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This Special Issue consists of a total of 14 accepted submissions (including several invited feature
articles) to the Special Issue of the MDPI’s journal, Symmetry on the general subject-area of “Integral
Transformations, Operational Calculus and Their Applications” from different parts of the world.

The present Special Issue contains the invited, accepted and published submissions (see [1-14])
to a Special Issue of the MDPI’s journal, Symimetry, on the remarkably wide subject-area of “Integral
Transformations, Operational Calculus and Their Applications”. Many successful predecessors of
this Special Issue happen to be the Special Issues of the MDPI’s journal, Axioms, on the subject-areas
of “g-Series and Related Topics in Special Functions and Analytic Number Theory”, “Mathematical
Analysis and Applications" and “Mathematical Analysis and Applications II", the Special Issues of
Mathematics, on the subject-areas of “Recent Advances in Fractional Calculus and Its Applications”,
“Recent Developments in the Theory and Applications of Fractional Calculus”, “Operators of Fractional
Calculus and Their Applications” and “Fractional-Order Integral and Derivative Operators and Their
Applications”, and indeed also the Special Issue of Symmetry itself, on the subject-area of “Integral
Transforms and Operational Calculus”. In fact, encouraged by the noteworthy successes of this series
of Special Issues, as well as of (for example) the two Special Issues of Axioms, on the subject-areas
of “Mathematical Analysis and Applications” and “Mathematical Analysis and Applications II”,
Axioms has already started the publication of a Topical Collection, entitled “Mathematical Analysis and
Applications” (Collection Editor: H. M. Srivastava), with an open submission deadline. The interested
reader should refer to and read the book format of many of these Special Issues (Guest Editor: H. M.
Srivastava), which are cited below (see [15-18]).

In recent years, various families of fractional-order integral and derivative operators, such as
those named after Riemann-Liouville, Weyl, Hadamard, Griinwald-Letnikov, Riesz, Erdélyi-Kober,
Liouville-Caputo and so on, have been found to be remarkably important and fruitful, due mainly to
their demonstrated applications in numerous seemingly diverse and widespread areas of the mathematical,
physical, chemical, engineering and statistical sciences. Many of these fractional-order operators provide
interesting and potentially useful tools for solving ordinary and partial differential equations, as well as
integral, differintegral and integro-differential equations; fractional-calculus analogues and extensions of
each of these equations; and various other problems involving special functions of mathematical physics
and applied mathematics, as well as their extensions and generalizations in one or more variables (see, for
details, a widely- and extensively-cited monograph [19]).

As it is known fairly well, investigations involving the theory and applications of integral
transformations and operational calculus are remarkably wide-spread in many diverse areas of
the mathematical, physical, chemical, engineering and statistical sciences. In this Special Issue,
we invited and welcome review, expository and original research articles dealing with the recent
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state-of-the-art advances on the topics of integral transformations and operational calculus as well as
their multidisciplinary applications, together with some relevance to the aspect of symmetry.

The suggested topics of interest for the call of papers for this Special Issue included, but were not
limited to, the following keywords:

e  Integral Transformations and Integral Equations as well as Other Related Operators Including
Their Symmetry Properties and Characteristics

e  Applications Involving Mathematical (or Higher Transcendental) Functions Including Their
Symmetry Properties and Characteristics

e  Applications Involving Fractional-Order Differential and Differintegral Equations and Their
Associated Symmetry
Applications Involving Symmetrical Aspect of Geometric Function Theory of Complex Analysis
Applications Involving g-Series and g-Polynomials and Their Associated Symmetry
Applications Involving Special Functions of Mathematical Physics and Applied Mathematics and
Their Symmetrical Aspect

e  Applications Involving Analytic Number Theory and Symmetry

Several well-established scientific research journals, which are published by such publishers as
(for example) Elsevier Science Publishers, John Wiley and Sons, Hindawi Publishing Corporation,
Springer, De Gruyter, MDPI and other publishing houses, have published and continue to publish a
number of Special Issues of many of their journals on recent advances on different aspects, especially
of the subject of one of the above-mentioned keywords, “Applications Involving Fractional-Order
Differential and Differintegral Equations”. Many widely-attended international conferences, too,
continue to be successfully organized and held world-wide ever since the very first one on this
particular subject-area in U.S.A. in the year 1974. In this connection, it seems to be worthwhile
to refer the interested readers of this Special Issue to a recently-published survey-cum-expository
review article (see [20]) which presented a brief elementary and introductory overview of the theory
of the integral and derivative operators of fractional calculus and their applications especially in
developing solutions of certain interesting families of ordinary and partial fractional “differintegral”
equations. Furthermore, in connection with such works as (for example) [4,7], and indeed also many
papers included in the published volumes (see [15-18]), a recent survey-cum-expository review article
(see [21]) will be potentially useful in order to motivate further researches and developments involving
a wide variety of operators of basic (or g-) calculus and fractional g-calculus and their widespread
applications in Geometric Function Theory of Complex Analysis. In the same survey-cum-expository
review article (see [21]), it is also pointed out as to how known results for the g-calculus can easily
(and possibly trivially) be translated into the corresponding results for the so-called (p, q)-calculus
(with 0 < g < p < 1) by applying some obvious parametric and argument variations, the additional
parameter p being redundant (or superfluous).

Finally, I take this opportunity to thank all of the participating authors, and the referees and
the peer-reviewers, for their invaluable contributions toward the remarkable success of each of the
above-mentioned Special Issues. I do also greatly appreciate the editorial and managerial help and
assistance provided efficiently and generously by Mr. Philip Li, Ms. Linda Cui and Ms. Grace Wang,
and also many of their colleagues and associates in the Editorial Office of Symmetry.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Let (X, M, ) be a o-finite measure space and denote by P(X) the u-measurable
functions f: X — [0,00], f < co y ae. Suppose K: X x X — [0,c0) is ;t X Y- measurable and define
the mutually transposed operators T and T’ on P(X) by (Tf)(x) = [y K( y)du(y) and
(T'9)(y) = [x K(x,y)g(x)du(x), f,g € P(X),x,y € X. Our mterest is in 1nequaht1es involving
a ﬁxed (Weight) function w 6 P(X) and an index p € (1,00) such that: (*):
Jxlw (0)]Pdp(x) < C [y[w(y)f(y)]Pdu(y). The constant C > 1 is to be independent of
f 6 P( ) We w1sh to construct all w for which (*) holds. Considerations concerning
Schur’s Lemma ensure that every such w is within constant multiples of expressions of
the form ¢1/p 1¢1/p, where ¢1,¢p € P(X) satisfy Ty < Ci¢r and T'¢p < Cogy.
Our fundamental result shows that the ¢ and ¢, above are within constant multiples of (**):
1+ E-ITWy; and ¢ + Y E~IT'V) p,respectively; here iy, g € P(X), E > 1and T, T'()
are the jth iterates of T and T'. This result is explored in the context of Poisson, Bessel and
Gauss-Weierstrass means and of Hardy averaging operators. All but the Hardy averaging operators
are defined through symmetric kernels K(x, y) = K(y, x), so that T" = T. This means that only the
first series in (**) needs to be studied.

Keywords: weights; positive integral operators; convolution operators

MSC: 2000 Primary 47B34; Secondary 27D10

1. Introduction

Consider a o-finite measure space (X, M, u) and a positive integral operator T defined through a
nonnegative kernel K = K(x,y) which is y x y measurable on X x X; that s, T is given on the class,
P(X), of p-measurable functions f : X — [0, 0], f < ooyt ae, by

(THE) = [ Kxy)f ) dpy), x € X.
The transpose, T', of T at g € P(X) is
(T9)w) = [ K(xy)g(@)du(x), y € X;

it satisfies

'/).{ngdV = /)'(fT’gd% f.g € P(X).

Our focus will be on inequalities of the form

J Tfldp <8 [ for)”dn, 0

Symmetry 2020, 12, 1004; doi:10.3390/sym12061004 5 www.mdpi.com/journal /symmetry
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with the index p fixed in (1, c0) and B > 0 independent of f € P(X); here, u,v € P(X),0 < u,v < o,
i ae, are so-called weights.

The equivalence need only be proved in one direction. Suppose, then, (1) holds and ¢ € P(x)
satisfies [y [u~1g]? dy < co. Then

2=

{ /X ' T'g)” du} " =sup /X fo ' T'gdp,
the supremum being take over f € P(X) with [, fP du < 1. But, Fubini’s Theorem ensures

J fo g = [ gT(fo ) dn

= [T (o) dp
<[ a)” o [oropan)’

< {B”/ / [ulg)” dy} .
X
Further, (1) holds if and only if the dual inequality

o T d <BP’/ g dy, p = L, 2
/X[v git dp < B | =gl dp ' = 2 @

does.

Inequality (1) has been studied for various operators T in such papers as [1-9].

In this paper, we are interested in constructing weights u and v for which (1) holds. We restrict
attention the case u = v = w; the general case will be investigated in the future. Our approach is based
on the observation that, implicit in a proof of the converse of Schur’s lemma, given in [10], is a method
for constructing w. An interesting application of Schur’s lemma itself to weighted norm inequalities is
given in Christ [11].

In Section 2, we prove a number of general results the first of which is the following one.

Theorem 1. Let (X, M, pt) be a o-finite measure space with u,v € P(X),0 < u, v < co, u ae. Suppose that T
is a positive integral operator on P(X) with transpose T'. Then, for fixed p, 1 < p < oo, one has (1), with C > 1
independent of f € P(X), if and only if them exists a function ¢ € P(X) and a constant C > 1 for which

T(v™'¢"") < Cu=¢" and T'(ug?) < Cog?. 3

In this case, By, the smallest B possible in (1) and Co, the smallest possible C so that (3) holds for
some ¢, satisfy

By < Co = max {Bf,Bf'] ,

where B| = B[l)/p + Bé/p/.
Theorem 1 has the following consequence.

Corollary 1. Under the condition of Theorem 1, (1) holds for u = v = w if and only if w = cp;]/p/(p;/p,
where ¢y, po are functions in P(X) satisfying

Ty < Cy and T'¢y < Cepa, )
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for some C > 1.

Though it is often possible to work with the inequalities (4) directly (see Remark 1) it is
important to have a general method to construct the functions ¢; and ¢,. This method is given
in our principal result.

Theorem 2. Suppose X,y and T are as in Theorem 1. Let p€P(X). Then, ¢ satisfies an inequality of the form
T¢ < Ci¢p, C1 > 0 constant, (5)

if and only if there is a constant C > 1 such that
Clp<y+Y G 'Thy < Cy, 6)
j=1

where € P(X), Cy > 1is constant and TV = To T---o T, j times.

The kernels of operator of the form
i T and i ciT'0)
j=1 j=1

will be called the weight generating kernels of T. In Sections 3-6 these kernels will be calculated
for particular T. All but the Hardy operators considered in Section 6 operate on the class P(R") of
nonnegative, Lebesgue-measurable functions on R".

The operators last referred to are, in fact, convolution operators

(Tf)(x) = (kx () = [ Kx=y)f()dy, x € R,

with even integrable kernels k, / k(y)dy = 1. In particular, the kernel k(x — y) is symmetric,

n

so T, = Tj, whence only the first series in (**) need be considered.
Further, the convolution kernels are part of an approximate identity {k; };~o on

LP(R") = {fLeb. meas: {/R \f|’”}1/p < 00},

see [12]. Thus, it becomes of interest to characterize the weights w for which {k;},~ is an approximate
identity on

. 1/p
LF(w) = L (R",w) = {f Leb. meas: | f||p,0 = {/Rn |wf\l"} < oo};

thatis k¢ * f € LP(w) and
”kt *f_pr,w =0

forall f € LP(w). Itis a consequence of the Banach-Steinhaus Theorem that this will be so if and only if

lim
t—0+

sup [[ki]| < o
0<t<a
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for some fixed a > 0, where ||k;|| denotes the operator norm of Ty, on LP(w). We remark here that the
operators in Sections 3-5 are bounded on L? (w) and, indeed, form part of an approximate identity on
LP(w), if w satisfies the A, condition, namely,

1 1 ) 1/}7’ ;o p
S“P{@/Q“”’] {@/Q“’ ”} R ¥ Z

the supremum being taken over all cubes Q in R whose sides are parallel to the coordinate axes with
o0 > |Q| = Lebesgue measure of Q. See ([13], p. 62) and [14].

Finally, all the convolution operators are part of a convolution semigroup (ki)s~o;
thatis k;(x) = t "k (¥) and ky, * ki, = ki 41,, b1, t2 > 0. The approximate identity result can thus
be interpreted as the continuity of the semigroup.

We conclude the introduction with some remarks on terminology and notation. The fact that T is
bounded on L? (w) if and only if T’ is bounded on LP (w™1) is called the principle of duality or, simply,
duality. Two functions f, g € P(X) are said to be equivalent if a constant C > 1 exists for which

Clg<f<cCs ®)

We indicate this by f =~ g, with the understanding that C is independent of all parameters
appearing, (except dimension) unless otherwise stated. If only one of the inequalities in (8) holds,
we use the notation f > g or f < g, as appropriate. Lastly, a convolution operator and its kernel are
frequently denoted by the same symbol.

2. General Results

In this section we give the proofs of the results stated in the Introduction, together with
some remarks.

Proof of Theorem 1. The conditions (3) are, respectively, equivalent to
T LN u ') — LY (o~ ¢")
e, T:L®(0p ") = L=(up"")

and
T: LY (v¢P) — L' (ugP).

It will suffice to deal with the first condition in (3). So, Fubini’s Theorem yields
[t/ Trdu<c [ umg! fay
X X
equivalent to
J T an<c [ futr an, £ e p(x),
X X

and hence to
T(v %) < Cu~'¢¥,

since f is arbitrary.
According to the main result of [15], then,

T-LP <(U¢p)l/p(v¢’P/)l/P/> S LP ((uqﬂ’)l/p(u(p*l’/)l/l’/)

ie, T:LP(v) — LP(u), withnorm < C, so that (1) holds with B < C.
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Suppose now (1) holds. Following [10], choose ¢ € P(X) with
PP gy = 1.
/Xg K
/117
Let T1g = {uT(v’lgP )} ¥ and Tog = [v”T/(ugP)}l/p.Set
S=Ti+T,, A=By+eandp =) ATTsVg.
j=0

As in [10], conclude Ti¢ < A¢ and Trp < A¢, so that (2) is satisfied for Cy < [Bf, B’fl] ,

where B] = Bl/p + Bl/p O

Proof of Corollary 1. Given (1), one has (2) and Theorem 1 then implies (3), with T replaced by T,
namely foru =v = w,

T(w’lqﬂ”/) < Cw’l(p”/ and T(w¢?) < Cwgp?,

whence the inequalities (4) are satisfied by ¢; = w¢? and ¢ = willpp/. Conversely, given (4), and taking
U=v=w= ¢1/P 1¢1/p, one readily obtains (3), with ¢ = (p1,)V/7". O

Proof of Theorem 2. Clearly, if (6) holds,

T$ < C

Ty+ Y cszU“)zp] =CG, Y. G,/ Ty < C2Cagp.
j=1 j=1

Suppose ¢ € P(X) satisfies (5). Then,
g <Clgr, j=12,....

It only remains to observe that

C > j C
(1+€1> ¢<¢+ch+s ) IT0g < ¢ ;<Cl+£)¢§<1+§>¢,

j=

foranye > 0. O

Remark 1. The class of functions ¢ determined by the weight-generating operators Z cith) effectively
,,

remains the same as C increases. Thus, suppose 0 < C1 < Ca, ¢ € P(X) and ¢ = p + Z C;]T(j)tp. Then, ¢ is
j=1

equivalent to  + Y C;jT(j)tp, since
j=1

¢§¢+ic2fT<f>¢=iczficlkTU*k)wzi( Y ¢fey > Ty

j=1 j=0 k=0 1=0 \j+h=I

_oo 00 g ;
71;'E<Cz> Vy= CZ_Clzc e

_ G
B Cz—Cl(P'

This means that in dealing with weight-generating operators we need only consider C > 1.
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We conclude this section with the following observations on approximate identities in weighted
Lebesgue spaces.

Remark 2. Suppose {kt}1~¢ is an approximate identity in LP(R"),1 < p < co. If the inequalities (4) involving
¢1 and ¢y can be shown to hold for Ty, t € (0, a] for some a > 0, with C > 1 independent of such t, then {k; };~
will also be an approximate identity in LP(w) = L (R", w), w = qbl_l/p qbé/p.

Example 1. Let k = k(|x|) be any bounded, nonnegative radial function on R™ which is a decreasing function

of |x| and suppose / k(x)dx = 1. It is well-known, see ([13], p. 63), that k¢(x) =t "k(x/t), x € R", is an
R”

approximate identity in LP (R"),1 < p < oo.

The weight w(x) = 14 |x| /(1 +1log™(1/|x]))~}, for fixed p, 1 < p < oo, has the interesting
properly that Ty, : L (w) — LP(w) for all t > 0, yet {k;};0 is never an approximate identity in L7 (w).

To obtain the boundedness assertion take ¢; (x) = 1 and ¢ (x) = 1+ |x| " (1 +1og™(1/]x])) "
in Corollary 1.

Arguments similar to those in [6] show that if {k; };~( is an approximate identity in L¥ (w), then w
must satisfy the A, condition for all cubes Q will sides parallel to the coordinate axes and |Q| < a for
some a > 0. However, the weight w does not have this property.

3. The Poisson Integral Operators

We recall that for t > 0 and y € R", the Poisson kernel, P, is defined by
Pi(y) = cat (P + [y|?)~"HV/2, ¢ = 7= D20((n 4 1) /2).

Theorem 3. The weight-generating kernels for Py, t > 0, are equivalent to P = Py. Indeed, given € P(R"),
with Py < coa.e.,

Cr'Py < Y. CPyyp < CiPy, ©)
j=i
where C > 1, C; = Cmax[t 1, "] and C} = C; Y, ™/ max(jt, (jt) "].
=i

Proof. Observe that by the semigroup property P,(j ) — P]-,, ji=12,....
Also,
min[t, t"|P < P, < max[t, t~"|P.

Now, suppose
Y+ Y CIPypisin P(R"),
j=1
with C > 1. Then,

Py < CiPap+ Y CIPqyp < Cr Y CIPyp < G Y C - max(jt, (j) "Iy
j=1 j=1 j=1

< CiPy.
O

As stated in Section 1, w € A, is sufficient for {P;}+~ to be an approximate identify in LT (w).
Moreover, w € Ap is also necessary for this in the periodic case. See [6,8,16]. It is perhaps surprising
then that the class of approximate identity weights is much larger than A, as is seen in the next result.

10
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Proposition 1. Let wy(x) = [1+ |x|]%, « € R. Then, for any t > 0, P; is bounded on LP (w,) if any only if

—% -l<a< % + 1. Moreover, on that range of « one has

Jim [P f = i, =0, (10)
forall f € LP(wy). The set of « for which w, € A}, however, is

n n
——<a< .
p P

Proof. We omit the easy proof of the assertion concerning the a for which w, € Ap.
To obtain the “if” part of the other assertion we will show

P x wp < Cwﬁ, t>0, (11)
ifand only if —n —1 < B < 1, with C > 1 independent of both s and ¢, if t € (0,1). Corollary 1 and

Remark 2, then yield (10) when f% —l<a< & +1.
Consider, then, fixed x € R" and 0 < t < 1. We have

(Prxwg)(x) = </|y\§‘%‘ +~/%<m<z\x| +-/Mzzm) Prly)wp(s = 1) dy

=L+ DL+I5
Now, i
I; < wg(x) / N Pi(y) dy < Cwg(x),
Jlyl<y
forall B € R.
Again,
b ch(x) [ (T lx—y)Pdy > cP(x) > el ",
[x—y|<1

so we require § > n — 1, if (11) is to hold.
Moreover, forx € R"and 0 < t < 1,

I = Pi(x) er!?ﬂx\gl + |x|’5+"7qx\>1]

~ (1F)" t LAY

~ ( ; ) Xlxj<1+ ‘X‘X:gmgﬁr |x|\x\ Xx|>1
< Cwg(x).

Next, for x| > 1

I; = Pi(y)wg(y)d jt/ —n-1+Bg
oo VB S ] Y

which requires f < 1 to have I3 < co. In that case

Iz < / pnm Bl g < \x\ﬁfl < w/;(x).
r>2|x|

That P; is not bounded on L (w,) when a0 < f% — 1 can be seen by noting that, for appropriate
¢ > 0, the function f(x) = |x|[log(1+ |x|)]~(*9/P isin LP (w,), while P; f = co. Therange & > n/p+1
is then ruled out by duality. [

11
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4. The Bessel Potential Operators

The Bessel kernel, G, « > 0, can be defined explicitly by

Ga(y) = Caly|“ 2Ky 12(ly]), v € R,
where K, is the modified Bessel function of the third kind and
C:;1 _ 7.[71/22(n+0472)r(a/2)_

It is, however, more readily recognized by its Fourier transformation

Cal2) = (2r) 21+ |22

Using the latter formula one picks out the special cases G,,_1 and G,,+1 which, except for constant
multiplies, are, respectively, |y| ~'e~ ¥l and the Picard kernel e~ ¥/,

The semigroup properly G, * Gg = Gy holds and so the jth convolution iterate has kernel Gj,.
Also, / Gu(y)dy =1.

RN
We use the integral representation

24t

Galy) = gan () = (47) /20 (w/2)71 [~ e /a1 /n-212E
0

(12)
to show in Lemma 1 below that known estimates [17], are in fact, sharp.

Lemma 1. Suppose n,a > 0,n € Z. Set m = n — a and define ="+ to be r ™, log . (%) or 1, according as
m > 0,m = 0orm < 0. Then, a constant C > 1 exists, depending on n, such that

C ™t <gun(r) <Cr ™, 0<r<1,
C*lrf(mwtl)/Zefr < ga,n(r) < Crf(m+l)/2€fr’ r>1. (13)

Proof. Asin [17], p. 296

Sun(r) = Cae ™ (a/7)"/? /100 e~ 3(r+z-2) [x’"/z + x*’“/z] d?x

with C, = (471)~"/2T(a/2)~". Clearly,

0 1 1 2
San(r) mr"”/”e_’/1 e z(ﬁ ﬁ) x|m‘/2d7x. (14)

2 \/T
Lety:\/}fl/ﬁ,sothatxZZer + (21+y) 4

and y2 when y > 2. The integral in (14) is thus equivalent to

which is essentially 1, when 0 < y < 2

V2, ©r2 i d
—3Y°g / —5y2m 2V 15
/0 ¢ y+. \/Ee Y y 19)
Next, let y = 1/2z/t to get (15) equivalent to

_1/2/’6_2£+/‘°"8—z2|m\/zdj_ 16
R A AL - (16)

12
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Using L'Hospital’s Rule and the asymptotic formula for the incomplete gamma function we find
that the expression (16) is effectively »~1"!/2 in (0,0) and r~1/2 in (1, 00). This completes the proof
when m # 0. The case m = 0 is left to the reader. [

Remark 3. For p € (1,00), let W, denote the class of weights w for which G, is bounded on LP(w).
Then Wy, increases with a and Wy,p = Wy, ,, whenever a, B > n. These facts follow from the semigroup
property, the estimates (13) and the inequality G, < CG}Q’t, G,iz which holds for ay = (1 — t)a, + tay,
provided 0 < a1 < ap, 0 <t < 1and either ay < n or a1 > n. However,no two classes Wy, are identical, as is
shown in the following proposition.

Proposition 2. Fix p € (1,00) and a, B € (0,n), with a < B/p. Then, there is a weight w € Wg , — Wy p.
Proof. Let ¢, (x) =1+ Y |x — 47577 xp, (x), where
k=1

E = {xeR" Dx—ak < %4k}.

One readily shows Gg¢, < C¢,, if 0 < v < B. Hence, taking w,, = (sz/p/ we have w, € Wy ,.
For 0 < § < n, L”(w.,,) contains the function

fx) =Y |x— x| Pxg,
=

where
=1} [g gkt +%.4k] —7/4k+2

and
Fk:{xeR”:|x—xk|<%~4k+l}.

We seek conditions on r and § so that w, & Wy, .
Now, G f = 4¥19/P=8 on E;, so

00
klo— _
IGaf I, = Y 4H10707F771 — oo,
k=1

if § —ap + v —n > 0. By taking v sufficiently close to  and ¢ sufficiently closed to 7, this condition
can be met. [

Theorem 4. Suppose n,a,m and m. are as in Lemma 1. Fix C > 1 and set k = [1 — C~/7|Y/2. Then,
the weight-generating kernel for G, corresponding to C is equivalent to

lyl"™, lyl <1,

and
[|y|7(m+1)/2+ |y‘(1fn)/2] efk\y|/ ‘y‘ > 1.

In particular, for & € (0,2], the kernel is equivalent to Gy (ky) + Ga(ky).

Proof. In view of (12), the kernel is given by

(4r)~"/2 /me*<'2/4>fe*1/ft’z*’*15(t) dt,
0

13
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where r = |y| and
0 [C’lt’”‘/z}j
S(t)=) w7
® = I'(ju/2)

When C~1+%/2 < 1, thatis, t > C2/% = ¢, the sum S(t) is, effectively, +7%/2 ag is seen from
the inequalities
C-1p-«/2 C-1p-«/2 { o0 1 }

rw/2) == Tan +];1"(ja/2)

Here, we have used T'(x +y) > T'(x)I'(y) when x,y > 0.
For t < ¢, the asymptotic expression
t

—‘:tl/letl/ll+0t’1 ,ast — oo,
L7 [1+0( )]

e

given in [8], yields
S(t) =t et t<c.

Thus, the kernel is, essentially,

/’C o P/t (e=1)/ty(n/2)-2 gy | /'°° e—(r2/4)te—1/tt(n—a)/2?. 17)
0 c

Now, the first term in (17) is bounded on 0 < r < 1, while the second term is equivalent to G, for
all » > 0. It only remains to show the first integral, I, satisfies I ~ p(1=n)/2=kr o1 4+ > 1. To this end set
s = rt/2in 1 to obtain

cr/2 2
[~ 21 2=k / e TIVEK/VE 2 gh-2 4o
Jo

Next, lety = /s — k/+/s so that
[ =~ (2—n)/2 ,—kr B(r) —ry?/2 n=311 -1 d
~r ey fWIT L+ yf(y) T T dy,

where B(r) = Ver/2 —ky2/crand f(y) = Vy>+ 4l = /s + %
Finally, take z = \/r/2y to get

[~ 1=1)/2p—kr /_”:) - [\/27” L f ( 2/rz)] n-3
{1 + \/2721‘ (\/T/rz> 71} dz,
with y(r) = y/cr/2 — k/+/c. We have now just to observe that when z € Rand r > 1
0< 1+\/272f(\/272>71 <2

while v/2/7z + f (v/2/rz) lies between 2k'/2 and v/222 +4k. O

Typical of G, weights are the exponential functions ef*, —1 < g < 1.

Proposition 3. Suppose « € (0,1/2) and p € (1,00). Set wg(f) = ePll, x € R™. Then, G, is bounded on
LP(wg) if and only if —1 < B < 1. Moreover, on this range of B, one has
|G * f _pr,wp =0

lim
a—0+

14
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forall f € LP(wg).
Proof. Fix p € (—1,1). We show C > 1 exists, independent of « € (0,1/2), such that
(Gawg)(x) < Cwg(x), x € R".

The “if” part then follows by Remark 2.
Using the simple inequalities |x + y| < |x| + |y| when 8 > 0 and |x — y| > |x| — |y| when B < 0
we obtain

(Gowp)(x) < wp(x) [ 141Gy (y) dy.

But, the proof of Lemma 1 shows

/‘ e\ﬁ\\ylcu(y)dyg/ BV |y gy + ellBI=1lvl |y =51 gy
n lyl<1 lyl>1

~1,

when a € (0,1).
To prove the “only if” part, only the care § = —1 needs to be considered. We observed that
fx) = H“’L% isin LP(w_1) and that G, bounded on L?(w_) implies the same of Gj,,j = 2,3, ...

. 3
However, for j > %, G]-,xf =c0. O
Example 2. Consider the Bessel potential Gy(y) so that the weight-generating kernels are equivalent to Go (ky),
0 < k < 1. These are especially simple when the dimension, n, is 1 or 3. In the first case Gy (y) is essentially

equal to the Picard kernel, e"y‘, and in the second case to | y|’1e"y l
According to Corollary 1, then, Tg, is bounded on LP (5P WY and LP (e */PIV1) when n = 1; on

Ly <|y|l/p/ek/1”/‘y‘> and L¥ (\y\”ﬁe’k/’”‘y‘> when n = 3.

5. The Gauss—-Weierstrass Operators
In this section, we briefly treat the Gauss—Weierstrass kernels, { W; },~., defined by
Wily) = (4rct) " exp(~[y[*/4t), y € R".
The iterates of W; satisfy Wf(h) =Wy, h=12,....

Proposition 4. Fix p € (1,00) and set wg(x) = ePI*l. Then, Wy is bounded on LP (wp) for all p € (—o0,00).
Moreover, one has
tlgaHWt*f—pr,wﬁ =0, (18)

for every f € LP(wp).

Proof. Only B > 0 need by considered, the result for 8 < 0 follows by duality.
It will suffice to show that for each g > 0,

(W, = eﬂ\‘l)(x) < CePl,

with C > 1 independent of x € R" and t € (0,1).
Now,

/ Wi (y)ePl¥l dy < / Wi ()bl +1 gy = Bl / Wi (y)eblY dy,
Rn RYI Rn

15
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from which the boundedness assertion follows. Again W;(y) is an increasing function of f for fixed y
with |y| > v/2nt so,

W, Blyl 4 :< )W Blyl 4
/Rn H(y)ePV dy /y|<m+/\y\>m t(y)eP dy

< PV o t(y)dy-‘,—/‘yb\/ﬂwl(y)gﬂ‘/\dy

< eVt (4m) 2 [ exp(—ly/4)eM dy

when t € (0,1), thereby yielding (18). O

Theorem 5. Fix C > 1. Then, the weight-generating kernel for W corresponding to C is equivalent to
e ly|* "2 exp(—t~12k|y|), k = \/logK, for some K > 1,

with the constants of equivalence independent of t € (0,a), |y| > 4ka'/2, where 0 < a < 1.

Proof. The desired kernel is

™

C(4rttf) % exp(—12 /4jt) (19)

\
[
—_

where r = |y|.

Let f(r,t,u) = C*(4rctu) "2 exp(—r>/4ut), u > 0, and let & = t~1/2kr. Denote by I, I, and
I the intervals (0, a/4k?), (x/4k?,20/k*) and (20 /k?,00), respectively. It is easily shown that when
r>1landt € (0,1), the function f, as a function of u, increases on I, decreases on I3 and satisfies
K’lf(r, tu) < f(r,t,u+s) < Kf(r,t,u) forsome K > 1and allu € I, s € (0,1). Thus, the study of
the sum in (19) amounts to looking at the integrals

= / f(r,t,u)du, i =1,2,3.
J1;

Indeed, C™% = e’kz", therefore,

[/4n2)+1 [2a/k?) 00
c! =c! tu)d
(i +1+]s) (/0 +/[a/4k2]+1 +/[2a/k2]> f(rt,u)du

<Y F0 b))

j=1
[a/4k2] [20(/](2] )
_ Z + Z + Z f(r,t,u)du
j=1 j=la/4k2)+1  j=[20/k?]+1
<C(h+2+Ts)

We have

J<E? (4%)7”/2‘“—"1’( k 4k2)eXp< 4 /iZZf) i

<t iy Sexp (<32

16
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Again,

20\ "2 4 Pt
< /2 [ 22 2 12
s <t <k2> exp ( "/ a2 t) exp ( k 4k2>
- . 5
<Ay e (<3 ) <

Finally, in ], take u = av/ 2k2 to get

4 1
<A *”/2/ ex (—5 {v-i- 7}> v "2 dy
L < ly| P (72 =

< E 3y E e (—17 2Kyl

Altogether, then,

/0 flyl, t,u)du < t7%7%|y|17% exp <7t71/2k\y\> .
O

Remark 4. The weight-generating kernels are similar to those of Gy on R' and R® (see Example 2), whence the
exponential weights of Proposition 4 are in some sense typical. This illustrates a general theorem of Lofstrom, [18],
which asserts that no translation-invariant operator is bounded on LP (w), when w is a rapidly varying weight
such as w(a) = exp(|x|*), & > 1.

6. The Hardy Averaging Operators

In this section we consider Lebesgue-measurable functions defined on the set
Ri ={yeR":y;>0,i=1,...,n},
where, as usual, we write y = (y1,...,Y,). Given x € R, we define the sets
Ex(x)={yeR} :0<y;<x;,i=1,...,n}
and
Fix)={yeRL:0<x;<y;,i=1,...,n}

Finally, we denote the product x;!...x; ' by x~" or 1 and the product (log %) .. (log 32) by
log %,’here, x=(x1,...,x;) and y = (y1,...,yn) belong to R"}..
The Hardy averaging operators, P; and Q,, are defined at f € P(R,), x € R, by

(Puf)(x) = x7" )f(y) dy

En(x

and

d
QN = [ f)
These operators, which are the transposes of one another, are generalizations to n-dimensions
of the well-known ones, considered in [5] for example. A simple induction argument leads to the
following formulas for the iterates of P, and Q) :

Fu(x) f

-1

() _X 14y
(B1) @) = 553 |, S @llogx/yy L,

17
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and

() _ 1! -1y
(@75) ) = gy |, ., @ liogy/=) 2,

inwhichx € R andj =0,1,....
From Theorem 1 of [19], we obtain the representations of the weight-generating kernels of P; and
Q,, described below.

Theorem 6. For C > 1and set & = nC~'/". Then, the weight-generating kernels for P, and Qy, corresponding
to C are equivalent, respectively, to

71+ (log x/y) /20" expla(log x/y)"/"]| xg, (v () (20)

and
v [1+ (ogy /)20 expla(ogy/)'/"]| xg, ) (¥). @1)

Proposition 5. Let wg(x) = [1+ |x|]f, B € R. Then P, is bounded on L¥(wg) if and only if p < 1/p/;
by duality, Qy is bounded on LV (wg) of and only if p > —1/p.

Proof. For simplicity, we consider #n = 2 only.

Take ¢ = w, and fix a € (0,2). Denote by g the weight-generating kernel (20) applied to §. The
change of variable i1 = x1z1, Y2 = X2z in the integral giving g(x) yields

SIS 7
g(x) = /0 /0 {1 + /2322 + x%z%]
[1 + (log1/z11og1/25) "% x exp [a(logl/zl logl/zz)l/ZH dzy dzp

Hence, when r > —1, we find

1, 0<xy, x0<1
(x) xg, 0<x <1, x>1
x) ~
§ x?, x1>1,0<x <1

max [x],x)], x1, 02> 1;

thatis, g(x) ~ w, (x), provided r > —1. This proves the “if” part, since p = —y/p’ < 1/p’.
To see that we must have v < 1/p’, note that h = x, (%), % = (1,1), is in L? (w,) and

1, 0<x, xp<1
-1
X5, 0<x <1, xp>1
(Pah)(x) = {2
) xfl, x1>1,0<x <1

xl_lxz_l, X1, xp >1

SO .
/ [twgPoh]? = oo, if f>1/p.
JRZ.

O

Theorem 7. Denote by Gy and Gy the positive integral operators on P(R'.) with kernels (20) and (21),
respectively. Suppose ; € P(R'L) is such that G;jp; < coaeon R’ , i = 1,2. Take ; = p; + Gip;, i = 1,2
1 1

and set w = ¢;7¢;. Then,
P,: LP(RL) — LP(R). (22)

18
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Moreover, any weight w satisfying (22) is equivalent to one in the above form.
Proof. This result is a consequence of Corollary 1 and Theorem 2. [

Remark 5. When n = 1, the functions xP, B > —1, are eigenfunctions of the operator P corresponding
o0

to the eigenvalue (B + 1)1 As a result, if ¢p(x) = Zakxk converges for all x and if ap > 0,
k=0
then there exists ¢ € P(Ry) for which i + ZC*fP(j)t,lz ~ ¢, C > 1; namely. p(x) = by+ Y bk,
=1 k=1

. -1
]
wherebkak<l+2(k+l)]> ,k=0,1,....

For example, ¢ (x) = efP'¢", B > 0, is an entire function with ¢®)(0) > 0,k = 0,1,.... Combining
this ¢ (x) with ¢ (x) = x77 we obtain the P-weight x7e =", 7 < 0 < B. Interpolation with change of
measure shows one can, in fact, take all 7 < 1/p'.

Similar results are obtained when ¢(x, ..., x,) is everywhere on R” the sum of a power series
inxy,..., xn with nonnegative coefficients. To take a specific example, consider a a power series in one

variable, Z akx ax > 0, which converges for all x € R. Then, ¢(x1,...,x,) = Z ag(xq ... ,,) leads
k=0 k=0
to the P,-weights w(xy,...,x,) = xih coxyt p(xq, ., xn) /7" where yi<1/p,i=1,...,n
Criteria for the boundedness of Hardy operators between weighted Lebesgue spaces with possibly
different weights are given in [5] for the case n = 1 and in [7] for the case n = 2.

Added in Proof: While this work was in press the author came across the paper [20]. In it Bloom proves our
Theorem 1 using complex interpolation rather than interpolation with change of measure. A (typical) application
of his result to the Hardy operators substitutes them in the necessary and sufficient conditions, thereby giving a
criterion for their two weighted boundedness. This is in contrast to our Theorem 6, in which the explicit form of a
single weight is given.
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1. Introduction

A function i : I C R — R is said to be convex on a non-empty interval I if the inequality

h(x) +h(y)

x+y
5 M

2

h( ) <

holds for all x,y € I.
If the inequality (1) reverses, then / is said to be concave on I [1].

Leth: I C R — R be a convex function on an interval I and a,b € I with a < b. Then

b
”;b)gbiaﬂh(t)dtsw. @)

h(

This double inequality is well known in the literature as the Hermite-Hadamard (HH) integral
inequality for convex functions. It has a plenty of applications in different parts of Mathematics;
see [2,3] and references therein.

If 1 is a concave function on I then both inequalities in (2) hold in the reversed direction.

Our task in this paper is to improve the inequality (2) in a simple manner, i.e., to find some
constants p, g; p + g = 1 such that the relations

1 b h(a) + h(b) a+b
<
7 | nnars p T e qn(C 2, @)
hold for any convex h.
It can be easily seen that the condition
pta=1, @

is necessary for (3) to hold for an arbitrary convex function.

Symmetry 2020, 12, 117; doi:10.3390/sym12010117 21 www.mdpi.com/journal /symmetry
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Take, for example, f(t) = Ct, C € R.

Since
p(h( );h(b))Jr h(a2 ) < max{ ()—;h(b),h(a—;b)}ih(a)—;h(b)’
and, analogously,
h(a) +h(b) a+b (a)+h(b) , a+b a+b

p(MOIRE (@) 5 minMOERO) 0y 22D,

it follows that the inequality of the form (3) represents a refinement of Hermite-Hadamard inequality (2)

foreachp,g > 0,p+g=1.

Note also that the linear form pw + qh(#) is monotone increasing in p. Therefore,

o [ntnar < MO gyt

holds for some p = py, then it also holds for each p € [po, 1].

if the inequality

In the sequel we shall prove that the value pg = 1/2 is best possible for above inequality to hold
for an arbitrary convex function on I.

Also, it will be shown that convexity/concavity of the second derivative is a proper condition for
inequalities of the form (3) to hold (see Proposition 5 below).

This condition enables us to give refinements of second order and to increase interval of validity to
po = 1/3 as the best possible constant. In this case, coefficients pg = 1/3, g9 = 2/3 are involved in the
well-known form of Simpson’s rule, which is of great importance in Numerical Analysis. Our results
sharply improve Simpson'’s rule for this class of functions (Proposition 4).

Finally, we give some applications in Analysis and Numerical Analysis. Also, new and precise
inequalities between generalized arithmetic means and power-difference means will be proved.

2. Results and Proofs
We shall begin with the basic contribution to the problem defined above.
Theorem 1. Let h : I C R — R be a convex function on an interval I and a,b € I. Then

b
biﬂ/u h(t)dtg%h(u);h(b) +%h(“;b). 5)

The constants py = qo = 1/2 are best possible.
If h is a concave function on I then the inequality is reversed.

Proof. We shall derive the proof by Hermite-Hadamard inequality itself. Indeed, applying twice the
right part of this inequality, we get

oo [ nar < ey +r(EDY),

Ja

S8
I
2

and
b a
big/a , ()t < %(h( ;b)-i-h(b)).
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Summing up those inequalities the result appears. Therefore, HH inequality has this
self-improving property.

That the constants pg = gp = 1/2 are best possible becomes evident by the example f(t) =
[t|,t € [—a,al.

For the second part, note that concavity of f implies convexity of —f on I. Hence, applying (5)
we get the result. [

For the sake of further refinements, we shall consider in the sequel functions from the class
C(m)(l ),m € N ie., functions which are continuously differentiable up to m-th order on an
interval I C R.

Of utmost importance here is the class ®(I) of functions which second derivative is convex on I.
For this class we have the following

Theorem 2. Let ¢ € ®(I) and the inequality

b b b
o [otar < ptOE 00 gy 120) ©

holds for a,b € 1. Then p > pg = 1/3.
Proof. From (6) we have

- i Sy o0 — ()
)

=: Dg(a,b).

Since this inequality should be valid for each a,b € I,a < b, let b — a. We obtain that
lim_,, Dg(a,b) = 1/3 almost everywhere on I i.e, whenever ¢ (a) # 0 or ¢"(a) = 0,¢""(a) # 0.

Indeed, applying L'Hospital’s rule 3 and 4 times to the above quotient, we get

§(6) — 297(52) — b (azh)
lim Dy (a,b) = lim
f Do o) = e )~ 397 (58 + (b — ) (S (®) — b9 ()

and

hm D¢(a b) =

2
& 20" (b) = 3¢ (57) + (b — @) (39D (b) — 156 (31))

Therefore, the result follows. [J

In the sequel we shall give sharp two-sided bounds of second order for inequalities of the type (3)
involving functions from the class ® with p > 1/3.

Main tool in all proofs will be the following relation.

Lemma 1. For an integrable function ¢ : I — R and arbitrary real numbers p,q;p +q = 1, we have
the identity

b _4)2 1
p‘p(”);‘p(b) +q¢(”;b)f biu/a oyt = 16“) /O H2p — 1)(¢" (x) + ¢ (y))dt
where x 1= a%-ﬁ-b(l—%),y:: b%-}-a(l—%).

Proof. It is not difficult to prove this identity by double partial integration of its right-hand side. [J
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Fort € [0,1];a,b € I,a < b, denote

2(a,bit) = ¢ (ag +b(1 = 1)) +¢" (b3 +a(1 - 2))

=¢"(x)+9"(y).
Lemma 2. If ¢ € P then the function {(a, b;t) is monotone decreasing in t.
Hence, )
2"(117) < ¢"(0) + 9" () < 9" (@) + 9"(0), )

forallt € [0,1].

Proof. Since ¢”(-) is convex, it follows that ¢"”'(-) is increasing on I.
Also, x >y for t € [0,1] because x —y = (b—a)(1—t) > 0.
Hence,

Elabit) = "9 () ")) <0,

and {(a, b;t) is decreasing in t € [0,1].

Therefore,

b
2"(“17) = 2o bi1) < 2la,bit) < 8(a,b;0) = ¢ (a) + " (0),

which is equivalent with (7).

Note that, if ¢ is concave on I, then the function ¢(a,b;t) is monotone increasing and the
inequality (7) is reversed. [

Remark 1. More general assertion than (7) is contained in [4].
Main results of this paper are given in the next two assertions.

Theorem 3. Let ¢ € O(I). Then

b _ )2
pcp(a);wb) +q¢(a—gb)7 bia./u oty < O 16:1) Ty(a,bip),
where
To(a,bp) = {‘éf(d;”(u) +¢"(b) = 31+ p)2p - 12" () 5 < ps ¥
(P = 3)(¢"(a) +¢" (D)) P22

Also, if p < 0, we have

2
p OO0 g2ty L [Ppinir < (- 3 O gr (50

Proof. If p > 1/2 we have that 2p —t > 0. Therefore, applying Lemma 1 and the second part of
Lemma 2, we obtain

a a b —a)?
pHOTO0) | gy 120y L [ ptwyar =TT [M12p (9 () + 9" )i

—a)? ' —a)?
< B @@ oo [ -0 = =173 0" @) + g0,
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In the case 1/3 < p < 1/2, write

1 " " o 2p _ . _ 1 7 .
| ter ="+ 9"t = [T rep—nCrd— [ 1t —20)00at

P
and apply Lemma 2 to each integral separately.

It follows that
[ 2= 00+ 7 < (97 )+ 9 (0) [ 12p =ttt ~20 () [t 2p)a
_4103 " " 1 4}’13 noatb
=@ e e) -2 -+ T (D),

which is equivalent to the stated assertion.
For p < 0 we have that 2p — t < 0 and the proof develops in the same manner. [J
Theorem 4. If ¢ € ®(I), then for p > 1/3 we get

¢(a) + ¢(b) a+b 1

B (b—a)® , a+b

b
| o= (r=1/3) 2" (),

and
b 2
pPOEP0) g0 L g s (- 173 UL (g + o0,

forp <0.

Proof. By Lemma 1, in terms of Lemma 2, we have

Y
pPOTEO) gy 20y L [pwar= C2 [Nip — (e bar.

By partial integration, we obtain
1 -1
| =g bindt = (o = £ /3c@ b0l - [ £ 1/3)2 @ binjat

since p — /3 > 0 for p > 1/3 and, by Lemma 2, &' (a,b;t) < 0for t € [0,1].

a+b
2

If p < 0then2p —t < 0 and, applying Lemmas 1 and 2, the result follows. O

Above theorems are the source of a plenty of important inequalities which sharply refine
Hermite-Hadamard inequality for this class of functions.

Some of them are listed in the sequel.

Proposition 1. Let ¢ € O(I). Then

(b—a
24

2 a b a —a)2¢"(a !’

Proof. Put p = 0in the above theorems. [
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Proposition 2. Let ¢ € O(I). Then

(b—0)? yatby 9@ +eb) 1 /bw)dK(bfa>24>”<a)+¢“(h>
12 2 - 2 b—aJa - ’

Proof. This proposition is obtained for p = 1. O

The next assertion represents a refinement of Theorem 1 in the case of convex functions.

Proposition 3. Let ¢ € P(I). Then foreacha,b € I,a < b,

(b—a)® ,a+b, _1¢(a)+¢(b) 1 a+b 1 b (b—a)* ¢"(a) + ¢" (b)
48a ¢ (aT)SE : 2 +§¢(a2 )7bfa/g P(t)dt < 48[Z : 2 )

If ¢ is concave on I, then

(b—a)?¢"(a)+¢"(b) _ 1¢(a)+¢(b) 1 a+b 1gb (b—a)® , a+b
48u : 2 =3 : 2 +§‘P(a2 )_bfa/” ()t < 48LZ ‘P(az )-

Proof. Put p = 1/2in Theorems 3 and 4.
The second part follows from a variant of Lemma 2 for concave functions. [

Note that the coefficients p = 1/3 and g = 2/3 are involved in well-known Simpson’s rule which
is of importance in numerical integration [5].
The next assertion sharply refines Simpson’s rule for this class of functions.

Proposition 4. For ¢ € ®(I), we have

=3 2 T3t

If ¢ is concave on 1, then

u+b

0< L /b<p(t)dt— £1p(a) +p(0) +4p(" 10

P a)* uﬂ+b 9" (a) +¢" ()
=162 [p™( )= f]'

Proof. Applying Theorems 3 and 4 with both parts of Lemma 2 for p = 1/3, the proof follows. 0O

The next assertion gives a proper answer to the problem posed in Introduction.

Proposition 5. If ¢ is a convex and ¢ is a concave function on I, then

b
e L e )

Analogously, let ¢ be concave and ¢ a convex function on I, then

a a b a
%4)( )J2r¢(b)+%¢( —;b)gbi / o(t )dt<;M 34>( +b)

Proof. Combining Proposition 4 with the results of Theorem 1, we obtain the proof. [J
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3. Applications in Analysis

Theorems proved above are the source of interesting inequalities from Classical Analysis. As an
illustration we shall give here a couple of Cusa-type inequalities.

Theorem 5. The inequality

1 sin x 1 2
—cosx+ = < < -cosx—+ -,

2 2 «x 3 3
holds for |x| < /2.
Also,
1 3 sinhx 1 2
- Y < < Z =
4coshx+4_ p _3coshx+3,

holds for x| < (3/2)%/2.

Proof. For the first part one should apply Proposition 5 to the function ¢(t) = cos t on a symmetric
interval t € [—x, x| C [-7/2,71/2].
For the second part, applying Proposition 4 with ¢(t) = ef,t € [—x, x|, we get
2 sinhx _ 2x?

1
<z o < —1).
0< 3coshx—i—3 < 5 (coshx — 1)

Hence,
inh 1 2
Sinh x < 5coshx+ 3’

and
sinhx _ 1 2 2x2

> gcoshx—&-g — S—ﬁ(coshx—l)

1 2a2 1 2 2% 1 3
=(=—-—= h — cosh ~ 4+ —— > —cosh —
(12 81)cos x+4cos x+3+ 8l _4cos x+4,

since cosh x > 1and 1/12 — 2x2/81 > 0 for |x| < (3/2)%/2 ~ 1.8371. O

We give now some numerical examples of the above inequality

1 1 sinx 1 2
— - < < = — < 2.
5COSX+ 5 < — =< Jcosx+ |x| < 7t/ )
Namely, using known formulae
T V2 o.omo1 .o W2
smi =1; st 5 smg =5 sin 5= 2 (\/C;’— 1) ~ 0.25882;

omo 1 LT 1
sino ;= 2—1/2+ /3~ 0.13053; sm@:R[\/ﬁ(\/g-s—l)(\/g—l)—2(\/5—1)\/5—}—\/5]20‘052336,

and applying inequalities (8), we obtain bounds for the transcendental number 7, as follows

Tt 7T T

x=5 3< <4 x=-—-:31344 < <33137; x = s :3.1402 < T < 3.2154;

-~ |

x= % :3.1415 < 77 < 3.1597; x = % -3.1416 < 71 < 3.1461; x = % :3.1416 < 71 < 3.1423.

Another application can be obtained by integrating both sides of (8) on the range x € [0,4], 0 <
a<rm/2
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We get

1 1 7 sin x 1 2
—qf g < - < “gi —
2s1na+2a /0 X dx 3SII’lﬂ+3ﬂ,

that is,
a—sina 4 sin x a—sina
— < uf/ —dx < ——.
3 0o X 2

By the power series expansion, we know that

L @ a5 a7

a—smafa—ﬁ T
Hence,

B  sin x a3

- - <g- dx < —.

18 360 " /o )
This estimation is effective for small values of a.
For example,

1/10 &;
55528 x 1075 < L — / S v < 83333 x 1075
10 Jo X

4. Applications in Theory of Means
A mean M(a,b) isamap M : Ry x Ry — R, with the property

min{a,b} < M(a,b) < max{a,b},
foreacha,b e R,.
Some refinements of HH inequality by arbitrary means is given in [6].
An ordered set of elementary means is the following family,

H<SG<LSL<I<ALS,

where
H=H(a,b)=:21/a+1/b)""; G=G(a,b)=:Vab; L= L(a,b) =

a+b

1
I=1I(ab) = E(bb/a”)l/(b’”); A= A(ab) =
are the harmonic, geometric, logarithmic, identric, arithmetic and Gini mean, respectively.
Generalized arithmetic mean A, is defined by

1/a
a*+b* .
Ax = Ax(a,b) =: (“47) " a0
Ao = G.
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Power-difference mean K, is defined by

P a"‘+17b"‘+1
Ky = Ka(a,b) =: { Ko(a,b) = L(a,b);

K_1(a,b) =ab/L(a,b).

,u#0,—1;

It is well known that both means are monotone increasing with « and, evidently,
A1=HA =AK,,=HK 1,,=GK; =A.

As an illustration of our results, we shall give firstly some sharp bounds of power-difference
means in terms of the generalized arithmetic mean.

Theorem 6. Fora,b € RT and a > 1, we have

S(AD) + Au(a b)) < Kalab) < Aula,b) ©)

For o < 1 the inequality (9) is reversed.

Proof. Let g,(t) = /e # 0. Since g, is concave for @ > 1, Theorem 1 combined with the HH
inequality gives

1 x+y 1/a 1 1/ 1/a
(7)) g

& xl“/”‘fylﬂ/"‘ - (x+y)1/“
“a+1 x—y -\ 2 ’

Now, simple change of variables x = a*,yy = b* yields the result.
For the second part, note that g, is convex for # < 1 and repeat the procedure. [

The above inequality is refined by the following
Theorem 7. We have,

Ae <Ko € 2(A+2A4), a € (—00,1/3)U(1/2,1);

Q| =

%(A+2Aa) <Ky < Ay € [1,00);

(A+24,) <Ky < Z(A+Ay), a€[1/3,1/2).

Q| =
N =

Proof. Observe that g7/ is convex for a € (—o0,1/3) U (1/2,1) and concave fora € (1/3,1/2) U (1, 00).
Hence, applying Proposition 5 together with the HH inequality, we obtain the result. [

Remark 2. Note that the above inequalities are so precise that in critical points for « = 1/3,1/2,1 we have
equality sign.

An inequality for the reciprocals follows.

Theorem 8. For § > —2 we have

For B < —2 the inequality is reversed.
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Proof. This is a consequence of Theorem 6. Indeed, putting there &« = —f — 1 and using identities

ab ab ab
Ki= o= 7o A= G

the proof appears. [

Finally, we give a new and precise double inequality for the identric mean I(a,b).
Theorem 9. For arbitrary positive a, b we have

4 (A—H)?

4/3¢-1/3 %
A*°S exp( s AQ

) 1< A3,

Proof. We need firstly an auxiliary result.

Lemma 3. Fora,b € RT, we have

A*3(a,0)8%/3(a,b) exp(f%%) < 1(a%,0%) < A*3(a,b)S%3(a,b).

Proof. Indeed, for ¢(t) = tlogt we get

1 b 1,b%logb? — a®loga® a+b
7 | e = 3BT B (ap)) =

log I(a%,b%).

Since ¢ (t) = 1/t, Proposition 5 yields

(b—a)
G

1 2 1
g(alogu+blogb)+§AlogA— -

+1_ g)
b A
< #105;1(&2,!;2) < %(aloga—kblogb) + %AlogA,

and the proof follows by dividing the last expression with (a +b)/4 = A/2. O

Now, combining this assertion with the identity (a2, b?) = I(a,b)S(a, b), we obtain the desired
inequality. [

Remark 3. An equivalent form of the above result is

— H)?
3/401/4 4 < [3/4g1/4 (
PEST= A< IS eXP( 27AH >

which refines well-known inequality I < A < S.
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family of analytic functions in the open unit disk by using the generalized fractional derivative
and integral operator with convolution. For this operator, we study the subordination-preserving
properties and their dual problems. Differential sandwich-type results for this operator are
also investigated.
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1. Introduction
Let (D) be the family of analytic functions inD = {z € C: |z| < 1} and H[c, ] be the subfamily
of H (D) consisting of functions of the form:

f(z) =c4bpz" +by 2" - (ceCneN={1,2,---}).

Let A(p) denote the family of analytic functions in D = {z € C: |z|] < 1} of the form:

f@) =2+ L bpunz?™" (p €N fPHD(0) £0). M
n=1
For f,F € H(D), the function f(z) is said to be subordinate to F(z) or F(z) is superordinate
to f(z), written f < F or f(z) < F(z), if there exists a Schwarz function w(z) for z € D such that
f(z) = F(w(z)). If F(z) is univalent, then f(z) < F(z) if and only if f(0) = F(0) and f(D) C F(D)
(see [1,2]).
Let ¢ : C2 x D — C and / (z) be univalent in I. If p (z) is analytic in D and satisfies

¢ (pr(2),2pr'(2);2) < h(z), 2

then p (z) is solution Relation (2). The univalent function g (z) is called a dominant of the solutions of
Relation (2) if p (z) < q (z) for all p (z) satisfying Relation (2). A univalent dominant § that satisfies
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4 < q for all dominants of Relation (2) is called the best dominant. If p (z) and ¢ (p (z) ,zp’ (z) ; z) are
univalent in D and if p(z) satisfies

h(z) <9 (p(2),2p' (2);2), ®)

then p (z) is a solution of Relation (3). An analytic function g (z) is called a subordinant of the solutions
of Relation (3) if g (z) < p(z) for all p (z) satisfying Relation (3). A univalent subordinant 4 that
satisfies g < § for all subordinants of Relation (3) is called the best subordinant (see [1,2]).

We now introduce the operator 56\"2“ 7 due to Goyal and Prajapat [3] (see also [4]) as follows:

Tlp+1-wWT(p+1=A+1y) dwy
i 0<A< 1, zeD),
M+ DI+ 1y - e JEOSA<mrpttzel)

Sl M f(z) = ( . o 4)
Flp+1-wl(p+1-A+n) . —Auy _ )
T+ DI+ 1—p+ 1) 2, " f(z) (o <A <0; z€D),

where ]8 ’Zy T and I(; ZA M1 are the generalized fractional derivative and integral operators, respectively,
due to Srivastava et al. [5] (see also [6,7]). For f € A(p) of form Equation (1), we have

Syt f(z) = B 1+pl+prn—mlep—pltptg—Az)*f(z)

P p+1ﬂ P+1 V+7/)" b ptn
: +Z (1= ulp+1- A+, "

(peN,y,neR,y<p+1;—oo<A<77+p+1), (5)
where ;F; (9 < s+1; q,5 € Ng = NU {0}) is the well-known generalized hypergeometric function

(for details, see [8,9]), the symbol * stands for convolution of two analytic functions [1] and (v),, is the
Pochhammer symbol [8,10].

Setting
G/\ ( _ ZP—O—Z P+1 p+l_l’l+’7)" Pl
e (p+1—=wulp+1=A4n)n
(pGN,y,iyeR,y<min{p+1,p+l+q}; —o<A<n+p+1) (6)
and

Gy (2) % [pr/u( )] = # (0>-p;zeD),

Tang et al. [11] (see also [12]) defined the operator HQ,’,‘;,}, : A(p) — A(p) by
Hyuf(2) = [Ga,(2)]  £2):

Then, for f € A(p), we have

v - 5+Pnp+1fu)n(p+1*A+'7)n +n
bynzP . 7
Hypnf @) =2+ L 0 o Dalp + 1 e P 7
It is easy to verify that
!
z(Hypuf(2)) = 6+ p)Hypilf(2) = SHY £ (2), ®)
and , )
2(Hyf @) = (p+ = VHEf(2) = (= NH) I f(2). ®
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Making use of the hypergeometric function in the kernel, Saigo [13] proposed generalizations of
fractional calculus of both Riemann-Liouville and Weyl types. The general theory of fractional calculus
thus developed was applied to the study for several multiplication properties of fractional integrals [14].
In particular, Owa et al. [15] and Srivastava et al. [5] investigated some distortion theorems involving
fractional integrals, and sufficient conditions for fractional integrals of analytic functions in the open
unit disk to be starlike or convex. Moreover, the theory of fractional calculus is widely applied to not
only pure mathematics but also applied science. For some interesting developments in applied science
such as bioengineering and applied physics, the readers may be referred to the works of (for examples)
Hassan et al. [16], Magin [17], Martinez-Garcia et al. [18] and Othman and Marin [19].

By using the principle of subordination, Miller et al. [20] investigated subordinations-preserving
properties for certain integral operators. In addition, Miller and Mocanu [2] studied some important
properties on superordinations as the dual problem of subordinations. Furthermore, the study of the
subordinaton-preserving properties and their dual problems for various operators is a significant role
in pure and applied mathematics. The aim of the present paper, motivated by the works mentioned
above, is to systematically investigate the subordination- and superordination-preserving results
of the generalized fractional differintegral operator defined Equation (7) with certain differential
sandwich-type theorems as consequences of the results presented here. Our results give interesting
new properties, and together with other papers that appeared in the last years could emphasize the
perspective of the importance of differential subordinations and generalized fractional differintegral
operators. We also note that, in recent years, several authors obtained many interesting results
involving various linear and nonlinear operators associated with differential subordinations and their
dual problrms (for details, see [21-28]).

For the proofs of our main results, we shall need some definitions and lemmas stated below.

Definition 1 ([1]). We denote by Q the set of all functions q(z) that are analytic and injective on D\E(q),
where

() = {£ oD lima(z) = o},
and are q' () # 0 for { € 9D\ E(q).

Definition 2 ([2]). A function T (z,t) (z € D, t > 0) is a subordination chain if T (.,t) is analytic and
univalent in D for all t > 0, T (z,.) is continuously differentiable on [0, 00) forallz € Dand Z (z,s) < I (z,t)
forall0 <s <t.

Lemma 1 ([29]). Let H : C? — C satisfy
R{H (ic;T)} <0

forall real o, T with T < —n (1+02) /2and n € N. If p(z) = 1+ ppz" + ppp1z" ™ + - - is analytic in D
and

R{H (p():2p'(z))} >0 (z € D),
then R {p(z)} > 0 forz € D.

Lemma 2 ([30]). Let x,y € Cwithx # 0and let h € H(D) with h(0) = c. If R {xh(z) + v} > 0(z € D),
then the solution of the differential equation:

1)+ 2L @) i) =)

is analytic in D and satisfies R {xq(z) + v} > 0 for z € D.
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Lemma 3 ([1]). Suppose that p € Q with q(0) = aand q(z) = a+ quz" + gne12"+ ' + - - - is analytic in D
with q (z) # aand n > 1. If q(z) is not subordinate to p(z), then there exists two points zg = roe® € D and
¢o € OD\E(q) such that

q(z,) = p(Go) and zoq' (z0) = m&op’(Eo) (m >n).

Lemma 4 ([2]). Let q € Hc, 1] and ¢ : C> — C. In addition, let ¢ (q(2),zq' (2)) = h(z).IfI (z,t) =
¢ (q(z),tzq' (2)) is a subordination chain and g € H[c, 1] N Q, then

h(z) <9 (p(2),2p' (2)),

implies that q (z) < p (z). Moreover, if ¢ (q (z) ,zq' (z)) = h (z) has a univalent solution q € O, then q is the
best subordinant.

Lemma 5 ([31]). The function T (z,t) : D x [0,00) — C of the form
Z(zt)=a(t)z+---(a1(t) #0; £ >0)

and ilim |aq (t)| = oo is a subordination chain if and only if
—00

ZBI(z,t)
afe{ oz }>o (zeD; t>0)

0Z(z,t)
ot

and
IZ (z,t)] < Kola1 ()] (t>0)

for constants Ko > 0and ro (|z| < ro < 1).

2. Main Results

Throughout this paper, we assume that p € N, a«, >0, 6 > —p, 77 € R, p <min{p+1,p+
1+n}, —c0o<A<n+p+1, H;‘,',‘;,Vf(z)/zf’ # 0for f € A(p) and all the powers are understood as
principal values.

Theorem 1. Suppose that f,g € A(p) and

R {1 + Z;{’,"(g)} > 10)

Y Y
0= (1w | Bas@]" | [Hinils@)] [Hiis@))"
# Hyu8(2) # ’ ’

where p is given by
a2+ B2 (5 -+ p) — [a2 — B2 (5 + p)?|

= 11
P 4ap(G+p) (1)
Then,
A5 B Ad+1 AS B
(1-a) {H”'”"‘ G | Ho (2)} {H”"?"*f (2)} <9 (2) (12)
2 W@ |7
implies that
5 B 5 B
H%,Vf (z) H?ﬁ?,ug (z)
=< (13)
zP zP
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AS B
and {H”%f(z)} is the best dominant.

Proof. We define two functions ®(z) and ¥ (z) by

HM B HM o(z B
@@)_{W;(”} de@y_{r%fx) (zeD). (14)
Firstly, we will show that, if
I 0
g(z) =1+ ¥ 2) (zeD), (15)

then
R{q(z)} >0 (zeD).

From the definitions of ¥(z) and ¢(z) with Equation (8), we have

o~
B(é+p)

Differentiation both sides of Equation (16) with respect to z yields

¢(2) =¥ (2) + 2¥' (z). (16)

a [z (z) + ¥ (2)]

¥ (&)= @)+ 17)
From Equations (15) and (17), we easily obtain
z¢" (z) zq' (2)
1+ — :q(z)-l—i(s:h(z) (zeD). (18)
7 ) )+ POFT)
It follows from Relations (10) and (18) that
%{m@+ég;@}>o@emy (19)

Furthermore, by means of Lemma 2, we deduce that Equation (18) has a solution g € H (D) with

h(0) =q(0) =1. Let
v

H@wv)=u+——7——+p, (20)
uq BOEP)
«
where p is given by Equation (11). From Equations (18) and (19), we have
R{H (9(z);z9'(z))} >0 (z € D).
Now, we will show that
2
ER{H(Z'U;T)}SO(UER;TS—lJrU). (21)
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From Equation (20), we obtain

T

%{’H(iﬂ;l’)} = R iO’-‘rm‘f‘P
o
plo+pt :
= o+ & S <— 0 (7) 5/
CICET NN [T
o o
where )
EP(U)Z(ﬁ((s;p)pr)UZfZ(ﬁ(&;p)) p+ﬁ(5;rp). )

For p given by Equation (11), since the coefficient of 0% in E, (¢) of Equation (22) is positive or equal to
zero and E, (o) > 0, we obtain that %t {H (io;7)} < Oforallc € Rand 7 < — 1+202‘ Thus, by applying
Lemma 1, we obtain that

R{q(2)} >0 (zeD).
Moreover, ¥/(0) # 0 since g(P*1)(0) # 0. Hence, ¥(z) defined by Equation (14) is convex (univalent)
in ID. Next, we verify that the Condition (12) implies that

P(z) < ¥(2)

for ®(z) and ¥ (z) given by Equation (14). Without loss of generality, we assume that ¥(z) is analytic,
univalent on D and

¥'(E) #£0 (2] =1).

Let us consider the function Z (z, t) defined by

_ a(14+1t) o) )
I(z,t)—‘Y(z)wLmz‘Y (z) (0<t<oo zeD). (23)

Then, we see easily that

0T (z,t)
0z

o

B(+p)

:‘I”(O)<1+ (1+t)>7é0(0§t<oo;zE]D)).

z=0

This shows that
I(z,t)=a1(t)z+---

satisfies the restrictions tlim |aq (£)] = coand a3 (t) #0 (0 < t < o0). In addition, we obtain
—00

9L (z,t) "
2 (BG+p) ¥ (2)
R[] < [P (1)

(0<t<oo;zeD),

B(o+p)
14

since ¥ (z) is convex and R ( ) > 0. Moreover, we have

1 (z,t)‘ Y@+ 5 @) (24)
i |~ eor (- 25
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and also the function ¥(z) may be written by
¥(z) =¥(0) +¥'(0)¢(z) (z€D), (25)

where (z) is a normalized univalent function in ID. We note that, for the function ¢(z), we have the
following sharp growth and distortion results [32]:

r

(1 )2 < |1P(Z)| < (1- r)2 (Jzl =r<1) (26)
and 1—vr 1+7r
e <y'(z) < a=rp (lz| =r <1). (27)

Hence, by applying Equations (25), (26) and (27) to Equation (24), we can find easily an upper bound
for the right-hand side of Equation (24). Thus, the function Z(z, t) satisfies the second condition of
Lemma 5, which proves that Z(z, t) is a subordination chain. From the definition of subordination

chain, we note that N

mz‘?’ (z) =Z(z,0)

P =¥ () +

and
Z(z,0)<Z(zt) (0<t <o),

which implies that
Z(Gt)¢Z(D,0)=¢(D) (0<t<oo;§ecaD). (28)

If ®(z) is not subordinate to ¥(z), by Lemma 3, we see that there exist two points zy € D and
¢o € 0D satisfying

¢ (20) =¥ (8o) and zo®' (z0) = (1+ 1) &Y' (Go) (0 <t < 00). (29)

Hence, by using Relations (12), (14), (23) and (29), we obtain

It = Y@+ gy 1H00Y @)
= ‘D(Zo)JrﬁZo@/(zo)
()] [ )] [Himaf )]
= T T @ | 4 ) S

This Contradicts (28). Thus, we conclude that ®(z) < ¥(z). If we consider ® = ¥, then we know that
Y is the best dominant. Therefore, we complete the proof of Theorem 1. [

Remark 1. The function ¥'(z) # 0 for z € D in Theorem 1 under the assumption

R{g(z)} =1+ R { 23/(;) } >0 (zeD). (30)

In fact, if Y'(z) has a zero of order m at z = z, € D\{0}, then we may write
Y(z) = (z—2z1)"¥1(z) (meN),
where ¥4 (z) is analytic in D\{0} and ¥4 (z1) # 0. Then, we have

B 2¥"(z) mz z¥ (z)
g(z) =1+ Vi) 14 . + ‘Yll(z) . (31)
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Thus, choosing z — zy suitably, the real part of the right-hand side of Equation (31) can take any negative
infinite values, which contradicts hypothesis Equation (30). In addition, it is obvious that ¥'(0) # 0 since
g#H(0) £ 0.

Using similar methods given in the proof of Theorem 1, we have the following result.

Theorem 2. Suppose that f,g € A(p) and

R {1 + Z;/j,”(iz)) } S— (32)
HA'+,1;5 2(2) B HAy,o", 2(2) H/\’+’1,15 2(2) B
(1!’(2)(1—04) {M;p } +Q[H5£}i‘sg(2)] [ M;p } ;zeD|,

where o is given by
4B (=2 = |2 - B (p+n— AP

7T dap(p+1i-A) )
Then,
HA+1’,5f(Z) B 200 f(2) HA+1,5f(Z) B
(1—a) {W o | A paE <9 (z) (34)
zp H/\+l,¢> (Z) zp
P
implies that
B B
Hpi f(2) Hpri'8(2)
=< (35)
zP zP
2416 B
and {%p‘g(z)} is the best dominant.
Next, we derive the dual result of Theorem 1.
Theorem 3. Suppose that f,g € A(p) and
z¢" (z) }
R {1 + > —
¥ (2) :
M B MO+ M B
$(z) =(1-un) {,,,”,g(z)} +a [ i g(z)] [ p,,,,yg(z)} ;zeD
zr H;\,’f,,yg(z) zk
where p is given by Equation (11). If
B B
4w | B @) [Hoilf(E)] [Hyiaf )
Z Hpjyuf (2) #
A Hy £ ]°
is univalent in D and | == € H[1,1] N Q, then
v B AS+1 A B
$(z) < (1—a) [Hp,q,yf(z) T Hp,niy f(z):| {H%V/,Hf(z):| (36)
27 H;,\,’,?,yf(z) zP
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implies that

{Hﬁ:f;,yg(z)} " {HQ;%,J@)Y

7 7 37)
and {%} ’ is the best subordinant.
Proof. By using the functions ®(z), ¥(z) and g(z) given by Equations (14) and (15), we have
o(z) = ¥ (2) + ﬁz‘i” (2) =9 (¥(2),2¥ (2)) (38)

and

R{q(z2)} >0 (zeD).

Next, we will show that ¥(z) < ®(z). To derive this, we consider the function Z (z,t) defined by

IZ(zt)=Y(2)+ tz¥'(z) (0<t<oo;z€D).

o~
B(6+p)
Then, we see that

0T (z,t)
0z

/ o .
o~V O (1 g PO 0 <mizeD),

which shows that
I(z,t)=a1(t)z+---

satisfies tlim |aq (£)] = coand a3 (t) # 0 (0 < t < o0). Furthermore, we obtain
—r00

2 B(5+p) ¥ (2)
%{a{gafw} = %{T—H(l-i- T,(Z)>}>o

(0<t<oo;zeD).

By using a similar method as in the proof of Theorem 1, we can prove the second inequality of Lemma 5.
Hence, 7 (z,t) is a subordination chain. Therefore, by means of Lemma 4, we see that Relation (36)
must imply given by Relation (37). Moreover, since Equation (38) has a univalent solution ¥, it is the
best subordinant. Therefore, we complete the proof. [

Using similar techniques given in the proof of Theorem 3, we have the following result.

Theorem 4. Suppose that f,g € A(p) and

R {1 + Z;f,ﬂ((zz)) } > —0

[ A+1,6 18 rAd T [ A+18 18
Hp,??,y 8(z) Hp,r/,ug(z) Hp,;,}l 8(2) . eD
L ] P It ]

(4’ (2)=(1—a) | =777 +a B g(z) 20

where ¢ is given by Equation (33). If

M A+1,6 1B A8 T T gA+1,0 18
(1-a) Hyi f(2) Ta Hyyuf(2) | [ Hppii' £(2)
A+16
L 2 ] _Hp;;m f@]{ 2 _
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At1,6 B
is univalent in D and {w} € H[1,1]N Q, then

H/\+1;(5 (Z) B H/\,J lf(Z) H}L+],(5 (Z) B
4’ (Z) = (1 _ 0{) |: P11 T Pr’7rF‘ pH (39)
Z Hy3i' f(2) 2
implies that
B B
Hpii'8(2) Hyji' f(2)
< (40)
zP zP

A41,6 B
and {%}W} is the best subordinant.

If we combine Theorems 1 and 3, and Theorems 2 and 4, then we have the unified sandwich-type
results, respectively.

Theorem 5. Suppose that f,g; € A(p) (j =1, 2) and

2 (2)
/ _
é)%{l+ e >—p (A1)
M o B AL, HAS o B
¢ (2) = (1—a) P8 (2) Lo | Ppnn 8i(2) pn8i(2) | 2eD
! 2 Hyyu85(2) # / /
where p is given by Equation (11). If
r B 5 B
(1w [ @] [ f(Z)} {H%f(z)}
I Hyjuf (2) 2

Ad 1B
is univalent in D and {H”’/%f&) € H[1,1]N Q, then

[ Ao B Ad+1 A0 B
91(2) < (1-a) H””Z’;f(z)} +a{1§1”17§‘;((3} {H”"’;;f (Z)} < ¢2(2) “2)
L P
implies that
) B B B
[Hﬁzﬁ;gﬂz)} y {HQ,'?Z;f(Z)} ) {Hﬁ:%;gz(z)} | )

M B oM B ) ) )
Moreover, { ”'”’;‘,,gﬂz)} and { ”"’;’fZ(Z)} are the best subordinant and the best dominant, respectively.

Theorem 6. Suppose that f,g; € A(p) (j =1, 2) and

29/ (2)
éﬁ‘:{l+ e }> — (44)
H Lo, (o B HM oi(2 H L, (5 B
o) = 1-o [ SO [ M) [T ),
Hp,i°8j(2)
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where o is given by Equation (33). If

A+1,6 B
(1 _ 0() |:Hl7;;rl‘ (Z)

+

zP

Hyp of (2) } {Hﬁ,ﬁ‘sf(zq b

A+1,6
Hppi f(2) 2

At
HIW

1,8 B
s f (Z)] € H[1,1]N Q, then

is univalent in D and {

A16 B A6 A+1,6 B
() < (1) {Hmp@ o [ (Z)} {Hp,r/,upf(z)} e .
pai f(2) z

implies that

{Hﬁyh“gl (z)]“ . {Hﬁi’éf(zq " {HW&(Z)} ’

zP zP zP (46)
HM 10 (2) B HM e ()] B
Moreover, { e } and { Lt are the best subordinant and the best dominant, respectively.
We note that the assumption of Theorem 5, which states that
HM f(2) P (HM ()] [HA L f(2) B HM £(2) B
(1 _ IX) |: P +a P :| |: P :| and l: P :|
¥ L Hpuf@ L #

needs to be univalent in ID, may be exchanged by a different condition.
Corollary 1. Suppose that f,g; € A(p) (j =1, 2) and

29 (2)

R1+—F > —
(e
HM oi(2) B A, M o B
o) — (1 — g | 2Pan8i\F) P 8i(2) pn8i(2) |
$j(z) =(1—un) ) tal—35 P jzeb
z Hplyu8i(2) z

and " (o)

zx" (z

R {1 + } > —p, 7)
X' (2) b
Ao B A,d+1 Ao p
x(z) = (1—a) Hyyuf (2) Ta Hm(zt (2) | | Hpiyuf (2) czeD|,
Z” Hyyuf () Z”

where p is given by Equation (11). Then,

HA ) THEE )] [H )]
4’1(z)<(1—¢x){ P'izp; } W{Hi?j’?f,:f(z)}{ P’?Z}p } < ¢y (z)

implies that

5 P
{Hﬁzs,,,gl(zq . {Hﬁ;:;,,lf(z)
zP

zP

B B
{H%,M&(Zq
=< .
zP

Proof. To derive Corollary 1, we need to show that the Restriction (47) implies the univalence of x (z).
Noting that 0 < p < 1/2, it follows that x (z) is close-to-convex function in D (see [33]) and so x (z)

43



Symmetry 2019, 11, 1083

is univalent in ID. In addition, by applying the similar methods given in the proof of Theorem 1, we
see that the function ®(z) defined by Equation (14) is convex (univalent) in . Therefore, by using
Theorem 5, we get the desired result. [J

Using similar methods given in the proof of Corollary 1 with Theorem 6, we obtain the
following corollary.

Corollary 2. Suppose that f,g; € A(p) (j =1, 2) and

W@\
9%{1-#— 47]’.(2)}> o

A+1,6 B A AS B
i (z) = (1—a) HP;Yr’Ii 8j(2) Ta Hp/j/;vgj(z) Hpyu8i(2) | seD
f # Hng@ L ]
and Y (2)
zY" (z
N
r 1B r 1T 1B
Vi - (1 [HF @) myf @] [Hair@)” o
(2) = (1—a) | T2y o | D T2 ze),
L Z ] LHpni )L 2 ]
where ¢ is given by (33). Then,
.H/\Jrl/(sf(z) 1B r HA,J f(Z) 1 'H)L+1,(5f(z) 18
1_ P P P
Y1 (Z) = ( a) 2P +a Hf;;ﬂjéf(Z) 2P =<1 (Z)

implies that

{Hﬁ:é,,,gmz)} " {H%,M(Z)} " {Hé:i,,,gxz)} g

zP zP zP

3. Conclusions

Various applications of fractional calculus have an immense impact on the study of pure
mathematic and applied science. In the present paper, we obtain new results on subordinations and
superordinations for a wide class of operators defined by generalized fractional derivative operators
and generalized fractional integral operators. Furthermore, the differential sandwich-type theorems
are also discussed for these operators.
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1. Introduction
Let A denote the class of functions f of the form:
fz)=z+ ) anz", zeD. (1)
m=2

which are analyticin D = {z € C: |z| < 1} and S denotes a subclass of A, which contains univalent
functions in . Let f be a univalent function in ID. Then, its inverse function f~! exists in some disc
|w| < r < 1/4, of the form:

f~H (w) = w+ Byw? + Baw® + - - - . ()

For any analytic functions f of the form (1) and g of the form:
gz)=z+ Y buz", z€D, (3)
m=2
the convolution (Hadamard product) is given as:
(f * g)(Z) =z+ Z ambmz", (Z S D) .
m=2

Let f and g be analytic functions in . Then, f is said to be subordinate to g, written as f(z) <
g(z), if there exists a function w analytic in D with w(0) = 0 and |w (z) | < 1 such that f(z) =
g(w(z)). Moreover, if g is univalent in D, then the following equivalent relation holds:

f(z) < 8(2) = f(0) =g(0) and f(D)C g(D).

Symmetry 2019, 11, 1042; doi:10.3390/sym11081042 47 www.mdpi.com/journal /symmetry



Symmetry 2019, 11, 1042

The classes of k-uniformly starlike and k-uniformly convex functions were introduced by Kanas
and Wisniowska [1,2]. A function f € Sisink — ST, if and only if:

(D) )
Y T e !

where k € [0,00) and z € D. Similarly, for k € [0,00), a function f € Sisin k —UCV, if and only if:

@Y L)
R(” f’(2)>>k el

In particular, the classes 0 — S7 = ST and 0 — UCV =UCV are the familiar classes of
uniformly-starlike and uniformly-convex functions, respectively. These classes have been studied
extensively. For some details, see [1-5].

Recently, a vivid interest has been shown by many researchers in quantum calculus due to
its wide-spread applications in many branches of sciences especially in mathematics and physics.
Among the contributors to the study, Jackson was the first to provide the basic notions and established
results for the theory of g-calculus [6,7]. The idea of the g-derivative was first time used by
Ismail et al. [8], and they introduced the g-extension of the class of starlike functions. A remarkable
usage of the g-calculus in the context of geometric function theory was basically furnished, and the
basic (or g-) hypergeometric functions were first used in geometric function theory in a book chapter
by Srivastava (see, for details, p. 347 of [9]). The idea of g-starlikeness was further extended to certain
subclasses of g-starlike functions. Recently, the g-analogue of the Ruscheweyh operator was introduced
in [4], and it was studied in [10]. Many researchers contributed to the development of the theory by
introducing certain classes with the help of g-calculus. For some details about these contributions,
see [11-25]. We contribute to the subject by studying the g-integral operator in the conic region.

Now, we write some notions and basic concepts of g-calculus, which will be useful in our
discussions. Throughout our discussion, we suppose that g € (0,1), N = {1,2,3,---}, and N =
No\ {0}, unless otherwise mentioned.

’

Definition 1. Let g € (0,1) . Then, the g-number [t] g is defined as:

teC,

t = m—1 .
1, ¢g=1+q+¢*>+--+q"!, t=meN.
=0

]

Definition 2. Let q € (0,1) . Then, the q-factorial [m],! is defined as:

1, m =0,
[m]q!{ ﬁl[j]q, meN.
=

Definition 3. Let g € (0,1) . Then, the g-Pochhammer symbol |t] z € C, m € Ny) is defined as:

m,q’ (

(@9, 1, m=0,
[¢]

fo= Al m
(g 1—g)" g+ [E+2] - [t+m=1], meN.
Furthermore, the gamma function in the g-analogue is defined by the following relation:

Ty (1) =land Ty (t+1) = [1], T (1).
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Definition 4. Let q € (0,1). Then, the g-derivative Dy of a function f is defined as:

f(2)—flqz)
Dof(z) =1 0 270 @
£10) z=0
provided that f' (0) exists.
We observe that: £(2) - Fla2)
. . z)—J\gz /
lim D = lim *———— % = .
qi}l?, qf(Z) qlg‘l* z (1 — q) f (Z)
From Definition 4 and (1), it is clear that:
Dyf(z) =1+ Y [m]qamzm_l.
m=2
Now, take the function:
Fo (z2) =z+ Z Amz", 5)
m=2
where 1 > —1, Ay, = [ tn-1g and z € . Now, consider a function F\" Y. by:
K s Adm [m—T1],! : 4 g1 P
FC (z) * F, (z) =zDyf(z)
qu+1 qpu+1 q ’
then the g-Noor integral operator is define by:
Bf) =E @5 f(2) =2+ ¥ @iz, (1> -1,z € D), ©®)
m=2
where:
D1 = [m]q' . (7)
1+ 1]m71,q
It is clear that If(z) = zD,f(z) and I,% (z) = f(z). From (6), we obtain:
1 1
[+ Lallf (2) = i ally ™ F (2) +9"2D, (£ (2)) - ®)

The g-Noor integral operator was recently defined by Arif et al. [26]. By taking g — 17,
the operator defined in (6) coincides with the Noor integral operator defined in [27,28]. For some
details about the g-analogues of various differential operators, see [29-33]. The main aim of the current
paper is to study the g-Noor integral operator by defining a class of analytic functions. Now, we
introduce it as follows:

Definition 5. A function f belongs to the class K —UST} (y), v € C— {0}, if

1 quI},;f(z)_ 1 quIgf(z)_
“{7< 0 ) 1)“}“‘7( 0 ) 1)

Geometric Interpretation
»
Let f € K —USTY (7). Then, Z?ﬁjﬁé §Z> assumes all the values in the domain Ay, = k(D)
q
such that:

,u>—-1,ke0,00),zeD. 9)

Dpy =70+ (1=7),
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where:
Ay = {u+iv:l¢>k (u—1)2+vz},

or equivalently,
D41y f (2)
hfG)
The boundary dAy , of the above region is the imaginary axis when k = 0. It is a hyperbola in the
case of k € (0,1). When k € [0,1), we have:

i (2). (10)

hq(z) =1+ 2’7k2 {(%arccosk> arctanhﬁ} , zeD.

In the case of k = 1, dAy , is a parabola, and in this case:

2y 14z
hm(z)—l—&-?(logliﬁ) , zeD.

When k > 1, 0/ , is an ellipse and:

=1 2 [ )0 ) )«

where v(z) = \F’ 0 <s <1,z e D, and z is selected so that k = cosh ( (( ))>, where F is the

first kind of Legendre’s complete elliptic integral and F” is the complementary integral of F; see [1,2].
Kanas and Wisniowska [1,2] showed that the function /1., (D) is convex and univalent. All the curves
discussed above have a vertex at (k+ )/ (k +1). Now, it is clear that the domain Ay ., is the right half
plane for k = 0, hyperbolic for k € (0,1), parabolic when k = 1, and elliptic when k > 1. It is worth
mentioning that the domain Ay, is symmetric with respect to the real axis. The function fi (D) = Ay,
is the extremal function in many problems for the classes of uniformly-starlike and uniformly-convex
functions. For more about the conic domain; see [3,34].
Let P denote the class of functions / of the form:

h(z) =14 Y cuz", z€D, (11)

m=1

which are analytic with a positive real part in . If k € [0,0), v € C — {0}, then the class P (k) can
be defined as:
P(hiy) = {h € P:h(D) C Agq}-

Lemma 1 ([35]). Let k € [0, 00) and hkﬁ be introduced above. If:

hknr =1+ Z Qmz", (12)
then: )
29 A
%’7"2' 0<k<1,
Q=% k=1, 13)
ny k>1,

3 /5(R2—1)R2(s) (143’
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and: s
4820, 0<k<1,
0, ={ 5% k=1, (14)
4R%(s) (s +6s+1) -2 k> 1
ARG (115 > L
where:
. 2cos~! k,
T
L. o F'(s)
and 0 < s < 1, which is selected so that k = cosh ( ) )

Let: .
fin (2) =z+ ) Apz"

m=2

be the extremal function in class K — US Tg (7) and hy, be of the form (12). Then, these functions can

be related by the relation:
zD, T i (2
%ﬁ() = Iy (2). (15)
Iq fk,7 (Z)

From (15), we have:
ZDngfk,'y (2) = Pry (Z)I}qlfk,“/ (2).

Furthermore:

z+ Z [m]qq>m,1Amzm = <Z sz’"> <z + Z @mlAmzm> .
m=2 m=0 m=2

Equating the coefficients of z™ in the above relation, we obtain:

m—1
[m]q (Dm—lAm = (Dm—lAm + Z (Pj,lAij,]'
j=1

and:
1 m—1
Ap=———"7"—7 D 1AQ,_i 16
m q[m*1]q¢m—1 ]; j—1 ]Qm] (16)
This implies that:
_ Q&

4= g a7)
Qf +4Q

Az = ——— T, 18

T Pt 1o

1 Q1Q2 | QI +901Q
Ay = + + . 19
! (1+q+q2)q¢s{Q3 g P+ )

Lemma 2 ([36]). Ifh € P satisfies (11), then:
lez — oc3| <2 max{1;]2v—1|} (v e C).
Lemma 3 ([37]). Ifh € P satisfies (11), then:

len — CoomCm| < 2,m> m, n=1,2,3,---.
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Lemma 4 ([38]). Ifh € P satisfies (11), then:
les — 2100 + ci’| <2

2. Main Results
Theorem 1. If f € K —USTY (), then:

laa| < Ap, |az] < As,

and: 0
1
lag| < m{IFI +(E-2F)|+[(F-E+4)[},
where: 10, 20 20
E=4_ =2 _ =1 “=1
Qg g2,
with: g o?
112 2% 1+, &
o T T, Yy
Proof. Suppose that:
quIf;f (2) _
e

where p is analytic in D. Then, from (24) , we have:

quIﬁ; (z) = p(z)Igf (z).
Consider:

plz) =1+ Y puz"
m=1

and Ig f(z) is given in the relation (6). Then:

z+ Z [m]g@y—1amz" = (Z szm> (Z + Z (I’mlamzm) .
m=2 m=0 m=2

It follows from the above relation that:

m—1
[m]qq)mflam =Dy 1am + Z ijflajpmfj

j=1

and:

am =

1 m—1
—_— D _1aipy,_i.
q[m - 1]q¢n171 /; i=14Pm=j

Furthermore, consider the function:

h(z) = (14w @) (1-w @) ' =1+caz+02+---

52
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(24)
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Then, £ is analytic in D with Re(h(z)) > 0. By using (12) and (27) , we have:

— h
p(z) = Pry (f:T(i?) =1+ %Clle + (%Cle + %C%(Qz - Q1)> 22

1 1 1
+ {g(Ql —2Q;+ Q3)c) + 5(Q2 = Qu)eaer + §Q1C3}Z3 +oee
Now, from (26) and (28), we obtain:

,— P c1Q1
qq)l qu)l

Now, using the fact that |c,| < 2, we get:

_|p | _|aQ| &l - @
laz] = | 5| = < = =
g%, 2q®1| 7 qP1 qPy
Similarly:
1 a2+ 1}
= - oy = AP2TR
T = e, P2 PR = G g,

In view of the relation |p;|? + [pa] < Q% + Q> (see [5]) and (17), we obtain:

as| = APt pil_alpal +1pi]) + (01— g) [t

(1+4q)q?®; — (1+9) 4>,
< 91l +1Q1) + (1 —q) |
- (1+9)¢>®P2
<‘7|Q2|+\Q%| ~ A
~ (1+9)¢*®2 ’

which implies the required result. Now, equating the coefficients of 23, we have:

0= Q1

= 4c3 — E Fc}),
8[3].7 'J@s( c3 — Ecicp + Fey)

where E and F are given by (22) and (23), respectively. This implies that:

Q1

3
= —_— — — — _ 4
|ay] quqq%\lf(g 2c1c0 +¢7) + (E—2F)(c3 — c1c2) + (F — E +4)c3]
Q1 3
< ——=—|F(cz —2c1cp 4+ ¢5)| + |(E—=2F)(c3 —c1¢2)| + |(F— E+4)c
_84[3]‘,4)3‘(3 162+ ¢q)] +[( )(ez —ciea) |+ |( )esl
Q1
<— |F|+|(E-2F)|+ |[(F—E+4)|,
s L+ 1E 2P+ )

where we have used Lemmas 3 and 4. [

Theorem 2. Let 0 < k < o0, q € (0,1),and v € C—{0}. If f € K —UST} () of the form (1), then:

Qu(Qi+9) (Q+9q02),) - (Qu+qlm—2])

a <
| m| = q"’*1<1>m711_[(1+q+~~+qk’1)

m > 2.

’
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(28)

(29)

(30)
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Proof. The result is clearly true for m = 2. That is:

‘az‘ < % = Az.

Let m > 2, and suppose that the relation is true for j < m — 1, then we obtain:

1 m—1
am| = ————=—— |Pm-1+ D _q1a;py,—i
‘ ml q[m_l]q¢n171 Pm—1 ];2 j—14jPm—j
1 m—1
S (@t X Pl
q[mfl]qcbm,l ]; J=11%]

1 m—1 ‘ |
PR O PR i
q [m - 1],7 D1 =2 4 I

1 . mflq)‘ Q1 (Q1+9) (Q1+q[2},,)-~(Q1+q[if2]q)
Qi1+ ]g i1 g [I(1 g+ +q0) ,

q [m - 1]q ¢m71

where we applied the induction hypothesis to |a;] and the Rogosinski result |p,| < Q1 (see [39]).
This implies that:

lam] < 1 Q1{1+1&1Q1(Q1+Q) (QH—‘HZ]q)...(QH—‘]U-Z];,)}.

q[m—1], Py = FHIA+g+...+gF 1)

Applying the principal of mathematical induction, we find:

et QUi ) (Qi g l2ly) - (Qurali-2],)
+]§ FIT(14+g+...+4g51)
Qi (Qi+q) (Qu+402),) .- (Qi+qm—2],)
"I +g+.. g2 '

Hence, the desired result. [J

Theorem 3. If f € Ais given in (1) and the inequality:

Y {alm —1,(k+ 1) + |7} Puilan| < |v] (32)
m=2

holds true for some 0 < k < oo, g € (0,1) and v € C — {0}, then f € K fZ/{S’T},;('y).

Proof. Using (9), we have:

RN IO AN E =) TIC R
Y Igf(z) Y Igf(z)
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This implies that:

=

‘ 1 <zD,zIf;f(z) _1> ’ 3
Y IZ (2)

{1 <quI§f(z) _1>}
T\ Tf(z)

k. quIf;f (2) _1ly 1 quIf;f (2) .
“ Il Tf(z) Il Tf(2)
o (k+1) |2Dglgf ()
7] 1f(z)
We see that:
zDg1} f (2) L ET Y= [m]y ®yaamz™ —z — Y8y 122"
Igf (Z) z+ Z:ﬂo:z Dy _1amz™

_ | =2 qlm — 1]g®p—1amz"

B Z+ Yoo P_1amz™

Yo qlm — 1]q¢m71 [
1= Y Pt lam|

<

From the above, we have:

' 1 (quIgf(z) 1) §R{1 <zD,iIgf(z) 1)}
T\ Lf (2 T\ Lf ()

(k+1) Y=o glm —1,4] Py |am|
|'Y| 1- Zf::z D1 ‘am‘
1.

IN

IN

This completes the proof. []
Theorem 4. If f € K — USTg (7), then f(DD) contains an open disk of radius:

q(1+q)
q|Qul[p+1g+29(1+4q)

where Qq is defined by (11).
Proof. Let wy € Cand wy # 0 with f(z) # wp in D. Then:
_ 1
fi1(z) = wof (z) (wo — f (2)) T=zy <w—0 +u2) 224

Since f1 € S,

‘i +ap| <2
wo
Now, by applying Theorem 1, we obtain:
1, 2,
wy' T (1+49)
Hence:
q(1+4q)

wo| > .
ol 2 16 T+ 11, + 29 (LT )
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O

Theorem 5. If f € K —USTY (), then:

" z hk,w (‘(U (‘:)) -1
Ihf(z) < zexp/o 7 g, (33)

where w is analytic in D with w(0) = 0 and |w(z)| < 1. Moreover, for |z| = p, we have:

a=ty) (e [ 50714,
. d < < /'761 ,
(Exp/o 0 Pl = = exPO 0 P

where hy, is given in (10).

Lf(2)

Proof. From (10), we obtain:

Dyl f (2) _ iy (w(z))—1 +}
1f(z) z z’

for a function w, which is analytic in D with w(0) = 0 and |w(z)| < 1. Integrating the above relation
with respect to z, we have:
2 hyy (W (8)) —1
Igf (z) < zexp/o g z ac. (34)
Since the function / , is univalent and maps the disk |z| < p(0 < p < 1) onto a convex and
symmetric region with respect to the real axis,

k+v

o T hiy (=plzl) < Vil (w(pz))} < by (pl2])- (35)

Using the above inequality, we have:

/1 hiy (—pl2l) — ldp - %/1 hyw(pz) — 1dp - /1 hycy (plz]) — 1dp 2eD
0 1Y - 0 Y —Jo 1Y ! ’

Consequently, the subordination (24) implies that:

Lf ()

1 hkm, (—plz]) —1
—_ <
/0 dp < log .

1 —
< [hateE 1,
o 0

- P

Furthermore, the relations iy, (—p) < h (—plz]), b (0|2 < Iy, (0) leads to:

Uhgy (—plz]) -1 ) ( Ul (pl2]) — 1 )
4 d, < < — .
<exp./0 0 o] < < exp/o ’ o

1f (2)

z

This completes the proof. [J
Theorem 6. Let k € [0,00) and f € K —USTY () of the form (1). Then:

2 |Q1]
a3 —oa5| < ——~—— max{1;|2v—-1|}, ce€C,
|3 2|—2q[2}qq)2 { | ‘}
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where:

1(1_(22_(21+UQ1¢2(1+'1)>. 36)

v= -
2 Q1 ¢ a7
The values of Q1 and Q, are given by (13) and (14), respectively, and that of @ is given in (7).
Proof. If f € K — UST; (7), then using (29) and (30), we have:

_ Qia
2!](1)1,

20
a3 = L {2C2Q1 +c}(Qa— Q1) + Qlcl},

az

49(2];®> q
which together imply that:

‘113 - Ua%‘ S . H(ZCle +(Q— Ql)) +

4q[2]; D>
Q

_ 1 ‘C 2
= ———= = |C2 — UC
4q[2],®2 1

Qi } o3
q 4202

’

where v is defined by (36). Applying Lemma 2, we have the desired result. [

Theorem 7. If f € K —USTY () is given in (1), then:

|Q1]
|azﬂ3—“4|Sm{|A‘+|(3—2A)|+|A—B+4‘},
where: 20,05 3 01 3] X
_ 193 9], _ 193 194 _ %
2] e’ " q(2], @192 <Q2 ot q )

with E and F given in (22) and (23), respectively.

Proof. By using (29)—(31), it is easy to see that:

|—Q1| 3
— = =21 |4cq — A
|azas — ayl 8 [3117@3‘ c3 — Beicp + Acy
[Q1] 3
=————|(A—B+4)c5+ (B—2A)(c3 —c1c0) + A(cg — 2100 + ¢
86][3],,@3‘( Jes + ( )(c3 —c1c2) + A(cz — 2c160 + )
< %l {|A|+|(B—2A)|+|A—B+4|},

N 4q [3]q Ds
where we used Lemmas 3 and 4. This completes the proof. [

Theorem 8. Ifk € [0,00) and letting f € K — LIST?(’y) and having the inverse coefficients of the form (2),
then the following results hold:

|Q1]
< =0
|Ba| < P
|Q1] { QH QO }
B3| < max <1, | =—— + ==| 5,
| 3‘ q[21q©2 q Ql
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and:
_ 2[2],®,

. 1. (37)

Proof. Since f(f~'(w)) = w; therefore, using (2) , we have:
Bz = —dy, B3 = 2(1% —as.

Putting the value of 4 and a3 in the above relation, it follows easily that:

[
Bz = —ap = *223)11 . (38)

Using the coefficient bound |c1| < 2, we can write:

IBy| = '*ClQl

\Ql |
S (39)

qPr

Now with the help of Lemma 2, we obtain:

B3 = 211% —az

& ,ﬁ(,%,%),cml

o 2q[2], @2 {CZ 272 g a7 2y

__ O c ,é 17%7% 2[2]‘7q>2,1
292,22 |7 2 & g\ #

& ,ﬁ(,%,%)
2q[2], @ {Cz 2T ) 40

Taking the absolute value of the above relation, we have:

Qi | g _g_gﬂ>
Bl = ), ’CZ 2 (1 Q4 ‘
|Q1] { QlH Q }
~q[2], P2 b q Ql

O
Theorem 9. If f € K — Z/{STg(’y) with inverse coefficients given by (2), then for a complex number A,

we have:
ENEE0 )0,
197 Qi

Q|
By — AB3| < Nl L
| 2| q [Z}q q)z

Proof. From (38) and (40), we have:

A3 Q1 o} ( Q Ql) ActQ}
By — AB2 = 1=1 (1 _ Ak
T 2q2<1>2 29[2], %2 (Cz 2 Q1 q 49292

_ G0 QQ

= 1207 (2—A)— 2 [2 o, < l o p >>

_ o [, a 1,g,g CaRICT LN
2‘7[2]q‘132 2 0 q q@%
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Now, by applying Lemma 2, the absolute value of the above equation becomes:

a2 Q1] A Q@ Qi (2280

A e | 2(1 o q<q¢; !
LTI PRI ACE A W

= Q[Z]qq)zmax{l/ ( g2 ! q +Q1 ’

This completes the proof. [

3. Future Work

The idea presented in this paper can easily be implemented to introduce some more subfamilies
of analytic and univalent functions connected with different image domains.

4. Conclusions

In this article, we defined a new class of analytic functions by using the g-Noor integral operator.
We investigated some interesting properties, which are useful to study the geometry of the image
domain. We found the coefficient estimates, the Fekete-Szego inequality, the sufficiency criteria, the
distortion result, and the Hankel determinant problem for this class.
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Abstract: The symmetric differential operator is a generalization operating of the well-known
ordinary derivative. These operators have advantages in boundary value problems, statistical studies
and spectral theory. In this effort, we introduce a new symmetric differential operator (SDO) and
its integral in the open unit disk. This operator is a generalization of the Salagean differential
operator. Our study is based on geometric function theory and its applications in the open unit disk.
We formulate new classes of analytic functions using SDO depending on the symmetry properties.
Moreover, we define a linear combination operator containing SDO and the Ruscheweyh derivative.
We illustrate some inclusion properties and other inequalities involving SDO and its integral.

Keywords: univalent function; symmetric differential operator; unit disk; analytic function; subordination

MSC: 30C45

1. Introduction

Investigation of the theory of operators (differential, integral, mixed, convolution and linear) has
been a capacity of apprehension for numerous scientists in all fields of mathematical sciences, such as
mathematical physics, mathematical biology and mathematical computing. An additional definite
field is the study of inequalities in the complex domain. Works’ review shows masses of studies
created by the classes of analytic functions. The relationship of geometry and analysis signifies a very
central feature in geometric function theory in the open unit disk. This fast development is directly
connected to the existence between analysis, construction and geometric performance [1]. In 1983,
Salagean introduced his famous differential operator of normalized analytic functions in the open unit
disk [2]. This operator is generalized and extended to many classes of univalent functions. It plays a
significant tool to develop the geometric structure of many analytic functions by suggesting different
classes. Later this operator has been generalized and motivated by many researchers, for example,
the Al-Oboudi differential operator [3]. Recently, a new study is presented by using the Salagean
operator [4]. Our research is to formulate a new symmetric differential operator and its integral by
utilizing the concept of the symmetric derivative of complex variables. This concept is an operation,
extending the original derivative. Note that its practical use in the the symmetry models in math
modeling remains open. For example, for application in mathematical physics it is critical to employ
group analysis methods. Such methods enable methods for branching solutions construction using
group symmetry [5,6].

Symmetry 2019, 11, 906; doi:10.3390/sym11070906 63 www.mdpi.com/journal /symmetry
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2. Preparatory

We shall need the following basic definitions throughout this paper. A function ¢ € A is said
to be univalent in U if it never takes the same value twice; that is, if z1#z> in the open unit disk
U ={z e C:|z] <1} then ¢(z1)#¢P(z2) or equivalently, if ¢(z1) = ¢(z) then z; = z,. Without loss
of generality, we can use the notion A for our univalent functions taking the expansion

¢p(z)=z+ Y, puz", z€U. (1)

We let S denote the class of such functions ¢ € A that are univalent in U.

A function ¢ € S is said to be starlike with respect to origin in U if the linear segment joining the
origin to every other point of ¢(z : |z| = r < 1) lies entirely in ¢(z : |z| = r < 1). In more picturesque
language, the requirement is that every point of ¢(z : |z| = r < 1) be visible from the origin. A function
¢ € S is said to be convex in U if the linear segment joining any two points of ¢(z : [z| = < 1) lies
entirely in ¢(z : |z| = r < 1). In other words, a function ¢ € S is said to be convex in U if it is starlike
with respect to each and every of its points. We denote the class of functions ¢ € S that are starlike
with respect to origin by S* and convex in U by C.

Neatly linked to the classes S* and C is the class P of all functions ¢ analytic in U and having
positive real part in U with ¢(0) = 1. In fact f € S* if and only if z¢'(z) /¢(z) € P and ¢ € C if
and only if 1 +z¢"(z) /¢’ (z) € P. In general, for € € [0,1) we let P(€) consist of functions ¢ analytic
in U with ¢(0) = 1 so that R(¢(z)) > e ('R’ represents to the real part) for all z € U. Note that
P(e2) C Pler) C P(0) =P for0 < €1 < & (e.g., see Duren [1]).

For functions ¢ and 1 in A we say that ¢ is subordinate to ¢, denoted by ¢ < ¢, if there exists
a Schwarz function w with w(0) = 0 and |w(z)| < 1 so that ¢(z) = P(w(z)) for all z € U (see [7]).
Evidently ¢(z) < 9(z) is equivalent to ¢(0) = ¢(0) and ¢(U) C 1(U). We request the following
results, which can be located in [7].

Lemma 1. For a € C and positive integer n let $H[a,n] = {0: 0(z) = a + anz" + a, 12" + ..}

i. If vy € R then %(g(z) + 'yzg/(z)) > 0= R(0(z)) > 0. Moreover, if v > 0 and ¢ € $H[1,n], then there
are constants A > 0 and p > 0 with = B(-y, A, n) so that

1+z]° 1+2z]"

o)+ @) < || e < |1

ii. If 6 € [0,1) and o € H[1, n| then there is a constant A > 0 with A = A(«, n) so that
§R<Qz(z) +2Q(z).zg’(z)) > 6= R(o(z)) > A.

iii. If o € $Hla,n| with Ra > 0 then §R<Q(z) +20'(z) +zzg”(z)> > 0orfor 9 : U — R with

%(Q(z) + &(Z)ZSQS)) > 0 then R(o(z)) > 0.

Lemma 2. Let h be a convex function with h(0) = a, and let y € C\ {0} be a complex number with Ry > 0.
Ifo € ©la,n), and o(z) + (1/u)z0'(z) < h(z), =z € U, then o(z) < 1(z) < h(z), where

Z
o(z) = /Ozh(t)t(”_l)dt, zel.

T opzh/n
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3. Formulas of Symmetric Operators

Let ¢ € A, taking the power series (1). For a function ¢(z) and a constant « € [0,1], we formulate
the SDO as follows:

Mop(z) = ¢(2)
Myp(z) = azd'(z) — (1 — a)z¢(—2)

=u <z+ in(pn z"> —(1—a) <—z+ in(—l)"(p,ﬂ”)

—xt T A=) 1)z @

(=)

Mip(z) = Mo[Meg(2)] =z + Y [n(a— (1 - a)(=1)")]* guz"

n=2

[ (e = (1= a)(=1)")]* puz".

e

Mep(z) = MM 9(2)] = 2+

n=2

It is clear that when a = 1, we have Salagean differential operator [2] S¥¢(z) = z + Y5, nF ¢, 2"

We may say that SDO (2) is the symmetric Salagean differential operator in the open unit disk. In the

same manner of the formula of Salagean integral operator, we consume that for a function ¢ € A,
the symmetric integral operator J¥ satisfies

Tipe) =2+ Y [

nmp [ (e = (1 =a)(=1)")

Similarly, when « = 1, we have Salagean integral operator [2], Remark 5. Furthermore, we conclude
the relation M¥ (Ji‘cp(z)) =Jk <M’,§¢(z)> = ¢(z).

Next, we proceed to formulate a linear combination operator involving SDO and the Ruscheweyh
derivative. For a function ¢ € A, the Ruscheweyh derivative achieves the formula

Tt enz" € A

Rip(z) =2+ ) Cypr pu?”,
n=2

where the term C,’g 1 is the combination coefficients. In this note, we introduce a new operator
combining R¥ and M¥ as follows:

Chop(z) = (1 — ) R*p(z) + xMEg(2)

-t i ((1 B K)Cllg‘**n*l +x[n(a—(1- (x)(—l)")}k) onz". ®3)

Remark 1.

o k=0=Cp(z) = 9(2);

e a=1=— C’{,qu(z) = Lk¢(z); [8] (Lupas operator)
o k=0= Cpyp(z) = R*(2);

e a=lkxk=1= Clil(])(z) = Skp(z);

o x=1—Chglz) = Mig(2).
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We shall deal with the following classes

" z(MEg(z))
S; (h):{¢eA.W<h(z),heC}.

Obviously, the subclass S (h) = S*(h).

Definition 1. If € A, then ¢ € J%(A, B, k) if and only if

1 2MEH(2) 1+ Az
b (Mg — Mipr) = T B

(zeU, “1<B<A<1,k=12,.,beC\{0}, ac [0,1]).

o a=1=1[9];
e a=1B=0=1]10];
e a=1A=1B=-1b=2=[l1].

Definition 2. Lete € [0,1),a € [0,1],x > 0, and k € N. A function ¢ € A is said to be in the set T(x, %, €)
if and only if
%((Cﬁ/,cq)(z))’) >e, zell

4. Geometric Results

In this section, we utilize the above constructions of the symmetric operators to get some geometric
fulfillment.
Theorem 1. For ¢ € A if one of the following facts holds
o The operator MX@(z) in (2) is of bounded boundary rotation;

e ¢ achieves the subordination inequality

B
(M§¢(2))/<Gf§>, B>0,z€U, «cl0);

e f satisfies the inequality
k
w((Migp)y My S 2 se )z e,

o ¢ admits the inequality

k V4
R(=Mig())" ~ Mip(z)) +27 82

z

e ¢ confesses the inequality

g%(z/\/l’;zp(z))/ o Mio(2)

Mig () )L

then % € P(e) for some e € [0,1).
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Proof. Define a function ¢ as follows

MEp(z
o) = M) 2y 4 o) = (MEp(2))' @
By the first fact, MX¢(z) is of bounded boundary rotation, it implies that (z¢’(z) + o(z)) > 0.
Thus, by Lemma 1.i, we obtain R(0(z)) > 0 which yields the first part of the theorem.
In view of the second fact, we have the following subordination relation

(MEp(2))' =2¢'(2) + o(2) < [T 2P,

Now, according to Lemma 1., there is a constant v > 0 with § = B(-y) such that

MEg(2) ~ (1 +z)"’

z 1-z

This implies that R(MEp(z)/z) > ¢, for some € € [0,1).
Finally, consider the third fact, a simple computation yields

R( (=) + 20(2):2¢ () = 20((MEg(a) M0 5 5 ®)

In virtue of Lemma 1.ii, there is a constant A > 0 such that ®(¢(z)) > A which implies that
o(z) = % € P(e) for some € € [0,1). It follows from (5) that %(M’;(p(z))’) > 0 and thus
by Noshiro-Warschawski and Kaplan Theorems, MX¢(z) is univalent and of bounded boundary

rotation in U.
By differentiating (4) and taking the real, we have

R(o(2) +20(2) +20"(2)) = R(=(MEg()" — (Mig(2)) +2 2588 g

z

k
Thus, in virtue of Lemma 1.ii, we obtain %(M%?(Z)) > 0.
By logarithmic differentiation (4) and taking the real, we have

/ k / k
%(Q(Z)Jrzs(iz)) 2¢'(2)) = ® (2 (Aﬂjllgi((;)) HMLY;D(Z)”) >0

Hence, in virtue of Lemma 1.iii, with #(z) = 1, we conclude that (=25 “¢( ) ) > 0. This completes
the proof. [

Theorem 2. Let ¢ € S;*(h), where h(z) is convex univalent function in U. Then

M’;(p(z) < zexp (/OZ %d@),

where w(z) is analytic in U, with w(0) = 0 and |w(z)| < 1. Furthermore, for |z| = 1, MX¢(2) achieves
the inequality

exp</01 h(w(*i;i)) *1)@ ‘M’&tp < exp(/l h(w(fz)) *1)01;7.
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Proof. Since ¢ € S;*(h), we have

2(Mio(2))'
(W) < h(Z), z e [U,

which means that there exists a Schwarz function with w(0) = 0 and |w(z)| < 1 such that

2(Mip(2)'y _
(W) = h(w(z)), z e ]U/

which implies that
(o) 1 _ @) =1
Mig(2)

Integrating both sides, we have

log MEg(z) —logz = /OZ Mw@) -1

Consequently, this yields

Mig(z) _ [*h(w(@)) 1
,/O d

2 z g (6)

log

By using the definition of subordination, we get

M’;zp(z) < zexp (/OZ %{g)ildr:).

In addition, we note that the function /(z) maps the disk 0 < |z| < # < 1 onto a region which is
convex and symmetric with respect to the real axis, that is

h(=nlzl) < R((w(nz))) < h(ylzl), 7€ ©0,1),

which yields the following inequalities:

h(=n) < h(=nlzl), h(nlz]) <h(y)

and
1 _ _ 1 _ 1 _
[ MO =1y g M =1y M) =1,
0 Ul 0 Ul 0 U
By using the above relations and Equation (6), we conclude that
P h(w(=nlz])) - ¢ Mhlw(ylz) — 1,
Malznlz)) =1, <, 2 < / —
/0 7 = log ‘ ‘ 7 diy.
This equivalence to the inequality

exp('/ol h(w("?n\z\))—ldiy) < ‘Mw ‘<exp(/0 W"”)-

Thus, we obtain

" w(— — ]; " w —
exp</01h( (77)) 1)d,] ‘M¢ ‘<8Xp(/01h( (f;)) 1)d7.

68



Symmetry 2019, 11, 906

This completes the proof. []

Theorem 3. Consider the class J§(A, B, k) in Definition 1. If ¢ € J%(A, B, k) then the odd function

achieves the following inequality

1+

7

1(/\/1’;“0(2) B ) B 1+ Az
b\ Mko(z) 1+ Bz

and

z9(z) 1—12 B
§R< O(z) ) 2 14727 2l =r<1,

(zeU, “1<B<A<1,k=12.,beC\{0}, a € [0,1]).

Proof. Since ¢ € J2(A, B, k) then there is a function P € J(A, B) such that

M
P 1 = (g i)
e bl 11 ( —2MEg(=2)
(P2 =1 = (Fap(a) — atio(—) )
This implies that
1, MEFIO(z) _ P(z) + P(~2)
1+ ( WD) -1) = —=.
Also, since LA
P(z) < 1135

1+A
where 1 Az is univalent then by the definition of the subordination, we obtain

+ Bz

1 MEA1D(2) 14 Az
1+E< MED(z) >_< 1+ Bz’

Moreover, the function O(z) is starlike in U which implies that

z9(z) - 122
O(z) 1+ 22

that is, there exists a Schwarz function p € U, |p(z)| < |z| < 1, p(0) = 0 such that

_ () 1-p()?
*E) =50 1T eee
which yields that there is ¢, |¢| = < 1 such that
200 _ 1= P(8)
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A calculation gives that

— 2< 2
Hq, \ p(@)P < [g

Hence, we have the following conclusion

o0~ 12 lgli <q flfgf*)z
or
[o6) - i:g:i‘ : (12—‘§|E|4>'
This implies that
R(®(2)) > ﬁﬁ el =r<1.

O

Next consequence result of Theorem 3 can be found in [9,11] respectively.

Corollary 1. Let « = 1 in Theorem 3. Then

. 1, MHO(z) 1+ Az
<M’<D() ) 1+Bz’

Corollary 2. Let &« =1,k = 1 in Theorem 3. Then

M2D

14+ ( (2) 1)4”“.
M]D(Z) 1+ Bz

Theorem 4. The set Ty(«, x,€) in Definition 2 is convex.

Proof. Let ¢;,i = 1,2 be two functions in the set Ty («, k, €) satisfying ¢1(z) = z + Y5y anz" and
¢2(z) = z+ Y, buz". Tt is sufficient to prove that the function

H(z) = c1¢1(z) + copa(z), z €U

isin Ty(a, k,€), where ¢y > 0,c; > 0and ¢1 +¢; = 1. By the definition of H(z), a calculation implies that

0

H(z) =z+ Y (c1ay + c2by)2"
n=2
then under the operator C];,K, we obtain
o0
CI; K Z 1y + c2bn)

X[(1 = )y + e (nle — (1= a)(=1)")) 2"
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By taking the derivative for the last equation and following by the real, we have
R{(ChH())'}

=1+ 013‘%{ in[(l - K)C,,:+n71 +x(nfa — (1 - a)(*l)”])kunz"*l}

+ czaa‘:{ in[(l —%)CE, g+ K (nfa— (1 - a)(—l)“])kbnz”’l}

>1+c(e—1)+c(e—1)

=e.
This completes the proof. [

Next consequence result of Theorem 4 can be found in [8].
Corollary 3. Let « = 1 in Theorem 4. Then the set Ty.(1,x, €) is convex.

Theorem 5. Let ¢ € Ty(w,x,€), and let ¢ be convex. Then for a function

2+c (%
F(z) = zT/o Eo(tdt, zel
the subordination (20'(2)
k / z¢'(z
(Chat@) <o)+ 5757 >0,

implies )
(ChF2) < o(2),

and this result is sharp.

Proof. Our aim is to apply Lemma 2. By the definition of F(z), we obtain

(k)

(CI;,KF(Z)) + B T (CI;,K(P(Z)),'
By the assumption, we get
r (ChLF(2) ! /
(ChoF2) + () s ) o e (o)
By letting
0(z) = (Ch,F(2))
one can find , ,
o0+ O o), )

and ¢ is the best dominant. [
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Theorem 6. Let ¢ be convex achieving ¢(0) = 1. If

(Chep@) < p(2) +29'(2), zeU,
then
Chi(2)

—PE <0,

and this result is sharp.

Proof. Our aim is to apply Lemma 1. Define the function

k
o) = S e gy

By this assumption, yields
k k ! /
Chop(z) = 20(z) = (Ch,(2)) = a(2) +2¢'(2).
Thus, we deduce the following subordination:
0(2) +20'(2) < 9(2) +2¢/(2).
In view of Lemma 1, we receive
Cir9(2)

=P < g(a),

and ¢ is the best dominant. [
Theorem 7. If ¢ € A satisfies the subordination relation

B
() < (122)  zeu >0,

then ¢ (o)
Ca,x‘P Z
%(72 ) >e€
for some € € [0,1).

Proof. Define a function ¢ as in (7). Then, by subordination properties, we have

2

(Cixt(2)) =2¢'(2) +@(2) < [1 . :

Now, in view of Lemma 1.i, there is a constant y > 0 with f = B(7y) such that

Cax(2) <1+Z>7
A .
z 1-z

This implies that R(Ck . ¢(z)/z) > €, for some e € [0,1). O

Theorem 8. If ¢ € A satisfies the inequality

R((chp) S S 8 et we o

z

N =
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then CK  ¢(z) € Ty(,x,€) for some € € [0,1). Furthermore, it is univalent and of bounded boundary rotation
in U.

We inform the readers that in virtue of Noshiro-Warschawski Theorem (Duren [1], p. 47) if a
function ¢ is analytic in the simply connected complex domain U and R{¢’(z)} > 0in U then ¢ is
univalent in U and in view of Kaplan’s Theorem (Duren [1], p. 48) such functions ¢ is of bounded
boundary rotation.

Proof. Define a function ¢ as in (7). A simple computation yields

Cho(2)
T) > a ®)

R(e*() +20(2).20'(2) ) = 2R(Ch o9 (2))’
By virtue of Lemma 1.ii, there is a constant A depending on a such that R(o(z)) > A, which
implies that ®(o(z) ) > € for some € € [0,1). It follows from (8) that %(C’;’K(,b(z))’ ) > ¢ and thus

by Noshiro-Warschawski and Kaplan Theorems, C},,“,,K(p(z) is univalent and of bounded boundary
rotationin U. [

Example 1. We have the following data: ¢(z) = z/(1 — z), & = 0.25. A calculation brings

Me@(z) = azg/(z) — (1 - w)z¢' (~2)
_0.25z 075z z(z2—z+1)
GRS A W Rl G I g, ©)

=z 224323 — 224 4525 4+ 0(2%)

with

# ((Migtz)y M)
0.25z 0.75z
)

4228622 422-1) | s s
(—z*+22° — 622 +22-1) 172)2+(1+Z)2

z(z2 -1)3

(10)

=R

>0,

when z — 1. Hence, in view of Theorem 1, % € P(e) for some e € [0,1).

5. Conclusions and Future Works

Motivated by this method, in the recent investigation we have presented new classes of univalent
functions that connect to a symmetric differential operator in the open unit disk. We have obtained
sufficient and necessary conditions in relation to these subclasses. Linear combinations, operator and
other properties are also explored. For further research, we indicate to study the certain new classes
related to other types of analytic functions such as meromorphic, harmonic and p-valent functions
with respect to symmetric points associated with SDO.
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Abstract: In the present research paper, our aim is to introduce a new subfamily of meromorphic
p-valent (multivalent) functions. —Moreover, we investigate sufficiency criterion for such
defined family.
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1. Introduction

Let the notation ), be the family of meromorphic p-valent functions f that are holomorphic
(analytic) in the region of punctured disk E = {z € C:0 < |z| < 1} and obeying the following

normalization

f(z) = le + y iy 2P (z€E). (1)
i=1

]
In particular Q3; = (), the familiar set of meromorphic functions. Further, the symbol MS*
represents the set of meromorphic starlike functions which is a subfamily of () and is given by

MS* = {f:f(z) GQand§R<zj{/((ZZ))) <0 (zeIE)}.

Two points p and p’ are said to be symmetrical with respect to o if o is the midpoint of the line
segment pp’. This idea was further nourished in [1,2] by introducing the family MS? which is defined
in set builder form as;

Ms;:{f:f(z)eoandﬂ#%) <0 (zeE)}.

Symmetry 2018, 11, 764; doi:10.3390/sym11060764 75 www.mdpi.com/journal /symmetry
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Now, for -1 <t < s < 1Twiths # 0 # 0 < ¢ <1, Aisreal with [A| < J and p € N,
we introduce a subfamily of (), consisting of all meromorphic p-valent functions of reciprocal order ¢,
denoted by N'S ’; (s,t,&), and is defined by

NS;,‘ (5,t,8) = {f i f(z) € Qp and R <e*i/\SI;sit:pf(Sz;l—(§)(tz)

We note thatfor p = s = 1and t = —1, theclass /\/'S?J (s, t, &) reduces to the class N‘Si\ (1,-1,¢) =
NS? (&) and is represented by

) > ¢ cosA (ZGIE)}.

_inf(=2) = f(2)
2zf'(z)

For detail of the related topics, see the work of Al-Amiri and Mocanu [3], Rosihan and
Ravichandran [4], Aouf and Hossen [5], Arif [6], Goyal and Prajapat [7], Joshi and Srivastava [8],
Liu and Srivastava [9], Raina and Srivastava [10], Sun et al. [11], Shi et al. [12] and Owa et al. [13],
see also [14-16].

./\/'Si‘(g):{f:f(z)eﬂandéﬁ<e )>§c05/\ (ZEE)}.

For simplicity and ignoring the repetition, we state here the constraints on each parameter as
0<¢<1,-1<t<s<1withs#0#t Aisreal with [A| < Fand p € N.

We need to mention the following lemmas which will use in the main results.

Lemma 1. “Let H C C and let ® : C?> x E* — C be a mapping satisfying ® (ia,b:z) ¢ H fora,b € R
such that b < fn#. Ifp(z) =14 cpz" + - - - is regqular in E* and @ (p (z),zp’ (z) : z) € HY z € E¥,
then R (p (z)) > 0.”

Lemma 2. “Let p(z) = 1+ c1z+ - - - be regular in E* and y be reqular and starlike univalent in E* with
7(0) =0.Ifzp'(z) < 3(z), then

z
p(z) <1+ /wdt.
) t
This result is the best possible.”

2. Sufficiency Criterion for the Family V'S 2 (s,t,¢)

In this section, we investigate the sufficiency criterion for any meromorphic p-valent functions
belonging to the introduced family N'S ;7\ (s,t,8):

Now, we obtain the necessary and sufficient condition for the p-valent function f to be in the
family N, S;} (s, t,¢) as follows:

Theorem 1. Let the function f(z) be the member of the family Q). Then

it 1 1
f(z) ENSy (s,1,) & G(z) 2ecosh < 2¢ cos A’ @
where pep t
Gz = 2 f2) —f () ©)

T )
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Proof. Suppose that inequality (2) holds. Then, we have

25 cosA —¢ G (z) !
2% cos Ae=AG (z) 2& cos A
N ‘2§cos)»—e ’/\g()2 1
2¢ cos Ae—AG (z) 4§2 cosZ A
& <2§c05/\ —e G (2) ) <2§c05/\ —e G (z )) < (ei)‘%> e G(z)
& 4§2c052/\—2§cos)x<e‘ T+e*'Ag( )) <0
= 2gcosA—2§R< -iAG (2) )
s R (e’iA(] (z)> > (cosA,

and hence the result follows. [

Next, we investigate the sufficient condition for the p-valent function f to be in the family
NS 2 (s,t,&) in the following theorem:

Theorem 2. If f(z) belongs to the family O, of meromorphic p-valent functions and obeying

no__4n X .
<s t s”t’”—nﬁCpOSAeMN\“n\ <%<1_‘1_2ﬁcos)wm)>, )

)

sP — tP

n=p+1
then f (z) € NSp (s,,8) .
Proof. To prove the required result we only need to show that

260 g cos Azf (2) /p — il (f (t2) — £ (52))
T (f (12) — £ (52))

<1 (5)

Now consider the left hand side of (5), we get

LHS =

20 cos Azf’ (z) /p — % (F (tz) — f (s2))
way (f (12) = £ (s2))

ir (St pyp _ 2nEcosA A n+p
(2eM&cosA — 1)+ ¥ (G=tpsPt — e anz

B n=p+1
- ol n__n
1+ L (550)sPtra,z+r
n=p+1
X 0
|2¢1&cosA - 1|+ ¥ )<%sptp72f%05/\emn>‘|a |27
< n:zfl
1= E (525 90l 2]
n=p
. © i
2e'ccosA— 1|+ L |(5=s7tr —2Bcos Aeitt )| [a|
n=p+1
<

o0
1= ¥ |(5=) st lan|
n=p+1

By virtue of inequality (4), we at once get the desired result. [
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Also, we obtain another sufficient condition for the p-valent function f to be in the family
NS 2 (s,t,&) by using Lemma 1, in the following theorem:

Theorem 3. If f(z) € Q) satisfies

R {e*’* <ngg'((zz)) +1) G (z)} > Beos A — g (1—B)acosh),

then f (z) € NS’; (s,t,¢), where G (z) is defined in Equation (3).
Proof. Let we choose the function g (z) by

_ e"G(z) — BcosA +isinA
1(z) = (1—B)cosA ’ ©)

then Equation (6) shows that g (z) is holomorphic in E and also normalized by ¢4 (0) = 1.

From Equation (6) , we can easily obtain that

g'(2)
g (2)

TG (2) <1+1ch > =®(q(2),2q (2),2),

where
D (q(z),2zq9" (z),2) = [(1 — B) azq' (z) + (1 = B) q (z) + B] cos A — isin A.
Now for all 4,b € R satisfying 2y < —n (1 + az) , we have

R {®(ia,bz2)} < ﬁcosAf;(leaz)(lfﬁ)zxcosA
< ,BCOS/\—g(l—,B)aCOS/\.
Now, let us define a set as
H={§:§R(é)>‘Bcos)\fg((1fﬁ)occ05/\)},

then, we see that ® (ia,b,z) ¢ Hand ® (q(z),zq (z),z) € H. Therefore, by using Lemma 1, we obtain
that R (g (z)) > 0.
O

Further, in the next theorem, we obtain the sufficient condition for the p-valent function f to be in
the family NS;,} (s,t,¢) by using Lemma 2.

Theorem 4. If f(z) is a member of the family Q) of meromorphic p-valent functions and satisfies

QE?Z) (Zg,(g))’ < /SC(l)S/\ -1 @)

then f (z) € NS;} (s,t,&), where G (z) is given by Equation (3).
Proof. In order to prove the required result, we need to define the following function

q(z)cos A = e "G (z) +isin A,
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then, Equation (6) shows that th function g (z) is holomorphic in E and also normalized by g (0) = 1.

Now, by routine computations, we get

W) ()
g(z) —itanA  G(z)

Now, let us consider z (q q

!
m) and then by using inequality (7), we have

’Z (Q(Z)COSi—isin)J/ - gezz) (ZSI(S)N < /S'C(])s)\ -1,

z 1 /< (I1—pBcosA)z
q(z)cosA —isinA BcosA

Using Lemma 2, we have

therefore

1 <1+(1_ﬁCOS/\)z
(q(z) —itanA) cos A BcosA

equivalently
Bcos A

(q(z) —itanA)cos A < Boosh+ (1—fcosh

E = H (z) (say) . (8)
After simplifications, we get

zH" (z)
H'(2)

1
1+%( >:2/3c05/\—1>0, f0r5</3<1.

The region H (E) shows that it is symmetric about the real axis and also H (z) is convex. Hence
R(G(z)=2H1)>0,

or
R (g(z)cosA —isinA) > BcosA,

or

R (e*“g (z)) > BcosA, for% <B<l
O

Finally, we investigate the sufficient condition for the p-valent function f to be in the family
NS 2 (s,t,¢) in the following theorem:

Theorem 5. If f(z) € Q) satisfies

(2ﬁ cos Ae't B 1)/

.
0] <nlz|", for 0<n <vy+1, )

then f (z) € NS;,} (s,t,&), where G (z) is defined in Equation (3).

Proof. Let us put
2B cos Aeit

G(z):z<W—l>.
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Then G (0) = 0 and G (z) is analytic in E. Using inequality (9), we can write

G(2)\'| 2B cos At ' oy
‘( )= ) | e
Now,
z |z] |z
G@\|_|7(c®Y G\ ol
KT)’* /(T) a < [ <T> ar< [oliras="55 <1,
0 0 0
and this implies that

2B cos Aeit ‘
-1 1.
‘ g() -

Now by using Theorem 1, we get the result which we needed. [

3. Conclusions

In our results, a new subfamily of meromorphic p-valent (multivalent) functions were introduced.
Further, various sufficient conditions for meromorphic p-valent functions belonging to these
subfamilies were obtained and investigated.
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Abstract: This article presents certain families of analytic functions regarding g-starlikeness
and g-convexity of complex order v (v € C\{0}). This introduced a g-integral operator and
certain subclasses of the newly introduced classes are defined by using this g-integral operator.
Coefficient bounds for these subclasses are obtained. Furthermore, the (, g)-neighborhood of analytic
functions are introduced and the inclusion relations between the (, g)-neighborhood and these
subclasses of analytic functions are established. Moreover, the generalized hyper-Bessel function is
defined, and application of main results are discussed.
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1. Introduction

Recently, many researchers have focused on the study of g-calculus keeping in view its wide
applications in many areas of mathematics, e.g., in the g-fractional calculus, g-integral calculus,
g-transform analysis and others (see, for example, [1,2]). Jackson [3] was the first to introduce and
develop the g-derivative and g-integral. Purohit [4] was the first one to introduce and analyze a class in
open unit disk and he used a certain operator of fractional g-derivative. His remarkable contribution
was to give g-extension of a number of results that were already known in analytic function theory.
Later, the g-operator was studied by Mohammed and Darus regarding its geometric properties on
certain analytic functions, see [5]. A very significant usage of the g-calculus in the context of Geometric
Function Theory was basically furnished and the basic (or g-) hypergeometric functions were first
used in Geometric Function Theory in a book chapter by Srivastava (see, for details, [6] pp. 347 et seq.;

Symmetry 2019, 11, 719; doi:10.3390/sym11050719 83 www.mdpi.com/journal /symmetry
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see also [7]). Earlier, a class of g-starlike functions were introduced by Ismail et al. [8]. These are the
generalized form of the known starlike functions by using the g-derivatives. Sahoo and Sharma [9]
obtained many results of g-close-to-convex functions. Also, some recent results and investigations
associated with the g-derivatives operator have been in [6,10-13].

It is worth mentioning here that the ordinary calculus is a limiting case of the quantum calculus.
Now, we recall some basic concepts and definitions related to g-derivative, to be used in this work.
For more details, see References [3,14-16].

The quantum derivative (named as g-derivative) of function f is defined as:

_ f(z) — f(g2)
(1—9)z

We note that D;f(z) — f'(z) as ¢ — 1— and D;f(0) = f’(0), where f’ is the ordinary
derivative of f.
In particular, g-derivative of hi(z) = z" is as follows :

Dyf(z) (z#0;,0<g<1).

th(z) = [”}qznil/ 1)

where [1]; denotes g-number which is given as:

], = 114 0<qg<1). @)

Since we see that [n]; — 1 as ¢ — 1—, therefore, in view of Equation (1), Dyh(z) — H'(z) as
g — 1—, where I’ represents ordinary derivative of h.
The g-gamma function T'; is defined as:

1ty 1 - ‘7"“
L(t)=(1-9q) H)W (t>0,0<g<1), (3)
n=
which has the following properties:
Ta(t+1) = [tgT4(t) 4)
and
T,(t+1) = [t,!, ®)

where t € N and [];! denotes the g-factorial and defined as:

Mq!—{ [{‘/M[t—l}q...[Z}q[l]q, Zéfm'm; ©

Also, the g-beta function By is defined as:

1
By(t,s) = /0 g M (s> 0,0<g<1), @)
which has the following property:
Lg(s)Ty(t)
B Al ASTA
By(t,s) = TG+ (8)

where I is given by Equation (3).
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Furthermore, g-binomial coefficients are defined as [17]:

<Z> . % ©

where [.];! is given by Equation (6).
We consider the class A comprising the functions that are analytic in open unit disc
U = {z € C: |z] < 1} and are of the form given as:

f)=z+ ) a2 (10)
n=2
Using Equation (1), the g-derivative of f, defined by Equation (10) is as follows:
Dyf(z) =1+ Y [n]ganz"" (zeU;0<g<1), (11)
n=2

where [n], is given by Equation (2).

The two important subsets of the class A are the families S* consisting of those functions that
are starlike with reference to origin and C which is the collection of convex functions. A function f
is from S*if for each point x € f(U) the linear segment between 0 and x is contained in f(U) . Also,
a function f € C if the image f(U) is a convex subset of complex plane C, i.e., f(U) must have every
line segment that joins its any two points.

Nasr and Aouf [18] defined the class of those functions which are starlike and are of complex
order ¢y (v € C\ {0}), denoted by S*(vy) and Wiatrowski [19] gave the class of similar type convex
functions i.e., of complex order ¢ (v € C\ {0}), denoted by C(y) as:

S*(y) = {f cA:R (1 +$ (Z}ZS) - 1)) >0 (z€ Uy € C\ {0})} (12)
" C(y):{féA:%(lJr%Z;,/éZ))) >0 (ZEU;WGC\{O})}, (13)
respectively.

From Equations (12) and (13), it is clear that S*(7y) and C(y) are subclasses of the class A.
The class denoted by S*; () of such g-starlike functions that are of order  is defined as:

S*q(y):{feA:%<Zqu(j;§Z)>>y (zeU;0§y<1)}‘ (14)
Also, the class C4(pt) of g-convex functions of order y is defined as:
Cq(y):{feA:%(%>>y (zeU;O§y<1)}. (15)

For more detail, see [20]. From Equations (14) and (15), it is clear that S,;‘(y) and C,(p) are
subclasses of the class A.
Next, we recall that the J-neighborhood of the function f(z) € A is defined as [21]:

Na(f)—{g(Z)—Z+ian" )“jzn|an—bn|sa} (6>0). 16)
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In particular, the §-neighborhood of the identity function p(z) = z is defined as [21]:

Ns(p) = {g(z) =z+ i b,z" i n|by| < 5} (6 >0). (17)
n=2

n=2

Finally, we recall that the Jung-Kim-Srivastava integral operator Qg : A — Aare defined as [22]:

(373 L o-2) o

1 [ee]
—2t (“(;ﬁ Z mf;_’i)n) apz" (B>-La>0; feA). (18)

The Bessel functions are associated with a wide range of problems in important areas of
mathematical physics and Engineering. These functions appear in the solutions of heat transfer
and other problems in cylindrical and spherical coordinates. Rainville [23] discussed the properties of
the Bessel function.

The generalized Bessel functions w,,j, 4(z) are defined as [24]:

wv,b,d(z) = n; r( (d)nb+1> (§>2n+vr (19)

v+n+T

where v,b,d,z € C.
Orhan, Deniz and Srivastava [25] defined the function ¢, ; 4(z) : U — C as:

v
b1\ 5
puna() =2 (v+ 271 ) 2 2,00V, 0

by using the Generalized Bessel function w,,;, 4(z), given by Equation (12).
The power series representation for the function ¢, 4(z) is as follows [25]:

= (7d/4)n n

z) = 7" 21

q)v,b,d( ) ,,gb (C)nl’l! ( )
b+1

wherec=v+——>0,v,b,d e RandzeU={z€C:|z|] <1}.
The hyper-Bessel function is defined as [26]:
o0 Z/d+1)’x1+ oy . z d+1
Jau (2 ; T+ 1) Tag 1) | 7@+ Vi {757 ' @2)

where the hypergeometric function ,F; is defined by:

((‘Bp i Mxn (23)

Jn(a2)n - - (atq)n nt’
using above Equation (23) in Equation (22), then the function J,(z) has the following power series:

S (="
(T (e +n+ )T (ag+n+1)...T(ag+n+1) \d+1

Jay(z D)

2 > n(d+1)+ai+..a4

n=
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By choosing d = 1 and putting & = v, we get the classical Bessel function

— o (_1)11 n+v
Juz) = ng‘b n!l (1/—i—11—‘,—1)z2 o @5)

In the next section, we introduce the classes of g-starlike functions that are of complex order
7 (7 € C\ {0}) and similarly, g-convex functions that are of complex order 7 (y € C\ {0}), which are
denoted by S5 (v) and Cy(7), respectively. Also, we define a g-integral operator and define the
subclasses S;(a, B,) and Cy(«, B, 7) of the class A by using this g-integral operator. Then, we find the
coefficient bounds for these subclasses.

First, we define the g-starlike function of complex order 7 (y € C\ {0}), denoted by S;(7) and
the g-convex function of complex order y (4 € C\ {0}), denoted by C;(y) by taking the g-derivative
in place of ordinary derivatives in Equations (12) and (13), respectively.

The respective definitions of the classes S; () and Cy(y) are as follows:

Definition 1. The function f € A will belong to the class S; () if it satisfies the following inequality:

1 [(zDyf(z)
§R1+7< ! 71>>>0 €C\{0},0<q<1). 26
(1+3 (55 (y€C\{0}, 0< g <1) o)
Definition 2. The function f € A will belong to the class Cy(y) if it satisfies the following inequality:
1Dy (2D4f(2)
R{1+ - [ L2220 >0 eC\{0},0<g<1). 27
( 7( — (vEC\{0},0<q<1) @)

Remark 1. (i) Ify € Rand vy =1—p (0 < p < 1), then the subclasses S;(7y) and Cq(y) give the sub
classes S () and Cq(), respectively.

(ii) Using the fact that limg 1 Dof(z) = f'(z), we get that limy ;- Si(y) = S*(v) and
limg_,1- Cg(7y) = C(7).

Now, we introduce the g-integral operator )(g PRt

Khaf@ = (“17 )q% fe (- q*t>f 1)yt )

q
(>0, p>-1,0<g<1;|z| <1; feA).

Itis clear that xj . f(z) is analytic in open disc U.
Using Equations (4), (5) and (7)—(9), we get the following power series for the function )(%/ g finU:

C Ty(B+nm)ly(a+p+1)

Xpof(2) =2+ ;2 T (a+ B+mi,(p+1) "

(a>0B8>-10<qg<1; feA. (29)

Remark 2. For ¢ — 1—, Equation (29), gives the Jung-Kim-Srivastava integral operator QY%, given by
Equation (18).

Remark 3. Taking & = 1 in Equation (28) and using Equations (4), (5) and (9), we get the g-Bernardi integral
operator, defined as [27]:

Flz) = “JZFTM”/OZ P 1f(dgt Bp=1,23,...
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Next, in view of the Definitions 1 and 2 and the fact that R(z) < |z|, we introduce the subclasses
Sy(a, B,y) and Cq(a, B, 77) of the classes S;(7y) and Cy(7), respectively, by using the operator X%,q’ as:
Definition 3. The function f € A will belong to Sy(a, B, y) if it satisfies the following inequality:

z2Dy(xp ,f(2))
Xgqf(2)

wherea > 0; B> —1; 0 < g < 1; v € C\{0}.

Definition 4. The function f € A will belong to Cy(«, B, ) if it satisfies the following inequality:

D, (2Dgx,f(2))

, 31
D@ |~ e

wherea > 0; B> —1; 0 < g < 1;7 € C\ {0}.

Now, we establish the following result, which gives the coefficient bound for the subclass

Sq (2, 8,7):

Lemma 1. If f is an analytic function such that it belongs to the class Sy(a, B, y), then

Ty(B+n)Ty(a+p+1)

e Ty(a+B+n)Ty(B+1)

(g —1vI=1)an <|y| (x>0 B>—-1;0<g<1yeC\{0}), (32)

where Ty and [n], are given by Equations (3) and (2), respectively.

Proof. Let f € A, then using Equations (11) and (29), we have

w Ta(B+m)T (a+pB+1) )

ZDq(X%,qf(Z)) . Z+Zn:2 r:(a+‘3+qn)rq(‘8+1) [H}qanz ) .

W_ - by T,(B+mTya+p+1) | (33)
: " rq(a+ﬁ+n)rq(ﬁ+1)”"z

If f € S4(a, B, ), then in view of Definition 3 and Equation (33), we have

L;(B+mTy(a+p+1)
Tpla+B+n)Te(B+1)
Fq(/%+n)l"q(oc+ﬁ+1)a .
To(a+B+mTy(B+1)"

z+ Yoo [n]qanz"

=1 <l

n

z+ 50

which, on simplifying, gives

Ty(B+m)Ty(a+p+1) .
rZ(“+ﬁ+qn)Fq(’[3+]) (["]q—l) a,z" 1
o Tg(B+mT(a+pB+1)
1+ Y0 T+ B+m,(B+1) "

Yoo

<l (34)

n—1
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Now, using the fact that R(z) < |z| in the Inequality (34), we get

Li(B+n)Ty(a+p+1) ([n]
Ty +B+my(B+1) 1

o Lg(B+n)Tya+p+1)
PPN rZ(a+ﬁ+qn)rq(ﬁ+1)

Lio

—1) ayz""!

R <yl (35)

a,,z”—l

Since x§ , f(z) is analytic in U, therefore taking limit z — 1—through real axis, Inequality (35),
gives the Assertion (32). O

Also, we establish the following result, which gives the coefficient bound for the subclass
Cﬂ (D‘r IB/ ,Y)

Lemma 2. If f is an analytic function such that it belongs to the class Cy(«, B,7y) and |y| > 1 then

Ty(B+m)Ty(a+p+1)

Lot T (a+B+n)Te(B+1)

([n)g (Ilg = Iv1))an <7l =1 (x>0; B> -1;0< g <Ly € C\{0}), (36)
where Ty and [n], are given by Equations (3) and (2), respectively.

Proof. Let f € A, then using Equations (11) and (29), we get

o Tg(B+n)Tya+p+1) I
Dy (#Duxif2)) | |1 E2 Tk g miryipe) (0 (37)
Doxg f(z) | w Lg(B+m)Ty(a+p+1) .
B 1+Zn:2 Fq(a+ﬁ+ﬂ)rq(ﬁ+l)[n]qanz 1
If f € C4(a, B,77), then in view of Definition 4 and Equation (37), we have
Ta(B+n)Tg(a+B+1) _
1 0o q q 2 nz" 1
L= l"q(DéJr,BJrn)rq(,BJrl)([n}q) " <] (38)
1+):oo rq(ﬁ+”)rﬁ(a+ﬁ+l)[n] a Zn—l
ATyl B my(B+1)
Now, using the fact that R(z) < |z| in Inequality (38), we get
Ta(B+n)Tg(a+B+1) -
1 0o q q 2 nz" 1
0 TR T Ty B ) ) <] (39)
14+y® rq(ﬁ+”)rq(“+ﬁ+1)[n] a1
Tyt BTy (B+1)

Since X%, g f(z) is analytic in U, therefore taking limit z — 1— through real axis, Inequality (39)
gives the Assertion (36). [

In the next section, we define (4,q)-neighborhood of the function f € A and establish the
inclusion relations of the subclasses S;(«, 8,7) and Cy(«, B, 7) with the (4,4)-neighborhood of the
identity function p(z) = z.

2. The Classes NM (f) and NJ,q(P)

In view of Equation (16), we define the (4, 7)-neighborhood of the function f € A as:

Ng,q(f)—{g(z)—z—o—ibnz” f:[n],7 |an—bn|<5} (6>0,0<g<1), (40)
n=2 n=2
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where [n], is given by Equation (2).
In particular, the (4, g)-neighborhood of the identity function p(z) = z, defined as:

Nsq(p) = {g(z) =z+ i bpz"

n=2

i[n]qbn<5} (6>0,0<q<1). 1)
n=2

Since [n]; approaches n as g approaches 1—, therefore, from Equations (16) and (40),
we note that lim, 1 Ny,(f) = N;(f), where Nj(f) is defined by Equation (16). In particular,
limg 1 Ny () = N (p).

Now, we establish the following inclusion relation between the class Sq(oc, B,v) and
(6, 9)-neighborhood N 4(p) of identity function p for the specified range of values of &:

Theorem 1. If -1 < B <0, |y| < [n]; -1 (n=2,3,...)and

"YHZ}qrq(“ +B +2)1",7(‘B +1)
T (2l = v = DT (B+2)Tg(a + B +1)°

(42)
then

Sy(a, B,7) C Niq(p) (yeC\{0};a>0;,0<g<1). (43)
Proof. Let f € Sq(a, B,7v), then, in view of Lemma 1, Inequality (32) holds. Since fora >0, —1 < <

I, (B+n i
q(ﬁ ) ) } is non-decreasing, therefore, we have
2

0, th —
e sequence {Fq(lx B ),

T(B+2)T(a+B+1) & & Ty(p+n)(a+p+1)
rZ(a+,5+q2)rq(/3+1) ([2]"7”'*1)";2 S; ¢x+/3+qn) T,(B+1) ([lg =17l = 1) an,

which in view of Inequality (32), gives

Ty(B+2)T (e +p+1) o
rq(“+ﬁ+2)rq(ﬁ+1) ([z]q - |'Y‘ _1)r§:2an < |'}’|/ (44)
;) ivalently,
or, equivalently, iu ) [v|Tq(a 4+ B+2)T4(B+1) 45)
= Ty(B+ (e +p+1) (21— 7 - 1)

. . rq (,B + ‘rl) « . .
Again, using the fact that the sequence ) is non-decreasing for « > 0 and
2

Taipin ),
—1 < B <0, Inequality (32), gives

LB+ (a+p+1) &
o pr o) oy

n=2

—Dan <7,

or, equivalently,

Ty(B+2)Ty(a+p+1) (14 [y)Tq(B+2)Tg(a+p+1)
e g an D Lo <+ S e L 0
which on using the Inequality (45), gives
LB+ 2)Tg(a+p+1) & (1+ |7|)|7|

Tyt B+ 2T, (p 1) Al <+ gr =
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or, equivalently,
5y 2Tyl +p+2Tg(B+1)
(@2l = I = DTy (B +2)Tg(a + B +1)

"YHZ}qrq(“ +B +2)rq(ﬁ +1)

([2)g = [7v[ = DT4(B+2)Tq(a + p+1)°
Inequality (47), we obtain that f(z) € Nj4(p), which proves the inclusion Relation (43). [

(47)

Now, if we take § > then in view of Equation (41) and

Next, we establish the following inclusion relation between the class Cy(a, ,v) and
(8, q)-neighborhood N ,(p) of identity function p for the specified range of values of 4:

Theorem 2. If -1 < B <0, |y| > 1and

(I =DTg(a+B+2)T4(B+1)

22 @y ) LB+ 2Tyt B+ 1)

(48)

then
Cqla, B,7) C Ns,4(p) (¢>0; 7€ C\{0};0<qg<1). (49)

Proof. Let f € Cy(«, B,7), then, in view of Lemma 2, Inequality (36) holds. Since for a >0, =1 < B <

rq(ﬁ +n) < .
-1 is non-decreasing, therefore we have
Tpla+B+n) ), ,

0, the sequence{
l"q(ﬁ—&-Z)l"q(:x—&-ﬁ—&-l) © T (B+n)Ty(a+p+1)
Ty(a+p+2)T4(B+ 1) = 171) L lrlaan < 22 Ty (a+p+n)Ty(p+1) ([nlg ([nlq = |71))an,

n=2

which, in view of Inequality (36), gives

LB+ 2T+ pe ) w
r:(a+’3+q2)rq(‘3+1) |’)/| Z qan < ‘7‘ -1, (50)

n=2

or, equivalently
o (Il =Dl(x+B+2)T4(B+1)
L < () Fy B+ 20y B

(Ir[=Dlg(a+p+2)T4(F+1)

(12l = [7) Tq(B +2)Tq(a +p+ 1)’
Inequality (51), we obtain that f(z) € Nj4(p), which proves the inclusion Relation (49). [

G

Now, if we take § > then in view of Equation (41) and

3. The Classes S(”) («,B,7) and C(”) (%, B,7)

In this section, the classes S (vc B, ) and C (oc B, ) are defined. Then, we establish the

incluswn relations between the nelghborhood of a functlon belonging to S;(a, B,7) and Cy(w, B,7)

(’7)(

with S (tx B,7v) and C (1) (a, B,77), respectively. First, we define the class S;"’ («, B,y) as follows.

Definition 5. The function f € A, belongs toS (oc By) (>0, -1< B, vyeC\{0};0<g<10<
11 < 1) if there exists a function g(z) € Sy(a, B, ’y) that satisfies

‘fi ’<1—7, (52)

where
g(z)=z+ 2 byz". (53)
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Similarly, we define the class Sév) (a, B, 7y) as:
Definition 6. The function f € A, belongs to C,;”)(zx, By) (>0, -1< B, yeC\{0};0<g<10<
11 < 1) if there exists a function g, given by Equation (53), in the class Cq(a, B, y), satisfying the Inequality (52).

Now, we establish the following inclusion relation between a neighborhood A/M( g) of any

function g € S;(«, B,y) and the class S;”) (a, B, v) for the specified range of values of #:
Theorem 3. Let the function g, given by Equation (53), belongs to the class Sy(«, B, ) and

OTy(B+2)Ty(a+B+1)([2];— v —1)

n<l- , (54)
(2] (([2lg = [7| =) Tg(B+2)Tg(a + p+1) = |7|Tg(a+ p+2)T(p + 1))
then
Nig() € 5" (a, 8,7), (55)
whereaw >0; —1<B<0; y€C\{0};6>0,0<g<L,0<y<1
Proof. We assume that f € N ,(g), then in view of Relation (40), we have
Z [n}q |an — bu| < 6. (56)
n=2
Since { [n]q}:lozz is non-decreasing sequence, therefore
2[2}4 lan —ba| < Z[”]q |an — bul,
n=2 n=2
This implies that
[2}11 Z lan — ba| < Z[”}q lan — bul,
n=2 n=2
which in view of Inequality (56) gives
[2}q Z ‘an - bn| <9,
n=2
or, equivalently
> 6
Y fan —ba| < = (0<g<1;6>0). (57)
n=2 [2]‘7

Since —1 < B < 0, therefore, for the function g, given by Equation (53), in the class S,,(uc, B,v),
using Inequality (45), we get

ad T 2)T 1
e DI@EpsANEE) .
=2 Tp(B+2)Tg(a+B+1) (2] + v - 1)
Using Equations (10), (53) and the fact that |z| < 1, we get
00 _ n—1 00 _ 0 _
@ _ 1‘ _ Lo (an —bn)z < Yoo |an — bal < Yoo |an — bal (59)

8(2) T+obez =t | 7 1= ba| = 1= ,bn
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Now, using Inequalities (57) and (58) in Inequality (59), we get

‘@_1' - ST (B+2)Ty(a+B+1) (2, — vl —1) (©0)
g(z) 2 ((2lg = v =) Tg(B+2)Tg(a + B+ 1) = [7|Tg(a + B+ 2)Ty(B+1))

OTq(B+2)Tg(a+B+1) ([2)g — v - 1)
(2q ((12lg = Iv[ = 1) Tg(B+ 2)Tg(a+ p+1) = [7Tg(a + p +-2)T4 (B + 1))
then in view of Definition 5 and Inequality (60), we obtain that f & 8,7('7) (a, B, 7v), which proves
the inclusion Relation (55). [

If we take < 1 —

7

Next, we establish the following inclusion relation between a neighborhood N,grq(g) of any

function g € Cy(w, B,7) and the class C,;”) (a, B, 7y) for the specified range of values of 7:

Theorem 4. Let the function g, given by Equation (53), belongs to the class Cq(w, B, v) and

‘5[2111 ([Z]q* |'Y|) rq(ﬁ+2)rq(“+f’+1) (61)
25 (2] (12§ = [7]) Tg(B+2)Tq(a+ B+ 1) — (|7] = D)Tg(a+ B +2)T4(B+1))

n<1l-

then
A/-J,q(g) C Cé’/) (EK, ‘B, ’)/)r (62)

where |y| >1,a>0;, —1<p<0;, yeC\{0};0<g<1,6>00<y<1

Proof. If we take any f € Nj4(g), then Inequality (57) holds.
Now, since —1 < B < 0, therefore, for any function g, given by Equation (53), in the class
Cy(a, B,7), using Inequality (51) and the fact that the sequence {[n],} ., is non-decreasing, we get

n=2

i (|"r\71)rq(zx+ﬁ+2)rq(,3+1)
Lo < (Rl = 1) Ty (B 2Ty (a4 1) ©3)

Using Inequalities (57) and (63) in Inequality (59), we get

f(z) _1‘ < [2]q ([2)g = [y]) Tq(B+2)Tg(a + B +1) (64)
g(2) = 20y (215 (2l = [v[) Tg(B+2)Tg(a + B+ 1) — (7] = )T(a + p+2)T4(B+ 1))

6[2]q ([2] = 7]) Tq(B+2)Tq(x + B +1)
214 ([2lg ([20g = 7)) Tq(B+2)Tq(a + B+1) = (|7] = DIg(a + B+ 2)T4(B +1))
then in view of Definition 6 and Inequality (64), we obtain that f € C,(,W) («, B, ), which proves the
Assertion (61). [

Ifwetaken < 1—

’

4. Application

First, we define the generalized hyper-Bessel function w, ., (z) as :

z

3 — b+1> <d+1

(65)
n=0 I [T, T (ai o

n(d+1) 4+, o
We,b,ay (Z) = >

where v, b,d,z € C.
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Second, we define the function ¢, (z) : U — Cas:

d
v o d b+1 1*%:11“1 1/d+1
Pagbe(z) = @+ =TT (a4 —— 2z A1 w0 (1), (66)
i=1
by using Equation (65) in Equation (66), we get
0 —c)"
(pC,b,IXd (Z) = Zn:() b(+ 1) Zn+1
n T, (oci + T) (d +1)n(d+1)
- 67
=z+Y7, (=t z" “
n=.
(n— 1T, (M + “Tl) (d+ 1) D@+
n—1

by choosing d = 1 and a1 = v, then the functions w, ,,(z) and ¢, (z) are reduce to w,, j 4(z) and
¢v,p,4(2), respectively.

Third, we applying the introduced function ¢ ., (z), given by Equation (67) in the results of
Lemma 1 and Lemma 2, we get the conditions for that function ¢ 4, (2) to be in the classes Sy(«, 8, 7)
and C;(a, B, ) in the following corollaries, respectively:

Corollary 1. If ¢, ,(2) is an analytic function such that it belongs to the class Sy(a, B,7y), then

(—0)" Ty (B+m)Ty(a+p+1)
b+1

(n =T, (a,- + T) . (d+1)=DEDT, (a + B+ n)Ty(B+1)

=
ek

< (g =vl=1) <l (x>0 p>-1,0<g<1LyeC\{0}),
where T'y and [n], are given by Equations (2) and (3), respectively.

Corollary 2. If ¢, (2) is an analytic function such that it belongs to the class Cq(a, B, v) and |y| > 1 then

(=c)" 'Ty(B+m)Ty(a+p+1)
(n =TT, (vcz- + b%l (d+ 1) DEITy (o 4 B+ )T (B +1)
x([nlg (In]g = |71))an < |v] =1 7 (>0 >-1;0<q<1yeC\{0}),

where Ty and [n], are given by Equations (2) and (3), respectively.

L

5. Discussion of Results and Future Work

The concept of g-derivatives has so far been applied in many areas of not only mathematics but
also physics, including fractional calculus and quantum physics. However, research on g-calculus is
in connection with function theory and especially geometric properties of analytic functions such as
starlikeness and convexity, which is fairly familiar on this topic. Finding sharp coefficient bounds for
analytic functions belonging to Classes of starlikeness and convexity defined by g-calculus operators is
of particular importance since any information can shed light on the study of the geometric properties
of such functions. Our results are applicable by using any analytic functions.

6. Conclusions

In this paper, we have used g-calculus to introduce a new g-integral operator which is a generalization
of the known Jung-Kim-Srivastava integral operator. Also, a new subclass involving the g-integral operator
introduced has been defined. Some interesting coefficient bounds for these subclasses of analytic functions
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have been studied. Furthermore, the (4, g)-neighborhood of analytic functions and the inclusion relation
between the (4, q)-neighborhood and the subclasses involving the g-integral operator have been derived.
The ideas of this paper may stimulate further research in this field.
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Abstract: The aim of this article is to establish the existence of the solution of non-linear functional
integral equations x(I,h) = <U(l,h,x(l,h)) +F (l,h, fol foh P(l,h,7, u,x(r,u))drdu,x(l,h))) X
G (l, h, foﬂ foa Q(Lh,r,u,x(r,u))drdu, x(1, h)) of two variables, which is of the form of two operators
in the setting of Banach algebra C ([0,4] x [0,4]) ,a > 0. Our methodology relies upon the measure of
noncompactness related to the fixed point hypothesis. We have used the measure of noncompactness
on C([0,a] x [0,4]) and a fixed point theorem, which is a generalization of Darbo’s fixed point
theorem for the product of operators. We additionally illustrate our outcome with the help of an
interesting example.

Keywords: functional integral equations; Banach algebra; fixed point theorem; measure of
noncompactness

MSC: (2010): 45G15; 47H10

1. Introduction

Many real-life problems in which we go over the investigation of various branches of mathematical
physics, for example, gas kinetic theory, radiation, and neutron transportation, can be depicted and
demonstrated by methods of non-linear functional integral equations (for example, we refer to [1-4]).
Banas and Lecko [5] introduced the concept of fixed points of product operators in Banach algebra.
Dhage [6,7] used the concept of the fixed point theorem to find the solution of functional integral
equations in Banach algebra. Banas and Olszowy [8] used the class of measures of noncompactness
to obtain the existence of solutions of nonlinear integral equations in Banach algebra. Deepmala and
Pathak [9] studied the existence of the solution of nonlinear functional integral equations of a single
variable in Banach algebra C|a, b] of all real-valued continuous functions on the interval [a, b] equipped
with the maximum norm.

Symmetry 2019, 11, 674; doi:10.3390/sym11050674 97 www.mdpi.com/journal /symmetry
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Kuratowski [10], in the year 1930, first introduced the idea of the measure of noncompactness
(denoted by “a”). For any bounded subset A of a metric space X,

m
a(A) =inf{(5 >0:AC U AjAj C X, diam (Aj) <o(j=1,..,m)me N},
=1

where:
diam (A]) = sup {d(ﬂl,az) tay,ap € A]} .

Using this idea, Darbo [11] exhibited a fixed point theorem that plays a very significant role in the
finding of existence theorems. In the recent past, there have been a few fruitful endeavours to apply
the idea of the measure of noncompactness in the investigation of the existence of solutions for various
kinds of differential and integral equations, for example one can refer to [12-20].

In many physical problems, we come across nonlinear integral equations. The fixed point theory
plays a significant role to obtain the solutions of such equations. Deepmala and Pathak, in [9], studied
the following nonlinear functional integral equation, which can be considered as a particular case of
many nonlinear functional integral equations that are applicable in mechanics, physics, economics,
etc.,

) = (0,0 +7 (1 [ 05,506 x0(0)) )

)
X g (t, /an (t,5,x(s)) ds,x(ﬁ(t))) for t € [0,a].
The authors of [9] used the measure of noncompactness to obtain the existence of the solution of the
integral Equation (1) in Banach algebra C[0, a] with the help of the fixed point theorem.
Motivated by the work of [9], in this article, we study the solvability of non-linear functional
integral equations of two variables, which we come across in various branches of nonlinear analysis.
We consider an integral equation in the following form:

x(l,h) = <U(l,h,x(l,h)) +F (l,h, /Ol /Oh P(Lh,r, u,x(r,u))drdu,x(l,h)))

@

x G <l,h, /Oa /Oa Q(lh,r, u,x(r,u))drdu,x(l,h)> forl,h € [0,a].
The right-hand side of the above integral equation that we are considering is the product of two
functional operators involving integral operators and applying a fixed point theorem, which is a
generalization of Darbo’s fixed point theorem for the product of operators to check the existence of the
solution of the integral equation in Banach algebra. It can be seen that Equation (2) is a generalization of
Equation (1) in two variables. Here, we used a fixed point theorem associated with Darbo’s condition of
the measure of noncompactness in Banach algebra of continuous functions in [0, 4] x [0, ] to establish
the solvability of Equation (2). Furthermore, we used the modified homotopy perturbation analytic
method to find the solution of Equation (2).

2. Preliminaries

Let R denote the set of real numbers, and write R = [0, 00) . Suppose E is a real Banach space
with the norm || . ||, and let X(# ¢) C E. The closure and convex closure of X will be denoted by
X and convX, respectively. The convex closure of a set X of points in the Euclidean plane or in a
Euclidean space over the reals is the smallest convex set that contains X. A closed ball in E centred at a
and with radius b is denoted by B(a, b). In addition, we use the symbol M to denote the family of all
non-empty and bounded subsets of E and use N to denote its subfamily consisting of all relatively
compact sets.
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Definition 1. Let X be a linear space over R. A norm on X is a function from X to R, commonly denoted ||.||
such that:

(N1) ||x]] = 0and ||x]| =0 < x =0;
(N2) |[acx|| = [a]]|x]];
(N3) ||x+yl| < ||x]| +||y|| forall x,y € X and « € R.

The pair (X, ||.||) is called a normed space. A complete normed space is called a Banach space.

Definition 2. An algebra A is a vector space A over a field K such that for each ordered pair of elements
X,y € A, a unique product xy € A is defined with the properties:

(A1) (xy)z = x(y2),

(A2) x(y+z) = xy + xz,

(A3) (x+y)z=xz+yz,

(A4) a(xy) = (ax)y = x(ay) forall x,y,z € A and scalars «.

A normed algebra A is normed space, which is an algebra such that for all x,y € A:

ey 1<l <l y

and if A has an identity e, then || e |= 1.

A Banach algebra is a normed algebra that is complete, considered as a normed space.
The notion of the measure of noncompactness due to Banas and Goebel [21] is as follows:

Definition 3. A function y : Mg — [0, 00) is said to be a measure of noncompactness in E if:

(i) forall X € Mg, we have that u(X) = 0 implies that X is precompact.
(ii) the family ker y = {X € Mg : u (X) = 0} is non-empty, and ker y C N.
(iii)) XCZ = p(X) < p(Z).
(iv) u(X) =pu(X).
(v) p(convX) = p (X) where convX is the convex closure of set X.
() puAX+(1-A)Z) <Au(X)+ (1 —=A)u(Z)forA €]0,1].
(vii) if Xy € Mg, Xn = X, Xpy1 C Xu forn=1,2,3,...and nlgloloy (Xn) =0, then N4 Xn # ¢-

The family ker y is called the kernel of measure pi. Note that the intersection set X« from the above
condition (vii) is a member of the family ker . Since j(Xw) < p(X,) for any n, we deduce j(Xe) = 0.
Consequently, X € kerp.

For given subsets X, Y in a Banach algebra E, the product XY defined by:

XY={xy:xeXyeY}

In [8], Bana$ and Olszowy defined the measure of noncompactness y on the Banach algebra E,
which satisfies condition (m) if for arbitrary sets X, Y € Mg such that:

p(XY) < [[X[|p(Y) + [[y[|1(X).

Deepmala and Pathak [9] used this concept of measure of noncompactness and obtained the existence
of the solution of Equation (1).

Definition 4 ([21]). Let E be a Banach space. Consider a non-empty subset X of E and a continuous operator
T : X — E transforming the bounded subset of X to the bounded ones. We say that T satisfies the Darbo
condition with a constant k with respect to measure y provided u(TY) < ku(Y) for each Y € Mg such that
Y C X.Ifk <1, then T is called a contraction with respect to .
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Remark 1. The Darbo condition has many applications, particularly in fixed point theorems, which can be
applied to check the existence of the solution of different types of integral, differential, and integro differential
equations. The Darbo condition can be potentially applied to extend the linear space in the work of Shang [22].
The assumptions (1)—(4) of the next section have been utilized in the study of consensus problems (see [23,24]).

We recall the following important theorems:

Theorem 1 ([11]). Assume that Z is a non-empty, closed, bounded, and convex subset of a Banach space E. Let
S : Z — Z be a continuous mapping. Suppose that there is a constant k € [0,1) such that:

u(SM) < ku(M), M C Z.
Then, S has a fixed point.

Theorem 2 ([8]). Suppose that X is a non-empty, bounded, convex, and closed subset of a Banach algebra E,
and the operators P and T transform continuously the set X into E such that P(X) and T(X) are bounded.
Furthermore, suppose that the operator S = P.T transforms X into itself. If P and T satisfy on the set X the
Darbo condition with respect to the measure of noncompactness y with the constants ky and ky, respectively,
then S satisfies on X the Darbo condition with constant || P(X) || ko+ || T(X) || k1. Particularly, if:

I PX) [kt || T(X) [ Rk <1,
then S is a contraction with respect to the measure of noncompactness y and has at least one fixed point in X.

We consider the space E = C([0,a] x [0, a]), which consists of the set of real-valued continuous
functions on [0, 4] x [0, a]. It is obvious that E is the vector space over the field of scalars R with the
following operations:

(x +y)(t,s) =x(t,s) +y(t,s)

and:
(ax)(t,s) = ax(t,s),

where x,y € E, « € Rand t,s € [0,a]. Since x,y € E, i.e., both x,y are real-valued continuous
functions on [0, a] x [0, 4] and the product of two real-valued continuous functions is also a real-valued
continuous function, therefore xy € E, where:

(xy)(t,s) = x(t,5)y(t,s), t,5 € [0,a].

Letz € E.Forallt,s € [0,4],

((x)2) (t,5) = (xy) (£,5)z(t,5)

Since t, s are arbitrary, therefore (xy)z = x(yz).
Similarly, it can be shown that:
x(y+z) = xy + xz,

(x+y)z=xz+yz

and:

a(xy) = (ax)y = x (ay) .
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Therefore E is an algebra.
The space E is also a normed space with the norm:
|| x |=sup{|x(l,h)| : I,h € [0,a], a >0}, x € E.
Forallx,y € Eand l,h € [0,4],

|(xy) (1| = [x(L )y (L R)| = [x (L) |y (L h)|

and so:
sup |(xy)(Lh)| < sup [x(Lh)| sup |y(l,h)|,
1,he0,a] 1he[0,a] 1,he(0,a]
ie.,
xy [I<I >yl

Thus, E is a normed algebra.
Let (x4(t,s))5_; be a Cauchy sequence in E where x,(t,s) € R x Rforalln € Nand t,s € [0,4].
Then:
H Xn — Xm ||*> 0 (n,m — OO)

Therefore, for all t,s € [0, a], we get:
[x4(t,8) = xp(t,s)] =0 (n,m — 0).

For fixed t,s € [0, a], the sequence (x,(t,s)) is a Cauchy sequence of real numbers, so it is a convergent
sequence and converging to xo(t,s) € E (say) as the limit of the continuous function is also continuous.
Therefore, for all t,s € [0,a]:

[xn(t,8) — xo(t,8)| =0 (n,m — oo)

which yields:
sup |xu(t,s) —xo(t,s)| =0 (n,m — o)
t,s€(0,a]
Thus:
| xp —x0 || =0 (1 — oo)

which proves that E is complete normed space. Hence, we conclude that the space E has the Banach
algebra structure.

Let X be a fixed non-empty and bounded subset of E = C([0,4] x [0,4]), and for x € X and € > 0,
the modulus of the continuity function (denoted by w(x, €)) is given by the formula:

w(x,€) =sup {|x(,h) — x(v,w)|: Lh,v,we [0,a],|l —v| <€ |h—w| <e}.
Further, we define:
w(X,€e) =sup{w(x,e):x € X}, wy(X)= iig%w(x,e).
Similar to [5], it can be shown that the function wy(X) is a regular measure of non-compactness

in the space C([0,4] x [0,a]). Apart from this, it is easy to check that the measure wy(X) satisfies
condition (m).
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3. Main Result

In this section, we study the existence of solutions of the integral Equation (2). We consider the
following assumptions:

(1) The functions U : [0,a] x [0,a] xR = R, F:[0,a] X [0,a] x RxR = R,and G : [0,4] x [0,a] x
R x R — R are continuous, and there exist nonnegative constants L, M such that:

|U(1,h,0)| <L, |F(I,h, My,0)| <M and |F(I,h, M,0)| <M,

where My, M, € R.
(2) LetA;:[0,a] x[0,a] = R4 (i=1,2,3,4,5) be continuous functions such that:

[U(1,h,x1) —U(L,h,x2)| < A1(L,h) |x1 — x2],
[F(Lh,y,x1) — F(Lh,y, x2)| < Az(L,h) |x1 — x2],
|G(Lh,y,x1) — G(L,h,y,x2)| < As(L,h) |x1 — x2|,

\E(L 1y, x) = F(L Ry ya, x)| < Ag(LR) [y = 2

and:
IG(L h,y1,x) = G(Lh,ya, x)| < As(Lh) [y1 — val,

where [, 1 € [0,a] and x, x1, X2, Y, 41,2 € R. Furthermore, let:
K=max{A;(l,h):i=1,2,3,4,51,h € [0,a]},

where K > 0.
(3) The functions P, Q are continuous functions from [0, 4] x [0,a] x [0,a] x [0,a] x R to R.
(4) Furthermore, 42 < 1fora =2k, p =L+ M.

Theorem 3. Under the hypotheses (1)—(4), Equation (2) has at least one solution in E = C(I x I), where
I=10,a].

Proof. Let us consider the operators F and G defined on E by:

(Ex)(1,h) = U(l, h,x(1,h)) + F <l,h, /O'l /(;hP(l,h,r, u,x(r,u))drdu,x(l,h))

and:

(Gx)(Lh) =G (l,h, /0” /Oa Q(,hr, u,x(r,u))drdu,x(l,h)) , where Il € [0,4].

From Assumptions (1)-(3), we get that F and G map C(I x I) into itself. Furthermore, let us define
another operator T on C(I x I) as follows:

Tx = (Ex)(Gx).

It is obvious that T maps C(I x I) into itself.
Let:

1 rh
Il(x):/o /0 P(1,h,r,u,x(r,u))drdu

and:

L(x) = /Oa '/Oa Q(Lh,r,u,x(r,u))drdu.

102



Symmetry 2019, 11, 674

Letx € C(I x I) be fixed and [, h € I. We get:

() (LI = |(Ex)(LR)|.[(Cx)(Lh)|

= |U(Lhx(l,h)+F(,h L(x),x(Ih)| x|G(I,h L(x),x(,h))]

< (JU(Lh,x(L,h)) = U(Lh,0)| + [U(L,h,0)| 4 |F (I, h, I (x), x(L, h))
—F (1, 1(2),0) |+ |F (1, b, (x),0)]) x (IG(L,h, I (x), x(1,h))
=Gl 1, I(x),0)| + |G(L h, I (x),0)])

< (AL )] + Lt Ax(L, ) [x(L, )|+ M) x (As(L k) [x(Lh)] + M)

< (@K x || +L+ M) (K | x || +M)

< (K| x || +L+ M)

Let « = 2k, B = L + M. Then, we have:
| Ex(|<al x|+,

[ Gxll<al x|l +p

and:
| T || < (e || x || +8)? ®)

forx € C(I x I).
From (3), we have that the operator T maps By C C(I x I) into By, where:

By = {x(L,h) € I:| x(Lh) [|< d}

for d, < d < dq, where:

p 1—20f—/1—4ap
L=

20?2

and:

i 1—-2ap+/1—4ap
2= .

20?2
Furthermore, we have:
| FBy [|<ad+p 4

and:
| GBa || < ad +B. ®)

Let e > 0 be fixed and x(I, 1), y(l,h) € B, such that:

lx—yll<e (ILhel).
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Then, we have:

|(Bx)(1,h) — (By)(Lh)| = U (Lhx(LR))+ F (I,h, I (x),x(1, )
~U (L1, y (1) — F (L L), y(, 1))
U (1,1, (1, ) = U (L, h,y (1, 1))
+[F (L kI (x), x(1, ) = F (L, h, Ii(x),y(1, 1))
+[F (L I (x),y(L k) = F (L h, L(y), y(Lh))|

IN

< AR (L) — (L) + As(, ) [x(LE) — y(1, 1)
+A4 (L h) |1 (x) — L(y)|
< K|x-y]|
K [P0 0) PO,y ) drd
S, v, u,x(r, - U Yy(r,u rau
I Jo u,x(r,u uy
< 2K | x—y| +Kaw(P,e),

where:
|P(L,h,r,u,x(r,u)) — P(Lh,r,u,y(r,u)| :Lhrucl, }

wib.e) = S“p{ %y € [~dd, | x—yl<e

Since P is continuous, so it is uniformly continuous on the compact set I x I x I x I x [—d, d]; therefore:
w(P,e) =0 as € = 0.

Thus, F is continuous on B,. Similarly, one can prove that G is continuous on By. Thus, we can conclude
that T is continuous on By.
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Let us consider a non-empty subset X of B; and x € X. Then, for a fixed € > 0and Iy, I, hy,hy € 1
suchthatly < b, hy < hy, 1 — I, <€,y —hy < €, one obtains:

|(Ex) (I, h2) — (Fx) (Il )|

U (I, ho, x(Ia, 1)) + F <lz,h2,/ / P(la, ha, 1, u, x(r, u))drdu,x(l2,h2)>

U (I, hy, x(1y, 1)) (11,111,/ / Py, b,y x(r, u))drdu,x(ll,h1)> ‘
< U (I, ho, x(la, ha)) — U (I, ha, x(11, h1))| + [U (I, ha, x(I1, h1)) = U (I, by, x(l, b)) |

+ |F (lz,hz,/ / P(lp, hy, v, u, x(r, u))drdu, x(lz,h2)>
—F <lz,h2,/ / P(ly, hy,r,u,x(r, u))drdu,x(lz,h2)>

+|F (zz,hz,// P(ly, b,y u, x(r, u ))drdu,x(lz,h2)>

—F <ll,h1,/ / P(ly, hy,r,u,x(r, u))drdu,x(lz,h2)>

+|F (llrhlr/ / l]rhlrr/u X(V, ))drdurx(121h2)>

—F <11,h1,/ / P(ly, hy,r,u,x(r, u))drdu,x(ll,h1)> ‘
< Al( ) ‘x(IZth) - x(ll,hl)‘ + |u(12/h21 (llrhl)) - (llrhlr (lehl))|

+ Aq(Lh) / / P(lp, hy, v, u, x(r, u))drdu — / / P(ly, hy, r,u,x(r,u))drdu

(lz,hz,/ / P(ly, h, 7, x(r, u ))drdu,x(lz,h2)>

- F <l],h1,/ / P(ly, hy,r,u, x(r, u))drdu,x(lz,h2)> ‘
+ Az (L h) [x(I2, ho) — x(lh, 1)
which yields:

|(Fx) (I, 1) — (Ex)(l, )| < 2K |x(I, ) = x(l, )|
+ U (o, ho, x(l, h1)) — U (l, by, x (1, 7)) |

L hy
+K ./0 / P(lp, hy, v, u, x(r,u))drdu
Jo
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by
- / / P(ly, by, r,u, x(r, u))drdu
o Jo

<lz,h2,/ / P(ly, hy, v, u, x(r, u))drdu,x(lz,h2)>

_F <11,h1,/ / P(ly, hy,r,u, x(r, u))drdu,x(lz,h2)> ‘

Let:
T B el L
W(P,¢) = sup { [P (Ip, hy, 1, u/x|§:/f)lz‘_Spe(,l‘l};:l_/;;ﬁé(:::z)z [:_lld,,liljhl,hz, ruel, } ’
k= sup{ |P(Lh,v,u,x(r,u))|: Lhru€lxe [fd,d]}
and:
e sup{ e e )
Furthermore:
P(ly, hy, r,u, x(r,u))drdu —/ / P(ly, hy, v, u, x(r,u))drdu
< P(lp, hy, v, u, x(r,u)) — P(ly, hy, v, u, x(r,u))) drdu
P(ly, hy, r,u, x(r,u))drdu
2 (P €) + ke?.
Therefore:
[(Fx)(lo, ) — (Fx) (I, )| < 2K |[x(lp, hy) — x(l, )| + w(U, €)
+K (u w(P,€) + ke ) +w(F,e€).
This gives:

w(ﬁx,e) < 2Kw(x,€) + w(U,e) + K [azw(P,e) +l_<u2] + w(F,e).
Since U and F are continuouson I x I x Rand I x I x R x R, respectively, therefore we get:
w(U,e) =0, w(P,e) » 0and w(F,e) — 0 as € — 0.

Thus:
wo(FX) < 2Kwy(X). ©6)

Similarly, we can show that:
wp(GX) < 2Kwy(X). (7)
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From (4)~(7) and Theorem 2 (for the details of this theorem, we refer to [8]), we get that T satisfies the
Darbo condition on B; with respect to measure wy with constant:

2K(ad + B) +2K(ad + ) = 4K(ad+ B)
= 4K(ad; + )
o a<1—2:x/3—\2/1—4a/5>+
20
_ 2K<1\/[1X4a,5>
< 1

This implies that T is a contraction operator on By with respect to w. Thus, by Theorem 2, we have that
T has at least one fixed point in B;. Hence, Equation (2) has at least one solution in By  C([0, 4] x [0,4]).
This completes the proof. [

4. An Illustrative Example

We construct the following example to illustrate the obtained result in the previous section.

Example 1. Consider the following integral equation:

x(l,h)—(écos(lzh> 9// 3—:L;cezru )( //6+|xru drdu) ®)

forl,h € [0,1] = I. Here, we have:
U(l, h,x(1,h)) = %cos <ﬂ) ,

F(lL,h,y,x(I,h)) =

G(Lh,y,x(I,h)) =

OO\W \O\\Q

rue*”’

3+x2(r,u)’
lh
6+ |x(r,u)|

P(Lh,r,u,x(r,u)) =

QL h,r,u,x(r,u)) =

anda =1, x,y € R.
It is obvious that all the functions U, F, G, P, and Q are continuous. We have:

UL, b, x1) = UL, 221 ))] = 0.2 (1, B) = xa(L, 1),

[F(Lh,y,x1(1,h)) — F(Lhy, xa(1,h))| = 0. |x1 (I, h) — xa(L, h)|,
|G h,y, x1(L 1)) — G(Lh,y,x2(1,h))| = 0. |x1 (L, h) — xa(1, )],
|F(Lh,y1, x(1,h)) — F(Lh,ya, x(1,h))| = %| -1,

and:
1
G Ry, x(1 1) = Gy, x(L 1)) = g lyr = val -
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It follows that:
1 1
Aq(l,h) = Ay(L,h) = As(l,h) =0, As(L,h) = 5 and As(1,h) = 3

Consequently, we get K = %.

Furthermore,
1
[U(Lh,0) < =,
6
1 1
<555~ Togs0
[E(L 1y, 0)| < 325 = 155759
and: !
< —.
G I y2,0)| < 32
Thus: 1 !
M= s L=~
and:
4ap = 2 <1
48

Hence, all the assumption from (1)—(4) are satisfied. Thus, by applying Theorem 3, we conclude that Equation
(8) has at least one solution in the Banach algebra C([0,1] x [0,1]).

5. An Iterative Algorithm Created by a Coupled Semi-Analytic Method to Find the Solution of
the Integral Equation

To find an approximation of solution for Equation (8), we make an iterative algorithm by a coupled
method created by modified homotopy perturbation and the Adomian decomposition method in the
case of two-dimensional functions. Applications of the modified homotopy perturbation method to
solve nonlinear integral equations, nonlinear singular integral equations, and nonlinear differential
equations can be seen in [25-27], respectively. The Adomian decomposition method to solve physical
problems was used in [28] and also to solve integro-differential equations system in [29]. However, in
this article, we introduce a modified homotopy perturbation method in terms of a function with two
variables, and for simplification of nonlinear terms, we use the Adomian decomposition method in the
suitable form; therefore, we make an effective algorithm by the above process. Equation (8) can be
shown in a general form of the two-dimensional nonlinear problem:

A(x(L,h))—f(LLh)=0

with (I, ) € I x I, where A is a general nonlinear operator and f is a known analytic function. Similar
to [26,27], we divide the general operator A into two nonlinear operators as M; and M. Of course, M;
or M can be linear operators in the special case that also f is converted to f; and f, functions; in other
words, we have:

My (x(1, 1)) = fu(l, 1) + Ma (x(1, b)) = fa(l,h) = O.
A modified homotopy perturbation for the above problem can be introduced as follows:

H (u(l,h),p) = My (u(l,h)) = fi(Lh) + p [Ma (u(l, 1)) = fa(L, )] = 0, p € [0,1], ©)

where p is an embedding parameter and u is an approximation of x. According to the variations of
p =0to p =1, it can be observed that My (u(I,h)) = f1(I,h) to A (u(l,h)) = f(I, h). This implies that
for p = 1in (9), we get the solution of (5).
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We consider the above solution as the series:
x(L,h) ~u(l,h) = Zpuklh)

and:
x(1,h) = lim u(l, h).

p—1

To solve Equation (8), M, M, and f can be defined as follows:

My (x(Lh)) = x(I,h),

(10)

)

(12)

) == (geon (B2) o [ [ st gonan) (3 [ ) 09

and:
fLR) = fi(lh) + fa(l h).
Since in (8) f(I,h) = 0, therefore f1(I,h) = f»(I,h) = 0. From (9)—(14), we have:

Y- phu(lh)
k=0
1 I+h 1 bk rue~ !
—p gcos<T>+§/0/0 - Sdrdu

3 ( £ pruntrm)

/ / — " dvdu| =o.

6+’Zpuk(r i)

Now, we use Adomain polynomials for simplicity for the nonlinear terms:

—Ih 0
e () s f | = A
+ (Z pkuk(rru)> k=0
k=0

and:

shhh

———————drdu = Y pFA (L, 1),
6+ Z prug(r, u) k=0

where the Adomain polynomials are given by:

1| d |1 I+h 1 gl gk rue~ '
Ak(l,h):ﬁ dT)k 6C05<T>+§/0/0 ” sdrdu
3+ (£ pranrn) )
k=0

and:

A(lh) = E / / ——————drdu

6+ Z prug(r, u)

p=0
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Therefore, we have:

Z pkuk(l/h) —-pP { PkAk(l/h)} { pkAk(l/h)} =0. (15)
k=0 0 k

k= =0

By rearranging the terms in powers in p of (15) and using modified homotopy perturbation (9), the
coefficients of p powers must be equal to zero, so we obtain an iterative algorithm (Algorithm 1) to
solve for the numerical solution of Equation (8).

Algorithm 1. Algorithm of calculating uy (I, h)

Mo(l,l’l) = 0,
uy (1) = Ao(Lh) Ao (1, 1),

k-1 N
le(l,h> = 'Z[) Ai(l,h)Ak,l,i(l,h), k= 2,3,---.
i=

Calculating the sequence {u(I, ), u1(l, 1), ...}, we can obtain a closed form of the solution for (8)
using the above algorithm.
We compute the Adomain polynomial for k = 0,

AO(l/h)
1 I+h 1 7l fh ruett

== —_— = ———drd
6COS< 2 >+9/o/o 3+ ud(r,u) ran

1 kY, 1221
6\ 2 108

and:

A 1 /11 Ih Ih
Ao(Lh) = g/o '/0 T T lr \uo(r,u)\drdu =15

Therefore, we obtain by the algorithm:

1 I+h\ | Ph%e= ") In
uy(Lh) = {6cos <T> + 108 T

We use (10) to approximate x(I, i) by a few term of uy (I, 1) as follows:

1 I+h 12Zh2e= | 1h
xl(lrh) = Mo(l,h) + Ml(l,h) = {6COS (T) + 108 @

6. Conclusions

In our present investigation, we have established the existence of the solution of a functional
integral equation of two variables, which is of the form of the product of two operators in the Banach
algebra C([0,a] x [0,4]), a > 0 and illustrated our results with the help of an example. We also
constructed an iteration algorithm to get the solution of Equation (8). Further, one can solve Equation
(8) using different numerical, as well as analytical methods in the setting of Banach sequence spaces
and Banach algebra. Moreover, due our existence theorem for Equation (8) of two variables, we
therefore conclude that our existence result is more general than the one obtained earlier by Deepmala
and Pathak [9].
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Abstract: The behavior of the analytical solutions of the fractional differential equation described
by the fractional order derivative operators is the main subject in many stability problems. In this
paper, we present a new stability notion of the fractional differential equations with exogenous
input. Motivated by the success of the applications of the Mittag-Leffler functions in many areas
of science and engineering, we present our work here. Applications of Mittag-Leffler functions in
certain areas of physical and applied sciences are also very common. During the last two decades,
this class of functions has come into prominence after about nine decades of its discovery by a
Swedish Mathematician Mittag-Leffler, due to the vast potential of its applications in solving the
problems of physical, biological, engineering, and earth sciences, to name just a few. Moreover,
we propose the generalized Mittag-Leffler input stability conditions. The left generalized fractional
differential equation has been used to help create this new notion. We investigate in depth here
the Lyapunov characterizations of the generalized Mittag-Leffler input stability of the fractional
differential equation with input.

Keywords: fractional differential equations with input; Mittag-Leffler stability; left generalized
fractional derivative; p-Laplace transforms

1. Introduction

The behavior of the analytical solutions of the fractional differential equation described by the
fractional order derivative operators is the main subject in stability problems [1]. There exist many
stability notions introduced in fractional calculus. Some examples are asymptotic stability, global
asymptotic uniform stability, synchronization problems, stabilization problems, Mittag-Leffler stability
and fractional input stability. In this paper, we extend the Mittag-Leffler input stability in the context of
the fractional differential equations described by the left generalized fractional derivative. We note here
that the left generalized fractional derivative is the generalization of the Liouville-Caputo fractional
derivative and the Riemann-Liouville fractional derivative [2]. There exist many works related to
stability problems. In [3], Souahi et al. propose some new Lyapunov characterizations of fractional
differential equations described by the conformable fractional derivative. In [4], Sene proposes a
new stability notion and introduce the Lyapunov characterization of the conditional asymptotic
stability. In [5,6], Sene proposes some applications of the fractional input stability to the electrical
circuits described the Liouville-Caputo fractional derivative and the Riemann-Liouville fractional
derivative. In [7], Li et al. introduce the Mittag-Leffler stability of the fractional differential equations
described by the Liouville-Caputo fractional derivative [8]. In [9], Song et al. analyze the stability of
the fractional differential equations with time variable impulses. In [10], Tuan et al. propose a novel
methodology for studying the stability of the fractional differential equations using the Lyapunov
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direct method. In [11], Makhlouf studies the stability with respect to part of the variables of nonlinear
Caputo fractional differential equations. In [12], Alidousti et al. propose a new stability analysis of the
fractional differential equation described by the Liouville-Caputo fractional derivative. Many other
works related to the stability analysis exist in literature, we direct our readers to the References section
for more related literature.

The generalized Mittag-Leffler input stability is a new stability notion. This new stability notion
studies the behavior of the analytical solution of the fractional differential equations with exogenous
input described by the left generalized fractional derivative [13]. We know from previous work in
stability problems, it is not trivial to get analytical solutions. The issue is to propose a method to
analyze the stability of the fractional differential equations with exogenous input. Classically, the most
popular method is the Lyapunov direct method as given in [14-18]. We propose the Lyapunov
characterization of the generalized Mittag-Leffler input stability here in this work. As we will be able
to show, the generalized Mittag-Leffler input stability generates three properties:

e the converging-input converging-state

e the bounded-input bounded-state

e the uniform global asymptotic stability of the trivial solution of the unforced fractional differential
equation (fractional differential equation without exogenous input).

We note here that the fractional differential equation with exogenous input is said to be generalized
Mittag-Leffler input stable when the Euclidean norm of its solution is bounded, by a generalized
Mittag-Leffler function, plus a quantity which is proportional to the exogenous input bounded
when the input is bounded and converging when the input converges in time. The fractional input
stability and its consequences are a good compromise in stability problems of the fractional differential
equations described by the fractional order derivative operators.

We organize the rest of the paper as follows. In Section 2, we recall the definition of the fractional
derivative operators with or without singular kernels. In Section 3, we propose our motivations
for studying the generalized Mittag-Leffler input stability. In Section 4, we give the Lyapunov
characterizations for the generalized Mittag-Leffler input stability of the fractional differential equations
with exogenous inputs. In Section 5, we provide numerical examples for illustrating the main results
of this paper. Finally, we finish with some concluding remarks in Section 6.

2. Background on Fractional Derivatives

Let us first recall the fractional derivative operators and the comparison functions [19]. We will
use them throughout this paper. There exist many fractional derivative operators in fractional
calculus. There exist two types of fractional derivative operators. The first is fractional derivatives with
singular kernels and the second is fractional derivatives without singular kernels. With regards to
fractional derivatives with singular kernels, we cite the Riemann-Liouville fractional derivative [2],
the Liouville-Caputo fractional derivative [2], the Hilfer fractional derivative [20], the Hadamard
fractional derivative [2], and Erdélyi-Kober fractional derivative [21]. We note here that all previous
fractional derivatives are associated to their fractional integrals [2,20]. As fractional derivatives without
singular kernels we cite the Atangana-Baleanu-Liouville-Caputo derivative [22], the Caputo-Fabrizio
fractional derivative [23], and the Prabhakar fractional derivative [24]. We note here that all previous
fractional derivatives are associated to their fractional integrals [21-24]. Recently, the generalization of
the Riemann-Liouville and the Liouville-Caputo fractional derivative were introduced in the literature
by Udita [25]. Namely, the generalized fractional derivative and the Liouville-Caputo generalized
fractional derivative. Let us now observe the comparison functions used in this paper.

Definition 1. The class PD function denotes the set of all continuous functions  : R>o — Rxq satisfying

«(0) = 0, and «(s) > 0 forall s > 0. A class K function is an increasing PD function. The class Koo
represents the set of all unbounded K functions [17].
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Definition 2. A continuous function p : R>o — Rxq is said to be of class L if B is non-increasing and tends
to zero as its arguments tend to infinity [17].

Definition 3. Let the function f : [0, +-co[— R, the Liouville-Caputo derivative of the function f of order «
is expressed in the form

crpy— L /" f'(s)
Daf(t)_ r(lfﬂé) 0 (t*S)a’ds, (1)
forall t > 0, where the order x € (0,1) and T'(.) is the gamma function [2,26-29].

Definition 4. Let the function f : [0, +00[— R, the Riemann-Liouville derivative of the function f of order
« is expressed in the form

DRt f() = F(l—oc dt/ t—s s, @

forall t > 0, where the order « € (0,1) and T'(.) is the gamma function [2,26-30].

Definition 5. Let the function f : [0, +oo[— R, the Liouville-Caputo generalized derivative of the function f
of order w is expressed in the form

(pe?s) (0 = ml,,,‘) ./Ot (tp;sp)wf’(s)sf—fp, )

forall t > 0, where the order & € (0,1) and T'(.) is the gamma function [2,26,28,29,31].

Definition 6. Let the function f : [0, +-c0[— R, the left generalized derivative of the function f of order « is

expressed in the form
090 =t () [ (57) fOs @

forall t > 0, where the order & € (0,1) and T'(.) is the gamma function [2,26,28,29,31].

Definition 7. Let us take the function f : [0, +oo[— R, the Caputo-Fabrizio fractional derivative of the
function f of order a is expressed in the form

DCFf() 170‘ / f'(s) ex p<f—(t75)> ds, 5)
forall t > 0, where the order & € (0,1) and IT'(.) is the gamma function [22].

Definition 8. Let the function f : [0, +oo[— R, the Caputo-Fabrizio fractional derivative of the function f of
order w is expressed in the form

ABC _
Ds(t) = 320 [ F o (-0 as ©
forall t > 0, where the order & € (0,1) and T'(.) is the gamma function [22,30].

Definition 9. Let us consider the function f : [0, +oo[— R, the Erdélyi-Kober fractional integral of the
function f of order &« > 0,17 > 0 and v € R is expressed in the form

(r+a)

AR = g 0 =T (), ?)

0
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forallt > 0,and T'(.) is the gamma function [21].

Definition 10. Let us consider the function f : [0, +oo[— R, the Erdélyi-Kober fractional derivative of the
function f of order &« > 0,17 > 0 and v € R is expressed in the form

Dy =TT (74545 5) (1 *70), ®

j=1
forall t > 0, and wheren —1 < a < n [21].

Some special cases can be recovered with the above definitions. In Definition 8, when p = 1,
we recover the Liouville-Caputo fractional derivative. In Definition 9, when p = 1, we recover
the Riemann-Liouville fractional derivative. In Definition 10, when v = —a and 57 = 1, we obtain
the relation existing between Erdélyi-Kobar fractional derivative and Riemann-Liouville fractional
derivative expressed in the form Dy “*f(t) = t*D*! f(¢).

The Laplace transform will be used for solving a class of the fractional differential equations.
The p-Laplace transform was recently introduced by Fahd et al. in order to solve differential equations
in the frame of conformable derivatives to extend the possibility of working in a large class of
functions [2]. We encourage readers to refer to [2] for more detailed information about p-Laplace
transforms and their applications.

The p-Laplace transform of the generalized fractional derivative in the Liouville-Caputo sense is
expressed in the following form

o {(DEf) (0} =L, {f (D)} =" f(0), ©
The p-Laplace transform of the function f is given in the form

L dt

L0 E) = [T 0 (10)

Definition 11. The Mittag—Leffler function with two parameters is defined as the following series

) Zk

Ewp(z) =) T(ak+p) (11)

k=0

where « > 0, B € Rand z € C. The classical exponential function is obtained with « = B = 1. Here we see
that when « and B are strictly positive, the series is convergent [14].

3. New Stability Notion of the Fractional Differential Equations

In this section, we introduce a new stability notion for the fractional differential equation with
exogenous input described by the left generalized fractional derivative. Historically, the fractional
input stability and the Mittag-Leffler input stability of the fractional differential equation represented
by the Liouville-Caputo fractional derivative were stated in previous works [5,18]. Moreover, the idea
of a discrete version of fractional derivatives is studied in the seminal work [32]. The Lyapunov
characterizations of these new stability notions have been provided in [15,18]. In this section, we extend
the Mittag-Leffler input stability involving the left generalized fractional derivative. We provide
some modifications in the structure of the definitions, however the idea is not modified. The new
stability notion addressed in this paper is called the generalized Mittag-Leffler input stability. In the
literature there exist many stability notions related to the fractional differential equations without
exogenous inputs such as the asymptotic stability [7,14], the practical stability [12,33], the Mittag-Leffler
stability [7] and many others notions. Let us consider the fractional differential equations with
exogenous inputs. In fractional calculus, we have not seen a lot of work related to the stability of the
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fractional differential equations with inputs. The stabilization problems [3] of the fractional differential
equations with exogenous inputs is one of the most popular notion existing in the known literature.
The challenge consists of finding possible values of the input under which the trivial solution of
the obtained fractional differential equation is asymptotically stable. In this paper, we adopt a new
method. Let us consider the fractional differential equation with exogenous input described by the left
generalized fractional derivative

D*Px = Ax + Bu, (12)

X7T

where x € R" is a state variable, the matrix A € R"*" satisfies the property |arg(A(A))| > &F,
the matrix B € R"*" and u € R" represents the exogenous input. The initial boundary condition
is defined by (I'~*fx) (0) = xo. Firstly, we give the analytical solution of the fractional differential
equation with exogenous input described by the left generalized fractional derivative defined by
Equation (12). Applying the p-Laplace transform to both sides of Equation (12), we obtain

£, (D"x(t)) — (zlfwx) 0) = AL, (x(t)) + L, (Bu)
s*%(s) —xg = AX(s)+ Bii(s)
2(s) —xo ("L, — A" = (s"I, — A)"' Ba(s), (13)

where x denotes the Laplace transform of the function x and i denotes the Laplace transform of the
function 1. Applying the inverse of the p-Laplace transform to both sides of Equation (13), we obtain

-1 «
—t\" it
x(t) = x|—2 Epo |A| —2
P P
b g\ L )" ds
+ / Eno | A|—2) | Bu(s)5—- 14
(5) ( ( ; ) (1)
Applying the Euclidean norm to both sides of Equation (14), we obtain the following relationship
(—1 o
o —\" t— 1
ot <l |[(58) (4 (M8
]| o —gp\ 21 ©— 0\ ds
1Bl ‘( ) Ew (A (“ o
to Y Y s
From assumption |arg(A(A))| > 4%, there exist a positive number M > 0 [4,18,34] such that, we have
o o _ oo\ a1 tp—tp ®
L2 e (o (555)) 5
to P o s P
This inequality is a classic condition in stability analysis of fractional derivatives shown in [34]. Finally,

the solution of the fractional differential Equation (12) described by the left generalized fractional
derivative with exogenous input satisfies the following relationship

o\ #—t\"
g Epo |A|—2
3 P

, (15)

<M. (16)

[x(®)] < [[xol + [BI| [[u]] M. 17)
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We first notice, when the exogenous input of the fractional differential Equation (12) described
by the left generalized fractional derivative is null ||u|| = 0. The solution obtained in Equation (17)

becomes ;
o — 2\ o —P\"
()| < [|xoll ( ; °> Eau (A <p°> : (18)

It corresponds to the classical Mittag-Leffler stability of the trivial solution of the fractional differential
equation without input D*?x = Ax described by the left generalized fractional derivative.

Secondly, let us consider the exogenous input converging to zero when f tends to infinity. We know
when the identity |arg(A(A))| > %F is held, we have

AN
Eun <A (tppto) > — 0. (19)

From which we obtain ||x(¢)|| — 0. Summarizing, we have the following

[u] — 0= [[x(t)]| — 0. (20)

In other words, a converging input generates a converging state. This property is called the CICS
property, derived in [15,18].

Finally, let us consider the exogenous input bounded (||u|| < 7). The solution of the fractional
differential Equation (12) described by the left generalized fractional derivative satisfies the following

relationship X
-\ o —h\"
<p0> Ena (A <p° + ||B|| yM. 1)

0P a—1 0P ®
Furthermore, we consider the function <t pt()) Eun (A (t pt°> ) € L, thus there exist ¢ > 0

[x(®)] < [[xol

such that we have the following relationship

w0\ #—t\"
Poh) g (a(fEh) ) <o 22
0 o

Thus Equation (21) can be expressed in the following form
2B < llxoll o+ [|B]| 7M. (23)

Thus, the solution of the fractional differential given in Equation (12) described by the left generalized
fractional derivative is bounded as well. A bounded input for Equation (12), we obtain a bounded state
for Equation (12). This property is called the BIBS property, created in [15,18]. The objective in this
paper is to introduce a new stability notion taking into account a few things; namely the converging
input, the converging state, the bounded input bounded state and the generalized Mittag-Leffler
stability of the trivial solution of the unforced fractional differential equation. This stability notion
we refer to as the generalized Mittag-Leffler input stability. In other words, the fractional differential
equation described by the Left generalized fractional derivative is said generalized Mittag-Leffler
stable, when its solution is bounded by a class KL function (contain a Mittag-Leffler function) plus
a class K« function proportional to the input of the given fractional differential equation. A similar
derivation leading to Equation (23) has also recently been applied to the study of fixed-time stability
in [35].
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In this section, we introduce new stability notion in the context of the fractional differential
equations described by the left generalized fractional derivative operator. The fractional differential
equation under consideration is expressed in the following form

D%x = f(t,x,u) (24)

where the function f : RT x R x R” — R" is a continuous locally Lipschitz function, the function
x € R" is a state variable, and furthermore the condition f(t,0,0) = 01is held. Given an initial condition
xp € R", the solution of the fractional differential Equation (24) starting at x( at time f( is represented
by x(.) = x(., xo, ).

Definition 12. The solution x = 0 of the fractional differential equation described by the left generalized
fractional derivative defined by Equation (24) is said to be generalized Mittag-Leffler stable if, for any initial
condition ||xo|| and initial time ty, its solution satisfies the following condition

0 _ 0 a—1 tP— o\ % a
Ix(t, %ol < m<|xo|><t p"") Eun (v( pt°)> , (25)

where a > 0, n < 0 and the function m is locally Lipschitz on a domain contained in R" and satisfies
m(0) = 0[7,14].

In the following definition, we introduce the definition of the generalized Mittag-Leffler input
stability in the context of the fractional differential equation described by the left generalized fractional
derivative operator.

Definition 13. The fractional differential equation described by the left generalized fractional derivative defined
by Equation (24) is said to be generalized Mittag-Leffler input stable if, there exist a class v € Koo function such
that for any initial condition ||xo ||, its solution satisfies the following condition

o4 a—1 P AN a
(2, [xol)]| < m<||xo||><t pt°> Eur (v(t pt°>> (), (26)

wherea > 0and 17 < 0.

From the condition v € K, we get 7(0) = 0. We recover Definition 13. That is, the generalized
Mittag-Leffler input stability of the fractional differential given in Equation (24) implies the generalized
Mittag-Leffler stability of the trivial solution of the fractional differential equation with no input
defined by D*x = f(t,x,0). From the fact 7 € Ko, when the input is bounded implies the function
v (Jlu]|s) is bounded as well. Thus the state of the fractional differential Equation (24) is bounded
too. We thus recover BIBS. From the fact v € Ko, a converging input causes v (||u]|,,) to converge.
Thus the state of the fractional differential Equation (24) is converging as well. We thus recover CICS.
In conclusion we can say that Definition 12 is well posed.

4. Lyapunov Characterizations of the Generalized Mittag-Leffler input Stability

In this section, we give the Lyapunov characterization of the generalized Mittag-Leffler input
stability of the fractional differential equation. We know, it is not always trivial to get the analytical
solution of the fractional differential equation with exogenous inputs. An alternative is to propose a
method of analyzing the Mittag-Leffler input stability. The method consist of calculating the fractional
energy of the fractional differential equation along the trajectories. In other words, we use the Lyapunov
direct method.
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Theorem 1. Let us consider that there exists a positive function V : RT x R* — R continuous and
differentiable, and a class Koo function x1 and class K functions x», x3 satisfying the following assumptions:

Lo xl* < V(e x) < xa (llx])-
2. Ifforany ||x|| > xa((Jul)) = DEPV(tx) < —xa((l|x]).

Then the fractional differential Equation (24) described by the left generalized fractional derivative is generalized
Mittag-Leffler input stable.

Proof. Summarizing [18], combining Assumption (1) and Assumption (2), we have

< Vixt) <agoar(||lul)
Ix| < (aroan (ul)”
< v (lul), @7)

where the function 7 (|[u]|) = (a1 0 @y (||u]|))"* € Keo.
From Assumption (2), using an exponential form of the Lyapunov function in, there exist positive
constant such that, we have

x| > x2(([u])) = DefV(t,x) < —xs((||x]))
= DV(t,x) < —x3((||x]])) < —kV(x,1). (28)

It follows from Equation (28), the following inequality

oo\l e
V(t,x) < V(|xl) (tp ; tO) Eun (k(”p tﬂ))
w2\ #— v
V(llxoll)< , °> Eva (k <p°>> : (29)

Finally, combining Equations (27) and (29), we obtain

p_ 4P a—1 o _ 4P 1/a
[[x]| < max {V(|xo|)<t pt0> Ew<—k<t pt°>>} v () ¢ - (30)

Thus the fractional differential equation defined by Equation (24) is generalized Mittag-Leffler input
stable. [

]I

IN

x|

IN

The second characterization is a consequence of the first theorem. It is more simplest to be applied
in many cases. We have the following characterization.

Theorem 2. Let there exist a positive function V : RT x R" — R continuous and differentiable, and a class
Koo of functions x1 and class Koo function vy satisfying the following assumption:

1o x)1* < V(Ex) < xa (x]]).
2. DMFV(tx) < —kV(x,t) + (|u]).

Then fractional differential Equation (24) described by the left generalized fractional derivative is generalized
Mittag-Leffler input stable stable.
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Proof. From Assumption (2), we have the following relationships

DfV(tx) < —kV(x,t) +(|u])
DEPV(Lx) < —(1—0)kV(x,t) — 0kV(x,t) + (|lul]), 31)

where 6 € (0,1). We have
—0kV(x,t) +v(|lu]) <0 = DFV(t,x) < —(1-0)kV(x,1)

V(x,t) > % = DV(t,x) < —(1—60)kV(x,1). (32)

From first assumption, it yields that
Okx1 ([[x[1) = y(llull) = DV (t,x) < — (1= 0)kV (x,1).

Thus the fractional differential equation described by the left generalized fractional derivative is
Mittag-Leffler input stable. [

5. Practical Applications

In this section, we give many practical applications of the Mittag-Leffler input stability of the
fractional differential equation described by the generalized fractional derivative using the Lyapunov
characterizations.

Let us consider the fractional differential equation described by the left generalized fractional
differential equation defined by

D?'pXZ = —Xx2+ %uz (33)

{ Dfxy = —x1+%x2+%u1
where x = (x1,x) € R and u = (u3,u3) € R? represents the exogenous input. Let us take the
Lyapunov function defined by V(x) = } (3 + x3). The left generalized fractional derivative of the
Lyapunov function along the trajectories is given by

1 1 1
DIV (t,x) = —x%—&-ixlxz—&-ixlu]—x%—&-ixzuz
1o, 1, 1, .5
< —§x1—ixz+1||“”
1, 2
< V0 g llull (34)

Consider y(|[u]|) = 1 |u]|> € Keo. It follows from Theorem 2, the fractional differential equation

described by the left generalized fractional derivative given in Equation (33) is Mittag-Leffler

input stable. Thus, the origin of the unforced fractional differential equation obtained with
u= (ulluZ) = (0,0)

D?’pyq =-—x1+ %xz

35

{ D?’P Xy = —Xp ( )

where x = (x1, %) € R?, is Mittag-Leffler stable.
Let us consider the fractional differential equation described by the left generalized fractional
differential equation defined by

{ Dﬁ"’gxl =—X1+x2+ 1 (36)

D?'pr = —Xp + Uy
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where x = (x1,x2) € R? and u = (uj,u,) € R? represents the exogenous input. Let the Lyapunov
function defined by V(x) = 1 (x3 + x3). The left generalized fractional derivative of the Lyapunov
function along the trajectories is given by

DV (tx) = —x% + x1xp + xqU7 — x% + Xop
1, 1 1, 1 )
< =g+ o -+ 55+ 50+ |ul
2
< ull”. (37)

Let y(f|u|) = % |ju |# € Keo. It follows from Theorem 2, the fractional differential equation described
by the left generalized fractional derivative in Equation (35) is bounded as well [36].

Let us consider the electrical RL circuit described by the left generalized fractional differential
equation defined by
1-w

o
DifPx = —

x+4u (38)

with the initial boundary condition defined by x(0) = xy. The parameter ¢ is associated with the
temporal components in the differential equation. u represents the exogenous input. Let us take
the Lyapunov function defined by V(x) = 1 [|x[|%. The left generalized fractional derivative of the
Lyapunov function along the trajectories is given by

1—DtR
DIV (tx) = UL X+ xu
o %R 2 1 2 1
< - -
< TR L e+ S el
FeR 1 , 1
< - (TER-3) IR 5 . 9)

Let us consider k = ”llaR — 1 and 6 € (0,1). We have the following relationship

1
DEFV(Lx) < = (1= 0)k||x[* + k0 |x]* + 5 [|u] (40)

From Theorem 1, if ||x|| > %, we have DIV (t,x) < —(1 — 6)k ||x||%. Thus, the electrical RL circuit
(36) is Mittag-Leffler input stable form.
Let us consider the fractional differential equation described in [4] by the left generalized fractional
differential equation defined by
D¥Px = —x 4 xu, (41)

where x € R" is a state variable. u represents the exogenous input. Let’s the Lyapunov function
defined by V(x) = % [|x HZ The left generalized fractional derivative of the Lyapunov function along
the trajectories is given by

DIV (tx) = —x*+x%u

2 2
= ™ A 1
2
= (1= ) el (42)

ININ

We can observe, when we pick ||u|| > 1, using a-integration, the state x of Equation (42) diverge as ¢
tends to infinity. Then the fractional differential equation is not BIBS. Thus, the fractional differential
Equation (41) is not, in general, Mittag-Leffler input stable.
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6. Conclusions

In this paper, the Mittag-Leffler input stability has been thoroughly investigated. We have tried to
motivate this study with its connection to many real world applications known to use Mittag-Leffler
functions. We also address the Lyapunov characterization of the fractional differential equations.
In doing so, we have created a further Lyapunov characterization which is more useful. Finally,
we give some numerical examples to help illustrate the work that was accomplished in this paper.
Analyzing the generalized Mittag-Leffer input stability of the fractional differential equations without
decomposing it can be non trivial. The possible issue is to decompose it as a cascade of triangular
equations and to find a method to analyze the generalized Mittag-Leffer input stability of the obtained
fractional differential equation. In other words, finding the conditions for the generalized Mittag-Leffer
input stability of the fractional differential cascade equations will be subject of future works.
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Abstract: In the current article, we consider certain subfamilies S; and C,. of univalent functions
associated with exponential functions which are symmetric along real axis in the region of open unit
disk. For these classes our aim is to find the bounds of Hankel determinant of order three. Further,
the estimate of third Hankel determinant for the family S; in this work improve the bounds which
was investigated recently. Moreover, the same bounds have been investigated for 2-fold symmetric
and 3-fold symmetric functions.

Keywords: subordinations; exponential function; Hankel determinant

1. Introduction and Definitions

Let the collection of functions f that are holomorphicin A = {z € C: |z] < 1} and normalized
by conditions f (0) = f' (0) — 1 = 0 be denoted by the symbol A. Equivalently; if f € A, then the
Taylor-Maclaurin series representation has the form:

f(z):z—i—iakzk (zeA). (1)

k=2

Further, let we name by the notation S the most basic sub-collection of the set .A that are univalent
in A. The familiar coefficient conjecture for the function f € S of the form (1) was first presented
by Bieberbach [1] in 1916 and proved by de-Branges [2] in 1985. In 1916-1985, many mathematicians
struggled to prove or disprove this conjecture and as result they defined several subfamilies of the
set S of univalent functions connected with different image domains. Now we mention some of
them, that is; let the notations S*, C and K, shows the families of starlike, convex and close-to-convex
functions respectively and are defined as:
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S = {feS Zf/(z)< s (ZEA)},

f(z)
c = {feS.(ZJ{:((ZZ))) {fi (zeA)},
. re e
£ = {res: L« mgec enl,

where the symbol “ < ” denotes the familiar subordinations between analytic functions and is define
as; the function /1 is subordinate to a function h,, symbolically written as hy < hy or 1y (z) < hy (z),
if we can find a function w, which is holomorphic in A with w (0) = 0 & |w(z)| < 1 such that
hi (z) = hy (w(z)) (z € A). Thus, h1(z) < hy(z) implies 71 (A) C hy(A). In case of univalency of hy in
A, then the following relation holds:

h(z) <ha(z) (z€d) <= h(0)=hy(0) and Iy (A) C hy(A).

In [3], Padmanabhan and Parvatham in 1985 defined a unified families of starlike and
convex functions using familiar convolution with the function z/ (1 — z)a, for all @ € R. Later on,
Shanmugam [4] generalized the idea of paper [3] and introduced the set

S (¢) = {feA ((j{(**:)) <¢(2), (zeA)},

where stands for the familiar convolution, ¢ is a convex and % is a fixed function in .4. We obtain
the families S* (¢) and C (¢) when taking z/ (1 — z) and z/ (1 — z)? instead of h in S;i (¢) respectively.
In 1992, Ma and Minda [5] reduced the restriction to a weaker supposition that ¢ is a function, with
Re¢ > 0in A, whose image domain is symmetric about the real axis and starlike with respect to
$(0) = 1 with ¢’(0) > 0 and discussed some properties. The set S* (¢) generalizes various subfamilies
of the set A, for example:

‘o

1+Bz
functions, see [6]. Further, if A =1 —2x and B = —1 with 0 < & < 1, then we get the set S*(a) of
starlike functions of order «.

2. Thecdlass S] := S8*(1/1+ z) was introduced by Sokdl and Stankiewicz [7], consisting of functions
f € Asuch that zf'(z)/ f(z) lies in the region bounded by the right-half of the lemniscate of
Bernoulli given by |w? — 1| < 1.

3. For ¢(z) =1+ sinz, the class S*(¢) lead to the class S, introduced in [8].

4. The family S; := S* (¢*) was introduced by Mediratta et al. [9] given as:

1. If¢(z) = 111‘35 with —1 < B < A <1, then S*[A, B] := §* (HAZ) is the set of Janowski starlike

s D
7{f68. HoRR eA)}, 2
or, equivalently
s @
7{f68.logf(z) <1,(€A)}. (3)

They investigated some interesting properties and also links these classes to the familiar
subfamilies of the set S. In [9], the authors choose the function f (z) = z+ }12 (Figure 1) and
then sketch the following figure of the function class S; by using the form (3) as
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Figure 1. The figure of the function class S; for f (z) =z + 2%

Similarly, by using Alexandar type relation in [9], we have;

_ @)
Ce{fES. ) <é, (z€A) . 4)
From the above discussion, we conclude that the families S; and C, considered in this paper are
symmetric about the real axis.

For given parameters q,n € N = {1,2,...}, the Hankel determinant Hy, (f) was defined by
Pommerenke [10,11] for a function f € S of the form (1) as follows:

an Ap+1 -- Ongg—1
Ap+1 An+2 -+ fAnyg

Hq,n (f) = . . . 5)
Aptg-1 An+q  --- An429-2

The concept of Hankel determinant is very useful in the theory of singularities [12] and in the
study of power series with integral coefficients. For deep insight, the reader is invited to read [13-15].
Specifically, the absolute sharp bound of the functional Ha, (f) = apay — a3 for each of the sets S*
and C were proved by Janteng et al. [16,17] while the exact estimate of this determinant for the family
of close-to-convex functions is still unknown (see, [18]). On the other side for the set of Bazilevi¢
functions, the sharp estimate of |Hy (f)| was given by Krishna et al. [19]. Recently, Srivastava and his
coauthors [20] found the estimate of second Hankel determinant for bi-univalent functions involving
symmetric g-derivative operator while in [21], the authors discussed Hankel and Toeplitz determinants
for subfamilies of g-starlike functions connected with a general form of conic domain. For more
literature see [22-29]. The determinant with entries from (1)

1 ap as
Hy1(f)=|a a3 a4
asz as as

is known as Hankel determinant of order three and the estimation of this determinant |Hz ; (f)] is very
hard as compared to derive the bound of |Ha (f)|. The very first paper on Hz; (f) visible in 2010 by
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Babalola [30] in which he got the upper bound of H3 1 (f) for the families of S* and C. Later on, many
authors published their work regarding |H3 ; (f)| for different sub-collections of univalent functions,
see [8,31-36]. In 2017, Zaprawa [37] upgraded the results of Babalola [30] by giving

1, for feS*,
H- <
| 3,1(f)|—{ %’ for fecr

and claimed that these bounds are still not best possible. Further for the sharpness, he examined the
subfamilies of S* and C consisting of functions with m-fold symmetry and obtained the sharp bounds.
Moreover this determinant was further improved by Kwon et al. [38] and proved |Hj (f)| < 8/9 for
f € 8%, yet not best possible. The authors in [39-41] contributed in similar direction by generalizing
different classes of univalent functions with respect to symmetric points. In 2018, Kowalczyk et al. [42]
and Lecko et al. [43] got the sharp inequalities

[Hs, ()] <4/135, and  [Hy; ()] <1/9,

for the recognizable sets KC and S* (1/2) respectively, where the symbol S* (1/2) indicates to the family
of starlike functions of order 1/2. Also we would like to cite the work done by Mahmood et al. [44]
in which they studied third Hankel determinant for a subset of starlike functions in g-analogue.
Additionally Zhang et al. [45] studied this determinant for the set S; and obtained the bound
[Hz1 (f)] < 0.565.

In the present article, our aim is to investigate the estimate of |H3 1 (f)| for both the above defined
classes S; and C,.. Moreover, we also study this problem for m-fold symmetric starlike and convex
functions associated with exponential function.

2. A Set of Lemmas

Let P denote the family of all functions p that are analytic in D with #(p(z)) > 0 and has the
following series representation

p(z) =1+ i cuz" (z€N). (6)
n=1

Lemma 1. If p € P and has the form , then

lenl < 2 for n>1, 7)
[Chak — Hencr| < 2, for0<pu<1, (8)
lemen —cker] < 4 for m+n=k+1, )
Cotok — ycncl%‘ < 2(1+2p); for pneR, (10)

2 2

_a _lal”
%)) > = 2 2 (11)

and for complex number A, we have

)cz—Acﬂ < 2max {1,[2A — 1|} (12)

For the inequalities (7), (11), (8), (10), (9) see [46] and (12) is given in [47].

3. Improved Bound of |H3; (f)| for the Set S
Theorem 1. If f belongs to S;, then

|Hs1 (f)] < 0.50047781.
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Proof. Let f € S;. Then we can write (2), in terms of Schwarz function as

Zfl (Z) — Lw(z)
f@) ~

If h € P, then it can be written in form of Schwarz function as

1+w(2)

1—w(z)

h(z) = =1+cz+c22+---

From above, we can get

h(z)—1  ciz4oz2+cz+---
T h(z)4+1 24zt 3Bt

zf'(2)
f(z)

=14ayz+ (2a3 — a%) 22+ (3a4 — 3azas + ag) 28

+ (4115 —2a% — daray + 4adaz — u%) P =14+pz+p+---. (13)

and from the series expansion of w along with some calculations, we have

2 3 4 5
w(z) _ (w(2)” , (w(2)”  (w(z)”  (w(z)
eV =1+w(z) + o + 3 + TR 5 +
After some computations and rearranging, it yields
0 = 14lg4 @_q 2+ +——ﬂ 2
2! 2 8 82 4
1 1 .
+ <384C1+2C4 §‘32+ 16c1c2 4C1C3>Z 4+ (14)
Comparing (13) and (14), we have
€1
= = 15
ay 5 (15)
1 2
o= g <Cz + 2) , (16)
1 e o
ay = 6 <C3 + 1 8 ) 17)
1 Ci} Cy4 C1C3 C%CZ
o= 4(2&;*2*1224 - (8)
From (5), the Third Hankel determinant can be written as
—_ 2 3 2
Hs1 (f) = —a3as + 2axa3a4 — a3 + azas — ajg.
Using (15), (16), (17) and (18), we get
35, 53 ey 19 211 6_@_12 1B ,, g
1 () = 7512+ o1+ 55 T 576990 ~ 77et ~ gi 1280 T 0 3
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After rearranging, it yields

211 2 3 2\ s 2 )
H = 4 _ 1 > 9\ ac o 3 B
3,1 (f) 165888C1 <Cz 5 ) + 64C4 (Cz > % (%) 2 + 165888C1 (c3 —c102)
407 2 2 Cc3 [} 529 _ C%
* 1658881 (e - 3) 36 (@3 —c162) — gy (e —163) — Jegeics — o

Using triangle inequality along with (7), (11), (8) and (9), provide us

211 4 le1|? 3 le1? |c1] |e1? 1 3
< _ 1\ > _ M =11 _ = -
M1 ()l = Tg5gss 11! (2 2 ) tT2\2 2 ) T s (272 ) T szem @l

+ \c|2+1+1+ 529 \c|2+1
41472 'Y T 9 T 16 T g1472 'Y T g

If we substitute |c;| = x € [0,2], we obtain a function of variable x. Therefore, we can write

211, 2\ 3 2\ | x x? 1 3
< _ > _ = _ -
Ha1 (Nl = 1555887 (2 2 ) 3 (2 2) T8 \*"2) T aom”
407 x2+1+i+£x2+1
472" "9 16 " aam® T

+
The above function attains its maximum value at x = 0.64036035, which is
|Hs1 (f)] < 0.50047781.

Thus, the proof is completed. [

4. Bound of |H3; (f)| for the Set C,
Theorem 2. Let f has the form (1) and belongs to C,. Then

1
< = 1
Y 19)
wl < 20)
sl S
17
<
ol < T @1)
o5 < 22)
= 96
The first three inequalities are sharp.
Proof. If f € C,, then we can write (4), in form of Schwarz function as
zf" (z)
14 e
f(2)
From (1), we can write
2f" ()
1+ i) = 1+42az+ (6a3 - 4a§) 22+ (12(14 — 18aza3 + Sag) 28
+ (2085 — 1803 — 324204 + 48a3as — 16a8) 24+ - - 23)
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By comparing (23) and (14), we get

o

a = 1

4
(.48
az = 1 2 K
1 [ae cgf
“4_24<4+C3 a8 )’
1 C% Cy4 c1C3 C%Cz
"o 20(288+2+12_24 -

Implementing (7), in (24) and (25), we have
2] <% and o3| < 1

Reshuffling (26), we have

> + fc% +c
2412 24 2 3

Application of triangle inequality and (7) and (11) leads us to

1
a4<24{ +Cl'< C;'>+z}

If we insert |c1]| = x € [0,2], then we get

1 5 x x2

The overhead function has a maximum value at x = 2, thus

jag) = =
R

sl < 145

Reordering (27), we have

las| = -
51720

By using triangle inequality along with (7), and (8), we get

jas) <
5= 96

Equalities are obtain if we take

z 1, 134 17 19
_ J() g — LAy 75
f(z) /Oe dt = z+zz +4z +144z +360 +
where N
X —

t) = dx.

J0) =[x
|
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204748 ) 96\ 3 12 4 )|
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Theorem 3. If f is of the form (1) belongs to C,, then
‘u377a%‘ g%max{l,%hfﬂ}, (29)

where vy is a complex number.

Proof. From (24) and (25), we get

2
¢ ¢ Y
+1-2Ld

o2l |e
‘“3 WZ‘ 12748 16

By reshuffling it, provides

o1
e = 5

Application of (12), leads us to

11
’ug—'yu%’ Smax{g,ﬁ|3’y—3|}.

|
Substituting -y = 1, we obtain the following inequality.

Corollary 1. If f € C, and has the series represntaion (1), then

1
‘ﬂg — a%‘ < & (30)
Theorem 4. If f has the form (1) belongs to C,, then
‘azag — a4\ < @ (31)
Proof. Using (24), (25) and (26), we have
=2, 7 5
0203 =4 = 178" + 11531~ 24
By rearranging it, gives
_ 1 C1C2 1 7 3
la205 = as] = ‘ 48 (=57 18 <C3 241)|"
By applying triangle inequality plus (8) and (10), we get
1 19 31
| <=+ =
1025 = a4] < {24 * 288} 288
O
Theorem 5. Let f € C, be of the form (1). Then
3
‘a2a4 — a% < 7 (32)
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Proof. From (24), (25) and (26), we have

‘112114 — a%‘ =

9 1536 1152 144|°

By reordering it, yields

‘“2”4*“5‘ - 572 (es- %) +5C716 (63*%&) 114 (cres-a3)|.

Application of triangle inequality plus (7), (11), (10) and (9), we obtain

faes )< Ay T 43
2475 =576 " 576 ' 144 64
O
Theorem 6. If f € C, and has the form (1), then
[Hs1 (f)] < 0.0234598.
Proof. Using (5), the Hankel determinant of order three can be formed as;
Hz1 (f) = —adas + 2apazay — a3 + azas — a3.

Using (24), (25), (26) and (27), gives us

2
€14 23 3

A3 a 173 4 23 o 13 5,
127 960 T 691201

H B T R 0
51(f) = 57606162 3" 576 " 1728~ 663520° T 776480°12 T 480 ~ 46980

Now, rearranging it provides

173 4 2 103, 2 cs a2
H = 2 )P _ e _ 1
31 (f) 33177601 (Cz 2 ) 165888012272 ) Tago \ 27 2
+ = 1 ci1c | © 3656C +C—2(ccfcz> L3 c3 ECS
17280 2\ T 1056 12) T 1728 \"1 T 2) T 576 12071

Application of triangle inequality plus (7), (11), (8), (10) and (9), leads us to

173 4 leq]? 103 ) le1|? 83 1
< 2 - - BT
Hs1 (1) < 3377760 1 ( 2| T a2oaa0 1 (27 4320 11+ 3620 T 216

Now, replacing |c1| = x € [0,2], then, we can write

173 4 (, 2 103 [, ), 1 2\ 1 41
< - — )+ = I, O Sy
1H31 ()] < 3377765 % <2 2 ) T 00" \* 72 ) Taa0 \* 7 2) T 1320 2880

The above function gets its maximum at x = 0.7024858, Therefore, we have

|Hs 1 (f)] < 0.02345979.

Thus the proof is completed. [
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5. Bounds of |Hj (f)| for 2-Fold and 3-Fold Functions

Letm € N = {1,2,...}.If a rotation A about the origin through an angle 271/m carries A on
itself, then such a domain A is called m-fold symmetric. An analytic function f is m-fold symmetric in
A, if

f (ezm/mz) =MME(2), (z€A).

By S("), we define the set of m-fold univalent functions having the following Taylor series form

f(z)=z+ Z amkﬂz"’k“, (zeA). (33)
k=1

The sub-families S, " and Cg(m) of 8™ are the sets of m-fold symmetric starlike and convex
functions respectively associated with exponential functions. More intuitively, an analytic function f
of the form (33), belongs to the families S, ") and Cém), if and only if

1+ ij:,”(g) = exp (%) ,pe P, (35)
where the set P(") is defined by
7>(m>—{pepzp(z)—1+:ilcmkzmk, (ZGA)}. (36)

Here we prove some theorems related to 2-fold and 3-fold symmetric functions.

Theorem 7. If f € S:(z) and has the form (33), then

[Hz (f)] <

®| =

Proof. Let f € S, @, Then, there exists a function p € P?), such that

2f(2) _ (P2 =1
) *ep<p<z>+1>'

Using the series form (33) and (36), when m = 2 in the above relation, we can get

(37)

as = (38)

Now,

Utilizing (37) and (38), we get

By rearranging, it yields
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Using triangle inequality long with (8) and (7), gives us

®| =

[H1 (f)] <

Hence, the proof is done. [

Theorem 8. If f € S, ) and has the series form (33), then

O =

[H31 (f)] <

This result is sharp for the function

3

Z X
f(z)—exp(/0 exdx> :z+%z4+;—6z7+~~

Proof. As, f € S: (3>, therefore there exists a function p € 73(3), such that

2f(z) ___(p2)—1
f@ ~ P(p@>+1>'

Utilizing the series form (33) and (36), when m = 3 in the above relation, we can obtain

)
a, = 6 .
Then,
2 3
Hy1 (f) = —ai = —5¢.
Utilizing (7) and triangle inequality, we have
1
1Hs1 ()] < 5-

Thus the proof is ended. O

Theorem 9. Lef f € C(@ and has the form given in (33) . Then

[Ha1 ()] < 15

Proof. As, f € C;z), then there exists a function p € P @), such that

S (p)-1
“Fﬂ@>‘ep(ﬂn+1>

Utilizing the series form (33) and (36), when m = 2 in the above relation, we can obtain

_ o
a = 127

.
as = 0

Hz1 (f) = azas — ag.
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Using (40) and (41), we have
Hay(f) = - @2, C
31 (f) = ~3758 T 450"
Now, reordering the above equation, we obtain

C2

H; (f) = 150 <C47 15—8c§> .

Application of (7), (8) and triangle inequality, leads us to

[H31 (f)] < 120"

Thus, the required result is completed. [

Theorem 10. If f € 653) and has the form given in (33), then

1
< —
Hs1 () < 145 (12)
This result is sharp for the function
[0 =gy Ly S 7
f(z)—/0 e dt—z+122 +252z + (43)

where R

ot 1
I(t):/o < 1l

X

Proof. Let, f € Cg(s) . Then there exists a function p € P®), such that

') (ple) -1
“*ﬂ@)fep<mn+1)

Utilizing the series form (33) and (36), when m = 3 in the above relation, we can obtain

Then,

Implementing (7) and triangle inequality, we have

[Ha1 ()] < 55
Hence, the proof is done. [

6. Conclusions

In this article, we studied Hankel determinant Hs; (f) for the families S; and C, whose image
domain are symmetric about the real axis. Furthermore, we improve the bound of third Hankel
determinant for the family S;. These bounds are also discussed for 2-fold symmetric and 3-fold
symmetric functions.
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1. Introduction

In this paper, we will investigate the existence of periodic solutions for vectorial distributed delay
differential equations with impulses in regulated Banach spaces. More precisely, the prototype of this
delay differential equations with impulses, is of the form

dj;(:) = —Ax(t)+ f(t,x¢),a.e.t € [0,w+71],A>0,w >0, (1)
x(tj) = x(t;), and x(tj*) —x(tj) = hj(x(t)),¥Vi=1,...,1, ()
x(0) = ¢(0), 6 €[-7,0], ®)

with x;(0) = x(t+6), 0 € [—7,0], T > 0 and where x and ¢ are R"-valued functions on [—T, w],
and [T, 0], respectively. The Equation (1) is a nonlinear delay differential equation. More details
about this type of equations can be found in [1]. Moreover, we assume that

(@) hje CRLRY),j=1,...,1,
(i) {#,t2,---,t}is anincreasing family of strictly positive real numbers,
(ili) there exist o > 0 and T < oo, such that forany j=1,...,/ — 1, we have

O<5§tj+17tj§T<00.

We call (2) the impulses equation where, x(tj’) (resp. x(tj+ )) denotes the limit from the left (resp.
from the right) of x(¢), as t tends to t;. This type of differential equations without delay was initiated
in 1960’s by Milman and Myshkis [2,3]. This problem started to be popular mostly in Eastern Europe
in the years 1960-1970, with special attention during the seventies of the last century. Later on, several
investigations and important monographs appeared with more details, which show the importance
of studying such systems, see for example [4-11]. In recent years, many investigations have arisen
with applications to life sciences, such that the periodic treatment of some biomedical applications,
where the impulses correspond to administration of a drug treatment at certain given times [12-15].
However, comparatively speaking, not much has been done in the study of impulsive functional
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differential equations in regulated vectorial space, taking into account the general theory of functional
analysis and having an acceptable hypothesis that can be used in real life applications, see [12] for
more details.

Let us first introduce for each T > 0, the regulated Banach space R = R([—1,0],R"), given by:

R = { ¢ :[—71,0] = R": ¢ has left and right limits at every points of [—, 0] } ,
endowed with the following norm

lollr = sup [l@(0)]

0<[—1,0]
We will make the following assumptions

() Themap f:[0,w+ 7] x R" = R", w > 0, satisfies

. g/(ff/’) ftYllr <Kllg—plr, vVt € 0,0+ 1], 9,9 €R,
. [£(t,0)[lr < M, Vt€[0,w+1].

(Il) For each regulated map x : [a,b] — R", with b —a > 7, we assume that the map t — f(t,x;) is
measurable over [a + T, b].
(Ill) Foreachj=1,...,1I, h]- : R" — R" is a continuous map.

We set the initial value problem as follows

Problem 1. Let ¢ be an element of R. We want to find a function x defined on [—,w + | such that x
satisfies (1)=(3).

We consider the nonlinear impulsive delay differential equation in R as

—Ax(t) + f(t,x¢),ae.t € [0,w+7T|,A>0,w >0,

x(t) = x(t7), and x(t]ff) —x(tj) = hj(x(t)),¥Vi=1,...,1,
9(0),0 € [—7,0land x(0") = ¢ € R"™.

=
o
—
=)
=
I

The aim of this paper is to extend the main results related to the existence of the w-periodic
solutions for ordinary differential equations with impulses presented by Li et al. [16] and Nieto [17].
These papers contain references which provide additional reading on this topic, i.e., differential
equations with impulses by using the fixed point theory.

2. Existence and Uniqueness of Solution

Let us start first by introducing some related definitions and lemmas.

Definition 1. A function x : [—T,w + ] — R" is called a solution of (1)—(3) if:

1. xis absolutely continuous with respect to the Lebesgue measure;
2. xisdifferentiable on the complement of a countable subset of [0, w + |, and satisfies Equation (1) whenever

dx(t) and the right hand side of (1) are deﬁned on [0,w + 7;
3. xsatisfies (2) at each point tj,t; > 0,Vj = 1,...,1, and the initial value function satisfies (3).

Lemma 1. Let f : [0,w + 7] X R — R" be a map satisfying (I) and (II) and t; € [0, w + T]. Then, for each
(¢, &) € R x R", the problem

d’;(:) = —Ax(t) + f(t,xe),ae.t € [0,1] @)
(x0,x(0%)) = (9,5) € RxR", ®)
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has a unique solution.

Proof. Weset S = {y € C([0,#1],R"),y(0) = x(0") = &}. Let us define the operator T by

T(x)(H) = g+/(: (F(5.%) —Ax(s))ds,0 < £ < 1y, ©)
For each y € S, we consider the Nemytski operator F, defined by
Fy)(t) = ftz), )
where
o - ez
Then, we get
t
T = &+ [ (FW)E -Av(s)ds. ©)
Define, the norm of any function y in S by
Iylls = sup {Ily®)le}, (10)

0<t<t

where p is a fixed positive constant greater than K + A. We have for each y; (t) and y»(t) in S,

t
I Tn® = TEE | < K+1) [ 1() = va(6) | ds,
t
< (KA [ ) —als) | s
t
< (KA - s [ s,
K+ A
< L) )||y1*y2 s e,
%
and hence
K+ A
17 =T s < S - s

Since K’%’\ < 1, then, T is a contraction on S, and the result follows immediately. [

Lemma 2. [18] Let f : [0,w + 7] x R — R" be a map satisfying (I) and (1) and hj, for j = 1,- - - 1, satisfy
the condition (III). Then the problem (1)—(3) has a unique solution.

Proof. The proof follows by using the last lemma. [

Lemma 3. [18] Under the assumptions (I) and (II), if x (@) () is the unique solution of (4) and (5), then one has:

Ix@® 1 < (ol+ [ 1 £s,0 l14s). an

The next Lemma, gives a similar, key representation formula for the solutions of the delay
differential equations with impulses (1)—(3) in regulated Banach space R, see [4] for more details.
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Lemma 4. The problem (1)—(3) can be written as

¥ o= ¢ +H @ (g 0) —¢(0))
max(0,e)
(7 e s s ),

where
#(0) :{ RS A 12)

HY is the Heaviside function

o o<,
H6) = { 1, >0, (13)

and the sequence
Uy = x(t;r) — X(i’k),k Z 1

is determined by the following non-autonomous recurrence equation

u = Iy (;‘e ’”"Jr/ f(s,xs)e —AMi=s)gs 4 Y e Mb—=tj)y, >k>1

0<tj<ty

starting from
t
u = (Ce’}"l + /Olf(s,xs)e’wl’s)ds>.

Proof. Let us consider z(t) = e*x(t), Vt € [0, w + 7], then the problem (1)~(3) becomes

i f(t, e*’\(t*g)zt)e’\t,a.e. te0,w+1,A>0,w>0, (14)
z(t) = z(t].*), and z(t]*) —z(tj) = e/\tfhj(e’“fz(tj)),Vj =1,...,1, (15)
20(0) = Mp(0) = §(8),0 € [-7,0], and z(07) = & € R™. (16)

Let us consider t € [tj, tj;1),j =1,...,1 — 1, with ty = 0, then we get
2(t) = () + / Fls,e M40z )M s,

By passing to the limit as ¢ goes to ¢;, and by solving the delay differential Equation (14) on the
interval [t]-,l, tj), we have

z(t) = +/ f(s,e M40 2)eM s,
Then, by taking into account the impulses condition (15), we have

2t = =)+ [ 1f( Mz et ds + My (e (),
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forall t € [tj,tjy1) forj =1,---,1—1. Consequently, we can rewrite the last equations in more
general form forall £ > 0

z(t) = (§+/f Ast0) 70 )eMds + Y. eA'/uj,tsé{tk}kZl, (17)

Ogtj<t
where z(07) = x(07) = ¢, and
we = z(tf) —z(k) = (e Mez(t)), k > 1. (18)

Now, we will try to involve the u;(s. To this end, we will take the limit from the left of the
Formula (17) as f tends to t; > 0, we obtain

tk = g‘l’/ f Ms+6) ) /\SdS‘i’ Z EAtij.

0<tj<ty
Substituting the last expression into (18), we have
up = hk M"C+/ fls,eMHOz )Mt gs 4 Y- e/wf_t")uj).
0<ti<ty
In particular, we have {j: 0 < t; < t1} = @, and therefore
u = At1§+/ Fls,e M0z /\sds).

By using, the Equation (16), we can rewrite the Equation (17) as

rt46

2(0) = G+ ) flse Dz )eds
0
+ Z EAt/uj,t-t,- 0 ¢ {tx}k>0, and t+6 >0, (19)
0<t;<t+8

and by using x(t) = e~Mz(t), we have for t + 6 ¢ {t; }x>1,and t +6 >0

rt+6

x(p(0)) = Ce _/\(H'B)—i- f(s,x5)e M09 4 )° e”‘“*o’t/‘)u]v.
0<t;<t+6
Using (12) and (13), we get
x(p) = ¢f + HY @ ((gem>0), — 9(0))
max(0,e)
+(/ a f(S,Xs)e_A(._S)dSJ" Z e’)‘(’*tf)uj) ,
0 0<f<e t

where

U = h Mk-i—/ f(s,xs) Mb—s) gg 1 Z eiA(tk*tf)u]),kz 1.

0<ti<ty

starting from
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Remark 1. Taking into account the conditions (I)—(III), we have u; € R, Vt € [0,w + T}, and t — x;isa
regulated function, because the functions t — ¢?, and t — HY are regulated.

In the next section, we will investigate the existence of the periodic solution(s) for the delay
differential equation with impulses (1)—=(3) using Schiffer’s fixed point theorem [19].

3. Existence of Periodic Solutions
Let us consider the Poincaré operator, given by:
J:R = R
¢ = xolp)

where x,,(¢) is the solution of the delay differential equation with impulses (1)-(3). It is clear that
if the Poincaré operator | admit a fixed point, then (1)—(3) has a w-periodic solution. The following
lemma is useful to prove the main theorem.

Lemma 5. The problem (1)-(3) has a w-periodic solution in R if and only if the integral equation

w6
e’)‘e/ G(t,s)f (s, xs)ds + e A0 ) G(ttjuj, f0<t+6<w,
x(p)(0) = t+6 o<t <t tw o
p(t+90), f—T<t4+0<0,

has a solution V't € [0,w + ] and w > T, where

Glts) = S (20)

and the sequence
we=x(t)) —x(ty), k> 1

is determined by the following non-autonomous recurrence equation

u = hk</tk+w G(t,s)f (s, xs)ds + Z G(t, tj)uj>,k >1,

tx (<t <t+w

starting from

h
_ —AH —A(ty—s)
1y Iy (g’,e + /0 f(s, xs)e ds).

Proof. Using the expression (19) for t + w + 6, where t > 0, and w > 7, we have forall t + 6 > 0

tw+6
Zirw(0) = §+/ f(s,e*/\(”e)zs)e)‘sds-f— Z EM/uj,
0 0<tj<t+w+0

rt+6
_ —A(s+6 A At
= ¢+ A Fs,e M40z M ds 4 y . Miy;
OStj<t+9

w0
+ / f(s,e’/‘(sw)zs)emds + ) eru]-,
Ji+6 Ot <t+w+0

tHw+0
= z(0) +/ f(s,e*}‘“*g)zs)e’\sder Z e}"fu]-,
t+6 HO<tj<t+w+8
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and, by using the w-periodic condition z;4,(6) = Az, (0), we get
1 t+w+6 1 v
2(0) = — f(s,e” M5 z0)eMds + o Miu;.
M —1 Jito et —1 HHO<t<t+w+0

Therefore, using z;(8) = e+ x,(8), we have

t+w+0
x(0) = e*’\g/ G(t,s)f(s, xs)ds + e 2 G(t,tj)uj,
t+6 HO<tj<t+w+8

where

G(t,s) = . (21)
Then

g :h&/wwqmy@%mu- Y <m¢kaZL

fx <t <te+w

starting from

51
_ —At Np—At1—s)
i hl(ée 1+/0 f(s,xs)e i ds).
O

Example 1. Let us consider the scalar delay differential equation with impulses:

dj;gt) = —Ax(t)+ f(t,x(t—1)),ae t €[0,271], (22)
x(t) = x(t7), and x(v7) — x(1) = cx(7), (23)
x(0) = ¢(0),6¢[-7,0], (24)

where f : [0,27]) x R — R" is a map satisfying (II). Let us investigate the existence of the T-periodic
solution of (22)-(24) such that xi4-(—7) = x;(—7), T < t < 27. The solution of the delay differential
Equations (22)—(24), can be written as
9(0), if—T<t<0,
t
x(t) = (p(O)e_M +/0 e*/\“*s)f(s,x(s —1))ds, ifo<t<r, 25)

'
x(tP)e M0 4 [ e M) £(s, x(s — T))ds,  if T < t < 2T
T

Using (23), we get

) x(1) +cx(1),

(c+1)x(0)e™" + (c+1) /0T M=) £(s,x(s — 1)) ds.

Therefore, if T < t < 27, we have

145



Symmetry 2019, 11, 523

x(t) = ((c+])(p(0)ef/\7+(c+l) /()Te*/\(.rfs)f(s,x(s*T))dS)EiA(t*T)

+ /t e M) (s, x(s — T))ds,

t—T

= (c+1)@(0)e e M= 4 (c + 1)(’“/ e MET8) £ (s, x(s — T))ds

0
.
+(c+ 1)[“/

t—1

E’A(t’T’S)f(s,x(s —1))ds + /Tt e,/\(t—s)f(slx(s —T))ds,

= (c+1)e (x(t —-7)+ ! e MET9) £, (s — T))ds) + /t e M) £(s, x(s — T))ds,

t—1

which implies

Xiie(=T) = (c+1)e M (xt(f"r) + ‘ e METS) £ (s, x(s — T))ds)

Jt-t
t
+/ e M=) (s, x(s — T))ds.
T
Then, we have three cases.
1) Ifl1-(c+ 1)3’“ # 0, then, we have the existence and uniqueness of a T-periodic solution.

2 If1—(c+1)e? =0,and

_/tT e M=T=9) £ (s, x(s — ))ds + _/Tte*’\(tfs)f(s,x(s —1))ds =0,

—T
then, we have the existence of infinitely many T-periodic solutions.
(B) Ifl—(c+1)e ™ =0,and

/t.T e MT) £, x(s — ) )ds + /t e M=) £(s,x(s — T))ds # 0,

—T

then, there exists no T-periodic solution.

Now, we can consider for each t > —7 and w > 7, the Poincaré operator | : R — R defined by

o+w
Jo = (e’}‘(”t)/ G(t,s)f(s, @)ds +eM*=0  y° G(t,t]-)u]->t,
° o<tj<etw

where

up = hk</tk+w G(ts)f(s,xs)ds+ Y. G(t, t]-)u]->,k >2,

ty Be<tj<ttw

and, starting from

t
u = h (g’e*}”ﬁ1 +/01f(s,xs)e*’\<“*5)ds>.

It is clear, that, the w-periodic solutions in R of (1)-(3) are exactly the fixed points of the Poincaré
operator [, i.e., J¢ = ¢.

The following theorem, is known as the Schéffer’s fixed point theorem [19], which can be found
for example in Deimling’s book [20].
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Theorem 1. [19-22] Let X be a normed space, F a continuous mapping of X into X, such that the closure of
F(B) is compact for any bounded subset B of X. Then either:

(i) the equation x = AJFx has a solution for A =1, or
(ii)  the set of all such solutions x, for 0 < A < 1, is unbounded.

Before, we state the main theorem of our work, we will need the following lemma.

Lemma 6. Let f : [0, + 7] x R — R" be a map satisfying (I) and (II), where > T, and hj,j =1,...,1
are bounded and satisfy the condition (I11). Then, the Poincaré operator | : R — R is completely continuous.

Proof. Let B C R be a bounded set and ¢ € B. Then by using the condition (I), we have

£t @)= < f(£0)lr + (5 @) = f(£0)[r < M+K|g|r < co.

Therefore, there exist two constants M and M such that

rt+0+w
@) = e [ 7 fs9)Gsds+e Gl
t+0 O <t+0+w
< e [T a4 T Gl
< P ’ [ Xass ik
Jt+6 <t <t+0+w
< MM+ M Z M, (26)
f+9§tj<t+9+w
where
ttw
gl = Hhk</ Glto)f(sx)ds+ ¥ Gletu)| <o k=2,
b W<t <ttw

and starting from

1] = th (ge*)‘t] +/Ot1 f(s,xs)e*}‘(“*S)ds) H < oo,
and, we have

ITpllr < fwM+e™M Y 1,
<t <t+0+w

which imply that J(B) is uniformly bounded. For each t > 0, there exists n € N* such that t € [, t,11),
and for any 6,60 € [—r,0], one can obtain for any ¢ € B

- Y t0+w Y t8+w
LIe® = Jo@ | < e [ 7 fls,@)Glds = [ 7 fls, )Gt s)ds |
—+ H e M E G(i’, i’j)u]' — e E G(t, t]')u]‘ ||,
HO<H<t+0+w t+O<t;<t+0+w
A(r+w) 6
- e (M + K||4’H) | tH0+w A g /t+9+w A3 gg |
= 1—etw 146 o
eMrtw)
+m H Z uj — E uj H .
O <t+0+w HHO<tj<t+8+w
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Therefore, for each t € [t,,t,.1), we will have as | § — 0 | goes to 0, || J@(8) — J¢(8) | goes to
0, which imply that the Poincaré operator J(B) is equicontinuous. Using Arzela-Ascoli’s theorem,
we conclude that the Poincaré operator | is completely continuous. [

Now, we are ready to state the main result of our work, related to the existence of w-periodic

solution(s) of (1)—(3).

Theorem 2. Let f : [0,w + T] X R — R" be a map satisfying (I) and (II), where w > T, and hj,j=1,...,1
are bounded and satisfy the condition (III). Then, the nonlinear impulsive problem (1)—(3), has at least one
w-periodic solution in R.

Proof. Let us define H(¢, 1) : R x [0,1] — R by

H(p,p) = ulo. 7)

Then, by using (26), we have

IHgmlx < w(eoM+e ¥ M)
t+9§t]<t+0+w

Then, for each ¢ € (0,1) the set S = {9 : ¢ = H(g,pu)} is bounded. Since ] is
completely continuous, then by using Schaffer’s fixed point theorem, the Poincaré operator | admits
a fixed point. [

Next, we give the conditions of the existence and uniqueness of a w-periodic solution of (1)—(3).
Theorem 3. Let f : [0,w + 7] X R — R" be a map satisfying (1) and (II), where w > T, and hj,j =1,...,1
are bounded and satisfy the condition (11I), and there exist constants H/-,j =1,...,1, such that

I 1j(9(0)) = i(w(0) | < Hille—¢lr-

If, there exists a constant C < 1, such that

Ar eAr

Kwe —
1,67/\w+1,€7/\w Z Hf < G
t7r+w§t]‘<t+w

then, the nonlinear impulsive problem (1)—(3), has a unique w-periodic solution in R.

Proof. Let ¢,1 € R be two solutions of (1)-(3),i.e., J¢ = ¢ and Ji = 1p. Assume ¢ # . We have

I 9@) —p(@) I = [ ]p®)—Jp®) I,
A rtH0+w
< [T 11 £(s,9) — F(s,¥) I ds +
)
e ) | G(t£) [l hj(9(0) — hi((0)) |,
t7r+w§fj<t+w
Kewe" M o
- (1 —eh e e Hj) lo =9l
< Clo-vlr-

Hence
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le—v¢lr < Clle—9¢lr (28)
< lo-vlr-

This contradiction implies, the uniqueness of the w-periodic solution of (1)-(3). O

4. Conclusions

The method described in this work presents new challenges for more investigation on more
realistic models; such as the extension of the ascorbic acid model [12] and HIV model [13,14].
Taking into account the delay effect on respective compartments [23-25]. This kind of work, will need
more investigation on modeling validation effort, keeping a close eye on the real life data in order to
have a more realistic model. The explicit solutions presented in the technical Lemma 4 and methods of
proving the existence of periodic solutions are very useful for further future investigations.
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Abstract: Vehicle collaborative content downloading has become a hotspot in current vehicular
ad-hoc network (VANET) research. However, in reality, the highly dynamic nature of VANET
makes users lose resources easily, and the transmission of invalid segment data also wastes valuable
bandwidth and storage of the users’ vehicles. In addition, the individual need of each customer
vehicle should also be taken into consideration when selecting an agent vehicle for downloading.
In this paper, a novel scheme is proposed for vehicle selection in the download of cooperative content
from the Internet, by considering the basic evaluation information of the vehicle. To maximize
the overall throughput of the system, a collaborative content downloading algorithm is proposed,
which is based on fuzzy evaluation and a customer’s own expectations, in order to solve the problems
of agent vehicle selection. With the premise of ensuring successful downloading and the selection
preferences of customer vehicles, linear programming is used to optimize the distribution of agent
vehicles and maximize customer’s satisfaction. Simulation results show that the proposed scheme
works well in terms of average quality of service, average bandwidth efficiency, failure frequency,
and average consumption.

Keywords: vehicle collaborative content downloading; fuzzy comprehensive evaluation; VANET

1. Introduction

With the rapid development of the network, the demand of the network extends to all aspects
of people’s lives. As a platform, which provides a specific network service, the vehicular ad-hoc
network (VANET) brings new technical challenges to the transmission of information while providing
information services, including: how to improve the efficiency of the vehicle network and how to meet
the continuous improvement of the users’ needs [1,2].

Scholars have discussed different ways to modify VANET, in order to improve the performance
of vehicle networking and meet the growing demand of users. In terms of enhancing the performance
of the vehicle-to-infrastructure (V2I) connection in VANET, the possibility of constructing a network
with the TV white space geolocation database for vehicle networking was discussed by some scholars.
Then vehicular communication architectures were proposed to mitigate the resulting high spectrum
demands and provide vehicular connectivity with wider communication range, higher transmission
rate, and lower data transfer cost [3,4]. By analyzing the end-to-end transmission performance from
individual vehicles to a road side unit (RSU), an efficient message routing scheme was put forward to
balance the data traffic across the network and improve the network throughput [5]. In Reference [6],
a collaborative download algorithm, namely maximum throughput and minimum delay collaborative
download (MMCD) was proposed, which minimizes the average transmission delay of each user’s
request and maximizes the number of packets downloaded from an RSU. Reference [7] mainly studies
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the cost of minimizing the download of a hybrid vehicle ad hoc network, and proposes the basic
satisfaction algorithm (BMA) and heuristic algorithm (TSA) to solve the huge download delay caused
by vehicle mobility in VANET. In order to solve the frequent collision among agent vehicles and
customer vehicles, a transmission scheduling method was put forward to adjust the relationship
between link routing and transmission time [8].

In terms of enhancing the vehicle-to-vehicle (V2V) collaborative download performance in VANET:
ECDS gives an efficient collaborative downloading solution to popular content distribution in urban
vehicle networks. Furthermore, a cross-domain relay selection strategy was proposed to build a
peer-to-peer (P2P) network, which helps strengthen information dissemination [9]. In Reference [10],
to solve the problems of popular content distribution (PCD) in a highway scene, the author modeled
the problem as a coalition formation game with transferable utilities, and proposed a coalition
formation algorithm that converges into a Nash-stable partition, adapting to environmental changes
as a result of the VANET’s rapid and unpredictable topological changes. In Reference [11], the design
incentive mechanism is employed to propose a collaborative downloading method, which encourages
cooperation between vehicles and helps users effectively obtain the required resources. The author
designed a server-assisted key management scheme that promotes cooperation and ensures fairness
and efficiency. In the scheme, vehicles with common interests form a cluster and take turns as
the cluster head, which directly downloads data packets from the Internet and V2V shares the
content with surrounding vehicles [12]. A delicate linear cluster formation scheme is proposed
and applied to significantly enhance the probability of a successful file download in VANET [13].
In Reference [14], the author proposed a security incentive program (SIRC) to achieve reliable, fair,
and secure collaborative downloading in VANET. SIRC stimulates vehicle users to help each other
download and forward packets, encourages cooperation between users, and also punishes malicious
vehicles to ensure the safety of vehicles. Efficient privacy-preserving cooperative data downloading
for value-added services is used to solve the problems of limited communication range and high
dynamics, which gains the access control in VANET [15].

The methods of improving the performance of the vehicle network are also discussed from other
aspects. Digital fountain code (DFC) is proposed and applied in the field of cooperative downloading
for VANET. As long as enough data packets encoded by hierarchical fountain code are available,
the client can recover the raw data and avoid data transmission interruption [16,17]. In Reference [18],
a fuzzy logic-based resource management (FLRM) scheme was proposed, and the lifetime of each
storage resource was defined by the proposed fuzzy logic-based popularity evaluation algorithm.

1.1. Related Work

The agent vehicle selection method and vehicle distribution scheme are important links to achieve
collaborative downloading. A fuzzy logic-based cooperative file transfer scheme (FL-CFT) was
proposed to optimally select relays to help transfer the file and ensure the file integrity, in which
the relative velocity, distance, and predicted connection time among vehicles were considered [19].
To solve the problems of the low utilization of spatiotemporal resources in DA and an unbalanced
service of cooperative downloading, a balanced cooperative downloading method was proposed,
which dynamically uses the Euclidean and Manhattan distances in order to select the vehicles according
to the number of clients [20]. In Reference [21], a k-hop bandwidth aggregation scheme was proposed
to select agent vehicles, to help download and forward videos and more effectively send video
streams to requesters through DSRC VANET. In Reference [22], a preferential response incentive
mechanism (PRIM) was proposed to motivate vehicles to participate in collaborative downloading,
and game theory was used to analyze a vehicle’s behavior in order to find the optimal strategy for
each collaborator, reduce repeated downloads, and promote V2I cooperation to reduce delays and
expenses. In Reference [23], a security collaboration data download framework for paid services
in VANET was proposed. An application layer data sharing protocol was developed to coordinate
vehicle data sharing according to its location. The seed screening scheme SIEVE was proposed in
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Reference [24], using users’ interest and near-term contact predictions to select the best vehicle node
(vehicle) to download the object (via the cellular network) and propagate the object (via the RSU).
In order to effectively characterize users’ preferences and network performance, previous authors use
parameters such as energy efficiency, signal intensity, network cost, delay, and bandwidth to construct
utility functions. Then, these utility functions and multi-criteria utility theory are used to construct
an energy-efficient network selection approach and a joint multi-criteria utility function for network
selection of the appropriate access network [25].

1.2. Motivation and Contributions

In fact, the goal of a cooperative downloading method is to ensure more efficient data transmission,
provide balanced services, and meet the requirements of all customers on the agent vehicles, so that
the customers’ cooperative unloading requirements can be satisfied. Based on the ideas above,
this paper proposes a vehicle selection algorithm for the vehicle network agent based on fuzzy
comprehensive evaluation. This algorithm takes the basic parameters of the customer vehicle, the agent
vehicle, and the relationship between them into account, and improves the average throughput and
customer satisfaction under the condition of satisfying a customer vehicle’s information data requests.
Compared with the previous articles, the contributions of this paper are in four aspects:

e  We provide a fuzzy evaluation method based on the relationship between the agent vehicle
and the customer vehicle, and evaluate the agent vehicle synthetically. In our opinion, we can
judge whether the vehicle is suitable for cooperation by its relevant attributes. These attributes
include computing capability, bandwidth, unit cost, credibility, and path consistency between
vehicles, which are meaningful data for vehicle selection. Therefore, using this information as the
evaluation factor for the fuzzy comprehensive evaluation, corresponding agent vehicles for each
customer vehicle are scored, and the vehicles with higher scores are selected as the priority.

e In order to satisfy the requests of more customer vehicles and maximize resource utilization,
this paper proposes an agent vehicle distribution strategy based on the maximization of service
quality. Our approach allocates a certain number of agent vehicle resources to each customer
vehicle, and takes the bandwidth limitation of the agent vehicle into consideration, so as to select
the most suitable agent vehicle for the customer vehicle and maximize overall resource utilization.

e In asimulation, the performance of the proposed algorithm is compared with other schemes.
The simulation results show that the proposed algorithm can gain significant performance
achievements, which demonstrates the superiority of the scheme.

e By analyzing the fuzzy relationship between multiple constraints on the target, the fuzzy
comprehensive evaluation method quantifies and unifies the relationship as an index to realize
vehicle selection. This method woks well in dealing with the problems of fuzzification that
are constrained by many factors. Additionally, it can be used as a reference for the solutions
of multi-factor constraint model problems such as mobile vehicle network selection problems,
vehicle routing problems in complex environments, and so on.

The organization of this paper is as follow. Section 2 describes the system model used by this
scenario. Section 3 explains, in detail, the vehicle network cooperation content downloading method,
based on fuzzy comprehensive evaluation, proposed in this paper. Section 4 shows our simulation
results and discussion. Finally, Section 5 summarizes the method of this paper and points out the
future work.

2. System Model

In this section, the model is first introduced, and some parameters are defined, including the
vehicle evaluation index and the format of the data packet.
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2.1. System Model

In the system model shown in Figure 1, the vehicles are grouped as customer vehicles and agent
vehicles. Customer vehicles send download requests to the local server (RC), and agent vehicles
are responsible for helping them download the requested content. The customer and agent vehicles
together form a VANET.

Red car: customer vehicle
Blue car: agent vehicle
S_res: service results

S_req: Service request

S_res sﬁw Sores S_req

Figure 1. Comprehensive evaluation index system.

When passing by an RSU, a vehicle in the vehicle cloud downloads the response file
(vehicle-to-infrastructure, V2I); when leaving the RSU affected area, the vehicles in the VANET share
the downloaded files (vehicle-to-vehicle, V2V). The V2I and V2V process forms a circulation, and many
such circulations have to be gone through to complete the download of a large file.

In this paper, we make the following assumptions:

e The customer vehicle which requests cooperation, selects an agent vehicle only once every period.
When the agent vehicle is selected, its map route must be consistent with the customer vehicle.

e  Thelocal server can obtain the vehicle’s navigation information (that is, the driving route of each
vehicle on a map), in order to allocate an agent vehicle traveling on the same road section as the
customer vehicle and reduce the waste of resources. The vehicle uploads any relevant information
to the local server. The local server selects the agent vehicle for the customer vehicle according to
the scheme proposed herein.

e  On the basis of content consistency, the local server counts the request information of the customer
vehicle and the service information of the agent vehicle. There are two forms of vehicle computing
capability. The first form is collaborative computing. In this case, the computing capability of
the agent vehicle is determined by the hardware of the vehicle itself, which represents the total
amount of data that the agent vehicle needs to receive and send in the service. In the second
form, the request of the customer vehicle is content downloading. It is set that the storage and
removal of files in the vehicle are in chronological order. In this case, the computing capability
of the customer vehicle is a request for the files that have not been downloaded yet, which can
be part of a file or an entire file. The computing capability of the agent vehicle is the part of the
file reserved in the current storage, which can be part of the file or the entire file. In this paper,
the method for obtaining data from the agent vehicle will not be discussed and we assume that
the agent vehicle has had the corresponding computing capability before providing services to
the customer vehicle.

Failure of a customer vehicle’s request will occur due to the following:
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e  If there is only one agent vehicle for more than one customer vehicle, the selected agent vehicle
cannot serve more than one vehicle, and it will be allocated to the customer vehicle with the
greatest satisfaction. The other customer vehicles’ requests will fail.

e  According to Algorithm 1, a request fails if the customer vehicle cannot find an agent vehicle that
meets its requirements.

This paper mainly studies the content downloading through V2V in VANET, and focuses on
how to choose the best cooperators for a customer vehicle. According to the relevant data of
the vehicles, under the premise of satisfying the cooperation standard expected by the customer
vehicle, the overall rating of the agent vehicle is maximized, so each customer obtains a satisfactory
downloading experience.

2.2. Definitions

In order to record the data set, the packet format for the customer vehicle (CV) and the agent
vehicle (AV) are defined respectively as:

e  Request package of customer vehicle:

—  CV-ID: Customer vehicle’s ID;

- CV-computing: Computing capability of customer vehicle request;

—  CV-bandwidth: Customer vehicle’s bandwidth;

—  CV-path: The travel route of the customer vehicle in the process of the data request;
- CV-position: Customer vehicle’s position;

- CV-speed: Customer vehicle’s speed;

e  Service package of agent vehicle:

AV-ID: Agent vehicle’s ID;

- AV-computing: Agent vehicle’s computing capability;

- AV-bandwidth: Agent vehicle’s bandwidth;

- AV-path: The travel route of the agent vehicle in the process of the data service;
- AV-credit: Agent vehicle’s credit;

- AV-position: Agent vehicle’s position;

- AV-cost: Service cost of agent vehicle in unit time;

- AV-speed: Agent vehicle’s speed;

e  The format of the reply message of the local server is as follow:

—  Server-ID: ID of the local server that communicates with the current vehicle;
- Reply (N = AV-ID): if the reply message is 0, the local server finds the agent vehicle. If the

reply message is a series of numbers (which are defined as positive integers), they represent
the IDs of all the agent vehicles assigned to it by the local server;

Therefore, the vehicle and the local server use the information as an evaluation factor in the
communication process to complete the evaluation of the vehicle. A comprehensive evaluation index
system is designed, as shown in Table 1.

Table 1. Comprehensive evaluation index system.

Target Layer Factor Layer
Computing capability
Bandwidth
Vehicle selection result Unit cost
Credibility

Path consistency

The computing capability is determined by the customer vehicle’s requirement data and agent
vehicle’s service data. Bandwidth is determined by the hardware properties of the vehicle. Unit cost
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is the remuneration to be paid per unit time when the service is provided by the agent vehicle.
Credibility is the score given on cooperation in the vehicle’s historical records, which is evaluated in
VANET. If it can serve the customer vehicle very well every time, the score will be high; if there is
a malicious termination of the cooperation, the behavioral reputation value will be correspondingly
reduced. Path consistency represents the proportion of path that maintains communication between
an agent and customer vehicle in the total path.

In addition, due to the mobility of the vehicle, datagrams will be updated every time period
to ensure good transmission. In the next section, the vehicle selection method based on fuzzy
comprehensive evaluation will be introduced in detail.

3. Vehicle Network Collaborative Content Downloading Method Based on Fuzzy
Comprehensive Evaluation

In this section, we describe the specific method for the local server to select an agent vehicle
for a customer vehicle, in detail. The fuzzy comprehensive evaluation model is also introduced to
make a fuzzy comprehensive evaluation of the factors affecting the vehicle selection in agent vehicle
unloading. The choice of vehicles tends to be optimal.

The detailed communication process of finding agent vehicles is as follow:

e  Several customer vehicles send request packets to a local server. A request packet contains the
requirements for an agent vehicle and the relevant information of the customer vehicle itself.

e  After the local server receives the message, it uses the fuzzy comprehensive evaluation method
proposed in this paper to analyze the request packet of the customer vehicle and the service packet
of an agent vehicle. Then it forms the distribution plan of the agent vehicle for the customer
vehicle, and sends a response message back to them.

e  Response message. If the message is 0, it means that the local server did not find an agent vehicle
and the customer vehicle needs to wait for the next assignment. If the message is a series of
numbers (which are defined as positive integers, indicating the IDs of all the agent vehicles
assigned by the local server), it means that the distribution of agent vehicles was successful,
and the local server notifies the agent vehicle to serve the corresponding customer vehicle
according to the allocation plan.

e After the entire communication is over, the local server records the evaluation of the agent vehicle,
to update the credibility of the agent vehicle. A penalty mechanism is established to punish a
vehicle which is rated poorly by the customer vehicle in this cooperation. A punished vehicle is
unable to participate in the next cooperation and cannot obtain the expected rewards.

This section mainly evaluates objective ratings and customers’ satisfaction for agent vehicles
in the decision domain based on certain fuzzy constraints. Agent vehicles with higher scores in
comprehensive evaluation should be given priority, while those with lower scores should be given a
second thought, when selecting vehicles based on the demand.

3.1. Pre-Selection of Agent Vehicles

To find an appropriate agent vehicle for the customer vehicle from a large number of vehicles,
in order to meet their information requests in the process of routing, we need to establish an information
selecting mechanism. In the mechanism, the relationships between a customer vehicle’s and an agent
vehicle’s information are compared and analyzed, to meet the customer’s data requests. Alternative
vehicles should meet the following requirements:

e  Computing capability c: Computing capability is the main content of requests for customer
vehicles. For the agent vehicle, it decides whether it can serve the customer vehicle or not.
Computing capability ¢; provided by the agent vehicle j should be better than or equal to the
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computing capability c; requested by the customer vehicle i; so as to meet the demand of the
customer vehicle:
¢j > ¢j.

e Bandwidth b: Bandwidth determines the fluency of a customer vehicle’s data request.
The bandwidth b; provided by the agent vehicle j should be better than or equal to the bandwidth
b; requested by the customer vehicle 7, so as to meet the need of the customer vehicle:

bj > b;.

e  Agent vehicle j should satisfy customer i’s requests for computing capability within the time of
collaboration between the two vehicles. L, is the effective distance between the customer and
agent vehicles, and if the distance between them exceeds L, then the connection will fail. L is the
path length. v; is the average speed of the customer vehicle. v; is the average driving speed of the

agent vehicle. Thus:
i L L
G <min | —2— = |.
bi oi —vj| " vi

e  Path consistency determines the time length of the service that a customer vehicle obtains from the
agent vehicle. It indicates whether the customer vehicle can get complete service from the agent
vehicle or not. The path consistency pc;; is calculated to express the ratio of the effective signal
path to the whole path when the agent vehicle provides data service to the customer vehicle:

i — Lav;
pai = ‘vi—v]'}L'

Based on the requirements above, we filter the agent vehicles according to Algorithm 1, and record
the information of the selected agent vehicles for each customer vehicle.

Algorithm 1 Attaining the Available Agent Vehicle List

Input: Customer vehicle request package; agent vehicle service package; signal effective distance L,; path length L;
Output: Available agent vehicle (AV) list N; and path consistency pcj, for each customer vehicle CV;
1: foreach CV;,i € [1,n] do

2:  foreach AV}, j € [1,m] do
3 ifcigcj&highj&;—:gmin(‘ry‘ﬁ“z,j‘,;Li) then
4: write AV into the list N;
Lqv;
5 peij = 7‘“’” \L
6 end if !
7 end for
8: end for

3.2. Comprehensive Evaluation of Customer Satisfaction

3.2.1. The Determination of the Domain and Various Factors of Agent Vehicles:

Based on the illustration above, the factor domain of agent vehicles is recorded as: U =
{uy, 12, us, ug, us} ,where uy is the computing capability; u; is the bandwidth; u3 is the unit cost;
1y is the credibility; us5 is the path consistency;

Among them, each factor belongs to a different domain, i.e.,
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The local server divides the data sets of factors 11, u, u3, s, and us into three categories: low,
medium, and high. These are represented by V;, V5, and V3, respectively, and the level domain of each
factor is V = {Vj, V5, V3} , which corresponds to the numerical values {1, 2,3}, in order.

If the fuzzy experiment determines the first division of the factor #; on the domain (x;, ¢;),
one pair can be determined for each division:((;"ui, iyui), where ¢y, is the demarcated point between
Vi_y; and Vo, and 77y, is the demarcated point between V;_,,; and V3 4.

On the contrary, if (¢,7) is given, the mapping e is also determined, and V;_,,, Vo_y,;, V3 4, are
separated, thus the fuzzy concept is clarified.

The interval of Vi_y;, V2_u,, V3_y, is a random interval, and so ¢, and 7, are random variables.
They follow characteristic normal distributions, as shown in Figure 2, namely: ¢, : N ("‘l,u,»/ Ulz,u,') ;

Mu; N(IXZ_U,-r ‘722_11,-)

Figure 2. The normal distribution properties.

Based on the definition of each factor, the values aq_,,, a2 4, ‘712_14,/ and ‘722714,» are determined.

For factor uq,up,uy, and us (ie., computing capability, bandwidth, credibility, and path
consistency), the bigger they are, the better it is for the vehicle cooperative downloading. Thus they
are defined as:

N = w(uifmin + ui?uve)ro <w<1

X2 y; = ﬂ(”i_max + ”i_/we)/o <<l

For factor u3 (unit cost), the smaller the better in consideration of a user’s benefits. Thus, they are
defined as:
X1 u; = w(uz;max + uiﬁave)/o <w<1

a y; = (Ui min + Ui_goe), 0 <8 <1
In order to make the distribution of demarcated points relatively centralized:

0<op, <1,0<05, <1

Ui max = Max (U, Ujg, ..., Uin), Uiy € U
Ui min = MIN(Uj1, Ujp, .y Uiy ), Ujp € Uj

Uit, Uigy oy Uin
uave = T/ uil e 1/[1‘
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3.2.2. Determination of Membership Functions

The membership function of factors u; € (x;, ;) with the three levels V;_,,, V5, and V3_;, is
determined by the three division method. The three division method is a fuzzy statistical method that
determines the membership function with three levels of fuzzy concepts. The basic principles of this
method are as follow.

From above, we know that the partition (éu,», 11u;) of the factor u; on the universe (Xi, i) obeys a
normal distribution: ¢,, obeys N (aliuz,U% u,)’ and 77, obeys N(ay_,,, 1722 ui)'

Furthermore, the number of (&,7) determines the mapping e (&, 7;) : U — Vi Vo iy Vaus b
which is:

Vl_u, (x) ,x < 6“1
e (Cuptu;) (x) = Vo_u; (x), Cu; < x <1y (1)
V3, (x) My < X

The value P <x < cf,“i> is the probability that the random variable x falls in the interval [x,b).
If x increases, [x, b) becomes smaller, and the probability of falling in the interval [x, b) also becomes
smaller. This character of probability P (x <, ) is the same as the "low" fuzzy set V;_,,, so Vi_,,(x) =
P{x<¢,} = e PC x)dx. Similarly V3 ,,,(x) = P{y, < x} = e Py, (x)dx. In these expressions
Pe, (x) and Py, (x) are the probability densities of the random variable ¢, and 7, respectively,
and Vy , (x) = 1= V4, (x) — V3 . (x).

Calculated in the probabilistic method, the membership function of each level can be obtained:

Vi(x)=1-@ (l> @
O1_u;
Vs (x) =@ (ﬂ) 3)
02_u;
X —ay . X—ay
V; x) = ——) - ———), 4
) = () o (1) @
where ®(x) = [* ?67763

However for the convenience of presentation we still use Vi_,,;, V2 4, and V3_,, to represent the
three level membership function of a factor u; € (x;, ;).

3.2.3. Constructing the Fuzzy Evaluation Matrix

From the above, the membership function of each factor u; can be obtained. Bringing the data of
the five factors of an agent vehicle j into the corresponding membership functions, the relationship
between the five factors #; and the grading of V can be obtained as:

(V] (), V3, (0), V], (x)

Thus a fuzzy relation matrix for vehicle j can be obtained:

v, () v J (0 V], () M1 M2 s

‘ Vlj uz(x) 2 Uz(x) Vé_uz(x) rJZJ1 712,2 r]2,3
R = 3(x) VZJ ug(x) Véﬁus(x) = ré/l ré/z 75/3 . 5)

1 u4(x) sz u4(x) V3]7u4(x) rfm rf_u rf_m

1 _us (x) 2 s (x) V3]7u5 (x) r{’),l 715,1 7]5,3
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Assuming that there are m agent vehicle participating in the evaluation, m fuzzy relation matrices
will be obtained for each customer vehicle i: R';,R%;,--- ,R";. In Algorithm 1, we select the agent
vehicles that meet the customer vehicle’s needs.

3.2.4. Determination of the Weight a;

The importances of the five factors in the comprehensive evaluation system are not the same. If the
status is important, it should be given a greater weight; otherwise, it should be given a smaller weight.

5
Assume that the weight setis A = {ay,ay,...,a5}, where ¥ a; = 1.
i=1

3.2.5. Fuzzy Comprehensive Evaluation
A and R/ are used in a fuzzy synthesis operation: A o R/ = B/ to obtain a comprehensive
. H : H . . n
evaluation B/ = (b}, b}, b}) for the agent vehicle j. Here, B/ = A°R/ = min(1, ;1 a; - 1;j) considers

i—
the degree of subordination of the agent vehicle j. Then according to the principle of maximum
subordination, we can get the evaluation level of agent vehicle j:

Ao,

r

11 12 M3
J
_ , Dy T2 T o
B = AoR = (ay,a2,a3,a4,85) | vy, 1}, 14, | = (0}, 0 0L). 6)
3 2 73
1 iz i
J
"{5,1 ’”]5,1 53

Here h;; = (a1 011) B (a2 @ 19%) & ... B (a5 e r5;). Additionally, the fuzzy synthesis operator “o”
selects the fuzzy operator M(e,®). In the fuzzy operator M(e, @),  is defined as multiplication,
. . n
and @ is defined as the operation x © y = min(1, x +y). Thus, B/ = Ao R/ = min(1, } a; - 1y;) .
i=1

The following normalization is performed on B:

B = LL]Z b]3 A

3 73 73 .

J J J

b YU L
=1 i=1 i=1

(C}%,C5%,CL%) @)

1

An understanding of B can be achieved through the following example: for an agent vehicle
j, its comprehensive evaluation B/ = (10%,50%,40%) indicates that taking the five factors of the
agent vehicle j into consideration, 10% of vehicles evaluate it as “low”, 50% of vehicles evaluate it as
“medium”, and 40% of vehicles evaluate it as “high”. According to the principle of maximum degree
of membership, the evaluation level of agent vehicle j is “medium”.

Next, based on the quantized value of the fuzzy comment set, that is:

V={",V,Vs} ={1,23},
the overall rating of the agent vehicle j is:
Ej=BVT = (B',B? B% B B)(V;, Vo, V3)" = (B', B?,B%, B*, B%)(1,2,3)". ®)

In this way, we can get the comment sets of several agent vehicles from the customers who
participate in the evaluation:
Ei = (Ei, E2, -+, Eim) - ©)

Then the comments on agent vehicles from customers are expressed as follows, where 1 represents
the number of customer vehicles, and m represents the number of agent vehicles:
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EpEp-eevee E1m
EyEpp-vve- Eom

E=(E|,Ep -+ Ep)=| «ovevereeeenen. . (10)
EnEp------ Enm

Algorithm 2 Fuzzy Comprehensive Evaluation Algorithm

Input: Customer vehicle request package; agent vehicle service package; signal effective distance L,; path length L; available

agent vehicle list N; for each CV;
Output: Available QoS (quality of service) for each agent vehicle j; list E;; for customer vehicle i

1: foreach CV;i € [1,n] do

2: for each AV;in N; do

Lav;

3: compute path consistency pc;; = =
i~0)

4: end for

5: for each AV;in N; do

6: for each element k of the AV; do

: . 1 Y=g\ s o X4y | Y= \ s _ X—ap y; \ |

7: Rk 1) =1-@ (G ) Rk 2) = @ ( ) i ( ) iR( K 3)(x) = @ ( ) i
8: end for

9:  end for
10:  foreach AV;in N; do

11 B(j) = Ao R(j,::); B(j) = éB(f)? E;j =B(j)- (1,2,3)7;

12:  end for =

13: end for

14: return E

3.3. Optimization

3.3.1. Comprehensive Vehicle Evaluation

To satisfy the requests of more customer vehicles and enable the agent vehicles to provide more
effective service, taking the bandwidth limitation of the agent vehicles and the comprehensive scores
given by the customer vehicles into account, this section distributes the agent vehicle resources and
chooses the most suitable vehicle for customers. According to the discussion above, we propose the

following access selection model:

n

QOS = max <Z i E,‘jx,'j) (11)

i=1j=1
s.t.
n
Yoxj=1
i=1
n
> Xij X bi < b/
i=1
¢ < ¢j
G o< Lo, L
p, < min (|y,—v,|’ U;) ’
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where: Z x;j = 1 means that each customer vehicle can only be connected to one agent vehicle at the
i=1

same time; Z xij X b < b means that the bandwidth sum of customer vehicles served by the same

provided by the agent vehicle shall be no less than the computing capability of the customer vehicle’s

=1
proxy vehlcle should not exceed its bandwidth capacity; ¢; < ¢; means that the computing capability

requirements; and £ < min —Le L) indicates the computing capability that the customer vehicle
i ‘v,fvj‘ vi

should meet to satisfy the requirement of collaborative download within the service time of the agent
vehicle in the path, so as to ensure the integrity of data transmission.

3.3.2. Agent Vehicle Resource Allocation Algorithm

Algorithm 3 Agent Vehicle Distribution Optimization Algorithm

Input: The comments on agent vehicles for each customer vehicle E
Output: Collaborative offload distribution scheme X
1: Construct the formula of overall customer satisfaction by maximizing the customer satisfaction: QoS = max )E )Yf Ejjx; />
2: The bandwidth sum of customer vehicles served by the same proxy vehicle should not exceed its bandw1dth capac1ty
): xij X bj < b;
3: Each customer vehicle can only be connected to one agent vehicle at the same time: Z xij=1

4: Determine the distribution of agent vehicles that maximize customer satisfaction by usmg linear programming.

5: Output the agent vehicles’ distribution X.

4. Performance Evaluation

In this section, we use the proposed FCE (fuzzy comprehensive evaluation) algorithm to construct
a series of experiments for the V2V agent vehicle selection problem based on the MATLAB platform.
The experimental parameters are shown in Table 2. We compare the performance of the FCE algorithm
with the FL-CFT [19] and RSB (random selection based on computing capability and bandwidth)
algorithms under different numbers of customer requests. In order to realize the comparison between
the FCE algorithm and the FL-CFT algorithm, we quantify the index obtained by FL-CFT using the
process after the second step 13 of the FL-CFT algorithm. The comparative performance is as follows.

Table 2. The basic parameters of the simulation.

Parameter Number  Unit Information Description
L 3000 m Path length
L, 200 m Effective distance between the customer vehicle and the agent vehicle
n 50 Number of customer vehicles requesting data
m 300 Number of agent vehicles providing data services
Cj 20-80 Mb Computing capability of customer vehicle i’s request
b; 3-12 Mbps Bandwidth of customer vehicle i
v; 20-35 m/s Speed of customer vehicle i
¢j 20-80 Mb Computing capability of agent vehicle j
b; 3-12 Mbps Bandwidth of agent vehicle j
co; 0-3 Service cost of agent vehicle j in unit time
crj 0-1 Accumulated credit ratio of agent vehicle j
v} 20-35 m/s Speed of agent vehicle j
peij 0-1 Path consistency between customer vehicle i and agent vehicle j
N; The list of agent vehicles available for customer vehicle i
Xij Connection status between customer vehicle i and agent vehicle j
Ejj Available QoS list of agent vehicle j to customer vehicle
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4.1. Experimental Setup

In the experiment, we consider that cooperative uninstallation occurs in the area without network
coverage between two RSUs. The information requested between vehicles can only be shared through
the information sharing mechanism between V2V. Vehicles apply to the vehicle cloud (VC) before
arriving in the region. The vehicle cloud aggregates vehicle information, and uses the FCE algorithm
proposed in this paper to analyze the information of customer vehicles and agent vehicles, so as
to provide an agent vehicle allocation scheme that maximizes customer satisfaction. The following
assumptions are employed in our simulations:

Set the same driving path between the customer vehicle and the agent vehicle.
Equip each vehicle (including the customer and agent vehicles) with an OBU, which can
receive information and transmit information to the surrounding vehicles, and set the effective
communication range of the vehicle.

e  There are only two forms of data transmission between a customer vehicle and an agent vehicle:
completion and failure.

e  Each vehicle can act as a customer vehicle when requesting data and an agent vehicle when
providing data service, but it can only be one in a period.

4.2. Performance Analysis

In this paper, we analyze the performance of the algorithm in four aspects: quality of service,
average throughput, number of request failures, and average consumption. Quality of service is a
comprehensive evaluation index under multi-factor consideration. It is the standard to verify the
performance of the algorithm. Average throughput is the data transmission volume per unit time,
which is the main factor to ensure the fluency of a customer vehicle’s data requests. The number of
request failures is the number of times that the agent vehicle cannot provide complete data transmission
for the customer vehicle, which shows the stability of data transmission. Cost is an important reference
factor for each customer vehicle in choosing agent vehicle service. We discuss the impact of the
number of customer vehicles on the quality of service, average throughput, number of request failures,
and average consumption in the process of collaboration between customer and agent vehicles.

Figure 3 shows that the average customer satisfaction curve obtained by the FCE algorithm is
higher than that of the FL-CFT and RSB algorithms when changing the number of customer vehicle
requests. The RSB curve has the worst performance. This is because the FCE algorithm considers the
computing capability, bandwidth, unit cost, credibility, and path consistency of the agent vehicle in the
process of selection; while FL-CFT only considers the velocity, distance, and connection of the agent
vehicle; and RSB only considers the bandwidth and path consistency. Figure 3 shows that the FCE
algorithm has better average customer satisfaction performance than the FL-CFT and RSB algorithms.
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Figure 3. Average quality of service of the three algorithms.
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Figure 4 shows that in the process of changing the number of customer vehicle requests,
the effective bandwidth ratio of the FCE algorithm to the RSB Algorithm is 1, and the performance of
the FL-CFT method is the worst. This is because the FCE and RSB algorithms take the bandwidth as
an important index to evaluate the agent vehicle selection process, while FL-CFT does not consider
this index. Figure 4 shows that the FCE and RSB algorithms have better average bandwidth utilization
than the FL-CFT algorithm. This index also shows whether the selected agent vehicle can meet the
customer’s bandwidth requirements. The FCE and RSB algorithms can provide a better data fluency
experience for a customer vehicle.
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Figure 4. Average bandwidth efficiency of the three algorithms.

In order to verify the correctness and stability of the algorithm, we run a model experiment
with 500 customer vehicles and 3000 agent vehicles, and count the failure times of customer requests
under the experimental conditions. Figure 5 shows that in the process of changing the number of
customer vehicle requests, the FCE algorithm does not fail, while the failure rates of the FL-CFT
and RSB algorithms increase with an increase in the number of customer requests. This is because
the FCE algorithm takes into account the interaction of many factors, and takes the path matching
degree of customer vehicles and agent vehicles and the reputation of customer vehicles as important
indicators. Figure 5 shows that the FCE algorithm has better selectivity and stability than the FL-CFT
and RSB algorithms.
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Figure 5. Number of failures for the three algorithms.

Customer consumption is always an important indicator of customer vehicles in the selection
of agent vehicles. Figure 6 shows that the average consumption of the FCE algorithm is less than
that of the FL-CFT and RSB algorithms with increasing customer vehicle requests. The main reason
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is that the FCE algorithm considers all the required vehicle information when selecting the agent
vehicle, and seeks an optimal selection strategy. The FL-CFT and RSB algorithms ignore the interaction
of these factors. Figure 6 shows that the FCE algorithm is more economical than the FL-CFT and
RSB algorithms.
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Figure 6. Average consumption of the three algorithms.
5. Conclusions

In this paper, the problem of agent vehicle selection for V2V collaborative unloading in a vehicle
network is studied. A method of joint selection in a V2V network, based on fuzzy comprehensive
evaluation is proposed. Different from the previous articles, many factors such as computing capability,
bandwidth, consumption index, reputation, and path matching of the vehicles are considered in this
paper. At the same time, we take the relationship between the customer vehicle demand and the agent
vehicle as tan index item. In this paper, we propose a fuzzy comprehensive evaluation method to
evaluate customer and agent vehicles, and give a multi-constrained optimization model to describe
the agent vehicle allocation scheme. The simulation results show that the proposed vehicle selection
algorithm has good prospects of usability and application.
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Abstract: The concept of statistically deferred-weighted summability was recently studied by
Srivastava et al. (Math. Methods Appl. Sci. 41 (2018), 671-683). The present work is concerned
with the deferred-weighted summability mean in various aspects defined over a modular space
associated with a generalized double sequence of functions. In fact, herein we introduce the idea of
relatively modular deferred-weighted statistical convergence and statistically as well as relatively
modular deferred-weighted summability for a double sequence of functions. With these concepts
and notions in view, we establish a theorem presenting a connection between them. Moreover, based
upon our methods, we prove an approximation theorem of the Korovkin type for a double sequence
of functions on a modular space and demonstrate that our theorem effectively extends and improves
most (if not all) of the previously existing results. Finally, an illustrative example is provided here by
the generalized bivariate Bernstein-Kantorovich operators of double sequences of functions in order
to demonstrate that our established theorem is stronger than its traditional and statistical versions.

Keywords: statistical convergence; P-convergent; statistically and relatively modular deferred-
weighted summability; relatively modular deferred-weighted statistical convergence; Korovkin-type
approximation theorem; modular space; convex space; N-quasi convex modular; N-quasi
semi-convex modular
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1. Introduction, Preliminaries, and Motivation

The gradual evolution on sequence spaces results in the development of statistical convergence.
It is more general than the ordinary convergence in the sense that the ordinary convergence of a
sequence requires that almost all elements are to satisfy the convergence condition, that is, every
element of the sequence needs to be in some neighborhood (arbitrarily small) of the limit. However,
such restriction is relaxed in statistical convergence, where set having a few elements that are not in the
neighborhood of the limit is discarded subject to the condition that the natural density of the set is zero,
and at the same time the condition of convergence is valid for the other majority of the elements. In the
year 1951, Fast [1] and Steinhaus [2] independently studied the term statistical convergence for single
real sequences; it is a generalization of the concept of ordinary convergence. Actually, a root of the
notion of statistical convergence can be detected by Zygmund (see [3], p. 181), where he used the term
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“almost convergence”, which turned out to be equivalent to the concept of statistical convergence. We
also find such concepts in random graph theory (see [4,5]) in the sense that almost convergence means
convergence with probability 1, whereas in statistical convergence the probability is not necessarily
1. Mathematically, a sequence of random variables {X,,} is statistically convergent (converges in
probability) to a random variable X if lim, . P(|Xn — X| 2 €) = 0, for all € > 0 (arbitrarily small);
and almost convergent to X if P(limy, 00 X = X) = 1.

For different results concerning statistical versions of convergence as well as of the summability
of single sequences, we refer to References [1,2,6].

Let N be the set of natural numbers and let # C N. Also let

Hy={k:k<n, and k€ H}

and suppose that |H,| is the cardinality of . Then, the natural density of H is defined by

6(H) = lim Ml _ i 1{k:kg n and k € H},
n—eo 1 n—oo 11
provided that the limit exists.
A sequence (x;,) is statistically convergent to ¢ if for every € > 0,

He={k:keN and |x—/{|2¢€}

has zero natural (asymptotic) density (see [1,2]). That is, for every e > 0,

o I Hel 1 S -
J(Hf)_,}ﬂoT—,}E&z‘{k‘k:” and |xy— (] =€} =0.
Here, we write
stat lim x, = /4.
n—00

As an extension of statistical versions of convergence, the idea of weighted statistical convergence
of single sequences was presented by Karakaya and Chishti [7], and it has been further generalized by
various authors (see [8-12]). Moreover, the concept of deferred weighted statistical convergence was
studied and introduced by Srivastava et al. [13] (see also [14-19]).

In the year 1900, Pringsheim [20] studied the convergence of double sequences. Recall that a
double sequence (xy;,,) is convergent (or P-convergent) to a number / if for given € > 0 there exists
np € N such that |x,,, — ¢| < €, whenever m,n 2 ng and is written as Plimx,,, = (. Likewise,
(xm,n) is bounded if there exists a positive number K such that |x,,| < K. In contrast to the case
of single sequences, here we note that a convergent double sequence is not necessarily bounded.
We further recall that, a double sequence () is non-increasing in Pringsheim’s sense if Xy, 11, < Xpn
and Xy, 41 < X

Let H C N x N be the set of integers and let #(i,j) = {(m,n) : m < i and n < j}. The double
natural density of H denoted by 6(H ) is given by

1 ..
6(H) = P lim —|H (i, )],
ij 1 ]
provided the limit exists. A double sequence (x;,,,) of real numbers is statistically convergent to £ in

the Pringsheim sense if, for each e > 0
6(He(i,j)) =0,

where 1
6(He(i ) = E{(m,n) cmSin<jand |xu,—{| =€}
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Here, we write
stat? lim X = L.
m,n

Note that every P-convergent double sequence is stat>-convergent to the same limit, but the
converse is not necessarily true.

Example 1. Suppose we consider a double sequence x = (X, ) as

vam  (m=k>, n=1 VklcN),
Xmn =

1

o otherwise.

It is trivially seen that, in the ordinary sense (Xy,n) is not P-convergent; however, 0 is its statistical limit.
LetZ = [0,00) C R, and let the Lebesgue measure v be defined over Z. Let 7% = [0,00) x [0, 00)
and suppose that X(Z?) is the space of all measurable real-valued functions defined over Z2 equipped
with the equality almost everywhere. Also, let C(Z?) be the space of all continuous real-valued
functions and suppose that C*(Z?) is the space of all functions that are infinitely differentiable on

T2. We recall here that a functional w : X(Z?) — [0, c0) is a modular on X(Z?) such that it satisfies the
following conditions:

(i) w(f)=0ifand onlyif f = 0, almost everywhereinZ (V f € Z'),

(i) w(af+Bg) = w(f)+w(g)Vf g€ X(Z?) andforanya, = 0witha+ =1,
(iii) w(—f) = w(f), for each f € X(Z?), and

(iv) w is continuous on [0, c0).

Also, we further recall that a modular w is

e N-Quasi convex if there exists a constant N/ = 1 satisfying
w(af + pg) £ Naw(Nf) + NBw(Ng)

for every f,g € X(Z?), a, B = 0 such that a + g = 1. Also, in particular, for N = 1, w is simply
called convex; and
e N-Quasi semi-convex if there exists a constant N' = 1 such that

w(Af) = NAw(NF)

holds for all f € X(Z?) and A € (0,1].

Also, it is trivial that every N/-Quasi semi-convex modular is A'-Quasi convex. The above concepts
were initially studied by Bardaro et al. [21,22].
We now appraise some suitable subspaces of vector space X(Z?) under the modular w as follows:

L(T%) = {f € X(T?) © lim w(Af) =0}

and
E9(Z?) = {f € LY(T%) : w(Af) < +o0, ¥ A > 0}.

Here, L%(Z?) is known as the modular space generated by w and E¢(Z?) is known as the space
of the finite elements of L% (Z?). Also, it is trivial that whenever w is A'-Quasi semi-convex,

{f € X(T?) : w(Af) < 400, ¥ A >0}
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coincides with L« (Z?). Moreover, for a convex modular w in X(Z?), the F-norm is given by the formula:

||fuw:mf{A>o;w<§> g1}.

The notion of modular was introduced in [23] and also widely discussed in [22].

In the year 1910, Moore [24] introduced the idea of the relatively uniform convergence of a
sequence of functions. Later, along similar lines it was modified by Chittenden [25] for a sequence of
functions defined over a closed interval I = [a,b] C R.

We recall here the definition of uniform convergence relative to a scale function as follows.

A sequence of functions (f,) defined over [a, b] is relatively uniformly convergent to a limit function
f if there exists a non-zero scale function o defined over [4, b], such that for each € > 0 there exists an
integer n. and for every n > ne,

fulx) = f(x)

<e
o(x) -

holds uniformly for all x € [a,b] C R.
Now, to see the importance of relatively uniform convergence (ordinary and statistical) over
classical uniform convergence, we present the following example.
Example 2. Forall n € N, we define f, : [0,1] — R by
F pd (0<x=1),
falx) =

0 (x =0).

It is not difficult to see that the sequence (f,,) of functions is neither classically nor statistically uniformly
convergent in [0, 1]; however, it is convergent uniformly to f = 0 relative to a scale function

1 0<x=1)

on [0,1]. Here, we write

In the middle of the twentieth century, H. Bohman [26] and P. P. Korovkin [27] established some
approximation results by using positive linear operators. Later, some Korovkin-type approximation
results with different settings were extended to several functional spaces, such as Banach space and
Musielak—Orlicz space etc. Bardaro, Musielak, and Vinti [22] studied generalized nonlinear integral
operators in connection with some approximation results over a modular space. Furthermore, Bardaro
and Mantellini [28] proved some approximation theorems defined over a modular space by positive
linear operators. They also established a conventional Korovkin-type theorem in a multivariate
modular function space (see [21]). In the year 2015, Orhan and Demirci [29] established a result on
statistical approximation by double sequences of positive linear operators on modular space. Demirci
and Burgcak [30] introduced the idea of A-statistical relative modular convergence of positive linear
operators. Moreover, Demirci and Orhan [31] established some results on statistically relatively
approximation on modular spaces. Recently, Srivastava et al. [13] established some approximation
results on Banach space by using deferred weighted statistical convergence. Subsequently, they also
introduced deferred weighted equi-statistical convergence to prove some approximation theorems
(see [17]). Very recently, Md. Nasiruzzaman et al. [32] proved Dunkl-type generalization of
Szész-Kantorovich operators via post-quantum calculus, and consequently, Srivastava et al. [33]
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established the construction of Stancu-type Bernstein operators based on Bézier bases with shape
parameter A.

Motivated essentially by the above-mentioned results, in this paper we introduce the idea of
relatively modular deferred-weighted statistical convergence and statistically as well as relatively
modular deferred-weighted summability for double sequences of functions. We also establish
an inclusion relation between them. Moreover, based upon our proposed methods, we prove a
Korovkin-type approximation theorem for a double sequence of functions defined over a modular
space and demonstrate that our result is a non-trivial generalization of some well-established results.

2. Relatively Modular Deferred-Weighted Mean
Let (a,) and (by,) be sequences of non-negative integers satisfying the conditions: (i) a, < b,
(n € N) and (ii) liﬁm by = co. Note that (i) and (ii) are the regularity conditions for the proposed
n—o0
deferred weighted mean (see Agnew [34]). Now, for the double sequence (fi,,») of functions, we define
the deferred weighted summability mean (Np(fi,.)) as

1 bm/bn
ND(fm,n) = TS Z tllSUfll,Z}(x)r )
men 4 v=a,+1

where (s,,) and (t,) are the sequences of non-negative real numbers satisfying

by b

S, = 2 sy and T, = Z to.

v=a,+1 u=a,+1

Definition 1. A double sequence (fu,n) of functions belonging to L« (Z?) is relatively modular deferred
weighted (Np (fu,n))-summable to a function f on L% (Z?) if and only if there exists a non-negative scale
function o € X(Z?) such that

P lim w (/\ <%>> =0 for some Ay > 0.

m,n—00

Here, we write

fon = f

Np lim -

mn

=0 for some Ay > 0.

w

Definition 2. A double sequence (fin) of functions belonging to L% (I?) is relatively F-norm (locally convex)
deferred weighted summable (or relatively strong deferred weighted summable) to f if and only if

P lim w <A <w)> =0 for some A > 0.

m,n—o0 (o

Here, we write

F Np lim f;in,n —f
mn o

=0 for some Ay > 0.

w

It can be promptly seen that, Definitions 1 and 2 are identical if and only if the modular w fairly
holds the Ap-condition, that is, there exists a constant M > 0 such that w(2f) < Mw(f) for every
f € X(Z?). Precisely, relatively strong summability of the double sequence (fu,») to f is identical to
the condition

Pt (2 (M2l 1)) g

mn a
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vV n € N and some A > 0. Thus, if (fi,) is relatively modular deferred weighted
(Np(fi,n))-summable to f, then by Definition 1 there exists a A > 0 such that

P tim (3 (ML) 2Y)

m,n—00 o

Clearly, under Aj-condition, we have

o (2 (Mol =5 )) < g (3 (Nolln) 1))

This implies that
P limw (2”)\ <7NDU’”/”) *f)> =0
m,n (o

Definition 3. A double sequence (fmyu) of functions belonging to L¥(I?) is relatively modular
deferred-weighted (Np (fum,n)) statistically convergent to a function f € L (Z?) if there exists a non-zero scale
function o € X(Z?) such that, for every € > 0, the following set:

{(u,v):u§ Ty,0< S, and a}( (M)) ge} for some Ay >0

has zero relatively deferred-weighted density, that is,

{(u,v):u§ Ty 0 < S and w (/\ (“‘S”‘f” f')) ge}

a

P lim

mn TSy

P lim

m TSy

=0 for some Ag > 0.

Here, we write

fmn—f -0

w

staty, hm ‘

Moreover, (fmu) is relatively F-norm (locally convex) deferred-weighted (Np(fum,n)) statistically
convergent (or relatively strong deferred-weighted (Np (fu,n)) statistically convergent) to a function f € X(I?)
if and only if

P lim

mn Ty Sy [

{(u,v):u <T,v<S, and w <A0 (M)) ge}‘ =0 forsome A >0,

where o € X(Z?) is a non-zero scale function and € > 0.
Here, we write
=0.

w

F staty,, 1,,1}'2 Hfm,ng_f

Definition 4. A double sequence (fu, ) of functions belonging to L (Z?2) is statistically and relatively modular
deferred-weighted (Np (finn))-summable to a function f € L*(I?) if there exists a non-zero scale function
o € X(Z?) such that, for every € > 0, the following set:

P limi{(u,v):ugm,vgm and w (/\0 <w>) ze} for some Ag > 0

mn m,n o

has zero relatively deferred-weighted density, that is,

P limL {(u,v):u Smo<nand w (/\0 (M)) ge}‘ =0 for some Ay > 0.

mu mn
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Here, we write

fm,n - f

a

=0.

Npstat lim
m,n w

Furthermore, (fmu) is statistically and relatively F-norm (locally convex) deferred-weighted
(Np (finn))-summable (or statistically and relatively strong deferred-weighted (Np(fum,n))-summable) to
a function f € X(Z?) if and only if

{(u,v):ugm,vgn and w (Ao <M>> ge}

(o8

1
m
nom,n

p

—_
=

=0 for some A >0,

g

where o € X(I?) is a non-zero scale function and € > 0.
Here, we write
fmn—f

F Npstat lim
o

mn

w

Remark 1. Ifwe put a, =0, b, = n, by, = m, and t,, = s, = 1 in Definition 3, then it reduces to relatively
modular statistical convergence (see [31]).

Next, for our present study on a modular space we have the assumptions as follows:

o Ifw(f) Sw(g) for |f] < |gl, then w is monotone;

e If x € L¥(Z?) with u(A) < o, where A is a measurable subset of 72, then w is finite;

e If wis finite and for each € > 0, A > 0, there exists a 6 > 0 and w(Axp) < € for any measurable
subset B C Z? such that y(B) < 4, then w is absolutely finite;

e If xp2 € E¥(Z?), then w is strongly finite;

e Ifforeache > Othereexistsad > Osuchthatw(afxp) < € (x > 0), where B is a measurable subset
of Z2 with u(B) < é and for each f € X(Z?) with w(f) < +oo, then w is absolutely continuous.

Itis clearly observed from the above assumptions that if a modular w is finite and monotone, then
C(Z?) C L¥(Z?). Also, if w is strongly finite and monotone, then C(Z?) C E%(Z?). Furthermore, if w
is absolutely continuous, monotone, and absolutely finite, then C*(Z2) = L¥(Z?), where the closure
C®(Z2) is compact over the modular space.

Now we establish the following theorem by demonstrating an inclusion relation between relatively
deferred-weighted statistical convergence and statistically as well as relatively deferred-weighted

summability over a modular space.

Theorem 1. Let w be a strongly finite, monotone, and N-Quasi convex modular on L% (Z?). If a double
sequence (fu,n) of functions belonging to L% (Z?) is bounded and relatively modular deferred-weighted
statistically convergent to a function f € L¥(Z?), then it is statistically and relatively modular deferred
weighted summable to the function f, but not conversely.

Proof. Assume that (fy,,) € L(Z?) N le. Let us set

He = {(u,v):u <m,v<n and w(AO <%>> > ¢ for some Ag >O}

and

He = {wo) s mouand @ (0 (£27)) > ¢ forsome 20 > 0}

1,0
g

From the regularity condition of our proposed mean, we have

by, bu
P lim tysy, = 0. 2
im 5 M:Zaﬁl 1So )
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Thus, we obtain

o o(m(*7)))

b"l!bn —
w | Ag 1 Z [ <M>
T Sn u,v=a,+1 o

A b, bu by, 00 _
e T L RRC o s
men y v=a,+1, n y=0,0=b,+1,
(u,0)eHe (u, v)e'h(t
/\0 o2by fu v f E fu,v - f
s L o S Lo s
men My =p,,+1,0=b,+1,

u=by+1,0= 0
(u0)eHe (u,0)eHe

Ao b, by by, 00 —
+w 7 Z Fuso fuv f S Z tuSy M
mon y p—a,+1, " yu=0,0=b,+1, o
(u,0)eHE (u,v)eHE
/\0 00,by 00,00 —
n T Z s fuo f T S Z tuso fuo—f
M=y —py+1,0=0; MEN by +1,0=by+1 o
(u,0)eHE (uv)eHE
1 00,00
+ K tuso — 1| |,
TuSn M%H o~ )
where
K = sup f(x,y)‘.
X,y g

Further, w being N-Quasi convex modular, monotone, and strongly finite on L“’(Iz),
it follows that

_ by, by
w (Ao (ND (fim’" f))) < 3w o[ HelG Y tuso
v TinSn uv=a,+1,

(u,0)eHe
bmlhﬂ bm:bﬂ
+ew 79/;()';{6' Y tuse | +w <9AOTGZ"’b" ) tusv>
mEn yo=a,+1, mon oy o=g,+1
(u,0)eHe
9\oGly ) <9A0Gbn oo,by )
w 2 tySy | +w Z tusy
( TinSn u=0,0=a,+1 TinSn u=a,+1,0=0

I\ ol 9/\0/C ol
+ ew Z tusy | +w Z tusy — 11,
<T"ZS” w,u=a,+1 > <Tmsn u,o=a,+1

where G = max f“%f(”) ,Vu,v € Nand (x,y) € Z?. In the last inequality, considering P limit as

m, n — oo under the regularity conditions of deferred weighted mean and by using (2), we obtain

Piimo (20 (U Z1Y) o

m,n (8

This implies that (fy,,) is relatively modular deferred weighted Np (fy,»)-summable to a function

f. Hence,
{(u,v) cu<mov<mand w </\0 (%)) > e}

=0 for some Ay > 0.

mu i, n
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Next, to see that the converse part of the theorem is not necessarily true, we consider the
following example.

Example 3. Suppose that T = [0,1] and let ¢ : [0,00) — [0,00) be a continuous function with ¢(0) = 0,
@(u) > 0 for u > 0and lim, e @(u) = co. Let f € X(Z?) be a measurable real-valued function, and
consider the functional w? on X (I?) defined by

1 rl
()= [ [ ol ydsdy (f € X(T).

@ being convex, w? is modular convex on X (Z?), which satisfies the above assumptions. Consider L‘(}’(ZZ) as
the Orlicz space produced by ¢ of the form:

L‘(;,’(IZ) ={f € X(T%) : W (A(f)) < +oo for some A > 0}.
For all m,n € N, we consider a double sequence of functions f,, : [0,1] % [0,1] — R defined by

1, (m,n) € 4 x stand (x,y) € (0, 1] x (0,1],

s m ‘n

() =4 {(m,n) € Bx Vand (x,y) € (1,0] x (L,1;

n’

(m,n) € Ux Vor(m,n) € VxUor(x,y) € (0,0)},

where the set of all odd and even numbers are L and 0, respectively.
We have

A b, by
WA(ND(fm,n)) =w 0 Z tuso | ,
ST

nyo=a,+1

and this implies

fol/b"’ fol/b” dxdy, (m,n) € U x stand (x,y) € (0, 1] x (0,1

o bl
WA(ND(fmn)) =Ao§ O, {(m,n) € Bx BVand (x,y) € (£,0] x (,1];

(m,n) € U xVor (m,n) €V xUor (x,y) € (0,0)}.

Clearly, (fm,n) is relatively modular deferred weighted summable to f = 0, with respect to a non-zero scale
function o(x,y) such that

1, (x,y) = (0,0)
o(x,y) =
xl—y, (x,y) € (0,1] x (0,1].
That is,
P lr}lnnuu ()\0 <%>> =0 for some Ay > 0.

Thus, we have
{(u,v) cu<mo<mand w (/\0 (M)) > e}

On the other hand, it is not relatively modular deferred-weighted statistically convergent to the function
f =0, that is,

R 1
P lim —
mu 1, n

=0 for some Ag > 0.
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{(u,v):ug Tp,0< S, and w (AO <w>> ze}

P lim

1
mn TSy # 0 for some Ag > 0.
|

[

3. A Korovkin-Type Theorem in Modular Space

In this section, we extend here the result of Demirci and Orhan [31] by using the idea of the
statistically and relatively modular deferred-weighted summability of a double sequence of positive
linear operators defined over a modular space.

Let w be a finite modular and monotone over X(Z?). Suppose E is a set such that C*(Z?) C E C
L¥(Z?). We can construct such a subset E when w is monotone and finite. We also assume L = { L, }
as the sequence of positive linear operators from E in to X(Z?), and there exists a subset X; C E
containing C®(Z?). Let o € X(Z?) be an unbounded function with |o(x,y)| # 0, and R is a positive
constant such that

Npstat lim sup <A (YMTU)» < Rw(Af) 3

m,n
holds for each f € X;,A > 0 and

1 by, bu
m u,vz tuSvIn,n(f; x/y)-

=a,+1

Yo (f;%,y) =

We denote here the value of L, ,(f) ata point (x,y) € Z? by Lyn(f(x*,y*);x,y), or briefly by
Lyu(f;x,y). We now prove the following theorem.

Theorem 2. Let (a,,) and (by,) be the sequences of non-negative integers and let w be an N'-Quasi semi-convex
modular, absolutely continuous, strongly finite, and monotone on X (Iz). Assume that L = { Ly } is a double
sequence of positive linear operators from E in to X(I?) that satisfy the assumption (3) for every f € X|.
and suppose that o;(x,y) is an unbounded function such that |o;(x,y)| = u; > 0 (i = 0,1,2,3). Assume
further that

ma(fir,y) — f(x,y)

g

=0 foreach A >0and i =0,1,2,3, 4)

w

.| L
Npstat lim H
mn

where
folvy) =1, Ailxy) =x, flxy) =yand fi(x,y) = 2> +y*.
Then, for every f € L (Z?) and g € C*®°(Z?) with f — g € X1,

Npstat lim H Lnn(fi x,%') —fy| 0 forevery Ay >0, (5)
mn w
where o (x,y) = max{|o;(x,y)| : 1 =0,1,2,3}.
Proof. First we claim that,
Npstat lim H Lnn(8; X,(yT) —8(xy) =0 forevery Ag > 0. (6)
mmn w

In order to justify our claim, we assume that ¢ € C(Z%) N E. Since g is continuous on Z?, for given
€ > 0, there exists a number § > 0 such that for every (x*,y*), (x,y) € Z? with |[x* — x| < § and
ly* —y| < J, we have

lg(x*y™) —g(x,y)| <e. )
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Also, for all (x*,y*), (x,y) € T? with |x* — x| > § and |x* — x| > J, we have

86y") — 8| < 25 (Ion (" 002 + [oaly" ), ®)
where

Pp1(x",x) = (" —x), ¢2(y",y) = (¥ —y), and A= sup [g(x,y)l.
x,y€I?

From Equations (7) and (8), we obtain
* % 2"4 * *
86"y — g < et T3 (I, 0P + o2l 0)12)
This implies that

e 2 (I 0P+ [aly 9)P) < 8(7) —3(0) < e+ o (Ipax 0P+ galy ) - ©)

Now Ly, (g0; %, ) being linear and monotone, by applying the operator L, ,(go; x,y) to this
inequality (9), we fairly have

2A % * E
Lunlgoxy) (—e = 25 (I 0P + o2y 0F) ) < Lol ) 57,9°) = 5(5,9)
2A * *
< Lunlgiz) (e + % (I, 02 + o2 0)F) ) (10)
Note that x, y is fixed, and so also g(x, y) is a constant number. This implies that
2~A * 2 * 2
—€Lumn(g0:%,y) — (57267”/” ([4’1(’5 )]+ [92(y7, y)] ;x,y) < L (&%) = 8, Y) Lonn (805 %, )
ZA * *
< €Lmn(g0ix,y) + ﬁﬁm/n([?l(x P+ o2 )15 %, y)- 11
However,

Ln(gx,y) —8x,y) = [Lnn(g%,y) — 8, ¥) Lonn(80; X, ¥)] + 8(x, ) [Lmn(g0; %, y) — go(x,y)].  (12)

Now, using (11) and (12), we have

2
[n(85%9) ~ 80 9)| < [eLmn(s07%9) + 25 Lo (I 0P + g2y 1) 5 y) ]
+ AL (80;%,y) = go(x,y)]- (13)

Next,

44
[Linn(&5x,y) = 8(x,y)| = €+ (e + A)[Lun(g0: %, y) = g0 y)] = |81 (2, Yl [Lmn (153, y) — g1(x,y)]
24 4A
+ 57 Lmn(83:%,y) = 8300 y)] = 7 182(x, Yl [Lmn (82 %, y) — 82(x, y)]
24
+ 57 183 (0 W)L (807 %, y) = go(x, y)].

Since the choice of € is arbitrarily small, we can easily write

179



Symmetry 2019, 11, 448

2A
[Cnalginy) = sx9)| < e (e 55+ 4) Loz ) — o)

44 24
+ 5 1810 L (8152, y) = 8106 )|+ 57 [Lmn (835 %, y) = g3(x,y)| (14)

44
- Tzlgz(x,y)llﬁm,n (82:%,y) — g2(x,y)|-

Now multiplying ( ) to both sides of (14), we have, for any A > 0

IIA

A |Lmn(giny) fg(x,w’ Ae o { ‘zm,n(go;x,y) *go(x/y)'

o(x,y) o(xy o(x,y)
n ‘ Lun(g1:%,y) = 81(%,Y) ‘ N ) Lnn(83%,Y) ~ ()| 15
o(x,y) o(x,y)
- ‘Em,n(gz? x,y) - gZ(xr]/) ‘
o(x,y) ’

where B = max (e +2 414, ‘;’24, 26—“24) and g1(x,y), g2(x,y) are constants for V (x, ).
Next, applying the modular w to the above inequality, also w being N-Quasi semi-convex,

strongly finite, monotone, and o (x,y) = max{|o;(x,y) (i =0,1,2,3)|}, we have

w <A (»Cm/n(g?;&z)y; g(x,;/))) <w < 5Aey)> (5)\8 (Emn(go,ax,z) go(W)))
’ / (ﬁmn g1,x, —gi( x,O /

( 0 x]/ )
g3,xy - 33(%,y)
(2%} Xy
(MB(EM 82x%Y) — $2(xy )
o3(x,y)

)
) (1)
)

Now, replacing Ly, (f; x,y) by

1 hm/bn
S T Z Sutvn,v(g? x/y) = Ym,n(f} x/]/)
MEn gy o=a,+1

and then by ¥ (f;x,y) in (16), for a given ¥ > 0 there exists € > 0, such that w <%) < . Then,

by setting
{0 (255)) 2

and fori =0,1,2,

we obtain
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Clearly,

1o < & 1¥illo
= . 17
mn lgo mn ( )

Now, by the assumption under (4) as well as by Definition 4, the right-hand side of (17) tends to
zero as m, n — oo. Clearly, we get

mmn—co  MNn

=0(x>0),

which justifies our claim (6). Hence, the implication (6) is fairly obvious for each g € C®(Z?).

Now let f € L“(Z2) such that f — g € X[, for every g € C®(Z?). Also, w is absolutely continuous,
monotone, strongly and absolutely finite on X(Z?). Thus, it is trivial that the space C*(Z?) is modularly
dense in L (Z?). That is, there exists a sequence (g;;) € C*(Z?) provided that w(31}g) < +co and

P limw(3A5(gij — f)) = 0 for some Ag. (18)
Ll

This implies that for each € > 0 there exist two positive integers 7 and j such that
w(3A4(8i; — f)) < € whenever i 2 iandj > J.
Further, since the operators Y, , are positive and linear, we have that

A Ymu(fix,9) = )| S A mn(f = 8155 X Y) 1 + Ao Y (875 %,y) — 817(x, y)]
+ 251817 (x,y) — f(x, )]

holds true for each m,n € Nand x,y € Z. Applying the monotonicity of modular w and further

multiplying U& ;) to both sides of the above inequality, we have

" ( I’ (YW(f; =) —f(w))) <w <3 A (YW(/; ~8ij) ))
Y <3AS (Ym,n(gi,r;) —gf,;>> e (32\3 (gi,fg_ f)) .
Thus, for |o(x,y)| = M > 0 (M = max{M; : i = 0,1,2,3}), we can write
" (AS (Ym,n((/;) —f)) <o <3A3 <Ym,n(];_ g;,;)))
tw <3Ag (W)) +w <3£‘43 (g;/;—f)) .19
Then, it follows from (18) and (19) that

w (Ag (W)) <etw <3/\3 <W>> +w <3A3 (W)) (20)

Now, taking statistical limit superior as m,n — oo on both sides of (20) and also using (3),
we deduce that
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P limsupw (/\3 (M» <e+Rw (335(f - gi)
mn o k
Y =) g
+ P limsupw <3A3 (m,n (8:)) g”)) .
mn (%8
Thus, it implies that
_ Y ) — gen
P limsup w (/\5 (M>> Se+eR+P limsupw | 35 M . (21)
mmn o mmn a
Next, by (4), for some A; > 0, we obtain
Y 2) — ges
P limsup w (3/\6 <mn(gl])gl]>> =0. (22)
mmn o

Clearly from (21) and (22), we get

p limmilupw <AS <M>> <e(1+R).

a

Since € > 0 is arbitrarily small, the right-hand side of the above inequality tends to zero. Hence,
P limsup w (/\6 (M)> =0,
mn o
which completes the proof. [

Next, one can get the following theorem as an immediate consequence of Theorem 2 in which the
modular w satisfies the Aj-condition.

Theorem 3. Let (L), (an), (bn), o and w be the same as in Theorem 2. If the modular w satisfies the
Ay-condition, then the following assertions are identical:

(a) Npstat limy, , HMH =0 foreach A > 0and i=0,1,2,3;

w

(b)  Npstat limy,, ‘ MH =0 foreach A > 0 such that any function f € L (Z?) provided
W
that f — g € Xy, for each g € C*(Z?).

Next, by using the definitions of relatively modular deferred-weighted statistical convergence
given in Definition 3 and statistically as well as relatively modular deferred-weighted summability
given in Definition 4, we present the following corollaries in view of Theorem 2.

Leta, = 0and b, = n, b,, = m, then Equation (3) reduces to

staty limsup w (/\ (%)) < Rw(Af) (23)

m,n

for each f € X; and A > 0, where R is a constant.
Moreover, if we replace staty limit by Nstat limit, then Equation (3) reduces to

Nstat limsup w <A (M)) < Rw(Af). (24)

mn

Corollary 1. Let w be an N-Quasi semi-convex modular, strongly finite, monotone, and absolutely continuous
on X(Z?). Also, let (£m,n) be a double sequence of positive linear operators from E in to X(I?) satisfying the
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assumption (23) for every Xy and o;(x,y) be an unbounded function such that |o;(x,y)| = u; > 0 (i =
0,1,2,3). Suppose that

Lo (fix,y) — f(x,y)
o

=0 foreach A >0and i =0,1,2,3,

statn hm H
w

where
folxy) =1, filxy) =x, folx,y) =yand f3(x,y) = > +y".
Then, for every f € L¥(Z?) and g € C®(T?) with f — g € X,

staty hm H’Qm n(f; x'? —fxy) =0 foreach Ay >0,
w
where
o(x,y) = max{|oi(x,y)| : 1 =0,1,2,3}. (25)

Corollary 2. Let w be an N'-Quasi semi-convex modular, absolutely continuous, monotone, and strongly finite
on X(Z?). Also, let Oy, be a double sequence of positive linear operators from E in to X (I?) satisfying the
assumption (24) for every X, and 0;(x,y) be an unbounded function such that |o;(x,y)| 2 u; > 0 (i =
0,1,2,3). Suppose that

Nstat 11mH nlfi i) =S| _ o for each A > 0and i =0,1,2,3,

g

w

where
folry) =1, filxy) =x falxy) =yand fo(x,y) = 2> +y".
Then, for every f € L¥(Z?) and g € C*(I?) with f — g € X1,

Nstat hmH (£ x’g) flxy)

=0 forevery Ao >0,

w

where o is given by (25).
Note that fora, =0, b, = n, b, = m, and s, =1 = t,,, Equation (3) reduces to

stat limsupw (A (£5,,(f))) < Rw(Af) (26)
mn
for each f € X; and A > 0, where R is a positive constant.
Also, if we replace statistically convergent limit by the statistically summability limit, then
Equation (3) reduces to

stat limsup w (A (Am,n(f))) < Rw(Af). (27)

Now, we present the following corollaries in view of Theorem 2 as the generalization of the earlier
results of Demirci and Orhan [31].

Corollary 3. Let w be an N-Quasi semi-convex modular, absolutely continuous, monotone, and strongly finite
on X(I?). Also, let (£}, ) be a double sequence of positive linear operators from E in to X (I?) satisfying the
assumption (26) for every Xy, and o;(x,y) be an unbounded function such that |o;(x,y)| = u; > 0 (i =
0,1,2,3). Suppose that
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m,n .fl’x y) f(x’y)

a

=0 forevery A >0and i=0,1,2,3,

stat hm H
w

where
fotey) =1 filvy) =x, flx,y) =yand f3(x,y) = + 4.

Then, for every f € L¥(Z?) and g € C®(T?) with f — g € X,
mn f x,y) _f(x/y)

a

stat hm H

=0 forevery Ag >0,

w

where o is given by (25).

Corollary 4. Let w be an N'-Quasi semi-convex modular, monotone, absolutely continuous, and strongly finite
on X(I?). Also, let (Ay,u) be a double sequence of positive linear operators from E in to X(ZI?) satisfying
the assumption (27) for every X and o;(x,y) be an unbounded function such that |o;(x,y)| = u; >0 (i =
0,1,2,3). Suppose that

mn fuxr ) f(xry)

a

stat hm H

=0 forevery A >0and i =0,1,2,3,

w
where
folxy) =1, filxy) =x, flxy) =yand f3(x,y) =+ >
Then, for every f € L¥(Z?) and g € C®(T?) with f — g € X,
Amu(fi%,y) = f(x,y)

[

stat lim
mn

=0 forevery Ag >0,

w

where o is given by (25).

4. Application of Korovkin-Type Theorem

In this section, by presenting a further example, we demonstrate that our proposed Korovkin-type
approximation results in modular space are stronger than most (if not all) of the previously existing
results in view of the corollaries provided in this paper.

Let Z = [0,1] and ¢, w?, and L{ (Z?) be as given in Example 3. Also, recall the bivariate
Bernstein—Kantorovich operators (see [35]), B = {By,» } on the space L‘(}’(Iz) given by

+1 ks

Bun(f; %,y Z p(m" (x,y)(m+1)(n+1) /MH o f(s, t)dsdt (28)

1]_ m+1 n+1

for x,y € Z and
mn m n PR . s
5 = (7) ()0 s

Also, we have

Z pz (m,n) 29)

i,j=0

Clearly, we observe that
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Bm,n (1; X, ]/) =1,

Buu(s;x,y) = mx +71
m S Y) = T 2m 1)
) _ "y 1
Bm,n(t/x/y) = ] + 2(n+1)
and
—1)x? 2mx
B (242 :m(m
m,n( +s /xr]/) (m+1)2 +(771+1)2

N n(n—1)y? 2ny 1

1
3mt1)? (ni1)? 1?31

It is further observed that By, : Li (%) — L (Z?). Recall [28] (Lemma 5.1) and [29] (Example 1).
Now because of (29), we have from Jensen inequality, for each f € L‘(;,’(Iz) and m, n € N, there exists a

constant M such that

W (M) < Ma?(f).

We now present an illustrative example for the validity of the operators (Ly;,,) for our Theorem 2.

Example 4. Let Ly, 0 LY (Z?) — L¥(Z?) be defined by

£m,n(f/'xry) = (1 +fm,n)Bm,n(f} x/]/)/

where (fiu,n) is a sequence defined as in Example 3. Then, we have

ﬁm,n(l?x/y) =1 +fm,n (X,y),

mx 1
llm,n(l;x,y) =1 +fm,n(x/y) . |:m+1 + m:' ’

n 1
‘Cm,n(l;x/y) =1 +fm,n(xry) . |:1’l _:_/1 + 2(n T 1)}

and

[«m,n(l;xly) =1 +fm,n(xry)
m(m —1)x? 2mx 2 1 n(n—1)y? 2ny

(30)

1

M+ D2 1) T3mr1? (na D)2 (nt 1)

We thus obtain

L Lx,y)—1
Npstat lim ‘7’"'"( *Y) —0,
mn o w
L X, Y) —
Npstat lim 7"’/"(5 x,y) = s =0,
mn o w
Npstat lim M =0,
mn o w
r 24 2.5 ) — 52 4 £2
Npstat lim‘ (8" +152,y) ="+ —0.
mn T w
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This means that the operators Ly, »(f; x,y) fulfil the conditions (4). Hence, by Theorem 2 we have

=0 for every Ag > 0.

Npstat lim H Lo (f7%, z) - flxy)

w

However, since (fy,n) is not relatively modular weighted statistically convergent, the result of
Demirci and Orhan ([31], p. 1173, Theorem 1) is not fairly true under the operators defined by us
in (30). Furthermore, since (fi,x) is statistically and relatively modular deferred-weighted summable,
we therefore conclude that our Theorem 2 works for the operators which we have considered here.

5. Concluding Remarks and Observations

In the concluding section of our study, we put forth various supplementary remarks and
observations concerning several outcomes which we have established here.

Remark 2. Let (fyun)mucn be a sequence of functions given in Example 3. Then, since
Npstat nlliggofm,n =0 on [0,1] x [0,1],
we have
Nostat Tim || £ (%, 9) = fi(x,p)llo =0 (i =0,1,2,3). G1)
Thus, we can write (by Theorem 2)
Npstat lim |1 (£:x,y) = f(x.9)o =0, (1=0,1,2,3), @)
where

foley) =1, filx,y) =x, falx,y) =y and f3(x,y) = x* + 1~

Moreovet, as ( fu,m) is not classically convergent it therefore does not converge uniformly in modular
space. Thus, the traditional Korovkin-type approximation theorem will not work here under the operators defined
in (30). Therefore, this application evidently demonstrates that our Theorem 2 is a non-trivial extension of the
conventional Korovkin-type approximation theorem (see [27]).

Remark 3. Let (fiun)muen be a sequence as considered in Example 3. Then, since
Npstat Tiiggofm,n =0 on [0,1] x [0,1],

(31) fairly holds true. Now under condition (31) and by applying Theorem 2, we have that the condition (32)
holds true. Moreover, since (fi,n) is not relatively modular statistically Cesaro summable, Theorem 1 of Demirci
and Orhan (see [31], p. 1173, Theorem 1) does not hold fairly true under the operators considered in (30). Hence,
our Theorem 2 is a non-trivial generalization of Theorem 1 of Demirci and Orhan (see [31], p. 1173, Theorem 1)
(see also [29]). Based on the above facts, we conclude here that our proposed method has effectively worked for
the operators considered in (30), and therefore it is stronger than the traditional and statistical versions of the
Korovkin-type approximation theorems established earlier in References [27,29,31].
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Abstract: We construct Stancu-type Bernstein operators based on Bézier bases with shape parameter
A € [-1,1] and calculate their moments. The uniform convergence of the operator and global
approximation result by means of Ditzian-Totik modulus of smoothness are established. Also, we
establish the direct approximation theorem with the help of second order modulus of smoothness,
calculate the rate of convergence via Lipschitz-type function, and discuss the Voronovskaja-type
approximation theorems. Finally, in the last section, we construct the bivariate case of Stancu-type
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1. Introduction

A famous mathematician Bernstein [1] constructed polynomials nowadays called Bernstein
polynomials, which are familiar and widely investigated polynomials in theory of approximation.
Bernstein gave a simple and very elegant way to obtain Weierstrass approximation theorem with
the help of his newly constructed polynomials. For any continuous function f(x) defined on C[0, 1],
Bernstein polynomials of order # are given by

Bufin =17 (1) bt (o), o)

where the Bernstein basis functions b, ;(x) are defined by

n

,>xi (1—x) (i=0,...,n).

1

by,i(x) = <

Stancu [2] presented a generalization of Bernstein polynomials with the help of two parameters «
and B such that 0 < a < B, as follows:

Snap(fix) = g ( ;:”};) ('})xi (1-x)"" (xefo1). @)
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If we take both the parameters « = B = 0, then we get the classical Bernstein polynomials.
The operators defined by (2) are called Bernstein-Stancu operators. For some recent work, we refer
to [3-6].

In the recent past, Cai et al. [7] presented a new construction of Bernstein operators with the help
of Bézier bases with shape parameter A and called it A-Bernstein operators, which are defined by

zf() Bihin) (e N) @)

where by, ;(A; x) are Bézier bases with shape parameter A (see [8]), defined by

- A

bn,O(/\?x) = bn,O(x) - ?hnﬁ—l,l(x),

- 2i+1 n—2i—1 .

by,i(A; x) = by,i(x) + TAanrl i(¥) = — g A (¥), i=12...n-1 (4
Bn,n(/\;x) = bpu(x) — mbnﬂ,n(x)f

in this case A € [—1,1] and b, ;(x) are the Bernstein basis functions. By taking the above operators into
account, they established various approximation results, namely, Korovkin- and Voronovskaja-type
theorems, rate of convergence via Lipschitz continuous functions, local approximation and other
related results. In the same year, Cai [9] generalized A-Bernstein operators by constructing
the Kantorovich-type A-Bernstein operators, as well as its Bézier variant, and studied several
approximation results. Later, various approximation properties and asymptotic type results of the
Kantorovich-type A-Bernstein operators have been studied by Acu et al. [10]. Very recently, Ozger [11]
obtained statistical approximation for A-Bernstein operators including a Voronovskaja-type theorem in
statistical sense. In the same article, he also constructed bivariate A-Bernstein operators and studied
their approximation properties.

The Bernstein operators are some of the most studied positive linear operators which were
modified by many authors, and we are mentioning some of them and other related work [12-23].

We are now ready to construct our new operators as follows: Suppose that « and p are two
non- negative parameters such that 0 < a < . Then, the Stancu-type modification of A-Bernstein
operators Bn N /5( f;x) : C[0,1] — CJ[0, 1] is defined by

Bhaptfi = L (15 ) Bt ®)

for any n € N and we call it Stancu-type A-Bernstein operators or A-Bernstein-Stancu operators, where
Bézier bases b, ;(A; x) are defined in (4).

Remark 1. We have the following results for Stancu-type A-Bernstein operators:

(i) If we take A = 0 in (5), then Stancu-type A-Bernstein Stancu operators reduce to the classical
Bernstein—Stancu operators defined in [2].
(ii) The choice of x = B = 0 in (5) gives A-Bernstein operators defined by Cai et al. [7].
(iii) If we choose &« = B = A = 0, then (5) reduces to the classical Bernstein operators defined in [1].

The rest of the paper is organized as follows: In Section 2, we calculate the moments of (5) and
prove global approximation formula in terms of Ditzian-Totik uniform modulus of smoothness of
first and second order. The local direct estimate of the rate of convergence by Lipschitz-type function
involving two parameters for A-Bernstein-Stancu operators is investigated. In Section 3, we establish
quantitative Voronovskaja-type theorem for our operators. The final section of the paper is devoted to
study the bivariate case of A-Bernstein-Stancu operators .
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2. Some Auxiliary Lemmas and Approximation by Stancu-Type A-Bernstein Operators

In this section, we first prove some lemma which will be used to study the approximation
results of (5).

Lemma 1. For x € [0, 1], the moments of Stancu-type A-Bernstein operators are given as:

By p(Lix) = 1;

Ly atnx 1—2x+x" 4 (a—1)(1—x)""  ax(1—x)"]
B =S54 CEICESY i)
Bﬁ,a,/s(tz;x) = ﬁ {n(n —1)x% 4 (1 + 2a)nx + zxz}

2nx — 1 —4nx® + (2n + 1)x" 1 4 (1 — x)"+1 a® — dax
1 -+ 12— 1) F )

N 2an — 2a(a + 1) (2" 4 (1 — x)") + a2x(n® +1)(1 — x)”}
CETI LY '

Proof. Using the definition of operators (5) and Bézier-Bernstein bases b,, ;(A; x) (4), we write

o
A N it 0« o« A
Bn,a,ﬁ(t/x) - g n +,B bn,z(/\rx) ~n +,B bn,O(x) n +,B n+1 bn+1,l(x)
n—1 . .
i+a n—2i+n+1 n—2i—1
+ ;:21 P [bn,i(x) +A (W bug,i(x) — ﬁbnﬂ,iﬂ(x))}
n—+uw n+a A
* n+ﬁb"'”(x) B n+[3n+1b"“'”(x)

= 1 ) + A Ba ) — a0, )

where

i+an—2i+1
O1(n, 0, B,x) =} " +ﬁﬁbn+1,z(x)/’

(=}

=
|
—

i+an—2i—1

0>(n, o, B, x) ) n+ﬁﬁbn+l,i+l(x)'

Now, we compute the expressions 6 (1, «, B, x) and 6,(n,a, B, x). Since the Bernstein—Stancu
operators are linear, and Bernstein—-Stancu operators and fundamental Bernstein bases satisfy the
following equality:

=n+p n+p n+p
one writes
1 &itw 2 "2 4 g
61(n,a,B,x) = byi,i(x) — byi1,i(x)
( n—1,;0n+/3 el nzflgnﬁ—ﬁ el
1 & i 1 & o«
= bui,i(x) + bga,i(x)
n—lgn—t—ﬁ ntl n—11§n+ﬁ e
2 no 2 2 L
_ b b
nzflgn-i-ﬁ n+1,1(x) i’lzfll.zin-i-ﬁ n+1,1(x)
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_ (n+1)x—2x "i:l

7W 4 bn,i(x)“’Wz bﬂ+11
2ux 2nx?

fWme *WZ By,

n+d+1 an _ ann+1 n+d+1 n+1

X—Xx X —x o —20x + ax

n+p (n—&-ﬁ)(n—l)+ n+p 7(n+/3)(n—1)

1 nfll-_"_“b . (x)_ 2 1112_’_0”
/3 n+1,i+1 n2_1.1n+ﬁ

b .
n+1.1n+/3 ”+1”+1 ”+1IZ:71+‘B n+lz+1()

-1 p =
[ - b
n2—1 Z n+ ,B n+1,i+1 (X) 21 ,:Z; p +,B n+1,i+1 (x)

bn+1,i+1 (X)

i
n—1 1 n—1

2nx? n=2 2y et
T A & O g & )
2 o n—1
_ (n+p)(n2—1) 1; bt ( W ; byt1iv1(x)

20x nzl N n—1
i+ p)n—1) ; bni(x) +W Z by1,i41(x)

x—x" x(1—x)" 17(17x)”+17x(n+1)(17x) — x" 1
n+p n+p (n+p)(n+1)
2—(1—x)" —2x(n+1)(1—x)" —2x" 1w — (1 —x)"1 — ax*1
(n+p)(n*—1) (n+p)(n+1)
2x —2x(1—x)" —2x"t1  2nx?® —2nx"*t1 wx(1— x)"
(ntp)(n—1) (P (n-1)  n+p

20x — 20x" 1 20 — 2a(1 — x)" 1 — 2ax" 1

TPt | (mrpE—1)

We get the desired result for Bn «p(t; X) by combining the results obtained for 61 (1, a, B, x) and
62(n,a, B, x).
Again, by using the following identity;

i (i +a)? () = 1 {n(n_l)x2+(1+21x)nx+/x2}

Bhap(0) = 1 0 00 = )~ A b ()
g5 = L (g pprbna%) = G gbon®) ~ gy g
v (i+a)? 2i 41 n—2i—1
' 5 n+p)? {b i)+ A <ﬁh"“'i(x) - ﬁbwrl,ﬁl(x))}
n+ a)? )2
+ ﬁbn,n(x) - ﬁ%ﬂbnﬂm(;{)
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noo(; 2
= 1 (o ) A B0, .0) < 04(0,0,.)),

where

2 .

n—2i—1

= (1’! +‘B)2 2 —1 bn+1,i+1 (x)
i=

We now compute the expressions 63(1, «, 8, x) and 04(n, a, B, x) as follows:

_ 1y (e 2 &4,
P =5 Eo (et pr i) g 1:20 (g gl
1 L 7 2a n i
St pr ) T L g )
0(2 n 2 n i3
+ T ghn+l,i(x) - E(:) mbwrl,i(x)
4 n 2 242 N .
w1 L G g 1 G i)
o b R, (n+1x
= W = bn*l,l(x) + W = hn,,(x)
2nx3 n—2

n—3 an
- (}’l+ﬁ)2 Zg bnfz,i(x) - (f’l+l[§)2(1’l — 1) Zlg(:)bnfl,i(x)

1

- ;”* i(x M (S (x
(n+pB)2(n—1) = bui(2) + (n+p)2(n—1) = byi(x)
a? 1 b donx? 71—2b
+ W 1;; 1, (X) — W ,g -1, (%)
4ox ”’1b 202x n—lb
S &Y T G e &)

B 2n(xn+1 _ x3) x — xtt1 (nz _ 571) (xz _ xn+l)
TGP P PR )
N 2u(n 4+ 1) 2" +a2(1 — x + x"1) — danx? N 2ux
(n+B)*(n—1) (n+p)*

2 n—1 (l + a)Zl'
b .
21 = (i’l +‘B)2 n+1,i+1 (x)

1 Bz bn+1,i+1(x) -

20 =l i
W1 i B b1 (x) + Y Y (CEYL by, (%)
2

i=1

w "i 1 2 P
+ vy buin1(X) — = ) 7 buia (%)
”+1i:1( +p)2 " ”271,‘:1 (n+p)2 "
Ao n—1 Z'Z 2“2 n—1 i

-1~ (n+p) byt1,i+1(x) — w21 4 ‘ mtp? bii1i1(x)
1= 1=
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1 n—1

n—2
= (nnTxISZ Z by—1,i(x) + W Z but1,i+1(x)

—2x —
7(n+ﬁ (n—1) Z i

=1

2nxd "3
7(11_"_/5221711 21

n—

+7(n+ﬁ ] an+1z+1 1’l+ﬁ Z nz(x

+2“7be ,(x),zizb (%)
(I’l +ﬁ)2 = n,i (n +ﬁ) n+ 1 n+1,i+1
a? n_l 4anx?

AT )~ G e Ly

dox n-l 4o n-l
+ (I’l +ﬁ)2(7’l — 1) = bn,i(x) - (1’[ +'5)2(;,[2 — 1) g bn+l,i+l(x)
Zazx n—1 2a n—1

S AR B g ) B ten @)

o4+ (n+ Dt —x —2nxd 1 — (1 —x)mH -yt
- (n+p) (n+p)>(n+1)
N 2x" 1 2y N 2 —2(1—x)mHl — 2+l
(n+p)*(n—1) (n+p)*(n*—1)
20x + 20" — 02x(1— x)"  a(w—2)(1 — "1 — (1 —x)"+1)

(n+p)>? (n+p2(n+1)
n 20(a —2)x((1 — x)"1 —1) + 2a2x"+1 N 2a(x" 4 (1— x)H - 1)
(n+p)2(n—1) (n+ B)2(n2 — 1) ,

which completes the result for Bn N ﬁ( x) by combining the results obtained for 63(n, , B, x) and
Os(n,a,B,x). O

Corollary 1. The following relations hold:

B;,\/a,ﬁ(t —xx) = f i(A;x fxz
B 7—ﬁx 1—2x—‘,—x”+1—(1—x)”‘*'1
‘n+ﬁ+A (n+B)n—1)

R
B%ﬁW‘Wfﬂﬁzi<z+a)Em@ﬂfﬂxii+ahﬂkﬂ+fiihﬂkﬂ
o | |

n+ ‘B i=0 n+ 'B i=0
~nx(1—x) 4 (Bx —a)?
- (n+p)?
A {43:2 —2x = 2" —2(a = 1)x(1 — x)" 2ax?(1 - x)"
(n+p)(n—1) n+p

2nx — 1 —4nx® + (2n + )21+ (1 — x)"+H 4+ a? — dax
CESIECESY

2an — 20(a + 1) ("1 4+ (1 — x)") 4+ a?x (0% +1)(1 — x)"
CESIE Y '

+A

+A
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Corollary 2. The following identities hold:

)Er;on Bﬁya,ﬂ(t —x%) =a—Bx;
nlgt;lon Bﬁ,m,ﬁ((t —x)%x) = x(1-x).

We obtain the uniform convergence of operators Bvlq\,a,/s( f;x) by applying well-known
Bohman-Korovkin-Popoviciu theorem.

Theorem 1. Let C[0, 1] denote the space of all real-valued continuous functions on [0,1] endowed with the
supremum norm. Then

sim B, 5(f;%) = f(x) (f €C[0,1])

uniformly in [0, 1].
Proof. It is sufficient to show that
Jim. HBQ,,x,ﬁ(tj?x) - fj||c[o,1] =0, ;=012
as stated in Bohman—-Korovkin-Popoviciu theorem. We have the following relations by Lemma 1:
Jlim. HBﬁ/a,ﬁ(tO;x) —t%cjo =0 and Jlim HBQ,.x,ﬁ(t/'x) —tllcioa =0

It is easy to show

1)x2 + (1 + 2a)nx + o?

BN (x) < n(n+

n,a,ﬁ( x) = (n+ﬁ)2

2nx + 1+ 4nx? + (2n + 1)1 4 (1 — x)n+! a? + dax
A 2 + 2
(n+p)*(n—1) (n+p)*(n—-1)
N 2an 4 2a(a + 1) (" 4+ (1 — x)") + a?(n? +1)x(1 — x)"
(n+p)3(n*—1)
and hence

. B2, g2 _
lim [[By(%52:4) = | co) = 0.

This implies Bﬁ,a,ﬁ (f; x) converge uniformly to f on [0,1]. O

Recall that the first and second order Ditzian-Totik uniform modulus of smoothness are given by

we(f,0) = sup sup  {|f(x +h¢(x)) — ()]}

0<|h|<8 xx+hE(x)€[0,1]

and

W} (f,0) == sup sup  {|f(x+ho(x)) —2f(x) + f(x — ho(x))[},

0<|h|<é x,xth¢(x)€[0,1]

respectively, where ¢ is an admissible step-weight function on [a, b], that is, ¢p(x) = [(x — a)(b — x)]'/2
if x € [a,b] (see [24]). Let

K ,8) = inf — 5||p2g" cgeC?o,1 5>0
29(x)(f,9) gewz@{\lf gllep 998" llcpa 1 8 01} ( )
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be the corresponding K-functional, where
W2(¢) = {g € C[0,1] : ¢’ € AC[0,1], ¢°¢" € C[0,1]}

and
C?0,1] = {g € C[0,1] : ¢',¢" € C[0,1]}.

In this case, g’ € AC|0, 1] means that g’ is absolutely continuous on [0, 1]. It is known by [25] that
there exists an absolute constant C > 0, such that

CTlWP (£, V/0) < Ko (f,0) < Caf (f, VD). ©6)
We are now ready to obtain global approximation theorem.

Theorem 2. Let A € [—1,1] and f € C[0,1]. Suppose that ¢p(# 0) such that ¢? is concave. Then

. on(a, B, A;x) (&, B, A; x)
|B2,uc,/3(ffx) 7f(x)| < CW(ZP (f, W) +W§(f, W)

for x € [0,1] and C > 0, where py(a, B, A;x) = B;‘/a’ﬁ(t — %), Oule, B, A;x) = (va(a, B, A;x) +
1

12 (a, B, A;x)(x))2 and vy (x, B, A; x) (x) = B;‘“ﬁ((t —x)%x).

Proof. Consider the operators

na‘B(f X) - Bﬁaﬁ(f'x)+f(x)

Bx ax(l—x)" 1—2x+ 2" 4 (0 —1)(1 —x)" 1 (7)
f(n+/3 A5 n+pB +4 (n+pB)(n—1) >

forA € [-1,1],x € [0,1]. WeobservethatBMﬁ(l x) = 1and Bﬁaﬁ( x) = x, that is Bﬁ‘aﬁ( —x;x)=0.
Letu = px + (1 —p)t, p € [0,1]. Since ¢? is concave on [0, 1], we have ¢?(u) > p$p?(x) + (1 —

0)¢?*(t) and hence

f-ul_ plx—t] = ©
$*(u) ~ pg*(x) + (1 —p)g*(t) ~ ¢*(x)
So
1B s(f3%) — F(0)] < 1Bl p(f — £5) |+ By 5 g%) — g(0)] + £(x) — g()] o
< 401f = gllepon + 1By p(8ix) = g(x)]-
We obtain the following relations by applying the Taylor’s formula:
B op(8:%) — (%)
I i 1"
< Bhap(| [ 1=l 18"l ) | [ oo ) = ] )
(10)
2,01 A Lt —u 2,1 b [x A+ pn (@, B, A X) — ‘
<15 cton Bhap (| [ iz x)+||¢ letoss | | sp =t gy

< 7201978 I cio)Brap((t = 0% 0) +¢72(x) 178 l|clo) B3 (x)-
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By using the definition of K-functional together with (6) and the inequalities (9) and (10), we have

|Briap(f3) = F(0)] < 972(0) 197" lcioa) (v (e, B, As x) + piz (o, B, A %)) + 41l f = gl cpoy

(v, B, 452) + 12w, B, mx)ﬁ)
2¢(x) '

Also, by first order Ditzian-Totik uniform modulus of smoothness, we have

< wa (f,

Gt pn) — £(3)] = \f(xw(x)%) ~f(x)

a2,

Therefore, the following inequalities hold:

Bap (fi0) = F(0)] < 1B g (i) = F(0) + | f(x + pin(a, B, As %)) — ()|

s cad(1 25 )+ (1 )

which completes the proof. [

In order to obtain next result, we first recall some concepts and results concerning modulus of
continuity and Peetre’s K-functional. For § > 0, the modulus of continuity w(f,J) of f € Cla,b] is
given by

w(f,8) = sup{|f(x) = f(W)|: x,y € [a,b], [x —y| <o}

It is also well known that, for any § > 0 and each x € [a,]],

X —
1) -1 < wir.0) (F58 1)) an
For f € C[0, 1], the second-order modulus of smoothness is given by

wy(f, Vo) := sup  sup {|f(x+2h) —2f(x+h)+ f(x)},

0<h<V/é xx+2he(0]

and the corresponding Peetre’s K-functional [26] is

Ka(f,8) = inf {[|f = gllcon) + 118" lcroq) : € € W0, 1]},

where
W2[o,1] = {g € Cl0,1) : ¢/, 8" € Clo, 1)},

It is well-known that the inequality
Ky(f,8) < Cwa(f,V3)  (6>0) (12)

holds in which the absolute constant C > 0 is independent of ¢ and f (see [25]).
We are now ready to establish a direct local approximation theorem for operators Bﬁ/ 0B (f;x) via
second order modulus of smoothness and usual modulus of continuity.
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Theorem 3. Assume that f € C[0,1] and x € [0,1]. Then there exists an absolute constant C such that
1
1B o) = ()] < C oz (£, 500(0,B,2:%) ) +0(f, pn (1, B, 2:))
for the operators B} D‘ﬁ(f x), where py(a, B, A; x) and 6,(a, B, A; x) are given in Theorem 2.

Proof. Consider the operators Bn " /3( f;x) as defined in Theorem 2. Assume that t,x € [0,1] and
g € W2[0,1]. The following equality yields by Taylor’s expansion formula:

g(t) = g(x) + (t — x)g +/ du. (13)

If we apply B} L /5( x) to both sides of (13) and keeping in mind these operators preserve constants
and linear functions, we obtain

B (%) —8(x) = §'(x)B), s(t—x:%) + By < /t(t —u)g" (u)du; x)
= Bhap ([ 0=t ) — [T 5 o 253) ) )

!

X+ pn(a, B A x) —ul g7 ()| du

Therefore,
- t
B ap55%) = 5001 < B (| [ 16—l lg" 0t

/'X+}1n
x

< 118" e (Bpap((t = 2)%2) + (Bl ot — 1:%))%).

With the help of (7), one obtains

1B70,5(85 %) lcioa) < B85 %) llcjor) + 180 I ciony + I18(x + pa (@, B, ;%)) llcpony

(14)
< 113gllcpo)-
Now, for f € C[0,1] and g € W?[0, 1], using (7) and (14), we get

1B p(f3%) = F(x)] < |Bo g (f —g52)| + B (85 %) — 8()]
+1g(x) = F@)] + [f(x + pnla, B, ;%)) — ()]
<2, B,M0)8 e +w(f, mn(e, B, A5 x)) + 4l = gllcpon-

Finally, by assuming the infimum on the right-hand side of the above inequality over all
g € W2[0,1] togrther with inequality (12), we obtain

2 .
Bl g — £0)] < 4k (1, 2B ) g o, )
< Coua(f, 0u(w,0i) ) 0l ol . 2i3)),

which completes the proof. [
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In the following theorem, we obtain a local direct estimate of the rate of convergence via
Lipschitz-type function involving two parameters for the operators Bn W Before proceeding further,
let us recall that

|t — x|

(ko) o N L : — N

€ (0,1, € [0, 1]}
fork; > 0,k > 0, where 7 € (0,1] and M is a positive constant (see [27]).

Theorem 4. If f € Lip,, (k1 kZ)(n), then

vZ(zx,/S,/\;x)
|Bhap(fix) = f(x)] <M (e £ ko)1

forall A € [—1,1], x € (0,1] and € (0,1], where vy (a, B, A; x) is defined in Theorem 2.

Proof. Let f € Lip,, (k1 k2) (1) and i € (0, 1]. First, we are going to show that statement is true for 7 = 1.
We write

|Bap(f3 %) = f(X)\<\Bﬁag(\f(t)*f(X)\;X)Hf()\Bnaﬁ(l;X)*l\

i+ _
72 <ﬂ+ﬁ> F)| Byi(x:4)
n it | )
LTS L SO
; (k1x2+k2x+t)% i (X A)

for f € Lip,, (1 kZ)( 1). By using the relation
(k12 + lox +£)"Y2 < (k2 + kox) V2 (kg > 0,k > 0)
and applying Cauchy-Schwarz inequality, we obtain
2 “12y- ita T (e
B (i) = f(x)] < M(k12® + ko) Z}Tﬁ—XI bi(x; )
= M(kyx? + kpx)~ 1/2|Bm‘ﬁ(t‘ —xx)|
< My (a, B, A; )| 2 (ky 2% + kpx) 12,

Hence, the statement is true for 7 = 1. By the monotonicity of Bﬁ,a, 8 (f; x) and applying Holder’s

inequality two times with 2 = 2/ and b = 2/(2 — 1), we can see that the statement is true for
7 € (0,1] as follows:

aslfi) ~ f00] < L7 (155 ) 0 Bt
< (Ll () o %Bm<x,A>)g(i_fOEn,,(x,A>)zzﬂ

ét";ﬁ + k1x2 + kox
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" 2 y
M (k1% + kox) ”/Z{Z(I—HX ) En,i(x,'?\)}
< M(kyx* +kox + )~ ’7/2[ ((t—x)? A)]

vl(a, B, A; X)
(k1x2 + kzx)’7 ’

O

Theorem 5. The following inequality holds:

1Bl p(f3x) = F(0)] < [un(e, B, A 0] |f ()] 24/ v, B, A x)w (f, [ vu (e, B, Asx) )
for f € CY0,1] and x € [0,1], where py(«, B, A; x) and v, (a, B, A; x) are defined in Theorem 2.

Proof. We have

t

f(O) = f(x) = (t=x)f'(x) + / (f'(u) = f'(x))du (15)

JX

forany t € [0,1] and x € [0,1]. By applying the operators Bn o577 %) to both sides of (15), we have

Bl = £003) = 1008l = 53) + B [ (70 = /(0 ).

The following inequality holds for any 6 > 0, u € [0,1] and f € C[0,1]:

) = sl < wro) (M5 1),

Thus, we obtain

[ = /2

<(r ) (L5 -x1).
Hence
1By g (F3%) — F)] < IF/(3)] 1Byt — )]
0(f',0)] 5Bhap6 = 2)%3) + Bl gl =53} (16)
By applying Cauchy-Schwarz inequality on the right hand side of last inequality (16), we have
B ap(fix) = F()] < 1f ()] [pn(a, B, A;)]

+a(f, 5{ V/Bhap((t—x)? +1}\/BM/3 —x|;x).

Consequently, we obtain the desired result if we choose J as v/ (a, B A x). O

3. Voronovskaja-Type Theorems

Here, we prove the following Voronovskaja-type theorems by Bﬁ, op (f;x).
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Theorem 6. Let f, f', f"' € Cg[0,1], where Cg[0,1] is the set of all real-valued bounded and continuous
functions defined on [0,1]. Then, for each x € [0, 1], we have

im 1 (Bl () — f(0)} = (2~ ) £+ “0 70 f ()

uniformly on [0,1].
Proof. We first write the following equality by Taylor’s expansion theorem of function f(x) in Cg[0, 1]:

F(0) = FG) + (= 0)f (1) + 5= xPf () (6= 0 ), (7)

where 7, (t) is Peano form of the remainder, 7, € C[0,1] and r(t) — 0 as t — x. Applying the operators
Bﬁ/a /3(7 x) to identity (17), we have

Blap(Fi) — F(x) = £ (0)BLapt —2) + L BY (0= %) + Bl (= 2)Prel0):)

Using Cauchy-Schwarz inequality, we have

B (£ = %)%ra(1);%) < /BY, 5 (¢ = %)% %) /B, 5 (73 (18)

We observe that lim,, B n N ﬁ( 72(t);x) = 0 and hence

lim n(Bl (£ 0)re(1):2)) = 0.

Thus

"

lim (B 5 (£:3) — ()} = Jim n{Bl ot 500 () + VB, (- %)

—+ Bnaﬂ((t - x)zrx(t);x)}.

The result follows immediately by applying the Corollaries 1 and 2. [
For f € C[0,1] and 6 > 0, the Ditzian-Totik modulus of smoothness is given by

we(f,0) = sup {‘f(x—&-m%(x))—f(x—m%(x)) ,ximbT(x)e[O,l]},

0<|h|<é

where ¢(x) = (x(1 - x))"/2, and let
— i _ - 1
Ko(f.0) = _inf NS =gl +3llgg’l]: g € Cl01]}

be the corresponding Peetre’s K-functional, where

Wy[0,1] = {8 : g € ACioc[0,1], [|9g'[| < oo}

and AC,[0,1] denotes the class of absolutely continuous functions defined on [a,b] C [0,1].
There exists a constant C > 0 such that Ky (f,) < C wy(f,0).
Next, we give a quantitative Voronovskaja-type result for Bﬁ’ﬁ (fixA).
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Theorem 7. Suppose that f € C[0,1] such that f', f"' € C[0,1]. Then

Bl (00 (2) = £(x) a8, A () — (v )+ 13 L0

< %4,2(;()% <f~, %) (19)

for every x € [0,1] and sufficiently large n, where C is a positive constant, ,(«, B, A; x) and v, (w, B, A; x) are
defined in Theorem 2.

Proof. Consider the following equality

for f € C[0, 1]. It follows that

£0 - £~ =070 - TE (02 41) < [0l - @l o)

Applying Bn N /5( x) to both sides of (20), we obtain

B (1) = F(3) — Bl (¢ = ;)8 () = L0 (B, (= %) + Bl (1:3)
< Bhag(| [ 1= 170 = 7(2)

e1)
x) .

The quantity in the right hand side of (21) can be estimated as

‘ ./xt [t —ul [f"(u) — f"(x)| du

<2Y|f" - gll(t—x)* +2llgg g~ ()|t — 2, (22)
where g € W,[0,1]. There exists C > 0 such that

C C
Brap((t=2)%%) < ~¢?(x) and By, u((t—2)%x) < o 5¢*(x) (23)

for sufficiently large n. By taking (21)—(23) into our account and using Cauchy-Schwarz inequality,
we have

B (1) — F(2) ~ Blagl(t — 008 (1)~ LD (Bl (t— 00%2) + Bl (1:3)
<2 1B (£ — %) + 2098’19 (1B (1t — %)

< S0~ gll + 2098 197 (B (£ — 0% 00} V2B (¢~ 1))} 12
< Sp@{Ir sl +n g1 )

Finally, by taking infimum over all g € W,[0, 1], this last inequality leads us to the assertion (19)
of Theorem 7. [J

As an immediate consequence of Theorem 7, we have the following result.
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Corollary 3. If f € C[0,1] such that ', f"" € C[0,1], then

Y (B o (F52) f(x) = f(x) = i, B, A 2) f' (%) = {vn(a, B, 2;2) + 1} @ =0,

where yy(a, B, A; x) and vy (a, B, A; x) are defined in Theorem 2.

4. The Bivariate Case of the Operators B} N ﬁ( f;x)
We construct bivariate version of Stancu-type A-Bernstein operators defined which was defined
in the first section of this manuscript as (5) and study their approximation properties.

For0 < a; < B; (i = 1,2), we defined the bivariate version of Stancu-type A-Bernstein operators by

n m : H
AP, _ htwm +ax\z o F
B (fix,y) = i1Z::O iZZ::O (n F B m+ ﬁz) bn,q(/\lrx)bm/zz (A2y) (24)

for (x,y) € Iand f € C(I), where I = [0,1] x [0,1] and b,,;, (A1;x) and by, ;, (A2; x) are Bézier bases
defined in (4).

We remark that if we take Ay = A, = 0inbivariate A-Bernstein-Stancu operators, then (24) reduces
to the classical bivariate Bernstein-Stancu operators defined in [28]. Also, for a1 = 1 = A; = 0 and
&y = B = Ay = 0, the bivariate A-Bernstein-Stancu operators (24) reduce to classical bivariate
Bernstein operators defined in [29].

Lemma 2. The following equalities hold for bivariate A-Bernstein—Stancu operators:

A,
Bn,;xnﬂ(l; x,y) =1

“, ay + nx 1—2x4+ " (a0 —1)(1—x)"1  ayx(1 —x)"
BYE (s;x,y) = - +A1{ (n+51()(n71))( i n(+[51) ];
Aa, ay +m 1—2y+y™ 1+ (0 —1)(1 — )"t apy(1 —y)™
B (17.1) = m+ﬁzy+)‘2{ ’ y(m+ﬁz()(m—)1() S yn5+ﬁf) }"
Bﬁfz{ﬁ(sz;x,y) = ot {n(n —1)%+(1 +2(x1)nx+:x%}
(n+p1)?
A 2nx — 1 —4nx® + (2n + 1)x" 1 4 (1 — x)"+l N a2 — 4o x
(n+pB1)*(n—1) (n+p1)*(n—1)

20m — 201 (g + 1) (x4 (1 —x)") + adx(n®> +1)(1 —x)" |
’ (n+ B2 = 1) /

o 1
BynP (2x,y) = CETS {m(m —1)y* + (14 2ap)my + ‘X%}
A 2my — 1 —4dmy? + (2m + 1)y + (1 —y)" 1 a3 — daoy
’ (m+ B2)2(m —1) (n+B2)?(m —1)

| 2am = 2a(ap +m)(y" !+ (1—y)") + ady(m? +1)(1—y)"
(m+ p2)2(m? — 1) '

Theorem 8. Let e;j(x,y) = xiyl, where 0 < i+j < 2. Then, the sequence B;},’z{ﬁ (f;x,y) of operators
converges uniformly to f on I for each f € C (I).

Proof. It is enough to prove the following condition

. A, . o
n}égw Bu/m (61‘]‘, X, y) = €jj
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converges uniformly on I. With the help of Lemma 2, one can see that

. Aw,B
lim  By" (ego; x,v) = e
Moo n,m ( 00/ /y) 00~

. A,
lim BYP (e05x,y) = e lim Bj" (ep1;x,v) = e
oo MM ( 10/ r]/) 10/ oy n,m ( 01, ,y) 01

and
» lim By’ ook (eon + €20;X,Y) = epz + ex.

Keeping in mind the above conditions and Korovkin type theorem established by Volkov [30],
we obtain

lim Bnm (fixy)=f

m,n—00
converges uniformly. [

Now, we compute the rate of convergence of operators (24) by means of the modulus of continuity.
Recall that the modulus of continuity for bivariate case is defined as

w(f,8) = sup {|f<s,t> oyt (—yr < a}

for f € C(I) and for every (s, t), (x,y) € I, = [0,4] x [0,b]. The partial moduli of continuity with
respect to x and y are defined by

wi(f,8) = sup{|f(x1,y) = fx2,y)] :y € [0,a] and |x; — x2] < 3},
wy(f,6) = sup{[f(x,y1) = f(x,y2)| : x €[0,b] and [y1 — ya| < 5}

Peetre’s K-functional is given by

K(£,0) = _inf {If =gllcu,) +lgllea,) }

geCZ(Iub)

] . .
55 (1=1,2)in C(Iy) [26].

We now give an estimate of the rates of convergence of operators Bn,m (f;x,y).

for § > 0, where C?(I,;) is the space of functions of f such that f a]f and

Theorem 9. Let f € C(I). Then

Bl (Frx,y) = £ ()| < 40 (312, B, 252), 002 (@, B, 25) )

forall x € I, where
vn(a, B, A; x) = B)”Xﬁ ((s—x)z;x,y) and vy (a, B, A;y) = Bﬁ,ﬁﬁ (( y)z;x,y>‘

Proof. Since (24) is linear and positive, we have

Bunf (Fxy) — fey)l < BuwP (If(s.8) — fxp)lix,y)
< anﬁ( <f (S*X)2+(f*y)2);x,y>
<

w (f/ \/Vn(ar/gr)\;x)r \/Vm(“'ﬁf/\;y)>
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1 A, B ~ ]
X [\/Vn (a0, B, A; X v (e, B, A 1) Bl ( (s —x)2+(t y)Z, x,y>:| )

The Cauchy-Schwartz inequality gives that
A
B’ (i) = fx,)
<w (f; \/vn(tx,ﬁ,/\;X), \/vm(nc,ﬁ,A;y))
1 Aa,B 2 Aa,p 2 172
+ B —x)5xy)B t—y)5x,
Vi (e, B, A; ) v (&, B, A; ) { i <(S x)5x y) o (( yyx y>}

L VB (s xyy%¢$m”0—w%mw
Vn(a, B, A;x) V(e B, AY) '

If we choose

vnl, fArx) = BUAE (5= %0 y) and (e p,0iy) = B (= )% %)

for all (x,y) € I we complete the proof, where

B;,\,’fn/ﬁ ((s —x)z;x,y) = BQ f,(,’g <s P X, y) —2xB£‘:ff{ﬁ (s;x,y) +x2BM‘ﬁ (L;x,y)
o onx(1—x)+ (Brx —ap)?
a (n+p1)?
Y {Alx2 —2x —2x"2 = 2(ay — Dx(1 — )" 2mx%(1—x)"
(n+p1)(n—1) n+p

2nx — 1 —4nx? + (2n + 1)x" 1 + (1 — x)" 1 + a2 — dayx
(n+p1)*(n—1)

209 — 20 (g + 1) (x" 1 4 (1 — 2)") + adx(n? +1)(1 — x)"
(i F0202 — 1)

+A1

’

+Aq

A 2, _ my(1—y) + (Boy — a2)?
B ((t_y) ,x,y) = (m+ B>)?
o {4y — 2= 2" =2 — Ny(1— )"t 202 (1—y)"
(m+ B2)(m—1) m+po
Y 2my — 1 —4my? + (2m + 1)y + (1 — )" +ad — daoy
(m+ B2)*(m —1)
|, 20m = 25 (a2 +m) (" + (1= y)") + azy(m® + 1)(1 - y)"
(m + p2)*(m* —1) '
O

Theorem 10. Let f € C (I). Then, the following inequality holds:
B () — (o) <2 en (el 20 B0 e (5820w .00,

where vy (, B, A; x) and vy, (a, B, A; ) are defined in Theorem 9.
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Proof. By using the definition of partial modulus of continuity and Cauchy-Schwartz inequality,
we have

Bun® (F:,9) — f(x,y)]
< Byt (If(s,8) = )%, y)
< Buni (1f(s.8) = F(x,0)]; xy>+B“ﬁ<\f<x B - f(xy)xy)
< By (lwor(f31s — 2%, 9) + Bua® (w2 (f: £ =y, y)

< w1(f,vu(a, B, A;x)) { “,ﬁAx)BM‘ﬁ(\sfxbx,y)}
+aorlf (o, B A |14 B (= vl

1+ m (BAF (s - 2P x,y))l/z}

v m (Ban? ((ty)z;x,y))l/z] |

< wi(f,va/*(a, B, A;x))

+w2(f,1/,1/2(u¢,5,?\;x))

Finally, by choosing v, (&, B, A; x) and vy, («, B, A; y) as defined in Theorem 9, we obtain desired result. [J

We recall that the Lipschitz class Lip M(Elr Ez) for the bivariate is given by
Flst) = fx,y)| < Mls — x|t [t = y|P?
for B1, B2 € (0,1] and (s, t), (x,y) € Ly
Theorem 11. Let f € Lipp(B1, B2). Then, for all (x,y) € Ly, we have
A, /2 /2
B (Fix,y) — Fly)| < Mo (0 B, 40k (B, Asy),
where vy (a, B, A; x) and vy (, B, A; y) are defined in Theorem 9.
Proof. We have

A,
B (1f (s, t) — Fx, )] %)
MByAP (s — x1Pr[t - yIP2; 2, y)

IN

B (f:%,9) — f(x,y)]

IN

MByP(Is — x [P x, ) Bun (It — yIP2 2, y)

since f € Lipp(B1, B2). Then, by applying the Holder’s inequality for

ﬁ 2 2
1= =,q1= =
1 2-Pp
and
ﬁ 1 2
2= =,02 = =,
2 2— B

206



Symmetry 2019, 11, 316

we obtain

Ban® (Fx,9) = Fx, )| < M{BuwP (s — x|%x,y) Y 2By (1,2, ) } P12
< Buml (1t — yI% %, ) Y2 2 { By (1,3, y) } P2/
= MVI’!(DCI ﬁr A/ x)ﬁl /21/"1(“' IB’ A’y)ﬁZ/z

This completes the proof. [

Theorem 12. For f € C'(I), the following inequality holds:

B (Fixy) = fen)| < I e vl (@ B A )+ I fy leq vad (@ B, Asy),
where vy (, B, A; x) and vy (a, B, A; ) are defined in Theorem 9.

Proof. We have
ot s
F0 = £6) = [ fulws)au+ /y folx, 0)du

for (s, t) € I. Thus, by applying the operators defined in (24) to the above equality, we obtain
A,
B (Frx,9) = f(x,9)]

< By (‘/ fulu,s)du x,y> + ByaP (‘/va(x,v)du ;x,y).
Y

By taking the following relations into our consideration

‘/xtfu(u,S)du
‘/; fo(x,v)du

<I fx lle(ry) 1s = >l

and
< fy lewy,) 1t =yl

one obtains
A,
B (fix,y) = f(x,9)]
A A,
<| felle Bam (Is = xbx,y)+ 1| fy Nl Bam® (1= ylixy)-
Using Cauchy-Schwarz inequality, we have
A,
B’ (fix,y) = f(x,v)]
A, A,
<I| filleqy 1Ban? ((s = )%y ) Y/ BIE ()}
A, A,
+ 1 fy e B ((E=y)%xy) V2B (L)} 2
|

Finally, we presents a Voronovskaja-type theorem for Bﬁ,’z’ﬂ (f;x,y).
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Theorem 13. Let f € C2(I). Then

Jim n [P (fixy) = fey)| = (@1 —Brx)fu+ (a2 = Baw)fy
(17X)fxx ( ;y)fyy

Proof. Let (x,y) € I and write the Taylor’s formula of f(s, t) as
flst) = fuy)+fils—x)+ fy(t—y)
13 { feels = 02 25— 1) () + fint — )}
+e(s, t) <(s —x)2 4 (tfy)2> , (25)

where (s,t) € I and ¢(s,t) — O as (s,t) — (x,y). If we apply sequence of operators Bﬁfz’ﬁ(-;x,y)
on (25) keeping in mind linearity of operator, we have

Bun® (f35,8) — f(xy)
= fe( ) B ((s = x)ix,y) + fy (2, ) Bun P (8= y)ixy)
g FaBEP (s = X% 3,9) 4 2 B (s - 00 - pin)

A,
BP0y b+ B (e(s) (5= 0 4 (- 2) s
Applying limit to both sides of the last equality as n — oo, we have

Jim (B (f5,) = f(x,9)
A
= lim n { Ao y) B (s = %) y) + o) BunP (= w)ixy) |
.n
+ fim 3 { FuBa (s~ x,9)
As, Aa,
2L B (5 = 5) (e~ 0 9) + R (0 - ) |
. A,
+nlgr010 anﬁﬁ (s(s,t) ((s —x)2 4 (t— y)2> ;x,y) .
Using Holder inequality for the last term of above equality, we have
Bun? (s(s,t) (6=x2+=p?);xy)
2‘35 2(s,1); x,y)
\/BM'B (e(s,t) (s —x)*+ (t—y)*);xy).

Since N
,/llglolo anﬁ’ﬁ (ez(s, t);x,y) = sz(x,y) =
we have
. A,
nlgr(}on Bnﬁﬁ (s(s,t) <(s —x)t (- y)4> ;x,y) =0. (26)
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Consequently, we obtain

Jim o By (s = )i y) = @ = px, 7)
nlgrgan}‘“ﬁ((t Y)ix,y) = — By, (28)
nlgrc}onB)‘a‘S((s 0% x,y) =x(1-x), (29)
lim n By (E =) x,y) = y(1 - y). (30)

Combining (26)—(30), we deduce the desired result. [
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