated with GCs for various medical conditions. The SNP, rs10989692,
could be a germline genetic variant that predisposes to glucocorticoid-induced osteonecrosis. In
another GWAS study, SNPs in the ACP1 gene (acid phosphatase 1) were associated with an increased
risk of osteonecrosis during dexamethasone treatment of pediatric ALL [36]. The gene, ACP1, is
important for regulating cholesterol and triglyceride levels [37], meaning that lipid levels are possibly
relevant in the pathology of osteonecrosis in pediatric ALL.

Research in the field of pharmacotranscriptomic markers of the GCs response in childhood ALL
is still new and insufficient. However, some results have been reported. The long noncoding RNA
GAS5 was shown to be associated with a poor GCs response in childhood ALL during remission
induction therapy [38]. GAS5 imitates the glucocorticoid response element (GRE) sequence, which
is a DNA sequence to which the GC-GR complex needs to bind to in order to realize its effect, thus
GAS5 can bind the GC-GR complex and stop it from binding to the GRE sequence [39]. Additionally,
the association between two microRNAs, hsa-miR-142-3p and hsa-miR-17-5p, and GCs resistance in
pediatric ALL was found using a semantics-oriented computational approach [40].

Microarray gene expression analyses have shown that the modified expression of genes coding
for several proteins or transcription factors can be associated with GCs resistance in pediatric
ALL. Epithelial membrane protein 1 (EMP1) expression was shown to be higher in prednisone
poor responders, unlike in prednisone good responders [41]. EMP1 is a protein that promotes
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phosphorylation of Src and FAK [42]. The Src kinase family is essential in lymphocyte receptor
signaling [43,44]. In another microarray study, the expression of caspase 1 (CASP1) and its activator,
NLRP3, was shown to be increased as a result of poor methylation of their promoters. The elevated
level of CASP1 results in intensive cleavage of the GR and increased GCs resistance [45].

Genes involved in chromatin remodeling represent another group that shows potential in
contributing to the outcome of the GCs response in childhood ALL. One study using microarrays
has shown that a decreased expression of three subunits of the SWI/SNF complex (SMARCA4,
ARID1A, and SMARCB1) is associated with GR resistance [46]. Furthermore, when CREBBP, a gene
which encodes the transcription coactivator and histone-acetyltransferase CREB-binding protein, was
investigated using sequencing analysis, later confirmed with gene expression arrays, it was found that
damaging mutations in the CREBBP gene contributed to GCs resistance [12].

4. Vincristine

The vinca alkaloid vincristine (VCR) is widely used as an anticancer drug in both solid tumors
and other malignancies. VCR’s cytotoxic effects are achieved by the disruption of the mitotic spindle
microtubules as VCR binds to tubulin dimers. In this way, mitotic arrest is induced and leukemic
cells die during metaphase [47]. The toxicity of VCR consists of a peripheral neuropathy described by
neuropathic pain and sensory and motor dysfunction, causing the necessary decrease of the VCR dose,
the discontinuation of the ALL treatment, and morbidity.

A number of candidate genes involved in different aspects of VCR metabolism have been assessed
for an association with both sensory and motor peripheral neuropathies related to VCR treatment in
pediatric ALL patients. However, this kind of study has produced inconsistent data on genetic variants
associated with an increased risk of VCR-related neuropathy and also on their significance [13,48–55].
Nevertheless, evidence from multiple studies demonstrated that the CYP3A family of enzymes is
responsible for the metabolism of the VCR. The most important among them is the CYP3A5 enzyme,
and variations in the CYP3A5 gene could be essential for VCR-related side effects in pediatric patients
with ALL [49,56]. Namely, the most VCR-toxicity related CYP3A5 allelic variant in Caucasians includes
CYP3A5*3, with a single nucleotide change in intron 3 leading to a premature termination codon.
Patients that are carriers of the CYP3A5*3/*3 genotype with essentially no CYP3A5 expression have
severe VCR-related neurotoxicity side effects [57].

An agnostic approach was applied in GWAS, and the results showed that an inherited variant
in the promoter region of the CEP72 gene (rs924607, risk genotype TT) was associated with a higher
prevalence and severity of VCR-related peripheral neuropathy in children with ALL, during the two
years of continuation therapy [58]. Homozygous carriers of the CEP72 rs924607 risk TT genotype had
a cumulative risk of neuropathy that was significantly higher and the mean severity of neuropathy
was significantly greater compared with all other patients. CEP72 encodes a centrosomal protein
indispensable for microtubule formation. This genomic variant generates a binding site for a NKX-6.3
transcriptional repressor in the CEP72 gene promoter and consequently affects the decrease of CEP72
mRNA expression, endangering microtubule stability. The same study employed shRNA impairment
of the CEP72 mRNA expression in in vitro model systems and confirmed findings that reduced CEP72
expression in induced pluripotent stem neuronal cells as well as in leukemia cells increases their
sensitivity to VCR. The same findings were confirmed using primary ALL cells from ALL patients
who were homozygous carriers of the CEP72 rs924607 TT risk genotype.

The retrospective replication study showed no association between VCR-related neurotoxicity
during the induction phase of the ALL treatment and the CEP72 rs924607 risk TT genotype [59].
The distinctive genetic background of the two analyzed populations and/or possible mechanisms
causing peripheral neurotoxicity in the early or late phases of ALL treatment could be the reason.
Also, the precise number of VCR doses and the overall length of VCR treatment should be considered
when assessing VCR-related neurotoxicity [60]. It is possible that other genetic markers in CEP72 or
other genes (like CYP3A5) [61] were not taken into account when the replication study was done. It
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is important to notice that the end points’ or “phenotypes’” precise definitions are equally vital to
understand when assessing the pharmacogenetics potential of a given marker, as well as the sole
genetic variations associated with the phenotype [62].

A study using targeted sequencing and RNA-sequencing revealed that genetic variants in the VCR
transporter gene, ABCC2 (rs3740066 GG and rs12826 GG risk genotypes), were associated with VCR-related
neurotoxicity during the induction phase in pediatric ALL patients [63]. Furthermore, a statistically
significant protective haplotype, formed by rs3740066–rs3740065–rs12826–rs12762549–rs11190298 (ATAGG)
in the ABCC2 gene, was identified.

Recently, a whole-exome sequencing analysis combined with an exome-wide association study
was performed to find out genetic risk factors for VCR-related neurotoxicity [64]. The study identified
two variants significantly associated with an increased risk of high-grade VCR-related neurotoxicity,
rs2781377 in the SYNE2 gene and rs10513762 in the MRPL47 gene. Additionally, variant rs3803357
in the BAHD1 gene played a protective role regarding neurotoxicity. The SYNE2 gene or Nesprin-2
codes for a protein with an important role in various cellular and nuclear functions [65]. The MRPL47
gene codes for the mitochondrial ribosomal proteins involved in the oxidative phosphorylation system
and, through reduced adenosine triphosphate (ATP) production, the variants in this gene could
affect neuropathies, myopathies, and developmental disorders [66]. The BAHD1 gene, an important
regulator of gene silencing, already associated with tumor suppression and inflammation [67], could
be connected to sensory and autonomic neuropathy via an epigenetic mechanism [68].

A recent GWAS identified genetic variants, rs1045644 in the coagulation factor C homology
(COCH) gene and rs7963521 associated with the regulation of chemerin plasma levels, as being
significantly associated with VCR-related neuropathy in ALL children [69]. Variant rs1045644 in the
COCH gene has already been associated with progressive hearing loss and vestibular imbalance [70].
Variant rs7963521, acting through chemerin protein, influences the chemokine like receptor 1, G
protein-coupled receptor 1, and the C-C chemokine-like receptor 2, thus affecting various processes,
including angiogenesis, adipogenesis, osteoblastogenesis, diabetes, and inflammatory reactions [71].
The involvement of the CEP72 gene previously reported in VCR-related toxicity [58] was not confirmed
in this study [69].

An initial microRNA expression study pointed out involvement of miR-125b, miR-99a, and
miR-100 in resistance to VCR and daunorubicine treatment in different major subtypes of pediatric
acute leukemia [72]. MiR-125b was expressed significantly higher in patients resistant to VCR or
daunorubicine, specifically in ETV6-RUNX1-positive ALL patients. Both miR-99a and miR-100
showed an increased expression in ALL children with VCR and daunorubicine resistance, similar to
miR-125b. MiR-125b, miR-99a, and miR-100 are co-expressed in acute pediatric ALL [72]. Interestingly,
the individual overexpression of these miRNAs did not induce VCR resistance, but miR-125b in
combination with miR-99a or miR-100 induced a significant resistance to VCR, resulting in the
concept of the synergistic drug resistance modifying effect of combined miRNAs expression [73].
Eleven genes, including four genes encoding ribosomal proteins, were significantly downregulated
in ETV6-RUNX1-positive cells expressing high levels of miR-125b together with miR-100 and/or
miR-99a [73].

A microarray analysis was used in the study, which revealed the association of the rs12894467
risk allele T with the premature mir-300 and toxicity in the induction phase of ALL treatment [74].
In fact, the rs12894467 risk allele T leads to an upregulation of miR-300, whose target among others
are the transporters, ABCB1 and ABCC1, involved in VCR detoxification. An association between
rs639174 in DROSHA and vomiting was also found.

A recent high-throughput study [75] identified the A allele of rs12402181 in the seed region of
miR-3117-3p that could increase the efflux of the VCR through the ABCC1 and RALBP1 gene, and C
allele of rs7896283 in a pre-mature sequence of miR-4481, which could be involved in the regulation of
the axon guidance pathway genes and peripheral nerve regeneration, processes that are significantly
associated with VCR-related neurotoxicity. The ABCC1 gene codes for the multidrug resistance protein
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1, which mediates the efflux of a broad range of antineoplastic drugs, including VCR and variants that
alter the transporter functions and have already been associated with VCR-related neurotoxicity [76].

5. Asparaginase

Asparaginase is an enzyme that catalyzes the hydrolysis of the amino acid, asparagine (Asn),
into aspartic acid (Asp) and ammonia. In general, leukemic cells do not synthesize Asn like normal
cells, and are therefore dependent on its exogenous input [77]. The introduction of asparaginase leads
to a circulating Asn deficit, depriving the leukemic cell of exogenous Asn, and resulting in leukemic
cell death.

An asparaginase enzyme comes from various bacterial sources. However, only Escherichia coli
and Erwinia chrysanthemi asparaginase are used in medicine. Erwinia asparaginase has been found to
have less toxicity, but also less efficacy than native E. coli asparaginase [78]. Polyethylene glycol (PEG)
asparaginase, native E. coli asparaginase covalently linked to PEG, decreases proteolysis, increases
the drug’s half-life, and decreases the immunogenicity of the native E. coli asparaginase with a
corresponding efficacy [79].

Toxicities, like hypersensitivity, pancreatitis, coagulation abnormalities, encephalopathy, and liver
dysfunction, were reported to be related to asparaginase treatment. In cases of serious adverse drug
reactions, asparaginase therapy may be altered or withdrawn in some patients.

Early candidate gene approach studies identified certain genetic variants associated with adverse
drug reactions in children with ALL that received asparaginase during standard treatment ALL
protocol. An analysis of the genes coding for proteins in the asparaginase pathway (asparagine
synthetase—ASNS, the basic region leucine zipper activating transcription factor 5—ATF5, and
arginosuccinate synthase 1—ASS1) identified the genetic variation in the ATF5 gene, T1562C, that
affects the activation of endogenous asparaginase transcription after nutrition deprivation, influencing
ATF function and responses to treatment in ALL children [80]. Further study of asparaginase action
pathway genes revealed that the 3R3R ASNS genotype was correlated with pancreatitis and allergies
in ALL patients [81].

A “hypothesis-free” exome-wide association study (EWAS) was performed on whole exome
sequencing (WES) data [82], indicating that the rs3809849 in the MYBBP1A gene was associated with
an allergy, pancreatitis, and thrombosis related to asparaginase use. The same genetic variant was
also associated with a reduction in event free survival and overall survival. The MYBBP1A gene
encodes the MYB binding protein 1a, involved in many essential cellular processes, including cell
cycle control, mitosis, the nuclear stress response, and tumor suppression [83]. This protein is also
a co-repressor of NF-kB nuclear factor [84]. Furthermore, rs11556218 in the IL16 and rs34708521 in
the SPEF2 genes were both associated with thrombosis and pancreatitis related to asparaginase use.
The IL16 gene codes for interleukin-16, a cytokine with known roles in cancer development and
inflammatory and autoimmune responses [85]. The SPEF2 (Sperm Flagellar 2) gene codes for a protein
that is required for correct axoneme development, influencing protein dimerization activity [86]. A
concept that synergistic interactions between the genetic variants identified in this study is related to
asparagine-related toxicities (rs3809849 MYBBP1A, rs11556218 IL16, and rs34708521 SPEF2 genes) was
proposed [82].

An unbiased transcriptome-wide RNA targeted sequencing discovered that ALL patient leukemic
cells with relatively high levels of opioid receptor μ1 (OPRM1) are more sensitive to asparaginase
treatment compared to OPRM1-depleted leukemic cells [87]. Stimulation of the opioid receptor leads to
the activation of inhibitory Gi-proteins that influence cAMP levels and subsequently induces apoptosis
by caspase activation in leukemia cells [88]. It is proposed that OPRM1 can be targeted for effective
treatment of asparaginase-resistant ALL patients.

Using a GWAS approach, a single-genetic variant rs738409 in PNPLA3, which was strongly
associated with hepatotoxicity after induction therapy in pediatric ALL patients, was identified [89].
Patatin-like Phospholipase Domain Containing Protein 3 (PNPLA3 or adiponutrin) is an enzyme
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involved in triacylglycerol metabolism and signaling [90] and the genetic variant identified in this
study leads to the increase of hepatic triglycerides and the induction of fatty liver, thus conferring
an increased risk of hepatotoxicity. This finding was confirmed in a mice model in the same study.
The validation study confirmed the association of rs738409 in PNPLA3 with hepatotoxicity during the
induction phase of pediatric ALL therapy [75].

In another GWA study, a germline genetic variant, rs4958351, in the GRIA1 gene, associated
with an asparaginase allergy in pediatric ALL patients, was identified [91]. This genetic locus was
previously associated with asthma and atopy [92] and the findings strongly support the hypothesis that
an asparaginase allergy and asthma share a range of genes that might cause adverse reactions. GRIA1
encodes a subunit of the AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) receptor, an
ion channel that transmits glutamatergic signals in the brain. The same variant was found to influence
some neurologic disorders [93].

The correlation between the GRIA1 variant, rs4958351, and E. coli asparaginase hypersensitivity
was confirmed in different childhood ALL subsets [94]. Namely, carriers of at least one A allele at
rs4958351 and the T-ALL subtype were at a deceased risk for asparaginase-related hypersensitivity in
comparison to the GG genotype. Patients with B-ALL subtypes and the same alleles were at a higher
hypersensitivity risk. Interestingly, a lower frequency of asparaginase hypersensitivity was detected
among ALL patients with Down syndrome. Moreover, the association between the GRIA1 variant,
rs4958351, and E. coli asparaginase hypersensitivity was confirmed in 146 Slovenian pediatric ALL
patients [95]. The same association of rs4958351 in the GRIA1 gene with an asparaginase allergy in
pediatric ALL patients was confirmed in another GWAS study, with the additional observation that the
risk of allergy was higher in patients treated with native E. coli asparaginase than in patients treated
with PEGylated E. coli asparaginase [77].

A microarray study identified an association of the HLA-DRB1*07:01 allele with asparaginase
hypersensitivity and with anti-asparaginase antibodies [96]. Furthermore, HLA-DRB1*07:01 was
predicted to have high-affinity binding for asparaginase epitopes. A mechanism was proposed of how
an allergy could develop, suggesting that inherited HLA-DRB1 variant alleles produce amino acid
variations of the protein whose interaction with asparaginase epitopes is aberrant, leading to a higher
frequency of asparaginase hypersensitivity [96].

Also, the HLA-DRB1*07:01 variant allele was confirmed to be associated with asparaginase
hypersensitivity using an exome array approach [96]. Moreover, the association of HLA-DRB1*07:01
and asparaginase hypersensitivity, identified in European ALL pediatric patients [96], was confirmed
in non-European ALL patients [77].

In the study using next-generation sequencing, it was found that HLA-DRB1*07:01 and
HLA-DQB1*02:02 alleles were associated with an increased risk of the development of asparaginase
hypersensitivity [97]. Furthermore, the HLA-DRB1*07:01-DQA1*02:01-DQB1*02:02 haplotype carriers
were positively and significantly associated with an increased risk to asparaginase hypersensitivity.
The findings from the previous study were confirmed [96], but after haplotype reconstruction, only the
HLA-DRB1*07:01-DQB1*02:02 haplotype was associated with asparaginase hypersensitivity [97].

In the study using a genome wide approach, an association of the intronic rs6021191 variant
in the NFATC2 gene with a higher risk of asparaginase hypersensitivity in pediatric ALL patients
was found [77]. The presence of the same variant was correlated with higher NFATC2 mRNA
expression [77]. The NFATC2 gene codes for a cytoplasmic component of the nuclear factor of the
activated T cells (NFAT) transcription factor family [98], but its role in asparaginase hypersensitivity
is still unclear. It is known that NFATC2 could affect the development and function of regulatory T
cells, thus influencing the immune response [99]. Furthermore, a strong association was identified for
rs62228256 NFATC2 and asparaginase-associated pancreatitis [100].

A very recent large GWAS study found and validated variants in the PRSS1-PRSS2 locus
(rs4726576; rs10273639) to be associated with the risk of asparaginase-associated pancreatitis in children
with ALL [100]. The pathogenesis of aparaginase-associated pancreatitis in ALL children is the same as
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in non-asparaginase associated pancreatitis, developed because of alcohol or hyperlipidemia exposure.
It is a consequence of the activation of trypsin within pancreatic acinar cells [100].

The non-coding CNOT3 variant, rs73062673, was confirmed to be strongly associated with a
PEG-asparaginase allergy in ALL children in the GWAS [101]. This is the first study taking into
account asparaginase enzyme activity measurements to identify asparaginase hypersensitivity. It has
been shown that CNOT3 influences the transcription of MHC class II genes [102]. Moreover, the
study pointed out two more genetic variants related to HLA-DQA1 rs9272131, previously indicted
to be involved in allergies, together with variants in the TAP2 gene, located in close proximity to
the HLA-DQA1 variant, also with previously reported connections with asthma and allergy [103].
The association between the HLA region and asparaginase hypersensitivity has been described
previously [77,96,97], but the potential contribution of an HLA-regulating gene is novel.

6. Anthracyclines

Anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin) are used to treat a wide
range of cancers, including childhood ALL. Daunorubicin and doxorubicin (DOX) are isolated from a
natural soil-dwelling bacterium, Streptomyces peucetius var. caesius, and from a mutated strain of the
same bacterium, respectively [104]. Anthracyclines exert their action through a number of different
mechanisms. They inhibit topoisomerase 2-α (TOP2A), which cause double stranded DNA breaks
and relax DNA supercoiling during processes of DNA replication and transcription. Anthracyclines
interfere with TOP2A dissociation from DNA after making a DNA brake and stop re-ligation [105].
Anthracyclines also intercalate with DNA directly, thus inhibiting biosynthesis of macromolecules,
inducing the formation of free radicals and DNA damages and lipid peroxidation, and affecting
DNA-binding and alkylation and DNA cross-linking. These combined effects eventually lead to
programmed cell death [106].

The benefit of anthracyclines’ use in complex treatment protocols is compromised by cumulative
dose-dependent cardiotoxicity [107]. Acute anthracycline-induced cardiotoxicity happens often
immediately after the first dose, but delayed chronic anthracycline-induced cardiotoxicity could
be presented within one year, a few years, or even decades after the first anthracycline dose.

A number of candidate gene studies brought encouraging results about genes and genetic variants
involved in anthracycline-related cardiotoxicity, such as ABCC1, ABCC2, ABCC5, ABCB1, ABCB4, CBR3,
RAC2, NCF4, CYBA, GSTP1, CAT, SULT2B1, POR, HAS3, SLC22A7, SLC22A17, HFE, and NOS3 [108].
However, large scale studies have pointed out few genetic markers that need to be validated in different
cohorts of patients and also in various populations.

A microarray study showed that a synonymous coding variant (L461L) in the SLC28A3
gene (or human concentrative nucleoside transporter (hCNT3)) was highly associated with
anthracycline-induced cardiotoxicity [109]. Previous investigations on this nucleoside transporter
provided evidence that supports a functional role of this genetic variant in anthracycline-induced
cardiotoxicity [110]. The effect of variant rs7853758 in the SLC28A3 gene on anthracyclines’ transport
into cells could be specific for doxorubicin and danorubicin [109]. Besides, it was found that
the anthracycline-induced cardiotoxicity was associated with other variants in genes coding for
proteins involved in processes known to affect anthracycline ADME, such as SLC28A1, SLC10A2, and
several ATP–binding cassette transporters (ABCB1, ABCB4, and ABCC1) [109]. This study did not
confirm previously determined associations of anthracycline-induced cardiotoxicity with the variants,
ABCC2 rs8187694, CYBA rs4673, RAC2 rs13058338, and NCF4 rs1883112 [111,112], or variant CBR3
rs1056892 [108]. However, these associations could be different for adult and childhood patients.
Additionally, an analysis conducted in a childhood ALL anthracycline-treated cohort of patients did
not confirm the previously detected association of antacycline-induced cardiotoxicity with genetic
variants in the catalase gene [113].

Another study has confirmed the association of the variants, rs17863783 in the UGT1A6 (UGT1A6*4
allele) gene and rs885004 in the SLC28A3 gene, with anthracycline-induced cardiotoxicity [114]. The
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SLC28A3 rs7853758 variant has been associated with a reduced risk of anthracycline-induced cardiotoxicity,
i.e., it has a protective role. Furthermore, an effect of rs17583889 and rs17645700 in the histamine
N-methyltransferase gene (HNMT) was noticed only in children younger than 5 years. Also, the effect
of SULT2B1 rs10426377 was observed in males only. A variant in ABCB4 (rs4148808) in the promoter
region was shown to have an impact on anthracycline-induced cardiotoxicity only in females [114]. These
findings need further validation in independent studies.

Further, the same research group revealed two novel variants, rs4982753 in the SLC22A17 gene
and rs4149178 in the SLC22A7 gene, as predictive markers of anthracycline-induced cardiotoxicity [115].
SLC22A17 (OCT2), an organic cation transporter, is expressed in a variety of tissues, including the
heart. It transports naturally occurring nucleosides and nucleotides and several nucleoside-based
drugs and, interestingly, shows substrate overlap with concentrative nucleoside transporters, such
as SLC28A3, previously related to anthracycline-induced cardiotoxicity [109]. Additional evidence
for the association of variants in SULT2B1 rs10426628 and several antioxidant genes (CYP2J2, GSTA2,
GSTM3, GPX3, SOD2, and ABCC9) was found in this study.

A GWAS using a three-stage genetic association study combined with biological functional
analyses identified a nonsynonymous variant in RARG (rs2229774, p.Ser427Leu) as being highly
associated with anthracycline-induced cardiotoxicity [116]. RARG expression has been reported to
be particularly high in the heart [117]. RARG has been shown to bind to the Top2b promoter [118]
and the presence of the rs2229774 variant represses the expression of Top2b, finally leading to an
anthracycline-induced cardiotoxicity phenotype.

A two-stage study revealed the variant, rs2232228, in the hyaluronan synthase 3 (HAS3) gene
with a modifying effect on the anthracycline dose-dependent cardiomyopathy risk [119]. Patients
who are carriers of the rs2232228 GG genotype did not have any dose-dependent increase of
anthracycline-induced cardiomyopathies. However, carriers of the rs2232228 AA genotype were
at an increased risk of developing cardiomyopathies when the anthracycline dose was increased. The
HAS3 gene codes for the low-molecular-weight hyaluronan enzyme (HA), an important component of
the extracellular matrix, involved in injury processes. Anthracyclines induce apoptosis in heart muscle
and injure the cardiomyocytes. Cardiac fibroblasts repair and remodel the heart using the extracellular
matrix with accumulated HA as a scaffold [120].

7. Thiopurine Drugs

6-Mercaptopurine and 6-thioguanine are thiopurine drugs used in the treatment of childhood
ALL. These drugs are purine analogs, which are metabolically transformed to thioguanine nucleotides
(TGN) capable of becoming incorporated into DNA, which leads to cell death.

The thiopurine S-methyltransferase (TPMT) is an enzyme that detoxifies thiopurine drugs by
methylation of thiopurine analogs, which interferes with their incorporation into DNA. Patients’
TPMT activity depends on variants in the TPMT gene and this trait is codominantly inherited:
Patients who carry one non-functional allele have intermediate TPMT activity, while patients with
two non-functional alleles have very low TPMT activity [121]. Three common variants of the TPMT
gene (rs1800462, rs1800460, and rs1142345) account for most cases of inherited TPMT deficiency, and
their distribution is population specific. In Caucasians and Africans, there is a higher prevalence of
non-functional alleles in comparison to East Asian populations. Also, in Caucasians, the most frequent
non-functional allele is the *3A (consisting of both rs1800460 and rs1142345 minor variants) allele,
while in East Asians, the *3C (rs1142345) allele is the most frequent. Thiopurine dosage and toxicity
have been repeatedly and consistently associated with TPMT activity and genetics irrespective of
ethnicity or underlying disease. TPMT and thiopurines represent one of the first and best documented
gene–drug pairs in pharmacogenomics and this knowledge is used for the benefit of patients through
therapy individualization [122].

The TPMT enzyme requires S-adenosylmethionine for its activity and this cofactor contributes
to TPMT enzyme stability. Intracellular S-adenosylmethionine levels depend on the folate cycle,

176



Genes 2019, 10, 191

especially on the activity of the methylenetetrahydrofolate reductase (MTHFR) enzyme. Using a
candidate gene approach, TPMT activity and thiopurine toxicity were associated with genetic variants
important for the folate cycle [123,124]. To elucidate the genetics of TPMT activity, two large GWAS
studies analyzed liver and erythrocyte TPMT enzyme activity in childhood ALL patients and healthy
controls. The results showed that TPMT enzyme activity was associated only with variants in the
TPMT gene, which underlined the utility of TPMT genotyping in clinical settings [125,126], but also
undermined the role of folate cycle genes for TPMT activity and thiopurine clearance.

Before agnostic approaches using GWAS were available, other candidate gene variants were tested
for their associations with thiopurine toxicity. Pharmacogenes that encode transporters and enzymes
involved in the clearance of thiopurine drugs have been in the focus, in particular ITPA and ABCC4. The
ITPA enzyme catalyzes hydrolysis of the pyrophosphate group from purine analogs triphosphates, which
interferes with their incorporation into DNA [127], while the ABCC4 transporter exports thiopurine drugs
and their metabolites [128]. Lower activity variants of ITPA and ABCC4 [129] genes have been associated
with a diminished tolerance of thiopurine therapy, however, this is inconsistent [130,131].

A candidate gene approach could not explain all the toxicity of thiopurine drugs, especially in
East-Asian patients. Despite having a smaller burden of TPMT no-function alleles, East Asians have a
lower tolerance of thiopurine drugs compared to other populations [132]. ITPA and ABCC4 deficiencies
are more prevalent in East Asians, which served as an explanation for the lower 6-MP tolerance in
this population. However, a GWAS involving two large cohorts of childhood ALL patients introduced
a new pharmacogene as a major determinant of 6-MP intolerance, which is particularly relevant for
East Asians [132]. Variant rs116855232 of the NUDT15 gene showed both a strong association and
clinical importance. Patients with TT and CT genotypes could tolerate only around 10% and 75%
of the dose tolerated by patients with the CC genotype. Besides NUDT15, the only pharmacogene
associated with 6-MP intolerability found by the GWAS study was TPMT, which questioned the
clinical importance of other pharmacogenes involved in 6-MP clearance. The importance of NUDT15
for thiopurine inactivation and cytotoxicity was subsequently shown both in vitro and in vivo [133].
Also, the association of non-functional NUDT15 alleles with 6-MP intolerance was corroborated in
multiple studies [131,133–135]. Based on overwhelming evidences that emerged in the last 5 years,
NUDT15 testing is now recommended prior to the onset of thiopurine therapy [136].

Protein kinase C and casein kinase substrate in neurons’ protein 2 (PACSIN2) was brought into
the focus of pharmacogenomics of thiopurine drugs after a GWAS study involving cell lines in which
variant rs2413739 showed the highest association with TPMT activity [137]. This result was subsequently
corroborated, but only for ALL patients, while in inflammatory bowel disease (IBD) patients and healthy
subjects, TPMT activity was not associated with the PASCIN2 rs2413739 variant [138]. However, the
association of PASCIN2 variants with TPMT enzyme activity was not shown either for ALL patients
or for healthy controls in GWAS studies [125,126]. Several studies also dealt with the association of
the PASCIN2 variant with thiopurine toxicity in ALL patients and reported that rs2413739 is a factor
of thiopurine-related toxicity [137–139]. Although there are only a few studies on the association of
PACSIN2 gene variants with thiopurine therapy in ALL patients, they included a considerable number of
patients and came to similar conclusions. As for non-ALL patients, it was shown that the T allele of the
PACSIN2 rs2413739 variant was not associated with a higher toxicity, although the study was sufficiently
powered [140]. Further analyses, optimally including both functional and association studies, are needed
to determine whether PACSIN2 is a factor related to thiopurine intolerance.

Another genetic determinant of thiopurine therapy came into focus after two GWAS studies
concurrently and independently associated somatic mutations in the 5′-Nucleotidase, Cytosolic II
(NT5C2) gene with relapse in childhood ALL patients [141,142]. These mutations were also associated
with early rather that late relapse, which underlines their deleterious effect for disease progression.
Subsequent analyses showed that acquired mutations related to relapse activate NT5C2, an enzyme
that dephosphorylates thiopurine nucleotide monophosphates, making them inactive and prone
to export from the cell [141,142]. In a latter study, in which deep sequencing of cancer associated
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genes was carried out, NT5C2 mutations were also identified among relapse-associated, somatic
mutations [143], underlining the importance of NT5C2 mutations as prognostic biomarkers related to
thiopurine therapy in ALL patients.

A candidate transcript approach can also direct the analysis of pharmacogenes’ expression
signatures to enhance the prediction of drug toxicity and response. For instance, it was shown that the
quantity of TPMT transcript can be modulated by variants in the gene promoter, particularly a variable
number of tandem repeats (VNTR) [144,145]. However, the impact of the TPMT expression profile on
thiopurine effects in pediatric ALL patients is scarcely investigated. In one study, it was shown that
the TPMT expression level was significantly higher during the maintenance phase of therapy than
on diagnosis, being the highest in the early stage of the maintenance phase. Also, carriers of specific
VNTRs differ in TPMT expression levels, which could be important to consider before the onset of
maintenance therapy [146].

Many microarray studies have been focused on the expression signatures of ALL relapse [147–151],
however, studies dealing specifically with transcriptome of thiopurine or methotrexate in vivo resistance
are limited. Zaza and colleagues investigated the correlation of gene expression profiles with the level of
thioguanine nucleotides in pediatric ALL patients at diagnosis after initial treatment with 6-MP alone
or the combination of 6-MP and MTX. The study identified 60 genes (31 positively and 29 negatively
correlated) in 6-MP and 75 genes (50 positively and 25 negatively correlated) in 6-MP + MTX treatment
that were significantly associated with TGN accumulation. These two sets of genes did not overlap,
indicating different pathways involved in these two therapeutic approaches as well as the fact that the
effects of combination therapy are not additive. In the 6-MP treatment, the most associated genes with
TGN levels were xanthine oxidase (XDH), solute carrier family 29 member 1 (SLC29A1), adenosine
deaminase (ADA), and other genes related to cell proliferation and apoptosis (CASP7, TOPBP1,
ANAPC5, CCT4) [152]. Xanthine oxidase is, besides the TPMT enzyme, involved in the inactivation
of 6-MP and it is the main target of allopurinol, which is used in combination with azathioprine
to increase the shunting of 6-MP down the pathway of producing active metabolites. However,
compared to TPMT, little attention has been given to this oxidation pathway [153]. The SLC29A1 influx
transporter has been positively correlated with the cytotoxicity of nucleoside analogs in human cancer
cell lines [154]. In addition to previous results, Zaza and colleagues demonstrated that the inhibition
of the SLC29A1 transporter led to approximately a 40% reduction of thioguanines [152]. Contrary to
6-MP alone, the 6-MP + MTX combination yielded genes involved in adenosine triphosphate synthesis,
such as SLC25A3, ATP50, COX5B, and COX7A2L, and other genes implicated in protein synthesis
(RPS19, RPL18, RPS25, RPL23) and translation factors (EEF1G, EIF3S5, eIF3k) [152].

The study of Hogan and colleagues, which examined pediatric B-ALL patients’ paired samples
taken at diagnosis and relapse, showed that relapse timing (early or late) was associated with distinct
gene expression signatures. Particularly, late relapse was associated with the up-regulation of genes
involved in nucleotide biosynthesis and folate metabolism, such as PAICS, TYMS, CAD, ATIC, and
GART, which is interesting given that 6-MP and MTX are crucial for maintenance therapy [149]. Also,
somatic deletion and consequently decreased expression of the MSH6 gene, which is involved in the
mismatch repair mechanism and was previously associated with thiopurine resistance, has also been
detected at the time of relapse [149,151].

Besides identifying pharmacogenes involved in drug response, pharmacotranscriptomic data can
be useful in designing predictive algorithms of patient clinical outcomes. Beesley and colleagues used
gene expression data of 15 T-ALL cell lines and their sensitivity to 10 therapeutics commonly used
in ALL treatment to generate a model which could predict in vivo resistance and therefore patient
outcomes. The designed model was validated on the microarray data of three independent pediatric
T-ALL cohorts, showing the clinical relevance of identified drug–gene signatures. Moreover, it has
been demonstrated that the expression signatures most useful for the accurate prediction of relapse
were associated to 6-MP resistance. Genes whose expression was associated to thiopurine resistance
were mostly involved in biological pathways, such as gene expression, differentiation/development,
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cell growth and proliferation, and cell death. Among these, novel associations with the thiopurine
drug response were observed for sulfite oxidase (SUOX) and multidrug resistance protein (ABCC1 or
MRP1) genes. Interestingly, SUOX belong to the same family of oxotransferases as xanthine oxidase
(XO) and the activity of both relies on molybdenum metabolites from a common biosynthetic pathway.
Thus, it is possible that the altered expression of SUOX could influence XO activity by modifying the
level of molybdenum metabolites and indirectly thiopurines’ detoxification [155].

Here, we find a good example showing how a wide transcriptome approach is more useful than a
candidate transcript approach in identifying novel potential expression biomarkers of a poor drug
response. Interestingly, no significant association was found for TPMT gene expression in either of the
aforementioned microarray studies.

8. Methotrexate

Methotrexate is one of the key drugs of ALL treatment, which is given in all phases across different
ALL therapy protocols, either systemically or locally. Methotrexate enters cells primarily via the solute
carrier family 19 member 1 (SLC19A1) transporter, followed by its polyglutamination catalyzed by the
folylpolyglutamate synthase (FPGS) enzyme, which further activates the drug and hinders its clearance.
MTX and MTX polyglutamates (MTX-PG) inhibit dihydrofolate reductase (DHFR), a key enzyme in
the folate cycle essential for the replenishment of active folate forms used in nucleotide synthesis and
methylation reactions. MTX-PG also inhibits the thymidylate synthase (TYMS) enzyme, necessary for the
synthesis of tymidine nucleotides. Another important enzyme indirectly impacted by MTX is MTHFR, an
enzyme which facilitates the synthesis of 5-methyltetrahidrofolate, ultimately used for the methylation
reaction at the expense of 5,10 methylentetrahydropholate, necessary for thymidylate synthesis. As a
consequence of MTX therapy, important cellular processes, including DNA synthesis and methylation,
are tempered, which contributes to MTX anti-cancer effects and MTX-related toxicity.

Response to MTX therapy is associated with the activity of key enzymes and transporters
involved in the MTX and folate metabolic pathway. For instance, DHFR upregulation is associated
with poor survival of childhood ALL patients [156], while higher intracellular levels of long-chain
MTX-PG, correlated with higher FPGS activity, is a factor of improved survival of ALL patients [157].
The complex folate and MTX metabolic pathway allowed for the selection of several candidate
pharmacogenes that encode enzymes and transporters involved in MTX anti-cancer effects and
clearance. MTX-associated pharmacogenes contain numerous genetic variants that are frequent in
human populations and are coupled with functional consequences for the activity of corresponding
proteins. For example, one of the most extensively studied variants in the pharmacogenetics of MTX is
a common rs1801133 (677C > T) variant in the MTHFR gene, which causes amino acid substitution
and decreased protein activity. Though several studies conducted on childhood ALL patients showed
that the T allele of rs1801133 is associated with toxicity [129,158–160], a few studies showed no
association [161,162] or even a protective effect [163]. Two recent meta-analyses tried to settle this
dilemma, but they reached opposite conclusions [164,165]. A number of similar studies relying on
the candidate gene approach have been carried out in order to find genetic markers of MTX related
toxicity and therapy response (recently reviewed by Giletti and colleagues [166]). However, despite
extensive analysis of multiple candidate genes, none of the genetic markers so far have been used in
MTX therapy protocols due to the lack of a clear association with the response and/or toxicity.

One of the most promising pharmacogenes previously not analyzed in the context of MTX
pharmacokinetics, SLC1O1B1, has emerged following a large GWAS study conducted by Trevino
and colleagues in 2009. The results showed that only SLCO1B1 variants (intronic rs11045879 and
rs4149081 tied to functional rs4149056) are associated with MTX clearance and GI toxicity and this
result was replicated in an independent cohort [167]. An even larger replication GWAS study, enrolling
around 1300 childhood ALL patients, reported essentially the same conclusions reached by Trevino and
colleagues [168], associating rs4149081, rs11045879, rs11045821, and functional rs4149056 with MTX
clearance. The contribution of functional variants in the SLCO1B1 gene to MTX clearance variability
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is around 10% [169]. An association of SLCO1B1 variants with MTX clearance and toxicity was
corroborated using the candidate gene approach [170–172]. SLCO1B1 variants were also associated
with the event-free survival of ALL patients [173], however, another study did not find an association
between functional rs4149056 and the risk of relapse [172].

In search of pharmacogenomic markers of MTX therapy, a study by Lopez-Lopez enrolled 151
pediatric B-ALL patients to analyze more than 300 variants in 12 candidate transporter genes related
with MTX transport. The results showed that only variants in the ABCC2 and ABCC4 gene are in
relation with MTX plasma levels [174], which is a surrogate marker of MTX-related toxicity [170].
Variants in the SLCO1B1 gene did not reach a significant level of association after the correction for
multiple testing [174]. None of the two GWAS studies, nor a study focused on MTX transporters,
showed significant associations (after the correction for multiple testing) between MTX clearance or
MTX plasma levels and variants in the SLC19A1 gene [167,168,174], by far the most studied MTX
transporter encoding pharmacogenes.

Alternations in the expression of candidate genes involved in MTX transport (SLC19A1, ABCC1-4,
ABCG2), MTX metabolism (FPGS, FPGH), as well as MTX target enzyme genes (DHFR, TYMS) were
investigated in relation to MTX resistance [175–177]. Although low SLC19A1 and FPGS as well as high
DHFR and TYMS expression levels have been correlated with poor patient MTX response [157,178–181],
some important factors, such as genomic landscape, MTX dosage (high or low), and the subtype of
ALL, should be taken into account. Particularly, it was shown that precursor B-cell ALL patients
display a higher MTX sensitivity than T-cell ALL patients [157,182,183]. In line with this are results
showing higher FPGS mRNA expression as well as FPGS enzyme activity in B-cells ALL, and higher
levels of DHFR and TYMS mRNA in T-cells ALL [157,180]. Moreover, children with hyperdiploid
ALL (more than 50 chromosomes) showed increased MTX sensitivity, measured by increased MTX-PG
accumulation, which was associated with higher SLC19A1 expression as a result of extra copies of
chromosome 21, where the gene is located. However, this effect was seen only if patients were
treated with low doses of MTX, during which the main mechanism of the antifolates’ entry is via
the SLC19A1 [178,184]. In contrast, patients carrying the E2A-PBX1 and TEL-AML1 gene fusions
displayed a decreased MTX-PG accumulation associated with the diminished expression of SLC19A1
in E2A-PBX1 and the elevated expression of ABCG2 in TEL-AML1 ALL patients [184]. Additionally,
Kager and colleagues established distinct in vivo folate pathway gene expression patterns, which
provided an 83% accuracy for correctly assigning the ALL genetic subtype or lineage. These results
point out the importance of ALL subtype–specific strategies to overcome MTX drug resistance.

Using a transcriptome wide approach, Sorich and colleagues gave insight into the gene expression
signatures of good and poor MTX in vivo responses in de novo pediatric ALL patients, identifying 50
genes (21 positively and 29 negatively) associated specifically with the MTX antileukemic effect [185].
These genes included the ones involved in nucleotide metabolism (TYMS and CTPS), cell proliferation
and apoptosis (BCL3, CDC20, CENPF, and FAIM3), and DNA replication or repair (POLD3, RPA3,
RNASEH2A, RPM1, and H2AFX). The study also showed that a low expression of the DHFR, TYMS,
and CTPS genes was associated with poor therapeutic response and prognosis A lower expression of
these genes is associated with decreased processes of DNA synthesis and cell proliferation, making
cells less susceptible to the effects of MTX drugs [185]. As indicated, this is not in contrast to previous
results showing that a higher expression of TYMS and DHFR, due to promoter variants, leads to a
worse prognosis, which could have an effect once remission is achieved [156,186,187]. In the microarray
study of Kager and colleagues, a significant correlation was demonstrated between TYMS, MTHFD1,
and RUVBL2 expression and MTXPG accumulation in B-ALL not carrying cytogenetic abnormalities
whereas MTHFD2, PPAT, and RUVBL2 expression was associated with MTXPG accumulation within
T-ALL. A significant correlation between ABCG2, ABCC4, and TYMS expression and the cytotoxic
effects of MTX in ALL B-cells not carrying cytogenetic abnormalities has also been found [184].

A list of the pharmacogenomic and pharmacotranscriptomic markers of the drug response or
toxicity discovered or validated using high-throughput technologies is summarized in Table 1.
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Table 1. Pharmacogenomic and pharmacotranscriptomic markers of the drug response or toxicity
discovered or validated using high-throughput technologies. WGS: whole genome sequencing; WES:
whole exome sequencing; DEX: dexamethasone; GC: glucocorticoids; 6-MP: 6-mercaptopurine; MTX:
methotrexate; EFS: event free survival; OS: overall survival; *: protective role.

Pharmacogene Variant or RNA Effect Methodology References

Glucocorticoid drugs

ABCB1, WT 1-AS rs6007758, rs41488548,
rs10264856, rs4728709 Higher clearance of DEX Microarray [33]

SERPINA6 rs12589136 Higher plasma cortisol levels WES [34]

Intergenic variant rs10989692 Increased risk of
osteonecrosis WES [35]

ACP-1 Multiple SNPs Increased risk of
osteonecrosis Microarray [36]

hsa-miR-142-3p,
hsa-miR-17-5p miRNA High correlation with GC

resistance Omni-Search [40]

EMP1 mRNA Higher expression in
prednisone poor responders Microarray [41]

CASP1, NLRP3 mRNA
High expression and
subsequent high GC

resistance
Microarray [45]

SMARCA4, ARID1A,
SMARCB1 mRNA

Decreased expression is
associated with GC

resistance
Microarray [46]

CREBBP somatic mutations
Presence of damaging
mutations leads to GC

resistance
Microarray [12]

Vincristine

CEP72 rs924607 vincristine-related peripheral
neuropathy Microarray [58]

ABCC2 rs374006
rs12826

vincristine-related peripheral
neuropathy Targeted DNA sequencing [63]

SYNE2, MRPL47,
BAHD1 *

rs2781377
rs10513762
rs3803357 *

vincristine-related peripheral
neuropathy WES [64]

COCH rs1045644
rs7963521

vincristine-related peripheral
neuropathy Microarray [69]

miR-125b, miR-99a,
miR-100 microRNA resistance to vincristine microRNA expression study [72]

miR-300, DROSHA rs12894467
rs639174

vincristine-related peripheral
neuropathy, vomits Microarray [74]

miR-3117-3p, miR-4481 rs12402181
rs7896283

vincristine-related peripheral
neuropathy Microarray [75]

Asparaginase

MYBBP1A, IL16, SPEF2
rs3809849

rs11556218
rs34708521

allergy, pancreatitis and
thrombosis related to
asparaginase, EFS, OS

WES [82]

OPRM1 microRNA resistance to asparaginase genome-wide RNAi screening [87]

PNPLA3 rs738409
elevated alanine

transaminase (ALT) levels
leading to hepatotoxicity

Microarray [89]

GRIA1 rs4958351 asparaginase
hypersensitivity Microarray [91]

HLA-DRB1 HLA-DRB1*07:01 asparaginase
hypersensitivity Microarray [95]

NFATC2, HLA-DRB1,
GRIA1

rs6021191
HLA-DRB1*07:01

rs4958351

asparaginase
hypersensitivity Microarray [77]

HLADRB1, HLADQ1 HLADRB1*07:01
HLA-DQB1*02:02

asparaginase
hypersensitivity targeted DNA sequencing [97]

PRSS1-PRSS2 locus
NFATC2

rs4726576
rs10273639
rs62228256

asparaginase
hypersensitivity, pancreatitis Microarray [100]

CNOT3, HLADQA1,
TAP2

rs73062673
rs9272131

asparaginase
hypersensitivity Microarray [101]
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Table 1. Cont.

Pharmacogene Variant or RNA Effect Methodology References

Anthracyclines

SLC28A3 rs7853758 anthracycline-induced
cardiotoxicity Microarray [109]

UGT1A6, SLC28A3
rs17863783

rs885004
rs7853758 *

anthracycline-induced
cardiotoxicity Microarray [114]

SLC22A17, SLC22A7 rs4982753
rs4149178

anthracycline-induced
cardiotoxicity Microarray [115]

RARG rs2229774 anthracycline-induced
cardiotoxicity Microarray [116]

HAS3 rs2232228 anthracycline-induced
cardiotoxicity Microarray [119]

Thiopurine drugs

TPMT, NUDT15 rs1142345, rs116855232 6-MP dose intensity WGS [132]

TPMT rs1142345 TPMT activity WGS [125,126]

PACSIN2 rs2413739, mRNA TPMT activity WGS, RNA seq [137]

NT5C2 somatic mutations Relapse WES, RNA seq [141,142]

XDH, SLC29A1, ADA,
CASP7, TOPBP1,
ANAPC5, CCT4

mRNA Level of TGN after initial MP
treatment Microarray [152]

SLC25A3, ATP50,
COX5B, COX7A2L;

RPS19, RPL18, RPS25,
RPL23; EEF1G, EIF3S5,

eIF3k

mRNA Level of TGN after initial
6-MP+MTX treatment Microarray [152]

PAICS, TYMS, CAD,
ATIC, GART, MSH6 mRNA Late relapse, probably

related to 6-MP and MTX Microarray [149]

SUOX, ABCC1 mRNA Thiopurine resistance Microarray [155]

Methotrexate

SLCO1B1 rs4149081, rs11045879,
rs11045821, rs4149056 MTX clearance WGS [167,168]

ABCC2, ABCC4 rs3740065, rs9516519 MTX plasma level Targeted DNA sequencing [174]

DHFR, TYMS, CTPS;
BCL3, CDC20, CENPF,
FAIM3; POLD3, RPA3,
RNASEH2A, RPM1,

2AFX

mRNA
Reduction of circulating

leukemia cells after initial
treatment

Microarray [185]

DHFR, TYMS mRNA 5-year disease free survival Microarray [185]

TYMS, MTHFD1,
RUVBL2 mRNA

MTX-PG accumulation after
high dose MTX treatment in

nonhyperdipoid B-ALL
Microarray [184]

MTHFD2, PPAT,
RUVBL2 mRNA

MTX-PG accumulation after
high dose MTX treatment in

T-ALL
Microarray [184]

ABCG2, ABCC4, TYMS mRNA

MTX cytotoxic effect in
nonhyperdipoid B-ALL, as

measured by the reduction of
circulating ALL cells

Microarray [184]

9. Conclusions

Pharmacogenomics and pharmacotranscriptomics in childhood ALL are the focus of numerous
studies due to the availability of high quality data for the assessment of an association between the
genomic and transcriptomic profiles of patients and their response to therapy. Valuable data are
accessible because of standardized similar protocols that are used for the treatment of pediatric ALL in
many populations, with a similar efficacy and side effects in all of them.

Recent reviews have summarized data related to pharmacogenomics and pharmacotranscriptomics
in childhood ALL [188]. In this review, we paid attention to the studies in which high-throughput
technologies were used.

We found several reports of studies in the field of pharmacogenomics in childhood ALL using
high-throughput technology. In most of them, microarray technology was used, while the reports in
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which targeted DNA sequencing, WES, or WGS was applied were significantly fewer. It is probably due
to the fact that arrays were more cost-effective than sequencing technology. However, at this moment,
sequencing technologies are more effective and less expensive and the shift towards sequencing-based
studies in this field is obvious. A very small number of studies of somatic mutations relevant for
pharmacogenomics in ALL have been conducted. Since a high coverage is required for the detection
of somatic mutations in the samples with a large number of subclones, characteristic for leukemia,
deep targeted sequencing is indispensable for that type of analysis. Future research should be directed
towards association studies of somatic mutations and drug resistance in pediatric ALL.

An even smaller number of studies on pharmacotranscriptomic markers have been performed.
RNA seq methodology is used only in a few studies. Studies of regulatory RNA (microRNA of long
non-coding RNA) are deficient.

Studies based on high-throughput analyses led to many beneficial discoveries. Since numerous
pharmacogenomic/pharmacotranscriptomic studies have found differences in the prevalence of
clinically significant variants between populations, propositions of creating databases concerning
the pharmacogenetic/pharmacotranscriptomic markers in different populations have sprung up.
One of these databases is FINDbase [189], a comprehensive database containing population
frequency data of clinically relevant variants. In another pharmacogenomic study [190], significant
interpopulation differences have been reported in seven European population concerning seven
important pharmacogenomic biomarkers, which change the drug efficacy and/or toxicity of up to
51 treatment modalities. These results could be beneficial in creating accurate population-based
preemptive pharmacogenomic testing.

Hypothesis driven studies using a candidate gene approach might be an inefficient way to
discover novel pharmacogenomic markers because candidate genes outside the well-studied network
of drug absorption, distribution, metabolism, and excretion (ADME) or drug targets are often missed.
Besides, the effect of investigated genetic variants is often not clear and functional analyses are often
scarce or contradictory. For instance, the effect of the nonsynonimous variant, rs1051266 (SLC19A1
80G > A), on MTX transport efficacy is ambiguous, as it is suggested that the minor A allele has both
a higher and lower affinity to MTX, as well as having a marginal functional effect. Nevertheless, a
number of candidate gene studies have tried to relate this variant with MTX levels and toxicity, but
the results were also inconclusive. Moreover, hypothesis free, high-throughput analyses could not
confirm the association of MTX pharmacokinetics and the rs1051266 variant, even though the minor
allele frequency is almost 50%. Instead, GWAS studies introduced a novel, SLC19A1 pharmacogene as
a factor of MTX, whose significance was later confirmed.

Although high-throughput technology has brought a significant increase of knowledge in
pharmacogenomics and pharmacotranscriptomics in childhood ALL, most GWAS/TWAS studies have
provided contradictory results. There could be several reasons for this. First, patient cohorts selected
for the GWAS/TWAS are usually not uniform. The genetic profile of pediatric ALL is complex and
heterogenous, which has led to the treatment of patients according to the stratification principle. A
lack of knowledge of the complete biomarker profile at the beginning of the disease could lead to false
conclusions at the end. Additionally, the phenotype endpoints should be precisely defined. The time of
molecular-genetics analysis is critical and should always be performed in the same phase of the same
treatment protocol, especially when expression studies interpret pharmacotranscritomics markers. It is
also particularly hard to determine the grade of drug side effects when small children are reporting,
for example, the neuropathy pain level. Furthermore, given the complexity of GWAS/TWAS, multiple
sources of false positive and false negative errors exist. The inconsistencies in the GWAS/TWAS
results are caused either by the design of experiment itself or by the genotype/transcriptome calling
process [191].

Many authors consider small sample sizes as being responsible for limited outcomes in
pharmacogenomic/pharmacotranscriptomic studies in pediatric ALL. However, some of the studies
have included a significant number of patients [69,77,96].
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Big data generated in candidate gene/transcripts studies have been enormously expanded due to
the implementation of high-throughput technologies. In the last two decades, an accumulation of data
in the field of pharmacogenetics/pharmacogenomics has been achieved, reaching more than 20,000
new citations in PubMed. More than 3500 associations between pharmacogenes and pharmacogenomic
variants and the efficacy/toxicity of drugs have been validated and can be considered to have
strong evidence. More than 200 drugs have drug labels containing information of the mandatory or
recommended preemptive pharmacogenomic testing (https://www.fda.gov/Drugs/ScienceResearch/
ucm572698.htm).

However, it is necessary to use the available big data in translational research to obtain data that
is usable in clinical practice. For that reason, research efforts must be focused on the development of
data analysis. Data mining of the current literature and the selection of biomarkers that showed strong
evidence for an association with the treatment response and toxicity can be used for the creation of a
custom panel for genomic and transcriptomic profiling. Along with patients’ clinical data, molecular
data obtained via genomic and transcriptomic profiling could be utilized for the design of a prediction
model using machine learning algorithms. This form of artificial intelligence requires a training
group of ALL patients to learn how selected molecular markers relate to each other to predict specific
outcomes, such as patients’ drug responses. Also, validation of the model is needed on an independent
pediatric ALL cohort to test the model’s performance. If the model could predict patients at risk of
severe drug related toxicity or poor response with sufficient accuracy, protocol modifications for these
patients might be attempted using a randomized clinical trials approach (Figure 1).

A true understanding of the processes leading to disease development and mechanisms of
treatment efficacy and toxicity, as well as gaining new knowledge from big data obtained in large
omics studies and validation studies from various populations, could be the way to achieve the
ultimate goal of all biomedical professionals: Bringing real personalized treatment from the bench to
the bedside.

The growing knowledge in pharmacogenomics and pharmacotranscriptomics in pediatric ALL,
produced by molecular profiling of patients using high-throughput technology, as well as the
development of bioinformatics tools and the implementation of artificial intelligence, are expected to
improve the treatment of children with ALL through the individualization of therapy for each patient.
The door for personalized medicine is wide-open in the clinical practice of pediatric ALL.
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Figure 1. Diagram of the steps in designing a predictive model of childhood acute lymphoblastic
leukemia (ALL) patients’ drug related toxicity and outcomes using pharmacogenomic and
pharmacotranscriptomic data. Data mining of the current literature and the selection of biomarkers
that showed strong evidence for an association with the treatment response and toxicity can be used for
the creation of a custom panel for genomic and transcriptomic profiling. Along with patients’ clinical
data, molecular data obtained via pharmacogenomic and pharmacotranscriptomic profiling could be
utilized for the design of a prediction model using machine learning algorithms. This form of artificial
intelligence requires a training group of pediatric ALL patients to learn how selected molecular markers
relate to each other to predict specific outcomes, such as patients’ drug responses. Also, validation of
the model is needed on an independent ALL cohort to test the model’s performance. If the model could
predict patients at risk of severe drug related toxicity or poor response with sufficient accuracy, protocol
modifications for these patients might be attempted using a randomized clinical trials approach.
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