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Preface to ”Advances in Differential and Difference

Equations with Applications 2020”

Differential and difference equations are extreme representations of complex dynamical systems.

During the last few decades, the theory of fractional differentiation has been successfully applied

to the study of anomalous social and physical behaviors, where scaling power law of fractional order

appears universal as an empirical description of such complex phenomena. Recently, the difference

counterpart of fractional calculus has started to be intensively used for a better characterization of

some real-world phenomena. Systems of delay differential equations have started to occupy a place

of central importance in various areas of science, particularly in biological areas.

This book presents some19 original results regarding the theory and application of differential

and difference equations which can be successfully used in dealing with real-world problems in

various branches of science and engineering.

Dumitru Baleanu

Editor
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Abstract: We consider a linear continuous-time control system with time-invariant linear bounded
operator coefficients in a Hilbert space. The controller in the system has the form of linear state
feedback with a time-varying linear bounded gain operator function. We study the problem of
arbitrary assignment for the upper Bohl exponent by state feedback control. We prove that if
the open-loop system is exactly controllable then one can shift the upper Bohl exponent of the
closed-loop system by any pregiven number with respect to the upper Bohl exponent of the free
system. This implies arbitrary assignability of the upper Bohl exponent by linear state feedback.
Finally, an illustrative example is presented.

Keywords: linear control system; Hilbert space; state feedback control; exact controllability;
upper Bohl exponent

MSC: 34D08; 34A35; 93C05

1. Introduction

Consider a linear control system:

ẋ(t) = A(t)x(t) + B(t)u(t), t ∈ R. (1)

Here x ∈ X and u ∈ U are the state and control vectors respectively, X and U are some
finite-dimensional or infinite-dimensional Banach spaces. Suppose that the controller in system (1) has
the form of linear static state feedback u(t) = U(t)x(t). The closed-loop system has the form:

ẋ(t) =
(

A(t) + B(t)U(t)
)
x(t), t ∈ R. (2)

Now we consider the elements of the gain operator U(t) as controlling parameters. The problems
of control over the asymptotic behavior of solutions to systems (2) by means of elements of gain
operator U(t) (in particular, the problem of stabilization for system (2)) belong to the classical problems
of control theory. First results relate to stationary systems in finite-dimensional spaces. It was proved
for complex [1] and real [2] finite-dimensional (X = Rn, U = Rm) time-invariant (A(t) ≡ A, B(t) ≡ B)
systems that the condition of complete controllability of system (1) is necessary and sufficient for the
arbitrary assignment of the eigenvalue spectrum λ1, . . . , λn of the closed-loop system (2) by means
of time-invariant (U(t) ≡ U) feedback. This implies, in particular, stabilizability of (2) by means of
U(t) ≡ U. First results for time-varying periodic systems in finite-dimensional spaces were obtained
in [3]: It was proved that the complete controllability of system (1) is necessary and sufficient for

Mathematics 2020, 8, 992; doi:10.3390/math8060992 www.mdpi.com/journal/mathematics1
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the arbitrary assignment of the characteristic multipliers ρ1, . . . , ρn of the closed-loop system (2) by
means of periodic feedback. For time-varying non-periodic systems in finite-dimensional spaces,
first results on stabilization were obtained in [4–6]. A transformation reducing system (2) to a canonical
(block)-Frobenius form was used, which allows one to solve the eigenvalue assignment problem.
However, rather restrictive conditions on the smoothness and boundedness of the coefficients of
system (1) are required there. These conditions were weakened in [7] to the condition of uniform
complete controllability in the sense of Kalman [8], and, on the basis of this property, sufficient
conditions for exponential stabilization of system (2) were obtained. The proof of exponential stability
is carried out using the second Lyapunov method (the Lyapunov function method).

In the framework of the first Lyapunov method of studying systems of differential equations
in finite-dimensional spaces, a natural generalization of the concept of eigenvalue spectrum for
non-stationary systems is the spectrum of Lyapunov exponents (see [9–11]). In addition to Lyapunov
exponents, other Lyapunov invariants are known (that is, characteristics that do not change under
the Lyapunov transformation, see [12]), which characterize the asymptotic behavior of solutions to
a linear system of differential equations, for example, the Bohl exponents, the central (Vinograd)
exponents, the exponential (Izobov) exponents, etc. In a series of studies [13–17], the results on
arbitrary assignability of Lyapunov exponents and other Lyapunov invariants for system (2) in
finite-dimensional spaces were proved, based on the property of uniform complete controllability
in the sense of Kalman. In recent studies [18–23], these results have been partially extended to
discrete-time systems. In finite-dimensional spaces, the Lyapunov exponents, the Bohl exponents,
and other Lyapunov invariants were studied, for example in [24–26] for continuous-time systems and
in [27–33] for discrete-time systems.

A large number of papers are devoted to stabilization problems of system (2) in infinite-dimensional
spaces. We note here the studies [34–41]. Properties of the spectrum for systems in infinite-dimensional
spaces were studied in [42–44].

In this paper, we studied the problem of arbitrary assignment of the upper Bohl exponent
for continuous-time systems in an infinite-dimensional Hilbert space. The brief outline of the
paper is as follows. In Section 2, some notations, definitions, and preliminary results are given
and the concepts used throughout the paper are defined, as well as some basic theories, methods,
and techniques. In Section 3, we analyze the problem of arbitrary assignment of the upper Bohl
exponent by means of linear state feedback with a time-varying linear bounded gain operator function
for linear time-invariant control system in a Hilbert space with bounded operator coefficients and
prove that the property of exact controllability of the open-loop system is sufficient for arbitrary
assignability of the upper Bohl exponent of the closed-loop system. Section 4 provides an illustrative
example that emphasizes the theory. In Section 5, we revise the results obtained in the paper and also
showcase future developments of the theory.

2. Notations, Definitions, and Preliminary Results

Let X be a Banach space, X∗ be dual to X. By L(X1,X2) we denote a Banach space of linear
bounded operators A : X1 → X2. If A ∈ L(X1,X2), then A∗ ∈ L(X∗2,X∗1) is its adjoint operator.
By I : X→ X denote the identity operator.

Consider a linear system of differential equations:

ẋ(t) = A(t)x(t), t ∈ R, x ∈ X. (3)

We suppose that the following conditions hold:

(a) A(t) ∈ L(X,X) for any t ∈ R;
(b) The function R � t �→ A(t) ∈ L(X,X) is piecewise continuous;
(c) sup

t∈R
‖A(t)‖ = a < +∞.

2
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By a solution of system (3) we will understand, by definition, a solution of the integral equation:

x(t) = x0 +
∫ t

t0

A(s)x(s) ds, (4)

where
x(t0) = x0. (5)

Due to conditions imposed on A(·), a solution (4) of (3) is a continuous, piecewise continuously
differentiable function and satisfies (3) almost everywhere ([45], Ch. III, Sect. 1.1, 1.2).

By Φ(t, τ) denote the evolution operator of system (3) ([45], Ch. III, Sect. 1, p. 100) that is the
solution of the operator system:

dX
dt

= A(t)X, X(τ) = I.

By using the operator Φ(t, τ), the solution ot the initial value problem (3), (5) can be expressed by
the formula x(t) = Φ(t, t0)x0.

The evolution operator Φ(t, τ) has the following properties ([45], Ch. III, Sect. 1, p. 101):
(A) Φ(t, t) = I; (B) Φ(t, s)Φ(s, τ) = Φ(t, τ); (C) Φ(t, τ) = [Φ(τ, t)]−1;

(D) exp
(
−

∫ t

s
‖A(τ)‖ dτ

)
≤ ‖Φ±1(t, s)‖ ≤ exp

( ∫ t

s
‖A(τ)‖ dτ

)
, s ≤ t

(see [45], Ch. III, Sect. 2, (2.25)). It follows from property (D) and condition (c) that:

e−a(t−s) ≤ ‖Φ±1(t, s)‖ ≤ ea(t−s), s ≤ t. (6)

Definition 1. The upper Bohl exponent ([45], Ch. III, Sect. 4) of system (3) is the number:

κ(A) = lim
τ,s→+∞

ln ‖Φ(τ + s, τ)‖
s

.

The upper Bohl exponent of system (3) characterizes asymptotic behavior of solutions of (3):
The condition κ(A) < 0 is necessary and sufficient for uniform exponential stability of all solutions
to system (3). Due to the condition (c), the upper Bohl exponent of system (3) is finite ([45], Ch. III,
Sect. 4, Theorem 4.3).

Let us apply the λ-transformation ([9], p. 249), ([45], Ch. III, Sect. 4, p. 124) to system (3) that is
adding the disturbance λI to the operator A(t) and consider the disturbed system:

ż(t) = (A(t) + λI)z(t), t ∈ R, z ∈ X. (7)

By Ψ(t, τ) denote the evolution operator of system (7).

Lemma 1. For any t, τ ∈ R the following equality holds:

Ψ(t, τ) = eλ(t−τ)Φ(t, τ). (8)

Proof. Calculating the derivative of the right-hand side of (8), we obtain:

d
dt

(
eλ(t−τ) Φ(t, τ)

)
= λ eλ(t−τ) Φ(t, τ) + eλ(t−τ)A(t)Φ(t, τ) = (A(t) + λI)eλ(t−τ)Φ(t, τ). (9)

Next,
eλ(t−τ)Φ(t, τ)

∣∣∣
t=τ

= I. (10)

3
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It follows from (9) and (10) that eλ(t−τ)Φ(t, τ) is the evolution operator of (7). Due to the
uniqueness of the evolution operator, eλ(t−τ)Φ(t, τ) coincides with Ψ(t, τ).

Lemma 2. κ(A + λI) = κ(A) + λ.

Proof. By using Lemma 1, we obtain:

κ(A + λI) = lim
τ,s→+∞

ln ‖Ψ(τ + s, τ)‖
s

= lim
τ,s→+∞

ln ‖eλsΦ(τ + s, τ)‖
s

= lim
τ,s→+∞

ln
(
eλs‖Φ(τ + s, τ)‖

)
s

= lim
τ,s→+∞

ln eλs + ln ‖Φ(τ + s, τ)‖
s

= lim
τ,s→+∞

(
λs
s

+
ln ‖Φ(τ + s, τ)‖

s

)
= lim

τ,s→+∞

(
λ +

ln ‖Φ(τ + s, τ)‖
s

)
= λ + lim

τ,s→+∞

ln ‖Φ(τ + s, τ)‖
s

= λ +κ(A).

Let us consider another linear system of differential equations:

ẏ(t) = C(t)y(t), t ∈ R, y ∈ X. (11)

Suppose that the operator function C(t) also satisfies conditions (a), (b), (c), i.e., C(t) ∈ L(X,X)
∀t ∈ R , C(·) is piecewise continuous, and sup

t∈R
‖C(t)‖ = c < +∞. By Θ(t, τ) denote the evolution

operator of system (11). Because of conditions imposed on C(·), we have the inequality:

e−c(t−s) ≤ ‖Θ±1(t, s)‖ ≤ ec(t−s), s ≤ t. (12)

Definition 2. Systems (3) and (11) are called kinematically similar on R ([45], Ch. IV, Sect. 2) if it is possible
to establish between the totalities of all solutions of these systems a one-to-one correspondence:

y(t) = L(t)x(t), t ∈ R,

where L(t) is a bounded linear operator function with a bounded inverse:

‖L(t)‖ ≤ d1, ‖L−1(t)‖ ≤ d2, t ∈ R. (13)

The following criterion holds (see [45], Ch. IV, Sect. 2, Lemma 2.1, (a)).

Lemma 3. Systems (3) and (11) are kinematically similar on R if and only if there exists an operator function
R � t �→ L(t) ∈ L(X,X) satisfying (13) and such that the evolution operators of the systems are connected by
the relation:

Θ(t, τ)L(τ) = L(t)Φ(t, τ). (14)

Lemma 4 (see [45], Ch. IV, Sect. 2, Theorem 2.1). If systems (3) and (11) are kinematically similar on R, then
κ(A) = κ(C).

Let us state sufficient conditions for kinematical similarity of systems (3) and (11) on R analogous
to the corresponding conditions in a finite-dimensional space (see, e.g., [46]).

Lemma 5. Suppose that the operator functions A(t) and C(t) satisfy conditions (a), (b), and (c), and there
exists a sequence {ti}i∈Z ⊂ R such that 0 < ρ1 ≤ ti+1 − ti ≤ ρ2 and Φ(ti+1, ti) = Θ(ti+1, ti) for all i ∈ Z.
Then systems (3) and (11) are kinematically similar on R.

4
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Proof. By using the group property (B) of evolution operators, we obtain for all j > i:

Φ(tj, ti) = Φ(tj, tj−1) · · ·Φ(ti+1, ti) = Θ(tj, tj−1) · · ·Θ(ti+1, ti) = Θ(tj, ti). (15)

By (C), (15) holds for any i, j ∈ Z. Let us construct the operator function:

L(t) = Θ(t, t0)Φ(t0, t). (16)

By (15), we have L(ti) = I, i ∈ Z. Next, by (16), we have:

Θ(t, τ)L(τ) = Θ(t, τ)Θ(τ, t0)Φ(t0, τ) = Θ(t, t0)Φ(t0, τ),

L(t)Φ(t, τ) = Θ(t, t0)Φ(t0, t)Φ(t, τ) = Θ(t, t0)Φ(t0, τ).

Hence, (14) is fulfilled. Let us prove that (13) is satisfied.
Let t ∈ R be an arbitrary number. Then, since ti+1 − ti ≥ ρ1, there exists an i0 ∈ Z such that

t ∈ [ti0 , ti0+1]. In this case, t− ti0 ≤ ρ2. We have:

L(t) = Θ(t, t0)Φ(t0, t) = Θ(t, ti0)Θ(ti0 , t0)Φ(t0, ti0)Φ(ti0 , t)

= Θ(t, ti0)L(ti0)Φ(ti0 , t) = Θ(t, ti0)Φ(ti0 , t).

So, L−1(t) = Φ(t, ti0)Θ(ti0 , t). Then, taking (6) and (12) into account, we obtain:

‖L(t)‖ ≤ ‖Θ(t, ti0)‖ · ‖Φ(ti0 , t)‖ ≤ ec(t−ti0 )ea(t−ti0 ) ≤ e(a+c)ρ2 =: d1,

‖L−1(t)‖ ≤ ‖Φ(t, ti0)‖ · ‖Θ(ti0 , t)‖ ≤ ea(t−ti0 )ec(t−ti0 ) ≤ e(a+c)ρ2 =: d2.

Hence, (13) holds. By Lemma 3, the lemma is proved.

Consider a linear control system:

ẋ(t) = A(t)x(t) + B(t)u(t), t ∈ R. (17)

Here x ∈ X, u ∈ U; X, U are Banach spaces; A(t) satisfies conditions (a), (b), (c); ∀t ∈ R

B(t) ∈ L(U,X), the function t �→ B(t) is piecewise continuous, and sup
t∈R

‖B(t)‖ < +∞. Admissible

controllers for (17) on some finite interval [t0, t1] are functions u(·) ∈ Lp([t0, t1],U), p ≥ 1. For each
admissible controller u(·), there is a unique solution of the initial value problem (17), (5) (see ([45],
Ch. III, Sect. 1, (1.19)), [47]), determined by the formula:

x(t) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ.

Here Φ(t, τ) is the evolution operator of the corresponding free system (3). We consider a control
system (17) without imposing any geometric constraints on the control or on the state.

Definition 3 (see [47]). System (17) is called exactly controllable on [0, ϑ] if for any x0, x1 ∈ X there exists an
admissible controller u(t), t ∈ [0, ϑ], steering the solution of (17) from x(0) = x0 to x(ϑ) = x1.

Suppose that the controller in system (17) has the form of the linear state feedback:

u(t) = U(t)x(t), (18)

5
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where U(t) ∈ L(X,U) ∀t ∈ R, U(·) is piecewise continuous, and sup
t∈R

‖U(t)‖ < +∞. We say that the

gain operator function U(·) satisfying these conditions is admissible. The closed-loop system has
the form:

ẋ(t) =
(

A(t) + B(t)U(t)
)

x(t). (19)

By ΦU(t, τ) we denote the evolution operator of system (19).

Definition 4. We say that system (17) admits a λ-transformation if there exists a constant σ > 0 such that,
for any λ ∈ R, there exists an admissible gain operator function U(·) ensuring that the evolution operator
ΦU(t, τ) of system (19) satisfies the relation:

ΦU((k + 1)σ, kσ) = eλσΦ((k + 1)σ, kσ) (20)

for all k ∈ Z.

This definition was given in [13] for systems (17) in finite-dimensional spaces (see also [48]). It is
related to the definition of a λ-transformation of system (3).

Remark 1. It follows from (20) that, for the evolution operator ΦU(t, s) of system (19), the relation
ΦU(kσ, �σ) = eλ(k−�)σΦ(kσ, �σ) holds that is similar to (8) but is fulfilled on the set {kσ, k ∈ Z} ⊂ R.

Theorem 1. Suppose that system (17) admits a λ-transformation. Then, for any λ ∈ R, there exists an
admissible gain operator function U(·) such that the closed-loop system (19) and system (7) are kinematically
similar on R.

Proof. It follows from (20) and (8) that, for all k ∈ Z, the following equalities hold:

ΦU(tk+1, tk) = Ψ(tk+1, tk)

where Ψ(t, s) is the evolution operator of system (7) and tk = kσ. Now, applying Lemma 5 to systems
(19) and (7), where ρ1 = ρ2 = σ, we obtain what is required.

Definition 5. We say that the upper Bohl exponent of system (17) is arbitrarily assignable by linear state
feedback (18) if for any μ ∈ R there exists an admissible gain operator function U(·) such that, for the closed-loop
system (19),

κ(A + BU) = μ.

The corresponding definition in finite-dimensional spaces was given in [13] (see also [48]) for the
upper (and lower) central (and Bohl) exponents.

3. Main Results

Consider a time-invariant control system (17):

ẋ(t) = Ax(t) + Bu(t), t ∈ R. (21)

Here x ∈ X, u ∈ U; X and U are separable Hilbert spaces; A ∈ L(X,X), B ∈ L(U,X); a := ‖A‖,
b := ‖B‖. For Hilbert spaces H1, H2, we suppose that, if F ∈ L(H1,H2), then F∗ ∈ L(H2,H1),
i.e., we identify H∗i with Hi. By 〈·, ·〉 denote the scalar product (in the corresponding space).
If F∗ = F ∈ L(X,X), then the inequality F ≥ αI means, by definition, that 〈Fx, x〉 ≥ α‖x‖2 for all
x ∈ X.

6
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The evolution operator of the corresponding free system:

ẋ(t) = Ax(t), t ∈ R,

has the form Φ(t, τ) = exp(A(t− τ)). Let us denote Φ(t) := Φ(t, 0) = exp(At).
Let us construct the controllability gramian Q(ϑ) : X→ X, ϑ > 0 (see ([49], Definition 4.1.3), ([50],

Part IV, Ch. 2, Sect. 2.2, (2.9))):

Q(ϑ)x =
∫ ϑ

0
Φ(s)BB∗Φ∗(s)x ds. (22)

We have Q(ϑ) ∈ L(X,X) (see [49], Lemma 4.1.4), Q(ϑ) = Q∗(ϑ), and

〈Q(ϑ)x, x〉 =
∫ ϑ

0
‖B∗Φ∗(s)x‖2 ds ≥ 0, x ∈ X

(see [50], Part IV, Ch. 2, Sect. 2.2, (2.10)). By replacing s by ϑ− t in (22), we obtain that:

Q(ϑ) =
∫ ϑ

0
Φ(ϑ− t)BB∗Φ∗(ϑ− t) dt. (23)

Lemma 6. ‖Q(ϑ)‖ ≤ ϑe2aϑb2.

Proof. It follows from (D) that:

e−aϑ ≤ ‖Φ±1(t)‖ ≤ eaϑ, t ∈ [0, ϑ]. (24)

Moreover, since Φ(t) ∈ L(X,X), we have ‖Φ∗(t)‖ = ‖Φ(t)‖ (see [49], Lemma A.3.41). Thus,

e−aϑ ≤
∥∥∥(Φ∗(t)

)±1
∥∥∥ ≤ eaϑ, t ∈ [0, ϑ]. (25)

Similarly, ‖B∗‖ = ‖B‖ = b. By using (22), (24), and (25), we obtain:

‖Q(ϑ)‖ ≤
∫ ϑ

0
‖Φ(s)BB∗Φ∗(s)‖ ds ≤

∫ ϑ

0
‖Φ(s)‖ · ‖B‖ · ‖B∗‖ · ‖Φ∗(s)‖ ds ≤ ϑe2aϑb2.

For ϑ > 0, let us consider the operator Q0(ϑ) : X→ X given by:

Q0(ϑ)x =
∫ ϑ

0
Φ(−t)BB∗Φ∗(−t)x dt. (26)

We have Q0(ϑ) ∈ L(X,X), Q∗0(ϑ) = Q0(ϑ), and Q0(ϑ) ≥ 0. By (23), we have Q(ϑ) =

Φ(ϑ)Q0(ϑ)Φ∗(ϑ).

Lemma 7. ‖Q0(ϑ)‖ ≤ ϑe2aϑb2.

The proof of Lemma 7 is similar to the proof of Lemma 6.
By ([49], Theorem 4.1.7), system (21) is exactly controllable on [0, ϑ] if and only if for some γ > 0

and all x ∈ X:
〈Q(ϑ)x, x〉 ≥ γ‖x‖2. (27)

Inequality (27) means that Q(ϑ) ≥ γI.

7
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Lemma 8. System (21) is exactly controllable on [0, ϑ] if and only if, for some γ1 > 0,

Q0(ϑ) ≥ γ1 I. (28)

Proof. By (23),

〈
Q(ϑ)x, x

〉
=

∫ ϑ

0

〈
Φ(ϑ)Φ(−t)BB∗Φ∗(−t)Φ∗(ϑ)x, x

〉
dt =

∫ ϑ

0
‖B∗Φ∗(−t)Φ∗(ϑ)x‖2dt

=

∣∣∣∣Φ∗(ϑ)x = y
∣∣∣∣ = ∫ ϑ

0
‖B∗Φ∗(−t)y‖2dt =

〈
Q0(ϑ)y, y

〉
. (29)

(=⇒). Suppose that system (21) is exactly controllable on [0, ϑ]. Hence, for some γ > 0 and
all x ∈ X, (27) holds. Set γ1 := γe−2aϑ. Let y ∈ X be an arbitrary element. Set x :=

(
Φ∗(ϑ)

)−1y.
Then y = Φ∗(ϑ)x. Hence, ‖y‖ ≤ ‖Φ∗(ϑ)‖ · ‖x‖ ≤ eaϑ‖x‖. Therefore, ‖x‖ ≥ e−aϑ‖y‖. By using (29)
and (27), we obtain: 〈

Q0(ϑ)y, y
〉
=

〈
Q(ϑ)x, x

〉
≥ γ‖x‖2 ≥ γe−2aϑ‖y‖2 = γ1‖y‖2.

Hence, (28) holds.
(⇐=). Suppose that (28) holds. Set γ := γ1e−2aϑ. Let x ∈ X be an arbitrary element. Set y :=

Φ∗(ϑ)x. Then x =
(
Φ∗(ϑ)

)−1y. Hence, ‖x‖ ≤
∥∥∥(Φ∗(ϑ)

)−1
∥∥∥ · ‖y‖ ≤ eaϑ‖y‖. Therefore, ‖y‖ ≥ e−aϑ‖x‖.

By using (29) and (28), we obtain:〈
Q(ϑ)x, x

〉
=

〈
Q0(ϑ)y, y

〉
≥ γ1‖y‖2 ≥ γ1e−2aϑ‖x‖2 = γ‖x‖2.

Hence, (27) holds. Thus, system (21) is exactly controllable on [0, ϑ].

Consider the operator control system:

Ẏ(t) = AY(t) + BU1(t), (30)

where Y(t) : X→ X, U1(t) : X→ U, t ∈ R.

Lemma 9. Let system (21) be exactly controllable on [0, ϑ] for some ϑ > 0. Then there exists σ(= 2ϑ) > 0 such
that for an arbitrary λ ∈ R there exists a continuous operator control function [0, σ] � t �→ U1(t) ∈ L(X,U)
such that ‖U1(t)‖ ≤ α1 for some α1 ≥ 0 for all t ∈ [0, σ], steering the solution of (30) from:

Y(0) = I (31)

to
Y(σ) = eλσΦ(σ) (32)

so that the operator solution Y(t) of (30) is a linear bounded operator function with a bounded inverse:

‖Y(t)‖ ≤ β1, ‖Y−1(t)‖ ≤ β2, t ∈ [0, σ]. (33)

Proof. Let system (21) be exactly controllable on [0, ϑ], ϑ > 0. Set σ := 2ϑ. Suppose that λ ∈ R is
given. A solution of (30) with the initial condition (31) has the form:

Y(t) = Φ(t) ·
(

I +
∫ t

0
Φ(−s)BU1(s) ds

)
. (34)

8
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Condition (32) holds if and only if:

I +
∫ σ

0
Φ(−s)BU1(s) ds = eλσ I. (35)

We will search for U1(t) in the form:

U1(t) = B∗Φ∗(−t)H, (36)

where H ∈ L(X,X). Then, it follows from (35) that:

I + Q0(σ)H = eλσ I. (37)

By definition (26) of Q0(·), we have Q0(σ) ≥ Q0(ϑ). By Lemma 8, Q0(ϑ) ≥ γ1 I for some γ1 > 0.
Hence, Q−1

0 (σ) ∈ L(X,X) and ‖Q−1
0 (σ)‖ ≤ δ1 for some δ1 > 0. Finding H from (37), we obtain:

H = (eλσ − 1)Q−1
0 (σ). (38)

Substituting (38) in (36), we obtain:

U1(t) = B∗Φ∗(−t)Q−1
0 (σ)(eλσ − 1), t ∈ [0, σ]. (39)

We have,

‖U1(t)‖ ≤ ‖B∗‖ · ‖Φ∗(−t)‖ · ‖Q−1
0 (σ)‖ · |eλσ − 1| ≤ beaσδ1|eλσ − 1| =: α1, t ∈ [0, σ].

Substituting (39) in (34), we obtain:

Y(t) = Φ(t)R(t) (40)

where

R(t) = I +
∫ t

0
Φ(−s)BB∗Φ∗(−s) ds Q−1

0 (σ)(eλσ − 1). (41)

We have, for all t ∈ [0, σ],

‖R(t)‖ ≤ ‖I‖+
∫ t

0
‖Φ(−s)BB∗Φ∗(−s)‖ ds · ‖Q−1

0 (σ)‖ · |eλσ − 1| ≤ 1 + σe2aσb2δ1|eλσ − 1|,

hence,
‖Y(t)‖ ≤ ‖Φ(t)‖ · ‖R(t)‖ ≤ eaσ(1 + σe2aσb2δ1|eλσ − 1|) =: β1, t ∈ [0, σ].

Thus, the first inequality in (33) holds.
Let us show that R(t) has a bounded inverse for all t ∈ [0, σ]. Consider the operator

P(t) := R(t)Q0(σ) = Q0(σ) + (eλσ − 1)
∫ t

0
Φ(−s)BB∗Φ∗(−s) ds.

We have P∗(t) = P(t), t ∈ [0, σ], and

P(t) =
∫ σ

0
Φ(−s)BB∗Φ∗(−s) ds−

∫ t

0
Φ(−s)BB∗Φ∗(−s) ds + eλσ

∫ t

0
Φ(−s)BB∗Φ∗(−s) ds

=
∫ σ

t
Φ(−s)BB∗Φ∗(−s) ds + eλσ

∫ t

0
Φ(−s)BB∗Φ∗(−s) ds =: P1(t) + P2(t).

We see that P∗i (t) = Pi(t) and Pi(t) ≥ 0, i = 1, 2, t ∈ [0, σ].

9
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Let t ∈ [0, ϑ]. Then,

P1(t) =
∫ σ

t
Φ(−s)BB∗Φ∗(−s) ds

=
∫ ϑ

t
Φ(−s)BB∗Φ∗(−s) ds +

∫ 2ϑ

ϑ
Φ(−s)BB∗Φ∗(−s) ds =: P3(t) + P4(ϑ).

We have P∗3 (t) = P3(t), P∗4 (ϑ) = P4(ϑ),

P3(t) =
∫ ϑ

t
Φ(−s)BB∗Φ∗(−s) ds ≥ 0.

Next,

P4(ϑ) =
∫ 2ϑ

ϑ
Φ(−s)BB∗Φ∗(−s) ds = Φ−1(ϑ)

∫ 2ϑ

ϑ
Φ(ϑ− s)BB∗Φ∗(ϑ− s) ds

(
Φ∗(ϑ)

)−1

= Φ−1(ϑ)
∫ ϑ

0
Φ(−t)BB∗Φ∗(−t) dt

(
Φ∗(ϑ)

)−1
= Φ−1(ϑ)Q0(ϑ)

(
Φ∗(ϑ)

)−1.

Since system (21) is exactly controllable on [0, ϑ], we have, by Lemma 8, Q0(ϑ) ≥ γ1 I. Therefore,
P4(ϑ) ≥ γ2 I for some γ2 ≥ 0 (namely, for γ2 := γ1e−2aϑ; the proof is similar to the proof of Lemma 8).
So, we have P1(t) = P3(t) + P4(ϑ) ≥ γ2 I for t ∈ [0, ϑ]. Thus, P(t) = P1(t) + P2(t) ≥ γ2 I for t ∈ [0, ϑ].

Let t ∈ [ϑ, 2ϑ]. We have,

P2(t) = eλσ
∫ t

0
Φ(−s)BB∗Φ∗(−s) ds ≥ eλσ

∫ ϑ

0
Φ(−s)BB∗Φ∗(−s) ds = eλσQ0(ϑ) ≥ eλσγ1 I.

So, P(t) = P1(t) + P2(t) ≥ eλσγ1 I for t ∈ [ϑ, 2ϑ].
Thus, for all t ∈ [0, σ], we have P(t) ≥ γ3 I > 0 where γ3 := min{γ2, γ1eλσ}. Hence, there exists an

inverse P−1(t) ∈ L(X,X) and ‖P−1(t)‖ ≤ δ2 for some δ2 > 0 for all t ∈ [0, σ]. Then R(t) = P(t)Q−1
0 (σ)

has a bounded inverse:
R−1(t) = Q0(σ)P−1(t)

and, by using the estimation in Lemma 7, we obtain:

‖R−1(t)‖ ≤ ‖Q0(σ)‖ · ‖P−1(t)‖ ≤ σe2aσb2δ2 =: δ3.

By (40), we obtain:
Y−1(t) = R−1(t)Φ−1(t), t ∈ [0, σ],

and
‖Y−1(t)‖ ≤ ‖R−1(t)‖ · ‖Φ−1(t)‖ ≤ δ3eaσ =: β2, t ∈ [0, σ].

Theorem 2. Let system (21) be exactly controllable on [0, ϑ] for some ϑ > 0. Then system (21) admits a
λ-transformation.

Proof. Let system (21) be exactly controllable on [0, ϑ], ϑ > 0. Set: σ := 2ϑ. Suppose that λ ∈ R is
given. Let us construct the control function U1(t), t ∈ [0, σ], in accordance with Lemma 9. Set

U2(t) := U1(t)Y−1(t), t ∈ [0, σ]. (42)

Then U2(t) ∈ L(X,U), t ∈ [0, σ], and

‖U2(t)‖ ≤ ‖U1(t)‖ · ‖Y−1(t)‖ ≤ α1β2, t ∈ [0, σ].

10
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We have
U1(t) = U2(t)Y(t), t ∈ [0, σ]. (43)

Let us substitute (43) in (30). Then we obtain that the function Y(t), t ∈ [0, σ], defined by (40) is a
solution of the system:

Ẏ(t) =
(

A + BU2(t)
)
Y(t) (44)

satisfying the initial condition (31). Hence,

Y(t) = ΦU2(t, 0), t ∈ [0, σ], (45)

where ΦU2(t, s), t, s ∈ [0, σ], is the evolution operator of system (44). It follows from (45) and (32) that:

ΦU2(σ, 0) = eλσΦ(σ). (46)

Let us extend the function U2(t), t ∈ [0, σ], onto R periodically with the period σ, i.e., construct
the function:

U(t) ≡ U2(t− kσ), t ∈ [kσ, (k + 1)σ), k ∈ Z. (47)

Consider the system:
Ẏ(t) =

(
A + BU(t)

)
Y(t), t ∈ R. (48)

System (48) is σ-periodic. Therefore, the evolution operator ΦU(t, s) of system (48) satisfies the
following condition:

ΦU(t + kσ, s + kσ) = ΦU(t, s)

for all t, s ∈ R and k ∈ Z. In particular,

ΦU((k + 1)σ, kσ) = ΦU(σ, 0) = ΦU2(σ, 0). (49)

From (49), (46), and the equality Φ(σ) = Φ((k + 1)σ, kσ), it follows that:

ΦU((k + 1)σ, kσ) = eλσΦ((k + 1)σ, kσ). (50)

Thus, the required equality is proved. The function U(·) is piecewise continuous and:

sup
t∈R

‖U(t)‖ = sup
t∈[0,σ)

‖U2(t)‖ ≤ α1β2.

The theorem is proved.

Corollary 1. Let system (21) be exactly controllable on [0, ϑ] for some ϑ > 0. Then, for any λ ∈ R, there exists
an admissible gain operator function U(·) such that the closed-loop system:

ẋ(t) =
(

A + BU(t)
)
x(t) (51)

and system (7) are kinematically similar on R.

Corollary 1 follows from Theorems 1 and 2.

Theorem 3. Let system (21) be exactly controllable on [0, ϑ] for some ϑ > 0. Then the upper Bohl exponent of
system (21) is arbitrarily assignable by the linear state feedback (18).

Proof. Let μ ∈ R be given. Set,
λ := μ−κ(A). (52)

11
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For this λ, let us construct, by Corollary 1, an admissible gain operator function U(·) such that
system (51) and system (7) are kinematically similar on R. By Lemma 4, we have:

κ(A + BU) = κ(A + λI). (53)

By Lemma 2, we have:
κ(A + λI) = κ(A) + λ. (54)

From (53), (54), and (52), it follows that κ(A + BU) = μ as required.

4. Example

Let X = U = �2 where �2 is the is the space of all sequences x = (x1, x2, . . . , xn, . . .) with the

norm ‖x‖ =
( ∞

∑
i=1
|xi|2

)1/2
. The space �2 is a separable Hilbert space ([51], § 56). Consider a linear

control system:
ẋ(t) = Ax(t) + Bu(t), t ∈ R, x ∈ X, u ∈ U, (55)

where

A : (x1, x2, x3, x4, . . .) �→ (−x2, x1,−x4, x3, . . .), (56)

B : (x1, x2, x3, x4, . . .) �→ (x1, 0, x2, 0, x3, 0, . . .). (57)

Considering elements of �2 as column-vectors with an infinite number of coordinates, one can
identify the operators A and B with the following matrices with an infinite number of rows
and columns:

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0 −1 0 0 . . .
1 0 0 0 . . .
0 0 0 −1 . . .
0 0 1 0 . . .
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 . . .
0 0 0 . . .
0 1 0 . . .
0 0 0 . . .
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎦ . (58)

Consider the matrices F =

[
0 −1
1 0

]
, G =

[
1
0

]
. One can write the matrices (58) in the following

block-diagonal form:

A = diag {F, F, . . . , F, . . .}, B = diag {G, G, . . . , G, . . .}. (59)

We will use the following denotations for the matrices of the form (59):

A = diag [F]∞, B = diag [G]∞.

Set G1 := FG. Then G1 =

[
0
1

]
. Hence, AB = diag [G1]∞. Therefore, span {BU, ABU} = X.

It follows that system (55), (56), (57) is exactly controllable on [0, ϑ] for any ϑ > 0. Let us take ϑ = π.
Let us show that the upper Bohl exponent of system (55), (56), (57) is arbitrarily assignable by linear
state feedback (18).

Consider the system:
ẏ(t) = Fy(t), t ∈ R, y ∈ R

2. (60)

12
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The evolution operator Γ(t, s) of system (60) has the form Γ(t, s) = Γ(t− s) where Γ(t) = exp(Ft).
Calculating the matrix exponent, we obtain that:

Γ(t) =

[
cos t − sin t
sin t cos t

]
.

Let us construct the evolution operator Φ(t, s) of the free system:

ẋ(t) = Ax(t), t ∈ R.

We obtain Φ(t, s) = Φ(t − s) where Φ(t) = diag [Γ(t)]∞. Hence, Φ(τ + s, τ) = diag [Γ(s)]∞.
For any y = col (y1, y2) ∈ R2 we have:

‖Γ(s)y‖2 = (y1 cos s− y2 sin s)2 + (y1 sin s + y2 cos s)2 = y2
1 + y2

2 = ‖y‖2.

From this, it follows that ‖Φ(τ + s, τ)x‖2 = ‖x‖2 for all τ, s ∈ R and x ∈ X. Hence, ‖Φ(τ +

s, τ)‖ = 1. So, ln ‖Φ(τ + s, τ)‖ = 0. Thus, κ(A) = 0.
Let an arbitrary μ ∈ R be given. Set λ := μ− κ(A) = μ. Let us construct U(·), by Theorem 2,

that ensures equality (50), and, hence, by Corollary 1, kinematic similarity of systems (51) and (7), and,
thus, the equality κ(A + BU) = λ = μ. Set σ := 2ϑ = 2π. We have:

Φ(σ) = Φ(2π) = diag [Γ(2π)]∞ = diag [I2]∞

where I2 =

[
1 0
0 1

]
, i.e., Φ(σ) = I ∈ L(X,X). Next,

Γ(−s)GG∗Γ∗(−s) =

[
cos2 s − cos s sin s

− cos s sin s sin2 s

]
.

Set Σ(t) :=
∫ t

0
Γ(−s)GG∗Γ∗(−s) ds. Then,

Σ(t) =

⎡⎢⎣ t
2
+

sin 2t
4

cos 2t− 1
4

cos 2t− 1
4

t
2
− sin 2t

4

⎤⎥⎦ ,

and, hence, Σ(σ) = Σ(2π) = π I2. We have:

Q0(σ) =
∫ σ

0
Φ(−s)BB∗Φ∗(−s) ds =

∫ σ

0
diag [Γ(−s)]∞diag [GG∗]∞diag [Γ∗(s)]∞ ds

=
∫ σ

0
diag [Γ(−s)GG∗Γ∗(s)]∞ ds = diag [Σ(σ)]∞ = π I ∈ L(X,X).

So, Q−1
0 (σ) =

1
π

I ∈ L(X,X), hence, by (38), H =
e2πλ − 1

π
I ∈ L(X,X). Denote,

α :=
e2πλ − 1

2π
. (61)

By using (39), we obtain,

U1(t) = diag [V1(t)]∞, where V1(t) = [2α cos t,−2α sin t] . (62)
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Next, by (41), we have R(t) = diag [K(t)]∞, where K(t) = I2 + 2αΣ(t). Set S(t) := Γ(t)K(t).
Multiplying Γ(t) by K(t), we obtain that:

S(t) =

[
(1 + αt) cos t + α sin t −(1 + αt) sin t

(1 + αt) sin t (1 + αt) cos t− α sin t

]
. (63)

By (40), we have,

Y(t) = Φ(t)R(t) = diag [Γ(t)]∞diag [K(t)]∞ = diag [Γ(t)K(t)]∞ = diag [S(t)]∞. (64)

Finding Δ(t) := det S(t) from (63), we obtain that:

Δ(t) = (1 + αt)2 − α2 sin2 t.

It is easy to check that, for all t ∈ [0, σ]: Δ′(t) > 0, if α > 0; Δ′(t) < 0, if α < 0; and Δ′(t) = 0,
if α = 0. Hence, for all t ∈ [0, σ]: if α > 0, then Δ(t) ≥ Δ(0) = 1; if α < 0, then Δ(t) ≥ Δ(2π) = e4πλ >

0; if α = 0, then Δ(t) = 1. Thus, Δ(t) is separated from zero.
From (63), we obtain that

S−1(t) =
1

Δ(t)

[
(1 + αt) cos t− α sin t (1 + αt) sin t
−(1 + αt) sin t (1 + αt) cos t + α sin t

]
. (65)

By (64), we have:
Y−1(t) = diag [S−1(t)]∞. (66)

Constructing U2(t) according to (42), by using (62), (66), and (65), we obtain:

U2(t) = diag [V2(t)]∞, V2(t) =
1

Δ(t)

[
2α(1 + αt)− 2α2 sin t cos t,−2α2 sin2 t

]
. (67)

From (67) we obtain:

F + GV2(t) =

⎡⎣2α(1 + αt)− 2α2 sin t cos t
Δ(t)

−(1 + αt)2 − α2 sin2 t
Δ(t)

1 0

⎤⎦ .

One can check that the matrix (63) satisfies the following matrix differential equation:

Ṡ(t) = (F + GV2(t))S(t), t ∈ [0, σ]. (68)

Next, by (67), we have:
A + BU2(t) = diag [F + GV2(t)]∞. (69)

Due to (68) and (69), the function (64) satisfies the system:

Ẏ(t) = (A + BU2(t))Y(t), t ∈ [0, σ],

and Y(0) = I. Hence, (45) and (46) holds. Constructing U(t) according to (47), we obtain:

U(t) = diag [V(t)]∞, V(t) =
1

Δ(t− 2πk)

[
2α(1 + α(t− 2πk))− 2α2 sin t cos t,−2α2 sin2 t

]
,

t ∈ [2πk, 2π(k + 1)), k ∈ Z.
(70)
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By Theorem 2, the gain operator function (70) with α defined by (61) ensures equality (50),
kinematic similarity of systems:

ẋ(t) = (A + BU(t))x(t), t ∈ R, (71)

and
ẋ(t) = (A + λI)x(t), t ∈ R, (72)

on R, and the equality κ(A + BU) = λ = μ.
For numerical simulation, let us construct the projection of systems (71) and (72) into the space

R2 = {(x1, x2), x1, x2 ∈ R}. We obtain the systems

ẏ(t) = (F + GV(t))y(t), t ∈ R, y ∈ R
2, (73)

and
ẏ(t) = (F + λE)y(t), t ∈ R, y ∈ R

2. (74)

Here E is the identity (2× 2)-matrix. Systems (73) and (74) are kinematically similar, hence,
since κ(F) = 0, we have κ(F + GV) = κ(F + λE) = λ. Let us take, for example, λ = −1/4.
The equality κ(F + λE) = −1/4 means that system (74) (and (73)) is uniformly exponentially stable
with the decay rate 1/4.

Let Ξ(t, s) denote the evolution matrix of system (73) and Ω(t, s) denote the evolution matrix of
system (74). Let,

Ξ(t, 0) =:

[
ξ11(t) ξ12(t)
ξ21(t) ξ22(t)

]
, Ω(t, 0) =:

[
ω11(t) ω12(t)
ω21(t) ω22(t)

]
.

We have Ξ(t, 0)
∣∣∣
t=0

= Ω(t, 0)
∣∣∣
t=0

= E. Let us construct the graphs of the functions ξij(t), ωij(t)

(see, Figures 1–4).

Figure 1. Graphs of the functions A = ω11(t), B = ω21(t).
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Figure 2. Graphs of the functions A = ω12(t), B = ω22(t).

Figure 3. Graphs of the functions A = ξ11(t), B = ξ21(t).

Figure 4. Graphs of the functions A = ξ12(t), B = ξ22(t).
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One can see from system (73) and (74) (and from the graphs) that:

ω11(2π) = ξ11(2π) = e−π/2 ≈ 0.2079, ω12(2π) = ξ12(2π) = 0,

ω21(2π) = ξ21(2π) = 0, ω22(2π) = ξ11(2π) = e−π/2 ≈ 0.2079.
(75)

One can see also that the functions ωij are smooth. Since the matrix of system (73) is piecewise
continuous, the matrix function Ξ(t, 0) is piecewise smooth and its derivative can be discontinuous at
the points t = 2πk. Calculating the one-sided limits from (73), we obtain that:

ξ̇11(t)
∣∣∣
t=2π−0

= (e−π/2 − 1)/π ≈ −0.2521, ξ̇11(t)
∣∣∣
t=2π+0

= (e−π/2 − 1)e−π/2/π ≈ −0.0524,

ξ̇12(t)
∣∣∣
t=2π−0

= ξ̇12(t)
∣∣∣
t=2π+0

= −e−π/2, ξ̇21(t)
∣∣∣
t=2π−0

= ξ̇21(t)
∣∣∣
t=2π+0

= e−π/2,

ξ̇22(t)
∣∣∣
t=2π−0

= ξ̇22(t)
∣∣∣
t=2π+0

= 0,

i.e., only the function ξ11(t) has the discontinuous derivative at the point t = 2π. This is confirmed by
the graphs.

It follows from (75) that:

Ξ(2π, 0) = Ω(2π, 0) =

[
e−π/2 0

0 e−π/2

]
≈

[
0.2079 0

0 0.2079

]
.

By periodicity, we have:

Ξ(4π, 0) = Ω(4π, 0) =

[
e−π 0

0 e−π

]
≈

[
0.0432 0

0 0.0432

]
,

and so on, Ξ(2πk, 0) = Ω(2πk, 0) = e−πk/2E, k ∈ Z. The graphs confirm asymptotic equivalence of
the behavior of solutions of systems (73) and (74).

Remark 2. The advantage of the developed method is that it allows us to establish the exact asymptotics
(i.e., exact equality κ(A + BU) = μ) for the closed-loop system, in contrast to, e.g., [35], from which one can
only obtain the inequality Λ(A + BU) ≤ κ for the upper Lyapunov exponent Λ of the closed-loop system.
The problem of exact assignment of the upper Bohl exponent for a system in infinite-dimensional space in the
presented formulation has not been previously investigated. Moreover, the developed method allows us to assign
exact values for other asymptotic invariants of the closed-loop system (central exponents, exponential exponents
etc.). A disadvantage is that the analytical expressions for the controller (and for solutions of the closed-loop
system) can be complicated, in contrast to the stabilization problem [35]. This method can be applied to any
system with the property of exact controllability. The choice of matrices in the example in a rather simple form
was made for illustrative purposes because in this case the analytical expressions for the controller and for the
solutions of the closed-loop system is not very complicated.

5. Conclusions

For a linear time-invariant control system in a Hilbert space with bounded operator coefficients,
we examined the problem of arbitrary assignment of the upper Bohl exponent by means of linear
state feedback with a time-varying linear bounded gain operator function. We have proved that the
property of exact controllability of the open-loop system is sufficient for arbitrary assignability of the
upper Bohl exponent of the closed-loop system. We plan to extend these results to systems without
necessarily bounded operator A but generating a C0-continuous semigroup. We plan to prove similar
results for systems with dynamic output feedback. Further development of these results may be
their extension to systems with periodic coefficients and with arbitrary time-varying non-periodic
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coefficients, to systems in general Banach spaces, or to systems with discrete time. We expect to apply
the results to specific systems, for example, to systems with delays, considering them as abstract
systems of differential equations in an infinite-dimensional space.
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44. Barreira, L.; Dragičević, D.; Valls, C. Spectrum for compact operators on Banach spaces. J. Math. Soc. Jpn.

2019, 71, 1–17. [CrossRef]
45. Daleckii, J.L.; Krein, M.G. Stability of Solutions of Differential Equations in Banach Space; American Mathematical

Society: Providence, RI, USA, 1974.

19



Mathematics 2020, 8, 992

46. Makarov, E.K. On the discreteness of asymptotic invariants of linear differential systems. Differ. Equ. 1998,
34, 1323–1331.

47. Triggiani, R. Controllability and observability in Banach space with bounded operators. SIAM J. Control
1975, 13, 462–491. [CrossRef]

48. Zaitsev, V.A. Lyapunov reducibility and stabilization of nonstationary systems with an observer. Differ. Equ.
2010, 46, 437–447. [CrossRef]

49. Curtain, R.F.; Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory; Springer: New York, NY,
USA, 1995. [CrossRef]

50. Zabczyk, J. Mathematical Control Theory; Birkhäuser: Boston, MA, USA, 2008. [CrossRef]
51. Kolmogorov, A.N.; Fomin, S.V. Elements of the Theory of Functions and Functional Analysis; Graylock Press:

Rochester, NY, USA, 1957.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

20



mathematics

Article

About Some Possible Implementations of the
Fractional Calculus

María Pilar Velasco 1,*,†, David Usero 2,†, Salvador Jiménez 1,†, Luis Vázquez 2,†,

José Luis Vázquez-Poletti 2,† and Mina Mortazavi 3,†

1 Department of Applied Mathematics to the Information and Communications Technologies,
Universidad Politécnica de Madrid, 28040 Madrid, Spain; s.jimenez@upm.es

2 Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain;
umdavid@mat.ucm.es (D.U.); lvazquez@fdi.ucm.es (L.V.); jlvazquez@fdi.ucm.es (J.L.V.-P.)

3 Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad,
Mashhad 9177948974, Iran; minamortazavi5@gmail.com

* Correspondence: mp.velasco@upm.es
† These authors contributed equally to this work.

Received: 6 May 2020; Accepted: 26 May 2020; Published: 2 June 2020

Abstract: We present a partial panoramic view of possible contexts and applications of the fractional
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models in ordinary differential equation (ODE) and partial differential equation (PDE) formulations
ranging from the basic equations of mechanics to diffusion and Dirac equations.
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1. From Elementary Mathematical Analysis to Fractional Derivatives

A first reason to justify the use of fractional operators is the need to introduce memory terms into
differential models in a natural form. In this sense, we can consider the classical Calculus Fundamental
Theorem with the introduction of a convolution kernel F associated to a function g leads to the natural
form of introducing a memory term by changing the convolution kernel of the integral:

F(x) = F(a) +
∫ x

a
K(g(x)− g(s)) · f (s)ds (1)

Now F is the generalized primitive of the function f and the convolution kernel K is a memory
term that could be different in each specific problem, changing the definition of fractional operator
consequently. This generalization of the integral can be considered as a base to construct possible
definitions for fractional integrals.

From these considerations, the fractional calculus emerges in the mathematical world as the study
of integral and derivative operators of non-integer orders on domains of real or complex functions.
Several definitions of fractional derivatives Dα have been developed progressively with the objective
to generalize the concept of ordinary derivative D, such that for α = 1 the ordinary operator can be
recovered [1–3].

Fractional calculus is a powerful mathematical tool that allows to create intermediate-order
parameters equations and offers modeling scenarios where fundamental mathematical questions
converge and appropriate numerical algorithms can de developed. A lot of fractional operators have
been defined in the literature; however, not all of them can be used in each real-world application.
In this context, we appreciate very much the enthusiastic and clarifier paper of D. Baleanu and
A. Fernandez [4] and M.D. Ortigueira and J.A.T. Machado [5–7].

Mathematics 2020, 8, 893; doi:10.3390/math8060893 www.mdpi.com/journal/mathematics21
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1.1. From Factorial to the Gamma Function

The first definitions of fractional operators are related to the use of the Gamma function is a
function that generalizes the definition of the factorial to non-positive numbers. Its definition is:

Γ(z) =
∫ ∞

0
sz−1e−sds (2)

for any complex number z with positive real part.
Using integration by parts in Equation (2), a fundamental property of the Gamma function

is obtained:
Γ(z) = (z− 1)Γ(z− 1), (3)

which allows to give the Gamma function of a positive integer number as

Γ(n) = (n− 1)! . (4)

In this context, the Gamma function is a generalization of the concept of factorial.
In 1738, Euler introduces the first generalization of ordinary derivative, verifying that the fractional

derivation made sense for the potential function xa. And in 1819, Lacroix starts from the m-order
derivative of the function xn, with m and n positive integer numbers

dm

dxm xn =
n!

(n−m)!
xn−m, (5)

to determine the 1/2 order derivative of the function xa, using the generalization of the factorial
function by the Gamma function:

d1/2

dx1/2 xa =
Γ(a + 1)

Γ
(

a + 1
2

) xa− 1
2 , (6)

such that for a = 1:
d1/2

dx1/2 x =

√
x

Γ
( 3

2
) =

2
√

x√
π

. (7)

This is the result that will be obtained with the called Riemann–Lioville fractional derivative.
This concept can be generalized to any order and the following relation between the ordinary and

fractional case with the Riemann–Liouville fractional derivative is obtained:

dn

dxn xm =
m!

(m− n)!
xm−n ⇒ dα

dxα
xμ =

Γ(μ + 1)
Γ(μ− α + 1)

xμ−α. (8)

Later, some provisional definitions of fractional operators were introduced by Fourier, Abel,
Liouville and Riemman, without much success. Until, in 1870, N. Ya. Sonine started from the Cauchy
formula for repeated integration:

(a In
x f )(x) =

∫ x

a
dx1

∫ x1

a
dx2· · ·

∫ xn−1

a
f (t)dt =

1
(n− 1)!

∫ x

a
(x− t)n−1 f (t)dt (9)

and, using the generalization of the factorial function by the Gamma function, he obtained the actual
definition of the fractional integral of Riemann–Liouville:

(a Iα
x f )(x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, �(α) > 0 (10)

although in 1884 Laurent formulated it definitively.
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1.2. Some Definitions of Fractional Integrals and Derivatives

An important definition of fractional integral and derivative corresponds to Riemann–Liouville:

• Left-side Riemann–Liouville Fractional Integral of order α > 0:

a Iα
x φ(x) =

1
Γ(α)

∫ x

a
(x− t)α−1φ(t)dt, x > a. (11)

• Right-side Riemann–Liouville Fractional Integral of order α < 0:

x Iα
b φ(x) =

1
Γ(α)

∫ b

x
(x− t)α−1φ(t)dt, x < b. (12)

• Left-side Riemann–Liouville Fractional Derivative of order α > 0:

aDα
xφ(x) =

1
Γ(n− α)

(
∂

∂x

)n ∫ x

a
(x− t)α−(n−1)φ(t)dt = Dn(a In−α

x f )(x), x > a. (13)

• Right-side Riemann–Liouville Fractional Derivative of order α < 0:

xDα
b φ(x) =

1
Γ(n− α)

(
− ∂

∂x

)n ∫ b

x
(x− t)α−(n−1)φ(t)dt = (−D)n(x In−α

b f )(x), x < b. (14)

In all cases n ∈ N, such that 0 ≤ n− 1 < α < n.
These operators recover the classical operators for the parameter α = 1 and the algebra of these

operators is different to the classical operators:

• Let f ∈ Lp(a, b) (1 ≤ p ≤ ∞) and Re(α), Re(β) > 0. Then:

(a Iα
x a Iβ

x f )(x) = (a Iα+β
x f )(x) (15)

in [a, b].
• Let f ∈ L1(a, b), α, β > 0, such that n− 1 < α ≤ n, m− 1 < β ≤ m (n, m ∈ N) and α + β < n,

fm−α = a Im−α
x f ∈ ACm([a, b]). Then:

(aDα
x aDβ

x f )(x) = (aDα+β
x f )(x)−

m

∑
j=1

(aDβ−j
x f )(a+)

(x− a)−j−α

Γ(1− j− α)
. (16)

• Let f ∈ L1(a, b), α ≥ β > 0. Then:

(aDα
x a Iβ

x f )(x) = (a Iβ−α
x f )(x), α ≤ β (17)

(aDα
x a Iβ

x f )(x) = (aDα−β
x f )(x), α ≥ β (18)

Related to the integrals of Riemann–Liouville, the definition of Caputo fractional derivative appears:

• Left-side Caputo Fractional Derivative of order α > 0:

C
a Dα

xφ(x) = aDα
x

(
φ(x)−

n−1

∑
k=0

φ(k)(a)
k!

(x− a)k

)

=
1

Γ(n− α)

∫ x

a

φ(n)(t)
(x− t)α+1−n dt, x > a. (19)
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• Right-side Caputo Fractional Derivative of order α < 0:

C
x Dα

b φ(x) =
(−1)n

Γ(n− α)

∫ b

x

φ(n)(t)
(x− t)α+1−n dt, x < b. (20)

We have, as before, n ∈ N such that 0 ≤ n− 1 < α < n, and now the n + 1 derivatives of function
φ must be continuous and bounded in [a, b].

The following identity established the relation between the Riemann–Liouville and Caputo
fractional derivatives, for f a suitable function (for instance, f n-derivable):

(aDα
x f )(x) = (C

a Dα
x f )(x) +

n−1

∑
j=0

f (j)(a)
Γ(1 + j− α)

(x− a)j−α. (21)

The extension of Riemann–Liouville fractional operators to infinity intervals leads to the Liouville
fractional operators:

• Left-side Liouville Fractional Integral of order α > 0:

L
+ Iα

x φ(x) =
1

Γ(α)

∫ x

−∞
(x− t)α−1φ(t)dt, x ∈ R. (22)

• Right-side Liouville Fractional Integral of order α < 0:

L
x Iα
−φ(x) =

1
Γ(α)

∫ ∞

x
(x− t)α−1φ(t)dt, x ∈ R. (23)

• Left-side Liouville Fractional Derivative of order α > 0:

L
+Dα

xφ(x) =
1

Γ(n− α)

(
∂

∂x

)n ∫ x

−∞
(x− t)α−(n−1)φ(t)dt = Dn(+ In−α

x f )(x), x ∈ R. (24)

• Right-side Liouville Fractional Derivative of order α < 0:

L
x Dα

−φ(x) =
1

Γ(n− α)

(
− ∂

∂x

)n ∫ ∞

x
(x− t)α−(n−1)φ(t)dt = (−D)n(x In−α

− f )(x), x ∈ R. (25)

In all cases n ∈ N, such that 0 ≤ n− 1 < α < n.

1.3. Mittag-Leffler Functions

Special functions related to the eigenfunctions of fractional operators are the Mittag-Leffler
functions. They appear in the solution of many fractional differential equations. The Mittag-Leffler
functions are generalizations of the exponential function and they was introduced by the mathematician
G.M. Mittag-Leffler in 1903:

Eα(t) =
∞

∑
k=0

tk

Γ(αk + 1)
(α > 0, α ∈ R),

Eα,β(t) =
∞

∑
k=0

tk

Γ(αk + β)
(α, β > 0, α, β ∈ R).

(26)
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Here, we have some elementary properties of the Mittag-Leffer function. For some values of the
parameters α, β, Mittag-Leffer functions return known classical functions, for example:

E1(t) = et, (27)

E2(t) = cosh(
√

t). (28)

The relevance of the Mittag-Lefler functions is their behavior as generalized exponential functions
associated to the Riemann–Liouville and Caputo fractional derivatives:

0Dα
t tα−1Eα,α(λtα) = λtα−1Eα,α(λtα), (29)

and
C
0 Dα

t Eα(λtα) = λEα(λtα). (30)

On the other hand, a very useful extension of the Mittag-Leffer function is related to
extend the fractional derivatives defined by using a Mittag-Leffler kernel which is non-local and
non-singular ([8,9]).

ABRDα
a+ f (t) =

B(α)
1− α

d
dt

∫ t

a
f (x)Eα

( −α

1− α
(t− x)α

)
dx, (31)

ABCDα
a+ f (t) =

B(α)
1− α

∫ t

a
f ′(x)Eα

( −α

1− α
(t− x)α

)
dx (32)

valid for 0 < α < 1, with B(α) being a normalisation function. This new definition has many
applications at the same time that satisfies the extensions of the product rule and chain rule.

Futhermore, these functions have many uses, for instance, they allow to address fractal kinetics
from basic functions ([10]) or they can be used as a simplification tool combined to exponent/powerlaw
mathematical congruence ([11]).

1.4. Some Ideas for Numerical Integration

It is simple to extend some classical methods from integer to non-integer orders. For instance,
the most basic first order explicit method for numerical integration of ordinary differential equations
with a given initial value, known as Euler methods.

In classical dynamical models, symplectic integration schemes preserve the flow of the
hamiltonian while other classical integrators as Runge–Kutta schemes do not necessarily conserve
it. This is immediately translated into the conservation of the first integral of motion and long term
stability of the scheme. In fractional dynamics, energy is not conserved. Despite this, using a symplectic
scheme in fractional mechanics ensures that the observed instabilities will be certainly due to the
fractional operators. Long-term stability is inherited in this fractional mapping as is shown below.

Let us consider the following initial value problem with Caputo fractional derivative:

C
0 Dα

t y(t) = yα, t ∈ [0, T], 0 < α < 1 (33)

y(0) = y0 (34)

where yα is a Lipschitz function with constant L.
By using a truncated Taylor series for the Caputo fractional derivative, with step tn = nh with

h = T
N y n = 0, 1, 2, . . . , N, we obtain:

y(t + h) = y(t) + hα
C
0 Dα

t y(t)
Γ(α)

(35)
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and then the fractional Euler method for this initial value problem is:

yn+1 = yn +
hα

Γ(α)
f (tn, yn) (36)

with convergence order hα.
Other more complex generalizations of classical methods are possible. For instance, fractional

Hamiltonian–Jacobi methods. The equations of motions for a one-dimensional Hamiltonian system
H = 1

2 p2 + V(x) with unit mass, are defined as

ẋ =
∂H
∂p

= p, ṗ = −∂H
∂x

= −V′(x), (37)

that is associated to the second order equation ẍ + V′(x) = 0. This system can be generalized by using
Caputo time-fractional derivatives {

C
0 Dα

t x = p,
C
0 Dα

t p = −V′(x),
(38)

where 0 < α ≤ 1.
And the system Equation (38) with initial condition x(0) = x0, p(0) = p0 is equivalent to{

x(t) = x(0) + 0 Iα
t p(t)

p(t) = p(0)− 0 Iα
t V′(x(t))

(39)

For the numeric solution of system Equation (39) we have developed a map (see [12])⎧⎪⎪⎪⎨⎪⎪⎪⎩
pn = p0 −

(Δt)α

Γ(α + 1)

n−1

∑
k=0

V′(xk)[(n− k)α − (n− k− 1)α]

xn = x0 +
(Δt)α

Γ(α + 1)

n−1

∑
k=0

pk+1[(n− k)α − (n− k− 1)α]

(40)

When α = 1, this is equivalent to a second order symplectic integrator pn = pn−1 − Δt V′(xn−1),
xn = xn−1 + Δt pn, and mapping Equation (38) provides an orbit (xn, pn) approaching the exact orbit
at t = nΔt when Δt → 0. Futhermore, the term pk+1 can be replaced by pk in order to return the
second order Euler scheme which is not symplectic as Δt → 0.

The orbit at step n depends on all the previous states up to the initial one due to the memory
kernel of the fractional integral and then we have an infinite dimensional mapping. The computational
complexity of the orbit up to (xn, pn) is of order n2 whereas it is of order n for α = 1.

This map has been tested taking α = 1 with standard models and using different potentials which
solutions are known. In particular for the harmonic oscillator and initial conditions x0 = 1, p0 = 0 and
Δt = 0.01, solution has been compared with x(t) = cos(t), p(t) = sin(t) with error smaller than 0.5%
after 10,000 steps.

The map Equation (40) has been used to simulate numerical solutions to significant non-linear
fractional generalized Hamiltonian problems with a potential V(x), where the explicit solution cannot
be found. For instance, standard academic cases like free particle motion (V = 0) and a uniformly
accelerated particle (V = kx) [13], or the simple oscillator V = 1

2 ω2x2, the double well potential
V = 1

4 x4 − 1
2 x2 (see Figure 1) and the pendulum V = cos(x) [12]. In this pioneer numerical work,

it was observed that the fractional derivative introduces a damping effect which can be either algebraic
or exponential depending on the time scales of the system. It is considered in a more general context
in [10] or in [11].

Riemann–Liouville time fractional problem could be integrated in this way, changing Riemann–
Liouville derivative by Caputo’s and applying a similar mapping.
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Figure 1. Phase portrait for the nonlinear oscillator with double well potential V = 1
4 x4 − 1

2 x2

(corresponding to the time interval 0 ≤ t ≤ 20).

Non-homogeneous systems can be studied through the generalizations of this map. For instance,
by the introduction of an external force f (t) to simulate a forced-damped oscillator [14]:{

C
0 Dα

t x = p,
C
0 Dα

t p = −ω2
0x + f (t),

(41)

and this change means the introduction of an extra force term fn = f (nΔt) in the first equation of (40).
In particular, the system evolves to a limit cycle for an harmonic forcing ( f (t) = A0 cos(ωt)),

similar to the classic case with the forced-damped oscillator. Varying the forcing frequency ω a
resonance motion is reproduced, with amplitude

Ares =
A0

2ω0

∣∣∣∣ 1
(iω)α − iω

∣∣∣∣ (42)

(see Figure 2).

Figure 2. Plot of the amplitude of the limit cycle of x(t) for different forcing frequencies ω versus the
theoretical amplitude Equation (42) with α = 0.95.

2. Variational Problems and Euler—Lagrange Equations

2.1. Nonlocal, Fractional Calculus of Variations

Classical mechanics can be viewed as founded on Hamilton’s principle of stationary action. It is
an elegant theory based on a very simple axiom. Some authors, appealed both by this and by the
potential effectiveness of fractional modeling, have developed a fractional mechanics.

The guiding idea is to keep the same axiom (Hamilton’s principle) and allow to have fractional
derivatives as variables. Apparently, the founding papers are due to Riewe [15,16]. He uses fractional
derivatives and builds the corresponding Euler–Lagrange equations in a systematic way. He also gives
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the corresponding Hamilton equations. As an application, he provides a formulation that includes a
dissipative force. His presentation is not without some limitation.

Agrawall and other authors have generalized from them a Lagrangian and a Hamiltonian
formalism [17–19] that also includes constraints.

From these references we see that right and left fractional derivatives appear in the Lagrangian
and in the fractional Euler–Lagrange equations. The implications that this poses to the causality have
not been dealt with.

We propose a slightly more general formalism that allows systems with different nonlocal
terms in the Lagrangian, including fractional integrals and fractional derivatives of Caputo and
Riemann–Liouville kind.

2.1.1. Positions

Let us call t, the time, the independent variable, x(t) a function and y some linear functional that
depends on x over the whole range of times through a relation yet to be defined:

y(t) = G[t, x]. (43)

We consider a (Lagrangian) function of these, L(t, x, y), and we look for the corresponding
E-L equation for the action

∫
L using the ideas of the calculus of variation. For instance,

following Agrawall [17], we consider x∗(t) and y∗(t) the functions that make the action stationary
and write x(t) = x∗(t) + εη(t). This implies, due to the assumed linearity of G that

y(t) = y∗(t) + εG[t, η(s)]. (44)

With this, the action becomes a function of ε with derivative:

d
dε

∫ T

0
L(t, x, y) dt =

∫ T

0

(
∂L(t, x, y)

∂x
η(t) +

∂L(t, x, y)
∂y

G[t, η(s)]
)

dt = 0 . (45)

The next step is to write the integrand in terms of η(t) and declare each factor to be zero. For this,
we need to suppose a specific form to the functional G.

Let us suppose a nonlocal dependence (in time) of y on x of the form

y(t) = G[t, x(s)] :=
∫ T

0
K(t, s) x(s) ds , (46)

where K(t, s) is some kernel, independent of both x and y. With this we have from Equation (45)

∫ T

0

(
∂L(t, x, y)

∂x
η(t) +

∂L(t, x, y)
∂y

∫ T

0
K(t, s)η(s) ds

)
dt = 0

⇐⇒
∫ T

0

∫ T

0

(
∂L(t, x, y)

∂x
η(s)δ(t− s) +

∂L(t, x, y)
∂y

K(t, s)η(s)
)

ds dt = 0

⇐⇒
∫ T

0

∫ T

0

(
∂L(t, x, y)

∂x
δ(t− s) +

∂L(t, x, y)
∂y

K(t, s)
)

dt η(s)ds = 0

=⇒
∫ T

0

(
∂L(t, x, y)

∂x
δ(t− s) +

∂L(t, x, y)
∂y

K(t, s)
)

dt = 0

⇐⇒ ∂L(s, x, y)
∂x

+
∫ T

0

∂L(t, x, y)
∂y

K(t, s) dt = 0 . (47)

The use of Dirac’s delta is justified if we understand that L is zero for t outside [0, T]. Besides,
for all this manipulation to make sense, we need the kernel K and both partials of L to be integrable
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and ∂L/∂x to have a finite L2-norm. If we choose a singular kernel, as below, we will see that some
other conditions might be necessary.

Equation (47) is the corresponding E-L equation, we may exchange in it the name of the variables
t and s and we finally have as necessary condition for the stationary action:

∂L(t, x, y)
∂x

+
∫ T

0

∂L(s, x, y)
∂y

K(s, t) ds = 0 . (48)

If we compare the integral with Equation (46) we see that the variables in the kernel are
interchanged.

This is an important feature and it implies that the equation at a given time t involves values
of x from both the past and the future. We will see this more clearly below when we deal with
fractional derivatives.

2.1.2. Velocities

Let us suppose now that, instead of depending on x, y(t) depends linearly on ẋ(s) through

y(t) = G[t, ẋ(s)] :=
∫ T

0
K(t, s) ẋ(s) ds . (49)

We repeat what we did previously: we consider x∗(t), y∗(t) and write x(t) = x∗(t) + εη(t),
which supposes now that

y(t) = y∗(t) + εG[t, η̇(s)]. (50)

With this, the action becomes again a function of ε with the condition of the stationary trajectories
given by:

d
dε

∫ T

0
L(t, x, y) dt =

∫ T

0

(
∂L(t, x, y)

∂x
η(t) +

∂L(t, x, y)
∂y

G[t, η̇(s)]
)

dt = 0 . (51)

Substituting the value of G, we have

∫ T

0

(
∂L(t, x, y)

∂x
η(t) +

∂L(t, x, y)
∂y

∫ T

0
K(t, s)η̇(s) ds

)
dt = 0

⇐⇒
∫ T

0

(
∂L(t, x, y)

∂x
η(t)− ∂L(t, x, y)

∂y

∫ T

0

∂K(t, s)
∂s

η(s) ds
)

dt = 0

⇐⇒
∫ T

0

∫ T

0

(
∂L(t, x, y)

∂x
η(s)δ(t− s)− ∂L(t, x, y)

∂y
∂K(t, s)

∂s
η(s)

)
ds dt = 0

⇐⇒
∫ T

0

∫ T

0

(
∂L(t, x, y)

∂x
δ(t− s)− ∂L(t, x, y)

∂y
∂K(t, s)

∂s

)
dt η(s)ds = 0

=⇒
∫ T

0

(
∂L(t, x, y)

∂x
δ(t− s)− ∂L(t, x, y)

∂y
∂K(t, s)

∂s

)
dt = 0 . (52)

From here we get as Euler–Lagrange equation

∂L(s, x, y)
∂x

−
∫ T

0

∂L(t, x, y)
∂y

∂K(t, s)
∂s

dt = 0

⇐⇒ ∂L(t, x, y)
∂x

− ∂

∂t

∫ T

0

∂L(s, x, y)
∂y

K(s, t) ds = 0 , (53)

where we have interchanged in the last step the names of the variables s and t. As in the previous case,
where y depended only on positions, the evolution of the system at time t depends on both past and
future values.
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2.1.3. Extension of the Velocities Case

We may also consider the following possibility: y depends on x as given by Equation (46), and L
depends on x and y but also on ẏ.

Since the procedure is linear, we may consider just that L depends on x and ẏ. The necessary
condition for stationary trajectories becomes:

∫ T

0

(
∂L(t, x, y′)

∂x
η(t) +

∂L(t, x, y′)
∂y′

d
dt

∫ T

0
K(t, s)η(s) ds

)
dt = 0 . (54)

Operating similarly as before, we have:

=⇒ ∂L(s, x, y′)
∂x

+
∫ T

0

∂L(t, x, y′)
∂y′

∂K(t, s)
∂t

dt = 0

=⇒ ∂L(s, x, y′)
∂x

+

[
∂L(t, x, y′)

∂y′
K(t, s)

]t=T

t=0
−

∫ T

0

∂

∂t
∂L(t, x, y′)

∂y′
K(t, s)dt = 0

=⇒ ∂L(s, x, y′)
∂x

+
∂L(T, x, y′)

∂y′
K(T, s)− ∂L(0, x, y′)

∂y′
K(0, s)

−
∫ T

0

∂

∂t
∂L(t, x, y′)

∂y′
K(t, s)dt = 0 . (55)

Or, otherwise:

=⇒ ∂L(s, x, y′)
∂x

−
∫ T

0

∂

∂t
∂L(t, x, y′)

∂y′
K(t, s)dt = 0 , (56)

if we consider that L and its derivatives are all zero at the boundaries. As before, we may rewrite
this as:

∂L(t, x, ẏ)
∂x

+
∂L(T, x, ẏ)

∂ẏ
K(T, t)− ∂L(0, x, ẏ)

∂ẏ
K(0, t)

−
∫ T

0

∂

∂s
∂L(s, x, y′)

∂y′
K(s, t)ds = 0 , (57)

or, as:
∂L(t, x, ẏ)

∂x
−

∫ T

0

∂

∂s
∂L(s, x, y′)

∂y′
K(s, t)ds = 0 . (58)

We have, once more, this dependency on values from the past and from the future.

2.1.4. General Case

We may consider a Lagrangian with three variables, for instance, y1 depending on x, ẏ1, and y2

depending on ẋ, through two linear functionals, as above, with kernels K1 and K2, respectively:

y1(t) =
∫ T

0
K1(t, s) x(s) ds , y2(t) =

∫ T

0
K2(t, s) ẋ(s) ds . (59)

In that case, due to the linearity of all the previous manipulations, the Euler–Lagrange equation
will just have a contribution from each and be of the form:

∂L(t, x, y1, y2, ẏ1)

∂x
+

∫ T

0

∂L(s, x, y1, y2, y′1)
∂y1

K1(s, t) ds

−
∫ T

0

∂

∂s
∂L(s, x, y1, y2, y′)

∂y′1
K1(s, t) ds

− ∂

∂t

∫ T

0

∂L(s, x, y1, y2, y′1)
∂y2

K2(s, t) ds = 0 . (60)
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This reminds us of the original calculus of variations (i.e., local and nonfractional) with higher
order formulation. The case, for instance, of a Lagrangian that depends on x, ẋ and ẍ.

2.1.5. Fractional Integrals

We may obtain fractional integrals for y given by Equation (46) choosing, for instance,
the following kernel:

KI+(t, s) =
1

Γ(α)
Θ(t− s)
(t− s)1−α

, (61)

where α > 0 and Θ is the heavyside function:

Θ(s) =

{
0, if s ≤ 0 ,
1, if s > 0 .

(62)

Kernel Equation (61) gives us the left-sided Riemann–Liouville integral with lower boundary 0:

y(t) = 0+ Iα
t x(t) :=

1
Γ(α)

∫ t

0

x(s)
(t− s)1−α

, (63)

while interchanging the variables and considering KI−(t, s) = KI+(s, t), we obtain the right-sided
integral with upper boundary T:

y(t) = T− Iα
t x(t) :=

1
Γ(α)

∫ T

t

x(s)
(s− t)1−α

. (64)

For y(t) = 0+ Iα
t x(t), the Euler–Lagrange Equation (48) becomes:

∂L(t, x, y)
∂x

+
1

Γ(α)

∫ T

t

∂L(s, x, y)
∂y

1
(s− t)1−α

ds = 0 (65)

⇐⇒ ∂L(t, x, y)
∂x

+ T− Iα
t

(
∂L(t, x, y)

∂y

)
= 0 , (66)

while in the second case, where y(t) = T− Iα
t x(t), we obtain:

∂L(t, x, y)
∂x

+ 0+ Iα
t

(
∂L(t, x, y)

∂y

)
= 0 . (67)

We see that, independently of the choice we consider, the Euler–Lagrange equation for the system
has both kinds of integrals: left-sided and the right-sided, one as the variable y, the other applied to the
partial derivative of L with respect to y. This supposes that the evolution equation at any intermediate
time t ∈ (0, T), has elements from both the past and the future.

2.1.6. Fractional Derivatives

Caputo: In order to have y to represent a fractional derivative, we may consider the dependence
on velocities and use in Equation (49) the kernel

KC+(t, s) =
1

Γ(1− α)

Θ(t− s)
(t− s)α

, α ∈ (0, 1). (68)
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We have that y(t) is the (left) fractional Caputo derivative of order α:

y(t) =
1

Γ(1− α)

∫ T

0

Θ(t− s)
(t− s)α

ẋ(s) ds

=
1

Γ(1− α)

∫ t

0

ẋ(s)
(t− s)α

ds = C
0+Dα

t x(t) . (69)

The Euler–Lagrange equation is in this case

∂L(t, x, y)
∂x

− 1
Γ(1− α)

∂

∂t

∫ T

t

∂L(s, x, y)
∂y

1
(s− t)α

ds = 0

⇐⇒ ∂L(t, x, y)
∂x

+ RL
T−Dα

t

(
∂L(t, x, y)

∂y

)
= 0 . (70)

Conversely, if we choose in Equation (49) the kernel

KC−(t, s) = −KC+(s, t) =
−1

Γ(1− α)

Θ(s− t)
(s− t)α

, (71)

we have that y is the right Caputo derivative of order α

y(t) =
−1

Γ(1− α)

∫ T

t

ẋ(s)
(s− t)α

ds = C
T−Dα

t x(t) , (72)

and the corresponding Euler–Lagrange Equation (53) is now

∂L(t, x, y)
∂x

+
1

Γ(1− α)

∂

∂t

∫ t

0

∂L(s, x, y)
∂y

1
(t− s)α

ds = 0

⇐⇒ ∂L(t, x, y)
∂x

+ RL
0+ Dα

t

(
∂L(t, x, y)

∂y

)
= 0. (73)

We see that for both kernels we have in the Euler–Lagrange equations derivatives form both sides,
as in the previous case.

In both circumstances we have an equation that involves values from the past and from the future.

Example 1. L(t, x, y) =
1
2

y2 −U(x). We have:

∂L(t, x, y)
∂x

= −U′(x),
∂L(t, x, y)

∂y
= y ,

and the Euler–Lagrange equation is just:

RL
T−Dα

t

(
C

0+Dα
t x(t)

)
= U′(x)

⇐⇒ 1
Γ2(1− α)

∂

∂t

∫ T

t

1
(s− t)α

(∫ s

0

x′(u)
(s− u)α

du
)

ds = −U′(x),

if we take the left-derivative for y, and is:

RL
0+ Dα

t

(
C

T−Dα
t x(t)

)
= U′(x),

if we chose the right-derivative. By the way, the sign that seemed to be missing (“the force is minus the derivative
of the potential”) is included inside the right-derivative in both cases, as we have seen right above for one of them.
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Riemann–Liouville: we have to use the extension of the velocities case and consider in Equation (46)
the kernel:

KRL+(t, s) =
1

Γ(1− α)

Θ(t− s)
(t− s)α

, α ∈ (0, 1), (74)

since it yields:

ẏ =
1

Γ(1− α)

∂

∂t

∫ t

0

x(s)
(t− s)α

ds = RL
0+ Dα

t x(t). (75)

The corresponding Euler–Lagrange equation is:

∂L(t, x, ẏ)
∂x

−
∫ T

0

∂

∂s
∂L(s, x, y′)

∂y′
KRL+(s, t)ds = 0

⇐⇒ ∂L(t, x, ẏ)
∂x

− 1
Γ(1− α)

∫ T

t

∂

∂s
∂L(s, x, y′)

∂y′
1

(s− t)α
ds = 0

⇐⇒ ∂L(t, x, ẏ)
∂x

+ C
T−Dα

t

(
∂L(s, x, y′)

∂y′

)
= 0 . (76)

Conversely, if we consider the kernel:

KRL−(t, s) = −KRL+(s, t) =
−1

Γ(1− α)

Θ(s− t)
(s− t)α

, α ∈ (0, 1), (77)

we obtain:

ẏ =
−1

Γ(1− α)

∂

∂t

∫ T

t

x(s)
(s− t)α

ds = RL
T−Dα

t x(t), (78)

and the Euler–Lagrange equation:

∂L(t, x, ẏ)
∂x

+ C
0+Dα

t

(
∂L(s, x, y′)

∂y′

)
= 0 . (79)

As always, we obtain integrals that cover both ranges: from 0 to t and from t to T.
We also see that the result is very similar that for the Caputo derivative, with an exchange of the

role of the Caputo and the Riemann–Liouville derivatives.

2.2. Momenta and Hamilton Formalism

For each variable y we may define a momentum associated to it, in analogy to classical mechanics,
as

p(t) =
∂L(t, x, y)

∂y
, (80)

or

p(t) =
∂L(t, x, ẏ)

∂ẏ
, (81)

and we can express the previous Euler–Lagrange equations as

∂L(t, x, y)
∂x

+
∫ T

0
K(s, t) p(s) ds = 0 , (82)

when y depends on positions, and when depending on velocities (first case)

∂L(t, x, y)
∂x

− ∂

∂t

∫ T

0
K(s, t) p(s) ds = 0 . (83)

or (second case)
∂L(t, x, ẏ)

∂x
−

∫ T

0
K(s, t)

∂p(s)
∂s

ds = 0 . (84)
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Using the four kernels considered before and the corresponding Euler–Lagrange equations we
may give the Hamiltonian approach to the systems.

For instance, when y depends on velocities, the momentum is given by Equation (80), we have
with kernel Equation (68): ⎧⎪⎨⎪⎩

C
0+Dα

t x(t) = y(t),

RL
T−Dα

t p(t) = −∂L(t, x, y)
∂x

,
(85)

and with kernel Equation (71): ⎧⎪⎨⎪⎩
C

T−Dα
t x(t) = y(t),

RL
0+ Dα

t p(t) = −∂L(t, x, y)
∂x

.
(86)

When y depends on positions, the Lagrangian depends on ẏ and the momentum is Equation (81),
we obtain with kernel Equation (74):⎧⎪⎨⎪⎩

RL
0+ Dα

t x(t) = ẏ(t),

C
T−Dα

t p(t) = −∂L(t, x, ẏ)
∂x

,
(87)

and with kernel (77): ⎧⎪⎨⎪⎩
RL
T−Dα

t x(t) = ẏ(t),

C
0+Dα

t p(t) = −∂L(t, x, ẏ)
∂x

.
(88)

Whenever from Equation (80) we can express y (or ẏ) as a function of x and p, i.e., we can provide
a Legendre transformation, the previous systems of equations correspond to the Hamilton equations.

As for the general case presented in Section 2.1.4, we may consider several functions y in the
Lagrangian, and each will give rise to its corresponding momentum and a corresponding evolution
equation for it.

2.3. Interpretation

We have seen that nonlocality (as considered above) plus Hamilton’s principle implies that the
equations are not causal, in the sense that the evolution at a given time t depends on values from all
times and not just from the present (or the past).

It would indicate that if we want evolution equations that involve values just from the past, as
in all the heuristic models, we cannot use the framework of the calculus of variations: the motion is
no longer along paths that make an action stationary. This is irrelevant for both mathematicians and
engineers, but it is irksome for physicists (such a pretty theory. . . ).

But the same can be seen to happen in classical mechanics: as long as the solution is unique for
any initial problem at a given time, the solution can be ran backwards or forwards in time. We can
express our solution using any time we like: from t = 0 we may predict the values for any t > 0,
but from t = tmax we can give the values for any t < tmax.

But, in that case, we can always use only values from the past to get our solution while in this
framework this is no longer possible.

We may change our idea of causality (at least inside the “ideal” world described by mechanics)
and allow that, as long as the solution can be determined for all times, it is irrelevant what values are
involved: the behaviour of the system is given. This whenever we can establish existence and unicity
of the solution which is, in general, still an open problem for many fractional equations.
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3. New Mathematical Scenarios: New Families of Functions and Equations

As mathematical tool, fractional operators establish important relations between
transform integrals and special functions. So, the combined use of integral representations,
exponential operational rules and special polynomials provides a powerful tool in the formalism
of fractional calculus ([20,21]). Furthermore, fractional operators allow to elude singularities and
reduce linear ordinary equations with variable coefficients. As a consequence, an extension of the
classical integral representation of the related special functions can be obtained by using fractional
operators ([22,23]).

From a applied point of view, fractional calculus offers a modeling scenario where fundamental
mathematical questions converge and appropriate numerical algorithms can de developed. For these
reasons, fractional calculus has many applications in different areas [24].

The main contribution of the fractional calculus is the consideration of intermediate-order
dimensions through integrals and derivatives of arbitrary order ([25,26]). This has allowed to get a
better modeling in different applications, for instance to model biomedical and biological phenomena
([27]). A large number of models considering long-range dependence and systems with memory are
constructed with integro-differential and fractional equations.

In classical physics, many fundamental equations are based on similar laws:

• Hooke’s Law: F(t) = kx(t);
• Newtonian Fluid: F(t) = k dx

dt (t);

• Newton’s second law: F(t) = k d2x
dt2 (t).

As an interpolation of these equations, a fractional approach gives the possibility to look for
intermediate or mixed behaviours:

F(t) = k
dαx
dtα

(t) (89)

Some other contexts are the diffusion processes associated to the basic diffusion equation:

∂u
∂t

=
∂2u
∂x2 , (90)

as we show in Table 1:

Table 1. Contexts of diffusion.

Law Darcy: Fourier: Fick: Ohm:
→
q = −K

−→
Grad h

→
Q= −κ

−→
Grad T

→
f = −D

−→
Grad C

→
j = −σ

−→
Grad V

Flux Subterranean Heat: Q Solute: f Charge: j
Water: q

Potential Hydrostatic Temperature: T Concentration: C Voltage: V
Charge: h

Medium’s Hydraulic Thermal Diffusion Electric
Property Conductivity: K Conductivity: κ Coefficient: D Conductivity: σ

The diffusion equation can be generalized through the fractional operators that allow to make a
natural interpolation among equations, starting with the first order wave equation and ending with
the second order wave equation:

First order wave equation (hyperbolic):
∂u
∂t

=
∂u
∂x

(91)

Interpolation:
∂u
∂t

=
∂αu
∂xα

(92)

Diffusion equation (parabolic):
∂u
∂t

=
∂2u
∂x2 (93)
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Interpolation:
∂αu
∂tα

=
∂2u
∂x2 (94)

Wave equation (hyperbolic):
∂2u
∂t2 =

∂2u
∂x2 (95)

Another fractional approach associated to the previous one is the use of Dirac-type fractional
equations [28–30].

A
∂ψ

∂t
+ B

∂ψ

∂x
= 0

ψ =

(
ϕ

ξ

)A
∂αψ

∂tα
+ B

∂ψ

∂x
= 0

�� A
∂1/2ψ

∂t1/2 + B
∂ψ

∂x
= 0

∂2u
∂t2 −

∂2u
∂x2 = 0

Pauli A2 = I
algebra B2 = I
{A, B} = 0

��

γ = 2α

∂γu
∂tγ

− ∂2u
∂x2 = 0

�� ∂u
∂t
− ∂2u

∂x2 = 0

��

In this way, the following equation,

A
∂1/2ψ

∂t1/2 + B
∂ψ

∂x
= 0, (96)

describes two coupled diffusion processes or a diffusion process with internal degrees of freedom.
Depending on the chosen representation of the Pauli algebra, that A and B must verify, we obtain a
system of equations coupled or decoupled:

A1 =

(
0 1
1 0

)
B1 =

(
0 1
−1 0

)
=⇒

{
∂α

t ϕ = ϕ

∂α
t ξ = −ξ

(97)

A2 =

(
1 0
0 −1

)
B2 =

(
0 1
−1 0

)
=⇒

{
∂α

t ϕ = ξ

∂α
t ξ = ϕ

(98)

A
∂αψ

∂tα
+ B

∂ψ

∂x
= 0

γ = 2α �� ∂
γu

∂tγ
− ∂2u

∂x2 = 0

In the study of the temporal inversion (t → −t), we have the invariance of the fractional Dirac
equation for the values 0 < α < 1:

α =
1
3

,
2
3

,
1
5

,
2
5

,
3
5

,
4
5

,
1
7

,
2
7

, . . . ,
6
7

,
1
9

, . . .

Some other fractional differential equations are obtained by considering the root 1/3 of both the
wave and diffusion equations:

Wave equation: P∂2/3
t ϕ + Q∂2/3

x ϕ = 0 (99)

Diffusion equation: P∂1/3
t ϕ + Q∂2/3

x ϕ = 0 (100)

where
P3 = I Q3 = −I PPQ + PQP + QPP = 0 QQP + QPQ + PQQ = 0 (101)
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A possible realization is in terms of the 3× 3 matrices associated to the Silvester algebra:

P =

⎛⎜⎝ 0 0 1
ω2 0 0
0 ω 0

⎞⎟⎠ , Q = Ω

⎛⎜⎝ 0 0 1
ω 0 0
0 ω2 0

⎞⎟⎠ , (102)

with ω a cubic root of the unity and Ω a cubic root of the negative unity. In this case, ϕ has three
components.

4. Nonlocal Phenomena in Space and/or Time. Applications

We use the term non-locality if what happens in a spatial point or at a given time depends on an
average over an interval that contains that value. Thus, the non-local effects in space correspond to
long-range interactions (many spatial scales), while the non-local effects in time suppose memory or
delay effects (many temporal scales).

These phenomena are associated to integral or integro-differential equations, which appear in
multiple contexts:

• Potential theory: Newton and Coulomb laws of the inverse of the square of the distance.
• Problems in geophysics: three-dimensional maps of the Earth’s inside.
• Problems in electricity and magnetism.
• Hereditary phenomena in physics (materials with memory: hysteresis) and biology (ecological

processes: accumulation of metals).
• Problems of evolution of populations.
• Problems of radiation.
• Optimization, control systems.
• Communication theory.
• Mathematical economy.

These different phenomena can be described by fractional differential equations, and it sets out
two fundamental questions:

1. Are the models with space and/or time fractional derivatives consistent with the fundamental
laws and symmetries of Nature?

2. How can the fractional differentiation order be experimentally observed and how does a fractional
derivative emerge from models without fractional derivatives?

As example to answer the first question, it is interesting to remark that, for instance, the fractional
diffusion equation with some kind of time fractional derivative,

Interpolation:
∂αu
∂tα

=
∂2u
∂x2 , (103)

verifies the second law of thermodynamics only if the following the generalized Fourier law is satisfied:

∂α−1u
∂xα−1

∂u
∂x

> 0. (104)

Not all fractional operators satisfy the condition aforementioned, so it might be the key to choose
the convenient fractional derivative or to apply restrictions to the initial and boundary conditions of
the problem. Let us define ρ = α− 1. When ρ = 1, the condition Equation (104) is trivial; but when
0 < ρ < 1, this issue is a complex problem with different solutions according to the selected fractional
operator and conditions [31].
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4.1. Application of Fractional Calculus to Model Atmospheric Effects of Absorption

The time-fractional Cauchy problem is well-known:

C
0 Dα

t u(t, x)− λL
+Dβ

x u(t, x) = 0, t > 0, x ∈ R, 0 < α ≤ 1, β > 0 (105)

lim
x→±∞

u(t, x) = 0, u(0+, x) = g(x). (106)

and its solution in the space of functions with Laplace and Fourier transforms, LF = L(R+)xF(R),
is defined by

u(t, x) =
1

2π

∫ ∞

−∞
G(k)Eα(λ(−ik)βtα)e−ikxdk, (107)

where the Mittag-Leffler function is evaluated on the complex plane and G(k) represents the Fourier
transform of g(x).

For instance, for β = 1 and g(x) = e−μ|x|, μ > 0:

u(t, x) = e−μ|x|Eα(−μλtα) (108)

The fundamental solution of the problem is obtained for g(x) = δ(x), G(k) = 1 and, in this case,
the moments for β = 1 have the following expression:

< xn >=
∫ ∞

−∞
xnu(t, x)dx = (−λtα)n Γ(n + 1)

Γ(αn + 1)
, n = 0, 1, 2, . . . (109)

When replacing t by the wave-length of the radiation, λ, the moment for n = 1 and an appropriate
constant β returns the Angstrom law,

τ =
β

λα
, (110)

that is used to model the coefficient of molecular scattering τ for the absorption of the incoming
energy inside the Martian atmosphere due to the dust [32,33]. The parameters α and β would be fixed
in function of the Martian dust features. So, this relation shows a possible application of fractional
calculus to model the dynamic of the Martian atmosphere. Deep studies, by using cloud computing,
on this issue have been developed in [34–36].

In the context of the spatial exploration, other new original application of the fractional calculus
analysis is the prediction and identification of dust devils and correlations between wind and seismic
signals in a Martian meteorological payload packet. We recently started this project on the basis of our
previous experience in the missions to Mars and to apply in ExoMars22 (initially ExoMars20 but now
delayed due to the Covid-19) [37–40].

4.2. Chaos in a Fractional Duffing’S Equation

Duffing’s equation has been a model for many studies on chaotic systems. It considers a simple but
complex system where chaos can appear depending on the values of the parameters. The mathematical
model is a time-forced, dissipative, second order nonlinear differential equation that can be viewed as a
perturbed Hamiltonian or Lagrangian system [41]. Different possible potentials can be considered but
the fundamental equation corresponds to a model for a long and slender vibrating beam set between
two permanent magnets, subjected to an external sinusoidal force.

Duffing’s equation shows many paradigmatic features of chaotic systems, in a somewhat simple
frame, in the Theory of Dynamical Systems. The fractional counterpart we have chosen may possess
similar relevant behaviours of other more general fractional models. This is the basis for this
study. Besides, although the presence of chaotic behaviour in fractional Duffing’s equations has
been documented, many questions remain open.
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It is possible to extend Duffing’s equation into a fractional one in many ways, either as a second
order differential equation, or as a system of simultaneous two first order equations, with some or all
of these derivatives replaced by fractional ones. Different authors have, thus, considered different
fractional equations, playing also with the fractional order of derivation [42,43]. In our case, we have
chosen to replace only the first order derivative by a fractional Caputo derivative. The equation we
consider is

ẍ + γDα
t x− x + x3 = f0 cos(ωt), (111)

where α ∈ (0, 1) and Dα
t x stands for the Caputo fractional derivative with lower limit 0 of order α.

This equation has the advantage of a regular solution (at least C2) whose existence can be ensured [44].
This is not merely a mathematical model since it can be viewed as the same mechanical device
represented by Duffing’s equation but immersed in a viscous medium. For some values of the
parameters, a strange attractor is obtained, quite similar to the one that appears in the classical (i.e.,
non fractional) Duffing’s equation.

We have studied the controlability of the chaotic regime in the presence of both harmonic
and nonharmonic external perturbations, considering geometrical resonances for the second case.
Using resonant Jacobi functions, we obtain conditions for external, additional, drivings that ensure
chaos-free responses in our model [44].

We have also characterized the chaotic behaviour in our fractional model computing the maximum
but, also, all the other Lyapunov characteristic exponents. We have used, as a reference, the fiduciary
orbit technique and we have built a perturbative approach with a local equation that allows to estimate
all the exponents [45].

The results show that a chaotic regime exists for the fractional Duffing’s equation but also a
regular regime with a long transient time. This regular regime, in practice, can be assimilated in many
cases to a chaotic regime for quite long transient times, although the solutions for even longer times
tend to regular, almost-periodic limiting curves.

5. Conclusions

We deeply thank the enlightening research papers of D. Baleanu and A. Fernandez [4] and M.D.
Ortigueira and J.A.T. Machado ([5–7]). These works are a source of inspiration in order to continue
the studies about fractional calculus and its applications to real world phenomena. In the light of the
results of these works, in this paper we present new scenarios of discussion that might complement
the previous studies. The main novelties of this work, can be summarized in the following items:

• The effect of the nonlocality, associated to the structure itself of the fractional derivative,
manifests that in a solution we can observe the coexistence of two decays exponential and
polynomial according to the time scale we consider (Section 1.4).

• Up to our best knowledge, the obtained results in Section 2 by using the Dirac delta are new.
We show that the loss of causality in fractional mechanics is not specific to choosing any particular
fractional derivative but is intrinsic to the formulation of nonlocal dependence with more general
kernels. We present an approach, using a Dirac delta formulation, that simplifies the, otherwise,
more cumbersome computations.

• Concerning Section 3, there are many remarkable issues. We show explicitly the use of the
fractional calculus as an instrument to create new equations as interpolation among other classical
ones very well known. An important issue is the interpolation between the parabolic and the
hyperbolic dynamics. In this case, we have challenging dynamics attending to the behaviours
under discrete symmetries as the time and space inversion.

Dirac obtained his famous equation by considering the square root of the Klein–Gordon equation.
It is related to the basic idea of evolution depending only on the initial configuration of the system.
At the same time, Dirac introduced the concept of internal degrees of freedom: the spin of a
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particle. In this contribution, we apply the above idea of Dirac to the square root of the classical
heat equation and we obtain a fractional diffusion equation with internal degrees of freedom.

We extend the idea of considering a general root equation of a given one, and we obtain a
connection between the Silvester algebra and the fractional calculus.

• In Section 4, we show one example where a fractional diffusion equation does not satisfy the
second law of Thermodynamics, and we consider the use of the fractional calculus to model the
dust dynamics with the associated electromagnetic interaction in Earth and Mars atmospheres.

On the other hand, these developments set out interesting questions and discussions about
the adjustment and the reliability of the mathematical models to the dynamic of the real processes;
for instance, the objectivity in the descriptions of the models. In this sense, the following items are
remarkable:

• In physics, the laws must have the same form in all the inertial reference systems, otherwise we
could distinguish an inertial reference system from other one by internal experiments.

• The above statement implies that we must have a suitable dictionary to relate the measurements
in one system to other one.

• For inertial systems we have the Galileo and the Lorentz transforms (dictionaries).
• Einstein generalized the Galileo transform to the Lorentz transform in order to take into

account that two inertial systems cannot distinguish each other by either internal mechanic
or electromagnetic experiments (special relativity).

• Einstein generalized the above statements to the accelerated reference systems and created the
general relativity.

• As a consequence, given an evolution fractional differential equation should be analysed its
behaviour under Galileo and Lorentz transformations, as well as the discrete symmetries of the
time and space inversion. This preliminary analysis will enlighten, for instance, the reversibility
and causality issues associated to the equation.

• Concerning the velocity issue, we consider it in the general sense as the variation of a quantity
with time.
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Abstract: We consider a control system defined by a linear time-varying differential equation of
n-th order with uncertain bounded coefficients. The problem of exponential stabilization of the
system with an arbitrary given decay rate by linear static state or output feedback with constant gain
coefficients is studied. We prove that every system is exponentially stabilizable with any pregiven
decay rate by linear time-invariant static state feedback. The proof is based on the Levin’s theorem
on sufficient conditions for absolute non-oscillatory stability of solutions to a linear differential
equation. We obtain sufficient conditions of exponential stabilization with any pregiven decay rate
for a linear differential equation with uncertain bounded coefficients by linear time-invariant static
output feedback. Illustrative examples are considered.
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1. Introduction

Consider a control system defined by an ordinary differential equation with time-varying
coefficients of n-th order

x(n) + p1(t)x(n−1) + . . . + pn(t)x = u, (1)

where x ∈ R is the state variable, u ∈ R is the control input, t ∈ R+ := [0,+∞). We suppose
that the functions pi(t) are measurable but exact values of these functions at time moments t are
unknown, we know only that the functions are bounded on R+ and lower and upper bounds (αi and
βi) are known:

αi ≤ pi(t) ≤ βi, t ∈ R+, i = 1, n. (2)

Functions pi(t) can be arbitrary, in particular, they can vary fast or slowly. Denote x =

(x, ẋ, . . . , x(n−1)). We consider a problem of feedback stabilization for system (1). One needs to
construct a function u(t, x), u(t, 0) = 0, such that, for system (1) closed-loop by u = u(t, x), the zero
solution is exponentially stable and has a given decay rate. The stated problem essentially relates to
the problems of robust stabilization.

Let us assume that pi(t) are time-invariant (and hence, are known), i.e., pi(t) ≡ pi(= αi = βi).
In that case, the stabilization problem is trivial. In fact, we construct

vi = pi − φi, (3)
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where φi ∈ R, i = 1, n, are chosen such that the polynomial

λn + φ1λn−1 + . . . + φn (4)

is stable (i.e., Re λj < −θ < 0 for all roots λj, j = 1, n, of (4)). Then system (1) closed-loop by the control

u(x) = v1x(n−1) + . . . + vnx (5)

has the form
x(n) + φ1x(n−1) + . . . + φnx = 0, (6)

and the zero (and hence, every) solution of (6) is exponentially stable.
Now, assume that pi(t) are time-varying. Then we can not construct the control by using (3)

because pi(t) are unknown. Let the feedback control law have the form (5), where vi are constant.
The closed-loop system has the form

x(n) + (p1(t)− v1)x(n−1) + . . . + (pn(t)− vn)x = 0. (7)

We study the following problem: construct constants v1, . . . , vn ∈ R such that all solutions of (7)
are exponentially stable with a given decay of rate. This problem is non-trivial due to the following
reasons. For studying this problem, we need use some sufficient conditions for exponential stability
of linear time-varying systems. The problem of obtaining some sufficient conditions for (asymptotic,
exponential) stability of linear time-varying systems

ẋ = A(t)x, t ∈ R+, x ∈ R
n, (8)

is one of the important and difficult problems in the theory of differential equations and control
theory [1]. In contrast to systems with constant coefficients (A(t) ≡ A), the condition Re λj < 0,
j = 1, n, fulfilled for the eigenvalues of the matrix of the system (8) is neither a sufficient nor a necessary
condition for the asymptotic stability of the system (8) (see, e.g., [2], ([3], § 9)). Some sufficient
conditions for asymptotic and exponential stability of linear time-varying systems (8) and linear
time-varying differential equations

x(n) + q1(t)x(n−1) + . . . + qn(t)x = 0 (9)

were obtained in [1–11]. The following theorem take place.

Theorem 1. Suppose the functions qi(t) are measurable and bounded on R+ and the following inequalities hold:

0 < σi ≤ qi(t) ≤ ωi, t ∈ R+, i = 1, n. (10)

Let the polynomial

P1(λ) = λn + ω1λn−1 + σ2λn−2 + ω3λn−3 + . . . , (11)

P2(λ) = λn + σ1λn−1 + ω2λn−2 + σ3λn−3 + . . . (12)

have only real roots. Then all solutions of (9) are exponentially tends to 0 as t → +∞.

Theorem 1 was proved by A.Yu. Levin in [6]. Note that these roots (of the polynomials (11)
and (12)) are negative necessarily due to positivity of σi, ωi, i = 1, n. Next, it follows from the proof of
Theorem 1 [6] that every solution x(t) of (9) along with its derivatives up to (n− 1)-th order has the
form O(e−νnt) as t → +∞, where −νn < 0 is the largest of the roots of polynomials (11), (12).
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By using standard replacement y1 = x, y2 = x′, . . . , yn = x(n−1), one can rewrite the control
system (1), (5) in the form

ẏ = A(t)y + Bu, (13)

u = Vy. (14)

Here A(t) is the companion matrix for the polynomial with the coefficients pi(t), B =

col[0, . . . , 0, 1], V = [vn, . . . , v1].
A large number of papers are devoted to the problems of robust asymptotic stability and

stabilization for linear systems. We note here the famous works [12–18] and recent works [19–22].
The problems of stabilization of uncertain linear systems using linear matrix inequalities were studied
in [23–33].

Uncertain systems (13), (14) were studied in [34–37] and in other works of A.H. Gelig and
I.E. Zuber. In particular, it follows from results of [34] that system (13) is exponentially stabilizable
by feedback control (14). This result is supplemented and developed in this paper. The difference
between this result and the results obtained in the work is as follows. Firstly, we achieve exponential
stabilization of (7) not only with some decay rate as it follows from [34] but with an arbitrary pregiven
decay rate. Secondly, in contrast to [34], which uses the Second Lyapunov Method (Method of
Lyapunov Function), we apply, in some sense, the First Lyapunov Method (which uses the roots of
characteristic polynomial) and non-oscillation theory. Thirdly, we extend these stabilization results to
systems with static output feedback control.

In this work, using Theorem 1, we prove results on exponential stabilization with any pregiven
decay rate by linear stationary static state or output feedback for a control system defined by a linear
time-varying differential equation of the n-th order with uncertain coefficients.

2. Preliminary Results

Theorem 2. For any η > 0 for any n ∈ N there exist polynomials

f (λ) = λn + δ1λn−1 + γ2λn−2 + δ3λn−3 + . . . , (15)

g(λ) = λn + γ1λn−1 + δ2λn−2 + γ3λn−3 + . . . (16)

such that the following properties hold:
(i) 0 < γi ≤ δi − 1, i = 1, . . . , n;
(ii) the roots −ai, i = 1, . . . , n, of f (λ) and the roots −bi, i = 1, . . . , n, of g(λ) are real (and hence,

negative);
(iii) the following inequalities hold:

0 > −η ≥ −a1 > −b1 > −b2 > −a2 > −a3 > −b3 > . . . > −a2�−1 > −b2�−1 > −b2� > −a2�

(if n is even and n = 2�);
(17)

0 > −η ≥ −b1 > −a1 > −a2 > −b2 > −b3 > −a3 > . . . > −a2� > −b2� > −b2�+1 > −a2�+1

(if n is odd and n = 2�+ 1).
(18)

Proof. At first, suppose that the theorem is proved for any η ≥ 1. Let us construct, for η = 1,
the polynomials (15), (16) providing properties (i), (ii), (iii), and denote them by f1(λ), g1(λ). Now,
let η ∈ (0, 1). Then, let us set f (λ) := f1(λ), g(λ) := g1(λ). Hence, conditions (i), (ii) are satisfied.
Since −η > −1, condition (iii) holds as well. Thus, without loss of generality, one can assume that
η ≥ 1.

Let us give the proof by induction on n. The statements that we have to prove are different for odd
and even numbers n: for even n, we need to ensure inequalities (17), in addition to (i) and (ii), and
for odd n, we need to ensure inequalities (18). Therefore, the induction base as well as the induction
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hypothesis and the induction step should depend on whether the number n is even or odd. That is
why we should check the induction base for n = 1 and n = 2.

Let n = 1. For any η ≥ 1, we set γ1 := η, δ1 := η + 1. Then the polynomials f (λ) = λ + δ1 and
g(λ) = λ + γ1 have the roots −a1 = −δ1 and −b1 = −γ1 respectively. Obviously, conditions (i), (ii),
and inequalities (18) are satisfied.

Let n = 2. For any η ≥ 1, we set

a1 := η, a2 := 5η, b1 := 2η, b2 := 3η, (19)

f (λ) := (λ + a1)(λ + a2), g(λ) := (λ + b1)(λ + b2). (20)

Then
δ1 = 6η, γ1 = 5η, δ2 = 6η2, γ2 = 5η2. (21)

By (19), (20), condition (ii) and inequality (17) are satisfied. By (21) and the inequality η ≥ 1,
condition (i) is satisfied. The induction base is proved.

Let us put forward the induction hypothesis. Suppose that the assertion of the theorem is true for
n = k. Then, let us prove that the assertion of the theorem is true for n = k + 1. We will carry out the
induction step for even and odd k separately.

By the induction hypothesis, there exist polynomials

f (λ) = λk + δ1λk−1 + γ2λk−2 + . . . , (22)

g(λ) = λk + γ1λk−1 + δ2λk−2 + . . . (23)

such that

0 < γi ≤ δi − 1, i = 1, k, (24)

f (λ) =
k

∏
i=1

(λ + ai), g(λ) =
k

∏
i=1

(λ + bi), ai, bi ∈ R, ai, bi > 0, i = 1, k, (25)

0 > −η ≥ −a1 > −b1 > −b2 > −a2 > . . . > −a2�−1 > −b2�−1 > −b2� > −a2� (if k = 2�), (26)

0 > −η ≥ −b1 > −a1 > −a2 > −b2 > . . . > −a2� > −b2� > −b2�+1 > −a2�+1 (if k = 2�+ 1). (27)

Let us prove that there exist polynomials

F(λ) = λk+1 + Δ1λk + Γ2λk−1 + Δ3λk−2 + . . . , (28)

G(λ) = λk+1 + Γ1λk + Δ2λk−1 + Γ3λk−2 + . . . (29)

such that

0 < Γi ≤ Δi − 1, i = 1, k + 1, (30)

F(λ) =
k+1

∏
i=1

(λ + Ai), G(λ) =
k+1

∏
i=1

(λ + Bi), Ai, Bi ∈ R, Ai, Bi > 0, i = 1, k + 1, (31)

0 > −η ≥ −B1 > −A1 > −A2 > −B2 > . . . > −A2� > −B2� > −B2�+1 > −A2�+1

(if k = 2�),
(32)

0 > −η ≥ −A1 > −B1 > −B2 > −A2 > . . . > −A2�+1 > −B2�+1 > −B2�+2 > −A2�+2

(if k = 2�+ 1).
(33)
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We assume that δ0 := 1, γ0 := 1. Set

C1 := max
i=1,�

{
δ2i−1 − γ2i−1 + 1

δ2i−2
,

1
δ2�

}
, C2 := max

j=1,�

δ2j − γ2j + 1
δ2j−1

, N := max
j=1,�

γ2j−1

δ2j−1
(34)

for the case if k = 2�, and

C1 := max
i=1,�+1

δ2i−1 − γ2i−1 + 1
δ2i−2

, C2 := max
j=1,�

{
δ2j − γ2j + 1

δ2j−1
,

1
δ2�+1

}
, N := max

j=1,�+1

γ2j−1

δ2j−1
(35)

for the case if k = 2�+ 1. Then C1 > 0, C2 > 0, 0 < N < 1. Consider lines

y = x + C1, x = Ny + C2. (36)

They intersect at the point M0(x0, y0) with the coordinates x0 =
C1N + C2

1− N
> 0, y0 =

C1 + C2

1− N
> 0.

Consider the set Ω0 = {(x, y) ∈ R2 : y ≥ x + C1, x ≥ Ny + C2}. The set Ω0 is a cone, with a vertex
at the point M0, located in the first quadrant of the xOy-plane and bounded by half-lines (36) where

x ≥ x0. The ray m = {(x, y) ∈ R2 : x− x0 =
1 + N

2
(y− y0), x ≥ x0} is contained in Ω0. Consider the

inequality system ⎧⎪⎪⎨⎪⎪⎩
y ≥ x + C1,

x ≥ Ny + C2,

x > ak.

(37)

The solution of system (37) is the set Ω1 = Ω0 ∩ {x > ak}. The set Ω1 is non-empty. In particular,
the point M1(x̂, ŷ) lying on the ray m with x̂ = max{x0 + 1, ak + 1} is contained in Ω1. Calculating ŷ,

we obtain that ŷ =
2

1 + N
max{1, ak − x0 + 1}+ y0.

Set

Ai := bi, Bi := ai, i = 1, k, (38)

Ak+1 := ŷ, Bk+1 := x̂, (39)

F(λ) :=
k+1

∏
i=1

(λ + Ai), G(λ) :=
k+1

∏
i=1

(λ + Bi). (40)

Then condition (31) is satisfied. Next, since x̂ > ak, it follows that

Bk < Bk+1. (41)

Next, since (x̂, ŷ) is a solution of (37), we have

Ak+1 = ŷ ≥ x̂ + C1 > x̂ = Bk+1. (42)

Thus, it follows from inequalities (41), (42), equalities (38) and induction hypothesis (26), (27) that
inequalities (32) are satisfied if k = 2�, and inequalities (33) are satisfied if k = 2�+ 1.

Let us prove inequalities (30). From the definition (40) of the polynomials F(λ), G(λ) and
equalities (38), (25) we obtain that

F(λ) = g(λ)(λ + Ak+1), G(λ) = f (λ)(λ + Bk+1). (43)
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Substituting (22), (23) and (28), (29) into (43) and opening the brackets, we obtain equalities

Δ2i−1 = Ak+1δ2i−2 + γ2i−1, Γ2i−1 = Bk+1γ2i−2 + δ2i−1, i = 1, �,

Δ2�+1 = Ak+1δ2�, Γ2�+1 = Bk+1γ2�,

Δ2j = Bk+1δ2j−1 + γ2j, Γ2j = Ak+1γ2j−1 + δ2j, j = 1, �,

for the case if k = 2�, and equalities

Δ2i−1 = Ak+1δ2i−2 + γ2i−1, Γ2i−1 = Bk+1γ2i−2 + δ2i−1, i = 1, �+ 1,

Δ2j = Bk+1δ2j−1 + γ2j, Γ2j = Ak+1γ2j−1 + δ2j, j = 1, �,

Δ2�+2 = Bk+1δ2�+1, Γ2�+2 = Ak+1γ2�+1,

for the case if k = 2�+ 1. The inequalities Γi > 0, i = 1, k + 1, are satisfied due to inequalities (24) and
the inequalities Ak+1 > 0, Bk+1 > 0. The inequalities

Γi ≤ Δi − 1, i = 1, k + 1, (44)

are equivalent to the inequality system⎧⎪⎪⎨⎪⎪⎩
γ2i−1 + Ak+1δ2i−2 ≥ Bk+1γ2i−2 + δ2i−1 + 1, i = 1, �,

Ak+1δ2� ≥ Bk+1γ2� + 1,

γ2j + Bk+1δ2j−1 ≥ Ak+1γ2j−1 + δ2j + 1, j = 1, �,

(45)

for the case if k = 2�, and are equivalent to the inequality system⎧⎪⎪⎨⎪⎪⎩
γ2i−1 + Ak+1δ2i−2 ≥ Bk+1γ2i−2 + δ2i−1 + 1, i = 1, �+ 1,

γ2j + Bk+1δ2j−1 ≥ Ak+1γ2j−1 + δ2j + 1, j = 1, �,

Bk+1δ2�+1 ≥ Ak+1γ2�+1 + 1,

(46)

for the case if k = 2�+ 1. System (45) is equivalent to the inequality system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ak+1 ≥ Bk+1
γ2i−2

δ2i−2
+

δ2i−1 − γ2i−1 + 1
δ2i−2

, i = 1, �,

Ak+1 ≥ Bk+1
γ2�
δ2�

+
1

δ2�
,

Bk+1 ≥ Ak+1
γ2j−1

δ2j−1
+

δ2j − γ2j + 1
δ2j−1

, j = 1, �.

(47)

System (46) is equivalent to the inequality system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ak+1 ≥ Bk+1
γ2i−2

δ2i−2
+

δ2i−1 − γ2i−1 + 1
δ2i−2

, i = 1, �+ 1,

Bk+1 ≥ Ak+1
γ2j−1

δ2j−1
+

δ2j − γ2j + 1
δ2j−1

, j = 1, �,

Bk+1 ≥ Ak+1
γ2�+1
δ2�+1

+
1

δ2�+1
.

(48)

For the case if k = 2�, the following inequalities hold:

γ2i
δ2i
≤ 1, i = 0, �;

γ2j−1

δ2j−1
≤ N, j = 1, �.
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For the case if k = 2�+ 1, the following inequalities hold:

γ2i
δ2i
≤ 1, i = 0, �;

γ2j−1

δ2j−1
≤ N, j = 1, �+ 1.

Thus, it follows from definitions (34), (35) that to satisfy inequalities (47) (for the case if k = 2�)
and inequalities (48) (for the case if k = 2�+ 1) it is sufficient to satisfy inequalities{

Ak+1 ≥ Bk+1 + C1

Bk+1 ≥ NAk+1 + C2.
(49)

By (39), inequalities (49) hold because (x̂, ŷ) ∈ Ω0. Therefore, inequalities (44) are satisfied.
Hence, (30) are satisfied. Thus, the induction step is proved. The theorem is proved.

3. Time-Invariant Stabilization by Static State Feedback

Definition 1. We say that system (1) is exponentially stabilizable with the decay rate θ > 0 by linear stationary
static state feedback (5) if there exist constants v1, . . . , vn ∈ R such that every solution x(t) of the closed-loop
system (7) is exponentially stable with the decay rate θ, i.e., x(t) along with its derivatives up to (n− 1)-th
order has the form O(e−θt) as t → +∞.

Theorem 3. System (1) is exponentially stabilizable with an arbitrary pregiven decay rate θ > 0 by linear
stationary static state feedback (5).

Proof. Let an arbitrary θ > 0 be given. Denote ρi := βi − αi, i = 1, n, where αi, βi are from (2). We have
ρi ≥ 0, i = 1, n. We set L := max{1, ρ1,

√
ρ2, . . . , n

√
ρn}. Then

L ≥ 1 > 0, L ≥ ρ1, L2 ≥ ρ2, . . . , Ln ≥ ρn. (50)

Set η := θ/L. Then η > 0. Let us construct the polynomials (15), (16) according to Theorem 2 so
that properties (i), (ii), (iii) are satisfied. Then the roots −ai and −bi (i = 1, n) of the polynomials f (λ)
and g(λ) are real and the following inequalities hold:

− ai ≤ −η, −bi ≤ −η, i = 1, n. (51)

Let us construct the polynomials P1(λ), P2(λ) by formulas (11), (12) where ωi = δiLi, σi = γiLi,
i = 1, n. Then P1(λ) and P2(λ) have the roots −ci := −aiL and −di := −biL (i = 1, n) respectively.
These roots are real and by virtue of (51) the following inequalities hold:

− ci ≤ −θ, −di ≤ −θ, i = 1, n. (52)

We set vi := αi − γiLi, i = 1, n, in (5) and consider the closed-loop system (7). System (7) has the
form (9) where qi(t) = pi(t)− vi, i = 1, n. Taking into account inequalities (2), (50) and property (i),
for every i = 1, n for all t ∈ R+, we have

0 < σi = γiLi = αi − αi + γiLi ≤ pi(t)− vi =: qi(t) ≤
≤ βi − αi + γiLi = ρi + γiLi ≤ Li(1 + γi) ≤ δiLi = ωi.

Thus, inequalities (10) hold. Applying Theorem 1 and inequalities (52), we obtain that the
closed-loop system (7) is exponentially stable with the decay rate θ. The theorem is proved.
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Example 1. Let n = 2. Consider a control system (1):

x′′ + p1(t)x′ + p2(t)x = u, t ∈ R+, x ∈ R, u ∈ R. (53)

Suppose that p1(t), p2(t) satisfy conditions α1 ≤ p1(t) ≤ β1, α2 ≤ p2(t) ≤ β2, t ∈ R+. Suppose, for
simplicity, that ρ1 := β1 − α1 ≤ 1, ρ2 := β2 − α2 ≤ 1 (one can achieve this by replacing time x̃(t) = x(μt)).
Let θ > 0 be an arbitrary number. One needs to construct the controller u = u(x) in (53) where

u(x) = v1x′ + v2x (54)

with constant numbers v1, v2 such that the closed-loop system

x′′ + (p1(t)− v1)x′ + (p2(t)− v2)x = 0 (55)

is exponentially stable with the decay rate θ. Without loss of generality, we suppose that θ ≥ 1. For constructing
(54) we use the proof of Theorem 3. We have L = 1. Set η := θ. Then η ≥ 1. Let us construct the polynomials
(15), (16) according to Theorem 2: f (λ) := λ2 + 6ηλ + 5η2, g(λ) := λ2 + 5ηλ + 6η2. Then γ1 = 5η,
γ2 = 5η2, δ1 = 6η, δ2 = 6η2. Due to η ≥ 1, condition (i) holds. Next, the equalities P1(λ) = f (λ),
P2(λ) = g(λ) hold. The gain coefficients constructed by Theorem 3 have the form

v1 = α1 − 5θ, v2 = α2 − 5θ2. (56)

Let us substitute (56) into (54). The closed-loop system (55) take the form

x′′ + (s1(t) + 5θ)x′ + (s2(t) + 5θ2)x = 0, t ∈ R+. (57)

Here

0 ≤ s1(t) := p1(t)− α1 ≤ β1 − α1 = ρ1 ≤ 1 = L,

0 ≤ s2(t) := p2(t)− α2 ≤ β2 − α2 = ρ2 ≤ 1 = L2.

All solutions of (57) are exponentially stable with the decay rate θ. Let us check it.
The substitution z1 = x, z2 = x′ reduces Equation (57) to the system

ż = A(t)z, t ∈ R+,

z =

[
z1

z2

]
, A(t) =

[
0 1

−(s2(t) + 5θ2) −(s1(t) + 5θ)

]
.

(58)

Let us show that system (58) is exponentially stable with the decay rate θ. The substitution

z(t) = e−θty(t). (59)

reduce system (58) to the system

ẏ = B(t)y, t ∈ R+,

y =

[
y1

y2

]
, B(t) =

[
θ 1

−(s2(t) + 5θ2) −(s1(t) + 4θ)

]
.

(60)

50



Mathematics 2020, 8, 853

Let us show that system (60) is Lyapunov stable. Set S =

[
7θ2 2θ

2θ 1

]
. Then S > 0 in the sense of quadratic

forms. Next, we have

BT(t)S + SB(t) =

[
−6θ3 − 4θs2(t) −4θ2 − 2θs1(t)− s2(t)

−4θ2 − 2θs1(t)− s2(t) −4θ − 2s1(t)

]
. (61)

Here and throughout, T is the transposition. Let us find the principal minors of (61). We obtain

Δ1 = −2θ(3θ2 + 2s2(t)) < 0, Δ2 = −4θ − 2s1(t) < 0,

Δ1,2 = det(BT(t)S + SB(t)) = 8θ4 − 4θ3s1(t) + 8θ2s2(t)− 4θ2s2
1(t) + 4θs1(t)s2(t)− s2

2(t).

We have

8θ4 − 4θ3s1(t)− 4θ2s2
1(t) = 4θ3(θ − s1(t)) + 4θ2(θ2 − s2

1(t)) ≥ 0,

8θ2s2(t)− s2
2(t) = s2(t)(8θ2 − s2(t)) ≥ 0.

Hence Δ1,2 ≥ 0. Thus, (61) is negative-semidefinite. Therefore, system (60) is stable. Hence, all solutions
of (60) are bounded as t → +∞. Then, by (59), ‖z(t)‖ = O(e−θt), t → +∞, as required.

As an example of numerical simulation, consider system (53) with p1(t) =
t

1 + t2 , p2(t) = −
1

1 + t2 :

x′′ +
t

1 + t2 x′ − 1
1 + t2 x = u. (62)

We have α1 := −1/2 ≤ p1(t) ≤ 1/2 =: β1, α2 := −1 ≤ p1(t) ≤ 0 =: β2, ρ1 := β1 − α1 = 1,
ρ2 := β2 − α2 = 1. The free system (i.e., system (62) with u = 0) has a general solution

x(t) = C1t + C2

√
t2 + 1

and, obviously, is unstable. Let us set θ := 1, η := θ = 1. The gain coefficients (56) have the form

v1 = α1 − 5θ = −11/2, v2 = α2 − 5θ2 = −6.

The closed-loop system (57) take the form

x′′ +
(

11
2

+
t

1 + t2

)
x′ +

(
6− 1

1 + t2

)
x = 0. (63)

System (63) is exponentially stable with the decay rate θ = 1. Some graphs of the solutions to system (63)
are shown in Figure 1.
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Figure 1. Graphs of the solutions to (63).

4. Time-Invariant Stabilization by Static Output Feedback

Consider a linear control system defined by a linear differential equation of n-th order with
time-varying uncertain coefficients satisfying (2); the input is a stationary linear combination of m
variables and their derivatives of order ≤ n− p; the output is a k-dimensional vector of stationary
linear combinations of the state x and its derivatives of order ≤ p− 1:

x(n) +
n

∑
i=1

pi(t)x(n−i) =
m

∑
τ=1

n

∑
l=p

blτw(n−l)
τ , x ∈ R, blτ ∈ R, t ∈ R+, (64)

yj =
p

∑
ν=1

cνjx(ν−1), j = 1, k, cνj ∈ R, (65)

w = col(w1, . . . , wm) ∈ Rm is an input vector; y = col(y1, . . . , yk) ∈ Rk is an output vector. Let the
control in (64), (65) have the form of linear static output feedback

w = Uy. (66)

We suppose that the gain matrix U is time-invariant. The closed-loop system has the form

x(n) + q1(t)x(n−1) + . . . + qn(t)x = 0, t ∈ R+, (67)

where the coefficients qi(t) of (67) depends on pi(t), blτ , cνj, U. On the basis of system (64), (65),
we construct the n×m-matrix B = {blτ}, l = 1, n, τ = 1, m, and the n× k-matrix C = {cνj}, ν = 1, n,
j = 1, k, where blτ = 0 for l < p and cνj = 0 for ν > p. Denote by J the matrix whose entries of the first
superdiagonal are equal to unity and whose remaining entries are zero; we set J0 := I. By Sp Q denote
the trace of a matrix Q.

Definition 2. We say that system (64), (65) is exponentially stabilizable with the decay rate θ > 0 by linear
stationary static output feedback (66) if there exists a constant m× k-matrix U such that every solution x(t) of
the closed-loop system (67) is exponentially stable with the decay rate θ.

Theorem 4. Suppose that linear stationary output feedback (66) bring system (64), (65) to the closed
system (67). Then the coefficients qi(t), i = 1, n, of (67) satisfy the equalities

qi(t) = pi(t)− ri,
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where
ri = Sp (CT Ji−1BU), i = 1, n. (68)

The proof of Theorem 4 is identical to the proof of Theorem 1 [38].
Let us introduce the mapping vec that unwraps an n× m-matrix H = {hij} row-by-row into

the column vector vec H = col (h11, h12, . . . , h1m, . . . , hn1, . . . , hnm). For any k×m-matrices X, Y, the
obvious equality holds:

Sp (XYT) = (vec X)T · (vec Y). (69)

Let us construct the k×m-matrices

CT J0B, CT JB, . . . , CT Jn−1B (70)

and the mk× n-matrix
P = [vec (CT J0B), . . . , vec (CT Jn−1B)].

Denote r = col (r1, . . . , rn) ∈ Rn, ψ = vec (UT). Equalities (68) represent a linear system of n
equations with respect to the coefficients of the matrix U. Taking into account (69), one can rewrite
system (68) in the form

PTψ = r. (71)

Suppose that matrices (70) are linearly independent. Then rank P = n. Hence, the system of
linear equations (71) is solvable for any vector r ∈ Rn. In particular, system (71) has the solution
ψ = P(PT P)−1r.

By Theorem 3, for any pregiven θ > 0 there exists a constant vector r = col (r1, . . . , rn) such that
system (67) with qi(t) = pi(t)− ri is exponentially stable with the decay rate θ. Resolving system (71)
for that r with respect to ψ and constructing U by the formula U =

(
vec−1 ψ

)T , we find the gain matrix
of feedback (66) exponentially stabilizing system (64), (65) with the decay rate θ. Thus, the following
theorem is proved.

Theorem 5. System (64), (65) is exponentially stabilizable with an arbitrary pregiven decay rate θ > 0 by
linear stationary static output feedback (66) if matrices (70) are linearly independent.

Example 2. Let n = 3. Consider a control system

x′′′ + p(t)x = w′1 + w1 − w′2 + w2, t ∈ R+, x ∈ R, w = col (w1, w2) ∈ R
2, (72)

y1 = x− x′, y2 = x + x′, y = col (y1, y2) ∈ R
2. (73)

System (72), (73) has the form (64), (65) where n = 3, m = k = p = 2. Suppose that p(t) is an arbitrary
measurable function satisfying the condition 0 ≤ p(t) ≤ 1. Let θ > 0 be an arbitrary number. One needs
to construct feedback control (66), where U = {uij}2

i,j=1, with constant uij, i, j = 1, 2, providing exponential
stability of the closed-loop system with the decay rate θ. Without loss of generality, we suppose that θ ≥ 1.
By Theorem 4, the closed-loop system has the form

x′′′ − r1x′′ − r2x′ + (p(t)− r3)x = 0, (74)

where ri have the form (68), and

B =

⎡⎢⎣0 0
1 −1
1 1

⎤⎥⎦ , C =

⎡⎢⎣ 1 1
−1 1
0 0

⎤⎥⎦ .
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At first, let us construct a constant vector r = col (r1, r2, r3), providing exponential stability of (74).
For constructing r we use the proof of Theorem 3. We have α1 = β1 = 0, α2 = β2 = 0, α3 = 0, β3 = 1.
Then ρ1 = 0, ρ2 = 0, ρ3 = 1, L = 1. Set η := θ. Using the proof of Theorem 2, we construct the
polynomials (15), (16) such that properties (i), (ii), (iii) are satisfied:

f (λ) :=(λ + 2η)(λ + 3η)(λ + 14η) = λ3 + 19ηλ2 + 76η2λ + 84η3,

g(λ) :=(λ + η)(λ + 5η)(λ + 12η) = λ3 + 18ηλ2 + 77η2λ + 60η3.

Then γ1 = 18η, γ2 = 76η2, γ3 = 60η3, δ1 = 19η, δ2 = 77η2, δ3 = 84η3. Conditions (i), (ii), (iii)
hold. Coefficients r1, r2, r3 have the form

r1 = −18θ, r2 = −76θ2, r3 = −60θ3. (75)

Let us substitute (75) into (74). The closed-loop system (74) take the form

x′′′ + 18θx′′ + 76θ2x′ + (p(t) + 60θ3)x = 0. (76)

All solutions of (76) are exponentially stable with the decay rate θ. Let us check it.
The substitution z1 = x, z2 = x′, z3 = x′′ reduces Equation (76) to the system

ż = A(t)z, t ∈ R+, (77)

z =

⎡⎢⎣z1

z2

z3

⎤⎥⎦ , A(t) =

⎡⎢⎣ 0 1 0
0 0 1

−(p(t) + 60θ3) −76θ2 −18θ

⎤⎥⎦ .

Let us show that the system (77) is exponentially stable with the decay rate θ. The substitution

z(t) = e−θty(t). (78)

reduce the system (77) to the system

ẏ = B(t)y, t ∈ R+, (79)

y =

⎡⎢⎣y1

y2

y3

⎤⎥⎦ , B(t) =

⎡⎢⎣ θ 1 0
0 θ 1

−(p(t) + 60θ3) −76θ2 −17θ

⎤⎥⎦ .

Let us show that system (79) is Lyapunov stable. Set S =

⎡⎢⎣9000θ4 2580θ3 150θ2

2580θ3 804θ2 46θ

150θ2 46θ 3

⎤⎥⎦. Let us find the

successive principal minors si, i = 1, 2, 3, of S. We have s1 = 9000θ4 > 0, s2 = det

[
9000θ4 2580θ3

2580θ3 804θ2

]
=

579,600θ6 > 0, s3 = det S = 208,800θ6 > 0. Then S > 0 in the sense of quadratic forms. Next, we have

BT(t)S + SB(t) =

⎡⎢⎣−300θ2 p(t) −46θp(t) −3p(t)
−46θp(t) −224θ3 −10θ2

−3p(t) −10θ2 −10θ

⎤⎥⎦ . (80)
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Let us find the principal minors of (80). We obtain

Δ1 = −300θ2 p(t) ≤ 0, Δ2 = −224θ3 < 0, Δ3 = −10θ < 0,
Δ1,2 = 67,200θ5 p(t)− 2116θ2 p2(t) = 4θ2 p(t)(16,800θ3 − 529p(t)) ≥ 0,

Δ1,3 = 3000θ3 p(t)− 9p2(t) = 3p(t)(1000θ3 − 3p(t)) ≥ 0, Δ2,3 = 2140θ4 > 0,
Δ1,2,3 = det(BT(t)S + SB(t)) = −642,000θ6 p(t) + 20,416θ3 p2(t) = −16θ3 p(t)(40,125θ3 − 1276p(t)) ≤ 0.

Hence, (80) is negative-semidefinite. Thus, the system (79) is stable. Hence, all solutions of (79) are
bounded as t → +∞. Then, by (78), ‖z(t)‖ = O(e−θt), t → +∞, as required.

Next, let us construct matrices (70) and P. We obtain P =

⎡⎢⎢⎢⎣
−1 0 1
1 −2 1
1 2 1
−1 0 1

⎤⎥⎥⎥⎦. Obviously, rank P = 3 and

matrices (70) are linearly independent. Resolving system (71) where ri has the form (75), we obtain

ψ = col [9θ/2− 15θ3,−9θ/2 + 19θ2 − 15θ3,−9θ/2− 19θ2 − 15θ3, 9θ/2− 15θ3].

Thus, the gain matrix has the form

U =

[
9θ/2− 15θ3 −9θ/2− 19θ2 − 15θ3

−9θ/2 + 19θ2 − 15θ3 9θ/2− 15θ3

]
. (81)

We obtain that feedback (66) with the matrix (81) exponentially stabilizes the system (72), (73) with the
decay rate θ.

As an example of numerical simulation, consider system (72), (73) where

p̂(t) =

{
1, t ∈ [0, 1),

0, t ∈ [1, 2),
p(t) = p̂(t− 2k), t ∈ [2k, 2(k + 1)), k ∈ Z.

We have 0 ≤ p(t) ≤ 1. The function p(t) is ω-periodic with the period ω = 2. The free system

x′′′ + p(t)x = 0, x ∈ R, (82)

is equivalent to the system of differential equations

ż =

⎡⎢⎣ 0 1 0
0 0 1

−p(t) 0 0

⎤⎥⎦ z, z ∈ R
3. (83)

System (83) is ω-periodic. Since system (83) is piecewise constant, the monodromy matrix Φ(ω) for
system (83) can be found explicitly. Calculating approximately eigenvalues λ1, λ2, and λ3 of Φ(ω), we obtain
λ1,2 ≈ 0.418± 2.167i, λ3 ≈ 0.205. Hence, |λ1| = |λ2| > 1. Thus, system (83) (and hence, Equation (82)) is
unstable. Let us set θ := 1, η := θ = 1. The gain matrix (81) has the form

U =

[
−21/2 −77/2
−1/2 −21/2

]
.

The closed-loop system (76) take the form

x′′′ + 18x′′ + 76x′ + (p(t) + 60)x = 0. (84)

System (84) is exponentially stable with the decay rate θ = 1. Some graphs of the solutions to system (84)
are shown in Figure 2.
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Figure 2. Graphs of the solutions to (84).

5. Conclusions

We examined the problem of exponential stabilization with any pregiven decay rate for a linear
time-varying differential equations with uncertain bounded coefficients by means of stationary linear
static feedback. We have received sufficient conditions for the solvability of this problem by state and
output feedback. For this purpose, the first Lyapunov method and the Levin theorem on non-oscillatory
absolute stability were used. We plan to extend these results to systems of differential equation
including systems with delays. A further development of these results may be their extension to
systems (64), (65), (66), when blτ and (or) cνj depend on t. So far this question remains open.
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1. Introduction

Let J be a compact interval in R and let us consider the real disfocal differential operator L:
Cn(J)→ C(J) defined by

Ly = y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a0(x)y(x), x ∈ J, (1)

where aj(x) ∈ C(J), 0 ≤ j ≤ n − 1. Following Eloe and Ridenhour [1], let Ωl be the set whose
members are collections of l different ordered integer indices i such that 0 ≤ i ≤ n− 1, let k ∈ N be
such that 1 ≤ k ≤ n− 1, let α ∈ Ωk be the set {α1, . . . , αk} and β ∈ Ωn−k be the set {β1, . . . , βn−k},
both associated to the homogeneous boundary conditions

y(αi)(a) = 0, i = 1, 2, . . . , k, αi ∈ α, (2)

y(βi)(b) = 0, i = 1, 2, . . . , n− k, βi ∈ β, (3)

where [a, b] ⊂ J. Throughout this paper we will impose the condition that, for any integer m such
that 1 ≤ m ≤ n, at least m terms of the sequence α1, . . . , αk, β1, . . . , βn−k are less than m. Due to
their resemblance with the conditions defined by Butler and Erbe in [2], we will call them admissible
boundary conditions (note that (2) and (3) are not exactly the same boundary conditions defined by
Butler and Erbe since the latter applied to the so-called quasiderivatives of y(x) and not to derivatives).
In particular, if for every integer m such that 1 ≤ m ≤ p + 1, exactly m terms of the sequence α1, . . . , αk,
β1, . . . , βn−k are less than m, we will say that the boundary conditions are p-alternate. In the case
p = n− 1 we will call the boundary conditions strongly admissible. The admissible conditions cover
well known cases like conjugate boundary conditions (α1 = 0, α2 = 1, . . . , αk = k− 1 and β1 = 0, β2 =

1, . . . , βn−k = n− k− 1), focal boundary conditions (right focal with α1 = 0, α2 = 1, . . . , αk = k− 1 and
β1 = k, β2 = k + 1, . . . , βn−k = n− 1 or left focal with α1 = n− k, α2 = n− k + 1, . . . , αk = n− 1 and
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β1 = 0, β2 = 1, . . . , βn−k = n− k− 1) and many other. The focal boundary conditions are also strongly
admissible (or (n− 1)-alternate).

The purpose of this paper will be to provide results on the sign of G(x, t), the Green function
associated to the problem

Ly = 0, x ∈ (a, b),

y(αi)(a) = 0, αi ∈ α; y(βi)(b) = 0, βi ∈ β,
(4)

as well as some of its partial derivatives with regards to x, both in the interval (a, b) and at the extremes
a and b. We will also analyze the dependence of the absolute value of G(x, t) and its derivatives with
respect to the extremes a and b. In this sense, this paper represents an extension of the work by Eloe
and Ridenhour [1] which in turn extended previous results from Peterson [3,4], Elias [5] and Peterson
and Ridenhour [6]. Note that the disfocality of L on [a, b], according to Nehari [7], implies that y(x) ≡ 0
is the only solution of Ly = 0 satisfying y(i)(xi) = 0, i = 0, 1, 2, . . . , n− 1, with xi ∈ [a, b], and also
guarantees the existence of the Green function of (4).

It is well known (see for instance [8], Chapter 3) that problems of the type

Ly = f , x ∈ (a, b),

y(αi)(a) = 0, αi ∈ α; y(βi)(b) = 0, βi ∈ β,
(5)

with f ∈ C[a, b] being an input function, have a solution given by y(x) =
∫ b

a G(x, t) f (t)dt. Therefore,
the knowledge of the sign of G(x, t) and its derivatives can provide information on the sign of the
solution y(x) and these same derivatives, at least when f does not change sign on (a, b). This was
already used by Eloe and Ridenhour in [1] to show that a clamped beam is stiffer that a simply
supported beam. Likewise, the evolution of G(x, t) as a or b vary can also provide insights on the
dependence of the value of y(x) on these extremes and can allow comparing the effect of a longer
separation of the extremes when the same input function f is applied to a system modeled by (5).

The knowledge about the sign of G(x, t) is also useful to find information about the eigenvalues
and eigenfunctions of the general problem

Ly = λ ∑
μ
l=0 cl(x)y(l)(x), x ∈ (a, b),

y(αi)(a) = 0, αi ∈ α; y(βi)(b) = 0, βi ∈ β,
(6)

with μ ≤ n− 1, cl(x) ∈ C(J) for 0 ≤ l ≤ μ. These problems are tackled by converting them in the
equivalent integral problem

My(x) =
1
λ

y(x), x ∈ [a, b], (7)

where M is the operator M: Cμ[a, b]→ Cn[a, b] defined by

My(x) =
∫ b

a
G(x, t)

μ

∑
l=0

cl(t)y(l)(t)dt, x ∈ [a, b]. (8)

If the partial derivative of G(x, t) of the highest order whose sign is constant on (a, b) is not lower
than μ, it is possible to define a cone P associated to that partial derivative such that MP ⊂ P and,
with the help of the cone theory elaborated by Krein and Rutman [9] and Krasnosel’skii [10], prove
that there exists a solution of (7) associated to the smallest eigenvalue λ. Moreover, it is possible to
determine some properties of λ and even compare the values of λ for different boundary conditions.
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Refs. [11–17] are examples that follow this approach. In all these, therefore, the knowledge of the sign
of the derivatives of G(x, t) is critical.

The non-linear version of (6), namely

Ly = λ f (y, x), x ∈ (a, b), (9)

subject to different homogeneous, mixed or integral boundary conditions (see for instance [18,19]), is
also addressed usually by converting it in the integral problem

1
λ

y =
∫ b

a
G(x, t) f (y(t), t)dt, x ∈ (a, b). (10)

In most of these problems, the information about the sign of the Green function is relevant to apply
other tools (fixed-point theorems, upper and lower solutions method, fixed-point index theory, etc.)
to determine the existence of a solution. In some of them, the knowledge of the sign of the partial
derivatives can help to achieve the same goal ([18,20,21]).

As for a physical applicability, problems of the type (5), (6) and (9) appear in many situations, like
the study of the deflections of beams, both straight ones with non-homogeneous cross-sections in free
vibration (which are subject to the fourth-order linear Euler-Bernoulli equation) and curved ones with
different shapes. An account of these and other applications can be found in [22], Chapter IV.

Throughout the paper we will use the terms G(α, β, x, t) and Ga,b(x, t) (and further Ga,b(α, β, x, t))
when we want to highlight the dependence of the Green function of (4) on the boundary conditions
(α, β) and the extremes a, b, respectively. That will be particularly useful when we manipulate Green
functions subject to different boundary conditions or different extremes. We will denote by H(x, t) and
I(x, t) the partial derivatives of G(α, β, x, t) with respect to the extreme b and a, respectively, that is

H(x, t) =
∂G(x, t)

∂b
, I(x, t) =

∂G(x, t)
∂a

, (x, t) ∈ [a, b]× [a, b]. (11)

We will say that a, b are interior to A, B if A ≤ a < b ≤ B and A < a or b < B. We will use the
expression card{D} to denote the number of elements (or cardinal) of the set D.

Likewise, if we assume that y is a function with (n− 1)th derivative in [a, b], we will make use of
the following nomenclature associated to (α, β):

• K(α, β) is the minimum derivative of y(x) for which the boundary conditions (α, β) specify that
y(i)(a) = 0 or y(i)(b) = 0 for i = K(α, β) + 1, . . . , n− 1, with K(α, β) = n− 1 if both y(n−1)(a) �= 0
and y(n−1)(b) �= 0.

• m(α, i) is the number of derivatives of y of order equal or higher than i which the boundary
conditions α do not specify to be zero at a.

• n(β, i) is the number of derivatives of y of order higher than i which the boundary conditions β

do specify to be zero at b.
• αA ∈ α is the greatest index such that y(j)(a) = 0 for α1 ≤ j ≤ αA and y(j)(b) �= 0 for α1 ≤ j ≤

αA − 1, and βB ∈ β is the greatest index such that y(j)(b) = 0 for β1 ≤ j ≤ βB and y(j)(a) �= 0 for
β1 ≤ j ≤ βB − 1. Note that if βB /∈ α then the boundary conditions are p-alternate with p > βB,
whereas if βB ∈ α and βB > 0 then the boundary conditions are (βB − 1)-alternate.

• S(α) is the sum of all indices of α. Likewise, S(β) is the sum of all indices of β.

To make these definitions clear, let us use some examples. Let us assume that n = 8, k = 4,
α = {0, 1, 2, 5} and β = {3, 4, 5, 7}. Then αA = 2 (since 3 /∈ α), βB = 5 (since 6 /∈ β but also 5 ∈ α),
K(α, β) = 6 (since 6 /∈ α ∪ β and 7 ∈ β), S(α) = 0 + 1 + 2 + 5 = 8 and S(β) = 3 + 4 + 5 + 7 = 19.
Likewise, let us assume that n = 7, k = 2, α = {3, 5} and β = {0, 1, 2, 4, 5}. Then αA = 3, βB = 2,
K(α, β) = 6, S(α) = 8 and S(β) = 12.
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As for the organization of the paper, Section 2 will provide the main results of the paper.
Concretely, in the Section 2.1 we will tackle the general case of admissible boundary conditions,
in the Section 2.2 we will prove some additional results associated to p-alternate boundary conditions
and in the Section 2.3 we will cover the strongly admissible boundary conditions. Finally in Section 3
we will elaborate some conclusions.

2. Results

2.1. The Sign of the Green Function and Its Derivatives on the Admissible Case

In this subsection, we will prove some basic results concerning the sign of the Green function of
the problem (4) and its derivatives, as well as comparisons of their absolute values when the extremes
a and b vary. To this end, it is interesting to recall a couple of results from Eloe and Ridenhour, which
we will state (modified slightly using our notations) for completeness.

Theorem 1 (Theorem 3.3 of [1]). 1. If α1 = 0, then for i = 0, . . . , β1,

(−1)n−k ∂iG(x, t)
∂xi > 0, (x, t) ∈ (a, b)× (a, b). (12)

2. If β1 = 0, then for i = 0, . . . , α1,

(−1)n−k+i ∂iG(x, t)
∂xi > 0, (x, t) ∈ (a, b)× (a, b). (13)

Theorem 2 (Theorem 3.4 of [1]). Let us suppose that max(αk, βn−k) < n− 1, and that a1, b1 are extremes
interior to a2, b2, with [a2, b2] ⊂ J.

1. If α1 = 0, then for i = 0, . . . , β1,

(−1)n−k ∂iGa2,b2(x, t)
∂xi > (−1)n−k ∂iGa1,b1(x, t)

∂xi > 0, (x, t) ∈ (a1, b1)× (a1, b1). (14)

2. If β1 = 0, then for i = 0, . . . , α1,

(−1)n−k+i ∂iGa2,b2(x, t)
∂xi > (−1)n−k+i ∂iGa1,b1(x, t)

∂xi > 0, (x, t) ∈ (a1, b1)× (a1, b1). (15)

These theorems, although of considerable scope, unfortunately, do not yield information on the
sign of all the partial derivatives of G(x, t) at the extremes a and b, whose knowledge is necessary
for the application of cone theory to the eigenvalue problem (6) mentioned in the Introduction, as
well as for the analysis of the strongly admissible case (see Section 2.3). Likewise, they do not cover
the dependence of G(x, t) with the extremes a and b when either αk or βn−k are equal to n− 1. These
shortcomings and the lack of explicit proofs of these theorems in [1] (the reader is left to obtain them
following the techniques devised by the authors in previous sections of that paper) lead us to dedicate
this subsection to reproduce what we suppose were the steps used by Eloe and Ridenhour to obtain
Theorems 1 and 2 as well as to prove the missing results (see Remark 2 for some examples of the latter).

We will start with a Lemma that can be considered an extension of [1], Lemma 2.3 to the
problem (4). As Eloe and Ridenhour pointed out, [1], Lemma 2.3 was in essence proved by Peterson
and Ridenhour in [6] for the case (α1, . . . , αk) = (0, ..., k− 1).
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Lemma 1. Let us assume that L is disfocal on [a, b] and that y(x) is a nontrivial solution of Ly = 0 which
satisfies the n− 1 homogeneous boundary conditions

y(αi)(a) = 0, αi ∈ α, α ∈ Ωk−1,
y(βi)(b) = 0, βi ∈ β, β ∈ Ωn−k.

(16)

Let us also assume that

card{i : 0 ≤ i ≤ j− 1, y(i)(a) = 0}+ card{i : 0 ≤ i ≤ j− 1, y(i)(b) = 0} ≥ j, j = 1, . . . , K(α, β). (17)

Then y(x) is essentially unique (to within the norm) and satisfies

1. Neither y(x) nor any of its derivatives vanish at a or b on derivatives lower than K(α, β) + 1 and different
from those of (16), that is

y(i)(a) �= 0, i = 0, . . . , K(α, β), i /∈ α,

y(i)(b) �= 0, i = 0, . . . , K(α, β), i /∈ β. (18)

2. y(i)(x) �= 0, x ∈ (a, b), 0 ≤ i ≤ max(α1, β1). Moreover, if (α, β) are p-alternate, y(i)(x) �= 0, x ∈
(a, b), 0 ≤ i ≤ p + 1.

3. If y(i)(a) = 0, 0 ≤ i ≤ K(α, β)− 1, there exists an ε > 0 such that y(i)(x)y(i+1)(x) > 0, x ∈ (a, a + ε).
4. If y(i)(a) �= 0, 0 ≤ i ≤ K(α, β)− 1, there exists an ε > 0 such that y(i)(x)y(i+1)(x) < 0, x ∈ (a, a + ε).
5. If y(i)(b) = 0, 0 ≤ i ≤ K(α, β)− 1, there exists an ε > 0 such that y(i)(x)y(i+1)(x) < 0, x ∈ (b− ε, b).
6. If y(i)(b) �= 0, 0 ≤ i ≤ K(α, β)− 1, there exists an ε > 0 such that y(i)(x)y(i+1)(x) > 0, x ∈ (b− ε, b).

Proof. Following the argumentation of [6], let us denote by lj, rj the following values

lj = card{i : 0 ≤ i ≤ j− 1, y(i)(a) = 0}, 0 ≤ j ≤ n,

rj = card{i : 0 ≤ i ≤ j− 1, y(i)(b) = 0}, 0 ≤ j ≤ n.

We will show by induction that the number of zeroes of y(j)(x) in the interval (a, b) (let us name it
zj(a, b)) is at least lj + rj − j. For j = 0 it is straightforward, so let us assume that the hypothesis holds
for j− 1, that is,

zj−1(a, b) ≥ lj−1 + rj−1 − j + 1.

If we consider the possible zeroes of y(j−1)(x) at a or b, Rolle’s theorem mandates that

zj(a, b) ≥ zj−1(a, b) + lj − lj−1 + rj − rj−1 − 1

≥ lj−1 + rj−1 − j + 1 + lj − lj−1 + rj − rj−1 − 1 = lj + rj − j.

From the definition of lj, rj, this result also implies that the number of zeroes of y(j)(x) in [a, b] (let
us name it zj[a, b]), satisfies

zj[a, b] ≥ lj+1 + rj+1 − j.

With this in mind it is immediate to see that the condition (17) translates into

zj[a, b] ≥ 1, j = 0, . . . , K(α, β)− 1, (19)

whereas the definition of K(α, β) implies

zj[a, b] ≥ 1, j = K(α, β) + 1, . . . , n− 1. (20)
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The key insight for the rest of the proof is that any additional zero of y(i)(x) on [a, b] for i =

0, . . . , K(α, β) not forced by the homogeneous boundary conditions nor by Rolle’s theorem will imply,
again by Rolle’s theorem, that zK(α,β)[a, b] = 1 which together with (19) and (20) give

zj[a, b] ≥ 1, j = 0, . . . , n− 1.

Since L is disfocal on [a, b] by hypothesis, such an additional zero will mean y ≡ 0. This
proves properties 1 and 2 (the p-alternate condition grants that only one homogeneous boundary
condition -at either a or b- is set in each derivative up to p-th one, so these boundary conditions cannot
force, at least via Rolle’s theorem, any zeroes in (a, b) in the derivatives up to the (p + 1)-th one) and
also the fact that y is essentially unique to within the norm (if there were two different solutions y1 and
y2 one could create a non trivial linear combination y3 of these two with a zero of y(K(α,β))

3 in [a, b]).
As for property 3, if i + 1 ≤ K(α, β) then the number of zeroes of y(i+1)(x) on (a, b) must be

finite (otherwise from Rolle’s theorem we would end up with a zero of y(K(α,β))(x) on (a, b) and the
disfocality of L on [a, b] would force y ≡ 0) and there must be an ε > 0 such that y(i+1)(x) �= 0 on
(a, a + ε). Since

y(i)(x) = y(i)(a) +
∫ x

a
y(i+1)(s)ds =

∫ x

a
y(i+1)(s)ds,

it must follow that y(i)(x)y(i+1)(x) > 0 on (a, a + ε).
To prove property 4, let xi ∈ (a, b] be such that y(i)(xi) = 0 and y(i)(x) �= 0 on [a, xi) (the existence

of xi is granted by (19)). There cannot be any zeroes of y(i+1)(x) on (a, xi) since, by the previous
argumentation, this would imply again a zero of y(K(α,β))(x) on (a, b) and therefore y ≡ 0. As

−y(i)(x) = y(i)(xi)− y(i)(x) =
∫ xi

x
y(i+1)(s)ds,

one gets to y(i)(x)y(i+1)(x) < 0 on (a, xi).
The proof of properties 5 and 6 is similar to that of properties 3 and 4, respectively.

Remark 1. It is important to stress that the results 3–6 of the previous Lemma only apply if i ≤ K(α, β)− 1. If
y(K(α,β))(x) �= 0 on [a, b] we cannot deduce anything about the zeroes of higher derivatives of y(x) on [a, b],
as the disfocality condition would already not be met in y(K(α,β)).

The next Theorem extends [1], Lemma 2.4 and Theorem 2.1 to the problem (4).

Theorem 3. Let us assume that the boundary conditions (α, β), with α ∈ Ωk and β ∈ Ωn−k, are admissible.
Then one has

(−1)m(α,i) ∂iG(α, β, a, t)
∂xi > 0, 0 ≤ i ≤ n− 1, i /∈ α, (21)

and

(−1)n(β,i) ∂iG(α, β, b, t)
∂xi > 0, 0 ≤ i ≤ n− 1, i /∈ β. (22)

In addition:

1. If α1 = 0 then

(−1)n−k ∂iG(α, β, x, t)
∂xi > 0, 0 ≤ i ≤ β1, x ∈ (a, b). (23)

2. If β1 = 0 then

(−1)n−k+i ∂iG(α, β, x, t)
∂xi > 0, 0 ≤ i ≤ α1, x ∈ (a, b). (24)

Proof. Let us note first that the admissibility of the boundary conditions imposes that α1 = 0 or
β1 = 0.
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We will focus initially on the case α1 = 0, for which we will follow a similar approach as that
used in [1], Lemma 2.4. Thus, as a starting point, let us fix t ∈ [a, b] and let us consider the boundary
conditions (α, β) with α = {0, . . . , k− 1}, which (as it is straightforward to show) are always admissible
regardless of the value of k and β. From [1], Lemma 2.4 one has (22) and from [1], Theorem 2.1 one
gets (23) and

(−1)n−k ∂kG(α, β, a, t)
∂xk > 0. (25)

If k < n− 1, we can pick new boundary conditions (α′, β′) with α′ = {0, . . . , k} and β′ = β\βn−k
(that is β′ = {β1, . . . , βn−k−1}, for which [1], Theorem 2.1 gives again

(−1)n−k−1 ∂k+1G(α′, β′, a, t)
∂xk+1 > 0. (26)

We can build the function g1(x) = G(α′, β′, x, t) − G(α, β, x, t), which is n-times continuously
differentiable (the difference of the Green functions compensate the discontinuity of their (n− 1)-th
partial derivatives with regards to x at x = t) and satisfies

Lg1 = 0, x ∈ (a, b);

g(j)
1 (a) = 0, 0 ≤ j ≤ k− 1; g

(β j)

1 (b) = 0, β j ∈ β\βn−k;

g(k)1 (a) = −∂kG(α, β, a, t)
∂xk ; g(βn−k)

1 (b) =
∂βn−k G(α′, β′, b, t)

∂xβn−k
. (27)

From (25) and (27) it follows
(−1)n−kg(k)1 (a) < 0. (28)

The boundary conditions of g1 are (α, β′). It is straighforward to prove that K(α, β′) = n − 1
and that g1 satisfies the hypothesis (17) of Lemma 1 for 1, . . . , n− 1. In consequence, one can apply
properties 1 and 4 of Lemma 1 to g1 and, taking (28) into account, get to

(−1)n−kg(k+1)
1 (a) > 0.

From here and (26) one has

(−1)n−k−1 ∂k+1G(α, β, a, t)
∂xk+1 = (−1)n−k−1 ∂k+1G(α′, β′, a, t)

∂xk+1 − (−1)n−k−1g(k+1)
1 (a) > 0. (29)

This argument can be repeated recursively to obtain

(−1)n−i ∂iG(α, β, a, t)
∂xi > 0, k ≤ i ≤ n− 1, (30)

which is (21).
Next, we will proceed by induction over S(α). Thus, let us consider admissible (but not strongly

admissible) boundary conditions (α, β) with α ∈ Ωk and β ∈ Ωn−k, and let us define new conditions
(α′, β) by taking α and replacing the homogeneous boundary condition αi by αk + 1 (that is, α′ specifies
y(αk+1)(a) = 0 instead of y(αi)(a) = 0). Let us assume that (α′, β) are also admissible.

The function g2(x) = G(α′, β, x, t) − G(α, β, x, t) is n-times continuously differentiable
and satisfies

Lg2 = 0, x ∈ (a, b);

g
(αj)

2 (a) = 0, αj ∈ α, αj �= αi; g
(β j)

2 (b) = 0, β j ∈ β;
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g(αi)
2 (a) =

∂αi G(α′, β, a, t)
∂xαi

; g(αk+1)
2 (a) = −∂αk+1G(α, β, a, t)

∂xαk+1 . (31)

Let (α′′, β) be the homogeneous boundary conditions satisfied by g2, with α′′ ∈ Ωk−1. We will
prove now that

K(α′′, β) = max(K(α′, β), αk + 1), (32)

and that g2 complies with the hypotheses of Lemma 1 for K(α′′, β).
If K(α′, β) > αk + 1 then K(α′′, β) = K(α′, β) as the only difference between (α′, β) and (α′′, β) is

precisely αk + 1. In that case

card{βl ∈ β, j < βl ≤ n− 1} ≤ n− 1− j− 1 = n− j− 2

for αk + 1 ≤ j < K(α′′, β), since K(α′′, β) /∈ β as per the definition of K(α′′, β). Following the
nomenclature of Lemma 1 and noting that

ln(α′, β) + rn(α
′, β) = n,

it follows
lj+1(α

′, β) + rj+1(α
′, β) ≥ n− (n− j− 2) = j + 2, αk + 1 ≤ j < K(α′′, β),

which in turn means

lj+1(α
′′, β) + rj+1(α

′′, β) ≥ j + 1, αk + 1 ≤ j < K(α′′, β). (33)

Since
lj+1(α

′′, β) + rj+1(α
′′, β) = lj+1(α

′, β) + rj+1(α
′, β) ≥ j + 1, j ≤ αk, (34)

due to the admissibility of (α′, β), from (33) and (34) it follows that the condition (17) holds for (α′′, β)

and 1, . . . , K(α′′, β).
On the other hand, if K(α′, β) < αk + 1, since (α′, β) are admissible there cannot be an order

above K(α′, β) which belongs to α′ and β at the same time, which implies that the number of boundary
conditions above K(α′, β) is limited by

card{αl ∈ α′, K(α′, β) < αl ≤ n− 1}+ card{βl ∈ β, K(α′, β) < βl ≤ n− 1} = n− 1− K(α′, β),

and therefore

card{αl ∈ α′′, K(α′, β) < αl ≤ n− 1}+ card{βl ∈ β, K(α′, β) < βl ≤ n− 1} = n− 2− K(α′, β).

This means that there must exist an index l with K(α′, β) + 1 ≤ l ≤ n− 1 such that l /∈ α′′ ∪ β.
That index l must obviously be K(α′′, β). As the only difference between (α′, β) and (α′′, β) is precisely
αk + 1, it follows that K(α′′, β) = αk + 1. The admissibility of (α′, β) grants that (α′′, β) fulfils the
condition (17) of Lemma 1 for 1, . . . , K(α′′, β), also in this case K(α′′, β) = αk + 1.

Moving on, from the induction hypothesis we know that

(−1)m(α,αk+1) ∂αk+1G(α, β, a, t)
∂xαk+1 > 0, (35)

which together with (31) gives
(−1)m(α,αk+1)g(αk+1)

2 (a) < 0. (36)
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Since the number of derivatives of g2 between g(αi)
2 and g(αk+1)

2 which are not specified to be zero
at a is m(α′, αi)−m(α, αk + 1) + 1, applying properties Properties 3 and 4 of Lemma 1 to g2(x) one gets

(−1)m(α′ ,αi)g(αi)
2 (a) > 0, (37)

that is

(−1)m(α′ ,αi)
∂αi G(α′, β, a, t)

∂xαi
> 0. (38)

In a similar manner, for x ∈ (a, a + ε)

(−1)m(α′ ,j)g(j)
2 (x) > 0, j ≤ αi, (39)

and since m(α′, j) = m(α, j) for j < αi from the induction hypothesis one obtains

(−1)m(α′ ,j) ∂jG(α′, β, a, t)
∂xj = (−1)m(α′ ,j)g(j)

2 (a) + (−1)m(α,j) ∂jG(α, β, a, t)
∂xj > 0, j /∈ α, j < αi. (40)

Equations (38) and (40) prove (21) for j ≤ αi.
Before addressing (21) for αi > j, which will require a different function g3, let us focus on (23)

and (22), in this order. Thus, from (39), the definition of m(α′, j) and property property 2 of Lemma 1
it follows

(−1)n−kg(i)2 (x) > 0, 0 ≤ i ≤ β1, x ∈ (a, b). (41)

Since by the induction hypothesis

(−1)n−k ∂iG(α, β, x, t)
∂xi > 0, 0 ≤ i ≤ β1, x ∈ (a, b), (42)

from (41) and (42) one gets to

(−1)n−k ∂iG(α′ ,β,x,t)
∂xi = (−1)n−kg(i)2 (x) + (−1)n−k ∂iG(α,β,x,t)

∂xi > 0, 0 ≤ i ≤ β1, x ∈ (a, b), (43)

which is (23).
On the other hand, (41) also implies (−1)n−kg(β1)

2 (x) = (−1)n(β,β1)+1g(β1)
2 (x) > 0 for x ∈ (b−

ε, b). Applying properties properties 1, 5 and 6 of Lemma 1, one has

(−1)n(β,j)g(j)
2 (b) > 0, 0 ≤ j ≤ K(α′′, β), j /∈ β. (44)

Since the induction hypothesis on b implies

(−1)n(β,j) ∂jG(α, β, b, t)
∂xj > 0, 0 ≤ j ≤ n− 1, j /∈ β, (45)

from (44) and (45) we get to

(−1)n(β,j) ∂jG(α′, β, b, t)
∂xj > 0, 0 ≤ j ≤ K(α′′, β), j /∈ β, (46)

or rather

(−1)n(β,j) ∂jG(α′, β, b, t)
∂xj > 0, 0 ≤ j ≤ max(K(α′, β), αk + 1), j /∈ β, (47)

if we consider (32). The extension of (47) to (22) is straightforward since if max(K(α′, β), αk + 1) < n− 1
then {max(K(α′, β), αk + 1) + 1, . . . , n− 1} ⊂ β.
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Let us move on to prove (21) for j > αi. For that let us consider the boundary conditions (α̂, β̂),
defined by α̂ = α′ ∪ {αi} (or in another way, α̂ = α∪ {αk + 1}), α̂ ∈ Ωk+1 and β̂ = β\βn−k, β̂ ∈ Ωn−k−1.
(α̂, β̂) are admissible since:

1. If βn−k ≥ αi, the property is straightforward as (α′, β) are also admissible.
2. If βn−k < αi, then (reusing the nomenclature of Lemma 1) one has lj+1(α̂, β̂) + rj+1(α̂, β̂) = n for

j = αk + 1, . . . , n− 1 and in particular lαk+2(α̂, β̂) + rαk+2(α̂, β̂) = n which in turn implies (note
αk + 1 < n)

lj+1(α̂, β̂) + rj+1(α̂, β̂) ≥ n− (αk + 1− j) = n− αk + j− 1 ≥ j + 1,

for βn−k ≤ j ≤ αk + 1. As there is no change in the boundary conditions associated to derivatives
of order lower than βn−k, this proves the admissibility of (α̂, β̂).

Thus, let us define the function g3(x) = G(α′, β, x, t)− G(α̂, β̂, x, t), which is n-times continuously
differentiable and satisfies

Lg3 = 0, x ∈ (a, b);

g
(αj)

3 (a) = 0, αj ∈ α, αj �= αi; g
(β j)

3 (b) = 0, β j ∈ β\βn−k;

g(αi)
3 (a) =

∂αi G(α′, β, a, t)
∂xαi

; g(βn−k)
3 (b) = −∂βn−k G(α̂, β̂, b, t)

∂xβn−k
. (48)

From (38) and (48) it follows
(−1)m(α′ ,αi)g(αi)

3 (a) > 0. (49)

The boundary conditions for g3 are (α′, β̂). We will prove now that

K(α′, β̂) = max(K(α′, β), βn−k), (50)

and that (α′, β̂) satisfy the condition (17) of Lemma 1 for 1, . . . , K(α′, β̂).
If K(α′, β) > βn−k then K(α′, β) = K(α′, β̂) as the only difference between (α′, β̂) and (α′, β) is

precisely βn−k. In that case we can follow a similar reasoning as before to state

card{αl ∈ α′, j < αl ≤ n− 1} ≤ n− 1− j− 1 = n− j− 2,

for βn−k ≤ j < K(α′, β), so, using again the nomenclature of Lemma 1 for (α′, β)

lj+1(α
′, β) + rj+1(α

′, β) ≥ n− (n− j− 2) = j + 2, βn−k ≤ j < K(α′, β) = K(α′, β̂).

That in turn implies

lj+1(α
′, β̂) + rj+1(α

′, β̂) ≥ j + 1, βn−k ≤ j < K(α′, β̂),

or
lj(α

′, β̂) + rj(α
′, β̂) ≥ j, βn−k + 1 ≤ j ≤ K(α′, β̂). (51)

Since
lj(α

′, β̂) + rj(α
′, β̂) = lj(α

′, β) + rj(α
′, β) ≥ j, j ≤ βn−k, (52)

from (51) and (52) it follows that (α′, β̂) satisfy the condition (17) for 1, . . . , K(α′, β̂) when K(α′, β̂) =

K(α′, β).

68



Mathematics 2020, 8, 673

On the other hand, if K(α′, β) < βn−k, since (α′, β) are admissible, there cannot be an order above
K(α′, β) which belongs to α′ and β at the same time, which implies that the number of boundary
conditions above K(α′, β) is limited by

card{αl ∈ α′, K(α′, β) + 1 ≤ αl ≤ n− 1}+ card{βl ∈ β, K(α′, β) + 1 ≤ βl ≤ n− 1} = n− 1− K(α′, β),

and therefore

card{αl ∈ α′, K(α′, β) + 1 ≤ αl ≤ n− 1}+ card{βl ∈ β̂, K(α′, β) + 1 ≤ βl ≤ n− 1} = n− 2− K(α′, β).

This means that there must exist an index l with K(α′, β) + 1 ≤ l ≤ n− 1 such that l /∈ α′ ∪ β̂. That
index l must obviously be K(α′, β̂). As the only difference between (α′, β) and (α′, β̂) is precisely βn−k,
it follows that K(α′, β̂) = βn−k. The admissibility of (α′, β) grants that (α′, β̂) fulfils the condition (17)
of Lemma 1 for 1, . . . , K(α′, β̂), also in this case K(α′, β̂) = βn−k.

Since K(α′, β̂) ≥ βn−k, in all cases where K(α′, β̂) ≤ αi,
∂jG(α′ ,β,a,t)

∂xj = 0 for j = αi + 1, . . . , n− 1,
eliminating the need for proving (21) in these scenarios. In the rest of the cases we can apply properties
3 and 4 of Lemma 1 to g3 and (49) to yield

(−1)m(α′ ,j)g(j)
3 (a) > 0, αi < j ≤ K(α′, β̂), j /∈ α. (53)

Due to the definition of β̂, we can apply in this case induction over S(β) and assume

(−1)m(α̂,j) ∂jG(α̂, β̂, a, t)
∂xj > 0, αi < j ≤ n− 1, j /∈ α. (54)

From (53) and (54), and the fact that m(α̂, j) = m(α′, j) for αi < j ≤ n− 1, one finally gets to

(−1)m(α′ ,j) ∂jG(α′, β, a, t)
∂xj = (−1)m(α′ ,j)g(j)

3 (a) + (−1)m(α′ ,j) ∂jG(α̂, β̂, a, t)
∂xj

= (−1)m(α′ ,j)g(j)
3 (a) + (−1)m(α̂,j) ∂jG(α̂, β̂, a, t)

∂xj > 0, αi < j ≤ K(α′, β̂), j /∈ α, (55)

or, taking (50) into account

(−1)m(α′ ,j) ∂jG(α′, β, a, t)
∂xj > 0, αi < j ≤ max(K(α′, β), βn−k), j /∈ α. (56)

The extension of (56) to (21) is straightforward as if max(K(α′, β), βn−k) < n− 1 then ∂jG(α′ ,β,a,t)
∂xj =

0 for j = max(K(α′, β), βn−k) + 1, . . . , n− 1. This completes the proof of the case α1 = 0.
Let us focus now on the case α1 > 0, β1 = 0. For that we will consider the function

G′(β, α, x, t) = (−1)nG(α, β, b + a− x, b + a− t), (57)

which as one can readily show (see e.g., [8], Chapter 3, page 105) is the Green function of the problem

L′G′ = 0, (x, t) ∈ {(a, t) ∪ (t, b)} × (a, b),

∂β j G′(β, α, a, t)
∂xβ j

= 0, j = 1, . . . , n− k;
∂αj G′(β, α, b, t)

∂xαj
= 0, j = 1, . . . , k; (58)

with L′ defined as

L′y = y(n)(x)− an−1(b + a− x)y(n−1)(x) + · · ·+ (−1)na0(b + a− x)y(x). (59)
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Since β1 = 0 is a boundary condition applied at a, G′ satisfies the hypotheses of the first part of
this theorem. Thus, from (21), (22) and (23) one gets to

(−1)m(β,i) ∂iG′(β, α, a, t)
∂xi > 0, 0 ≤ i ≤ n− 1, i /∈ β, (60)

(−1)n(α,i) ∂iG′(β, α, b, t)
∂xi > 0, 0 ≤ i ≤ n− 1, i /∈ α, (61)

and

(−1)k ∂iG′(β, α, x, t)
∂xi > 0, 0 ≤ i ≤ α1, x ∈ (a, b). (62)

(60), (61), (62) and the relationship

(−1)n−j ∂jG′(β, α, b + a− x, b + a− t)
∂xj =

∂jG(α, β, x, t)
∂xj , 0 ≤ j ≤ n− 1, (63)

finally yield

(−1)n(α,i)+n−i ∂iG(α, β, a, t)
∂xi > 0, 0 ≤ i ≤ n− 1, i /∈ α, (64)

(−1)m(β,i)+n−i ∂iG(α, β, b, t)
∂xi > 0, 0 ≤ i ≤ n− 1, i /∈ β, (65)

(−1)n−k+i ∂iG(α, β, x, t)
∂xi > 0, 0 ≤ i ≤ α1, x ∈ (a, b). (66)

As n− i− n(α, i) = m(α, i) for i /∈ α and n− i−m(β, i) = n(β, i) for i /∈ β, from (64) and (65) one
readily gets (21) and (22), respectively.

Remark 2. Inequalities (21) and (22) are results new with respect to Theorems 3.3 and 3.4 of [1]. Likewise,
(30) is also new with respect to Theorem 2.1 of [1].

Next, we will assess the dependence of G(x, t) and some of its partial derivatives with regards to
the extremes a and b.

Lemma 2. Fixed t ∈ [a, b], H(x, t) is the solution of the problem

LH = 0, x ∈ (a, b);

∂αj H(a, t)
∂xαj

= 0, αj ∈ α;
∂β j H(b, t)

∂xβ j
= −∂β j+1G(α, β, b, t)

∂xβ j+1 , β j ∈ β. (67)

Likewise, I(x, t) is the solution of the problem

LI = 0, x ∈ (a, b);

∂αj I(a, t)
∂xαj

= −∂αj+1G(α, β, a, t)
∂xαj+1 , αj ∈ α;

∂β j I(b, t)
∂xβ j

= 0, β j ∈ β. (68)

Proof. The proof of (67) follows the same steps as that of [13], Lemma 3.3 with x1 = a and k = 1 and
will not be repeated. The proof of (68) is also similar.

Theorem 4. Let us assume that (α, β) are admissible boundary conditions. If α1 = 0 and either

βn−k < n− 1
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or
βn−k = n− 1 and (−1)n(β,j)aj(b) ≤ 0, 0 ≤ j ≤ n− 1, j /∈ β, (69)

with at least one l /∈ β such that 0 ≤ l ≤ n− 1 and

(−1)n(β,l)al(b) < 0, (70)

then

(−1)n(β,j) ∂j H(x, t)
∂xj < 0, (x, t) ∈ (a, b)× (a, b), β1 ≤ j ≤ βB, (71)

and

(−1)n−k ∂jH(x, t)
∂xj > 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j < β1. (72)

If α1 > 0 and either
βn−k < n− 1

or
βn−k = n− 1 and (−1)n(β,j)aj(b) ≤ 0, 0 ≤ j ≤ n− 1, j /∈ β, (73)

then

(−1)n−k−j ∂j H(x, t)
∂xj > 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j ≤ βB. (74)

Proof. Let us suppose that α1 = 0. Fixed t ∈ [a, b], from Lemma 2 we know that H(x, t) =

∑n−k
i=1 hβi (x, t), where hβi (x, t) is the solution of

Lhβi = 0, x ∈ (a, b);
∂αj hβi (a, t)

∂xαj
= 0, αj ∈ α;

∂β j hβi (b, t)

∂xβ j
= 0, β j ∈ β\βi;

∂βi hβi (b, t)
∂xβi

= −∂βi+1G(b, t)
∂xβi+1 . (75)

Note that if βi + 1 ∈ β then hβi (x, t) ≡ 0 due to the disfocality of L on [a, b]. That implies that we
only need to take into account those βi such that βi + 1 /∈ β.

If βn−k < n− 1 then βi < n− 1 for 1 ≤ i ≤ n− k and we can apply (22) and (75) to obtain

(−1)n(β,βi+1) ∂βi hβi (b, t)
∂xβi

< 0, (76)

which combined with the properties properties 2 (as commented at the end of the Introduction the
homogeneous boundary conditions in (75) are at least (βB − 1)-alternate), 5 and 6 of Lemma 1, and the
fact that n(β, βi + 1) = n(β, βi) when βi + 1 /∈ β, yields

(−1)n(β,j) ∂jhβi (x, t)
∂xj < 0, (x, t) ∈ (a, b)× (a, b), j ∈ β, j ≤ βB, (77)

and

(−1)n(β,j) ∂jhβi (x, t)
∂xj > 0, (x, t) ∈ (a, b)× (a, b), j /∈ β, j ≤ βB. (78)

As
∂jhβi

(b,t)

∂xj = 0 for β1 ≤ j ≤ βB and
∂jhβi

(b,t)

∂xj �= 0 for 0 ≤ j < β1, from (77) and (78), the facts that
βB ≤ βi and n(β, j) = n− k for j < β1, and the decomposition of H(x, t) in hβi (x, t), one gets to (71)
and (72).
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On the contrary, if βn−k = n− 1 then (77) and (78) hold for all hβi but for hβn−k , since in that case

the sign of
∂βn−k hβn−k

(b,t)

∂xβn−k
is the opposite of that of ∂nG(b,t)

∂xn , which Theorem 3 does not yield. In that case
we need to revert to the definition of L. Thus, from (1) and (4) one has

∂nG(b, t)
∂xn = −

n−1

∑
l=0

al(b)
∂lG(b, t)

∂xl = −
n−1

∑
l=0,l /∈β

al(b)
∂lG(b, t)

∂xl . (79)

From (22), (69), (70), (75) and (79) one gets to ∂nG(b,t)
∂xn > 0 and

∂n−1hβn−k
(b,t)

∂xn−1 < 0. Applying
properties Properties 2, 5 and 6 of Lemma 1 one obtains again (77) and (78), and taking into account
the decomposition of H(x, t) in hβi (x, t) one finally gets (71) and (72).

The proof of (74) in the case α1 > 0 can be done following the same reasoning.

Remark 3. Condition (70) can be removed if β �= {k, k + 1, . . . , n− 1}. Such a condition is needed in the case

β = {k, k + 1, . . . , n− 1} to grant
∂n−1hβn−k

(b,t)

∂xn−1 < 0, since
∂n−1hβn−k

(b,t)

∂xn−1 = 0 implies H(x, t) = hβn−k (x, t) ≡
0 by the disfocality of L on [a, b]. However, if β �= {k, k + 1, . . . , n − 1}) then there are other non-trivial
hβi (x, t) which guarantee the non-triviality of H(x, t).

Corollary 1. Let b1 < b2. Under the conditions of Theorem 4, if α1 = 0 then

(−1)n(β,j) ∂jGa,b2(x, t)
∂xj < (−1)n(β,j) ∂jGa,b1(x, t)

∂xj , (x, t) ∈ (a, b)× (a, b), β1 ≤ j ≤ βB, (80)

and

(−1)n−k ∂jGa,b2(x, t)
∂xj > (−1)n−k ∂jGa,b1(x, t)

∂xj > 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j ≤ β1. (81)

If α1 > 0 then

(−1)n−k−j ∂jGa,b2(x, t)
∂xj > (−1)n−k−j ∂jGa,b1(x, t)

∂xj > 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j ≤ βB. (82)

Proof. The proof is immediate from Theorem 4.

Theorem 5. Let us assume that (α, β) are admissible boundary conditions.
If α1 = 0 and either

αk < n− 1

or
αk = n− 1 and (−1)m(α,j)aj(a) ≤ 0, 0 ≤ j ≤ n− 1, j /∈ α, (83)

then

(−1)n−k ∂j I(x, t)
∂xj < 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j ≤ αA. (84)

If α1 > 0 and either
αk < n− 1

or
αk = n− 1 and (−1)m(α,j)aj(a) ≤ 0, 0 ≤ j ≤ n− 1, j /∈ α, (85)

with at least one l /∈ α such that 0 ≤ l ≤ n− 1 and

(−1)m(α,l)al(a) < 0, (86)
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then

(−1)m(α,j) ∂j I(x, t)
∂xj < 0, (x, t) ∈ (a, b)× (a, b), α1 ≤ j ≤ αA. (87)

and

(−1)n−k−j ∂j I(x, t)
∂xj < 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j < α1. (88)

Proof. The proof is similar to that of Theorem 4.

Remark 4. As before, condition (86) can be removed if α �= {n− k, n− k + 1, . . . , n− 1}.

Corollary 2. Let a2 < a1. Under the conditions of Theorem 5, if α1 = 0 then

(−1)n−k ∂jGa2,b(x, t)
∂xj > (−1)n−k ∂jGa1,b(x, t)

∂xj > 0, (x, t) ∈ (a1, b)× (a1, b), 0 ≤ j ≤ αA. (89)

If α1 > 0 then

(−1)m(α,j) ∂jGa2,b(x, t)
∂xj > (−1)m(α,j) ∂jGa1,b(x, t)

∂xj , (x, t) ∈ (a1, b)× (a1, b), α1 ≤ j ≤ αA. (90)

and

(−1)n−k−j ∂jGa2,b(x, t)
∂xj > (−1)n−k−j ∂jGa1,b(x, t)

∂xj > 0, (x, t) ∈ (a1, b)× (a1, b), 0 ≤ j < α1. (91)

Remark 5. If α1 = 0, it can happen that αA �= β1 (more concretely αA = β1 − 1). In that case the statement
(i) of [1], Theorem 3.4 (see (14)) does not seem to be valid for l = β1 and b1 = b2, unless an approach not based
on the sign of I and its derivatives was used by the authors to prove that assertion. The lack of an explicit proof
of that theorem complicates any further analysis, but one cannot help having the impression that the statement is
incorrect. The same comment is applicable to the statement (ii) of [1], Theorem 3.4 in the case α1 > 0, a1 = a2

(see (15)), which seems only valid for l = 0, . . . , βB and not for l = α1 when βB �= α1.

2.2. The Case of p-Alternate Boundary Conditions

When the boundary conditions are p-alternate, the lack of simultaneous boundary conditions at
a and b for any derivative lower than p suggests no need for the immediately higher derivative to
change the sign on (a, b), at least as a consequence of Rolle’s theorem. The following theorem shows
that this is to some extent the case under certain hypotheses.

Theorem 6. Let us assume that (α, β) are p-alternate admissible boundary conditions.
If α1 = 0 and either

βn−k < n− 1

or
βn−k = n− 1 and (−1)n(β,j)aj(x) ≤ 0, x ∈ [a, b], 0 ≤ j ≤ n− 1, j /∈ β, (92)

with at least one l /∈ β such that 0 ≤ l ≤ n− 1 and

(−1)n(β,l)al(x) < 0, x ∈ [a, b], (93)

then

(−1)n−k ∂jG(α, β, x, t)
∂xj > 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j ≤ β1, (94)

(−1)n(β,j) ∂jG(α, β, x, t)
∂xj < 0, (x, t) ∈ (a, b)× (a, b), β1 ≤ j ≤ βB, (95)
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and, if βn−k, p > βB,

(−1)n(β,βB+1) ∂βB+1G(α, β, x, t)
∂xβB+1 > 0, (x, t) ∈ (a, b)× (a, b). (96)

If α1 > 0 and either
αk < n− 1

or
αk = n− 1 and (−1)m(α,j)aj(x) ≤ 0, x ∈ [a, b], 0 ≤ j ≤ n− 1, j /∈ α, (97)

with at least one l /∈ α such that 0 ≤ l ≤ n− 1 and

(−1)m(α,l)al(x) < 0, x ∈ [a, b], (98)

then

(−1)n+k−j ∂jG(α, β, x, t)
∂xj > 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j ≤ α1, (99)

(−1)m(α,j) ∂jG(α, β, x, t)
∂xj > 0, (x, t) ∈ (a, b)× (a, b), α1 ≤ j ≤ αA, (100)

and, if αk, p > αA,

(−1)m(α,αA+1) ∂αA+1G(α, β, x, t)
∂xαA+1 > 0, (x, t) ∈ (a, b)× (a, b). (101)

Proof. Let us tackle the case α1 = 0 first. From Theorem 3, concretely (23), we already know that (94)
holds for 0 ≤ j ≤ β1 (note that n(β, β1) = n− k− 1).

Next, let us assume that x > t. From the definition of H one has

∂jGa,b(α, β, x, t)
∂xj =

∂jGa,x(α, β, x, t)
∂xj +

∫ b

x

∂

∂s
∂jGa,s(α, β, x, t)

∂xj ds

=
∂jGa,x(α, β, x, t)

∂xj +
∫ b

x

∂j Ha,s(α, β, x, t)
∂xj ds, (x, t) ∈ (a, b)× (a, b). (102)

Ga,x(α, β, x, t) is the Green function of the problem (4) when b = x, so it satisfies the boundary
conditions related to β at x, that is

∂jGa,x(α, β, x, t)
∂xj = 0, t ∈ (a, x), j ∈ β. (103)

On the other hand, from the hypotheses and Theorem 4 it follows that

(−1)n(β,j) ∂jHa,s(α, β, x, t)
∂xj < 0, (x, t) ∈ (a, s)× (a, s), t < x ≤ s ≤ b, β1 ≤ j ≤ βB. (104)

From (102), (103) and (104) one finally gets (95) for x > t and β1 ≤ j ≤ βB.
Let us focus now on the case x ≤ t. As before one has

∂jGa,b(α, β, x, t)
∂xj =

∂jGa,t(α, β, x, t)
∂xj +

∫ b

t

∂j Ha,s(α, β, x, t)
∂xj ds, (x, t) ∈ (a, b)× (a, b). (105)

Ga,t(α, β, x, t) is the Green function of the problem (4) when b = t, so it satisfies the boundary
conditions related to β at t, that is

∂jGa,t(α, β, t, t)
∂xj = 0, t ∈ (a, b), j ∈ β. (106)
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If n− 1 /∈ β, Ga,t(α, β, x, t) is n-times continuously differentiable in (a, t), satisfies LGa,t(α, β, x, t) =
0 for x ∈ (a, t) and n homogeneous boundary conditions at a and b. Since L is disfocal on [a, b], it is also
disfocal on [a, t) and therefore Ga,t(α, β, x, t) ≡ 0 for x ∈ [a, t). From here, (104) and (105) one gets (95).
On the contrary, if n− 1 ∈ β, from the properties of the Green function (see [8], Chapter 3, page 105,
property (ii))) it is straightforward to show that Ga,t(α, β, x, t) is n-times continuously differentiable on
(a, t), satisfies LGa,t(α, β, x, t) = 0 for x ∈ (a, t), n− 1 homogeneous boundary conditions at a and b
and the boundary condition

lim
x→t−

∂n−1Ga,t(α, β, x, t)
∂xn−1 = −1, t ∈ (a, b). (107)

As noted in the Introduction, p ≥ βB − 1. We can apply Properties 2, 5 and 6 of Lemma 1 to (107),
as well as the definition of n(β, j), to yield

(−1)n(β,j) ∂jGa,t(α, β, x, t)
∂xj < 0, x ∈ (a, t), t ∈ (a, b), j ∈ β, j ≤ p + 1, (108)

and

(−1)n(β,j) ∂jGa,t(α, β, x, t)
∂xj > 0, x ∈ (a, t), t ∈ (a, b), j /∈ β, j ≤ p + 1. (109)

From (104), (105) and (108) one gets (95) for the case x ≤ t.
To address (96), let us note that if both βn−k, p > βB then βB /∈ α, βB + 1 ∈ α and βB + 1 /∈ β due

to the definition of βB and the p-alternate property of the boundary conditions (α, β). In that case
we can define the boundary conditions (α, β̌) by adding βB + 1 and removing βn−k to/from β, that
is β̌ = {β\βn−k} ∪ (βB + 1). Then, fixed t ∈ [a, b], the function g4(x) = G(α, β̌, x, t)− G(α, β, x, t) is n
times continuously differentiable on [a, b] and satisfies

Lg4 = 0, x ∈ (a, b);

g
(αj)

4 (a) = 0, αj ∈ α; g
(β j)

4 (b) = 0, β j ∈ β\βn−k;

g(βB+1)
4 (b) = −∂βB+1G(α, β, b, t)

∂xβB+1 . (110)

From (22) and (110) it follows that

(−1)n(β,βB+1)g(βB+1)
4 (b) < 0. (111)

Applying property 2 of Lemma 1 to (111) (note that p ≥ βB + 1) one has

(−1)n(β,βB+1)g(βB+1)
4 (x) < 0, x ∈ (a, b). (112)

Likewise, applying (95) to G(α, β̌, x, t) (note that β̌n−k < n− 1) one has

(−1)n(β̌,βB+1) ∂βB+1G(α, β̌, x, t)
∂xβB+1 < 0, x ∈ (a, b), (113)

which is also

(−1)n(β,βB+1) ∂βB+1G(α, β̌, x, t)
∂xβB+1 > 0, x ∈ (a, b). (114)

Combining (112) and (114) one finally gets to

(−1)n(β,βB+1) ∂βB+1G(α, β, x, t)
∂xβB+1
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= (−1)n(β,βB+1) ∂βB+1G(α, β̌, x, t)
∂xβB+1 − (−1)n(β,βB+1)g(βB+1)

4 (x) > 0, x ∈ (a, b), (115)

which is (96).
The proof of (99)–(101) can be done using the same auxiliar Green function G′(β, α, x, t) of (57),

applying (63) to (94)–(96) and taking into account that n(α, j) + m(α, j) = n− j− 1 when j ∈ α.

2.3. The Strongly Admissible Case

Last, but not least, we will prove a result on the strongly admissible case, extending the order of
the partial derivatives of G(x, t) for which the sign is constant in (a, b) up to the (n− 1)-th order.

Theorem 7. Let us assume that (α, β) are strongly admissible boundary conditions and that

(−1)m(α,j)aj(x) ≤ 0, x ∈ [a, b], 0 ≤ j ≤ n− 1. (116)

If n− 1 ∈ α let us assume that there exists at least one lα /∈ α such that

(−1)m(α,lα)alα(a) < 0. (117)

If n− 1 ∈ β let us assume that there exists at least one lβ /∈ β such that

(−1)m(α,lβ)alβ
(b) < 0. (118)

If either of the following two conditions holds

1. α1 = 0 and either {βB + 1, . . . n− 1} ⊂ α or {βB + 2, . . . n− 1} ⊂ β,
2. α1 > 0 and either {αA + 2, . . . n− 1} ⊂ α or {αA + 1, . . . n− 1} ⊂ β,

then

(−1)m(α,j) ∂jG(x, t)
∂xj > 0, (x, t) ∈ (a, b)× (a, b), 0 ≤ j ≤ n− 1. (119)

Proof. The key of this theorem is to prove that, fixed t ∈ [a, b], ∂nG(x,t)
∂xn ≥ 0 for x ∈ (a, b). This, added

to the property of the Green functions (see [8], Chapter 3, page 105) that states that

lim
x→t+

∂n−1G(x, t)
∂xn−1 = 1 + lim

x→t−

∂n−1G(x, t)
∂xn−1 , (120)

and the presence of one homogeneous boundary condition in ∂n−1G(x,t)
∂xn−1 at either a or b, guarantees that

∂n−1G(x,t)
∂xn−1 does not change sign on x ∈ (a, b). The same absence of change of the sign of the partial

derivatives of G(x, t) of lower orders follows immediately from this fact and the strong admissibility
of the homogeneous boundary conditions.

To prove the non-negative sign of ∂nG(x,t)
∂xn on (a, b) for fixed t ∈ [a, b], let us focus first on its value

at the extremes a and b. Thus, from the definition of L one has

∂nG(a, t)
∂xn = −

n−1

∑
l=0

al(a)
∂lG(a, t)

∂xl = −
n−1

∑
l=0,l /∈α

al(a)
∂lG(a, t)

∂xl , (121)

and
∂nG(b, t)

∂xn = −
n−1

∑
l=0

al(b)
∂lG(b, t)

∂xl = −
n−1

∑
l=0,l /∈β

al(b)
∂lG(b, t)

∂xl . (122)

From Theorem 3 and the hypotheses (116), (117), it is straightforward to show that ∂nG(a,t)
∂xn > 0 if

n− 1 ∈ α and ∂nG(a,t)
∂xn ≥ 0 else. As for ∂nG(b,t)

∂xn , if l /∈ β, then l ∈ α and the strong admissibility forces
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that m(α, l) = n(β, l). From here, Theorem 3 and the hypotheses (116), (118), again, one gets that
∂nG(b,t)

∂xn > 0 if n− 1 ∈ β and ∂nG(b,t)
∂xn ≥ 0 otherwise.

Next, let us do a similar comparison for the partial derivatives of lower order. If n − 1 ∈ α,
from Taylor’s theorem there must be a δ > 0 such that

∂n−1G(x, t)
∂xn−1 > 0, x ∈ (a, a + δ). (123)

Applying Taylor’s theorem recursively and taking into account (21) one proves that there exists a
δ1 > 0 such that

(−1)m(α,i) ∂iG(α, β, x, t)
∂xi > 0, x ∈ (a, a + δ1), 0 ≤ i ≤ n− 1. (124)

As for b, (22) already gives

(−1)n(β,n−1) ∂n−1G(b, t)
∂xn−1 =

∂n−1G(b, t)
∂xn−1 > 0. (125)

Applying again Taylor’s theorem recursively and taking into account (22) one has that there must
be a δ2 > 0 such that

(−1)n(β,i) ∂iG(α, β, x, t)
∂xi > 0, x ∈ (b− δ2, b], i /∈ β, 0 ≤ i ≤ n− 1, (126)

and

(−1)n(β,i) ∂iG(α, β, x, t)
∂xi < 0, x ∈ (b− δ2, b), i ∈ β, 0 ≤ i ≤ n− 1. (127)

From (123) and (125) it is clear that ∂n−1G(x,t)
∂xn−1 has the same (positive, in this case) sign on x ∈

(a, a + δ1) ∪ (b− δ2, b]. We can prove by induction that this same sign property is valid for all partial
derivatives of lower order, namely, that the signs given by (124), (126) and (127) are the same for each
partial derivative. Thus, let us suppose that the sign of the partial derivative of order l + 1 is the
same in the neighborhoods of a and b, and is given by (124). If l ∈ β, then by Taylor’s theorem, the
sign of the derivative of order l must be the opposite of the sign of the derivative of order l + 1 in
the neighborhood of b. Likewise, m(α, l) = m(α, l + 1) + 1, so from (124) the sign of the derivative of
order l must also be the opposite of the sign of the derivative of order l + 1 in the neighborhood of
a. Therefore, the sign of the partial derivatives of order l must coincide at the proximity of a and b.
Likewise, if l ∈ α then by Taylor’s theorem the sign of the derivative of order l must be the same as
the sign of the derivative of order l + 1 in the neighborhood of a, whereas the sign of the derivative of
order l at b is given by (−1)n(β,l). If l + 1 /∈ β then from (126) and since n(β, l) = n(β, l + 1) the sign
of the derivative of order l + 1 at b must also coincide with that of the derivative of order l at b. If
l + 1 ∈ β then n(β, l) = n(β, l + 1) + 1, so from (127) the sign of the derivative of order l + 1 at b must
also coincide with that of the derivative of order l at b. That means, again, that the signs of the partial
derivatives of G(x, t) of order l must also coincide at the neighborhoods of a and b.

A similar reasoning can be done for the case n− 1 ∈ β, leading to the same conclusions.
Once we have that the signs of the partial derivatives of G(x, t) on the vicinity of a and b are the

same, regardless of the order, and knowing already from Theorem 6 (note that the strongly admissible

conditions are (n − 1)-alternate) that the sign of ∂iG(x,t)
∂xi is constant on (a, b) for 0 ≤ i ≤ βB (case

α1 = 0, βn−k = βB), 0 ≤ i ≤ βB + 1 (case α1 = 0, βn−k > βB), 0 ≤ i ≤ αA (case α1 > 0, αk = αA) or
0 ≤ i ≤ αA + 1 (case α1 > 0, αk > αA), and determined by (124) in all cases (it is straightforward to

check), it remains to prove that the sign of ∂iG(x,t)
∂xi is constant on (a, b) for the rest of values of i up to

n− 1. We will do it by reduction to the absurd. Thus, let us suppose that there is an order l for which
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∂l G(x,t)
∂xl changes sign on (a, b). Since the sign at the vicinity of the extremes is the same, there must be

at least an even number of sign changes on (a, b). Let us call x1,l the minimum of these points and

x2,l the maximum of these points. Clearly the sign of ∂l G(x,t)
∂xl must be the same for x ∈ (a, x1,l) and

x ∈ (x2,l , b), and be given by (124).
Let us assume that {l, . . . , n− 1} ⊂ α. Then by Rolle’s Theorem we can obtain a sequence of

zeroes x1,j, j = l, . . . , n− 1, such that x1,l > x1,l+1 > . . . > x1,n−2 > a, for which the sign of ∂jG(x,t)
∂xj is

constant on (a, x1,j), and again given by (124). Since ∂n−1G(x,t)
∂xn−1 has a discontinuity at x = t, there must

be a smallest point x1,n−1 < x1,n−2 where there is a change of sign of ∂n−1G(x,t)
∂xn−1 from positive (see (124))

to negative, but from (120) it is clear that such a point cannot be x1,n−1 = t, so it must be a zero of
∂n−1G(x,t)

∂xn−1 . From the mean value theorem there must exist an x∗ ∈ (a, x1,n−1) such that ∂nG(x∗ ,t)
∂xn < 0.

However, the above reasoning implies that the sign of all partial derivatives of orders from l to n− 1
is given by (124) for x ∈ (a, x1,n−1), and from (116), that also means that the sign of ∂nG(x,t)

∂xn must be
non-negative for all x ∈ (a, x1,n−1), which is a contradiction.

A similar argument can be used if {l, . . . , n− 1} ⊂ β and if α1 > 0, which completes the proof.

Remark 6. If al(a) = 0 for all j /∈ α, then the hypothesis (117) of the Theorem 7 can be replaced by any
combination of al(x) that grants ∂nG(x,t)

∂xn > 0 for x ∈ (a, a + δ). Likewise, if al(b) = 0 for all j /∈ β, then the

hypothesis (118) of the Theorem 7 can be replaced by any combination of al(x) that grants ∂nG(x,t)
∂xn > 0 for

x ∈ (b− δ, b).

Remark 7. One cannot help wondering if, with the right combinations of signs of al(x) in [a, b], it is possible
to guarantee the conservation of sign of each partial derivative of G with respect to x in [a, b] regardless of how
αj and β j alternate in the case of strongly admissible conditions (that is, without imposing Conditions 1 and 2 in
Theorem 7). Even though that assertion looks quite plausible, its proof has been elusive to the authors so far.

3. Discussion

The results presented in this paper provide information about the sign and dependence on the
extremes a and b of the Green function of the problem (4) and its derivatives when the two-point
boundary conditions are admissible, property which encompasses many types of boundary conditions
usually covered in the literature (for instance, conjugate or focal boundary conditions). By doing so,
this paper extends (and to a small degree corrects, as discussed in the Remark 5) the results of Eloe
and Ridenhour in [1], a fine piece of Green function theory that is considered a reference in the subject.
The paper goes beyond to address the p-alternate and strongly admissible cases, for which results on
the signs of higher derivatives on the interval are provided. Thus, whilst both [1] and the Section 2.1
yield sign results only for derivatives up to max(α1, β1)-th order, in the case of p-alternate they are
supplied for derivatives up to αA + 1 (if α1 > 0) and βB + 1 (if α1 = 0) orders, and in the case of
strongly admissible conditions, for derivatives up to (n− 1)-th order. As stated in the Introduction,
this is relevant since the maximum value of the integer μ of the problem (6) which allows a cone-based
approach is limited by the order of the highest derivative of G(x, t) with constant sign, so that finding
results for higher derivatives of G(x, t) permits increasing the applicability of the cone theory to
such problems.

One question that is left open is whether it is possible to find conditions on the sign of the
coefficients of L which grant a constant sign of every derivative of G(x, t) on (a, b) up to the (n− 1)-th
order, for any strongly admissible boundary conditions. We hypothesize an affirmative response, but a
proper proof is still pending.

To conclude, other areas that can benefit from an extension of these sign findings are those of
boundary conditions mixing different derivatives or those with integral conditions. The determination
of the sign of the Green function of fractional boundary value problems is also a topic that has raised
interest recently, as part of more sophisticated mechanisms to find solutions of other related non-linear
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fractional boundary value problems (see for instance [23–26]). However, there is a lot to do in this
area, since most of these cases require the explicit calculation of the associated Green function, and this
calculation is only possible in the simplest ones. A more generic approach that provided signs without
having to solve fractional differential equations, similar to that presented here, would, therefore, be
very welcome.
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Abstract: In this paper, we study a new family of Gompertz processes, defined by the power
of the homogeneous Gompertz diffusion process, which we term the powers of the stochastic
Gompertz diffusion process. First, we show that this homogenous Gompertz diffusion process
is stable, by power transformation, and determine the probabilistic characteristics of the process,
i.e., its analytic expression, the transition probability density function and the trend functions. We then
study the statistical inference in this process. The parameters present in the model are studied by
using the maximum likelihood estimation method, based on discrete sampling, thus obtaining the
expression of the likelihood estimators and their ergodic properties. We then obtain the power process
of the stochastic lognormal diffusion as the limit of the Gompertz process being studied and go on to
obtain all the probabilistic characteristics and the statistical inference. Finally, the proposed model is
applied to simulated data.

Keywords: powers of stochastic Gompertz diffusion models; powers of stochastic lognormal
diffusion models; estimation in diffusion process; stationary distribution and ergodicity; trend
function; application to simulated data

1. Introduction

Stochastic processes are used to model stochastic phenomena in various fields of science,
engineering, economics and finance. An important category among these processes is that of Stochastic
Diffusion Processes (SDP), which have received considerable attention recently, due on the one hand
to their diverse applications in stochastic modelling, and on the other, to their value in addressing
probabilistic statistical problems, especially those involving statistical inference. In consequence,
these processes have been widely studied, and much research has been undertaken to resolve these
issues of statistical inference, with particular respect to the estimation of parameters; see, among others,
Bibby and Sorensen [1], Prakasa Rao [2], Chang and Cheng [3], Beskos et al. [4], Stramer and Yan [5],
Shoji and Ozaki [6], Durham and Gallant [7] and Fan [8], without forgetting the works of Yenkie and
Diwekar [9] and Kloeden et al. [10] and the important bibliography cited in these works.

There has been much recent interest in applying SDP, and many researchers are working on the
construction of stochastic processes in order to model phenomena of interest. These processes are used
in areas such as the stochastic economy, new technologies, interest rates, courses of action, insurance,
finance in general, cell growth, radiotherapy, chemotherapy, emissions from energy consumption and
the emissions of CO2 and greenhouse gases. Research results have been applied to various processes,
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Mathematics 2020, 8, 588

both in the homogeneous and in the non-homogeneous cases and many particular SDP have been
proposed, such as Katsamaki and Skiadas [11] in the case of the exponential model, Skiadas and
Giovanis [12] in the case of the Bass model, Giovanis and Skiadas [13] in the case of the logistic model,
Gutiérrez et al. [14] in the case of the Rayleigh model and Román-Román et al. [15] in the case of the
lognormal with exogenous factors.

Among the above-mentioned processes is the Stochastic Gompertz Diffusion Process (SGDP),
which was first proposed by Ricciardi [16], who defined it in the homogeneous case by means of
stochastic differential equations, for use in studies of population growth. It was subsequently used by
Dennis and Patil [17] in ecology modelling. With respect to the Kolmogorov equations, it was defined
by Nafidi [18], in a general way and for both the univariate and the multivariate cases.

In various papers, Gutiérrez et al. [19–21], Ferrante et al. [22], Román-Román et al. [23] and
Giorno and Nobile [24], have highlighted the importance of this process, and many subsequent
extensions have appeared, especially regarding the non-homogeneous case with exogenous factors
(external variables) that affect the drift coefficient. In general, these extensions take one of the following
two forms:

With external information (when no functional form is available): the exogenous factors are
completely determined by the observed data (monthly, annual, etc.) and to obtain their functional
forms interpolation methods, among others, can be used. This methodology has been applied by
Gutiérrez et al. [25,26], Rupsys et al. [27] and Badurally Adam et al. [28]. In all these papers
it is assumed that the coefficient drift is a linear combination of exogenous factors, obtained by
linear interpolation.

Without external information: in this case there are no observed data for the exogenous factors,
but they are functions of time and of certain parameters. For example, the case in which the deceleration
factor is affected by exogenous factors was developed by Gutiérrez et al. [29]. Ferrante et al. [30]
studied the Gompertz process in which exogenous factors are obtained as the sum of two exponential
functions and Albano and Giorno [31] did so considering logarithmic exogenous factor.

The lognormal SDP and the SGDP, in turn, have been extended to the multivariate case with delay,
by Frank [32], and to the bivariate case without delay by Gutiérrez et al. [33], and an application has
been devised to model the emissions of CO2 in Spain [34]. Other recent papers that have addressed
questions related to SGDP include Hu [35] and Zou et al. [36].

In the present study, we define and examine a new extension of the Gompertz and lognormal
diffusion processes, based on the homogeneous version of these processes, i.e., their power.
Thus, we obtain two families of homogeneous diffusion processes. Firstly, we show that Gompertzian
and lognormal diffusions are stable by power transformation. Them we define the proposed model
as the solution to a stochastic differential equation. From this, we obtain: the explicit expression of
the process, the Probability Transition Density Function (PTDF), the moments of different orders and,
in particular, the conditioned and unconditioned trends of the process; the ergodicity of the process and
its stationary distribution and the process parameters, estimated by maximum likelihood,with discrete
sampling, determining the asymptotic properties of the likelihood estimators and the approximated
confidence interval of the parameters.

In addition, we obtain the probabilistic and statistical characteristics of the lognormal process
power, as a particular case of the process being studied, when the deceleration factor tends toward
zero. Finally, the process and the methodology presented are applied to simulated data obtained from
the explicit expression of the solution to the characteristic state equation for the process.
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2. The Model and Its Basic Probabilistic Characteristics

2.1. An Overview of the Homogeneous Gompertz Stochastic Diffusion Process

Let {X(t); t ∈ [t0, T]; t0 ≥ 0} be a stochastic process taking values on (0, ∞), X(t) is a Gompertz
diffusion process with parameters α, β and σ and which is denoted by Gomp(α; β; σ) if X(t) satisfies
Ito’s Stochastic Differential Equation (SDE) as follows (see [16,18,20,37]):

dX(t) = [αX(t)− βX(t) log X(t)] dt + σX(t)dwt ; P(X(t0) = Xt0) = 1 (1)

In the literature, the constant α (∈ R) is the intrinsic growth rate; the β (∈ R) constant is the
deceleration factor, the σ > 0 constant is the diffusion coefficient, Xt0 > 0 is a fixed real number and wt

denotes the one-dimensional standard Wiener process.
The analytical expression of the unique solution to Equation (1) is given by (see, for

example, [21,37])

X(t) = exp
{

e−β(t−t0) log Xt0 +
α− σ2/2

β

(
1− e−β(t−t0)

)
+ σ

∫ t

t0

e−β(t−τ)dw(τ)

}
(2)

From this, we deduce that the process X(t) is distributed as the following one-dimensional
lognormal distribution:

Λ1

(
e−β(t−t0) log Xt0 +

(α− σ2/2)
β

(
1− e−β(t−t0)

)
;

σ2

2β

(
1− e−2β(t−t0)

))
It has been shown (see [21]), that for β > 0, X(t) is ergodic and that the stationary distribution

has a lognormal distribution. Hence, we have:

X(∞) ∼ Λ1

(
α− σ2/2

β
;

σ2

2β

)
(3)

2.2. The Proposed Model

Let {X(t); t ∈ [t0, T]; t0 ≥ 0} be a Gomp(α; β; σ). Then, the γ-power of the Stochastic Gompertz
Diffusion Process (γ-PSGDP) X(t) is defined by

xγ(t) = Xγ(t); γ ∈ R
∗ (4)

The process {xγ(t); t ∈ [t0, T]; t0 ≥ 0} is also a diffusion process with values in (0, ∞) and has the
drift and diffusion coefficients are shown below.

By applying Ito’s formula to the transform given in Equation (4), we have

dxγ(t) = γXγ−1(t) [αX(t)− βX(t) log X(t)] dt + γσXγ(t)dWt + γ(γ− 1)
σ2

2
Xγ(t)dt

= [αγXγ(t)− βγXγ(t) log X(t)] dt + γσXγ(t)dWt

Then, after some algebraic rearrangement, we obtain

dxγ(t) = [axγ(t)− βxγ(t) log xγ(t)] dt + cxγ(t)dw(t)

This shows that the process xγ(t) is also a Gomp(a; β; c) process, where:
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a = γα + γ(γ − 1) σ2

2 and c = γσ and the drift and diffusion coefficients are given
respectively by:

A1(x) =

(
γα +

γ(γ− 1))σ2

2

)
x− βx log(x)

A2(x) = γ2σ2x2

The model proposed in this paper belongs to the family of processes γ-PSGDP
{xγ(t); t ∈ [t0, T]; t0 ≥ 0} defined by the following SDE:

dxγ(t) = A1(xγ(t))dt +
√

A2(xγ(t))dw(t) ; P(xγ(t0) = xt0) = 1

2.3. Probabilistic Characteristics of the γ-PSGDP

Under the initial condition given, the unique solution of the SDE Equation (5) can be obtained
using the relations expressed by Equations (2) and (4), from which we have

xγ(t) = exp
{

e−β(t−t0) log xt0 +
γ(α− σ2/2)

β

(
1− e−β(t−t0)

)
+ γσ

∫ t

t0

e−β(t−τ)dw(τ)

}
(5)

We then deduce that xγ(t) is distributed as a one dimensional lognormal distribution
Λ1(μ(s, t, xt0), γ2σ2λ2(t0, t)), where μ(s, t, xt0) and λ2(t0, t) are given by

μ(s, t, xt0) = e−β(t−t0) log xt0 +
γ(α− σ2/2)

β

(
1− e−β(t−t0)

)
λ2(t0, t) =

1
2β

(
1− e−2β(t−t0)

)
From the homogeneity of the process, we know that xγ(t) | xγ(s) = xs has the lognormal

distribution Λ1(μ(s, t, xs), σ2λ2(s, t)), and then the PTDF of the process is

f (y, t | x, s) =
1
y

[
2πγ2σ2λ2(s, t)

]−1/2
exp

(
− [log(y)− μ(s, t, x)]2

2γ2σ2λ2(s, t)

)

The rth conditional moment of the process is given by

E
(

xr
γ(t) | xγ(s) = xs

)
= exp

{
rμ(s, t, xs) +

r2γ2σ2

2
λ2(s, t)

}
from which the Conditional Trend Function (CTF) gives

E (xγ(t) | xγ(s) = xs) = exp
{

e−β(t−s) log xs +
γ(α− σ2/2)

β

(
1− e−β(t−s)

)
+

γ2σ2

4β

(
1− e−2β(t−s)

)}
(6)

Assuming the initial condition P(xγ(t0) = xt0) = 1, the Trend Function (TF) of the process is

E (xγ(t)) = exp
{

e−β(t−t0) log(xt0) +
γ(α− σ2/2)

β

(
1− e−β(t−t0)

)
(7)

+
γ2σ2

4β

(
1− e−2β(t−t0)

)}
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From Equation (3), we deduce that for β > 0, the stationary distribution of the process is also a
lognormal distribution and thus we have:

xγ(∞) ∼ Λ1

(
γ(α− σ2/2)

β
;

γ2σ2

2β

)
(8)

Therefore, the asymptotic trend function of the process (for β > 0) is given by

E[xγ(∞)] = exp

(
γ
(
α− σ2/2

)
β

+
γ2σ2

4β

)

The limit of the trend function in Equation (7) (when t tends to ∞) coincides with this asymptotic
trend function.

3. Statistical Inference on the Model

3.1. Likelihood Parameter Estimation

In the present study, with discrete sampling, we estimate the parameters α, σ2 and β of the
model by applying Maximum Likelihood (ML) methodology, following the same scheme as in
Gutiérrez et al. [21]. To do so, we consider a discrete sampling of the process xγ(t1) = x1, xγ(t2) =

x2, . . . , xγ(tn) = xn for times t1, t2, . . . , tn and assume, moreover, that the length of the time intervals
[ti−1, ti] (i = 2, ..., n) is equal to constant h i.e., ti − ti−1 = h and an initial distribution P [xγ(t1) = x1] =

1. Then the associated likelihood function can be obtained by the following expression:

L(x1, . . . , xn, α, β, σ2) =
n

∏
j=2

f
(

xj, tj | xj−1, tj−1
)

The variable change can be used to work with a known probability function and to calculate
the maximum probability estimators in a simpler way, considering the following transformation:
v1 = x1,vi,β = λ−1

β (log(xi) − e−βh log(xi−1)), for i = 2, . . . , n and denoting Vβ = (v2,β, . . . , vn,β)
′.

Thus, in terms of Vβ, the likelihood function is expressed as follows:

LVβ
(aγ, β, c2

γ) =
[
2πc2

γλ2
β

]−(n−1)/2
exp

(
− 1

2c2
γ
(Vβ − νβaγU)′(Vβ − νβaγU)

)

where aγ = γ
(

α− σ2

2

)
, cγ = γσ, νβ = λ−1

β (1− e−βh)/β, λ2
β = 1

2β (1− e−2hβ) and U = (1, . . . , 1)′ is a
vector of the order (n− 1).

By differentiating the log-likelihood function with respect to aγ and c2
γ, we obtain the

following equations:

U′Vβ = âγνβU′U

(n− 1)ĉ2
γ = (Vβ − âγνβU)′(Vβ − âγνβU)

The third likelihood equation is obtained by differentiating the log-likelihood function with
respect to β and by using the effect that Vβ = λ−1

β (Jx − e−βhIx) with Jx = (log(x2), . . . , log(xn))′ and
Ix = (log(x1), . . . , log(xn−1))

′. After various operations, we have

I′x
(
Vβ − âγνβU

)
= 0
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Taking into account that U′U = n− 1 and after algebraic rearrangement (not shown), the ML
estimators of aγ and c2

γ are

(n− 1)âγ = ν−1
β U′Vfi (9)

(n− 1)ĉ2
γ = V′βHUVβ (10)

The ML estimator of β is given by

β̂ =
1
h

log
(

I′xHUIx

I′xHUJx

)
(11)

where HU = In−1 − 1
n−1 UU′is idempotent and a symmetric matrix and In−1 denotes the

identity matrix.

3.2. Asymptotic Properties of the Parameter Drift Estimators

Let X be a random variable with a distribution function given by Equation (8); then log(X) is

distributed as a normal distribution N1

(
γ(α−σ2/2)

β ; γ2σ2

2β

)
. If β > 0, the process under consideration

has ergodic properties, and for θ∗ = (aγ, β) ∈ (aγ,1, aγ,2)× (β1, β2), with β1 > 0, we have

Lθ

(√
T(θ̂ − θ)

)
→ N2

(
0, I−1(θ)

)
; when T → ∞ (12)

I(θ) is the information matrix and is given by I(θ) = Eθ

(
Ȧ1(X)Ȧ∗1(X)

A2(X)

)
where Ȧ1(x) is the following vector: Ȧ1(x) =

(
∂A1(x)

∂α
;

∂A1(x)
∂β

)∗
Then, we have

I(θ) =
1

γ2σ2Eθ

⎛⎝ γ2 −γ log(X)

−γ log(X) log2(X)

⎞⎠ =
1
σ2

⎛⎜⎝ 1 − α−σ2/2
β

− α−σ2/2
β

σ2

2β + (α−σ2/2)2

β2

⎞⎟⎠
and the inverse is

I
−1(θ) =

⎛⎝ σ2 + 2
β (α− σ2

2 )2 2α− σ2

2α− σ2 2β

⎞⎠ (13)

An approximated, asymptotic confidence region of θ and an approximated, asymptotic marginal
confidence interval of α and β can be obtained from Equations (12) and (13). The above-mentioned
region is given, for a large T, by

P
[

T
(
θ − θ̂

)∗
Î(θ)

(
θ − θ̂

)
≤ χ2

2,ξ

]
= 1− ξ

obtaining Î(θ) by replacing the parameters by their estimators and where χ2
2,ξ represents the upper

100ξ per cent points of the chi squared distribution with two degrees of freedom.
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The ξ% confidence (marginal) intervals for parameters α and β are given, for a large T, by

P

⎛⎝α ∈

⎡⎣α̂± 1
γ

λξ

(
β̂σ̂2 + 2(α̂− σ̂2/2)2

β̂T

)1/2
⎤⎦⎞⎠ = 1− ξ (14)

P
(

β ∈
[

β̂± λξ(2β̂/T)1/2
])

= 1− ξ (15)

where λξ represents the 100ξ per cent points of the normal standard distribution.

Note that in Equations (14) and (15) we have assumed that σ is known with a value σ = σ̂.

4. Powers of the Lognormal Diffusion Process

The Stochastic Lognormal Diffusion Process (SLDP) is known to be a particular case of the
Gompertz diffusion process when the deceleration factor β = 0 (see, for example [21]). Then, the power
of the SLDP can be obtained from that of the SGDP by tending β to zero.

Then, if the SLDP Y(t) is given by the following SDE:

dY(t) = αY(t)dt + σY(t)dwt

The resulting γ-PSLDP (yγ(t) = Yγ(t)) is governed by the following SDE:

dyγ(t) =
(

γα +
γ(γ− 1))σ2

2

)
yγdt + γσyγdw(t) (16)

The same approach can be used to derive all the probabilistic properties and statistics for the
γ-PSLDP process, taking β = 0 on the perspective equations established for the properties of γ-PSGDP
in the previous sections, except as regards the symptotic properties of the drift parameter estimators
(we already know that there is no asymptotic distribution in the case of the SLDP). For the latter case,
we can obtain the exact distributions of the estimators, together with the confidence intervals for the
process parameters (see [21]).

4.1. Estimated Trend Functions

In the same way as in Gutiérrez et al. [21], by Zehna’s theorem [38], the Estimated Conditional
Trend (ECT) and the Estimated Trend (ET) functions can be obtained from Equations (6) and (7) by
replacing the parameters by their estimators. Furthermore, we can obtain an approximated and
asymptotic confidence interval of the ETF and ECTF by means of the approximated and asymptotic
confidence interval of the parameters given by Equations (14) and (15).

5. Simulation and Application

The trajectory of the model can be obtained by simulating the exact solution of SDE Equation (4)
obtained in Equation (5). From this explicit solution, the simulated trajectories of the process
are obtained from the following discretising time interval [t0, T]: ti = t0 + ih, for i = 1, . . . , N
(N is an integer and h is the discretization step), taking into account that the random variable
in the latter expression σ(wt) − w(t1) is distributed as a one-dimensional normal distribution
N (0, σ2(t− t1)) ([39]).

Table 1 shows the simulated data and the ETF for different powers, considering h = 1, N = 30,
and the initial value x1 = 0.99. We estimate the parameters by maximum likelihood, reserving the
values observed for the time t = 30 for comparison with the corresponding prediction by the model.
The results are shown in Table 2.
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Table 1. Simulated data and estimated trend function.

Time x1(t) ETF-x1 x1.5(t) ETF-x1.5 x2(t) ETF-x2

1 0.99 0.99 0.99 0.99 0.99 0.99
2 2.1831 2.1832 3.2364 3.2369 4.7957 4.7960
3 3.5272 3.5271 6.6380 6.6385 12.4861 12.4876
4 4.7180 4.7181 10.2628 10.2613 22.3149 22.3122
5 5.6288 5.6286 13.3648 13.3620 31.7343 31.7261
6 6.2651 6.2645 15.6878 15.6818 39.2796 39.2767
7 6.6848 6.6846 17.2845 17.2802 44.7154 44.7063
8 6.9539 6.9531 18.3316 18.3276 48.3607 48.3586
9 7.1220 7.1211 18.9998 18.9933 50.7075 50.7176
10 7.2251 7.2250 19.4136 19.4087 52.1922 52.2041
11 7.2894 7.2887 19.6703 19.6649 53.1189 53.1268
12 7.3285 7.3277 19.8262 19.8219 53.7088 53.6943
13 7.3520 7.3514 19.9247 19.9177 54.0539 54.0414
14 7.3663 7.3658 19.9776 19.9761 54.2598 54.2531
15 7.3742 7.3746 20.0117 20.0115 54.3836 54.3818
16 7.3792 7.3799 20.0323 20.0330 54.4489 54.4601
17 7.3820 7.3831 20.0497 20.0461 54.4903 54.5076
18 7.3841 7.3851 20.0598 20.0540 54.5492 54.5364
19 7.3849 7.3863 20.0641 20.0588 54.5629 54.5539
20 7.3862 7.3870 20.0648 20.0617 54.5623 54.5645
21 7.3875 7.3874 20.0633 20.0635 54.5783 54.5710
22 7.3877 7.3877 20.0654 20.0645 54.5922 54.5749
23 7.3885 7.3879 20.0662 20.0652 54.5997 54.5773
24 7.3882 7.3880 20.0587 20.0656 54.6148 54.5787
25 7.3881 7.3880 20.0626 20.0658 54.6020 54.5796
26 7.3883 7.3881 20.0638 20.0660 54.5914 54.5801
27 7.3890 7.3881 20.0599 20.0661 54.6196 54.5804
28 7.3878 7.3881 20.0549 20.0661 54.6297 54.5806
29 7.3873 7.3881 20.0507 20.0661 54.6110 54.5807

Prediction

30 7.3872 7.3881 20.0473 20.0662 54.6221 54.5808

Table 2. Starting values used in the simulation and estimation of the parameters.

σ α β

Starting Values 0.0001 1 0.5

γ σ̂ α̂ β̂

1 0.0000852 0.999952 0.500008
1.5 0.0001498 1.00043 0.500377
2 0.0001606 1.00003 0.500052

Figure 1 shows the fit and the prediction obtained for xγ(t) using the ETF (γ = 1 γ = 1.5 and
γ = 2) (see Table 1).

Figure 2 shows 10 simulated trajectories for xγ(t) (γ = 1 γ = 1.5 and γ = 2), taking as the values
for α, β and σ those obtained by maximum likelihood estimation (see Table 2). For each trajectory,
2901 data are generated by considering h = 0.01, and initial value x1 = 0.99.
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Figure 1. Fit and prediction based on ETF.

Figure 2. Fit and prediction based on ETF.
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Figure 3 shows a trajectory whose values are the average of those obtained in the simulation of
100 trajectories, with the ETF. The values used in the simulation and the results obtained by estimating
the parameters are shown in Table 3.

Table 3. Starting values used in the simulation and estimation of the parameters.

σ α β

Starting values 0.0001 1 0.5

γ σ̂ α̂ β̂

1.5 0.0000106801 1.00006 0.50003

Figure 3. Fit and prediction based on ETF.

The variation of the mean and standard error of the estimators is studied, taking into account
how N and h change. The results are shown in Table 4.

20 process paths are simulated with N observations each. The parameters are estimated using the
equations (ref Eq11), (ref Eq12) and (ref Eq13), obtaining a vector of 20 components corresponding to
the different estimators. For these, the sample mean is calculated and the Standard Error (SE).

The next step is to study the evolution of the mean and the standard error of the estimators with
respect to the variation in the number N and in h. The results of this study are shown in Table 4.

The true parameter values considered in this simulation are α = 1, β = 0.5, σ = 0.0001 and the
start point is x1 = 0.99, and t1 = 0 and γ = 1.5.

The calculations have been made using the Mathematica program, in which a program has
been implemented.

Table 4. Mean and standard error of the estimators.

h N Mean (σ̂) SE (σ̂) Mean (α̂) SE (α̂) Mean (β̂) SE (β̂)

0.05 100 0.025108 0.114736 1.000132 0.000503 0.500144 0.000439
0.05 500 0.000112 0.000005 0.999637 0.000839 0.499770 0.000809
0.05 1000 0.000116 0.000005 1.000181 0.000953 0.500090 0.000915
0.1 100 0.000106 0.000008 1.000027 0.000350 0.500007 0.000262
0.1 500 0.000123 0.000010 1.000020 0.000654 0.500044 0.000647
0.1 1000 0.000141 0.000016 0.999081 0.000736 0.499156 0.000672
0.5 100 0.000143 0.000030 1.000046 0.000253 0.500002 0.000274
0.5 500 0.000329 0.000069 0.999171 0.000616 0.499202 0.000570
0.5 1000 0.000491 0.000141 0.998581 0.000730 0.498779 0.000584
1 100 0.000230 0.000074 0.999610 0.000381 0.499638 0.000359
1 500 0.000584 0.000217 0.999034 0.000597 0.499092 0.000541
1 1000 0.000908 0.000318 0.997592 0.001211 0.498045 0.000923
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6. Conclusions

This article presents a study of the Gamma Power Stochastic Gompertz Diffusion Process
(γ-PSGDP), including all its probabilistic properties and the corresponding statistical inference. As a
particular case in the limit comparison test, we also study the Gamma Power Stochastic Lognormal
Diffusion Process (γ-PSLDP).

A simulation study was conducted, analysing different process trajectories.
In the future, it will be possible to apply these models to fit real data and to obtain goodness of

fit results between the processes and the data. We will also study the possibility of defining all these
processes in their non-homogeneous form, by introducing exogenous factors, and considering the use
of numerical methods to obtain the estimates.
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Abstract: The objective of our paper is to study asymptotic properties of the class of third order neutral
differential equations with advanced and delayed arguments. Our results supplement and improve some
known results obtained in the literature. An illustrative example is provided.
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1. Introduction

Equations with neutral terms are of particular significance, as they arise in many applications
including systems of control, electrodynamics, mixing liquids, neutron transportation, networks and
population models; see [1].

Asymptotic properties of solutions of second/third order differential equations have been subject
to intensive research in the literature. This problem for differential equations with respective delays has
received a great deal of attention in the last years; see for examples, [2–21].

This paper deals with the oscillation and asymptotic behavior of solutions of the class of third-order,
nonlinear, mixed-type, neutral differential equations(

r (t)
(
z′′ (t)

)α
)′

+ q1 (t) f1 (x (σ1 (t))) + q2 (t) f2 (x (σ2 (t))) = 0, (1)

where
z (t) = x (t) + p1 (t) x (τ1 (t)) + p2 (t) x (τ2 (t))

and we will assume the following assumptions hold:

(M1) r ∈ C ([t0, ∞) , (0, ∞)) ,
∫ ∞

t0
r−1/α (s)ds = ∞ and α is a ratio of odd positive integers;

(M2) pi ∈ C ([t0, ∞) , [0, ci]) where ci are constants for i = 1, 2 and c1 + c2 < 1;
(M3) τi, σi ∈ C ([t0, ∞) ,R) , τ1 (t) < t, σ1 (t) < t, τ2 (t) > t, σ2 (t) > t, σi (τi (t)) = τi (σi (t)) and

limt→∞ τi (t) = limt→∞ σi (t) = ∞ for i = 1, 2;
(M4) qi ∈ C ([t0, ∞) , (0, ∞)) for i = 1, 2;
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(M5) f1, f2 ∈ C (R,R) , f1 (x) /xβ ≥ k1 > 0 and f2 (x) /xγ ≥ k2 for x �= 0 where β and γ are ratios of
odd positive integers.

By a solution of Equation (1), we mean a non-trivial real function x ∈ C ([tx, ∞)), tx ≥ t0, with
z(t), z′ (t) and r1(t)(z′′(t))α being continuously differentiable for all t ∈ [tx, ∞), and satisfying (1) on
[tx, ∞). A solution of Equation (1) is called oscillatory if it has arbitrary large zeros; otherwise it is called
nonoscillatory. Equation (1) is said to be oscillatory if all its solutions are oscillatory.

Han et al. in [22] studied the asymptotic properties of the solutions of equation(
r (t)

(
z′′ (t)

))′
+ q1 (t) x (σ1 (t)) + q2 (t) x (σ2 (t)) = 0, (2)

where z (t) = x (t) + p1 (t) x (τ1 (t)) + p2 (t) x (τ2 (t)).
Baculikova and Dzurina [5] studied the oscillation of the third-order equation(

r (t)
(
x′ (t)

)α
)′′

+ q (t) f (x (τ (t))) + p (t) h (x (σ (t))) = 0,

where τ (t) ≤ t and σ (t) ≥ t.
Thandapani and Rama [23] established some oscillation theorems for equation(

r (t)
(
z′′ (t)

))′
+ q1 (t) xα (σ1 (t)) + q2 (t) xβ (σ2 (t)) = 0,

where z (t) = x (t) + p1 (t) x (τ1 (t)) + p2 (t) x (τ2 (t)), and the authors used the Recati technique.
The aim of this paper is to discuss the asymptotic behavior of solutions of a class of third-order,

nonlinear, mixed-type, neutral differential equations. We established sufficient conditions to ensure that
the solution of Equation (1) is oscillatory or tended to zero. The results of this study basically generalize
and improve the previous results. An illustrative example is provided.

2. Auxiliary Lemmas

In order to prove our results, we shall need the next auxiliary lemmas.

Lemma 1. Assume that f (y) = Uy− Vy
η+1

η , where U and V are constants, V > 0 and η is a quotient of odd

positive integers. Then f imposes its maximum value on R at y∗ =
(

Uη
V(η+1)

)η
and

max
y∈R

f = f (y∗) =
ηη

(η + 1)η+1 Uη+1V−η .

Lemma 2 ([24]). Assume that A ≥ 0 and B ≥ 0. If δ > 1, then

(A + B)δ ≤ 2δ−1
(

Aδ + Bδ
)

Moreover, if 0 < δ < 1, then (A + B)δ ≤
(

Aδ + Bδ
)

.

Lemma 3 ([17]). If the function y satisfies y(i) > 0, i = 0, 1, ..., n, and y(n+1) < 0, then

y (t)
tn/n!

≥ y′ (t)
tn−1/ (n− 1)!

.
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Lemma 4 ([23]). Assume that u (t) > 0, u′ (t) > 0, u′′ (t) > 0 and u′′′ (t) < 0 on (T, ∞). Then,

u (t)
u′ (t)

≥ t− T
2

≥ μt
2

for t ≥ T and some μ ∈ (0, 1).

Lemma 5. Let x be a positive solution of Equation (1). Then z has only one of the following two properties
eventually:
(i) z (t) > 0, z′ (t) > 0 and z′′ (t) > 0;
(ii) z (t) > 0, z′ (t) < 0 and z′′ (t) > 0.

Proof. The proof is similar to that of Lemma 2.1 of [10] and hence the details are omitted.

Lemma 6. Let x be a positive solution of Equation (1), and z has the property (ii). If β = γ and

∫ ∞

t0

∫ ∞

v

(
1

r(u)

∫ ∞

u
(k1q1 (s) + k2q2 (s)))ds

)1/α

dudv = ∞, (3)

then the solution x of Equation (1) converges to zero as t → ∞.

Proof. Let x be a positive solution of Equation (1). Since z satisfies the property (ii), we get limt→∞ z(t) =
δ ≥ 0. Next, we will prove that δ = 0. Suppose that δ > 0, then we have for all ε > 0 and t enough large
δ < z(t) < δ + ε. By choosing ε < 1−c1−c2

c1+c2
δ, we obtain

x(t) = z(t)− p1 (t) x (τ1 (t))− p2 (t) x (τ2 (t))

> δ− (c1 + c2) z(τ1(t))

> δ− (c1 + c2) (δ + ε)

> L(δ + ε) > Lz(t),

where L = δ−(c1+c2)(δ+ε)
δ+ε > 0. Thus, from (1) and (M5), we have

0 ≥
(

r (t)
(
z′′ (t)

)α
)′

+ k1q1 (t) xβ (σ1 (t)) + k2q2 (t) xβ (σ2 (t))

≥
(

r (t)
(
z′′ (t)

)α
)′

+ Lβ (k1q1 (t) + k2q2 (t)) zβ (σ2 (t)) ,

and so, (
r (t)

(
z′′ (t)

)α
)′
≤ −Lβδβ (k1q1 (t) + k2q2 (t)) .

By integrating this inequality two times from t to ∞, we get

−z′(t) > Lβ/αδβ/α
∫ ∞

t

(
1

r(u)

∫ ∞

u
(k1q1 (s) + k2q2 (s)))ds

)1/α

du.

Integrating the last inequality from t1 to ∞, we have

z(t1) > Lβ/αδβ/α
∫ ∞

t1

∫ ∞

v

(
1

r(u)

∫ ∞

u
(k1q1 (s) + k2q2 (s)))ds

)1/α

dudv.
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Thus, we are led to a contradiction with (3). Then, limt→∞ z(t) = 0; moreover, the fact that x (t) ≤ z (t)
implies limt→∞ x(t) = 0.

3. Main Results

In this section, we will establish new oscillation criteria for solutions of the Equation (1). For the sake
of convenience, we insert the next notation:

Ru (t) :=
∫ t

u

1
r1/α (s)

ds,

R∗u (t) := min
t≥t0

{Ru (t) , Ru (τ1 (t))}

and
q∗i (t) := min

t≥t0
{qi (t) , qi (τ1 (t)) , qi (τ2 (t))} , i = 1, 2.

Theorem 1. Assume that (M1)–(M5) and (3) hold. Let β = γ ≥ α, σ1 (t) ≤ τ1 (t) and σ′1 (t) > 0. If there exists a
positive function ρ ∈ C1 ([t0, ∞)) such that

lim sup
t→∞

∫ t

t0

(
Θ1 (s)−

(
1 + cβ

1 +
cβ

2
2β−1

)
1

(α + 1)α+1
(ρ′+ (s))α+1 r (σ1 (s))(

ρ (s) σ′1 (s)
)α

)
ds = ∞, (4)

where ρ′+ (s) = max {ρ′ (s) , 0} and

Θ1 (t) =
μαυβ−α

22β+α−2 ρ (t) σ
β
1 (t) (k1q∗1 (t) + k2q∗2 (t)) ,

then every solution of equation (1) either oscillates or tends to zero as t → ∞.

Proof. Let x be non-oscillatory solution of Equation (1). Without loss of generality, we assume that
x (t) > 0; then there exists a t1 ≥ t0 such that x (t) > 0, x (τi (t)) > 0 and x (σi (t)) > 0 for t ≥ t1and
i = 1, 2. From Lemma 5, we have that z has the property (i) or the property (ii). From Lemma 6, if z (t) has
the property (ii), then we obtain limt→∞ x(t) = 0. Next, let z have the property (i). Using (1) and (M5),
we obtain (

r (t)
(
z′′ (t)

)α
)′

+ k1q1 (t) xβ (σ1 (t)) + k2q2 (t) xβ (σ2 (t)) ≤ 0.

Thus, we get

0 ≥
(

r (t)
(
z′′ (t)

)α
)′

+ k1q1 (t) xβ (σ1 (t)) + k2q2 (t) xβ (σ2 (t))

+cβ
1 [
(

r (τ1 (t))
(
z′′ (τ1 (t))

)α
)′

+ k1q1 (τ1 (t)) xβ (σ1 (τ1 (t)))

+ k2q2 (τ1 (t)) xβ (σ2 (τ1 (t)))
]
+

cβ
2

2β−1 [
(

r (τ2 (t))
(
z′′ (τ2 (t))

)α
)′

+ k1q1 (τ2 (t)) xβ (σ1 (τ2 (t))) + k2q2 (τ2 (t)) xβ (σ2 (τ2 (t)))
]

.
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That is

(
r (t)

(
z′′ (t)

)α
)′

+ cβ
1

(
r (τ1 (t))

(
z′′ (τ1 (t))

)α
)′

+
cβ

2
2β−1

(
r (τ2 (t))

(
z′′ (τ2 (t))

)α
)′

+ k1q∗1 (t)

(
xβ (σ1 (t)) + cβ

1 xβ (σ1 (τ1 (t))) +
cβ

2
2β−1 xβ (σ1 (τ2 (t)))

)

+ k2q∗2 (t)

(
xβ (σ2 (t)) + cβ

1 xβ (σ2 (τ1 (t))) +
cβ

2
2β−1 xβ (σ2 (τ2 (t)))

)
≤ 0. (5)

From Lemma 2, we obtain

zβ (t) ≤ (x (t) + c1 (t) x (τ1 (t)) + c2 (t) x (τ2 (t)))
β

≤ 4β−1

(
xβ (t) + cβ

1 xβ (τ1 (t)) +
cβ

2
2β−1 xβ (τ2 (t))

)
, (6)

which with (5) gives

(
r (t)

(
z′′ (t)

)α
)′

+ cβ
1

(
r (τ1 (t))

(
z′′ (τ1 (t))

)α
)′

+
cβ

2
2β−1

(
r (τ2 (t))

(
z′′ (τ2 (t))

)α
)′

+
k1

4β−1 q∗1 (t) zβ (σ1 (t)) +
k2

4β−1 q∗2 (t) zβ (σ2 (t)) ≤ 0.

This implies that

(
r (t)

(
z′′ (t)

)α
)′

+ cβ
1

(
r (τ1 (t))

(
z′′ (τ1 (t))

)α
)′

+
cβ

2
2β−1

(
r (τ2 (t))

(
z′′ (τ2 (t))

)α
)′

+
1

4β−1 (k1q∗1 (t) + k2q∗2 (t)) zβ (σ1 (t)) ≤ 0. (7)

Now, we define

ω1 (t) = ρ (t)
r (t) (z′′ (t))α

(z′ (σ1 (t)))
α .

Then ω1 (t) > 0. By differentiating, we get

ω′1 (t) =
ρ′ (t)
ρ (t)

ω1 (t) + ρ (t)

(
r (t) (z′′ (t))α)′
(z′ (σ1 (t)))

α − αρ (t)
r (t) (z′′ (t))α

(z′ (σ1 (t)))
α+1 z′′ (σ1 (t)) σ′1 (t) .

Since
(
r (t) (z′′ (t))α)′ < 0 and σ1 (t) < t, we obtain

r (t)
(
z′′ (t)

)α ≤ r (σ1 (t))
(
z′′ (σ1 (t))

)α ,

and hence

ω′1 (t) ≤
ρ′+ (t)
ρ (t)

ω1 (t)− α
σ′1 (t)

ρ1/α (t) r1/α (σ1 (t))
ω

α+1
α

1 (t) + ρ (t)

(
r (t) (z′′ (t))α)′
(z′ (σ1 (t)))

α .
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Using Lemma 1 with

η = α, U =
ρ′+ (t)
ρ (t)

, V = α
σ′1 (t)

ρ1/α (t) r1/α (σ1 (t))
and y = ω1,

we obtain

ω′1 (t) ≤ ρ (t)

(
r (t) (z′′ (t))α)′
(z′ (σ1 (t)))

α +
1

(α + 1)α+1
(ρ′+ (t))α+1 r (σ1 (t))(

ρ (t) σ′1 (t)
)α . (8)

Further, we define the function

ω2 (t) = ρ (t)
r (τ1 (t)) (z′′ (τ1 (t)))

α

(z′ (σ1 (t)))
α .

Then ω2 (t) > 0. By differentiating ω2 and using σ1 (t) ≤ τ1 (t), we find

ω′2 (t) ≤
ρ′ (t)
ρ (t)

ω2 (t) + ρ (t)

(
r (τ1 (t)) (z′′ (τ1 (t)))

α)′
(z′ (σ1 (t)))

α − α
σ′1 (t)

ρ1/α (t) r1/α (σ1 (t))
ω

α+1
α

2 (t) .

Using Lemma 1, we obtain

ω′2 (t) ≤ ρ (t)

(
r (τ1 (t)) (z′′ (τ1 (t)))

α)′
(z′ (σ1 (t)))

α +
1

(α + 1)α+1
(ρ′+ (t))α+1 r (σ1 (t))(

ρ (t) σ′1 (t)
)α . (9)

Next, we define another function

ω3 (t) = ρ (t)
r (τ2 (t)) (z′′ (τ2 (t)))

α

(z′ (σ1 (t)))
α .

Thus ω3 (t) > 0. By differentiating, and similar to (9) we have

ω′3 (t) ≤ ρ (t)

(
r (τ2 (t)) (z′′ (τ2 (t)))

α)′
(z′ (σ1 (t)))

α +
1

(α + 1)α+1
(ρ′+ (t))α+1 r (σ1 (t))(

ρ (t) σ′1 (t)
)α . (10)

From (8)–(10), we get

ω′1 (t) + cβ
1 ω′2 (t) +

cβ
2

2β−1 ω′3 (t) ≤
ρ (t)

(z′ (σ1 (t)))
α

((
r (t)

(
z′′ (t)

)α
)′

+

+cβ
1

(
r (τ1 (t))

(
z′′ (τ1 (t))

)α
)′

+
cβ

2
2β−1

(
r (τ2 (t))

(
z′′ (τ2 (t))

)α
)′)

+

(
1 + cβ

1 +
cβ

2
2β−1

)
1

(α + 1)α+1
(ρ′+ (t))α+1 r (σ1 (t))(

ρ (t) σ′1 (t)
)α ,

which with (7) gives

ω′1 (t) + cβ
1 ω′2 (t) +

cβ
2

2β−1 ω′3 (t) ≤ −
ρ (t)
4β−1 (k1q∗1 (t) + k2q∗2 (t))

zβ (σ1 (t))
(z′ (σ1 (t)))

α

+

(
1 + cβ

1 +
cβ

2
2β−1

)
1

(α + 1)α+1
(ρ′+ (t))α+1 r (σ1 (t))(

ρ (t) σ′1 (t)
)α . (11)
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Using Lemma 4, we have, for some μ ∈ (0, 1) ,

z (σ1 (t))
z′ (σ1 (t))

≥ μ

2
σ1 (t) .

From property (i), we get

z (t) = z (t1) +
∫ t

t1

z′ (s) ds

≥ (t− t1) z′ (t1) ≥
υ

2
t, (12)

for some υ > 0 and for t enough large. Therefore, for some μ ∈ (0, 1) and υ > 0, we find

zβ (σ1 (t))
(z′ (σ1 (t)))

α ≥
μαυβ−α

2α
σ

β
1 (t) .

Combining the last inequality with (11), we obtain

ω′1 (t) + cβ
1 ω′2 (t) +

cβ
2

2β−1 ω′3 (t) ≤ −Θ (t)

+

(
1 + cβ

1 +
cβ

2
2β−1

)
1

(α + 1)α+1
(ρ′+ (t))α+1 r (σ1 (t))(

ρ (t) σ′1 (t)
)α .

Integrating the above inequality from t1 to t , we have

∫ t

t1

(
Θ (s)−

(
1 + cβ

1 +
cβ

2
2β−1

)
1

(α + 1)α+1
(ρ′+ (s))α+1 r (σ1 (s))(

ρ (s) σ′1 (s)
)α

)
ds

≤ ω1 (t1) + cβ
1 ω2 (t1) +

cβ
2

2β−1 ω3 (t1) .

Taking the superior limit as t → ∞, we get a contradiction with (4). The proof is complete.

Remark 1. In the Theorem 1, if σ1 (t) ≥ τ1 (t) and τ′1 (t) > 0, then the assumption (4) is replaced by

lim sup
t→∞

∫ t

t0

(
Θ1 (s)−

(
1 + cβ

1 +
cβ

2
2β−1

)
1

(α + 1)α+1
(ρ′+ (s))α+1 r (τ1 (s))(

ρ (s) τ′1 (s)
)α

)
ds = ∞.

Theorem 2. Assume that (M1)–(M5) and (3) hold. Let β = γ ≥ α and r′ (t) > 0. If there exists a positive function
ρ ∈ C1 ([t0, ∞)) such that

lim sup
t→∞

∫ t

t0

⎛⎜⎝Θ2 (s)−
(

1 + cβ
1 +

cβ
2

2β−1

)
1

(α + 1)α+1
(ρ′+ (t))α+1(
ρ (t) R∗t0

(t)
)α

⎞⎟⎠ ds = ∞, (13)

where

Θ2 (t) =
υβ−α

23β−α−2t2α
ρ (t) σ

β+α
1 (t) (k1q∗1 (t) + k2q∗2 (t)) ,
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then every solution of Equation (1) either oscillates or tends to zero as t → ∞.

Proof. Proceeding as in the proof of Theorem 1, we have that (7) holds. Since
(
r (t) (z′′ (t))α)′ < 0,

we obtain

z′ (t) = z′ (t1) +
∫ t

t1

[
r (s) (z′′ (s))α]1/α

r1/α (s)
ds

≥
[
r (t)

(
z′′ (t)

)α
]1/α

Rt1 (t) . (14)

Now, we define

ω1 (t) = ρ (t)
r (t) (z′′ (t))α

zα (t)
.

Then ω1 (t) > 0. By differentiating ω1 and using (14), we get

ω′1 (t) ≤
ρ′+ (t)
ρ (t)

ω1 (t)− α
Rt1 (t)

ρ1/α (t)
ω

α+1
α

1 (t) + ρ (t)

(
r (t) (z′′ (t))α)′

zα (t)
.

Using Lemma 1 with η = α, U =
ρ′+(t)
ρ(t) , V = α

Rt1 (t)
ρ1/α(t)

and y = ω1, we obtain

ω′1 (t) ≤ ρ (t)

(
r (t) (z′′ (t))α)′

zα (t)
+

1

(α + 1)α+1
(ρ′+ (t))α+1

(ρ (t) Rt1 (t))
α . (15)

Next, we define a function

ω2 (t) = ρ (t)
r (τ1 (t)) (z′′ (τ1 (t)))

α

zα (t)
. (16)

Then ω2 (t) > 0. Since z′′ (t) > 0 and τ1 (t) < t, we obtain z′ (t) > z′ (τ1 (t)). Hence, from (14),
we find

z′ (t) >
[
r (τ1 (t))

(
z′′ (τ1 (t))

)α
]1/α

Rt1 (τ1 (t)) . (17)

for t ≥ t2 ≥ t1. By differentiating (16) and using (17), we get

ω′2 (t) ≤
ρ′ (t)
ρ (t)

ω2 (t)− α
Rt1 (τ1 (t))

ρ1/α (t)
ω

α+1
α

2 (t) + ρ (t)

(
r (τ1 (t)) (z′′ (τ1 (t)))

α)′
zα (t)

.

By using Lemma 1, we obtain

ω′2 (t) ≤ ρ (t)

(
r (τ1 (t)) (z′′ (τ1 (t)))

α)′
zα (t)

+
1

(α + 1)α+1
(ρ′+ (t))α+1

(ρ (t) Rt1 (τ1 (t)))
α . (18)

Additionally, we define another function

ω3 (t) = ρ (t)
r (τ2 (t)) (z′′ (τ2 (t)))

α

zα (t)
. (19)
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Thus ω3 (t) > 0. Using
(
r (t) (z′′ (t))α)′ < 0, τ2 (t) > t and (14), we note that

z′ (t) >
[
r (τ2 (t))

(
z′′ (τ2 (t))

)α
]1/α

Rt1 (t) . (20)

By differentiating (19) and using (20) and Lemma 1, we get

ω′3 (t) ≤ ρ (t)

(
r (τ2 (t)) (z′′ (τ2 (t)))

α)′
zα (t)

+
1

(α + 1)α+1
(ρ′+ (t))α+1

(ρ (t) Rt1 (t))
α . (21)

From (7), (15), (18) and (21), we find

ω′1 (t) + cβ
1 ω′2 (t) +

cβ
2

2β−1 ω′3 (t) ≤ −
ρ (t)
4β−1 (k1q∗1 (t) + k2q∗2 (t))

zβ (σ1 (t))
zα (t)

+

(
1 + cβ

1 +
cβ

2
2β−1

)
1

(α + 1)α+1
(ρ′+ (t))α+1(
ρ (t) R∗t1

(t)
)α . (22)

Using (12) and Lemma 6, we have

zβ (σ1 (t))
zα (t)

≥ υβ−α

2β−αt2α
σ

β+α
1 (t) .

As in the proof of Theorem 1, we are led to a contradiction with (13). This completes the proof.

In the following Theorems, we are concerned with the oscillation of solutions of Equation (1) when
α = 1 and r (t) = 1.

Theorem 3. Assume that (M1)-(M5) and (3) hold. Let 0 < β < 1 < γ and τ−1
i exists for i = 1, 2. If the inequalities

y′′′ (t) +
(

k1

λ1

)λ1
(

k2

4γ−1λ2

)λ2
(
q∗1 (t)

)λ1 (q∗2 (t))
λ2(

1 + cβ
1 + cβ

2

) y
(

τ−1
i

(
σj (t)

))
≤ 0, (23)

where i, j = 1, 2, i �= j, λ1 = γ−1
γ−β and λ2 = 1−β

γ−β , have oscillatory solutions, then every solution of Equation (1)
is oscillatory.

Proof. Let x non-oscillatory solution of Equation (1). Without loss of generality we assume that x > 0;
then, there exists a t1 ≥ t0 such that x (t) > 0, x (τi (t)) > 0 and x (σi (t)) > 0 for t ≥ t1and i = 1, 2.
By Lemma 6, we get that z (t) > 0, z′′ (t) > 0 and z′′′ (t) < 0. Now, we define a function

y (t) = z (t) + cβ
1 z (τ1 (t)) + cβ

2 z (τ2 (t)) . (24)

Thus y (t) > 0 and y′′ (t) > 0. From (1) and (M5), we obtain

z′′′ (t) ≤ −k1q1 (t) xβ (σ1 (t))− k2q2 (t) xγ (σ2 (t)) . (25)
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Combining (24) with (25), we get

y′′′ (t) = z′′′ (t) + cβ
1 z′′′ (τ1 (t)) + cβ

2 z′′′ (τ2 (t))

≤ −k1q1 (t) xβ (σ1 (t))− k2q2 (t) xγ (σ2 (t))

−cβ
1

(
−k1q1 (t) xβ (σ1 (τ1 (t)))− k2q2 (t) xγ (σ2 (τ1 (t)))

)
−cβ

2

(
−k1q1 (t) xβ (σ1 (τ2 (t)))− k2q2 (t) xγ (σ2 (τ2 (t)))

)
,

and so,

y′′′ (t) ≤ −k1q∗1 (t)
(

xβ (σ1 (t)) + cβ
1 xβ (σ1 (τ1 (t))) + cβ

2 xβ (σ1 (τ2 (t)))
)

−k2q∗2 (t)
(

xγ (σ2 (t)) + cβ
1 xγ (σ2 (τ1 (t))) + cβ

2 xγ (σ2 (τ2 (t)))
)

.

By Lemma 2, since c1 + c2 < 1 and β < 1 < γ, we obtain

y′′′ (t) + k1q∗1 (t) zβ (σ1 (t))

+ k2q∗2 (t)

(
xγ (σ2 (t)) + cγ

1 xγ (σ2 (τ1 (t))) +
cγ

2
2γ−1 xγ (σ2 (τ2 (t)))

)
≤ 0.

This implies

y′′′ (t) + k1q∗1 (t) zβ (σ1 (t)) +
k2

4γ−1 q∗2 (t) zγ (σ2 (t)) ≤ 0. (26)

Using Lemma 6, we have two cases for z′ (t). If z′ (t) > 0, we find

y′′′ (t) + k1q∗1 (t) zβ (σ1 (t)) +
k2

4γ−1 q∗2 (t) zγ (σ1 (t)) ≤ 0. (27)

Using arithmetic-geometric mean inequality with u1 = k1
λ1

q∗1 (t) zβ (σ1 (t)) and u2 =
k2

4γ−1λ2
q∗2 (t) zγ (σ1 (t)), we get

λ1u1 + λ2u2 ≥ uλ1
1 uλ2

2

=

(
k1

λ1

)λ1
(

k2

4γ−1λ2

)λ2

(q∗1 (t))
λ1 (q∗2 (t))

λ2 z (σ1 (t)) . (28)

Since τ1 (t) < t < τ2 (t) , we note that

y (t) ≤
(

1 + cβ
1 + cβ

2

)
z (τ2 (t)) .

Hence, from (28), (27) becomes

y′′′ (t) +
(

k1

λ1

)λ1
(

k2

4γ−1λ2

)λ2
(
q∗1 (t)

)λ1 (q∗2 (t))
λ2(

1 + cβ
1 + cβ

2

) y
(

τ−1
2 (σ1 (t))

)
≤ 0. (29)

Then, the condition (23) implies (29) has oscillatory solution, which contradicts y (t) > 0.
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Let z′ (t) < 0. As in the previous case, we get

y′′′ (t) +
(

k1

λ1

)λ1
(

k2

4γ−1λ2

)λ2
(
q∗1 (t)

)λ1 (q∗2 (t))
λ2(

1 + cβ
1 + cβ

2

) y
(

τ−1
1 (σ2 (t))

)
≤ 0. (30)

Hence, the condition (23) implies (30) has oscillatory solution, which contradicts y (t) > 0.
This contradiction completes the proof.

Remark 2. There are numerous results concerning the oscillation of the equation

y′′′ (t) + q (t) y (σ (t)) = 0,

(see [2,18,20,21]), which include Hille and Nehari types, Philos type, etc.

Assume that
τi (t) = t + (−1)i τ̃i, σi (t) = t− (−1)i σ̃i, (31)

where τ̃i, σ̃i are positive constants for i = 1, 2. It is well known (see [9]) that the differential inequalities (29)
and (30) are oscillatory if

lim inf
t→∞

∫ t

t−(τ̃2+σ̃1)/3
(τ̃2 + σ̃1)

2 (q∗1 (t))
λ1 (q∗2 (t))

λ2 >
9
2e

(
λ1

k1

)λ1
(

4γ−1λ2

k2

)λ2

(32)

and

lim inf
t→∞

∫ t+τ̃1+σ̃2

t
(s− t)2 (q∗1 (t))

λ1 (q∗2 (t))
λ2 > 2

(
λ1

k1

)λ1
(

4γ−1λ2

k2

)λ2

, (33)

respectively. Hence, we conclude the following theorem:

Theorem 4. Assume that 0 < β < 1 < γ and (31) hold. If (32) and (33) hold, then every solution of Equation (1)
is oscillatory.

Remark 3. In the case where α = 1, r (t) = 1 and pi (t) = 0, Equation (1) becomes

x′′′ (t) + q1 (t) f1 (x (σ1 (t))) + q2 (t) f2 (x (σ2 (t))) = 0. (34)

Baculikova and Dzurina [5] proved that every nonoscillatory solution x of (34) satisfies x′ < 0. Thus, Theorems 3
and 4 improve the results in [5].

Remark 4. A manner similar to the Theorem 3, we can study the oscillation of solutions of Equation (1) when
0 < γ < 1 < β.

Remark 5. If α = 1, f1 (x) = xβ, f2 (x) = xγ, τ1 (t) = t− τ̃1, σ1 (t) = t− σ̃1, τ2 (t) = t + τ̃2, σ2 (t) = t + σ̃2

and τ̃i, σ̃i are positive constants, then Theorem 1 extends Theorem 2.5 and 2.7 in [23].

Remark 6. The results of Theorem 3 can be extended to the third-order differential equation(
(z (t))α)′′′ + q1 (t) f1 (x (σ1 (t))) + q2 (t) f2 (x (σ2 (t))) = 0;
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the details are left to the reader.

Example 1. Consider the equation(
x +

1
3

x
(

1
3

t
)
+

1
3

x (2t)
)′′′

+
q0

t3 x
(

1
2

t
)
+

q1

t3 x (2t) = 0, (35)

where q0 > 0. We note that α = β = γ = 1, r (t) = 1, p1 (t) = p2 (t) = 1/3, τ1 (t) = 1/3t, σ1 (t) = 1/2t,
τ2 (t) = σ2 (t) = 2/t and q∗ (t) = q0/t3. Hence, it is easy to see that∫ ∞

t0

1
r1/α (s)

ds = ∞.

Now, if we set ρ (s) := t and k1 = k2 = 1, then we have

Θ1 (t) =
q0

2s
.

Thus, we find

lim sup
t→∞

∫ t

t0

(
Θ1 (s)−

(
1 + cβ

1 +
cβ

2
2β−1

)
1

(α + 1)α+1
(ρ′+ (s))α+1 r (σ1 (s))(

ρ (s) σ′1 (s)
)α

)
ds

= lim sup
t→∞

∫ t

t0

(
q0

2s
− 5

6s

)
ds.

Thus, the conditions become
q0 > 1.66.

Thus, by using Theorem 1, Equation (35) is either oscillatory if q0 > 1.66 or tends to zero as t → ∞.
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from the generating functions of degenerate Hermite polynomials are studied. Finally, we investigate
the structure and symmetry of the zeros of the two variable degenerate Hermite equations.
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1. Introduction

The classical Hermite numbers Hn and Hermite polynomials Hn(x) are usually defined by the
generating functions:

e2xt−t2
=

∞

∑
n=0

Hn(x)
tn

n!

and

e−t2
=

∞

∑
n=0

Hn
tn

n!
.

Clearly, Hn = Hn(0).
It can be seen that these numbers and polynomials play an important role in various areas of

mathematics and physics, including numerical theory, combinations, special functions, and differential
equations. Many interesting properties about them have been explored (see [1–6]). For example,
in mathematics and physics, the Hermite polynomials are a classical orthogonal polynomial sequence.
In probability, they appears as the Edgeworth series; in combinatorics, they arise in the umbral calculus
as an example of an Appell sequence; in numerical analysis, they play a role in Gaussian quadrature;
and in physics, they give rise to the eigenstates of the quantum harmonic oscillator. The polynomials
Hn(x) satisfy the Hermite differential equation:

d2H(x)
dx2 − 2x

dH(x)
dx

+ 2nH(x) = 0, n = 0, 1, 2, . . . .

Thus, the Hermite polynomials Hn(x) satisfy the second-order linear differential equation:

v′′ − 2xv′ + 2nv = 0.

The special polynomials of two variables provided a new means of analysis for the solution of
large classes of partial differential equations often encountered in physical problems. Most of the
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Mathematics 2020, 8, 228

special polynomials of mathematical physics and their generalization have been proposed by physical
problems. As another application of the Hermite differential equation for Hn(x, y), we recall that the
two variable Hermite polynomials Hn(x, y) defined by the generating function (see [2]):

∞

∑
n=0

Hn(x, y)
tn

n!
= ext+yt2

(1)

are the solution of heat equation:

∂

∂y
Hn(x, y) =

∂2

∂x2 Hn(x, y), Hn(x, 0) = xn. (2)

Observe that
Hn(2x,−1) = Hn(x).

Motivated by their potential and importance for applications in certain problems in probability,
combinatorics, number theory, differential equations, numerical analysis, and other fields of
mathematics and physics, several kinds of some special polynomials and numbers were recently
studied by many authors (see [1–7]). Many mathematicians have studied the area of the degenerate
Bernoulli polynomials, degenerate Euler polynomials, and degenerate tangent polynomials (see [8–11]).
One of the important aspect of the study of any degenerate polynomials is to find their definition.
Recently, Haroon and Khan [12] proposed the degenerate Hermite-Bernoulli polynomials, which are
formulated in terms of p-adic invariant integral on Zp:

∞

∑
n=0

H Bn(x, y|λ) tn

n!
=

log(1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ .

Mathematicians have studied the differential equations arising from the generating functions
of special polynomials (see [13–18]). Based on the results so far, in the present work, a new class of
degenerate Hermite polynomials is constructed. We can derive the differential equations generated
from the generating function of two variable degenerate Hermite polynomials. By using the
coefficients of this differential equation, we have explicit identities for the two variable degenerate
Hermite polynomials.

We remember that the classical Stirling numbers of the first kind S1(n, k) and the second kind
S2(n, k) are defined by the relations (see [8–12]):

(x)n =
n

∑
k=0

S1(n, k)xk and xn =
n

∑
k=0

S2(n, k)(x)k,

respectively. Here, (x)n = x(x− 1) · · · (x− n + 1) denotes the falling factorial polynomial of order n.
We also have:

∞

∑
n=m

S2(n, m)
tn

n!
=

(et − 1)m

m!
and

∞

∑
n=m

S1(n, m)
tn

n!
=

(log(1 + t))m

m!
. (3)

The rest of the paper is organized as follows. In Section 2, we introduce the two variable
degenerate Hermite polynomials and obtain the basic properties of these polynomials. In Section 3,
we give some symmetric identities for two variable degenerate Hermite polynomials. In Section 4,
we derive the differential equations generated from the generating function of two variable degenerate
Hermite polynomials. Using the coefficients of this differential equation, we have explicit identities
for the two variable degenerate Hermite polynomials. In Section 5, we investigate the zeros of the
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two variable degenerate Hermite equations by using a computer. Further, we observe the pattern of
scattering phenomenon for the zeros of two variable degenerate Hermite equations. Our paper ends
with Section 6, where the conclusions and future directions of this work are presented.

2. Basic Properties for the Two Variable Degenerate Hermite Polynomials

In this section, a new class of the two variable degenerate Hermite polynomials is considered.
Further, some properties of these polynomials are also obtained.

We define the two variable degenerate Hermite polynomials Hn(x, y, λ) by means of the
generating function:

∞

∑
n=0

Hn(x, y, λ)
tn

n!
= (1 + λ)

xt
λ (1 + λ)

yt2

λ . (4)

Since (1 + λ)
t
λ → et as λ → 0, it is evident that Equation (4) reduces to Equation (1). Observe that

Khan’s degenerate Hermite-Bernoulli polynomials H Bn(x, y|λ) vary from the two variable degenerate
Hermite polynomialsHn(x, y, λ). Another application of the differential equation forHn(x, y, λ) is as
follows: Note that:

F(t, x, y, λ) = (1 + λ)

xt
λ (1 + λ)

yt2

λ

satisfies
log(1 + λ)

λ

∂F(t, x, y, λ)

∂y
− ∂2F(t, x, y, λ)

∂x2 = 0.

Substitute the series in Equation (4) for F(t, x, y, λ) to get:

∂

∂y
Hn(x, y, λ)− λ

log(1 + λ)

∂2

∂x2Hn(x, y, λ) = 0.

Thus, the two variable degenerate Hermite polynomialsHn(x, y, λ) in the generating function (4)
are the solution of equation:

∂

∂y
Hn(x, y, λ) =

λ

log(1 + λ)

∂2

∂x2Hn(x, y, λ), Hn(x, 0, λ) =

(
λ

log(1 + λ)

)n
xn. (5)

Since
λ

log(1 + λ)
→ 1 as λ approaches zero, it is apparent that Equation (5) descends

to Equation (2).
By Equation (3), we also need the binomial theorem: for a variable x,

(1 + λ)xt/λ =
∞

∑
m=0

(
tx
λ

)
m

λm

m!

=
∞

∑
m=0

(
m

∑
l=0

S1(m, l)
(

tx
λ

)l λm

m!

)

=
∞

∑
l=0

(
∞

∑
m=l

S1(m, l)xlλm−l l!
m!

)
tl

l!
.

(6)

The generating function (4) is useful for deriving several properties of the two variable degenerate
Hermite polynomialsHn(x, y, λ). For example, we have the following expression for these polynomials:
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Theorem 1. For any positive integer n, we have:

Hn(x, y) = n!
[ n

2 ]

∑
k=0

ykxn−2k

k!(n− 2k)!
,

where [ ] denotes taking the integer part.

Proof. By Equations (4) and (6), we have:

∞

∑
n=0

Hn(x, y, λ)
tn

n!
= (1 + λ)

xt
λ (1 + λ)

yt2

λ

=
∞

∑
k=0

(
y log(1 + λ)

λ

)k t2k

k!

∞

∑
l=0

(
x log(1 + λ)

λ

)l tl

l!

=
∞

∑
n=0

⎛⎝ [ n
2 ]

∑
k=0

(
log(1 + λ)

λ

)n−k
ykxn−2k n!

k!(n− 2k)!

⎞⎠ tn

n!
.

On comparing the coefficients of tn

n! , the expected result of Theorem 1 is achieved.

When λ → 0, then we have:

Hn(x, y) = n!
[ n

2 ]

∑
k=0

ykxn−2k

k!(n− 2k)!
.

The following basic properties of the two variable degenerate Hermite polynomialsHn(x, y, λ)

are derived from (4). We, therefore, chose to omit the details involved.

Theorem 2. For any positive integer n, we have:

(1) Hn(x, 0, λ) =
∞

∑
m=n

S1(m, n)xnλm−n n!
m!

.

(2) Hn(x, y, λ) = n!
[ n

2 ]

∑
k=0

(
∞

∑
m=k

S1(m, k)ykλm−k

m!

∞

∑
m=n−2k

S1(m, n− 2k)xn−2kλm−n+2k

m!

)
.

(3) Hn(x1 + x2, y, λ) =
n

∑
l=0

(
n
l

)
Hl(x1, y, λ)

(
log(1 + λ)

λ

)n−l
xn−l

2 .

(4) Hn(x1 + x2, y, λ) =
n

∑
l=0

(
n
l

)
Hn−l(x1, y, λ)

∞

∑
m=l

S1(m, l)xl
2λm−l l!

m!
.

(5) Hn(x, y1 + y2, λ) =
[ n

2 ]

∑
k=0
Hk(x, y1, λ)

(
log(1 + λ)

λ

)n−2k
yn−2k

2
n!

k!(n− 2k)!
.

(6) Hn(x, y1 + y2, λ) = n!
[ n

2 ]

∑
k=0

∞

∑
m=k

S1(m, k)yk
2λm−k

m!(n− 2k)!
Hn−2k(x, y1, λ).

(7) Hn(x1 + x2, y1 + y2, λ) =
n

∑
l=0

(
n
l

)
Hl(x1, y1, λ)Hn−l(x2, y2, λ).
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3. Symmetric Identities for the Two Variable Degenerate Hermite Polynomials

In this section, we give some new symmetric identities for the two variable degenerate Hermite
polynomials. We also get some explicit formulas and properties for the two variable degenerate
Hermite polynomials.

Let a, b > 0 and a �= b. We start with:

F (t, λ) = (1 + λ)

abxt
λ (1 + λ)

a2b2yt2

λ .

Then, the expression for F (t, λ) is symmetric in a and b:

F (t, λ) =
∞

∑
m=0

Hm(ax, a2y, λ)
(bt)m

m!
=

∞

∑
m=0

bmHm(ax, a2y, λ)
tm

m!
.

On similar lines, we can obtain that:

F (t, λ) =
∞

∑
m=0

Hm(bx, b2y, λ)
(at)m

m!
=

∞

∑
m=0

amHm(bx, b2y, λ)
tm

m!
.

Comparing the coefficients of
tm

m!
in the last two equations, we have the following theorem.

Theorem 3. Let a, b > 0 and a �= b. The following identity holds true:

amHm(bx, b2y, λ) = bmHm(ax, a2y, λ).

Again, we now use:

G(t, λ) =

abt(1 + λ)

abxt
λ (1 + λ)

a2b2yt2

λ

⎛⎝(1 + λ)

abt
λ − 1

⎞⎠
⎛⎝(1 + λ)

at
λ − 1

⎞⎠⎛⎝(1 + λ)

bt
λ − 1

⎞⎠
.

For λ ∈ C, we define the degenerate Bernoulli polynomials given by the generating function:

∞

∑
n=0

Bn(x, λ)
tn

n!
=

t

(1 + λ)

t
λ − 1

(1 + λ)

xt
λ .

When x = 0 and Bn(λ) = Bn(0, λ) are called the degenerate Bernoulli numbers. The first few
follow immediately from this generating function,

B0(λ) =
λ

log(1 + λ)
,

B1(λ) = −
1
2
+ x,

B2(λ) =
log(1 + λ)

6λ
− x log(1 + λ)

λ
+

x2 log(1 + λ)

λ
,

B3(λ) =
x log(1 + λ)2

2λ2 − 3x2 log(1 + λ)2

2λ2 +
x3 log(1 + λ)2

λ2 ,

B4(λ) = −
log(1 + λ)3

30λ3 +
x2 log(1 + λ)3

λ3 − 2x3 log(1 + λ)3

λ3 +
x4 log(1 + λ)3

λ3 .
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For each integer k ≥ 0, Tk(n) = 0k + 1k + 2k + · · ·+ (n− 1)k is called the sum of integers.
A generalized falling factorial sum σk(n, λ) can be defined by the generation function:

∞

∑
k=0

σk(n, λ)
tk

k!
=

(1 + λ)

(n + 1)t
λ − 1

(1 + λ)

t
λ − 1

.

Note that limλ→0 σk(n, λ) = Tk(n). From G(t, λ), we get the following result:

G(t, λ) =

abt(1 + λ)

abxt
λ (1 + λ)

a2b2yt2

λ

⎛⎝(1 + λ)

abt
λ − 1

⎞⎠
⎛⎝(1 + λ)

at
λ − 1

⎞⎠⎛⎝(1 + λ)

bt
λ − 1

⎞⎠

=
abt⎛⎝(1 + λ)

at
λ − 1

⎞⎠ (1 + λ)

abxt
λ (1 + λ)

a2b2yt2

λ

⎛⎝(1 + λ)

abt
λ − 1

⎞⎠
⎛⎝(1 + λ)

bt
λ − 1

⎞⎠
= b

∞

∑
n=0

Bn(λ)
(at)n

n!

∞

∑
n=0

Hn(bx, b2y, λ)
(at)n

n!

∞

∑
n=0

σk(a− 1, λ)
(bt)n

n!

=
∞

∑
n=0

(
n

∑
i=0

i

∑
m=0

(
n
i

)(
i
m

)
aibn+1−iBm(λ)Hi−m(bx, b2y, λ)σn−i(a− 1, λ)

)
tn

n!
.

In a similar fashion, we have:

G(t, λ) =
abt⎛⎝(1 + λ)

bt
λ − 1

⎞⎠
(1 + λ)

abxt
λ (1 + λ)

a2b2yt2

λ

⎛⎝(1 + λ)

abt
λ − 1

⎞⎠
⎛⎝(1 + λ)

at
λ − 1

⎞⎠
= a

∞

∑
n=0

Bn(λ)
(bt)n

n!

∞

∑
n=0

Hn(bx, b2y, λ)
(bt)n

n!

∞

∑
n=0

σk(a− 1, λ)
(at)n

n!

=
∞

∑
n=0

(
n

∑
i=0

i

∑
m=0

(
n
i

)(
i
m

)
bian+1−iBm(λ)Hi−m(ax, a2y, λ)σn−i(b− 1, λ)

)
tn

n!
.

By comparing the coefficients of
tm

m!
on the right-hand sides of the last two equations, we have the

theorem below.

Theorem 4. Let a, b > 0 and a �= b. The the following identity holds true:

n

∑
i=0

i

∑
m=0

(
n
i

)(
i
m

)
aibn+1−iBm(λ)Hi−m(bx, b2y, λ)σn−i(a− 1, λ)

=
n

∑
i=0

i

∑
m=0

(
n
i

)(
i
m

)
bian+1−iBm(λ)Hi−m(ax, a2y, λ)σn−i(b− 1, λ).
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Making the N-times derivative for Equation (4) with respect to t, we have:

(
∂

∂t

)N
F(t, x, y, λ) =

(
∂

∂t

)N
(1 + λ)

xt
λ (1 + λ)

yt2

λ =
∞

∑
m=0

Hm+N(x, y, λ)
tm

m!
. (7)

By multiplying the exponential series ext = ∑∞
m=0 xm tm

m!
in both sides of Equation (7) and the

Cauchy product, we get:

e
−n

⎛⎝ log(1 + λ)

λ

⎞⎠t (
∂

∂t

)N
F(t, x, y, λ)

=

(
∞

∑
m=0

(−n)m
(

log(1 + λ)

λ

)m tm

m!

)(
∞

∑
m=0

Hm+N(x, y, λ)
tm

m!

)

=
∞

∑
m=0

(
m

∑
k=0

(
m
k

)
(−n)m−k

(
log(1 + λ)

λ

)m−k
HN+k(x, y, λ)

)
tm

m!
.

(8)

By Equation (8) and the Leibniz rule, we have:

e
−n

⎛⎝ log(1 + λ)

λ

⎞⎠t (
∂

∂t

)N
F(t, x, y, λ)

=
N

∑
k=0

(
N
k

)
nN−k

(
log(1 + λ)

λ

)N−k ( ∂

∂t

)k

⎛⎜⎜⎝e
−n

⎛⎝ log(1 + λ)

λ

⎞⎠t

F(t, x, y, λ)

⎞⎟⎟⎠
=

∞

∑
m=0

(
N

∑
k=0

(
N
k

)
nN−k

(
log(1 + λ)

λ

)N−k
Hm+k(x− n, y, λ)

)
tm

m!
.

(9)

Hence, by Equations (8) and (9), comparing the coefficients of
tm

m!
gives the below theorem.

Theorem 5. Let m, n, N be nonnegative integers. Then,

m

∑
k=0

(
m
k

)
(−n)m−k

(
log(1 + λ)

λ

)m−k
HN+k(x, y, λ)

=
N

∑
k=0

(
N
k

)
nN−k

(
log(1 + λ)

λ

)N−k
Hm+k(x− n, y, λ).

(10)

If we take m = 0 in (10), then we have the following:

Theorem 6. For N = 0, 1, 2, . . . , we have:

HN(x, y, λ) =
N

∑
k=0

(
N
k

)
nN−k

(
log(1 + λ)

λ

)N−k
Hk(x− n, y, λ).
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4. Differential Equations Associated with Two Variable Degenerate Hermite Polynomials

In this section, we study the differential equations with coefficients ai(N, x, y, λ) arising from the
generating functions of the two variable degenerate Hermite polynomials:(

∂

∂t

)N
F(t, x, y, λ)− a0(N, x, y, λ)F(t, x, y, λ)− · · · − aN(N, x, y, λ)tN F(t, x, y, λ) = 0.

By using the coefficients of this differential equation, we can derive explicit identities for the two
variable degenerate Hermite polynomialsHn(x, y, λ). Recall that:

F = F(t, x, y, λ) = (1 + λ)

xt
λ (1 + λ)

yt2

λ =
∞

∑
n=0

Hn(x, y, λ)
tn

n!
, λ, x, t ∈ C. (11)

Then, by Equation (11), we have:

F(1) =
∂

∂t
F(t, x, y, λ)

=
∂

∂t

⎛⎜⎝(1 + λ)

xt
λ (1 + λ)

yt2

λ

⎞⎟⎠
=

(
(x + 2yt) log(1 + λ)

λ

)
(1 + λ)

xt
λ (1 + λ)

yt2

λ

=

(
(x + 2yt) log(1 + λ)

λ

)
F(t, x, y, λ),

(12)

F(2) =
∂

∂t
F(1)(t, x, y, λ)

=

(
2y log(1 + λ)

λ

)
F(t, x, y, λ) +

(
(x + 2yt) log(1 + λ)

λ

)
F(1)(t, x, y, λ)

=

((
log(1 + λ)

λ

)
2y +

(
log(1 + λ)

λ

)2

x2

)
F(t, x, y, λ)

+

((
log(1 + λ)

λ

)2

4xy

)
tF(t, x, y, λ)

+

((
log(1 + λ)

λ

)2

(2y)2

)
t2F(t, x, y, λ).

(13)

Continuing this process as shown in Equation (13), we can guess that:

F(N) =

(
∂

∂t

)N
F(t, x, y, λ) =

N

∑
i=0

ai(N, x, y, λ)tiF(t, x, y, λ), (N = 0, 1, 2, . . .). (14)
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Differentiating Equation (14) with respect to t, we have:

F(N+1) =
∂F(N)

∂t
=

N

∑
i=0

ai(N, x, y, λ)iti−1F(t, x, y, λ)

+
N

∑
i=0

ai(N, x, y, λ)tiF(1)(t, x, y, λ)

=
N

∑
i=0

iai(N, x, y, λ)ti−1F(t, x, y, λ)

+
N

∑
i=0

x log(1 + λ)

λ
ai(N, x, y, λ)tiF(t, x, y, λ)

+
N

∑
i=0

2y log(1 + λ)

λ
ai(N, x, y, λ)ti+1F(t, x, y, λ)

=
N−1

∑
i=0

(i + 1)ai+1(N, x, y, λ)tiF(t, x, y, λ)

+
N

∑
i=0

x log(1 + λ)

λ
ai(N, x, y, λ)tiF(t, x, y, λ)

+
N+1

∑
i=1

2y log(1 + λ)

λ
ai−1(N, x, y, λ)tiF(t, x, y, λ).

(15)

Now, replacing N by N + 1 in Equation (14), we find:

F(N+1) =
N+1

∑
i=0

ai(N + 1, x, y, λ)tiF(t, x, y, λ). (16)

Comparing the coefficients on both sides of Equations (15) and (16), we obtain:

a0(N + 1, x, y, λ) = a1(N, x, y, λ) +
x log(1 + λ)

λ
a0(N, x, y, λ),

aN(N + 1, x, y, λ) =
x log(1 + λ)

λ
aN(N, x, y, λ) +

2y log(1 + λ)

λ
aN−1(N, x, y, λ),

aN+1(N + 1, x, y, λ) =
2y log(1 + λ)

λ
aN(N, x, y, λ),

(17)

and:

ai(N + 1, x, y, λ) = (i + 1)ai+1(N, x, y, λ) +
x log(1 + λ)

λ
ai(N, x, y, λ)

+
2y log(1 + λ)

λ
ai−1(N, x, y, λ), (1 ≤ i ≤ N − 1).

(18)

In addition, by Equation (14), we have:

F(t, x, y, λ) = F(0)(t, x, y, λ) = a0(0, x, y, λ)F(t, x, y, λ). (19)

By Equation (19), we get:
a0(0, x, y, λ) = 1. (20)
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It is not difficult to show that:

x log(1 + λ)

λ
F(t, x, y, λ) +

2y log(1 + λ)

λ
tF(t, x, y, λ)

= F(1)(t, x, y, λ)

=
1

∑
i=0

ai(1, x, y, λ)tiF(t, x, y, λ)

= a0(1, x, y, λ)F(t, x, y, λ) + a1(1, x, y, λ)tF(t, x, y, λ).

(21)

Thus, by Equations (12) and (21), we also get:

a0(1, x, y, λ) =
x log(1 + λ)

λ
, a1(1, x, y, λ) =

2y log(1 + λ)

λ
. (22)

From Equation (17), we note that:

a0(N + 1, x, y, λ) = a1(N, x, y, λ) +
x log(1 + λ)

λ
a0(N, x, y, λ),

a0(N, x, y, λ) = a1(N − 1, x, y, λ) +
x log(1 + λ)

λ
a0(N − 1, x, y, λ),

. . .

a0(N + 1, x, y, λ) =
N

∑
i=0

(
x log(1 + λ)

λ

)i
a1(N − i, x, y, λ)

+

(
log(1 + λ)

λ

)N+1

xN+1,

(23)

aN(N + 1, x, y, λ) =
x log(1 + λ)

λ
aN(N, x, y, λ) +

2y log(1 + λ)

λ
aN−1(N, x, y, λ),

aN−1(N, x, y, λ) =
x log(1 + λ)

λ
aN−1(N − 1, x, y, λ)

+
2y log(1 + λ)

λ
aN−2(N − 1, x, y, λ), . . .

aN(N + 1, x, y, λ) = (N + 1)x(2y)N
(

log(1 + λ)

λ

)N+1

,

(24)

and:

aN+1(N + 1, x, y, λ) =
2y log(1 + λ)

λ
aN(N, x, y, λ),

aN(N, x, y, λ) =
2y log(1 + λ)

λ
aN−1(N − 1, x, y, λ), . . .

aN+1(N + 1, x, y, λ) =

(
log(1 + λ)

λ

)N+1

(2y)N+1.

(25)

For i = 1 in Equation (18), we have:

a1(N + 1, x, y, λ) = 2
N

∑
k=0

(
x log(1 + λ)

λ

)k
a2(N − k, x, y, λ)

+
2y log(1 + λ)

λ

N

∑
k=0

(
x log(1 + λ)

λ

)k
a0(N − k, x, y, λ),

(26)
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Continuing this process, we can deduce that, for 1 ≤ i ≤ N − 1,

ai(N + 1, x, y, λ) = (i + 1)
N

∑
k=0

(
x log(1 + λ)

λ

)k
ai+1(N − k, x, y, λ)

+
2y log(1 + λ)

λ

N

∑
k=0

(
x log(1 + λ)

λ

)k
ai−1(N − k, x, y, λ).

(27)

Note that, here, the matrix ai(j, x, y, λ)0≤i,j≤N+1 is given by:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x log(1 + λ)

λ

2y log(1 + λ)

λ
+

(
x log(1 + λ)

λ

)2

· · · ·

0
2y log(1 + λ)

λ

(
log(1 + λ)

λ

)2

4xy · · · ·

0 0
(

2y log(1 + λ)

λ

)2

· · · ·

...
...

...
. . . ·

0 0 0 · · ·
(

2y log(1 + λ)

λ

)N+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Therefore, by Equations (20)–(27), we obtain the following theorem.

Theorem 7. For N = 0, 1, 2, . . . , the differential equation:(
∂

∂t

)N
F(t, x, y, λ)−

(
N

∑
i=0

ai(N, x, y)ti

)
F(t, x, y, λ) = 0

has a solution

F = F(t, x, y, λ) = (1 + λ)

xt
λ (1 + λ)

yt2

λ ,

where:

a0(N + 1, x, y, λ) =
N

∑
i=0

(
x log(1 + λ)

λ

)i
a1(N − i, x, y, λ)

+

(
log(1 + λ)

λ

)N+1

xN+1,

aN(N + 1, x, y, λ) = (N + 1)x(2y)N
(

log(1 + λ)

λ

)N+1

,

aN+1(N + 1, x, y, λ) =

(
log(1 + λ)

λ

)N+1

(2y)N+1,

ai(N + 1, x, y, λ) = (i + 1)
N

∑
k=0

(
x log(1 + λ)

λ

)k
ai+1(N − k, x, y, λ)

+
2y log(1 + λ)

λ

N

∑
k=0

(
x log(1 + λ)

λ

)k
ai−1(N − k, x, y, λ), (1 ≤ i ≤ N − 2).

Here is a plot of the surface for this solution.
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In Figure 1a, we chose −2 ≤ x ≤ 2,−2 ≤ t ≤ 2, λ = 1/2, and y = 0.1. In Figure 1b, we chose
−2 ≤ y ≤ 2,−1 ≤ t ≤ 1, λ = 1/2, and x = 0.1.

Making the N-times derivative for Equation (4) with respect to t, we have:(
∂

∂t

)N
F(t, x, y, λ) =

∞

∑
m=0

Hm+N(x, y, λ)
tm

m!
. (28)

By Equation (28) and Theorem 7, we have:

a0(N, x, y, λ)F(t, x, y, λ) + a1(N, x, y, λ)tF(t, x, y, λ) + · · ·+ aN(N, x, y, λ)tN F(t, x, y, λ)

=
∞

∑
m=0

Hm+N(x, y, λ)
tm

m!
.

(a) (b)

Figure 1. The surface for the solution of F(t, x, y, λ) = 0. (a) −2 ≤ x ≤ 2,−2 ≤ t ≤ 2, λ = 1/2, and
y = 0.1; (b) −2 ≤ y ≤ 2,−1 ≤ t ≤ 1, λ = 1/2, and x = 0.1

Hence, we have the following theorem.

Theorem 8. For N = 0, 1, 2, . . . , we get:

Hm+N(x, y, λ) =
m

∑
i=0

Hm−i(x)ai(N, x, y, λ)m!
(m− i)!

. (29)

If we take m = 0 in Equation (29), then we have the corollary below.

Corollary 1. For N = 0, 1, 2, . . . , we have:

HN(x, y, λ) = a0(N, x, y, λ),

where:
a0(0, x, y, λ) = 1,

a0(N + 1, x, y, λ) =
N

∑
i=0

(
x log(1 + λ)

λ

)i
a1(N − i, x, y, λ)

+

(
log(1 + λ)

λ

)N+1

xN+1.
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The first few of them are:

H0(x, y, λ) = 1,

H1(x, y, λ) =
x log(1 + λ)

λ
,

H2(x, y, λ) =
2y log(1 + λ)

λ
+

x2(log(1 + λ))2

λ2 ,

H3(x, y, λ) =
6xy(log(1 + λ))2

λ2 +
x3(log(1 + λ))3

λ3 ,

H4(x, y, λ) =
12y2(log(1 + λ))2

λ2 +
12x2y(log(1 + λ))3

λ3 +
x4(log(1 + λ))4

λ4 ,

H5(x, y, λ) =
60xy2(log(1 + λ))3

λ3 +
20x3y(log(1 + λ))4

λ4 +
x5(log(1 + λ))5

λ5 .

5. Zeros of the Two Variable Degenerate Hermite Polynomials

This section shows the benefits of supporting theoretical prediction through numerical
experiments and finding a new interesting pattern of the zeros of the two variable degenerate
Hermite equations Hn(x, y, λ) = 0. By using a computer, the two variable degenerate
Hermite polynomials Hn(x, y, λ) can be determined explicitly. We investigated the zeros of the
two variable degenerate Hermite equations Hn(x, y, λ) = 0. The zeros of the Hn(x, y, λ) = 0 for
n = 30, y = 2,−2, 2 + i,−2 − i, λ = 1/2, and x ∈ C are displayed in Figure 2.

In Figure 2a, we chose n = 30 and y = 2. In Figure 2b, we chose n = 30 and y = −2. In Figure 2c,
we chose n = 30 and y = 2 + i. In Figure 2d, we chose n = 30 and y = −2− i.

(a) (b)

(c) (d)

Figure 2. Zeros of Hn(x, y, λ) = 0. (a) n = 30 and y = 2; (b) n = 30 and y = −2 ; (c) n = 30 and
y = 2 + i ; (d) n = 30 and y = −2− i.
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Stacks of zeros of the two variable degenerate Hermite equations Hn(x, y, λ) = 0 for
1 ≤ n ≤ 30, λ = 1/2 from a 3D structure are presented in Figure 3.

In Figure 3a, we chose y = 2. In Figure 3b, we chose y = −2. In Figure 3c, we chose y = 2 + i.
In Figure 3d, we chose y = −2− i.

(a) (b)

(c) (d)

Figure 3. Stacks of zeros of Hn(x, y, λ) = 0, 1 ≤ n ≤ 30. (a) y = 2; (b) y = −2 ; (c) y = 2 + i;
(d) y = −2− i.

Our numerical results for approximate solutions of real zeros of the two variable degenerate
Hermite equationsHn(x, y, λ) = 0 are displayed (Tables 1 and 2).

Table 1. Numbers of real and complex zeros ofHn(x, y, λ) = 0.

y = 2, λ = 1/2 y = −2, λ = 1/2.

Degree n Real Zeros Complex Zeros Real Zeros Complex Zeros

1 1 0 1 0
2 0 2 2 0
3 1 2 3 0
4 0 4 4 0
5 1 4 5 0
6 0 6 6 0
7 1 6 7 0
8 0 8 8 0
9 1 8 9 0
10 0 10 10 0
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We observed a remarkable regular structure of the complex roots of the two variable degenerate
Hermite equationsHn(x, y, λ) = 0 and also hoped to verify the same kind of regular structure of the
complex roots of the two variable degenerate Hermite equationsHn(x, y, λ) = 0 (Table 1).

The plot of the real zeros of the two variable degenerate Hermite equations Hn(x, y, λ) = 0 for
the 1 ≤ n ≤ 30, λ = 1/2 structure is presented in Figure 4.

(a) (b)

(c) (d)

Figure 4. Real zeros of Hn(x, y, λ) = 0 for 1 ≤ n ≤ 40. (a)y = 2 ; (b) y = −2; (c) y = 2 + i;
(d) y = −2− i.

In Figure 4a, we chose y = 2. In Figure 4b, we chose y = −2. In Figure 4c, we chose y = 2 + i.
In Figure 4d, we chose y = −2− i.

Next, we calculated an approximate solution satisfying Hn(x, y, λ) = 0, x ∈ C. The results are
given in Table 2. In Table 2, we chose y = −2 and λ = 1/2.

Table 2. Approximate solutions ofHn(x, y, λ) = 0, x ∈ R.

Degree n x

1 0
2 −2.2209, 2.2209
3 −3.8468, 0, 3.8468
4 −5.1846, −1.6479, 1.6479, 5.1846
5 −6.3452, −3.0108, 0, 3.0108, 6.3452
6 −7.3830, −4.1958, −1.3697, 1.3697, 4.1958, 7.3830
7 −8.3295, −5.2564, −2.5639, 0, 2.5639, 5.2564, 8.3295
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6. Conclusions and Future Directions

In this article, we defined the two variable degenerate Hermite polynomials and obtained some
new symmetric identities for two variable degenerate Hermite polynomials. We constructed differential
equations arising from the generating function of the two variable degenerate Hermite polynomials
Hn(x, y, λ). We also investigated the symmetry of the zeros of the two variable degenerate Hermite
equations Hn(x, y, λ) = 0 for various variables x and y. As a result, we found that the distribution
of the zeros of two variable degenerate Hermite equations Hn(x, y, λ) = 0 is a very regular pattern.
Therefore, we made the following series of conjectures with numerical experiments:

Let us use the following notations. RHn(x,y,λ) denotes the number of real zeros of
Hn(x, y, λ) = 0 lying on the real plane Im(x) = 0, and CHn(x,y,λ) denotes the number of
complex zeros of Hn(x, y, λ) = 0. Since n is the degree of the polynomial Hn(x, y, λ), we have
RHn(x,y,λ) = n − CHn(x,y,λ).

We can see a good regular pattern of the complex roots of the two variable degenerate Hermite
equationsHn(x, y, λ) = 0 for y and λ. Therefore, the following conjecture is possible.

Conjecture 1. Let n be an odd positive integer. For y > 0 or y ∈ C \ {y | y < 0}, prove or disprove that:

RHn(x,y,λ) = 1, CHn(x,y,λ) = 2
[n

2

]
, Hn(0, y, λ) = 0,

where C is the set of complex numbers.

Conjecture 2. For y < 0, prove or disprove that:

RHn(x,y,λ) = n, CHn(x,y,λ) = 0.

As a result of investigating more y and λ variables, it is still unknown whether the Conjectures 1
and 2 are true or false for all variables y and λ.

We observed that solutions of the two variable degenerate Hermite equations Hn(x, y, λ) = 0
have no Re(x) = a reflection symmetry for a ∈ R. It is expected that solutions of the two variable
degenerate Hermite equationsHn(x, y, λ) = 0 have Re(x) = 0 reflection symmetry (see Figures 2–4).

Conjecture 3. Prove that Hn(x, y, λ), x ∈ C, y > 0, has Im(x) = 0 reflection symmetry analytic complex
functions. Prove thatHn(x, y, λ), x ∈ C, y < 0, has Re(x) = 0 reflection symmetry analytic complex functions.

Finally, we considered the more general problems. How many zeros does Hn(x, y, λ) have?
We were not able to decide if Hn(x, y, λ) = 0 had n distinct solutions. We would like to know the
number of complex zeros CHn(x,y,λ) ofHn(x, y, λ) = 0.

Conjecture 4. Prove or disprove thatHn(x, y, λ) = 0 has n distinct solutions.

As a result of investigating more n variables, it is still unknown whether the conjecture is true or
false for all variables n (see Tables 1 and 2).

We expect that research in these directions will make a new approach using the numerical method
related to the research of the two variable degenerate Hermite equationsHn(x, y, λ) = 0, which appear
in applied mathematics and mathematical physics.
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Abstract: This paper reports a theoretical study on the magnetohydrodynamic flow and heat exchange
of carbon nanotubes (CNTs)-based nanoliquid over a variable thicker surface. Two types of carbon
nanotubes (CNTs) are accounted for saturation in base fluid. Particularly, the single-walled and
multi-walled carbon nanotubes, best known as SWCNTs and MWCNTs, are used. Kerosene oil is
taken as the base fluid for the suspension of nanoparticles. The model involves the impact of the
thermal radiation and induced magnetic field. However, a tiny Reynolds number is assumed to
ignore the magnetic induction. The system of nonlinear equations is obtained by reasonably adjusted
transformations. The analytic solution is obtained by utilizing a notable procedure called optimal
homotopy analysis technique (O-HAM). The impact of prominent parameters, such as the magnetic
field parameter, Brownian diffusion, Thermophoresis, and others, on the dimensionless velocity field
and thermal distribution is reported graphically. A comprehensive discussion is given after each
graph that summarizes the influence of the respective parameters on the flow profiles. The behavior of
the friction coefficient and the rate of heat transfer (Nusselt number) at the surface (y = 0) are given at
the end of the text in tabular form. Some existing solutions of the specific cases have been checked as
the special case of the solution acquired here. The results indicate that MWCNTs cause enhancement
in the velocity field compared with SWCNTs when there is an increment in nanoparticle volume
fraction. Furthermore, the temperature profile rises with an increment in radiation estimator for
both SWCNT and MWCNT and, finally, the heat transfer rate lessens for increments in the magnetic
parameter for both types of nanotubes.

Keywords: kerosene oil-based fluid; stagnation point; carbon nanotubes; variable thicker surface;
thermal radiation

1. Introduction

The idea of nanofluid was first introduced by Choi [1] in 1995. In his pioneering study, Choi
named nanofluids as one of the most essential type of fluids for an enhanced heat transfer rate.
Nanofluids are formed by suspending nanoparticles of interested metals in the base fluid. To date,

Mathematics 2020, 8, 104; doi:10.3390/math8010104 www.mdpi.com/journal/mathematics127
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different types of nanoparticles as well as the base fluids are used in the literature. Some of them
are magnetic nanoparticles, polymeric nanoparticles, carbon nanotubes, liposomes, quantum dots,
metallic nanoparticles, dendrimers, polymeric nanoparticles, and many others. The base fluids are
always water, oil, and/or ethylene glycol. The metallic nanoparticles are alumina, carbides, copper,
metal oxides, and nitrides, whereas non-metallic nanoparticles are graphite and the well-known carbon
nanotubes. Researchers have used different combinations of nanoparticles and base fluids, however,
nobody gave a final decision about which combination of nanoparticles and base fluid can give a better
enhancement in the heat transfer rate (see, for example, the works of [2–18]).

In addition to the above discussion, each type of nanoparticle and base fluid has its unique
importance. In this work, carbon nanotubes (CNTs) were used as nanoparticles suspended in Kerosene
oil, chosen as base fluid. CNTs are elongated, tubular structure, and 1–2 nm in diameter (see, for example,
the works of [19–23]). However, the best CNTs are those arranged in the form of hexagonal network
of carbon atoms rolled up to form a steam-less hollow cylinder (Choi and Zhang [24]). CNTs were
first discovered by a Japanese physicist Sumio Iijma in 1991 for multiple wall nanotubes (Sumio [25]).
However, it took less than two years before single wall nanotubes were discovered. Several researchers
these days are taking keen interest in studying CNTs owing to their unique nanostructures, high
thermal conductivity, and exceptional mechanical strength and corrosion resistance. These novel
characteristics of CNTs make them useful in industry such as solar cell, nanotube transistors, lithium
ion batteries, chemical sensors, and so on. The theoretical and experimental researchers usually use two
types of CNTs, namely single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes
(MWNTs). Choi [26] found anomalous thermal conductivity enhancement in nanotubes’ suspensions.
Hone [27] studied, in details, the thermal properties of CNTs. Kamali and Binesh [28] numerically
investigated heat transfer enhancement in non-Newtonian nanofluids using CNTs. Prajapati et al. [29],
Kumaresan and Velraj [30], and Wang et al. [31] also provided some interesting studies on CNTs. Khan
et al. [32] examined heat transfer using CNTs and fluid flow with Navier slip boundary conditions.
Noreen et al. [33] used CNTs and analyzed thermal and velocity slips on Magnetohydrodynamics
(MHD) peristaltic flow in an asymmetric channel. Noreen and Khan [34] studied heat transfer using
individual MWCNTs owing to the metachronal beating of cilia. Ebaid and Sharif [35] suspended CNTs
in a base fluid and studied the effect of a magnetic field on fluid motion and enhanced the rate of heat
transfer of nanofluids using CNTs (also see the works of [36–39]). Zhang et al. [40] examined the effects
of surface modification on the thermal conductivity and stability of the suspension formulated using
the CNTs. Aman et al. [41] suspended CNTs in four different types of molecular liquid and studied
heat transfer enhancement in the free convection flow of Maxwell nanofluids. Zhang experimentally
investigated the heat transfer of CNTs membranes. Soleimani et al. [42] studiedthe impact of carbon
nanotubes-based nanofluid on oil recovery efficiency using core flooding. Details about the MWCNTs
were provided by Taheriang et al. [43] for enhanced thermophysical properties of nanofluids in a critical
review. Wang et al. [44], in their review paper, studied mechanisms and applications of CNTs in
terahertz devices. Pop et a. [45] studied the well-known stagnation point fluid flow over a stretching
sheet involving the heat transfer factor due to radiation. Sharma and Singh [46] investigated stagnation
point flow past a linearly stretching sheet with additional effects of variable thermal conductivity, heat
source/sink, and MHD. Some other important studies with some interesting experimental findings are
given in the works of [47–60] and cross references cited therein.

The basic objective of this examination is to report an MHD flow of nanofluid with Kerosene
oil as base fluid and CNTs as nanoparticles over a variable thicker surface. Such formulation is not
found in the literature so far. Two types of CNTs (SWCNTs and MWCNTs) are chosen. The problem is
first arranged in suitable nonlinear differential equations using reasonable transformations. Analytic
solution is obtained by utilizing a notable procedure called the optimal homotopy analysis technique
(O-HAM). Several plots are generated to discuss the physical behavior of embedded parameters on
the dimensionless velocity field and thermal distribution. The results for skin-friction (wall-drag)
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coefficient and rate of heat transfer (Nusselt factor) are computed in tabular data form. The present
results are successfully reduced to the published results in the literature when compared.

2. Mathematical Formulation

The present communication reports a theoretical study on the magnetohydrodynamic flow and
heat exchange of carbon nanotubes (CNTs)-based nanoliquid over a variable thicker surface. Kerosene
oil is taken as the base fluid for the suspension of nanoparticles. Two types of carbon nanotubes (CNTs)
are accounted for saturation in base fluid. Flow phenomenon is investigated in the presence of applied
magnetic field. SWCNTs and MWCNTs are utilized as nanomaterials and kerosine oil is as base liquid.
The impact of radiation and viscous dissipation are considered in the heat analysis. The thickness of

the surface mentioned by y = B(x + b)
1−m

2 is variable. The ambient temperature is taken to be constant.
The physical model can be seen in Figure 1.

Figure 1. Physical flow model. MWCNT, multi-walled carbon nanotube; SWCNT, single-walled
carbon nanotube.

The boundary layer equations for the aforementioned problem (see, for example, the works
of [49–52]) are as follows:

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= Ue
dUe

dx
+ νn f

∂2u
∂2y
− σB2

0

ρn f
(U −Ue), (2)

u
∂T
∂x

+ v
∂T
∂y

= αn f
∂2T
∂2y
− 1
ρCp

∂qr

∂y
+
νn f

ρCp
(
∂u
∂y

)
2
, (3)

where velocity components are (u, v) along the x- and y-axes, respectively; T denotes the temperature;(
νn f , αn f

)
denotes the effective kinematic viscosity and thermal diffusivity of nanoliquid, respectively;

(Uw, Ue) are defined as the stretching surface and free stream velocity, respectively; qr defines the
radiative heat flux; and Cp defines the specific heat. The fruitful characteristics of nanoliquids may be
defined using the properties of base liquid and carbon nanotubes and the solid volume fraction of
CNTs in the base liquids (see, for example, the works of [49–52]) as follows:

μn f =
μ f

(1−ϕ)2.5 , νn f =
μn f
ρn f

, ρn f = (1−ϕ) ρ f + ϕρs
(
Cp
)
CNT

,

αn f =
kn f

ρn f (Cp)n f
,

kn f
k f

=
(1−ϕ)+2ϕ

kCNT
kCNT−k f

ln
kCNT+k f

2k f

(1−ϕ)+2ϕ k f
kCNT−k f

ln
kCNT+k f

2k f

,
(4)
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where viscosity of nanoliquid is defined by μn f ; nanoparticle volume fraction is defined by ϕ;
and density of liquid and CNTs are defined by ρ f and ρCNT, respectively. Base liquid’s thermal
conductivity is defined by k f ; thermal conductivity of nanoliquids is defined by kn f ; the specific heat of

nanoliquids, base liquid, and carbon nanotubes are defined by
(
Cp
)
n f

,
(
Cp
)

f
, and

(
Cp
)
CNTs

, respectively;

while thermal conductivity of CNTs is defined by kCNT, with boundary conditions as follows:

at y = B(x + b)
1−m

2 , Uw(x) = U = U0(x + b)m, T = Tw, v = 0,
as y→∞, u→ U∞(x + b)m = Ue(x), T→ T∞.

(5)

Using Rosseland approximation, we get the accompanying articulation

qr =
−4
3
σ∗
K∗
∂T4

∂y
= −16σ∗

3K∗ T3 ∂T
∂y

, (6)

where the mean absorption coefficient is defined by k∗, the Stefan–Boltzmann constant is defined by σ∗,
and T4 defined using Taylor series expansion about T∞ is

T4 = 4T3∞T − 3T4∞.

The state of surface firmly relies on m. It should be noted that, for m = 1, the surface is flat; the
thickness of the wall rises for m < 1 and the surface shape becomes of the outer convex type. The wall
thickness decreases for m > 1 and, consequently, the surface shape becomes of the inner concave type;
m is accountable for the motion type, that is, for m = 0, the motion is linear with constant velocity.
Motion deceleration and accelerated are defined by m < 1 and m > 1. Employing the transformations

ξ = y

√
Uo(x+b)m−1

2v f
(m + 1), ψ =

√
1

m+1 2v f Uo(x + b)m+1F(ξ), Θ(ξ) = T−T∞
Tw−T∞ ,

u = Uo(x + b)mF′(ξ), v = −
√

m+1
2 v f Uo(x + b)m−1

[
F + ξF′ m−1

m+1

]
,

(7)

the incompressibility condition is consequently fulfilled and Equations (2), (3), and (5) are lessened to
the following:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1

(1−ϕ)2.5
(
1−ϕ+ ϕ

ρCNT
ρ f

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ F′′′ + FF′′ − 2m

m + 1
(F′)2 +

2m
m + 1

A2 −M2(F′ −A) = 0, (8)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
kn f /k f(

1−ϕ+ ϕ
(ρcp)CNT

(ρcp) f

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
1 +

4
3kn f /k f

Rd

)
Θ′′ + PrFΘ′ + PrEc(F′′ )2 = 0, (9)

F′(α) = 1, F(α) = α 1−m
1+m , Θ(α) = 0, at α = B

√
m+1

2
U0
ν f

,

F′(∞)→ A, Θ(∞)→ 1 α→∞,
(10)

where α = B
√

m+1
2

U0
ν f

is the wall thickness parameter. Putting

F(ξ) = f (η) = f (ξ− α).
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The final equations in one variable form are given here:⎛⎜⎜⎜⎜⎜⎜⎝ 1
(1−ϕ)2.5(1−ϕ+ϕρCNT

ρ f
)

⎞⎟⎟⎟⎟⎟⎟⎠ f ′′′ + f f ′′ − 2m
m + 1

( f ′)2 +
2m

m + 1
A2 −M2( f ′(η) −A) = 0, (11)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
kn f /k f(

1−ϕ+ ϕ
(ρcp)CNT

(ρcp) f

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
1 +

4
3kn f /k f

Rd

)
θ′′ + Pr fθ′ + PrEc( f ′′ )2 = 0, (12)

f ′(0) = 1, f (0) = α 1−m
1+m , θ(0) = 0, at η = 0,

f ′(∞)→ A, θ(∞)→ 1 η→∞,
(13)

where A is defined as ratio parameter, M is defined as magnetic parameter, Rd is defined as
radiation estimator, Pr is defined as Prandtl number, and Ec is defined as the well-known Eckert
number. Mathematically,

A =
U∞
U0

, M =

√
σB2

0

ρcp
, Rd =

4σ∗T3

k f K∗ , Pr =
μcp

k
, Ec =

U2
w

cp(Tw − T∞)
.

The expression of friction coefficient (wall-drag) and local Nusselt (the heat transfer) number are

C f =
τw
ρ f U2

w
, Nux =

(x+b)qw
k f (T∞−Tw)

,

τw = un f

(
∂u
∂y

)
y=B(x+b)

1−m
2

, qw = −κn f

(
∂T
∂y

)
y=B(x+b)

1−m
2

.

The dimensionless forms of the above parameters are

C f Re
1
2
x =

1

(1−ϕ)2.5

√
1
2
(m + 1) f ′′′ (0), NuxRe

−1
2 = −kn f

k f

√
1
2
(m + 1)θ′(0),

where Rex =
Uw(x+b)

ν f
denotes Reynolds number.

3. Mathematical Analysis

3.1. OHAM (BVPh 2.0)

The governing problems are explained using BVPh 2.0, via the homotopy analysis method
(HAM)-based Mathematica package. The BVPh 2.0 is simple to utilize. It simply needs to compose
the required governing problems. For each governing equation, we select the proper auxiliary linear
operators and accurate initial guess for every undetermined function. Expression of linear operators
and initial guesses are

f0(η) = Aη+ (1−A)(1− exp(−η)) − αm− 1
m + 1

, (14)

θ0(η) = 1− exp(−η), (15)

L f ( f ) =
d3 f
dη3 −

d f
dη

, Lθ(θ) =
d2θ

dη2 − θ, (16)

with
L f [E1 + E2 exp(η) + E3 exp(−η)] = 0, (17)

Lθ[E4 exp(η) + E5 exp(−η)] = 0, (18)
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above Ei(i = 1, 2, . . . , 5) shows arbitrary constants.

3.2. Optimal Convergence Analysis

The estimations of convergence control parameters
(
h f , hθ

)
in kerosene oil nanoliquids for both

type of nanotubes, that is, SWCNTs and MWCNTs, are calculated through the boundary value problem
solver package BVPh 2.0. We now continue to attain the solution of governing equations via Boundary
value problem solver package BVPh 2.0. These governing equations hold two unknown convergence
estimates

(
h f , hθ

)
. Optimal estimates of these parameters are calculated by the total minimum error.

It ought to be seen that the convergence estimates assume an essential part in the frame of the homotopy
analysis method (HAM), and HAM differs from other analytical techniques. To enormously diminish
the Central Processing Unit (CPU) time, the average residual error at the kth-order of estimate is
characterized by

ε
f
θ

(
h f , hθ

)
=

1
N + 1

N∑
J=0

⎡⎢⎢⎢⎢⎢⎣ N∑
i=0

( fi)η= jπ

⎤⎥⎥⎥⎥⎥⎦
2

, (19)

and

ε
f
θ

(
h f , hθ

)
=

1
N + 1

N∑
J=0

⎡⎢⎢⎢⎢⎢⎣ k∑
i=0

( fi)η= jπ,
k∑

i=0

(θi)η= jπ

⎤⎥⎥⎥⎥⎥⎦
2

. (20)

The optimal estimates of h f and hθ for single-walled (SWCNT) kerosene oil are h f = −0.338076,
hθ = −0.112645 and those for multi-walled (MWCNT) kerosene oil are h f = −0.373325, hθ = −0.122976.
Figures 2 and 3 are drawn to see the relative total residual errors for SWCNT and MWCNT kerosene
oil, respectively.

Figure 2. Total error vs. order of approximations.

Figure 3. Total error vs. order of approximations.
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4. Results and Discussion

The flow and heat transfer of CNTs (SWCNTs and MWCNTs) with kerosene oil as a base liquid are
investigated. The governing set of nonlinear differential equations is numerically solved. The impact
of A on f ′(η) is plotted in Figure 4 for kerosene oil for SWCNTs and MWCNTs. It is noticed that
the velocity field rises for the increment in A for both A > 1 and A < 1. On the other side, for A > 1
and A < 1, the related thickness of boundary layer has a reverse trend, but for A = 1, no boundary
layer is found. This means that the surface and ambient velocities are the same. The velocity field is
dominant for single-walled tubes as compared with multi-walled tubes. Figure 5 illustrates the impact
of φ on f ′(η). It is observed that velocity distribution is the mounting function for the increment in
φ for SWCNTs and MWCNTs. The increment in nanomaterial volume fraction leads to rise in the
convective flow. It is likewise noticed that f ′(η) enhances for kerosene oil nanoliquid for MWCNT as
compared with SWCNT. The significance of magnetic parameter on the velocity field is outlined in
Figure 6. The velocity f ′(η) and related boundary layer decrease for larger estimates of the magnetic
estimator. The increment in M demonstrates the rise in resistive power (Lorentz force) and, therefore,
the velocity of the liquid reduces. It is additionally noticed that velocity distribution is dominated for
MWCNT as compared with SWCNT kerosene oil. Figure 7 is drawn for the behavior of m on f ′(η).
It is analyzed that, for the higher power index, the velocity profile shows reduction for SWCNTs and
MWCNTs using base liquid kerosene oil.

An analysis of Ec on θ(η) is portrayed in Figure 8. It is worth mentioning that θ(η) becomes
higher for the increment in Ec for both SWCNT and MWCNT. The increment in Eckert number
leads to larger drag forces between the fluid materials. Consequently, more heat is induced and the
temperature distribution increases. The influence of φ on θ(η) is drawn in Figure 9. Here, temperature
distribution reduces with the increase in φ. Additionally, the increment in the nanomaterial volume
fraction causes the improvement of the convective heat phenomenon from heated liquid along the
cold surface, and consequently, temperature reduces. It is additionally noted that the temperature
distribution is dominant for MWCNT as compared with SWCNT. Figure 10 outlines the significance of
the temperature in light of an adjustment in the estimations of the radiation parameter Rd for MWCNT
and SWCNT. Obviously, the temperature distribution and related boundary layer thickness improve
for higher values of the radiation estimator Rd. It is obvious that the surface heat flux increments under
the effect of thermal radiation. Consequently, temperature enhances inside the boundary layer region.

Table 1 displays the thermophysical characteristics of the base liquid kerosene oil with carbon
nanotubes. Table 2 is set up for the square average residual errors of governing problems at various
orders of approximations. It is noticed that the square average residual error diminishes as the request
of estimation rises for SWCNTs and MWCNTs using kerosene oil. Table 3 is drawn for the numerical
values of the friction estimator for various estimates of different related parameters. It is examined that
the friction estimator is larger for higher estimates of m, M, φ, and α, while it decreases for larger A for
both SWCNTs and MWCNTs. Table 4 is set up for the numerical estimates of local Nusselt number for
different values of different appropriate parameters. It is examined that the local Nusselt parameter
rises for larger A, Rd, Ec, and φ, while it lessens for increments in α and M for both single-walled
and multi-walled carbon nanotubes. Table 5 exhibits the relative investigation of the skin fraction
coefficient with the past work of Pop et al. [45] and Sharma and Singh [46] in limiting cases. It is
established that all the outcomes have a decent understanding.
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Figure 4. Impact of A on velocity f ′(η).

 
Figure 5. Impact of φ on velocity f ′(η).

Figure 6. Impact of M on velocity f ′(η).
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Figure 7. Impact of m on velocity f ′(η).

Figure 8. Impact of Ec on velocity θ(η).

 
Figure 9. Impact of φ on velocity θ(η).
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Figure 10. Impact of Ec on velocity θ(η).

Table 1. Data of thermophysical properties for the given particles and fluid. MWCNT, multi-walled
carbon nanotube; SWCNT, single-walled carbon nanotube.

Properties Base Fluid Particles

Kerosene Oil SWCNT MWCNT

ρ 783 2600 1600
cp 2090 425 796
k 0.145 6600 3000

Table 2. Mean square residual errors.

SWCNT MWCNT

k εfk εθk εfk εθk

2 3.42849× 10−6 0.0372506 8.92410× 10−4 0.0171806
4 4.19794× 10−7 2.72977× 10−2 1.12544× 10−6 4.46668× 10−3

8 8.05829× 10−8 4.16494× 10−3 3.82436× 10−9 4.90227× 10−7

12 8.02125× 10−10 3.18276× 10−6 1.07810× 10−10 1.75135× 10−8

14 7.59501× 10−10 1.08974× 10−7 1.08022× 10−11 1.57636× 10−9

16 2.32740× 10−11 1.51108× 10−8 8.61210× 10−13 1.70647× 10−10

Table 3. Skin friction (wall drag) data.

α A φ M m −CfRe
1
2
x

SWCNT MWCNT

0.0 0.1 0.3 0.3 2 2.55298 2.75297
0.2 2.69267 2.69167
0.4 2.63276 2.63177
0.2 0.0 0.3 0.3 2 2.78805 2.78805

0.1 2.69106 2.69106
0.2 2.54457 2.54457

0.2 0.1 0.0 0.3 2 3.65298 3.75297
0.2 3.69267 3.69167
0.4 3.62276 3.62377

0.2 0.1 0.3 0.0 2 2.61848 2.60848
0.2 2.65576 2.64576
0.4 2.77469 2.75469

0.2 0.1 0.3 0.3 0.0 3.51365 3.52365
0.2 3.55576 3.53476
0.4 3.57869 3.57469

136



Mathematics 2020, 8, 104

Table 4. Heat transfer (Nusselt number) data.

α A φ M Rd Ec −Re−1/2
x Nux

SWCNT MWCNT

0.0 0.1 0.3 0.3 0.1 0.5 5.84027 5.94427
0.2 5.64158 5.65078
0.4 5.32405 5.36445
0.2 0.0 0.3 0.3 0.1 0.5 5.72660 5.72560

0.1 5.78191 5.77091
0.2 5.82148 5.81148

0.2 0.1 0.0 0.3 0.1 0.5 3.45876 3.45876
0.2 3.55896 3.55896
0.4 3.78451 3.78451

0.2 0.1 0.3 0.0 0.1 0.5 5.65429 5.65469
0.2 5.64380 5.64280
0.4 5.62461 5.61561

0.2 0.1 0.3 0.3 0.0 0.5 6.25429 6.25129
0.2 7.34380 7.34281
0.4 7.62461 7.63461

0.2 0.1 0.3 0.3 0.1 0.0 4.15419 4.15229
0.2 4.34280 4.35282
0.4 4.62263 4.62462

Table 5. Comparison with previous literature.

A Pop et al. [45] Sharma and Singh [46] Present Results

0.1 −0.9694 −0.969386 −0.96937
0.2 −0.9181 −0.9181069 −0.91813
0.5 −0.6673 −0.667263 −0.66723
0.7 −0.43345
0.8 −0.29921
0.9 −0.15457
1.0 0.00000

5. Conclusions

The present communication reports a theoretical study on the magnetohydrodynamic flow and the
heat exchange of carbon nanotube (CNT)-based nanoliquid over a variable thicker surface. Kerosene
oil is taken as the base fluid for the suspension of nanoparticles. Two types of carbon nanotubes (CNTs)
are accounted for saturation in base fluid, particularly the single-walled and multi-walled carbon
nanotubes, best known as SWCNTs and MWCNTs. The system of nonlinear equations is gained by
a reasonable transformation. Analytic solution is obtained by utilizing a notable procedure called the
optimal homotopic analysis technique. The key points are given below:

• MWCNTs causes enhancement in velocity field as compared with SWCNTs when there is an
increment in the nanoparticle volume fraction φ.

• Higher values given to the magnetic number reduce the flow velocity and are dominant for
MWCNTs as compared with SWCNTs.

• Temperature profile rises with an increment in radiation estimator for both SWCNT and MWCNT.
• Augmented values of Eckert number enhance the thermal distribution, but lesser for SWCNT as

compared with MWCNT.
• Friction coefficient rises for increments in m, M,φ, and α for both type of nanotubes.
• Heat transfer rate lessens for increments in α and M for both SWCNT and MWCNT.
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Nomenclature

The following abbreviations have been used in this text:
Name/Title Description Unit
x, y Cartesian (horizontal and vertical) coordinates m
u, v Velocity (horizontal and vertical) components m

s
νn f Kinematic viscosity of the nanofluid m2

s
μn f Dynamic viscosity of the nanofluid Pa·s
B Magnetic field strength (Ωm)−1

ρ f l Density of the base fluid Kg·m−3

ρn f Density of the nanofluid
k Thermal conductivity W·m−1·K−1

α Thermal diffiusivity m2·s−1

T, Tw, T∞ Temperature distributions K
Uw Stretching velocity m·s−1

C, Cw, C∞ Concentration distributions
DB Brownian diffusion
DT Thermophoresis
Nu Nusselt number
Sh Sherwood number
C f Drag force coefficient
Nb Brownian diffusion parameter
Nt Thermophoresis parameter
b Integer
SWCNTs Single-walled carbon nanotubes
MWCNTs Multi-walled carbon nanotubes
CNTs Carbon nanotubes
MHD Magnetohydrodynamic
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1. Introduction

Fractional calculus is an emerging field of mathematics, which is a generalisation of differentiation
and integration to non-integer orders. The history of fractional calculus is almost as long as the
history of classical calculus, beginning with some speculations of Leibniz (1695, 1697) and Euler (1730).
However, fractional calculus and fractional differential equations (FDEs) are increasingly becoming
popular in recent years. The progressively developing history of this old and yet novel topic can be
found in [1–5]. In fact, fractional calculus provides the mathematical modeling of some important
phenomena like social and natural in a more powerful way than the classical calculus. During the last
few decades, many applications were reported in many branches of science and engineering such as
chaotic systems [6,7], fluid mechanics [8], viscoelasticity [9], optimal control problems [10,11], chemical
kinetics [12,13], electrochemistry [14], biology [15], physics [16], bioengineering [17], finance [18], social
sciences [19], economics [20,21], optics [22], chemical reactions [23], rheology [24], and so on. Due to
the importance of FDEs, the solutions of them are attracting widespread interest. On the other hand,
analytical solutions are not always possible for solving them. Therefore, numerical techniques becomes
more important for solving such equations.

There are various numerical methods have been developed for solving FDEs in literature such as
predictor-corrector method [25], Laplace transforms [26], Taylor collocation method [27], variational
iteration method and homotopy perturbation method [8] (Chapter 6), Adomian decomposition
method [28], Tau method [29], inverse Laplace transform [30], Haar wavelet collocation method [31],
generalized block pulse operational matrix [32], shifted Legendre-tau method [33], fractional multi-step
differential transformed method [34], q-homotopy analysis transform method [35], conformable
Laplace transform [36], fractional B-splines collocation method [37], finite difference method [38],
homotopy analysis method [39] and so on.
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Multi-term fractional differential equations are one of the most important type of FDEs, which is
a system of mixed fractional and ordinary differential equations and involving more than one fractional
differential operators. Nowadays, they are widely appearing for modelling of many important
processes, especially for multirate systems. Their numerical solution is then a strong subject that
deserves high attention. In this paper, motivated by the results reported in [40,41] for solving a smaller
class of problems where the highest order of derivative is an integer and involving at most one
noninteger order derivative, we go further and establish a method for numerical solutions for higher
order and arbitrary multi-term fractional differential equations which have a general form

Dαy(t) = f
(

t, y(t), Dβ0 y(t), Dβ1 y(t), ..., Dβk y(t)
)

, t ∈ [0, R] (1)

where Dα representing the Caputo fractional derivative of order α > 0 and we assume that 0 < β0 <

β1 < ... < βk < α, y(p) = Yp, p = 0, 1, ...n where n− 1 < α < n.
Multi-term fractional order differential equations also have useful properties and they can

describe complex multi-rate physical processes in a various way and can be applied in many fields,
see e.g., [2,4,26,42]. Basset [43] and Bagley–Torvik [44] equations can be given as important examples
for smaller class of multi-term fractional differential equations. Existence, uniqueness and stability of
solution for multi-term fractional differential equations are discussed in [45–49]. Because of difficulty of
finding the exact solutions for such equations, many new numerical techniques have been developed to
investigate the numerical solutions such as Adams method [50], Haar wavelet method [51], differential
transform method [52], Adams–Bashforth–Moulton method [53], collocation method based on shifted
Chebyshev polynomials of the first kind [54], Boubaker polynomials method [55], matrix Mittag–Leffler
functions [56], differential transform method [57] and so on.

Our main purpose is to present an effective, reliable method to approximate initial value problem
for the Equation (1). In order to reach this aim, we rewrite and focus the general type of Caputo
multi-term fractional differential equation given in Equation (1) in the following linear form

Dαy(t) =
k

∑
i=0

uiDβi y(t) + uk+1y(t) + f (t), 0 ≤ t ≤ R, (2)

subject to the

y(p)(0) = Yp, p = 0, 1, ..., n− 1 where n− 1 < α < n

ui (i = 0, 1, ..., k) are known coefficients and (3)

0 < β0 < β1 < ... < βk < α

Here, we also state that the highest order α need not to be an integer. This equation is important
in applications due to the fact it can treat the problems with fractional force, therefore it is suitable for
being treated within fractional operators of Caputo type.

In this work, a numerical approach based on fractional Taylor vector is proposed to solve the
initial value problem of general type of multi-term fractional differential equations which is given in
Equations (2) and (3). The core idea of this method is to employ the operational matrix of fractional
integration based on fractional Taylor vector to given problem and reduce it to a set of algebraic
equations which can be efficiently solved.

The structure of the manuscript is organized as follows. In Section 2, we briefly introduce some
preliminary ideas of fractional calculus and necessary definitions. In Section 3, an operational matrix
of fractional integration based on fractional taylor vector is derived. In Section 4, we present the
numerical algorithm to solve the given equation and a pseudo-code for matlab is also provided in
Algorithm 1. In Section 5, the presented method is applied to six examples to demonstrate the efficiency.
A final conclusion is presented in the last section.
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2. Preliminary Knowledge

In this section, we recall some fundamental definitions and preliminary facts of fractional calculus.

2.1. The Fractional Integral and Derivative

Definition 1. The Riemann–Liouville fractional integral to order α of an integrable function y(t) is defined
to be

Iαy(t) =

⎧⎪⎨⎪⎩
1

Γ(α)

∫ t

0
(t− s)α−1y(q)ds, α > 0

y(t), α = 0
(4)

When applied to a power function, it yields the following result:

Iα(t)c =
Γ(c + 1)

Γ(c + α + 1)
(t)c+α, α ≥ 0, c > −1 (5)

The operator has a semigroup property, namely

Iα Iβy(t) = Iβ Iαy(t), α, β > 0

and it is linear, namely

Iα(A1y1(t) + A2y2(t)) = A1 Iαy1(t) + A2 Iαy2(t)

for any two functions y1,y2 and constants A1,A2.

Definition 2. The fractional derivative of y(t) of the order α in the Caputo sense is given as

Dαy(t) = I j−α

(
dj

dtj y(t)
)

, j− 1 < α ≤ j, j ∈ N (6)

2.2. Some Properties

1. The Riemann-Liouville fractional integral and Caputo fractional derivative do not usually
commute with each other. The following Newton–Leibniz identity gives an important relation
between them:

Iα(Dαy(t)) = y(t)−
j−1

∑
i=0

y(i)(0)
ti

i!
(7)

2. The Caputo fractional derivative also has the following substitution identity. If we write y1(q) =
y(qR) and q = t/R, then

Dαy(t) =
1

Rα
Dαy1(q) (8)

where j− 1 < α ≤ j, j ∈ N

3. Operational Matrix of Fractional Integration for Fractional Taylor Vector

3.1. Fractional Taylor Basis Vector

We shall make use of the fractional Taylor vector,

Tmδ(t) =
[
1, tδ, t2δ, ..., tmδ

]
(9)

for m ∈ N and δ > 0 in the work of this paper.
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3.2. Approximation of Function

Suppose that Tmδ(t) ⊂ H, where H is the space of all square integrable functions on the interval
[0, 1]. For any y ∈ H, since S = span

{
1, tδ, t2δ, ..., tmδ

}
is a finite dimensional vector space in H, then, y

has a unique best approximation y∗ ∈ S, so that

∀ŷ ∈ S, ‖y− y∗‖ ≤ ‖y− ŷ‖

Therefore, the function y is approximated by fractional Taylor vector as following

y � y∗ =
m

∑
i=0

citiδ = CTTmδ(t) (10)

where Tmδ(t) denote the fractional Taylor vector and

CT = [c0, c1, c2, ..., cm] (11)

are the unique coefficients.

3.3. Fractional Taylor Operational Matrix of Integration

By using the property of Riemann-Liouville fractional integral given in Equations (5) and (9),
we get

Iα(Tmδ(t)) =
[

1
Γ(α+1) tα, Γ(δ+1)

Γ(δ+α+1) tδ+α, Γ(2δ+1)
Γ(2δ+α+1) t2δ+α, ..., Γ(mδ+1)

Γ(mδ+α+1) tmδ+α
]

= tα MαTmδ(t) (12)

where

Mα = diag
[

1
Γ(α + 1)

,
Γ(δ + 1)

Γ(δ + α + 1)
,

Γ(2δ + 1)
Γ(2δ + α + 1)

, ...,
Γ(mδ + 1)

Γ(mδ + α + 1)

]
denotes the operational matrix of integration.

If we define Gα as

Gα =

[
1

Γ(α + 1)
,

Γ(δ + 1)
Γ(δ + α + 1)

,
Γ(2δ + 1)

Γ(2δ + α + 1)
, ...,

Γ(mδ + 1)
Γ(mδ + α + 1)

]
then, we can rewrite the Equation (10) as

Iα(Tmδ(t)) = tαGα ∗ Tmδ(t) (13)

where ∗ denotes the operation of multiplying matrices term by term.

4. The Numerical Algorithm

In this section, to solve the given multi-term fractional differential equation in Equations (2) and (3),
we employ the fractional Taylor method. The algorithm of method is given below.

Firstly, by using the transformation q = t/R, we replace the variable t ∈ [0, R] with q ∈ [0, 1].
Now, by using Equation (8) in Equation (2), we get

1
Rα

Dαy1(q) =
k

∑
i=0

1
Rβi

uiDβi y1(q) + uk+1y1(q) + f1(q), 0 ≤ s ≤ 1 (14)
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where f1(q) = f (qR) and y1(q) = y(qR). Similar to Equation (10) we approximate the y1(q) as

y1(q) =
m

∑
i=0

ciqiδ = CTTmδ(q) (15)

such that Tmδ(q) = [1, qδ, q2δ, ..., qmδ]T is the fractional Taylor vector and the unique coefficients CT is
given in Equation (11).

Next, applying the Riemann–Liouville fractional integral on both side of (14), we get

1
Rα

[
y1(q)−

n−1

∑
j=0

y(j)
1 (0+)

tj

j!

]
=

k

∑
i=0

1
Rβi

ui Iα−βi

[
y1(q)−

ni−1

∑
j=0

y(j)
1 (0+)

tj

j!

]
+ uk+1 Iαy1(q) + Iα f1(q) (16)

where y(p)(0) = Vp, p = 0, 1, ..., n− 1 where ni − 1 < βi < ni.
Hence, by substituting initial conditions (3), we get

1
Rα

[y1(q)] =
k

∑
i=0

1
Rβi

ui Iα−βi [y1(q)] + uk+1 Iαy1(q) + h1(q) (17)

such that h1(q) = Iα f1(q) + 1
Rα

(
∑n−1

j=0 Vj
tj

j!

)
+ ∑k

i=0
1

Rβi
ui Iα−βi

(
∑ni−1

j=0 Vj
tj

j!

)
.

Now, by using the Equation (12), we approximate the fractional order integrals in Equation (17)
and we have

1
Rα

[
CTTmδ(q)

]
=

k

∑
i=0

1
Rβi

uiCTqα−βi
(
Gα−βi ∗ Tmδ(q)

)
+ uk+1qαCT(Gα ∗ Tmδ(q)) + h1(q) (18)

Finally, by taking the collocation points qj = j/m (j = 0, 1, ..., m) in Equation (18), we get m + 1
linear algebraic equations. This linear system can be solved for the unknown vector CT . Consequently,
y1(q) can be approximated by Equation (15).

MATLAB Implementation of Method

The pseudocode given in Algorithm 1 below allows us to use proposed method in MATLAB for
obtain a numerical solution of given problem [58].
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Algorithm 1: Fractional Taylor Method
[A, b] = f ractionalTaylor(alpha, beta, Uk, f unc, t0, R, y0, m, delta)
% Input

% alpha is the highest order of fractional derivative of given equation
% beta is the order of fractional derivatives other than alpha. beta must be a vector with
decending ordered values
% Uk is the vector of coefficients
% f unc is defining the right hand side of given problem
% t0 and R denotes the left and right endpoints
% y0 is the initial conditions
% m denotes the number of steps
% delta is a real number greater than zero. We usually take delta = 1 or delta =fractional
part of alpha

% Output

% A is an (m + 1) x (m + 1) matrix
% b is an (m + 1) x 1 matrix

% using f ractionalTaylor.m, where command f ractionalTaylor.m is defined by the
Equation (18), gives us the linear system AC = B which is (m + 1)

% algebraic equations with unknown coefficients CT

% Next step is to use matlab function linsolve(A, b) to solve obtained algebraic equation for
unknown coefficient vector CT with dimension (m + 1).
C = linsolve(A, b)
% Output

% C is an (m + 1) x 1 matrix which is the solution of linear system AC = B

% Next step is substituting obtained coefficients to approxSoln() as input, where the command
approxSoln() defined by Equation (15), we get the approximate solution of given problem
[s, y] = approxSoln(C)
% Input

% C is the vector of coefficients obtained in previous step.

% Output

% s is the nodes on [t0, R] in which the approximate solution calculated
% y is the numerical solution evaluated in the points of s.

5. Illustrative Examples

To illustrate the applicability and effectiveness of the presented method, we give six examples
in this section. In each example, we apply the fractional Taylor operational matrix method which
is presented in previous section and the approximate results compared with analytical solutions.
Obtained results indicate that the proposed technique is very effective for multi-term fractional
differential equations. In order to solve the numerical computations, MATLAB version R2015a has
been used.

For choosing δ, we usually take either δ = 1 or δ = α− �α�, the fractional part of α.
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5.1. Example 1

Consider the following form of multi-order fractional differential equation [59]

Dαy(t) = u0Dβ0 y(t) + u1Dβ1 y(t) + u2Dβ2 y(t) + u3Dβ3 y(t) + f (t), 0 ≤ t ≤ R, (19)

y(0) = V0, y′(0) = V1

We let α = 2, V0 = V1 = 0, R = 1, the coefficients u0 = u2 = −1, u1 = 2, u3 = 0 and
β0 = 0, β1 = 1, β2 = 1

2 and the function f (t) is

f (t) = t7 +
2048

429
√

π
t6.5 − 14t6 + 42t5 − t2 − 8

3
√

π
t1.5 + 4t− 2.

where the exact solution is y(t) = t7 − t2.
We apply the given procedure which is implemented in previous section for solving the

Equation (19) step by step.
Firstly, change variable t ∈ [0, R] to q ∈ [0, 1] by using q = t/R.
Now, we use the Equation (8) and get

1
Rα

Dαy1(q) =
u0

Rβ0
Dβ0 y1(q) +

u1

Rβ1 Dβ1 y1(q) +
u2

Rβ2
Dβ2 y1(q) +

u3

Rβ3
Dβ3 y1(q) + f1(q) (20)

where 0 ≤ q ≤ 1.
Next, using Equation (7) we get

1
Rα

(y1(q)− y1(0)− qy1′(0)) =
u0

Rβ0
Iα−β0(y1(q)− y1(0)− qy1′(0))

+
u1

Rβ1 Iα−β1(y1(q)− y1(0)− qy1′(0))

+
u2

Rβ2
Iα−β2(y1(q)− y1(0)− qy1′(0))

+
u3

Rβ3
Iα−β3(y1(q)− y1(0)− qy1′(0))

+ Iα f1(q). (21)

Now, using Equation (21) and substituting initial conditions y(0) = V0, y′(0) = V1 into equation

1
Rα

(CTTmδ(q)−V0 − RqV1) =
u0

Rβ0
Iα−β0(CTTmδ(q)−V0 − RqV1)

+
u1

Rβ1 Iα−β1(CTTmδ(q)−V0 − RqV1)

+
u2

Rβ2
Iα−β2(CTTmδ(q)−V0 − RqV1)

+
u3

Rβ3
Iα−β3(CTTmδ(q)−V0 − RqV1)

+ Iα f1(q). (22)
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From Equation (12), we have

1
Rα

(CTTmδ(q)−V0 − RqV1)

=
u0

Rβ0
qα−β0 CT(Gα−β0 ∗ Tmδ(q))−

u0qα−β0

Rβ0 Γ(α− β0 + 1)
V0 −

u0qα−β0+1

Rβ0 Γ(α− β0 + 2)
V1

+
u1

Rβ1 qα−β1 CT(Gα−β1 ∗ Tmδ(q))−
u1qα−β1

Rβ1 Γ(α− β1 + 1)
V0 −

u1qα−β1+1

Rβ1Γ(α− β1 + 2)
V1

+
u2

Rβ2
qα−β2 CT(Gα−β2 ∗ Tmδ(q))−

u2qα−β2

Rβ2 Γ(α− β2 + 1)
V0 −

u2qα−β2+1

Rβ2 Γ(α− β2 + 2)
V1

+
u3

Rβ3
qα−β3 CT(Gα−β3 ∗ Tmδ(q))−

u3qα−β3

Rβ3 Γ(α− β3 + 1)
V0 −

u3sα−β3+1

Rβ3 Γ(α− β3 + 2)
V1

+ Iα f1(q). (23)

Now, taking R = 1 in Equation (23) and putting the given values for V0, V1, ui, βi where i = 0, 1, 2, 3
into this equation, we get

CTTmδ = 2q1CT(G1 ∗ Tmδ(q))− q3/2CT(G3/2 ∗ Tmδ(q))− q2CT(G1 ∗ Tmδ(q)) + I2 f1(q) (24)

Finally, taking the collocation points qj = j/m (j = 0, 1, ..., m) generates a linear algebraic system
of dimension m + 1 with unknown vector CT . In order to solve this system by using presented method
and comparing the results, we choose δ = 1 and different values of m.

To show the efficiency, we compared the numerical results with the method given in [59].
Table 1, compares the obtained results for absolute error with m = 4, 6, 7. We observe from Table 1

that, the absolute errors for presented method are smaller and the numerical solution is more accurate
for the same size of m.

Table 1. The comparison absolute errors of the present scheme and method given in [59] with
m = 4, 6, 7.

t
Present Method Method in [59] Present Method Method in [59] Present Method Method in [59]

m = 4 m = 4 m = 6 m = 6 m = 7 m = 7

0.2 0.0116 0.0844 6.81430698097618 × 10−7 0.0044 1.040834086 × 10−16 2.81025203108243 × 10−15

0.4 0.0032 0.3501 1.01100805164899 × 10−4 0.0079 2.498001805 × 10−16 6.63358257213531 × 10−15

0.6 0.0108 0.6734 1.2907314422994 × 10−5 0.0143 1.665334537 × 10−16 3.27515792264421 × 10−15

0.8 0.0037 1.0234 1.16246682382747 × 10−4 0.0214 3.330669074 × 10−16 4.25770529943748 × 10−14

1.0 0.0026 1.6700 1.11299947542775 × 10−5 0.0280 1.110223025 × 10−16 2.43819897540083 × 10−13

In Figures 1–3, we present the graphical representation of comparison between exact solution and
the numerical solutions obtained by proposed method and the method of [59] for the problem (19)
with m = 4, 6, 7 respectively. From these results, we can conclude that m = 4 and m = 6 give larger
absolute error, while m = 7 gives smaller absolute error (10−16) and more precise numerical solution.
These comparisons also shows that the results obtained by proposed method is closer to the exact
solution than the results of [59].
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Figure 1. The comparison between exact solution and the numerical solutions obtained by proposed
method and the method of [59] with m, n = 4.

Figure 2. The comparison between exact solution and the numerical solutions obtained by proposed
method and the method of [59] with m, n = 6.
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Figure 3. The comparison between exact solution and the numerical solutions obtained by proposed
method and the method of [59] with m, n = 7.

In Figure 4, we show the graphical representation of absolute errors obtained by using proposed
method and the method of [59] with m, n = 6.

Figure 4. The behaviour of absolute errors obtained by using proposed method and the method of [59]
with m, n = 6.
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From Figure 4, we can conclude that the absolute error obtained by our method is remaining
smaller and stable while the absolute error of other method is increasing in the interval [0, 1].

In Figures 5 and 6, we give the graphical representation of absolute errors obtained by using
proposed method with m = 4, 7 respectively.

Figure 5. The absolute error with m = 4.

Figure 6. The absolute error with m = 7.

A pseudo-code for MATLAB implementation of Example 1 is given in Algorithm 2 below :
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Algorithm 2: Fractional Taylor Method
alpha = 2;
beta = [1, 1/2, 0];
Uk = [2,−1,−1];
f unc =@(t) t7 + 2048/(429 ∗ sqrt(pi)) ∗ t6.5 − 14 ∗ t6 + 42 ∗ t5 − t2 − ...

8/(3 ∗ sqrt(pi)) ∗ t1.5 + 4 ∗ t− 2;
t0 = 0 ; R = 1;
y0 = [0; 0];
m = 4;
delta = 1;
[A, b] = f ractionalTaylor(alpha, beta, Uk, f unc, t0, R, y0, m, delta)
C = linsolve(A, b)
[s, y] = approxSoln(C)

5.2. Example 2

In this example, we consider the Equation (19) with α = 2, V0 = V1 = 0, the coefficients u0 =

u2 = −1, u1 = 0, u3 = 2 and β0 = 0, β2 = 2
3 , β3 = 5

3 and the function is

f (t) = t3 + 6t− 12
Γ( 7

3 )
t

4
3 +

6
Γ( 10

3 )
t

7
3 .

The exact solution of this equation is y(t) = t3 [59].
Applying the same procedure to given problem as presented in Example 1, we get the

following equation

CTTmδ = 2q1/3CT(G1/3 ∗ Tmδ(q))− q4/3CT(G4/3 ∗ Tmδ(q))− q2CT(G2 ∗ Tmδ(q)) + I2 f1(q) (25)

As we stated in previous example, collocating this equation at the nodes qj = j/m (j = 0, 1, ..., m)
generates a system of algebraic equations. In this example, to solve this sysem for CT , we choose
δ = 1, 1.5 and different values of m.

Table 2 shows the results for obtained absolute errors by using presented method with m = 2, 3.
From these results, we can see that, there is satisfactory agreement between the exact solution and
numerical solutions. The absolute error is achieved about 10−15. We also note that, the proposed
method gives better results for m = 2 by taking δ = 1.5.

Table 2. The absolute errors with m = 2, 3.

t δ = 1, m = 2 δ = 1.5, m = 2 δ = 1, m = 3

0 0 0 0
0.1 0.010209105 1.3 × 10−17 7.42 × 10−17

0.2 0.008778787 4.68 × 10−17 1.232 × 10−16

0.3 0.001709047 1.11 × 10−16 1.769 × 10−16

0.4 0.005000117 2.082 × 10−16 2.637 × 10−16

0.5 0.005348703 3.608 × 10−16 4.163 × 10−16

0.6 0.006663287 5.829 × 10−16 6.661 × 10−16

0.7 0.037035855 8.882 × 10−16 9.992 × 10−16

0.8 0.091769001 1.2212 × 10−15 1.5543 × 10−15

0.9 0.176862723 1.6653 × 10−15 1.9984 × 10−15

1.0 0.2983170221 2.2204 × 10−15 2.8866 × 10−15
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In Figure 7a, we show the graphical representation of obtained numerical solution and the exact
solution of the given problem. Figure 7b presents the obtained absolute error by using proposed
method with m = 3.

Figure 7. (a) The numerical and the exact solutions with m = 3. (b) The absolute error with m = 3.

5.3. Example 3

Consider the multi-term fractional order initial value problem [54]

D(2.2)y(t) + 1.3D(1.5)y(t) + 2.6y(t) = sin(2t), (26)

with initial conditions
y(0) = y′(0) = y′′(0) = 0,

where the equation have the series solution given by [52]

ys(t) =
28561

3600000
t6 +

2
Γ(4.2)

t3.2 − 13
5Γ(4.9)

t3.9 +
169

50Γ(5.6)
t4.6

− 8
Γ(6.2)

t5.2 − 2197
500Γ(6.3)

t5.3 − 26
5Γ(6.4)

t5.4 +
52

5Γ(6.9)
t5.9. (27)

In order to solve this problem, we choose δ = 1, and m = 10.
We give the comparison of series solution and the numerical solution obtained by presented

method in Table 3. Table 4 compares the obtained absolute errors by using presented method with the
results of [54]. From this compared results, it can be seen that the approximate solution is very close to
series solution for a small number of m for the given method.

From the compared results of Table 4, we can conclude that the proposed method has better
approach to series solution with a smaller m.
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Table 3. Comparison of numerical solution with series solution for Example 3.

t Series Solution [52] Present Method m = 10

0.0 0 0
0.1 0.000147766 0.000147731
0.2 0.001274983 0.001275552
0.3 0.00439917 0.00440567
0.4 0.010405758 0.010441315
0.5 0.019962077 0.020094648
0.6 0.033452511 0.033841301
0.7 0.050923716 0.051890573
0.8 0.0720381 0.074169634
0.9 0.096035415 0.100321388

Table 4. Comparison of absolute errors for Example 3.

t Present Method m = 10 Method in [54] m = 20

0.0 0 0
0.1 3.47449 × 10−8 5.2560 × 10−7

0.2 5.69366 × 10−7 1.7150 × 10−6

0.3 6.49968 × 10−6 8.2260 × 10−6

0.4 3.55576 × 10−5 3.7820 × 10−5

0.5 0.000132571 0.0001353
0.6 0.00038879 0.000392
0.7 0.000966858 0.0009704
0.8 0.002131534 0.002135
0.9 0.004285973 0.00429

The graphical representation of comparison between series solution and numerical solutions
obtained by presented method and the method of [54] in the interval [0, 1] is illustrated in Figure 8.

Figure 8. The comparison between series solution and numerical solutions obtained by proposed
method and the method of [54] with m = 10.

156



Mathematics 2020, 8, 96

In Figure 9, we show present graphical representation of absolute errors obtained by using
proposed method and the method of [54] with m = 10.

Figure 9. The behaviour of absolute errors obtained by using proposed method and the method of [54].

In Figure 10, we show the graphical representation for series solution and the numerical results
of presented method for the interval [0, 10]. The results plotted in Figure 10 are in a very good and
satisfactory agreement with the series solution given in [52] and the results of [60].

Figure 10. The behaviour of series solution and the numerical solution obtained by proposed method
for the interval [0, 10].
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5.4. Example 4

Motivated by [50], we consider the following form of fractional differential equation,

Dαy(t) + y(t) =

⎧⎪⎨⎪⎩
2

Γ(3− α)
t2−α + t2 − t, α > 1

2
Γ(3− α)

t2−α − 1
Γ(2− α)

t1−α + t2 − t, α ≤ 1
(28)

with initial conditions
y(0) = 0, y′(0) = −1

whose exact solution is y(t) = t2 − t.
In order to apply the presented method to Equation (28) and compare the results with methods

of [54,61,62], we solve this problem with α = 0.3, 0.5, 0.7, 1.25, 1.5, 1.85, and different values for δ and
m. The obtained results are presented as below.

In Table 5, we list the results of obtained absolute errors for α = 0.3, 0.5, 0.7 by use of presented
method. Also, the results for α = 1.25, 1.5, 1.85 are given in Table 6.

Table 5. The absolute errors with m = 3 and α < 1 for Example 4.

t α = 0.3 α = 0.5 α = 0.7

0 0 0 0
0.1 4.16 × 10−17 8.33 × 10−17 1.94 × 10−16

0.2 8.33 × 10−17 5.55 × 10−17 2.78 × 10−16

0.3 1.11 × 10−16 2.78 × 10−17 2.50 × 10−16

0.4 1.67 × 10−16 1.39 × 10−16 2.50 × 10−16

0.5 1.67 × 10−16 1.11 × 10−16 1.67 × 10−16

0.6 1.67 × 10−16 5.55 × 10−17 2.78 × 10−17

0.7 1.67 × 10−16 8.33 × 10−17 8.33 × 10−17

0.8 3.05 × 10−16 5.55 × 10−17 1.11 × 10−16

0.9 2.08 × 10−16 1.25 × 10−16 1.39 × 10−16

1.0 1.91 × 10−16 1.26 × 10−16 8.91 × 10−17

Table 6. The absolute errors with m = 3 and α > 1 for Example 4.

t α = 1.25 α = 1.5 α = 1.85

0.0 0 0 0
0.1 1.39 × 10−17 2.78 × 10−17 1.25 × 10−16

0.2 5.55 × 10−17 5.55 × 10−17 1.94 × 10−16

0.3 5.55 × 10−17 5.55 × 10−17 2.22 × 10−16

0.4 5.55 × 10−17 2.78 × 10−17 2.50 × 10−16

0.5 1.11 × 10−16 0 2.22 × 10−16

0.6 1.67 × 10−16 5.55 × 10−17 1.67 × 10−16

0.7 1.94 × 10−16 5.55 × 10−17 5.55 × 10−17

0.8 3.05 × 10−16 1.39 × 10−16 5.55 × 10−17

0.9 1.11 × 10−16 8.33 × 10−17 1.39 × 10−17

1.0 8.21 × 10−17 1.97 × 10−16 1.06 × 10−16

In Figure 11a,b, we present the graphical representation of obtained results for numerical and
exact solution of the given problem and absolute error for α = 1.5 in the interval [0, 1].

In Figure 12, we plot the graphical representation for behavior of the obtained numerical solution
by use of the presented method and the exact solution of the given problem for α = 1.5 in the interval
[0, 15].
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Figure 11. (a) The numerical and exact solutions for α = 1.5. (b) The absolute error for α = 1.5.

Figure 12. The behaviour of the obtained numerical and exact solutions with α = 1.5 for the interval
t ∈ [0, 15].

Table 7 lists the obtained absolute errors for the given problem (28) at t = 1, 5, 10, 50 and α = 1.5 by
use of presented method and some other methods in literature [54,61,62]. From this compared results,
we can say that the numerical solution obtained by use of proposed method is in better agreement
with the exact solution and obtained absolute error is smaller.

Table 7. Comparison of absolute errors between proposed method and some other numerical methods
in literature at t = 1, 5, 10, 50 for α = 1.5.

t
Presented Method Method of [63] Method of [50] Method of [64]

δ = 1/2, m = 4 n = 20 h = 1/320 p = 1, T = 1

1 7.99361 × 10−14 9.10 × 10−5 3.42 × 10−3 -
5 2.55795 × 10−13 2.42 × 10−3 - -
10 1.42109 × 10−13 5.50 × 10−3 - -
50 3.63798 × 10−12 3.74 × 10−2 - 1.2
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In Figure 13, the behaviour of absolute error for α = 1.5 with m = 4 and δ = 1/2, 1 at t ∈ [0, 50] is
presented. From this graph, it can be seen that we get better results by taking δ = 1/2 for this example
and the numerical solution is very close to exact solution for a small number of m.

Figure 13. The behaviour of the absolute errors for proposed method where α = 1.5, t ∈ [0, 50] with
m = 4 and δ = 1/2, 1.

5.5. Example 5

In this example, we consider the following form of linear multi-term fractional differential
equation with variable coefficients [65]

aD2y(t) + b(t)Dβ1 y(t) + c(t)Dy(t) + e(t)Dβ2 y(t) + k(t)y(t) = f (t), (29)

with,
y(0) = 2, y′(0) = 0

where 0 < β2 < 1, 1 < β1 < 2 and

f (t) = −a− b(t)
Γ(3− β1)

t2−β1 − c(t)t− e(t)
Γ(3− β2)

t2−β2 + k(t)
(

2− t2

2

)

whose the exact solution is given by y(t) = 2− t2

2 .
We give the numerical solution for the given problem by proposed method for a = 1, b(t) =√

t, c(t) = t
1
3 , e(t) = t

1
4 , k(t) = t

1
5 , β2 = 0.333, β1 = 1.234 with δ = 1.

In Table 8, we give the results for maximum errors obtained by use of proposed method and
comparison with the results of [65,66]. From this compared results, we can see that the numerical
solution obtained by use of proposed method is closer to the exact solution.

Table 8. Maximum errors of Example 5 for R = 1 with m = 3, 4, 5, 6, 10, 20, 40.

m Present Method Method Given in [66] Method Given in [65]

3 4.44089 × 10−16 4.4409 × 10−16 -
4 6.66134 × 10−16 1.4633 × 10−13 -
5 4.44089 × 10−16 3.2743 × 10−12 6.88384 × 10−5

6 4.44089 × 10−16 1.0725 × 10−13 -
10 2.22045 × 10−15 - 3.00351 × 10−6

20 3.47278 × 10−13 - 1.67837 × 10−7

40 1.46549 × 10−13 - 1.02241 × 10−8
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Figure 14 presents the graphical representation for behaviour of numerical and exact solutions
with m = 6. From this representation, we can see that the numerical solution is in a very good
agreement with exact solution.

Figure 14. The behaviour of the numerical and exact solutions with m = 6.

5.6. Example 6

For the last example, let us consider the below fractional differential equation [63]

y′(t) + D1/2y(t)− 2y(t) = 0, t ∈ (0, R], (30)

y(0) = 1

which arises, for example, in the study of generalized Basset force occuring when a spherical object
sinks in a (relatively dense) incompressible viscous fluid; see [43,67]. By use of Laplace transformation
of Caputo derivatives, we get the analytical solution as following

y(t) =
2

3
√

t
E1/2,1/2(

√
t)− 1

6
√

t
E1/2,1/2(−2

√
t)− 1

2
√

πt
,

where the Mittag–Leffler function Eλ,μ(t) with parameters λ, μ > 0 is given as

Eλ,μ(t) =
∞

∑
k=0

tk

Γ(λk + μ)
.

This Mittag–Leffler function and its variations are very significant in fractional calculus and
fractional differential equations [68].

In order to solve given problem by use of proposed method and compare the results, we take
t ∈ (0, 5] and use different values of δ and m.

Table 9 lists the exact and obtained numerical solutions by use of presented method and method
of [63] for the given problem for m = 5, 10, 15, 20. Comparison of this results shows that, even for small
values of m, the numerical solution obtained by use of presented method is in a better agreement with
exact solution.
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Table 9. The resulting values for Example 6, with R = 5 in some values of t.

t Exact
Proposed Method Given Proposed Method Given Proposed Method Given Proposed Method Given
Method in [63] Method in [63] Method in [63] Method in [63]
m = 5 m = 5 m = 10 m = 10 m = 15 m = 15 m = 20 m = 20

1 3.42445 3.42415 2.714336 3.425121 3.426525 3.42376044 3.42496 3.424563 3.424807
2 9.69088 9.670891 8.922571 9.692732 9.696794 9.68896761 9.692754 9.691185 9.691706
3 26.6414 26.60757 24.59981 26.64646 26.65929 26.6362145 26.64683 26.64225 26.64381
4 72.6729 72.53849 65.78029 72.68665 72.72038 72.6587861 72.68787 72.6752 72.67936
5 197.77 197.5757 180.1481 197.8077 197.8994 197.731934 197.8112 197.7766 197.7879

In Figures 15a, 16a and 17a, we present the graphical representation of comparison between exact
solution and the numerical solutions obtained by using proposed method and the method of [63] with
taking m = 5, 10, 20 respectively. Also in Figures 15b, 16b and 17b we show the behaviour of absolute
errors obtained by proposed method and the method of [63] in the interval [0, 1] with m = 5, 10, 20.

Figure 15. (a) The comparison of analytical solution and numerical solutions obtained by the proposed
method and the method of [63] with m = 5. (b) The behaviour of the absolute errors between the exact
solution and numerical solutions obtained by our method and the method given in [63] with m = 5.

Figure 16. (a) The comparison of analytical solution and numerical solutions obtained by the proposed
method and the method of [63] with m = 10. (b) The behaviour of the absolute errors between the
exact solution and numerical solutions obtained by our method and the method given in [63] with
m = 10.
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Figure 17. (a) The comparison of analytical solution and numerical solutions obtained by the proposed
method and the method of [63] with m = 20. (b) The behaviour of the absolute errors between the
exact solution and numerical solutions obtained by our method and the method given in [63] with
m = 20.

From these graphical results represented in Figures 15–17, we can conclude that the absolute error
obtained by our method is remaining smaller when compared the absolute error of method given in
Reference [63].

6. Conclusions

In this work, an operational matrix based on the fractional Taylor vector is used to numerically
solve the multi-term fractional differential equations by reducing them to a set of linear algebraic
equations, which simplifies the problem. From comparison of the obtained results with exact solutions
and also with results of other methods in the literature, we conclude that the proposed method
provides the solution with high accuracy. The findings also show that, even for the small number
of steps, we can get satisfactory results by using presented method. All computational results are
obtained by using MATLAB.
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Abstract: In this paper, we compare a multi-step method and a multi-stage method for stiff initial
value problems. Traditionally, the multi-step method has been preferred than the multi-stage for a
stiff problem, to avoid an enormous amount of computational costs required to solve a massive linear
system provided by the linearization of a highly stiff system. We investigate the possibility of usage
of multi-stage methods for stiff systems by discussing the difference between the two methods in
several numerical experiments. Moreover, the advantages of multi-stage methods are heuristically
presented even for nonlinear stiff systems through several numerical tests.

Keywords: multi-stage method; multi-step method; Runge–Kutta method; backward difference
formula; stiff system

1. Introduction

Most time-dependent differential equations are usually solved by multi-stage (one-step) method or
multi-step method [1–3]. In general, there seems to be no significant difference in the structure between
them when the multi-stage method is applied to get an initial guess for the multi-step method [4].
Nonetheless, a comparison of both methods has attracted quite a lot of interest from the viewpoints of
convergence, stability, practical computations, numerical efficiency, etc. [5–11]. Comparisons in this
regard do not take into account the impact of advances in computer science and technologies such
as artificial intelligence (AI) or parallel computation, etc. Considering the impact, a new perspective
to compare the potentials of both methods should be investigated as well as existing comparative
studies. First of all, it is well known that the highest order of an A-stable multi-step method is two,
so lots of research [12–24] developing higher order methods have focused on either multi-step methods
satisfying some less restrictive stability condition or multi-stage methods which combine A-stability
with high-order accuracy [2,25–29]. In addition, multi-stage methods such as Runge–Kutta (RK) type
methods do not require any additional memory for function values at previous steps since it does not
use any previously computed values [30–32]. On the other hand, multi-step methods require additional
memory in the sense that they use previously computed function values and have insufficient function
values for initial data. Multi-stage methods are comparable with multi-step methods for nonlinear stiff
problems and have no restriction to express initial data contrast to the other. There seems not to be
such a clear a priori distinction between multi-stage and multi-step methods.

Another interesting point of view to find more efficient methods is quite susceptible to stiffness
and nonlinearity of the given problem. For nonlinear stiff problems, a multi-step method is needed
to evaluate function values only once at each iteration in a nonlinear solver, whereas multi-stage
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methods require several function evaluations at each iteration. This disadvantage of the multi-stage
method can be ignored by the authors’ recent research [33]. The authors showed numerically that
one stage of the multi-stage method is equivalent to one step of the multi-step method for simple
ordinary differential equation (ODE) systems. However, the multi-step methods such as the backward
differentiation formula (BDF) are usually recommended to apply nonlinear stiff problems because the
process of solving the nonlinear system of equation is also expensive computationally. In the process
of solving nonlinear stiff problems by a multi-stage method, it generally generates a system Md ⊗ Ms,
where d and s represent the dimension of the given problem and the number of stages used in the
multi-stage method, respectively. Here, the notation Mk represents a matrix with the size k× k and the
notation ⊗ denotes a Kronecker product. On the other hand, a multi-step method needs to solve only
a system of size d× d.

The purpose of this paper is to investigate and compare the properties of the multi-stage and the
multi-step methods for d-dimensional stiff problems described by

dy
dt

= f (t, y) ∈ R
d. (1)

Most nonlinear stiff problems are solved by multi-step methods rather than multi-stage methods
since the multi-stage methods usually transform nonlinear stiff problems into bigger nonlinear systems,
as mentioned in the previous paragraph. To solve such nonlinear systems efficiently, one has to
consider both nonlinear and linear solvers. The nonlinear systems are usually solved by using
an iteration technique such as Newton-like iterations, which incur considerable computation costs.
There are various Newton-like iterations. Among them, a simplified Newton iteration is developed in
connection with the development of computer process capacity [34–37]. Different nonlinear system
solvers generate linear systems correspondingly. It means that the nonlinear system solver should be
well-selected to adapt efficient linear solvers such as the eigenvalue decomposition method. Note that
efficient linear solvers have also been well-studied [1,2,38,39]. An eigenvalue decomposition combined
with simplified Newton iteration can apply to a multi-stage method. The resulting multi-stage method
generates the same matrix, regardless of integration or iteration, as an object of decomposition for
solving a linear system induced by the simplified Newton iteration. It allows for decomposing the
matrix only once throughout the whole process. As a result, applying this combination to multi-stage
methods highlights the advantage of multi-stage methods by reducing computational costs to the
level of the costs required from multi-step methods without any loss of the original advantages of
multi-stage methods, which is the main contention of this paper.

The remaining parts of this paper are as follows. We briefly describe the multi-step and multi-stage
methods and simplified Newton iteration in Section 2. To support theoretical analysis, we present
preliminary numerical results in Section 3. Finally, in Section 4, all results are summarized and further
possibilities are discussed.

2. Preliminary

2.1. Methods

In this subsection, we briefly describe ODE solvers classified by mathematical theory. Numerical
methods for ODEs fall naturally into two categories: one is ‘multi-stage method’ using one starting
value at each step and the other is ‘multi-step method’ or ‘multi-value method’ based on several
values of the solution. We deal with the theories of two methods in terms of convergence and stability.
The multi-step method has a critically bad stability property with a higher convergence rate that can
not actually be used. Due to these reasons, the third-order RK method (RK3) and the third-order BDF
(BDF3) are considered as examples of multi-stage methods and multi-step methods. Note that the
higher order multi-step method is also available, but it has very low practical use.
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The general form of the multi-step methods [1,3,7,26,38,40,41] is described by

yn+1 =
s

∑
j=0

ajyn−j + h
s

∑
j=−1

bj f (tn−j, yn−j), n ≥ s. (2)

Here, the coefficients a0, . . . , as, b−1, b0, . . . , bs are constants. If method (2) use s + 1 previous
solution values with either as �= 0 or bs �= 0, the method is called an s + 1 step method. A BDF
method is the most efficient linear multi-step methods among several multi-step methods [40]. It is
composed of the coefficients bp−1 = · · · = b0 = 0 and the others chosen such that the method with
the convergence order of s convergence order s. Thus, the s-step BDF has s-th convergence order.
The BDF3 is given by

yn+3 −
18
11

yn+2 +
9

11
yn+1 −

2
11

yn =
6
11

h f (tn+3, yn+3). (3)

Since implicit A-stable linear multi-step methods have convergence order of at most 2,
second-order BDF can be A-stable, but the method can not be A-stable with order more than 3.
The stability of BDF3 is almost A-stable [38].

An explicit RK method has been developed by Runge, Heun, and Kutta based on a Euler
method [3,40]. Later, an implicit RK was developed for stiff problems based on several quadrature
rules. RK methods have the following form:

yn+1 = yn + h
s

∑
i=1

biki,

ki = f (tn + cih, yn + h
s

∑
j=1

aijkj), i = 1, . . . , s,
(4)

or an equivalent form of Butcher tableau

c A
b

.

One can specify a particular RK method by providing the number of stage s and all elements of
the Butcher tableau, aij (1 ≤ i, j ≤ s), bi and ci (i = 1, . . . , s). There is a popular implicit RK method for
solving the stiff problem, which is called a collocation method. The collocation method is changed
depending on the choice of the collocation points. For more details on the collocation method, one can
refer to [3,38]. If we select uniform collocation points defined by ci = i/3 (1 ≤ i ≤ 3), we can obtain a
third-order collocation method with having the following butcher table:

1
3

23
36 − 4

9
5

36
2
3

7
9 − 2

9
1
9

1 3
4 0 1

4
3
4 0 1

4

. (5)

Note that the order of the stage and convergence for the method (5) are both three as shown in
the convergence analysis in [3,38]. Furthermore, the stability of (5) demonstrated through Dahlquist’s
problem is almost L-stable.

2.2. Simplified Newton Iteration and Eigenvalue Decomposition Method

To explicate a simplified Newton iteration proposed by Liniger and Willoughby [10], we consider
the following nonlinear system obtained by RK-type methods,
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zi = h
s

∑
j=1

aij f (x0 + cjh, y0 + zj), i = 1, . . . , s. (6)

Equation (6) is equivalent to a system of equations described by

Z = h(A⊗ Id))F(Z), (7)

where
Z = [z1, . . . , zs]

T ,

A = (aij)
s
i,j=1,

F(Z) = [ f (x0 + c1h, y0 + z1), . . . , f (x0 + csh, y0 + zs)]
T ,

and Id is d-dimensional identity matrix. By applying Newton iteration to the nonlinear system of
Equation (7), we can get a linear system of the form

(Isd − h(A⊗ Id)J )ΔZk = −Zk + h(A⊗ Id)F(Zk),

Zk+1 = Zk + ΔZk,
(8)

where J is a block diagonal matrix that consists of Jacobians ∂ f
∂y (tn + cih, yn + zi), i = 1, . . . , s, Zk =

(zk
1, . . . , zk

s)
T is the k-th iterated solution, ΔZk = (Δzk

1, . . . Δzk
s)

T is the increment, and F(Zk) denotes for

F(Zk) = ( f (x0 + c1h, y0 + zk
1), . . . , f (x0 + csh, y0 + zk

s))
T .

Usually, one Newton iteration needs several calculations of the Jacobian which requires lots of
computational costs. To reduce such costs, all Jacobians ∂ f

∂y (tn + cih, yn + zi) are replaced by ∂ f
∂y (tn, yn).

This process is called ’simplified Newton iteration’. The simplified Newton iteration for (7) leads (9) to
the formula

(Isd − hA⊗ J)ΔZk = −Zk + h(A⊗ Id)F(Zk),

Zk+1 = Zk + ΔZk,
(9)

where J := ∂ f
∂y (tn, yn). Each iteration requires s times evaluation of f and the calculations of a

d · s-dimensional linear system.
Note that, by using the simplified Newton iteration, the matrix (I − hA⊗ J) is the same for all

iterations, so the decomposition method for solving the resulting linear system can be needed only
once. For the linear system, we consider an eigenvalue decomposition technique in that it decomposes
the given d · s dimensional linear system into several s-dimensional linear systems. In the view of
computational efficiency, it is more efficient to calculate several small size systems even if it is a
complex system, rather than to calculate one big size system. Note that only a simplified Newton
iteration (9) enables usage of eigenvalue decompositions that cannot be applicable to traditional
Newton iteration (8). The eigenvalue decomposition method for (9) is proposed independently by
Butcher [31] and Bickart [30]. The main ideas of the method are eigenvalue decomposition of the
matrix A−1 = TΛT−1 and linear transformation of the vector Zk. By transforming Wk = (T−1 ⊗ I)Zk,
the iteration (9) becomes equivalent to

(h−1Λ⊗ Id − I3 ⊗ J)ΔWk = −h−1(Λ⊗ Id)Wk + (T−1 ⊗ Id)F
(
(T ⊗ I)Wk

)
,

Wk+1 = Wk + ΔWk.
(10)
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In a general case of the three-stage implicit RK method such as (5), the inverse matrix of A has an
eigenvalue decomposition as follows:

A−1 = TΛT−1 =
[
u0, u1, −v1

] ⎡⎢⎣γ̂ 0 0
0 α̂ −β̂

0 β̂ α̂

⎤⎥⎦ [
u0, u1, −v1

]−1
, (11)

where γ̂ is one real real eigenvalue, α̂± iβ̂ are one complex eigenvalue pair and u0, and u1 ± v1 are
eigenvectors corresponding to γ̂, α̂± iβ̂, respectively. Therefore, the matrix in (10) can be rewritten as⎡⎢⎣γId − J 0 0

0 αId − J −βId
0 βId αId − J

⎤⎥⎦ (12)

with γ = γ̂/h, α = α̂/h, β = β̂/h so that (10) can be split into two linear systems of dimension d
and 2d, respectively. Moreover, the 2d-dimensional real valued subsystem can be transformed to the
following d-dimensional complex valued system(

(α + iβ)I − J
)
(u + iv) = a + ib. (13)

In terms of computational cost, the number of multiplication to solve (13) is approximately
4d3/3, since the complex multiplication consists of four real multiplications. Then, the total
multiplication number for (12) is about 5d3/3, while the number of multiplications for decomposing
the untransformed matrix (I − hA⊗ J) in (9) is about (3d)3/3. Thus, we can reduce the number of
multiplications to about 80% by calculating (12) instead of directly calculating the inverse of the matrix
of (I − hA⊗ J) in (10). Finally, to solve the transformations Zk = (T ⊗ I)Wk, it additionally requires
a multiplication of O(n). This difference becomes more apparent as the size of the matrix (or the
numbers of stage) increases.

3. Numerical Comparison

In this section, we experiment five commonly used physical examples for comparison of both
methods. In Sections 3.1–3.3, the BDF3 method (3) and RK3 (4) with its butcher table (5) are used as
an example of multi-step and multi-stage methods, respectively. The initial guess for BDF3 is taken
by exact values. Both methods use the traditional Newton iteration for solving nonlinear systems.
In Section 3.3, especially, we measure CPU-time to compare the two methods in terms of accuracy
and efficiency and simplified Newton iteration is used for a nonlinear solver. In Sections 3.4–3.5,
we use RADAU5 and ODE15s representing a multi-stage and a multi-step method, respectively,
which numerical codes are well optimized and open-source. Note that RADAU5, one of multi-stage
methods, has convergence order 5 and stage order 3 [38] and ODE15s, one of multi-step methods,
included MATLAB library, has variable orders from 1 to 5 [42]. Remarkably, RADAU5 has applied the
eigenvalue decomposition and simplified Newton iteration. All numerical simulations are executed
with the software MATLAB 2010b (Mathworks, Natick, MA, USA) under OS WINDOWS 7 (Microsoft,
Redmond, WA, USA). Note that most numerical results in this section are repeatable even if different
computational resources are used.

3.1. Simple Linear ODE

As the first example, we consider the Prothero–Robinson problem [29],

f (t, y(t)) = ν(y(t)− g(t)) + g′(t), t ∈ (0, 10], y(0) = g(0), (14)
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which presents a stiffness by varying the parameter ν. The analytic solution of problem is given
by y(t) = g(t). To compare the error behaviors of the two methods, we set up the parameter
ν = −1.0× 106 so that the given problem can be highly stiff. Here, the exact solution of this problem is
set by g(t) = sin(t). In Figure 1, we display absolute errors |y(ti)− yi| at each integration step in a log
scale obtained by the two methods with different time step sizes h = 2−k, (a) k = 1, (b) k = 2 and (c)
k = 3. One can see that the error of BDF3 (Red) has magnitude (a) 1.0× 10−7, (b) 1.0× 10−8, and (c)
1.0× 10−9. The error of RK3 (Blue) has magnitude (a) 1.0× 10−9, (b) 1.0× 10−10, and (c) 1.0× 10−11.
All three graphs in Figure 1 show that RK3 has better accuracy than BDF3. Additionally, to demonstrate
the meaning of the stage of multi-stage methods and the step of multi-step methods, we set up a time
step size of the multi-step method, BDF3, as h̃ = h/3. The result of BDF3 with h̃ = h/3 is labeled as
BDF3c hereafter. It can be seen that the result from BDF3c (Black) has the same accuracy, compared
with RK3. Therefore, it is sufficient to see a comparison of RK3 and BDF3c for further comparison.
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Figure 1. Prothero–Robinson equation: comparing two methods for accuracy by varying step size
h = 2−k, for (a) k = 1, (b) k = 2, (c) k = 3.

3.2. Nonlinear Stiff ODE System: Multi-Mode Problem

As the second example, we consider a nonlinear ODE system based on the Prothero–Robinson
problem. The system is given by

f (t, Y(t)) = −Λ(Y(t)− g(t) · 1N)
δ + g′(t) · 1N , t ∈ (0, 10],

Y(0) = (0, . . . , 0)T ∈ R
N ,

(15)

where g(t) = sin(t), 1N = (1, . . . , 1)T ∈ RN and N is the number of dimension. The exact solution is
Y(t) = sin(t) · 1N . The stiffness of (15) can be controlled by the eigenvalues of the matrix Λ, where Λ
is diagonal matrix that has elements λi = 1.0e + ki (i = 1, . . . , N), ki is random integer between 0 and
6. In addition, a linearity of the problem depends on the parameter δ. In this experiment, δ = 1 and
δ = 5 are taken for linear and nonlinear cases, respectively. The parameter set (N, h) = (100, 2−3) is
used for both linear and nonlinear cases.

As similar to the previous subsection, the error behaviors of two methods for both linear and
nonlinear cases are observed over time, and the results are plotted in Figure 2. The error is measured as
L∞-norm at each integration step, ||Y(ti)−Yi||∞. For the nonlinear case, a traditional Newton iteration
is used for a linearization. As mentioned in the previous subsection, BDF3c uses a smaller time step
size h̃ = h/3 and is compared with RK3 with time step h. Just in case, we mention that BDF3 with
time step h is not appropriate to compare RK3 with the same time step size because of the meaning of
the stage, explained in the previous subsection. In the linear case, δ = 1, RK3, and BDF3c have similar
error behaviors as 1.0× 10−5.544 and 1.0× 10−5.253 at the final time point, respectively. In the nonlinear
case, δ = 5, RK3, and BDF3 also have similar error behaviors as 1.0× 10−5.378 and 1.0× 10−5.123 at the
final time, respectively.
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Figure 2. Multi-mode problem: comparing errors of two methods for linear case (left) and nonlinear
case (right).

3.3. Linear PDE—Heat Equation

We consider a linear partial differential equation (PDE), the heat equation generally described by

ut = uxx, (t, x) ∈ [0, 1]× [0, 1] (16)

with initial value u(0, x) = sin(πx) + 1
2 sin(3πx) and boundary conditions u(t, 0) = u(t, 1) = 0.

The exact solution is given by u(x, t) = e−π2t sin(πx) + 1
2 e−(3π)2t sin(3πx). This problem is intended

to compare two methods for solving big size stiff problems induced from PDE by spatial discretization
such as Method of Lines. For the spatial discretization, we use the second-order central difference
after evaluating at x = xj (xj =

j
N ). Then, the resulting system becomes a N-dimensional system

of time dependent ODE. That is, the resulting system can be a big size ODE system depending on
the discretization. Note that, to avoid unnecessary computational costs of the multi-stage methods
described in the previous sections, we employ the multi-stage methods by combining an efficient
linear solver such as an eigenvalue decomposition technique.

To examine the numerical accuracy of two methods for big size stiff systems, we integrate this
problem by setting the system size N = 100, step size h = 1/64 for RK3 and step size h̃ = 1/192 for
BDF3. For the numerical comparison, we measure L∞-norm error Err(ti) = ||u(xj, ti)− ui

j||∞ in each

integration time step where ui
j ≈ u(xj, ti). The error behaviors of two methods are plotted in Figure 3,

which are measured on a logarithmic scale.
It can be seen that the accuracy of the multi-stage method RK3 with time step h is quite similar to

that of the multi-step method BDF3 with time step size h̃. Additionally, to observe of the efficiency for
the two methods, CPU-times, and the absolute error are measured at the final time t = 1 by varying
the resolution of space N = k · 102 from k = 1 to k = 10. The results are plotted by absolute error
versus CPU-time in Figure 4 with time step sizes h = 1/100 and h̃ = 1/300.

Figure 4 can be good evidence of the conclusion that RK3 with eigenvalue decomposition
technique is more efficient than the BDF3 method. More precisely speaking, BDF3 requires more
computational costs to obtain a similar magnitude of accuracy. In addition, RK3 combined with the
eigenvalue decomposition technique can obtain higher accuracy for the same cost.
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Figure 4. Heat equation: comparing two methods for CPU-time versus error.

3.4. Nonlinear PDE: Medical Akzo Nobel Problem

In this example, we consider one of nonlinear stiff PDE, a reaction-diffusion system with one
spatial dimension, described by{

ut = uxx − kuv

vt = −kuv
0 < x < ∞, 0 < t < T, (17)

along with the following initial and boundary conditions,

u(0, x) = 0, v(0, x) = v0 for x > 0,

where v0 is a constant and

u(t, 0) = φ(t) for 0 < t < T.
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Semi-discretization of this system yields the nonlinear stiff ODE given by

dy
dt

= f (t, y), y(0) = g, y ∈ IR2N , 0 ≤ t ≤ 20. (18)

The function f is given by

f2j−1 = αj
y2j+1 − y2j−3

2Δζ
+ β j

y2j−3 − 2y2j−1 + y2j+1

(Δζ)2 − ky2j−1y2j,

f2j = −ky2jy2j−1,

where

αj =
2(jΔζ − 1)3

c2 , β j =
(jΔζ − 1)4

c2 , j = 1, . . . , N

with Δζ = 1
N , y−1(t) = φ(t), y2N+1 = y2N−1 and

g = (0, v0, 0, v0, . . . , 0, v0)
T ∈ IR2N .

The function φ is given by

φ(t) =

{
2 for t ∈ (0, 5],

0 for t ∈ (5, 20].

The parameters k, v0, and c are set to 100, 1, and 4, respectively. The integer N can be decided by
the user. In this experiment, we set N as 200. Since analytic solutions are unavailable, we use reference
solutions listed in Table 1 excerpted from [43].

Table 1. Reference solutions for Medical Akzo Nobel problem at the end of the integration interval.

Reference Solution Reference Solution

y79 0.2339942217046434× 10−3 y80 −0.2339942217046434× 10−141

y149 0.3595616017506735× 10−3 y150 0.1649638439865233× 10−86

y199 0.11737412926802× 10−3 y200 0.61908071460151× 10−5

y239 0.68600948191191× 10−11 y240 0.99999973258552

Specifically, results independent of computational resources were measured to compare the
efficiency of two methods in this example. The number of times that nonlinear solvers are called
(nsolve) and the number of function evaluations (nfeval) are measured by varying relative tolerance
(Rtol) and absolute tolerance (Atol) as (Rtol, Atol) = (10−n, 10−n−2) (n = 4, . . . , 11). We also measure
an L∞-norm error at the end time for each tolerance and plot the error in a logarithm scale as a
function of nsolve (left) and nfeval (right) in Figure 5. These figures show that RADAU5 generates
smaller errors, compared with ODE15s, for paying a similar computational expenses. From a different
perspective, RADAU5 requires less computational resources than ODE15s to get similar level of errors.
Thus, we can claim that RADAU5 has better performance in terms of computational costs and accuracy
than ODE15s.
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Figure 5. Medical Akzo Nobel problem: nsolve versus error (left) and nfeval versus error (right).

3.5. Kepler Problem

In this subsection, we consider a two-body Kepler’s problem to examine two conservation
properties—the Hamiltonian energy and angular momentum—which are indispensable factors in
physics. The Kepler’s problem describes the Newton’s law of gravity revolving around their center of
mass placed at the origin in elliptic orbits in the (q1, q2)-plan [44]. The equations with unitary masses
and gravitational constant are defined by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p′1(t) = −q1(q2
1 + q2

2)
(−3/2),

p′2(t) = −q2(q2
1 + q2

2)
(−3/2),

q′1(t) = p1,

q′2(t) = p2,

(19)

with initial conditions p1(0) = 0, p2(0) = 2, q1(0) = 0.4, and p1(0) = 0 on the interval [0, 100π].
The dynamics are described by Hamiltonian function given by

H(p1, p2, q1, q2) =
1
2
(p2

1 + p2
2)−

1√
q2

1 + q2
2

together with angular momentum L given by

L(p1, p2, q1, q2) = q1 p2 − q2 p1.

The initial Hamiltonian and the initial angular momentum conditions are H0 = −0.5 and L0 = 0.8,
respectively.

The conservation properties for the Hamiltonian energy H and angular momentum L are
investigated by simulating with the two methods, RADAU5 and ODE15s, with time step size h = 0.1
and plot the results in Figure 6. As shown in Figure 6, RADAU5 can conserve both quantities, whereas
ODE15s loses the properties as time is going on.

Next, we also consider the movement of comet in planar regulated three-body problem of
Sun–Jupiter–Comet. To investigate conservation properties of the two methods, we measure the
Hamiltonian energy K and the angular momentum D for the three-body Kepler problem described by

x′′(t) = ν
xS − x

r3
13

+ μ
xJ − x

r3
23

, y′′(t) = ν
yS − y

r3
13

+ μ
yJ − y

r3
23

, (20)
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where
r2

13 = (xS − x)2 + (yS − y)2, r2
23 = (xJ − x)2 + (yJ − y)2,

xS = −μ cos(t− t0), yS = −μ sin(t− t0),

xJ = ν cos(t− t0), yJ = ν sin(t− t0).

The energy and angular momentum of the comet

K/2 =
1
2
(x2 + y2)− 1√

x2 + y2
, D = xy′ − yx′

are constant, when μ = 0 and ν = 1. For this experiment, initial condition is set to

x(0) = 5, y(0) = 1, x′(0) = 0, y′(0) = 1,

and the initial energy and angular momentum are set to K0/2 = 0.3 and D0 = 5 with parameter step
size h = 1/2π and t0 = 0.
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Figure 6. Two-body Kepler problem: comparing two methods in terms of conservation of Hamiltonian
and angular momentum.

In Figure 7, one can see that the behaviors of the energy and the momentum over time interval
[0, 100π]. As observed in Figure 7, RADAU5 gives a maximum variation of 8.0356× 10−5 and 0.0013
for the energy and the momentum, whereas ODE15s presents a variation of 5.9063× 10−4 and 0.0173
for them. Therefore, one can conclude that RADAU5 has better conservation properties, compared
with ODE15s.
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Figure 7. Three-body Kepler problem: comparing two methods in terms of the conservation of total
energy and angular momentum.
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4. Conclusions and Further Discussion

In this work, we compare multi-stage methods with multi-step methods by investigating the
numerical properties of both methods. In a classical approach, nonlinear stiff systems were usually
solved by multi-step methods to avoid huge computational complexity induced from linearization
of a given nonlinear system. However, the computational costs for the multi-stage method can be
reduced sufficiently without loss of stability and conservation, which is possible by using suitable
nonlinear and linear solvers such as a Newton-type method and eigenvalue decomposition. It means
that the multi-stage method can also be applied to solve nonlinear stiff systems without any damage to
computational costs, compared with the multi-step methods. Moreover, it is seen that the multi-stage
methods preserve the invariants of the energy and angular momentum in Hamiltonian systems.
In addition, it is well-known that a stability property of multi-stage methods is much better than that
of multi-step methods.

Overall, one can conclude that the multi-stage method can be a good candidate to solve nonlinear
stiff systems. It means that, without any damage to computational costs, multi-stage methods can
be applied to long-time simulations and massive physical simulations in fields such as astronomy,
meteorology, nuclear fusion, nuclear power, aerospace, machinery, etc.
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Abstract: We consider a non-instantaneous system represented by a second order nonlinear
differential equation in a Banach space E. We use the family of linear bounded operators introduced by
Kozak, Darbo fixed point method and Kuratowski measure of noncompactness. A new set of sufficient
conditions is formulated which guarantees the existence of the solution of the non-instantaneous
system. An example is also discussed to illustrate the efficiency of the obtained results.

Keywords: second order differential equations; mild solution; non-instantaneous impulses;
Kuratowski measure of noncompactness; Darbo fixed point

1. Introduction

The aim of this paper is to establish a result of the existence of mild solution for a class of
the non-autonomous second order nonlinear differential equation with non-instantaneous impulses
described in the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y′′(t) = A(t)y(t) + f
(

t, y(t),
∫ t

0
g(t, s, y(s))ds

)
, t ∈ (si, ti+1], i = 0, · · · , N,

y(t) = γi(t, y(t−i )), t ∈ (ti, si], i = 1, · · · , N,
y′(t) = ζi(t, y(t−i )), t ∈ (ti, si], i = 1, · · · , N,
y(0) = y0, y′(0) = y1,

(1)

In this text, E is a reflexive Banach space endowed with a norm | · |, J = [0, a], 0 = s0 < t1 < s1 <

t2, · · · , tN < sN < tN+1 = a < ∞. We consider in problem (1) that y ∈ C((si, ti+1), E), i = 0, 1, · · · , N .
The functions γi(t, y(t−i )) and ζi(t, y(t−i )) represent noninstantaneous impulses during the intervals
(ti, si], i = 1, · · · , N, so impulses at t−i have some duration, namely on intervals (ti, si]. Further,
A(t) : D(A(t)) ⊂ E → E is a closed linear operator which generates a evolution system {S(t, s)}(t,s)∈D
of linear bounded operators , f : J × E× E → E, g ∈ C(D× E, E), D = {(t, s) ∈ J × J : s ≤ t} and y0,
y1 are given elements of E.

The theory and application of integrodifferential equations are important subjects in applied
mathematics, see, for example [1–8] and recent development of the topic, see the monographs of [9].
In recent times there have been an increasing interest in studying the abstract autonomous second

Mathematics 2019, 7, 1134; doi:10.3390/math7121134 www.mdpi.com/journal/mathematics181
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order, see for example [10–14]. Useful for the study of abstract second order equations is the existence
of an evolution system S(t, s) for the homogenous equation

y′′(t) = A(t)y(t), for t ≥ 0. (2)

For this purpose there are many techniques to show the existence of S(t, s) which has been developed
by Kozak [15]. In many problems, such as the transverse motion of an extensible beam, the vibration of
hinged bars and many other physical phenomena, we deal with the second-order abstract differential
equations in the infinite dimensional spaces. On the other hand, recently there exists an extensive literature
for the non-autonomous second order see, for example, [16–22].

The dynamics of many evolving processes are subject to abrupt changes such as shocks, harvesting,
and natural disaster. These phenomena involve short term perturbations from continuous and smooth
dynamics, whose duration is negligible in comparison with the duration of an entire evolution.
Particularly, the theory of instantaneous impulsive equations have wide applications in control,
mechanics, electrical engineering, biological and medical fields. Recently, Hernandez et al. [23]
use first time not instantaneous impulsive condition for semi-linear abstract differential equation of
the form ⎧⎪⎨⎪⎩

y′(t) = Ay(t) + f (t, y(t)), t ∈ (si, ti+1], i = 0, · · · , N,
y(t) = gi(t, y(t)), t ∈ (ti, si], i = 1, · · · , N,
y(0) = y0,

(3)

and introduced the concepts of mild and classical solution. Wang and Fečkan have changed the
conditions y(t) = gi(t, y(t)) in (3) as follows

y(t) = gi(t, y(t+i )), t ∈ (ti, si], i = 1, · · · , N.

Of course then y(t+i ) = gi(t, y(t−i )), where y(t+i ) and y(t−i ) represent respectively the right and
left limits of y(t) at t = ti. Motivated by above remark, Wang and Fečkan [24] have shown existence,
uniqueness and stability of solutions of such general class of impulsive differential equations. To learn
more about this kind of problems, we refer [25–34].

To deal with the above mentioned issues, we investigate necessary and sufficient conditions for
the existence of a mild solution of system (1). By virtue of the theory of measure of noncompactness
associated with Darbo’s and Darbo-Sadovskii’s fixed point theorem. This technique was considered by
Banas and Goebel [35] and subsequently used in many papers; see, for example, [33,36–39].

A brief outline of this paper is given:. Some preliminaries are presented in Section 2. Section 3,
we obtain necessary and sufficient conditions for System (1). An Appropriate example is given to
illustrate our results.

2. Basic Definitions and Preliminaries

In this section, we review some basic concepts, notations, and properties needed to establish our
main results.

Denote by C(J, E) the space of all continuous E-valued functions on interval J which is a Banach
space with the norm

‖y‖ = sup
t∈J
|y(t)|.

To treat the impulsive conditions, we define the space of piecewise continuous functions

PC(J, E) = {y : J → E : y ∈ C([0, t1] ∪ (tk, sk] ∪ (sk, tk+1], E), k = 1, . . . , N
and there exist y(t−k ), y(t+k ), y(s−k )and y(s+k ) k = 1, . . . , N with y(t−k ) = y(tk)

and y(s−k ) = y(sk)}.

It can be easily proved that PC(J, E) is a Banach space endowed with
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‖y‖PC = sup
t∈J
|y(t)|.

For a positive number R, let

BR = {y ∈ PC(J, E) : ‖y‖PC ≤ R}.

be a bounded set in PC(J, E).
Lr(J, E) denotes the space of E-valued Bochner functions on [0, a] with the norm

‖y‖Lr =

(∫ a

0
|y(t)|rdt

) 1
r

, r ≥ 1.

B(E) the Banach space of bounded linear operators from E into E.
First we recall the concept of the evolution operator S(t, s) for problem (2), introduced by Kozak

in [15] and recently used by Henríquez, Poblete and Pozo in [20].

Definition 1. Let S : D → B(E). The family is said to be an evolution operator generated by the family
{A(t) : t ∈ J} if the following conditions are satisfied [15]:

(e1) For each y ∈ E the function S(·, ·)y : J × J → E is of class C1 and

(i) for each t ∈ J, S(t, t) = 0,
(ii) for all (t, s) ∈ D and for each y ∈ E,

∂

∂t
S(t, s)y

∣∣
t=s = y,

∂

∂s
S(t, s)y

∣∣
t=s = −y.

(e2) For each (t, s) ∈ D, if y ∈ D(A(t)), then
∂

∂s
S(t, s)y ∈ D(A(t)), the map (t, s) �−→ S(t, s)y is of class

C2 and

(i)
∂2

∂t2 S(t, s)y = A(t)S(t, s)y,

(ii)
∂2

∂s2 S(t, s)y = S(t, s)A(s)y,

(iii)
∂2

∂s∂t
S(t, s)y

∣∣
t=s = 0.

(e3) For all (t, s) ∈ D, if y ∈ D(A(t)), then
∂

∂s
S(t, s)y ∈ D(A(t)). Moreover, there exist

∂3

∂t2∂s
S(t, s)y,

∂3

∂s2∂t
S(t, s)y and

(i)
∂3

∂t2∂s
S(t, s)y = A(t)

∂

∂s
S(t, s)y,

(ii)
∂3

∂s2∂t
S(t, s)y =

∂

∂t
S(t, s)A(s)y,

and for all y ∈ D(A) the function (t, s) �−→ A(t)
∂

∂s
S(t, s)y is continuous in D.

Definition 2. A function f : J × E× E → E is said to be a Carathéodory function if it satisfies:

(i) t → f (t, u, v) is measurable for each u, v ∈ E× E,
(ii) (u, v)→ f (t, u, v) is continuous for almost each t ∈ J.

For W, a nonempty subset of E, we denote by W and ConvW the closure and the closed convex
hull of W, respectively. Finally, the standard algebraic operations on sets are denoted by aW and
Y + W, respectively. Now, we recall some basic definitions and properties about Kuratowski measure
of noncompactness that will be used in the proof of our main results.
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Definition 3. [35] The Kuratowski measure of noncompactness αE(·) defined on bounded set W of Banach
space E is

αE(W) = inf{ε > 0 : W = ∪n
i=1Wi and diam(Wi) ≤ ε for i = 1, 2, · · · n}.

Some basic properties of αE(·) are given in the following lemma.

Lemma 1. Let Y and W be bounded sets of E and a be a real number [35]. The Kuratowski measure of
noncompactness satisfies some properties:

(p1) W is pre-compact if and only if αE(W) = 0,
(p2) αE(W) = αE(W),
(p3) αE(Y) ≤ αE(W) when Y ⊂ W,
(p4) αE(Y + W) ≤ αE(Y) + αE(W),
(p5) αE(aW) = |a|αE(W) for any a ∈ R,
(p6) αE(ConvW) = αE(W).

The map Q : X ⊂ E → E is said to be a α-contraction if there exists a positive constant λ < 1 such
that αE(Q(W)) ≤ λαE(W) for any bounded closed subset W ⊂ E.

Lemma 2. [40] Let E be a Banach space, W ⊂ E be bounded. Then there exists a countable set W0 ⊂ W,
such that

αE(W) ≤ 2αE(W0).

Lemma 3. [41] Let E be a Banach space, −∞ < a1 < a2 < +∞ for constants, and let W = {yn} ⊂
PC([a1, a2], E), be a bounded and countable set. Then αE(W(t)) is Lebesgue integral on [a1, a2], and

αE

({ ∫ a2

a1

yn(t)dt : n ∈ N

})
≤ 2

∫ a2

a1

αE(W(t))dt.

Denote by αPC the Kuratowski measure of noncompactness of PC(J, E). Before proving the
existence results, we need the following Lemmas.

Lemma 4. [35] If W ⊂ PC(J; E) is bounded, then αE(W(t)) ≤ αPC(W), for all t ∈ J; here W(t) =

{y(t); y ∈ W ⊂ E}. Furthermore if W is equicontinuous on J, then αE(W(t)) is continuous on J and

αPC(W) = sup
t∈J

αE(W(t)).

Lemma 5. [42] Let E, F be Banach spaces. If the map Ψ : D(Ψ) ⊂ E → F is Lipschitz continuous with
constant k, then αE(Ψ(W)) ≤ kαE(W) for any bounded subset W ⊂ D(Ψ).

Theorem 1. (Darbo) [43] Assume that W is a non-empty, closed and convex subset of a Banach space E and
0 ∈ W. Let Q : W → W be a continuous mapping and αE-contraction. If the set {y ∈ W : y = λQy} is
bounded for 0 < λ < 1, then the map Q has at least one fixed point in W.

Theorem 2. (Darbo-Sadovskii) [35] Assume that W is a non-empty, closed, bounded, and convex subset of a
Banach space E. Let Q : W → W be a continuous mapping and αE-contraction. Then the map Q has at least
one fixed point in W.

3. Existence Results

In this section, we discuss the existence of mild solutions for system (1). Firstly, let us propose the
definition of the mild solution of system (1).

184



Mathematics 2019, 7, 1134

Definition 4. A function y ∈ PC(J, E) is said to be a mild solution to the system (1), if it satisfies the following relations:

y(0) = y0, y′(0) = y1,

the non-instantaneous conditions

y(t) = γi(t, y(t−i )), y′(t) = ζi(t, y(t−i )), t ∈ (ti, si],

and y is the solution of the following integral equations

y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂

∂s
S(t, 0)y0 + S(t, 0)y1

+
∫ t

0
S(t, s) f

(
s, y(s),

∫ s

0
g(s, τ, y(τ))dτ

)
ds, t ∈ [0, t1],

− ∂

∂s
S(t, si)γi(si, y(t−i )) + S(t, si)ζi(si, y(t−i ))

+
∫ t

si

S(t, s) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds, t ∈ (si, ti+1].

In this manuscript, we list the following hypotheses:

(H1) There exist a pair of constants M ≥ 1 and δ > 0, such that

‖S(t, s)‖B(E) ≤ Me−δ(t−s) for any (t, s) ∈ D.

(H2) There exists a constant M̃ > 0 such that:

‖ ∂

∂s
S(t, s)‖B(E) ≤ M̃e−δ(t−s), (t, s) ∈ D.

(H3) f : J × E× E → E is of Carathéodory type and satisfies:

(a) There exist Θ f ∈ Lr(J,R+), r ∈ [1, ∞) and a continuous nondecreasing function ψ : [0, ∞)→
(0, ∞) such that:

| f (t, y, z)| ≤ Θ f (t)ψ(|y|+ |z|) for a.a t ∈ J and each y, z ∈ E.

(b) There exist integrable functions σ, � :J → R+, such that:

αE( f (t, W1, W2)) ≤ σ(t)αE(W1) + �(t)αE(W2)

for a.a t ∈ J and W1, W2 ⊂ E.

(H4) g : D× E → E is a continuous function that satisfies:

(a) There exist Θg ∈ L1(J,R+), and a continuous nondecreasing function ϕ : [0, ∞) → (0, ∞)

such that:
|g(t, s, y)| ≤ Θg(t)ϕ(|y|) for a.a (t, s) ∈ D and each y ∈ E.

(b) There exists constant K∗ > 0, such that

αE(g(t, s, W)) ≤ K∗αE(W) for a.a (t, s) ∈ D and W ⊂ E.

(H5) The functions γi : (ti, si]× E → E, i = 1, · · · , N, are continuous, and they satisfy the following
conditions:

(a) there exist positive constants ci, i = 1, · · · , N such that

|γi(t, y2)− γi(t, y1)| ≤ ci |y2 − y1| for a.a t ∈ (ti, si] and each y1, y2 ∈ E.
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(b) there exist positive constants di, such that

di = sup
t∈[ti ,si ]

γi(t, 0).

(H6) The functions ζi : (ti, si]× E → E, i = 1, · · · , N, are continuous, and satisfy the following conditions:

(a) There exist constants ei, li > 0, i = 1, · · · , N such that

|ζi(t, y)| ≤ ei |y|+ li for a.a t ∈ (ti; si] and each y ∈ E.

(b) There exists constants ki > 0, i = 1, · · · , N such that

αE(ζi(t, W)) ≤ kiαE(W) for a.a t ∈ (ti, si] and anyW ⊂ E.

(H7)

max
1≤i≤N

(ki, 1)
(

max
1≤i≤N

(M̃ki + Mk̄i) + 2M(‖σ‖L1 + 2K∗a‖�‖L1)

)
< 1.

Remark 1. From Lemma 5 and (H5), there exist constants ki > 0, such that

αE(γi(t, W)) ≤ kiαE(W) for a.a t ∈ (ti, si] and each y ∈ E.

Theorem 3. Under the assumptions (H1)–(H7), the system (1) has at least one mild solution on J, provided that∫ a

0
max(M̄Θ f (s), Θg(s))ds ≤

∫ ∞

mi

ds
ψ(s) + ϕ(s)

, i = 2, 3 · · ·N (4)

with

M̄ = max
2≤i≤N

{
M

1− L1
,

M
1− Li

,
Mci

1− Li−1

}
,

and

mi =
di

1− Li−1
+ max

2≤i≤N

{
M̃ |y0|+ M |y1| ,

M̃d1

1− L1
+

Ml1
1− L1

,
M̃di

1− Li
+

Mli
1− Li

,
M̃cidi−1

1− Li−1
+

Mcili−1

1− Li−1

}
,

where
Li = M̃ci + Mei < 1.

Proof. Define the mapping Λ : PC(J, E)→ PC(J, E) by

(Λy)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γi

(
t,− ∂

∂s
S(t, si)γi−1(si−1, y(t−i−1)) + S(t, si−1)ζi−1(si−1, y(t−i−1))

+
∫ ti

si−1

S(t, s) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds
)

, t ∈ (ti, si],

− ∂

∂s
S(t, 0)y0 + S(t, 0)y1

+
∫ t

0
S(t, s) f

(
s, y(s),

∫ s

0
g(s, τ, y(τ))dτ

)
ds, t ∈ [0, t1],

− ∂

∂s
S(t, si)γi(si, y(t−i )) + S(t, si)ζi(si, y(t−i ))

+
∫ t

si

S(t, s) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds, t ∈ (si, ti+1].

(5)

It is obvious that the fixed point of Λ is the mild solution of (1). We shall show that Λ satisfies the
assumptions of Theorem 1. The proof will be given in four steps.
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Step 1. A priori bounds.

Let λ ∈ (0, 1) and let y ∈ Y be a possible solution of y = λΛ(y) for some 0 < λ < 1. Thus,

Case 1. For each t ∈ [0, t1], we get

y(t) = −λ
∂

∂s
S(t, 0)y0 + λS(t, 0)y1 + λ

∫ t

0
S(t, s) f (s, y(s),

∫ s

0
g(s, τ, y(τ))dτ)ds.

Then

|y(t)| ≤
∥∥∥∥ ∂

∂s
S(t, 0)

∥∥∥∥
B(E)

|y0|+ ‖S(t, 0)‖B(E) |y1|

+
∫ t

0
‖S(t, s)‖B(E) Θ f (s)ψ

(
|y(s)|+

∫ s

0
Θg(τ)ϕ(|y(τ)|))dτ

)
ds

≤ M̃ |y0| e−δt + M |y1| e−δt

+
∫ t

0
Me−δ(t−s)Θ f (s)ψ

(
|y(s)|+

∫ s

0
Θg(τ)ϕ(|y(τ)|)dτ

)
ds.

≤ (M̃ |y0|+ M |y1|)e−δt

+
∫ t

0
Me−δ(t−s)Θ f (s)ψ

(
|y(s)|+

∫ s

0
Θg(τ)ϕ(|y(τ)|)dτ

)
ds.

Case 2. For each t ∈ (si, ti+1], we have

y(t) = −λ
∂

∂s
S(t, si)γi(si, y(si)) + λS(t, si)ζi(si, y(si))

+ λ
∫ t

si

S(t, s) f (s, y(s),
∫ s

0
g(s, τ, y(τ))dτ)ds,

then

|y(t)| ≤
∥∥∥∥ ∂

∂s
S(t, si)

∥∥∥∥
B(E)

|γi(si, y(si))|+ ‖S(t, si)‖B(E) |ζi(si, y(si))|

+
∫ t

si

‖S(t, s)‖B(E) Θ f ψ

(
|y(s)|+

∫ s

0
Θg(τ)ϕ(|y(τ)|))dτ

)
ds

≤ M̃ci |y(si)| e−δ(t−si) + M̃die−δ(t−si)

+ Mei |y(si)| e−δ(t−si) + Mlie−δ(t−si)

+
∫ t

si

Me−δ(t−s)Θ f (s)ψ
(
|y(s)|+

∫ s

0
Θg(τ)ϕ(|y(τ)|)dτ

)
ds.

≤ M̃ci |y(si)|+ M̃die−δ(t−si)

+ Mei |y(si)|+ Mlie−δ(t−si)

+
∫ t

si

Me−δ(t−s)Θ f (s)ψ
(
|y(s)|+

∫ s

0
Θg(τ)ϕ(|y(τ)|)dτ

)
ds.

It is easy to see that

sup
s∈[0,t]

|y(s)| ≤
(

M̃diesi

1− Li
+

Mliesi

1− Li

)
e−δt

+
∫ t

si

M
1− Li

e−δ(t−s)Θ f (s)ψ

(
sup

s∈[0,t]
|y(s)|+

∫ s

0
Θg(τ)ϕ( sup

s∈[0,t]
|y(s))| dτ

)
ds.

Case 3. For each t ∈ (si, ti], we have,
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|y(t)| = λ
∣∣∣γi

(
t,− ∂

∂s
S(t, si−1)γi−1(si−1, y(t−i−1)) + S(t, si−1)ζi−1(si−1, y(t−i−1))

+
∫ ti

si−1

S(t, s) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds
)∣∣∣

≤ λ
∣∣∣γi

(
t,− ∂

∂s
S(t, si)γi−1(si−1, y(t−i−1)) + S(t, si−1)ζi−1(si−1, y(t−i−1))

+
∫ ti

si−1

S(t, s) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds− γi(t, 0)

)∣∣∣
+ λ |γi(t, 0)|
≤ λci

∣∣∣− ∂

∂s
S(t, si)γi−1(si−1, y(t−i−1)) + S(t, si−1)ζi−1(si−1, y(t−i−1))

+
∫ ti

si−1

S(t, s) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds
∣∣∣

+ λdi.

This implies

sup
s∈[0,t]

|y(s)| ≤
(

M̃cidi−1esi−1

1− Li−1
+

Mcili−1esi−1

1− Li−1

)
e−δt +

di
1− Li−1

+
∫ ti

si−1

Mci
1− Li−1

e−δ(t−s)Θ f (s)ψ

(
sup

τ∈[0,s]
|y(τ)|+

∫ s

0
Θg(τ)ϕ( sup

z∈[0,τ]
|y(z)|)dτ

)
ds.

Then, for all t ∈ J, we have

|y(t)| ≤ M∗
i e−δt +

di
1− Li−1

+ e−δt
∫ t

0
M̄eδsΘ f (s)ψ

(
sup

τ∈[0,s]
|y(τ)|+

∫ s

0
Θg(τ)ϕ( sup

z∈[0,τ]
|y(z)|)dτ

)
ds.

where

M∗ = max
2≤i≤N

{
M̃ |y0|+ M |y1| ,

M̃d1es1

1− L1
+

Ml1es1

1− L1
,

M̃diesi

1− Li
+

Mliesi

1− Li
, ,

M̃cidi−1esi−1

1− Li−1
+

Mcili−1esi−1

1− Li−1

}
.

Let us take the right-hand side of the above inequality as μ(t). Then

μ(0) = M∗ +
di

1− Li−1
,

sup
s∈[0,t]

|y(s)| ≤ μ(t),

and

μ′(t) ≤ −δμ(t) + M̄Θ f (t)ψ
(

μ(t) +
∫ t

0
Θg(s)ϕ(μ(s))ds

)
≤ M̄Θ f (t)ψ

(
μ(t) +

∫ t

0
Θg(s)ϕ(μ(s))ds

)
.

Let

β(t) = μ(t) +
∫ t

0
Θg(s)ϕ(μ(s))ds.

Then

β′(t) = μ′(t) + Θg(t)ϕ(μ(t))

≤ M̄Θ f (t)ψ(β(t)) + Θg(t)ϕ(β(t)).
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This implies that

∫ β(t)

β(0)

ds
ψ(s) + ϕ(s)

≤
∫ a

mi

max(M̄Θ f (s), Θg(s))ds <
∫ +∞

mi

ds
ψ(s) + ϕ(s)

.

This above inequality implies that there exists a constant L such that β(t) ≤ L, t ∈ J, and hence
μ(t) ≤ L, t ∈ J. Since for every t ∈ J, |y(t)| ≤ μ(t), we have ‖y‖PC ≤ L.

Step 2. Λ is continuous.

Suppose that (yn)n∈N is a sequence in BR which converges to y in BR as n → ∞. By the continuity
of nonlinear term γ and ζ with respect to the second argument, for each s ∈ J, we have

sup
s∈J
|γi(s, yn(s))− γi(s, y(s))| → 0 as n → ∞, (6)

sup
s∈J
|ζ(s, yn(s))− ζ(s, y(s))| → 0 as n → ∞. (7)

By the Carathéodory character of nonlinear term f , for each s ∈ J, we have∣∣∣∣ f
(

s, yn(s),
∫ s

0
g(s, τ, yn(τ))dτ

)
− f

(
s, y(s),

∫ s

0
g(s, τ, y(τ))dτ

)∣∣∣∣→ 0 as n → ∞. (8)

Case 1. For the interval (si, ti], we obtain

|(Λyn)(t)− (Λy)(t)|
≤ γi

(
t,− ∂

∂s
S(t, si)γi−1(si−1, yn(t−i−1)) + S(t, si−1)ζi−1(si−1, yn(t−i−1))

+
∫ ti

si−1

S(t, s) f
(

s, yn(s),
∫ s

0
g(s, τ, yn(τ))dτ

)
ds
)

−γi

(
t,− ∂

∂s
S(t, si)γi−1(si−1, y(t−i−1)) + S(t, si−1)ζi−1(si−1, y(t−i−1))

+
∫ ti

si−1

S(t, s) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds
)

.

Since the function γi is continuous and∣∣∣− ∂

∂s
S(t, si)γi−1(si−1, yn(t−i−1)) + S(t, si−1)ζi−1(si−1, yn(t−i−1))

+
∫ ti

si−1

S(t, s) f
(

s, yn(s),
∫ s

0
g(s, τ, yn(τ))dτ

)
ds +

∂

∂s
S(t, si)γi−1(si−1, y(t−i−1))

+S(t, si−1)ζi−1(si−1, y(t−i−1)) +
∫ ti

si−1

S(t, s) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds
∣∣∣

≤ M̃|γi−1(si−1, yn(si−1))− γi−1(si, y(si))|+ M|ζi−1(si−1, yn(si−1))− ζi−1(si−1, y(si−1))|
+M

∫ t

si−1

∣∣∣∣ f
(

s, yn(s),
∫ s

0
g(s, τ, yn(τ))dτ

)
− f

(
s, y(s),

∫ s

0
g(s, τ, y(τ))dτ

)∣∣∣∣ ds.

→ 0, as n → ∞.

We can conclude that Λyn → Λy, as n → +∞.

Case 2. For the interval [0, t1], we obtain

|(Λyn)(t)− (Λy)(t)|
≤ M

∫ t

0

∣∣∣∣ f
(

s, yn(s),
∫ s

0
g(s, τ, yn(τ))dτ

)
− f

(
s, y(s),

∫ s

0
g(s, τ, y(τ))dτ

)∣∣∣∣ ds

→ 0, as n → ∞.
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Case 3. For the interval (si, ti+1], we have

|(Λyn)(t)− (Λy)(t)|
≤ M̃|γi(si, yn(si))− γi(si, y(si))|+ M|ζi(si, yn(si))− ζi(si, y(si))|
+M

∫ t

si

∣∣∣∣ f
(

s, yn(s),
∫ s

0
g(s, τ, yn(τ))dτ

)
− f

(
s, y(s),

∫ s

0
g(s, τ, y(τ))dτ

)∣∣∣∣ ds

→ 0 as n → ∞.

As a consequence of Case 1–3, Λyn → Λy, as n → +∞. Hence the Λ is continuous.

Step 3. Λ is equicontinuous.

Case 1. For the interval [0, t1], 0 ≤ t̃1 ≤ t̃2 ≤ t1, any y ∈ BR, we have

|(Λy)(t̃2)− (Λy)(t̃1)|
≤ ‖ ∂

∂s
S(t̃2, 0)− ∂

∂s
S(t̃1, 0)‖B(E)|y0|

+‖S(t̃2, 0)− S(t̃1, 0)‖B(E)|y1|

+

∣∣∣∣∫ t̃1

0
(S(t̃2, s)− S(t̃1, s)) f

(
s, y(s),

∫ s

0
g(s, τ, y(τ))dτ

)
ds

+
∫ t̃2

t̃1

S(t̃2, τ) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds
∣∣∣∣

≤
∫ t̃1

0
‖S(t̃2, τ)− S(t̃1, τ)‖B(E) Θ f (τ)ψ

(
|y(s)|+

∫ s

0
Θg(τ)ϕ(|y(τ)|)dτ

)
ds

+M
∫ t̃2

t̃1

Θ f (s)ψ
(
|y(s)|+

∫ s

0
Θg(τ)ϕ(|y(τ)|)dτ

)
ds.

It follows from the Hölder’s inequality that

|(Λy)(t̃2)− (Λy)(t̃1)|
≤ ‖ ∂

∂s
S(t̃2, 0)− ∂

∂s
S(t̃1, 0)‖B(E)|y0|

+‖S(t̃2, 0)− S(t̃1, 0)‖B(E)|y1|

+ψ
(

R + ϕ(R)‖Θg‖L1
) ∫ t̃1

0
‖S(t̃2, τ)− S(t̃1, τ)‖B(E) Θ f (τ)dτ

+
M‖Θ f ‖Lr ψ

(
R + ϕ(R)‖Θg‖L1

)
δ1− 1

r

(
e−

rδ
r−1 (t−t̃2) − e−

rδ
r−1 (t−t̃1)

)1− 1
r .

Case 2. For the interval (si, ti+1], si ≤ t̃1 ≤ t̃2 ≤ ti+1, any y ∈ BR, then we get

|(Λy)(t̃2)− (Λy)(t̃1)| ≤ ‖ ∂

∂s
S(t̃2, si)−

∂

∂s
S(t̃1, si)‖B(E)|γi(si, y(si))|

+ ‖S(t̃2, si)− S(t̃1, si)‖B(E)|ζi(si, y(si))|

+

∣∣∣∣∫ t̃1

si

(S(t̃2, s)− S(t̃1, s)) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds

+
∫ t̃2

t̃1

S(t̃2, τ) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds
∣∣∣∣

≤
∫ t̃1

si

‖S(t̃2, τ)− S(t̃1, τ)‖B(E) Θ f (τ)ψ

(
|y(s)|+

∫ s

0
Θg(τ)ϕ(|y(τ)|)dτ

)
ds

+ M
∫ t̃2

t̃1

Θ f (s)ψ
(
|y(s)|+

∫ s

0
Θg(τ)ϕ(|y(τ)|)dτ

)
ds.

It follows from the Hölder’s inequality that
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|(Λy)(t̃2)− (Λy)(t̃1)| ≤ ‖ ∂

∂s
S(t̃2, si)−

∂

∂s
S(t̃1, si)‖B(E)|γi(si, y(si))|

+ ‖S(t̃2, si)− S(t̃1, si)‖B(E)|ζi(si, y(si))|

+ ψ
(

R + ϕ(R)‖Θg‖L1
) ∫ t̃1

si

‖S(t̃2, τ)− S(t̃1, τ)‖B(E) p(τ)dτ

+
M‖Θ f ‖Lr ψ

(
R + ϕ(R)‖Θg‖L1

)
δ1− 1

r

(
e−

rδ
r−1 (t−t̃2) − e−

rδ
r−1 (t−t̃1)

)1− 1
r .

Case 3. For the interval (si, ti], si ≤ t̃1 ≤ t̃2 ≤ ti, any y ∈ BR, we have

|(Λy)(t̃2)− (Λy)(t̃1)|

=
∣∣∣γi

(
t̃2,− ∂

∂s
S(t̃2, si)γi−1(si−1, y(t−i−1)) + S(t̃2, si−1)ζi−1(si−1, y(t−i−1))

+
∫ t̃2

si−1

S(t, s) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds
)

−γi

(
t̃1,− ∂

∂s
S(t̃1, si)γi−1(si−1, y(t−i−1)) + S(t̃1, si−1)ζi−1(si−1, y(t−i−1))

+
∫ t̃1

si−1

S(t̃1, s) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds
) ∣∣∣.

then

|(Λy)(t̃2)− (Λy)(t̃1)|

≤ ci

∣∣∣− ∂

∂s
S(t̃2, si)γi−1(si−1, y(t−i−1)) + S(t̃2, si−1)ζi−1(si−1, y(t−i−1))

+
∫ t̃2

si−1

S(t, s) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds

+
∂

∂s
S(t̃1, si)γi−1(si−1, y(t−i−1))− S(t̃1, si−1)ζi−1(si−1, y(t−i−1))

−
∫ t̃1

si−1

S(t̃1, s) f
(

s, y(s),
∫ s

0
g(s, τ, y(τ))dτ

)
ds
∣∣∣.

Similarly, one can easily see that

|(Λy)(t̃2)− (Λy)(t̃1)| ≤ ci‖
∂

∂s
S(t̃2, si−1)−

∂

∂s
S(t̃1, si−1)‖B(E)|γi−1(si−1, y(t−i−1))|

+ ci‖S(t̃2, si−1)− S(t̃1, si−1)‖B(E)|ζi−1(si−1, y(t−i−1))|

+ ciψ
(

R + ϕ(R)‖Θg‖L1
) ∫ t̃1

si−1

‖S(t̃2, τ)− S(t̃1, τ)‖B(E) Θ f (τ)dτ

+
Mci‖Θ f ‖Lr ψ

(
R + ϕ(R)‖Θg‖L1

)
δ1− 1

r

(
e−

rδ
r−1 (t−t̃2) − e−

rδ
r−1 (t−t̃1)

)1− 1
r .

In view of Case 1–3, as a result, ‖(Λy)(t̃2) − (Λy)(t̃1)‖ → 0 as t̃2 → t̃1, which meansthat Λ
is equicontinuous.

Step 4. Λ is a αPC-contraction operator.

For every bounded subset B ⊂ PC(J, E), then we know that there exists a countable set B1 =

{y}∞
n=1 ⊂ B (see Lemma 2), such that for any t ∈ J, we have

αE(Λ(B)(t)) ≤ 2αE(Λ(B1)(t)). (9)
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Note that B and ΛB are equicontinuous, we can get from Lemma 2, Lemma 3, Lemma 4 and
using the assumptions (H1)–(H6), we obtain
Case 1. For the interval (ti, si], we have

αE(ΛB1(t)) ≤ M̃ki

{
αE

(
γi−1(si−1, yn(t−i−1))

)}∞

n=0

+ Mki

{
αE

(
ζi−1(si−1, yn(t−i−1))

)}∞

n=0

+ kiαE

({∫ t

si−1

S(t, s) f (s, yn(s),
∫ s

0
g(s, τ, yn(s))dτ)ds

}∞

n=0

)
≤ M̃kiki−1

{
αE(yn(t−i ))

}∞
n=0) + Mkik̄i−1

{
αE(yn(t−i−1))

}∞

n=0
)

+ 2Mki

∫ t

si−1

{
αE

(
f (s, yn(s),

∫ s

0
g(s, τ, yn(τ))dτ)ds)

)}∞

n=0
ds

≤ M̃kiki−1
{

αE(yn(t−i ))
}∞

n=0) + Mkik̄i−1

{
αE(yn(t−i−1))

}∞

n=0
)

+ 2Mki

∫ t

si−1

σ1(s) {αE(yn(s))}∞
n=0

+ �i(s)
{

αE

(∫ s

0
g(s, τ, yn(τ))dτ

)}∞

n=0

)
ds

≤ M̃kiki−1
{

αE(yn(t−i ))
}∞

n=0) + Mkik̄i−1

{
α(yn(t−i−1))

}∞

n=0
)

+ 2Mki

∫ t

si−1

σi(s) {αE(yn(s))}∞
n=0)

+ 2K∗�i(s)
{∫ s

0
αE(yn(τ))dτ

}∞

n=0

)
ds

≤ (M̃kiki−1 + Mkik̄i−1)αE(B1(t−i ))

+ 2Mki

∫ t

si−1

(
σi(s)αE(B1(s)) + 2K∗�i(s)

∫ s

0
αE(B1(τ)dτ

)
ds.

≤ (M̃kiki−1 + kik̄i−1) sups∈(ti ,si] αE(B(t))

+ 2Mki

∫ t

si−1

(
σ(s)αE(B1(s)) + 2K∗�(s)s sup

τ∈[0,s]
αE(B1(τ)

)
ds.

≤ (M̃kiki−1 + Mkik̄i−1) sups∈(si ,ti+1]
αE(B(t))

+ 2M
∫ t

si−1

(
σ(s) sup

s∈(si ,ti+1]

αE(B1(s)) + 2K∗�(s)s sup
τ∈(ti ,si ]

αE(B1(τ)

)
ds.

≤ (M̃kiki−1 + Mkik̄i−1) sups∈(ti ,si ]
αE(B(t))

+ 2Mki

∫ t

si−1

(σ(s) + 2K∗s�(s)) sup
s∈(ti ,si ]

αE(B1(s))ds

≤ ki(M̃ki−1 + Mk̄i−1 + 2M(‖σ‖L1 + 2K∗si‖�‖L1)) supt∈(ti ,si ]
αE(B(t))

≤ ki(M̃ki−1 + Mk̄i−1 + 2M(‖σ‖L1 + 2K∗a‖�‖L1) supt∈(ti ,si ]
αE(B(t)).

Then

αE(N(B(t))) ≤ ki
(

M̃ki−1 + Mk̄i−1 + 2M(‖σ‖L1 + 2K∗a‖�‖L1
)

αPC(B(t)). (10)

Case 2. For the interval [0, t1], we have

αE(ΛB1(t)) ≤ αE

({∫ t

0
S(t, s) f (s, yn(s),

∫ s

0
g(s, τ, yn(s))dτ)ds

}∞

n=0

)
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≤ 2M
∫ t

0

{
αE

(
f (s, yn(s),

∫ s

0
g(s, τ, yn(τ))dτ)ds)

)}∞

n=0
ds

≤ 2M
∫ t

0
σ1(s) {αE(yn(s))}∞

n=0 ds

+ �i(s)
{

αE

(∫ s

0
g(s, τ, yn(τ))dτ

)}∞

n=0

)
ds

≤ 2M
∫ t

0
σi(s) {αE(yn(s))}∞

n=0)

+ 2K∗�i(s)
{∫ s

0
αE(yn(τ))dτ

}∞

n=0

)
ds

≤ 2M
∫ t

0

(
σi(s)αE(B1(s)) + 2K∗�i(s)

∫ s

0
αE(B1(τ)dτ

)
ds

≤ 2M
∫ t

0

(
σ(s)αE(B1(s)) + 2K∗�(s)s sup

τ∈[0,s]
αE(B1(τ)

)
ds

≤ 2M
∫ t

0

(
σ(s) sup

s∈[0;t1]

αE(B1(s)) + 2K∗�(s)s sup
τ∈[0;t1]

αE(B1(τ)

)
ds

≤ 2M
∫ t

0
(σ(s) + 2K∗s�(s)) sup

s∈[0;t1]

αE(B1(s))ds.

≤ 2M(‖σ‖L1 + 2K∗t1‖�‖L1) sup
t∈[0;t1]

αE(B(t))

≤ 2M(‖σ‖L1 + 2K∗a‖�‖L1) sup
t∈[0;t1]

αE(B(t)).

Then

αE(Λ(B(t))) ≤ 2M(‖σ‖L1 + 2K∗a‖�‖L1))αPC(B(t)). (11)

Case 3. For the interval (si, ti+1], we have

αE(ΛB1(t)) ≤ M̃
{

αE
(
γi(s, yn(t−i ))

)}∞
n=0 + M

{
αE

(
ζi(s, yn(t−i ))

)}∞
n=0

+ αE

({∫ t

si

S(t, s) f (s, yn(s),
∫ s

0
g(s, τ, yn(s))dτ)ds

}∞

n=0

)
≤ M̃ki

{
αE(yn(t−i ))

}∞
n=0) + Mk̄i

{
αE(yn(t−i ))

}∞
n=0)

+ 2M
∫ t

si

{
αE

(
f (s, yn(s),

∫ s

0
g(s, τ, yn(τ))dτ)ds)

)}∞

n=0
ds

≤ M̃ki
{

αE(yn(t−i ))
}∞

n=0) + Mk̄i
{

αE(yn(t−i ))
}∞

n=0)

+ 2M
∫ t

si

σ1(s) {αE(yn(s))}∞
n=0 ds

+ �i(s)
{

αE

(∫ s

0
g(s, τ, yn(τ))dτ

)}∞

n=0

)
ds
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≤ M̃ki
{

αE(yn(t−i ))
}∞

n=0) + Mk̄i
{

αE(yn(t−i ))
}∞

n=0)

+ 2M
∫ t

si

σi(s) {αE(yn(s))}∞
n=0)

+ 2K∗�i(s)
{∫ s

0
αE(yn(τ))dτ

}∞

n=0

)
ds

≤ (M̃ki + Mk̄i)αE(B(t−i ))

+2M
∫ t

si

(
σ(s)αE(B1(s)) + 2K∗�(s)

∫ s

0
αE(B1(τ)dτ

)
ds

≤ (M̃ki + Mk̄i) sup
s∈(si ,ti+1]

αE(B1(s))

+ 2M
∫ t

si

(
σ(s)αE(B1(s)) + 2K∗�(s)s sup

τ∈[0,s]
αE(B1(τ)

)
ds

≤ (M̃ki + Mk̄i) sup
s∈(si ,ti+1]

αE(B(s))

+ 2M
∫ t

si

(
σ(s) sup

s∈(si ,ti+1]

αE(B1(s)) + 2K∗�(s)s sup
τ∈(si ,ti+1]

αE(B1(τ)

)
ds

≤ (M̃ki + Mk̄i)αE(B1(t−i ))

+ 2M
∫ t

si

(σ(s) + 2K∗s�(s)) sup
s∈(si ,ti+1]

αE(B1(s))ds.

≤
(

M̃ki + Mk̄i + 2M(‖σ‖L1 + 2K∗ti+1‖�‖L1)
)

sup
t∈(si ,ti+1]

αE(B(t))

≤
(

M̃ki + Mk̄i + 2M(‖σ‖L1 + 2K∗a‖�‖L1)
)

sup
t∈(si ,ti+1]

αE(B(t)).

Then

αE(Λ(B(t))) ≤
(

M̃ki + Mk̄i + 2M(‖σ‖L1 + 2K∗a‖�‖L1)
)

αPC(B(t)). (12)

From the above cases (10)–(12), for all t ∈ J, we obtain

αPC(Λ(B)) ≤ max
1≤i≤N

(ki, 1)
(

max
1≤i≤N

(M̃ki + Mk̄i) + 2M(‖σ‖L1 + 2K∗a‖�‖L1))

)
αPC(B).

Thus, we find that Λ is αPC-contraction operator. Applying now theorem 1, we conclude that Λ
has a fixed point which is an solution of the system (1).

Next, we present another existence result for the mild solution of the system (1).

Theorem 4. Assume that hypotheses (H1)–(H6) are fulfilled and

lim
R→+∞

inf
ψ(R + ‖Θg‖L1 ϕ(R))‖Θ f ‖Lr )

R
= ρ < ∞,

and

M̃ci + Mei +
Mρ‖Θ f ‖Lr

δ1− 1
r

≤ 1, i = 1, · · · , N. (13)

Then, there exists a mild solution of system (1).

Proof. Following the proof of Theorem 3 we conclude that the map Λ : BR → BR given by Equation (5)
is continuous. Next, we show that there exists R > 0 such that Λ(BR) ⊂ BR. In fact, if it is not true,
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then for each positive number R , there exists a function y̌ ∈ BR and ť ∈ J such that R ≤
∣∣(Λy)(ť)

∣∣.
Therefore for
Case 1. For ť ∈ (si, ti], and y̌ ∈ BR, we have,

∣∣(Λy̌)(ť)
∣∣ ≤

∥∥∥∥ ∂

∂s
S(ť, si−1)

∥∥∥∥
B(E)

|γi(si−1, y̌(si−1))|

+
∥∥S(ť, si−1)

∥∥
B(E) |ζi(si−1, y̌(si−1))|

+
∫ ť

si−1

‖S(t, s)‖B(E) Θ f (s)ψ
(
|y̌(s)|+

∫ s

0
Θg(τ)ϕ(|y̌(τ)|))dτ

)
ds

≤ M̃ci−1 |y̌(si−1)|+ M̃di−1

+ Mei−1 |y̌(si−1)|+ Mli−1

+
∫ ť

si−1

Me−δ(t−s)Θ f (s)ψ
(
|y̌(s)|+

∫ s

0
Θg(τ)ϕ(|y̌(τ)|)dτ

)
ds.

Then ∣∣(Λy)(ť)
∣∣ ≤ M̃ci−1R + M̃di−1

+ Mei−1R + Mli−1

+
∫ ť

si−1

Me−δ(t−s)Θ f (s)ψ
(
|y̌(s)|+

∫ s

0
Θg(τ)ϕ(|y̌(τ)|)dτ

)
ds.

≤ (M̃ci−1 + Mei−1)R + M̃li−1 + Mli−1

+ Mψ(R + ‖Θg‖L1 ϕ(R))
∫ ť

si−1

e−δ(t−s)Θ f (s)ds.

It follows from the Hölder’s inequality that∣∣(Λy)(ť)
∣∣ ≤ (M̃ci−1 + Mei−1)R + M̃di−1 + Mli−1

+
Mψ(R + ‖Θg‖L1 ϕ(R))‖Θ f ‖Lr

δ1− 1
r

.

Case 2. For ť ∈ [0; t1], and y̌ ∈ BR, we get,

∣∣(Λy)(ť)
∣∣ ≤

∥∥∥∥ ∂

∂s
S(t, 0)

∥∥∥∥
B(E)

|y0|

+ ‖S(t, s)‖B(E) |y1|

+
∫ ť

0
‖S(t, s)‖B(E) Θ f (s)ψ

(
|y̌(s)|+

∫ s

0
Θg(τ)ϕ(|y̌(τ)|)dτ

)
ds

≤ M̃|y1|+ M|y0|+ Mψ(R + ‖Θg‖L1 ϕ(R))
∫ ť

0
e−δ(t−s)Θ f (s)ds.

It follows from the Hölder’s inequality that

∣∣(Λy)(ť)
∣∣ ≤ M̃|y0|+ M|y1|+

Mψ(R + ‖Θg‖L1 ϕ(R))‖Θ f ‖Lr

δ1− 1
r

(1− e−
rδ

r−1 ť)1− 1
r

≤ M̃|y0|+ M|y1|+
Mψ(R + ‖Θg‖L1 ϕ(R))‖Θ f ‖Lr

δ1− 1
r

.
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Case 3. For ť ∈ (si, ti+1], and y̌ ∈ BR, we have,∣∣(Λy)(ť)
∣∣ ≤ M̃ci

∣∣y(ť)∣∣+ M̃di + Mei
∣∣y(ť)∣∣+ Mli

+
∫ t

si

∥∥S(ť, s)
∥∥

B(E) Θ f (s)ψ
(
|y̌(s)|+

∫ s

0
Θg(τ)ϕ(|y̌(τ)|)dτ

)
ds.

≤ M̃ciR + M̃di + MeiR + Mli

+ Mψ(R + ‖Θg‖L1 ϕ(R))
∫ ť

si

e−δ(ť−s)Θ f (s)ds.

It follows from the Hölder’s inequality that

|(Λy)(t)| ≤ M̃di + Mli
+ (M̃ci + Mei)R

+
Mψ(R + ‖Θg‖L1 ϕ(R))‖Θ f ‖Lr

δ1− 1
r

.

Therefore for all ť ∈ J, we have

R <
∣∣(Λy)(ť)

∣∣ ≤ (M̃ci + Mei)R

+ max(M̃di + Mli, M̃|y0|+ M|y1|)

+
Mψ(R + ‖Θg‖L1 ϕ(R))‖Θ f ‖Lr

δ1− 1
r

.

Dividing both sides by R and taking the lim inf as R → +∞, we have

M̃ci + Mei +
Mρ‖Θ f ‖Lr

δ1− 1
r

> 1, i = 0, · · · , N.

which contradicts (13). Hence, the operator Λ transforms the set BR into itself.
The proof of Λ : BR → BR is αE-contraction is similar to those in Theorem 3. Therefore, we omit

the details. By the Darbo-Sadovskii fixed point theorem 2 we deduce that Λ has a fixed point which is
a mild solution of system (1).

4. An Example

In this section, we give an example to illustrate the above theoretical result.
Set E = L2([0, π],R) be the space of all square integrable functions from [0, π] into R. We denote

by H2([0, π],R) the Sobolev space of functions u : [0, π]→ R, such that u′′ ∈ L2([0, π],R). Define the
operator A : D(A)→ E by

Au(τ) = u′′(τ),

with domain

D(A) =
{

ω ∈ E : ω, ω′ are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0
}

.

It is well known that A is the infinitesimal generator of a C0-semigroup and of a strongly
continuous cosine function on E, which will be denoted by (C(t)). From [14], for all x ∈
H2([0, π],R), t ∈ R, ‖C(t)‖B(E) ≤ 1. Define also the operator B : H1([0, π],R)→ E by

B(t)u(s) = a(t)u′(s),

where a : [0, 1]→ R is a Hölder continuous function.
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Consider the closed linear operator A(t) = B(t) +A. It has been proved by Henríquez in [44]
that the family {A(t) : t ∈ J} generates an evolution operator {S(t, s)}(t,s)∈D. Moreover, S(·, ·) is well
defined and satisfies the conditions (H1) and (H2), with M = M̃ = 1 and δ = 1.

We consider the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2

∂t2 u(t, τ) = ∂2

∂τ2 u(t, τ) + a(t) ∂
∂t u(t, τ)

+
u(t, τ)

12(
√

t + 1)(1 + |u(t, τ)|)
+

e−t

(
√

t + 1)(t + 1)

∫ t

0

√
tu(s, τ)

8(1 + s2 + t)(1 + u2(s, τ))
ds, t ∈

(
0, 1√

3

]
∪
(

2√
3
, 1
]

,

u(t, τ) = 1
12 cos πt u

(
1√
3
−

, τ
)

, t ∈
(

1√
3
, 2√

3

]
, τ ∈ [0, π],

∂
∂t u (t, τ) =

1
12

sin πt u
(

1√
3

−
, τ

)
, t ∈

(
1√
3
, 2√

3

]
, τ ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, 1],
u(0, τ) = y0, τ ∈ [0, π],

∂
∂t u(0, τ) = y1, τ ∈ [0, π].

(14)

Take a = t2 = 1, t0 = s0 = 0, t1 = 1√
3
, s1 = 2√

3
. The system (14) can be written in the abstract form:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y′′(t) = A(t)y(t) + f

(
t, y(t),

∫ t

0
g(t, s, y(s))ds

)
, t ∈ (si, ti+1], i = 1, 2

y(t) = γi(t, y(t−i )), t ∈ (ti, si], i = 1,
y′(t) = ζi(t, y(t−i )), t ∈ (ti, si], i = 1,
y(0) = y0, y′(0) = y1,

(15)

where y(t) = u(t, ·), that is y(t)(τ) = u(t, τ), τ ∈ [0, π].
The function f : J × E× E → E, is given by

f (t, y, z)(τ) =
|y(t)(τ)|

12(
√

t + 1)(1 + |y(t)(τ)|)
+

e−t

(
√

t + 1)(t + 1)
z(t)(τ),

The function g : D× E → E, is given by

g(t, s, y)(τ) =
√

ty(t)(τ)
8(1 + s2 + t)(1 + y2(t)(τ))

,

Functions

γ1(t, y(t−1 ))(τ) =
1

12
cos πt y

(
1√
3

−)
(τ), (16)

and

ζ1(t, y(t−1 ))(τ) =
1

12
sin πt y

(
1√
3

−)
(τ), (17)

represent noninstantaneous impulses during interval
(

1√
3

, 2√
3

]
. We have

| f (t, y, z)(τ)| ≤ 1
1 +

√
t
ψ(|y(t)(τ)|+ |z(t)(τ)|), (18)

and

|g(t, s, y)(τ)| ≤
√

t
8 + 8t

|y(t)(τ)|. (19)
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From the above discussion, we obtain

ψ(t) = t, ϕ(t) = t, Θ f (t) =
1

1 +
√

t
, Θg(t) =

√
t

8 + 8t
.

For each t ∈ J, and W1, W2 ⊂ E, we get

αE( f (t, W1, W2)) ≤
1

12(
√

t + 1)
αE(W1) +

e−t

(
√

t + 1)(t + 1)
αE(W2),

We shall show that condition (H3) holds with

σ(t) =
1

12(
√

t + 1)
, ρ(t) =

e−t

(
√

t + 1)(t + 1)
.

Moreover
‖σ‖L1 ≤ 1

12
, ‖ρ‖L1 ≤ 1.

By (19), for any t ∈ J and W ⊂ E, we get

αE(g(t, s, W)) ≤ 1
8

sup
t∈[0,1]

√
t

1 + t
αE(W),

then

αE(g(t, s, W)) ≤
√

2
24

αE(W).

Hence (H5) is satisfied with K∗ =
√

2
24

.

Next, let us observe that, in view of (16) and (17), the mapping γ1 and ζ1 fulfil the hypothes (H5)

and (H6) with c1 = e1 = k1 = k̄1 = 1
12 and d1 = l1 = 0. Furthermore, we have

max(k1, 1)
(

M̃k1 + Mk̄1 + 2M(‖σ‖L1 + 2K∗a‖�‖L1)
)
=

2 +
√

2
6

< 1.

Clearly all the conditions of theorem 3 are satisfied. Hence by the conclusion of Theorem 3,
it follows that problem (14) has a solution.
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Abstract: This study deals with the numerical solution of the non-linear differential equations (DEs)
arising in the study of hydrodynamics and hydro-magnetic stability problems using a new cubic
B-spline scheme (CBS). The main idea is that we have modified the boundary value problems (BVPs)
to produce a new system of linear equations. The algorithm developed here is not only for the
approximation solutions of the 10th order BVPs but also estimate from 1st derivative to 10th derivative
of the exact solution as well. Some examples are illustrated to show the feasibility and competence of
the proposed scheme.

Keywords: non-linear differential equation; cubic B-spline; central finite difference approximations;
absolute errors
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1. Introduction

Recent research in the field of hydrodynamic and hydromagnetics stability have found the
presence of a family of problems in differential equations (DEs) of a high order, and which have real
mathematical interest. There are various approximate (numerical) methods in the literature that have
been used for the solution of boundary value problems (BVPs). The existence and uniqueness to
finding the solution of higher order BVPs are systematically examined in [1]. The BVPs of higher
order DEs have been examined due to their significance and the potential for applications in applied
sciences. To find the analytical solutions of such BVPs analytically is very tough and are available in
very few cases. Very few researchers have tried the numerical solution of 10th order BVPs. Some of the
approximate techniques have been established over the years to the numerical solution for these kinds
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of BVPs. In [2,3], the authors has solved 10th and 12th order BVPs using the Adomian decomposition
method (ADM) involving Green’s function. The homotopy perturbation approach was utilized in [4]
to solve BVPs of 10th order. When a uniform magnetic field is applied across the fluid in the direction
of gravity, the instability sets now as ordinary convection and it is modeled by 10th order BVPs as
discussed in [5]. In [6], established approximate techniques for solving the 10th order non-linear BVPs
occurring in thermal instability.

Numerical methods for the solution of non-linear BVPs of order 2 m were found in [7]. An effective
numerical procedure DTM for solving some linear and non-linear BVPs of 10th order is discussed in [8].
In [9,10], the BVPs of 9th and 10th order are considered by adopting homotopy perturbation technique
and the modified-variational iteration technique. Also the variational iterative technique was adopted
in [11] for solving the 10th order BVPs. Wazwaz [12–15] proposed modified form of ADM for solving
6th, 8th, 10th and 12th order.

The study of non-polynomial spline [16] of 11th degree is a key element to solve 10th order
BVPs. In [17], it is depicted that the DEs that describe the 10th order model to incorporate a 3rd order
model of enlistment machine, two equations for dynamic power control, two equations for receptive
power control, and three equations for edge pitch control. A 10th order nonlinear dynamic model
was developed in [18] to turn mobile robots that incorporate slip between the driven wheels and the
ground. Based on binary six-point and eight-point approximating subdivision scheme, two collocation
algorithms are constructed by [19,20] to find the solution of BVPs. The 4th order linear BVPs using a
new cubic B-spline were solved in [21]. Authors explained the 10th and 12th order BVPs by using the
Galerkin weighted residual technique in [22]. The 5th, 6th and 8th order linear and non-linear BVPs
by using the cubic B-spline scheme (CBS) method were solved in [23–25]. The higher (10th and 11th)
degree splines were tested in [26,27] for solving 10th order BVPs. In [28] they practiced 2nd order finite
difference schemes for the mathematical solutions of the 8th, 10th and 12th order Eigen-value problems.
Galerkin method with septic B-spline and quintic B-spline was adopted in [29,30] for solving 10th

order BVPs. Quintic B-spline and septic-B spline collocation methods was discussed in [31,32] to find
solution of a 10th order BVPs.

For discrete methods, e.g., Adomian decomposition, shooting, homotopy perturbation, finite
differences and variational-iterative technique, only give discrete approximate values of the unknown
y(x). For fitting curve to data we require further data processing methods. To overcome these
disadvantages, we introduced a new CBS scheme for the solution of 10th order BVPs. The algorithm
developed here is not only for the approximation solutions of the 10th order boundary value
problems(BVPs) employing CBS but also estimate derivatives of 1st order to 10th order (where
boundary conditions (BCs) are defined) of the exact solution as well.

The rest of the paper is organized as follows. The construction of CBS is presented in Section 2.
In Section 3, the CBS scheme is utilized as an interpolating function in the solution of 10th order
nonlinear BVPs. The results and discussion are presented in Section 4. Also some problems are
considered in this section to show the efficiency of the CBS scheme. Finally, the concluding remarks
are given in the final section.

2. The Construction of CBS

In this section, we construct the CBS basis functions for solving numerically the non-linear
equations arising in the study of hydrodynamics and hydro-magnetic stability problems. To find the
approximate solution at nodal points defined in the region [a, b]. For an interval Ω = [a, b], we divide
it into n sub-intervals Ωi = [κi, κi+1]; i = 0, 1, 2, ...,n− 1, by the equidistant knots. For this range, we
select equidistant points such that

Ωı = κı = a + ıh, (1)

such that
Ω = {a = κ0, ..., κn = b}, (2)
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i.e., κı = a + ıh, (ı = 0, ...,n) and h = b−a
n .

Assume S3(Ω) = {p(t) ∈ C2[a, b]} such that p(t) converted to to cubic-polynomial on
separately sub interval(κı, κı+1). The basis function is defined as

Mı(κ) =
1

6h3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(κ − κı−2)
3, if κ ∈ [κı−2, κı−1],

h3 + 3h2(κ − κı−1) + 3h(κ − κı−1)
2 − 3

(κ − κı−1)
3, if κ ∈ [κı−1, κı],

h3 + 3h2(κı+1 − κ) + 3h(κı+1 − κ)2 − 3
(κı+1 − κ)3, if κ ∈ [κı, κı+1],

(κı+2 − κ)3, if κ ∈ [κı+1, κı+2],

0, otherwise,

for (ı = 2, 3, 4, ..., n− 2). Considering one and all Mı(κ) is also a piece-wise cubic with knots at Ω ,
simultaneously Mı(κ) ∈ S3(Ω).

Assume Ψ = {Mı}; (ı = −1, 0, 1, 2 . . . n, n + 1) be linearly independent and let M3(Ω) = spanΨ.
Thus M3(Ω) is (n + 3) dimensional and M3(Ω) = S3(Ω). Let s(κ) be the cubic-B spline function
interpolating at the nodal points and s(κ) ∈ S3(Ω). Then s(κ) can be written as

s(κ) =
n+1

∑
ı=−1

jı Mı(κ).

Consequently now for a function w(κ), there happened to be a distinctive cubic-B spline
s(κ) = ∑n+1

ı=−1 jı Mı(κ), satisfying the interpolating conditions:

w(κı) = s(κı) =
jı−1 + 4jı + jı+1

6
, (3)

for ı = 0, . . . , n.
The values of Mı(κ), and its derivatives Mı

(1)(κ), Mı
(2)(κ) at nodal points are required and these

derivatives are tabulated in Table 1.

Table 1. Values of Mı(κ) and its derivatives.

Mı (κ) Mı
(1) (κ) Mı

(2) (κ)

κı−2, κı+2 0 0 0
κı−1 1/6 1/2h 1/h2

κı 4/6 0 −2/h2

κı+1 1/6 −1/2h 1/h2

otherwise 0 0 0

Assume mı = s(1)(κı) and ℵı = s(2)(κı) then from

mı = s(1)(κı) = w(1)(κı)−
1

180
h4w(5)(κı) + O(h6) (4)

w(1)(κ) = s(1)(κı) =
jı+1 − jı−1

2h
(5)

ℵı = s(2)(κı) = w(2)(κı)−
1
12

h2w(4)(κı) +
1

360
h4w(6)(κı) + O(h6) (6)
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w(2)(κ) = s(2)(κı) =
jı+1 − 2jı + jı−1

h2 , (7)

ℵı may be used to determine numerical-difference formulas for w(3)(κı), w(4)(κı) such that (ı = 1 to n−
1), for w(5)(κı), w(6)(κı) such that (ı = 2 to n− 2), for w(7)(κı), w(8)(κı) such that (ı = 3 to n− 3) and
w(9)(κı), w(10)(κı) such that (ı = 4 to n− 4) like so the errors can be obtained by using Taylor-series⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℵı+1 −ℵı−1
2h = s(3)(κı−)+s(3)(κı+)

2 = w(3)(κı) +
1

12 h2w(5)(κı) + O(h4);
w(3)(κ) = s(3)(κı) =

jı+2−2jı+1+2jı−1−jı−2
2h3 ,

ℵı+1−2ℵı+ℵı−1
h2 = s(3)(κı−)−s(3)(κı+)

h = w(4)(κı)− 1
720 h4w(8)(κı) + O(h6);

w(4)(κ) = s(4)(κı) =
jı+2−4jı+1+6jı−4jı−1+jı−2

h4 ,
ℵı+2−2ℵı+1+2ℵı−1−ℵı−2

2h3 = w(5)(κı) + O(h2);
w(5)(κ) = s(5)(κı) =

jı+3−4jı+2+5jı+1+5jı−1+4jı−2−jı−3
2h5 .

(8)

Similarly (see [31]),⎧⎪⎪⎪⎨⎪⎪⎪⎩
w(6) (κı) = s(6) (κı) = jı+3−6jı+2+15jı+1−20jı+15jı−1−6jı−2+jı−3

h6 ,

w(7) (κı)=s(7) (κı)=
jı+4−6jı+3+14jı+2−14jı+1+14jı−1−14jı−2+6jı−3−jı−4

2h7 ,
w(8)(κı) = s(8)(κı) =

1
h8 (jı+4 − 8jı+3 + 28jı+2 − 56jı+1 + 70jı − 56jı−1 + 28jı−2 − 8jı−3 + jı−4),

w(9) (κı)=s(9) (κı)=
1

2h9 (jı+5−8jı+4+27jı+3−48jı+2+42jı+1−42jı−1+48jı−2−27jı−3+8 jı−4−jı−5).

(9)

3. The 10th Order Nonlinear BVPs

In this section, we consider the 10th order nonlinear BVPs arising in the study of hydrodynamics
stability and visco-elastic flows.

w(10)(κ) = f (κ, w(κ), w(1)(κ), w(2)(κ), w(3)(κ), w(4)(κ), w(5)(κ), w(6)(κ), w(7)(κ),

w(8)(κ), w(9)(κ)), κ ∈ [a, b],
(10)

with BCs
w(a) = λ0, w(1)(a) = λ1, w(2)(a) = λ2,

w(3)(a) = λ3, w(4)(a) = λ4, w(b) = χ0,

w(1)(b) = χ1, w(2)(b) = χ2, w(3)(b) = χ3,

w(4)(b) = χ4,

(11)

where λ0, λ1, λ2, λ3, λ4 and χ0, χ1, χ2, χ3, χ4 are given real constants, (aı(κ); ı = 1, 2, ..., 10) and f
is continuous in interval [a, b].
The Taylor, series for w(10)(κı) at the preferred collocation points alongside central difference (see [31]),
we have

w(10)(κı)=
1
h6

(
wı+3

(4)(κı)−6wı+2
(4)(κı)+15wı+1

(4)(κı)−20wı
(4)(κı)+15

wı−1
(4)(κı)−6wı−2

(4)(κı)+wı−3
(4)(κı)

)
.

(12)

Equation (9) can be written as
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ℵı−2 − 2ℵı−3+ℵı−4

h2 = w(4)(κı−3)−
1

720
h4w(8)(κı−3) + O(h6),

ℵı−1 − 2ℵı−2+ℵı−3

h2 = w(4)(κı−2)−
1

720
h4w(8)(κı−2) + O(h6),

ℵı − 2ℵı−1+ℵı−2

h2 = w(4)(κı−1)−
1

720
h4w(8)(κı−1) + O(h6),

ℵı+2 − 2ℵı+1+ℵı

h2 = w(4)(κı+1)−
1

720
h4w(8)(κı+1) + O(h6),

ℵı+3 − 2ℵı+2+ℵı+1

h2 = w(4)(κı+2)−
1

720
h4w(8)(κı+2) + O(h6),

ℵı+4 − 2ℵı+3+ℵı+2

h2 = w(4)(κı+3)−
1

720
h4w(8)(κı+3) + O(h6).

(13)

Substituting Equation (13) into Equation (12), we obtain

1
h8 (ℵı+4−8ℵı+3+28ℵı+2 − 56ℵı+1 +70ℵı−56ℵı−1+ 28ℵı−2−8ℵı−3 +ℵı−4)

=w(10)(κı)+O(h2).
(14)

Since ℵı =
jı+1−2jı+jı−1

h2 so, Equation (14) becomes

w(10)(κı)=
1
h8

( jı+5−2jı+4+jı+3
h2 −8(

jı+4−2jı+3+jı+2
h2 )+28(

jı+3−2jı+2+jı+1
h2 )− 56(

jı+2−2jı+1+jı
h2 )

+70(
jı+1−2jı+jı−1

h2 )− 56(
jı−2jı−1+jı−2

h2 )+ 28(
jı−1−2jı−2+jı−3

h2 )− 8(
jı−2−2jı−3+jı−4

h2 )+

jı−3−2jı−4+jı−5
h2

)
.

(15)

After some simplifications the above equation becomes

w(10) (κı)=s(10) (κı)=
1

h10

(
jı+5−10jı+4+45jı+3−120jı+2+210jı+1−252jı

+210jı−1−120jı−2+45jı−3−10 jı−4+jı−5

)
.

(16)

Let w(κı) = s(κı) = ∑n+1
ı=−1 jı Mı(κı) be the accurate solution of non-linear 10th order BVPs

w(10)(κı) = f (κı, w(κı), w(1)(κı), w(2)(κı), w(3)(κı), w(4)(κı),

w(5)(κı), w(6)(κı), w(7)(κı), w(8)(κı), w(9)(κı)), κı ∈ [a, b].
(17)

Imposing Equations (3), (5), (7), (8) and (9) into Equation (17), we have

1
h10 (jı+5−10jı+4+45jı+3−120jı+2+210jı+1−252jı+210jı−1−120jı−2+45jı−3

−10 jı−4+jı−5) = fı

(
κı,

1
6
(jı−1 + 4jı + jı+1),

1
2h

(jı+1 − jı−1),
1
h2 (jı+1 − 2jı + jı−1),

1
2h3 (jı+2 − 2jı+1 + 2jı−1 − jı−2),

1
h4 (jı+2 − 4jı+1 + 6jı − 4jı−1 + jı−2),

1
2h5 (jı+3

−4jı+2 + 5jı+1 + 5jı−1 + 4jı−2 − jı−3),
1
h6 (jı+3 − 6jı+2 + 15jı+1 − 20jı + 15jı−1

−6jı−2 + jı−3),
1

2h7 (jı+4 − 6jı+3 + 14jı+2 − 14jı+1 + 14jı−1 − 14jı−2 + 6jı−3 − jı−4),

1
h8 (jı+4−8jı+3+28jı+2−56jı+1+70jı−56jı−1+28jı−2−8jı−3+jı−4),

1
2h9 (jı+5−8jı+4

+27jı+3−48jı+2+42jı+1−42jı−1+48jı−2−27jı−3+8 jı−4−jı−5)
)

, κ ∈ [a, b].

(18)
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Equation (18) we will produce a new system consisting of (n − 7) linear equations
(ı = 4, 5, ..., n− 4) with (n+ 3) unknowns jı where (ı = −1, 0, ..., n + 1), therefore ten further equations
are required. From given BCs at κ = a, we have five equations:

w(a) = λ0 ⇒ j−1 + 4j0 + j1 = 6λ0

w(1)(a) = λ1 ⇒ − j−1 + j1 = 2λ1h

w(2)(a) = λ2 ⇒ j−1 − 2j0 + j1 = λ2h2

w(3)(a) = λ3 ⇒ j2 − 2j1 + 2j−1 − j−2 = 2λ3h3

w(4)(a) = λ4 ⇒ j2 − 4j1 + 6j0 − 4j−1 + j−2 = λ4h4,

(19)

similarly from κ = b there will be other five equations

w(b) = χ0 ⇒ jn−1 + 4jn + jn+1 = 6χ0

w(1)(b) = χ1 ⇒ − jn−1 + jn+1 = 2χ1h

w(2)(b) = χ2 ⇒ jn−1 − 2jn + jn+1 = χ2h2

w(3)(b) = χ3 ⇒ jn+2 − 2jn+1 + 2jn−1 − jn−2 = 2χ 3h3

w(4)(b) = χ4 ⇒ jn+2 − 4jn+1 + 6jn − 4jn−1 + jn−2 = χ 4h4.

(20)

Omitting the order of the error of terms, the exact solution w(κı) = s(κı) = ∑n+1
ı=−1 jı Mı(κı) is

accomplished by finding solution of the discussed above linear system of (n + 3) equations in (n + 3)
unknowns considering the Equations (18)–(20).

4. Convergence Analysis

Let ŵ(κ) be the exact solution of the Equations (10)–(12) and also ŝ(κ) be the CBS approximation
to ŵ(κ). Therefore, we have

ŵ(κı) = ŝ(κı) =
n+1

∑
ı=−1

ĵı Mı(κı), (21)

where

ĵ = ĵimath =
[

ĵ−1, ĵ0, ĵ1, ..., ĵn+1

]T
.

Also, we have assume that s′(κ) be the computed cubic B spline approximation to ŝ(κ), namely

w′(κı) = s′(κı) =
n+1

∑
i=−1

j′i Mı(κı),

j′ = j′ i =
[

j′−1, j′0, j′1, ..., j′n+1

]T
.

To approximate the error ‖ŵ(κı))− ŝ(κı))‖∞ we have to estimate error ‖ŵ(κı))− s′(κı))‖∞ and
‖w′(κı))− ŝ(κı))‖∞ seperately

The system of (n + 3)× (n + 3) matrix can be written as:

Bj = G.

Then, we have
B ĵ = Ĝ (22)

and
Bj′ = G′. (23)
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Now, by subtracting Equations (22) and (23), we obtain

B(j′ − ĵ) = G′ − Ĝ,

where B is an (n + 3)× (n + 3)-dimensional band matrix,
and

G =
[

G−1, G0, G1, ..., Gn+1

]T
,

where T denoting transpose.
We can write

(j′ − ĵ) = B−1(G′ − Ĝ). (24)

Taking the infinity norm from Equation (24), we obtain

‖(j′ − ĵ)‖∞ = ‖B−1‖∞‖G′ − Ĝ‖∞.

The B-spline M = Mı = {M−1, M0, M1, ..., Mn+1} satisfy the following property

∣∣∣ n+1

∑
i=−1

j′i Mı(κı)
∣∣∣ ≤ 1.

Using [24]
‖B−1‖∞‖G′ − Ĝ‖∞ ≤ �h2.

‖(j′ − ĵ)‖∞ ≤ �h2. (25)

s′(κı))− ŝ(κı) = (j′ − ĵ)
n+1

∑
i=−1

Mı(κı).

‖s′(κı)− ŝ(κı)‖∞ = ‖(j′ − ĵ)
n+1

∑
i=−1

Mı(κı)‖∞.

‖s′(κı)− ŝ(κı)‖∞ ≤ ‖(j′ − ĵ)‖∞|
n+1

∑
i=−1

Mı(κı)| ≤ �h2. (26)

‖ŵ(κı)− s′(κı)‖∞ ≤ ρh4. (27)

‖ŵ(κı)− ŝ(κı)‖∞ ≤ ‖ŵ(κı)− s′(κı)‖∞ + ‖s′(κı)− ŝ(κı)‖∞. (28)

Using Equations (26) and (27) in Equation (28)

‖ŵ(κı)− ŝ(κı)‖∞ ≤ �h2 + ρh4 = �h2.

which proves that this method is second order convergent and ‖ŵ(κ)− ŝ(κ)‖∞ ≤ �h2.

5. Results and Discussions

To test the accuracy of CBS method, three problems are discussed and compared with the existing
methods in this section.

5.1. Problem 1

We consider the following DEs arising in viscoelastic flows and hydrodynamic stability problems
as given in [29,31]

w(10)(κ) =
14175

4
(j + w(κ) + 1)11; 0 ≤ κ ≤ 1;
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subject to BCs;

w (0) = w (1) = 0, w(1) (0) = −1
2
= −w(2) (0) , w(1) (1) = 1,

w(2) (1) = 4, w(3) (0) =
3
4

, w(3) (1) = 12, w(4) (0) =
3
2

, w(4) (1) = 48.

the exact solution of given equation is w (κ) = 2
2−κ − κ− 1. The values of fifteen unknowns ji from the

Equations (18)–(20) are

j−2 = 0.10849167, j3 = −0.12456626, j8 = −0.13626667,
j−1 = 0.05166667, j4 = −0.15061957, j9 = -0.08666667,
j0 = −0.00083333, j5 = −0.16684713, j10 = −0.0066667,
j1 = −0.04833333, j6 = −0.17169449, j11 = 0.11333333,
j2 = −0.09000833, j7 = −0.16277005, j12 = 0.28773333.

Tables 2 and 3 analyzed the exact solution and cubic B-spline scheme (CBS) solution of problem 1
at h = 1

10 and h = 1
5 respectively. Figures 1–3 analyze the exact solution with cubic B-spline scheme

(CBS) solution of problem 1 at h = 1
10 and h = 1

5 graphically. Table 4 analyze the errors at those
derivatives where boundary conditions (BCs) are defined in problem 1 at h = 1

10 .

Figure 1. Problem 1 at h = 1
10 .
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Table 2. Analyzing exact solution and cubic B-spline scheme (CBS) solution of problem 1 at h = 1
10 .

κ Exact Solution CBS Solution Absolute Error

0 0 0 0× 100

0.1 −0.0473684 −0.0473665 1.900× 10−06

0.2 −0.0888889 −0.0888822 6.670× 10−05

0.3 −0.1235294 −0.1235488 3.810× 10−05

0.4 −0.1500000 −0.1509819 1.020× 10−04

0.5 −0.1666667 −0.1669504 1.720× 10−04

0.6 −0.1714286 −0.1714992 2.030× 10−05

0.7 −0.1615385 −0.1615302 1.700× 10−06

0.8 −0.1333333 −0.1333172 9.160× 10−05

0.9 −0.0818182 −0.0818000 2.180× 10−05

1 0 0 0× 100

Table 3. Analyzing exact solution and CBS solution of problem 1 at h = 1
5 .

κ Exact Solution CBS Solution Absolute Error of CBS

0 0 0 0× 100

0.2 −0.0888889 −0.0888000 8.890× 10−05

0.4 −0.1500000 −0.1500222 2.980× 10−05

0.6 −0.1714286 −0.1714778 1.150× 10−05

0.8 −0.1333333 −0.1333000 3.730× 10−05

1 0 0 0× 100

Figure 2. Problem 1 at h = 1
5 .
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Figure 3. Problem 1 at h = 1
10 and h = 1

5 .

Table 4. Errors at derivatives where boundary conditions (BCs) are defined in problem 1 at h = 1
10 .

κ CBS-Solution of
w(1)(κ)

CBS-Solution of
w(2)(κ)

CBS-Solution of
w(3)(κ)

CBS-Solution of
w(4)(κ)

0 −0.5 0.5 0.75 1.5
0.1 −0.4459 0.5825 1.0585 1.93853
0.2 −0.3812 0.7117 1.3398 2.54026
0.3 −0.3031 0.8505 1.3543 3.38062
0.4 −0.2114 0.9826 1.4378 4.57764
0.5 −0.1054 1.1380 1.9730 6.32099
0.6 0.0204 1.3772 3.0994 8.92485
0.7 0.1771 1.7579 4.6624 12.92780
0.8 0.3805 2.3097 6.4105 19.29012
0.9 0.6480 3.0400 8.4517 29.80422
1 1 4 12 48

5.2. Problem 2

We consider the following problem as given in [16]

w(10)(κ) = 9!(e−10w(κ) − 2
(1 + κ)10 ); 0 ≤ κ ≤ e1/2−1

subject to BCs;

w (0) = 0, w
(

e1/2−1
)
=

1
2

, w(1) (0) = −w(2) (0) = 1, w(1)
(

e1/2−1
)
= e(

−1
2 ),

w(2)
(

e1/2−1
)
= −e(−1), w(3) (0) = 2, w(3)

(
e1/2−1

)
= 2e(−

3
2 ),

w(4) (0) = −6, w(4)
(

e1/2−1
)
= −6e(−2),

the exact solution of a given equation is w (κ) = ln(1 + κ) where the domain [0, e1/2−1] for h =

2−ie1/2−1.
The values of fifteen unknowns ji from Equations (18)–(20) are
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j−2 = −0.13805879, j3 = 0.1782805 , j8 = 0.4183388 ,
j−1 = −0.0662749 , j4 = 0.2311044 , j9 = 0.4601370 ,
j0 = 0.0007014 , j5 = 0.2812925 , j10 = 0.5002580 ,
j1 = 0.0634693 , j6 = 0.3290924 , j11 = 0.5388309 ,
j2 = 0.1225218 , j7 = 0.3747130 , j12 = 0.57597018 .

Tables 5 and 6 analyzed the exact solution and cubic B-spline scheme (CBS) solution of problem 2
at h = 0.064872 and h = 0.12974426 respectively. Figures 4–6 analyze the exact solution with cubic
B-spline scheme (CBS) solution of problem 2 at h = 0.064872 and h = 0.12974426 graphically. Table 7
analyze the errors at those derivatives where boundary conditions (BCs) are defined in problem 2 at
h = 0.064872.

Table 5. Analyzing exact solution and CBS-solution of problem 2 at h = 0.064872.

κ Exact Solution CBS Solution Absolute Error of CBS

0 0 0 0× 100

0.065 0.06285473 0.0628501 4.650× 10−06

0.13 0.12199129 0.1219728 1.850× 10−05

0.195 0.17782512 0.1777914 3.370× 10−05

0.259 0.23070570 0.2306651 4.060× 10−05

0.324 0.28092982 0.2808945 3.530× 10−05

0.389 0.32875164 0.3287292 2.250× 10−05

0.454 0.37439053 0.3743805 1.000× 10−05

0.519 0.41803711 0.4180342 2.920× 10−06

0.584 0.45985807 0.4598575 5.980× 10−07

0.648 0.5 0.5 0× 100

Figure 4. Problem 1 at h = 0.064872 .
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Figure 5. Problem 2 at h = 0.064872 and h = 0.12974426.

Figure 6. Problem 1 at h = 0.12974426.

Table 6. Analyzing the exact solution and CBS solution of problem 2 at h = 0.12974426.

κ Exact Solution CBS Solution Absolute Error of CBS

0 0 0 0× 100

0.130 0.1219912 0.1219138 7.750× 10−05

0.259 0.2307057 0.2304804 2.250× 10−04

0.389 0.3287516 0.3286773 7.430× 10−05

0.519 0.41803711 0.4180281 8.960× 10−06

0.649 0.5 0.5 0× 100

212



Mathematics 2019, 7, 1078

Table 7. Errors at derivatives where BCs are defined in problem 2 at h = 0.064872.

κ CBS Solution of
w(1)(κ)

CBS Solution of
w(2)(κ)

CBS Solution of
w(3)(κ)

CBS Solution of
w(4)(κ)

0 1 −1 2 −6
0.065 0.93893 −0.88288 1.67530 −4.66533031
0.13 0.88490 −0.78264 1.42971 −3.68168892
0.195 0.83690 −0.69738 1.20485 −2.94393959
0.259 0.79396 −0.62632 1.00104 −2.38195984
0.324 0.75524 −0.56751 0.83630 −1.94791017
0.389 0.72004 −0.51781 0.72045 −1.60848492
0.454 0.68786 −0.47403 0.64400 −1.34006674
0.519 0.65840 −0.43426 0.58187 −1.12562522
0.584 0.63139 −0.39854 0.51160 −0.95268994
0.648 0.60653 −0.36788 0.44626 −0.81200035

5.3. Problem 3

We consider the following equation as given in [29,33]

w(10)(κ) + e−κ(w(κ))2 = e−3κ + e−κ ; 0 ≤ z ‘ ≤ 1

subject to BCs;
w (0) = w(2) (0) = w(4) (0) = −w(1) (0) = −w(3) (0) = 1,

w (0) = w(2) (0) = w(4) (0) = −w(1) (0) = −w(3) (0) = e−1

the exact solution of given equation is w (κ) = e−κ . The values of fifteen unknowns ji the Equations
(18)–(20) are

j−2 = 1.21938333, j3 = −0.73961579, j8 = −0.44858605,
j−1 = 1.10333333, j4 = −0.66924328, j9 = 0.405893650,
j0 = 0.99833333, j5 = 0.605557470, j10 = 0.36726630,
j1 = −0.9033333, j6 = 0.547923909, j11 = 0.33231776,
j2 = −0.5333053, j7 = 0.495772367, j12 = 0.30069852 .

Tables 8 and 9 analyzed the exact solution and cubic B-spline scheme (CBS) solution of problem 3
at h = 1

10 and h = 1
5 respectively. Figures 7–9 analyze the exact solution with cubic B-spline scheme

(CBS) solution of problem 3 at h = 1
10 and h = 1

5 graphically. Table 10 analyze the errors at those
derivatives where boundary conditions (BCs) are defined in problem 3 at h = 1

10 .

Table 8. Analyzing exact solution and CBS solution of problem 3 at h = 1
10 .

κ Exact
Solution

CBS Solution Absolute Error of
CBS

0 1 1 0
0.1 0.9048374 0.9048417 4.250× 10−06

0.2 0.8187308 0.8187471 1.630× 10−05

0.3 0.7408182 0.7408483 3.010× 10−05

0.4 0.6703200 0.6703577 3.770× 10−05

0.5 0.6065307 0.6065662 3.550× 10−05

0.6 0.5488116 0.5488376 2.590× 10−05

0.7 0.4965853 0.4965999 1.460× 10−05

0.8 0.4493290 0.4493350 6.080× 10−06

0.9 0.4065697 0.4065712 1.500× 10−06

1 0.3678794 0.3678794 0
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Figure 7. Problem 1 at h = 1
10 .

Figure 8. Problem 3 at h = 1
10 and h = 1

5 .

Table 9. Analyzing exact solution and CBS solution of problem 3 at h = 1
5 .

κ Exact Solution CBS Absolute Error of CBS

0 1 1 0× 100

0.2 0.8187308 0.8188000 6.920× 10−05

0.4 0.6703200 0.6705188 1.990× 10−04

0.6 0.5488116 0.5489132 1.020× 10−04

0.8 0.4493290 0.4493525 2.350× 10−05

1 0.3678794 0.3678794 0× 100
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Table 10. Errors at derivatives where BCs are defined in problem 3 at h = 1
10 .

κ CBS Solution of w(2)(κ), w(4)(κ) CBS Solution of w(1)(κ), w(3)(κ)

0 1 −1
0.1 0.90482409 −0.90484731
0.2 0.81870008 −0.81872330
0.3 0.74077662 −0.74079984
0.4 0.67027318 −0.67029640
0.5 0.60648354 −0.60650676
0.6 0.54876876 −0.54879198
0.7 0.49655070 −0.49657392
0.8 0.44930633 −0.44932955
0.9 0.40656241 −0.40658563
1 0.36787944 −0.36787944

Figure 9. Problem 1 at h = 1
10 and h = 1

5 .

6. Conclusions

In this study, we present new scheme using CBS of some non-linear differential equations arising
in visco-elastic flows and hydrodynamic stability problems. The proper selection for the choice of the
scheme and an appropriate of adjustment BCs may cause elasticity for the betterment of the results.
The new CBS scheme proposed in this study is very simple to apply in solving the non-linear DEs
compared with some existing schemes. An advantage of using the CBS scheme is that it gives a spline
function on each new time line which can be applied to achieve the numerical solutions at any stage in
the space direction.
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Abstract: In this article, we consider an inverse problem to determine an unknown source term
in a space-time-fractional diffusion equation. The inverse problems are often ill-posed. By an
example, we show that this problem is NOT well-posed in the Hadamard sense, i.e., this problem
does not satisfy the last condition-the solution’s behavior changes continuously with the input data.
It leads to having a regularization model for this problem. We use the Tikhonov method to solve the
problem. In the theoretical results, we also propose a priori and a posteriori parameter choice rules and
analyze them.

Keywords: fractional diffusion-wave equation; fractional derivative; ill-posed problem; Tikhonov
regularization method
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1. Introduction

Let Ω be a bounded domain in Rd with sufficiently smooth boundary ∂Ω, β ∈ (1, 2). In this paper,
we consider the inverse source problem of the time-fractional diffusion-wave equation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂
β
0+u(x, t) = Δu(x, t) + Ξ(x), (x, t) ∈ Ω× (0, T),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T],
u(x, 0) = f (x), x ∈ Ω,
ut(x, 0) = g(x), x ∈ Ω,
u(x, T) = h(x), x ∈ Ω,

(1)

where ∂
β
0+u(x, t) is the Caputo fractional derivative of order β defined as [1]

∂
β
0+u(x, t) =

1
Γ(2− α)

∫ t

0

∂2u(x, s)
∂s2

ds
(t− s)β−1 , 1 < β < 2, (2)

where Γ(.) is the Gamma function.
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It is known that the inverse source problem mentioned above is ill-posed in general, i.e., a solution
does not always exist and, in the case of existence of a solution, it does not depend continuously on
the given data. In fact, from a small noise of physical measurement, for example, (h, f , g) is noised by
observation data (hε1 , gε2 , hε3) with order of ε1 > 0, ε2 > 0, and ε3 > 0.∥∥h− hε1

∥∥
L2(Ω)

≤ ε1,
∥∥ f − f ε2

∥∥
L2(Ω)

≤ ε2, and
∥∥g− gε3

∥∥
L2(Ω)

≤ ε3. (3)

In all functions f (x), g(x), and h(x) are given data. It is well-known that if ε1, ε2, and ε3 are small
enough, the sought solution Ξ(x) may have a large error. The backward problem is to find Ξ(x) from
Ξε and gε which satisfies (3), where ‖ · ‖L2(Ω) denotes the L2 norm.

It is known that the inverse source problem mentioned above is ill-posed in general, i.e., a solution
does not always exist, and in the case of existence of a solution, it does not depend continuously on
the given data. In fact, from a small noise of physical measurement, the corresponding solutions may
have a large error. Hence, a regularization is required. Inverse source problems for a time-fractional
diffusion equation for 0 < β < 1 have been studied. Tuan et al. [2] used the Tikhonov regularization
method to solve the inverse source problem with the later time and show the estimation for the exact
solution and regularized solution by a priori and a posteriori parameter choices rules. Wei et al. [3–5]
studied an inverse source problem in a spatial fractional diffusion equation by quasi-boundary value
and truncation methods. Fan Yang et al., see [6], used the Landweber iteration regularization method
for determining the unknown source for the modified Helmholtz equation. Nevertheless, to our
best knowledge, Salir Tarta et al. [7] used these properties and analytic Fredholm theorem to prove
that the inverse source problem is well-posed, i.e., f (t, x) can be determined uniquely and depends
continuously on additional data u(T, x), x ∈ Ω, see [8,9]—the authors studied the inverse source
problem in the case of nonlocal inverse problem in a one-dimensional time-space and numerical
algorithm. Furthermore, the research of backward problems for the diffusion-wave equation is an
open problem and still receives attention. In 2017, Tuan et al. [10] considered⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂β

∂tβ
u(x, t) = −rβ(−Δ)

α
2 u(x, t) + h(t) f (x), (x, t) ∈ ΩT ,

u(−1, t) = u(1, t) = 0, 0 < t < T,
u(x, 0) = 0, x ∈ Ω,
u(x, T) = g(x), x ∈ Ω,

(4)

where ΩT = (−1, 1)× (0, T); r > 0 is a parameter; h ∈ C[0, T] is a given function; β ∈ (0, 1); α ∈ (1, 2)
are fractional order of the time and the space derivatives, respectively; and T > 0 is a final time.
The function u = u(x, t) denotes a concentration of contaminant at a position x and time t with (−Δ)

α
2

as the fractional Laplacian. If α tends to 2, the fractional Laplacian tends to the Laplacian normal
operator, see [1,2,7–16]. In this paper, we use the fractional Tikhonov regularization method to solve
the identification of source term of the fractional diffusion-wave equation inverse source problem
with variable coefficients in a general bounded domain. However, a fractional Tikhonov is not a new
method for mathematicians in the world. In [16], Zhi Quan and Xiao Li Feng used this method for
considering the Helmholtz equation. Here, we estimate a convergence rate under an a priori bound
assumption of the exact solution and a priori parameter choice rule and estimate a convergence rate
under the a posteriori parameter choice rule.

In several papers, many authors have shown that the fractional diffusion-wave equation plays
a very important role in describing physical phenomena, such as the diffusion process in media
with fractional geometry, see [17]. Nowadays, fractional calculus receives increasing attention
in the scientific community, with a growing number of applications in physics, electrochemistry,
biophysics, viscoelasticity, biomedicine, control theory, signal processing, etc., see [18]. In a lot of
papers, the Mittag–Leffler function and its properties are researched and the results are used to model
the different physical phenomena, see [19,20].

The rest of this article is organized as follows. In Section 2, we introduce some preliminary results.
The ill-posedness of the fractional inverse source problem (1) and conditional stability are provided in
Section 3. We propose a Tikhonov regularization method and give two convergence estimates under
an a priori assumption for the exact solution and two regularization parameter choice rules: Section 4
(a priori parameter choice) and Section 5 (a posteriori parameter choice).
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2. Preliminary Results

In this section, we introduce a few properties of the eigenvalues of the operator (−Δ), see [21].

Definition 1 (Eigenvalues of the Laplacian operator).

1. Each eigenvalues of (−Δ) is real. The family of eigenvalues {b̃i}∞
i=1 satisfy 0 ≤ b̃1 ≤ b̃2 ≤ b̃3 ≤ . . . , and

b̃i → ∞ as i → ∞.
2. We take {b̃i, ei} the eigenvalues and corresponding eigenvectors of the fractional Laplacian operator in Ω

with Dirichlet boundary conditions on ∂Ω:

−Δei(x) = b̃iei(x), x ∈ Ω,
ei(x) = 0, on ∂Ω,

(5)

for i = 1, 2, . . . . Then, we define the operator (−Δ) by

−Δu :=
∞

∑
i=0

ci(−Δei(x)) =
∞

∑
i=0

cib̃iei(x), (6)

which maps Hκ
0 (Ω) into L2(Ω). Let 0 �= κ < ∞. By Hκ(Ω), we denote the space of all functions

g ∈ L2(Ω) with the property
∞

∑
i=1

(1 + b̃i)
2κ
∣∣gi

∣∣2 < ∞, (7)

where gi =
∫

Ω g(x)ei(x)dx. Then, we also define
∥∥g

∥∥
Hκ(Ω)

=
√

∑∞
i=1(1 + b̃i)2κ

∣∣gi
∣∣2. If κ = 0, then

Hκ(Ω) is L2(Ω).

Definition 2 (See [1]). The Mittag–Leffler function is:

Eβ,γ(z) =
∞

∑
i=0

zi

Γ(βi + γ)
, z ∈ C,

where β > 0 and γ ∈ R are arbitrary constants.

Lemma 1 (See [21]). For 1 < β < 2, γ ∈ R, and ω > 0, we get

Eβ,γ(−ω) =
1

Γ(γ− β)ω
+ o

( 1
ω2

)
, ω → ∞· (8)

Lemma 2 (See [1]). If β < 2 and γ ∈ R, suppose ζ satisfies
πβ

2
< ζ < min{π, πβ}, ζ ≤ | arg(y)| ≤ π.

Then, there exists a constant Ã as follows:

∣∣Eβ,γ(y)
∣∣ ≤ Ã

1 + |y| · (9)

Lemma 3 (See [22]). The following equality holds for b̃ > 0, α > 0 and m ∈ N

dm

dtm Eα,1(−b̃tα) = −b̃tα−mEα,α−m+1(−b̃tα), t > 0. (10)

Lemma 4. For b̃i > 0, β > 0, and positive integer i ∈ N, we have

(1)
d
dt
(
tEβ,2(b̃itβ)

)
= Eβ,1(−b̃itβ),

(2)
d
dt
(
Eβ,1(−b̃itβ)

)
= −b̃itβ−1Eβ,β(−b̃itβ). (11)
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Lemma 5. For any b̃i satisfying b̃i ≥ b̃1 > 0, there exists positive constants A, B such that

A
b̃iTβ

≤
∣∣∣Eβ,β+1

(
− b̃iTβ

)∣∣∣ ≤ B
b̃iTβ

· (12)

Lemma 6 (See [21]). Let b̃ > 0, we have

∞∫
0

e−pttβi+γ−1E(i)
β,γ(±atβ)dt =

i!pβ−γ

(pβ ∓ a)i+1 , �(a) > ‖a‖
1
β , (13)

where E(i)
β,γ(y) := di

dyi Eβ,γ(y).

Lemma 7. For constant ξ ≥ b̃1 and
1
2
≤ τ ≤ 1, one has

C(ξ) = ξ

A2τ + α2ξ2τ
≤ C(τ, A)α−

1
τ , (14)

where C = C(τ, A) are independent on α, ξ.

Proof. Let
1
2
≤ τ ≤ 1, we solve the equation C′(ξ0) = 0, then there exists a unique ξ0 = A(2τ −

1)−
1

2τ α−
1
τ , it gives

C(ξ) ≤ C(ξ0) ≤
A1−2τ

2τ
(2τ − 1)

2τ−1
2τ α−

1
τ := C(τ, A)α−

1
τ .

Lemma 8. Let the constant ξ ≥ b̃1 and 1
2 ≤ τ ≤ 1, we get

D(ξ) =
α2ξ2τ−j

A2τ + α2ξ2τ
≤

⎧⎨⎩B1(j, τ, A)α
j
τ , 0 < j < 2τ,

B2(j, τ, A, b̃1)α
2, j ≥ 2τ.

Proof.

• If j ≥ 2τ, then from ξ ≥ b̃1, we get

D(ξ) =
α2ξ2τ−j

A2τ + α2ξ2τ
≤ α2ξ2τ−j

A2τ
≤ α2

A2τ b̃j−2τ
1

≤ 1

A2τ b̃j−2τ
1

α2. (15)

• If 0 < j < 2τ, then it can be seen that limξ→0D(ξ) = limξ→+∞D(ξ) = 0. Taking the derivative of
D with respect to ξ, we know that

D′(ξ) = α2(2τ − j)ξ2τ−j−1(A2τ + α2ξ2τ)− α42τξ4τ−j−1

(A2τ + α2ξ2τ)2 · (16)

From (16), a simple transformation gives

D′(ξ) = α2(2τ − j)A2τξ2τ−j−1 − α4 jξ4τ−j−1

(A2τ + α2ξ2τ)2 · (17)

D(ξ) attains maximum value at ξ = ξ0 such that it satisfies D′(ξ) = 0. Solving D′(ξ0) = 0,
we know that ξ0 = A(2τ − j)

1
2τ α−

1
τ j−

1
2τ .
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Hence, we conclude

D(ξ) ≤ D(ξ0) = D
(

A(2τ − j)
1

2τ α−
1
τ j−

1
2τ
)
=

(2τ − j)
2τ−j

2τ A−j j
j

2τ

2τ
α

j
τ . (18)

Lemma 9. Let ξ > b̃1 > 0 and 1
2 ≤ τ < 1, and F (ξ) be a function defined by

F (ξ) =
α2ξ2τ−(j+1)

A2τ + α2ξ2τ
≤

⎧⎨⎩B3(j, τ, A)α
j+1

τ , 0 < j < 2τ − 1,

B4(j, τ, A, b̃1)α
2, j ≥ 2τ − 1,

where B3(j, τ, A, b̃1) =
2τ − j− 1

2τA2τ

(
j + 1

2τ − j− 1

) j+1
2τ

and B4(j, τ, A, b̃1) =
1

A2τ b̃(j+1)−2τ
1

.

Proof.

• If j ≥ 2τ − 1, then for ξ ≥ b̃1 we know that

F (ξ) ≤ α2ξ2τ−(j+1)

A2τ
≤ 1

A2τ b̃(j+1)−2τ
1

α2 = B4(j, τ, A, b̃1)α
2. (19)

• If 0 < j < 2τ − 1, then we have limξ→0 F (ξ) = limξ→∞ F (ξ) = 0, then we know

F (ξ) ≤ sup
ξ∈(0,+∞)

F (ξ) ≤ F (ξ0).

By taking the derivative of F with respect to ξ, we know that

(F )′(ξ) =
A2τα2(2τ − j− 1)ξ2τ−j−2 + α4(−j− 1)ξ4τ−j−2

(A2τ + α2ξ2τ)2 · (20)

The function F (ξ) attains maximum at value ξ = ξ0, whereby ξ0 ∈ (0,+∞), which satisfies

(F )′(ξ0) = 0. Solving (F )′(ξ0) = 0, we obtain that ξ0 = A(2τ−j−1)
1

2τ

α
1
τ (j+1)

1
2τ

> 0, then we have

F (ξ) ≤ F (ξ0) = F
( A(2τ − j− 1)

1
2τ

α
1
τ (j + 1)

1
2τ

)
=

2τ − j− 1
2τA2τ

(
j + 1

2τ − j− 1

) j+1
2τ

α
j+1

τ .

The proof of Lemma 9 is completed. Our main results are described in the following Theorem.

Now, we use the separation of variables to yield the solution of (1). Suppose that the solution
of (1) is defined by Fourier series

u(x, t) =
∞

∑
i=1

ui(t)ei(x), with ui(t) =
〈
u(·, t), ei(·)

〉
. (21)

Next, we apply the separating variables method and suppose that problem (1) has a solution
of the form u(x, t) = ∑∞

i=1 ui(t)ei(x). Then, ui(t) is the solution of the following fractional ordinary
differential equation with initial conditions as follows:

∂β

∂tβ
ui(t) = Δui(t) + Ξi(x), (x, t) ∈ Ω× (0, T),

ui(0) = 〈 f (x), ei(x)〉, x ∈ Ω,
uit(0) = 〈g(x), ei(x)〉, x ∈ Ω.

(22)
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As Sakamoto and Yamamoto [22], the formula of solution corresponding to the initial value
problem for (22) is obtained as follows:

ui(t) = tβEβ,β+1(−b̃itβ)
〈
Ξ, ei

〉
+ Eβ,1(−b̃itβ)

〈
f , ei

〉
+ tEβ,2(−b̃itβ)

〈
g, ei

〉
· (23)

Hence, we get

u(x, t) =
∞

∑
i=1

[
tβEβ,β+1(−b̃itβ)

〈
Ξ(x), ei(x)

〉
+ Eβ,1(−b̃itβ)

〈
f (x), ei(x)

〉
+ tEβ,2(−b̃itβ)

〈
g(x), ei(x)

〉]
ei(x). (24)

Letting t = T, we obtain

u(x, T) =
∞

∑
i=1

[
TβEβ,β+1(−b̃iTβ)

〈
Ξ(x), ei(x)

〉
+ Eβ,1(−b̃iTβ)

〈
f (x), ei(x)

〉
+ TEβ,2(−b̃iTβ)

〈
g(x), ei(x)

〉]
ei(x). (25)

From (25) and using final condition u(x, T) = h(x), we get

h(x) =
∞

∑
i=1

[
TβEβ,β+1(−b̃iTβ)

〈
Ξ(x), ei(x)

〉
+ Eβ,1(−b̃iTβ)

〈
f (x), ei(x)

〉
+ TEβ,2(−b̃iTβ)

〈
g(x), ei(x)

〉]
ei(x). (26)

By denoting hi =
〈

h(x), ei(x)
〉
, fi =

〈
f (x), ei(x)

〉
, gi =

〈
g(x), ei(x)

〉
, and Ξi =

〈
Ξ(x), ei(x)

〉
,

using a simple transformation, we have

Ξi =
hi − Eβ,1(−b̃iTβ) fi − TEβ,2(−b̃iTβ)gi

TβEβ,β+1(−b̃iTβ)
· (27)

Then, we receive the formula of the source function Ξ(x)

Ξ(x) =
∞

∑
i=1

Ri

TβEβ,β+1(−b̃iTβ)
ei(x), (28)

whereRi = hi − Eβ,1(−b̃iTβ) fi − TEβ,2(−b̃iTβ)gi.
In the following Theorem, we provide the uniqueness property of the inverse source problem.

Theorem 1. The couple solution
(
u(x, t), Ξ(x)

)
of problem (1) is unique.

Proof. We assume Ξ1 and Ξ2 to be the source functions corresponding to the final valuesR1 andR2
in form (27) and (28), respectively, whereby

R1 = h1 − Eβ,1(−b̃iTβ) f1 − TEβ,2(−b̃iTβ)g1,

R2 = h2 − Eβ,1(−b̃iTβ) f2 − TEβ,2(−b̃iTβ)g2. (29)
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Suppose that h1 = h2, f1 = f2, and g1 = g2, then we prove that Ξ1 = Ξ2. In fact, using the
inequality (a + b + c)2 ≤ 3(a2 + b2 + c2), we get∥∥R1 −R2

∥∥2
L2(Ω)

≤ 3
∥∥h1 − h2

∥∥2
L2(Ω)

+ 3
[
Eβ,1(−b̃iTβ)

]2∥∥ f1 − f2
∥∥2
L2(Ω)

+ 3T2[Eβ,2(−b̃iTβ)
]2∥∥g1 − g2

∥∥2
L2(Ω)

≤ 3
∥∥h1 − h2

∥∥2
L2(Ω)

+
3B2

b̃1T2β

∥∥ f1 − f2
∥∥2
L2(Ω)

+
3T2B2

b̃1T2β

∥∥g1 − g2
∥∥2
L2(Ω)

· (30)

From (30), we can see that if the right hand side tends to 0, then
∥∥R1 −R2

∥∥2
L2(Ω)

→ 0. Therefore,
we haveR1 = R2. The proof is completed.

2.1. The Ill-Posedness of Inverse Source Problem

Theorem 2. The inverse source problem is ill-posed.

Define a linear operator K : L2(Ω)→ L2(Ω) as follows:

KΞ(x) =
∫
Ω

k(x, ω)Ξ(ω)dω = R(x), x ∈ Ω, (31)

where k(x, ω) is the kernel

k(x, ω) =
∞

∑
i=1

TβEβ,β+1
(
− b̃iTβ

)
ei(x)ei(ω). (32)

Due to k(x, ω) = k(ω, x), we know K is a self-adjoint operator. Next, we are going to prove its
compactness. We use the fractional Tikhonov regularization method to rehabilitate it, where ei(x) is an
orthogonal basis in L2(Ω) and

ξi = TβEβ,β+1(−b̃iTβ). (33)

Proof. Due to k(x, ω) = k(ω, x), we know K is a self-adjoint operator. Next, we are going to prove its
compactness. Defining the finite rank operators KN as follows:

KNΞ(x) =
N

∑
i=1

[
TβEβ,β+1(−b̃iTβ)

]〈
Ξ(x), ei(x)

〉
ei(x). (34)

Then, from (31) and (34) and combining Lemma 5, we have

∥∥KNΞ−KΞ
∥∥2
L2(Ω)

=
∞

∑
i=N+1

[
TβEβ,β+1(−b̃iTβ)

]2∣∣∣〈Ξ(x), ei(x)
〉∣∣∣2

≤
∞

∑
i=N+1

B2

b̃i

∣∣∣〈Ξ(x), ei(x)
〉∣∣∣2

≤ B2

b̃N

∞

∑
i=N+1

∣∣∣〈Ξ(x), ei(x)
〉∣∣∣2. (35)

Therefore,
∥∥KN −K

∥∥
L2(Ω)

→ 0 in the sense of operator norm in L(L2(Ω);L2(Ω)) as N → ∞.
Additionally, K is a compact and self-adjoint operator. Therefore, K admits an orthonormal eigenbasis
ei in L2(Ω). From (31), the inverse source problem we introduced above can be formulated as an
operator equation

KΞ(x) = R(x), (36)
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and by Kirsch [23], we conclude that it is ill-posed. To illustrate an ill-posed problem, we present an
example. To perform this example ill-posed, we fix β and let us choose the input data

hm(x) =
em(x)√

b̃m

, gm =

(
T2−2β

B2

)
em(x)√

b̃m

, and f m =

(
T2β

B2

)
em(x)√

b̃m

· (37)

Due to (28) and combining (37), by (23), the source term corresponding to Ξm is

Ξm(x) =
∞

∑
i=1

〈
Rm(x), ei(x)

〉
TβEβ,β+1(−b̃iTβ)

ei(x)

=
∞

∑
i=1

〈 em(x)√
b̃m

, ei(x)
〉
− Eβ,1(−b̃iTβ)

〈 em√
b̃m

, ei(x)
〉
− TEβ,2(−b̃iTβ)

〈 em√
b̃m

, ei(x)
〉

TβEβ,β+1(−b̃iTβ)
ei(x)

=
em(x)√

b̃m

(
1− Eβ,1(−b̃iTβ)

)
− TEβ,2(−b̃iTβ)

)
TβEβ,β+1(−b̃iTβ)

, (38)

whereRm = hm − Eβ,1(−b̃iTβ) f m − TEβ,2(−b̃iTβ)gm.
Let us choose other input data h, f , g = 0. By (28), the source term corresponding to h, f , g is

Ξ = 0. An error in L2(Ω) norm between two input final data is

∥∥hm − h
∥∥
L2(Ω)

=

∥∥∥∥em(x)√
b̃m

∥∥∥∥
L2(Ω)

=
1√
b̃m

,

‖gm − g‖L2(Ω) =
(T2−2β

B2

)∥∥∥∥em(x)√
b̃m

∥∥∥∥
L2(Ω)

=
(T2−2β

B2

) 1√
b̃m

,

‖ f m − f ‖L2(Ω) =
(T2β

B2

)∥∥∥∥em(x)√
b̃m

∥∥∥∥
L2(Ω)

=
(T2

B2

) 1√
b̃m

, (39)

with B as defined in Lemma 5. Therefore,

lim
m→+∞

∥∥hm − h
∥∥
L2(Ω)

= lim
m→+∞

1√
b̃m

= 0,

lim
m→+∞

∥∥gm − g
∥∥
L2(Ω)

=
(T2−2β

B2

)
lim

m→+∞

1√
b̃m

= 0,

lim
m→+∞

∥∥ f m − f
∥∥
L2(Ω)

=
(T2β

B2

)
lim

m→+∞

1√
b̃m

= 0. (40)

An error in L2 norm between two corresponding source terms is

∥∥Ξm − Ξ
∥∥
L2(Ω)

=

∥∥∥∥∥∥∥
em(x)

(
1− Eβ,1(−b̃mTβ)− TβEβ,2(−b̃mTβ)

)
√

b̃mTβEβ,β+1(−b̃iTβ)

∥∥∥∥∥∥∥
L2(Ω)

=

(
1− Eβ,1(−b̃mTβ)− TβEβ,2(−b̃mTβ)

)
√

b̃m TβEβ,β+1(−b̃iTβ)
. (41)
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From (41) and using the inequality in Lemma 5, we obtain

∥∥Ξm − Ξ
∥∥
L2(Ω)

≥

√
b̃m

B

(
1− Eβ,1(−b̃mTβ)− TβEβ,2(−b̃mTβ)

)
. (42)

From (42), we have

lim
m→+∞

∥∥Ξm − Ξ
∥∥
L2(Ω)

> lim
m→+∞

√
b̃m

B

(
1− Ã

b̃mTβ
− Ã

b̃m

)

> lim
m→+∞

√
b̃m

B

(
1− 1√

b̃m

(
Ã
Tβ

+ Ã
))

= +∞. (43)

Combining (40) and (43), we conclude that the inverse source problem is ill-posed.

2.2. Conditional Stability of Source Term Ξ(x)

In this section, we show a conditional stability of source function Ξ(x).

Theorem 3. If
∥∥Ξ

∥∥
Hγj(Ω)

≤ M1 for M1 > 0, then

‖Ξ‖L2(Ω) ≤ M1

(
Tβ

A

) j
j+1

‖R‖
j

j+1

L2(Ω)
. (44)

Proof. By using the (28) and Hölder inequality, we have

∥∥Ξ
∥∥2
L2(Ω)

=
∞

∑
i=1

Ξ2
i =

∞

∑
i=1

R2
i∣∣∣TβEβ,β+1(−b̃iTβ)

∣∣∣2
≤

[
∞

∑
i=1

∣∣∣Ri

∣∣∣2∣∣∣TβEβ,β+1(−b̃iTβ)
∣∣∣2j+2

] 1
j+1

[
∞

∑
i=1

∣∣∣Ri

∣∣∣2]
j

j+1

≤
[

∞

∑
i=1

∣∣∣Ri

∣∣∣2∣∣∣TβEβ,β+1(−b̃iTβ)
∣∣∣2j∣∣∣TβEβ,β+1(−b̃iTβ)

∣∣∣2
] 1

j+1

‖Ri‖
2j

j+1

L2(Ω)
. (45)

Using Lemma (5) leads to

1∣∣∣TβEβ,β+1(−b̃iTβ)
∣∣∣2j ≤

∣∣∣b̃iTβ
∣∣∣2j

∣∣∣A2j
∣∣∣ · (46)

Combining (45) and (46), we get

‖Ξ‖2
L2(Ω) ≤

∞

∑
i=1

∣∣∣b̃j
i T

βj
∣∣∣ 2

j+1
∥∥∥Ξi

∥∥∥ 2j
j+1

A
2j

j+1

‖R‖
2j

j+1

L2(Ω)
≤ ‖Ξ‖2

Hγj(Ω)

(
Tβ

A

) 2j
j+1

‖R‖
2j

j+1

L2(Ω)
. (47)

Taking square root in both sides, we have (44).
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3. Regularization of the Inverse Source Problem for the Time-Fractional Diffusion-Wave
Equation by the Fractional Tikhonov Method

As mentioned above, applying the fractional Tikhonov regularization method we solve the
inverse source problem. Due to singular value decomposition for compact self-adjoint operator K,
as in (33). If the measured data

(
hε1(x), f ε2(x), gε3(x)

)
and

(
h(x), f (x)), g(x)

)
with a noise level of

ε1, ε2, and ε3 satisfy∥∥h− hε1
∥∥
L2(Ω)

≤ ε1,
∥∥ f − f ε2

∥∥
L2(Ω)

≤ ε2, and
∥∥g− gε3

∥∥
L2(Ω)

≤ ε3, (48)

then we can present a regularized solution as follows:

Ξε1,ε2,ε3
α,τ (x) =

∞

∑
i=1

(
TβEβ,β+1(−b̃iTβ)

)2τ−1

α2 +
(

TβEβ,β+1(−b̃iTβ)
)2τ

〈
Rε1,ε2,ε3(x), ei(x)

〉
ei(x),

1
2
≤ τ ≤ 1, (49)

where α is a parameter regularization.

Ξα,τ(x) =
∞

∑
i=1

(
TβEβ,β+1(−b̃iTβ)

)2τ−1

α2 +
(

TβEβ,β+1(−b̃iTβ)
)2τ

〈
R(x), ei(x)

〉
ei(x),

1
2
≤ τ ≤ 1, (50)

where

Rε1,ε2,ε3
i = hε1

i − Eβ,1(−b̃iTβ) f ε2
i − TEβ,2(−b̃iTβ)gε3

i ,

Ri = hi − Eβ,1(−b̃iTβ) fi − TEβ,2(−b̃iTβ)gi. (51)

4. A Priori Parameter Choice

Afterwards, we will give an error estimation for
∥∥Ξ(x)− Ξε1,ε2,ε3

α,τ (x)
∥∥
L2(Ω)

and show convergence
rate under a suitable choice for the regularization parameter.

Theorem 4. Let Ξ be as (28) and the noise assumption (48) hold. Then, we have the following estimate:

• If 0 ≤ j ≤ 2τ, since α =
((max{ε2

1,ε2
2,ε2

3}
) 1

2

M1

) τ
j+2 we have

∥∥Ξ− Ξε1,ε2,ε3
α,τ

∥∥
L2(Ω)

≤
((

max{ε2
1, ε2

2, ε2
3}
) 1

2
) j

j+2 M
1

j+2

1

(
C(τ, A)

(
P(B, b̃1, T, β)

) 1
2 +B1(j, τ, A)

)
. (52)

• If j ≥ 2τ, by choosing α =
((max{ε2

1,ε2
2,ε2

3}
) 1

2

M1

) τ
τ+2

we have∥∥Ξ−Ξε1,ε2,ε3
α,τ

∥∥
L2(Ω)

≤
((

max{ε2
1, ε2

2, ε2
3}
) 1

2
) τ

τ+1 M
1

τ+1
1

(
C(τ, A)

(
P(B, b̃1, T, β)

) 1
2 +B2(j, τ, A, b̃1)

)
, (53)

where

P(B, b̃1, T, β) =

(
1 +

B2

|b̃1Tβ|2
+

B2T2−2β∣∣b̃1
∣∣2

)
, (54)

M1 is a positive number satisfies
∥∥Ξ

∥∥
Hγj(Ω)

≤ M1, (55)

B1(j, τ, A) =
(2τ − j)

2τ−j
2τ A−j j

j
2τ

2τ
, B2(j, τ, A) =

1

A2τ b̃j−2τ
1

· (56)
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Proof. By the triangle inequality, we know∥∥Ξ− Ξε1,ε2,ε3
α,τ

∥∥
L2(Ω)

≤
∥∥Ξα,τ − Ξε1,ε2,ε3

α,τ
∥∥
L2(Ω)︸ ︷︷ ︸

‖K1‖L2(Ω)

+
∥∥Ξ− Ξα,τ

∥∥
L2(Ω)︸ ︷︷ ︸

‖K2‖L2(Ω)

. (57)

The proof falls naturally into two steps.
Step 1: Estimation for ‖K1‖L2(Ω), we receive

Ξε1,ε2,ε3
α,τ (x)− Ξα,τ(x) =

∞

∑
i=1

(
TβEβ,β+1(−b̃iTβ)

)2τ−1

α2 +
(

TβEβ,β+1(−b̃iTβ)
)2τ

(〈
Rε1,ε2,ε3(x)−R(x), ei(x)

〉)
ei(x)

=
∞

∑
i=1

(
TβEβ,β+1(−b̃iTβ)

)2τ−1

α2 +
(

TβEβ,β+1(−b̃iTβ)
)2τ

(〈
hε1

i − hi, ei(x)
〉

+ Eβ,1(−b̃iTβ)
〈

f ε2
i − fi, ei(x)

〉
+ TEβ,2(−b̃iTβ)

〈
gε3

i − gi, ei(x)
〉)

ei(x). (58)

Combining (50) to (51), and Lemma 5, it is easily seen that
∣∣∣TβEβ,β(−b̃iTβ)

∣∣∣ ≥ A
b̃i

. From (58),

applying the inequality (a + b + c)2 ≤ 3a2 + 3b2 + 3c2 and combining Lemma 7, we know that

‖K1‖2
L2(Ω) ≤ sup

i∈N

(
b̃i

A2τ + α2
∣∣b̃i

∣∣2τ

)2( ∞

∑
i=1

3
∣∣∣〈hε1

i − hi, ei(x)
〉∣∣∣2

+ 3
∞

∑
i=1

∣∣∣Eβ,1(−b̃iTβ)
∣∣∣2∣∣∣〈 f ε2

i − fi, ei(x)
〉∣∣∣2

+ 3T2
∞

∑
i=1

∣∣∣Eβ,2(−b̃iTβ)
∣∣∣2∣∣∣〈gε3

i − gi, ei(x)
〉∣∣∣2)

≤ sup
i∈N

(
b̃i

A2τ + α2
∣∣b̃i

∣∣2τ

)2(
3ε2

1 + 3
∞

∑
i=1

∣∣∣Eβ,1(−b̃iTβ)
∣∣∣2ε2

2

+ 3T2
∞

∑
i=1

∣∣∣Eβ,2(−b̃iTβ)
∣∣∣2ε2

3

)
. (59)

Using the result of Lemma 1 in above, we receive

‖K1‖2
L2(Ω) ≤

(
C(τ, A)α−

1
τ
)2
(

3ε2
1 +

∞

∑
i=1

3B2ε2
2

|b̃iTβ|2
+

∞

∑
i=1

3B2T2ε2
3

|b̃iTβ|2

)
≤

(
C(τ, A)α−

1
τ
)2
(

3ε2
1 +

3B2ε2
2

|b̃1Tβ|2
+

3B2T2ε2
3

|b̃1Tβ|2

)
≤

(
C(τ, A)α−

1
τ
)2 max

{
ε2

1, ε2
2, ε2

3
}(

3 +
B2

|b̃1Tβ|2
+

B2T2−2β

|b̃1|2

)
. (60)

Therefore, we have concluded

‖K1‖L2(Ω) ≤ C(τ, A)α−
1
τ

(
max

{
ε2

1, ε2
2, ε2

3
}
P(B, b̃1, T, β)

) 1
2
, (61)
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where

P(B, b̃1, T, β) =

(
3 +

B2

|b̃1Tβ|2
+

B2T2−2β

|b̃1|2

)
. (62)

Step 2: Next, we have to estimate
∥∥K2

∥∥
L2(Ω)

. From (28) and (50), and using Parseval equality,
we get

∥∥K2
∥∥2
L2(Ω)

≤
+∞

∑
i=1

( (
TβEβ,β+1(−b̃iTβ)

)2τ−1

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ
− 1∣∣TβEβ,β+1(−b̃iTβ)

∣∣
)2∣∣∣〈R(x), ei(x)

〉∣∣∣2

≤
+∞

∑
i=1

(
α2∣∣∣TβEβ,β+1(−b̃iTβ)

∣∣∣(α2 +
∣∣∣TβEβ,β+1(−b̃iTβ)

∣∣∣2τ)
)2∣∣∣〈R(x), ei(x)

〉∣∣∣2. (63)

From (63), we have estimation for ‖K2‖2
L2(Ω)

∥∥K2
∥∥2
L2(Ω)

=
+∞

∑
i=1

α4
∣∣∣〈R(x), ei(x)

〉∣∣∣2∣∣∣TβEβ,β+1(−b̃iTβ)
∣∣∣2(α2 +

∣∣TβEβ,β+1(−b̃iTβ)
∣∣2τ

)2

≤
+∞

∑
i=1

α4b̃2j
i b̃−2j

i

∣∣∣〈R(x), ei(x)
〉∣∣∣2∣∣∣TβEβ,β+1(−b̃iTβ)

∣∣∣2(α2 +
∣∣∣TβEβ,β+1(−b̃iTβ)

∣∣∣2τ)2

≤ sup
i∈N

∣∣∣D(i)
∣∣∣2 +∞

∑
i=1

b̃2j
i

∣∣∣〈R(x), ei(x)
〉∣∣∣2∣∣∣TβEβ,β+1(−b̃iTβ)
∣∣∣2 = sup

i∈N

∣∣D(i)
∣∣2‖Ξ‖2

Hj(Ω)
. (64)

Hence, D(i) has been estimated

D(i) =
α2b̃−j

i

α2 +
∣∣∣TβEβ,β+1(−b̃iTβ)

∣∣∣2τ
. (65)

Next, using the Lemmas 5 and 8, we continue to estimate D(i). In fact, we get

D(i) ≤ α2b̃2τ−j
i

A2τ + α2b̃2τ
i

≤

⎧⎨⎩B1(j, τ, A)α
j
τ , 0 < j < 2τ,

B2(j, τ, A, b̃1)α
2, j ≥ 2τ.

(66)

Combining (64) to (66), we receive

∥∥K2
∥∥2
L2(Ω)

≤

⎧⎨⎩B1(j, τ, A)M1α
j
τ , 0 < j < 2τ,

B2(j, τ, A, b̃1)M1α2, j ≥ 2τ.
(67)

Next, combining the above two inequalities, we obtain

∥∥Ξ(x)− Ξε1,ε2,ε3
α,τ (x)

∥∥
L2(Ω)

≤ C(τ, A)α−
1
τ

(
max

{
ε2

1, ε2
2, ε2

3
}
P(B, b̃1, T, β, γ)

) 1
2

+

⎧⎨⎩B1(j, τ, A)M1α
j
τ , 0 < j < 2τ,

B2(j, τ, A, b̃1)M1α2, j ≥ 2τ.
(68)
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Choose the regularization parameter α as follows:

α =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

((
max{ε2

1, ε2
2, ε2

3}
) 1

2

M1

) τ
j+2

, 0 < j < 2τ,

((
max{ε2

1, ε2
2, ε2

3}
) 1

2

M1

) τ
τ+1

, j ≥ 2τ.

(69)

Hence, we conclude that

Case 1: If 0 ≤ j ≤ 2τ, since α =
((max{ε2

1,ε2
2,ε2

3}
) 1

2

M1

) τ
j+2 we have∥∥Ξ(x)−Ξε1,ε2,ε3

α,τ (x)
∥∥
L2(Ω)

≤
((

max{ε2
1, ε2

2, ε2
3}
) 1

2
) j

j+2 M
1

j+2
1

(
C(τ, A)

(
P(B, b̃1, T, β, γ)

) 1
2 +B1(j, τ, A)

)
. (70)

Case 2: If j ≥ 2τ, since α =
((max{ε2

1,ε2
2,ε2

3}
) 1

2

M1

) τ
τ+2

we have∥∥Ξ(x)−Ξε1,ε2,ε3
α,τ (x)

∥∥
L2(Ω)

≤
((

max{ε2
1, ε2

2, ε2
3}
) 1

2
) τ

τ+1 M
1

τ+1
1

(
C(τ, A)

(
P(B, b̃1, T, β, γ)

) 1
2 +B2(j, τ, A, b̃1)

)
. (71)

5. A Posteriori Parameter Choice

In this section, we consider an a posteriori regularization parameter choice in Morozov’s
discrepancy principle (see in [21]). We use the discrepancy principle in the following form:∥∥∥∥∥

(
TβEβ,β+1(−b̃iTβ)

)2τ

α2 +
(

TβEβ,β+1(−b̃iTβ)
)2τ
Rε1,ε2,ε3(x)−Rε1,ε2,ε3(x)

∥∥∥∥∥
L2(Ω)

= k
(

max{ε2
1, ε2

2, ε2
3}
) 1

2 , (72)

whereby 1
2 ≤ τ ≤ 1, k > 1, and α is the regularization parameter.

Lemma 10. Let

ρ(α) =

√√√√√ ∞

∑
i=1

(
α2

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ

)2∣∣∣〈Rε1,ε2,ε3(x), ei(x)
〉∣∣∣2. (73)

If 0 < k
(

max{ε2
1, ε2

2, ε2
3}
) 1

2 < ‖Rε1,ε2,ε3‖L2(Ω), then the following results hold:

(a) ρ(α) is a continuous function;
(b) ρ(α)→ 0 as α → 0;
(c) ρ(α)→ ‖Rε1,ε2,ε3‖L2(Ω) as α → ∞;
(d) ρ(α) is a strictly increasing function.

Lemma 11. Let α be the solution of (72), it gives

1

α
1
τ

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(√
2B3(j, τ, A)

) 1
j+1(

k2 − 6P(B, b̃1, T, β)
) 1

2(j+1)

M
1

j+1
1(

max
{

ε2
1, ε2

2, ε2
3
}) 1

2(j+1)

, 0 < j < 2τ − 1,

(√
2B4(j, τ, A, b̃1)

) 1
2τ(

k2 − 6P(B, b̃1, T, β)
) 1

4τ

M
1

2τ
1(

max
{

ε2
1, ε2

2, ε2
3
}) 1

4τ

, j ≥ 2τ − 1,

(74)
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which gives the required results.

Proof. Step 1: First of all, we have the error estimation between Rε1,ε2,ε3 and R. Indeed, using the
inequality (a + b + c)2 ≤ 3(a2 + b2 + c2), ∀a, b, c ≥ 0, we get

∥∥Rε1,ε2,ε3 −R
∥∥2
L2(Ω)

≤
(

3ε2
1 + 3

∞

∑
i=1

∣∣∣Eβ,1(−b̃iTβ)
∣∣∣2ε2

2 + 3T2
∞

∑
i=1

∣∣∣Eβ,2(−b̃iTβ)
∣∣∣2ε2

3

)
,

≤
(

3ε2
1 +

3B2ε2
2

|b̃1Tβ|2
+

3B2T2ε2
3

|b̃1Tβ|2

)
≤ 3

(
max

{
ε2

1, ε2
2, ε2

3

})
P(B, b̃1, T, β). (75)

Step 2: Using the inequality (a + b)2 ≤ 2(a2 + b2), ∀a, b ≥ 0, we can receive the following
estimation

k2(max
{

ε2
1, ε2

2, ε2
3
})

=
∞

∑
i=1

(
α2

α2 +
∣∣TβEβ,β+1(−b̃iTβ)

∣∣2τ

)2∣∣∣〈Rε1,ε2,ε3
i (x), ei(x)

〉∣∣∣2

≤ 2
∞

∑
i=1

(
α2

α2 +
∣∣∣TβEβ,β+1(−b̃iTβ)

∣∣∣2τ

)2∣∣∣〈Rε1,ε2,ε3
i (x)−R(x), ei(x)

〉∣∣∣2

+ 2
∞

∑
i=1

(
α2
∣∣∣TβEβ,β+1(−b̃iTβ)

∣∣∣[
α2 +

∣∣∣TβEβ,β+1(−b̃iTβ)
∣∣∣2τ ]

b̃j
i

)2 b̃2j
i

∣∣∣〈R(x), ei(x)
〉∣∣∣2∣∣∣TβEβ,β+1(−b̃iTβ)
∣∣∣2 . (76)

From (76), we get

k2
(

max
{

ε2
1, ε2

2, ε2
3
})
≤ 2

∞

∑
i=1

∣∣∣〈Rε1,ε2,ε3
i (x)−R(x), ei(x)

〉∣∣∣2

+ 2
∞

∑
i=1

(
α2
∣∣∣TβEβ,β+1(−b̃iTβ)

∣∣∣[
α2 +

∣∣∣TβEβ,β+1(−b̃iTβ)
∣∣∣2τ]

b̃j
i

)2 b̃2j
i

∣∣∣〈R(x), ei(x)
〉∣∣∣2∣∣∣TβEβ,β+1(−b̃iTβ)
∣∣∣2

≤ 6
(

max
{

ε2
1, ε2

2, ε2
3
})
P(B, b̃1, T, β, γ)

+ 2
∞

∑
i=1

(
α2
∣∣∣TβEβ,β+1(−b̃iTβ)

∣∣∣[
α2 +

∣∣∣TβEβ,β+1(−b̃iTβ)
∣∣∣2τ]

b̃j
i

)2 b̃2j
i

∣∣∣〈R(x), ei(x)
〉∣∣∣2∣∣∣TβEβ,β+1(−b̃iTβ)
∣∣∣2

≤ 6
(

max
{

ε2
1, ε2

2, ε2
3

})
P(B, b̃1, T, β)

+ 2
∞

∑
i=1

∣∣Hi
∣∣2 b̃2j

i

∣∣∣〈R(x), ei(x)
〉∣∣∣2∣∣∣TβEβ,β+1(−b̃iTβ)
∣∣∣2 , (77)

whereby

Hi =
α2
∣∣TβEβ,β+1(−b̃iTβ)

∣∣[
α2 +

∣∣TβEβ,β+1(−b̃iTβ)
∣∣2τ]b̃j

i

. (78)

From (78), we getHi as follows:

Hi =
α2TβEβ,β+1(−b̃iTβ)[

α2 +
∣∣∣TβEβ,β+1(−b̃iTβ)

∣∣∣2τ]
b̃j

i

≤
α2Tβ B

Tβ b̃j[
α2 +

∣∣∣ Tβ A
Tβ b̃j

∣∣∣2τ]
b̃j

i

≤ α2B
A2τ + α2b̃2τ

i

b̃2τ−(j+1)
i . (79)
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From (79), using Lemma 9, we have

Hi ≤

⎧⎨⎩B3(j, τ, A)α
j+1

τ , 0 < j < 2τ − 1,

B4(j, τ, A, b̃1)α
2, j ≥ 2τ − 1.

Therefore, combining (77) to (79), we know that

k2(max
{

ε2
1, ε2

2, ε2
3
})
≤ 6

(
max

{
ε2

1, ε2
2, ε2

3
})
P(B, b̃1, T, β)

+

⎧⎨⎩2B2
3(j, τ, A)M2

1α2 j+1
τ , 0 < j < 2τ − 1,

2B2
4(j, τ, A, b̃1)M2

1α4, j ≥ 2τ − 1.
(80)

From (80), it is very easy to see that

(
k2 − 6P(B, b̃1, T, β)

)(
max

{
ε2

1, ε2
2, ε2

3
})
≤

⎧⎨⎩2B2
3(j, τ, A)M2

1α2 j+1
τ , 0 < j < 2τ − 1,

2B2
4(j, τ, A, b̃1)M2

1α4, j ≥ 2τ − 1.
(81)

So,

1

α
1
τ

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(√
2B3(j, τ, A)

) 1
j+1(

k2 − 6P(B, b̃1, T, β)
) 1

2(j+1)

M
1

j+1
1(

max
{

ε2
1, ε2

2, ε2
3
}) 1

2(j+1)

, 0 < j < 2τ − 1,

(√
2B4(j, τ, A, b̃1)

) 1
2τ(

k2 − 6P(B, b̃1, T, β)
) 1

4τ

M
1

2τ
1(

max
{

ε2
1, ε2

2, ε2
3
}) 1

4τ

, j ≥ 2τ − 1,

(82)

which gives the required results. The estimation of
∥∥Ξ(x)− Ξε1,ε2,ε3

α,τ (x)
∥∥
L2(Ω)

is established by our
next Theorem.

Theorem 5. Assume the a priori condition and the noise assumption hold, and there exists τ > 1 such that

0 < k
(

max
{

ε2
1, ε2

2, ε2
3
}) 1

2 <
∥∥Rε1,ε2,ε3

∥∥
L2(Ω)

. This Theorem now shows the convergent estimate between the
exact solution and the regularized solution such that

• If 0 ≤ j ≤ 2τ − 1, we have the convergence estimate

∥∥Ξ(x)− Ξε1,ε2,ε3
α,τ (x)

∥∥
L2(Ω)

≤ Q(j, T, A, B, β, k, b̃1)
(

max
{

ε2
1, ε2

2, ε2
3
}) j

2(j+1) M
1

j+1
1 . (83)

• If j ≥ 2τ − 1, we have the convergence estimate

∥∥Ξ(x)− Ξε1,ε2,ε3
α,τ (x)

∥∥
L2(Ω)

≤ L (C, T, A, B, β, k, j, b̃1)×
(

max
{

ε2
1, ε2

2, ε2
3

}) 1
2

(
1− 1

2τ

)
M

1
2τ
1 , (84)

233



Mathematics 2019, 7, 934

whereby

Q(j, T, A, B, β, k, b̃1) =
C(τ, A)

(√
2B3(j, τ, A)

) 1
j+1P(B, b̃1, T, β))

1
2(

k2 − 6P(B, b̃1, T, β)
) 1

2(j+1)

+
( (√3

(
P(B, b̃1, T, β)

) 1
2 + k

)
A

) j
j+1 ,

P(B, b̃1, T, β, γ) =
(

1 +
B2

|b̃1Tβ|2
+

B2T2−2β

|b̃1|2
)

,

L (C, T, A, B, β, k, j, b̃1) =

[
C(τ, A)

(√
2B4(j, τ, A, b̃1)

) 1
2τ (P(B, b̃1, T, β))

1
2(

k2 − 6P(B, b̃1, T, β)
) 1

4τ

+

(√
3
(
P(B, b̃1, T, β)

) 1
2 + k

A

)1− 1
2τ

b̃2τ−j−1
1

]
. (85)

Proof. Applying the triangle inequality, we get∥∥Ξ(x)− Ξε1,ε2,ε3
α,τ (x)

∥∥
L2(Ω)

≤
∥∥Ξ(x)− Ξα,τ‖L2(Ω) +

∥∥Ξα,τ(x)− Ξε1,ε2,ε3
α,τ (x)

∥∥
L2(Ω)

. (86)

Case 1: If 0 < j ≤ 2τ − 1. First of all, we recalled estimation from (61) and, by Lemma 9 Part (a),
we have ∥∥Ξα,τ(x)− Ξε1,ε2,ε3

α,τ (x)
∥∥
L2(Ω)

≤ Q(j, T, A, B, β, k, b̃1)
(

max
{

ε2
1, ε2

2, ε2
3
}) j

2(j+1) M
1

j+1
1 . (87)

Next, we have estimate
∥∥Ξ(x)− Ξα,τ(x)

∥∥
L2(Ω)

. From (28) and (50), and using Parseval equality,
we get∥∥Ξ(x)− Ξα,τ(x)

∥∥
L2(Ω)

=
∥∥∥ +∞

∑
i=1

( (
TβEβ,β+1(−b̃iTβ)

)2τ−1

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ
− 1(

TβEβ,β+1(−b̃iTβ)
))〈R(x), ei(x)

〉
ei(x)

∥∥∥
L2(Ω)

=

∥∥∥∥∥ +∞

∑
i=1

α2

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ

〈
Ξ(x), ei(x)

〉
ei(x)

∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥ +∞

∑
i=1

α2TβEβ,β+1(−b̃iTβ)

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ

〈
Ξ(x), ei(x)

〉
TβEβ,β+1(−b̃iTβ)

ei(x)

∥∥∥∥∥
L2(Ω)

. (88)
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Using the Hölder’s inequality, we obtain∥∥Ξ(x)− Ξα,τ(x)
∥∥
L2(Ω)

≤
∥∥∥ +∞

∑
i=1

α2TβEβ,β+1(−b̃iTβ)

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ

〈
Ξ(x), ei(x)

〉
ei(x)

∥∥∥ j
j+1

L2(Ω)

×
∥∥∥ +∞

∑
i=1

α2TβEβ,β+1(−b̃iTβ)

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ

〈
Ξ(x), ei(x)

〉(
TβEβ,β+1(−b̃iTβ)

)j+1 ei(x)
∥∥∥ 1

j+1

L2(Ω)

≤
∥∥∥ +∞

∑
i=1

α2

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ

〈
R(x), ei(x)

〉
ei(x)

∥∥∥ j
j+1

L2(Ω)︸ ︷︷ ︸
A1

×
∥∥∥ +∞

∑
i=1

α2

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ

〈
Ξ(x), ei(x)

〉(
TβEβ,β+1(−b̃iTβ)

)j ei(x)
∥∥∥ 1

j+1

L2(Ω)︸ ︷︷ ︸
A2

. (89)

From (89) and (75), using Lemma 11, one has

A1 ≤
(∥∥∥ +∞

∑
i=1

α2(
TβEβ,β+1(−b̃iTβ)

)2τ
+ α2

〈
R(x)−Rε1,ε2,ε3(x), ei(x)

〉
ei(x)

∥∥∥
L2(Ω)

+
∥∥∥ +∞

∑
i=1

α2(
TβEβ,β+1(−b̃iTβ)

)2τ
+ α2

〈
Rε1,ε2,ε3(x), ei(x)

〉
ei(x)

∥∥∥
L2(Ω)

) j
j+1

≤
(
√

3
(

max
{

ε2
1, ε2

2, ε2
3

}) 1
2 (P(B, b̃1, T, β)

) 1
2 + k

(
max

{
ε2

1, ε2
2, ε2

3
}) 1

2

) j
j+1

≤
(√

3
(
P(B, b̃1, T, β)

) 1
2 + k

) j
j+1

(
max

{
ε2

1, ε2
2, ε2

3

}) j
2(j+1) . (90)

Next, using the priori condition a, we have

A2 =

∥∥∥∥∥ +∞

∑
i=1

α2

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ

〈
Ξ(x), ei(x)

〉(
TβEβ,β+1(−b̃iTβ)

)j ei(x)

∥∥∥∥∥
1

j+1

L2(Ω)

≤
∥∥∥∥∥ +∞

∑
i=1

〈
Ξ(x), ei(x)

〉(
TβEβ,β+1(−b̃iTβ)

)j ei(x)

∥∥∥∥∥
1

j+1

L2(Ω)

≤
∥∥∥ +∞

∑
i=1

( b̃i
A

)j
Ξiei(x)

∥∥∥ 1
j+1

L2(Ω)
≤ 1

A
j

j+1

M
1

j+1
1 . (91)

Combining (88) to (91), we conclude that

∥∥Ξ(x)− Ξα,τ(x)
∥∥
L2(Ω)

≤
((√

3
(
P(B, b̃1, T, β)

) 1
2 + k

)
A

) j
j+1 (

max
{

ε2
1, ε2

2, ε2
3

}) j
2(j+1) M

1
j+1
1 . (92)

Combining (87) to (92), we know that

∥∥Ξ(x)− Ξε1,ε2,ε3
α,τ (x)

∥∥
L2(Ω)

≤ Q(j, T, A, B, β, k, b̃1)
(

max
{

ε2
1, ε2

2, ε2
3
}) j

2(j+1) M
1

j+1
1 , (93)
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whereby

Q(j, T, A, B, β, k, b̃1) =
C(τ, A)

(√
2B3(j, τ, A)

) 1
j+1P(B, b̃1, T, β))

1
2(

k2 − 6P(B, b̃1, T, β)
) 1

2(j+1)

+

((√
3
(
P(B, b̃1, T, β)

) 1
2 + k

)
A

) j
j+1

,

P(B, b̃1, T, β, γ) =
(

1 +
B2

|b̃1Tβ|2
+

B2T2−2β

|b̃1|2
)

. (94)

Case 2: Our next goal is to determine the estimation of
∥∥Ξα,τ(x)− Ξε1,ε2,ε3

α,τ (x)
∥∥
L2(Ω)

when j ≥
2τ − 1, we get

∥∥Ξα,τ(x)− Ξε1,ε2,ε3
α,τ (x)

∥∥
L2(Ω)

≤
C(τ, A)

(√
2B4(j, τ, A, b̃1)

) 1
2τ
(P(B, b̃1, T, β))

1
2(

k2 − 6P(B, b̃1, T, β)
) 1

4τ

×M
1

2τ
1
(

max{ε2
1, ε2

2, ε2
3}
) 1

2 (1− 1
2τ ). (95)

Next, for
∥∥Ξ(x)− Ξα,τ(x)

∥∥
L2(Ω)

, we get

∥∥Ξ(x)− Ξα,τ(x)
∥∥
L2(Ω)

=

∥∥∥∥∥ +∞

∑
i=1

α2

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ

〈
Ξ(x), ei(x)

〉
ei(x)

∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥ +∞

∑
i=1

α2TβEβ,β+1(−b̃iTβ)

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ

〈
Ξ(x), ei(x)

〉
TβEβ,β+1(−b̃iTβ)

ei(x)

∥∥∥∥∥
L2(Ω)

≤
∥∥∥∥∥ +∞

∑
i=1

α2TβEβ,β+1(−b̃iTβ)

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ

〈
Ξ(x), ei(x)

〉
ei(x)

∥∥∥∥∥
1− 1

2τ

L2(Ω)︸ ︷︷ ︸
B1

×
∥∥∥∥∥ +∞

∑
i=1

α2TβEβ,β+1(−b̃iTβ)

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ

〈
Ξ(x), ei(x)

〉
(TβEβ,β+1(−b̃iTβ))2τ

ei(x)

∥∥∥∥∥
1

2τ

L2(Ω)︸ ︷︷ ︸
B2

. (96)

From (96), repeated application of Lemma 11 Part (b) enables us to write B1, it is easy to check that

B1 ≤
(
√

3
(

max
{

ε2
1, ε2

2, ε2
3

}) 1
2 (P(B, b̃1, T, β)

) 1
2 + k

(
max

{
ε2

1, ε2
2, ε2

3
}) 1

2

)1− 1
2τ

≤
(√

3
(
P(B, b̃1, T, β)

) 1
2 + k

)1− 1
2τ
(

max
{

ε2
1, ε2

2, ε2
3

}) 1
2

(
1− 1

2τ

)
. (97)
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In the same way as in A2, it follows easily that
α2

α2 +
(
TβEβ,β+1(−b̃iTβ)

)2τ
< 1, we now proceed

by induction

B2 ≤
∥∥∥ +∞

∑
i=1

〈
Ξ(x), ei(x)

〉
(TβEβ,β+1(−b̃iTβ))2τ−1

ei(x)
∥∥∥ 1

2τ

L2(Ω)

≤
∥∥∥ +∞

∑
i=1

( b̃i
A

)2τ−1
b̃−j

i b̃j
i Ξiei(x)

∥∥∥ 1
2τ

L2(Ω)
≤ A

1
2τ−1b̃2τ−j−1

1 M
1

2τ
1 . (98)

Combining (86) and (95)–(98), it may be concluded that

∥∥Ξ(x)− Ξε1,ε2,ε3
α,τ (x)

∥∥
L2(Ω)

≤ L (C, T, A, B, β, k, j, b̃1)×
(

max
{

ε2
1, ε2

2, ε2
3

}) 1
2

(
1− 1

2τ

)
M

1
2τ
1 , (99)

whereby

L (C, T, A, B, β, k, j, b̃1) =

[
C(τ, A)

(√
2B4(j, τ, A, b̃1)

) 1
2τ (P(B, b̃1, T, β))

1
2(

k2 − 6P(B, b̃1, T, β)
) 1

4τ

+

(√
3
(
P(B, b̃1, T, β)

) 1
2 + k

A

)1− 1
2τ

b̃2τ−j−1
1

]
. (100)

The proof is completed.

6. Simulation Example

In this section, we are going to show an example to simulate the theory. In order to do this,
we consider the problem as follows:

∂
β
0+u(x, t) =

∂2

∂x2 u(x, t) + Ξ(x), (x, t) ∈ (0, π)× (0, 1), (101)

where the Caputo fractional derivative of order β is defined as

∂
β
0+u(x, t) =

1
Γ(2− α)

∫ t

0

∂2u(x, s)
∂s2

ds
(t− s)β−1 , 1 < β < 2, (102)

where Γ(.) is the Gamma function.

We chose the operator Δu =
∂2

∂x2 u on the domain Ω = (0, π) with the Dirichlet boundary

condition u(0, t) = u(π, t) = 0 for t ∈ (0, 1), we have the eigenvalues and corresponding eigenvectors

given by b̃i = i2, i = 1, 2, ... and ei(x) =

√
2
π

sin(ix), respectively.

In addition, problem (101) satisfies the conditions

u(x, 0) = f (x),
∂

∂t
u(x, 0) = g(x), x ∈ (0, π)

and the final condition

u(x, 1) = h(x), x ∈ (0, π). (103)
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We consider the following assumptions:

f (x) =

√
2
π

sin(2x),

g(x) =

√
2
π

sin(x),

h(x) =

√
2
π

[
Eβ,2(−1) sin(x) + Eβ,1(−2) sin(2x) + Eβ,β+1(−3) sin(3x)

]
.

In this example, we choose the following solution

u(x, t) =

√
2
π

[
tEβ,2(−tβ) sin(x) + Eβ,1(−2tβ) sin(2x) + tβEβ,β+1(−3tβ) sin(3x)

]
. (104)

Before giving the main results of this section, we present some of the following numerical
approximation methods.

• Composite Simpson’s rule: Suppose that the interval [a, b] is split up into n sub-intervals, with n
being an even number. Then, the composite Simpson’s rule is given by

∫ b

a
ϕ(z) dz ≈ h

3

n/2

∑
j=1

[
ϕ(z2j−2) + 4ϕ(z2j−1) + ϕ(z2j)

]

=
h
3

[
ϕ(z0) + 2

n/2−1

∑
j=1

ϕ(z2j) + 4
n/2

∑
j=1

ϕ(z2j−1) + ϕ(zn)

]
, (105)

where zj = a + jh for j = 0, 1, ..., n− 1, n with h =
b− a

n
, in particular, z0 = a and zn = b.

• For a, b are two positive integers given. We use the finite difference method to discretize the time
and spatial variable for (x, t) ∈ (0, π)× (0, 1) as follows:

xp = pΔx, tq = qΔt, 0 ≤ p ≤ X, 0 ≤ q ≤ T,

Δx =
π

X
, Δt =

1
T

.

• Explicit forward Euler method: Let uq
p = u(xp, tq), then the finite difference approximations are

given by

∂2u(xp, tq)

∂x2 =
uq

p+1 − 2uq
p + uq

p−1

Δx2 , (106)

∂2u(xp, tq)

∂t2 =
uq+1

p − 2uq
p + uq−1

p

Δt2 . (107)

Instead of getting accurate data (h, f , g), we get approximated data of (h, f , g), i.e., the input data
(h, f , g) is noised by observation data (hε1 , gε2 , hε3) with order of ε1, ε2, ε3 > 0 which satisfies

hε1 = h + ε1(rand(·)− 1),
f ε2 = f + ε2(2 rand(·) + 1),
gε3 = g + ε3(rand(·)− 2),

where, in Matlab software, the rand(·) function generates arrays of random numbers whose elements
are uniformly distributed in the interval (0, 1).
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The absolute error estimation is defined by

Errorβ,ε,α,τ =

[
1

X− 1

X−1

∑
p=1

(
Ξ(xp)− Ξε1,ε2,ε3

α,τ (xp)
)2
]1/2

,

where 1
2 ≤ τ ≤ 1 and α =

((max{ε2
1,ε2

2,ε2
3}
) 1

2

M1

) τ
τ+2

.
From the above analysis, we present some results as follows.
In Table 1, we show the convergent estimate between Ξ and Ξε1,ε2,ε3

α,τ with a priori and a posteriori
parameter choice rules. From the observations on this table, we can conclude that the approximation
result is acceptable. Moreover, we also present the graph of the source functions with cases of the
input data noise and the corresponding errors, respectively (see Figures 1–3). In addition, the solution
u(x, t) is also shown in Figure 4 for 0 ≤ x ≤ π and 0 ≤ t ≤ 1.

x

0 0.5 1 1.5 2 2.5 3 3.5

T
h
e
v
a
lu
e
o
f
Ξ

a
n
d
Ξ
ε
1
,ε

2
,ε

3

α
,τ

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Ξ

Ξ
ε1,ε2,ε3
α,τ

(a) The source functions Ξ and Ξε1,ε2,ε3
α,τ

x

0 0.5 1 1.5 2 2.5 3 3.5

E
r
r
o
r
s
b
e
tw

e
e
n
Ξ

a
n
d
Ξ
ε
1
,ε

2
,ε

3

α
,τ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Error

(b) The error estimation between Ξ and Ξε1,ε2,ε3
α,τ

Figure 1. A comparison between Ξ and Ξε1,ε2,ε3
α,τ for β = 1.5, X = T = 40, {ε1, ε2, ε3} := {9× 10−2, 2×

10−2, 1× 10−3}, τ =
4
5

.

x

0 0.5 1 1.5 2 2.5 3 3.5

T
h
e
v
a
lu
e
o
f
Ξ

a
n
d
Ξ
ε
1
,ε

2
,ε

3

α
,τ

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Ξ

Ξ
ε1,ε2,ε3
α,τ

(a) The source functions Ξ and Ξε1,ε2,ε3
α,τ

x

0 0.5 1 1.5 2 2.5 3 3.5

E
r
r
o
r
s
b
e
tw

e
e
n
Ξ

a
n
d
Ξ
ε
1
,ε

2
,ε

3

α
,τ

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Error

(b) The error estimation between Ξ and Ξε1,ε2,ε3
α,τ

Figure 2. A comparison between Ξ and Ξε1,ε2,ε3
α,τ for β = 1.5, X = T = 40, {ε1, ε2, ε3} := {1× 10−3, 2×

10−3, 3× 10−3}, τ =
4
5

.

239



Mathematics 2019, 7, 934

x

0 0.5 1 1.5 2 2.5 3 3.5

T
h
e
v
a
lu
e
o
f
Ξ
a
n
d
Ξ
ε
1
,ε

2
,ε

3

α
,τ

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Ξ

Ξ
ε1,ε2,ε3
α,τ

(a) The source functions Ξ and Ξε1,ε2,ε3
α,τ

x

0 0.5 1 1.5 2 2.5 3 3.5

E
r
r
o
r
s
b
e
tw

e
e
n
Ξ

a
n
d
Ξ
ε
1
,ε

2
,ε

3

α
,τ

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Error

(b) The error estimation between Ξ and Ξε1,ε2,ε3
α,τ

Figure 3. A comparison between Ξ and Ξε1,ε2,ε3
α,τ for β = 1.5, X = T = 40, {ε1, ε2, ε3} := {3× 10−1, 2×

10−2, 5× 10−1}, τ =
4
5

.

1
0.8

0.6

t

0.4
0.2

00

1

2

x

3

2

1

0

-1

-2
4

×10262

T
h
e
s
o
lu
t
io
n
u
(
x
,
t
)

Figure 4. The solution u(x, t) for (x, t) ∈ (0, π)× (0, 1).

Table 1. The errors estimation between Ξ and Ξε1,ε2,ε3
α,τ at β = 1.5 with X = T = 40, τ =

4
5

.

{ε1, ε2, ε3}
X = 40, T = 40

Error
β,ε,α,τ
priori Error

β,ε,α,τ
posteriori

{3× 10−1, 2× 10−2, 5× 10−1} 0.164478172012052 0.182258736154960
{9× 10−2, 2× 10−2, 1× 10−3} 0.031066747441897 0.030595088570760
{1× 10−3, 2× 10−3, 3× 10−3} 0.014676586512256 0.015071362259137

7. Conclusions

In this study, we use the Tikhonov method to regularize the inverse problem to determine an
unknown source term in a space-time-fractional diffusion equation. By an example, we prove that this
problem is ill-posed in the sense of Hadamard. Under a priori and a posteriori parameter choice rules,
we show the results about the convergent estimate between the exact solution and the regularized
solution. In addition, we show an example to illustrate our proposed regularization.
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Abstract: In this paper, a wavelet based collocation method is formulated for an approximate solution
of (1 + 1)- and (1 + 2)-dimensional time fractional diffusion wave equations. The main objective of
this study is to combine the finite difference method with Haar wavelets. One and two dimensional
Haar wavelets are used for the discretization of a spatial operator while time fractional derivative
is approximated using second order finite difference and quadrature rule. The scheme has an
excellent feature that converts a time fractional partial differential equation to a system of algebraic
equations which can be solved easily. The suggested technique is applied to solve some test problems.
The obtained results have been compared with existing results in the literature. Also, the accuracy
of the scheme has been checked by computing L2 and L∞ error norms. Computations validate that
the proposed method produces good results, which are comparable with exact solutions and those
presented before.

Keywords: fractional differential equations; two-dimensional wavelets; finite differences

1. Introduction

The theory of fractional calculus is an ancient topic that has many applications. However,
practical work in this direction has been recently started (see References [1–3]). Most of the physical
phenomena in chemistry, physics, engineering and other fields of science can be modeled using
parameters of fractional calculus [4,5], means fractional derivative and integral operators. Amongst
these are electrolyte polarization [6], viscoelastic systems [7], dielectric polarization [8] and so forth.
Fractional models in different circumstances lead towards more accurate behaviour than those of
integer order models.

The time fractional diffusion wave equation (TFDWE) is such an important model which has
extensive uses. The TFDWE is actually a wave equation [9] with a fractional time derivative which
describes universal acoustic, electromagnetic and mechanical responses [10,11] with an enhanced
method. Over the past few decades, extensive attention has been paid to the closed form solution of
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time fractional diffusion wave equations (TFDWEs) and is still an open area of research. The closed
form solution of such problems is not an easy job and needs herculean efforts. Owing to the fact several
authors proposed numerical methods for the solution of fractional models, Tadjeran et al. [12] used
second order accurate approximation for fractional diffusion equations. Zhuang et al. [13] applied an
implicit numerical method for the anomalous sub-diffusion equation. Yuste and Acedo [14] studied
fractional diffusion equations via an explicit finite difference method. Chen et al. [15] proposed the
Fourier method for fractional diffusion equations. Hosseini et al. [16] solved the fractional telegraph
equation with the help of radial basis functions. Zhou and Xu [17] applied the Chebyshev wavelets
collocation method for the solution of time fractional diffusion wave equations. Bhrawya [18] used
the spectral Tau algorithm based on the Jacobi operational matrix for the numerical solution of time
fractional diffusion-wave equations. Yaseen et al. [19] solved fractional diffusion wave equations
with reaction terms using finite differences and a trigonometric B-splines technique. Khader [20] and
his co-author applied the finite difference method coupled with the Hermite formula for solutions
of fractional diffusion wave equations. Kanwal et al. [21] implemented two-dimensional Genocchi
Polynomials combined with the Ritz-Galerkin Method for solutions of fractional diffusion wave and
Klein-Gordon equations. Datsko et al. [22] studied time-fractional diffusion-wave equation with mass
absorption in a sphere under harmonic impact.

Recently, numerical methods using wavelets have been given more emphasis because of their
simple applicability. These methods also have some other interesting properties such as the ability to
detect singularities and express the function in different resolution levels, which improves the accuracy.
Amongst different classes of wavelets, Haar wavelets deserve special consideration. Haar wavelets
consist of piece wise constant functions. The integration of these wavelets in different times is one of
the best features. Also, Haar wavelets have orthogonality and normalization properties with compact
support. For more discussion on Haar wavelets one can see References [23,24].

In the present study, we propose a hybrid numerical scheme, based on Haar wavelets and finite
differences, to solve (1 + 1)- and (1 + 2)-dimensional TFDWEs. The stability of the proposed method is
discussed with the matrix method which is an essential part of the manuscript. The models which will
be under consideration are characterized in the following types:

(1 + 1)-Dimensional Equation:

cDδ
t w(x, t) = −wt(x, t) + wxx(x, t) +A(x, t), x ∈ Ω, t ∈ [0, T], 1 < δ ≤ 2, (1)

{
w(x, 0) = f (x), wt(x, 0) = g(x) x ∈ Ω̃ = Ω ∪ ∂Ω,

w(x, t) = α(t), x ∈ ∂Ω t ∈ [0, T].
(2)

(1 + 2)-Dimensional Equation:

cDδ
t w(x, y, t) = Δw(x, y, t) + B(x, y, t), (x, y) ∈ Φ, t ∈ [0, T], 1 < δ ≤ 2, (3)

{
w(x, y, 0) = χ(x, y), wt(x, y, 0) = κ(x, y), (x, y) ∈ Φ̃ = Φ ∪ ∂Φ,

w(x, y, t) = χ1(x, y, t), (x, y) ∈ ∂Φ, t ∈ [0, T].
(4)

In Equations (1)–(4), Δ is two-dimensional Laplacian; A, B, f , g, α, χ, κ, χ1 are known functions and
w is unknown function. Equations (2) and (4) are the corresponding initial and boundary conditions.
The symbols, Ω and ∂Ω, Φ and ∂Φ represent the domain and boundary of the domain respectively for
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(1 + 1)- and (1 + 2)-dimensional problems. Also cDδ
t w denotes the time fractional derivative of w with

respect to t in the Caputo sense which is given by

cDδ
t w =

⎧⎨⎩
1

Γ(2−δ)

∫ t
0

wζζ (x,ζ)

(t−ζ)δ−1 dζ, 1 < δ < 2,
∂2w(x,t)

∂t2 , δ = 2.
(5)

2. Ground Work

In this section, some basic definitions of fractional calculus and Haar wavelets are presented,
which will be required for the demonstration of our results. For a basic definition of Haar wavelets
and its integrals we refer to Reference [23]. Let us consider x ∈ [a, b] where a and b are the limits of the
interval. Next, the interval is subdivided into 2M intervals where M = 2J and J denote the maximal
level of resolution. Further, the two parameters j = 0, . · · · , J and k = 0, . · · · , 2j − 1 are introduced.
These parameters show the integer decomposition of wavelet number i = m + k + 1, where m = 2j.
The first and ith wavelets are defined as follows:

H1(x) =

{
1, x ∈ [a, b]

0, otherwise.
(6)

Hi(x) =

⎧⎪⎪⎨⎪⎪⎩
1, x ∈ [ξ1(i), ξ2(i))

−1, x ∈ [ξ2(i), ξ3(i))

0, otherwise,

(7)

where

ξ1(i) = a + 2kνδx, ξ2(i) = a + (2k + 1)νδx, ξ3(i) = a + 2(k + 1)νδx, ν =
M
m

, δx =
b− a
2M

.

To solve nth order time fractional PDEs the following repeated integrals are needed:

Pi,β(x) =
∫ x

a

∫ x

a
· · ·

∫ x

a
Hi(z)dzβ =

1
(β− 1)!

∫ x

a
(x− z)β−1Hi(z)dz, (8)

where
β = 1, 2, . . . n, i = 1, 2, . . . 2M.

Keeping in view Equations (6) and (7) the close form expressions of these integrals are given by

P1,β(x) =
(x− a)β

β!
. (9)

Pi,β(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, x < ξ1(x)
1
β! [x− ξ1(i))

β x ∈ [ξ1(i), ξ2(i))
1
β!
[
(x− ξ1(i))β − 2((x− ξ2(i))β

)
x ∈ [ξ2(i), ξ3(i))

1
β!
[
(x− ξ1(i))β − 2((x− ξ2(i))β + (x− ξ3(i))β

)
x ≥ ξ3(i).

(10)
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3. Description of the Method

This section is devoted to discussing the scheme for Equations (1) and (3) separately. In both
cases, the fractional order time derivative has been approximated by the quadrature formula [16]

c
D

δ
t w(x, tj+1) =

1
Γ (2− δ)

∫ tj+1

0
w(2)(x, ζ)

(
tj+1 − ζ

)1−δ
dζ

=
1

Γ (2− δ)

j

∑
k=0

∫ tj+1

tj

[
wk+1 − 2wk + wk−1

τ2

] (
tj+1 − ζ

)1−δdζ

=
1

Γ (2− δ)

j

∑
k=0

[
wk+1 − 2wk + wk−1

τ2

] ∫ tj+1

tj
[(j + 1)τ − ζ]1−δdζ

=
1

Γ (2− δ)

j

∑
k=0

[
wk+1 − 2wk + wk−1

τ2

]
(j− k + 1)2−δ − (j− k)2−δ

(2− δ)(τδ−2)

=
τ−δ

Γ (3− δ)

j

∑
k=0

[
wj−k+1 − 2wj−k + wj−k−1

] [
(k + 1)2−δ − (k)2−δ

]
= Aδ

[
wj+1 − 2wj + wj−1

]
+ Aδ

j

∑
k=1

[
wj−k+1 − 2wj−k + wj−k−1

]
B(k),

(11)

where Aδ =
τ−δ

Γ(3−δ)
, τ is time step size and B(k) = (k + 1)2−δ − (k)2−δ .

Case i:

Using Equation (11) and θ−weighted scheme (0 ≤ θ ≤ 1) in Equation (1), we obtain

Aδ

[
wj+1 − 2wj + wj−1

]
+ Aδ

j

∑
k=1

[
wj−k+1 − 2wj−k + wj−k−1

]
B(k) +

1
τ

{
wj+1 − wj

}
= θwj+1

xx + (1− θ)wj
xx +A(x, tj+1).

(12)

After simplification, the above equation transforms to

(τAδ + 1)wj+1 − τθwj+1
xx = 2τAδwj − τAδwj−1 − τAδ

j

∑
k=1

[
wj−k+1 − 2wj−k + wj−k−1

]
B(k)

+ wj + τ(1− θ)wj
xx + τA(x, tj+1). (13)

In our analysis we take θ = 1/2. Now approximating the highest order derivative by a truncated
Haar wavelets series as:

wj+1
xx (x) =

2M

∑
i=1

aj+1
i Hi(x). (14)

Integrating Equation (14) from 0 to x

wj+1
x (x) =

2M

∑
i=1

aj+1
i Pi,1(x) + wj+1

x (0). (15)

Integrating Equation (15) from 0 to 1, we get

wj+1
x (0) = wj+1(1)− wj+1(0)−

2M

∑
i=1

aj+1
i Pi,2(1). (16)
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Substituting Equation (16) in Equation (15), the resultant equation reduces to

wj+1
x (x) =

2M

∑
i=1

aj+1
i [Pi,1(x)−Pi,2(1)] + wj+1(1)− wj+1(0). (17)

Integration of Equation (17) from 0 to x yields

wj+1(x) =
2M

∑
i=1

aj+1
i [Pi,2(x)− xPi,2(1)] + x

[
wj+1(1)− wj+1(0)

]
+ wj+1(0). (18)

Substituting values from Equations (14), (17) and (18) in Equation (13) and using collocation
points xm = m−0.5

2M , m = 1, 2, . . . 2M, leads to the following system of algebraic equation

2M

∑
i=1

aj+1
i

[
(τAδ + 1) {Pi,2(x)− xPi,2(1)} − τθHi(x)

]
x=xm

= R(m), (19)

where

R(m) = 2τAδwj − τAδwj−1 − τAδ

j

∑
k=1

[
wj−k+1 − 2wj−k + wj−k−1

]
B(k) + wj

+ τ(1− θ)wj
xx + τA(xm, tj+1)− (τAδ + 1)

{
xm

(
wj+1(1)− wj+1(0)

)
+ wj+1(0)

}
.

Equation (19) contains 2M equations. The unknown wavelet coefficients can be computed from
this system. After determination of these unknown constants, the required solution at each time can
be calculated from Equation (18).

Case ii:

Following a similar approach, as discussed earlier, Equation (3) gives

Aδwj+1 − θ
[
wj+1

xx + wj+1
yy

]
= (1− θ)

[
wj

xx + wj
yy

]
+ B(x, y, tj+1) + 2Aδwj − Aδwj−1

− Aδ

j

∑
k=1

[
wj−k+1 − 2wj−k + wj−k−1

]
B(k). (20)

Now we approximate wj+1
xxyy(x, y) with a two dimensional truncated Haar wavelets series as:

wj+1
xxyy(x, y) =

2M

∑
i=1

2M

∑
l=1

aj+1
i,l Hi(x)Hi(y), (21)

where aj+1
i,l are unknowns to be determined. Integration of Equation (21) w.r.t. to y, between 0

and y, gives

wj+1
xxy(x, y) =

2M

∑
i=1

2M

∑
l=1

aj+1
i,l Hi(x)Pl,1(y) + wj+1

xxy(x, 0). (22)

Integrating Equation (22) w.r.t y from 0 to 1, the unknown term wj+1
xxy(x, 0) is given by

wj+1
xxy(x, 0) = wj+1

xx (x, 1)− wj+1
xx (x, 0)−

2M

∑
i=1

2M

∑
l=1

aj+1
i,l Hi(x)Pl,2(1). (23)
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Substituting Equation (23) in Equation (22), the obtained result is

wj+1
xxy(x, y) =

2M

∑
i=1

2M

∑
l=1

aj+1
i,l Hi(x) [Pl,1(y)−Pl,2(1)] + wj+1

xx (x, 1)− wj+1
xx (x, 0). (24)

Integrating Equation (24) from 0 to y, we get

wj+1
xx (x, y) =

2M

∑
i=1

2M

∑
l=1

aj+1
i,l Hi(x) [Pl,2(y)− yPl,2(1)] + ywj+1

xx (x, 1) + (1− y)wj+1
xx (x, 0). (25)

Repeating the same procedure one can easily derive the subsequent expressions

wj+1
yy (x, y) =

2M

∑
i=1

2M

∑
l=1

aj+1
i,l [Pi,2(x)− xPi,2(1)]Hl(y) + xwj+1

yy (1, y) + (1− x)wj+1
yy (0, y). (26)

wj+1
x (x, y) =

2M

∑
i=1

2M

∑
l=1

aj+1
i,l [Pi,1(x)−Pi,2(1)] [Pl,2(y)− yPl,2(1)] + ywj+1

x (x, 1)

+ (1− y)wj+1
x (x, 0) + wj+1(1, y)− wj+1(0, y)− ywj+1(1, 1) + ywj+1(0, 1)

+ (y− 1)wj+1(1, 0) + (1− y)wj+1(0, 0). (27)

wj+1
y (x, y) =

2M

∑
i=1

2M

∑
l=1

aj+1
i,l [Pi,2(x)− xPi,2(1)] [Pl,1(y)−Pl,2(1)] + xwj+1

y (1, y)

+ (1− x)wj+1
y (0, y) + wj+1(x, 1)− wj+1(x, 0)− xwj(1, 1) + xwj+1(1, 0)

+ (x− 1)wj+1(0, 1) + (1− x)wj+1(0, 0). (28)

wj+1(x, y) =
2M

∑
i=1

2M

∑
l=1

aj+1
i,l [Pi,2(x)− xPi,2(1)] [Pl,2(y)− yPl,2(1)] + ywj+1(x, 1)

− ywj+1(0, 1) + (1− y)
[
wj+1(x, 0)− wj+1(0, 0)

]
+ xwj+1(1, y)

− xwj+1(0, y)− xy
[
wj+1(1, 1)− wj+1(0, 1)

]
+ x (y− 1)wj+1(1, 0)

+ x(1− y)wj+1(0, 0) + wj+1(0, y). (29)

Substitution of Equations (25), (26) and (29) in Equation (20) and using the collocation points,
xm = m−0.5

2M , yn = n−0.5
2M , m, n = 1, 2, . . . 2M, produces the following system of equations

2M

∑
i=1

2M

∑
l=1

aj+1
i,l [AδD(i, l, m, n)− θE(i, l, m, n)− θF (i, l, m, n)] = L(m, n) +M(m, n), (30)
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where

D(i, l, m, n) = [Pi,2(xm)− xmPi,2(1)] [Pl,2(yn)− ynPl,2(1)] ,

E(i, l, m, n) = Hi(xm) [Pl,2(yn)− ynPl,2(1)] ,

F (i, l, m, n) = [Pi,2(xm)− xmPi,2(1)]Hl(yn),

L(m, n) = (1− θ)
[
wj

xx + wj
yy

]
,+B(xm, yn, tj+1) + 2Aδwj − Aδwj−1

− Aδ

j

∑
k=1

[
wj−k+1 − 2wj−k + wj−k−1

]
B(k),

M(m, n) = −Aδ

[
ynwj+1

x (xm, 1)− ynwj+1(0, 1) + (1− yn)
{

wj+1(xm, 0)− wj+1(0, 0)
}

+ xmwj+1(1, yn)− xmwj+1(0, yn)− xmyn

{
wj+1(1, 1)− wj+1(0, 1)

}
+ xm (yn − 1)wj+1(1, 0) + xm(1− yn)wj+1(0, 0) + wj+1(0, yn)

]
+ θ

[
ynwj+1

xx (xm, 1)

+ (1− yn)w
j+1
xx (xm, 0) + xmwj+1

yy (1, yn) + (1− xm)wj+1
yy (0, yn)

]
.

Equation (30) represents 2M× 2M equations in so many unknowns which can be solved easily.
After calculation of these unknowns, an approximate solution can be obtained from Equation (29).

4. Stability Analysis

Here we present the stability analysis of the proposed scheme for (1 + 2)-dimensional problems;
a similar result can be proved for (1 + 1)-dimensional problems. In matrix form Equations (25), (26)
and (29) can be written as

wj+1
xx = Uαj+1 + Ũ j+1, (31)

wj+1
yy = Vαj+1 + Ṽ j+1, (32)

wj+1 = Zαj+1 + Z̃ j+1, (33)

where αj+1 = αj+1(i, l), U ,V ,Z and Ũ j+1, Ṽ j+1, Z̃ j+1 are interpolation matrices of wj+1
xx , wj+1

yy , wj+1

at collocation points and boundary terms, respectively. Now using Equations (31), (32) and (33) in
Equation (20), we get[

AδZ − θ
(
U + V

)]
αj+1 =

[
2AδZ + (1− θ)

(
U + V

)]
αj + G j+1, (34)

where G j+1 = −AδZ̃ j+1 + θ
(
Ũ j+1 + Ṽ j+1) + 2AδZ̃ j + (1 − θ)(Ũ j + Ṽ j) + Bj+1 − Aδwj−1 −

Aδ ∑
j
k=1

[
wj−k+1 − 2wj−k + wj−k−1

]
B(k).

Now From Equation (34) one can write

αj+1 = C−1T αj + C−1G j+1, (35)

where C =
[
AδZ − θ

(
U + V

)]
, T = 2AδZ + (1− θ)

[
U + V

)
. Putting Equation (35) in Equation (33)

we get
wj+1 = ZC−1T αj +ZC−1G j+1 + Z̃ j+1. (36)

Using Equation (33) in Equation (36) we have

wj+1 = ZC−1T Z−1wj −ZC−1T Z−1Z̃ j +ZC−1G j+1 + Z̃ j+1. (37)

249



Mathematics 2019, 7, 923

The above equation shows a recurrence relation of a full discretization scheme which allow us
refinement in time. If w̃j+1 is numerical solution then

w̃j+1 = ZC−1T Z−1w̃j −ZC−1T C−1Z̃ j +ZC−1G j+1 + Z̃ j+1. (38)

Let ej+1 = wj+1 − w̃j+1 be the error at (j + 1)th time level. Subtracting Equation (37) from
Equation (38) then

ej+1 = Λej,

where Λ = ZC−1T Z−1 is the amplification matrix. According to Lax-Richtmyer criterion, the scheme
will be stable if ‖Λ‖ ≤ 1. It has been verified computationally that ‖Λ‖ ≤ 1. For J = 1 the spectral
radius is 0.01025 which lies in the stability domain.

5. Convergence Analysis

The convergence analysis of scheme (18) and (29) is similar to the following theorems, therefore
the proofs are omitted.

Lemma 1 (see [24]). If w(x) ∈ L2(R) with
∣∣w′(x)

∣∣ ≤ ρ, for all x ∈ (0, 1), ρ > 0 and w(x) = ∑∞
i=0 aiHi(x)

then | ai |≤ ρ

2j+1 .

Lemma 2 (see [25]). If f (x, y) satisfies a Lipschitz condition on [0, 1]× [0, 1], that is, there exists a positive L
such that for all (x1, y), (x2, y) ∈ [0, 1]× [0, 1] we have | f (x1, y)− f (x2, y) |≤ L | x1 − x2 | then

a2
i,l ≤

L2

24j+4m2

Theorem 1. If w(x) and w2M(x) are the exact and approximate solution of Equation (1), then the error norm
‖ EJ ‖ at Jth resolution level is

‖ EJ ‖≤
4ρ

3

(
1

2J+1

)2
. (39)

Proof. See [26].

Theorem 2. Assume w(x, y) and w2M(x, y) be the exact and approximate solution of Equation (3), then

‖ EJ ‖≤
L

4
√

255
1

24J . (40)

Proof. See [27].

6. Illustrative Test Problems

In this part, we chose some test problem to confirm the reliability and efficiency of the present
scheme. For validation of our results L∞ and L2 error norm are figured out which are defined as follows:

L2 =

√√√√2M

∑
i=1

(
wext − wapp

)2

, L∞ = max
1≤i≤2M

∣∣∣∣wext − wapp
∣∣∣∣, (41)

where wapp and wext are respectively approximate and exact solutions.
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Problem 5.1

Let us take the following (1 + 1)-dimensional TFDWE with damping

cDδ
t w(x, t) = −wt(x, t) + wxx(x, t) +A(x, t), x ∈ [0, 1], t ∈ [0, 1], 1 < δ ≤ 2, (42)

with A(x, t) = 2x(1−x)t2−δ

Γ(3−δ)
+ 2tx(1− x) + 2t2. Initial and boundary conditions are derived from the

exact solution w(x, t) = t2x(1− x). This problem has been solved for parameters J = 4, t = 0.01,
0.1, 1, δ = 1.1, 1.3, 1.5, 1.7, 1.9. The obtained error norms are shown in Table 1. From table it is
obvious that results of the present scheme match well with exact solution. Also in Table 2 it has been
observed that accuracy increases with increasing resolution level which shows the convergence in the
spatial direction. In the same table, the results have been matched with existing results in the literature
which clarify that computed solutions are in good agreement with the work of Chen et al. [28]. Table 3
shows convergence in time for fixed dx = 1/32. The convergence rate of the proposed scheme has
been addressed in Table 4. the graphical solution and error plot are given in Figure 1. From this Figure
it is clear that approximate solutions are matchable with exact.

Table 1. Error norms of problem 5.1 for at J = 4.

δ
t = 0.01, τ = 0.0001 t = 0.1, τ = 0.001 t = 1, τ = 0.01

L∞ L2 L∞ L2 L∞ L2

1.1 7.0694 × 10−8 2.9496 × 10−7 1.0799 × 10−5 4.5921 × 10−5 2.1556 × 10−3 8.9537 × 10−3

1.3 3.1776 × 10−8 1.3294 × 10−7 7.6592 × 10−6 3.2979 × 10−5 2.1082 × 10−3 8.7615 × 10−3

1.5 1.1646 × 10−8 4.8890 × 10−8 4.8457 × 10−6 2.1318 × 10−5 2.0653 × 10−3 8.5871 × 10−3

1.7 5.2296 × 10−9 2.1899 × 10−8 3.3635 × 10−6 1.4944 × 10−5 2.1431 × 10−3 8.8989 × 10−3

1.9 2.2087 × 10−9 9.2078 × 10−9 2.1386 × 10−6 9.3949 × 10−5 2.4382 × 10−3 1.0094 × 10−2

Table 2. Comparison of maximum error of problem 5.1 with previous work at t = 1 and δ = 1.7.

[28] Present Method

h τ Error dx τ Error
0.05 0.05 4.4333 × 10−3 1/4 0.05 8.2306 × 10−4

0.025 0.0125 7.7368 × 10−4 1/8 ... 5.4184 × 10−4

0.0125 0.00625 3.1827 × 10−4 1/16 ... 4.9195 × 10−4

Table 3. Error norms of problem 5.1 for different values of τ and δ.

δ = 1.5 δ = 1.7

τ L∞ L2 L∞ L2

1/4 5.4216 × 10−2 2.2515 × 10−1 5.4689 × 10−2 2.2708 × 10−1

1/8 2.7891 × 10−2 1.1571 × 10−1 2.8861 × 10−2 1.1961 × 10−1

1/16 1.3645 × 10−2 5.6647 × 10−2 1.4343 × 10−2 5.9443 × 10−2

1/32 6.6683 × 10−3 2.7699 × 10−2 7.0022 × 10−3 2.9034 × 10−2

1/64 3.2674 × 10−3 1.3580 × 10−2 3.4061 × 10−3 1.4135 × 10−2
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Table 4. Convergence rate of maximum error of problem 5.1 at t = 1 and δ = 1.7.

J τ Error Rate

1 1/10 2.6194 × 10−3 -
2 1/20 1.3086 × 10−3 1.0012
3 1/40 5.5920 × 10−4 1.2265
4 1/80 2.2921 × 10−4 1.2866
5 1/160 9.3261 × 10−5 1.2973
6 1/320 3.7377 × 10−5 1.3191
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Figure 1. Graphical behaviour of problem 5.1 when t = 1, δ = 1.5.

Problem 5.2:

Consider the following TFDWE with damping

cDδ
t w(x, t) = −wt(x, t) + wxx(x, t) +A(x, t), x ∈ [0, 1], t ∈ [0, 1], 1 < δ ≤ 2, (43)

coupled with initial and boundary conditions{
w(x, 0) = 0, wt(x, 0) = 0 x ∈ (0, 1)

w(0, t) = t3, w(1, t) = et3, t ∈ [0, 1].
(44)

The exact solution and source term are given by w(x, t) = ext3 andA(x, t) = 6t3−δex

Γ(4−δ)
+ 3t2ex − t3ex.

In Table 5 the obtained error norms are shown for parameters t = 0.01, 0.1,
δ = 1.1, 1.3, 1.5, 1.7, 1.9, J = 4. Table 5 shows that exact and approximate solutions agree
with each other. The solution profile and absolute error are displayed Figure 2. From the Figure,
the coincidence of both solutions are visible.

Table 5. Error norms of problem 5.2 at J = 4.

δ
t = 0.01, τ = 0.0001 t = 0.1, τ = 0.001

L∞ L2 L∞ L2

1.1 1.7079 × 10−7 6.8446 × 10−7 1.2504 × 10−4 5.3397 × 10−4

1.3 6.5331 × 10−7 2.5683 × 10−6 4.4278 × 10−4 1.8777 × 10−3

1.5 1.2494 × 10−6 4.7989 × 10−6 8.7071 × 10−4 3.6354 × 10−3

1.7 1.3386 × 10−6 5.0827 × 10−6 1.0489 × 10−3 4.2541 × 10−3

1.9 5.6739 × 10−7 2.1936 × 10−6 5.1085 × 10−4 2.0046 × 10−3
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Figure 2. Graphical behaviour of problem 5.2 at t = 0.3, δ = 1.1.

Problem 5.3:

Now we consider (1+2)-dimensional TFDWE [29]

cDδ
t w(x, y, t) = Δw(x, y, t) + B(x, y, t), (x, y) ∈ [0, 1]× [0, 1], t ∈ [0, 1], 1 < δ ≤ 2, (45)

with exact solution w(x, y, t) = sin(πx)sin(πy)tδ+3, and source term

B(x, y, t) = sin(πx)sin(πy)
[

Γ(δ + 3)t2

2
− 2tδ+2

]
.

We solved this problem for resolution level J = 4 and the obtained results are recorded in Table 6
for different values of time and τ. From Table 6 it is clear that the proposed scheme works well for
the solution of two dimensional problems. Table 7 shows the comparison of the computed results
with the previous work of Zhang [29]. One can see that our results are matchable with existing results.
The same table presents convergence in time for (1 + 2)-dimensional problems. The graphical solution
and absolute error of the problem are shown in Figure 3. It is obvious from Figure 3 that the exact and
approximate solutions have strong agreement.

Table 6. Comparison of problem 5.4 at t = 1 and δ with previous results.

δ
t = 0.1, τ = 0.001 t = 0.2, τ = 0.01 t = 0.5, τ = 0.05

L∞ L2 L∞ L2 L∞ L2

1.5 1.6049 × 10−4 8.0439 × 10−5 4.3534 × 10−4 2.1819 × 10−4 2.5390 × 10−2 1.2725 × 10−2

1.7 1.1635 × 10−4 5.8320 × 10−5 5.9673 × 10−4 2.9908 × 10−4 7.5824 × 10−3 3.8003 × 10−3

1.9 3.0965 × 10−5 1.5519 × 10−5 3.9390 × 10−4 1.9742 × 10−4 4.8842 × 10−3 2.4480 × 10−3

Table 7. Error norms of problem 5.3 for different values of τ and δ.

L∞

δ τ Present [29]

1.25 1/10 8.1748 × 10−3 8.1577 × 10−2

1/20 6.5092 × 10−3 3.4379 × 10−2

1/40 5.7150 × 10−3 1.4484 × 10−2

1.5 1/10 6.7087 × 10−3 2.9942 × 10−2

1/20 4.8922 × 10−3 1.0749 × 10−2

1/40 4.1390 × 10−3 3.8291 × 10−3

1.75 1/10 6.7087 × 10−3 8.4482 × 10−3

1/20 4.8922 × 10−3 2.5877 × 10−3

1/40 4.1390 × 10−3 7.8500 × 10−4
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Figure 3. Graphical behaviour of problem 5.3 when t = 0.5, δ = 1.9.

Problem 5.4:

Consider the following TFDWE with reaction term [19]

cDδ
t w(x, t) + w(x, t) = wxx(x, t) +A(x, t), x ∈ [0, 1], t ∈ [0, 1], 1 < δ ≤ 2, (46)

coupled with initial and boundary conditions{
w(x, 0) = 0, wt(x, 0) = 0 x ∈ (0, 1)

w(0, t) = o, w(1, t) = 0, t ∈ [0, 1],
(47)

where the forcing terms are A(x, t) = 2t2−δx(1−x)
Γ(3−δ)

+ t2x(1− x)− 2t2. This problem has been solved
with the help of the proposed scheme. In Table 8 we presented the solutions at different points. Also
the obtained results have been compared with the work presented in Reference [19]. It is clear from
table that our results are more accurate. From the table it is also obvious that the exact and numerical
solutions are in good agreement. Exact verses numerical solutions are plotted in Figure 4. Graphical
solutions also indicate that the proposed scheme works in the case where the reaction term exists.

Table 8. Absolute error at different points of example 5.4 at τ = 0.001.

(x, t) δ = 1.1 δ = 1.3 δ = 1.5 δ = 1.9

L∞ L∞ [19] L∞ L∞ [19] L∞ L∞ [19] L∞ L∞ [19]

(0.1, 0.1) 2.1684 × 10−19 9.5133 × 10−9 1.0842 × 10−19 6.6004 × 10−9 3.2526 × 10−19 4.4920 × 10−9 5.8546 × 10−18 1.9326 × 10−9

(0.2, 0.2) 9.5409 × 10−18 1.0530 × 10−7 2.1684 × 10−17 7.9127 × 10−8 3.4694 × 10−18 5.7844 × 10−8 1.8735 × 10−16 2.8903 × 10−8

(0.3, 0.3) 4.1633 × 10−17 9.6665 × 10−7 4.1633 × 10−17 3.3461 × 10−7 1.0755 × 10−16 2.5678 × 10−7 1.3634 × 10−15 1.4105 × 10−7

(0.4, 0.4) 1.3877 × 10−17 1.0813 × 10−6 1.8735 × 10−16 9.1574 × 10−7 7.0776 × 10−16 7.3594 × 10−7 4.5033 × 10−15 4.3402 × 10−7

(0.5, 0.5) 1.3877 × 10−16 2.2190 × 10−6 3.9551 × 10−16 1.6516 × 10−6 2.0261 × 10−15 1.6516 × 10−6 1.4231 × 10−14 1.0367 × 10−6
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Figure 4. Graphical behaviour of problem 5.4 at δ = 1.1, t = 1.
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Problem 5.5:

Now we consider the following equation

cDδ
t w(x, y, t) = a1Δw(x, y, t)− b1 sin(w(x, y, t)), (x, y) ∈ Φ, t ∈ [0, T], 1 < δ ≤ 2, (48)

where a1 and b1 are constants and the initial and boundary conditions are⎧⎨⎩w(x, y, 0) = arctan
(

exp( 1
2 −

√
15x2 + 15y2)

)
, wt(x, y, 0) = 0, (x, y) ∈ Φ̃ = Φ ∪ ∂Φ,

w(x, y, t) = 0, (x, y) ∈ ∂Φ, t ∈ [0, T].
(49)

Here, we examine the behaviour of circular ring soliton numerically. Due to pulsating behaviour,
such waves are also known as pulsons. We choose different values of parameters a1, b1 to present
surface plots to study the time evolution of the circular ring soliton. We observe the effect of a1 and
b1 on solutions. In Figure 5, numerical solutions for different values of a1 and b1 have been plotted.
Figure 6 shows the numerical solution for a1 = 0.05 while varying b1. In Figure 7 the results are plotted
for b1 = 10, in which the wave peak value at the centre becomes lower as a1 increases. This reveals
that the solitary wave moves in a stable way up to a large time under finite initial condition.
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Figure 5. Graphical behaviour of problem 5.5 at δ = 1.9, a1 = 0.1, b1 = 10.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.2

−0.1

0

0.1

0.2

 

xy
 

w

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.3

−0.2

−0.1

0

0.1

 

xy
 

w

−0.2

−0.15

−0.1

−0.05

0

b1 = 2 b1 = 4

Figure 6. Graphical behaviour of problem 5.5 at δ = 1.9, a1 = 0.05.

255



Mathematics 2019, 7, 923

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.15

−0.1

−0.05

0

0.05

 

xy
 

w

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.5

−0.4

−0.3

−0.2

−0.1

0

 

xy
 

w

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

a1 = 0.01 a1 = 0.1
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7. Conclusions

In this paper, we proposed a hybrid method based on finite difference and Haar
wavelets approximations. The scheme is applied for the numerical solution of (1 + 1)- and
(1 + 2)-dimensional time fraction partial differential equations. The accuracy and applicability of
the scheme is validated through some test problems. The tabulated data and graphical solution show
that the scheme works very well for time fractional problems.
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Abstract: The present article investigates Darcy–Forchheimer 3D nanoliquid flow because of a rotating
disk with Arrhenius activation energy. Flow is created by rotating disk. Impacts of thermophoresis
and Brownian dispersion are accounted for. Convective states of thermal and mass transport at
surface of a rotating disk are imposed. The nonlinear systems have been deduced by transformation
technique. Shooting method is employed to construct the numerical arrangement of subsequent
problem. Plots are organized just to investigate how velocities, concentration, and temperature
are influenced by distinct emerging flow variables. Surface drag coefficients and local Sherwood
and Nusselt numbers are also plotted and discussed. Our results indicate that the temperature and
concentration are enhanced for larger values of porosity parameter and Forchheimer number.

Keywords: Arrhenius activation energy; rotating disk; Darcy–Forchheimer flow; binary chemical
reaction; nanoparticles; numerical solution

1. Introduction

Nanofluid is the blend of nanometer-measured particles and the conventional base liquid.
Nanofluids are generally used to conquer the low warm exhibition of normal base liquids such as oil,
water, ethylene glycol, and propylene glycol. Because of intriguing physical characteristics,
the nanofluids have potential use in earthenware production, metal working procedures,
covering related applications, atomic reactor cooling, cooling, transportation, attractive medication,
and a few others. Choi and Eastman [1] are credited with the word nanofluid. They established that
nanomaterials are remarkable candidates for development in warmth transport of ordinary fluids.
Regarding the convective vehicle of nanofluid, a numerical relation is accounted by Buongiorno [2].
Here, thermophoresis and Brownian movement are viewed as the most significant slip instruments.
A few ongoing progressions in nanofluid streams can be found in references [3–25].

The present examiners are associated with breaking down the liquid stream due to a turning
disk because of its tremendous applications in rotational air cleaners, diffusive siphons, nourishment
handling advances, turbomachinery, PC stockpiling gadgets, therapeutic hardware, gas turbine rotors,
greases, pivoting plate cathodes, and numerous other examples. Initially, the pivoting plate issue was
tended to by von Karman [26]. Cochran [27] created asymptotic answer for the von Karman issue.
Stewartson [28] broke down liquid stream between pivoting co-axial plates. Chappel and Stirs [29]
talked about the liquid stream among turning and stationary plate. Ackroyd [30] thought about
suction/infusion impacts in the Karman issue and created arrangements containing exponentially
rotting coefficients. Shaky progression of thick fluid instigated by noncoaxial turns of a disk was
explained by Erdogan [31]. Attia [32] talked about liquid stream by turning circles submerged in a
permeable space using Wrench Nicolson strategy. Warmth and mass exchange attributed to pivoting
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streams of thick fluid because of a permeable circle was analyzed by Turkyilmazoglu and Senel [33].
They registered the numerical arrangement of the overseeing stream issue. Rashidi et al. [34] inspected
the impact of entropy in a hydromagnetic stream of viscous liquid by pivoting plate. Mustafa et al. [35]
investigated the progression of nanoliquid actuated by an extending circle. They inferred that constant
extending of disk is a significant part of lessening limit-layer thickness. Hydromagnetic stream of a
turning plate by taking slip and nanoparticles impacts was examined by Hayat et al. [36]. Mustafa [37]
analyzed MHD nanoliquid flow by turning disk subjects to slip impacts. Hayat et al. [38] discussed
the Darcy–Forchheimer stream of CNTs instigated by turning disk.

Concentration difference of species exists in a blend, subject to mass exchange. By fluctuating
the grouping of species in a blend, they move from a high-fixation area to low-focus locale. The least
compulsory vitality that is needed by reactants before synthetic response occurs is characterized as
enactment vitality. A mass exchange mechanism alongside substance response with enactment vitality
for the most part discovers applications in concoction building, mechanics of oil, and water emulsions,
nourishment preparation etc. The regular convection stream of double-blend in a permeable medium
with initiation vitality was proposed by Bestman [39]. Makinde et al. [40] explored temperamental
characteristic convection stream subject to nth-request response and initiation vitality. Maleque [41]
studied exothermic/endothermic response in blended convection streams subject to initiation vitality.
Adjusted Arrhenius capacity was used by Awad et al. [42] to examine shaky pivoting streams of
two-fold liquid past an indiscreet twisted surface. Abbas et al. [43] explored casson liquid streams
subject to actuation vitality. Shafique et al. [44] inspected turning visco-elastic streams joining artificially
receptive species with initiation vitality. Further recent attempts on binary chemical reaction and
Arrhenius activation energy can be seen in the studies [45–47].

Darcy–Forchheimer nanoliquid flow because of rotating disk subject to binary chemical
reaction and Arrhenius activation energy is investigated. Thermophoretic dispersion and arbitrary
movement viewpoints are held. Heat and mass exchange highlights are broken down via convective
factors. The administrative frameworks are comprehended numerically through shooting procedure.
Additionally, velocities, concentration, temperature, surface drag coefficients, and local Sherwood and
Nusselt numbers are discussed graphically.

2. Statement

Here, steady, laminar Darcy–Forchheimer 3D flow of viscous nanoliquid because of a rotating disk
with binary chemical reaction and Arrhenius activation energy is examined. The disk at z = 0 rotates
with constant angular velocity Ω (see Figure 1). Effects of thermophoresis and Brownian dissemination
are additionally accounted for. Convection factors for warmth and mass exchange are employed. It is
additionally accepted that the surface is warmed by hot liquid with concentration Cf and temperature
Tf that give mass and warmth exchange coefficients km� and h f respectively. Velocities are (u, v, w) in
directions of (r, ϕ, z) separately. Ensuing boundary layer articulations are [22,38,44]:

∂u
∂r

+
u
r
+

∂w
∂z

= 0, (1)

u
∂u
∂r
− v2

r
+ w

∂u
∂z
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(
∂2u
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∂2u
∂r2 +

1
r

∂u
∂r
− u

r2

)
− ν

k∗
u− Fu2, (2)

u
∂v
∂r

+
uv
r

+ w
∂v
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(
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∂2v
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1
r

∂v
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− v

r2

)
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+ w
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= ν

(
∂2w
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∂2w
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1
r

∂w
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)
− ν
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w− Fw2, (4)
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u
∂T
∂r

+ w
∂T
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Subjected boundary conditions are

u = 0, v = rΩ, w = 0, − k
∂T
∂z

= h f

(
Tf − T

)
, − DB

∂C
∂z

= km∗
(

Cf − C
)

at z = 0, (7)

u → 0, v → 0, T → T∞, C → C∞ as z → ∞. (8)

Here u, v and w represent velocities in directions of r, φ and z while ρ f , ν
(
= μ/ρ f

)
and μ show density,

kinematic and dynamic viscosities respectively, (ρc)p effective heat capacity of nanoparticles, Ea the
activation energy, (ρc) f heat capacity of liquid, k∗ the permeability of porous space, C the concentration,

n the fitted rate constant, C∞ the ambient concentration, F = Cb/rk∗
1/2

the non-uniform inertia factor,
DT the thermophoretic factor, Cb the drag factor, h f the uniform heat transfer factor, α∗ = k/(ρc) f and
k the thermal diffusivity and thermal conductivity respectively, T the fluid temperature, kr the reaction
rate, DB the Brownian factor, κ the Boltzmann constant, km∗ the uniform mass transfer factor and T∞

the ambient temperature. Selecting

u = rΩ f ′(ζ), w = −(2Ων)1/2 f (ζ), v = rΩg(ζ),

φ(ζ) = C−C∞
Cf−C∞

, ζ =
(

2Ω
ν

)1/2
z, θ(ζ) = T−T∞

Tf−T∞
.

⎫⎬⎭ (9)

Continuity expression (1) is verified while Equations (2)–(8) yield

2 f ′′′ + 2 f f ′′ − f ′
2
+ g2 − λ f ′ − Fr f ′

2
= 0, (10)

2g′′ + 2 f g′ − 2 f ′g− λg− Frg2 = 0, (11)

1
Pr

θ′′ + f θ′ + Nbθ′φ′ + Ntθ
′2 = 0, (12)

1
Sc

φ′′ + f φ′ +
1
Sc

Nt

Nb
θ′′ − σ (1 + δθ)n φ exp

(
− E

1 + δθ

)
= 0, (13)

f (0) = 0, f ′(0) = 0, g(0) = 1, θ′(0) = −γ1 (1− θ (0)) , φ′(0) = −γ2 (1− φ (0)) , (14)

f ′(∞)→ 0, g(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0. (15)

Here Fr stands for Forchheimer number, γ2 for concentration Biot number, λ for porosity parameter,
γ1 for thermal Biot number, Nt thermophoresis parameter, Pr Prandtl number, σ for chemical reaction
parameter, Nb for Brownian motion, δ for temperature difference parameter, Sc Schmidt number, and
E for nondimensional activation energy. Nondimensional variables are defined by

λ = ν
k∗Ω , Fr = Cb
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h f
k

√
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, E = Ea

κT∞
.

⎫⎪⎬⎪⎭ (16)
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The coefficients of skin-friction and Nusselt and Sherwood expressions are

Re1/2
r Cf = f ′′(0), Re1/2

r Cg = g′(0),
Re−1/2

r Nu = −θ′(0), Re−1/2
r Sh = −φ′(0),

}
(17)

where Rer = 2(Ωr)r/ν represents local rotational Reynolds number.

Figure 1. Flow configuration.

3. Numerical Results and Discussion

The present section outlines the commitment of various relevant parameters including Schmidt
number Sc, porosity parameter λ, thermophoresis parameter Nt, Prandtl number Pr, Forchheimer
number Fr, nondimensional activation energy E, thermal Biot γ1, chemical reaction parameter σ,
concentration Biot γ2 and Brownian number Nb on velocities f ′(ζ) and g(ζ), concentration φ(ζ) and
temperature θ (ζ) distributions. Figure 2 portrays how porosity parameter λ influences the speed
appropriation f ′(ζ). It has been discovered that the speed profile f ′(ζ) and its related energy layer
are devalued by upgrading porosity λ. The presence of permeable space improves the protection
from liquid stream which relates to bringing down liquid speed and its related energy layer. Figure 3
delineates the impact of Forchheimer variable Fr on f ′(ζ). Higher estimations of Forchheimer variable
Fr establish lower speed profile f ′(ζ). Figure 4 shows how the speed conveyance g(ζ) is influenced
by porosity parameter λ. Here the speed dissemination is rotted by expanding λ. Figure 5 delineates
a variety of speed circulation g(ζ) for unmistakable Fr. By expanding Fr, a decrease showed up in
speed dissemination and related layer. Figure 6 shows warm Biot γ1 impact on temperature θ (ζ).
More grounded convection is delivered by upgrading warm Biot number γ1. Thus, temperature
and warm layer are raised by expanding warm Biot number γ1. Figure 7 presents a variety in
temperature field θ (ζ) for Pr. Here, temperature is rotted for bigger Pr. The proportion of force
diffusivity to warm diffusivity is termed as the Prandtl number. Higher estimations of Pr depict more
fragile warm diffusivity, which compares to diminishing in the warm layer. Figure 8 is shown to
investigate Nt impact on temperature field θ (ζ). Bigger thermophoresis parameter Nt establishes a
higher temperature field and progressively warm layer thickness. The purpose of such contention is
that augmentation in Nt yields high grounded thermophoresis power which further permits motion of

262



Mathematics 2019, 7, 921

the nanoparticles in liquid zone. Far from surface in this way shapes a more grounded temperature
dispersion θ (ζ) and progressively warm layer. The effect of Nb on temperature profile θ (ζ) is depicted
in Figure 9. From a physical perspective, an unpredictable movement of nanoparticles increments
by improving Brownian movement parameter Nb causes a crash of particle. As a result, the active
vitality is changed into warmth vitality which causes upgrade in θ (ζ) and associated warm layer.
Figure 10 shows how concentration φ(ζ) is influenced by concentration Biot number γ2. Concentration
is upgraded for higher estimations of γ2. From Figure 11 we can see that bigger Sc rots concentration
φ(ζ). Schmidt number Sc is conversely relative to Brownian diffusivity. Higher Sc yields a more
fragile Brownian diffusivity. Such Brownian diffusivity prompts low concentration φ(ζ). Figure 12
demonstrates how the thermophoresis parameter Nt influences the concentration φ(ζ). By improving
thermophoresis parameter Nt, concentration φ(ζ) and related concentration layers are upgraded.
Figure 13 depicts the Brownian movement Nb and minor departure from concentration φ(ζ). It can be
seen that a more fragile concentration φ(ζ) is produced by using higher Nb. Figure 14 explains the
impact of nondimensional initiation vitality E on concentration φ(ζ). An improvement in E rots altered

Arrhenius work
(

T
T∞

)n
exp

(
− Ea

κT

)
. Such inevitably builds up the generative synthetic response

because of which concentration φ(ζ) upgrades. Figure 15 shows that an improvement in σ shows a
rot in concentration φ(ζ) and its related layer. Highlights of Nt and Nb on Nu(Rer)−1/2 are revealed
through Figures 16 and 17 respectively. True to form, Nu(Rer)−1/2 reduces for Nt and Nb. Effects of
Nt and Nb on Sh(Rer)−1/2 have been portrayed in Figures 18 and 19 respectively. Here Sh(Rer)−1/2 is
an expanding capacity of Nt, while the inverse pattern is seen for Nb. Table 1 is developed to validate
the present results with the previously published results in a limiting case. Here, we demonstrate that
the present numerical solution has good agreement with the previous solution by Naqvi et al. [48] in a
limiting case.

Figure 2. Curves of f ′(ζ) for λ.
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Figure 3. Curves of f ′(ζ) for Fr.

Figure 4. Curves of g(ζ) for λ.
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Figure 5. Curves of g(ζ) for Fr.

Figure 6. Curves of θ(ζ) for γ1.
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Figure 7. Curves of θ(ζ) for Pr.

Figure 8. Curves of θ(ζ) for Nt.
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Figure 9. Curves of θ(ζ) for Nb.

Figure 10. Curves of φ(ζ) for γ2.
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Figure 11. Curves of φ(ζ) for Sc.

Figure 12. Curves of φ(ζ) for Nt.
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Figure 13. Curves of φ(ζ) for Nb.

Figure 14. Curves of φ(ζ) for E.
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Figure 15. Curves of φ(ζ) for σ.

Figure 16. Curves of Nu(Rer)−1/2 for Nt.
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Figure 17. Curves of Nu(Rer)−1/2 for Nb.

Figure 18. Curves of Sh(Rer)−1/2 for Nt.
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Figure 19. Curves of Sh(Rer)−1/2 for Nb.

Table 1. Comparative values of f ′′(0) and g′(0) for value of Fr when λ = 0.2.

Present Results Naqvi et al. [48]

Fr f ′′(0) g′(0) f ′′(0) g′(0)
0.2 0.43478 −0.78139 0.4347813 −0.7813904

4. Conclusions

Darcy–Forchheimer flow of viscous nanofluid due to a rotating disk with binary chemical
reaction and Arrhenius activation energy was studied. The shooting algorithm leads to the
solutions of dimensionless quantities. We noticed that temperature rises for larger thermal Biot
number. Temperature is less in the absence of thermal Biot number. Enhancing concentration Biot
number leads to higher concentration and thickness of concentration boundary layer. An increase in
activation energy leads to higher temperature. We further demonstrated that enhancement in chemical
reaction parameter gives a reduction in the curves of concentration.
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Abstract: In this paper, we study fractional symmetric Hahn difference calculus. The new idea of
the symmetric Hahn difference operator, the fractional symmetric Hahn integral, and the fractional
symmetric Hahn operators of Riemann–Liouville and Caputo types are presented. In addition, we
formulate some fundamental properties based on these fractional symmetric Hahn operators.
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1. Introduction

The Hahn difference operator, one type of quantum difference operator, has been studied by
many reseachers. It is used to construct families of orthogonal polynomials and to study certain
approximation problems (see [1–3]).

Hahn [4] is the first researcher who introduced the Hahn difference operator Dq,ω based on
the forward difference operator and the Jackson q-difference operator where

Dq,ω f (t) :=
f (qt + ω)− f (t)

t(q− 1) + ω
, t �= ω0 :=

ω

1− q
.

Later, the right inverse of Hahn’s operator and its properties were presented (see [5,6]). There are
other works related to the Hahn difference operator such as the study of Hahn quantum variational
calculus [7–9], and the existence and uniqueness results for the initial value problems [10–12]
and boundary value problems [13,14].

Recently, Brikshavana and Sitthiwirattham [15] introduced fractional Hahn difference operators.
The boundary value problems for fractional Hahn difference equations were subsequently studied by
many researchers (see [16–19]).

In 2013, Artur et al. [20] introduced the symmetric Hahn difference operator D̃q,ω as

D̃q,ω f (t) :=
f (qt + ω)− f (q−1(t−ω))

(q− q−1)t + (1 + q−1)ω
for t �= ω0.

However, we observe from the literature that fractional symmetric Hahn difference calculus has
not been studied. In order to give a rigorous analysis of symmetric Hahn calculus, this paper is devoted
to presenting the new concepts of the symmetric Hahn difference operator, the fractional symmetric
Hahn integral, and the fractional symmetric Hahn difference operators of the Riemann–Liouville
and Caputo types. Particularly, the results from this study can be used as a tool in some applications
such as approximation problems, and initial and boundary value problems associated with symmetric
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Hahn operators. We first introduce some basic definitions and properties of Hahn’s difference operators
in Section 2. In Section 3, we present the fractional symmetric Hahn integral and its properties.
Finally, we propose the fractional symmetric Hahn difference operators of the Riemann–Liouville
and Caputo types and their properties in Sections 4 and 5, respectively.

2. Preliminary Definitions and Properties

In order to study the fractional symmetric Hahn difference calculus, we first introduce some
notations, definitions, lemmas as follows. (see [4–8,20,21]).

For 0 < q < 1, ω > 0, ω0 = ω
1−q , we define

[̃k]q :=

⎧⎪⎨⎪⎩
1− q2k

1− q2 = [k]q2 , k ∈ N

1, k = 0,

[̃k]q! :=

⎧⎪⎨⎪⎩[̃k]q ˜[k− 1]q · · · [̃1]q =
k

∏
i=1

1− q2i

1− q2 , k ∈ N

1, k = 0.

The q, ω-forward jump operator is defined by

σk
q,ω(t) := qkt + ω[k]q,

and the q, ω-backward jump operator is defined by

ρk
q,ω(t) :=

t−ω[k]q
qk ,

where k ∈ N.
Letting n ∈ N0 := {0, 1, 2, ...}, a, b ∈ R, we define the power functions as follows:

• The q-analogue of the power function

(a− b)0
q := 1, (a− b)n

q :=
n−1

∏
i=0

(a− bqi),

• The q-symmetric analogue of the power function

˜(a− b)
0
q := 1, ˜(a− b)

n
q :=

n−1

∏
i=0

(a− bq2i+1),

• The q, ω-symmetric analogue of the power function

˜(a− b)
0
q,ω := 1, ˜(a− b)

n
q,ω :=

n−1

∏
i=0

[
a− σ2i+1

q,ω (b)
]

.

In general, for α ∈ R, we have

(a− b)α
q = aα

∞

∏
i=0

1−
(

b
a

)
qi

1−
(

b
a

)
qα+i

, a �= 0,

˜(a− b)
α

q = aα
∞

∏
i=0

1−
(

b
a

)
q2i+1

1−
(

b
a

)
q2(α+i)+1

, a �= 0.

276



Mathematics 2019, 7, 873

Since

˜(a− b)
n
q,ω =

n−1

∏
i=0

[
a− σ2i+1

q,ω (b)
]
=

n−1

∏
i=0

[
(a−ω0)− (b−ω0)q2i+1

]
=

˜(
(a−ω0)− (b−ω0)

)n

q

= (a−ω0)
n

n−1

∏
i=0

[
1−

(
b−ω0

a−ω0

)
q2i+1

]
·

∏∞
i=n

[
1−

(
b−ω0
a−ω0

)
q2i+1

]
∏∞

i=n

[
1−

(
b−ω0
a−ω0

)
q2i+1

]
= (a−ω0)

n
∞

∏
i=0

1−
(

b−ω0
a−ω0

)
q2i+1

1−
(

b−ω0
a−ω0

)
q2(n+i)+1

,

so, we obtain

˜(a− b))α
q,ω =

˜(
(a−ω0)− (b−ω0)

)α

q
= (a−ω0)

α
∞

∏
i=0

1−
(

b−ω0
a−ω0

)
q2i+1

1−
(

b−ω0
a−ω0

)
q2(α+i)+1

, a �= ω0.

In particular, if a �= b = 0, we have aα
q = ãα

q = aα. If a �= b = ω0, we have ˜(a−ω0)
α

q,ω = (a−ω0)
α.

Furthermore, if a = b = 0, we define (0)α
q = (̃0)

α

q = (̃0)
α

q,ω := 0 for α > 0.

Next, we define q-symmetric gamma and q-symmetric beta functions as

Γ̃q(x) :=

⎧⎪⎨⎪⎩
(1−q2)

x−1
q

(1−q2)x−1 =
˜(1−q)

x−1
q

(1−q2)x−1 , x ∈ R \ {0,−1,−2, ...}˜[x− 1]q!, x ∈ N

B̃q(x, y) :=
Γ̃q(x)Γ̃q(y)
Γ̃q(x + y)

,

respectively.

Lemma 1. For m, n ∈ N0 and α ∈ R,

(a) ˜(x− σn
q,ω(x))

α

q,ω
= (x−ω0)

k ˜(1− qn)
α

q ,

(b) ˜(σm
q,ω(x))− σn

q,ω(x))
α

q,ω
= qmα(x−ω0)

α ˜(1− qn−m)
α

q .

Proof. For m, n ∈ N0 and α ∈ R, we have

˜(x− σn
q,ω(x))

α

q,ω
=

˜(
(x−ω0)− (σn

q,ω(x)−ω0)

)k

q

= (x−ω0)
α

∞

∏
i=0

1−
(

σn
q,ω(x)−ω0

x−ω0

)
q2i+1

1−
(

σn
q,ω(x)−ω0

x−ω0

)
q2(i+α)+1

= (x−ω0)
α

∞

∏
i=0

1− qnq2i+1

1− qnq2(i+α)+1

= (x−ω0)
α ˜(1− qn)

α

q .
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and

˜((σm
q,ω(x))− σn

q,ω(x))
α

q,ω
=

˜(
(σm

q,ω(x)−ω0)− (σn
q,ω(x)−ω0)

)α

q

=
(
(σm

q,ω(x)−ω0
)α

∞

∏
i=0

1−
(

σn
q,ω(x)−ω0

σm
q,ω(x)−ω0

)
q2i+1

1−
(

σn
q,ω(x)−ω0

σm
q,ω(x)−ω0

)
q2(i+α)+1

= (qm(x−ω0))
α

∞

∏
i=0

1− qn−mq2i+1

1− qn−mq2(i+α)+1

= qmα(x−ω0)
α ˜(1− qn−m)

α

q .

So, Lemma 1 (a) and Lemma 1 (b) hold. The proof is complete.

Lemma 2. Let t, s ∈ IT
q,ω :=

{
qkT + ω[k]q : k ∈ N0

}
∪ {ω0}, T > ω0. Then,

˜(t− s)
α

q,ω = 0

where t ≥ s and α /∈ N0 .

Proof. Since t, s ∈ IT
q,ω, we have t = σm

q,ω(T), s = σn
q,ω(T) where m, n ∈ N. For t ≥ s, we find that

˜(t− s)
α

q,ω = ˜(
σm

q,ω(T)− σn
q,ω(T)

)α

q,ω

= qmα(T −ω0)
α ˜(1− qn−m)

α

q

= qαm(T −ω0)
α

∞

∏
i=0

[
1− q2i+n−m+1

1− q2i+n−m+1+2α

]
= 0.

The proof is complete.

Definition 1 ([20]). For q ∈ (0, 1), ω > 0, we let f be the function defined on IT
q,ω ⊆ R. The symmetric

Hahn difference of f is defined by

D̃q,ω f (t) :=
f (σq,ω(t))− f (ρq,ω(t))

σq,ω(t)− ρq,ω(t)
t ∈ IT

q,ω − {ω0},

D̃q,ω f (ω0) = f ′(ω0) where f is differentiable at ω0.

D̃q,ω f is called q, ω-symmetric derivative of f , and f is q, ω-symmetric differentiable on IT
q,ω.

From the above definition, we note that

D̃0
q,ω f (x) = f (x) and D̃N

q,ω f (x) = D̃q,ωD̃N−1
q,ω f (x) where N ∈ N.

Lemma 3 ([20]). Properties of symmetric Hahn difference operators
If f and g are q, ω-symmetric differentiable on IT

q,ω. Then

(a) D̃q,ω [ f (t) + g(t)] = D̃q,ω f (t) + D̃q,ωg(t),
(b) D̃q,ω [ f (t)g(t)] = f (ρq,ω(t))D̃q,ωg(t) + g(σq,ω(t))D̃q,ω f (t),

(c) D̃q,ω

[
f (t)
g(t)

]
=

g(ρq,ω(t))D̃q,ω f (t)− f (ρq,ω(t))D̃q,ωg(t)
g(ρq,ω(t))g(σq,ω(t))

for g(ρq,ω(t))g(σq,ω(t)) �= 0,

(d) D̃q,ω [C] = 0 where C is constant.
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Lemma 4. Let 0 < q < 1, ω > 0, t ∈ IT
q,ω, and α, β ∈ R. Then,

(a) D̃q,ω ˜(t− β)
α

q,ω = [̃α]q
˜(

ρq,ω(t)− β)
)α−1

q,ω ,

(b) D̃q,ω ˜(β− t)
α

q,ω = −[̃α]q ˜(
β− σq,ω(t)

)α−1

q,ω .

Proof. By Lemma 1 and Definition 1, we find that

D̃q,ω(t− β)α
q,ω = D̃q,ω

⎡⎣(t−ω0)
α

∞

∏
i=0

⎛⎝ 1−
(

β−ω0
t−ω0

)
q2i+1

1−
(

β−ω0
t−ω0

)
q2(i+α)+1

⎞⎠⎤⎦
=

1
σq,ω(t)− ρq,ω(t)

{
(σq,ω(t)−ω0)

α
∞

∏
i=0

⎛⎝ 1−
(

β−ω0
σq,ω(t)−ω0

)
q2i+1

1− β−ω0
σq,ω(t)−ω0

q2(i+α)+1

⎞⎠
−(ρq,ω(t)−ω0)

α
∞

∏
i=0

⎛⎝ 1−
(

β−ω0
ρq,ω(t)−ω0

)
q2i+1

1−
(

β−ω0
ρq,ω(t)−ω0

)
q2(i+α)+1

⎞⎠}

= − q
(1− q2)(t−ω0)

{
qα(t−ω0)

α
∞

∏
i=0

⎛⎝ 1−
(

β−ω0
t−ω0

)
q2i

1−
(

β−ω0
t−ω0

)
q2(i+α)

⎞⎠
− (t−ω0)

α

qα

∞

∏
i=0

⎛⎝ 1−
(

β−ω0
t−ω0

)
q2(i+1)

1−
(

β−ω0
t−ω0

)
q2(i+α+1)

⎞⎠}

=
q1−α

(1− q2)
(t−ω0)

α−1

{
∏∞

i=0

(
1−

(
β−ω0
t−ω0

)
q2(i+1)

)
∏∞

i=0

(
1−

(
β−ω0
t−ω0

)
q2(i+α+1)

)
−q2α

∏∞
i=0

(
1−

(
β−ω0
t−ω0

)
q2i

)
∏∞

i=0

(
1−

(
β−ω0
t−ω0

)
q2(i+α)

)}

=

(
1− q2α

1− q2

)
q1−α(t−ω0)

α−1 · 1
1− q2α

{
∞

∏
i=0

⎛⎝ 1−
(

β−ω0
t−ω0

)
q2(i+1)

1−
(

β−ω0
t−ω0

)
q2(i+α+1)

⎞⎠
−q2α

∞

∏
i=0

⎛⎝ 1−
(

β−ω0
t−ω0

)
q2i

1−
(

β−ω0
t−ω0

)
q2(i+α)

⎞⎠}

= [̃α]q(t−ω0)
α−1q1−α

∏∞
i=0

(
1−

(
β−ω0
t−ω0

)
q2(i+1)

)
∏∞

i=0

(
1−

(
β−ω0
t−ω0

)
q2(i+α)

) ×
(

1−
(

β−ω0
t−ω0

)
q2α

)
− q2α

(
1−

(
β−ω0
t−ω0

))
1− q2α

= [̃α]q(t−ω0)
α−1q1−α

∞

∏
i=0

⎛⎝ 1−
(

β−ω0
t−ω0

)
q2(i+1)

1−
(

β−ω0
t−ω0

)
q2(i+α)

⎞⎠
= [̃α]q(ρq,ω(t)−ω0)

α−1
∞

∏
i=0

⎛⎝ 1−
(

β−ω0
ρq,ω(t)−ω0

)
q2i+1

1−
(

β−ω0
ρq,ω(t)−ω0

)
q2(i+α−1)+1

⎞⎠
= [̃α]q

˜(
ρq,ω(t)− β)

)α−1

q,ω .
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So, Lemma 4 (a) holds. Similarly to the above, we use Lemma 1 and Definition 1 to show that

D̃q,ω ˜(β− ρq,ω(t))
α

q,ω = −[̃α]q ˜(β− t)
α−1
q,ω .

Then, Lemma 4 (b) holds.

Definition 2 ([20]). Let I be any closed interval of R containing a, b and ω0 and f : I → R be a given
function. The symmetric Hahn integral of f from a to b is defined by

∫ b

a
f (t)d̃q,ωt :=

∫ b

ω0

f (t)d̃q,ωt−
∫ a

ω0

f (t)d̃q,ωt,

where

Ĩq,ω f (t) =
∫ x

ω0

f (t)d̃q,ωt := (1− q2)(x−ω0)
∞

∑
k=0

q2k f
(

σ2k+1
q,ω (x)

)
, x ∈ I.

Providing that the above series converges at x = a and x = b, f is called symmetric Hahn integrable
on [a, b]. In addition, f is symmetric Hahn integrable on I if it is symmetric Hahn integrable on [a, b] for all
a, b ∈ I.

For N ∈ N, we define an operator ĨN
q,ω by

[A] Ĩ0
q,ω f (x) = f (x) and ĨN

q,ω f (x) = Ĩq,ω ĨN−1
q,ω f (x), N ∈ N.

From the symmetric Hahn derivatives, we have

[B] D̃q,ω Ĩq,ω f (x) = f (x) and Ĩq,ωD̃q,ω f (x) = f (x)− f (ω0).

Lemma 5 ([20]). Properties of symmetric Hahn Integrals.
Let 0 < q < 1, ω > 0, a, b ∈ IT

q,ω and f , g be symmetric Hahn integrable on IT
q,ω. Then,

(a)
∫ a

a f (t)d̃q,ωt = 0,

(b)
∫ b

a f (t)d̃q,ωt = −
∫ a

b f (t)d̃q,ωt,

(c)
∫ b

a f (t)d̃q,ωt =
∫ b

c f (t)d̃q,ωt +
∫ c

a f (t)d̃q,ωt, c ∈ IT
q,ω, a < c < b,

(d)
∫ b

a [α f (t) + βg(t)] d̃q,ωt = α
∫ b

a f (t)d̃q,ωt + β
∫ b

a g(t)d̃q,ωt, α, β ∈ R,

(e)
∫ b

a
[

f (ρq,ω(t))D̃q,ωg(t)
]

d̃q,ωt =
[

f (t)g(t)
]b

a −
∫ b

a
[
g
(
σq,ω(t)

)
D̃q,ω f (t)

]
d̃q,ωt.

We next introduce the fundamental theorem and Leibniz formula of symmetric Hahn calculus.

Lemma 6 ([20]). The fundamental theorem of symmetric Hahn calculus
Let f : I → R be continuous at ω0. Then

F(x) :=
∫ x

ω0

f (t)d̃q,ωt, x ∈ I

is continuous at ω0 and D̃q,ω F(x) exists for every x ∈ σq,ω(I) := {qt + ω : t ∈ I} where

D̃q,ω F(x) = f (x).

In addition, ∫ b

a
D̃q,ω f (t)d̃q,ωt = f (b)− f (a) for all a, b ∈ I.
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Lemma 7. The Leibniz formula of symmetric Hahn calculus
Let f : IT

q,ω × IT
q,ω → R. Then,

D̃q,ω

[∫ t

ω0

f (t, s) d̃q,ωs
]
=

∫ ρq,ω(t)

ω0
tD̃q,ω f (t, s) d̃q,ωs + f

(
σq,ω(t), t

)
,

where tD̃q,ω is symmetric Hahn difference with respect to t.

Proof. For t ∈ IT
q,ω,

D̃q,ω

[∫ t

ω0

f (t, s) d̃q,ωs
]

=
1

σq,ω(t)− ρq,ω(t)

{∫ σq,ω(t)

ω0

f (σq,ω(t)) d̃q,ωs−
∫ ρq,ω(t)

ω0

f (ρq,ω(t), s) d̃q,ωs

}

=
1

σq,ω(t)− ρq,ω(t)

{[ ∫ σq,ω(t)

ω0

f (σq,ω(t), s) d̃q,ωs−
∫ ρq,ω(t)

ω0

f (σq,ω(t), s) d̃q,ωs

]

+

[ ∫ ρq,ω(t)

ω0

f (σq,ω(t), s) d̃q,ωs−
∫ ρq,ω(t)

ω0

f (ρq,ω(t), s) d̃q,ωs

]}

=
1

σq,ω(t)− ρq,ω(t)

∫ ρq,ω(t)

ω0

[
f (σq,ω(t), s)− f (ρq,ω(t), s)

]
d̃q,ωs

− q
(1− q2)(t−ω0)

{
(1− q2)(σq,ω(t)−ω0)

∞

∑
k=0

q2k f
(

σq,ω(t), σ2k+2
q,ω (t)

)

− (1− q2)(ρq,ω(t)−ω0)
∞

∑
k=0

q2k f
(

σq,ω(t), σ2k
q,ω(t)

)}

=
∫ ρq,ω(t)

ω0
tD̃q,ω f (t, s) d̃q,ωs

− q

{
∞

∑
k=0

q2k+1 f (σq,ω(t), σ2k+2
q,ω (t))−

∞

∑
k=0

q2k−1 f (σq,ω(t), σ2k
q,ω(t))

}

=
∫ ρq,ω(t)

ω0
tD̃q,ω f (t, s) d̃q,ωs + f

(
σq,ω(t), t

)
.

The proof is complete.

Next, we give some auxiliary lemmas used for simplifying calculations.

Lemma 8. Let 0 < q < 1, ω > 0 and f : I → R be continuous at ω0. Then,

∫ t

ω0

∫ r

ω0

f (s) d̃q,ωs d̃q,ωr = q
∫ t

ω0

∫ t

qs+ω
f (qs + ω) d̃q,ωr d̃q,ωs.
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Proof. From Definition 2, we find that∫ t

ω0

∫ r

ω0

f (s) d̃q,ωs d̃q,ωr

=
∫ t

ω0

[
(1− q2)(r−ω0)

∞

∑
k=0

q2k f
(

σ2k+1
q,ω (r)

) ]
d̃q,ωr

=
∞

∑
k=0

q2k(1− q2)

[ ∫ t

ω0

(r−ω0) f
(

σ2k+1
q,ω (r)

)
d̃q,ωr

]

= q(1− q2)2(t−ω0)
2

∞

∑
k=0

∞

∑
m=0

q4m+2k f
(

σ2m+2k+2
q,ω (t)

)
= q(1− q2)2(t−ω0)

2
∞

∑
k=0

[
q4m f

(
σ2m+2

q,ω (t)
)
+ q4m+2 f

(
σ2m+4

q,ω (t)
)
+ q4m+4 f

(
σ2m+6

q,ω (t)
)
+ ...

]
= q(1− q2)2(t−ω0)

2

{ [
f
(

σ2
q,ω(t)

)
+ q2 f

(
σ4

q,ω(t)
)
+ q4 f

(
σ6

q,ω(t)
)
+ ...

]
+
[
q4 f

(
σ4

q,ω(t)
)
+ q6 f

(
σ6

q,ω(t)
)
+ q8 f

(
σ8

q,ω(t)
)
+ ...

]
+
[
q8 f

(
σ6

q,ω(t)
)
+ q10 f

(
σ8

q,ω(t)
)
+ q12 f

(
σ10

q,ω(t)
)
+ ...

]
+ ...

}

= q(1− q2)2(t−ω0)
2

{
f
(

σ2
q,ω(t)

)
+ q2(1 + q2) f

(
σ4

q,ω(t)
)
+ q4(1 + q2 + q4) f

(
σ6

q,ω(t)
)
+ ...

}

= q(1− q2)2(t−ω0)
2

∞

∑
k=0

q2k ˜[k + 1]q f
(

σ2k+2
q,ω (t)

)
= q

∫ t

ω0

[
t− σq,ω(s)

]
f
(
σq,ω(s)

)
d̃q,ws

= q
∫ t

ω0

[ ∫ t

ω0

f
(
σq,ω(s)

)
d̃q,wr−

∫ σq,ω(s)

ω0

f
(
σq,ω(s)

)
d̃q,wr

]
d̃q,ws

= q
∫ t

ω0

∫ t

qs+ω
f (qs + ω) d̃q,ωr d̃q,ωs.

In the next theorem we evaluate the multiple symmetric Hahn integrals as follows.

Theorem 1. For f : IT
q,ω → R, the multiple symmetric Hahn integral is given by

Ĩn
q,ω f (x) :=

∫ x

ω0

∫ τ1

ω0

...
∫ τn−1

ω0

f (τn)d̃q,ωτn...d̃q,ωτ2d̃q,ωτ1

=
1˜[n− 1]q!

q(
n
2)
∫ t

ω0

˜(
t− τ

)n−1

q,ω f
(

σn−1
q,ω (τ)

)
d̃q,ωτ, (1)

where n ∈ N and (n
k) =

Γ(n+1)
Γ(k+1)Γ(n−k+1) .

Proof. If n = 1, Ĩq,ω f (x) =
∫ x

ω0
f (τ)d̃q,ωτ.
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If n = 2, by using Lemma 8, we have

Ĩ2
q,ω f (x) =

∫ x

ω0

∫ s

ω0

f (τ)d̃q,ωτd̃q,ωs = q
∫ x

ω0

∫ x

σq,ω(τ)
f (σq,ω(τ)) d̃q,ωs d̃q,ωτ

= q
∫ x

ω0

[
x− σq,ω(τ)

]
f
(
σq,ω(τ)

)
d̃q,wτ

= q
∫ x

ω0

˜(
x− τ

)1

q,ω f (qτ + ω)) d̃q,ωτ.

We suppose that Theorem 1 holds for n = k and then prove that it is true for n = k + 1 as follows:

Ĩk+1
q,ω f (x) = Ĩq,ω

⎡⎣ 1˜[k− 1]q!
q(

k
2)
∫ x

ω0

˜(
x− τ

)k−1

q,ω f
(

σk−1
q,ω (τ)

)
d̃q,ωτ

⎤⎦
=

1˜[k− 1]q!
q(

k
2)
∫ x

ω0

∫ s

ω0

˜(
s− τ

)k−1

q,ω f
(

σk−1
q,ω (τ)

)
d̃q,ωτd̃q,ωs

=
1˜[k− 1]q!

q(
k
2)(1− q2)(x−ω0)

∞

∑
m=0

q2m(1− q2)
[
σ2m+1

q,ω (x)−ω0

]
×

∞

∑
l=0

q2l ˜(
σ2m+1

q,ω (x)− σ2m+2l+2
q,ω (x)

)k−1

q,ω f
(

σk+2m+2l+1
q,ω (x)

)
. (2)

From (2), by using Lemma 1b, we obtain

Ĩk+1
q,ω f (x) =

1˜[k− 1]q!
q(

k
2)(1− q2)2(x−ω0)

∞

∑
m=0

∞

∑
l=0

q4m+2l+1(x−ω0) q(2m+1)(k−1) ×

(x−ω0)
k−1 ˜(

1− q2l+1
)k−1

q f
(

σk+2m+2l+1
q,ω (x)

)
=

[̃k]q
[̃k]q!

q−kq(
k+1

2 )(1− q2)2(x−ω0)
k+1

∞

∑
l=0

l

∑
m=0

q2lq(2m+1)k ×

˜(
1− q2l−2m+1

)k−1

q f
(

σk+2l+1
q,ω (x)

)
. (3)

From (2), by using Lemma 1a, we obtain

Ĩk+1
q,ω f (x) =

1

[̃k]q!
q(

k+1
2 )

∫ x

ω0

˜(
x− τ

)k

q,ω f
(

σk
q,ω(τ)

)
d̃q,ωτ

=
1

[̃k]q!
q(

k+1
2 )(1− q2)(x−ω0)

∞

∑
l=0

q2l ˜(
x− σ2l+1

q,ω (x)
)k

q,ω f
(

σk+2l+1
q,ω (x)

)
=

1

[̃k]q!
q(

k+1
2 )(1− q2)(x−ω0)

k+1
∞

∑
l=0

q2l ˜(1− q2l+1)
k
q f

(
σk+2l+1

q,ω (x)
)

.

(4)

Since
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[̃k]qq−k(1− q2)
l

∑
m=0

q(2m+1)k ˜(
1− q2l−2m+1

)k−1

q

=
(

1− q2k
) l

∑
m=0

q2mk ˜(
1− q2l−2m+1

)k−1

q

=
(

1− q2k
){ k−2

∏
i=0

[
1− q2(l+i−1)

]
+ ... + q2(l−2)k

k−2

∏
i=0

[
1− q2i+6

]
+ q2(l−1)k

k−2

∏
i=0

[
1− q2i+4

]

+q2lk
k−2

∏
i=0

[
1− q2i+2

] }

=
(

1− q2k
){ k−2

∏
i=0

[
1− q2(l+i−1)

]
+ ... + q2(l−2)k

k−2

∏
i=0

[
1− q2i+6

]

+q2(l−1)k
(

1− q2k+2
) k−3

∏
i=0

[
1− q2i+4

] }

=
(

1− q2k
){ k−2

∏
i=0

[
1− q2(l+i−1)

]
+ ... + q2(l−3)k

k−2

∏
i=0

[
1− q2i+8

]

+q2(l−2)k

[
k−2

∏
i=0

[
1− q2i+6

]
+ q2k

(
1− q2k+2

) k−3

∏
i=0

[
1− q2i+4

]]}

=
(

1− q2k
){ k−2

∏
i=0

[
1− q2(l+i−1)

]
+ ... + q2(l−3)k

k−2

∏
i=0

[
1− q2i+8

]

+q2(l−2)k
(

1− q2k+4
) (

1− q2k+2
) k−4

∏
i=0

[
1− q2i+6

] }
•
•
•

=
(

1− q2k
){ k−2

∏
i=0

[
1− q2(l+i−1)

]
+ ... + q2k

(
1− q2(l+k−1)

) (
1− q2(l+k−2)

)
...×

(
1− q2k+2

) k−(l+1)

∏
i=0

[
1− q2(l+i)

] }
=

(
1− q2k+2l)

) (
1− q2k+2l−2)

)
...
(

1− q2k+2
) (

1− q2k
) (

1− q2k−2
)

...
(

1− q2l+4
) (

1− q2l+2
)

=
k−1

∏
i=0

(
1− q2(l+i+1)

)
= ˜(1− q2l+1(x))

k
q.

We find that (1) holds when n = k + 1.
Our proof is done using mathematical induction.

3. Fractional Symmetric Hahn Integral

In Section 2, we have presented the multiple symmetric Hahn integral for integer order in
the form (1). We next apply this result for fractional orders that can be used to further define fractional
symmetric Hahn difference operators of Riemann–Liouville and Caputo types. We first introduce the
fractional symmetric Hahn integral as follows.
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Definition 3. Let α, ω > 0, 0 < q < 1, and f be a function defined on IT
q,ω. The fractional symmetric Hahn

integral is defined by

Ĩα
q,ω f (t) :=

q(
α
2)

Γ̃q(α)

∫ t

ω0

˜(t− s
)α−1

q,ω f
(

σα−1
q,ω (s)

)
d̃q,ωs

=
(1− q2)q(

α
2)(t−ω0)

Γ̃q(α)

∞

∑
k=0

q2k
(

t− σ2k+1
q,ω (t)

)α−1

q,ω
f
(

σ2k+α
q,ω (t)

)
, (5)

and Ĩ0
q,ω f )(t) = f (t).

By Lemma 1a, ˜(
t− σ2k+1

q,ω(t)
)α−1

q,ω = (t−ω0)
α−1 ˜(

1− q2k+1
)α−1

q . It implies that

Ĩα
q,ω f (t) =

(1− q2)q(
α
2)(t−ω0)

α

Γ̃q(α)

∞

∑
k=0

q2k ˜(
1− q2k+1

)α−1

q
f
(

σ2k+α
q,ω (t)

)
. (6)

Some properties of the fractional symmetric Hahn integral are given below.

Theorem 2. For α, ω > 0, 0 < q < 1, and f : IT
q,ω → R,

Ĩα
q,ω f (t) = Ĩα+1

q,ω

[
D̃q,ω f (t)

]
+

f (ω0)

Γ̃q(α + 1)
q(

α
2) (t−ω0)

α .

Proof. We apply Lemma 4b and Lemma 5e to (5). Then, we get

Ĩα
q,ω f (t) :=

q(
α
2)

Γ̃q(α)

∫ t

ω0

˜(t− s
)α−1

q,ω f
(

σα−1
q,ω (s)

)
d̃q,ωs

= − q(
α
2)

Γ̃q(α)[̃α]q

∫ t

ω0

f
(

ρq,ω

(
σα

q,ω(s)
))

D̃q,ω
˜(

t− ρq,ω(s)
)α

q,ω d̃q,ωs

=
q(

α
2)

Γ̃q(α + 1)

{
−
[ ˜(

t− ρq,ω(s)
)α

q,ω f
(

σα
q,ω(s)

)]t

ω0
+

qα
∫ t

ω0

D̃q,ω f
(

σα
q,ω(s)

) ˜(t− s)
α

q,ω d̃q,ωs

}

= Ĩα+1
q,ω

[
D̃q,ω f (t)

]
+

f (ω0)

Γ̃q(α + 1)
q(

α
2) (t−ω0)

α .

Theorem 3. For α, β, ω > 0, 0 < q < 1, f : IT
q,ω → R, and a ∈ IT

q,ω,

∫ a

ω0

˜(t− s)
β−1
q,ω Ĩα

q,ω f (s) d̃q,ωs = 0.

285



Mathematics 2019, 7, 873

Proof. From Definition 3, for n ∈ N0, we have

Ĩα
q,ω f

(
σ2n+1

q,ω (a)
)

=
q(

α
2)

Γ̃q(α)

∫ σ2n+1
q,ω (a)

ω0

˜(
σ2n+1

q,ω (a)− s
)α−1

q,ω f
(

σα−1
q,ω (s)

)
d̃q,ωs

=
(1− q2)q(

α
2)[σ2n+1

q,ω (a)−ω0]

Γ̃q(α)

∞

∑
k=0

q2k ˜(
σ2n+1

q,ω (a)− σ2k+2n+2
q,ω (a)

)α−1

q,ω
×

f
(

σ2k+α
q,ω (a)

)
.

By using Lemma 2, we find that
˜(

σ2n+1
q,ω (a)− σ2k+2n+2

q,ω (a)
)α−1

q,ω
= 0. Therefore,

Ĩα
q,ω f

(
σ2n+1

q,ω (a)
)
= 0. (7)

From Definition 2 and (7), we have∫ a

ω0

˜(t− s)
β−1
q,ω Ĩα

q,ω f (s) d̃q,ωs

= (1− q2)(a−ω0)
∞

∑
k=0

q2k ˜(
t− σ2k+1

q,ω (a)
)β−1

q,ω

[
Ĩα

q,ω f
(

σ2k+1
q,ω (a)

)]
= 0.

Lemma 9 ([22]). For μ, α, β >∈ R+, the following identity is valid:

∞

∑
k=0

qαk

(
1− μq1−k)α−1

q

(
1− μq1+k)β−1

q(
1− q

)α−1
q

(
1− q

)β−1
q

=
(1− μq)

α+β−1
q

(1− q)
α+β−1
q

.

Theorem 4. For α, β, ω > 0, 0 < q < 1, and f : IT
q,ω → R,

Ĩα
q,ω

[
Ĩβ

q,ω f (t)
]
= Ĩβ

q,ω

[
Ĩα

q,ω f (t)
]
= Ĩα+β

q,ω f (t).
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Proof. By Definition 3, for t ∈ IT
q,ω, we have

Ĩα
q,ω Ĩ

β
q,ω f (t) = Ĩα

q,ω

[
q(

β
2)

Γ̃q(β)

∫ t

ω0

˜(t− s
)β−1

q,ω f
(

σ
β−1
q,ω (s)

)
d̃q,ωs

]

=
q(

α
2)+(β

2)

Γ̃q(α)Γ̃q(β)

∫ t

ω0

˜(
t− x

)α−1

q,ω

∫ σα−1
q,ω (x)

ω0

˜(
σα−1

q,ω (x)− s
)β−1

q,ω f
(

σ
β−1
q,ω (s)

)
d̃q,ωs d̃q,ωx

=
q(

α
2)+(β

2)+αβ

Γ̃q(α)Γ̃q(β)
(1− q2)2(t−ω0)

α+β ×

∞

∑
k=0

∞

∑
h=0

q2k+2h+2kβ ˜(
1− q2k+1

)α−1

q
˜(

1− q2h+1
)β−1

q f
(

σ
2h+2k+α+β
q,ω (t)

)
=

q(
α+β

2 )

Γ̃q(α)Γ̃q(β)
(1− q2)2(t−ω0)

α+β ×

∞

∑
k=0

∞

∑
h=k

q2h+2kβ ˜(
1− q2k+1

)α−1

q
˜(

1− q2h−2k+1
)β−1

q f
(

σ
2h+α+β
q,ω (t)

)
=

q(
α+β

2 )

Γ̃q(α)Γ̃q(β)
(1− q2)2(t−ω0)

α+β ×

∞

∑
h=0

q2h

[
h

∑
k=0

q2kβ ˜(
1− q2k+1

)α−1

q
˜(

1− q2h−2k+1
)β−1

q

]
f
(

σ
2h+α+β
q,ω (t)

)
.

Using [21] (Theorem 2), Lemma 9, and Γ̃q(α + β) =
˜(1−q)

α+β−1
q

(1−q2)α+β−1 , we obtain

h

∑
k=0

q2kβ ˜(
1− q2k+1

)α−1

q
˜(

1− q2h−2k+1
)β−1

q = ˜(1− q2)
α−1
q

˜(1− q2)
β−1
q

˜(
1− q2h+1

)α+β−1

q˜(1− q2)
α+β−1
q

=
Γ̃q(α)Γ̃q(β)

(1− q2)Γ̃q(α + β)
˜(

1− q2h+1
)α+β−1

q .

Therefore,

Ĩα
q,ω Ĩ

β
q,ω f (t) =

q(
α+β

2 )

Γ̃q(α + β)
(1− q2)(t−ω0)

α+β
∞

∑
h=0

q2h ˜(
1− q2h+1

)α+β−1

q f
(

σ
2h+α+β
q,ω (t)

)
=

q(
α+β

2 )

Γ̃q(α + β)
(1− q2)(t−ω0)

∞

∑
h=0

q2h ˜(
t− σ2h+1

q,ω (t)
)α+β−1

q,ω
f
(

σ
2h+α+β
q,ω (t)

)
=

q(
α+β

2 )

Γ̃q(α + β)

∫ t

0
˜(t− s)

α+β−1
q,ω f

(
σ

α+β−1
q,ω (s)

)
d̃q,ωs = Ĩα+β

q,ω f (t).

Similarly to the above, by commuting the order of integrals, we have

Ĩβ
q,ω Ĩα

q,ω f (t) = Ĩα+β
q,ω f (t).

4. The Fractional Symmetric Hahn Difference Operator of the Riemann–Liouville Type

In this section, we introduce the fractional symmetric Hahn difference operator of
Riemann–Liouville as given in the following definition.
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Definition 4. For α, ω > 0, 0 < q < 1 and f defined on IT
q,ω, the fractional symmetric Hahn difference

operator of Riemann–Liouville type of order α is defined by

D̃α
q,ω f (t) := D̃N

q,ω ĨN−α
q,ω f (t),

D̃0
q,ω f (t) = f (t)

where N − 1 < α < N, N ∈ N.

Next, we will establish some properties of fractional symmetric Hahn difference operators of the
Riemann–Liouville type as follows.

Theorem 5. For α, ω > 0, 0 < q < 1 and f : IT
q,ω → R,

D̃α
q,ω Ĩα

q,ω f (t) = f (t).

Proof. For some N − 1 < α < N, N ∈ N, we find that

D̃α
q,ωIα

q,ω f (t) = D̃N
q,ω ĨN−α

q,ω Ĩα
q,ω f (t) = D̃N

q,ω ĨN
q,ω f (t) = f (t).

The proof is complete.

Theorem 6. For α ∈ (0, 1), ω > 0, 0 < q < 1 and f : IT
q,ω → R,

Ĩα
q,ωD̃α

q,ω f (t) = f (t) + C(t−ω0)
α−1, C ∈ R.

Proof. Let C(t) = Ĩα
q,ωD̃α

q,ω f (t)− f (t). Taking D̃α
q,ω to both sides and using Theorem 5, we have

D̃α
q,ωC(t) = D̃α

q,ω Ĩα
q,ωD̃α

q,ω f (t)− D̃α
q,ω f (t) = D̃α

q,ω f (t)− D̃α
q,ω f (t) = 0.

From ∫ t

ω0

˜(t− s)
−α

q,ω(s−ω0)
α−1 d̃q,ωs

= (1− q2)(t−ω0)
∞

∑
k=0

q2k ˜(
t− σ2k+1

q,ω (t)
)−α

q,ω

(
σ2k+1

q,ω (t)−ω0

)α−1

= qα−1(1− q2)
∞

∑
k=0

q2αk ˜(
1− q2k+1

)−α

q ,

and according to Definitions 3 and 4, we have

D̃α
q,ω(t−ω0)

α−1

= D̃q,ω Ĩ1−α
q,ω (t−ω0)

α−1

= D̃q,ω

[
q(

1−α
2 )

Γ̃q(1− α)

∫ t

ω0

˜(t− s
)−α

q,ω

(
σ−α

q,ω(s)−ω0

)α−1
d̃q,ωs

]

= D̃q,ω

[
q(

1−α
2 )(1− q2)(t−ω0)

Γ̃q(1− α)

∞

∑
k=0

q2k ˜(
t− σ2k+1

q,ω (t)
)−α

q,ω

(
σ2k−α+1

q,ω (t)−ω0

)α−1
]

= D̃q,ω

[
q(

1−α
2 )−(α−1)2

(1− q2)

Γ̃q(1− α)

∞

∑
k=0

q2kα ˜(
1− σ2k+1

q,ω

)−α

q,ω

]
= 0.
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Hence, C(t) = C(t−ω0)
α−1.

Theorem 7. Let α, ω > 0, 0 < q < 1 and f : IT
q,ω → R. Then,

Ĩα
q,ωD̃α

q,ω f (t) = f (t) + C1(t−ω0)
α−1 + C2(t−ω0)

α−2 + ... + CN(t−ω0)
α−N

for some Ci ∈ R, i = 1, 2, ..., N and N − 1 < α < N for N ∈ N.

Proof. By Theorem 2, we have

Ĩα
q,ωD̃α

q,ω f (t) = Ĩα
q,ωD̃N

q,ω ĨN−α
q,ω f (t)

= Ĩα−1
q,ω D̃N−1

q,ω ĨN−α
q,ω f (t)− q(

α−1
2 )

Γ̃q(α)
(t−ω0)

α−1 D̃N−1
q,ω ĨN−α

q,ω f (ω0)

= Ĩα−2
q,ω D̃N−2

q,ω ĨN−α
q,ω f (t)− q(

α−2
2 )

Γ̃q(α− 1)
(t−ω0)

α−2 D̃N−2
q,ω ĨN−α

q,ω f (ω0)

− q(
α−1

2 )

Γ̃q(α)
(t−ω0)

α−1 D̃N−1
q,ω ĨN−α

q,ω f (ω0)

•
•
•

= Ĩα−N+1
q,ω D̃α−N+1

q,ω f (t)− q(
α−N+1

2 )

Γ̃q(α− N + 2)
(t−ω0)

α−N+1 D̃q,ω ĨN−α
q,ω f (ω0)

−. . .− q(
α−2

2 )

Γ̃q(α− 1)
(t−ω0)

α−2 D̃N−2
q,ω ĨN−α

q,ω f (ω0)

− q(
α−1

2 )

Γ̃q(α)
(t−ω0)

α−1 D̃N−1
q,ω ĨN−α

q,ω f (ω0).

Using Theorem 6, we obtain

Ĩα
q,ωD̃α

q,ω f (t) = f (t) + C1(t−ω0)
α−1 + C2(t−ω0)

α−2+. . .+CN(t−ω0)
α−N .

The proof is complete.

Corollary 1. Let α, ω > 0, 0 < q < 1 and f : IT
q,ω → R. Then,

Ĩα
q,ωD̃α

q,ω f (t) = f (t)−
N−1

∑
k=0

(t−ω0)
α−N+kq(

α−N+k
2 )

Γ̃q(α− N + k + 1)

[
D̃α−N+k

q,ω f (ω0)
]

where N − 1 < α < N for N ∈ N.

5. The Fractional Symmetric Hahn Difference Operator of the Caputo type

Finally, we introduce the fractional symmetric Hahn difference operator of Caputo types as
follows.
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Definition 5. For α, ω > 0, 0 < q < 1 and f : IT
q,ω → R, the fractional symmetric Hahn difference operator

of Caputo type of order α is defined by

CD̃α
q,ω f (t) := ĨN−α

q,ω D̃N
q,ω f (t)

=
q(

N−α
2 )

Γ̃q(N − α)

∫ t

ω0

˜(t− s)
N−α−1
q,ω D̃N

q,ω f
(

σN−α−1
q,ω (s)

)
d̃q,ωs,

and CD̃0
q,ω f (t) = f (t), where N − 1 < α < N, N ∈ N.

Theorem 8. For α, ω > 0, 0 < q < 1 and f : IT
q,ω → R,

CD̃α
q,ω f (t) =

(1− q2)q(
N−α

2 )

Γ̃q(N − α)
(t−ω0)

N−α
∞

∑
k=0

q2k ˜(
1− q2k+1

)N−α−1

q,ω D̃N
q,ω f

(
σ2k+N−α

q,ω (s)
)

,

where N − 1 < α < N, N ∈ N.

Proof. For t ∈ IT
q,ω and by Definition 5, we have

CD̃α
q,ω f (t) =

(1− q2)q(
N−α

2 )

Γ̃q(N − α)
(t−ω0)

∞

∑
k=0

q2k ˜(
t− σ2k+1

q,ω (t)
)N−α−1

q,ω
D̃N

q,ω f
(

σ2k+N−α
q,ω (s)

)
=

(1− q2)q(
N−α

2 )

Γ̃q(N − α)
(t−ω0)

N−α
∞

∑
k=0

q2k ˜(
1− q2k+1

)N−α−1

q,ω D̃N
q,ω f

(
σ2k+N−α

q,ω (s)
)

.

The proof is complete.

Next, we present some properties of fractional symmetric Hahn difference operators of Caputo
type as follows.

Theorem 9. For α, ω > 0, 0 < q < 1 and f : IT
q,ω → R,

CD̃α
q,ω Ĩα

q,ω f (t) = f (t).

Proof. For some N − 1 < α < N, N ∈ N and from Definition 5 and Corollary 1, we have

CD̃α
q,ω Ĩα

q,ω f (t) = ĨN−α
q,ω D̃N

q,ω Ĩα
q,ω f (t) = ĨN−α

q,ω D̃N−α
q,ω f (t)

= f (t)−
N−1

∑
k=0

q(
k−α

2 )

Γ̃q(k− α + 1)
(t−ω0)

k−α
[

D̃k
q,ω Ĩα

q,ω f (ω0)
]

.

From (7), we have

N−1

∑
k=0

q(
k−α

2 )

Γ̃q(k− α + 1)
(t−ω0)

k−α
[

D̃k
q,ω Ĩα

q,ω f (ω0)
]
= 0.

It implies that
CD̃α

q,ω Ĩα
q,ω f (t) = f (t).

The proof is complete.
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Theorem 10. For α, ω > 0, 0 < q < 1 and f : IT
q,ω → R,

Iα
q,ω

CDα
q,ω f (t) = f (t)−

N−1

∑
k=0

(t−ω0)
k

˜[k]q

[
Dk

q,ω f (ω0)
]

,

where N − 1 < α < N, N ∈ N.

Proof. From Definition 5, Lemma 1a, and Corollary 1, we have

Iα
q,ω

CDα
q,ω f (t) = Iα

q,ω

[
IN−α

q,ω DN
q,ω f (t)

]
= IN

q,ωDN
q,ω f (t)

= f (t)−
N−1

∑
k=0

q(
k
2)

Γ̃q(k + 1)

[
D̃k

q,ω f (ω0)
]
(t−ω0)

k

= f (t)−
N−1

∑
k=0

q(
k
2)

˜[k]q

[
D̃k

q,ω f (ω0)
]
(t−ω0)

k.

The proof is complete.

Corollary 2. Let α, ω > 0, 0 < q < 1 and f : IT
q,ω → R. Then,

Ĩα
q,ω

CD̃α
q,ω f (t) = f (t) + C0 + C1(t−ω0) + ... + CN−1(t−ω0)

N−1,

for some Ci ∈ R, i = 0, 1, ..., N − 1 and N − 1 < α < N, N ∈ N.

6. Conclusions

Throughout the paper, fractional symmetric Hahn integral, Riemann–Liouville and Caputo
fractional symmetric Hahn difference operators have been introduced. In addition, the properties of
these fractional symmetric Hahn operators have been proven. This work might be able to used as
a basis for related research, such as defining the Laplace transform for fractional symmetric Hanh
calculus or investigating the fractional symmetric Hahn-convolution product and computing its
fractional symmetric Hahn–Laplace transform. Finally, we hope to employ these properties to solve
symmetric Hahn difference problems in future works.

Author Contributions: Conceptualization, N.P. and T.S.; Methodology, N.P. and T.S.; Validation, N.P. and T.S.;
Formal Analysis, N.P. and T.S.; Investigation, N.P. and T.S.; Writing—Original Draft Preparation, N.P. and T.S.;
Writing—Review & Editing, N.P. and T.S.; Funding Acquisition, N.P.

Funding: This research was funded by King Mongkut’s University of Technology North Bangkok. Contract no.
KMUTNB-61-KNOW-027.

Acknowledgments: The last author of this research was supported by Suan Dusit University.

Conflicts of Interest: The authors declare no conflicts of interest regarding the publication of this paper.

References

1. Costas-Santos, R.S.; Marcellán, F.; Second structure Relation for q-semiclassical polynomials of the Hahn
Tableau. J. Math. Anal. Appl. 2007, 329, 206–228. [CrossRef]

2. Kwon, K.H.; Lee, D.W.; Park, S.B.; Yoo, B.H. Hahn class orthogonal polynomials. Kyungpook Math. J. 1998,
38, 259–281.

3. Foupouagnigni, M. Laguerre-Hahn Orthogonal Polynomials with Respect to the Hahn Operator: Fourth-Order
Difference Equation for the rth Associated and the Laguerre-Freud Equations Recurrence Coefficients.
Ph.D. Thesis, National University of Benin, Proto Novo, Benin, 1998.

4. Hahn, W. Über Orthogonalpolynome, die q-Differenzenlgleichungen genügen. Math. Nachr. 1949, 2, 4–34.
[CrossRef]

291



Mathematics 2019, 7, 873

5. Aldwoah, K.A. Generalized Time Scales and Associated Difference Equations. Ph.D. Thesis, Cairo University,
Cairo, Egypt, 2009.

6. Annaby, M.H.; Hamza, A.E.; Aldwoah, K.A. Hahn difference operator and associated Jackson-Nörlund
integrals. J. Optim. Theory Appl. 2012, 154, 133–153. [CrossRef]

7. Malinowska, A.B.; Torres, D.F.M. The Hahn quantum variational calculus. J. Optim. Theory Appl. 2010,
147, 419–442. [CrossRef]

8. Malinowska, A.B.; Torres, D.F.M. Quantum Variational Calculus. In Spinger Briefs in Electrical and Computer
Engineering-Control, Automation and Robotics; Springer: Berlin/Heidelberg, Germany, 2014.

9. Malinowska, A.B.; Martins, N. Generalized transversality conditions for the Hahn quantum variational
calculus. Optim. J. Math. Program. Oper. Res. 2013, 62, 323–344. [CrossRef]

10. Hamza, A.E.; Ahmed, S.M. Theory of linear Hahn difference equations. J. Adv. Math. 2013, 4, 441–461.
11. Hamza, A.E.; Ahmed, S.M. Existence and uniqueness of solutions of Hahn difference equations. Adv. Differ. Equ.

2013, 2013, 316. [CrossRef]
12. Hamza, A.E.; Makharesh, S.D. Leibniz’ rule and Fubinis theorem associated with Hahn difference operator.

J. Adv. Math. 2016, 12, 6335–6345.
13. Sitthiwirattham, T. On a nonlocal boundary value problem for nonlinear second-order Hahn difference

equation with two different q, ω-derivatives. Adv. Differ. Equ. 2016, 2016, 116. [CrossRef]
14. Sriphanomwan, U.; Tariboon, J.; Patanarapeelert, N.; Ntouyas, S.K.; Sitthiwirattham, T. Nonlocal boundary

value problems for second-order nonlinear Hahn integro-difference equations with integral boundary
conditions. Adv. Differ. Equ. 2017, 2017, 170. [CrossRef]

15. Brikshavana, T.; Sitthiwirattham, T. On fractional Hahn calculus. Adv. Differ. Equ. 2017, 2017, 354. [CrossRef]
16. Patanarapeelert, N.; Sitthiwirattham, T. Existence Results for Fractional Hahn Difference and Fractional

Hahn Integral Boundary Value Problems. Discrete Dyn. Nat. Soc. 2017, 2017, 7895186. [CrossRef]
17. Patanarapeelert, N.; Brikshavana, T.; Sitthiwirattham, T. On nonlocal Dirichlet boundary value problem for

sequential Caputo fractional Hahn integrodifference equations. Bound. Value Probl. 2018, 2018, 6. [CrossRef]
18. Patanarapeelert, N.; Sitthiwirattham, T. On Nonlocal Robin Boundary Value Problems for Riemann-Liouville

Fractional Hahn Integrodifference Equation. Bound. Value Probl. 2018, 2018, 46. [CrossRef]
19. Dumrongpokaphan, T.; Patanarapeelert, N.; Sitthiwirattham, T. Existence Results of a Coupled System of

Caputo Fractional Hahn Difference Equations with Nonlocal Fractional Hahn Integral Boundary Value
Conditions. Mathematics 2019, 7, 15. [CrossRef]

20. Artur, M.C.; Cruz, B.; Martins, N.; Torres, D.F.M. Hahn’s symmetric quantum variational calculus.
Numer. Algebra Control Optim. 2013, 3, 77–94.

21. Sun, M.; Jin, Y.; Hou, C. Certain fractional q-symmetric integrals and q-symmetric derivatives and their
application. Adv. Differ. Equ. 2016, 2016, 222. [CrossRef]
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Abstract: We consider a class of linear inhomogeneous equations in a Banach space not solvable
with respect to the fractional Caputo derivative. Such equations are called degenerate. We study
the case of the existence of a resolving operators family for the respective homogeneous equation,
which is an analytic in a sector. The existence of a unique solution of the Cauchy problem and of the
Showalter—Sidorov problem to the inhomogeneous degenerate equation is proved. We also derive
the form of the solution. The approximate controllability of infinite-dimensional control systems,
described by the equations of the considered class, is researched. An approximate controllability
criterion for the degenerate fractional order control system is obtained. The criterion is illustrated by
the application to a system, which is described by an initial-boundary value problem for a partial
differential equation, not solvable with respect to the time-fractional derivative. As a corollary of
general results, an approximate controllability criterion is obtained for the degenerate fractional order
control system with a finite-dimensional input.

Keywords: approximate controllability; degenerate evolution equation; fractional Caputo derivative;
sectorial operator

MSC: 93B05; 35R11; 34G99

1. Introduction

Infinite-dimensional systems with distributed control, whose dynamics are described by the
fractional order equation of the form

Dα
t Lx(t) = Mx(t) + f (t), t ∈ (0, T], (1)

are studied. Here X and Y are reflexive Banach spaces, L, M : X → Y are linear closed operators,
defined on dense in X linear subspaces DL and DM respectively, m − 1 < α ≤ m ∈ N, Dα

t is
the Caputo derivative, f ∈ Cγ([0, T];Y), γ ∈ (0, 1], where Cγ([0, T];Y) is the space of Hölder
functions (see the definition before Theorem 1). Equation (1) is supposed to be degenerate, that
is, ker L �= {0}, and the pair (L, M) generates an analytic in a sector resolving operators family of the

Mathematics 2019, 7, 735; doi:10.3390/math7080735 www.mdpi.com/journal/mathematics293
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homogeneous ( f ≡ 0) Equation (1). The existence of a unique solution of the Cauchy problem and of
the Showalter—Sidorov problem

(Lx)(k)(0) = yk ∈ Y , k = 0, 1, . . . , m− 1, (2)

to the inhomogeneous degenerate Equation (1) is proved and the form of the solution is also derived.
The approximate controllability is investigated for distributed systems of control of the form

Dα
t Lx(t) = Mx(t) + B(t)u(t) + g(t), t ∈ (0, T], (3)

with g ∈ Cγ([0, T];Y), γ ∈ (0, 1], B ∈ Cγ([0, T];L(U ;Y)), where U is a Banach space, u ∈ Cγ([0, T];U )
is a control function. Taking into account the obtained results on the initial problems to the degenerate
equation, the initial state is determined by the Showalter—Sidorov conditions, not by the Cauchy
conditions. The equivalence of the approximate controllability of the original degenerate system
and of two its subsystems on the degeneration subspace and its complement is proved. Based on
this result, the obtained criteria of the approximate controllability of the subsystems are used to get
a criterion for the whole degenerate control system. The criterion is illustrated by the application
to an initial-boundary value problem for a partial differential equation with a degenerate spatial
differential operator at the Caputo time derivative. As a corollary of the general result, an approximate
controllability criterion is obtained for the degenerate fractional order control system (3) with a
finite-dimensional input, that is, when U = Rn.

In the case of X = Y , L = I, α = 1 controllability and approximate controllability issues have
been studied in classical papers [1–5], and in many other works (see the surveys in References [6,7]).
For fractional α see References [8,9] and others.

For various classes of degenerate (ker L �= {0}) systems (3) of the order α = 1 the controllability
and the approximate controllability were researched in References [10–14]. In References [15–17] the
approximate controllability issues are studied for system (3) of fractional order α under the condition
of (L, p)-boundedness of the operator M, it is a more restrictive condition on the pair of operators L,
M than in this work.

The solvability of various optimal control problems for systems, described by Equation (3) with
(L, p)-bounded operator M and respective semilinear equations, is studied in References [18,19]
and others.

2. Nondegenerate System Solvability

To study the approximate controllability of fractional order control systems, we formulate the
existence and uniqueness theorems for the equations, which describe their dynamics. Firstly, we
consider the equation, which is resolved with respect to the fractional derivative.

Denote gβ(t) = tβ−1/Γ(β) at t > 0, β > 0, where Γ(·) is the Euler Gamma function,

Jβ
t h(t) := (gβ ∗ h)(t) :=

1
Γ(β)

t∫
0

(t− s)β−1h(s)ds.

Let m− 1 < α ≤ m ∈ N, Dα
t is the fractional Caputo derivative, that is,

Dα
t h(t) := Dm

t Jm−α
t

(
h(t)−

m−1

∑
k=0

h(k)(0)gk+1(t)

)
.

Let R+ = R+ ∪ {0}, Z be a Banach space, L(Z) be the Banach space of all linear bounded
operators on Z , C l(Z) be the set of all linear closed operators, densely defined in Z , acting into Z .
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We shall write A ∈ Aα(θ0, a0) for some α > 0, θ0 ∈ (π/2, π), a0 ≥ 0, if an operator A ∈ C l(Z)

satisfies the following conditions:

(i) for every λ ∈ Sθ0,a0 := {μ ∈ C : | arg(μ− a0)| < θ0, μ �= a0} we have λα ∈ ρ(A) := {μ ∈ C :
(μI − A)−1 ∈ L(Z)};

(ii) for any a > a0, θ ∈ (π/2, θ0) there exists K = K(θ, a) > 0, such that at all λ ∈ Sθ,a

‖(λα I − A)−1‖L(Z) ≤
K(θ, a)

|λα−1(λ− a)| .

Remark 1. It is known that at α ∈ (0, 2) an operator A ∈ C l(Z) satisfies conditions (i) and (ii), if and
only if there exists a resolving family of operators for the linear homogeneous equation Dα

t z(t) = Az(t)
(see Theorem 2.14 [20], and more general Theorem I.2.1 [21]). Moreover, A ∈ A1(θ0, a0), if and only if it
generates an analytic in a sector operator semigroup. In this case it is often called a sectorial operator.

Denote by ∂Sa,θ the boundary of Sa,θ := {μ ∈ C : | arg(μ− a)| < θ, μ �= a} at some θ ∈ (π/2, θ0),
a > a0.

Lemma 1 ([22]). Let α > 0, A ∈ Aα(θ0, a0), θ ∈ (π/2, θ0), a > a0. Then the families of operators⎧⎪⎨⎪⎩Zβ(t) =
1

2πi

∫
∂Sa,θ

μα−1−β(μα I − A)−1eμtdμ ∈ L(Z) : t ∈ R+

⎫⎪⎬⎪⎭ , β ∈ R,

admit analytic extensions to Σθ0 := {τ ∈ C : | arg τ| < θ0 − π/2, τ �= 0}.

Remark 2. It can be shown that for a bounded operator A ∈ L(Z) we have Zβ(t) = tβEα,β+1(tα A), where
Eα,β+1 is the Mittag-Leffler function.

Consider the Cauchy problem

z(k)(0) = zk, k = 0, 1, . . . , m− 1, (4)

for the inhomogeneous equation

Dα
t z(t) = Az(t) + f (t), t ∈ (0, T], (5)

where A ∈ Aα(θ0, a0), T > 0, f : [0, T] → Z . A solution of problem (4) and (5) is a function
z ∈ C((0, T];DA) ∩ Cm−1([0, T];Z), such that

gm−α ∗
(

z−
m−1

∑
k=0

z(k)(0)gk+1

)
∈ Cm((0, T];Z)

and Equalities (4) and (5) for all t ∈ (0, T] are satisfied.

Remark 3. It is known [20] that the resolving operators family for the homogeneous ( f ≡ 0) Equation (5) is
{Z0(t) : t ∈ R+}, where Z0(0) = I.

A mapping f ∈ C([0, T];Z) is called Hölder function with a power γ ∈ (0, 1], if there exists a
constant C > 0, such that for all t, s ∈ [0, T] we have ‖ f (t)− f (s)‖Z ≤ C|t− s|γ. Denote the linear
space of such functions with a fixed γ by Cγ([0, T];Z).
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Theorem 1 ([23]). Let α > 0, A ∈ Aα(θ0, a0), f ∈ Cγ([0, T];Z) for some γ ∈ (0, 1]. Then for any zk ∈ DA,
k = 0, 1, . . . , m− 1, there exists a unique solution of problem (4) and (5). It has the form

z(t) =
m−1

∑
k=0

Zk(t)zk +

t∫
0

Zα−1(t− s) f (s)ds.

Remark 4. Analogous result with f ∈ C([0, T];DA) is obtained in [24]. The case of a bounded operator A and
f ∈ C([0, T];Z) is studied in [25].

3. Degenerate System Solvability

We now obtain an existence and uniqueness theorem for the degenerate equation, which describes
the dynamics of fractional order degenerate systems.

Let X , Y be Banach spaces, L(X ;Y) be the Banach space of all linear bounded operators from X
into Y , C l(X ;Y) be the set of all linear closed densely defined in X operators, acting into the space
Y . Let L, M ∈ C l(X ;Y), ker L �= {0}. The set of points μ ∈ C, such that the operator μL − M :
DL ∩DM → Y is injective, and (μL−M)−1L ∈ L(X ), L(μL−M)−1 ∈ L(Y), is called L-resolvent set
ρL(M) of the operator M. Introduce denotations RL

μ(M) := (μL−M)−1L, LL
μ(M) := L(μL−M)−1.

Definition 1. Let α > 0, L, M ∈ C l(X ;Y). We say that a pair of operators (L, M) belongs to the class
Hα(θ0, a0), if

(i) there exist θ0 ∈ (π/2, π) and a0 ≥ 0, such that for all λ ∈ Sθ0,a0 inclusion λα ∈ ρL(M) is valid;
(ii) for any θ ∈ (π/2, θ0), a > a0 there exists a constant K = K(θ, a) > 0, such that for all λ ∈ Sθ,a

max
{
‖RL

λα(M)‖L(X ), ‖LL
λα(M)‖L(Y)

}
≤ K(θ, a)
|λα−1(λ− a)| .

Remark 5. If there exists an inverse operator L−1 ∈ L(Y ;X ), then (L, M) ∈ Hα(θ0, a0), if and only if
L−1M ∈ Aα(θ0, a0) and ML−1 ∈ Aα(θ0, a0).

It is not difficult to show that the subspaces ker RL
μ(M) = ker L, imRL

μ(M), ker LL
μ(M), imLL

μ(M)

do not depend on μ ∈ ρL(M). Introduce the denotations ker RL
μ(M) := X 0, ker LL

μ(M) := Y0. By X 1

(Y1) we denote the closure of imRL
μ(M) (imLL

μ(M)) in the norm of the space X (Y). By Lk (Mk) the
restriction of the operator L (M) on DLk := DL ∩ X k (DMk := DM ∩ X k) is denoted, k = 0, 1.

Theorem 2 ([22]). Let Banach spaces X and Y be reflexive, (L, M) ∈ Hα(θ0, a0). Then

(i) X = X 0 ⊕X 1, Y = Y0 ⊕Y1;
(ii) the projector P (Q) on the subspace X 1 (Y1) along X 0 (Y0) has the form P = s- lim

n→∞
nRL

n(M) (Q =

s- lim
n→∞

nLL
n(M));

(iii) L0 = 0, M0 ∈ C l(X 0;Y0), L1, M1 ∈ C l(X 1;Y1);
(iv) there exist inverse operators L−1

1 ∈ C l(Y1;X 1), M−1
0 ∈ L(Y0;X 0);

(v) ∀x ∈ DL Px ∈ DL and LPx = QLx;
(vi) ∀x ∈ DM Px ∈ DM and MPx = QMx;
(vii) let S := L−1

1 M1 : DS → X 1, then DS := {x ∈ DM1 : M1x ∈ imL1} is dense in X ;
(viii) let V := M1L−1

1 : DV → Y1, then DV := {y ∈ imL1 : L−1
1 y ∈ DM1} is dense in Y ;

(ix) if L1 ∈ L(X 1;Y1), or M1 ∈ L(X 1;Y1), then S ∈ Aα(θ0, a0);
(x) if L−1

1 ∈ L(Y1;X 1), or M−1
1 ∈ L(Y1;X 1), then V ∈ Aα(θ0, a0);
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(xi) the families of operators⎧⎪⎨⎪⎩Xβ(t) =
1

2πi

∫
∂Sa,θ

μα−1−βRL
μα(M)eμtdμ ∈ L(X ) : t ∈ R+

⎫⎪⎬⎪⎭ , β ∈ R,

⎧⎪⎨⎪⎩Yβ(t) =
1

2πi

∫
∂Sa,θ

μα−1−βLL
μα(M)eμtdμ ∈ L(Y) : t ∈ R+

⎫⎪⎬⎪⎭ , β ∈ R,

admit analytic extensions to Σθ0 := {t ∈ C : | arg t| < θ0 − π/2, t �= 0}. For any θ ∈ (π/2, θ0),
a > a0 there exists such Cβ = Cβ(θ, a), that for each t ∈ Σθ

max{‖Xβ(t)‖L(X ), ‖Yβ(t)‖L(Y)} ≤ Cβ(θ, a)eaRet(|t|−1 + a)−β, β ≤ 0, (6)

max{‖Xβ(t)‖L(X ), ‖Yβ(t)‖L(Y)} ≤ Cβ(θ, a)eaRet|t|β, β > 0. (7)

Consider the degenerate (ker L �= {0}) inhomogeneous equation

Dα
t Lx(t) = Mx(t) + f (t), t ∈ (0, T], (8)

with a given f : [0, T]→ Y . Its solution is a function x ∈ C((0, T];DM), such that Lx ∈ Cm−1([0, T];Y),
gm−α ∗

(
Lx−

m−1
∑

k=0
(Lx)(k)(0)gk+1

)
∈ Cm((0, T];Y), and for all t ∈ (0, T] equality (8) is fulfilled.

A solution of the Cauchy problem

x(k)(0) = xk, k = 0, 1, . . . , m− 1, (9)

for Equation (8) is a solution of the equation, such that x ∈ Cm−1([0, T];X ) and conditions (9)
are satisfied.

Theorem 3. Let α > 0, Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L1 ∈ L(X 1;Y1) or
M1 ∈ L(X 1;Y1), f : [0, T] → Y0+̇imL1, at some γ ∈ (0, 1] L−1

1 Q f ∈ Cγ([0, T];X ), (I − Q) f ∈
Cm−1([0, T];Y), xk ∈ DM, Pxk ∈ DS, k = 0, 1, . . . , m− 1, equalities

Dk
t
∣∣
t=0 M−1

0 (I −Q) f (t) = −(I − P)xk, k = 0, 1, . . . , m− 1, (10)

are valid. Then there exists a unique solution of problem (8) and (9), moreover, it has the form

x(t) =
m−1

∑
k=0

Xk(t)xk +

t∫
0

Xα−1(t− s)L−1
1 Q f (s)ds−M−1

0 (I −Q) f (t). (11)

Proof. Put x0(t) := (I − P)x(t), x1(t) := Px(t). By virtue of Theorem 2 Equation (8) can be reduced
to the system of the two equations

0 = x0(t) + M−1
0 (I −Q) f (t),

Dα
t x1(t) = Sx1(t) + g(t), S := L−1

1 M1, g(t) := L−1
1 Q f (t). (12)

Therefore, x0(t) = −M−1
0 (I − Q) f (t), and for the satisfying of Cauchy conditions (9) it is

necessarry the fulfillment of (10). Due to Theorem 2 S ∈ Aα(θ0, a0), hence Theorem 1 implies
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the existence of a unique solution of the Cauchy problem x1(k)(0) = Pxk, k = 0, 1, . . . , m − 1,
to Equation (12). Besides,

x1(t) =
1

2πi

m−1

∑
k=0

∫
∂Sa,θ

μα−k−1(μα I − S)−1eμtdμPxk+
1

2πi

t∫
0

∫
∂Sa,θ

(μα I − S)−1eμ(t−s)dμg(s)ds =

=
1

2πi

m−1

∑
k=0

∫
∂Sa,θ

μα−k−1(μαL−M)−1Leμtdμxk+
1

2πi

t∫
0

∫
∂Sa,θ

(μαL−M)−1Leμ(t−s)dμg(s)ds,

since L(I − P) = 0, the operator (λL0 −M0)
−1 = −M−1

0 exists for every λ ∈ C.

Theorem 4. Let α > 0, Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1) or

M−1
1 ∈ L(Y1;X 1), f ∈ C([0, T];Y), Q f ∈ Cγ([0, T];Y) at some γ ∈ (0, 1], (I −Q) f ∈ Cm−1([0, T];Y),

xk ∈ DM, Pxk ∈ DL, k = 0, 1, . . . , m− 1, equalities (10) are valid. Then there exists a unique solution of
problem (8) and (9), and it has form (11).

Proof. In this case, instead of Equation (12) we obtain the equation

Dα
t y(t) = Vy(t) + h(t), V := M1L−1

1 , h(t) := Q f (t), (13)

where y(t) := L1x1(t) = L1Px(t). Theorem 2 implies, that V ∈ Aα(θ0, a0), and due to Theorem 1
there exists a unique solution of the Cauchy problem y(k)(0) = L1Pxk ∈ DV , k = 0, 1, . . . , m − 1,
for Equation (13). The solution has the form

y(t) =
1

2πi

m−1

∑
k=0

∫
∂Sa,θ

μα−k−1(μα I −V)−1eμtdμL1Pxk+
1

2πi

t∫
0

∫
∂Sa,θ

(μα I −V)−1eμ(t−s)dμh(s)ds =

=
1

2πi

m−1

∑
k=0

Yk(t)L1Pxk +

t∫
0

Yα−1(t− s)Q f (s)ds,

(14)

therefore, x1(t) = L−1
1 y(t) has form (11). The function x0(t) is the same as in the previous proof.

So, the Cauchy problem for degenerate Equation (8) is overdetermined due to the necessity of
conditions (10). Consider the so-called Showalter—Sidorov problem

(Lx)(k)(0) = yk, k = 0, 1, . . . , m− 1, (15)

which is natural for weakly degenerate evolution equations, when the degeneration subspace X 0

coincides with ker L. A solution of this problem to Equation (8) is a solution of the equation, such that
conditions (15) are satisfied.

Reasoning as before, we can prove the next assertions.

Theorem 5. Let α > 0, Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L1 ∈ L(X 1;Y1) or
M1 ∈ L(X 1;Y1), f ∈ C([0, T];Y), Q f (t) ∈ imL for all t ∈ [0, T], L−1

1 Q f ∈ Cγ([0, T];X ) at some
γ ∈ (0, 1], yk ∈ L[DL ∩ DM], L−1

1 yk ∈ DS, k = 0, 1, . . . , m − 1. Then there exists a unique solution of
problem (8) and (15), and it has form

x(t) =
m−1

∑
k=0

Xk(t)L−1
1 yk +

t∫
0

Xα−1(t− s)L−1
1 Q f (s)ds− M−1

0 (I −Q) f (t). (16)
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Theorem 6. Let α > 0, Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1) or

M−1
1 ∈ L(Y1;X 1), f ∈ C([0, T];Y), Q f ∈ Cγ([0, T];Y) for some γ ∈ (0, 1], yk ∈ L[DL ∩ DM], k =

0, 1, . . . , m− 1. Then there exists a unique solution of problem (8) and (15), and it has form (16).

Here, in contrast to the proofs of Theorems 3 and 4 we have no initial conditions for (I −Q)x(t)
and there is not condition (I −Q) f ∈ Cm−1([0, T];Y) nor condition (10) of the matching of initial data
with the right-hand side of Equation (8).

Remark 6. Note that, due to Theorem 2 L = L1P + 0(I − P) = L1P, therefore, imL = imL1 ⊂ Y1.
Thus, yk ∈ L[DL ∩DM] = L1[DL1 ∩DM1 ], if and only if yk ∈ DV. So, under the conditions of Theorem 6 the
set L[DL ∩DM] = DV is dense in Y1.

Remark 7. Study of the degenerate system controllability will be carried out in the next sections on the basis of
Theorem 6, since its conditions on f and yk are less restrictive than those in Theorem 5.

Remark 8. It can be shown that in the case of reflexive Banach spaces X and Y for (L, M) ∈ Hα(θ0, a0)

conditions (15) are equivalent to the conditions (Px)(k)(0) = L−1
1 yk, k = 0, 1, . . . , m − 1. Recall that

imL ⊂ X 1.

4. Approximate Controllability of Subsystems

Here, we reduce the degenerate control system to two subsystems on mutually
complement subspaces.

Let X , Y be reflexive Banach spaces, U be a Banach space, L, M ∈ C l(X ;Y), (L, M) ∈ Hα(θ0, a0).
Denote by Cγ

Q([0, T];L(U ;Y)) for some γ ∈ (0, 1] the linear space of all operator-valued functions
B ∈ C([0, T];L(U ;Y)), such that QB ∈ Cγ([0, T];L(U ;Y)). Analogously, Cγ

Q([0, T];Y) is the set of all
vector-valued functions g ∈ C([0, T];Y), such that Qg ∈ Cγ([0, T];Y).

Further, we shall assume that B ∈ Cγ
Q([0, T];L(U ;Y)), g ∈ Cγ

Q([0, T];Y) for some γ ∈ (0, 1].
Control functions u(·) for the system, which is described by the Showalter—Sidorov problem

(Lx)(k)(0) = yk, k = 0, 1, . . . , m− 1, (17)

Dα
t Lx(t) = Mx(t) + B(t)u(t) + g(t), (18)

will be choosen from the space Cγ([0, T];U ), hence Bu ∈ Cγ
Q([0, T];Y). By means of Theorem 2

problem (17) and (18) can be reduced to the initial value problem

y(k)(0) = yk, k = 0, 1, . . . , m− 1, (19)

for the system of equations

Dα
t y(t) = Vy(t) + QB(t)u(t) + Qg(t), (20)

x0(t) = −M−1
0 (I −Q)(B(t)u(t) + g(t)) (21)

on the subspaces Y1 and X 0, respectively. Here V = M1L−1
1 ∈ C l(Y1), y(t) = L1Px(t), x0(t) =

(I − P)x(t). Note that due to Theorem 1 the solution of problem (19) and (20) has the form

y(t) =
m−1

∑
k=0

Yk(t)yk +

t∫
0

Yα−1(t− s)Q(B(s)u(s) + g(s))ds. (22)

Denoted by x(T; y; u), the value at the time moment T of the solution to problem (17) and (18)
with the initial data y = (y0, y1, . . . , ym−1) in (17) and with a control function u. Denoted by y(T; y; u),
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the value at the time T of the solution for the subsystem, described by (19), (20). And by x0(T; u)
denotes the value at t = T of function (21).

System (18) is called approximately controllable in time T > 0, if, for every ε > 0, x̂ ∈ X ,
y = (y0, y1, . . . , ym−1) ∈ (L[DL ∩DM])m in (17) there exists a control function u ∈ Cγ([0, T];U ), such
that ‖x(T; y; u)− x̂‖X ≤ ε.

System (20) is called approximately controllable in time T > 0, if for all ε > 0, ŷ ∈ Y1,
y = (y0, y1, . . . , ym−1) ∈ (DV)

m in (19) there exists a control function u ∈ Cγ([0, T];U ), such that
‖y(T; y; u)− ŷ‖Y1 ≤ ε.

System (21) is called approximately controllable in time T > 0, if for every ε > 0, x̂0 ∈ X 0 there
exists u ∈ C([0, T];U ), such that ‖x0(T; u)− x̂0‖X 0 ≤ ε.

Remark 9. We take u not from Cγ([0, T];U ) in the last definition, since due to the definition of
problem (8) and (15) solution, the continuity of u is sufficient for the existence of the subsystem (21) solution,
since x0(t) ∈ ker L for all t.

The following result shows that, while controlling two systems (20) and (21) by the same
function u(·), we can, nevertheless, simultaneously lead the trajectories of the both systems into
the ε-neighborhood of respective given points ŷ ∈ Y1, x̂0 ∈ X 0.

Theorem 7. Let Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1), B ∈

Cγ
Q([0, T];L(U ;Y)), g ∈ Cγ

Q([0, T];Y) for some γ ∈ (0, 1]. Then system (18) is approximately controllable in
time T, if and only if its subsystems (20) and (21) are approximately controllable in time T.

Proof. The direct assertion of Theorem 7 is obvious, since system (18) splits into two mutually
complementary subsystems (20) and (21). Consider the inverse assertion of Theorem 7. Let for
all x̂0 ∈ X 0, ε > 0 there exists a function u0 ∈ C([0, T];U ), such that∥∥∥−M−1

0 (I −Q)(B(T)u0(T) + g(T))− x̂0
∥∥∥
X
≤ ε/3,

and

∀y ∈ (DT)
m ∀ŷ ∈ Y1 ∀ε > 0 ∃u1 ∈ Cγ([0, T];U )

∥∥y(T; y; u1)− ŷ
∥∥
Y ≤ ε/

(
3‖L−1

1 ‖L(Y1;X 1)

)
.

Then choose the new control function u, such that u(t) = u1(t) at t ∈ [0, δ] for some δ ∈ (T/2, T),
and u(t) = u1(δ) + γ(t− δ) + b(t− δ)2 at t ∈ (δ, T] with

γ =
du1

dt
(δ), b =

u0(T)− u1(δ)− γ(T − δ)

(T − δ)2 .

Then

u(t) = u1(δ) + γ(t− δ) +
(t− δ)2

(T − δ)2

(
u0(T)− u1(δ)− γ(T − δ)

)
∈ Cγ([0, T];U ), u(T) = u0(T).

Note that for any δ ∈ (T/2, T)

‖u(t)‖U ≤ C := 2 max
t∈[0,T]

‖u1(t)‖U + ‖γ‖UT + ‖u0(T)‖U , t ∈ [0, T],

where C is independent of δ.
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For arbitrary x̂ ∈ X take the control function, constructed as it was explained before with
x̂0 = (I − P)x̂ and ŷ = Lx̂, then for sufficiently small T − δ > 0,

‖x(T; y; u)− x̂‖X ≤ ‖x0(T; u0)− (I − P)x̂‖X + ‖L−1
1 y(T; y; u1)− L−1

1 Lx̂‖X+

+‖L−1
1 y(T; y; u)− L−1

1 y(T; y; u1)‖X ≤ 2ε/3 + 2C‖L−1
1 ‖L(Y1;X 1)

T∫
δ

‖Yα−1(T − s)QB(s)‖L(U ;Y)ds ≤ ε.

Here, we take into account estimate (7) for α > 1. At α ∈ (0, 1] due to (6) we also have

T∫
δ

‖Yα−1(T − s)QB(s)‖L(U ;Y)ds ≤ C1(1 + aT)1−α(T − δ)α → 0 as δ → T − .

Analogously, the notion of the approximate controllability in free time can be defined. For example,
system (18) is called approximately controllable in free time, if for every ε > 0, x̂ ∈ X , y =

(y0, y1, . . . , ym−1) ∈ (L[DL ∩DM])m in (17) there exists T > 0 and a control function u ∈ Cγ([0, T];U ),
γ ∈ (0, 1], such that ‖x(T; y; u)− x̂‖X ≤ ε.

Theorem 8. Let Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1), for every

T > 0 B ∈ Cγ(T)
Q ([0, T];L(U ;Y)), g ∈ Cγ(T)

Q ([0, T];Y), γ(T) ∈ (0, 1]. Then system (18) is approximately
controllable in free time, if and only if its subsystems (20) and (21) are approximately controllable in free time.

Proof. This statement can be proved as Theorem 7. Let us prove the inverse assertion. Let ε > 0, x̂ ∈ X ,
y = (y0, y1, . . . , ym−1) ∈ (L[DL ∩ DM])m and there exist T1 > 0, u1 ∈ Cγ(T1)([0, T1];U ), such that
‖y(T1; y; u1)− Lx̂‖Y1 ≤ ε/3, and T0 > 0, u0 ∈ C([0, T0];U ), such that ‖x0(T0; u0)− (I− P)x̂‖X 0 ≤ ε/3.
Take the control function u as in the proof of Theorem 7 with T = T1, then ‖x(T1; y; u)− x̂‖Y1 ≤ ε.

5. Criterion of Approximate Controllability

Now let us obtain a criterion of the fractional order degenerate control system approximate
controllability in terms of the operators from the respective equation.

Let Z be a Banach space, A be some set of indices, α ∈ A, Dα ⊂ Z . By span{Dα : α ∈ A} we
denote the linear span of the sets Dα union, α ∈ A, and by span{Dα : α ∈ A} its closure in the space
Z is denoted. We denote by imA the closure of the image imA of an operator A : DA → Z .

Lemma 2. Let Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1), QB ∈

Cγ([0, T];L(U ;Y)), Qg ∈ Cγ([0, T];Y) for some γ ∈ (0, 1]. Then system (20) is approximately controllable
in time T, if and only if

span{imYα−1(T − s)QB(s) : 0 < s < T} = Y1. (23)

Proof. Form (22) of the Cauchy problem solution implies that it is sufficient to consider only the
approximate controllability of system (20) from zero (y = 0). Suppose that the system is not
approximately controllable from zero. Then the set of vectors of the form

T∫
0

Yα−1(T − s)QB(s)u(s)ds, u ∈ Cγ([0, T];U ),
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is not dense in the space Y1. By the Hahn—Banach Theorem, in this case there exists f ∈ Y1∗ \ {0},
such that

f

⎛⎝ T∫
0

Yα−1(T − s)QB(s)u(s)ds

⎞⎠ =

T∫
0

f (Yα−1(T − s)QB(s)u(s)) ds = 0 (24)

for all u ∈ Cγ([0, T];U ).
For every v from the Lebesgue—Bochner space Lp(0, T;U ), max{1, 1/α} < p < ∞, there exists a

sequence {un} ⊂ Cγ([0, T];U ), such that lim
n→∞

un = v in Lp(0, T;U ). Therefore, using reasoning as in

the end of Theorem 7 proof, i.e., applying inequalities (6) and (7), obtain∣∣∣∣∣∣
T∫

0

f (Yα−1(T − s)QB(s)(un(s)− v(s)))ds

∣∣∣∣∣∣ ≤ C‖ f ‖Y1∗

T∫
0

s(α−1)p′ds
T∫

0

‖un(s)− v(s)‖p
U ds → 0

as n → ∞. Here we take into account, that inequality p > 1/α implies that (α− 1)p′ + 1 > 0, where
p′ = p/(p− 1). Consequently, equality (24) is valid for all u ∈ Lp(0, T;U ).

Take t0 ∈ (0, T) and small δ > 0, uδ(t) = w ∈ U at t ∈ [t0 − δ, t0 + δ], uδ(t) = 0 for t ∈
[0, T] \ [t0 − δ, t0 + δ]. Then uδ ∈ Lp(0, T;U ), and by the continuity of the integrand

0 =
1
2δ

t0+δ∫
t0−δ

f (Yα−1(T − s)QB(s)w) ds = f (Yα−1(T − ξ)QB(ξ)w)

for some ξ ∈ (t0 − δ, t0 + δ). We pass to the limit as δ → 0+ and obtain the equality
f (Yα−1(T − t0)QB(t0)w) = 0 for all t0 ∈ (0, T), w ∈ U . Hence condition (23) is not satisfied.

The inverse statement is obvious due to the integral form (22) of the solution of Equation (20)
with zero initial data.

This assertion can be formulated in terms of Section 2 in the next form.

Theorem 9. Let A ∈ Aα(θ0, a0), B ∈ Cγ([0, T];L(U ;Z)), g ∈ Cγ([0, T];Z) for some γ ∈ (0, 1]. Then the
system Dα

t z(t) = Az(t) + B(t)u(t) + g(t) is approximately controllable in time T, if and only if

span{imZα−1(T − s)B(s) : 0 < s < T} = Z .

Remark 10. If QB(t) does not depend on t, then the approximate controllability of system (20) in time T
implies its approximate controllability in any time T1 > T, since

span{imYα−1(s)QB : 0 < s < T} ⊂ span{imYα−1(s)QB : 0 < s < T1}.

The criterion of system (21) approximate controllability is obvious.

Lemma 3. Let Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), moreover, (I − Q)B ∈
C([0, T];L(U ;Y)) and (I − Q)g ∈ C([0, T];Y). Then system (21) is approximately controllable in time
T, if and only if imM−1

0 (I −Q)B(T) = X 0.

Remark 11. If (I −Q)B(t) does not depend on t, then the approximate controllability of system (21) in time T
implies its approximate controllability at any time T1 > 0.

Theorem 10. Let Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1), B ∈

Cγ
Q([0, T];L(U ;Y)), g ∈ Cγ

Q([0, T];Y) for some γ ∈ (0, 1]. Then system (18) is approximately controllable in
time T, if and only if imM−1

0 (I −Q)B(T) = X 0, span{imYα−1(T − s)QB(s) : 0 < s < T} = Y1.
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Proof. The required result follows from Theorem 7, Lemmas 2 and 3.

Remark 12. By Remarks 10, 11 and Theorem 10, if B(t) does not depend on t, then the approximate
controllability of system (18) in time T implies its approximate controllability in any greater time T1 > T.

Similar result for the controllability in free time can be obtained analogously.

Theorem 11. Let Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1), for all T > 0

B ∈ Cγ(T)
Q ([0, T];L(U ;Y)), g ∈ Cγ(T)

Q ([0, T];Y), γ(T) ∈ (0, 1]. Then system (18) is approximately
controllable in free time, if and only if span{imM−1

0 (I −Q)B(T) : T ∈ R+} = X 0,

span{imYα−1(T − s)QB(s) : 0 < s < T, T ∈ R+} = Y1.

6. Application to an Initial-Boundary Value Problem

We shall apply the obtained criterion to the control system, which is described by an
initial-boundary value problem for a partial differential equation, not solvable with respect to the time
fractional derivative.

Let α ∈ (1, 2), ak ∈ C([0, T];R), k ∈ N, sup
k∈N

|ak(t)| < ∞ for every t ∈ [0, T], v0, v1 ∈ H2
0(0, π) :={

x ∈ H2(0, π) : x(0) = x(π) = 0
}

. Consider the initial-boundary value problem

v(0, t) = v(π, t) = vξξ(0, t) = vξξ(π, t) = 0, t ∈ (0, T], (25)

v(ξ, 0) + vξξ(ξ, 0) = v0(ξ), ξ ∈ (0, π), (26)

vt(ξ, 0) + vξξt(ξ, 0) = v1(ξ), ξ ∈ (0, π), (27)

to the equation

Dα
t
(
v + vξξ

)
= vξξ + 2vξξξξ +

∞

∑
k=1

ak(t)〈u(η, t), sin kη〉L2(0,π) sin kξ, (ξ, t) ∈ (0, π)× (0, T]. (28)

Choose X = H2
0(0, π), Y = U = L2(0, π), L = 1 + ∂2

∂ξ2 ∈ L(X ;Y),

DM = H4
0(0, π) :=

{
x ∈ H4(0, π) : x(0) = x(π) = x′′(0) = x′′(π) = 0

}
,

M =
∂2

∂ξ2 + 2
∂4

∂ξ4 ∈ C l(X ;Y), B(t) =
∞

∑
k=1

ak(t)〈·, sin kη〉L2(0,π) sin kξ ∈ L(U ;Y), t ∈ [0, T].

Thus, problem (25)–(28) has form (17) and (18) with g ≡ 0. Here we have ker L = span{sin ξ} �=
{0}, hence Equation (28) is degenerate.

It is known that the set {
√

2/π sin kξ : k ∈ N} is the orthonormal basis in L2(0, π) of
eigenfunctions of the operator ∂2

∂ξ2 with domain H2
0(0, π), which correspond to the eigenvalues

{−k2 : k ∈ N}. Since the polynomials 1 + λ and λ + 2λ2 have no common roots, by Theorem 7 [22] the
operator L1 : X 1 → Y1 is a homeomorphism and for α ∈ [1, 2) there exist θ0 ∈ (π/2, π), a0 ≥ 0, such
that (L, M) ∈ Hα(θ0, a0). Besides, from Theorem 7 [22] it follows, that X 0 = Y0 = span{sin ξ}, Y1 is
the closure of span{sin kξ : k = 2, 3, . . . } in L2(0, π), X 1 is the closure of the same set in H2

0(0, π).
By Lemma 3 subsystem (21) is controllable in time T, if and only if a1(T) �= 0. Besides, it is

controllable in free time if and only if a1 �≡ 0 on R+. In the both cases we can say about the exact
controllability on the one-dimensional space X 0.
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For y ∈ L2(0, π) we have

Yα−1(t)y =
∞

∑
k=2

yk sin kξ
1

2πi

∫
Γ

eμtdμ

μα − μk
=

∞

∑
k=2

yk sin kξ
1

2πi

∫
tΓ

tα−1eλdλ

λα − tαμk
=

=
∞

∑
k=2

yk sin kξ
∞

∑
n=0

tα(n+1)−1μn
k

1
2πi

∫
tΓ

eλλ−α(n+1)dλ =

=
∞

∑
k=2

yk sin kξ
∞

∑
n=0

tα(n+1)−1μn
k

Γ(α(n + 1))
=

∞

∑
k=2

tα−1Eα,α(μktα)yk sin kξ,

where

yk = 〈y(η), sin kη〉L2(0,π), μk =
2k4 − k2

1− k2 , Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)

is the Mittag-Leffler function. So,

Yα−1(T − s)QB(s) =
∞

∑
k=2

ak(s)(T − s)α−1Eα,α(μk(T − s)α)〈·, sin kη〉L2(0,π) sin kξ,

therefore, subsystem (20) is approximately controllable in time T, if and only if for every k ∈ N \ {1}
there exists sk ∈ (0, T), such that

ak(sk)Eα,α

(
2k4 − k2

1− k2 (T − sk)
α

)
�= 0.

Since Eα,α is the entire function and has isolated zeros only, such a condition is equivalent to the
condition: ak �≡ 0 on [0, T] for every k ∈ N \ {1}.

Analogously, subsystem (20) is approximately controllable in free time if and only if ak �≡ 0 on R+

for all k ∈ N \ {1}.
Moreover, it is easy to check that

sup
k=2,3,...

2k4 − k2

1− k2 ≤ 0,

therefore, (L, M) ∈ Hα(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0 in the case α ∈ (0, 1] (see Theorem 7 [22]).
Hence we can study problem (25), (26) and (28) with α ∈ (0, 1] analogously.

Proposition 1. Let α ∈ (0, 2). System (25) and (28) is approximately controllable in time T if and only if
a1(T) �= 0 and for every k ∈ N \ {1} ak �≡ 0 on [0, T].

Analogously, we can obtain the next assertion by the obvious way.

Proposition 2. Let α ∈ (0, 2). System (25) and (28) is approximately controllable in free time, if and only if
ak �≡ 0 on R+ for all k ∈ N.

7. Approximate Controllability of Systems with Finite-Dimensional Input

Let g : [0, T]→ Y , bi ∈ Y , i = 1, 2, . . . , n, be given. Consider the control system

Dα
t Lx(t) = Mx(t) +

n

∑
i=1

biui(t) + g(t), (29)
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where ui : [0, T] → R, i = 1, 2, . . . , n. It is a partial case of system (18). Indeed, we can take

U = Rn, u = (u1, u2, . . . , un), Bu(t) =
n
∑

i=1
biui(t). Such a control system is called a system with

finite-dimensional input. It is evident that B ∈ L(Rn;Y). Control function u = (u1, . . . , un) will be
chosen from the space Cγ([0, T];Rn). Theorem 10 and Theorem 11 implies the next assertion.

Corollary 1. Let Banach spaces X , Y be reflexive, (L, M) ∈ Hα(θ0, a0), L−1
1 ∈ L(Y1;X 1), bi ∈ Y ,

i = 1, 2, . . . , n, g ∈ Cγ
Q([0, T];Y) for some γ ∈ (0, 1]. Then

(i) system (29) is approximately controllable in time T if and only if

span {(I −Q)bi, i = 1, 2, . . . , n} = Y0, span{Yα−1(s)Qbi, 0 < s < T, i = 1, 2, . . . , n} = Y1.

(ii) system (29) is approximately controllable in free time if and only if

span {(I −Q)bi, i = 1, 2, . . . , n} = Y0, span{Yα−1(s)Qbi, s ∈ R+, i = 1, 2, . . . , n} = Y1.

Proof. By Theorem 10 the condition X 0 = imM−1
0 (I−Q)B = span

{
M−1

0 (I −Q)bi, i = 1, 2, . . . , n
}

is
necessary and sufficient for the approximate controllability in time T of the subsystem on the subspace
X 0. This set is finite-dimensional, and the operator M0 is densely defined, therefore

X 0 = span
{

M−1
0 (I −Q)bi, i = 1, 2, . . . , n

}
= DM0 ,

it is equivalent to the equality Y0 = M[DM0 ] = span {(I −Q)bi, i = 1, 2, . . . , n} . Other equalities
follow from Theorems 10 and 11 in an obvious way.

Remark 13. So, we see that under the conditions of Corollary 1 from the approximate controllability of
system (29) it follows that dimX 0 = dimY0 ≤ n.

Remark 14. In the conditions of Corollary 1 from the approximate controllability of system (29) it follows that
M0 ∈ L(X 0;Y0), since DM0 = X 0 and the operator M0 is closed.

Let # be the Laplace operator and the system with one-dimensional input be described by
the equation

Dα
t (5v +#v) = #v + 2#2v + b(ξ, η)u(t), (ξ, η, t) ∈ (0, π)× (0, π)× (0, T], (30)

with initial conditions of form (26) at α ∈ (0, 1], or of form (26), (27) at α ∈ (1, 2), defined on
(0, π)× (0, π) and with boundary conditions of the form

v(0, η, t) = v(π, η, t) = v(ξ, 0, t) = v(ξ, π, t) = 0, ξ, η ∈ (0, π), t ∈ (0, T], (31)

#v(0, η, t) = #v(π, η, t) = #v(ξ, 0, t) = #v(ξ, π, t) = 0, ξ, η ∈ (0, π), t ∈ (0, T]. (32)

Here b ∈ L2((0, π) × (0, π)). Reasoning as in Section 6, we see that system (30)–(32) is
not controllable in free time even, since the subspace Y0 = span{sin ξ sin 2η, sin 2ξ sin η} is
two-dimensional, and the condition span {(I −Q)b} = Y0 can not be satisfied.

8. Conclusions

Thus, the work obtained the necessary and sufficient conditions for approximate controllability
for a class of degenerate fractional order evolution equations in terms of operators from the equation.
The cases of infinite-dimensional and finite-dimensional input were studied. Using the concrete
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control systems described by the initial-boundary value problems for the partial differential equations,
the applications of the obtained abstract results were demonstrated.
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Abstract: The present paper investigates the numerical solution of an imprecisely defined nonlinear
coupled time-fractional dynamical model of marriage (FDMM). Uncertainties are assumed to exist in
the dynamical system parameters, as well as in the initial conditions that are formulated by triangular
normalized fuzzy sets. The corresponding fractional dynamical system has first been converted to an
interval-based fuzzy nonlinear coupled system with the help of a single-parametric gamma-cut form.
Further, the double-parametric form (DPF) of fuzzy numbers has been used to handle the uncertainty.
The fractional reduced differential transform method (FRDTM) has been applied to this transformed
DPF system for obtaining the approximate solution of the FDMM. Validation of this method was
ensured by comparing it with other methods taking the gamma-cut as being equal to one.

Keywords: fractional calculus; triangular fuzzy number; double-parametric form; FRDTM; fractional
dynamical model of marriage

1. Introduction

In the present era, fractional-order derivatives have become widespread due to their wide
interdisciplinary applications and implementation in various fields of science and technology, such
as solid mechanics, fluid dynamics, financial mathematics, social sciences, and other areas of science
and engineering (see References [1–5]). As the solutions of non-integer order differential equations
are more complicated than integer-order differential equations, computationally efficient and reliable
numerical methods need to be developed to handle these. Authors have written different books (see
References [6–10]) in which various studies and analyses on fractional calculus may be found that will
support the authors for better understanding of the concepts of fractional calculus.

The hypothesis of entropy has been connected formerly with thermodynamics only; however, in
present-day, it has additionally been utilized in different areas like data hypothesis, psychodynamics,
biophysical financial aspects, human relations, etc. The second law of thermodynamics expresses that
entropy increases with time. It demonstrates the unpredictability of a structure over some time if there
is nothing to balance out it. Likewise, in human interactions, every day, various associations lead to
some turmoil. Recently, the discussion of the titled model has been attaining recognition throughout
the past few years. Relational relations emerge from numerous points of view, for instance, marriage,
blood relations, close attachments, work, clubs [11,12], and so forth. Many authors have studied
various research related to FDMM. The nonlinear coupled fractional FDMM was first investigated
by Ozalp and Koca [13]. In that paper, they performed a balance situation for equilibrium points.
Khader and Alqahtani [14] applied the Bernstein collocation method for obtaining the solution of a
nonlinear FDMM, and they also compared their results with the Runge–Kutta fourth-order method.
They defined the fractional derivative in the Riemann–Liouville sense, and via the utilization of
Bernstein polynomials, they converted the FDMM to a system of nonlinear algebraic equations, which

Mathematics 2019, 7, 689; doi:10.3390/math7080689 www.mdpi.com/journal/mathematics309



Mathematics 2019, 7, 689

were solved using Newton’s iterative method. Khader et al. [15] also solved the same model by
implementing the Legendre spectral collocation method and affirmed the natural behavior of the
present system. Singh et al. [16] implemented a q-homotopy analysis method coupled with Sumudu
transform and Adomian decomposition method to solve FDMM and comparison results with the
existing literature are also included. Goyal et al. [17] studied the FDMM utilizing a variation iteration
method and a homotopy perturbation transform method.

Few authors have scientifically investigated the causes of extramarital interactions in marriage.
It is essential and challenging to find out why some wedded couples separate, while a few couples
do not. Moreover, among wedded couples, a few are fulfilled, while some are not fulfilled with each
other. As such, the number of divorce cases are increasing every day all over the globe. A survey
inside the U.S. uncovered that inside a forty-year interval, the probability of a first marriage finishing
in separation are roughly 50 to 67 percent. The record is 10 percent higher for a second marriage.
Around the world, the U.S. has the highest divorce rate. In this regard, experiments may be tough
to conduct and may also be restricted for personal concerns, and so a mathematical model happens
to be advantageous. As such, recently, researchers are investigating different dynamical models for
interpersonal relations.

The most recent model of marriage is the Romeo and Juliet model [18]. Assume that at any
moment t, we need to determine Romeo’s adoration or loathing for Juliet, R(t) and Juliet’s affection or
hate for Romeo, J(t). Positive estimations of these propose love, and negative values specify hate.

The presumption about this model is that the change in Romeo’s adoration for Juliet is a small
amount of his present love in addition to a small amount of her present love. Also, Juliet’s affection for
Romeo will change by a small amount of her present love for Romeo and a small amount of Romeo’s
adoration for her. This presumption prompts the model as given below [18,19]:

dR
dt = aR(t) + bJ(t).
dJ
dt = cR(t) + dJ(t).

(1)

where a, b, c, and d are constants.
Gottman et al. [20] studied the discrete dynamical model to characterize the connection between

them. Since the layouts of research in those fields are cumbersome and restrained through the moral
reflections, mathematical models may furthermore have a fundamental influence in considering the
elements of relations and conduct highlights. A few models are present for describing the romantic
relationship; however, they may be limited to integer-order differential equations.

An integer order mathematical model of love is given as follows:

dψ
dt = −a1ψ+ b1ξ

(
1− δξ2

)
+ c1.

dξ
dt = −a2ξ+ b2ψ

(
1− δψ2

)
+ c2.

(2)

Here, variables ψ and ξ measure the adoration of a man or woman for his/her partner.
The parameters ai, bi, ci(1 ≤ i ≤ 2) denote the oblivion, reaction, and attraction constants. We have
measured that the decay of the feelings for one’s partner occurs exponentially quickly within the
absence of a partner. The parameter ai indicates the degree to which one is stimulated by way of
one’s personal feeling. It is used as a level of dependency along with fretfulness regarding other’s
affirmation in relationships. The parameter bi represents the level to which one is supported by one’s
partner and additionally anticipates him/her to be useful. It measures the tendency to keep away from
or seek closeness in a relationship. The term −aiψ and −aiξ state that one’s adoration measure decays
exponentially without one’s partner, 1/ai suggests the time needed for love to diminish and δ is a
compensatory constant.

In the present study, a time-fractional order dynamical system has been considered instead of its
integer order system because fractional order equations are generalizations of integer order differential
equations and fractional order models hold memory. Interpersonal relationships are influenced by
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memory, which makes the modeling more appropriate than the integer one for this kind of dynamical
system. This fact confirms that fractional modeling is best suited for this kind of system. Hence, the
investigation of the time-fractional systems is significant. The FDMM is given as:

dαψ
dtα = −a1ψ+ b1ξ

(
1− δξ2

)
+ c1.

dαξ
dtα = −a2ξ+ b2ψ

(
1− δψ2

)
+ c2.

(3)

where 0 < α ≤ 1 ai ≥ 0

with initial conditions (ICs):
ψ(0) = 0 = ξ(0) (4)

It is observed that all the authors mentioned above have considered the parameters and variables
involved in FDMM as crisp or precise. However, in real life, it may not always be possible to take crisp
values due to errors in experiments, observations, and many other errors. Therefore, the parameters
and variables may be considered as uncertain. Here, the uncertainties are considered as intervals/fuzzy.
The parameters ai, bi, ci(1 ≤ i ≤ 2) and δ denote the oblivion, reaction, attraction, and compensatory
constants, respectively. As these parameters are related to attractions and reactions of the model,
its values may not always be fixed. As such, the main targets of the authors are to consider these
parameters as fuzzy and then solve this fuzzy fractional model using an efficient method.

Let us consider the coupled fuzzy FDMM as given below:

dαψ̃
dtα = −(a1 − 0.02, a1, a1 + 0.02)ψ̃+ (b1 − 0.02, b1, b1 + 0.02)ξ̃{

1− (δ− 0.01, δ, δ+ 0.01)ξ̃2
}
+ (c1 − 0.2, c1, c1 + 0.2).

dαξ̃
dtα = −(a2 − 0.02, a2, a2 + 0.02)ξ̃+ (b2 − 0.02, b2, b2 + 0.02)ψ̃{

1− (δ− 0.01, δ, δ+ 0.01)ψ̃2
}
+ (c2 − 0.2, c2, c2 + 0.2).

(5)

with fuzzy ICs
ψ̃(0) = ξ̃(0) = (−0.1, 0, 0.1) (6)

where variables ψ̃ and ξ̃ describe the uncertain adoration of a man or woman for his/her partner.
The basic concepts of fuzzy variables were first presented by Chang and Zadeh [21], where

they suggested the theory of a fuzzy derivative. The extensive analysis in Chang and Zadeh [21]
was well-defined and studied by Dubois and Prade [22]. Kaleva [23] and Seikkala [24] studied
the fuzzy differential equations (FDEs) and initial value problems. Various problems related to the
differential FDEs are broadly studied by Chakraverty et al. (see References [25–27]). As fuzzy fractional
differential equations (FFDEs) are quite challenging to solve as compared to fractional differential
equations, computationally efficient numerical methods should be developed. In this research, we have
applied a fractional reduced differential transform method (FRDTM) along with imprecisely defined
parameters involved in the FDMM in order to study this dynamical system. Also, the convergence
analysis of the present solution has been discussed with an increasing number of terms of the solution.
The double-parametric form of a fuzzy number is applied to find the solution of the fractional fuzzy
dynamical model of marriage. This model has not yet been studied using FRDTM. The main benefit
of using this technique are: First, this procedure achieves the expansions of the solutions. Second,
this technique does not require any discretization, perturbations, or modification of the ICs. Also,
this technique needs fewer computations with high precision, as well as less time compared to other
techniques. In view of the above literature, FFDEs are first changed to a differential equation using
a double-parametric form (DPF). Then, the equivalent equation is solved using FRDTM to have an
interval/fuzzy solution in terms of the DPF.

The remaining parts of the manuscript are arranged as follows. In the “Preliminaries” section, we
give essential information related to fuzzy arithmetic, triangular fuzzy number, and double-parametric
form of a fuzzy number. In section “Fractional Reduced Differential Transform Method,” we discuss
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methodology and important theorems related to this technique. The double-parametric form-based
solution of FDMM is given in section “Double-Parametric-Based Solution of Uncertainty FDMM Using
FRDTM.” Next, numerical outcomes and deliberations are given in the “Results and Discussions”
section. Finally, conclusions are drawn.

2. Preliminaries

In this segment, some basic definitions, and notations of fuzzy variables are discussed (see
References [25–27]).

Definition 1. (Fuzzy Number) A fuzzy number ψ̃ is a convex normalized fuzzy set ψ̃ of the real line �
such that: {

μ
ψ̃
(x) :�→ [0, 1], ∀ x ∈ �

}
where μ

ψ̃
is a membership function and is piecewise continuous.

Definition 2. (Triangular Fuzzy Number) A triangular fuzzy number ψ̃ is a convex normalized fuzzy set ψ̃
of the real line� such that:

(a) There exists exactly one x0 ∈ � with μ
ψ̃
(x0) (x0 is called the mean value of ψ̃), where μ

ψ̃
is called the

membership function of the fuzzy set.
(b) μ

ψ̃
(x) is piecewise continuous.

The membership function μ
ψ̃

of a triangular fuzzy number ψ̃ = (a1, b1, c1) is defined as:

μ
ψ̃
(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, x ≤ a1,
x−a1
b1−a1

, a1 ≤ x ≤ b1,
c1−x
c1−b1

, b1 ≤ x ≤ c1,
0, x ≥ c1.

Definition 3. (Single-Parametric Form of Fuzzy Numbers) The triangular fuzzy number ψ̃ = (a1, b1, c1)

can be characterized by an ordered pair of functions through the γ-cut approach �ψ(γ), ψ(γ)� =

[(b1 − a1)γ+ a1, −(c1 − b1)γ+ c1], where γ ∈ [0, 1]. The γ-cut form is well-known as the single-parametric
form of fuzzy numbers. It is observed that the lower and upper bounds of the fuzzy numbers satisfy the
below statements:

(i) ψ(γ) is a left-bounded nondecreasing continuous function over [0, 1].

(ii) ψ(γ) is a right-bounded nonincreasing continuous function over [0, 1].

(iii) ψ(γ) ≤ ψ(γ), where 0 ≤ γ ≤ 1 .

Definition 4. (Double-Parametric Form of Fuzzy Number) Using the single-parametric form, as discussed
in Definition 3, we have ψ̃ = [ψ(γ), ψ(γ)].

Now we can write this as crisp with DPF as:

ψ̃(γ, β) = β
(
ψ(γ) −ψ(γ)

)
+ψ(γ)

where γ and β ∈ [0, 1].

Definition 5. (Fuzzy Arithmetic) For arbitrary fuzzy numbers x̃ = �x(γ), x(γ)�, ỹ = �y(γ), y(γ)� and
scalar m, fuzzy arithmetics are well-defined as below:

(i) x̃ = ỹ if and only if x(γ) = y(γ) and x(γ) = y(γ).
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(ii) x̃ + ỹ = �x(γ) + y(γ), x(γ) + y(γ) �.

(iii) x̃× ỹ =

⎡⎢⎢⎢⎢⎢⎣ min
(
x(γ) × y(γ), x(γ) × y(γ), x(γ) × y(γ), x(γ) × y(γ)

)
,

max
(
x(γ) × y(γ), x(γ) × y(γ), x(γ) × y(γ), x(γ) × y(γ)

) ⎤⎥⎥⎥⎥⎥⎦.
(iv) kx̃ =

{
[kx(γ), kx(γ)], k < 0
[kx(γ), kx(γ)], k ≥ 0

.

3. Fractional Reduced Differential Transform Method

Let us take an analytic and k-times continuously differentiable function ψ(x, t). Assume that
ψ(x, t) is denoted as a product of two functions as ψ(x, t) = a(x)b(t). From Momani and Odibat [28],
this function is written as follows

ψ(x, t) =

⎛⎜⎜⎜⎜⎜⎝ ∞∑
m=0

A(m)xm

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝ ∞∑

n=0

B(n)tn

⎞⎟⎟⎟⎟⎟⎠ = ∞∑
m=0

∞∑
n=0

F(m, n) xmtn (7)

where F(m, n) = A(m)B(n) is named as the spectrum of ψ(x, t).

Lemma 1. The fractional reduced differential transform (FRDT) of an analytic function ψ(x, t) is defined as:

ψk(x) =
1

Γ(1 + α k)
[Dα k

t ψ(x, t)]t=t0
for k = 0, 1, 2, . . . (8)

The inverse transform of ψk(x) is well-defined as

ψ(x, t) =
∞∑

k=0

ψk(x)(t− t0)
αk (9)

From Equations (8) and (9), we obtain:

ψ (x, t) =
∞∑

k=0

1
Γ(α k + 1)

[Dαk
t ψ(x, t)] t=t0

(t− t0)
α k (10)

In particular, at t0 = 0, we have:

ψ(x, t) =
∞∑

k=0

1
Γ(α k + 1)

[Dαk
t ψ(x, t)] t=0tα k (11)

Theorem 1. Let ψ(x, t), ξ(x, t), and ζ(x, t) be three analytical functions such thatψ(x, t) = R−1
D [ψk(x)],

ξ(x, t) = R−1
D [ξk(x)], and ζ(x, t) = R−1

D [ζk(x)]. Hence from References [29–32]):

(i) If ψ(x, t) = c1ξ (x, t) ± c2ζ (x, t), then ψk(x) = c1ξk (x) ± c2ζk (x), where c1 and c2 are constants.
(ii) If ψ(x, t) = a ξ(x, t), then ψk(x) = a ξk(x).

(iii) If ψ(x, t) = xmtn, then ψk(x) = xm δ(k− n) where δ(k) =
{

1, k = 0
0, k � 0

.

(iv) If ψ(x, t) = xmtnξ(x, t), then ψk(x) = xmξk−n(x).

(v) If ψ(x, t) = ξ (x, t)ζ (x, t), then ψk(x) =
j∑

i=0
ξi (x)ζ j−i (x) =

j∑
i=0

ζi (x)ξ j−i (x).

(vi) If ψ(x, t) = ξ (x, t)ζ (x, t)ς (x, t), then ψk(x) =
k∑

j=0

j∑
i=0

ξi (x)ζ j−i (x)ςk− j (x).
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Theorem 2. Let ψ(x, t) and ξ(x, t) are two analytical functions such that ψ(x, t) = R−1
D [ψk(x)], and

ξ(x, t) = R−1
D [ξk(x)]. Hence:

(i) If ψ(x, t) = ∂m

∂xm ξ(x, t), then ψk(x) = ∂m

∂xm ξk(x).

(ii) If ψ(x, t) = ∂nα

∂tnα ξ(x, t), then ψk(x) =
Γ(1+(k+n)α)

(1+kα) ξk+n(x).

Corollary 1. If ζ(x, t) = eδt+θ x, then ζk(x) = δk

k! eθ x.

Corollary 2. If ξ(x, t) = sin(θt + μx) and ζ(x, t) = cos(θt + μx), then ξk(x) = θk

k! sin
(

kπ
2 + μ x

)
and

ζk(x) = θk

k! cos
(

kπ
2 + μ x

)
.

In order to explain the concept of FRDTM, let us consider the following equation in the operator
form as:

Lψ(x, t) + Rψ(x, t) + Nψ(x, t) = h(x, t) (12)

with IC:
ψ(x, 0) = g(x) (13)

where L = ∂α

∂tα ; R, N are linear, nonlinear operators; and h(x, t) is an inhomogeneous source term.
Using Theorem 2 and Equations (8) and (12), this reduces to:

Γ(1 + α k + α)

Γ(1 + α k)
ψk+1(x) = Hk(x) −Rψk(x) −Nψk(x) for k = 0, 1, 2 . . . (14)

where ψk(x) and Hk(x) are the transformed form of ψ(x, t) and h(x, t), respectively.
Applying FRDTM on the IC, we obtain:

ψ0(x) = g(x) (15)

Using Equations (14) and (15), ψk(x) for k = 1, 2, 3, . . . can be determined.
Then, taking the inverse transformation of

{
ψk(x)

}n
k=0 gives the n-term approximate solution as:

ψn(x, t) =
n∑

k=0

ψk(x) tαk (16)

Therefore, the analytical result of Equation (12) is written as ψ(x, t) = lim
n→∞ψn(x, t).

4. Double-Parametric-Based Solution of an Uncertain FDMM Using FRDTM

To begin with, by applying the single parametric form, the FDMM is changed to an interval-based
FDE. At that moment, by applying the DPF, the interval-based FDE is transformed into an FDMM
having two parameters that may control the uncertainty. Finally, FRDTM is then applied to solve
the corresponding double parametrized FDMM for obtaining the needed solution in terms of
intervals/fuzzy variables.
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Equations (5) and (6) can now be modified in single-parametric form as:[
dα
dtα ψ(t ;γ) , dα

dtα ψ(t ;γ)
]
= −[(0.02γ+ a1 − 0.02), (−0.02γ+ a1 + 0.02)]

[
ψ(t ;γ),ψ(t ;γ)

]
+[(0.02γ+ b1 − 0.02), (−0.02γ+ b1 + 0.02)]

[
ξ(t ;γ), ξ(t ;γ)

][
1− {(0.01γ+ δ− 0.01), (−0.01γ+ δ+ 0.01)

}{
ξ(t ;γ), ξ(t ;γ)

}2]
+ [(0.2γ+ c1 − 0.2), (−0.2γ+ c1 + 0.2)][

dα
dtα ξ(t ;γ) , dα

dtα ξ(t ;γ)
]
= −[(0.02γ+ a2 − 0.02), (−0.02γ+ a2 + 0.02)]

[
ξ(t ;γ), ξ(t ;γ)

]
+ [(0.02γ+ b2 − 0.02), (−0.02γ+ b2 + 0.02)]

[
ψ(t ;γ),ψ(t ;γ)

][
1− {(0.01γ+ δ− 0.01), (−0.01γ+ δ+ 0.01)

}{
ψ(t ;γ),ψ(t ;γ)

}2
]

+ [(0.2γ+ c2 − 0.2), (−0.2γ+ c2 + 0.2)].

(17)

with fuzzy ICs: [
ψ(0 ;γ),ψ(0 ;γ)

]
=
[
ξ(0 ;γ), ξ(0 ;γ)

]
= [0.1γ− 0.1, −0.1γ+ 0.1] (18)

where Equations (17) and (18) are in interval form. One can find out the solution of this interval equations,
but sometimes it is complicated to handle such types of interval equations. Therefore, one may require
the double-parametric form to handle this interval computation. Applying double-parametric form to
Equations (17) and (18), we have:{

β
(

dα
dtα ψ(t ;γ) − dα

dtα ψ(t ;γ)
)
+ dα

dtα ψ(t ;γ)
}
=
{
β(0.04− 0.04γ) + 0.02γ− 0.02 + a1

}{
β
(
ψ(t ;γ) −ψ(t ;γ)

)
+ψ(t ;γ)

}
+
{
β(0.04− 0.04γ) + 0.02γ+ b1 − 0.02

}
{
β
(
ξ(t ;γ) − ξ(t ;γ)

)
+ ξ(t ;γ)

} ⎡⎢⎢⎢⎢⎢⎢⎣ 1− {β(0.02− 0.02γ) + 0.01γ+ δ− 0.01
}{

β
(
ξ(t ;γ) − ξ(t ;γ)

)
+ ξ(t ;γ)

}2
⎤⎥⎥⎥⎥⎥⎥⎦

+
{
β(0.4− 0.4γ) + 0.2γ+ c1 − 0.2

}
.

(19)

{
β
(

dα
dtα ξ(t ;γ) − dα

dtα ξ(t ;γ)
)
+ dα

dtα ξ(t ;γ)
}
=
{
β(0.04− 0.04γ) + 0.02γ− 0.02 + a2

}{
β
(
ξ(t ;γ) − ξ(t ;γ)

)
+ ξ(t ;γ)

}
+
{
β(0.04− 0.04γ) + 0.02γ+ b2 − 0.02

}
{
β
(
ψ(t ;γ) −ψ(t ;γ)

)
+ψ(t ;γ)

} ⎡⎢⎢⎢⎢⎢⎢⎢⎣
1− {β(0.02− 0.02γ) + 0.01γ+ δ− 0.01

}{
β
(
ψ(t ;γ) −ψ(t ;γ)

)
+ψ(t ;γ)

}2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+
{
β(0.4− 0.4γ) + 0.2γ+ c2 − 0.2

}
.

(20)

with fuzzy ICs: {
β
(
ψ(0 ;γ) −ψ(0 ;γ)

)
+ψ(0 ;γ)

}
=
{
β
(
ξ(0 ;γ) − ξ(0 ;γ)

)
+ ξ(0 ;γ)

}
= β(−0.2γ+ 0.2) + (0.1γ− 0.1)

(21)

Let us take: {
β
(

dα
dtα ξ(t ;γ) − dα

dtα ξ(t ;γ)
)
+ dα

dtα ξ(t ;γ)
}
= dα

dtα ξ̃(t ;γ, β){
β
(

dα
dtα ψ(t ;γ) − dα

dtα ψ(t ;γ)
)
+ dα

dtα ψ(t ;γ)
}
= dα

dtα ψ̃(t ;γ, β){
β
(
ψ(t ;γ) −ψ(t ;γ)

)
+ψ(t ;γ)

}
= ψ̃(t ;γ, β){

β
(
ξ(t ;γ) − ξ(t ;γ)

)
+ ξ(t ;γ)

}
= ξ̃(t ;γ, β).{

β(0.04− 0.04γ) + 0.02γ− 0.02 + a1
}
= ã1.{

β(0.04− 0.04γ) + 0.02γ− 0.02 + a2
}
= ã2.
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{
β(0.04− 0.04γ) + 0.02γ+ b1 − 0.02

}
= b̃1.{

β(0.04− 0.04γ) + 0.02γ+ b2 − 0.02
}
= b̃2.{

β(0.4− 0.4γ) + 0.2γ+ c1 − 0.2
}
= c̃1.{

β(0.4− 0.4γ) + 0.2γ+ c2 − 0.2
}
= c̃2.{

β(0.02− 0.02γ) + 0.01γ+ δ− 0.01
}
= δ̃.{

β
(
ψ(0 ;γ) −ψ(0 ;γ)

)
+ψ(0 ;γ)

}
= ψ̃(0 ;γ, β)

and {
β
(
ξ(0 ;γ) − ξ(0 ;γ)

)
+ ξ(0 ;γ)

}
= ξ̃(0 ;γ, β)

Substituting all the above equations in Equations (19)–(21), we get:

dαψ̃(t ;γ,β)
dtα = −ã1ψ̃(t ;γ, β) + b̃1ξ̃(t ;γ, β)

(
1− δ̃ξ̃2(t ;γ, β)

)
+ c̃1.

dαξ̃(t ;γ,β)
dtα = −ã2ξ̃(t ;γ, β) + b̃2ψ̃(t ;γ, β)

(
1− δ̃ψ̃2(t ;γ, β)

)
+ c̃2.

(22)

with ICs:
ψ̃(0 ;γ, β) = ξ̃(0 ;γ, β) = β(−0.2γ+ 0.2) + (0.1γ− 0.1) = η (23)

Solving Equation (22) with the ICs in Equation (23), we have ψ̃1(t ;γ, β) and ψ̃2(t ;γ, β) in terms of γ
and β. To find the lower and upper bounds of the solutions in single parametric form, we have to
substitute β = 0 and β = 1, respectively. Mathematically these are written as:

ψ̃(t ;γ, 0) = ψ(t ;γ), ξ̃(t ;γ, 0) = ξ(t ;γ) and ψ̃(t ;γ, 1) = ψ(t ;γ), ξ̃(t ;γ, 1) = ξ(t ;γ)

Applying FRDTM to both sides of Equation (22), and using Theorems 1 and 2, we have:

Γ(1+kα+α)
Γ(1+kα) ψ̃k+1(γ, β) = −ã1ψ̃k(γ, β) + b̃1ξ̃k(γ, β) − b̃1δ̃

⎛⎜⎜⎜⎜⎝ k∑
i=0

i∑
j=0

ξ̃i− jξ̃ jξ̃k−i

⎞⎟⎟⎟⎟⎠+ c̃1δ(k)

Γ(1+kα+α)
Γ(1+kα) ξ̃k+1(γ, β) = −ã2ξ̃k(γ, β) + b̃2ψ̃k(γ, β) − b̃2δ̃

⎛⎜⎜⎜⎜⎝ k∑
i=0

i∑
j=0

ψ̃i− jψ̃ jψ̃k−i

⎞⎟⎟⎟⎟⎠+ c̃2δ(k)
(24)

Where:

δ(k) =
{

1, k = 0
0, k � 0

Using FRDTM on the IC, we get:

ψ̃0(γ, β) = ξ̃0(γ, β) = η (25)

Using Equation (25) in Equation (24), the following values of ψ̃k and ξ̃k for k = 1, 2, . . . are obtained:

ψ̃1 = −ã1η+ b̃1η− b̃1δ̃η3 + c̃1.
ξ̃1 = −ã2η+ b̃2η− b̃2δ̃η3 + c̃2.

(26)

ψ̃2 = −ã1
(
−ã1η+ b̃1η− b̃1δ̃η3 + c̃1

)
+ b̃1

(
−ã2η+ b̃2η− b̃2δ̃η3 + c̃2

)
− 3̃b1δ̃η2

(
−ã2η+ b̃2η− b̃2δ̃η3 + c̃2

)
.

ξ̃2 = −ã2
(
−ã2η+ b̃2η− b̃2δ̃η3 + c̃2

)
+ b̃2

(
−ã1η+ b̃1η− b̃1δ̃η3 + c̃1

)
− 3̃b1δ̃η2

(
−ã1η+ b̃1η− b̃1δ̃η3 + c̃1

)
.

(27)
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Continuing the above procedure, all the values of
{
ψ̃i, ξ̃i

}∞
i=3

can be calculated. Therefore, according to
FRDTM, the n-term solutions of Equation (22) with Equation (23) are written as:

ψ̃(t ;γ, β) =
n∑

k=0
ψ̃k(γ, β)tαk.

ξ̃(t ;γ, β) =
n∑

k=0
ξ̃k(γ, β)tαk.

(28)

Substituting β = 0 and β = 1, the lower and upper bounds of the solution can be calculated, which,
respectively, are as follows:

ψ̃(t ;γ, 0) =
n∑

k=0
ψ̃k(γ, 0)tαk.

ξ̃(t ;γ, 0) =
n∑

k=0
ξ̃k(γ, 0)tαk.

(29)

and
ψ̃(t ;γ, 1) =

n∑
k=0

ψ̃k(γ, 1)tαk.

ξ̃(t ;γ, 1) =
n∑

k=0
ξ̃k(γ, 1)tαk.

(30)

5. Results and Discussion

In this section, an approximate solution of a fuzzy FDMM using FRDTM has been studied. Various
numerical computations have been carried out by taking different values of parameters involved in
the equation and ICs. In this article, all the figures and tables are included by considering the values
of the parameters as a1 = 0.05, b1 = 0.04, c1 = 0.2, a2 = 0.07, b2 = 0.06, c2 = 0.3 and δ = 0.01 (see
References [16,17]). The achieved outcomes are compared with the solution of Singh et al. [16] and
Goyal et al. [17], which show the validation of the present study. Calculated results are displayed in
terms of plots.

Here, all the numerical calculations have been computed by truncating the infinite series to a
finite number of terms (n = 5). Fuzzy solutions of FDMM are portrayed in Figures 1–6 by changing
time t from 0 to 1 and for different values of α. Next, interval solutions for different values of α have
been illustrated in Figures 7–12 by considering γ− cut 0.4, 0.8 and 1, and varying time t from 0 to 10.
From these Figures 7–12, one may see that the line at γ = 1 is the central line, and all other solutions
are present on both sides of the γ = 1 line.

Figure 1. Lower and upper bounds fuzzy solutions of ψ(t) at α = 1.
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Figure 2. Lower and upper bounds fuzzy solutions of ξ(t) at α = 1.

Figure 3. Lower and upper bounds fuzzy solutions of ψ(t) at α = 0.5.

Figure 4. Lower and upper bounds fuzzy solutions of ξ(t) at α = 0.5.

Figure 5. Lower and upper bounds fuzzy solutions of ψ(t) at α = 0.75.
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Figure 6. Lower and upper bounds fuzzy solutions of ξ(t) at α = 0.75.

Figure 7. Lower and upper bounds interval solutions of ψ(t) at α = 1.

Figure 8. Lower and upper bounds interval solutions of ξ(t) at α = 1.

Figure 9. Lower and upper bounds interval solutions of ψ(t) at α = 0.5.
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Figure 10. Lower and upper bounds interval solutions of ξ(t) at α = 0.5.

Figure 11. Lower and upper bounds interval solutions of ψ(t) at α = 0.75.

Figure 12. Lower and upper bounds interval solutions of ξ(t) at α = 0.75.

Also, it can be seen that the central line (crisp result, i.e., at γ− cut = 1) of Figures 7–12 gradually
decreased with a decrease in α. Alternatively, we may say that a decrease in the values of α decreased
the adoration of man or woman for his/her partner. From Tables 1–6, it is clear that the lower and
upper bounds at different values of α were the same at γ = 1 and the obtained results matched with
the solutions of Singh et al. [16] and Goyal et al. [17].

320



Mathematics 2019, 7, 689

Table 1. Fuzzy and crisp solution of ψ(t) at α = 1 and γ = 1.

t         
No of Approximation 0 0.2 0.4 0.6 0.8 1

n = 1
⌊
ψ,ψ

⌋
[0,0] [0.04,0.03999] [0.08,0.07999] [0.12,0.119999] [0.16,0.159999] [0.20,0.199999]

n = 2
[
ψ,ψ

⌋
[0,0] [0.04,0.04003] [0.0801,0.0802] [0.1203,0.120359] [0.1606,0.16064] [0.2009,0.20099]

n = 3
⌊
ψ,ψ

⌋
[0,0] [0.04,0.04003] [0.0801,0.08015] [0.1203,0.120342] [0.1606,160599] [0.2009,0.20092]

n = 4
⌊
ψ,ψ

⌋
[0,0] [0.04,0.04004] [0.0801,0.08015] [0.1203,0.120342] [0.1606,160597] [0.2009,0.20092]

n = 5
⌊
ψ,ψ

⌋
[0,0] [0.04,0.04004] [0.0801,0.08015] [0.1203,0.120342] [ 0.1606,160597] [0.2009,0.20092]

Refs. [16,17]
Crisp value at

γ = 1
0 0.04 0.0801 0.1203 0.1606 0.2009

Table 2. Fuzzy and crisp solution of ξ(t) at α = 1 and γ = 1.

t         
No of Approximation 0 0.2 0.4 0.6 0.8 1

n = 1
⌊
ξ, ξ

⌋
[0,0] [0.06,0.059999] [0.12,0.1199] [0.18,0.179999] [0.24,0.239999] [0.30,0.29999]

n = 2
⌊
ξ, ξ

⌋
[0,0] [0.0598,0.0598] [0.1192,0.1197] [0.1783,0.178389] [0.2371,0.237189] [0.2954,0.29549]

n = 3
⌊
ξ, ξ

⌋
[0,0] [0.0598,0.0598] [0.1192,0.1192] [0.1784,0.178406] [0.2371,0.237182] [0.2956,0.29562]

n = 4
⌊
ξ, ξ

⌋
[0,0] [0.0598,0.0598] [0.1192,0.1192] [0.1784,0.178405] [0.2371,0.237179] [0.2956,0.29561]

n = 5
⌊
ξ, ξ

⌋
[0,0] [0.0598,0.0598] [0.1192,0.1192] [0.1784,0.178405] [0.2371,0.237179] [0.2956,0.29561]

Refs. [16,17]
Crisp value at

γ = 1
0 0.0598 0.1192 0.1784 0.2371 0.2956

Table 3. Fuzzy and crisp solution of ψ(t) at α = 0.5.

t         
γ-cut 0 0.2 0.4 0.6 0.8 1

γ = 0
⌊
ψ,ψ

⌋
[−0.1,0.1] [−0.991,0.3016] [−0.0985,0.3853] [−0.0980,0.4496] [−0.0975,0.5038] [−0.0970,0.5515]

γ = 0.2
⌊
ψ,ψ

⌋
[−0.08,0.08] [−0.059,0.2616] [−0.0501,0.3370] [−0.0432,0.3949] [−0.0373,0.4437] [−0.0321,0.4867]

γ = 0.4
⌊
ψ,ψ

⌋
[−0.06,0.06] [−0.0189,0.2215] [−0.0017,0.2886] [0.0115,0.3401] [0.0228,0.3836] [0.0328,0.4219]

γ = 0.6
⌊
ψ,ψ

⌋
[−0.04,0.04] [0.0211,0.1814] [0.0467,0.2402] [0.0663,0.2854] [0.0829, 0.3234] [0.0976,0.3570]

γ = 0.8
⌊
ψ,ψ

⌋
[−0.02,0.02] [0.0613,0.1414] [0.0950,0.1918] [0.1211,0.2306] [0.1431,0.2633] [0.1625, 0.2922]

γ = 1
⌊
ψ,ψ

⌋
[0,0] [0.1013,0.1013] [0.1434, 0.1434] [0.1759, 0.1758] [0.2032, 0.2032] [0.2273, 0.2273]

Refs. [16,17]
Crisp value at

γ = 1
0 0.1013 0.1434 0.1759 0.2032 0.2273

Table 4. Fuzzy and crisp solution of ξ(t) at α = 0.5.

t         
γ-cut 0 0.2 0.4 0.6 0.8 1

γ = 0
⌊
ξ, ξ

⌋
[−0.1,0.1] [−0.0500,0.3493] [−0.0299,0.4511] [−0.0146,0.5288] [−0.0019,0.5938] [0.0092,0.6509]

γ = 0.2
⌊
ξ, ξ

⌋
[−0.08,0.08] [−0.0101,0.3094] [0.0182,0.4030] [0.0397,0.4744] [0.0577, 0.5343] [0.0734,0.5867]

γ = 0.4
⌊
ξ, ξ

⌋
[−0.06,0.06] [0.0298,0.2694] [0.0663,0.3549] [0.0940,0.4200] [0.1172,0.4747] [0.1375,0.5226]

γ = 0.6
⌊
ξ, ξ

⌋
[−0.04,0.04] [0.0698,0.2295] [0.1144,0.3068] [0.1484,0.3657] [0.1768,0.4151] [0.2017, 0.4584]

γ = 0.8
⌊
ξ, ξ

⌋
[−0.02,0.02] [0.1097,0.1896] [0.1625,0.2587] [0.2027,0.3114] [0.2364,0.355] [0.2659, 0.3942]

γ = 1
⌊
ξ, ξ

⌋
[0,0] [0.1496,0.1496] [0.2106,0.2106] [0.2570,0.2570] [0.2960,0.2960] [0.3300,0.3300]

Refs. [16,17]
Crisp value at

γ = 1
0 0.1496 0.2106 0.2570 0.2960 0.3300
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Table 5. Fuzzy and crisp solution of ψ(t) at α = 0.75.

t         
γ-cut 0 0.2 0.4 0.6 0.8 1

γ = 0
⌊
ψ,ψ

⌋
[−0.1,0.1] [−0.0995,0.2210] [−0.0991,0.3187] [−0.0986,0.3965] [−0.0980,0.4681] [−0.0974,0.5353]

γ = 0.2
⌊
ψ,ψ

⌋
[−0.08,0.08] [−0.0666,0.1970] [−0.0573,0.2769] [−0.0491,0.3470] [−0.0414,0.4115] [−0.0342,0.4720]

γ = 0.4
⌊
ψ,ψ

⌋
[−0.06,0.06] [−0.0336,0.1640] [−0.0155,0.2351] [0.0005,0.2975] [0.0152,0.3549] [0.0291,0.4087]

γ = 0.6
⌊
ψ,ψ

⌋
[−0.04,0.04] [−0.0007,0.1311] [0.0263,0.1933] [0.0410,0.2480] [0.0718,0.2983] [0.0924,0.3455]

γ = 0.8
⌊
ψ,ψ

⌋
[−0.02,0.02] [0.0323,0.0982] [0.0680,0.1516] [0.0995,0.1985] [0.12843,0.2417] [0.1557,0.2822]

γ = 1
⌊
ψ,ψ

⌋
[0,0] [0.0652,0.0652] [0.1098,0.1098] [0.1490,0.1490] [0.1850,0.1850] [0.2189,0.2189]

Refs. [16,17]
Crisp value at

γ = 1
0 0.0652 0.1098 0.1490 0.1850 0.2189

Table 6. Fuzzy and crisp solution of ξ(t) at α = 0.75.

t         
γ-cut 0 0.2 0.4 0.6 0.8 1

γ = 0
⌊
ξ, ξ

⌋
[−0.1,0.1] [−0.0675,0.2615] [−0.0457,0.3707] [−0.0268,0.4658] [−0.0097,0.5526] [0.0063,0.6336]

γ = 0.2
⌊
ξ, ξ

⌋
[−0.08,0.08] [−0.0346,0.2286] [−0.0040,0.3290] [0.0225,0.4165] [0.0466,0.4963] [0.0690,0.5709]

γ = 0.4
⌊
ξ, ξ

⌋
[−0.06,0.06] [−0.0017,0.1957] [0.0376,0.2874] [0.0717,0.3672] [0.1028,0.4401] [0.1317,0.5081]

γ = 0.6
⌊
ξ, ξ

⌋
[−0.04,0.04] [0.0312,0.1628] [0.0792,0.2457] [0.1210,0.3179] [0.1590,0.3839] [0.1945,0.4454]

γ = 0.8
⌊
ξ, ξ

⌋
[−0.02,0.02] [0.0641,0.1299] [0.1209,0.2041] [0.1702,0.2687] [0.2152,0.3276] [0.2572,0.3827]

γ = 1
⌊
ξ, ξ

⌋
[0,0] [0.0970,0.0970] [0.1625,0.1625] [0.2195, 0.2195] [0.2714,0.2714] [0.3199,0.3199]

Refs. [16,17]
Crisp value at

γ = 1
0 0.097 0.1625 0.2195 0.2714 0.3199

6. Conclusions

In this paper, approximate solutions of a fuzzy FDMM were found with the help of an efficient
method, namely FRDTM. In the procedure, the DPF of fuzzy number was applied. This methodology
was found to be straight forward as it converted FDEs to an advantageous form involving two
parameters that controlled the uncertainty. Attained outcomes were compared with the existing
results and were found to be in agreement. The main benefit of applying this method is that it does
not require any assumption, perturbation, or discretization for solving the governing time-fractional
dynamical model. Also, the computation time was less compared to other techniques. From this study,
it is concluded that the decrease in the values of α decreased romantic relations between the couple.
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1. Introduction

During the past few decades, an active worldwide research on the oscillation and nonoscillation
for dynamic equations on time scales has been carried out by many mathematicians. Some interesting
monographs [1–5] contain many important works in this area. In particular, many researchers have
studied oscillation of second order dynamic equations. For some recent results on the topic, we refer
the reader to the works [6–20] and the references cited therein.

Consider the second order dynamic equation on time scales

[p(t)xΔ(t)]Δ + g(t, x(η(t))) = 0, t ∈ T0 ⊆ T, (1)

where p ∈ Crd(T0,R+), η ∈ Crd(T0,T), g : T0 × R → R is continuous and sgn g(t, x) = sgn x for
t ∈ T0, limt→∞ η(t) = ∞.

Oscillation of the Equation (1) has been studied by Dos̆lý and Hilger [6], Grace, Agarwal, Bohner
and O’Regan [7], Zhou, Ahmad and Alsaedi [20]. A non-oscillatory of Equation (1) is also considered
by Graef and Hill [21], Erbe, Baoguo and Peterson [22]. For more details, we refer the reader to see the
references cited therein. However, to the authors’ knowledge, there are no papers dealing with the
analysis of structure of non-oscillatory solutions and sufficient and necessary conditions for existence
of all kinds of non-oscillatory solutions for dynamic equations on time scales.

Our aim is to give a classification of non-oscillatory solutions to second order superlinear and
sublinear dynamic equations on time scales, which is presented in Section 2. Then, we obtain the
sufficient and necessary conditions for existence of some kinds of non-oscillatory solutions in Section 3.

2. Classification of Non-Oscillatory Solutions

Let T be a time scale (i.e., a closed subset of the real numbers R) with supT = ∞. We assume
throughout that T has the topology that it inherits from the standard topology on the real numbers R.
For t ∈ T, we define the forward jump operator σ : T→ T by σ(t) := inf{s ∈ T : s > t}. Denote by
Crd(T,R) the space consisting of all functions which are right-dense points in T and its left-sided limits
exist (finite) at left-dense points in T. Furthermore, let us put [t0, ∞) := T0 = {t ∈ T : t0 ≤ t < ∞}.

Mathematics 2019, 7, 680; doi:10.3390/math7080680 www.mdpi.com/journal/mathematics325
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Definition 1. If
f (t, x)

x
≥ f (t, y)

y
for x ≥ y > 0 or x ≤ y < 0, t ∈ T0,

then f is said to be superlinear. If

f (t, x)
x

≤ f (t, y)
y

for x ≥ y > 0 or x ≤ y < 0, t ∈ T0,

then f is said to be sublinear.
Next, for convenience, we set

P(t) =
∫ t

t0

1
p(s)

Δs, P̂(t) =
∫ ∞

t

1
p(s)

Δs.

Lemma 1. Assume that
∫ ∞

t0
1

p(s)Δs = ∞ and x(t) is an eventually positive solution of Equation (1).
Then, there exist c1 > 0, c2 > 0 and t1 ∈ T0 such that

xΔ(t) > 0, c1 ≤ x(t) ≤ c2P(t), t ≥ t1.

Proof. Choose t ≥ t0 sufficiently large such that x(η(t)) > 0. Suppose that there exists t1 > t0 such
that xΔ(t1) ≤ 0. Integrating Equation (1) from t1 to t, we get

p(t)xΔ(t)− p(t1)xΔ(t1) +
∫ t

t1

g(s, x(η(s)))Δs = 0. (2)

Dividing Equation (2) by p(t), and then integrating from t2(> t1) to t, we have

x(t)− x(t2)− p(t1)xΔ(t1)
∫ t

t2

1
p(s)

Δs +
∫ t

t2

[
1

p(s)

∫ s

t1

g(θ, x(η(θ)))Δθ]Δs = 0. (3)

Noting that sgn g(θ, x) = sgn x and xΔ(t1) ≤ 0, after the transposition of terms, letting t → ∞,
we get x(t)→ −∞, which is a contradiction. Hence, xΔ(t) > 0. Therefore, there exists c1 > 0 such that
x(t) ≥ c1. By Equation (3), there exists c2 > 0 such that x(t) ≤ c2P(t). The proof is complete.

Lemma 2. Assume that
∫ ∞

t0
1

p(s)Δs < ∞ and x(t) is an eventually positive solution of Equation (1). Then, there
exist c1 > 0, c2 > 0 and t1 ∈ T0 such that

x(t) ≥ −p(t)xΔ(t)P̂(t), c1P̂(t) ≤ x(t) ≤ c2, t ≥ t1.

Proof. Let t ≥ t0 be sufficiently large so that x(η(t)) > 0. Then, it follows from Equation (1) and
sgn g(t, x) = sgn x that (p(t)xΔ(t))Δ < 0, for t ≥ t1. Hence,

p(s)xΔ(s) ≤ p(t)xΔ(t) s > t ≥ t1. (4)

Dividing Equation (4) by p(s), and then integrating from t to t2(> t1), we have

x(t2)− x(t) ≤ p(t)xΔ(t)
∫ t2

t

1
p(s)

Δs.

We now show that limt→∞ x(t) < ∞. If not, let limt→∞ x(t) = ∞. Integrating Equation (1) from t0

to t, we get

p(t)xΔ(t)− p(t0)xΔ(t0) +
∫ t

t0

g(s, x(η(s)))Δs = 0,
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Dividing the above equation by p(t), and then integrating from t0 to t yields

x(t) = x(t0) + P̂(t0)p(t0)xΔ(t0)− P̂(t)p(t0)xΔ(t0)−
∫ t

t0

[
1

p(s)

∫ s

t0

g(θ, x(η(θ)))Δθ

]
Δs.

Hence, we obtain that P̂(t)→ ∞ as t → ∞, which is a contradiction. Consequently, we get

x(t) ≥ −p(t)xΔ(t)
∫ ∞

t

1
p(s)

Δs.

Thus, the first part of the lemma holds. On the other hand, dividing Equation (4) by p(s), and then
integrating from t1 to t, we have

x(t) ≤ x(t1) + p(t1)xΔ(t1)
∫ t

t1

1
p(s)

Δs ≤ x(t1) + |p(t1)xΔ(t1)|P̂(t1) � c2.

Since p(t)xΔ(t) is decreasing, we get

x(t) + p(t1)xΔ(t1)
∫ ∞

t

1
p(s)

Δs ≥ x(t) + p(t)xΔ(t)
∫ ∞

t

1
p(s)

Δs ≥ 0.

If xΔ(t1) < 0, then x(t) ≥ |p(t1)xΔ(t1)|P̂(t) = c1P̂(t). If xΔ(t1) ≥ 0, then we can assume that
xΔ(t) ≥ 0, for t ≥ t1. Otherwise, by choosing t2 = t1, we repeat the above process. Thus, x(t) is
nondecreasing for t ≥ t1. Therefore,

x(t) ≥ x(t1) =
x(t1)

P̂(t1)
P̂(t1) ≥

x(t1)

P̂(t1)
P̂(t) � c1P̂(t).

The proof is complete.

Remark 1. If x(t) is an eventually negative solution of Equation (1), then there are analogous conclusions to
Lemma 1 and Lemma 2, in which we just need to change the sign of constants c1, c2 into negative values and
inverse the sign of inequalities.

Theorem 1. Let S denote the set of all non-oscillatory solutions of Equation (1). Assume that
∫ ∞

t0
1

p(s)Δs = ∞.
Then, any non-oscillatory solutions of Equation (1) must belong to one of the following classes:

A0
c = {x(t) ∈ S : lim

t→∞
x(t) = c �= 0, lim

t→∞
p(t)xΔ(t) = 0},

Ac
∞ = {x(t) ∈ S : lim

t→∞
x(t) = ∞, lim

t→∞
p(t)xΔ(t) = c �= 0},

A0
∞ = {x(t) ∈ S : lim

t→∞
x(t) = ∞, lim

t→∞
p(t)xΔ(t) = 0}.

Proof. Without loss of generality, let x(t) be an eventually positive solution of Equation (1).
By Lemma 1, it is easy to see that either limt→∞ x(t) = c > 0, or limt→∞ x(t) = +∞.

(i) If limt→∞ x(t) = c > 0, then x(t) and p(t)xΔ(t) are eventually positive. From Equation (1),
since (p(t)xΔ(t))Δ ≤ 0, that is, p(t)xΔ(t) is nonincreasing, so limt→∞ p(t)xΔ(t) exists. Now, we will
show that limt→∞ p(t)xΔ(t) = 0. On the contrary, suppose that limt→∞ p(t)xΔ(t) = c′ > 0.
Furthermore,

∫ t
t0

xΔ(s)Δs ≥
∫ t

t0
c′

p(s)Δs. Thus, limt→∞ x(t) = ∞, which leads to a contradiction.

(ii) If limt→∞ x(t) = +∞, then, in view of the fact that limt→∞ p(t)xΔ(t) exists, it follows by
L’Hôpital’s rule that

lim
t→∞

x(t)
P(t)

= lim
t→∞

p(t)xΔ(t).
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On the other hand, by Lemma 1, we get

0 ≤ x(t)
P(t)

≤ c2.

Therefore, either limt→∞ p(t)xΔ(t) = c �= 0 or limt→∞ p(t)xΔ(t) = 0.

Theorem 2. Let S denote the set of all non-oscillatory solutions of Equation (1). Assume that
∫ ∞

t0
1

p(s)Δs < ∞.
Then, any non-oscillatory solutions of Equation (1) must belong to one of the following classes:

Ac = {x(t) ∈ S : lim
t→∞

x(t) = c �= 0},

Ac
0 = {x(t) ∈ S : lim

t→∞
x(t) = 0, lim

t→∞
p(t)xΔ(t) = c �= 0},

A∞
0 = {x(t) ∈ S : lim

t→∞
x(t) = 0, lim

t→∞
p(t)xΔ(t) = ∞}.

Proof. Without loss of generality, let x(t) be an eventually positive solution of Equation (1).
By Equation (1), for sufficiently large t, we have that (p(t)xΔ(t))Δ < 0. Then, p(t)xΔ(t) and xΔ(t)
are monotone and have eventually the same sign (either positive or negative). Firstly, we show that
limt→∞ x(t) = ∞ does not hold. Indeed, if limt→∞ x(t) = ∞, then we get by integrating Equation (1)
from t0 to t that

p(t)xΔ(t)− p(t0)xΔ(t0) +
∫ t

t0

g(s, x(η(s)))Δs = 0.

Dividing the above equation by p(t), and then integrating from t0 to t, we obtain

x(t) = x(t0) + p(t0)xΔ(t0)
∫ t

t0

1
p(θ)

Δθ

−
∫ t

t0

1
p(θ)

∫ θ

t0

g(s, x(η(s)))ΔsΔθ

= x(t0) + p(t0)xΔ(t0)

[ ∫ ∞

t0

1
p(θ)

Δθ −
∫ ∞

t

1
p(θ)

Δθ

]
−

∫ t

t0

1
p(θ)

∫ θ

t0

g(s, x(η(s)))ΔsΔθ.

Therefore, limt→∞
∫ ∞

t
1

p(θ)Δθ = −∞, which is a contradiction. Hence, either limt→∞ x(t) = c �= 0

or limt→∞ x(t) = 0. Since p(t)xΔ(t) has a deterministic sign and it is monotone, this means that either
limt→∞ p(t)xΔ(t) exists or limt→∞ p(t)xΔ(t) = ∞. If limt→∞ x(t) = 0 and limt→∞ p(t)xΔ(t) exists,
then, by L’Hôpital’s rule,

lim
t→∞

x(t)
P̂(t)

= − lim
t→∞

p(t)xΔ(t).

By Lemma 2, either limt→∞ p(t)xΔ(t) = c �= 0, or limt→∞ p(t)xΔ(t) = ∞.

3. Existence of Non-Oscillatory Solutions

In this section, we establish sufficient and necessary conditions for existence of some kinds of
non-oscillatory solutions for Equation (1).

Theorem 3. Assume that
(i)

∫ ∞
t0

1
p(s)Δs = ∞;

(ii) g(t, x) is superlinear or sublinear.
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Then, Equation (1) has a non-oscillatory solution x(t) ∈ A0
c if and only if∫ ∞

t0

P(σ(s))|g(s, k)|Δs < ∞, f or some k �= 0. (5)

Proof. Necessity. Without loss of generality, let x(t) ∈ A0
c be eventually positive. By Lemma 1,

there exist c1 > 0, c2 > 0 and t1 ∈ T0 such that

xΔ(t) > 0, c1 ≤ x(η(t)) ≤ c2, t ≥ t1.

Multiplying Equation (1) by P(σ(t)), and then integrating from t1 to t, we have

P(t)p(t)xΔ(t)− P(t1)p(t1)xΔ(t1)− x(t) + x(t1) +
∫ t

t1

P(σ(s))g(s, x(η(s)))Δs = 0.

Since sgn g(s, x) = sgn x, it follows that the first term of above identity is finite as t tends to
infinity. Therefore, ∫ ∞

t1

P(σ(s))g(s, x(η(s)))Δs < ∞.

If g is superlinear, then

g(t, c1) ≤
c1 g(t, x(η(s)))

x(η(s))
≤ g(t, x(η(s))),

which implies that ∫ ∞

t1

P(σ(s))g(s, c1)Δs < ∞.

Similarly, if g is sublinear, then ∫ ∞

t1

P(σ(s))g(s, c2)Δs < ∞.

Sufficiency. Without loss of generality, we let k > 0. If g is superlinear, then let c = k/2; if g is
sublinear, then let c = k.

Choose T > t0 so large that ∫ ∞

T
P(σ(s))|g(s, c)|Δs <

c
2

.

Let

X =

{
x| x ∈ Crd(T0,R), sup

t∈T0

|x(t)| < ∞

}
.

Endowed on X with the norm ‖x‖ = supt∈T0
|x(t)|, X is a Banach space. We define the set

Ω = {x = x(t) : x ∈ X, c ≤ x(t) ≤ 2c, t ∈ T0} .

Clearly, Ω is a bounded, closed and convex subset of X. Define the map S on Ω as follows:

(Sx)(t) =

⎧⎨⎩ c +
∫ t

T
P(σ(s))g(s, x(η(s)))Δs + P(t)

∫ ∞

t
g(s, x(η(s)))Δs, t ≥ T,

(Sx)(T), t0 ≤ t ≤ T.

Step I. S maps Ω into Ω. Obviously, letting x = x(t) ∈ Ω, we have c ≤ x(t) ≤ 2c for t ≥ T. Then,

c ≤ (Sx)(t) ≤ c +
∫ ∞

T
P(σ(s))g(s, x(η(s)))Δs < c + 2

∫ ∞

T
P(σ(s))g(s, c)Δs ≤ 2c.
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Hence, c ≤ (Sx)(t) ≤ 2c, for t ∈ T0. Therefore, SΩ ⊆ Ω.

Step II. S is completely continuous.

We first claim that S is continuous. Let xn ∈ Ω and ‖xn − x‖ → 0 as n → ∞. Since Ω is a closed
set, x ∈ Ω. For t ≥ T, we get

|(Sxn)(t)− (Sx)(t)| ≤
∫ ∞

T
P(σ(s))|g(s, xn(s))− g(s, x(s))|Δs.

Since |g(s, xn(s))− g(s, x(s))| → 0 as n → ∞, so, by using the Lebesgue dominated convergence
theorem, we conclude that limn→∞ ‖Sxn − Sx‖ = 0, which implies that S is continuous in Ω.

Next, we show that SΩ is relatively compact. It suffices to prove that the family of functions
{Sx : x ∈ Ω} is bounded and uniformly Cauchy, and {Sx : x ∈ Ω} is equi-continuous on [t0, T1]

for any T1 ∈ [t0, ∞). The boundedness is obvious. By Equation (5), for any ε > 0, let T∗ ≥ T be so
large that ∫ ∞

T∗
P(σ(s))g(s, c)Δs <

ε

6
.

Then, for x ∈ Ω, t2 > t1 ≥ T∗, we have

|(Sx)(t2)− (Sx)(t1)|

≤
∣∣∣∣ ∫ t2

t1

P(σ(s))g(s, x(η(s)))Δs
∣∣∣∣

+

∣∣∣∣P(t2)
∫ ∞

t2

g(s, x(η(s)))Δs
∣∣∣∣+ ∣∣∣∣P(t1)

∫ ∞

t1

g(s, x(η(s)))Δs
∣∣∣∣

≤
∣∣∣∣ ∫ t2

t1

P(σ(s))g(s, x(η(s)))Δs
∣∣∣∣

+

∣∣∣∣ ∫ ∞

t2

P(σ(s))g(s, x(η(s)))Δs
∣∣∣∣+ ∣∣∣∣ ∫ ∞

t1

P(σ(s))g(s, x(η(s)))Δs
∣∣∣∣

≤ 3
∣∣∣∣ ∫ ∞

T∗
P(σ(s))g(s, x(η(s)))Δs

∣∣∣∣
≤ 6

∣∣∣∣ ∫ ∞

T∗
P(σ(s))g(s, c)Δs

∣∣∣∣ < ε.

Hence, {Sx : x ∈ Ω} is uniformly Cauchy.
Furthermore, for any T1 ∈ [t0, ∞) and x ∈ Ω with T ≤ t1 < t2 ≤ T1, we get

|(Sx)(t2)− (Sx)(t1)|

≤
∣∣∣∣ ∫ t2

t1

P(σ(s))g(s, x(η(s)))Δs

+[P(t2)− P(t1)]
∫ ∞

t1

g(s, x(η(s)))Δs− P(t2)
∫ t2

t1

g(s, x(η(s)))Δs
∣∣∣∣

≤ c|P(t2)− P(t1)|
P(T)

+ P(T1)
∫ t2

t1

g(s, c)Δs.

Hence, there exists a δ > 0 such that

|(Sx)(t2)− (Sx)(t1)| < ε, when 0 < t2 − t1 < δ.

From the definition of operator S , clearly, we have

|(Sx)(t2)− (Sx)(t1)| = 0 < ε, when t0 ≤ t1 < t2 ≤ T.
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Thus, it follows that {Sx : x ∈ Ω} is equi-continuous on [t0, T1]. Hence, S is completely
continuous. By Schauder’s fixed point theorem, we deduce that there exists a x0 ∈ Ω such that
Sx0 = x0, which is a non-oscillatory solution of Equation (1) with x0 ∈ A0

c . The proof is completed.

Theorem 4. Assume that
(i)

∫ ∞
t0

1
p(s)Δs = ∞;

(ii) g(t, x) is superlinear or sublinear.
Then, Equation (1) has a non-oscillatory solution x(t) ∈ Ac

∞ if and only if∫ ∞

t0

|g(s, kP(η(s))|Δs < ∞, f or some k �= 0. (6)

Proof. Necessity. Let x(t) ∈ Ac
∞ be eventually positive. By Lemma 1 and p(t)xΔ(t) → c as t → ∞,

there exist c1 > 0, c2 > 0 and t1 ∈ T0 such that

xΔ(t) > 0, c1P(η(t)) ≤ x(η(t)) ≤ c2P(η(t)), t ≥ t1.

Integrating Equation (1) from t1 to t, we have

p(t)xΔ(t)− p(t1)xΔ(t1) +
∫ t

t1

g(s, x(η(s)))Δs = 0,

which implies that ∫ ∞

t1

g(s, x(η(s)))Δs < ∞.

If g is superlinear, then

g(s, c1P(η(s))) ≤ c1P(η(s))
x(η(s))

g(s, x(η(s))) ≤ g(s, x(η(s))),

which implies that ∫ ∞

t1

g(s, c1P(η(s)))Δs < ∞.

Similarly, if g is sublinear, then ∫ ∞

t1

g(s, c2P(η(s)))Δs < ∞.

Sufficiency. Without loss of generality, let k > 0. If g is superlinear, then let c = k/2; if g is
sublinear, then let c = k.

Choose T > t0 so large that ∫ ∞

T
|g(s, cP(η(s))|Δs <

c
2

.

Let

X =

{
x| x ∈ Crd(T0,R), sup

t∈T0

|x(t)|
P(t)

< ∞

}
.

Endowed on X with the norm ‖x‖ = supt∈T0

|x(t)|
P(t) , X is a Banach space. Introduce a set

Ω = {x = x(t) : x ∈ X, cP(t) ≤ x(t) ≤ 2cP(t), t ∈ T0} .

Clearly, Ω is a bounded, closed and convex subset of X. Define a map S on Ω by
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(Sx)(t) =

⎧⎨⎩ cP(t) +
∫ t

T
P(σ(s))g(s, x(η(s)))Δs + P(t)

∫ ∞

t
g(s, x(η(s)))Δs, t ≥ T,

(Sx)(T), t0 ≤ t ≤ T.

Step I. S maps Ω into Ω. Let x = x(t) ∈ Ω. Then, cP(t) ≤ x(t) ≤ 2cP(t) for t ≥ T, and

cP(t) ≤ (Sx)(t) ≤ cP(t) + P(t)
∫ ∞

T
g(s, x(η(s)))Δs < P(t)

[
c + 2

∫ ∞

T
g(s, c)Δs

]
≤ 2cP(t).

Hence, SΩ ⊆ Ω.

Step II. S is completely continuous.

We first prove that S is continuous. Let xn ∈ Ω and ‖xn − x‖ → 0 as n → ∞. Since Ω is a closed
set, x ∈ Ω. For t ≥ T, we get

|(Sxn)(t)− (Sx)(t)| ≤ P(t)
∫ ∞

T
|g(s, xn(s))− g(s, x(s))|Δs.

Since |g(s, xn(s))− g(s, x(s))| → 0 as n → ∞, limn→∞ ‖Sxn − Sx‖ = 0, which implies that S is
continuous in Ω.

Next, we show SΩ is relatively compact. By Equation (6), for any ε > 0, let t∗ ≥ T be sufficiently
large such that ∫ ∞

t∗
|g(s, cP(η(s))|Δs <

ε

8
.

Since limt→∞ P(t) = ∞, there exists a T∗ ≥ t∗ such that

1
P(t)

∣∣∣∣ ∫ t∗

T
P(σ(s))g(s, x(η(s))Δs

∣∣∣∣ < ε

8
, for t ≥ T∗.

Hence, for x ∈ Ω, t2 > t1 ≥ T∗, we have

|(P−1Sx)(t2)− (P−1Sx)(t1)|

≤ 1
P(t2)

∣∣∣∣ ∫ t∗

T
P(σ(s))g(s, x(η(s)))Δs

∣∣∣∣+ 1
P(t1)

∣∣∣∣ ∫ t∗

T
P(σ(s))g(s, x(η(s)))Δs

∣∣∣∣
+

∣∣∣∣ 1
P(t2)

∫ t2

t∗
P(σ(s))g(s, x(η(s)))Δs

∣∣∣∣+ ∣∣∣∣ 1
P(t1)

∫ t1

t∗
P(σ(s))g(s, x(η(s)))Δs

∣∣∣∣
+

∣∣∣∣ ∫ t2

t1

g(s, x(η(s)))Δs
∣∣∣∣

≤ ε

4
+ 3

∫ ∞

t∗
|g(s, x(η(s)))|Δ s

≤ ε

4
+ 6

∫ ∞

t∗
|g(s, cP(η(s)))|Δs < ε.

Hence, {Sx : x ∈ Ω} is uniformly Cauchy. Furthermore, for any T1 ∈ [t0, ∞) and x ∈ Ω,
if T ≤ t1 < t2 ≤ T1, then

|(P−1Sx)(t2)− (P−1Sx)(t1)|

=

∣∣∣∣[ 1
P(t2)

− 1
P(t1)

] ∫ t1

T
P(σ(s))g(s, x(η(s)))Δs

+
1

P(t2)

∫ t2

t1

P(σ(s))g(s, x(η(s)))Δs +
∫ t2

t1

g(s, x(η(s)))Δs
∣∣∣∣.
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Hence, there exists a δ > 0 such that

|(P−1Sx)(t2)− (P−1Sx)(t1)| < ε, if 0 < t2 − t1 < δ.

From the definition of operator S , it is clear that

|(P−1Sx)(t2)− (P−1Sx)(t1)| = 0 < ε, if t0 ≤ t1 < t2 ≤ T.

From the foregoing arguments, we deduce that {Sx : x ∈ Ω} is equi-continuous on [t0, T1]. Hence,
S is completely continuous. Consequently, by Schauder’s fixed point theorem, there exists a x0 ∈ Ω
such that Sx0 = x0, which is a non-oscillatory solution of Equation (1) with x0 ∈ Ac

∞. The proof
is completed.

Theorem 5. Assume that
(i)

∫ ∞
t0

1
p(s)Δs < ∞;

(ii) g(t, x) is superlinear or sublinear.
Then, Equation (1) has a non-oscillatory solution x(t) ∈ Ac if and only if∫ ∞

t0

P̂(s)|g(s, k)|Δs < ∞, f or some k �= 0.

Proof. Necessity. Let x(t) ∈ Ac be eventually positive. Firstly, we show that
∫ ∞

t0
P̂(s)|g(s, x(η(t)))|Δs < ∞.

If not, multiplying Equation (1) by P̂(t), and then integrating from t0 to t, we have

P̂(t)p(t)xΔ(t)− P̂(t0)p(t0)xΔ(t0)− x(t) + x(t0) +
∫ t

t0

P̂(s)g(s, x(η(s)))Δs = 0.

Then, limt→∞ P̂(t)p(t)xΔ(t) = −∞. Therefore, there exist t1 ≥ t0, M > 0 such that
P̂(t)p(t)xΔ(t) ≤ −M, for t ≥ t1. Hence,

x(t)− x(t1) ≤ M ln
(

P̂(t)
P̂(t1)

)
.

Since limt→∞ P̂(t) = 0, limt→∞ ln
(

P̂(t)
P̂(t1)

)
= −∞. This is a contradiction.

By Lemma 2, there exist c1 > 0, c2 > 0 and t1 ∈ T0 such that c1 ≤ x(η(t)) ≤ c2, t ≥ t1. Therefore,
if g is superlinear, then ∫ ∞

t1

P̂(t)g(s, c1)Δs < ∞.

If g is sublinear, then ∫ ∞

t1

P̂(t)g(s, c2)Δs < ∞.

Sufficiency. Without loss of generality, we let k > 0. If g is superlinear, then let c = k/2; if g is
sublinear, then let c = k.

Let T > t0 be large so that ∫ ∞

T
P̂(η(s))|g(s, c)|Δs <

c
2

.

Let

X =

{
x| x ∈ Crd(T0,R), sup

t∈T0

|x(t)| < ∞

}
.

Endowed on X with the norm ‖x‖ = supt∈T0
|x(t)|, X is a Banach space. Define the set

Ω = {x = x(t) : x ∈ X, c ≤ x(t) ≤ 2c, t ∈ T0} .
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Define a map S on Ω as follows:

(Sx)(t) =

⎧⎨⎩ c + P̂(t)
∫ t

T
g(s, x(η(s)))Δs +

∫ ∞

t
P̂(s)g(s, x(η(s)))Δs, t ≥ T,

(Sx)(T), t0 ≤ t ≤ T.

Similarly to the previous process, we can show that S has a fixed point x0, which is
a non-oscillatory solution of Equation (1) with x0 ∈ Ac. The proof is complete.

Theorem 6. Assume that
(i)

∫ ∞
t0

1
p(s)Δs < ∞;

(ii) g(t, x) is superlinear or sublinear.
Then, Equation (1) has a non-oscillatory solution x(t) ∈ Ac

0 if and only if∫ ∞

t0

|g(s, kP̂(η(s))|Δs < ∞, f or some k �= 0.

Proof. Necessity. Let x(t) ∈ Ac
0 be eventually positive. Then, limt→∞ x(t) = 0, limt→∞

x(t)
P̂(t)

= c �= 0.

Assume that c > 0. Then, there exist c1 > 0, c2 > 0 and t1 ∈ T0 such that c1P̂(η(t)) ≤ x(η(t)) ≤
c2P̂(η(t)), t ≥ t1. By Lemma 2, we have that x(t) ≥ −p(t)xΔ(t)P̂(t), t ≥ t1. Thus, −p(t)xΔ(t) ≤
c2, t ≥ t1. On the other hand,∫ t

t1

g(s, x(η(s)))Δs = p(t1)xΔ(t1)− p(t)xΔ(t) ≤ |p(t1)xΔ(t1)|+ c2,

therefore ∫ t

t1

g(s, x(η(s)))Δs < ∞.

If g is superlinear, then ∫ ∞

t1

g(s, c1P̂(η(s)))Δs < ∞.

If g is sublinear, then ∫ ∞

t1

g(s, c2P̂(η(s)))Δs < ∞.

Sufficiency. Without loss of generality, we let k > 0. If g is superlinear, then let c = k/2; if g is
sublinear, then let c = k.

Let T > t0 be large so that ∫ ∞

T
P̂(η(s))|g(s, c)|Δs <

c
2

.

Let

X =

{
x| x ∈ Crd(T0,R), sup

t∈T0

|x(t)|
P̂(t)

< ∞

}
.

Endowed on X with the norm ‖x‖ = supt∈T0

|x(t)|
P̂(t)

, X is a Banach space. Define the set

Ω =
{

x = x(t) : x ∈ X, cP̂(t) ≤ x(t) ≤ 2cP̂(t), t ∈ T0
}

.

Define a map S on Ω as follows

(Sx)(t) =

⎧⎨⎩ cP̂(t) + P̂(t)
∫ t

T
g(s, x(η(s)))Δs +

∫ ∞

t
P̂(s)g(s, x(η(s)))Δs, t ≥ T,

(Sx)(T), t0 ≤ t ≤ T.
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Using the earlier arguments, one can show that Equation (1) has a non-oscillatory solution in Ac
0.

The proof is complete.

4. Conclusions

In the current paper, the structure of non-oscillatory solutions for a class of second order dynamic
equations on time scales is considered. Under the differentiable assumptions, we first establish two
classifications of non-oscillatory solutions. Forthermore, by using the assumptions of superlinear and
sublinear function, we obtain four sufficient and necessary conditions for existence of some kinds of
non-oscillatory solutions.
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