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Preface to ”Number Theory and Symmetry”

“Number Theory and Symmetry” deals with topics connecting numbers (integers, algebraic

integers, transcendental numbers, p-adic numbers) and symmetries. First of all, symmetry became

part of number theory when Riemann investigated the distribution of prime numbers and for that

purpose introduced the complex functional equation and the related Riemann hypothesis (RH) that

non-trivial zeros of the Riemann zeta function lie on the symmetry axis s = 1/2. Then, in a quest to

justify RH on physical grounds, the Hilbert–Polya conjecture claimed that the imaginary part of the

Riemann zeros on the symmetry axis should correspond to the eigenvalues of a Hermitian operator.

This topic is covered by German Sierra.

Besides these classical areas, number fields offer clues to the connection between numbers

and symmetries through arithmetic groups, geometry, and topology. I have in mind the Poincaré

conjecture and the whole work of Thurston about 3-manifolds. This topic is the kernel of the two

papers by Michel Planat and co-authors and Torsten Asselmeyer Maluga. The aforementioned three

papers highlight a strong connection between number theory and quantum physics.

The range of the three subsequent papers in this series is about more standard topics of number

theory. A modified Sieve procedure by Bruno Aiazzi and coauthors, the Miller–Rabin primality test

by Shamil Ishmukhametov and co-authors, and the 4-Pascal’s triangle by Atsushi Yamagami and

Kazuki Taniguchi are investigated.

The paper by Pavel Trojovsky offers clues to the relation between algebraic and transcendental

numbers through polynomials. Atsushi Yamagami and Yuki Matsui’s paper is in the field of b-adic

numbers. The last paper by Ilwoo Cho covers the topic of p-adic numbers thanks to C*-algebras and

Banach*-probability spaces.

The rich panel of mathematical concepts involved in this Special Issue illustrates the continuous

interest of scholars in the relationship between numbers, their symmetries, and physics.

Michel Planat

Editor
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The Riemann Zeros as Spectrum and the
Riemann Hypothesis

Germán Sierra
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german.sierra@uam.es

Received: 31 December 2018; Accepted: 26 March 2019; Published: 4 April 2019

Abstract: We present a spectral realization of the Riemann zeros based on the propagation of a
massless Dirac fermion in a region of Rindler spacetime and under the action of delta function
potentials localized on the square free integers. The corresponding Hamiltonian admits a self-adjoint
extension that is tuned to the phase of the zeta function, on the critical line, in order to obtain the
Riemann zeros as bound states. The model suggests a proof of the Riemann hypothesis in the limit
where the potentials vanish. Finally, we propose an interferometer that may yield an experimental
observation of the Riemann zeros.

Keywords: zeta function; Pólya-Hilbert conjecture; Riemann interferometer

1. Introduction

One of the most promising approaches to prove the Riemann Hypothesis [1–7] is based on
the conjecture, due to Pólya and Hilbert, that the Riemann zeros are the eigenvalues of a quantum
mechanical Hamiltonian [8]. This bold idea is supported by several results and analogies involving
Number Theory, Random Matrix Theory and Quantum Chaos [9–17]. However, the construction of a
Hamiltonian whose spectrum contains the Riemann zeros, has eluded researchers for several decades.
In this paper we shall review the progress made along this direction starting from the famous xp model
proposed in 1999 by Berry, Keating and Connes [18–20] that inspired many works [21–45], some of
them will be discuss below. See [46] for a general review on physical approaches to the RH. Other
approaches to the RH and related material can be found in [47–63].

To relate xp with the Riemann zeros, Berry, Keating and Connes used two different regularizations.
The Berry and Keating regularization led to a discrete spectrum related to the smooth Riemann
zeros [18,19], while Connes’s regularization led to an absorption spectrum where the zeros are missing
spectral lines [20]. A physical realization of the Connes model was obtained in 2008 in terms of the
dynamics of an electron moving in two dimensions under the action of a uniform perpendicular
magnetic field and an electrostatic potential [29]. However this model has not been able to reproduce
the exact location of the Riemann zeros. On the other hand, the Berry–Keating xp model was revisited
in 2011 in terms of the classical Hamiltonians H = x(p + 1/p), and H = (x + 1/x)(p + 1/p) whose
quantizations contain the smooth approximation of the Riemann zeros [32,36]. Later on, these models
were generalized in terms of the family of Hamiltonians H = U(x)p + V(x)/p that were shown to
describe the dynamics of a massive particle in a relativistic spacetime whose metric can be constructed
using the functions U and V [35]. This result suggested a reformulation of H = U(x)p + V(x)/p in
terms of the massive Dirac equation in the aforementioned spacetimes [38]. Using this reformulation,
the Hamiltonian H = x(p + 1/p) was shown to be equivalent to the massive Dirac equation in Rindler
spacetime that is the natural arena to study accelerated observers and the Unruh effect [42]. This result
provides an appealing spacetime interpretation of the xp model and in particular of the smooth
Riemann zeros.

Symmetry 2019, 11, 494; doi:10.3390/sym11040494 www.mdpi.com/journal/symmetry1
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To obtain the exact zeros, one must make further modifications of the Dirac model. First,
the fermion must become massless. This change is suggested by a field theory interpretation of the
Pólya’s ξ function and its comparison with the Riemann’s ξ function. On the other hand, inspired by the
Berry’s conjecture on the relation between prime numbers and periodic orbits [12,14] we incorporated
the prime numbers into the Dirac action by means of Dirac delta functions [42]. These delta functions
represent moving mirrors that reflect or transmit massless fermions. The spectrum of the complete
model can be analyzed using transfer matrix techniques that can be solved exactly in the limit where the
reflection amplitudes of the mirrors go to zero that is when the mirrors become transparent. In this limit
we find that the zeros on the critical line are eigenvalues of the Hamiltonian by choosing appropriately
the parameter that characterizes the self-adjoint extension of the Hamiltonian. One obtains in this
manner a spectral realization of the Riemann zeros that differs from the Pólya and Hilbert conjecture
in the sense that one needs to fine tune a parameter to see each individual zero. In our approach we
are not able to find a single Hamiltonian encompassing all the zeros at once. Finally, we propose
an experimental realization of the Riemann zeros using an interferometer consisting of an array of
semitransparent mirrors, or beam splitters, placed at positions related to the logarithms of the square
free integers.

The paper is organized in a historical and pedagogical way presenting at the end of each section a
summary of achievements ( ), shortcomings/obstacles (�) and questions/suggestions (?).

2. The Semiclassical XP Berry, Keating and Connes Model

In this section, we review the main results concerning the classical and semiclassical xp
model [18–20]. A classical trajectory of the Hamiltonian H = xp, with energy E, is given by

x(t) = x0 et, p(t) = p0 e−t, E = x0 p0 , (1)

that traces the parabola E = xp in phase space plotted in Figure 1. E has the dimension of an action,
so one should multiply xp by a frequency to get an energy, but for the time being we keep the notation
H = xp. Under a time reversal transformation, x → x, p → −p one finds xp → −xp, so that this
symmetry is broken. This is why reversing the time variable t in (1) does not yield a trajectory
generated by xp. As t → ∞, the trajectory becomes unbounded that is |x| → ∞, so one expects the
semiclassical and quantum spectrum of the xp model to form a continuum. To get a discrete spectrum
Berry and Keating introduced the constraints |x| ≥ �x and |p| ≥ �p, so that the particle starts at t = 0 at
(x, p) = (�x, E/�x) and ends at (x, p) = (E/�p, �p) after a time lapse T = log(E/�x�p) (we assume for
simplicity that x, p > 0). The trajectories are now bounded, but not periodic. A semiclassical estimate
of the number of energy levels, nBK(E), between 0 and E > 0 is given by the formula

nBK(E) =
ABK

2πh̄
=

E
2πh̄

(
log

E
�x�p

− 1
)
+

7
8

, (2)

where ABK is the phase space area below the parabola E = xp and the lines x = �x and p = �p,
measured in units of the Planck’s constant 2πh̄ (see Figure 1). The term 7/8 arises from the Maslow
phase [18]. In the course of the paper, we shall encounter this equation several times with the constant
term depending on the particular model.

2
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Figure 1. (Left): The region in shadow describes the allowed phase space with area ABK bounded by
the classical trajectory (1) with E > 0 and the constraints x ≥ �x, p ≥ �p. (Right): Same as before with
the constraints 0 < x, p < Λ.

Berry and Keating compared this result with the average number of Riemann zeros,
whose imaginary part is less than t with t � 1,

〈n(t)〉 � t
2π

(
log

t
2π
− 1
)
+

7
8
+ O(1/t) , (3)

finding an agreement with the identifications

t =
E
h̄

, �x �p = 2πh̄. (4)

Thus, the semiclassical energies E, expressed in units of h̄, are identified with the Riemann zeros,
while �x�p is identified with the Planck’s constant. This result is remarkable given the simplicity of the
assumptions. However, one must observe that the derivation of Equation (2) is heuristic, so one goal is
to find a consistent quantum version of it.

Connes proposed another regularization of the xp model based on the restrictions |x| ≤ Λ and
|p| ≤ Λ, where Λ is a common cutoff, which is taken to infinity at the end of the calculation [20].
The semiclassical number of states is computed as before yielding (see Figure 1, we set h̄ = 1)

nC(E) =
AC

2π
=

E
2π

log
Λ2

2π
− E

2π

(
log

E
2π
− 1
)

. (5)

The first term on the RHS of this formula diverges in the limit Λ → ∞, which corresponds to a
continuum of states. The second term is minus the average number of Riemann zeros, which according
to Connes, become missing spectral lines in the continuum [17,20]. This is called the absorption spectral
interpretation of the Riemann zeros, as opposed to the standard emission spectral interpretation where
the zeros form a discrete spectrum. Connes, relates the minus sign in Equation (5) to a minus sign
discrepancy between the fluctuation term of the number of zeros and the associated formula in the
theory of Quantum Chaos. We shall show below that the negative term in Equation (5) must be seen as
a finite size correction of discrete energy levels and not as an indication of missing spectral lines.

Let us give for completeness the formula for the exact number of zeros up to t [2,3]

nR(t) = 〈n(t)〉+ nfl(t), (6)

〈n(t)〉 =
θ(t)
π

+ 1, nfl(t) =
1
π

Im log ζ

(
1
2
+ it
)

,

3
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where 〈n(t)〉 is the Riemann–von Mangoldt formula that gives the average behavior in terms of the
function θ(t)

θ(t) = Im log Γ
(

1
4
+

it
2

)
− t

2
log π

t→∞−→ t
2

log
t

2π
− t

2
− π

8
+ O(1/t) , (7)

that can also be written as

e2iθ(t) = π−it
Γ
(

1
4 + it

2

)
Γ
(

1
4 − it

2

) . (8)

θ(t) is the phase of the Riemann zeta function on the critical line, that can be expressed as

ζ

(
1
2
+ it
)
= e−iθ(t) Z(t), (9)

where Z(t) is the Riemann-Siegel zeta function, or Hardy function, that on the critical line satisfies

Z(t) = Z(−t) = Z∗(t), t ∈ R . (10)

Summary:

The semiclassical spectrum of the xp Hamiltonian reproduces the average Riemann zeros.
� There are two schemes leading to opposite physical realizations: emission vs absorption.
? Quantum version of the semiclassical xp models.

3. The Quantum XP Model

To quantize the xp Hamiltonian, Berry and Keating used the normal ordered operator [18]

Ĥ =
1
2
(x p̂ + p̂ x) = −ih̄

(
x

d
dx

+
1
2

)
, x ∈ R, (11)

where x belongs to the real line and p̂ = −ih̄d/dx is the momentum operator. We shall show below
that despite of being a natural quantization of the classical xp Hamiltonian, it does not reproduce the
semiclassical spectrum obtained in the previous section. It is, however, of great interest to study it in
detail since it is the basis of the rest of the work.

It is convenient to restrict x to the positive half-line, then (11) is equivalent to the expression

Ĥ =
√

x p̂
√

x, x ≥ 0 . (12)

Ĥ is an essentially self-adjoint operator acting on the Hilbert space L2(0, ∞) of square integrable
functions in the half-line R+ = (0, ∞) [23,24,30]. The eigenfunctions, with eigenvalue E, are given by

ψE(x) =
1√
2πh̄

x−
1
2+

iE
h̄ , x > 0, E ∈ R , (13)

and the spectrum is the real line R. The normalization of (13) is given by the Dirac’s delta function

〈ψE|ψE′ 〉 =
∫ ∞

0
dx ψ∗E(x)ψE′(x) = δ(E− E′). (14)

The eigenfunctions (13) form an orthonormal basis of L2(0, ∞), that is related to the Mellin
transform in the same manner that the eigenfunctions of the momentum operator p̂, on the real line,
are related to the Fourier transform [24]. If one takes x in the whole real line, then the spectrum of the
Hamiltonian (11) is doubly degenerate. This degeneracy can be understood from the invariance of xp

4
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under the parity transformation x → −x, p → −p, which allows one to split the eigenfunctions with
energy E into even and odd sectors

ψ
(e)
E (x) =

1√
2πh̄

|x|− 1
2+

iE
h̄ , ψ

(o)
E (x) =

sign x√
2πh̄

|x|− 1
2+

iE
h̄ , x ∈ R, E ∈ R. (15)

Berry and Keating computed the Fourier transform of the even wave function ψ
(e)
E (x) [18]

ψ̂
(e)
E (p) =

1√
2πh̄

∫ ∞

−∞
dx ψ

(e)
E (x) e−ipx/h̄ (16)

=
1√
2πh̄

|p|− 1
2− iE

h̄ (2h̄)iE/h̄
Γ
(

1
4 + iE

2h̄

)
Γ
(

1
4 − iE

2h̄

) ,

which means that the position and momentum eigenfunctions are each other’s time reversed, giving a
physical interpretation of the phase θ(t), see Equation (8). Choosing odd eigenfunctions leads to
an equation similar to Equation (16) in terms of the gamma functions Γ( 3

4 ± iE
2 ) that appear in the

functional relation of the odd Dirichlet L-functions. Equation (16) is a consequence of the exchange
x ↔ p symmetry of the xp Hamiltonian, which is an important ingredient of the xp model.

Comments:

• Removing Connes’s cutoff, i.e., Λ → ∞, gives the quantum Hamiltonians (11) or (12),
whose spectrum is a continuum. This shows that the negative term in Equation (5) does not
correspond to missing spectral lines. In the next section we give a physical interpretation of this
term in another context.

• xp is invariant under the scale transformation (dilations) x → Kx, p → K−1 p, with K > 0.
An example of this transformation is the classical trajectory (1), whose infinitesimal generator
is xp. Under dilations, �x → K�x, �p → K−1�p, so, the condition �x�p = 2πh̄ is preserved.
Berry and Keating suggested to use integer dilations K = n, corresponding to evolution times
log n, to write [18]

ψE(x)→
∞

∑
n=1

ψE(nx) =
1√
2πh̄

x−
1
2+

iE
h̄

∞

∑
n=1

1

n
1
2− iE

h̄
=

1√
2πh̄

x−
1
2+

iE
h̄ ζ(1/2− iE/h̄) . (17)

If there exists a physical reason for this quantity to vanish one would obtain the Riemann zeros En.
Equation (17) could be interpreted as the breaking of the continuous scale invariance to discrete
scale invariance.

Summary:

� The normal order quantization of xp does not exhibit any trace of the Riemann zeros.
The phase of the zeta function appears in the Fourier transform of the xp eigenfunctions.

4. The Landau Model and XP

Let us consider a charged particle moving in a plane under the action of a perpendicular magnetic
field and an electrostatic potential V(x, y) ∝ xy [29]. The Langrangian describing the dynamics is
given, in the Landau gauge, by

L =
μ

2
(ẋ2 + ẏ2)− eB

c
ẏx− eλxy , (18)

5
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where μ is the mass, e the electric charge, B the magnetic field, c the speed of light and λ a coupling
constant that parameterizes the electrostatic potential. There are two normal modes with real, ωc,
and imaginary, ωh, angular frequencies, describing a cyclotronic and a hyperbolic motion respectively.
In the limit where ωc >> |ωh|, only the Lowest Landau Level (LLL) is relevant and the effective
Lagrangian becomes

Leff = pẋ− |ωh|xp, p =
h̄y
�2 , � =

(
h̄c
eB

)1/2
, (19)

where � is the magnetic length, which is proportional to the radius of the cyclotronic orbits in the LLL.
The coordinates x and y, which commute in the 2D model, after the projection to the LLL, become
canonical conjugate variables, and the effective Hamiltonian is proportional to the xp Hamiltonian
with the proportionality constant given by the angular frequency |ωh| (this is the missing frequency
factor mentioned in Section 2). The quantum Hamiltonian associated with the Lagrangian (18) is

Ĥ =
1

2μ

[
p̂x +

(
p̂y +

h̄
�2 x
)2
]
+ eλxy , (20)

where p̂x = −ih̄∂x and p̂y = −ih̄∂y. After a unitary transformation (20) becomes the sum of two
commuting Hamiltonians corresponding to the cyclotronic and hyperbolic motions alluded to above

H = Hc + Hh, (21)

Hc =
ωc

2
( p̂2 + q2), Hh =

|ωh|
2

(P̂Q + QP̂).

In the limit ωc � |ωh| one has

ωc �
eB
μc

, |ωh| ∼
λc
B

. (22)

The unitary transformation that brings Equation (20) into Equation (21) corresponds to the classical
canonical transformation

q = x + py, p = px, Q = −py, P = y + px . (23)

When ωc � |ωh|, the low energy states of H are the product of the lowest eigenstate of Hc,
namely ψ = e−q2/2�2

, times the eigenstates of Hh that can be chosen as even or odd under the parity
transformation Q → −Q

Φ+
E (Q) =

1

|Q| 1
2−iE

, Φ−E (Q) =
sign(Q)

|Q| 1
2−iE

. (24)

The corresponding wave functions are given by (we choose |ωh| = 1)

ψ±E (x, y) = C
∫

dQ e−iQy/�2
e−(x−Q)2/2�2

Φ±E (Q) , (25)

where C is a normalization constant, which yields

ψ+
E (x, y) = C+

E e−
x2

2�2 M
(

1
4
+

iE
2

,
1
2

,
(x− iy)2

2�2

)
, (26)

ψ−E (x, y) = C−E (x− iy)e−
x2

2�2 M
(

3
4
+

iE
2

,
3
2

,
(x− iy)2

2�2

)
,

6
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where M(a, b, z) is a confluent hypergeometric function [64]. Figure 2 shows that the maximum of
the absolute value of ψ+

E is attained on the classical trajectory E = xy (in units of h̄ = � = 1). This 2D
representation of the classical trajectories is possible because in the LLL x and y become canonical
conjugate variables and consequently the 2D plane coincides with the phase space (x, p).

To count the number of states with an energy below E one places the particle into a box:
|x| < L, |y| < L and impose the boundary conditions

ψ+
E (x, L) = eixL/�2

ψ+
E (L, x) , (27)

which identifies the outgoing particle at x = L with the incoming particle at y = L up to a phase.
The asymptotic behavior L � � of (26) is

ψ+
E (L, x) � e−ixL/�2−x2/2�2 Γ

(
1
2

)
Γ
(

1
4 + iE

2

) ( L2

2�2

)− 1
4+

iE
2

, (28)

ψ+
E (x, L) � e−x2/2�2 Γ

(
1
2

)
Γ
(

1
4 − iE

2

) ( L2

2�2

)− 1
4− iE

2

,

that plugged into the BC (27) yields

Γ
(

1
4 + iE

2

)
Γ
(

1
4 − iE

2

) ( L2

2�2

)−iE

= 1 , (29)

or using Equation (8)

e2iθ(E)
(

L2

2π�2

)−iE

= 1 . (30)

Hence the number of states n(E) with energy less that E is given by

n(E) � E
2π

log
(

L2

2π�2

)
+ 1− 〈n(E)〉 , (31)

whose asymptotic behavior coincides with Connes’s Formula (5) for a cutoff Λ = L/�. In fact, the term
〈n(E)〉 is the exact Riemann–von Mangoldt Formula (6).

�

�

� �

�

�

Figure 2. Plot of |ψ+
E (x, y)| for E = 10 in the region −10 < x, y < 10. Left: 3D representation,

Right: density plot.

7
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Summary:

The Landau model with a xy potential provides a physical realization of Connes’s xp model.
The finite size effects in the spectrum are given by the Riemann–von Mangoldt formula.

� There are no missing spectral lines in the physical realizations of xp à la Connes.

5. The XP Model Revisited

An intuitive argument of why the quantum Hamiltonian (xp̂ + p̂x)/2 has a continuum spectrum
is that the classical trajectories of xp are unbounded. Therefore, to have a discrete spectrum one should
modify xp to bound the trajectories. This is achieved by the classical Hamiltonian [32]

HI = x

(
p +

�2
p

p

)
, x ≥ �x. (32)

For |p| >> �p, a classical trajectory with energy E satisfies E � xp, but for |p| ∼ �p, the coordinate
|x| slows down, reaches a maximum and goes back to the value �x, where it bounces off starting again
at high momentum. In this manner one gets a periodic orbit (see Figure 3)

�� � � �� � �

Figure 3. Classical trajectories of the Hamiltonians (32) (left) and (35) (right) in phase space with
E > 0. The dashed lines denote the hyperbola E = xp. (�x, �p) is a fixed-point solution of the classical
equations generated by (32) and (35).

x(t) =
�x

|p0|
e2t
√
(p2

0 + �2
p)e−2t − �2

p, 0 ≤ t ≤ TE ,

p(t) = ±
√
(p2

0 + �2
p)e−2t − �2

p , (33)

where TE is the period given by (we take E > 0)

TE = cosh−1 E
2�x�p

→ log
E

�x�p
(E � �x�p) . (34)

The asymptotic value of TE is the time lapse it takes a particle to go from x = �x to x = E/�p in
the xp model.

The exchange symmetry x ↔ p of xp is broken by the Hamiltonian (32). To restore it, Berry and
Keating proposed the x− p symmetric Hamiltonian [36]

HII =

(
x +

�2
x

x

)(
p +

�2
p

p

)
, x ≥ 0. (35)

8
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Here the classical trajectories turn clockwise around the point (�x, �p), and for x � �x and p � �p,
approach the parabola E = xp (see Figure 3). The semiclassical analysis of (32) and (35) reproduce the
asymptotic behavior of Equation (2) to leading orders E log E and E, but differ in the remaining terms.

The two models discussed above have the general form

H = U(x)p + �2
p

V(x)
p

, x ∈ D, (36)

where U(x) and V(x) are positive functions defined in an interval D of the real line. HI corresponds
to U(x) = V(x) = x, D = (�x, ∞), and HII corresponds to U(x) = V(x) = x + �2

x/x, D = (0, ∞).
The classical Hamiltonian (36) can be quantized in terms of the operator

Ĥ =
√

U p̂
√

U + �2
p
√

V p̂−1
√

V, (37)

where p̂−1 is pseudo-differential operator(
p̂−1ψ

)
(x) = − i

h̄

∫ ∞

x
dy ψ(y), (38)

which satisfies that p̂ p̂−1 = p̂−1 p̂ = 1 acting on functions which vanish sufficiently fast in the limit
x → ∞. The action of Ĥ is

(Ĥψ)(x) = −ih̄
√

U(x)
d

dx

{√
U(x)ψ(x))

}
−

i�2
p

h̄

∫ ∞

x
dy
√

V(x)V(y)ψ(y). (39)

The normal order prescription that leads from (36) to (39) will be derived in Section 7 in the case
where U(x) = V(x) = x, but holds in general [38]. We want the Hamiltonian (37) to be self-adjoint,
that is [65,66]

〈ψ1|Ĥ|ψ2〉 = 〈Ĥψ1|ψ2〉 . (40)

When the interval is D = (�x, ∞), Equation (40) holds for wave functions that vanishes sufficiently
fast at infinity and satisfy the non-local boundary condition

h̄ eiϑ
√

U(�x)ψ(�x) = �p

∫ ∞

�x
dx
√

V(x)ψ(x), (41)

where ϑ ∈ [0, 2π) parameterizes the self-adjoint extensions of Ĥ. The quantum Hamiltonian associated
with (32) is

ĤI =
√

x p̂
√

x + �2
p
√

x p̂−1√x, x ≥ �x , (42)

and its eigenfunctions are proportional to (see Figure 4)

�Ψ �

Figure 4. Absolute values of the wave function ψE(x), given in Equation (43) (continuous line), and
x−

1
2 (dashed line).

9



Symmetry 2019, 11, 494

ψE(x) = x
iE
2h̄ K 1

2− iE
2h̄

(
�px
h̄

)
∝

⎧⎨⎩ x−
1
2+

iE
h̄ x � E

2�p
,

x−
1
2+

iE
2h̄ e−�px/h̄ x � E

2�p
,

(43)

where Kν(z) is the modified K-Bessel function [64]. For small values of x, the wave functions (43)
behave as those of the xp Hamiltonian, given in Equation (13), while for large values of x they decay
exponentially giving a normalizable state. The boundary condition (41) reads in this case

h̄ eiϑ
√
�x ψ(�x) = �p

∫ ∞

�x
dx
√

x ψ(x), (44)

and substituting (43) yields the equation for the eigenenergies En,

eiϑK 1
2− iE

2h̄

(
�x�p

h̄

)
− K 1

2+
iE
2h̄

(
�x�p

h̄

)
= 0. (45)

For ϑ = 0 or π, the eigenenergies form time reversed pairs {En,−En}, and for ϑ = 0, there is a
zero-energy state E = 0. Considering that the Riemann zeros form pairs sn = 1/2± itn, with tn real
under the RH, and that s = 1/2 is not a zero of ζ(s), we are led to the choice ϑ = π. On the other hand,
using the asymptotic behavior

Ka+ it
2
(z) −→

√
π

t

(
t
z

)a
e−πt/4 e

iπ
2 (a− 1

2 )

(
t

ze

)it/2
, a > 0, t � 1, (46)

one derives in the limit |E| � h̄,

K 1
2+

iE
2h̄

(
�x�p

h̄

)
+ K 1

2− iE
2h̄

(
�x�p

h̄

)
= 0 −→ cos

(
E
2h̄

log
E

�x�pe

)
= 0 , (47)

hence the number of eigenenergies in the interval (0, E) is given asymptotically by

n(E) � E
2πh̄

(
log

E
�x�p

− 1
)
− 1

2
+ O(E−1). (48)

This equation agrees with the leading terms of the semiclassical spectrum (2) and the average
Riemann zeros (3) under the identifications (4). Concerning the classical Hamiltonian (35), Berry and
Keating obtained, by a semiclassical analysis, the asymptotic behavior of the counting function n(E)

n(t) � t
2π

(
log

t
2π
− 1
)
− 8π

t
log

t
2π

+ . . . , t � 1, (49)

where t = E/h̄ and �x�p = 2πh̄. Again, the first two leading terms agree with Riemann’s Formula (3),
while the next leading corrections are different from (48). In both cases, the constant 7/8 in Riemann’s
Formula (3) is missing.

Summary:

The Berry–Keating xp model can be implemented quantum mechanically.
� The classical xp Hamiltonian must be modified with ad-hoc terms to have
bounded trajectories.
� In the quantum theory the latter terms become non-local operators.
� The modified xp quantum Hamiltonian related to the average Riemann zeros is not unique.
� There is no trace of the exact Riemann zeros in the spectrum of the modified xp models.

10
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6. The Spacetime Geometry of the Modified XP Models

In this section, we show that the modified xp Hamiltonian (36) is a disguised general theory of
relativity [35]. Let us first consider the Langrangian of the xp model,

L = pẋ− H = pẋ− xp . (50)

In classical mechanics, where H = p2/2m + V(x), the Lagrangian can be expressed solely in
terms of the position x and velocity ẋ = dx/dt. This is achieved by writing the momentum in
terms of the velocity by means of the Hamilton equation ẋ = ∂H/∂p = p/m. However, in the
xp model the momentum p is not a function of the velocity because ẋ = ∂H/∂p = x. Hence the
Lagrangian (50) cannot be expressed uniquely in terms of x and ẋ. The situation changes radically for
the Hamiltonian (36) whose Lagrangian is given by

L = p ẋ− H = p ẋ−U(x)p− �2
p

V(x)
p

. (51)

Here the equation of motion

ẋ =
∂H
∂p

= U(x)− �2
p

V(x)
p2 , (52)

allows one to write p in terms of x and ẋ,

p = η�p

√
V(x)

U(x)− ẋ
, η = sign p , (53)

where η = ±1 is the sign of the momentum that is a conserved quantity. The positivity of U(x) and
V(x), imply that the velocity ẋ must never exceed the value of U(x). Substituting (53) back into (51),
yields the action

Sη = −�pη
∫ √

−ds2 , (54)

which, for either sign of η, is the action of a relativistic particle moving in a 1+1 dimensional
spacetime metric

ds2 = 4V(x)(−U(x)dt2 + dtdx) . (55)

The parameter �p plays the role of mc where m is the mass of the particle and c is the speed of
light. This result implies that the classical trajectories of the Hamiltonian (36) are the geodesics of the
metric (55). The unfamiliar form of (36) is due to a special choice of spacetime coordinates where the
component gxx of the metric vanishes. A diffeomorphism of x permits to set V(x) = U(x). The scalar
curvature of the metric (55), in this gauge, is

R(x) = −2
∂2

xV(x)
V(x)

, (56)

and vanishes for the models V(x) = x and V(x) = constant. For the Hamiltonian (35) one obtains
R(x) = −4�2

x/(x(x2 + �2
x)) which vanishes asymptotically.

The flatness of the metric associated with the Hamiltonian (32) implies the existence of coordinates
x0, x1 where (55) takes the Minkowski form

ds2 = ημνdxμdxν, diag ημν = (−1, 1) . (57)

11
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The change of variables is given by

t =
1
2

log(x0 + x1), x =
√
−(x0)2 + (x1)2 . (58)

Let U denote the spacetime domain of the model. In both coordinates it reads

U = {(t, x) | t ∈ (−∞, ∞), x ≥ �x} =
{
(x0, x1) | x0 ∈ (−∞, ∞), x1 ≥

√
(x0)2 + �2

x

}
. (59)

The boundary of U , denoted by ∂U , is the hyperbola x1 =
√
(x0)2 + �2

x, that passes through the
point (x0, x1) = (0, �x), (see Figure 5).

�

�

Figure 5. (Left): Domain U of Minkowski spacetime given in Equation (59). (Right): The classical
trajectory given in Equation (33), and plotted in Figure 3-left, becomes a straight line that bounces off
regularly at the boundary (dotted line).

A convenient parametrization of the coordinates xμ is given by the Rindler variables ρ and φ [67]

x0 = ρ sinh φ, x1 = ρ cosh φ, (60)

or in light-cone coordinates
x± = x0 ± x1 = ±ρe±φ, (61)

where the Minkowski metric becomes

ds2 = −dx+ dx− = dρ2 − ρ2dφ2 . (62)

These coordinates describe the right wedge of Rindler spacetime in 1+1 dimensions

R+ =
{
(x0, x1) | x0 ∈ (−∞, ∞), x1 ≥ |x0|

}
= {(ρ, φ) | φ ∈ (−∞, ∞), ρ > 0} . (63)

Notice that U ⊂ R+. The boundary ∂U corresponds to the hyperbola ρ = �x that is the worldline
of a particle moving with uniform acceleration equal to 1/�x (in units c = 1). The Rindler variables are
the ones used to study the Unruh effect [68].

Let us now consider the classical Hamiltonian (35). The underlying metric is given by Equation (55)
with U(x) = V(x) = x + �2

x/x. The change of variables

t =
1
2

log(x0 + x1), x =
√
−(x0)2 + (x1)2 − �2

x , (64)

12



Symmetry 2019, 11, 494

brings the metric to the form

ds2 =
−(x0)2 + (x1)2

−(x0)2 + (x1)2 − �2
x

ημνdxμdxν =
ρ2

ρ2 − �2
x
(dρ2 − ρ2dφ2), ρ ≥ �x , (65)

which in the limit ρ → ∞ converges to the flat metric (62).

Summary:

The classical modified xp models are general relativistic theories in 1+1 dimensions.
H = x(p + �2

p/p) is related to a domain U of Rindler spacetime.
lp is the mass of the particle.
1/�x is the acceleration of a particle whose worldline is the boundary of U .

? Relativistic quantum field theory of the modified xp models.

7. Diracization of H = X(P + �2
p/P)

In this section, we show that the Dirac theory provides the relativistic quantum version of the
modified xp models [42]. We shall focus on the classical Hamiltonian H = x(p + �2

p/p) because
the flatness of the associated spacetime makes the computations easier, but the result is general:
the quantum Hamiltonian (39) can be derived from the Dirac equation in a curved spacetime with
metric (55) [38].

The Dirac action of a fermion with mass m in the spacetime domain (59) is given by (in units
h̄ = c = 1)

S =
i
2

∫
U

dx0dx1 ψ̄(/∂ + im)ψ , (66)

where ψ is a two-component spinor, ψ̄ = ψ†γ0, /∂ = γμ∂μ (∂μ = ∂/∂xμ), and γμ are the 2d Dirac
matrices written in terms of the Pauli matrices σx,y as

γ0 = σx, γ1 = −iσy, ψ =

(
ψ−
ψ+

)
. (67)

The variational principle applied to (66) provides the Dirac equation

(/∂ + im)ψ = 0 , (68)

and the boundary condition

ẋ−ψ†
−δψ− − ẋ+ψ†

+δψ+ = 0, (69)

where ẋ± = dx±/dφ = �xe±φ is the vector tangent to the boundary ∂U in the light-cone coordinates
x± = x0 ± x1. The Dirac equation reads in components

(∂0 − ∂1)ψ+ + imψ− = 0, (∂0 + ∂1)ψ− + imψ+ = 0 . (70)

If m = 0 then ψ± depends only x±, and so the fields propagate to the left, ψ+(x+), or to the right,
ψ−(x−), at the speed of light. The derivatives in Equation (70) can be written in terms the variables t
and x using Equation (58),

∂0 − ∂1 = −2e2t

x
∂x, ∂0 + ∂1 = e−2t(∂t + x∂x) . (71)
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Let us denote by ψ̃∓(t, x) the fermion fields in the coordinates t, x and by ψ∓(x0, x1) the fields in
the coordinates x0, x1. The relation between these fields is given by the transformation law

ψ− =

(
∂x

∂x−

) 1
2

ψ̃− = (2x)−
1
2 etψ̃−, ψ+ =

(
∂x

∂x+

) 1
2

ψ̃− = (x/2)
1
2 e−tψ̃+ . (72)

Plugging Equations (71) and (72) into (70) gives

i∂t ψ̃− = −i
√

x∂x
(√

xψ̃−
)
+ mxψ̃+, ∂x(

√
xψ̃+) = im

√
xψ̃− . (73)

The second equation is readily integrated

ψ̃+(x, t) = − im√
x

∫ ∞

x
dy
√

yψ̃−(y, t) , (74)

and replacing it into the first equation in (73) gives

i∂t ψ̃−(x, t) = −i
√

x∂x
(√

xψ̃−
)
− im2√x

∫ ∞

x
dy
√

y ψ̃−(y, t) . (75)

This is the Schrödinger equation with Hamiltonian (42) and the relation m = �p found in the
previous section. The non-locality of the Hamiltonian (42) is a consequence of the special coordinates
t, x where the component ψ̃+ becomes non-dynamical and depends non-locally on the component
ψ̃− that is identified with the wave function of the modified xp model. Similarly, the boundary
condition (44) can be derived from Equation (69) as follows. In Rindler coordinates the latter
equation reads

e−φψ†
−(�x, φ) δψ−(�x, φ) = eφψ†

+(�x, φ) δψ+(�x, φ), ∀φ , (76)

that is solved by

−ieiϑ e−φ/2 ψ−(�x, φ) = eφ/2 ψ+(�x, φ), ∀φ , (77)

where ϑ ∈ [0, 2π). Using Equation (72) this equation becomes

−ieiϑ ψ̃−(�x, t) = ψ̃+(�x, t), ∀t, (78)

that together with Equation (74) yields Equation (44). This completes the derivation of the quantum
Hamiltonian and boundary condition associated to H = x(p + �2

p/p). The eigenfunctions and
eigenvalue equation of this model were found in Section 5. However, we shall rederive them in
alternative way that will provide new insights in the next section.

Let us start by constructing the plane wave solutions of the Dirac Equation (70),(
ψ−
ψ+

)
∝

(
eiπ/4eβ/2

e−iπ/4e−β/2

)
ei(−p0x0+p1x1) , (79)

where (p0, p1) is the energy-momentum vector parameterized in terms of the rapidity variable β

(p0)2 − (p1)2 = m2, (80)

p0 = im sinh β, p1 = im cosh β, β ∈ (−∞, ∞).
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In Rindler coordinates these plane wave solutions decay exponentially with the distance as
corresponds to a localized wave function

ei(−p0x0+p1x1) = e−mρ cosh(β−φ) → 0, as ρ → ∞ . (81)

The general solution of the Dirac equation is given by the linear superposition of plane waves (79).
The superposition that reproduces the eigenfunctions of the modified xp model is

ψ∓(ρ, φ) = e±iπ/4
∫ ∞

−∞
dβ e−iEβ/2 e±β/2 e−mρ cosh(β−φ) (82)

= 2e±iπ/4e(±
1
2− iE

2 )φ K 1
2∓ iE

2
(mρ) ,

that replaced in Equation (77) gives

eiϑ K 1
2− iE

2
(m�x)− K 1

2+
iE
2
(m�x) = 0 , (83)

which coincides with the eigenvalue Equation (45) with m = �p. Setting m�x = 2π and ϑ = π,
brings Equation (83) to the form

ξH(t) ≡ K 1
2+

it
2
(2π) + K 1

2− it
2
(2π) = 0. (84)

Summary:

The spectrum of a relativistic massive fermion in the domain U agrees with the average
Riemann zeros.
? Does this result provide a hint on a physical realization of the Riemann zeros.

8. ξ-Functions: Pólya’s Is Massive and Riemann’s Is Massless

The function ξH(t) appearing in Equation (84) reminds the fake ξ function defined by Pólya in
1926 [69,70]

ξ∗(t) = 4π2
(

K 9
4+

it
2
(2π) + K 9

4− it
2
(2π)

)
. (85)

This function shares several properties with the Riemann ξ function

ξ(t) =
1
4

s(s− 1)Γ
( s

2

)
π−s/2ζ(s), s =

1
2
+ it , (86)

namely, ξ∗(t) is an entire and even function of t, its zeros lie on the real axis and behave asymptotically
like the average Riemann zeros, as shown by the expansion obtained using Equation (46)

ξ∗(t) t→∞−→ 23/4π−7/4t7/4e−πt/4 cos
(

t
2

log
(

t
2πe

)
+

7π

8

)
. (87)

The zeros of ξ(t), ξH(t) and ξ∗(t) are plotted in Figure 6. The slight displacement between the two
top curves is due to the constant 7π/8 appearing in the argument of the cosine function in Equation (87)
as compared to that in Equation (47).
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Figure 6. From bottom to top: plot of − log |ξ(t)| (Riemann zeros), − log |ξH(t)| (eigenvalues of the
Hamiltonian (42) with �x�p = 2π) and − log |ξ∗(t)| (Pólya zeros). The cusp represents the zeros of the
corresponding functions.

The similarity between ξH(t) and ξ∗(t), and the relation between ξ∗(t) and ξ(t) provides a hint
on the field theory underlying the Riemann zeros. To show this, we shall review how Pólya arrived at
ξ∗(t). The starting point is the expression of ξ(t) as a Fourier transform [3]

ξ(t) = 4
∫ ∞

1
dx

d[x
3
2 ψ′(x)]
dx

x−
1
4 cos

(
t log x

2

)
, (88)

ψ(x) =
∞

∑
n=1

e−n2πx, ψ′(x) =
dψ(x)

dx
.

In the variable x = eβ these equations become,

ξ(t) =
∫ ∞

0
dβ Φ(β) cos

tβ

2
, (89)

Φ(β) = 2πe5β/4
∞

∑
n=1

(
2πeβn2 − 3

)
n2e−πn2eβ

.

The function Φ(β) behaves asymptotically as

Φ(β)→ 4π2e9β/4e−πeβ
, β → ∞, (90)

which Pólya replaced by the following expression (see Figure 7).

Φ∗(β) = 4π2
(

e9β/4 + e−9β/4
)

e−π(eβ+e−β). (91)

� � � Β

� ��

Figure 7. Plot of Φ(β) (red on line), and Φ∗(β) (blue on line). Outside the region |β| < 1 the difference
is very small.

16



Symmetry 2019, 11, 494

The function ξ∗(t) is defined as the Fourier transform of Φ∗(β),

ξ∗(t) =
∫ ∞

0
dβ Φ∗(β) cos

tβ

2
, (92)

which finally gives Equation (85). The function (84) can also be written as the Fourier transform

ξH(t) =
∫ ∞

0
dβ ΦH(β) cos

tβ

2
, (93)

with
ΦH(β) = (eβ/2 + e−β/2)e−2π cosh β (94)

Observe that the term e−2π cosh β appears in ΦH(β) and Φ∗(β). The origin of this term in the Dirac
theory is the plane wave factor (81) of a fermion with mass m located at the boundary ρ = �x with
m�x = 2π. This observation suggests that the Pólya ξ∗ function arises in the relativistic theory of a
massive particle with scaling dimension 9/4, rather than 1/2, that corresponds to a fermion (this would
explain the different order of the corresponding Bessel functions). The approximation Φ(β) � Φ∗(β),
that is e−πeβ � e−2π cosh β, can then be understood as the replacement of a massless particle by a massive
one. Indeed, the energy-momentum of a massless right moving particle is given by p0 = p1 = Λeβ,
where Λ is an energy scale. The corresponding plane wave factor is e−πeβ

, with Λ = π. For large
rapidities, β � 1, a massive particle behaves as a massless one, i.e., e−2π cosh β � e−πeβ

. However,
for small rapidities this is not the case. These arguments suggest that the field theory underlying the
Riemann ξ function, if it exists, must associated with a massless particle.

Summary:

The zeros of the Polya ξ∗ function behave as the spectrum of a relativistic massive particle
in the domain U .
? Polya’s construction of ξ∗ suggests that the Riemann’s ξ function is related to a massless
particle.

9. The Massive Dirac Model in Rindler Coordinates

Let us formulate the Dirac theory in Rindler coordinates. Under a Lorentz transformation with
boost parameter λ, the light-cone coordinates x± and the Dirac spinors ψ± transform as

x± → e∓λ x±, ψ± → e±λ/2 ψ±, (95)

and the Rindler coordinates (60) as

φ → φ− λ, ρ → ρ. (96)

Hence the new spinor fields χ± defined as

χ± = e±φ/2 ψ±, (97)

remain invariant under (96). The Rindler wedge R+, and its domain U , are also invariant under
Lorentz transformations. The Dirac action (66) written in terms of the spinors χ± reads

S = i
2

∫ ∞
−∞ dφ

∫ ∞
�x

d ρ
[
χ†
−(∂φ + ρ∂ρ +

1
2 )χ− + χ†

+(∂φ − ρ∂ρ − 1
2 )χ+ + imρ

(
χ†
−χ+ + χ†

+χ−
)]

, (98)

while the Dirac Equation (68) and the boundary condition (77) become

(∂φ ± ρ∂ρ ±
1
2
)χ∓ + imρχ± = 0, (99)
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and

−ieiϑ χ− = χ+ at ρ = �x . (100)

The infinitesimal generator of translations of the Rindler time φ, acting on the spinor wave
functions, is the Rindler Hamiltonian HR, which can be read off from (99)

i∂φχ = HR χ, χ =

(
χ−
χ+

)
, (101)

HR =

(
−i(ρ ∂ρ +

1
2 ) mρ

mρ i(ρ ∂ρ +
1
2 )

)
=
√

ρ p̂ρ
√

ρ σz + mρ σx, (102)

where p̂ρ = −i∂/∂ρ, is the momentum operator conjugate to the radial coordinate ρ. Notice that
the operator

Hρpρ = −i(ρ ∂ρ +
1
2
) =

1
2
(ρ p̂ρ + p̂ρρ) =

√
ρ p̂ρ

√
ρ, (103)

coincides with Equation (11) with the identification x = ρ (in units h̄ = 1). The eigenfunctions
of (103) are

Hρpρ ψE = E ψE, ψE =
1√
2π

ρ−1/2+iE, (104)

with real eigenvalue E for ρ > 0 (recall Equation (13)). Thus, HR consists of two copies of xp,
with different signs corresponding to opposite fermion chiralities that are coupled by the mass
term mρσx.

The scalar product of two wave functions, in the domain U , can be defined as

〈χ1|χ2〉 =
∫ ∞

�x
dρ
(
χ∗1,−χ2,− + χ∗1,+χ2,+

)
. (105)

The Hamiltonian HR is Hermitian with this scalar product acting on wave functions that satisfy
Equation (100) and vanish sufficiently fast at infinity, i.e., limρ→∞ ρ1/2χ±(ρ, φ) = 0. The eigenvalues
and eigenvectors of the Hamiltonian (102), are given by the solutions of the Schrödinger equation

HR χ = ER χ, χ±(ρ, φ) = e−iERφ∓iπ/4K 1
2±iER

(mρ), ρ ≥ �x, (106)

which coincide with Equation (82) with the identification

ER =
E
2

. (107)

The factor of 1/2 comes from the relation e2t = x0 + x1 = ρeφ (see Equation (58)), that implies
e−iERφ ∝ e−iEt. The Rindler eigenenergies are obtained replacing E by 2ER in Equation (83).

Comments:

• The Dirac Hamiltonian associated with the metric (65) is

H =

(
h mρΛ

mρΛ −h

)
, h = −i

(
ρ∂ρ +

1
2
+

1
2

ρ∂ρ(log Λ)

)
, Λ =

ρ√
ρ2 − �2

x
. (108)

In the limit ρ � �x this Hamiltonian converges towards (102).
• Gupta, Harikumar and de Queiroz proposed the Hamiltonian (x/p + /px)/2 as a Dirac variant of

the xp Hamiltonian [37]. The Hamiltonian is defined on a semi-infinite cylinder and effectively
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becomes one dimensional by considering the winding modes on the compact dimension.
The eigenfunctions are given by Whittaker functions and the spectrum satisfies an equation
similar to Equation (29) in the Landau theory. In the limit where a regularization parameter goes
to zero one obtains a continuum spectrum with a correction term related to the Riemann–von
Mangoldt formula.

• Bender, Brody and Müller proposed recently a generalization of the xp operator [43]

H =
1

1− e−i p̂ (xp̂ + p̂x)(1− e−i p̂) , (109)

with the property that its eigenvalues En give the Riemann zeros as zn = 1
2 (1 − iEn).

This interesting result follows from the fact the eigenfunctions of (109) are given in terms of
the Hurwitz zeta function as ψz(x) = ζ(z, x + 1) and imposing the boundary condition

ψzn(0) = 0 → ζ(zn, 1) = ζ(zn) = 0 . (110)

Unfortunately, the operator (109) is not self-adjoint, so that the reality of its eigenvalues is not
guaranteed. However, the authors of [43] found that iH has a PT symmetry which, if it is
maximally broken, would imply the reality of the eigenvalues. This property though remains to
be proved. Further details can be found in references [44,45].

Summary:

The massless Dirac Hamiltonian in Rindler spacetime is the direct sum of xp and −xp.
The mass term couples the left and right modes of the fermions.

10. The Massless Dirac Equation with Delta Function Potentials

From analogies between the Polya ξ∗ function, the Riemann ξ function and the ξH function of the
massive Dirac model, we conjectured in Section 8 the existence of a massless field theory underlying
ξ. At first look this idea does not look correct because the Hamiltonian obtained by setting m = 0 in
Equation (102), is equivalent to two copies of the quantum xp model which has a continuum spectrum.
In fact, the mass term in that Hamiltonian is the mechanism responsible for obtaining a discrete
spectrum.

To resolve this puzzle, we shall replace the bulk mass term in the Dirac action (98) by a sum of
ultra-local interactions placed at fixed values �n of the radial coordinate ρ [42]. These interactions can
arise from moving mirrors, or beam splitters, that move with a uniform acceleration 1/�n (see Figure 8).
The fermion moves freely, until it hits one of the mirrors and it is reflected or transmitted. The moving
mirrors are realized mathematically by delta functions added to the massless Dirac action that couple
the left and right components of the fermion on both sides of the mirror. These delta functions provide
the matching conditions for the wave functions and can be parameterized by a complex number �n

with n = 2, . . . , ∞. The scattering of the fermion at each mirror preserves unitarity that is equivalent to
the self-adjointness of the Hamiltonian.
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Figure 8. (Left): worldlines of the mirrors with accelerations an = 1/�n = 1/n (n = 1, 2, . . . ).
(Right): A massless fermion (dotted line) at the point (x0, x1) = (0, 1) moves to the right until it hits a
moving mirror where it can be reflected or transmitted.

The model is formulated in the spacetime U defined in Equation (59). We divide U into an infinite
number of domains separated by hyperbolas with constant values of ρ = �n, as follows. First we define
the intervals (see Figure 9)

In = {ρ | �n < ρ < �n+1}, n = 1, 2, . . . , ∞ , (111)

where using the scale invariance of the model we set �1 = 1 (�1 plays the role of �x in previous sections).

Figure 9. Intervals In defined in Equation (111).

The partition of U is given by

U → Ũ = ∪∞
n=1 Un, Un = In ×R , (112)

where the factor R denotes the range of the Rindler time φ. See Figure 8 for an example with �n = n.
The wave function of the model is the two component Dirac spinor (see Equation (101))

χ(ρ) =

(
χ−(ρ)
χ+(ρ)

)
, ρ ∈ I = ∪∞

n=1 In, (113)

and the scalar product is given by (recall Equation (105))

〈χ|χ〉 =
∞

∑
n=1

∫ �n+1

�n
dρ χ†(ρ) · χ(ρ). (114)

The complex Hilbert space isH = L2(I ,C)⊕ L2(I ,C) and the Hamiltonian is obtained setting
m = 0 in Equation (102)

H =

(
−i(ρ ∂ρ +

1
2 ) 0

0 i(ρ ∂ρ +
1
2 )

)
, ρ /∈ I . (115)
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H is a self-adjoint operator acting on the subspaceHϑ ⊂ H of wave functions that satisfy the boundary
conditions [42] (see [71] for the relation between self-adjointness of operators and boundary conditions)

χ ∈ Hϑ : χ(�−n ) = L(�n) χ(�+n ), (n ≥ 2), −ieiϑ χ−(�+1 ) = χ+(�
+
1 ), (116)

where
χ(�±n ) = lim

ε→0+
χ(�n ± ε), (117)

and

ϑ ∈ [0, 2π), L(�) =
1

1− |�|2

(
1 + |�|2 2i�
−2i�∗ 1 + |�|2

)
, � ∈ C, |�| �= 1. (118)

This means that H satisfies

〈χ1|Hχ2〉 = 〈Hχ1|χ2〉, χ1,2 ∈ Hϑ. (119)

This condition guarantees that the norm (114) of the state is conserved by the time evolution
generated by the Hamiltonian. The subspace Hϑ also depends on �n and �n but we shall not write
this dependence explicitly. Similarly, we shall also denote the Hamiltonian as Hϑ. The matching
conditions (116) describe a scattering process where two incoming waves χin

n collide at the nth-mirror
and become two outgoing waves χout

n given by (see Figure 10)

χin
n =

(
χ−(�−n )
χ+(�+n )

)
, χout

n =

(
χ−(�+n )
χ+(�−n )

)
, n > 1 . (120)

At the mirror n = 1, the components χ±(�−1 ) of these vectors are null, i.e., there is no propagation
at the left of the boundary. The scattering process is described by the matrix Sn

χout
n = Sn χin

n , Sn =
1

1 + |�n|2

(
1− |�n|2 −2i�n

−2i�∗n 1− |�n|2

)
, n > 1 , (121)

that is unitary,
Sn S†

n = 1 . (122)

Notice that the boundary condition at ρ = �1, is also described by Equation (121) with a
parameter �1

�1 = −e−iϑ , (123)

that is a pure phase for the Hamiltonian Hϑ to be self-adjoint. The matrix L(�) satisfies

L(1/�∗) = −L(�). (124)

Hence, replacing �n by 1/�∗n gives a unitary equivalent model because the sign changes at ρ = �n,
given in Equation (124), can be compensated by changing the sign of the wave function in the remaining
intervals. Hence, without losing generality, we shall impose the condition |�n| < 1, ∀n > 1.
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Figure 10. (Top): scattering process taking place at the mirror located at ρ = �n for n > 1
(Equation (121)). (Bottom): reflexion at the perfect mirror located at ρ = �1 (Equation (116)).

The eigenfunctions of the Hamiltonian (115) are the customary functions (see Equation (13))

H χ = E χ −→ χ∓ ∝ ρ−1/2±iE . (125)

From now one, we shall assume that E is a real number which is guaranteed by the self-adjointness
of the Hamiltonian H. In the nth interval we take

χ∓,n(ρ) = e±iπ/4 A∓,n

ρ1/2∓iE , �n < ρ < �n+1, (126)

where A∓,n are constants that in general will depend on E. The phases e±iπ/4 have been introduced
by analogy with those appearing in Equation (106). The boundary values of χ at ρ = �±n (n ≥ 1) are
(see Equation (117))

χ∓(�+n ) = χ∓,n(�n) = e±
iπ
4

A∓,n

�1/2∓iE
n

, χ∓(�−n ) = χ∓,n−1(�n) = e±
iπ
4

A∓,n−1

�1/2∓iE
n

. (127)

Let us define the vectors

|An〉 =
(

A−,n

A+,n

)
, n ≥ 1. (128)

The boundary conditions (116) together with Equation (127) imply

|An−1〉 = Tn |An〉 (n ≥ 2), |A1〉 = |A1(ϑ)〉 =
(

1
eiϑ

)
, (129)

where the transfer matrix Tn is given by

Tn =
1

1− |�n|2

(
1 + |�n|2 2�n �−2iE

n
2�∗n �

2iE
n 1 + |�n|2

)
(n ≥ 2). (130)

The norm of the eigenstate can be computed using Equations (114) and (126)

||χ||2 =
∞

∑
n=1

log
�n+1

�n
〈An|An〉, 〈An|An〉 = |A−,n|2 + |A+,n|2. (131)
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The log term comes from the integral of the norm of the wave function in the nth interval,∫ �n+1
�n

dρ/ρ (we used that E is real). If �n = 0 then Tn = 1 which implies that |An−1〉 = |An〉. If this
happens for all n, then |An〉 = |A1〉, in which case the norm of these states diverges, but they can be
normalized using Dirac delta functions, so they correspond to scattering states. In the general case,
iterating Equation (129) yields |An〉 in terms of |A1(ϑ)〉

|An〉 = T−1
n T−1

n−1 · · · T−1
2 |A1(ϑ)〉, n ≥ 2 . (132)

For special values of �n and �n one can find the exact expression of these amplitudes. An example
is �n = en/2, �n = cte [42]. To make contact with the Riemann zeros, we shall consider a limit where
the reflection coefficients vanish asymptotically.

Summary:

The massless Dirac Hamiltonian with delta function potential is solvable by transfer matrix
methods.

The model is completely characterized by the set of parameters {�n, �n}∞
n=2 and ϑ.

11. Heuristic Approach to the Spectrum

Let us replace �n by ε�n, and consider the limit ε → 0 of the transfer matrix (130)

Tn � 1 + ε τn + O(ε2), τn =

(
0 2�n �−2iE

n
2�∗n �

2iE
n 0

)
(n ≥ 2). (133)

Plugging this equation into Equation (132) yields

|An〉 �
(

1− ε
n

∑
m=2

τm

)
|A1(ϑ)〉+ O(ε2), n ≥ 2, (134)

and in components

A−,n � 1− 2ε eiϑ
n

∑
m=2

�m �−2iE
m + O(ε2), A+,n � eiϑ − 2ε

n

∑
m=2

�∗m �2iE
m + O(ε2). (135)

For a normalizable state, the amplitudes A±,n must vanish as n → ∞. In the next section we shall
study in detail the normalizability of the state. We shall make the following choice of lengths and
reflection coefficients [42]

�n = n1/2, �n =
μ(n)
n1/2 , n > 1, (136)

where μ(n) is the Moëbius function that is equal to (−1)r, with r the number of distinct primes
factors of a square free integer n, and μ(n) = 0, if n is divisible by the square of a prime number [4].
See Figures 11 and 12 for a graphical representation of Equations (136) and (135). The Moebius function
has been used in the past to provide physical models of prime numbers, most notably in the ideal
gas of primons with fermionic statistics [72,73] and a potential whose semiclassical spectrum are the
primes [46,74].
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Figure 11. Localization of the mirrors corresponding to the choice (136), together with the
values of μ(n).

Figure 12. Depiction of the amplitudes A±,∞ as the superposition of a principal wave with the waves
resulting from the scattering with all the mirrors along its trajectory (see Equation (135)). The terms of
higher order in ε correspond to more than one scattering.

Another motivation of the choice (136) is the following [42]. Consider a fermion that leaves the
boundary at ρ = �1, moves rightwards until it hits the mirror at ρ = �n where it gets reflected and
returns to the boundary. The time lapse for the entire trajectory is given by

τn = 2 log(�n/�1) (137)

where we used the Rindler metric Equation (62). If the mirror is associated with the prime p, that is
�p =

√
p, the time will be given by τp = log p. This result reminds the Berry conjecture that postulates

the existence of a classical chaotic Hamiltonian whose primitive periodic orbits are labelled by the
primes p, with periods log p, and whose quantization will give the Riemann zeros as energy levels [12].
A classical Hamiltonian with this property has not been found, but the array of mirrors presented
above, displays some of its properties. In particular, the trajectory between the boundary and the
mirror at �p, with p a prime number, behaves as a primitive orbit with a period log p. Moreover,
the trajectories and periods of these orbits are independent of the energy of the fermion because it
moves at the speed of light.

Let us work out the consequences (136). The condition for a normalizable eigenstate, that is
limn→∞ A±,n = 0, is

1 � 2ε eiϑ
∞

∑
n=1

μ(n)

n
1
2+iE

=
2ε eiϑ

ζ( 1
2 + iE(ε))

, (138)

where we have included the term n = 1 in the series because it does not modify its value when ε → 0.
We have employed the formula ∑∞

n=1 μ(n)/ns = 1/ζ(s) for a value of s where the series may not
converge. In the next section we shall compute the value of the finite sum that determines the norm
of the state. En(ε) denotes a solution such that limε→0 En(ε) = En, where 1

2 + iEn is a zero of the zeta
function. All known zeros of ζ(s) on the critical line are simple, but we shall also consider the case
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where 1
2 + iEn might be a zero of order r ≥ 1, that is ζ(r)(s) �= 0. The Taylor expansion of ζ( 1

2 + iE(ε))
around 1

2 + iEn, in Equation (138) yields

1 � 2ε r! eiϑ

ir(En(ε)− En)rζ(r)( 1
2 + iEn)

. (139)

Hence En(ε)− En is of order ε1/r, as ε → 0 and

ζ(r)( 1
2 + iEn)

ζ(r)( 1
2 − iEn)

= (−1)re2iϑ . (140)

On the other hand, from Equation (9) one finds

ir ζ(r)(
1
2
+ iEn) = e−iθ(En)Z(r)(En) , (141)

that plugged into (140) yields
e2i(ϑ+θ(En)) = 1, ∀r . (142)

We can collect these results in the equation

If ζ(
1
2
± iEn) = 0 and e2i(ϑ+θ(En)) = 1 ⇐⇒ Hϑ χEn = En χEn . (143)

Observe that ϑ is fixed mod π. In the next section we shall fix this ambiguity. This equation is
heuristic. It has been derived by (i) solving the eigenvalue equation in the limit ε → 0, (ii) imposing the
vanishing of the eigenfunction at infinity and (iii) using the Dirichlet series of 1/ζ(s) in a region where
it may not converge. In the next section we shall derive Equation (143) without making the previous
assumptions (see Equation (176)). Let us notice that this spectral realization of the zeros requires
the fine tuning of the parameter ϑ in terms of the phase of the zeta function, θ(En) (see Figure 13).
This realization is different from the Pólya-Hilbert conjecture of a single Hamiltonian encompassing
all the Riemann zeros at once. This Hamiltonian would exist if θ(En) = θ0, ∀n, but this is certainly not
the case.

Figure 13. Schematic representation of the array of mirrors that give rise to a spectral realization of the
Riemann zeros. The red and blue lines represent the left and right wave functions χ±,n(ρ). The wave
functions are discontinuous at the moving mirrors located at the positions �n =

√
n with n a square

free integer. The knob on the left represents the scattering phase at the perfect mirror that is set to
minus the phase of the zeta function at the zero En, namely ϑ = −θ(En) mod π.

Summary:

A Riemann zero, on the critical line, becomes an eigenvalue of the Hamiltonian Hϑ by
tuning the phase ϑ according to the phase of the zeta function.
� The previous result is obtained in the limit ε → 0 and is heuristic.
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12. The Riemann Zeros as Spectrum and the Riemann Hypothesis

In this section, we provide more rigorous arguments that support the heuristic results obtained
previously. Let us first review the main properties of the model discussed so far. The Hamiltonian,
Equation (115), describes the dynamics of a massless Dirac fermion in the region of Rindler spacetime
bounded by the hyperbola ρ = �1. The reflection of the wave function at this boundary is characterized
by a parameter ϑ, which is real for a self-adjoint Hamiltonian. At the positions �n>1 the wave
function is discontinuous due to the presence of delta function potentials characterized by the
reflection amplitudes �n that provide the matching conditions of the wave function at those sites.
An eigenfunction χ, with eigenvalue E, has a simple expression, Equation (126), in terms of the
amplitudes An,±, which are related by the transfer matrix Tn (130). The norm of χ is given by the
sum of the squared length of the vectors An, weighted with a factor that depends on the positions �n,
Equation (131). We introduce a scale factor ε in the parameters �n, which allows us to study the limit
ε → 0, where the mirrors become semitransparent. In this way we found an ansatz for the parameters
�n and �n that heuristically led to an individual spectral realization of the zeros by fine tuning the
parameter ϑ.

12.1. Normalizable Eigenstates

Under the choice �n = n1/2, Equation (131) becomes

||χ||2 =
1
2

∞

∑
n=1

log
(

1 +
1
n

)
〈An|An〉 . (144)

This series can be replaced by

||χ||2c ≡
∞

∑
n=1

1
n
〈An|An〉 , (145)

which is convergent if and only if (144) is convergent. The vectors An are obtained by acting on A1(ϑ)

with the transfer matrices Tn (see Equation (132)). These matrices have unit determinant and can be
written as the exponential of traceless Hermitian matrices, that is,

Tn = eτn , τn =

(
0 rn�−2iE

n
r∗n�2iE

n 0

)
, ∀E ∈ R , (146)

where taking |�n| < 1,

rn =
�n

|�n|
log

1 + |�n|
1− |�n|

, �n =
rn

|rn|
tanh

|rn|
2

. (147)

To derive Equation (146) we used the relation

exp

(
0 a
b 0

)
=

(
cosh(

√
ab) a√

ab
sinh(

√
ab)

b√
ab

sinh(
√

ab) cosh(
√

ab)

)
, ∀a, b ∈ C− {0} . (148)

If |�n| << 1 one gets rn � 2�n, hence in that limit both parameters give the same result.
Using Equation (146), the recursion relation (132) reads

|Ak〉 = e−τk e−τk−1 . . . e−τ2 |A1〉, k ≥ 2. (149)
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12.2. The Magnus Expansion

It is rather difficult to find an analytic expression of the product of matrices of Equation (149).
However, we can estimate it replacing rn by εrn, and taking the limit ε → 0. Under this replacement
Equation (149) becomes

|Ak〉 = e−ετk e−ετk−1 . . . e−ετ2 |A1〉 (k ≥ 2). (150)

The product of exponentials of matrices can be expressed as the exponential of a matrix given by
the Magnus expansion [75]

e−ετk e−ετk−1 . . . e−ετ2 = exp

(
−ε

n

∑
n=2

τn −
ε2

2

k

∑
n1>n2=2

[τn1 , τn2 ] + O(ε3)

)
(k ≥ 2). (151)

In the limit ε → 0 we truncate this expression to the term of order ε,

e−ετk e−ετk−1 . . . e−ετ2 � exp
(

0 −ε ∑k
n=2 rn �−2iE

n
−ε ∑k

n=2 r∗n �2iE
n 0

)
� exp

(
0 −εMz(k)

−εM∗
z (k) 0

)
, (152)

which using (136)

rn =
μ(n)
n1/2 (153)

gives

Mz(k) = 1 +
k

∑
n=2

rn �
−2iE
n =

k

∑
n=1

μ(n)
nz , z =

1
2
+ iE . (154)

We have added the constant 1 to Mz(k), which does not affect the results in the limit ε → 0 .
Using Equations (148), (150) and (152) we obtain

|An〉 � exp

(
0 −εMz(n)

−εM∗
z (n) 0

)(
1

eiϑ

)
(155)

=

⎛⎝ cosh(|εMz(n)|) − εMz(n)
|εMz(n)| sinh(|εMz(n)|)

− εM∗
z (n)

|εMz(n)| sinh(|εMz(n)| cosh(|εMz(n)|)

⎞⎠( 1
eiϑ

)

=

(
cosh(|εMz(n)|) −e−iΦz(n) sinh(|εMz(n)|)

−eiΦz(n) sinh(|εMz(n)| cosh(|εMz(n)|)

)(
1

eiϑ

)

�

⎛⎜⎜⎝
e

i
2 (ϑ−Φz(n))

[
e−|εMz(n)| cos( 1

2 (ϑ−Φz(n))− ie|εMz(n)| sin( 1
2 (ϑ−Φz(n))

]
e

i
2 (ϑ+Φz(n))

[
e−|εMz(n)| cos( 1

2 (ϑ−Φz(n)) + ie|εMz(n)| sin( 1
2 (ϑ−Φz(n))

]
⎞⎟⎟⎠ (n ≥ 2) ,

where Φz(n) is the phase

e−iΦz(n) =
Mz(n)
|Mz(n)|

. (156)

From (155) follows an estimate of the norm (145)

||χ||2c � Nz(ε) ≡
∞

∑
n=1

1
n

[
e−2|εMz(n)|(1 + cos(ϑ−Φz(n)) + e2|εMz(n)|(1− cos(ϑ−Φz(n))

]
, (157)

whose convergence depends on the asymptotic behavior of Mz(n) and Φz(n). Nz(ε) has the
lower bound

Nz(ε) ≥
∞

∑
n=1

2
n

e−2|εMz(n)| , (158)

that follows from the inequality

a(1 + b) +
1
a
(1− b) ≥ 2a, a ∈ (0, 1], b ∈ [−1, 1] . (159)
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If |Mz(n)| is bounded then the norm is infinite,

if |Mz(n)| < C, ∀n =⇒ Nz(ε) ≥
∞

∑
n=1

2
n

e−2|ε|C = ∞ . (160)

This case corresponds in general to eigenstates belonging to the continuum. Eigenstates with finite
norm require |Mz(n)| to be unbounded. Notice that Nz(ε) is the sum of two series with non-negative
terms. The convergence of the first summand in (157) is guaranteed if

∞

∑
n=1

1
n

e−2|εMz(n)| < ∞ , (161)

which occurs if |Mz(n)| diverges sufficiently fast with n. The convergence of the second summand
in (157) requires Φz(n) to have a limit when n → ∞, and to choose the parameter ϑ such that

lim
n→∞

Φz(n) = ϑ . (162)

Moreover, 1− cos(ϑ−Φz(n)) must approach 0 sufficiently fast in order to compensate the factor
1
n e2ε|Mz(n)|. We now pass to analyze the latter conditions in detail.

12.3. Perron Formula

Let us define the function

M′
z(x) ≡ ∑

1≤n≤x

′ μ(n)
nz , z =

1
2
+ iE, E ∈ R , (163)

where ∑′1≤n≤x means that the last term in the sum is multiplied by 1/2 when x is an integer. Figure 14
shows |M′

z(n)| as a function of E for several values of n. Observe that |M′
z(n)| increases with n when

E is a zero. We shall derive below this behavior.

� � ��

Figure 14. Plot of |M′
z(n)| defined in Equation (163), for E ∈ (10, 23) and n = 50, 100, 150 (blue, orange,

red curves) and 1/|ζ(1/2 + iE)| (black dotted line). Observe the increase with n at E = 14.13 . . . and
E = 21.02 . . . which are the first two zeros of ζ.

To compute M′
z(x) we use Perron’s formula [76]

M′
z(x) = lim

T→∞

∫ c+iT

c−iT

ds
2πi

1
ζ(s + z)

xs

s
, c >

1
2

, (164)
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where we have used that Re z = 1/2. The integral (164) can be done by residue calculus [42]

lim
T→∞

∫ c+iT

c−iT

ds
2πi

F(s) = ∑
Re sj<c

Ressj F(s), F(s) =
1

ζ(s + z)
xs

s
, (165)

where the sum runs over the poles sj of F(s) located to the left of the line of integration Re s = c,
which is Re sj < c. The poles of F(s) come from the zeros of sζ(s + z). The pole at s = 0 can be simple,
or multiple, depending on the values of ζ(z) and its derivatives. The remaining poles of F(s) come
from the zeros of ζ(s + z), say sj + z = ρj, and they lie to the left of the integration line, because the
trivial and non-trivial zeros of ζ, satisfy Re ρj < 1, which is

Re sj = Re(ρj − z) = Re ρj −
1
2
<

1
2
< c . (166)

To compute the residues of Equation (165) we consider the cases: s = 0, sj + z a trivial zero of ζ

and sj + z a non-trivial zero of ζ:

• s = 0. Let m ≥ 0 be the lowest integer such that ζ(m)(z) = dmζ(z)/dzm �= 0. Then F(s) has a pole
of order m + 1 at s = 0 with residue (The expression for Res=0 F(s) corresponding to the case
m = 1 contains the term − 1

2 ζ ′′(z)/(ζ ′(z))2 which was omitted in the reference [42].)

Ress=0 F(s) =

⎧⎪⎪⎨⎪⎪⎩
1/ζ(z) if ζ(z) �= 0,
log x/ζ ′(z)− 1

2 ζ ′′(z)/(ζ ′(z))2 if ζ(z) = 0, ζ ′(z) �= 0.
...

...
(log x)m/ζ(m)(z) + O((log x)m−1) if ζ(z) = · · · = ζ(m−1)(z) = 0, ζ(m)(z) �= 0.

(167)

• sn = −2n− z (n = 1, 2, . . . ), where F(s) has a simple pole due to the trivial zeros −2n of ζ.

Ress=−2n−z F(s) =
x−2n−z

−(2n + z)ζ ′(−2n)
, n = 1, 2, . . . , ∞. (168)

• sj = ρj − z �= 0, then F(s) has a pole due to the non-trivial zero ρj of ζ

Ress=sj F(s) =

⎧⎪⎨⎪⎩
xρj−z

(ρj−z)ζ ′(ρj)
, if ζ(ρj) = 0, ζ ′(ρj) �= 0

m(ln x)m−1xρj−z

(ρj−z)ζ(m)(ρj)
+ O((ln x)m−2), if ζ(ρj) = · · · = ζ(m−1)(ρj) = 0, ζ(m)(ρj) �= 0, m ≥ 2

(169)

To make further progress we shall assume that all the Riemann zeros are simple, a statement
which is not known to hold. The eventual case where there is a zero with double multiplicity will be
considered elsewhere. In the former situation we are led to consider only two cases depending on
whether z is, or is not, a simple zero of ζ. Collecting terms, we get

Mz(x) =
1

ζ(z)
+ ∑

ρj

xρj−z

(ρj − z)ζ ′(ρj)
+

∞

∑
n=1

x−2n−z

−(2n + z)ζ ′(−2n)
, if ζ(z) �= 0 , (170)

Mz(x) =
log x
ζ ′(z) −

ζ ′′(z)
2(ζ ′(z))2 + ∑ρj �=z

xρj−z

(ρj−z)ζ ′(ρj)
+ ∑∞

n=1
x−2n−z

−(2n+z)ζ ′(−2n) , if ζ(z) = 0, ζ ′(z) �= 0 . (171)

where the sum ∑ρj
runs over the non-trivial zeros of ζ. These equations are verified numerically in

Figure 15. The last term in these equations, which comes from the trivial zeros, converges quickly and
is finite for all x due to the exponential increase of ζ ′(−2n) [77]

ζ ′(−2n) =
(−1)nζ(2n + 1)(2n)!

22n+1π2n
n→∞−→ (−1)n√πn

( n
eπ

)2n
. (172)
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Figure 15. Plot of |M′
z(n)| for n = 10, . . . , 50 and E = 20 (left) and E = 14.13 (right). In red the

values obtained doing the sum in Equation (163). In blue the sum of Equation (170) for E = 20 and
Equation (171) for E = 14.13, including the first 100 Riemann zeros, and 20 trivial zeros. Observe
the accuracy of the approximation. The slow increase in the latter plot is due to the factor log n in
Equation (171).

We do not know an estimation of the term depending on the sum over the non-trivial zeros. If the
Riemann hypothesis is true the term xρj−z will oscillate as a function of x. We expect that for ζ(z) �= 0,
|Mz(x)| will not yield a finite norm such that the corresponding eigenstate will not belong to the
discrete spectrum. When ζ(z)) = 0, ζ ′(z) �= 0, we shall make the approximation

Mz(x) → log x
ζ ′(z)

x → ∞ , (173)

where we neglect the finite part ζ ′′(z)
2(ζ ′(z))2 ; and the possible contribution of the sum over the Riemann

zeros. Using that ζ(1/2 + iE) = e−iθ(E)Z(E) we find

Mx(z) → i eiθ(E) log x
Z′(E)

as x → ∞, (174)

hence Φz(n), given in Equation (156), behaves as

e−iΦz(n) → i eiθ(E)sign Z′(E) as n → ∞ , (175)

which has a well-defined asymptotic limit. We shall then choose ϑ according to Equation (162) namely

ϑ = lim
n→∞

Φz(n) = −
(

θ(E) +
π

2
sign Z′(E)

)
, (176)

that provides a necessary condition for the convergence of the norm. It remains to show that
Equation (176) is also sufficient but this requires the knowledge of the next to leading correction
to (174). Notice that ϑ depends on θ(E) and the sign of Z′(E), a feature that is not left fixed in
Equation (142). The norm (157) then becomes

||χ||2c �
∞

∑
n=1

2
n

e−2ε log n/|Z′(E)| = 2ζ

(
1 +

2ε

|Z′(E)|

)
< ∞ , (177)

that is finite for all ε > 0. This result indicates that a zero of the zeta function gives a normalizable
state, in agreement with heuristic derivation proposed in the previous section, but there are some
differences. First, the eigenvalue E does not need to be expanded in series of ε. It is taken to be a zero of
ζ from the beginning. This choice generates the log x term in Equation (171) and is responsible for the
finiteness of the norm after the appropriate choice of the phase (176) that also differs from the heuristic
value (142). On the other hand, if ϑ does not satisfy Equation (176), then the norm of the state will
diverge badly and so the zero E will be missing in the spectrum. Finally, if E is not a zero, we expect
that the state will belong generically to the continuum. Figure 16 shows the expected spectrum of the
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model, which recalls Connes’s scenario of missing spectral lines, except that in our case, one can pick
up a zero at a time by tuning ϑ.

Figure 16. Graphical representation of the spectrum of the model. It is expected to consist of an infinite
number of bands separated by forbidden regions of width proportional to ε. The latter regions may
contain a zero En if the phase ϑ is chosen according to Equation (176). Otherwise, the zeros will be
missing in the spectrum that is represented by the points En−1 and En+1.

If the RH is false there will be at least four zeros outside the critical line, say ρc = σc + iEc, ρ̄c = σc−
iEc, 1− ρc and 1− ρ̄c, with σc >

1
2 , Ec ∈ R+. We shall choose the highest value of σc. The asymptotic

behavior of Mz(x) will be given by the zeros located to the right of the critical line,

Mz(x) → xρc−z

(ρc − z)ζ ′(ρc)
+

xρ̄c−z

(ρ̄c − z)ζ ′(ρ̄c)
as x → ∞ . (178)

To simplify the discussion let us choose E � Ec, which yields the approximation

Mz(x) → 2i xσc−1/2−iE

E|ζ ′(ρc)|
cos(Ec log x− φc) as x → ∞ , (179)

where eiφc = ζ ′(ρc)/|ζ ′(ρc)|. The phase Φz(n) is given by Equation (156)

Φz(n)→ E log n− π

2
sign (cos(Ec log n− φc)) as n → ∞ . (180)

Correspondingly, the norm (157) diverges so badly, ∝ ∑n
1
n exp(Cnσc−1/2) . . . , for any value of

ϑ that the state will not be normalizable even using Dirac delta functions. This result occurs for all
eigenenergies E. Therefore, the Hamiltonian will not admit a spectral decomposition, but this is
impossible because it is a well-defined self-adjoint operator. We conclude that a zero outside the critical
line does not exist which provides an argument likely to be persuasive to physicists for the truth of the
Riemann hypothesis.

13. The Riemann Interferometer

The model considered in the previous sections looks at first glance quite difficult to simulate.
We shall next show that this model is equivalent to another one that can be implemented in the
Lab. We shall call this system the Riemann interferometer. The basic idea can be illustrated with the
mapping between the quantum xp Hamiltonian and the momentum operator p̂. Let us make the
change of coordinates x = log ρ and relate the wave functions in both coordinates, φ(x) and ψ(ρ),
as follows

φ(x) =
(

dρ

dx

)1/2
ψ(ρ) = ex/2ψ(ex) . (181)

An eigenstate of the Hamiltonian (ρ p̂ρ + p̂ρ ρ)/2, with eigenvalue E, is mapped by Equation (181)
into an eigenstate of the momentum operator p̂x = −i∂x with the same eigenvalue,

ψ(ρ) =
1

ρ1/2−iE =⇒ φ(x) = eiEx . (182)
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This shows that the energy E can be seen as momentum. For a relativistic massless fermion, this is
always the case. The measure that defines the scalar product of the corresponding Hilbert spaces are
one-to-one related ∫ ∞

�
dρ ψ∗1 (ρ)ψ2(ρ) =

∫ ∞

log �
dx φ∗1 (x)φ2(x) . (183)

The operator (ρ p̂ρ + p̂ρ ρ)/2 is self-adjoint in the interval (0, ∞) but not in the interval (1, ∞),
just like p̂x is self-adjoint in the real line (−∞, ∞) but not in the half-line (0, ∞) [23,66]. The former
case corresponds to the value � = 0 and the latter one to � = 1 in Equation (183). Let us now consider
the Dirac Hamiltonian in the Rindler variable ρ, given in Equation (115). It becomes in the x variable

H =

(
−i∂x 0

0 i∂x

)
. (184)

Unlike p̂x, this Hamiltonian is self-adjoint in the interval x ∈ (log �1, ∞). We choose for
convenience �1 = 1. The moving mirrors located at ρ = �n are now placed at the positions x = dn,
with dn = log �n, so for �n =

√
n, we get

dn =
1
2

log n , (185)

where n are square free integers and the reflection coefficients are given by rn = μ(n)/
√

n. Figure 17
shows the array of mirrors satisfying Equation (185). One can easily generalize this interferometer
to provide a spectral realization of the zeros of Dirichlet L-functions, by changing the reflection
coefficients rn,

Lχ(s) =
∞

∑
n=1

χ(n)
ns −→ rn =

μ(n) χ(n)
n1/2 , (186)

where χ(n) is the Dirichlet character associated with the L-function. It would be interesting to
replace the massless fermions by massless bosons, say photons and study what kind of Riemann
interferometer arise.

Figure 17. Graphical representation of the array of mirrors in Minkowski space that reproduce the
Riemann zeros. The phase at the boundary ϑ must be chosen according to Equation (176) in order that
E is an eigenvalue of the Hamiltonian. Recall Figure 13. Between the mirrors the wave functions are
plane waves.

14. Dirac Models for a Class of Modified ζ and L Functions

Grosswald and Schnitzer proved in 1978 two very surprising theorems that we shall use below
to generalize the construction done in the previous sections. Let us first consider a set on integers qn

satisfying the conditions
pn ≤ qn ≤ pn+1, n = 1, . . . , ∞ , (187)
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where pn is the nth prime number. With these numbers define the infinite product

ζ∗(s) =
∞

∏
n=1

(1− q−s
n )−1 . (188)

One then has [78]:

Theorem 1. This function is holomorphic for σ = Re s > 1 and has the following properties:

(i) ζ∗(s) �= 0, for σ > 1,

(ii) ζ∗(s) has a meromorphic extension to σ > 0,

(iii) in σ > 0, ζ∗(s) has a simple pole at s = 1 with residue r, 1/2 ≤ r ≤ 1,

(iv) in σ > 0, ζ∗(s) has the same zeros as ζ(s) with the same multiplicity.

This theorem means that the relation between prime numbers and Riemann zeros via the zeta
function is less rigid that one may have though. We shall use this freedom to associate a Hamiltonian
to every series satisfying (187). Let us first write the inverse of (188) as

1
ζ∗(s)

=
∞

∑
n=1

μ∗(n)
ns , μ∗(n) = neven − nodd, (189)

where neven(nodd) is the number of times n can be written as the product of an even (odd) number of
qi numbers in the series (187). An example of a series satisfying (187) is

2, 4, 6, 8, 12, . . . qn = pn + 1, . . . (190)

for which we have

1
ζ∗(s)

= 1− 1
2s −

2
(26 · 3)s +

2
(23 · 3)s +

1
(28 · 3)s −

1
22s −

1
(2 · 3)s + . . . . (191)

Notice that μ∗(26 · 3) = −2 because 26 · 3 = 4 · 6 · 8 = 2 · 8 · 12. Obviously μ∗(n) = μ(n) if
qn = pn, ∀n. Using Equation (189) we define a massless Dirac model with reflection coefficients (recall
Equation (153))

rn =
μ∗(n)
n1/2 , n > 1 . (192)

Hence, by the arguments given in Section 12 and theorem 1, we shall find the Riemann zeros in
the spectrum of the Hamiltonian Hϑ by tuning the parameter ϑ in the limit ε → 0.

The second theorem in reference [78] is an extension of theorem 1 to Dirichlet L-functions L(s) =
∏n(1− χ(n)n−s)−1, where χ is a character modulo k. The series (187) is replaced by

pn ≤ qn ≤ pn + K, pn = qn mod k (193)

where K ≥ k. The modified L-function is defined as

L∗(s) =
∞

∏
n=1

(1− χ(qn)q−s
n )−1 , (194)

that can be extended to the region σ > 0, with the same zeros (and multiplicities) as L(s). In this case,
too, we can construct a Dirac model with reflection coefficients (recall Equation (186))

rn =
χ(n)μ∗(n)

n1/2 , n > 1 . (195)
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whose associated Hamiltonian Hϑ contains the zeros of L(s) by varying ϑ. Theorem 2 of [78] was
mentioned by LeClair and Mussardo in [63] as a support to their approach to the Generalized Riemann
hypothesis based on random walks and the Lemke Oliver-Soundararajan conjecture on the distribution
of pairs of residues on consecutive primes [79] (for other statistical properties of the prime numbers
see [80,81]). It will be worth to investigate if there is a relation between our approach and the one
proposed in [62,63].

15. Conclusions

In this paper, we have reviewed the spectral approach to the RH that started with the
Berry–Keating–Connes xp model and continued with several works aimed to provide a physical
realization of the Riemann zeros. The main steps in this approach are: (i) spectral realization of
Connes’s xp model using the Landau model of an electron in a magnetic field and electrostatic
potential, (ii) construction of modified quantum xp models whose spectra reproduce, on average,
the behavior of the zeros, (iii) reformulation of the x(p + 1/p) model as a relativistic theory of a massive
Dirac fermion in a region of Rindler spacetime, (iv) inclusion of prime numbers into the massless Dirac
equation by means of delta function potentials acting as moving mirrors that, in the limit where they
become semitransparent, leads to a spectral realization of the zeros, (v) a route for proving the Riemann
Hypothesis, and (vi) proposal of an interferometer that may provide an experimental observation of
the zeros of the Riemann zeta function and other Dirichlet L-functions.

The Pólya-Hilbert (PH) conjecture was proposed as a physical explanation of the RH based on
the spectral properties of self-adjoint operators: there exists a single quantum Hamiltonian containing
all the Riemann zeros in its spectrum which are therefore real numbers. This statement can be called
the global version of the PH conjecture. Instead of this, we have found a local version according to
which a Riemann zero En becomes an eigenvalue of the Hamiltonian Hϑ provided the parameter ϑ,
which characterizes the self-adjoint extension, is fine-tuned to the combination θ(En) +

π
2 signZ′(En).

In this sense the Hamiltonian provides a physical realization of ζ( 1
2 + it), and not only of the

Riemann-Siegel Z function. We have given arguments for a proof of the RH by contradiction:
the existence of a zero off the critical line implies that the eigenstates of Hϑ are non-normalizable
in the discrete or continuum sense, which is impossible since Hϑ is a self-adjoint operator. These results
are obtained in the limit where the mirrors become semitransparent and assumes the convergence of
some mathematical series that need to be analyzed more thoroughly. Finally, we have proposed an
interferometer made of fermions propagating in an array of mirrors that may yield an experimental
observation of the Riemann zeros in the Lab.
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Abstract: A single qubit may be represented on the Bloch sphere or similarly on the 3-sphere S3.
Our goal is to dress this correspondence by converting the language of universal quantum computing
(UQC) to that of 3-manifolds. A magic state and the Pauli group acting on it define a model of
UQC as a positive operator-valued measure (POVM) that one recognizes to be a 3-manifold M3.
More precisely, the d-dimensional POVMs defined from subgroups of finite index of the modular
group PSL(2,Z) correspond to d-fold M3- coverings over the trefoil knot. In this paper, we also
investigate quantum information on a few ‘universal’ knots and links such as the figure-of-eight knot,
the Whitehead link and Borromean rings, making use of the catalog of platonic manifolds available
on the software SnapPy. Further connections between POVMs based UQC and M3’s obtained from
Dehn fillings are explored.
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Manifolds are around us in many guises.

As observers in a three-dimensional world, we are most familiar with two-manifolds: the surface of a
ball or a doughnut or a pretzel, the surface of a house or a tree or a volleyball net...

Three-manifolds may be harder to understand at first. But as actors and movers in a three-dimensional
world, we can learn to imagine them as alternate universes.

(William Thurston [1]).

1. Introduction

Mathematical concepts pave the way for improvements in technology. As far as topological
quantum computation is concerned, non-abelian anyons have been proposed as an attractive
(fault-tolerant) alternative to standard quantum computing which is based on a universal set of
quantum gates [2–5]. Anyons are two-dimensional quasiparticles with world lines forming braids
in space-time. Whether non-abelian anyons do exist in the real world and/or would be easy to
create artificially, is still open to discussion. In this paper, we propose an alternative to anyon-based
universal quantum computation (UQC) thanks to three-dimensional topology. Our proposal relies on
appropriate 3-manifolds whose fundamental group is used for building the magic states for UQC.
Three-dimensional topological quantum computing would federate the foundations of quantum
mechanics and cosmology, a recurrent dream of many physicists. Three-dimensional topology was
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already investigated by several groups in the context of quantum information [6,7], high energy
physics [8,9], biology [10] and consciousness studies [11].

Recall the context of our work and clarify its motivation. Bravyi & Kitaev introduced the
principle of ‘magic state distillation’: universal quantum computation, the possibility to implement an
arbitrary quantum gate, may be realized thanks to the stabilizer formalism (Clifford group unitaries,
preparations and measurements) and the ability to prepare an appropriate single qubit non-stabilizer
state, called a ‘magic state’ [12]. Then, irrespectively of the dimension of the Hilbert space where the
quantum states live, a non-stabilizer pure state was called a magic state [13]. An improvement of this
concept was carried out in [14,15] showing that a magic state could be at the same time a fiducial state
for the construction of an informationally complete positive operator-valued measure, or IC-POVM,
under the action on it of the Pauli group of the corresponding dimension. Thus UQC in this view
happens to be relevant both to such magic states and to IC-POVMs. In [14,15], a d-dimensional magic
state follows from the permutation group that organizes the cosets of a subgroup H of index d of a
two-generator free group G. This is due to the fact that a permutation may be seen as a permutation
matrix/gate and that mutually commuting matrices share eigenstates—they are either of the stabilizer
type (as elements of the Pauli group) or of the magic type. In the calculation, it is enough to keep
magic states that are simultaneously fiducial states for an IC-POVM and we are done. Remarkably,
a rich catalog of the magic states relevant to UQC and IC-POVMs can be obtained by selecting G as the
two-letter representation of the modular group Γ = PSL(2,Z) [16]. The next step, developed in this
paper, is to relate the choice of the starting group G to three-dimensional topology. More precisely, G is
taken as the fundamental group π1(S3 \ K) of a 3-manifold M3 defined as the complement of a knot or
link K in the 3-sphere S3. A branched covering of degree d over the selected M3 has a fundamental
group corresponding to a subgroup of index d of π1 and may be identified as a sub-manifold of M3,
the one leading to an IC-POVM is a model of UQC. In the specific case of Γ, the knot involved is the
left-handed trefoil knot T1, as shown in Section 2.

While Γ serves as a motivation for investigating the trefoil knot manifold in relation to UQC
and the corresponding ICs, it is important to put the UQC problem in the wider frame of Poincaré
conjecture, the Thurston’s geometrization conjecture and the related 3-manifolds [1]. For example,
ICs may also follow from hyperbolic or Seifert 3-manifolds as shown in Tables of this paper.

More details are provided at the next subsections.

1.1. From Poincaré Conjecture to UQC

The Poincaré conjecture is the elementary (but deep) statement that every simply connected,
closed 3-manifold is homeomorphic to the 3-sphere S3 [17]. Having in mind the correspondence
between S3 and the Bloch sphere that houses the qubits ψ = a |0〉+ b |1〉, a, b ∈ C, |a|2 + |b|2 = 1,
one would desire a quantum translation of this statement. For doing this, one may use the picture of
the Riemann sphere C∪∞ in parallel to that of the Bloch sphere and follow F. Klein lectures on the
icosahedron to perceive the platonic solids within the landscape [18]. This picture fits well the Hopf
fibrations [19], their entanglements described in [20,21] and quasicrystals [22,23]. However, we can be
more ambitious and dress S3 in an alternative way that reproduces the historic thread of the proof of
Poincaré conjecture. Thurston’s geometrization conjecture, from which Poincaré conjecture follows,
dresses S3 as a 3-manifold not homeomorphic to S3. The wardrobe of 3-manifolds M3 is huge but
almost every dress is hyperbolic and W. Thurston found the recipes for them [1]. Every dress is
identified thanks to a signature in terms of invariants. For our purpose, the fundamental group π1 of
M3 does the job.

The three-dimensional space surrounding a knot K—the knot complement S3 \ K—is an
example of a three-manifold [1,24]. We will be especially interested by the trefoil knot that underlies
work of the first author [16] as well as the figure-of-eight knot, the Whitehead link and the Borromean
rings because they are universal (in a sense described below), hyperbolic and allow to build 3-manifolds
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from platonic manifolds [25]. Such manifolds carry a quantum geometry corresponding to quantum
computing and (possibly informationally complete) POVMs identified in our earlier work [14–16].

According to [26], the knot K and the fundamental group G = π1(S3 \ K) are universal if every
closed and oriented 3-manifold M3 is homeomorphic to a quotient H/G of the hyperbolic 3-space H

by a subgroup H of finite index d of G. As just announced, the figure-of-eight knot, the Whitehead link
and Borromean rings are universal. The catalog of the finite index subgroups of their fundamental
group G and of the corresponding 3-manifolds defined from the d-fold coverings [27] can easily be
established up to degree 8, using the software SnapPy [28].

In paper [16] of the first author, it has been found that minimal d-dimensional IC-POVMs
(sometimes called MICs) may be built from finite index subgroups of the modular group Γ = PSL(2,Z).
To such an IC (or MIC) is associated a subgroup of index d of Γ, a fundamental domain in the
Poincaré upper-half plane and a signature in terms of genus, elliptic points and cusps as summarized
in ([16] Figure 1). There exists a relationship between the modular group Γ and the trefoil knot T1

since the fundamental group π1(S3 \ T1) of the knot complement is the braid group B3, the central
extension of Γ. However, the trefoil knot and the corresponding braid group B3 are not universal [29]
which forbids the relation of the finite index subgroups of B3 to all three-manifolds.

It is known that two coverings of a manifold M with fundamental group G = π1(M) are
equivalent if there exists a homeomorphism between them. Besides, a d-fold covering is uniquely
determined by a subgroup of index d of the group G and the inequivalent d-fold coverings of M
correspond to conjugacy classes of subgroups of G [27]. In this paper we will fuse the concepts of
a three-manifold M3 attached to a subgroup H of index d and the POVM, possibly informationally
complete (IC), found from H (thanks to the appropriate magic state and related Pauli group factory).

1.2. Minimal Informationally Complete POVMs and UQC

In our approach [15,16], minimal informationally complete (IC) POVMs are derived from
appropriate fiducial states under the action of the (generalized) Pauli group. The fiducial states
also allow to perform universal quantum computation [14].

A POVM is a collection of positive semi-definite operators {E1, . . . , Em} that sum to the identity.
In the measurement of a state ρ, the i-th outcome is obtained with a probability given by the Born
rule p(i) = tr(ρEi). For a minimal IC-POVM (or MIC), one needs d2 one-dimensional projectors Πi =

|ψi〉 〈ψi|, with Πi = dEi, such that the rank of the Gram matrix with elements tr(ΠiΠj), is precisely d2.

A SIC-POVM (the S means symmetric) obeys the relation
∣∣〈ψi|ψj

〉∣∣2 = tr(ΠiΠj) =
dδij+1

d+1 , that allows
the explicit recovery of the density matrix as in ([30] Equation (29)).

New minimal IC-POVMs (i.e., whose rank of the Gram matrix is d2) and with Hermitian angles∣∣〈ψi|ψj
〉∣∣

i �=j ∈ A = {a1, . . . , al} have been discovered [16]. A SIC (i.e., a SIC-POVM) is equiangular

with |A| = 1 and a1 = 1√
d+1

. The states encountered are considered to live in a cyclotomic field F =

Q[exp( 2iπ
n )], with n = GCD(d, r), the greatest common divisor of d and r, for some r. The Hermitian

angle is defined as
∣∣〈ψi|ψj

〉∣∣
i �=j =

∥∥(ψi, ψj)
∥∥ 1

deg , where ‖.‖means the field norm of the pair (ψi, ψj) in
F and deg is the degree of the extension F over the rational field Q [15].

The fiducial states for SIC-POVMs are quite difficult to derive and seem to follow from algebraic
number theory [31].

Except for d = 3, the IC-POVMs derived from permutation groups are not symmetric
and most of them can be recovered thanks to subgroups of index d of the modular group
Γ ([16] Table 2).The geometry of the qutrit Hesse SIC is shown in Figure 1a. It follows from the
action of the qutrit Pauli group on magic/fiducial states of type (0, 1,±1). For d = 4, the action of
the two-qubit Pauli group on the magic/fiducial state of type (0, 1,−ω6, ω6 − 1) with ω6 = exp( 2iπ

6 )

results into a minimal IC-POVM whose geometry of triple products of projectors Πi turns out to
correspond to the commutation graph of Pauli operators, see Figure 1b and ([16] Figure 2). For d = 5,
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the geometry of an IC consists of copies of the Petersen graph reproduced in Figure 1c. For d = 6,
the geometry consists of components looking like Borromean rings (see [16] Figure 2 and Table 1 below).

Figure 1. Geometrical structure of low dimensional MICs: (a) the qutrit Hesse SIC, (b) the two-qubit
MIC that is the generalized quadrangle of order two GQ(2, 2), (c) the basic component of the 5-dit MIC
that is the Petersen graph. The coordinates on each diagram are the d-dimensional Pauli operators that
act on the fiducial state, as shown.

1.3. Organization of the Paper

The paper is organized as follows. Section 2 deals with the relationship between quantum
information seen from the modular group Γ and from the trefoil knot 3-manifold. Section 3 deals
with the (platonic) 3-manifolds related to coverings over the figure-of-eight knot, Whitehead link and
Borromean rings, see Figure 2, and how they relate to minimal IC-POVMs. Section 4 describes the
important role played by Dehn fillings for describing the many types of 3-manifolds that may relate to
topological quantum computing.

Figure 2. (a) The figure-of-eight knot: K4a1 = otet0200001 = m004, (b) the Whitehead link L5a1 =
ooct0100001 = m129, (c) Borromean rings L6a4 = ooct0200005 = t12067.

2. Quantum Information from the Modular Group Γ and the Related Trefoil Knot T1

In this section, we describe the results established in [16] in terms of the 3-manifolds corresponding
to coverings of the trefoil knot complement S3 \ T1.

Let us introduce to the group representation of a knot complement π1(S3 \ K). A Wirtinger
representation is a finite representation of π1 where the relations are of the form wgiw−1 = gj where
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w is a word in the k generators {g1, · · · , gk}. For the trefoil knot T1 = K3a1 = 31 shown in Figure 3a,
a Wirtinger representation is [32]

π1(S3 \ T1) = 〈x, y|yxy = xyx〉 or equivalently π1 =
〈

x, y|y2 = x3
〉

.

In the rest of the paper, the number of d-fold coverings of the manifold M3 corresponding to the
knot T will be displayed as the ordered list ηd(T), d ∈ {1..10 . . .}. For T1 it is

ηd(T1) = {1, 1, 2, 3, 2, 8, 7, 10, 18, 28, . . .}.

Details about the corresponding d-fold coverings are in Table 1. As expected, the coverings
correspond to subgroups of index d of the fundamental group associated to the trefoil knot T1.

Figure 3. (a) The trefoil knot T1 = K3a1 = 31, (b) the link L7n1 associated to the Hesse SIC, (c) the link
L6a3 associated to the two-qubit IC.

2.1. Cyclic Branched Coverings over the Trefoil Knot

Let p, q, r be three positive integers (with p ≤ q ≤ r), the Brieskorn 3-manifold Σ(p, q, r) is
the intersection in C3 of the 5-sphere S5 with the surface of equation zp

1 + zq
2 + zr

3 = 1. In [33],
it is shown that a r-fold cyclic covering over S3 branched along a torus knot or link of type (p, q) is
a Brieskorn 3-manifold Σ(p, q, r) (see also Section 4.1). For the spherical case p−1 + q−1 + r−1 > 1,
the group associated to a Brieskorn manifold is either dihedral [that is the group Dr for the triples
(2, 2, r)], tetrahedral [that is A4 for (2, 3, 3)], octahedral [that is S4 for (2, 3, 4)] or icosahedral [that is
A5 for (2, 3, 5)]. The Euclidean case p−1 + q−1 + r−1 = 1 corresponds to (2, 3, 6), (2, 4, 4) or (3, 3, 3).
The remaining cases are hyperbolic.

The cyclic branched coverings with spherical groups for the trefoil knot (which is of type (2, 3))
are identified in the right hand side column of Table 1.

2.2. Irregular branched coverings over the trefoil knot

The right hand side column of Table 1 shows the subgroups of Γ identified in ([16] Table 1) as
corresponding to a minimal IC-POVM. Let us give a few more details on how to attach a MIC to some
coverings/subgroups of the trefoil knot fundamental group π1(T1). Columns 1 to 6 in Table 1 contain
information available in SnapPy [28], with d, ty, hom, cp, gens and CS the degree, the type, the first
homology group, the number of cusps, the number of generators and the Chern-Simons invariant of
the relevant covering, respectively. In column 7, a link is possibly identified by SnapPy when the
fundamental group and other invariants attached to the covering correspond to those of the link.
For our purpose, we are also interested in the possible recognition of a MIC behind some manifolds in
the table.

43



Symmetry 2018, 10, 773

Table 1. Coverings of degree d over the trefoil knot found from SnapPy [28]. The related subgroup of
modular group Γ and the corresponding IC-POVM [16] (when applicable) is in the right column.
The covering is characterized by its type ty, homology group hom (where 1 means Z), the number of
cusps cp, the number of generators gens of the fundamental group, the Chern-Simons invariant CS
and the type of link it represents (as identified in SnapPy). The links L7n1 (shown in Figure 3b) and
L6a3 (shown in Figure 3c) correspond to the Hesse SIC and the two-qubit IC, respectively. The case of
cyclic coverings corresponds to Brieskorn 3-manifolds as explained in the text: the spherical groups for
these manifolds is given at the right hand side column.

d ty hom cp Gens CS Link Type in [16]

2 cyc 1
3 + 1 1 2 −1/6

3 irr 1 + 1 2 2 1/4 L7n1 Γ0(2), Hesse SIC
. cyc 1

2 + 1
2 + 1 1 3 . A4

4 irr 1 + 1 2 2 1/6 L6a3 Γ0(3), 2QB IC
. irr 1

2 + 1 1 3 . 4A0, 2QB-IC
. cyc 1

3 + 1 1 2 . S4

5 cyc 1 1 2 5/6 A5
. irr 1

3 + 1 1 3 . 5A0, 5-dit IC

6 reg 1 + 1 + 1 3 3 0 L8n3 Γ(2), 6-dit IC
. cyc 1 + 1 + 1 1 3 . Γ′, 6-dit IC
. irr 1 + 1 + 1 3 3 .
. irr 1

2 + 1 + 1 2 3 . 3C0, 6-dit IC
. irr 1

2 + 1 + 1 2 3 . Γ0(4), 6-dit IC
. irr 1

2 + 1 + 1 2 3 . Γ0(5), 6-dit IC
. irr 1

2 + 1
2 + 1

2 + 1 1 4 .
. irr 1

3 + 1
3 + 1 1 3 .

7 cyc 1 1 2 −5/6
. irr 1 + 1 2 3 . NC 7-dit IC
. irr 1

2 + 1
2 + 1 1 4 . 7A0 7-dit IC

8 irr 1 + 1 2 2 −1/6
. cyc 1

3 + 1 2 2 .
. cyc 1

3 + 1 + 1 2 3 .
. cyc 1

6 + 1 1 4 . 8A0, ∼8-dit IC

For the irregular covering of degree 3 and first homology Z+Z, the fundamental group provided
by SnapPy is π1(M3) =

〈
a, b|ab−2a−1b2〉 that, of course, corresponds to a representative H of one of

the two conjugacy classes of subgroups of index 3 of the modular group Γ, following the theory of [27].
The organization of cosets of H in the two-generator group G =

〈
a, b|a2, y3〉 ∼= Γ thanks to the

Coxeter-Todd algorithm (implemented in the software Magma [34]) results in the permutation group
P = 〈3|(1, 2, 3), (2, 3)〉, as in ([16] Section 3.1). This permutation group is also the one obtained from
the congruence subgroup Γ0(2) ∼= S3 of Γ (where S3 is the three-letter symmetric group) whose
fundamental domain is in ([16] Figure 1b). Then, the eigenstates of the permutation matrix in S3 of
type (0, 1,±1) serve as magic/fiducial state for the Hesse SIC [15,16].

A similar reasoning applied to the irregular coverings of degree 4, and first homology Z+ Z

and Z
2 + Z leads to the recognition of congruence subgroups Γ0(3) and 4A0, respectively, behind

the corresponding manifolds. It is known from ([16] Section 3.2) that they allow the construction of
two-qubit minimal IC-POVMs. For degree 5, the equiangular 5-dit MIC corresponds to the irregular
covering of homology Z

3 +Z and to the congruence subgroup 5A0 in Γ (as in [16] Section 3.3).
Five coverings of degree 6 allow the construction of the (two-valued) 6-dit IC-POVM whose

geometry contain the picture of Borromean rings ([16] Figure 2c). The corresponding congruence
subgroups of Γ are identified in Table 1. The first, viz Γ(2), define a 3-manifold whose fundamental
group is the same as the one of the link L8n3. The other three coverings leading to the 6-dit IC are the
congruence subgroups γ′, 3C0, Γ0(4) and Γ0(5).
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3. Quantum Information from Universal Knots and Links

In the previous section, we found the opportunity to rewrite results about the existence and
construction of d-dimensional MICs in terms of the three-manifolds corresponding to some degree d
coverings of the trefoil knot T1. However, neither T1 nor the manifolds corresponding to its covering
are hyperbolic. In the present section, we proceed with hyperbolic (and universal) knots and links and
display the three-manifolds behind the low dimensional MICs. The method is as above in Section 2 in
the sense that the fundamental group of a 3-manifold M3 attached to a degree d-covering is the one of
a representative of the conjugacy class of subgroups of the corresponding index in the relevant knot
or link.

3.1. Three-Manifolds Pertaining to the Figure-of-Eight Knot

The fundamental group for the figure-of-eight knot K0 is

π1(S3 \ K0) =
〈

x, y|y ∗ x ∗ y−1xy = xyx−1yx
〉

.

and the number of d-fold coverings is in the list

ηd(K0) = {1, 1, 1, 2, 4, 11, 9, 10, 11, 38, . . .}.

Table 2 establishes the list of 3-manifolds corresponding to subgroups of index d ≤ 7 of the
universal group G = π1(S3 \ K0). The manifolds are labeled otetNn in [25] because they are oriented
and built from N = 2d tetrahedra, with n an index in the table. The identification of 3-manifolds of finite
index subgroups of G was first obtained by comparing the cardinality list ηd(H) of the corresponding
subgroup H to that of a fundamental group of a tetrahedral manifold in SnapPy table [28]. However,
there is a more straightforward way to perform this task by identifying a subgroup H to a degree d
covering of K0 [27]. The full list of d-branched coverings over the figure eight knot up to degree 8
is available in SnapPy. Extra invariants of the corresponding M3 may be found there. In addition,
the lattice of branched coverings over K0 was investigated in [35].

Table 2. Table of 3-manifolds M3 found from subgroups of finite index d of the fundamental group
π1(S3 \ K0) (alias the d-fold coverings of K0). The terminology in column 3 is that of Snappy [28].
The identified M3 is made of 2d tetrahedra and has cp cusps. When the rank rk of the POVM Gram
matrix is d2 the corresponding IC-POVM shows pp distinct values of pairwise products as shown.

d ty M3 cp rk pp Comment

2 cyc otet0400002, m206 1 2

3 cyc otet0600003, s961 1 3

4 irr otet0800002, L10n46, t12840 2 4 Mom-4s [36]
cyc otet0800007, t12839 1 16 1 2-qubit IC

5 cyc otet1000019 1 21
irr otet1000006, L8a20 3 15, 21
irr otet1000026 2 25 1 5-dit IC

6 cyc otet1200013 1 28
irr otet1200041 2 36 2 6-dit IC
irr otet1200039, otet1200038 1 31
irr otet1200017 2 33
irr otet1200000 2 36 2 6-dit IC

7 cyc otet1400019 1 43
irr otet1400002, L14n55217 3 49 2 7-dit IC
irr otet1400035 1 49 2 7-dit IC
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Let us give more details about the results summarized in Table 2. Using Magma, the conjugacy
class of subgroups of index 2 in the fundamental group G is represented by the subgroup on three
generators and two relations as follows H =

〈
x, y, z|y−1zx−1zy−1x−2, z−1yxz−1yz−1xy

〉
, from which

the sequence of subgroups of finite index can be found as ηd(M3) = {1, 1, 5, 6, 8, 33, 21, 32, · · · }.
The manifold M3 corresponding to this sequence is found in Snappy as otet0400002, alias m206.

The conjugacy class of subgroups of index 3 in G is represented as

H =
〈

x, y, z|x−2zx−1yz2x−1zy−1, z−1xz−2xz−2y−1x−2zy
〉

,

with ηd(M3) = {1, 7, 4, 47, 19, 66, 42, 484, · · · } corresponding to the manifold otet0600003, alias s961.
As shown in Table 2, there are two conjugacy classes of subgroups of index 4 in G corresponding to

tetrahedral manifolds otet0800002 (the permutation group P organizing the cosets is Z4) and otet0800007

(the permutation group organizing the cosets is the alternating group A4). The latter group/manifold
has fundamental group

H =
〈

x, y, z|yx−1y−1z−1xy−2xyzx−1y, zx−1yx−1yx−1zyx−1y−1z−1xy−1
〉

,

with cardinality sequences of subgroups as ηd(M3) = {1, 3, 8, 25, 36, 229, 435 · · · }. To H is associated
an IC-POVM [15,16] which follows from the action of the two-qubit Pauli group on a magic/fiducial
state of type (0, 1,−ω6, ω6 − 1), with ω6 = exp(2iπ/6) a six-root of unity.

For index 5, there are three types of 3-manifolds corresponding to the subgroups H.
The tetrahedral manifold otet1000026 of cardinality sequence ηd(M3) = {1, 7, 15, 88, 123, 802, 1328 · · · },
is associated to a 5-dit equiangular IC-POVM, as in ([15] Table 5).

For index 6, the 11 coverings define six classes of 3-manifolds and two of them: otet1200041 and
otet1200000 are related to the construction of ICs. For index 7, one finds three classes of 3-manifolds
with two of them: otet1400002 (alias L14n55217) and otet1400035 are related to ICs. Finally, for index
7, 3 types of 3-manifolds exist, two of them relying on the construction of the 7-dit (two-valued) IC.
For index 8, there exists 6 distinct 3-manifolds (not shown) none of them leading to an IC.

A Two-Qubit Tetrahedral Manifold

The tetrahedral three-manifold otet0800007 is remarkable in the sense that it corresponds to the
subgroup of index 4 of G that allows the construction of the two-qubit IC-POVM. The corresponding
hyperbolic polyhedron taken from SnapPy is shown in Figure 4a. Of the 29 orientable tetrahedral
manifolds with at most 8 tetrahedra, 20 are two-colorable and each of those has at most 2 cusps. The 4
three-manifolds (with at most 8 tetrahedra) identified in Table 2 belong to the 20’s and the two-qubit
tetrahedral manifold otet0800007 is one with just one cusp ([37] Table 1).

Figure 4. Two platonic three-manifolds leading to the construction of the two-qubit MIC. Details are
given in Tables 2 and 3.
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Table 3. A few 3-manifolds M3 found from subgroups of the fundamental group associated to the
Whitehead link. For d ≥ 4, only the M3’s leading to an IC are listed.

d ty M3 cp rk pp Comment

2 cyc ooct0200003, t12066, L8n5 3 2 Mom-4s [36]
cyc ooct0200018, t12048 2 2 Mom-4s [36]

3 cyc ooct0300011, L10n100 4 3
cyc ooct0300018 2 3
irr ooct0300014, L12n1741 3 9 1 qutrit Hesse SIC

4 irr ooct0400058 4 16 2 2-qubit IC
irr ooct0400061 3 16 2 2-qubit IC

5 irr ooct0500092 3 25 1 5-dit IC
irr ooct0500285 2 25 1 5-dit IC
irr ooct0500098, L13n11257 4 25 1 5-dit IC

6 cyc ooct0606328 5 36 2 6-dit IC
irr ooct0601972 3 36 2 6-dit IC
irr ooct0600471 4 36 2 6-dit IC

3.2. Three-Manifolds Pertaining to the Whitehead Link

One could also identify the 3-manifold substructure of another universal object, viz the Whitehead
link L0 [38].

The cardinality list corresponding to the Whitehead link group π1(L0) is

ηd(L0) = {1, 3, 6, 17, 22, 79, 94, 412, 616, 1659 . . .},

Table 3 shows that the identified 3-manifolds for index d subgroups of π1(L0) are aggregates of d
octahedra. In particular, one finds that the qutrit Hesse SIC can be built from ooct0300014 and that the
two-qubit IC-POVM may be built from ooct0400058. The hyperbolic polyhedron for the latter octahedral
manifold taken from SnapPy is shown in Figure 4b. The former octahedral manifold follows from the
link L12n1741 shown in Figure 5a and the corresponding polyhedron taken from SnapPy is shown in
Figure 5b.

Figure 5. (a) The link L12n1741 associated to the qutrit Hesse SIC, (b) The octahedral manifold
ooct0300014 associated to the 2-qubit IC.
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3.3. A Few Three-Manifolds Pertaining to Borromean Rings

Three-manifolds corresponding to coverings of degree 2 and 3 of the 3-manifold branched along
the Borromean rings L6a4 (that is a not a (3,3)-torus link but an hyperbolic link) (see Figure 1c) are
given in Table 4. The identified manifolds are hyperbolic octahedral manifolds of volume 14.655
(for the degree 2) and 21.983 (for the degree 3).

Table 4. Coverings of degrees 2 to 4 branched over the Borromean rings. The identification of the
corresponding hyperbolic 3-manifold M3 is at the 5th column. Only two types of 3-manifolds allow
the building of the Hesse SIC. The two 3-manifolds of degree 4 allow the construction of the two-qubit
MIC to be identified by the cardinality structure of their subgroups/coverings.

d ty hom cp M3 Comment

2 cyc 1
2 + 1

2 + 1 + 1 + 1 3 ooct0400259
. . 1

2 + 1 + 1 + 1 + 1 4 ooct0400055
. . 1 + 1 + 1 + 1 + 1 5 ooct0400048, L12n2226

3 cyc 1
3 + 1

3 + 1 + 1 + 1 3 ooct0607427
. . 1

3 + 1 + 1 + 1 + 1 + 1 + 1 5 ooct0600463
. . 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 7 ooct0600411
. irr 1 + 1 + 1 + 1 4 ooct0600466 Hesse SIC
. . 1 + 1 + 1 + 1 + 1 + 1 4 ooct0600398 Hesse SIC
. . 1 + 1 + 1 + 1 + 1 + 1 5 ooct0600407, L14n63856

4 irr 1
2 + 1

2 + 1 + 1 + 1 + 1 4 {63, 300, 10747 · · · } 2QB MIC
. . 1

2 + 1 + 1 + 1 + 1 + 1 + 1 4 {127, 2871, 478956, · · · } 2QB MIC

4. A Few Dehn Fillings and Their POVMs

To summarize our findings of the previous section, we started from a building block, a knot
(viz the trefoil knot T1) or a link (viz the figure-of-eight knot K0) whose complement in S3 is a 3-manifold
M3. Then a d-fold covering of M3 was used to build a d-dimensional POVM, possibly an IC. Now we
apply a kind of ‘phase surgery’ on the knot or link that transforms M3 and the related coverings
while preserving some of the POVMs in a way to be determined. We will start with our friend T1 and
arrive at a few standard 3-manifolds of historic importance, the Poincaré homology sphere [alias the
Brieskorn sphere Σ(2, 3, 5)], the Brieskorn sphere Σ(2, 3, 7) and a Seifert fibered toroidal manifold Σ′.
Then we introduce the 3-manifold ΣY resulting from 0-surgery on the figure-of-eight knot [39]. Later in
this section, we will show how to use the {3, 5, 3} Coxeter lattice and surgery to arrive at a hyperbolic
3-manifold Σ120e of maximal symmetry whose several coverings (and related POVMs) are close to the
ones of the trefoil knot [40].

Let us start with a Lens space L(p, q) that is 3-manifold obtained by gluing the boundaries of
two solid tori together, so that the meridian of the first solid torus goes to a (p, q)-curve on the second
solid torus [where a (p, q)-curve wraps around the longitude p times and around the meridian q
times]. Then we generalize this concept to a knot exterior, i.e., the complement of an open solid torus
knotted like the knot. One glues a solid torus so that its meridian curve goes to a (p, q)-curve on the
torus boundary of the knot exterior, an operation called Dehn surgery ([1] (p. 275), [24] (p. 259), [41]).
According to Lickorish’s theorem, every closed, orientable, connected 3-manifold is obtained by
performing Dehn surgery on a link in the 3-sphere. For example, surgeries on the trefoil knot allow to
build the most important spherical 3-manifolds—the ones with a finite fundamental group—that are
the basis of ADE correspondence. The acronym ADE refers to simply laced Dynkin diagrams that
connect apparently different objects such as Lie algebras, binary polyhedral groups, Arnold’s theory of
catastophes, Brieskorn spheres and quasicrystals, to mention a few [42].
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4.1. A Few Surgeries on the Trefoil Knot

The Poincaré Homology Sphere

The Poincaré dodecahedral space (alias the Poincaré homology sphere) was the first example of a
3-manifold not the 3-sphere. It can be obtained from (−1, 1) surgery on the left-handed trefoil knot
T1 [43].

Let p, q, r be three positive integers and mutually coprime, the Brieskorn sphere Σ(p, q, r) is the
intersection in C3 of the 5-sphere S5 with the surface of equation zp

1 + zq
2 + zr

3 = 1. The homology of a
Brieskorn sphere is that of the sphere S3. A Brieskorn sphere is homeomorphic but not diffeomorphic to
S3. The sphere Σ(2, 3, 5) may be identified to the Poincaré homology sphere. The sphere Σ(2, 3, 7) [39]
may be obtained from (1, 1) surgery on T1. Table 5 provides the sequences ηd for the corresponding
surgeries (±1, 1) on T1. Plain digits in these sequences point out the possibility of building ICs of the
corresponding degree. This corresponds to a considerable filtering of the ICs coming from T1.

Table 5. A few surgeries (column 1), their name (column 2) and the cardinality list of d-coverings
(alias conjugacy classes of subgroups). Plain characters are used to point out the possible construction of
an IC-POVM in at least one the corresponding three-manifolds (see [16] and Section 2 for the ICs
corresponding to T1).

T Name ηd(T)

T1 trefoil {1,1,2,3,2, 8,7,10,10,28, 27,88,134,171,354}

T1(−1, 1) Σ(2, 3, 5) {1,0,0,0,1, 1,0,0,0,1, 0,1,0,0,1}
T1(1, 1) Σ(2, 3, 7) {1,0,0,0,0, 0,2,1,1,0, 0,0,0,9,3}
T1(0, 1) Σ′ {1,1,2,2,1, 5,3,2,4,1, 1,12,3,3,4}

K0(0, 1) ΣY {1,1,1,2,2, 5,1,2,2,4, 3,17,1,1,2}

v2413(−3, 2) Σ120e {1,1,1,4,1, 7,2,25,3,10, 10,62,1,30,23}

For instance, the smallest IC from Σ(2, 3, 5) has dimension five and is precisely the one
coming from the congruence subgroup 5A0 in Table 1. However, it is built from a non modular
(fundamental) group whose permutation representation of the cosets is the alternating group
A5 ∼= 〈(1, 2, 3, 4, 5), (2, 4, 3)〉 (compare [15] Section 3.3).

The smallest dimensional IC derived from Σ(2, 3, 7) is 7-dimensional and two-valued, the same
as the one arising from the congruence subgroup 7A0 given in Table 1. However, it arises from a
non modular (fundamental) group with the permutation representation of cosets as PSL(2, 7) ∼=
〈(1, 2, 4, 6, 7, 5, 3), (2, 5, 3)(4, 6, 7)〉.

4.2. The Seifert Fibered Toroidal Manifold Σ′

An hyperbolic knot (or link) in S3 is one whose complement is 3-manifold M3 endowed with a
complete Riemannian metric of constant negative curvature, i.e., it has a hyperbolic geometry and
finite volume. A Dehn surgery on a hyperbolic knot is exceptional if it is reducible, toroidal or Seifert
fibered (comprising a closed 3-manifold together with a decomposition into a disjoint union of circles
called fibers). All other surgeries are hyperbolic. These categories are exclusive for a hyperbolic knot.
In contrast, a non-hyperbolic knot such as the trefoil knot admits a toroidal Seifert fiber surgery Σ′

obtained by (0, 1) Dehn filling on T1 [44].
The smallest dimensional ICs built from Σ′ are the Hesse SIC that is obtained from the congruence

subgroup Γ0(2) (as for the trefoil knot) and the two-qubit IC that comes from a non modular
fundamental group [with cosets organized as the alternating group A4

∼= 〈(2, 4, 3), (1, 2, 3)〉].
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4.3. Akbulut’s Manifold ΣY

Exceptional Dehn surgery at slope (0, 1) on the figure-of-eight knot K0 leads to a remarkable
manifold ΣY found in [39] in the context of 3-dimensional integral homology spheres smoothly
bounding integral homology balls. Apart from its topological importance, we find that some of its
coverings are associated to already discovered ICs and those coverings have the same fundamental
group π1(ΣY).

The smallest IC-related covering (of degree 4) occurs with integral homology Z and the congruence
subgroup Γ0(3) also found from the trefoil knot (see Table 1). Next, the covering of degree 6 and
homology Z

5 + Z leads to the 6-dit IC of type 3C0 (also found from the trefoil knot). The next case
corresponds to the (non-modular) 11-dimensional (3-valued) IC.

4.4. The Hyperbolic Manifold Σ120e

The hyperbolic manifold closest to the trefoil knot manifold known to us was found in [40].
The goal in [40] is the search of—maximally symmetric—fundamental groups of 3-manifolds.
In two dimensions, maximal symmetry groups are called Hurwitz groups and arise as quotients of the
(2, 3, 7)-triangle groups. In three dimensions, the quotients of the minimal co-volume lattice Γmin of
hyperbolic isometries, and of its orientation preserving subgroup Γ+

min, play the role of Hurwitz groups.
Let C be the {3, 5, 3} Coxeter group, Γmin the split extension C �Z2 and Γ+

min one of the index two
subgroups of Γmin of presentation

Γ+
min =

〈
x, y, z|x3, y2, z2, (xyz)2, (xzyz)2, (xy)5

〉
.

According to ([40] Corollary 5), all torsion-free subgroups of finite index in Γ+
min have index

divisible by 60. There are two of them of index 60, called Σ60a and Σ60b, obtained as fundamental
groups of surgeries m017(−4, 3) and m016(−4, 3). Torsion-free subgroups of index 120 in Γ+

min are
given in Table 6. It is remarkable that these groups are fundamental groups of oriented three-manifolds
built with a single icosahedron except for Σ120e and Σ120g.

Table 6. The index 120 torsion-free subgroups of Γ+
min and their relation to the single isosahedron

3-manifolds [40]. The icosahedral symmetry is broken for Σ120e (see the text for details).

Manifold T Subgroup ηd(T)

oicocld0100001 = s897(−3, 2) Σ120a {1,0,0,0,0, 8,2,1,1,8}
oicocld0100000 = s900(−3, 2) Σ120b {1,0,0,0,5, 8,10,15,5,24}

oicocld0100003 = v2051(−3, 2) Σ120c {1,0,0,0,0, 4,8,12,6,6}
oicocld0100002 = s890(3, 2) Σ120d {1,0,1,5,0, 9,0,35,9,2}

v2413(−3, 2) �= oicocld0100004 Σ120e {1,1,1,4,1, 7,2,25,3,10}
oicocld0100005 = v3215(1, 2) Σ120 f {1,0,0,0,0, 14,10,5,10,17}

v3318(−1, 2) Σ120g {1,3,1,2,0, 11,0,23,12,14}

The group Σ120e is special in the sense that many small dimensional ICs may be built from it in
contrast to the other groups in Table 6. The smallest ICs that may be built from Σ120e are the Hesse SIC
coming from the congruence subgroup Γ0(2), the two-qubit IC coming the congruence subgroup 4A0

and the 6-dit ICs coming from the congruence subgroups Γ(2), 3C0 or Γ0(4) (see [16] Section 3 and
Table 1). Higher dimensional ICs found from Σ120e do not come from congruence subgroups.

5. Conclusions

The relationship between 3-manifolds and universality in quantum computing has been explored
in this work. Earlier work of the first author already pointed out the importance of hyperbolic
geometry and the modular group Γ for deriving the basic small dimensional IC-POVMs. In Section 2,
the move from Γ to the trefoil knot T1 (and the braid group B3) to non-hyperbolic 3-manifolds could be
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investigated by making use of the d-fold coverings of T1 that correspond to d-dimensional POVMs
(some of them being IC). Then, in Section 3, we went on to universal links (such as the figure-of-eight
knot, Whitehead link and Borromean rings) and the related hyperbolic platonic manifolds as new
models for quantum computing based POVMs. Finally, in Section 4, Dehn fillings on T1 were used
to explore the connection of quantum computing to important exotic 3-manifolds (i.e., Σ(2, 3, 5) and
Σ(2, 3, 7)), to the toroidal Seifert fibered Σ′, to Akbulut’s manifold ΣY and to a maximum symmetry
hyperbolic manifold Σ120e slightly breaking the icosahedral symmetry. It is expected that our work will
have importance for new ways of implementing quantum computing and for the understanding of the
link between quantum information and cosmology [45–47]. A subsequent paper of ours develops the
field of 3-manifold based UQC with its relationship to Bianchi groups [48].
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Abstract: In this paper, we will describe a topological model for elementary particles based on
3-manifolds. Here, we will use Thurston’s geometrization theorem to get a simple picture: fermions
as hyperbolic knot complements (a complement C(K) = S3 \ (K × D2) of a knot K carrying a
hyperbolic geometry) and bosons as torus bundles. In particular, hyperbolic 3-manifolds have
a close connection to number theory (Bloch group, algebraic K-theory, quaternionic trace fields),
which will be used in the description of fermions. Here, we choose the description of 3-manifolds
by branched covers. Every 3-manifold can be described by a 3-fold branched cover of S3 branched
along a knot. In case of knot complements, one will obtain a 3-fold branched cover of the 3-disk D3

branched along a 3-braid or 3-braids describing fermions. The whole approach will uncover new
symmetries as induced by quantum and discrete groups. Using the Drinfeld–Turaev quantization,
we will also construct a quantization so that quantum states correspond to knots. Particle properties
like the electric charge must be expressed by topology, and we will obtain the right spectrum of
possible values. Finally, we will get a connection to recent models of Furey, Stoica and Gresnigt using
octonionic and quaternionic algebras with relations to 3-braids (Bilson–Thompson model).

Keywords: standard model of elementary particles; 4-manifold topology; particles as 3-Braids; branched
coverings; knots and links; charge as Hirzebruch defect; umbral moonshine; number of generations

1. Introduction

General relativity (GR) deepens our view on space-time. In parallel, the appearance of quantum
field theory (QFT) gives us a different view of particles, fields and the measurement process.
One approach for the unification of QFT and GR, to a quantum gravity, starts with a proposal
to quantize GR and its underlying structure, space-time. Here, there is a unique opinion in the
community about the relation between geometry and quantum theory: the geometry as used in GR is
classical and should emerge from a quantum gravity in the usual limit that Planck’s constant tends
to zero. Most theories went a step further and try to get the spacetime directly from quantum theory.
As a consequence, the used model of a smooth manifold cannot be used to describe quantum gravity.
However, currently, there is no real sign for a discrete spacetime structure or higher dimensions
in current experiments [1]. Therefore, in this work, we conjecture that the model of spacetime as
a smooth 4-manifold can be also used in the quantum gravitational regime. As a consequence,
one has to find geometrical/topological representations for quantities in QFT (submanifolds for
particles or fields, etc.) as well in order to quantize GR. In this paper, we will tackle this problem
to get a geometrical/topological description of the standard model of elementary particle physics.
Recently, there were efforts by Furey [2–5], Gresnigt [6–8] and Stoica [9] to use octonions and Clifford
algebras to get a coherent model to describe the particle generations in the standard model. In the
past, the stability of matter was related to topology like in the approach of Lord Kelvin [10] with
knotted aether vortices. The proposal to derive matter from space was considered by Clifford as well
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by Einstein, Eddington, Schrödinger and Wheeler with only partial success (see [11,12]). Giulini [13]
discussed the status of geometrodynamics in establishing particle properties like spin from spacetime
by using special solutions of general relativity. The usage of knots and links to model particles,
like the electron, neutrinos, etc., was firstly observed by Jehle [14]. The phenomenological description
of particle properties by using the quantum group SUq(n) is given in the work of Gavrilik [15].
Here, the (deformation) parameter q of SUq(n) was linked with the flavor mixing angle (Cabibbo angle).
Furthermore, torus knots as given by 2-braids were associated with vector mesons (vector quarkonia)
of different flavors. Later, Finkelstein [16] used the representation of knots by quantum groups for his
particle model. Similar ideas are discussed in the model of Bilson–Thompson [17] in its loop theoretic
extension [18]. Even for the Bilson–Thompson model, Gresnigt found a link between Furey’s approach
and this model. However, some properties of the Bilson–Thompson model remained mysterious,
like the definition of the charge. Open is also the meaning of the braiding. If there is a connection
between spacetime and matter, then one has to construct the known fermions and bosons directly.
Here, it seems that the main problem is the determination of the underlying spacetime. In this paper,
we will follow this way with an heuristic argument for the spacetime to be the K3 surface in Section 3.
Then, we will analyze this spacetime by using branched covers to find two suitable substructures, a knot
complement representing the fermions and a link complement to represent the bosons. Here, we profit
from ideas by Duston [19–21] as well from the work of Denicola, Marcolli and al-Yasry [22]. As a
byproduct, we also found interesting relations to octonions. The representation of the knot and link
complements by branched covers gives the link to the original Bilson–Thompson model [17] but also
to Gresnigt’s work [6]. In Section 5, we will discuss the electric charge and construct the corresponding
operator by using the underlying U(1) gauge theory by using the Hirzebruch defect. Finally, we will
obtain the correct charge spectrum: fermions carry the charges 0,± 1

3 ,± 2
3 ,±1 in units of the unit charge

e. Here, the factor 1
3 is related to 4-dimensional topology (Hirzebruch signature theorem). In Section 6,

we will discuss the independence of the particular braid from the particle. The braid is connected with
the state of the particle as shown by using the Drinfeld–Turaev quantization. Finally, we finish the
paper with some speculations about the number of generations, given by the number of S2 × S2 parts
in the spacetime (K3 surface), and a global symmetry, the group PGL(3, 4) of 3× 3 matrices of the
4-element field F4, induced from the K3 surface by using umbral moonshine.

Before we start with the description of the model, we will discuss the key arguments and scope
of the model. The model is based on a smooth spacetime that is described by a smooth 4-manifold.
First, it is argued that this spacetime is the K3 surface where the evolution of the cosmos is submanifold.
By using this model, the calculation of cosmic parameters (cosmological constant, inflation parameters,
etc.) matches with the experimental results. For the following, we use the characterization of 4-manifold
(i.e., the spacetime) by surfaces that are connected to complements of links and knots (3-manifolds with
boundary). Interestingly, both 3-manifolds have a meaning by our previous work: knot complements
are fermions and link complements are bosons. Here, we find a representation of both 3-manifolds
by braids of three strands (3-braids), which is the connection to the work of Bilson–Thompson and
Gresnigt. In case of the K3 surface as spacetime, the surfaces mentioned above are arranged with a
strong connection to octonions, which is the link to Furey’s work. To connect fermions, one needs a
special class of link complements, so-called torus bundles, which can be interpreted as gauge fields.
Interestingly, there are only three classes of torus bundles and we were able to connect them with the
gauge groups U(1), SU(2), SU(3). The main result of the paper is definition and interpretation of the
electric charge. The electric charge is a topological invariant (Hirzebruch defect). For the fermions
(knot complements), we obtained the spectrum {0,±1,±2,±3} which agrees with the observation
(normalized in e/3 units). The discussion about the quantization of the model and the number of
generations closes the paper.

The model uses a classical spacetime. Quantum properties are not included in an obvious way.
We obtained the correct charge spectrum, but we do not know the direct connection between knot
complement and fermion (electron, neutrino, quark). There are ideas to use a quantization by a change
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of the smoothness structure, known as Smooth Quantum Gravity [23]. In principle, the number of
generations is connected with the spacetime. We got the minimal value of three generations, but it is
only a lower bound. The model produces only the particles of the standard model. No supersymmetry
or other extensions of the standard model can be derived by this model. Currently, we also have no
idea to calculate the coupling constants and masses. It seems that these parameters are connected with
the topological property of the spacetime.

2. Preliminaries: Branched Coverings of 3- and 4-Manifolds

According to Alexander (see [24] for instance), every manifold Mn can be represented as p-fold
branched covering π : Mn → Sn along an n− 2 dimensional subcomplex Nn−2 ⊂ Sn, the branching
set. In detail, the map π is a covering except for the branching set, i.e., for every point b ∈ Sn \ Nn−2

the map π−1(b) consists of p points and the neighborhood U(b) is homeomorphic to one component
π−1U(b). Then, Mn \ π−1(Nn−2)→ Sn \ Nn−2 is a p−fold covering. Usually, Nn−2 has the structure
of a simplicial subcomplex. The p−fold covering is completely determined by the representation
π1(Sn \ Nn−2)→ Sp in the permutation group Sp of p symbols. Before going into the details, we will
look at some examples. First, there are no branched coverings for 1-manifolds except for a trivial
one. The first interesting example is given by a compact 2-manifold, i.e., by a surface of genus g.
Here, the branching set consists of a finite number of points (0-dimensional branching set). The
branching set of 3-manifolds is a one-dimensional, complex and we will later see that knots and links
are the appropriated structures. In case of 4-manifolds, one has a two-dimensional complex as a
branching set that was shown to be a surface. These facts are easy to understand, but one parameter of
a branched covering is open: how many folds are minimally needed to represent every manifold in a
fixed dimension, or, how large is p minimally for a manifold of dimension n?

2.1. As Warmup: Branched Coverings of 2-Manifolds

Let us start with the simplest case, the surface. By results of Riemann and Hurwitz, every surface
can be represented by a 2-fold covering of S2. As example, let us take the torus T2 with the 2-fold
covering T2 → S2 branched along four points. The idea of the construction is simple: choose a
symmetry axis so that the genus g surface can be generated by a rotation (see Figure 1).

Figure 1. 2-fold covering of torus, α is the equator and the four-point branching set.

This axis meets the surface in 4g points which are the branching points of the covering.

2.2. Branched Coverings of 3-Manifolds

For a 3-manifold, one has a one-dimensional, branching set and a result of Alexander states that
this branching set is a link with a finite number of components. Later, Hirsch, Hilden and Montesinos
[25–27] obtained independently the result that every closed, compact 3-manifold can be represented
as a 3-fold branched covering of the 3-sphere branched along a knot. As an example, consider the
Poincare sphere Σ(2, 3, 5) that can be represented by a 3-fold covering Σ(2, 3, 5)→ S3 branched along
the (2, 5) or (5, 2) torus knot. Now, let us consider a closed, compact 3-manifold N3 with a 3-fold
branched covering N3 → S3 branched along a knot K. It means that the map N3 \ K → S3 \ K is a real
3 : 1 map. Interestingly, there is a diffeomorphism between N3 \ K and S3 \ K so that the 3 : 1 covering
map is now given by S3 \ K → S3 \ K. Furthermore, the 3-fold covering is completely determined by
the map π1(S3 \ K)→ S3, the representation of the fundamental group into the permutation group S3
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of three letters. A simple extension of the S3 by considering the order of the permutations gives the
braid group B3 of three strands. In principle, the minimal number of folds p = 3 is the root for the
description of particles by 3-braids, as shown later on.

2.3. Branched Covering of 4-Manifolds

In a similar manner, one would expect that every 4-manifold M4 can be represented as 4-fold
branched covering of S4 branched along a surface. Piergallini [28] was able to show something similar,
but the surface is only immersed and admits a finite number of singularities (cusps and nodes). If one
adds an additional sheet, getting a 5-fold branched covering, then one can omit these singularities
(thus getting a locally flat embedded surface) [29]. For a better understanding, we will discuss the
way to this result shortly. In [28], Piergallini considered the possible transformations or changes of
the branching set for a 3-manifold N3, i.e., the knot. Amazingly, he found two possible changes (see
Figure 2).

Figure 2. Branching set changes, Left: Move 1, Right: Move 2 (so-called Montesino moves).

All changes do not affect the underlying 3-manifold N3, i.e., he found different knots and links
representing the same 3-manifold as a 3-fold branched cover. Then, he used this result to find a
branched covering for a 4-manifold. For that purpose, he introduced the concept of an additional
leaf or fold in the covering, i.e., if a 3-manifold N3 is represented by a 3-fold covering, then it is also
represented by a 4-fold covering. Then, he extended this 4-fold covering of N3 to a 4-fold covering of
N3 × [0, 1] (i.e., a trivial cobordism). At the same time, the knot K1 as branching set of N3at one side of
N3 × [0, 1] (i.e., N3 × {0}) is related to the changed knot K2 as branching set of N3 on the other side of
N3 × [0, 1] (i.e., N3 × {1}). For the covering of N3 × [0, 1], one will get a surface with two boundaries,
the disjoint union K1 � K2 of the two branching knots. This procedure can be done for the two possible
changes [30]. For the first change, Piergallini got the trefoil knot at the boundary, whereas, for the
second case, he obtained the Hopf link (see the Figures 3).

Figure 3. Boundary of the branching set change—Left: Move 1 leading to the Trefoil knot, Right: Move
2 leading to the Hopf link.

In dimension 4, one will get the cone over the trefoil, also known as cusp, and the cone over the
Hopf link, also known as node, as singularities of the surface as a branching set of the 4-manifold.
Expressed differently, the trefoil knot is the link of the cusp singularity z2 + w3; the Hopf link (oriented
correctly) is the link of the node singularity z2 + w2. As explained in the previous subsection, we have
to consider the two fundamental groups GP = π1(S3 \ {tre f oil}) and GWW = π1(S3 \ {Hop f }) for
the corresponding branched cover. Both groups are known and can be simply calculated to be

GP = 〈a, b | aba = bab〉 = B3 GWW = 〈a, b, c | ab−1a−1b〉 = Z⊕Z, (1)

which is a surprising result. From the point of 4-manifolds we will get two possible 3-manifolds as
boundary of the singularities: a 3-manifold (knot complement) with one boundary and a 3-manifold
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(link complement) with two boundaries. These two 3-manifolds can be simply interpreted: the knot
complement has one boundary component and can be seen as a fermion (see also [31]) and the link
complement has two boundary components and can be interpreted as interaction (see also [32]).

2.4. Branched Coverings of Knot Complements

Now, we will describe the case of a 3-manifold (the knot complement) with boundary a torus T2.
First, we will change the 2-fold covering of the torus to a 3-fold covering by adding a trivial sheet. For
that purpose, we consider the 2-fold branched covering T2 → S2 and add a 2-sphere T2#S2 → S2#S2

which changes nothing (S#S2 is diffeomorphic to S for every surface S). However, at the same time,
we will obtain a 3-fold covering (see Figure 4).

Figure 4. 3-fold covering torus.

For a 3-manifold Σ with boundary T2, one has to consider a branched covering Σ → S3 \
D3(3-sphere with one puncture or p punctures for p boundary components). For the construction of
the covering, one needs another representation of a 3-manifold, the Heegard decomposition. There, one
considers two handle bodies Hg, H′g of genus g, i.e., the sum of g copies of the solid torus D2 × S1. The
gluing Hg ∪φ H′g of these handle bodies along the boundary using a diffeomorphism φ : ∂Hg → ∂H′g(to
be precise: φ is an element of the mapping class group) produces every compact, closed 3-manifold.
For the 3-sphere, one obtains a decomposition H1 ∪ H′1 using two solid tori where the meridian of H1

is mapped to the longitude of H′1 and vice versa. Hg can be obtained by a branched covering Hg → D3

with a branching set g + 2 arcs (see Figure 5).

Figure 5. Covering of the handle body.

The diffeomorphism φ is represented by a braid connecting the two handle bodies where the
braid closes above and below to get a link. In case of a 3-manifold with a boundary, the braid closes
only on one side and we obtain a braid again (or, more generally, a tangle), see Figure 6.

Figure 6. Left: branching set of knot complement (6-plat), Right: 3-Braid as 6-Braid.

The underlying braid must be also a 3-braid but represented as a 6-braid.

3. Reconstructing a Spacetime: The K3 Surface and Particle Physics

After so many years of experimental research, the standard model of particle physics and of
cosmology as well general relativity are confirmed with high precision. There is no real contradicting
result which shows the necessity to introduce new physics. An exception may be cosmology with
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the unknown components of dark matter and dark energy. However, this situation is by no means
satisfying. Both standard models have a bunch of free parameters (19 parameters in particle physics,
for instance). If there is no sign for new physics, how did we get these parameters? Here, we will
argue that these parameters can be determined by topology. However, at first glance, this idea seems
hopeless. There are infinitely many suitable topologies for the spacetime, seen as 4-manifold, and, for
the space, seen as 3-manifold. Here, we will go a different way. Why not try to determine the spaceM
of all possible spacetime-events? Thus, let me start with a definition: letM be the space of all possible
spacetime events, i.e., the set of all spacetime events carrying a manifold structure. In principle,M can
be identified with the spacetime. Then, a specific physical situation is an embedding of a 3-manifold
intoM, a dynamics is an embedding of a cobordism between 3-manifolds intoM. Here, we assume
implicitly that everything can be geometrically/topologically expressed as submanifolds (see [31,32]).
In the following, we will try to discuss this approach and how far one can go. Some heuristic arguments
are rather obvious:

1. M is a smooth 4-manifold,
2. any sequence of spacetime event has to converge to a spacetime event and
3. any loop (time-like or not) must be contracted.

A dynamics is a mapping of a spacetime event to a new spacetime event. It is usually smooth
(differential equations), motivating the first argument. The second argument expresses the fact that
any initial spacetime event must converge to a final spacetime event, or the limit of any sequence of
spacetime events must converge to a spacetime event. Then,M is a compact, smooth 4-manifold. The
usual spacetime is an open subset ofM. The third argument above is motivated to neglect time-like
loops. The spacetime is an open subset of M or the spacetime is embedded in M. Now, consider
a loop in the spacetime. By changing the embedding via diffeomorphisms (this procedure is called
isotopy), every loop is contractable. Therefore, this argument implies that there is no time-like loops
(implying causality). Finally,M is a compact, simply connected, smooth 4-manifold.

Now, we will restrictM in a manner so that we are able to determine it. For the following, we
implicitly assume that the equations of general relativity are valid without any restrictions. Then, the
vacuum equations are equivalent to

Rμν = 0,

demanding Ricci-flatness. However, as shown in [33,34] and in recent years in [23,31,32], the coupling
to matter can be described by a change of the smoothness structure. Therefore, the modification of the
smoothness structure will produce matter (or sources of gravity). However, at the same time, we need
a smoothness structure that can be interpreted as a vacuum given by a Ricci-flat metric. Therefore, we
will demand that

1. M has to admit a smoothness structure with Ricci-flat metric representing the vacuum.

Interestingly, these four demands are restrictive enough to determine the topology ofM. With
the help of Yau’s seminal work [35], we will obtain that M is homeomorphic to the K3 surface, using
Yaus’s work that there is only one compact, simply connected Ricci-flat 4-manifold. However, it is
known by the work of LeBrun [36] that there are non-Ricci-flat smoothness structures. In the next step,
we will determine the smoothness structure ofM. For that purpose, we will present some deep results
in differential topology of 4-manifolds:

• there is a compact, contactable submanifold A ⊂ M (called Akbulut cork) so that cutting out
Aand reglue it (by an involution) will produce a new smoothness structure,

• M splits topologically into

|E8 ⊕ E8|#
(

S2 × S2
)

#
(

S2 × S2
)

#
(

S2 × S2
)

︸ ︷︷ ︸
3(S2×S2)

= 2|E8|#3(S2 × S2) (2)
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two copies of the E8 manifold and three copies of S2 × S2 and
• the 3-sphere S3 is a submanifold of A.

In [37], we already discussed this case. Interestingly, there is always a topological 4-manifold
for all combinations of E8 and S2 × S2, but not all topological 4-manifolds are smooth manifolds. Let
us consider the 4-manifold that splits topologically into p copies of the |E8|manifold and q copies of
S2 × S2 or

p|E8|#q
(

S2 × S2
)

.

Then, this 4-manifold is smoothable for every q but p = 0 and the first combination for p �= 0 is the
pair of numbers p = 2, q = 3 (which is the K3 surface). Any other combination (p = 2, q < 3 or every q
and p = 1) is forbidden as shown by Donaldson [38].

Now, we consider the smooth K3 surface that is Ricci-flat, simply connected, smooth. The main
part in the following discussion will be the use of the smoothness condition. As discussed above,
the smoothness structure is determined by the Akbulut cork A. Furthermore, as argued above, the
smoothness structure is strongly related to the appearance of matter and this process is strongly
connected to the evolution of our cosmos. It is known as reheating after the inflationary phase.
Therefore, the Akbulut cork (including its embedding) should represent the inflationary phase with
reheating.

The Akbulut cork is built from a homology 3-sphere that will become the boundary ∂A. The
difference to a usual 3-sphere S3 is given by the so-called fundamental group, the equivalence class of
closed loops up to deformation (homotopy) with concatenation as group operation. In principle, one
constructs a cobordism between S3 and the homology 3-sphere ∂A. All elements of the fundamental
group will be killed by adding appropriate disks. At the end, one can add a 4-disk to get the full
contractable cork A. After this short discussion, we are able to identify the first topological transition:
if the cosmos starts as small 3-sphere (conjectural of Planck size), then the space changes to ∂A, or

S3 → ∂A.

The topology of ∂A depends strongly on the topology ofM. In case of the K3 surface, ∂A is known to
be a Brieskorn spheres, precisely the 3-manifold

Σ(2, 5, 7) =
{

x, y, z ∈ C | x2 + y5 + z7 = 0 |x|2 + |y|2 + |z|2 = 1
}

.

The embedding of the Akbulut cork is essential for the following results. In [39], it was shown
that the embedded cork admits a hyperbolic geometry if the underlying K3 surface has an exotic
smoothness structure. This simple property has far-reaching consequences. Hyperbolic manifolds of
dimension three or higher are rigid, i.e., geometric properties like volume or curvature are topological
invariants (Mostow-Prasad rigidity). If we assume that the cork A represents the cosmic evolution,
then geometric properties like the curvature of ∂A or the change of the size after the transition S3 → ∂A
are connected with topological properties of the embedded cork A and of the underlying K3 surface
by using Mostow–Prasad rigidity. This simple idea opens the door to explicit calculations. In case of
the transition S3 → ∂A = Σ(2, 5, 7), the corresponding results can be found in [39]. If one assumes a
Planck-size (LP) 3-sphere at the Big Bang, then the scale a of Σ(2, 5, 7) changes like

a = LP · exp
(

3
2 · CS(Σ(2, 5, 7))

)
with the Chern–Simons invariant

CS(Σ(2, 5, 7)) =
9

4 · (2 · 5 · 7) =
9

280
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and the Planck scale of order 10−34m changes to 10−15m. Obviously, this transition has an exponential
or inflationary behavior. Surprisingly, the number of e-folds can be explicitly calculated (see [40]) to be

N =
3

2 · CS(Σ(2, 5, 7))
+ ln(8π2) ≈ 51, (3)

and we also obtain the energy and time scale of this transition (see [40,41])

EGUT =
EP

1 + N + N2

2 + N3

6

≈ 1015GeV t = tP

(
1 + N +

N2

2
+

N3

6

)
≈ 10−39s (4)

right at the conjectured scale of the Grand Unified Theory (GUT) (EP, tP Planck energy and time,
respectively). In our recent work [41], this transition was analyzed in a detailed manner. There, it was
shown that the transition can be described by a scalar field model which conformally agrees (as shown
in [42]) with the Starobinsky-R2 theory [43]. However, then, the dimension-less free parameter α ·M−2

P
as well as spectral tilt ns and the tensor-scalar ratio r can be determined to be

α ·M−2
P = 1 + N +

N2

2
+

N3

6
≈ 10−5, ns ≈ 0.961 r ≈ 0.0046,

using equation (3), which is in good agreement with current measurements. The embedding of the
cork A is based on the topological structure of the K3 surface M. As discussed above, M splits
topologically into a 4-manifold |E8 ⊕ E8| and the sum of three copies of S2 × S2 (see [44]). In the
topological splitting (2), the 4-manifold |E8 ⊕ E8| has a boundary that is the sum of two Poincaré
spheres P#P. Here, we used the fact that a smooth 4-manifold of type |E8| must have a boundary
(which is the Poincaré sphere P); otherwise, it would contradict the Donaldson’s theorem [38]. Then,
any closed version of |E8⊕ E8| does not exist and this fact is the reason for the existence of an exotic R4.
To express it differently, the neighborhood of the embedded cork lies between the 3-manifold Σ(2, 5, 7)
(boundary of the cork) and the sum of two Poincaré spheres P#P. Therefore, we have two topological
transitions resulting from the embedding

S3 cork−→ Σ(2, 5, 7)
gluing−→ P#P . (5)

The transition Σ(2, 5, 7) → P#P has a different character as discussed in [39]. A direct consequence
is the appearance of a cosmological constant as a direct consequence of the topological invariance
of the curvature of a hyperbolic manifold. With respect to the critical density, the final formula for
normalized cosmological constant, denoted by ΩΛ, reads

ΩΛ =
c5

24π2hGH2
0
· exp

(
− 3

CS(Σ(2, 5, 7))
− 3

CS(P#P)
− χ(A)

4

)
.

The Chern–Simons invariants CS(P#P) = 1
60 , CS(Σ(2, 5, 7)) = 9

280 and the Euler characteristics of the
cork χ(A) = 1 together with the Hubble constant (see [45,46] combined with [47])

(H0)Planck+Hubble = 69, 2
km

s ·Mpc

gives the value
ΩΛ ≈ 0.7029,

which is in excellent agreement with the measurements. The numerical results above illustrate
the power of the main idea to use topology to fit the parameter in the standard model of
cosmology. Interestingly, these parameters are also important for particle physics. The existence
of two transitions (5) implies in the formalism above the existence of two different energy scales, the
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GUT scale of the first transition and a scale of Higgs mass order 126GeV for the second transition.
These two scales are the right input for the see-saw mechanism to generate a tiny neutrino mass (see
[40]). Secondly, the formalism also provides a favor regarding the existence of a right-handed neutrino.
The energy scale of the two transitions S3 → Σ(2, 5, 7)→ P#P can be expressed as a mass (via Mc2),
and we obtain

M =

√
4h̄c
G

⎛⎝exp
(
− 1

2·CS(P#P)

)
1 + N + N2

2 + N3

6

⎞⎠ ≈ 126.4GeV, (6)

which agrees with the mass of the Higgs boson (see [40]). Then, the Higgs boson can be expressed as
the result of a topological transition (see [48]). Now, we will use the two energy scales to generate the
neutrino mass. For that purpose, we start with the non-diagonal mass matrix(

0 M
M B

)

with two mass scales B and M fulfilling M � B. This matrix has eigenvalues

λ1 ≈ B λ2 ≈ −
M2

B

so that λ1 is the mass of the right-handed neutrino, and λ2 represents the mass of the left-handed
neutrino. Now, we will use the two scales (4) and (6)

B ≈ 0.67 · 1015GeV, M ≈ 126.4GeV,

and we will obtain for the neutrino mass

m =
M2

B
≈ 0.024eV,

which is in good agreement with the constraints from the PLANCK mission.
These results seem to support our view that the K3 surface can be the underlying spacetime (as

seen as the set of all possible spacetime events). The evolution of the cosmos is a suitable subset of
this space.

4. From K3 Surfaces to Octonions, 3-Braids and Particles

The results of the previous section illustrated the power of the approach and its relation to particle
physics. In this section, we will discuss the topological reasons and the relation to the models of Furey,
Gresnigt and Bilson–Thompson. In these models, 3-braids, octonions and quaternions play a key role.
Therefore, we have to understand how these structures will naturally appear in the K3 surface.

4.1. K3 Surfaces and Octonions

The starting point for the description of any K3 surface is the topological splitting (2)

2|E8|#3(S2 × S2).

The K3 surface is a closed, compact, simply connected 4-manifold. According to Freedman [49], the
topology is uniquely given by the intersection form, a quadratic form on the second homology
characterizing the intersections of the generators as given by surfaces. The K3 surface has the
intersection form

QK3 = E8 ⊕ E8 ⊕ (⊕3

(
0 1
1 0

)
) := 2E8 ⊕ 3H, (7)
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with the the matrix E8:

E8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

This matrix is also the Cartan matrix of the Lie algebra E8 and here is where the connection to the
octonions starts. For this purpose, we have to deal with the root system of the Lie algebra E8. Consider
a semi-simple Lie algebra G and its Cartan subalgebra H = (H1, . . . , Hr), where r is the rank of G. This
subalgebra is usually considered in the Cartan basis with the non-Hermitian generators Ek and their
conjugates E−k. Ek is associated with the root vector r(k)m such that

[Hm, E±k] = ±r(k)m E±m.

When the rank r is 1; 2; 4 or 8, we can combine the operators Hm and the vectors r(k)m (or eigenvalues)
into elements of a division algebra with imaginary units ei:

H = H0 + ei Hi r(k) = r(k)0 + eir
(k)
i

so that
[H, E±k] = ±r(k)E±k.

For the Lie algebras of the groups SU(2), O(4), O(8), one can construct the real numbers R, the complex
numbers C and the quaternions H, respectively. Interestingly, the triality of the O(8) group reflects the
symmetry of the three quaternionic units ei = −iσi, where σi are the Pauli matrices. The case of E8 was
worked out by Coxeter [50] in connection with 8-dimensional regular solids and corresponds to the
octonions O. There are 240 rational points on the unit sphere S7 represented by integer octonions that
correspond to the 240 roots of E8. We first introduce octonionic imaginary units eα (α = 1, . . . , 7) with
the multiplication rule

eαeβ = −δαβ + ψαβγeγ,

with ψαβγ as a third rank antisymmetric tensor that is non-zero and equal to one for the index triples
123, 246, 435, 367, 651, 572, 714. Now, we define the special element

h =
1
2
(e1 + e2 + e3 + e7) .

Then, 1; e7; e2; e6, together with h; eh; e2h; e7h correspond to one possible set of principal positive roots.
These elements are also forming the Dynkin diagram of the root system of the E8. The matrix E8 in
Equation (8) above is the Cartan matrix with entry (i, j) defined by

2
〈ri, rj〉
〈ri, ri〉

the scalar products between the root vectors ri. Then, the whole approach showed that simple
combinations of the octonionic imaginary units are corresponding to generators of the second
homology groups for a 4-manifold having the matrix E8 as an intersection form. In case of the
K3 surface, one has the intersection form containing the matrix E8 ⊕ E8 which corresponds to two
copies of octonions O×O. Here, there is a link to the recent work [8] of complex sedions. Now, every
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element of O is related to a surface (unique up to homotopy). In the next section, we will present a
connection of these surfaces to spinors.

4.2. From Immersed Surfaces in K3 Surfaces to Fermions and Knot Complements

In the previous subsection, we described a relation between the octonions and a system of
eight intersecting surfaces in the K3 surface. In this system of surfaces, every surface has two
self-intersections (the diagonal of the matrix (8)). Therefore, every surface is not embedded but
immersed in the K3 surface. For immersed surfaces, there is a whole theory, called Weierstrass
representation, with a close connection between immersed surfaces and spinors. The following
discussion is borrowed from [32], and we will present it here again for completeness. First, we start
with the immersion I : Σ → R3 of a surface Σ into R3. This immersion I can be defined by a spinor ϕ

on Σ fulfilling the Dirac equation
Dϕ = Hϕ, (9)

with |ϕ|2 = 1 (or an arbitrary constant) (see Theorem 1 of [51]). A spinor bundle over a surface splits
into two sub-bundles S = S+ ⊕ S−, representing spinors of different helicity, with the corresponding
splitting of the spinor ϕ in components

ϕ =

(
ϕ+

ϕ−

)
,

and we have the Dirac equation

Dϕ =

(
0 ∂z

∂z̄ 0

)(
ϕ+

ϕ−

)
= H

(
ϕ+

ϕ−

)

with respect to the coordinates (z, z̄) on Σ. In dimension 3, the spinor bundle has the same fiber
dimension as the spinor bundle S (but without a splitting S = S+ ⊕ S−into two sub-bundles). Now,
we define the extended spinor φ over the 3-torus Σ× [0, 1] via the restriction φ|T2 = ϕ. The spinor φ is
constant along the normal vector ∂Nφ = 0 fulfilling the three-dimensional Dirac equation

D3Dφ =

(
∂N ∂z

∂z̄ −∂N

)
φ = Hφ (10)

induced from the Dirac equation (9) via restriction and where |φ|2 = const. In this picture, we shift the
description from surfaces to 3-manifolds. The description above showed that the essential information
is contained in the surface, but fermions are at least three-dimensional objects: fermions and bosons
appear beginning with dimension 3 (irreducible representation of the group SO(3) as given by the lift
to SU(2)). In dimension 2, we have anyons with a spin of any rational number. However, how did we
get the corresponding 3-manifold representing the fermion?

To answer this question, we consider the branched covering of the K3 surface M. As explained
above, it must be a 4-fold covering M → S4 branched along a surface with singularities of two types
cusp and fold. The cusp can be described as a cone over the trefoil knot, whereas the fold is the cone
over the Hopf link (see Figure 9 in [30]). Now, we consider a 4-manifold with boundary, for instance
by cutting out a 4-disk D4 form M to get 4-manifold M \ D4 with boundary ∂(M \ D4) = S3, the
3-sphere. Then, the branched covering of M induced a branched covering of the boundary ∂M, so
that the branching set of M, a surface, induces a branching set of ∂M, a knot or link. In our case, the
singularities of the surface (cusp and fold) given as cones over the trefoil knot and Hopf link will
correspond to the trefoil knot and Hopf link in the 3-sphere. Then, the branched covering is given
by the mappings of the complements S3 \ {tre f oil} and S3 \ {Hop f − link} to the permutation group
S3. We see the appearance of these two complements as a sign to use these structures as particles and
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interactions. The complement of the knot is a 3-manifold with one boundary component. In contrast,
the complement of the link looks like a cylinder T2 × [0, 1] which can connect two knot complements.
Therefore, we have the conjecture that knot complements are fermions and link complements are
bosons.

4.3. Fermions as Knot Complements

In this section, we will discuss the topological reasons for the identification of knot complements
with fermions. In our paper [31], we obtained a relation between an embedded 3-manifold and a
spinor in the spacetime. The main idea can be simply described by the following line of argumentation.
Let ι : Σ ↪→ M be an embedding of the 3-manifold Σ into the 4-manifold M with the normal vector �N
so that a small neighborhood Uε of ι(Σ) ⊂ M looks like Uε = ι(Σ)× [0, ε]. Every 3-manifold admits
a spin structure with a SPIN BUNDLE, i.e., a principal Spin(3) = SU(2) bundle (spin bundle) as a
lift of the frame bundle (principal SO(3) bundle associated with the tangent bundle). Furthermore,
there is a (complex) vector bundle associated with the spin bundle (by a representation of the spin
group), called SPINOR BUNDLE SΣ. Now, we meet the usual definition in physics: a section in the
spinor bundle is called a spinor field (or a spinor). In general, the unitary representation of the spin
group in D dimensions is 2[D/2]-dimensional. From the representational point of view, a spinor in four
dimensions is a pair of spinors in dimension 3. Therefore, the spinor bundle SM of the 4-manifold
splits into two sub-bundles S±M where one sub-bundle, say S+

M, can be related to the spinor bundle SΣ

of the 3-manifold. Then, the spinor bundles are related by SΣ = ι∗S+
M with the same relation φ = ι∗Φ

for the spinors (φ ∈ Γ(SΣ) and Φ ∈ Γ(S+
M)). Let ∇M

X ,∇Σ
X be the covariant derivatives in the spinor

bundles along a vector field X as section of the bundle TΣ. Then, we have the formula

∇M
X (Φ) = ∇Σ

Xφ− 1
2
(∇X�N) · �N · φ (11)

with the embedding φ �→
(

0
φ

)
= Φ of the spinor spaces from the relation φ = ι∗Φ. Here, we

remark that, of course, there are two possible embeddings. For later use, we will use the left-handed
version. The expression ∇X�N is the second fundamental form of the embedding where the trace
tr(∇X�N) = 2H is related to the mean curvature H. Then, from (11), one obtains the following relation
between the corresponding Dirac operators

DMΦ = DΣφ− Hφ (12)

with the Dirac operator DΣ on the 3-manifold Σ. In [32], we extend the spinor representation of an
immersed surface into the 3-space to the immersion of a 3-manifold into a 4-manifold according to the
work in [51]. Then, the spinor φ defines directly the embedding (via an integral representation) of the
3-manifold. Then, the restricted spinor Φ|Σ = φ is parallel transported along the normal vector and
Φ is constant along the normal direction (reflecting the product structure of Uε). However, then the
spinor Φ has to fulfill

DMΦ = 0 (13)

in Uε i.e., Φ is a parallel spinor. Finally, we get

DΣφ = Hφ (14)

with the extra condition |φ|2 = const. (see [51] for the explicit construction of the spinor with |φ|2 =

const. from the restriction of Φ). The idea of the paper [31] was the usage of the Einstein–Hilbert action
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for a spacetime with boundary Σ. The boundary term is the integral of the mean curvature for the
boundary; see [52,53]. Then by the relation (14) we will obtain

ˆ

Σ

H
√

h d3x =

ˆ

Σ

φ̄ DΣφ
√

hd3x (15)

using |φ|2 = const. As shown in [31], the extension of the spinor φ to the 4-dimensional spinor Φ by
using the embedding

Φ =

(
0
φ

)
(16)

can be only seen as embedding, if (and only if) the 4-dimensional Dirac equation

DMΦ = 0 (17)

on M is fulfilled (using relation (12)). This Dirac equation is obtained by varying the action

δ

ˆ

M

Φ̄DMΦ
√

g d4x = 0. (18)

In [31], we went a step further and discussed the topology of the 3-manifold leading to a fermion. On
general grounds, one can show that a fermion is given by a knot complement admitting a hyperbolic
structure. However, for hyperbolic manifolds (of dimension greater than 2), one has the important
property of Mostow rigidity where geometric expressions like the volume are topological invariants.
This rigidity is a property which we should expect for fermions. The usual matter is seen as dust matter
(incompressible p = 0). The scaling behavior of the energy density ρ for dust matter is determined by
the time-dependent scaling parameter a to be ρ ∼ a−3. Thus, if one represents matter by very small
regions in the space equipped with a geometric structure, then this scaling can be generated by an
invariance of these small regions with respect to a rescaling. Mostow rigidity now singles out the
hyperbolic geometry (and the hyperbolic 3-manifold as the corresponding small region) to have the
correct behavior. All other geometries allow a scaling at least along one direction. Finally, Fermions are
represented by hyperbolic knot complements.

4.4. Torus Bundle as Gauge Fields

Now, we have the following situation: two knot complements C(K1) and C(K2) can be connected
by a so-called tube T(K1, K2) along the boundary, a torus. This tube T(K1, K2) can be described by
the complement of a link with two components defined by the knots K1, K2. In the simplest case, it is
the 3-manifold T2 × [0, 1]. The knot complements are fermions. Therefore, both knot complements
have to carry a hyperbolic structure, i.a. a space of constant negative curvature. The frame bundle of
a 3-manifold is always trivial, so that we need a flat connection of this bundle to describe this space.
Let Isom(H3) = SO(3, 1) be the isometry group of the three-dimensional hyperbolic space. There are
suitable subgroups G1, G2 ⊂ Isom(H3) so that (the interior of)C(K1) is diffeomorphic to Isom(H3)/G1

(and similar with C(K2)). As usual, the space of all flat SO(3, 1) connections of C(K1) is the space of
all representations π1(C(K1)) → SO(3, 1), where SO(3, 1) acts in the adjoint representation on this
space (as gauge transformations). We note the fact that every SO(3, 1) connections lifts uniquely to a
SL(2,C) connection. Now, near the boundary, we have a flat SL(2,C) connection in C(K1) which is
connected to a flat SL(2,C) connection in C(K2) by T(K1, K2). The action for a flat connection A with
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values in the Lie algebra g of the Lie group G as a subgroup of the SL(2,C) in a 3-manfold Σ (with
vanishing curvature F = DA = 0) is given by

ˆ

Σ

A ∧ F

also known as background field model (BF model). By a small redefinition of the connection, one can
also choose the Chern–Simons action:

CS(A, Σ) =
ˆ

Σ

(
A ∧ dA +

2
3

A ∧ A ∧ A
)

.

The variation of the Chern–Simons action CS(A, Σ) gets flat connections DA = 0 as solutions. The
flow of solutions A(t) in T(K1, K2)× [0, 1] (parametrized by the variable t) between the flat connection
A(0) in T(K1, K2)× {0} to the flat connection A(1) in T(K1, K2)× {1} will be given by the gradient
flow equation (see [54] for instance)

d
dt

A(t) = ± ∗ F(A) = ± ∗ DA, (19)

where the coordinate t is normal to T(K1, K2). Therefore, we are able to introduce a connection Ã in
T(K1, K2)× [0, 1] so that the covariant derivative in the t-direction agrees with ∂/∂t. Then, we have for
the curvature F̃ = DÃ where the fourth component is given by F̃4μ = dÃμ/dt. Thus, we will get the
instanton equation with (anti-)self-dual curvature

F̃ = ± ∗ F̃ .

However, now we have to extend the Chern–Simons action (of the 3-manifold) to the 4-manifold. It
follows that

CS(A, T(K1, K2)× {1})− CS(A, T(K1, K2)× {0}) =
ˆ

T(K1,K2)×[0,1]

tr(F̃ ∧ F̃)

i.e., we obtain the second Chern class and finally

SEH([0, 1]× T(K1, K2)) =

ˆ

T(K1,K2)×[0,1]

tr(F̃ ∧ F̃) = ±
ˆ

T(K1,K2)×[0,1]

tr( F̃ ∧ ∗F̃)

i.e., the action of the gauge field. The whole procedure remains true for an extension, i.e.,

SEH(R× T(K1, K2)) = ±
ˆ

T(K1,K2)×R

tr( F̃ ∧ ∗F̃) . (20)

The gauge field action (20) is only defined along the tubes T(K1, K2). For the extension of the action to
the whole 4-manifold M, we need some non-trivial facts from the theory of 3-manifolds. We presented
the ideas in [32]. Finally, we obtain the gauge field action

ˆ

M

tr(F̃ ∧ ∗F̃). (21)

Now, we will discuss the possible gauge group. Again, for completeness, we will present the
argumentation in [32] again. The gauge field in the action (21) has values in the Lie algebra of
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the maximal compact subgroup SU(2) of SL(2,C). However, in the derivation of the action, we used
the connecting tube T(K1, K2) between two tori, which is a cobordism. This cobordism T(K1, K2) is
also known as torus bundle (see [55] Theorem 1.15), which can be always decomposed into three
elementary pieces—finite order, Dehn twist and the so-called Anosov map (named after the russian
mathematician Dmitri Anosov).

The idea of this construction is very simple: one starts with two trivial cobordisms T2 × [0, 1]
and glues them together by using a diffeomorphism g : T2 → T2, which we call gluing diffeomorphism.
From the geometrical point of view, we have to distinguish between three different types of torus
bundles. The three types of torus bundles are distinguished by the splitting of the tangent bundle:

• finite order (orders 2, 3, 4, 6): the tangent bundle is three-dimensional,
• Dehn-twist (left/right twist): the tangent bundle is a sum of a two-dimensional and a

one-dimensional bundle,
• Anosov: the tangent bundle is a sum of three one-dimensional bundles.

Following Thurston’s geometrization program (see [56]), these three torus bundles are admitting
a geometric structure, i.e., it has a metric of constant curvature. Apart from this geometric
properties, all torus bundles are determined by the gluing diffeomorphism g : T2 → T2, which
also determines the fundamental group of the torus bundle. Therefore, this gluing diffeomorphism
also has an influence on the structure of the diffeomorphism group of the torus bundle, which will be
discussed now. From the physical point of view, we have two types of diffeomorphisms: local and
global. Any coordinate transformation can be described by an infinitesimal or local diffeomorphism
(coordinate transformation). In contrast, there are global diffeomorphisms like an orientation reversing
diffeomorphism. Two diffeomorphisms not connected via a sequence of local diffeomorphism are part
of different connecting components of the diffeomorphism group, i.e., the set of isotopy classes
π0(Di f f (M)) (also called the mapping class group). Isotopy classes are important in order to
understand the configuration space topology of general relativity (see Giulini [57]). In principle,
the state space in geometrodynamics is the set of all isotopy classes, where every class represents one
physical situation, or isotopy classes label two different physical situations. By definition, the two
3-manifolds in different isotopy classes cannot be connected by a sequence of local diffeomorphisms
(local coordinate transformations). Again, these two different isotopy classes represent two different
physical situations; see [13] for the relation of isotopy classes to particle properties like spin. In
case of the torus bundle, we consider the isotopy classes π0(Di f f (M, ∂M)) relative to the boundary
represented by the automorphisms of the fundamental group. Using the geometrization program, we
obtain a relation between the isotopy classes π0(Di f f (M, ∂M)) and the isometry classes (connecting
components of the isometry group) with respect to the geometric structure of the torus bundle (see, for
instance, [58,59]). Then, the isotopy classes of the torus bundles are given by

• finite order: 2 isotopy classes (= no/even twist or odd twist),
• Dehn-twist: 2 isotopy classes (= left or right Dehn twists),
• Anosov: 8 isotopy classes (= all possible orientations of the three line bundles forming the tangent

bundle).

From the geometrical point of view, we can rearrange the scheme above:

• torus bundle with no/even twists: one isotopy class,
• torus bundle with twist (Dehn twist or odd finite twist): three isotopy classes,
• torus bundle with Anosov map: eight isotopy classes.

This information creates a starting point for the discussion on how to derive the gauge group.
Given a Lie group G with Lie algebra g, the rank of g is the dimension of the maximal abelian
subalgebra, also called Cartan algebra (see above for a definition). It is the same as the dimension of the
maximal torus Tn ⊂ G. The curvature F of the gauge field takes values in the adjoint representation
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of the Lie algebra and the action tr(F ∧ ∗F) forms an element of the Cartan subalgebra (the Casimir
operator). However, each isotopy class contributes to the action and therefore we have to take the sum
over all possible isotopy classes. Let ta be the generator in the adjoint representation; then, we obtain
for the Lie algebra part of the action tr(F ∧ ∗F)

• torus bundle with no twists: one isotopy class with t2,
• torus bundle with twist: three isotopy classes with t2

1 + t2
2 + t2

3,
• torus bundle with Anosov map: eight isotopy classes with ∑8

a=1 t2
a.

The Lie algebra with one generator t corresponds uniquely to the Lie group U(1) where the three
generators t1, t2, t3 form the Lie algebra of the SU(2) group. Then, the last case with eight generators
ta has to correspond to the Lie algebra of the SU(3) group. We remark the similarity with an idea from
brane theory: n parallel branes (each decorated with an U(1) theory) are described by an U(n) gauge
theory (see [60]). Finally, we obtain the maximal group U(1)× SU(2)× SU(3) as a gauge group for all
possible torus bundles (in the model: connecting tubes between the solid tori).

At the end, we will speculate about the identification of the isotopy classes for the torus bundle
with the vector bosons in the gauge field theory. Obviously, the isotopy class of the torus bundle
with no twist must be the photon. Then, the isotopy class of the other bundle of finite order should
be identified with the Z0 boson and the two isotopy classes of the Dehn twist bundles are the W±

bosons. Here, we remark that this identification is consistent with the definition of the charge lateron.
Furthermore, we remark that this scheme contains automatically the mixing between the photon and
the Z0 boson (the corresponding torus bundle are both of finite order). The isotopy classes of the
Anosov map bundle have to correspond to the eight gluons. Later, we expect that these ideas will lead
to an additional relation for the scattering amplitudes induced by the geometry of the torus bundles.

4.5. Fermions, Bosons and 3-Braids

In the previous subsection, we identified the hyperbolic knot complement with a fermion and the
torus bundle between them as gauge bosons. The first natural question is then: which knot is related
to a fermion like the electron? However, this question is meaningless in our approach. The knot/link
complements are induced from the singularities of the branching set of the 4-fold branched covering
of the K3 surface. However, these singularities are another expression of the change of the branching
set of the 3-manifolds. With other words: the branching set, a knot or link, of a 3-manifold is not
unique. There are transformations of the branching sets representing the same 3-manifold. Therefore,
these complements are not uniquely connected to particles/fermions. Later, we will see that the knots
represent mainly the state. However, what are the invariant properties? For that purpose, we will
study the branched covering of the knot/link complement to understand the invariant properties.

Let C(K) = S3 \ (K× D2) be a knot complement which is a compact 3-manifold with boundary
∂C(K) = T2 the 2-torus. C(K) is given by a 3-fold branched covering C(K) → D3 inducing a 3-fold
branched covering of the boundary ∂C(K) → ∂D3 or T2 → S2. The 3-fold covering T2 → S2 has
six points as a branching set, the end points of a 6-plat or tangle (see Figure 7). In a similar manner,
let C(L) = C(K1, K2) = S3 \

(
L× D2) be a link complement of a link with two linked knots K1, K2

(the two linking components). C(L) is a compact 3-manifold with two boundaries given by two tori.
Then, the 3-fold branched covering C(L)→ S3 \

(
D3 � D3) induces again 3-fold branched coverings

T2 → S2 of the two boundaries. Every covering T2 → S2 has six points as a branching set again.
The corresponding branching set of C(L) is a braid of six strands but represented as a 3-braid (see
Figure 7).
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Figure 7. Branching sets—Left: 6-Plat for the knot cpomplement, Center: a 3-Braid as 6-Braid as
example, Right: 6-Braid for the link complement

Finally, bosons and fermions are represented as 3-braids. Our model agrees with the Bilson–Thompson
model but with the exception that we do not fix the braid. In particular, we do not believe that the
difference between an electron and myon is given by a different braid.

5. Electric Charge and Quasimodularity

We argued above that all knot complements admitting a hyperbolic geometry (geometry of
negative, constant scalar curvature) have the properties of fermions, i.e., spin 1

2 , are pressureless p = 0
in cosmology and fulfill the Dirac equation (see also the previous section for the action functional).
However, a particle can carry charges (electrical or others like color, etc.).

5.1. Electric Charge as Dehn Twist of the Boundary

We described above the knot complement as a branched covering branched along a braid. What
is the meaning of a charge in this description? Let us start with the case of an electric charge. Given a
complex line bundle over C(K)× (0, 1) with connection A and curvature F = dA, we then have the
Maxwell equations:

dF = 0 d ∗ F = ∗j,

with the Hodge operator ∗ and the 4-current 1-form j. The electric charge Qe is given by

Qe =

ˆ

∂C(K)=T2

∗F

in the temporal gauge (normal to the boundary of C(K)) using d ∗ F = ∗j and Stokes theorem. The
magnetic charge Qm is defined in an analogous way

Qm =

ˆ

∂C(K)=T2

F = 0,

but it is zero because of dF = 0. By the formulas above, we obtain a restriction of the complex line
bundle to the boundary ∂C(K) = T2. A complex line bundle over T2 is determined by the twists of the
fibers w.r.t. the lattice Z2 in the definition of the torus T2 = C/Z2. However, which twist is related to
the electric charge? Consider a cylinder S1 × [0, 1] and identify the ends of the interval to get T2 again.
A complex line bundle over S1 × [0, 1] with curvature F gives the integral

ˆ

S1×[0,1]

F =

ˆ

S1×{1}

A−
ˆ

S1×{0}

A

using F = dA, which is only non-trivial if the two integrals differ. It can be realized by a twist of one
side (say S1 × {1}), also called a Dehn twist. Dually by using d ∗ F = ∗j, we get

Qe =

ˆ

[0,1]

∗j =
ˆ

[0,1]

d ∗ F = ∗F|1 − ∗F|0,
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which is non-zero by a Dehn twist along [0, 1]. Therefore, charges can be detected by Dehn twists
along the boundary. A Dehn twist along the meridian represents the magnetic charge, whereas a
Dehn twist along the longitude is an electric charge. The number of twists is the charge, i.e., we
obtain automatically a quantization of the electric and magnetic charge. Furthermore, there is a
simple algebraic description of the twists, which agrees with the description of electromagnetic
duality using SL(2,Z). As noted above, the torus can be obtained by T2 = C/Z2 w.r.t. the lattice Z2.
An automorphism of the torus is given by a the group SL(2,Z) acting via rational transformations on
C, i.e., (

a b
c d

)
∈ SL(2,Z), ad− bc = 1 →

(
a b
c d

)
· z =

az + b
cz + d

.

Then, the two possible Dehn twists are given by

z �→ z + 1,

z �→ −1
z

,

which is known from electromagnetic duality. However, this group also has another meaning. Let
Di f f (T2) be the diffeomorphism group of the torus. All coordinate transformations, known as
diffeomorphisms connected to the identity, are forming a (normal) subgroup Di f f0(T2) ⊂ Di f f (T2).
Then, the factor space MCG(T2) = Di f f (T2)/Di f f0(T2) is a group, known as a mapping classes
group, and generated by Dehn twists, i.e., MCG(T2) = SL(2,Z) or the mapping class group is the
modular group. An element of the mapping class group is a global diffeomorphism (also called isotopy)
that cannot be described by coordinate transformations, i.e., full twists cannot be undone by a sequence
of infinitesimal rotations. Then, different charges belong to different mapping (or isotopy) classes. Up
to now, we have a full symmetry between electric and magnetic charges (geometrically expressed by
the torus). Now, we will show that this behavior changed for the extension to the knot complement.
Technically, it will be expressed by a change from modular to quasimodular functions.

5.2. Electric Charge as a Frame of the Knot Complement

However, what does change in the knot complement and in the branched covering? As a toy
example, we consider the complement of the unknot D2× S1. Then, the Dehn twist along the meridian
of the boundary torus will be trivialized. By a result of McCullough (see for instance [61]), every
Dehn twist along the longitude induces a diffeomorphism of the solid torus. Then, the complement
of the unknot can carry an electric charge (by a Dehn twist) but no magnetic charge. This result can
be generalized to all knot complements (which are homologically equivalent to the solid torus). The
effect on the branched covering can also be obtained by considering the boundary. The boundary is
a torus written as two-fold branched covering branched along 4 points. A Dehn twist is given by a
permutation of the branching points that leads to a twist of the braid as a branching set of the knot
complement (see Figure 8).

Figure 8. Dehn twist represented by a braid.
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We obtain again the quantization of the electric charge as the number of Dehn twists.
However, more is true: the isotopy classes of the boundary determine the isotopy classes of the

hyperbolic knot complement up to a finite subgroup [59]. The mapping class group MCG(C(K))
consists of a disjoint union of isotopy classes of framings, i.e., trivializations of the tangent bundle
TC(K) seen as sections of the frame bundle (SO(3) principal bundle) up to homotopy. Therefore, the
change of the number of Dehn twists at the boundary induces a change of the framing for the knot
complement. However, there is also a direct way using obstruction theory. In [62], we described
the quantization of the electric charge by using exotic smoothness as a substitute for a magnetic
monopole. A magnetic monopole is a substitute for an element in the cohomology H2(S2,Z) leading
to the quantization of the electric charge

Qm ·Qe =
ch̄
2
· n, n ∈ Z

for the magnetic charge Qm and for the electric charge Qe. Using the canonical isomorphism

H2(S2,Z) � H3(S3,Z),

we can transform the monopole class (as first Chern class of a complex line bundle) into a class in
H3(S3,Z). Now, let P be a principal SO(3) bundle over S3, called the frame bundle. The obstruction for
a section in this bundle lies at H4(S3, π3(SO(3))) = 0, where the vanishing of the cocycle guarantees
the existence. The number of sections is given by the elements in H3(S3, π3(SO(3))) = H3(S3,Z)
using π3(SO(3)) = Z. By Hodge duality, we obtain the same line of argumentation for the class ∗F
getting the electric charge (using also the quantization condition). The class in H3(S3,Z) can be related
to a relative class in the 4-manifold S3 × [0, 1], i.e.,

H3(S3,Z) � H4(S3 × [0, 1], S3 × ∂[0, 1],Z)

called the relative Pontrjagin class p1. Now, we extend the whole discussion to an arbitrary 3-manifold
Σ, which we identify with Σ = C(K) ∪ (D2 × S1). Using this 4-dimensional interpretation, we obtain
the framing as the Hirzebruch defect [63]. For that purpose, we consider the 4-manifold M with
∂M = Σ. Let σ(M) be the signature of M, i.e., the number of positive minus negative eigenvalues of
the intersection form of M. Furthermore, let p1(M, Σ) be the relative Pontrjagin class as an element of
H4(M, ∂M = Σ,Z). Then, the Hirzebruch defect h is given by

h = 3σ(M)− p1(M, Σ) = Qe (22)

and identified with the framing, i.e., with the charge. This definition is motivated by the Hirzebruchs
signature formula for a closed 4-manifold relating the signature σ(M) and the first Pontrjagin class
p1(M) (of the tangent bundle TM) via σ(M) = 1

3 p1(M) (see [64]).

5.3. The Charge Spectrum

Now, we will discuss the expression (22) for the electric charge. By the argumentation above, the
relative Pontrjagin class gives an integer expressing the framing of the knot complement for a fixed
time. The appearance of the signature σ(M) added a 4-dimensional element which describes more
complex cases with many components. In [65], this case was also considered with a similar result: this
formula is valid for links where σ(M) is now the signature of the linking matrix and p1 is the sum of
framings for each component. The signature can be minimally changed by ±1 leading to a change of
the charge by ±3. Therefore, the minimal change for one component can be

Qe mod 3Z = {0,±1,±2,±3} ,
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i.e., we obtain a spectrum containing four possible values. If we normalize the charge to be a multiple
of e/3, then we have the charge spectrum

Qe =

{
0,±1

3
e,±2

3
e,±e

}
in agreement with the experiment. Then, we have the description of one particle generation: two
leptons (neutrino of charge 0 and lepton of charge −1) and two quarks (quark of charge − 1

3 and quark
of charge + 2

3 ).

5.4. Vanishing of the Magnetic Charge and Quasimodularity

One may wonder whether there is no magnetic charge anymore. Our argument is only partially
satisfying because there are many incompressible surfaces inside of a hyperbolic knot complement
serving as representatives for magnetic charges. Therefore, we need a stronger argument why the
symmetry between electric and magnetic charge is broken. As explained above, the Dehn twists of the
boundary torus are the generators of the mapping class (or isotopy) group. According to Atiyah [63],
the framing can be used to define a central extension Γ̂

1 → Z→ Γ̂ → Γ → 1

of the mapping class group Γ so that there is a section s : Γ → Γ̂ inducing a splitting of the sequence
above. This section defines a canonical 2-cocycle c for the central extension that is given by the
signature of the corresponding 4-manifold (see [63] for the details). However, in case of the torus, for
the group Γ = SL(2,Z), there is no non-zero homomorphism Γ → Z and so the splitting s1 : Γ → Γ̂
is unique. Therefore, the canonical section s is not a homomorphism and the framing (used in the
definition of this section) leads to a breaking of the modular invariance i.e., the invariance w.r.t. Γ.
This fact is simply expressed by considering the difference of the two sections s(γ) and s1(γ) for
γ ∈ Γ, which is given by the logarithm of the Dedekind η−function, related to quasimodular functions.
Thus, our definition of the electric charge breaks explicitly the electro-magnetic duality and we get a
vanishing magnetic charge.

6. Drinfeld–Turaev Quantization and Quantum States

In [66,67], we discussed the appearance of quantum states from knots known as Turaev–Drinfeld
quantization. The idea for the following construction can be simply expressed. We start with two
3-manifolds and consider a cobordism between them. This cobordism is a 4-manifold with a branched
covering branched over a surface with self-intersections. Here, it is enough to restrict to a special class
of these surfaces, so-called ribbon surfaces (see [68]). The 3-manifolds are chosen to be hyperbolic knot
complements, denoted by Y1, Y2. A hyperbolic structure is defined by a homomorphism π1(Yi) →
SL(2,C) (∈ Hom(π1(Yi), SL(2,C))) up to conjugation. Now, we extend this structure to the entire
cobordism, denoted by Cob(Y1, Y2). The branching set of Cob(Y1, Y2) is a surface S with non-trivial
fundamental group π1(S). This surface can be changed without any change of Cob(Y1, Y2). One
change can be described as crossing change. Now, we have all ingredients for the Drinfeld–Turaev
quantization:

• The surface S (branching set of Cob(Y1, Y2)) is inducing a representation π1(S)→ SL(2,C).
• The space of all representations X(S, SL(2,C)) = Hom(π1(S), SL(2,C))/SL(2,C) has a

natural Poisson structure (induced by the bilinear on the group) and the Poisson algebra
(X(S, SL(2,C), { }) of complex functions over them is the algebra of observables.

• The Skein module K−1(S× [0, 1]) (i.e., t = −1) has the structure of an algebra isomorphic to the
Poisson algebra (X(S, SL(2,C)), { }). (see also [69,70]).

74



Symmetry 2019, 11, 1298

• The skein algebra Kt(S× [0, 1]) is the quantization of the Poisson algebra (X(S, SL(2,C)), { })
with the deformation parameter t = exp(h/4) (see also [69]) .

To understand these statements, we have to introduce the skein module Kt(M) of a 3-manifold
M (see [71]). For that purpose, we consider the set of links L(M) in M up to isotopy and construct
the vector space CL(M) with basis L(M). Then, one can define CL[[t]] as ring of formal polynomials
having coefficients in CL(M). Now, we consider the link diagram of a link, i.e., the projection of the
link to the R2 having the crossings in mind. Choose a disk in R2 so that one crossing is inside this disk.
If the three links differ by the three crossings Loo, Lo, L∞ (see Figure 9) inside of the disk, then these
links are skein related.

Figure 9. Crossings L∞, Lo, Loo.

Then, in CL[[t]], one writes the skein relation L∞ − tLo − t−1Loo which depends only on the
group SL(2,C). Furthermore, let L �O be the disjoint union of the link with a circle. Then, one writes
the framing relation L �O + (t2 + t−2)L. Let S(M) be the smallest submodule of CL[[t]] containing
both relations. Then, we define the Kauffman bracket skein module by Kt(M) = CL[[t]]/S(M). The
modification of S by using the skein relations is one of the allowed changes of the branching set to
keep Cob(Y1, Y2).

Now, we list the following general results about this module:

• The module K−1(M) for t = −1 is a commutative algebra.
• Let S be a surface. Then, Kt(S× [0, 1]) carries the structure of an algebra.

The algebra structure of Kt(S× [0, 1]) can be simply seen by using the diffeomorphism between
the sum S× [0, 1]∪S S× [0, 1] along S and S× [0, 1]. Then, the product ab of two elements a, b ∈ Kt(S×
[0, 1]) is a link in S× [0, 1] ∪S S× [0, 1] corresponding to a link in S× [0, 1] via the diffeomorphism.
The algebra Kt(S× [0, 1]) is in general non-commutative for t �= −1. For the following, we will omit
the interval [0, 1] and denote the skein algebra by Kt(S).

As shown in [23,66,72], the skein algebra serves as the observable algebra of a quantum field
theory. For this approach via branched coverings, the branching sets of knot complements (representing
the fermions) are special braids (6-plats, see above). Any different braid is a different state or better
than a different quantum state but not a different particle. As explained above, the charge spectrum is
enough to describe one generation of particles (two leptons, two quarks). The appearance of different
generations will be discussed below.

7. Fermions and Number Theory

In this section, we will present some ideas to uncover some explicit relations between fermions,
given as hyperbolic knot complements, and number theory, notable quaternionic trace fields and
algebraic K theory/Bloch group. However, we first need some definitions.

A quaternion algebra over a field F is a four-dimensional central simple F-algebra. A quaternion
algebra has a basis 1, i, j, ij where i2, j2 ∈ F× and ij = −ji. A subgroup of PSL(2,C), the isometry
group of the three-dimensional hyperbolic space isomorphic to the Lorentz group SO(3, 1), is said
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to be derived from a quaternion algebra if it can be obtained through the following construction.
Let F be a number field that has exactly two embeddings into C whose image is not contained in R.
Let A be a quaternion algebra over F such that, for any embedding τ : F → R, the algebra A⊗τ R is
isomorphic to the quaternions. Let O1 be the group of elements in the order of A with a 1. An order
of a quaternionic algebra A is a finitely generated submodule O of A of reduced norm 1 and let Γ
be its image in the 2× 2 matrices M2(C) via φ : A → M2(C). We then consider the Kleinian group
obtained as the image inPSL(2,C) of φ(O1). This subgroup is called an arithmetic Kleinian group. An
arithmetic hyperbolic three-manifold is the quotient of hyperbolic space H3 by an arithmetic Kleinian
group. The complement of the figure 8 knot is one example of an arithmetic hyperbolic 3-manifold.

This class of 3-manifolds shows the strong relation between quaternions and 3-manifolds. We
discussed above the relation between the K3 surface and the octonions. The starting point for the use of
number theory in Kleinian groups is Mostow’s rigidity theorem. A consequence of this theorem is that
the matrix entries in SL(2,C) of a finite covolume Kleinian group Γ may be taken to lie in a number
field that is a finite extension of Q. However, it is true that there is a strong relation between certain
number theoretic functions (Bloch–Wigner function, dilogarithm) and the volume of the hyperbolic
3-manifolds: the volume is the sum over all Bloch–Wigner functions for the ideal tetrahedrons forming
this 3-manifold. For more information about the relation between hyperbolic 3-manifolds and number
theory, consult the book [73]. We hope to use this relation in the future to obtain more properties of
fermions by using number theory.

8. The K3 Surface and the Number of Generations

In Section 4.1, we discussed a relation between the K3 surface and octonions by using the
intersection form. Here, we use only the E8 matrix, i.e., the Cartan matrix of the Lie algebra E8. In this
section, we will speculate about the other part

H =

(
0 −1
−1 0

)

of the intersection form (now with a different orientation). H is the intersection form of the 4-manifold
S2 × S2. To express it explicitly, there are homology classes α, β ∈ H2(S2 × S2) with α2 = β2 = 0 and
α · β = −1. Therefore, every S2 of this manifold has no self-intersections. For the topology of the
K3 surface with intersection form (7), this form has the desired form, but, as explained above, we
will change the smoothness structure. The central idea is the usage of Casson handles CH for the
4-manifolds S2 × S2 \ pt, the one-point complement of S2 × S2. Here, the homology classes α, β are
given (up to homotopy) by α2, β2 = 0 mod 2 and α · β = −1; see [74]. However, then one has α2 = 2n.
Interestingly, the existence of a spin structure is connected to the property that the squares of the
homology classes are even. Here, we will consider the simplest realization which has non-zero squares,
i.e., we get the form

H̃ =

(
2 −1
−1 2

)
. (23)

This form cannot be an intersection form because H̃ has determinant 3. Therefore, only the H̃ mod 2
reduction has the meaning to be an intersection. However, for the moment, we will consider H̃
and apply the same construction as for the E8, i.e., we see H̃ as the Cartan matrix for a Lie algebra.
In this case, we get the Lie algebra of SU(3) or the color group. The whole discussion uses some
hand-waving arguments, but it is a sign that the 3

(
S2 × S2) part of the K3 surfaces is connected with

the generations. Every part S2 × S2 has one color group and realizes the electric charge spectrum
0,± 1

3 ,± 2
3 ,±1. Thus, every S2 × S2 is the 4-dimensional expression for one generation. This result

agrees with the discussion in [31] where we generate fermions from a Casson handle. Let us assume
that the number of generations is given by the number of S2 × S2 summands. How many generations
are possible? Here, we have the surprising result: if the underlying spacetime is a smooth manifold, then
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the minimal number of generations must be three! A spacetime with only one or two generations is not a
smooth manifold. Then, the K3 surface is the minimal model.

We will close this paper with another speculation, a global symmetry induced from the K3
surface. Starting point is the intersection form again. From the point of number theory, this
form is an even unimodular positive-definite lattices of rank 24, the so-called Niemeier lattice. In
2010, Eguchi–Ooguri–Tachikawa observed that the elliptic genus of the K3 surface decomposes into
irreducible characters of the N = 4 superconformal algebra. The corresponding q-series is a mock
modular form related to the sporadic group M24, the Mathieu group, a simple group of order 244823040.
The whole theory is known as Mathieu moonshine or umbral moonshine [75]. The interesting point
here is the maximal subgroup of M24, the split extension of PGL(3, 4) by S3. The group is the projective
group of 3× 3 matrices with values in the field of four elements. It seems that this maximal subgroup
acts in some sense on the K3 surface, and we conjecture that this group acts on the S2 × S2 part. If our
idea of a relation between the three generations and the 3

(
S2 × S2) part of the K3 surfaces is true, then

we hope to get the mixing matrix for quarks and neutrinos from this action.

9. Conclusions and Outlook

In this paper, we presented a top-down approach to fermions and bosons, in particular the
standard model. What was done in the paper?

• We constructed a spacetime, the K3 surface and derive some numbers like the cosmological
constant or some energy scales and neutrino masses agreeing with experimental data.

• We derived from a representation of K3 surfaces by branched covering a simple picture: fermions
are hyperbolic knot complements, whereas bosons are link complements (torus bundles).

• We obtained the gauge group from this picture (at least in principle).
• We derived the correct charge spectrum and obtained one generation.
• We conjectured about the number of generations and global symmetry (the PGL(3, 4)) to get the

mixing between the generations.

What are the consequences for physics? The model only has a few direct consequences. We
introduced fermions and bosons in a geometric way. Except for the right-handed neutrino (needed
for the see-saw mechanism to generate the masses), we only got the fermions and gauge bosons of
the standard model. No extension is needed. The usage of torus bundles for the gauge bosons should
generate additional relations for the corresponding scattering amplitudes. The appearance of the global
symmetry PGL(3, 4) should be related the mixing of quarks and neutrinos. In [40], we also discussed
the appearance of an asymmetry between particles and anti-particles induced by the topology of the
spacetime. This idea is also valid in this model, but we cannot match it to the observations.

Is there an outline on some new experiments derived by this model? Currently, this model makes
some predictions about the neutrino masses, charge spectrum and the existence of a right-handed
neutrino. However, these predictions can be checked by a better measurement in known experiments.
Now, there are no new ideas about special experiments connected with this model.

Among these results, there are, of course, many open points of the kind: what is the color and
weak charge? How can we implement the Higgs mechanism? What is mass? For the Higgs mechanism,
we had found a possible scheme in our previous work [40,76], but it is only a beginning. Many aspects
of this paper are related to the ideas of Furey and Gresnigt. It is a future project to extend it and bridge
our approach with these ideas.
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Abstract: In this work, the Sieve of Eratosthenes procedure (in the following named Sieve procedure)
is approached by a novel point of view, which is able to give a justification of the Prime Number
Theorem (P.N.T.). Moreover, an extension of this procedure to the case of twin primes is formulated.
The proposed investigation, which is named Limited INtervals into PEriodical Sequences (LINPES)
relies on a set of binary periodical sequences that are evaluated in limited intervals of the prime
characteristic function. These sequences are built by considering the ensemble of deleted (that
is, 0) and undeleted (that is, 1) integers in a modified version of the Sieve procedure, in such a
way a symmetric succession of runs of zeroes is found in correspondence of the gaps between
the undeleted integers in each period. Such a formulation is able to estimate the prime number
function in an equivalent way to the logarithmic integral function Li(x). The present analysis is then
extended to the twin primes, by taking into account only the runs whose size is two. In this case, the
proposed procedure gives an estimation of the twin prime function that is equivalent to the one of the
logarithmic integral function Li2(x). As a consequence, a possibility is investigated in order to count
the twin primes in the same intervals found for the primes. Being that the bounds of these intervals
are given by squares of primes, if such an inference were actually proved, then the twin primes could
be estimated up to infinity, by strengthening the conjecture of their never-ending.

Keywords: prime numbers; Prime Number Theorem (P.N.T.); modified Sieve procedure; binary
periodical sequences; prime number function; prime characteristic function; limited intervals;
logarithmic integral estimations; twin prime numbers

1. Introduction

The Sieve procedure is able to achieve heuristic justifications of the Prime Number Theorem
(P.N.T.) [1]. Such a theorem gives the asymptotic trend of the prime number function π(x), where
π(x) denotes the quantity of prime numbers p less or equal to x ∈ R, that is,

π(x) = number of primes p, p ≤ x. (1)

Let log(x) be the natural logarithm of x. If the real functions A(x) and B(x) are asympthotically
equal, that is, lim

x→∞
A(x)/B(x) = 1, then we say that A(x) and B(x) are equivalent as x → ∞, and

we write A(x) ∼ B(x). Consequently, the P.N.T. can be written as

π(x) ∼ x/ log(x). (2)

Symmetry 2019, 11, 775; doi:10.3390/sym11060775 www.mdpi.com/journal/symmetry81
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After the infinitude of primes was recognized since ancient times, the estimation (2) was
conjectured by Gauss [2] and Legendre [3] at the end of the 18th century. Gauss himself improved
Equation (2), by considering the logarithmic integral function Li(x), which is defined as

Li(x) =
∫ x

2

dt
log t

. (3)

Again, the function (3) is such that

π(x) ∼ Li(x) (4)

but the approximation (4) is much more precise than (2). In fact, it can be demonstrated that the piece
x/ log(x) is only the first term of the series expansion of (3). The aim of this work is to introduce a
novel heuristic procedure (LINPES, Limited INtervals into PEriodical Sequences) that is equivalent to
the Li(x) approximation, in the sense of Equation (4), apart from a simple multiplicative constant, by
exploiting some binary periodic sequences, and related symmetrical runs. Pieces of these sequences
compose limited intervals of the prime characteristic function ξp(n), which is defined as

ξp(n) =

{
1 if n is prime

0 otherwise.
(5)

As a matter of fact, a topic that is very much discussed nowadays in the literature just concerns
the possible discovering of some regularities and periodicities in the distribution of the primes in
certain intervals of the integer sequence [4]. In this work, the implications of the LINPES procedure
are also investigated, in particular with an extension to the twin primes, whose distribution is given by
a function known as twin prime function π2(x), which is similar to (1), that is,

π2(x) = number of pairs of twin primes (p, p + 2), p ≤ x. (6)

Unlike the case of primes, the infinitude of twin primes is still unproved. However, analogously to
the P.N.T., the density of the twin primes has been conjectured [5], by considering that the probability
to be a prime of an integer n is equal to 1/ log(n). Consequently, the probability that n and n + 2 are
both prime can be computed, in such a way the strong twin prime conjecture[6] gives an equivalence
between the twin prime function π2(x) and the logarithmic integral function Li2(x), that is,

π2(x) ∼ C Li2(x) (7)

where Li2(x) is defined as

Li2(x) =
∫ x

2

dt

(log t)2 (8)

and C = 2 Π2 � 1.3203 is a multiplicative constant that takes into account the statistical dependence
of the primes n and n + 2 [5]. The related constant Π2 � 0.6602 is named twin prime constant, that is,

Π2 = ∏
p>2, p prime

(
1− 1

(p− 1)2

)
. (9)

As it will be shown later, the proposed LINPES procedure is able to estimate the twin prime
function in an equivalent way as the Li2(x) function, apart from a multiplicative constant. However,
this is made by admitting that a basic relation, which is true for the primes, is also valid for the twin
primes. In this case, the contribution of the present work will be a more probable assertion of the
infinitude of twin primes.

Before starting our discussion, we itemize the variables utilized in this paper
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• π(x): prime number function (1)
• Li(x): logarithmic integral function (3), which leads to an estimation of π(x)
• π2(x): twin prime number function (6)
• Li2(x): logarithmic integral function (8), which leads to an estimation of π2(x)
• π(N): prime number function computed in the fixed integer N
• p: generic prime number
• p(n): arithmetic function that gives the succession of primes
• ξp(n): arithmetic function that gives the characteristic function of primes (5)
• Rs(n): number of residual integers in the n− th step of the Sieve procedure
• πR(N): estimation of π(N) given by the heuristic method of Section 2
• ξ(k, n): approximation of ξp(n) after the k− th step of the Sieve procedure
• ψ(k, n): periodic binary sequence obtained in the k− th step of the modified Sieve procedure
• T(k): period of the periodic binary sequence ψ(k, n)
• J(k, n): sliding interval whose size is the same of I(k) and whose initial point is given by n
• S(k): size of the interval I(k)
• R(k): number of residual runs of zeroes in each period T(k)
• L(m, k): size of the m− th run of zeroes in each period T(k)
• I(k) = [p(k)2, p(k + 1)2): interval of ξp(n) where a piece of ψ(k, n) is stored
• D(k, n): local density of the residual runs of zeroes by moving a sliding interval J(k, n) in T(k)
• D(k): average density of the residual runs of zeroes in the period T(k)
• P(k): estimated number of primes in the interval I(k) by using the proposed procedure
• L(k): estimated number of primes in I(k) by using the logarithmic integral function Li(x)
• π(k): real number of primes in the interval I(k)
• πP(N): estimation of π(N) by using the proposed procedure
• Li(N): estimation of π(N) by using the logarithmic integral function Li(x)
• π̃P(N): corrected version of the estimation πP(N)

• R2(k): number of runs sized 2 in each period T(k)
• D2(k): average density of the residual runs 2 in the period T(k)
• P2(k): estimated number of twin primes in the interval I(k) by using the proposed procedure
• π2P(N): estimation of π2(N) by using the proposed procedure
• Li2(N): estimation of π2(N) by using the logarithmic integral function Li2(x)
• L2(k): estimated number of twin primes in I(k) by using the logarithmic integral function Li2(x)
• π̃2P(N): corrected version of the estimation π2P(N)

• π2(k): real number of twin primes in the interval I(k).

This paper is organized as follows: Section 2 reports a well-known heuristic method, which is able
to estimate the prime number function π(x) in the sense of (2), apart from a multiplicative constant.
Section 3 shows instead how the LINPES procedure is able to obtain an estimation of π(x) that is
equivalent to the logarithmic-integral function Li(x) . Section 4 extends the proposed procedure to the
case of twin primes. Finally, future research and conclusive remarks are provided in Section 5.

2. A Heuristic Estimation of π(x) Equivalent to the x/ log(x) Function

In this section, a well-known heuristic method to justify the P.N.T. in a probabilistic way is briefly
resumed, by starting from the Sieve procedure, which splits the primes from the composites in a list
of integers up to a given number N. The Sieve procedure is the most common way to obtain the
primes, and it is also presently a research topic in order to improve its efficiency [7]. Let p(n) be the
arithmetic function whose n-th element is the n-th prime, with n ∈ N [8,9]. The Sieve procedure can be
summarized by the following steps:
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• Step 1: List the integers in the interval IN = (1, N], with N ∈ N, then put n = 1 and start from
the lowest prime p(n) = p(1) = 2.

• Step 2: Cancel all the multiples of p(n) not yet struck out, by starting from p(n)2 up to N.
• Step 3: Go to the next remaining integer q > p(n) in the list. If q2 > N, the procedure ends,

otherwise increase n to n + 1.
• Step 4: Put p(n) = q and return to Step 2.

In order to directly compute the characteristic function of primes ξp(n), we can memorize the
status of each integer in a binary vector ranging from 1 to IN . In practice, we associate the value 0
to an integer that has been struck out by the procedure, and the value 1 otherwise. Such a vector
is initialized by all 1 values, because no integer is deleted when the procedure starts. Then, in each
iteration of the Sieve procedure, a 0 value is assigned to the cells that identify the deleted integers (that
is, the composite integers). At the end of the procedure, only the cells related to the prime numbers
will retain the initial 1 value.

The Sieve procedure is able to obtain heuristic justifications of the relation (2) by considering
purely probabilistic considerations [10]. To show this, let be N an integer whose order of magnitude is
large enough to allow sufficiently robust statistics. In the first step (n = 1), the multiples of p(1) = 2
are struck out, starting from p(1)2 = 4, and the number of deleted integers is approximately given by⌊

N
2

⌋
− 1 � N

2
. (10)

Therefore, the quantity of residual integers is about Rs(1) � N/2. In the following step (n = 2),
the multiples of p(2) = 3 are struck out. Given the independence of the congruences modulo p,
where p is a prime, about 1/3 of the residual integers will be deleted (for the Chinese Remainder
Theorem [9]). The updated number of the residual integers Rs(2) will be given by

Rs(2) �
(

1− 1
2

)
×
(

1− 1
3

)
× N. (11)

In general, about 1− 1/p(k) of the residual integers will be struck out in the k− th step of the
Sieve procedure. The procedure ends when the greatest prime number not exceeding N1/2 is reached,
that is, p(K), where K is such that p(K)2 is the greatest prime square lower than N. At this point,
we obtain an estimation πR(N) of the number of residual integers Rs(K), and consequently of the
quantity of primes π(N), that is,

πR(N) =

(
1− 1

2

)
×
(

1− 1
3

)
×
(

1− 1
p(K)

)
× N = N ×

K

∏
k=1

(
1− 1

p(k)

)
= N ×

K

∏
k=1

p(k)− 1
p(k)

.

(12)
Let us apply the Merten’s Third Theorem [11] to the reciprocal of the product structure (12), by

taking the limit as N → ∞, that is, as K → ∞. We obtain

lim
K→∞

K

∏
k=1

p(k)
p(k)− 1

× 1
log (p(K)2)

=
1
2
× eγ � 1

2
× 1.7811 � 0.8905 (13)

where γ is the Eulero-Mascheroni constant. Consequently, we can get the limit of πR(N) as N → ∞,
that is, an approximation of the limit of π(N) , by considering

lim
N→∞

πR(N) = lim
N→∞

N ×
K

∏
k=1

p(k)− 1
p(k)

= lim
N→∞

N × c
log N

= lim
N→∞

c N
log N

(14)
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that is, πR(N) ∼ c N
log N , with c = 2 e−γ � 1/0.8905 � 1.1229, and being lim

N→∞
N = lim

K→∞
p(K)2.

Noticeably, from the relations (2) and (14), the real quantity of prime numbers in the interval IN =

[1, N], is overestimated, as N → ∞, by a factor c, due to the previous approximations.
As a conclusion, this heuristic procedure gives a justification of the P.N.T. that is equivalent to

the relation (2), except for the c constant [10,12]. In Section 3, the proposed LINPES procedure will
be described, which gives a justification of the P.N.T. that is instead equivalent to the more precise
estimation (4), by means of a procedure that is not purely probabilistic, but that is also featured by
analytic considerations, which can be shared with other scientific sectors.

3. The LINPES Estimation of π(x) Equivalent to the Li(x) Function

In this section, the novel heuristic LINPES procedure is described, by showing that it can give an
estimation of the prime number function π(x). To this end, an ensemble of periodic binary sequences
will be considered in limited intervals of the prime characteristic function ξp(n). Such a topic is of
a great interest because the distribution of primes in short intervals has been deeply investigated in
literature, up to the present [13,14]. The proposed procedure is also able to provide useful insights into
the estimation of the trend of the twin prime number function π2(x). In this analysis, we denote in the
following p(0) = 1 for convenience, even if the integer 1 is not considered to be a prime.

3.1. Periodic Binary Sequences Inside the Prime Characteristic Function ξp(n)

The occurrence of pieces of periodic binary sequences inside the prime characteristic function
ξp(n) is discussed here. To this end, both the Sieve procedure and a modified version of it are
investigated step-by-step, where each step is labelled with the progressive index k, with k = 0
denoting the beginning of the two procedures. The difference between the modified and the true Sieve
procedure is simply that in the Sieve procedure, in each step k ≥ 1, only the multiplies of the prime
p(k) are struck out, but not the prime itself, whereas in the modified Sieve procedure the prime itself
is also deleted. As previously stated, the status of each integer (0→deleted, 1→undeleted) is stored
in a N-size vector, which is initialized with all 1 values. The outputs of the Sieve procedure and its
modified version are denoted as ξ(k, n) and ψ(k, n), respectively, for each step k > 0. Consequently,
the deletion of an integer from the true or the modified Sieve procedure simply means that a 0 value
replaces a 1 value in the two previous sequences. In the case of the Sieve procedure, the sequence
ξ(k, n) is an approximation at the step k of the prime characteristic function ξp(n).

At the beginning of the procedures ( k = 0), we have two equal periodic sequences of all 1 values,
that is, ξ(0, n) and ψ(0, n), whose period is T(0) = 1. In the first step of the modified Sieve procedure
(k = 1), the multiples of p(1) = 2 are struck out, including p(1) itself. Consequently, we obtain a
sequence ψ(1, n), which is still periodic, with alternating 1 and 0 symbols. The period of ψ(1, n) is
given by the prime value p(1) itself, that is, T(1) = 2. In the following, T(k) will denote the period
of the sequence ψ(k, n). Conversely, in the Sieve procedure, the prime p(1) is not deleted. In this case,
the output sequence ξ(1, n) is not periodic, but includes a piece of the periodic sequence ψ(1, n), by
starting from the square p(1)2 = 4. Before such a value, the previous sequence ξ(0, n) is preserved,
which coincides with ψ(0, n). It follows that ξ(1, n) is a mixed sequence, being composed by pieces of
both ψ(0, n) and ψ(1, n), that is,

ξ(1, n) =

{
ψ(0, n) if p(0)2 ≤ n < p(1)2

ψ(1, n) if n ≥ p(1)2.
(15)

Similarly, in the second step of the modified Sieve procedure ( k = 2), every multiple of p(2) = 3,
which is not yet struck out, is deleted, including the prime itself, to give the new sequence ψ(2, n).
Therefore, this sequence comes from the deletion of all the multiplies of the primes p(1) and p(2),
including the primes themselves. It follows that the sequence ψ(2, n) is periodic, with a period equal
to the product of p(1) and p(2), as it will be demonstrated in Theorem 1. If we consider the second
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step of the Sieve procedure, where the primes p(1) and p(2) have not been deleted, we obtain the
sequence ξ(2, n). This is again a mixed sequence, where a piece of the periodic sequence ψ(2, n) is
introduced, by starting from the square p(2)2 = 9, whereas the previous binary values are saved
before this square. Consequently, we have

ξ(2, n) =

⎧⎪⎪⎨⎪⎪⎩
ψ(0, n) if p(0)2 ≤ n < p(1)2

ψ(1, n) if p(1)2 ≤ n < p(2)2

ψ(2, n) if n ≥ p(2)2.

(16)

In general, the multiples of the prime p(k), which are not yet struck out in the previous steps, are
deleted in the k-th step of the modified Sieve procedure, including the prime p(k) itself. Consequently,
after performing all the first k steps, we obtain the periodic sequence ψ(k, n), as shown in Theorem 1.
In the case of the original Sieve procedure, after the k-th step, we obtain the sequence ξ(k, n), which is
an approximation of the prime characteristic function until the prime p(k). Such an approximation
differs from the previous one ξ(k− 1, n), only by starting from the square p(k)2. In fact, after this
point, a piece of the periodic sequence ψ(k, n) is recognizable. It follows that ξ(k, n) can be eventually
written as a mixed sequence, which is a generalization of Equations (15) and (16), that is,

ξ(k, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ψ(0, n) if p(0)2 ≤ n < p(1)2

ψ(1, n) if p(1)2 ≤ n < p(2)2

. . .

ψ(k− 1, n) if p(k− 1)2 ≤ n < p(k)2

ψ(k, n) if n ≥ p(k)2.

(17)

By evaluating the expression (17), we can recognize that subsets of the periodic binary sequences
ψ(k, n) are present, for each k, in the related intervals I(k) = [p(k)2, p(k + 1)2) of the prime
characteristic function. This happens until the end of the Sieve procedure, because each k − th
interval is not influenced by the deletions done in the following steps. We now show that the sequences
ψ(k, n) are periodic and that their periods are given by the product of all the primes up to p(k).

Theorem 1. Let be given the binary sequences ψ(k, n), which are generated by the deletion of the multiplies of
all the primes up to p(k), including the primes themselves. Then, the sequences ψ(k, n) are periodic, and their
periods T(k) are given by the product of all the primes up to p(k), that is,

T(k) =
k

∏
i=1

p(i) (18)

Proof. The deletion of the multiplies of all the primes up to p(k) gives all the sets, as a function of k, of
reduced residue systems modulo T(k), where T(k) is given by Equation (18). Each set is composed by
all the positive integers relatively prime to T(k), that is, by all the numbers such that gcd (n, T(k)) = 1.
The quantity of integers in each set is given by the Euler phi function φ(T(k)), which computes the
number of positive integers less than T(k) and relatively prime to T(k). However, the sets of reduced
residue systems are abelian groups, so that each of them is associated to a principal Dirichlet character
function. This is an arithmetical function χ1(k, n), which is nothing but ψ(k, n), being defined as

χ1(k, n) =

{
1 if gcd(n, T(k)) = 1

0 if gcd(n, T(k)) > 1.
(19)
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In [8], it is proven that χ1(k, n) is a periodic sequence, and in particular that

χ1(k, n + T(k)) = χ1(k, n) ∀n (20)

This completes the proof.

Table 1 reports the periods T(k) of the sequences ψ(k, n), k = 0, . . . , 7, in comparison with the
sizes S(k) = p(k + 1)2 − p(k)2 of the intervals I(k), where subsets of each ψ(k, n) are recognizable.
The pseudo-prime p(0) = 1 is put in brackets.

Table 1. Periods T(k) of the sequences ψ(k, n), for primes p(k) ≤ p(7), in comparison with the sizes
S(k) of the intervals I(k). The ratios S(k)/T(k) are rapidly decreasing as the prime p(k) grows.

k p(k) p(k + 1) I(k) S(k) T(k) S(k)/T(k)

(0) (1) 2 [1, 4) 3 1 3.000000
1 2 3 [4, 9) 5 2 2.500000
2 3 5 [9, 25) 16 6 2.666667
3 5 7 [25, 49) 24 30 0.800000
4 7 11 [49, 121) 72 210 0.342857
5 11 13 [121, 169) 48 2 310 0.020779
6 13 17 [169, 289) 120 30 030 0.003996
7 17 19 [289, 361) 72 510 510 0.000141

By considering the ratios S(k)/T(k), it is evident that the periods T(k) increase much faster than
the width of the intervals S(k). This makes sense because the periodicity of the sequences ψ(k, n) is
hardly recognizable by simply investigating the subsets of each ψ(k, n) in the intervals I(k).

3.2. The Symmetric Sequences of the Runs of Zeroes in the Periods T(k)

In Section 3.1, the prime distribution has been represented as the intersection of an endless number
of periodic binary sequences ψ(k, n), whose periods T(k) rapidly grow, and such that subsets of these
sequences can be found in limited intervals I(k) of the prime characteristic function ξp(n). In particular,
each of these intervals ranges between the squares of a prime p(k) and of the successive p(k + 1).
Consequently, the real primes in each interval I(k) are given by the 1 values of the correspondent
sequence ψ(k, n). In order to complete this analysis, we now consider the gaps between these primes,
by following an established trend in literature. In particular, we are interested to investigate the
distributions of the runs of zeros R(k) in each period T(k), being the binary sequences ψ(k, n)
composed by isolated ones followed by strings, more or less large, of zeroes. It follows that the
quantity R(k) also gives the number of undeleted integers (i.e., isolated ones) in each period T(k),
because the quantity T(k), for k ≥ 1, is an even number, so that the last digit of each period is a zero.

Let us consider the Sieve procedure described step-by-step in Section 3.1 and the number of runs
of zeroes R(k) in each period T(k) of the binary sequences ψ(k, n). For k = 0, 1, we have only one run
(R(0) = R(1) = 1), whose sizes are L(1, 0) = 1 and L(1, 1) = 2, respectively. For k = 2, the deletion
of both the multiples of p(1) and p(2) give two runs (R(2) = 2) in the period T(2) = 6, whose sizes
are L(1, 2) = 4 and L(2, 2) = 2, respectively, and so on. Table 2 reports the number of runs R(k) and
their sizes L(m, k), for k ≤ 4, where the index m identifies the specific run and k gives the step of the
Sieve procedure. Noticeably, the runs of each period T(k) are symmetrical around a symmetry center
given by a run sized 4, except for a final run that is sized 2. Such a trend is expected to be a rule also
for the successive steps.
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Table 2. Runs of zeroes in the periods T(k) of the sequences ψ(k, n), for primes p(k) ≤ p(4). For each
k, the number of runs R(k) and their sizes L(m, k) are reported, with m = 1, . . . , R(k). Let us notice
the symmetry of the runs in each period T(k). By starting from k = 2, the symmetry center is given by
a run of length 4, whereas the final run of length 2 is out of symmetry.

k p(k) T(k) R(k) L(m, k)

(0) (1) 1 1 1

1 2 2 1 2

2 3 6 2 4 2

3 5 30 8 6 4 2 4
2 4 6 2

4 7 210 48 10 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4
2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2

3.3. The Relation Between the Primes in an Interval I(k) and the Runs in a Period T(k)

For evidencing the relation between each period T(k) and the correspondent number of runs of
zeroes R(k), we report in Table 3 the scores of R(k) for k ≤ 7.

Table 3. Periods T(k) and related runs of zeroes R(k) for the primes p(k) ≤ p(7). The special prime
p[0] = 1 is put in round brackets.

k p(k) T(k) R(k)

(0) (1) 1 1
1 2 2 1
2 3 6 2
3 5 30 8
4 7 210 48
5 11 2310 480
6 13 30,030 5760
7 17 510,510 92,160

Such scores also give the number of the integers that have not been struck out by the modified
Sieve procedure in the period T(k), which in turn can be related to the number of undeleted integers
(and consequently of the primes) in the correspondent interval I(k). We will show in Theorem 2 that a
correlation exists between T(k) and R(k), in such a way the number of primes in each interval I(k)
can be inferred. According on the theory of congruences, Theorem 2 gives the quantity of the integers
that have not been struck out (i.e., R(k)) in each period T(k), that is,

Theorem 2. Let be given the periodic binary sequences ψ(k, n) defined in Theorem 1, and whose periods are
T(k) = ∏k

i=1 p(i). Then, the number of undeleted integers, that is, the number of runs of zeroes R(k), in a
period T(k), for k ≥ 1, is given by

R(k) =
k

∏
i=1

(p(i)− 1) , k ≥ 1 (21)

Proof. The number of undeleted integers in each period T(k) is given by the number of integers in
the reduced residue systems modulo T(k), that is, the number of positive integers less than T(k) and
relatively prime to T(k). Such a value is given by the Euler phi function φ(T(k)), once computed in
T(k), that is [8]
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φ(T(k)) = T(k) ·∏p|T(k)
(

1− 1
p

)
= T(k) ·∏p|T(k)

(
p−1

p

)
= T(k) · ∏k

i=1 (p(i)−1)

∏k
i=1 p(i)

= ∏k
i=1 (p(i)− 1) (22)

where p(i), i = 1, . . . , k, are the primes dividing T(k).

By starting from p(4) = 7, Table 1 shows that the interval I(k) is included in the first period of
the sequence ψ(k, n). Consequently, a subset of the undeleted integers R(k) in each period T(k) lies
in the correspondent interval I(k), where they are just primes. Therefore, we can infer the quantity
of primes P(k) in each I(k), by starting from the quantity R(k) in the correspondent period T(k).
As a first approximation, a simple proportional relationship is investigated. Let us consider the local
density D(k, n) of the undeleted integers in the period T(k), where D(k, n) is computed in sliding
intervals J(k, n) whose size is the same of I(k) = [p(k)2, p(k + 1)2), that is, p(k + 1)2 − p(k)2. In this
context, the index n represents the starting point of each J(k, n). If such intervals span the whole
period T(k), we assume that the density D(k, n) is not a function of n. In this case, it is equal to the
average density D(k) over T(k), and we have

D(k, n) = D(k) =
R(k)
T(k)

=
∏k

i=1 (p(i)− 1)

∏k
i=1 p(i)

=
k

∏
i=1

p(i)− 1
p(i)

, k ≥ 1 (23)

It is noteworthy that the product structure in Equation (23) is the same as in Equation (12). Let
us suppose that the previous assumption holds. Then, an estimation of the local density D(k, n) in
each interval I(k) (that is, for n = p(k)2), will be just the average density D(k) over the period T(k).
Consequently, we can write

D
(

k, p(k)2
)
� D(k), k ≥ 1. (24)

Therefore, by starting from Equation (23), we can estimate the quantity of primes P(k) in each
interval I(k), for k ≥ 1. To this end, the average density D(k) is multiplied by the size S(k) =

p(k + 1)2 − p(k)2, that is,

P(k) = D(k) · S(k) = (p(k + 1)2 − p(k)2) ·
k

∏
i=1

p(i)− 1
p(i)

, k ≥ 1. (25)

Evidently, Equation (25) is analogous to Equation (12), apart from the size N of the global interval
IN , where N ∈ IK = [p(K)2, p(K + 1)2), that is changed into the size p(k + 1)2 − p(k)2 of the local
interval I(k).

3.4. The Novel LINPES Estimation of the Prime Number Function π(x)

Equation (25) gives a succession of estimations P(k) of the real number of primes π(k) in each
interval I(k) = [p(k)2, p(k + 1)2). Therefore, the next step will be to blend all these scores to compute
a global estimation πP(N) of the quantity of the primes up to N, where N ∈ I(K), analogously to
Equation (12). In theory, πP(N) is simply computable by adding all the contributions P(k) of Equation
(25), for k = 1, . . . , K, where p(K) is the greatest prime number not exceeding N1/2. However, such
a procedure includes the term p(K + 1), which is unknown. In order to overcome this issue, the
computation of πP(N) has to involve only the terms up to P(K− 1), plus a final term P(K, N), where
the interval IK is only partially considered. Consequently, we obtain

πP(N) =
K−1

∑
k=0

P(k) + P(K, N) = P(0) +
K−1

∑
k=1

[(
p(k + 1)2 − p(k)2

)
·

k

∏
i=1

p(i)− 1
p(i)

]
+ P(K, N) (26)
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where P(0) = p(1)2 − p(0)2, and P(K, N) =
(

N − p(K)2) ·∏K
i=1

p(i)−1
p(i) . Let us notice that Equation

(26) includes as many contributions as the primes are, where each term is given by a relation similar to
Equation (12), with the global size N that is replaced by the size of the interval I(k). Each contribution
includes an average number of primes that is given by ∏k

i=1
p(i)−1

p(i) , so that the average distance

p(k + 1)− p(k) between two consecutive primes is ∏k
i=1

p(i)
p(i)−1 , which is of the order of magnitude

of log(p(k)). For the Cramér conjecture [15], this average distance is p(k + 1)− p(k) = O(log2(p(k)).
Another conjecture by Cramér, by starting from the Riemann’s hypothesis, was p(k + 1)− p(k) =
O(
√

p(k) log(p(k)) [12,16]. Consequently, the error given by neglecting the partial term P(K, N) is
smaller than the loading term of the Cramér conjectures, so that the partial term P(K, N) could be
omitted.

3.5. The Corrected LINPES Estimation by Using the Equivalence with the Li(x) Function

We want now to show that Equations (3) and (26) are related. To this end, we write the logarithmic
integral function Li(N) as a summation of integrals, each of them is computed in the interval I(k) =
[p(k)2, p(k + 1)2), that is,

Li(N) =
∫ p(1)2

2

dt
log t

+
K−1

∑
k=1

∫ p(k+1)2

p(k)2

dt
log t

+
∫ N

p(K)2

dt
log t

, (27)

where the first term starts from 2 to cope with a possible improper integral, and p(K)2 is the greatest
square of a prime less than N. Consequently, the Li(N) function is expressed by Equation (27) as a
succession of estimations L(k), in a similar way to Equation (26), that is,

Li(N) = L(0) +
K−1

∑
k=1

L(k) + L(K, N), (28)

where L(0) =
∫ p(1)2

2
dt

log t , L(K, N) =
∫ N

p(K)2
dt

log t , and

L(k) =
∫ p(k+1)2

p(k)2

dt
log t

. (29)

We now apply the Mean Value Theorem to each interval I(k) in Equation (27), that is,

Li(N) =
p(1)2 − 2
log (ς0)

+
K−1

∑
k=1

p(k + 1)2 − p(k)2

log (ς(k))
+

N − p(K)2

log (ςK)
, (30)

where ς0 ∈ I(0), I(0) = [p(0)2, p(1)2), ς(k) ∈ I(k), k = 1, . . . , K− 1, and ςK ∈ I(K, N), I(K, N) =

[p(K)2, N). In order to show the equivalence between the Equations (26) and (30), we also consider
the lower bound p(k)2 of the interval I(k). By taking, in the two summations, the ratio between the
two terms multiplying the interval size S(k) = p(k + 1)2 − p(k)2, we can write

∏k
i=1

p(i)−1
p(i)

1
log(ς(k))

=

⎛⎝∏k
i=1

p(i)
p(i)−1

log (ς(k))

⎞⎠−1

(31)

From Equation (13), we have

lim
k→∞

∏k
i=1

p(i)
p(i)−1

log (ς(k))
= lim

k→∞

⎡⎣∏k
i=1

p(i)
p(i)−1

log (p(k)2)
× log

(
p(k)2)

log (ς(k))

⎤⎦ =
1
2
× eγ × lim

k→∞

log
(

p(k)2)
log (ς(k))

(32)
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where ς(k) ∈ I(k) = [p(k)2, p(k + 1)2), so that its maximum distance from p(k)2 is p(k + 1)2 − p(k)2.
However, we know that the k− th prime p(k) is given asymptotically by p(k) ∼ k log(k) [9]. Therefore,
p(k)2 ∼ k2 · log(k)2 and p(k + 1)2 ∼ (k + 1)2 · log(k + 1)2 ∼ k2 log(k)2, so that for each point ς(k) ∈
[p(k)2, p(k + 1)2) we have ς(k) ∼ k2 log(k)2. It follows that

lim
k→∞

∏k
i=1

p(i)
p(i)−1

log (ς(k))
=

1
2
× eγ × lim

k→∞

log
(

p(k)2)
log (ς(k))

=
1
2
× eγ =

1
c
� 0.8905 (33)

and consequently Equation (31) gives, for each fixed k,

∏k
i=1

p(i)−1
p(i)

1
log(ς(k))

= cI(k) where lim
k→∞

cI(k) = c = 2× e−γ � 1.1229. (34)

It follows that the trends of the two estimations (26) and (30) are the same as k → ∞, apart from
the constant coefficient c. Due to this multiplicative factor, the proposed estimation (26) overestimates
the prime number function π(N) with respect to Equation (30), and in this sense it is similar to the
heuristic procedure described in Section 2. However, it has to be noticed that this last one is completely
probabilistic, whereas the proposed method is also based on an analytical procedure, that is, the
recognition of an infinite number of binary periodical sequences and related intervals of the prime
characteristic function. In order to correct this discrepancy, we relax the conjecture of Section 3.3, in
such a way the trend of the local density D(k, n) becomes a function of n. Experimentally, the values
of the local density D(k, p2

k) in the interval I(k) are lower than those of the average density D(k). The
following conjecture is then proposed, which links D(k, p2

k) and D(k) by means of the constant c of
the Third Mertens’ Theorem [11].

Conjecture 1. The local density D(k, n) of the undeleted integers in the period T(k), if computed in sliding
intervals whose size is the same of I(k) = [p(k)2, p(k + 1)2), is a function of the starting point n of the sliding
interval. In particular, the average density D(k) is greater than the local density D

(
k, p(k)2) in the interval

I(k), in such a way the succession cI(k) of their ratios exceeds the unity. Moreover, the limit value as k → ∞
of cI(k) is equal to the constant c = 2 · e−γ � 1.1229 of the Third Mertens’ Theorem, that is,

lim
k→∞

D(k)
D
(
k, p2

k
) = c. (35)

The typical trend of D(k, n) = D(16, n) = D(n), for k = 16 and varying n, is plotted in Figure 1,
together with the average density D(k) = D(16) = D in the period T(k) = T(16). Let us notice that,
as it will be discussed in the following, such a trend is less appreciable for small values of the primes.

Figure 1 can be explained as follows. Let us consider the sequences ψ(k, n) defined in Section 3.1,
where the multiples of the primes up to p(k) have been struck out, included the primes themselves.
In each of these sequences, all the undeleted integers are just primes in the range [p(k + 1), p(k + 1)2],
whereas the undeleted integers greater than p(k + 1)2 can be indifferently primes or composites,
because the multiples of the primes greater than p(k) have not yet been struck out.

At the beginning of the modified Sieve procedure (k = 0), the local density D(k, n) of the
undeleted integers is not a function of n, because no integer has been still struck out. In the first
step (k = 1), only the even integers (i.e., the multiplies of p(1) = 2) have been struck out, so that
D(k, n) is still a constant value up to infinity. Noticeably, the multipliers (i.e. the integers multiplying
p(1) to give the deleted multiplies) are equal to the undeleted integers when the procedure starts
(i.e., all the integers). This rule also holds for the following steps, that is, the multipliers of the prime
p(k) in the k − th step of the modified Sieve procedure are equal to the undeleted integers in the
previous (k− 1)− th step. It follows that the multipliers of p(2) = 3 are all the odd integers, whose
distribution is again uniform. Some of these multipliers (that is, 3, 5, 7) are just primes in the interval
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[
p(2), p(2)2), but they can also be composites beyond p(2)2. In this case, the distribution of the

composite multipliers exactly compensate the decreasing trend of the distribution of the multipliers
that are also prime numbers. If the primes p(k) are sufficiently small, such a compensation happens
quickly, because it starts from p(k)2. In these cases, the distribution of the local density D(k, n) is
still approximately uniform. However, as p(k) grows, a transient state is noticeable, because, for
such values of k and small values of n, the local density D(k, n) is greater than the average density
D(k). In fact, for such n values, only a portion of the multiplies of the primes p(i), i = 1, . . . , k, have
been struck out, because the deletion of the multiplies of the prime p(i), i < k, starts only from p(i)2,
apart from the prime p(i) itself. This means that the deletion of the multiplies of p(i), i = 1, . . . , k, is
completed only at the lower bound of the interval I(k), that is, p(k)2. Consequently, after this point,
the transient state ends and the stationary state begins, where the local density D(k, n) fluctuates
around the average density D(k).

D(k, n)

D(k)
Fit of D(k, n)

Figure 1. Typical trend (in black), with k = 16, p(16) = 53 and p(17) = 59, of the local density of the
non-deleted integers D(n) by varying n in sliding intervals whose size is S(16) = 3481− 2809 = 672.
Notice that it is shown only the initial part of the period T(16), whose order of magnitude is 1019,
in such a way the symmetrical trend of the period falls outside the figure. The red line reports a
polynomial fitting of the density D(k, n), whereas the blue line concerns the average density D(k) in
the period T(k). The minimum value of the local density is just reached at the lower bound of the
interval I(k), that is, p(16)2 = 2809.

Figure 1 shows the trend of the local density D(k, n) in the case of p(k) = 16. Starting
approximately from this value of k, we can notice a minimum value D(k, p(k)2) for the distribution
of D(k, n), which is located immediately after the transient state, that is, at the lower bound of the
interval I(k). Such a minimum value is about a 10 percent lower than the average density D(k). In
fact, as previously explained, the multipliers of the prime p(k) are just primes up to p(k)2, whereupon
they can be even composites. It follows that the distribution of the composite multipliers compensate
the decreasing distribution of the multipliers that are prime numbers only starting from the multiple
p(k)3 = p(k)2 · p(k). Therefore, as k → ∞, such a compensation is delaying, in such a way the ratio
between D(k) and D(k, n) more and more grows up to the c value of Equation (35). As a matter of
fact, if all the multipliers were primes, their distribution would decrease by following a logarithmic
trend, so that D(k, n) would augment with the same trend, by starting from the minimum value in the
interval I(k). In the real case, however, the compensation given by the composite multipliers has the
effect that the local density does not grow indefinitely, but tends to the limit value c · D(k, p(k)2). Let
us notice that, if we stop the procedure to a finite value of k, the ratio between D(k) and D(k, n) is
cI(k) · D(k, p(k)2), where the succession cI(k) is increasing and tends to the limit value c as k → ∞.

In order to evaluate the effect of the compensation delay for the small primes p(k), k = 1, . . . , 7, in
comparison with the case of p(16) = 53, Table 4 reports: a) the multipliers f I such that the multiples
f I · p(k) lie in the interval I(k) = [p(k)2, p(k + 1)2), and b) the first multiplier that is a composite
number, that is, fc = p(k)2, whose correspondent multiple is p(k)2 · p(k) = p(k)3. Evidently, as k
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grows, the difference between the upper bound p(k + 1)2 of I(k) and p(k)3 becomes so large that
the compensation effect of the composite multipliers is no longer noticeable in the interval itself.

Table 4. Prime numbers p(k), k = 1, . . . , 7, and k = 16, and the related intervals I(k), together with: a)
the multipliers f I such that the multiples f I · p(k) lie inside the intervals I(k); b) the first multiplier
fc that is a composite number. Let us notice that the difference between fc and the multipliers f I

rapidly grows, so that the distance between the multiple fc · p(k) and the upper bound of the interval
I(k) becomes larger and larger.

k p(k) I(k) fI |( fI · p(k)) ∈ I(k) fc fc · p(k)

1 2 [4, 9) 2; 3 4 8
2 3 [9, 25) 3; 5; 7 9 27
3 5 [25, 49) 5; 7 25 125
4 7 [49, 121) 7; 11; 13; 17 49 343
5 11 [121, 169) 11; 13 121 1331
6 13 [169, 289) 13; 17; 19 169 2197
7 17 [289, 361) 17; 19 289 4913

16 53 [2809, 3481) 53; 59; 61 2809 148,877

Figure 2 shows the trend of the succession cI(k), as k approaches infinity. Evidently, such a
succession tends to the constant value c. The x-axis is in a logarithmic scale, in such a way the values
of p(k)2 can be visualized up to 1015.

Figure 2. Trend of the succession cI(k) whose elements are the ratios between the average densities
D(k) in the period T(k) and the local densities D(k, n) in the correspondent interval I(k). For k → ∞,
such a succession asymptotically approximates the constant c. In the x-axis, a base-10 logarithmic scale
has been chosen for a better visualization.

Finally, Table 5 highlights the equivalence between the proposed estimation (26) and the
logarithmic-integral one (3). To this end, a number of linear regressions have been computed between
the occurrences P(k) (25) in each interval I(k) of the proposed estimation versus the correspondent
ones L(k) (29) of the integral-logarithmic function. Each row of Table 5 is referred to the prime squares
p(k)2 ranging from a power-of-ten to the following one, except the first raw, which includes all the
squares lower than 106, in order to elaborate a sufficient number of points. For each of these ranges, we
report the coefficients m1 and q1 of the linear regressions yi = m1 xi + q1, together with the coefficient
of determination R2

1, which is a measure of the fitting between the two estimations. Evidently, the
coefficient of determination tends very fast to its optimal value, that is 1, despite that the number of
observations has increased. Let us notice that the intercept q1 is practically negligible with respect to
the full-scale level, whereas the slope m1 is approaching the constant value 1/c.
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For comparison, Table 5 also reports the parameters and the coefficient of determination in the
case of the linear regressions yi = m2 xi + q2 concerning the occurrences P(k) versus the targets π(k).
These scores are defined as the number of primes in each interval I(k). Even in this case, the fitting
between P(k) and π(k) is impressive, as shown by the coefficient of determination R2

2. Noticeably,
the slope m2 still approaches the value 1/c, because the P.N.T. guarantees that the logarithmic-integral
function and the prime number function goes to infinity in the same way.

Table 5. Parameters and coefficients of determination of the linear regressions yi = m1 xi + q1 of the
proposed estimations P(k) versus the logarithmic-integral ones L(k), together with the parameters
and coefficients of determination of the linear regressions yi = m2 xi + q2 of P(k) versus the true
number of primes π(k). Each point is computed in an interval I(k).

k p(k)2 m1 q1 R2
1 m2 q2 R2

2

[1, 168] (1, 106) 0.894209 1.2846 0.9999932989 0.894649 0.2597 0.9996747582
[169, 446] (106, 107) 0.892762 0.7754 0.9999985384 0.894052 −2.5697 0.9998452835
[447, 1229] (107, 108) 0.891565 1.0381 0.9999997462 0.891906 −2.2200 0.9999418064
[1230, 3401] (108, 109) 0.891025 2.1044 0.9999999196 0.891016 2.0534 0.9999821107
[3402, 9592] (109, 1010) 0.890801 2.2963 0.9999999842 0.890751 5.6943 0.9999941659

[9593, 27,293] (1010, 1011) 0.890657 4.9719 0.9999999945 0.890664 2.8478 0.9999981622
[27,294, 78,498] (1011, 1012) 0.890606 5.7853 0.9999999989 0.890606 5.6440 0.9999993974

[78,499, 227,647] (1012, 1013) 0.890570 10.3672 0.9999999997 0.890569 13.0142 0.9999998112
[227,648, 664,579] (1013, 1014) 0.890555 14.8795 0.9999999999 0.890555 13.7581 0.9999999398

[664,580, 1,951,957] (1014, 1015) 0.890546 20.1618 1.0000000000 0.890546 27.3660 0.9999999808

From the previous analysis, it follows that, for a given N, the proposed approximation πP(N)

overestimates the prime number function π(N) by a factor cN , which can be computed by considering
that we have an overestimation for each interval I(k) that can be computed by considering a factor in
the finite set cI(k), k = 1, . . . , K , where K is such that N � p(K)2 (see Equation (34)). If N → ∞, the
overestimation factor cN tends to the constant c. Being cN unknown, an adjusted version (36) of (26)
can be defined by means of the correction factor 1/c, that is,

π̃P(N) =
1
c
·
(

P0 +
K−1

∑
k=1

P(k) + PK,N

)
=

=
1
c
·
(

p(1)2 − p(0)2
)
+

1
c
·

K−1

∑
k=1

[(
p(k + 1)2 − p(k)2

)
·

k

∏
i=1

p(i)− 1
p(i)

]
+

1
c
·
(

N − p(K)2
)
·

K

∏
i=1

p(i)− 1
p(i)

.

(36)

Clearly, the corrected version π̃P(N) = 1
c · πP(N) is able to give better estimations than πP(N)

as N approaches infinity. In order to give a quantitative assessment, Table 6 reports the scores
of πP(N ) (26) and of its adjusted version π̃P(N) (36), in comparison with the logarithmic integral
estimation Li(N) (27), and with the prime number function π(N). The range of each row of Table 6
starts from a power-of-ten and ends to the following one up to 1015.

It can be noticed that the scores of π̃P(N) slightly underestimate both the true number of primes
π(N) and the logarithmic integral function Li(N), which, in turn, is such that the sign of its difference
with π̃P(N) changes infinitely many times [17,18], by showing some irregularities in the distribution
of the primes [19], which have been investigated by considering differences in some subsets of the
primes themselves [20]. Concerning the previous underestimation, this is due to the fact that the limit
value c is an upper bound for the succession cI(k). Evidently, π̃P(N) would be perfectly accurate if
the terms cI(k) were available for the computation of (36), by considering the real number of primes
in each interval I(k).
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Table 6. The proposed estimation πP(N) and its adjusted version π̃P(N) in comparison with the
logarithmic integral estimation Li(N), and the prime number function π(N). The scores of Li(N)

have been computed by using the MATLAB R© toolbox. The scores of πP(N) and π̃P(N) have been
rounded to the nearest integer.

N = 10i π(N) Li(N) πP(N) π̃P(N)

101 4 6 4 4
102 25 30 27 24
103 168 178 181 161
104 1229 1246 1348 1 200
105 9592 9630 10,639 9 474
106 78,498 78,628 87,688 78 090
107 664,579 664,918 744,175 662,715
108 5,761,455 5,762,209 6,460,497 5,753,306
109 50,847,534 50,849,235 57,056,721 50,811,064
1010 455,052,511 455,055,615 510,796,987 454,883,106
1011 4,118,054,813 4,118,066,401 4,623,402,885 4,117,306,712
1012 37,607,912,018 37,607,950,281 42,226,535,908 37,604,250,381
1013 346,065,536,839 346,065,645,810 388,584,655,120 346,048,624,432
1014 3,204,941,750,802 3,204,942,065,692 3,598,796,310,868 3,204,857,671,495
1015 29,844,570,422,669 29,844,571,475,288 33,512,578,849,645 29,844,157,918,447

4. An Extension of the Procedure to the Twin Prime Numbers

4.1. Preliminary Concepts

Two prime numbers p and q are twin primes if |p − q| = 2, which is the lowest possible
distance between primes, apart from p = 2 and q = 3, where |p − q| = 1. Let us note that two
consecutive pairs of twin primes do not ever occur, apart from the case {3, 5} and {5, 7}. In fact, one
number in the sequence {n, n + 2, n + 4} is certainly a multiple of 3. The gaps between consecutive
primes have been extensively investigated in literature [13,15,21]. However, differently from the
primes, it is presently unknown whether there are infinitely many pairs of twin primes. In any case, a
preliminary counting shows that the twin primes are relatively abundant into the sequence of primes,
and, consequently, it is reasonable to infer the so-called twin prime conjecture, which states that there
are infinitely many pairs of twin primes. This conjecture is strengthened by the fact that the distribution
of the primes does not change abruptly. Recently, significant progress has been made by showing
that lim inf

k→∞
[p(k + 1)− p(k)] = � < ∞, that is, a finite upper bound exists for the limit inferior of

the difference between consecutive primes. In particular, Zhang found that � ≤ 7 · 107 [22], and this
bound has been successively improved by Maynard to � ≤ 600 [23]. Finally, the Polymath’s project,
whose aim is to collect all the various efforts that try to put the bound lower as much as possible,
has reached the value of � ≤ 246 [24]. Evidently, in order to demonstrate the twin prime conjecture,
a bound of � = 2 should be obtained. In this work, we try to give a contribution to the discussion
of this conjecture, by following a different strategy, that is, by exploiting the concepts previously
introduced for the primes. Consequently, as for the primes, the approach is not merely probabilistic,
but also analytic, so constituting a possible significant step for further advancements, as in the case
of approaches based on periodic functions [25]. The distribution of the twin primes is commonly
characterized by using the twin prime function π2(x) (6). Such a distribution decays more rapidly
than the distribution of the primes. In fact, Brun demonstrated in 1919 [26] that, if ST is the set of twin
primes given by ST = {p : p prime and p + 2 prime}, the related series of the reciprocals converges to
the finite limit B � 1.9022 [1], that is,

∑
p∈ST

(
1
p
+

1
p + 2

)
= B (37)
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regardless of the fact of whether the number of summation terms is infinite or not, whereas the same
summation instead diverges for the primes.

Analogously to the P.N.T., a possible function for approximating the twin prime function π2(x)
has been proposed [5] as the logarithmic integral function Li2(x) (8). As for the primes, we want to
obtain an equivalent procedure and investigate possible consequences.

4.2. A Possible Relation Between the Twin Primes in the Intervals and the Undeleted Integers in the Periods

In Section 3.2, the distribution of the runs into each period T(k) has been investigated. In the
present analysis, the same investigation can be made for the particular case in which the size of the
runs is 2. Evidently, such an investigation can potentially give an estimation of the quantity of twin
primes, similarly to the one given by the Equation (26) for the primes. In fact, we will suggest that the
number of the runs sized 2 in the interval I(k) is equal to the quantity of twin primes in the same
interval. Such a number is equal to the number of {101} sequences, if the sequence {10} is completely
included in the interval. However, such a sequence cannot occur across two intervals, because each
interval, apart from the first one, ends with an even number (that is, a 0), because it is followed by
a square of an odd prime (that is, another 0), which is an odd number. For the sake of clarity, in the
following we denote the runs sized 2 as runs 2. Let us notice that this procedure can be extended to
run-lengths of whatever size, by following the Hardy-Littlewood conjecture B [6]. Such a topic will be the
object of future explorations.

Table 7 reports the number R2(k) of the runs 2 in each period T(k) for p(k), k = 0, . . . , 7. As for
the total number of runs R(k) (21) in the same period, a correlation can be found between R2(k) and
the prime number p(k). In particular, the scores of Table 7 suggest the following conjecture for R2(k)

R2(k) =
k

∏
i=2

(p(i)− 2), k ≥ 2. (38)

Table 7. Number of runs 2, denoted as R2(k), that are included in the periods T(k) , for p(k), k =

0, . . . , 7. These scores are compared with the total number of runs R(k). The special prime p(0) = 1 is
put in round brackets.

k p(k) T(k) R(k) R2(k)

(0) (1) 1 1 0
1 2 2 1 1
2 3 6 2 1
3 5 30 8 3
4 7 210 48 15
5 11 2310 480 135
6 13 30,030 5760 1485
7 17 510,510 92,160 22,275

Equation (38) can be investigated by taking the modified Sieve procedure. At the start of the
procedure (k = 0), we have no run 2. In the first step (k = 1), the multiples of p(1) = 2 are struck out,
in such a way the sequence ψ(1, n) is made by runs 2 only. In particular, a single run 2 is included in
the period T(1) = 2, so that R2(1) = 1. For k = 2, we delete the multiples of p(2) = 3, so that the
period T(2) = 6 becomes three times greater. This implies that the number of runs 2 could increase
from 1 to 3, but the deletion in the point n = 3 vanishes two of these runs. Let us notice that the
cancellation of one multiple vanishes two runs 2 only in this step, being all the runs 2 consecutive,
but this does not happen in the following steps, where only one run 2, or even none, is deleted at the
time. It follows that R2(2) = 1, as in the previous step. On the whole, we obtain that the deleted runs
2 in the period T(2) are a fraction 2/3 = 2/p(2) of the total number of runs 2 in the same period if
no cancellations were made.
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Similarly, for k = 3, the multiples of p(3) = 5 are struck out, so that the period T(3) becomes
five times greater. It follows that the number of runs 2 would grow from 1 to 5, but two cancellations
(for n = 5, 25) vanish two of the five runs 2. Consequently, we obtain R2(3) = 3 and the fraction
of the deleted runs 2 is 2/5 = 2/p(3) of the total runs in this period if no cancellation were made.
In this step, all the cancellations imply the deletion of one run 2, but this will not also be a rule for
the following steps. In fact, for k = 4, we have eight cancellations in the period T(4), but only six of
them stroke out a run 2. However, the fraction of the deleted runs 2 in the period is still given by
6/21 = 2/7 = 2/p(4) of the pre-existing ones before the cancellations, being R2(4) = 3 · 7− 6 = 15.

In the case of primes, it follows from the relation (21) that we struck out, in each step, a fraction
1/p(k) of the total number of runs in the period T(k) if no cancellations were made, which is given
by the product of the prime p(k) by the actual number of runs in the previous period T(k− 1). By
considering the scores of Table 7, a similar relation can be conjectured for the runs 2 in the case of twin
primes, in order to link the number of cancelled runs 2 and the total number of runs 2 in the period
T(k) if no cancellations were made. Unfortunately, in general, the actual number of the deleted runs 2
is not easily computable, by starting from the total number of cancellations in T(k). However, in the
same way of the primes, our conjecture is that the deletion of the multiples of p(k) has the effect to
exactly cancel a fraction 2/p(k) of the runs 2 in the period T(k).

If this conjecture holds, Equation (38) follows by induction. In fact, it is true for p(2) = 3. Let us
suppose that Equation (38) holds for p(k− 1) and show that it is also true for p(k). By the induction
hypothesis, the number of runs 2 in the period T(k− 1) is given by R2(k− 1) = ∏k−1

i=2 (p(i)− 2). We
must show that the number of runs 2 in the period T(k) is R2(k) = ∏k

i=2 (p(i)− 2). Given R2(k− 1),
the number of runs 2 in the new period T(k) becomes p(k) · R2(k− 1), because T(k) is p(k) times
greater than T(k− 1). By taking the previous conjecture, a fraction 2/p(k) of the runs 2 is struck
out, in such a way we have a fraction of residual runs 2 given by (p(k) − 2)/p(k) · R2(k − 1) =

(p(k)− 2)/p(k) ·∏k−1
i=2 (p(i)− 2) = ∏k

i=2 (p(i)− 2) = R2(k).

4.3. A Heuristic Estimation of π2(x) Equivalent to the Li2(x) Approximation

From Equation (38), we can give an estimation π2P(N) of the twin prime function π2(x), which
is equivalent to the approximation given by the Li2(x) function (8). Such an estimation can be viewed
as a generalization of Equation (26) to the case of the twin primes. To this end, analogously to Equation
(23) for the primes, we compute the average density D2(k) of the number of runs 2 in a period T(k).
By starting from the total number of runs 2 R2(k) in the period T(k), the average density D2(k) is
given by the relation

D2(k) =
R2(k)
T(k)

=
∏k

i=2 (p(i)− 2)

∏k
i=1 p(i)

=
1
2
×

k

∏
i=2

p(i)− 2
p(i)

, k ≥ 2. (39)

As for the primes, we can initially approximate the local density D2(k, n) in the interval I(k) as
the average density D2(k), that is, D2

(
k, p(k)2) � D2(k). In this case, the estimated number of twin

primes P2(k) in I(k), for k ≥ 2, is given by

P2(k) = D2(k)× S(k) = (p(k + 1)2 − p(k)2)× 1
2
×

k

∏
i=2

p(i)− 2
p(i)

, k ≥ 2 (40)

The total estimation π2P(N) is then obtained by adding all the contributions P2(k), that is,

π2P(N) = ∑K−1
k=0 P2(k) + P2(K, N) = P2(0) + P2(1) + ∑K−1

k=2

[(
p(k + 1)2 − p(k)2) · 1

2 ·∏k
i=2

p(i)−2
p(i)

]
+ P2(K, N) (41)

where P2(0) = p(1)2 − p(0)2, P2(1) = 1
2 · (p(2)2 − p(1)2), P2(K, N) =

(
N − p(K)2) · 1

2 ·∏K
i=2

p(i)−2
p(i) ,

and K is the greatest prime number not exceeding N1/2. As for the primes, Equation (41) overestimates
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the true π2(N) scores, because the local density D2(k, n) is not actually constant in the period T(k),
but it is a function of n. However, the offset of the local density in the interval I(k) with respect to
the average density is greater than for the primes. Experimentally, each P2(k) value (40) overtakes
the true quantity of twin primes computed in I(k) of about 20%, that is, more or less a double of the
percentage previously found for the primes, and reported in Figure 1, even if the trends of the local
densities are similar. Quantitatively, the ratio between the average density D2(n) and the local density
D2
(
k, p(k)2) seems to approximate the constant c2 as k → ∞, that is, the square of c.
To evidence this statement, let us consider the estimation given by the Li2(x) function, that is,

C Li2(x), for x = N, from Equation (8), that is, C Li2(N), as a summation of integrals, each of them is
computed in the interval I(k) = [p(k)2, p(k + 1)2)

C Li2(N) = C
∫ p(1)2

2

dt
log2 t

+ C
K−1

∑
k=1

∫ p(k+1)2

p(k)2

dt
log2 t

+ C
∫ N

p(K)2

dt
log2 t

(42)

being p(K)2 the greatest square of a prime less than N. Similarly to Equation (28), we can write
Equation (42) as a succession of estimations L2(k) in each interval I(k), that is,

C Li2(N) = C L2(0) + C
K−1

∑
k=1

L2(k) + C L2(K, N), (43)

where L2(0) =
∫ p(1)2

2
dt

log2 t
, L2(K, N) =

∫ N
p(K)2

dt
log2 t

and

L2(k) =
∫ p(k+1)2

p(k)2

dt
log2 t

. (44)

Then, we apply the Mean Value Theorem for Integrals to Equation (42) in each interval I(k)

C Li2(N) = C
p(1)2 − 2
log2 (ς0)

+ C
K−1

∑
k=1

p(k + 1)2 − p(k)2

log2 (ς(k))
+ C

N − p(K)2

log2 (ςK)
, (45)

where the point ς0 belongs to the interval I(0) = [p(0)2, p(1)2), ς(k) belongs to the interval I(k), k =

1, . . . , K − 1, and ςK belongs to the interval I(K, N) = [p(K)2, N). As for the primes, we have to
consider the lower bound p(k)2 of the interval I(k). Let us take the ratio between the two terms
multiplying the size S(k) = p(k + 1)2 − p(k)2, in the summations of the Equations (41) and (45), so
that we obtain

1
2 ·∏k

i=2
p(i)−2

p(i)
C

log2(ς(k))

=

⎛⎝2C ·∏k
i=2

p(i)
p(i)−2

log2 (ς(k))

⎞⎠−1

(46)

If we consider the lower bound p(k)2 of the interval I(k), we have

2C ·∏k
i=2

p(i)
p(i)−2

log2 (ς(k))
=

2C ·∏k
i=2

p(i)
p(i)−2

log2 (p(k)2)
· log2 (p(k)2)

log2 (ς(k))
(47)

Let us notice that the ratio p(i)−2
p(i) can be split as

p(i)− 2
p(i)

=
p(i)− 2

(p(i)− 1)2×
(p(i)− 1)2

p(i)
=

p(i)2 − 2 p(i)
(p(i)− 1)2 × (p(i)− 1)2

p(i)2 =
(p(i)− 1)2 − 1
(p(i)− 1)2 × (p(i)− 1)2

p(i)2

=⇒ p(i)− 2
p(i)

=
p(i)− 1

p(i)
× p(i)− 1

p(i)
×
(

1− 1
(p(i)− 1)2

) (48)
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Consequently, we obtain

k

∏
i=2

p(i)
p(i)− 2

=
k

∏
i=2

⎡⎣ p(i)
p(i)− 1

× p(i)
p(i)− 1

× 1
1− 1

(p(i)−1)2

⎤⎦ (49)

Then, we define ⎧⎨⎩C(k) = 2×∏k
i=2

(
1− 1

(p(i)−1)2

)
, k ≥ 2

C(1) = C(0) = 1.
(50)

From Equation (49) and considering that lim
k→∞

log2(p(k)2)
log2(ς(k))

= 1 (see Section 3.5), the limit, as k → ∞,

of the ratio (47) is given by

lim
k→∞

2C×∏k
i=2

p(i)
p(i)−2

log2(p(k)2)
× log2(p(k)2)

log2(ς(k))
= lim

k→∞

2C×∏k
i=2

p(i)
p(i)−2

log2(p(k)2)
= lim

k→∞

2C× 2
C(k)×∏k

i=2

[
p(i)

p(i)−1×
p(i)

p(i)−1

]
log2(p(k)2)

. (51)

We noticed in the Equation (33) that

lim
k→∞

∏k
i=1

p(i)
p(i)−1

log (p(k)2)
=

1
2
× eγ � 1

c
� 0.8905. (52)

Evidently, we have

lim
k→∞

k

∏
i=2

p(i)
p(i)− 1

=
1
2
× lim

k→∞

k

∏
i=1

p(i)
p(i)− 1

(53)

and, consequently, from Equation (9),
lim
k→∞

C(k) = C. (54)

Finally, from Equation (51), we obtain the limit of the ratio (47)

lim
k→∞

4×∏k
i=2

[
p(i)

p(i)−1 ×
p(i)

p(i)−1

]
log2 (p(k)2)

= 4×
(

1
2c

)2
=

1
c2 � 0.89052 = 0.7931 (55)

and Equation (46) gives

1
2 ×∏k

i=2
p(i)−2

p(i)
C

log2(ς(k))

= c2I(k) where lim
k→∞

c2I(k) = c2 � 1.2609. (56)

For a given N, the proposed approximation π2P(N) overestimates the twin prime number
function π2(N) by a factor c2N , which can be computed by considering that we have an overestimation
for each interval I(k) that can be computed by considering a factor in the finite set c2I(k), k = 1, . . . , K,
where K is such that N � p(K)2. Equations (55) and (56) show that the succession c2I(k) tends to the
constant c2 as N → ∞. Consequently, we can define a corrected version π̃2P(N) (57) of the proposed
estimation π2P(N), by multiplying Equation (41) by the factor 1/c2 � 0.7931, that is,

π̃2P(N) =
1
c2 ×

(
P2(0) + P2(1) +

K−1

∑
k=2

P2(k) + P2(K, N)

)
=

1
c2 ×

(
p(1)2 − p(0)2

)
+

1
2c2 ×

(
p(2)2 − p(1)2

)
+

+
1

2c2 ×
K−1

∑
k=2

[(
p(k + 1)2 − p(k)2

)
×

k

∏
i=2

p(i)− 2
p(i)

]
+

1
2c2 ×

(
N − p(K)2

)
×

K

∏
i=2

p(i)− 2
p(i)

.

(57)

As for the primes, Equation (57) is expected to improve the estimation of π2(N) as N approaches
infinity. This is evidenced in the scores of Table 8, where a comparison is made between the proposed
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estimation π2P(N ) and its adjusted version π̃2P(N) with the estimation C Li2(N) given by the
logarithmic integral function (8) and the twin prime number function π2(N). The ranges of N are the
same as Table 6.

Table 8. The proposed estimation π2P(N) and its adjusted version π̃2P(N) in comparison with the
logarithmic integral estimation C Li2(N) and the prime number function π2(N). The scores of the
logarithmic integer function have been computed by using the MATLAB R© toolbox. The scores of
π2P(N) and π̃2P(N) have been rounded to the nearest integer.

N = 10i π2(N) C Li2(N) π2P(N) π̃2P(N)

101 2 2 4 3
102 8 11 12 10
103 35 43 48 38
104 205 212 250 198
105 1224 1246 1522 1207
106 8169 8246 10,252 8131
107 58,980 58,751 73,579 58,353
108 440,312 440,365 553,514 438,977
109 3,424,506 3,425,306 4,312,478 3,420,314
1010 27,412,679 27,411,414 34,537,569 27,390,848
1011 224,376,048 224,368,862 282,810,653 224,289,776
1012 1,870,585,220 1,870,559,864 2,358,205,655 1,870,231,592
1013 15,834,664,872 15,834,598,303 19,964,600,235 15,833,405,367
1014 135,780,321,665 135,780,264,892 171,202,650,560 135,776,370,890
1015 1,177,209,242,304 1,177,208,491,858 1,484,356,543,022 1,177,204,581,001

The connection between the π2P(N) estimation (41) and the C Li2(N) estimation (42) is
investigated in Table 9, by considering the parameters and the coefficient of determination of the linear
regressions yi = m1 xi + q1 between the occurrences of P2(k) (40) versus those of C L2(k), where
L2(k) is given by (44), in each interval I(k). As for the primes, an excellent fitting is given by the linear
relationship between P2(k) and C L2(k). This is confirmed by the coefficient of determination R2

1,
which rapidly tends to 1 as k grows. On the other hand, the intercept q1 is negligible, whilst the
slope m1 approaches the limit value 1/c2.

The fitting of the linear regressions yi = m2 xi + q2 between the occurrences of P2(k) (40) versus
those of the twin prime number function π2(k), if computed in the same interval I(k), is also reported
in Table 9. Even if less impressive than in the case of Table 5 for the primes, the goodness of the fitting
is clearly shown by the coefficient of determination R2

2, which is practically at its best value. As for
m1, the slope m2 seems to approximate the limit value 1/c2.

Table 9. Parameters and coefficients of determination of the linear regressions yi = m1 xi + q1 of the
proposed estimations for the twin primes P2(k) versus the logarithmic-integral ones C L2(k), together
with the parameters and coefficients of determination of the linear regressions yi = m2 xi + q2 of P2(k)
versus the true number of twin primes π2(k). Each point is computed in an interval I(k).

p(k)2 m1 q1 R2
1 m2 q2 R2

2

(1, 106) 0.799120 0.3205 0.9999525356 0.784981 0.6900 0.9819305687
(106, 107) 0.797052 0.1191 0.9999935927 0.807148 −0.8767 0.9947532680
(107, 108) 0.794901 0.1435 0.9999989157 0.792818 0.7199 0.9983424066
(108, 109) 0.793935 0.2629 0.9999996567 0.794232 −0.5788 0.9992892724
(109, 1010) 0.793529 0.2602 0.9999999326 0.793309 1.2422 0.9998094846
(1010, 1011) 0.793273 0.5082 0.9999999770 0.793336 −0.0376 0.9999152638
(1011, 1012) 0.793180 0.5523 0.9999999955 0.793186 0.6827 0.9999711368
(1012, 1013) 0.793115 0.9036 0.9999999988 0.793125 0.0544 0.9999902660
(1013, 1014) 0.793088 1.2179 0.9999999997 0.793089 0.9592 0.9999967269
(1014, 1015) 0.793072 1.5449 0.9999999999 0.793072 2.4024 0.9999988979
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In summary, the proposed approach estimates the true number of twin primes by considering the
number of runs 2 in each interval I(k) =

[
p(k)2, p(k + 1)2), in such a way each estimation P2(k) fits

the correspondent one given by C L2(k). Consequently, in the case the conjecture (38) holds, we can
infer that the distribution of the twin primes follows the same trend in all the intervals I(k). Because
these intervals are a function of the squares of both the prime p(k) and its successive one, it follows
that, being the primes are a never-ending succession, the unproved hypothesis of the infinitude of the twin primes
would be further strengthened.

5. Conclusions and Future Developments

In this work, an original heuristic procedure in order to obtain the distribution of the prime number
function π(x) is proposed and investigated, which gives estimations of the scores of π(x) equivalently
to the logarithmic integral function Li(x). However, this approach is not fully probabilistic, but it is
also based on analytical concepts, that is, a set of infinitely many binary periodic sequences is found
by means of a modified Sieve procedure, whose periods have a subset that is included in limited and
disjoint intervals I(k) of the prime characteristic function. In each period T(k), these binary sequences
define a succession of 1 values, which are separated by runs of consecutive zeroes. Starting from
the number of runs of zeroes in a period T(k), an estimation of the total number of primes can be
found, which is linked to the logarithmic integral estimation by the constant c of the Third Mertens’
Theorem. Noticeably, the succession of the runs of zeroes, whose elements are the gaps between two
consecutive primes, is symmetric in each period T(k). As a result, the proposed LINPES procedure
estimates the prime number function in each interval I(k), whose bounds are the squares of a prime
number and of the successive one. As a particular case, this procedure is also specialized to the case of
the twin primes, in such a way only the runs sized 2 are considered in each period. Consequently, a
heuristic relation for the number of these runs in a period T(k) is formulated, whose trend is linked
to the relation previously found for the total number of runs in the case of primes. Therefore, such a
relation gives an estimation of the twin prime number function π2(x) in each interval I(k), which is
equivalent to the estimation of the logarithmic integral function Li2(x), by means of the square of the
constant c. Being the bounds of these intervals given by squares of primes, their number is infinite.
As a consequence, the proposed procedure could give a contribution to the presumed infinity of the
succession of the twin primes. Future developments will further investigate the relation of the number
of runs 2 in a period T(k), together with the symmetry of the succession of the runs of zeroes.
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Abstract: In this paper, we investigate the popular Miller–Rabin primality test and study its
effectiveness. The ability of the test to determine prime integers is based on the difference of the
number of primality witnesses for composite and prime integers. Let W(n) denote the set of all
primality witnesses for odd n. By Rabin’s theorem, if n is prime, then each positive integer a < n is a
primality witness for n. For composite n, the power of W(n) is less than or equal to ϕ(n)/4 where
ϕ(n) is Euler’s Totient function. We derive new exact formulas for the power of W(n) depending on
the number of factors of tested integers. In addition, we study the average probability of errors in the
Miller–Rabin test and show that it decreases when the length of tested integers increases. This allows
us to reduce estimations for the probability of the Miller–Rabin test errors and increase its efficiency.

Keywords: prime numbers; primality test; Miller–Rabin primality test; strong pseudoprimes;
primality witnesses

1. Introduction

The MillerRabin primality test is an algorithm that checks whether a given number is prime or
composite. Its original version, due to Gary L. Miller, was deterministic and relied on the unproved
extended Riemann Hypothesis [1]. Michael O. Rabin modified it to obtain a probabilistic algorithm [2].

Definition 1. Let m be a positive integer represented as m = 2s · u where u is odd. We introduce two auxiliary
functions bin(m) = s and odd(m) = u.

Definition 2. Let n be an odd natural, n > 9. An integer a, 1 ≤ a < n, is called a primality witness for n if it
is co-prime to n and one of the following conditions holds:

1. aodd(n−1) ≡ 1 mod n,
2. aodd(n−1)2i ≡ −1 mod n for some i, 0 ≤ i < bin(n− 1),

(1)

(We replaced original Rabin’s definition of the compositeness witnesses by the opposite relation).
For generality, we count 1 and n− 1 as primality witnesses and call them trivial witnesses since they
satisfy (1) for any n.

Let W(n) denote the set of all primality witnesses for n. The Rabin theorem [2] asserts that if
number n is prime then each non-zero integer, a < n is a primality witness for n, and therefore,
the number of all witnesses |W(n)| = n− 1. For composite n, it satisfies inequality |W(n)| ≤ ϕ(n)/4
where ϕ(n) is Euler’s totient function. Since Rabin did not consider 1 as a witness, then he stated the
strict inequality |W(n)| < ϕ(n)/4.

Symmetry 2020, 12, 890; doi:10.3390/sym12060890 www.mdpi.com/journal/symmetry103
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Later, Gary Miller [1] developed a primality test that takes any integer a, 1 < a < n, checks if a is
not a factor of n (otherwise, n is trivially composite), and whether a is a primality witness for n, that
is, lies in the set W(n). If the answer is positive, then n is probable prime with probability exceeding
3/4. If we need in a more exact result, we should repeat this procedure several times taking different
numbers a < n.

The researchers refer to this algorithm as to the Miller and Rabin primality test. We abbreviate it
to MR test.

Definition 3. Parameters a which are used in Miller’s algorithm are called bases. They are chosen randomly
from interval [1; n− 1]. If, for a given odd integer, n relation (1) holds at a base a, we say, n passes the MR test
at base a. Otherwise, we call a a compositeness witness for n and deduce that n is certainly composite.

The probability of error after k successful iterations becomes less than 1/4k. The only type of error
in the Rabin’ procedure is defining a composite integer as prime.

More details on the Miller–Rabin test can be found in Chapter 3 of text-book [3] by Crandall and
Pomerance. We abbreviate Miller–Rabin test as MR test.

Definition 4. Composite integers qualifying by MR test as probable prime at a base a are called strong
pseudoprimes relative to base a. Composite integers being probably prime relative to all a from a set A of bases
are called strong probable prime relative to set of bases A.

Investigation of pseudoprime integers has a long history in the Computational Number Theory.
We outline main advantages in this direction in the next section.

2. Some History Remarks

Fist attempts to find fast primality algorithms were based on Fermat’s Little Theorem asserting
that for prime n and for any positive integer a, the following relation holds

an ≡ a mod n (2)

Indeed, many composite integers do not satisfy (2) and can be discarded after the first check.
Composite n that satisfy (2) are called Fermat pseudoprimes relative to base a.

It is important to note that all strong pseudoprimes relative to a base a are also Fermat
pseudoprimes relative to a.

We can decrease the number of false decisions by Fermat’s test by checking the relation (2) with
several different a. However, this does not allow us to completely avoid false conclusions since
so-called Carmichael numbers exist.

Integer n is called a Carmichael number if it satisfies (2) for all a. Carmichael numbers appear
relatively rarely and the least Carmichael number is 561 = 3 · 7 · 11. It is known that Carmichael
numbers are exactly those integers which satisfy Korselt’s criterion:

Korselt Criterion (1899). A positive compositeinteger n is a Carmichael number if and only if n is
square-free, and for all prime divisors p of n, it is true that p− 1|n− 1.

One of the interesting problems is to find for a given odd integer n the least witness. In 1994 Alford,
Granville and Pomerance proved [4] that such witnesses exceed (log n)1/(3 log log log n) for infinitely
many n. We also show that there are finite sets of odd composites which do not have a reliable witness,
namely a common witness for all of the numbers in the set.

MR test discards a Carmichael number n, if the base was chosen from [1; n− 1]\W(n).
Let us fix a base a and let na be a least composite integer that the MR Test accepts at the base a.

Then, any odd n < na for which a is a primality witness, is definitely prime. This means that when we
know na, we can definitely check any n < na for primality using only one round of the MR procedure.
The corresponding integer na is small. But if we take a set A of several different bases a and find a
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least composite nA for which all a ∈ A are primality witness, this nA can be very large. Candidates for
bases a can be any positive integers that are not squares. However, historically, candidates for special
bases are chosen from the set of primes.

Let Pk denote the set of the first k primes Pk = {2, 3, 5, 7, . . . , pk}, and let ψk be a least strong
pseudoprime relative to Pk for a k ≥ 1. Function ψk is well defined and is exponentially computable.
Its computation began already 40 years ago.

First four values of ψk have been found by C. Pomerance, J. Selfridge, and S.Waggstaff [5] in 1980.
A systematic calculation of ψk for larger k has been initiated by J. Jaeschke [6] who elaborated

basic algorithms helpful for searching for strong pseudoprimes of different forms. In 1993 Jaeschke
calculated ψk for 5 ≤ k ≤ 8 and proposed upper bounds for ψk at 9 ≤ k ≤ 11.

F. Arnault in papers [7,8] described another algorithm to search for Carmichael numbers and
strong pseudoprimes integers.

Jaeschke’ hypothesis have been improved in 2001 by Z. Zang [9] who constructed a lesser 19-digits
decimal integer Q11 = 3825123056546413051 bounding above ψ11. Z.Zang conjectures that values ψk
for 9 ≤ k ≤ 11 are equal to each other and coincide with Q11.

In 2012 J. Jiang and Y. Deng [10] confirmed Zang’s Hypothesis by showing that
Q11 = ψ9 = ψ10 = ψ11.

The last record is reached by J. Sorenson and J. Webster [11] in 2016 . They found ψ12 and ψ13,
where ψ13 = 3317044064679887385961981 ≈ 3.3 · 1024. So at the moment we can successfully determine
prime integers less than 3.3 · 1024 by only 13 rounds of the MR test. But this bound is much less than
integers used in Cryptography. For example, DSS algorithm uses prime integers of length 256 bits
(≈80 decimal digits).

Another branch of investigations in connected with the problem of distribution of Fermat
pseudoprimes and strong pseudoprimes. Let F(n) denote set

F(n) = {a mod n : an−1 ≡ 1 mod n}.

Clearly, F(n) ⊇ W(n).
In 1985 P. Erdos and C. Pomerance [12] studied an asymptotic behavior of average function

A(x) =
1
x ∑

n≤x

′|F(n)|

where sum is counted over odd integers. They showed using complex number-theoretical calculations
that A(x) is a growing function bounded below by x15/23.

Our average function Avg(x) looks close to A(x) but we show that for almost all composite n
W(n) consists of only two elements 1 and n− 1 and function Avg(x) tends to zero with x tending
to infinity.

Average number of errors in the MR test was also studied in 1993 by I. Damgard, P. Landrock and
C Pomerance. In paper [13] they studied an average probability of the false decision by the MR test in
the following procedure:

Fix k > 0 and t > 0 and choose randomly k-bit odd integer n. Check it with t rounds of MR test
with randomly chosen bases from [1; n− 1]. If n was discarded during the procedure (that is, found
a �∈ W(n)), take another n. Continue until n was found passed t rounds. Let pk,t be the probability that
the procedure returns a composite integer.

The authors found explicit upper bounds for various k and t. In particular they proved that
pk,1 ≤ k242−

√
k for k ≥ 2. Their results show that the probability of false decisions of the MR test

depends on the length of tested numbers and it decreases if the length of the numbers increases.
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3. Counting Number of Witnesses

In this section we deduce exact formulas for the number of primality witnesses for different types
of composite integers.

We begin our investigation with a little proposition improving Rabin’s estimate.

Theorem 1. If a ∈ W(n), then n− a ∈ W(n).

Proof. Let k = ordn(a). If k is odd, then aodd(n−1) mod n = 1, and (n − a)odd(n−1) ≡ −1 mod n,
therefore, n− a is also a witness.

If k is even, then ak/2 ≡ −1 mod n. If k/2 is even, then (n − a)k/2 ≡ ak/2 ≡ −1 mod n, and
(n− a) is a witness.

Finally, if k/2 is odd, then (n− a)k/2 ≡ −ak/2 ≡ 1 mod n. Since k/2 | odd(n− 1), then aodd(n−1) ≡
1 mod n, and (n− a) again is a witness.

This completes the proof.

Corollary 1. (The Improved Rabin Theorem). Let n be a natural, and A be an arbitrary set of bases less than n,
co-prime to n, such that for any a ∈ A, n− a is not in A. If all bases a ∈ A are primality witnesses of n, then n
is probable prime with probability of error less than or equal to 1/16k.

Indeed, when we found a primality witness a for integer n, we get two primality witnesses for n,
namely, a and n− a. So, this reduces the probability of error by a factor of 42 = 16.

Let Nw(n) = |W(n)| be the power of number of primality witnesses W(n). As mentioned earlier,
for prime n Nw(n) = n− 1, and for composite n Nw ≤ ϕ(n)/4.

Below we estimate function Nw(n) more exactly. First we formulate a theorem restricting possible
witnesses for a composite n.

Theorem 2. Let n = u · v for co-prime factors u and v (possibly, composite), and a ∈ W(n). Then,

1. ordu(a) | GCD(ϕ(u), (u− ϕ(u))v− 1),
2. ordv(a) | GCD(ϕ(v), (v− ϕ(v))u− 1),
3. bin(ordu(a)) = bin(ordv(b)).

(3)

Proof. 1. Since a is a primality witness for n then an−1 ≡ 1 mod n and an−1 ≡ 1 mod u. Besides,
n− 1 = uv− 1 = ϕ(u)v + (u− ϕ(u))v− 1, so

1 ≡ an−1 ≡ aϕ(u)v+(u−ϕ(u))v−1 ≡ a(u−ϕ(u))v−1 mod u,

since aϕ(u) ≡ 1 mod u by Euler’s Theorem.
2. By symmetry.
3. If ordu(a) is odd, then aodd(n−1) ≡ 1 mod n (otherwise, a satisfies the second clause of the MRT,

and ordu(a) should be even). Then aodd(n−1) ≡ 1 mod v and ordv(a) is odd.
If bin(ordu(a)) = i for 0 < i < bin(n − 1), then a is a witness by second clause of the MRT,

so aodd(n−1)2i−1 ≡ −1 mod n, aodd(n−1)2i−1 ≡ −1 mod v, and aodd(n−1)2i ≡ 1 mod v, so ordv(a) =

odd(n− 1)2i and bin(ordv(a)) is equal to i.
The theorem is proved.

Example 1. Let n = 15 · 19 = 285, and a ∈ W(n). By Theorem 2:

1. ordu(a) | GCD(ϕ(u), (u− ϕ(u))v− 1) = GCD(8, 132) = 4,
2. ordv(a) | GCD(ϕ(v), (v− ϕ(v))u− 1) = GCD(18, 14) = 2,
3. bin(ordu(a)) = bin(ordv(b)).
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So, possible a satisfies (ordu(a), ordv(a)) = (1, 1), or, (ordu(a), ordv(a)) = (2, 2), so n = 285 has only
trivial witnesses 1 and n− 1.

Theorem 3. Let n = pk be a degree of prime p, then Nw(n) = p− 1.

Proof. Let a be a witness for n = pk, then orda(n) | GCD(ϕ(n), n− 1) = GCD(pk−1(p− 1), pk − 1) =
p− 1.

Besides, any a satisfying ap−1 mod n = 1 is a witness of n. Indeed, let ap−1 mod n = 1. Then,
m = ordn(a) is a factor of n− 1 = pk − 1. Let n− 1 = 2s · t for odd t, therefore, m = 2s1 · t1, where
s1 ≤ s and t1 is a factor of t.

If s1 = 0, then at1 mod n = 1, at mod n = 1 and a is a witness by the first clause of the MRT.
Otherwise, let 0 ≤ r ≤ s1 be such that at12r ≡ −1 mod n. Then at2r ≡ −1 mod n and a is a witness by
the second clause of the MRT. This completes the proof.

We call integer n semiprime if it is a product of two distinct primes n = pq, p < q. Semiprimes are
close to primes, and we prove below that they have a maximal number of primality witnesses among
composite numbers.

Theorem 4. Number of witnesses of semiprime n = pq is equal to

Nw(pq) = (odd(d))2 · (4bin(d) + 2)/3, (4)

where d = GCD(p− 1, q− 1).

We begin with example of application of this formula.

Example 2. Let n = 11 · 31 = 341. Then d = GCD(p− 1, q− 1) = 10 = 5 · 21, odd(d) = 5, s = bin(d) =
1. By the theorem,

Nw(31) = 52 · (4 + 2)/3 = 50.

Proof. Let d = GCD(p− 1, q− 1). Applying Theorem 2 to n = pq we obtain

1. ordp(a)|d, ordq(a)|d,
2. bin(ordu(a)) = bin(ordv(b)).

We distribute all n-witnesses a into s + 1 classes Wi, 0 ≤ i ≤ s, where class Wi consists of a with
bin(ordp(a)) = bin(ordq(a)) = i.

Class W0 contains such a that both ordp(a) and ordq(a) are odd. Let a ∈ W0, and (i, j) =

(ordp(a), ordq(a)). Numbers i and j are factors of u = odd(d) by the choice of a. Conversely, each
integer a < n satisfying ordp(a) | u, ordq(a) | u, is a witness of n and lies in W0.

Let fix a pair (i, j), i|d, j|d. By Euler’s theorem, in Zp there are exactly ϕ(i) elements of
multiplicative order i, and in Zq there are ϕ(j) elements of multiplicative order j, so, there exist
exactly ϕ(i) · ϕ(j) pairs (x, y), 0 < x < p, 0 < y < q, such that (ordp(x), ordq(y)) = (i, j). But for each
such pair (x, y) there exists a unique a < n with (a mod p, a mod q) = (x, y), so there is a injective
correspondence between witnesses a of n with odd orders ordp(a), ordq(a), and pairs (x, y) with x|u,
y|u. Therefore, the power of W0 is equal to

|W0| = ∑
x|u, y|u

ϕ(x) · ϕ(y) =

⎛⎝∑
x|u

ϕ(x)

⎞⎠⎛⎝∑
y|u

ϕ(y)

⎞⎠ = u2,

since by a known theorem of Euler for any natural m ∑v|m ϕ(v) = m.
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The next class W1 has the same power u2 since is consists of witnesses a with bin(ordp(a)) =

bin(ordq(a)) = 1, and
|W1| = ∑

x|d, y|d
ϕ(2x) · ϕ(2y) = u2,

since ϕ(2z) = ϕ(z) for odd z.
The power of class Wi is equal to

∑
x|d, y|d

ϕ(2ix) · ϕ(2iy) = 4i−1u2.

Therefore, the number of all witnesses Nw(n) = u2(1+ 1+ 4+ . . . + 4s−1) = u2 · (4s + 2)/3. This
completes the proof.

Corollary 2. (Rabin’s theorem for semiprimes). The number of witnesses of n = pq, p ≤ q, is less or equal to
ϕ(n)/4.

Proof. If p = q, then Nw(n) = p− 1 by Theorem 3, and ϕ(n)/4 = p(p− 1)/4, so Nw(n) < ϕ(n)/4 at
p ≥ 5.

Let p < q. Ratio Nw(n)/n reaches its maximum when GCD(p− 1; q− 1) = p− 1, q = 2p− 1,
and bin(p− 1) = 1. Indeed, odd(n) is diminishing in two times when bin(p− 1) is added by 1, and
the whole expression in (4) becomes less. Then, max odd(d) = (p− 1)/2, so

max Nw(pq) = Nw(p(2p− 1)) =
(p− 1)2

2
=

ϕ(n)
4

.

Example 3. Let n = 7 · 13 = 91. Nw(91) = 32 · 2 = 18 = ϕ(91)/4.

Now we study function Nw(n) at products of k distinct primes. The general result for such
products is formulated below:

Theorem 5. Let n = p1 · p2 · . . . pk be the product of k distinct primes. Then

Nw(n) = u1 · u2 · . . . · uk ·
(

1 +
2ks − 1
2k − 1

)
, where

s = min{bin(d1), bin(d2), . . . , bin(dk)}, di = GCD

(
pi − 1; ∏

j �=i
pj − 1

)
,

ui = odd(di).

Let us begin with an example n = 7 · 13 · 31 = 2821. The corresponding restrictions are
listed below:

1. ordp(a) | d1 = GCD(p− 1; qr− 1) = 6, u1 = 3,
2. ordq(a) | d2 = GCD(q− 1; pr− 1) = 12, u2 = 3,
3. ordr(a) | d3 = GCD(r− 1; pq− 1) = 30, u3 = 15,
4. bin(ordp(a)) = bin(ordq(b)) = bin(ordr(b)).

Since s = min{bin(d1), bin(d2), bin(d3)} = min{1, 2, 1} = 1, we obtain

Nw(2821) = 3 · 3 · 15
(

1 +
23 − 1
23 − 1

)
= 270
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(compare with ϕ(n)/4 = 6 · 12 · 30/4 = 540).

Proof. Let ui = odd(di) and k-tuple (x1, x2, . . . , xk) contains components xi | ui, 1 ≤ i ≤ k. There are
ϕ(x1) · . . . · ϕ(xk) witnesses of n with ordpi (a) = xi for 1 ≤ i ≤ k. So,

|W0| = ∑
(x1,x2,...,xk),xi |ui

ϕ(x1) · . . . · ϕ(xk) =

=

⎛⎝∑
x|u1

ϕ(x)

⎞⎠ ·
⎛⎝∑

x|u2

ϕ(x)

⎞⎠ . . .

⎛⎝∑
x|uk

ϕ(x)

⎞⎠ = u1 · u2 · . . . · uk.

As in the previous theorem, the power of class W1 is equal to power of W0 = u1 · u2 · . . . · uk,
while the power of the each further class Wi+1 is equal to the power of the previous one multiplied by
ϕ(2k) = 2k−1 since each additive ϕ(2ix1) · . . . · ϕ(2ixk) in the previous class corresponds to additive
ϕ(2i+1x1) · . . . · ϕ(2i+1xk) and their ratio ri is

ri =
ϕ(2i+1x1) · . . . · ϕ(2i+1xk)

ϕ(2ix1) · . . . · ϕ(2ixk)
= 2k.

The proof is complete.

4. Frequency Function

In this part we introduce a notion of frequency function that characterizes the probability to find at
one attempt a primality witness for a given integer n.

Let define frequency function Fr(n) as follows

Fr(n) =
Nw(n)
ϕ(n)

.

According to Rabin’s theorem, Fr(n) = 1 for prime n, and Fr(n) ≤ 1/4 for composite n. We study
distribution of values Fr(n) for semiprime integers n = pq, p < q.

1. We begin our research with case q − 1 = k(p − 1) for k ≥ 2. Numbers of this type appear
frequently among strong pseudoprimes. Let rewrite p and q in form p = 2su + 1, q = 2sku + 1, where
u is odd, s ≥ 1, and consider different s:

Case 1. s = 1, u = odd(d) = (p− 1)/2, Nw(pq) = 2u2 = (p− 1)2/2,

Fr(n) =
(p− 1)2/2

(p− 1)(q− 1)
=

2u2

2u · 2ku
=

1
2k

.

Function Fr(n) reaches its maximum 1/4 at k = 2: (p, q) = (2u + 1, 4u + 1). Since, both p and q are
prime then u ≡ 0 mod 3, so (p, q) = (6t + 1, 12t + 1), t ≥ 1. Such pairs form a sequence

(7, 13), (19, 37), (31, 61), (37, 73), . . . .

Case 2. s = 2, u = odd(d) = (p− 1)/4, Nw(pq) = 6u2, and

Fr(n) =
6u2

(p− 1)(q− 1)
=

6u2

4u · 4ku
=

3
8k

.

Maximum of Fr(n) is now 3/16 = 0.1875 at k = 2.
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Case 3. s ≥ 1, At arbitrary s we have

Fr(n) =
(1 + (4s − 1)/3)u2

(p− 1)(q− 1)
=

(1 + (4s − 1)/3)u2

2su · 2sku
=

1
3ku2 · 22s−1 +

1
3k

.

Thus, function Fr(n) at semiprimes n = pq, q− 1 = k(p− 1), is located in the interval

1
3k

< Fr(n) ≤ 1
2k

, k ≥ 2. (5)

2. Now, we turn to a common case n = pq:

p = 1 + k1u, q = 1 + k2u, GCD(k1, k2) = 1, u = t2s, t odd.

For such n
Nw(n) = t2(4s + 2)/3, ϕ(n) = k1k2t24s, Fr(n) =

4s + 2
3k1k2 · 4s .

So,
1

3k1k2
< Fr(n) ≤ 1

2k1k2

Conclusion. Function Fr(n) at semiprimes n = pq depends mostly on values k1 and k2 in
representation p = k1u + 1, q = k2u + 1. Fr(n) takes maximal values close to 1/4 only at small k1

and k2. This completely corresponds to experimental data. Among values ψk the most expected are
pseudoprimes of form u = (u + 1)(2u + 1) with minimal values k1 = 1 and k2 = 2.

An important question connecting with efficiency of MRT is the average frequency of witnesses
for composite numbers. As earlier, we study this problem for semiprime integers.

Let fix any prime p and a board B. We count average frequency of integers pq, q > p, pq ≤ B.
For convenience, we assume that B = p(p + (p− 1)k) for a positive k ∈ Z.

For simplicity we explain all deductions at example p = 11. Every prime q has d = GCD(p−
1, q− 1) equal either 2, or 10.

Let d = 10. Corresponding q lie in the set {21, 31, 41, 51, 61, 71, 81, 91, 101, . . . , 10k + 11}, where
10k + 11 = B/p. Each third integer in the sequence is a multiple of 3, some others are multiples of 7, 11
etc. Since q should be prime we need to remove them from the sequence. The rest consists of integers

QB = {31, 41, 61, 71, 101, 113 . . .}. (6)

We assume that primes q ∈ QB are distributed uniformly in the interval [1, B/p]. Then the
average frequency can be estimated as

Avg(Fr(n)) ≈ 1
k

(
1
4
+

1
6
+ . . . +

1
2k

)
=

1
2k

(
1 +

1
2
+

1
3
+ . . . +

1
k

)
(we remind that Fr(p(i(p− 1) + p) = 1/2(i + 1)).

The expression in the last brackets is a partial sum of the Harmonic Series. Its value is

k

∑
i=1

1
i
<

k+1

∑
i=1

1
i
= ln k + γ + εn,

where γ = 0.5772... is the Euler—Mascheroni constant and limk→∞ εn = 0. Constant γ and additive εn

can be ignored so

Avg(Fr(n)) <
ln k
2k
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Since (p− 1)k + 1 = B/p, then k > B/p2 − 1 and ln k < ln B, so

Avg(Fr(n)) <
ln B

2(B− p2)
· p2 (7)

Let us move now to primes q of type d = GCD(p− 1, q− 1) = 2. They lie in the sequence

q ∈ {13, 15, 17, 19, 23, , 25, 27, 29, . . . , 2m + 1}

where 2m + 1 = B/p, q = 2i + 1, GCD(i, 5) = 1. When we remove composite integers, the rest
contains at least half members.

Integers n = pq with GCD(p − 1, q − 1) = 2 have only trivial witnesses 1 and n − 1 so their
frequency function takes values

Fr(n) =
2

(p− 1)(q− 1)
.

Assuming that such n are distributed uniformly in the interval [p2; B] we estimate the average
frequency by expression

Avg(Fr) ≈
(

2 ∑
p≤k≤m

1
(p− 1)(2k + 1)

)
/
(

2m + 1− p
2

)
<

4
(2m + 1− p)(p− 1)

· 1
2
·

m

∑
i=(p+1)/2

1
i
<

2
(2m + 1− p)(p− 1)

· ln m

Substituting in the last expression 2m + 1 = B/p we get

Avg(Fr) <
2p ln B

(B− p2)(p− 1)
(8)

Expressions (7) and (8) give upper bounds for two types of integers n = pq. In the second case
the estimation is lesser so average estimation for the united class of all n = pq ≤ B, p < q, can be set
by the upper bound of (7). This assertion does not depend on a special p = 11 so we can state the
following theorem.

Theorem 6. Let p be a prime and B satisfy B > p2. Then the average frequency of witnesses in the class of
semiprimes n = pq ≤ B, q > p, has an upper bound

Avg(Fr(n)) <
p2 ln B

2(B− p2)

Note than limit of the average function is 0 as B → ∞. This explains the phenomenon that the
number of false conclusions in the Miller–Rabin test decreases when length of tested integers increases.

5. Numbers with Maximal Frequency of Witnesses

In this section we study composite n with maximal frequency Fr(n) = 1/4. Let n = p1 p2 . . . pk be
the product of k different primes.

We begin with case k = 2. As we see from the previous section, integers n = pq have maximal
frequency only in case when q = 2p− 1. Such pairs appear comparatively often, and their quantity is
diminishing together with their size.

Table 1 contains number of semiprimes with maximal frequency in intervals [(i − 1) · 105; i ·
105; ], 1 ≤ i < 10.
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Table 1. Distribution of semiprimes with maximal frequency below 106.

1 2 3 4 5 6 7 8 9 10

670 494 448 412 424 386 393 358 370 343

Case k = 3 is more interesting. In order function Fr(pqr) reached its maximum = 0.25, we need
satisfaction of four requirements:

1. GCD(p− 1; qr− 1) = p− 1,
2. GCD(q− 1; pr− 1) = q− 1,
3. GCD(r− 1; pq− 1) = r− 1.
4. bin(p− 1) = bin(q− 1) = bin(r− 1) = 1.

(9)

Such triples exist, and an example of it was already given in Rabin’s paper [2] n = 487 · 1531 ·
2683 = 2000436751. Rabin himself estimated Fr(n) as 0.2493, but the difference is due to the fact that
he did not include 1 in the list of witnesses.

Such triples appear much more seldom and have a form

n = (2k1 + 1)u · (2k2 + 1)u · (2k3 + 1)u for u ∈ N.

We arranged the search of such triples at a computer and found 160 such integers not exceeding
2 · 1014. The least triple we found is

n = 19 · 199 · 271 = 1024651.

The largest found triple has a form n = (u + 1)(3u + 1)(5u + 1) at u = 24102:

n = 24103 · 72307 · 120511 = 21002 84533 02331.

Let us study the form 〈u, 3u, 5u〉 and find restrictions on u in order to n = (u + 1)(3u + 1)(5u + 1)
satisfies first 3 conditions of (9). The first requirement is satisfied automatically. The second and third
requirement are listed below:

(3u + 1)− 1 | (u + 1)(5u + 1)− 1 → u ≡ 0 mod 3.

(5u + 1)− 1 | (u + 1)(3u + 1)− 1 → 3u + 4 ≡ 0 mod 5,

so u = 6 + 15t for t ≥ 1. If we add requirements p ≡ q ≡ r ≡ 3 mod 4 we obtain

15t + 7 ≡ 3 mod 4 → t ≡ 1 mod 4, u = 6 + 15(1 + 4t1) = 21 + 60t1.

Let now consider products of k primes where k ≥ 4. The maximum of frequency of such products
is 1/2k−1, since it is reached when for any i ≤ k (pi − 1)/2 is odd, and (pi − 1) | ∏(pj �=i − 1). Then,

Fr(p) = 2 ·
k

∏
i=1

pi − 1
2

=
ϕ(n)
2k−1 .

A quick search of tuples n = pqrt below 1012 gave 70 examples of them. The least 4-tuple was

n = 19 · 31 · 127 · 547 = 40917241,

while the largest was
n = 19 · 127 · 14071 · 29347 = 99 64281 70081.
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Some computational results on distribution of strong semiprime integers can be found in [14].

6. Conclusions

In this section we will summarize the main results of the paper.

1. We found exact formulas for the number of witnesses for composite n with different number
of factors.

2. We introduced the frequency function Fr(n) characterizing the probability to find at one attempt
a primality witness for a given n and found exact bounds for distribution of this function for
semiprime integers n.

3. Like as Damgard, Landrock, and Pomerance in [13], we studied an average values of Fr(n) at
intervals [1; x] for semiprime integers n = pq, n ≤ x,with fixed p and showed that it bounded
above by p2 log x/2(x− p2).
Since such integers have maximal values of F(n) among all composites, this opens a way in
future investigations to find exact upper bounds for average values of frequency function among
all k-bit odd integers for any k.

4. Finally, we described possible forms of composites with maximal values of frequency function
for products of k distinct primes at k ≥ 2 and using computer calculations found their examples
and their quantity at initial intervals of set of all naturals.
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Abstract: The Pascal’s triangle is generalized to “the k-Pascal’s triangle” with any integer k ≥ 2. Let
p be any prime number. In this article, we prove that for any positive integers n and e, the n-th row
in the pe-Pascal’s triangle consists of integers which are congruent to 1 modulo p if and only if n is

of the form
pem − 1
pe − 1

with some integer m ≥ 1. This is a generalization of a Lucas’ result asserting

that the n-th row in the (2-)Pascal’s triangle consists of odd integers if and only if n is a Mersenne
number. As an application, we then see that there exists no row in the 4-Pascal’s triangle consisting
of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the
congruence (x + 1)pe ≡ (xp + 1)pe−1

(mod pe) of binomial expansions which we could prove for
any prime number p and any positive integer e. We think that this article is fit for the Special Issue
“Number Theory and Symmetry,” since we prove a symmetric property on the 4-Pascal’s triangle by
means of a number-theoretical property of binomial expansions.

Keywords: the pe-Pascal’s triangle; Lucas’ result on the Pascal’s triangle; congruences of binomial
expansions

MSC: 11A99.

1. Introduction

As it is known, Pascal’s triangle is constructed in the following way: Write the first row “1 1”.
Then each member of each subsequent row is given by taking the sum of the just above two members,
regarding any blank as 0.

Example 1. Here is the Pascal’s triangle from the first row to the 7-th row:

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Symmetry 2020, 12, 288; doi:10.3390/sym12020288 www.mdpi.com/journal/symmetry115



Symmetry 2020, 12, 288

Remark 1. For any integers n ≥ 1 and r ≥ 0, we put

nCr :=
n!

r!(n− r)!
=

n(n− 1) · · · (n− r + 1)
r · · · 1 ,

where we put 0! = 1. Then it is well-known that the n-th row in the Pascal’s triangle is equal to the sequence

nC0, nC1, . . . , nCn−1, nCn

consisting of n + 1 terms.

In ([1], Section 1.4), the construction above is generalized as follows:

Definition 1. Let k ≥ 2 be any integer. The k-Pascal’s triangle is constructed in the following way: Write the

first row “

k︷ ︸︸ ︷
1 1 · · · 1”. Then each member of each subsequent row is given by taking the sum of the just above k

members regarding the blank as 0.

Example 2. In the case where k = 4, the 4-Pascal’s triangle from the first row to the 5-th row is the following:

1 1 1 1

1 2 3 4 3 2 1

1 3 6 10 12 12 10 6 3 1

1 4 10 20 31 40 44 40 31 20 10 4 1

1 5 15 35 65 101 135 155 155 135 101 65 35 15 5 1

Remark 2. (1) In ([1], Section 1.4), for any integers k ≥ 2 and n ≥ 1, it is mentioned that the n-th row in the
k-Pascal’s triangle consists of n(k− 1) + 1 integers

nC(k)
0 , nC(k)

1 , . . . , nC(k)
n(k−1)−1, nC(k)

n(k−1)

satisfying the equation

(xk−1 + xk−2 + · · ·+ x + 1)n

= nC(k)
0 xn(k−1) + nC(k)

1 xn(k−1)−1 + · · ·+ nC(k)
n(k−1)−1x + nC(k)

n(k−1)

of polynomials with indeterminate x and integral coefficients. A detailed proof of this fact is described in ([2],
Lemma 1.1).

(2) In ([1], Section 9.10), the following formula for nC(k)
i is described:

nC(k)
i =

[ i
k ]

∑
j=0

(−1)j
n+i−jk−1Cn−1 · nCj,

where
[

i
k

]
is the greatest integer that is less than or equal to

i
k

.

In Example 1, we can see that the n-th row consists of odd integers when n is equal to the Mersenne
number 1, 3 or 7. Actually, Lucas showed the following

Theorem 1 ([3], Exemple I in Section 228). Let n ≥ 1 be any integer. Then nCr is odd for any 0 ≤ r ≤ n if
and only if n is a Mersenne number, i.e., n is of the form 2m − 1 with some integer m ≥ 1.
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In Section 2 in this article, we generalize the Lucas’ result above as the following

Theorem 2. Let p be any prime number and e any positive integer. For any integer n ≥ 1, the n-th row in
the pe-Pascal’s triangle consists of integers which are congruent to 1 modulo p if and only if n is of the form
pem − 1
pe − 1

with some integer m ≥ 1.

Remark 3. (1) Theorem 2 is a generalization of ([2], Theorem 0.2) which is in the case where e = 1.
(2) We can see that Example 2 gives a partial example of Theorem 2 in the case where p = 2, e = 2 and

m = 1, 2.

As an application of Theorem 2, we can prove that ([2], Conjecture 0.3) holds for k = 4, i.e., there
exists no row in the 4-Pascal’s triangle consisting of integers which are congruent to 1 modulo 4 except
the first row as follows:

By Theorem 2, in the case where k = 4, we see that for any integer n ≥ 1, the n-th row in the

4-Pascal’s triangle consists of odd integers if and only if n is of the form
4m − 1

3
with some integer

m ≥ 1.

Moreover, we can see an essential property of the
4m − 1

3
-th row in the 4-Pascal’s triangle for any

integer m ≥ 2 as in the following theorem proved in Section 3.2:

Theorem 3. For any integer m ≥ 2, the
4m − 1

3
-th row in the 4-Pascal’s triangle is congruent to the sequence

22m−3︷ ︸︸ ︷
1133 · · · 1133

22m−3︷ ︸︸ ︷
3311 · · · 3311

modulo 4, which consists of the repeated 1133’s and 3311’s whose numbers are the same 22m−3.

Therefore we can obtain the following

Corollary 1. ([2], Conjecture 0.3) holds for k = 4, i.e., there exists no row in the 4-Pascal’s triangle consisting
of integers which are congruent to 1 modulo 4 except the first row.

Remark 4. (1) By Example 2, in the case where m = 2, we can see that the 5-th row in the 4-Pascal’s triangle
is congruent to the sequence

1 1 3 3 1 1 3 3 3 3 1 1 3 3 1 1

modulo 4, which matches the assertion of Theorem 3.

(2) It seems that one could obtain the forms of the sequenece to which the
(

4m − 1
3

± �

)
-th row in the

4-Pascal’s triangle is congruent modulo 4 for some positive integers � by means of Theorem 3. We would like to
do these calculations in the future.

In the proof of Theorem 3 in Section 3.2, we shall use the following lemma proved in Section 3.1:

Lemma 1. For any prime number p and any positive integer e, we have the following coefficient-wise congruence

(x + 1)pe ≡ (xp + 1)pe−1
(mod pe)

of binomial expansions with indetermiate x.
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2. A Proof of Theorem 2

Although Theorem 2 can be proved by the same argument as the proof of ([2], Theorem 0.2), we
shall describe its detailed proof here to make this article self-contained.

Let n and e be any positive integers and p be any prime number.

Firstly, we assume that n is of the form n =
pem − 1
pe − 1

with some integer m ≥ 1. In the algebra

Fp[x] of polynomials of one varible x with coefficients in the finite field Fp = Z/pZ of p elements, we
see that for any positive integer �,

(x− 1)p�−1 =
(x− 1)p�

x− 1
=

xp� − 1
x− 1

= xp�−1 + xp�−2 + · · ·+ x + 1.

Therefore we see that

(xpe−1 + xpe−2 + · · ·+ x + 1)n = (xpe−1 + xpe−2 + · · ·+ x + 1)
pem−1
pe−1

= ((x− 1)pe−1)
pem−1
pe−1

= (x− 1)pem−1

= xpem−1 + xpem−2 + · · ·+ x + 1

= xn(pe−1) + xn(pe−1)−1 + · · ·+ x + 1

in Fp[x]. By Remark 2 (1), this implies that the n-th row in the pe-Pascal’s triangle consists of integers
which are congruent to 1 modulo p as desired.

Conversely, we now assume that n is of the form

n = 1 + pe + · · ·+ pe(m−1) + k

with some integers m ≥ 1 and 1 ≤ k ≤ pem − 1. Moreover, we assume that we have

(xpe−1 + xpe−2 + · · ·+ x + 1)n = xn(pe−1) + xn(pe−1)−1 + · · ·+ x + 1

in Fp[x] to obtain some contradiction. Since the left hand side is equal to (x− 1)n(pe−1) and the right

hand side is equal to
xn(pe−1)+1 − 1

x− 1
, we then have the equality

(x− 1)n(pe−1)+1 = xn(pe−1)+1 − 1

in Fp[x]. Since n =
pem − 1
pe − 1

+ k, this implies that

(x− 1)pem+k(pe−1) = xpem+k(pe−1) − 1.

Let vp(a) be the p-adic valuation of any non-zero integer a, i.e., pvp(a) | a and pvp(a)+1 � a. Since
1 ≤ k ≤ pem − 1, we see that vp(k) < em and then

vp(pem + k(pe − 1)) = vp(k).

Therefore we can put
pem + k(pe − 1) = pvp(k)t
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with some positive integer t which is prime to p. Then we have

(x− 1)pvp(k)t = xpvp(k)t − 1 = (xt − 1)pvp(k)

which implies that

(x− 1)pvp(k)(t−1) = (xt−1 + xt−2 + · · ·+ x + 1)pvp(k)
,

since Fp[x] is an integral domain. Since pvp(k) < pem, we see that t ≥ 2. Therefore substituting x = 1
leads a contradiction t = 0 in Fp as desired, and Theorem 2 is proved.

3. An Application to the 4-Pascal’s Triangle

By Theorem 2, in the case where p = 2 and e = 2, we see that for any integer n ≥ 1, the n-th row

in the 4-Pascal triangle consists of odd integers if and only if n is of the form
4m − 1

3
with some integer

m ≥ 1.

In this section, we shall prove Theorem 3 asserting that for any integer m ≥ 2, the
4m − 1

3
-th row

in the 4-Pascal’s triangle is congruent to the sequence

22m−3︷ ︸︸ ︷
1133 · · · 1133

22m−3︷ ︸︸ ︷
3311 · · · 3311

modulo 4. Here we should note that 22m−3 is the number of 1133’s and 3311’s, respectively.
Then Theorems 2 and 3 imply that ([2], Conjecture 0.3) holds in the case where k = 4, i.e., there

exists no row in the 4-Pascal’s triangle consisting of integers which are congruent to 1 modulo 4 except
the first row as we have seen in Corollary 1.

3.1. On a Congruence of Binomial Expansions

Before proving Theorem 3, we shall prove Lemma 1 on a congruence of binomial expansions in
this subsection.

Let p be any prime number and e any positive integer. In order to prove the congruence

(x + 1)pe ≡ (xp + 1)pe−1
(mod pe)

of binomial expansions with indeterminate x, it suffices to see the following two congruences hold:

(1) For any integer 1 ≤ � ≤ pe − 1 which is prime to p,

pe C� ≡ 0 (mod pe).

(2) In the case where e ≥ 2, for any integers 0 ≤ f ≤ e− 2 and i such that 1 ≤ ip f ≤ pe−1 − 1 and
(i, p) = 1,

pe Cip f+1 ≡ pe−1 Cip f (mod pe).

Firstly, we shall prove the part (1). In the case where � = 1, we see that

pe C1 = pe ≡ 0 (mod pe).

Moreover, in the case where 2 ≤ � ≤ pe − 1, we see that

pe C� =
pe

�

�−1

∏
j=1

pe − j
j

.
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Since vp(pe − j) = vp(j) for any 1 ≤ j ≤ �− 1 < pe and � is prime to p, we then see that

v(pe C�) = e− vp(�) +
�−1

∑
j=1

vp

(
pe − j

j

)

= e +
�−1

∑
j=1

(vp(pe − j)− vp(j))

= e.

Therefore pe C� ≡ 0 (mod pe), and part (1) is proved.

Secondly, we shall prove part (2). We see that

pe Cip f+1 − pe−1 Cip f

=
pe

ip f+1 ·

i−1

∏
j=0

⎛⎝ ∏
1≤k≤p f+1−1, (k,p)=1

(k + jp f+1 + (pe − ip f+1))

⎞⎠
i−1

∏
j=0

⎛⎝ ∏
1≤k≤p f+1−1, (k,p)=1

(k + jp f+1)

⎞⎠ · pe−1−1Cip f−1

− pe−1

ip f · pe−1−1Cip f−1

=
pe− f−1

i
· pe−1−1Cip f−1

⎛⎜⎜⎜⎜⎜⎜⎝

i−1

∏
j=0

⎛⎝ ∏
1≤k≤p f+1−1, (k,p)=1

(k + jp f+1 + (pe − ip f+1))

⎞⎠
i−1

∏
j=0

⎛⎝ ∏
1≤k≤p f+1−1, (k,p)=1

(k + jp f+1)

⎞⎠ − 1

⎞⎟⎟⎟⎟⎟⎟⎠
and that

i−1

∏
j=0

⎛⎝ ∏
1≤k≤p f+1−1, (k,p)=1

(k + jp f+1 + (pe − ip f+1))

⎞⎠
≡

i−1

∏
j=0

⎛⎝ ∏
1≤k≤p f+1−1, (k,p)=1

(k + jp f+1)

⎞⎠
≡

⎛⎝ ∏
1≤k≤p f+1−1, (k,p)=1

k

⎞⎠i

(mod p f+1).

Since (i, p) = 1, we then see that pe Cip f+1 − pe−1 Cip f is divisible by pe− f−1 · p f+1 = pe as desired.

3.2. A Proof of Theorem 3

Now we shall prove Theorem 3 by means of Lemma 1 with p = 2 and e = 2, i.e., the congruence
of binomial expansions

(x + 1)4 ≡ (x2 + 1)2 (mod 4). · · · (∗)

120



Symmetry 2020, 12, 288

By Remark 2 (1), proving Theorem 3 is equivalent to proving that for any integer m ≥ 2, the
coefficient-wise congruence

(x3 + x2 + x + 1)
4m−1

3

≡ x4m−1 + x4m−2 − x4m−3 − x4m−4 + · · ·+ x
4m
2 +3 + x

4m
2 +2 − x

4m
2 +1 − x

4m
2

− x
4m
2 −1 − x

4m
2 −2 + x

4m
2 −3 + x

4m
2 −4 − · · · − x3 − x2 + x + 1 (mod 4) · · · (∗∗)

holds with indeterminate x by the induction on m.
Before doing this, we see the following

Lemma 2. The polynomial in the right hand side of the congruence relation (∗∗) can be decomposed as

(x + 1)(x2 − 1)(x4 + 1) · · · (x22m−2
+ 1)(x22m−1 − 1).

Proof. By a direct calculation, we can see that there exists some positive integer � such that the
polynomial in the right hand side of the congruence relation (∗∗) can be decomposed as

(x + 1)(x4m−2 − x4m−4 + x4m−6 − x4m−8 + · · ·+ x
4m
2 +6 − x

4m
2 +4 + x

4m
2 +2 − x

4m
2

− x
4m
2 −2 + x

4m
2 −4 − x

4m
2 −6 + x

4m
2 −8 − · · · − x6 + x4 − x2 + 1)

= (x + 1)(x2 − 1)(x4m−4 + x4m−8 + · · ·+ x
4m
2 +4 + x

4m
2

− x
4m
2 −4 − x

4m
2 −8 − · · · − x4 − 1)

= · · ·
= (x + 1)(x2 − 1)(x4 + 1) · · · (x2� + 1)(x3·2�+1

+ x2·2�+1 − x2�+1 − 1)

= (x + 1)(x2 − 1)(x4 + 1) · · · (x2� + 1)(x2�+1
+ 1)(x2�+2 − 1).

Since the degree of the polynomial in the right hand side of the congruence relation (∗∗) is equal
to 4m − 1, we then see that

4m − 1 = 1 + 2 + 22 + · · ·+ 2� + 2�+1 + 2�+2

= 2�+3 − 1,

which implies that � = 2m− 3 as desired.

Let us start to prove Theorem 3 by the induction on m ≥ 2. Firstly, in the case where m = 2, since

(x2 + 1)4 ≡ (x4 + 1)2 (mod 4)

and

(x + 1)4 ≡ (x2 + 1)2 ≡ x4 + 2x2 + 1 ≡ x4 − 2x2 + 1

≡ (x2 − 1)2 (mod 4)

by the congruence relation (∗), we see that

(x3 + x2 + x + 1)5 ≡ (x + 1)(x2 + 1)(x + 1)4(x2 + 1)4

≡ (x + 1)(x2 + 1)(x2 − 1)2(x4 + 1)2

≡ (x + 1)(x2 − 1)(x4 + 1)(x8 − 1) (mod 4).
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Therefore the congruence relation (∗∗) holds for m = 2 by Lemma 2.
Secondly, we assume that the congruence relation (∗∗) holds for some m ≥ 2. By the congruence

relation (∗), we see that

(x + 1)4m ≡ (x + 1)22m ≡ ((x + 1)4)22m−2

≡ (x2 + 1)22m−1 ≡ ((x2 + 1)4)22m−3

≡ (x22
+ 1)22m−2

≡ · · ·
≡ (x22m−1

+ 1)2

≡ (x
4m
2 + 1)2 (mod 4).

By Lemma 2, we then see that

(x3 + x2 + x + 1)
4m+1−1

3

≡ (x3 + x2 + x + 1)
4m−1

3 +4m

≡ (x + 1)(x2 − 1)(x4 + 1) · · · (x22m−2
+ 1)(x22m−1 − 1)(x2 + 1)4m

(x + 1)4m

≡ (x + 1)(x2 − 1)(x4 + 1) · · · (x22m−2
+ 1)(x

4m
2 − 1)(x4m

+ 1)2(x
4m
2 + 1)2

≡ (x + 1)(x2 − 1)(x4 + 1) · · · (x22m−2
+ 1)(x22m−1

+ 1)(x22m
+ 1)(x2·4m − 1)

≡ (x + 1)(x2 − 1)(x4 + 1) · · · (x22m
+ 1)(x22m+1 − 1) (mod 4),

i.e., the congruence relation (∗∗) also holds for m + 1 as desired. This proves Theorem 3.
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Abstract: The elementary symmetric functions play a crucial role in the study of zeros of non-zero
polynomials in C[x], and the problem of finding zeros in Q[x] leads to the definition of algebraic
and transcendental numbers. Recently, Marques studied the set of algebraic numbers in the
form P(T)Q(T). In this paper, we generalize this result by showing the existence of algebraic
numbers which can be written in the form P1(T)Q1(T) · · · Pn(T)Qn(T) for some transcendental number
T, where P1, . . . , Pn, Q1, . . . , Qn are prescribed, non-constant polynomials in Q[x] (under weak
conditions). More generally, our result generalizes results on the arithmetic nature of zw when
z and w are transcendental.

Keywords: Baker’s theorem; Gel’fond–Schneider theorem; algebraic number; transcendental number

1. Introduction

The name “transcendental”, which comes from the Latin word “transcenděre”, was first used for
a mathematical concept by Leibniz in 1682. Transcendental numbers in the modern sense were defined
by Leonhard Euler (see [1]).

A complex number α is called algebraic if it is a zero of some non-zero polynomial P ∈ Q[x].
Otherwise, α is transcendental. Algebraic numbers form a field, which is denoted by Q. The transcendence
of e was proved by Charles Hermite [2] in 1872, and two years later Ferdinand von Lindeman [3]
extended the method of Hermite‘s proof to derive that π is also transcendental. It should be noted
that Lindemann proved the following, much more general statement: The number eα, where α is any
non-zero algebraic number, is always transcendental (see [4]). In 1900, Hilbert raised the question of
the arithmetic nature of the power α β of two algebraic numbers α and β (it was the seventh problem in
his famous list of 23 problems, which he presented at the International Congress of Mathematicians in
Paris). The complete solution to this problem was found independently by Gel’fond and Schneider
(see [5], p. 9) in 1934. Their results can be formulated as the following theorem (the ideas of the
Gel’fond–Schneider proof were used partially in, e.g., [6–8]).

Theorem 1. The Gel’fond–Schneider Theorem: Let α and β be algebraic numbers, with α �= 0 and α �= 1,
and let β be irrational. Then α β is transcendental.

The Gel’fond–Schneider Theorem classifies the arithmetic nature of xy when both x, y are algebraic
numbers (because xy is an algebraic number when y is rational). Nevertheless, when at least one of
these two numbers is transcendental, anything is possible (see Table 1 below).

Symmetry 2019, 11, 887; doi:10.3390/sym11070887 www.mdpi.com/journal/symmetry123
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Table 1. Possible results for the power xy when x or y is transcendental.

Value of x Class of Numbers Value of y Class of Numbers Power xy Class of Numbers

2 algebraic log 3/ log 2 transcendental 3 algebraic
2 algebraic i log 3/ log 2 transcendental 3i transcendental
ei transcendental π transcendental −1 algebraic
e transcendental π transcendental eπ transcendental

2
√

2 transcendental
√

2 algebraic 4 algebraic
2
√

2 transcendental i
√

2 algebraic 4i transcendental

In all the previous examples we have x �= y (in fact, we used the fact that the logarithm function
is the inverse of the exponential function many times). Also, in the cases in which x and y are both
transcendental (in the previous table), these numbers are possibly (though it’s not proved) algebraically
independent. So, what happens if we consider numbers of the form xx with x transcendental? Is it
possible that some of these numbers are algebraic? We remark that the numbers ee and ππ are expected
(but not proved) to be transcendental. In fact, it is easy to use the Gel’fond–Schneider Theorem
to prove that every prime number can be written in the form TT for some transcendental number
T (for a more general result, see [9]). In this direction, a natural question arises: Given arbitrary,
non-constant polynomials P, Q ∈ Q[x], is there always a transcendental number T such that P(T)Q(T)

is algebraic? Note that P(T) and Q(T) are algebraically dependent transcendental numbers (so they
do not come from our table). Marques [10] showed that the answer for the previous question is yes.
More generally, he proved that for any fixed, non-constant polynomials P(x), Q(x) ∈ Q[x], the set of
algebraic numbers of the form P(T)Q(T), with T transcendental, is dense in some connected subset
of either R or C. A generalization of this result for rational functions with algebraic coefficients
was proved by Jensen and Marques [11]. However, the previous results do not apply, e.g., to prove
the existence of algebraic numbers which can be written in the form (T2 + 1)T · TT2+T+1, with T
transcendental.

In this paper, we will solve this kind of problem completely by proving a multi-polynomial
version of the previous results. The following theorem states our result more precisely.

Theorem 2. Let P1, . . . , Pn, Q1, . . . , Qn ∈ Q[x] be non-constant polynomials, such that the leading coefficients
of the Qj’s have the same sign. Then the set of algebraic numbers of the form P1(T)Q1(T) · · · Pn(T)Qn(T), with
T transcendental, is dense in some open subset of the complex plane. In fact, this dense set can be chosen to
be {Q(1 + p

√
2) : Q ∈ K}, for some dense set K ⊆ Q(

√
−1)\{0}, K ∩Q = ∅, and any prime number

p > 2 · ( max
1≤j≤n

{deg Qj})!.

The proof of the above theorem combines famous classical theorems concerning transcendental
numbers (like the Baker’s Theorem on linear forms in logarithms and the Gel’fond–Schneider Theorem)
and certain purely field-theoretic results. We point out that, in a similar way, we can prove Theorem 2
for rational functions with algebraic coefficients, but we choose to prove this simpler case in order to
avoid too many technicalities, which can obscure the essence of the main idea.

2. Proof of Theorem 2

2.1. Auxiliary Results

Before we proceed to the proof of Theorem 2, we will need the following three lemmas. The first
two lemmas come from the work of Baker on linear forms of logarithms of algebraic numbers (see [5],
Chapter 2):

Lemma 1 (Cf. Theorem 2.4 in [5]). If α1, α2, . . . , αn are algebraic numbers other than 0 or 1, β1, β2, . . . , βn are
algebraic with 1, β1, β2, . . . , βn linearly independent over Q, then α

β1
1 α

β2
2 · · · α

βn
n is transcendental.
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Lemma 2 (Cf. Theorem 2.2 in [5]). Any non-vanishing linear combination of logarithms of algebraic numbers
with algebraic coefficients is transcendental.

Let F be a family of polynomials. Hereafter, we will denote byRF the set of all the zeros of the
polynomials in F . The last of these lemmas is a purely field-theoretical result.

Lemma 3. Let n be any positive integer and let F be a family of polynomials in Q[x] for which there exists
a positive integer � such that all polynomials in F have degree at most �. Then for all prime numbers p > �!,
the following holds:

(1 + p√2)n /∈ Q(RF ). (1)

Proof of Lemma 3. Set F = {F1, F2, . . .}, Kn = Q(RF1···Fn) and tn = [Kn : Q]. Since Kn ⊆ Kn+1,
then tn+1 = �ntn, for some positive integer �n. Note that �n = [Kn+1 : Kn] = [Kn(RFn+1) : Kn] ≤
(deg Fn+1)! ≤ �!. We claim that (1 + p

√
2)n /∈ Q(RF ) for all integers n ≥ 1. For the contrary, there exist

positive integers m and s such that (1 + p
√

2)m ∈ Ks. Then the degree of (1 + p
√

2)m (which is p)
divides ts. However, ts = �s−1 · · · �1t1 and p > �! ≥ maxj∈[1,s−1]{�j, t1}, which gives an absurdity.
This completes the proof.

With these lemmas in hand, we can proceed to the proof of our main outcome.

2.2. The Proof

In order to simplify our presentation, we use the familiar notation [a, b] = {a, a + 1, . . . , b},
for integers a < b.

Of course, it is enough to prove our theorem for the case that P1, . . . , Pn are multiplicatively
independent. For that, we take an open, simply connected subset Ω of C, such that Pj(x) /∈ {0, 1} for
all x ∈ Ω and j ∈ [1, n]. Choosing, for example, the principal branch of the multi-valued logarithm
function, the function f (x) := ∏n

j=1 Pj(x)Qj(x) is well defined and analytic in Ω. Moreover, f (x) is
a non-constant function. In fact, if f were constant then f ′(x) = 0 in Ω and so

n

∑
j=1

Q′j(x) log Pj(x) +
n

∑
j=1

Qj(x)P′j (x)

Pj(x)
= 0, (2)

for all x ∈ Ω. We claim that g(x) := ∑n
j=1 Qj(x)P′j (x)/Pj(x) is not the zero function in Ω. In fact,

otherwise G(x) := P1(x) · · · Pn(x)g(x) would be the zero polynomial, but the formal polynomial G has
degree ≤ t := maxj∈[1,n]{m1 + · · ·+ mn + tj − 1}, where for all j ∈ [1, n], mj and tj are the degree of Pj
and Qj, respectively. Now, if ti1 = · · · = tis = maxj∈[1,n]{tj}, we get the relation ∑s

j=1 mij bij = 0 (the
coefficient of xt in G must be zero), where for all j ∈ [1, n], bj is the leading coefficient of Qj. However
∑s

j=1 mij bij �= 0, since mj > 0 and bj have the same sign. This gives a contradiction. Thus, there exists

β ∈ Ω ∩Q such that g(β) �= 0. Substituting then x = β in (2), we have that ∑n
j=1 Q′j(β) log Pj(β) is

a nonzero algebraic number which contradicts Lemma 2. Hence f is a non-constant function.
Since f is a non-constant analytic function and Ω is an open connected set, f (Ω) is an open

connected subset of C. Let F be the family of polynomials {Qi(x)− d : i ∈ [1, n], d ∈ Q} ∪ {x2 + 1}.
Clearly, each polynomial in F has degree ≤ 2� := 2 max{deg Q1, . . . , deg Qn}. Thus, the conditions
to apply Lemma 3 are fulfilled. Hence, for p > 2�!, we have that the set P := {r(1 + p

√
2) : r ∈

Q(
√
−1)\{0}} forms a dense subset of C and no positive integer power of its elements lies in Q(RF ).

Since f (Ω) is open, f (Ω) ∩ P is dense in f (Ω). Now, it remains to prove that every number in this
intersection can be written in the desired form. For that, let α := r(1 + p

√
2) ∈ f (Ω) ∩ P , then

α = f (T) =
n

∏
j=1

Pj(T)
Qj(T), (3)
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where T ∈ Ω. Therefore, it is enough to prove that T is a transcendental number. To get a contradiction,
suppose the contrary; i.e., that T is algebraic. Then P1(T), . . . , Pn(T), Q1(T), . . . , Qn(T) are also
algebraic numbers. By the choice of Ω, Lemma 1 ensures the existence of a nontrivial Q-relation
among 1, Q1(T), . . . , Qn(T) (this implies, in particular, that the degree of T is at most �). Without loss
of generality we can assume that anQn(T) = a0 + ∑n−1

j=1 ajQj(T), where aj is an integer, with an > 0.
Therefore, identity (3) becomes

αan = Pn(T)a0 (P1(T)an Pn(T)a1)Q1(T) · · · (Pn−1(T)an Pn(T)an−1)Qn−1(T) .

Note that αan Pn(T)−a0 is an algebraic number and Pj(T)an Pn(T)aj �= 0 for j ∈ [1, n− 1]. We claim
that Pj(T)an Pn(T)aj �= 1 for some j ∈ [1, n− 1]. In fact, otherwise we would have αan = Pn(T)a0 ∈ Q(T)
and so (1 + p

√
2)an ∈ Q(T,

√
−1) has degree at most 2�. However, this gives an absurdity since the

degree of (1 + p
√

2)an is p > 2�!. Thus, sometimes Pj(T)an Pn(T)aj is an algebraic number different
from 0 and 1, so we can apply Lemma 1 again to get a Z-relation bn−1Qn−1(T) = b0 + ∑n−2

j=1 bjQj(T),
where bj is an integer, with bn−1 > 0. Analogously, one can iterate this process n− 1 times to conclude
that

αq = A(T) (P1(T)c1 · · · Pn(T)cn)Q1(T) , (4)

where A(T) ∈ Q(P1(T), . . . , Pn(T)) and q, cj’s ∈ Z, with q > 0. If ∏n
j=1 Pj(T)

cj = 1, we would
arrive at the same absurdity as before since Q(P1(T), . . . , Pn(T)) ⊆ Q(T). Thus ∏n

j=1 Pj(T)
cj ∈

Q\{0, 1}, so by the Gel’fond–Schneider Theorem we deduce that Q1(T) is a rational number, say
r/s, with some integers r and s, s > 0. Hence, T belongs to RQ1(x)−r/s ⊆ RF . But then αqs =

A(T)sP1(T)rc1 · · · Pn(T)rcn (see (4)) and thus (1 + p
√

2)qs ∈ Q(RF ), contradicting the choice of p in
Lemma 3. In conclusion, T must be transcendental, and this completes the proof.

3. Conclusions

In this paper, we use analytic (complex analysis), algebraic (Galois’ extensions and symmetry)
and transcendental tools (Baker’s theory) to prove, in particular, the existence of infinitely
many algebraic numbers of the form P1(T)Q1(T) · · · Pn(T)Qn(T), where T is a transcendental
number and P1, . . . , Pn, Q1, . . . , Qn are previously fixed rational polynomials (under some weak
technical conditions).
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and non-regular Kaprekar constants, respectively. As an application of these formulas, we then see
that for any integer b ≥ 2, the number of b-adic odd-digit regular Kaprekar constants is greater
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1. Introduction

Let Z be the set of all rational integers. In this article, the symbol [α] with any rational number α

stands for the greatest integer that is less than or equal to α.
For integers b ≥ 2 and n ≥ 2, we denote by Z(b, n) the set of all b-adic n-digit integers, i.e.,

Z(b, n) = {x ∈ Z | 0 ≤ x ≤ bn − 1}
= {an−1bn−1 + · · ·+ a1b + a0 | 0 ≤ a0, a1, . . . , an−1 ≤ b− 1}.

For any:
x = an−1bn−1 + · · ·+ a1b + a0 ∈ Z(b, n)

Symmetry 2019, 11, 885; doi:10.3390/sym11070885 www.mdpi.com/journal/symmetry129



Symmetry 2019, 11, 885

with 0 ≤ a0, a1, . . . , an−1 ≤ b− 1, we denote the b-adic expression of x by:

x = (an−1 · · · a1a0)b.

In the case where b = 10, we omit the subscript as:

x = an−1 · · · a1a0

as usual if any confusion occurs with the product of a0, a1, . . . , an−1.

Definition 1. Let cn−1 ≥ · · · ≥ c1 ≥ c0 be the rearrangement of the numbers a0, a1, . . . , an−1 of all digits of
x ∈ Z(b, n) in descending order. We define the Kaprekar transformation as:

T(b,n) : Z(b, n)→ Z(b, n); x �→ (cn−1 · · · c1c0)b − (c0c1 · · · cn−1)b.

Definition 2. (1) For any x ∈ Z(b, n), we say that x is a b-adic n-digit Kaprekar constant if T(b,n)(x) = x.
(2) We see immediately that zero is a b-adic n-digit Kaprekar constant for any b ≥ 2 and n ≥ 2, which we

call the trivial Kaprekar constant. Then, we denote by ν(b, n) the number of all b-adic n-digit non-trivial
Kaprekar constants. By Ref. [1] (Proposition 1.3), we see that:

ν(b, n) ≤ b−1+[ n
2 ]

C[ n
2 ]
− 1,

where we put:

rCs :=
r!

s!(r− s)!
=

r(r− 1) · · · (r− s + 1)
s · · · 1

for any integers r > s > 0.
(3) We say that a b-adic n-digit non-trivial Kaprekar constant x = (an−1 · · · a1a0)b is regular when

ai �= aj for any i �= j. We denote by νreg(b, n) (resp. νnon-reg(b, n)) the number of all b-adic n-digit regular
(resp. non-regular) Kaprekar constants. By the definition, we see immediately that:

ν(b, n) = νreg(b, n) + νnon-reg(b, n)

and if b < n, then νreg(b, n) = 0 and ν(b, n) = νnon-reg(b, n).

Example 1. Kaprekar [2,3], who was the initiator of this research, discovered that ν(10, 4) = 1, and the only
non-trivial 10-adic four-digit Kaprekar constant is: 6174.
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Example 2. Here is the list of all b-adic n-digit non-trivial Kaprekar constants for 2 ≤ b ≤ 15 and 2 ≤
n ≤ 7. Note that, in the list below, we omit the subscript b. Further, the symbol − means that ν(b, n) = 0,
and non-trivial Kaprekar constants with the symbol ∗ are regular.

n 2 3 4 5 6 7
b = 2 01∗ 011 0111 01111 011111 0111111

1001 10101 101101 1011101
110001 1101001

3 − − − 20211 − 2202101
4 − 132∗ 3021∗ − 213312 3203211

310221
330201

5 13∗ − 3032 − − −
6 − 253∗ − 41532∗ 325523 −

420432
530421∗

7 − − − − − −
8 25∗ 374∗ − − 437734 6417532∗

640632
9 − − − 62853∗ − −

10 − 495∗ 6174∗ − 549945 −
631764

11 37∗ − − − − −
12 − 5(11)6∗ − 83(11)74∗ 65(11)(11)56 962(11)853∗
13 − − − − 951(10)74∗ −
14 49∗ 6(13)7∗ − − 76(13)(13)67 −
15 − − 92(11)6∗ (10)4(14)95∗ − −

Then, we obtain the following list of the numbers ν = ν(b, n), νr = νreg(b, n) and νnr = νnon-reg(b, n):

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
b ν νr νnr ν νr νnr ν νr νnr ν νr νnr ν νr νnr ν νr νnr

2 1 1 0 1 0 1 2 0 2 2 0 2 3 0 3 3 0 3
3 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1
4 0 0 0 1 1 0 1 1 0 0 0 0 3 0 3 1 0 1
5 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
6 0 0 0 1 1 0 0 0 0 1 1 0 3 1 2 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 1 0 1 1 0 0 0 0 0 0 0 2 0 2 1 1 0
9 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
10 0 0 0 1 1 0 1 1 0 0 0 0 2 0 2 0 0 0
11 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
14 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0
15 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0

Now, we have the following:

Questions: (1) Are there any formulas for ν(b, n), νreg(b, n) and νnon-reg(b, n) in terms of b and n?
(2) Are there any formulas for b-adic n-digit regular or non-regular Kaprekar constants in terms

of b and n?
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Known results: There are some known results that answer some parts of the questions above
as follows:

(1) In the case where n = 2, by the results on the two-digit Kaprekar transformation given by
Young [4] (cf. [1], Theorem 3.1), we see that for any integer b ≥ 2, there exists a b-adic two-digit
non-trivial Kaprekar constant if and only if b + 1 is divisible by three.

Since there is no two-digit non-regular Kaprekar constant by definition, we see immediately that
for any integer b ≥ 2,

νnon-reg(b, 2) = 0 and ν(b, 2) = νreg(b, 2).

In this article, we shall prove in Theorem 4(1) and Corollary 3(1) that any two-digit regular Kaprekar
constant is of the form:

(m(2m + 1))3m+2

with any integers m ≥ 0 and:

νreg(b, 2) =

{
1 if 3 | (b + 1),

0 otherwise.

(2) In the case where n = 3, Eldridge and Sagong [5] proved that any three-digit non-trivial
Kaprekar constant is of the form:

(m(2m + 1)(m + 1))2m+2

with any integers m ≥ 0 and that for any integer b ≥ 2,

ν(b, 3) =

{
1 if b is even,

0 if b is odd.

In particular, we see immediately that:

νreg(b, 3) =

{
1 if b ≥ 4 is even,

0 if b = 2 or b ≥ 3 is odd,

and:

νnon-reg(b, 3) =

{
1 if b = 2,

0 if b ≥ 3.

(3) In the case where n = 4, Hasse and Prichett [6] obtained a formula:

((3m + 3)m(4m + 3)(2m + 2))5m+5

for (5m + 5)-adic four-digit non-trivial Kaprekar constants with any integer m ≥ 0. This implies that if
b ≥ 5 and 5 | b, then νreg(b, 4) ≥ 1.

In this article, we shall prove in Theorem 4(2) and Corollary 3(2) that any four-digit regular
Kaprekar constant is equal to (3021)4 or given by the above formula obtained by Hasse and Prichett
with m ≥ 1 and that for any integer b ≥ 2,

νreg(b, 4) =

{
1 if b = 4 or, b ≥ 10 and 5 | b,

0 otherwise.

(4) In the case where n = 5, Prichett [7] obtained a formula:

((2m + 2)m(3m + 2)(2m + 1)(m + 1))3m+3
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for (3m + 3)-adic five-digit non-trivial Kaprekar constants with any integers m ≥ 0. This implies that
if b ≥ 6 and 3 | b, then νreg(b, 5) ≥ 1.

In this article, we shall prove in Theorem 3(1) and Corollary 3(3) that any five-digit regular
Kaprekar constant is given by the above formula obtained by Prichett with m ≥ 1 and that for any
integer b ≥ 2,

νreg(b, 5) =

{
1 if b ≥ 6 and 3 | b,

0 otherwise.

(5) In the case where b = 2, the first author [1] showed that for any n ≥ 2, all two-adic n-digit
non-trivial Kaprekar constants are of the form:

(

k−1︷ ︸︸ ︷
1 · · · 1 0

n−2k︷ ︸︸ ︷
1 · · · 1

k−1︷ ︸︸ ︷
0 · · · 0 1)2

with all integers 1 ≤ k ≤
[ n

2

]
and ν(2, n) =

[ n
2

]
. In particular, we see immediately that:

νreg(2, n) =

{
1 if n = 2,

0 if n ≥ 3

and:

νnon-reg(2, n) =

⎧⎨⎩ 0 if n = 2,[ n
2

]
if n ≥ 3.

(6) In the case where b = 3, the authors [8] showed that for any n ≥ 2, all three-adic n-digit
non-trivial Kaprekar constants are of the form:

(

k︷ ︸︸ ︷
2 · · · 2

�−k−1︷ ︸︸ ︷
1 · · · 1 0

�−k︷ ︸︸ ︷
2 · · · 2

�−k︷ ︸︸ ︷
1 · · · 1

k−1︷ ︸︸ ︷
0 · · · 0 1)3.

with all pairs (k, �) of integers satisfying 0 < k < � and n = 3�− k, and:

ν(3, n) =
[

1
6

(
n− 1 + 3(−1)n

2

)]
.

In particular, we see immediately that:

νreg(3, n) = 0, νnon-reg(3, n) = ν(3, n).

We have the impression that the behavior of the values of ν(b, n), νreg(b, n) and νnon-reg(b, n) in
the list in Example 2 is not only complicated, but also suggestive of some general rules. It seems that
it is very hard to obtain general results without observing any case-by-case results. The aim of this
article is to see formulas for b-adic n-digit regular and non-regular Kaprekar constants and to study
the properties of νreg(b, n) and νnon-reg(b, n) towards answers to the questions above.

Firstly, we see formulas for Kaprekar constants in the following:

Theorem 1. Let m ≥ 0 and n ≥ 2 be any integers. We put:

b(m, n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3m + 2 if n = 2,

2
n−4

2 (4m + 3) + m + 2 if n is even and n ≥ 4,
n + 1

2
(m + 1) if n is odd.
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(1) We assume that n is even and define the b(m, n)-adic n-digit integer:

K(m, n) =

⎧⎪⎪⎨⎪⎪⎩
(m(2m + 1))b(m,2) if n = 2,

((3m + 3)m(4m + 3)(2m + 2))b(m,4) if n = 4,

(an−1an−2 · · · ai · · · a n
2 +1a n

2
a n

2−1 · · · aj · · · a1a0)b(m,n) if n ≥ 6,

where we put:

an−1 = 2
n−4

2 (4m + 3)−m,

ai = (2
n−4

2 − 2n−i−2)(4m + 3) + m + 1 for n− 2 ≥ i ≥ n
2

+ 1,

a n
2
= m,

aj = 2j−1(4m + 3) for
n
2
− 1 ≥ j ≥ 1,

a0 = 2m + 2.

Then, K(m, n) is a non-trivial Kaprekar constant, which is regular if and only if n = 2 or m ≥ 1.
(2) We assume that n is odd and define the b(m, n)-adic n-digit integer:

L(m, n) =

⎧⎨⎩(m(2m + 1)(m + 1))b(m,3) if n = 3,

(bn−1 · · · bi · · · b n+3
2

b n+1
2

b n−1
2

b n−3
2
· · · bj · · · b1b0)b(m,n) if n ≥ 5,

where we put:

bi =

(
i− n− 1

2

)
(m + 1) for n− 1 ≥ i ≥ n + 3

2
,

b n+1
2

= m,

b n−1
2

=
n + 1

2
(m + 1)− 1,

bj = (j + 1) (m + 1)− 1
(
= b n+1

2 +j − 1
)

for
n− 3

2
≥ j ≥ 1,

b0 = m + 1.

Then, L(m, n) is a non-trivial Kaprekar constant, which is regular if and only if m ≥ 1.

Remark 1. (1) We can see that for any integer n ≥ 2, the sequence:

b(n) := {b(m, n) | m = 0, 1, 2, . . .}

consisting of bases defined in Theorem 1 is the arithmetic progression with the common difference:⎧⎪⎪⎪⎨⎪⎪⎪⎩
3 if n = 2,

2
n
2 + 1 if n is even and n ≥ 4,

n + 1
2

if n is odd

and the first term: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if n = 2,

3× 2
n−4

2 + 2 if n is even and n ≥ 4,
n + 1

2
if n is odd.
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(2) As we have seen in the known results above, the regular Kaprekar constants K(m, 4), L(m, 3), and L(m, 5)
have already been obtained by Hasse and Prichett [6], Eldridge and Sagong [5], and Prichett [7], respectively.

Definition 3. (1) We call the double series:

K := {K(m, n) | m = 1, 2, 3, . . . , n = 2, 4, 6, . . .},

L := {L(m, n) | m = 1, 2, 3, . . . , n = 3, 5, 7, . . .}

the systems of regular Kaprekar constants.
(2) Let n ≥ 2 be any integer. We call the sequence:

K(n) := {K(m, n) | m = 1, 2, 3, . . .} with even n, or

L(n) := {L(m, n) | m = 1, 2, 3, . . .} with odd n

the progression of n-digit regular Kaprekar constants with arithmetic progression b(n) \ {b(0, n)} of bases.
By Theorem 1, we see that the formulas for the numbers an−1, . . . , a0 (resp. bn−1, . . . , b0) of digits of

members in K(n) (resp. L(n)) are given by polynomials in m of degree one. This implies that they can be regarded
as arithmetic progressions indexed by m = 1, 2, 3, . . ., as well as the arithmetic progression b(n) \ {b(0, n)}
of bases.

(3) Let m ≥ 1 be any integer. We call the sequences:

K[m] := {K(m, n) | n = 2, 4, 6, . . .}
(resp. L[m] := {L(m, n) | n = 3, 5, 7, . . .})

the m-th chain of regular Kaprekar constants in the system K (resp. L) with ascending even (resp. odd) digits.

Example 3. (1) Here are examples of some members K(m, n) in the progressions K(n) and the chains K[m] of
regular Kaprekar constants with 1 ≤ m ≤ 5 and n = 2, 4, 6.

K(2) K(4) K(6)
K[1] (13)5 (6174)10 ((13)91(14)74)17

K[2] (25)8 (92(11)6)15 ((20)(14)2(22)(11)6)26

K[3] (37)11 ((12)3(15)8)20 ((27)(19)3(30)(15)8)35

K[4] (49)14 ((15)4(19)(10))25 ((34)(24)4(38)(19)(10))44

K[5] (5(11))17 ((18)5(23)(12))30 ((41)(29)5(46)(23)(12))53

(2) Here are examples of some members L(m, n) in the progressions L(n) and the chains L[m] of regular
Kaprekar constants with 1 ≤ m ≤ 5 and n = 3, 5, 7.

L(3) L(5) L(7)
L[1] (132)4 (41532)6 (6417532)8

L[2] (253)6 (62853)9 (962(11)853)12

L[3] (374)8 (83(11)74)12 ((12)83(15)(11)74)16

L[4] (495)10 ((10)4(14)95)15 ((15)(10)4(19)(14)95)20

L[5] (5(11)6)12 ((12)5(17)(11)6)18 ((18)(12)5(23)(17)(11)6)24

Remark 2. By the cases where n = 4 and n = 6 in the lists in Examples 2 and 3, we see that the progressions
K(n) and L(n) of n-digit regular Kaprekar constants may not consist of all n-digit regular Kaprekar constants in
general. Actually, for any n ≥ 2, it seems that it is very hard to obtain formulas for all n-digit regular Kaprekar
constants. In Section 2, we obtain some partial results on them with specified n.
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As a corollary of Theorem 1, we immediately obtain some results on the positivity of the numbers
νreg(b, n) of all b-adic n-digit regular Kaprekar constants as in the following:

Corollary 1. (1) Let n ≥ 2 and b ≥ 2 be any integers. If n and b satisfy one of the following conditions:

(i) n = 2 and b = 3m + 2 with m ≥ 1,

(ii) n is even, n ≥ 4 and b = 2
n−4

2 (4m + 3) + m + 2 with m ≥ 1,

(iii) n is odd and b =
n + 1

2
(m + 1) with m ≥ 1,

then:
νreg(b, n) ≥ 1.

(2) If an integer b ≥ 4 is not a prime number, then for any non-trivial divisor d of b,

νreg(b, 2d− 1) ≥ 1.

Therefore, the number of all b-adic odd-digit regular Kaprekar constants is greater than or equal to the
number of all non-trivial divisors of b.

Secondly, we obtain formulas for non-regular Kaprekar constants by means of double series of
regular Kaprekar constants obtained in Theorem 1 in the following:

Theorem 2. Let the notation be as in Theorem 1.
(1) We assume that m ≡ 1 (mod 3) and n ≡ 0 (mod 4), and put:

βm,n =
b(m, n)− 1

3
.

For any integer r ≥ 2, we denote by K(m, n, r) the b(m, n)-adic (n + 2r)-digit integer:⎛⎝(3m + 3)

r︷ ︸︸ ︷
βm,4 · · · βm,4 m(4m + 3)

r︷ ︸︸ ︷
(2βm,4) · · · (2βm,4)(2m + 2)

⎞⎠
b(m,4)

in the case where n = 4, and:⎛⎝an−1 · · · a n
2 +1

r︷ ︸︸ ︷
βm,n · · · βm,n a n

2
a n

2−1

r︷ ︸︸ ︷
(2βm,n) · · · (2βm,n) a n

2−2 · · · a0

⎞⎠
b(m,n)

in the case where n ≥ 8. Then, K(m, n, r) is a non-regular Kaprekar constant.
(2) We assume that m = 1, n ≡ 3 (mod 6) and n ≥ 9. For any integer r ≥ 2, we denote by L(1, n, r) the

b(1, n)(= n + 1)-adic (n + 2r)-digit integer:⎛⎜⎜⎝bn−1 · · · b 2n
3

r︷ ︸︸ ︷
n
3
· · · n

3
b 2n

3 −1 · · · b n
3

r︷ ︸︸ ︷
2n
3
· · · 2n

3
b n

3−1 · · · b0

⎞⎟⎟⎠
b(1,n)⎛⎜⎜⎝= T(b(1,n),n)

⎛⎜⎜⎝n · · · 2n + 3
3

r︷ ︸︸ ︷
2n
3
· · · 2n

3
2n
3
· · · n + 3

3

r︷ ︸︸ ︷
n
3
· · · n

3
n
3
· · · 1

⎞⎟⎟⎠
⎞⎟⎟⎠ .
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Then, L(1, n, r) is a non-regular Kaprekar constant.

Example 4. (1) Here is an example of the non-regular constant K(m, n, r) obtained in Theorem 2(1) in the
case where m = 4, n = 8, and r = 2.

(m, n) (4, 8)
b(m, n) 82
K(m, n) ((72)(62)(43)4(76)(38)(19)(10))82

βm,n, 2βm,n 27, 54
K(m, n, r) ((72)(62)(43)(27)(27)4(76)(54)(54)(38)(19)(10))82

(2) Here is an example of the non-regular constant L(1, n, r) obtained in Theorem 2(2) in the case where
n = 9 and r = 4.

(1, n) (1, 9)
b(1, n) 10
L(1, n) (864197532)10
n
3 , 2n

3 3, 6
L(1, n, r) (86433331976666532)10

As a corollary of Theorem 2, we immediately obtain the following result on the positivity of the
numbers νreg(b, n) of all b-adic n-digit non-regular Kaprekar constants:

Corollary 2. For any integers m ≥ 1 and n ≥ 4 satisfying:

m ≡ 1 (mod 3) and n ≡ 0 (mod 4)

or:
m = 1, n ≡ 3 (mod 6) and n ≥ 9,

and for any integer r ≥ 2, we see that:

νnon-reg(b(m, n), n + 2r) ≥ 1.

In Section 1, we shall prove Theorems 1 and 2 and Corollaries 1 and 2. In Section 2.1, we shall
obtain some formulas for all n-digit regular Kaprekar constants in Theorem 3 for n = 5, 7, 9, 11 and
Theorem 4 for n = 2, 4, 6, 8. Moreover, we shall see some conditional results on formulas for n-digit
regular Kaprekar constants in Proposition 1 for n = 13, 15, 17. Then, we shall see in Section 2.2 some
observations on the values of νreg(b, n). We think that this article is fit for the Special Issue “Number
Theory and Symmetry,” since Kaprekar constants have the symmetric property that they are fixed
points for recursive number theoretical functions T(b,n).

2. Proofs of Theorems and Corollaries in the Introduction

In this section, we prove Theorem 1 and Corollary 1 on regular Kaprekar constants and Theorem 2
and Corollary 2 on non-regular Kaprekar constants, respectively.

2.1. A Proof of Theorem 1

(1) Let the notation be as in Part (1) of Theorem 1. Here, we omit proving the Parts (i)–(iii), since
they can be checked by direct calculations.

(iv) In the case where n ≥ 8 is even, let:

K(m, n) = (an−1an−2 · · · ai · · · a n
2 +1a n

2
a n

2−1 · · · aj · · · a1a0)b(m,n)
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be the b(m, n)-adic n-digit integer defined in the assertion of Theorem 1(1). Let cn−1 ≥ · · · ≥ c1 ≥ c0

be the rearrangement of the numbers a0, . . . , an−1 of all digits of K(m, n) in descending order. Then,
the relation between a0, . . . , an−1 and c0, . . . , cn−1 is given as in the following:

Lemma 1. In the situation above, we see that:

cn−1 = a n
2−1, cn−2 = an−1,

ci = ai+1, cn−i−1 = an−i−2 for n− 3 ≥ i ≥ n
2

,

c1 = a0, c0 = a n
2
.

Proof. Since for any n− 3 ≥ i ≥ n
2

,

ai+1 = (2
n−4

2 − 2n−i−3)(4m + 3) + m + 1,

an−i−2 = 2n−i−3(4m + 3),

we see easily that:
an−2 > an−3 > · · · > a n

2 +1

and:
a n

2−2 > a n
2−3 > · · · > a1.

Moreover,

a n
2−1 = 2

n−4
2 (4m + 3)

≥ 2
n−4

2 (4m + 3)−m = an−1

> 2
n−4

2 (4m + 3)− (3m + 2) = an−2,

a n
2 +1 − a n

2−2 = (2
n−4

2 − 2
n
2−3)(4m + 3) + (m + 1)− 2

n
2−3(4m + 3)

= m + 1 > 0

and:
a1 = 4m + 3 > a0 = 2m + 2 > a n

2
= m.

Therefore, the lemma is proven.

We put:
T(b(m,n),n)(K(m, n)) = (a′n−1 · · · a′1a′0)b(m,n)
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with integers 0 ≤ a′0, a′1, . . . , a′n−1 ≤ b(m, n)− 1. By Ref. [1] (Theorem 1.1 (6)) and Lemma 1, we then
see that:

a′n−1 = cn−1 − c0 = a n
2−1 − a n

2
= 2

n−4
2 (4m + 3)−m = an−1,

a′n−2 = cn−2 − c1 = an−1 − a0 = 2
n−4

2 (4m + 3)−m− (2m + 2)

= (2
n−4

2 − 1)(4m + 3) + m + 1 = an−2,

a′n
2
= c n

2
− c n

2−1 − 1 = a n
2 +1 − a n

2−2 − 1

= (2
n−4

2 − 2
n
2−3)(4m + 3) + (m + 1)− 2

n
2−3(4m + 3)− 1

= m = a n
2
,

a′n
2−1 = b(m, n)− 1− (c n

2
− c n

2−1)

= 2
n−4

2 (4m + 3) + m + 2− 1− (m + 1)

= 2
n−4

2 (4m + 3) = a n
2−1,

a′1 = b(m, n)− 1− (cn−2 − c1)

= 2
n−4

2 (4m + 3) + m + 2− 1− ((2
n−4

2 − 1)(4m + 3) + m + 1)

= 4m + 3 = a1,

a′0 = b(m, n)− (cn−1 − c0)

= 2
n−4

2 (4m + 3) + m + 2− (2
n−4

2 (4m + 3)−m)

= 2m + 2 = a0.

Moreover, we see that for any n− 3 ≥ i ≥ n
2

+ 1,

a′i = ci − cn−i−1 = ai+1 − an−i−2

= (2
n−4

2 − 2n−i−3)(4m + 3) + m + 1− 2n−i−3(4m + 3)

= (2
n−4

2 − 2n−i−2)(4m + 3) + m + 1 = ai,

a′n−i−1 = b(m, n)− 1− a′i

= 2
n−4

2 (4m + 3) + m + 2− 1− ((2
n−4

2 − 2n−i−2)(4m + 3) + m + 1)

= 2n−i−2(4m + 3) = an−i−1.

Therefore, we see that:

T(b(m,n),n)(K(m, n)) = (a′n−1 · · · a′1a′0)b(m,n)

= (an−1 · · · a1a0)b(m,n)

= K(m, n),

i.e., K(m, n) is a non-trivial Kaprekar constant, which is regular if and only if m ≥ 1, which implies
that a n

2−1 �= an−1.
(2) Let the notation be as in Part (2) of Theorem 1.
As we have seen in the known results (2) and (4) in the Introduction, the cases where n = 3 and

n = 5 have already been proven by Eldridge and Sagong [5] and Prichett [7], respectively. Therefore,
it suffices to prove Part (2) in the case where n ≥ 7.

For any odd integer n ≥ 7, let:

L(m, n) = (bn−1 · · · bi · · · b n+3
2

b n+1
2

b n−1
2

b n−3
2
· · · bj · · · b1b0)b(m,n)
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be the b(m, n)-adic n-digit integer defined in the assertion of Theorem 1(2). Let cn−1 ≥ · · · ≥ c1 ≥ c0

be the rearrangement of the numbers b0, . . . , bn−1 of all digits of L(m, n) in descending order. Then,
the relation between b0, b1, . . . , bn−1 and c0, c1, . . . , cn−1 is given as in the following:

Lemma 2. In the situation above, we see that:

cn−1 = b n−1
2

,

c2i−1 = b n−1
2 +i, c2i−2 = bi−1 for

n− 1
2

≥ i ≥ 2,

c1 = b0, c0 = b n+1
2

.

Proof. By the definition of the numbers of all digits of L(m, n) in Theorem 1(2), we see
immediately that:

cn−1 =
n + 1

2
(m + 1)− 1 = b n−1

2
,

c2i−1 = i(m + 1) = b n−1
2 +i, c2i−2 = i(m + 1)− 1 = bi−1 for

n− 1
2

≥ i ≥ 2,

c1 = m + 1 = b0, c0 = m = b n+1
2

.

Therefore, the lemma is proven.

Then, we can prove Part (2) in the case where n ≥ 7 by the same argument as in the proof of
Theorem 1(1)(iv). Therefore, we omit the details of the calculations here.

2.2. A Proof of Corollary 1

(1) In Cases (i) and (ii), we have the b(m, n)-adic n-digit regular Kaprekar constant K(m, n) by
Theorem 1 (1). On the other hand, in Case (iii), we have the b(m, n)-adic n-digit regular Kaprekar
constant L(m, n) by Theorem 1(2). Therefore, we see that for any integers b ≥ 2 and n ≥ 2 satisfying
Condition (i), (ii), or (iii),

νreg(b, n) ≥ 1,

and Part (1) is proven.
(2) For any integer b ≥ 4 that is not a prime number, let d be any non-trivial divisor of b, i.e., d is

a divisor of b satisfying 1 < d < b. We put:

md =
b
d
− 1, nd = 2d− 1.

Since md ≥ 1 is an integer and nd ≥ 3 is an odd integer satisfying b(md, nd) = b, by Theorem 1(2),
we have the b-adic nd-digit regular Kaprekar constant L(md, nd). Therefore, we see that:

νreg(b, nd) ≥ 1.

Moreover, since nd �= nd′ for any non-trivial divisors d �= d′ of b, we see that L(md, nd) �=
L(md′ , nd′). Therefore, the number of all b-adic odd-digit regular Kaprekar constants is greater than or
equal to the number of all non-trivial divisors of b, and Part (2) is proven.

2.3. A Proof of Theorem 2

(1) We assume that:
m ≡ 1 (mod 3) and n ≡ 0 (mod 4).
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(a) In the case where n = 4, b(m, 4) = 5m + 5, and:

βm,4 =
b(m, 4)− 1

3
=

5m + 4
3

which is an integer, since the assumption m ≡ 1 (mod 3) implies that:

b(m, 4) ≡ 2m− 1 ≡ 1 (mod 3).

Then, for any r ≥ 2, the b(m, 4)-adic (2r + 4)-digit integer obtained by rearranging of the numbers
of all digits of K(m, 4, r) in descending order is:⎛⎝(4m + 3)

r︷ ︸︸ ︷
(2βm,4) · · · (2βm,4)(3m + 3)(2m + 2)

r︷ ︸︸ ︷
βm,4 · · · βm,4 m

⎞⎠
b(m,4)

.

By Ref. [1] (Theorem 1.1 (6)) and the case where n = 4 in Theorem 1(1), we then see that:

T(b(m,4),2r+4)(K(m, 4, r)) = K(m, 4, r),

since b(m, 4)− 1− βm,4 = 2βm,4. Therefore, K(m, 4, r) is a non-regular Kaprekar constant.
(b) In the case where n ≥ 8, b(m, n) = 2

n−4
2 (4m + 3) + m + 2, and

βm,m =
b(m, n)− 1

3
=

1
3

(
2

n−4
2 (4m + 3) + m + 1

)
which is an integer, since n ≡ 0 (mod 4) implies that n−4

2 is even and m ≡ 1 (mod 3) implies that:

b(m, n) ≡ (−1)
n−4

2 m + m− 1 ≡ 1 (mod 3).

Let the notation be as in Theorem 1(1). Since, n ≥ 8, we see that:

a n
2−2 − βm,n = 2

n
2−3(4m + 3)− 1

3

(
2

n−4
2 (4m + 3) + m + 1

)
=

(
2

n
2

6
− 1

3

)
m +

2
n
2

8
− 1

3
> 0,

βm,n − a n
2−3 =

1
3

(
2

n−4
2 (4m + 3) + m + 1

)
− 2

n
2−4(4m + 3)

=

(
2

n
2

12
+

1
3

)
m +

2
n
2

16
+

1
3

> 0,

a n
2 +2 − 2βm,n =

(
2

n
2−2 − 2

n
2−4
)
(4m + 3) + m + 1

− 2
3

(
2

n−4
2 (4m + 3) + m + 1

)
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=

(
2

n
2

12
+

1
3

)
m +

2
n
2

16
+

1
3

> 0,

2βm,n − a n
2 +1 =

2
3

(
2

n−4
2 (4m + 3) + m + 1

)
−
((

2
n
2−2 − 2

n
2−3
)
(4m + 3) + m + 1

)
=

(
2

n
2

6
− 1

3

)
m +

2
n
2

8
− 1

3
> 0.

By Ref. [1] (Theorem 1.1 (6)) and Lemma 1, we then see that:

T(b(m,n),n+2r)(K(m, n, r)) = K(m, n, r),

since b(m, n) − 1− βm,n = 2βm,n. Therefore, K(m, n, r) is a b(m, n)-adic (n + 2r)-digit non-regular
Kaprekar constant for any r ≥ 2.

By (a) and (b) above, Part (1) of Theorem 2 is proven.
(2) We assume that:

m = 1, n ≡ 3 (mod 6) and n ≥ 9.

Let the notation be as in Theorem 1 (2). By the definition in loc. cit., the b(1, n)(= n + 1)-adic
n-digit integer obtained by rearranging of the numbers of all digits b0, b1, . . . , bn−1 of L(1, n) in
descending order is:

(n (n− 1) · · · 3 2 1)b(1,n)

given by all integers from 1–n. By Ref. [1] (Theorem 1.1 (8)) and Theorem 1 (2), we then see that:

T(b(1,n),n+2r)(L(1, n, r))

= T(b(1,n),n)

⎛⎜⎜⎝n · · · 2n + 3
3

r︷ ︸︸ ︷
2n
3
· · · 2n

3
2n
3
· · · n + 3

3

r︷ ︸︸ ︷
n
3
· · · n

3
n
3
· · · 1

⎞⎟⎟⎠
= L(1, n, r),

since n ≥ 9 and b(1, n)− 1−
(

2n
3
− n

3

)
=

2n
3

. Therefore, L(1, n, r) is a b(1, n)-adic (n + 2r)-digit

non-regular Kaprekar constant for any r ≥ 2, and Part (2) of Theorem 2 is proven.

Remark 3. Although we omit the proof here, we can see that for any integer m ≥ 2 and odd integer n ≥ 3, it is
impossible to construct any b(m, n)-adic (n + 2r)-digit non-regular Kaprekar constant by adding βm,n’s and
(2βm,n)’s to the b(m, n)-adic expression of the b(m, n)-adic n-digit regular Kaprekar constant L(m, n), as well
as in Part (1) of Theorem 2.

2.4. A Proof of Corollary 2

We assume that:
m ≡ 1 (mod 3) and n ≡ 0 (mod 4)

(resp.
m = 1, n ≡ 3 (mod 6) and n ≥ 9).

By Theorem 2, for any integer r ≥ 2, we then have the b(m, n)-adic (n + 2r)-digit non-regular
Kaprekar constant K(m, n, r) (resp. L(1, n, r)). Therefore, we see that:

νnon-reg(b, n + 2r) ≥ 1,
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and Corollary 2 is proven.

3. On n-Digit Regular Kaprekar Constants with Specified n

3.1. Some Formulas for All n-Digit Regular Kaprekar Constants with Specified n

Let K(n) and L(n) be the progressions of n-digit regular Kaprekar constants defined in
Definition 3(2) for even and odd positive integers n, respectively. On the other hand, it seems
that it is very hard to obtain formulas for all n-digit regular Kaprekar constants. In this subsection,
we shall obtain partial results on such formulas by case-by-case arguments.

Firstly, we shall see formulas for all n-digit regular Kaprekar constants in the cases where
n = 5, 7, 9, 11 in Theorem 3. Note that, in the case where n = 3, Eldridge and Sagong [5] already
proved that a three-digit integer x is a regular Kaprekar constant if and only if x ∈ L(3), i.e., x is of
the form:

(m(2m + 1)(m + 1))2m+2

with m ≥ 1.
Although one can obtain a similar result for each odd integer n ≥ 13, the authors would not like

to do tedious calculations for solving simultaneous equations obtained by the uniqueness of b-adic
expressions of any positive integer for any integer b ≥ 2.

Theorem 3. (1) A five-digit integer x is a regular Kaprekar constant if and only if x ∈ L(5), i.e., x is of
the form:

((2m + 2)m(3m + 2)(2m + 1)(m + 1))3m+3

with m ≥ 1.
(2) A seven-digit integer x is a regular Kaprekar constant if and only if x ∈ L(7), i.e., x is of the form:

((3m + 3)(2m + 2)m(4m + 3)(3m + 2)(2m + 1)(m + 1))4m+4

with m ≥ 1.
(3) For any integer b ≥ 2, a b-adic nine-digit integer x is a regular Kaprekar constant if and only if x is of

the form:

((b−m− 1)(b− 2m− 2)(b− 3m− 3)m(b− 1)(b−m− 2)(3m + 2)(2m + 1)(m + 1))b,

where the base b is in the range 5m + 4 < b < 6m + 5 with m ≥ 1.
In particular, when b = 5m + 5, x is a member of L(9).
(4) An 11-digit integer x is a regular Kaprekar constant if and only if x ∈ L(11), i.e., x is of the form:

((5m + 5)(4m + 4)(3m + 3)(2m + 2)m(6m + 5)

(5m + 4)(4m + 3)(3m + 2)(2m + 1)(m + 1))6m+6

with m ≥ 1.

Proof. By Theorem 1, it suffices to show that any regular Kaprekar constant in each case is of the form
stated in the assertion. In the following, let b ≥ 2 be any integer.

(1) For any b-adic five-digit regular Kaprekar constant x, we denote by (c4c3c2c1c0)b with:

b− 1 ≥ c4 > c3 > c2 > c1 > c0 ≥ 0
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the rearrangement in descending order of the numbers of all digits of x. By Ref. [1] (Theorem 1.1 (7)),

x = T(b,5)((c4c3c2c1c0)b)

= ((c4 − c0)(c3 − c1 − 1)(b− 1)(b− 1− (c3 − c1))(b− (c4 − c0)))b.

We see the following magnitude relations among the numbers of all digits of x:

b− 1 ≥ c4 − c0 > c3 − c1 − 1,

b− 1 > b− 1− (c3 − c1) > b− (c4 − c0).

Then, we obtain the following:

Lemma 3.

b− 1 = c4, c4 − c0 = c3, b− 1− (c3 − c1) = c2,

b− (c4 − c0) = c1 and c3 − c1 − 1 = c0.

Proof. Since c4 is the maximum number among all digits of x,

b− 1 = c4.

This implies that:

c4 − c0 = b− 1− c0 and b− (c4 − c0) = c0 + 1.

Since c1 is the second smallest number among all digits of x, we then see that:

b− (c4 − c0) = c1.

This implies that:
c3 − c1 − 1 = c0

by the two inequalities above. Moreover, we see that:

b− 1− (c3 − c1) = b− 2− c0

< b− 1− c0 = c4 − c0,

which implies that:
c4 − c0 = c3 and b− 1− (c3 − c1) = c2

as desired.

We then see that the following equality holds:

((c4 − c0)(c3 − c1 − 1)(b− 1)(b− 1− (c3 − c1))(b− (c4 − c0)))b

=(c3c0c4c2c1)b.

This implies that b = 3c0 + 3 and:

c4 = 3c0 + 2, c3 = 2c0 + 2, c2 = 2c0 + 1, c1 = c0 + 1.

Putting m = c0 ≥ 0, we then see that:

x = ((2m + 2)m(3m + 2)(2m + 1)(m + 1))3m+3.
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If m = 0, then we see a contradiction that x = (20211)3 is not regular. Therefore, m ≥ 1, and Part
(1) is proven.

(2) For any b-adic seven-digit regular Kaprekar constant x, we denote by (c6c5c4c3c2c1c0)b with:

b− 1 ≥ c6 > c5 > c4 > c3 > c2 > c1 > c0 ≥ 0

the rearrangement in descending order of the numbers of all digits of x. By the same argument as in
the proof of Part (1), we then see that one of the following two equalities holds:

((c6 − c0)(c5 − c1)(c4 − c2 − 1)(b− 1)(b− 1− (c4 − c2))

(b− 1− (c5 − c1))(b− (c6 − c0)))b

=

{
(c5c2c0c6c4c3c1)b · · · (i)
(c5c3c0c6c4c2c1)b · · · (ii)

The equality (i) implies a contradiction that c2 = − 1
2

.
The equality (ii) implies that b = 4c0 + 4 and:

c6 = 4c0 + 3, c5 = 3c0 + 3, c4 = 3c0 + 2,

c3 = 2c0 + 2, c2 = 2c0 + 1, c1 = c0 + 1.

Putting m = c0 ≥ 0, we then see that:

x = ((3m + 3)(2m + 2)m(4m + 3)(3m + 2)(2m + 1)(m + 1))4m+4.

If m = 0, then we see a contradiction that x = (3203211)4 is not regular. Therefore, m ≥ 1,
and Part (2) is proven.

(3) For any b-adic nine-digit regular Kaprekar constant x, we denote by (c8c7c6c5c4c3c2c1c0)b with:

b− 1 ≥ c8 > c7 > c6 > c5 > c4 > c3 > c2 > c1 > c0 ≥ 0

the rearrangement in descending order of the numbers of all digits of x. By the same argument as in
the proof of Part (1), we then see that one of the following six equalities holds:

((c8 − c0)(c7 − c1)(c6 − c2)(c5 − c3 − 1)(b− 1)(b− 1− (c5 − c3))

(b− 1− (c6 − c2))(b− 1− (c7 − c1))(b− (c8 − c0)))b

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(c7c5c4c0c8c6c3c2c1)b · · · (i)
(c7c5c3c0c8c6c4c2c1)b · · · (ii)
(c7c5c2c0c8c6c4c3c1)b · · · (iii)
(c7c4c3c0c8c6c5c2c1)b · · · (iv)
(c7c4c2c0c8c6c5c3c1)b · · · (v)
(c7c3c2c0c8c6c5c4c1)b · · · (vi)

The equalities (i) and (v) imply a contradiction that c4 = c3.
The equalities (iii), (iv), and (vi) imply a contradiction that c5 = c4.
The equality (ii) implies that b = c3 + 3c0 + 3 and:

c8 = c3 + 3c0 + 2, c7 = c3 + 2c0 + 2, c6 = c3 + 2c0 + 1,

c5 = c3 + c0 + 1, c4 = 3c0 + 2, c2 = 2c0 + 1, c1 = c0 + 1.
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Putting m = c0 ≥ 0, we then see that x is equal to:

((b−m− 1)(b− 2m− 2)(b− 3m− 3)m(b− 1)(b−m− 2)(3m + 2)(2m + 1)(m + 1))b,

where the base b is in the range 5m + 4 < b < 6m + 5, since:

c4 = 3m + 2 > c3 = b− 3m− 3 > c2 = 2m + 1.

If m = 0, then we see a contradiction that b is in the range 4 < b < 5. Therefore, m ≥ 1, and Part
(3) is proven.

(4) For any b-adic 11-digit regular Kaprekar constant x, we denote by (c10c9c8c7c6c5c4c3c2c1c0)b with:

b− 1 ≥ c10 > c9 > c8 > c7 > c6 > c5 > c4 > c3 > c2 > c1 > c0 ≥ 0

the rearrangement in descending order of the numbers of all digits of x. By the same argument as in
the proof of Part (1), we then see that one of the following twenty equalities holds:

((c10 − c0)(c9 − c1)(c8 − c2)(c7 − c3)(c6 − c4 − 1)(b− 1)(b− 1− (c6 − c4))

(b− 1− (c7 − c3))(b− 1− (c8 − c2))(b− 1− (c9 − c1))(b− (c10 − c0)))b

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(c9c7c6c5c0c10c8c4c3c2c1)b · · · (i)
(c9c7c6c4c0c10c8c5c3c2c1)b · · · (ii)
(c9c7c6c3c0c10c8c5c4c2c1)b · · · (iii)
(c9c7c6c2c0c10c8c5c4c3c1)b · · · (iv)
(c9c7c5c4c0c10c8c6c3c2c1)b · · · (v)
(c9c7c5c3c0c10c8c6c4c2c1)b · · · (vi)

(c9c7c5c2c0c10c8c6c4c3c1)b · · · (vii)

(c9c7c4c3c0c10c8c6c5c2c1)b · · · (viii)

(c9c7c4c2c0c10c8c6c5c3c1)b · · · (ix)
(c9c7c3c2c0c10c8c6c5c4c1)b · · · (x)
(c9c4c3c2c0c10c8c7c6c5c1)b · · · (xi)

(c9c5c3c2c0c10c8c7c6c4c1)b · · · (xii)

(c9c5c4c2c0c10c8c7c6c3c1)b · · · (xiii)

(c9c5c4c3c0c10c8c7c6c2c1)b · · · (xiv)

(c9c6c3c2c0c10c8c7c5c4c1)b · · · (xv)

(c9c6c4c2c0c10c8c7c5c3c1)b · · · (xvi)

(c9c6c4c3c0c10c8c7c5c2c1)b · · · (xvii)

(c9c6c5c2c0c10c8c7c4c3c1)b · · · (xviii)

(c9c6c5c3c0c10c8c7c4c2c1)b · · · (xix)

(c9c6c5c4c0c10c8c7c3c2c1)b · · · (xx)

The equality (i) implies a contradiction that c5 ≤ c4.
The equalities (ii), (x), (xii), and (xiii) imply a contradiction that c10 = c9.
The equalities (iii), (iv), (vii), (xi), and (xviii) imply a contradiction that c7 < c6.
The equality (v) implies a contradiction that c6 < c5.
The equalities (viii) and (xvi) imply a contradiction that c7 = c6.
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The equality (ix) implies that:

c7 = c2 + 2c0 + 1, c6 = 4c0 + 2, c3 = 2c0 + 1,

which yields a contradiction that c2 > 2c0 + 1 > c2.
The equality (xiv) implies a contradiction that c6 = c5.
The equality (xv) implies a contradiction that c8 = c7.
The equality (xvii) implies that:

c7 = 2c3, c6 = 3c3 − 2c0 − 1, c2 = 2c0 + 1,

which implies a contradiction that c3 > 2c0 + 1 > c3.

The equality (xix) implies a contradiction that c7 = 4c0 +
8
3

.
The equality (xx) implies a contradiction that c8 < c7.
The equality (vi) implies that b = 6c0 + 6 and:

c10 = 6c0 + 5, c9 = 5c0 + 5, c8 = 5c0 + 4, c7 = 4c0 + 4, c6 = 4c0 + 3,

c5 = 3c0 + 3, c4 = 3c0 + 2, c3 = 2c0 + 2, c2 = 2c0 + 1, c1 = c + 1.

Putting m = c0 ≥ 0, we then see that:

x = ((5m + 5)(4m + 4)(3m + 3)(3m + 2)m(6m + 5)

(5m + 4)(4m + 3)(3m + 2)(2m + 1)(m + 1))6m+6.

If m = 0, then we see a contradiction that x = (54320543211)6 is not regular. Therefore, m ≥ 1,
and Part (4) is proven.

Secondly, we see formulas for all n-digit regular Kaprekar constants in the cases where n = 2, 4, 6, 8
in Theorem 4. Although one can obtain a similar result for each even integer n ≥ 10, the authors would
not like to do tedious calculations for solving simultaneous equations obtained by the uniqueness of
b-adic expressions of any positive integer for any integer b ≥ 2.

Note that we shall need more calculations of solving simultaneous equations in the proof for even
cases in Theorem 4 than odd cases in Theorem 3, because, in the case where n ≥ 2 is even, the Kaprekar
transformation T(b,n) may not necessarily give us the maximum number b− 1 among the numbers of
all digits.

Theorem 4. (1) A two-digit integer x is a regular Kaprekar constant if and only if x ∈ K(2) ∪ {(01)2}, i.e,
x is of the form:

(m(2m + 1))3m+2

with m ≥ 0.
(2) A four-digit integer x is a regular Kaprekar constant if and only if x = (3021)4 or x ∈ K(4), i.e., x is

of the form:
((3m + 3)m(4m + 3)(2m + 2))5m+5

with m ≥ 1.
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(3) A six-digit integer x is a regular Kaprekar constant if and only if x is equal to:

(530421)6,

((9m + 6)(5m + 3)(3m + 1)(2m + 7)(10m + 6)(6m + 4))15m+10,

((5m + 4)(3m + 2)m(6m + 4)(4m + 3)(2m + 2))7m+6 or

((7m + 6)(5m + 4)m(8m + 6)(4m + 1)(2m + 2))9m+8 (∈ K(6))

with m ≥ 1.
(4) An eight-digit integer x is a regular Kaprekar constant if and only if x is equal to:

(97508421)10, (75306421)8,

((11m + 7)(7m + 4)(5m + 3)(3m + 1)(14m + 8)

(12m + 7)(10m + 6)(6m + 4))17m+11,

((15m + 9)(9m + 5)(7m + 4)(3m + 1)(18m + 10)

(14m + 8)(12m + 7)(6m + 4))21m+13,

((13m + 10)(11m + 8)(7m + 5)m(14m + 10)

(8m + 6)(4m + 3)(2m + 2))15m+12 or

((15m + 12)(13m + 10)(9m + 7)m(16m + 12)

(8m + 6)(4m + 3)(2m + 2))17m+14 (∈ K(8))

with m ≥ 1.

Proof. (1) For any b-adic two-digit regular Kaprekar constant x, we denote by x = (c1c0)b with
b− 1 ≥ c1 > c0 ≥ 0 the rearrangement in descending order of numbers of all digits of x. By Ref. [1]
(Theorem 1.1 (2)),

x = T(b,2)((c1c0)b) = ((c1 − c0 − 1)(b− (c1 − c0)))b.

We then see that one of the following two equalities holds:

((c1 − c0 − 1)(b− (c1 − c0)))b =

{
(c1c0)b · · · (i)
(c0c1)b · · · (ii)

The equality (i) implies a contradiction that c0 = −1.
The equality (ii) implies that:

c1 =
2b− 1

3
and c0 =

b− 2
3

.

Putting m = c0 ≥ 0, we then see that:

b = 3m + 2 and c1 = 2m + 1

as desired.
(2) For any b-adic four-digit regular Kaprekar constant x, we denote by (c3c2c1c0)b with b− 1 ≥

c3 > c2 > c1 > c0 ≥ 0 the rearrangement in descending order of the numbers of all digits of x.
By Ref. [1] (Theorem 1.1 (6)),

x = T(b,4)((c3c2c1c0)b)

= ((c3 − c0)(c2 − c1 − 1)(b− 1− (c2 − c1)))(b− (c3 − c0)))b.
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Since:
c3 − c0 > c2 − c1 − 1 and b− 1− (c2 − c1) > b− (c3 − c0),

we see that one of the following six equalities holds:

((c3 − c0)(c2 − c1 − 1)(b− 1− (c2 − c1))(b− (c3 − c0)))b

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(c3c2c1c0)b · · · (i)
(c3c1c2c0)b · · · (ii)
(c3c0c2c1)b · · · (iii)
(c1c0c3c2)b · · · (iv)
(c2c0c3c1)b · · · (v)
(c2c1c3c0)b · · · (vi)

The equalities (i), (ii), and (vi) imply a contradiction that c3 = b.
The equality (iii) implies that x = (3021)4.
The equality (iv) implies a contradiction that c3 < c2.
The equality (v) implies that b = 5c0 + 5 and:

c3 = 4c0 + 3, c2 = 3c0 + 3, c1 = 2c0 + 2.

Putting m = c0 ≥ 0, we then see that:

x = ((3m + 3)m(4m + 3)(2m + 2))5m+5.

If m = 0, then we see a contradiction that x = (3032)5 is not regular. Therefore, m ≥ 1, and Part
(2) is proven.

(3) For any b-adic six-digit regular Kaprekar constant x, we denote by (c5c4c3c2c1c0)b with:

b− 1 ≥ c5 > c4 > c3 > c2 > c1 > c0 ≥ 0

the rearrangement in descending order of the numbers of all digits of x. By Ref. [1] (Theorem 1.1 (6)),

x = T(b,6)((c5c4c3c2c1c0)b)

= ((c5 − c0)(c4 − c1)(c3 − c2 − 1)(b− 1− (c3 − c2))

(b− 1− (c4 − c1))(b− (c5 − c0)))b.

Since c5 − c0 > c4 − c1 > c3 − c2 − 1 and:

b− 1− (c3 − c2) > b− 1− (c4 − c1) > b− (c5 − c0),

we see that c3− c2− 1 = c0 or b− (c5− c0) = c0. The equality b− (c5− c0) = c0 implies a contradiction
that b = c5, and the equality c4 − c1 = c4 implies a contradiction that c1 = 0 > c0. Therefore, we see
that one of the following nine equalities holds:
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((c5 − c0)(c4 − c1)(c3 − c2 − 1)(b− 1− (c3 − c2))

(b− 1− (c4 − c1))(b− (c5 − c0)))b

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(c5c3c0c4c2c1)b · · · (i)
(c5c2c0c4c3c1)b · · · (ii)
(c5c1c0c4c3c2)b · · · (iii)
(c2c1c0c5c4c3)b · · · (iv)
(c3c1c0c5c4c2)b · · · (v)
(c3c2c0c5c4c1)b · · · (vi)

(c4c1c0c5c3c2)b · · · (vii)

(c4c2c0c5c3c1)b · · · (viii)

(c4c3c0c5c2c1)b · · · (ix)

The equality (i) implies that x = (530421)6.
The equality (ii) and (iii) imply a contradiction that c2 = c1.
The equality (iv) implies that c2 = c0 + 1, which contradicts the condition that c2 > c1 > c0.
The equality (vi) implies a contradiction that c2 = c0.
The equality (vii) implies a contradiction that x = (420432)6 is not regular.
The equality (v) implies that b = 5c0 + 5 and:

c5 = 4c0 + 3, c4 =
10c0 + 8

3
, c3 = 3c0 + 3,

c2 = 2c0 + 2, c1 =
5c0 + 4

3
.

Putting c0 = 3m + 1 with m ≥ 0, we then see that:

x = ((9m + 6)(5m + 3)(3m + 1)(12m + 7)(10m + 6)(6m + 4))15m+10.

If m = 0, then we see a contradiction that x = (631764)10 is not regular. Therefore, m ≥ 1.
The equality (viii) implies that b = 7c0 + 6 and:

c5 = 6c0 + 4, c4 = 5c0 + 4, c3 = 4c0 + 3,

c2 = 3c0 + 2, c1 = 2c0 + 2.

Putting m = c0 ≥ 0, we then see that:

x = ((5m + 4)(3m + 2)m(6m + 4)(4m + 3)(2m + 2))7m+6.

If m = 0, then we see a contradiction that x = (420432)6 is not regular. Therefore, m ≥ 1.
The equality (ix) implies that b = 9c0 + 8 and:

c5 = 8c0 + 6, c4 = 7c0 + 6, c3 = 5c0 + 4,

c2 = 4c0 + 3, c1 = 2c0 + 2.

Putting m = c0 ≥ 0, we then see that:

x = ((7m + 6)(5m + 4)m(8m + 6)(4m + 3)(2m + 2))9m+8.
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If m = 0, then we see a contradiction that x = (640632)8 is not regular. Therefore, m ≥ 1, and Part
(3) is proven.

(4) For any b-adic eight-digit regular Kaprekar constant x, we denote by (c7c6c5c4c3c2c1c0)b with:

b− 1 ≥ c7 > c6 > c5 > c4 > c3 > c2 > c1 > c0 ≥ 0

the rearrangement in descending order of the numbers of all digits of x. By Ref. [1] (Theorem 1.1 (6)),

x = T(b,8)((c7c6c5c4c3c2c1c0)b)

= ((c7 − c0)(c6 − c1)(c5 − c2)(c4 − c3 − 1)(b− 1− (c4 − c3))

(b− 1− (c5 − c2))(b− 1− (c6 − c1))(b− (c7 − c0)))b.

Since c7 − c0 > c6 − c1 > c5 − c2 > c4 − c3 − 1 and:

b− 1− (c4 − c3) > b− 1− (c5 − c2) > b− 1− (c6 − c1) > b− (c7 − c0),
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we see that c4− c3− 1 = c0 or b− (c7− c0) = c0. The equality b− (c7− c0) = c0 implies a contradiction
that b = c7, and the equality c6 − c1 = c6 implies a contradiction that c1 = 0 > c0. Therefore, we see
that one of the following thirty equalities holds:

((c7 − c0)(c6 − c1)(c5 − c2)(c4 − c3 − 1)(b− 1− (c4 − c3))

(b− 1− (c5 − c2))(b− 1− (c6 − c1))(b− (c7 − c0)))b

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(c7c5c4c0c6c3c2c1)b · · · (i)
(c7c5c3c0c6c4c2c1)b · · · (ii)
(c7c5c2c0c6c4c3c1)b · · · (iii)
(c7c5c1c0c6c4c3c2)b · · · (iv)
(c7c4c3c0c6c5c2c1)b · · · (v)
(c7c4c2c0c6c5c3c1)b · · · (vi)

(c7c4c1c0c6c5c3c2)b · · · (vii)

(c7c3c2c0c6c5c4c1)b · · · (viii)

(c7c3c1c0c6c5c4c2)b · · · (ix)
(c7c2c1c0c6c5c4c3)b · · · (x)
(c3c2c1c0c7c6c5c4)b · · · (xi)

(c4c2c1c0c7c6c5c3)b · · · (xii)

(c4c3c1c0c7c6c5c2)b · · · (xiii)

(c4c3c2c0c7c6c5c1)b · · · (xiv)

(c5c2c1c0c7c6c4c3)b · · · (xv)

(c5c3c1c0c7c6c4c2)b · · · (xvi)

(c5c3c2c0c7c6c4c1)b · · · (xvii)

(c5c4c1c0c7c6c3c2)b · · · (xviii)

(c5c4c2c0c7c6c3c1)b · · · (xix)

(c5c4c3c0c7c6c2c1)b · · · (xx)

(c6c2c1c0c7c5c4c3)b · · · (xxi)

(c6c3c1c0c7c5c4c2)b · · · (xxii)

(c6c3c2c0c7c5c4c1)b · · · (xxiii)

(c6c4c1c0c7c5c3c2)b · · · (xxiv)

(c6c4c2c0c7c5c3c1)b · · · (xxv)

(c6c4c3c0c7c5c2c1)b · · · (xxvi)

(c6c5c1c0c7c4c3c2)b · · · (xxvii)

(c6c5c2c0c7c4c3c1)b · · · (xxviii)

(c6c5c3c0c7c4c2c1)b · · · (xxix)

(c6c5c4c0c7c3c2c1)b · · · (xxx)

The equality (i) implies that x = (97508421)10.
The equality (ii) implies that x = (75306421)8.
The equality (iii) implies a contradiction that c6 = c4.
The equality (iv) implies a contradiction that c5 = c3.
The equalities (v), (x), (xv), and (xxi) imply a contradiction that c6 = c5.

The equality (vi) implies a contradiction that c2 =
5
3

.
The equality (vii) implies a contradiction that c7 < c6.
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The equalities (viii) and (ix) imply a contradiction that c3 = c1.
The equalities (xi), (xii), (xiii), and (xiv) imply a contradiction that c2 = c1.
The equality (xvii) implies a contradiction that c1 = c0 = −2.

The equality (xviii) implies a contradiction that b = 5c0 +
14
3

.

The equality (xix) implies a contradiction that b = 2c2 −
2
3

.
The equality (xx) implies a contradiction that c7 = c5.
The equality (xxii) implies a contradiction that 4 > c1 > 3.

The equality (xxiv) implies a contradiction that b = 2c1 +
7
3

.

The equality (xxv) implies a contradiction that c5 = 6c1 +
14
3

.
The equality (xxvi) implies a contradiction that c4 = c1.
The equality (xxvii) implies a contradiction that c0 = −1.
The equality (xxviii) implies a contradiction that c7 = c4.

The equality (xvi) implies that b =
17c0 + 16

3
and:

c7 =
14c0 + 10

3
, c6 = 4c0 + 3, c5 =

11c0 + 10
3

, c4 =
10c0 + 8

3
,

c3 =
7c0 + 5

3
, c2 = 2c0 + 2, c1 =

5c0 + 4
3

.

Putting c0 = 3m + 1 with m ≥ 0, we then see that:

x = ((11m + 7)(7m + 4)(5m + 3)(3m + 1)

(4m + 8)(12m + 7)(10m + 6)(6m + 4))17m+11.

If m = 0, then we see a contradiction that x = (74318764)11 is not regular. Therefore, m ≥ 1.
The equality (xxiii) implies that b = 7c0 + 6 and:

c7 = 6c0 + 4, c6 = 5c0 + 4, c5 =
14c0 + 10

3
, c4 = 4c0 + 3,

c3 = 3c0 + 2, c2 =
7c0 + 5

3
, c1 = 2c0 + 2.

Putting c0 = 3m + 1 with m ≥ 0, we then see that:

x = ((15m + 9)(9m + 5)(7m + 4)(3m + 1)

(18m + 10)(14m + 8)(12m + 7)(6m + 4))21m+13.

If m = 0, then we see a contradiction that x = (9541(10)874)13 is not regular. Therefore, m ≥ 1.
The equality (xxix) implies that b = 15c0 + 12 and:

c7 = 14c0 + 10, c6 = 13c0 + 10, c5 = 11c0 + 8, c4 = 8c0 + 6,

c3 = 7c0 + 5, c2 = 4c0 + 3, c1 = 2c0 + 2.

Putting m = c0 ≥ 0, we then see that:

x = ((13m + 10)(11m + 8)(7m + 5)m

(14m + 10)(8m + 6)(4m + 3)(2m + 2))15m+12.

If m = 0, then we see a contradiction that x = ((10)850(10)632)12 is not regular. Therefore, m ≥ 1.
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The equality (xxx) implies that b = 17c0 + 14 and:

c7 = 16c0 + 12, c6 = 15c0 + 12, c5 = 13c0 + 10, c4 = 9c0 + 7,

c3 = 8c0 + 6, c2 = 4c0 + 3, c1 = 2c0 + 2.

Putting m = c0 ≥ 0, we then see that:

x = ((15m + 12)(13m + 10)(9m + 7)m

(16m + 12)(8m + 6)(4m + 3)(2m + 2))17m+14.

If m = 0, then we see a contradiction that x = ((12)(10)70(12)632)14 is not regular. Therefore,
m ≥ 1, and Part (4) is proven.

We shall also obtain some conditional results on formulas for n-digit regular Kaprekar constants
in the following proposition for which we omit the proof because one can prove them by the same
arguments as in the proof of Theorem 3:

Proposition 1. Let the notation be as in Theorem 3. For any integer b ≥ 2, we see the following:
(1) A b-adic 13-digit integer x = (a12 · · · a0)b with 0 ≤ a0, . . . , a12 ≤ b− 1 satisfying the condition:

a11 > a4 > a10 > a3 > a9 > a2 > a8 > a1

is a regular Kaprekar constant if and only if x ∈ L(13) with b ∈ b(13), i.e., x is of the form:

((6m + 6)(5m + 5)(4m + 4)(3m + 3)(2m + 2)m

(7m + 6)(6m + 5)(5m + 4)(4m + 3)(3m + 2)(2m + 1)(m + 1))7m+7

with m ≥ 1.
(2) A b-adic 15-digit integer x = (a14 · · · a0)b with 0 ≤ a0, . . . , a14 ≤ b− 1 satisfying the condition:

a13 > a5 > a12 > a4 > a11 > a3 > a10 > a2 > a9 > a1

is a regular Kaprekar constant if and only if x is of the form:

((b−m1 − 1)(b− 2m1 − 2)(b− 3m1 − 3)(b− 2m1 −m2 − 2)

(b− 3m1 −m2 − 3)m2m1(b− 1)(b−m1 − 2)(b−m2 − 1)

(3m1 + m2 + 2)(2m1 + m2 + 1)(3m1 + 2)(2m1 + 1)(m1 + 1))b,

where m1 ≥ 1, m2 is in the range:
2m1 + 1 < m2 < 3m1 + 2

and b is in the range:
6m1 + m2 + 5 < b < 5m1 + 2m2 + 4.

(3) A b-adic 17-digit integer x = (a16 · · · a0)b with 0 ≤ a0, . . . , a16 ≤ b− 1 satisfying the condition:

a15 > a6 > a14 > a5 > a13 > a4 > a12 > a3 > a11 > a2 > a10 > a1
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is a regular Kaprekar constant if and only if x is of the form:

((b−m− 1)(b− 2m− 2)(b− 3m− 3)(
3b− 7m− 7

4

)(
3b− 11m− 11

4

)(
b− 3m− 2

2

)(
b−m− 1

4

)
m(b− 1)(b−m− 2)(

3b + m− 3
4

)(
b + 3m + 1

2

)(
b + 11m + 7

4

)(
b + 7m + 3

4

)
(3m + 2)(2m + 1)(m + 1))b,

where b satisfies the conditions:

9m + 7 < b < 11m + 9 and b ≡ m + 1 (mod 4)

with m ≥ 1.

3.2. Some Observations on νreg(b, n) with Specified n

As a corollary to Theorems 3 and 4, we can make some observations on the numbers νreg(b, n) of
all b-adic n-digit regular Kaprekar constants for n = 2, 4, 5, 6, 7, 8, 9, 11 as in the following:

Corollary 3. Let b ≥ 2 be any integer. Then, we see the following:

(1) νreg(b, 2) =

{
1 if 3 | (b + 1),

0 otherwise.

(2) νreg(b, 4) =

{
1 if b = 4 or, b ≥ 10 and 5 | b,

0 otherwise.

(3) νreg(b, 5) =

{
1 if b ≥ 6 and 3 | b,

0 otherwise.

(4) νreg(b, 6) =

⎧⎪⎪⎨⎪⎪⎩
2 if b ∈ (A1 ∩ A2) ∪ (A2 ∩ A3),

1 otherwise,

0 if b �= 6 and b �∈ A1 ∪ A2 ∪ A3,

where the sets A1, A2, and A3 are defined as:

A1 = {b ∈ Z | b ≥ 25 and b ≡ 10 (mod 15)},

A2 = {b ∈ Z | b ≥ 13 and b ≡ 6 (mod 7)},

A3 = {b ∈ Z | b ≥ 17 and b ≡ 8 (mod 9)}.

(5) νreg(b, 7) =

{
1 if b ≥ 8 and 4 | b,

0 otherwise.

(6) νreg(b, 8) =

⎧⎪⎪⎨⎪⎪⎩
2 if b ∈ (B1 ∩ B2) ∪ (B1 ∩ B3) ∪ (B2 ∩ B3) ∪ (B3 ∩ B4),

1 otherwise,

0 if b �= 8, 10 and b �∈ B1 ∪ B2 ∪ B3 ∪ B4.
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where the sets B1, B2, B3, and B4 are defined as:

B1 = {b ∈ Z | b ≥ 28 and b ≡ 11 (mod 17)},

B2 = {b ∈ Z | b ≥ 34 and b ≡ 13 (mod 21)},

B3 = {b ∈ Z | b ≥ 27 and b ≡ 12 (mod 15)},

B4 = {b ∈ Z | b ≥ 31 and b ≡ 14 (mod 17)}.

(7) νreg(b, 9) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
b

30

]
+ 1 if b ≡ 10, 15, 16, 20, 21, 22, 25, 26, 27, 28 (mod 30),

[
b

30

]
otherwise.

(8) νreg(b, 11) =

{
1 if b ≥ 12 and 6 | b,

0 otherwise.

Remark 4. (1) The intersections of the sets A1, A2, and A3 in Corollary 3 (4) are the following:

A1 ∩ A2 = {b ∈ Z | b ≥ 55 and b ≡ 55 (mod 105)},

A2 ∩ A3 = {b ∈ Z | b ≥ 62 and b ≡ 62 (mod 63)},

A1 ∩ A3 = ∅.

(2) The intersections of the sets B1, B2, B3, and B4 in Corollary 3 (6) are the following:

B1 ∩ B2 = {b ∈ Z | b ≥ 181 and b ≡ 181 (mod 357)},

B1 ∩ B3 = {b ∈ Z | b ≥ 147 and b ≡ 147 (mod 255)},

B2 ∩ B4 = {b ∈ Z | b ≥ 286 and b ≡ 286 (mod 357)},

B3 ∩ B4 = {b ∈ Z | b ≥ 255 and b ≡ 255 (mod 255)},

B1 ∩ B4 = B2 ∩ B3 = ∅.

Remark 5. We can see that Corollary 3(1)–(5) matches the values of νr in the list in Example 2.

Proof. We see immediately that Parts (1)–(6) and (8) are implied by the respective formulas obtained
in Theorem 3(1), (2), (4) and Theorem 4 for the respective digits n, since these formulas give distinct
n-digit regular Kaprekar constants for distinct positive integers m, and we see that:

A1 ∩ A3 = B1 ∩ B4 = B2 ∩ B3 = ∅

as mentioned in Remark 4.
Now, we prove Part (7) for the case where n = 9. Since the formula obtained in Theorem 3(3)

gives distinct b-adic nine-digit regular Kaprekar constants for distinct pairs (b, m) of suitable integers
b and m, we see that:

νreg(b, 9) = �

{
m ∈ Z

∣∣∣∣ m ≥ 1,
b− 5

6
< m <

b− 4
5

}
,

where the symbol � stands for the number of all elements in the set.

156



Symmetry 2019, 11, 885

For any integer b′ ≥ 0, we then see that:

νreg(b, 9) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b′ if 30b′ + 2 ≤ b ≤ 30b′ + 9,

b′ + 1 if b = 30b′ + 10,

b′ if 30b′ + 11 ≤ b ≤ 30b′ + 14,

b′ + 1 if 30b′ + 15 ≤ b ≤ 30b′ + 16,

b′ if 30b′ + 17 ≤ b ≤ 30b′ + 19,

b′ + 1 if 30b′ + 20 ≤ b ≤ 30b′ + 22,

b′ if 30b′ + 23 ≤ b ≤ 30b′ + 24,

b′ + 1 if 30b′ + 25 ≤ b ≤ 30b′ + 28,

b′ if b = 30b′ + 29,

b′ + 1 if 30b′ + 30 ≤ b ≤ 30b′ + 31.

Therefore, Part (7) is proven.

Moreover, as a corollary to Proposition 1, we can obtain lower bounds for νreg(b, n) with
n = 13, 15, 17 as in the following:

Corollary 4. Let b ≥ 2 be any integer. Then, we have the following estimations:

(1) νreg(b, 13) ≥ 1 if b ≥ 14 and 7 | b.

(2) νreg(b, 15) ≥ ∑
b−7

9 ≤m≤ b−8
8

(b− 8m− 7) + ∑
b−5
11 ≤m≤ b−8

9

(
m−

[
b− 9m

2

]
+ 3
)

, where the symbol m in

the sums stands for positive integers.

(3) νreg(b, 17) ≥ �

{
k ∈ Z

∣∣∣∣k ≥ 2, b ≡ k (mod 4), 0 ≤ b− 9k
4

≤
[

k
2

]
− 1
}

.

Proof. (1) We see immediately that Part (1) is implied by the conditional formula obtained in
Proposition 1(1), since the formula gives distinct (7m + 7)-adic 13-digit regular Kaprekar constants for
distinct positive integers m.

(2) Since the conditional formula obtained in Proposition 1(2) gives distinct b-adic 15-digit regular
Kaprekar constants for distinct triples (b, m1, m2) of suitable integers b, m1, and m2, we see that:

νreg(b, 15) ≥ �{(m1, m2) ∈ Z×Z | m1 ≥ 1, 2m1 + 1 < m2 < 3m1 + 2,

6m1 + m2 + 5 < b < 5m1 + 2m2 + 4}.

For any integer m1 ≥ 1, the list of m2 and b satisfying the conditions:

2m1 + 1 < m2 < 3m1 + 2, 6m1 + m2 + 5 < b < 5m1 + 2m2 + 4

is the following:
m2 b

2m1 + 2 8m1 + 8, . . . , 9m1 + 7
2m1 + 3 8m1 + 9, . . . , 9m1 + 8, 9m1 + 9

...
...

. . .
...

...
. . .

3m1 + 1 9m1 + 7, . . . , 10m1 + 6, 10m1 + 7, . . . , 11m1 + 5
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Since the number of b’s appearing in the list above is equal to:⎧⎪⎪⎪⎨⎪⎪⎪⎩
(b + 1)− (8m1 + 8) if 8m1 + 8 ≤ b ≤ 9m1 + 7,

(m1 − 1)−
[

b− (9m1 + 8)
2

]
if 9m1 + 8 ≤ b ≤ 11m1 + 5,

the right-hand side in the inequality above is equal to:

∑
b−7

9 ≤m≤ b−8
8

(b− 8m− 7) + ∑
b−5
11 ≤m≤ b−8

9

(
m−

[
b− 9m

2

]
+ 3
)

,

where the symbol m in the sums stands for positive integers. Therefore, Part (2) is proven.
(3) Since the conditional formula obtained in Proposition 1(3) gives distinct b-adic 17-digit regular

Kaprekar constants for distinct pairs (b, m) of suitable integers b and m, we see that:

νreg(b, 17) ≥ �{m ∈ Z | m ≥ 1, 9m + 7 < b < 11m + 9, b ≡ m + 1 (mod 4)}.

For any integer m ≥ 1, the first term and the final term in the range 9m + 7 < b < 11m + 9 of the
arithmetic progression with the common difference of four, which are congruent to m + 1 modulo four,

are 9m + 9 and (9m + 9) + 4
([

m + 1
2

]
− 1
)

, respectively. Putting k = m + 1, we then see that:

�{m ∈ Z | m ≥ 1, 9m + 7 < b < 11m + 9, b ≡ m + 1 (mod 4)}

= �

{
k ∈ Z

∣∣∣∣ k ≥ 2, b ≡ k (mod 4), 0 ≤ b− 9k
4

≤
[

k
2

]
− 1
}

,

and Part (3) is proven.
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Errata of [1]: Since the reference [1] is very important to readers of this article, we would like to
describe the errata of [1] here:

p. 263, �. 32, N(b, 2) and �(b, 2)→ N(b, 5) and �(b, 5)
p. 266, �.7, 14, 16, 18, 19, 20, 21, 23, 24: (c0)2 → (c0)b
p. 266, �.16: ((c− 1)(b− c))2 → ((c− 1)(b− c))b
p. 266, �.14, 19: ((δ1(c)− 1)(b− δ1(c)))2 → ((δ1(c)− 1)(b− δ1(c)))b
p. 266, �.21: (c− 1)(b− c))2 → ((c− 1)(b− c))b
p. 266, �.24: ((δv2(b+1)−v2+1(c)− 1)(b− δv2(b+1)−v2+1(c)))2

→ ((δv2(b+1)−v2(c)+1(c)− 1)(b− δv2(b+1)−v2(c)+1(c)))b
p. 267, �.2, 3: (c0)2 → (c0)b
p. 269, �.11: n ≥ 7 and→ n ≥ 7; n is odd and
p. 269, �.12: c n

2−2 → c n−1
2 −2

p.280, �.16: Delete the sentence “A.L. Ludington, A bound on Kaprekar
constants, J. Reine Angew. Math. 310 (1979) 196–203.”
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1. Introduction

The main purposes of this paper are (i) to establish tensor product C∗-probability spaces

(A⊗C Sp, ψ⊗ ϕ
p
j )

induced both by arbitrary unital C∗-probability spaces (A, ψ), and by analytic structures (Sp, ϕ
p
j )

acting on p-adic number fields Qp for all primes p in the set P of all primes, where j ∈ Z, (ii) to consider
free-probabilistic structures of (i) affected both by the free probability on (A, ψ), and by the number
theory on Qp for all p ∈ P , (iii) to study asymptotic behaviors on the structures of (i) as p → ∞ in
P , based on the results of (ii), and (iv), and then investigate asymptotic semicircular laws from the
free-distributional data of (iii).

Our main results illustrate cross-connections among number theory, representation theory, operator
theory, operator algebra theory, and stochastic analysis, via free probability theory.

1.1. Preview and Motivation

Relations between primes and operators have been studied in various different approaches. In [1],
we studied how primes act on operator algebras induced by dynamical systems on p-adic, and Adelic
objects. Meanwhile, in [2], primes are acting as linear functionals on arithmetic functions, characterized
by Krein-space operators.

For number theory and free probability theory, see [3–22], respectively.
In [23], weighted-semicircular elements, and semicircular elements induced by p-adic number fields Qp

are considered by the author and Jorgensen, for each p ∈ P , statistically. In [24], the author extended
the constructions of weighted-semicircular elements of [23] under free product of [15,22]. The main
results of [24] demonstrate that the (weighted-)semicircular law(s) of [23] is (are) well-determined
free-probability-theoretically. As an application, the free stochastic calculus was considered in [6].

Independent from the above series of works, we considered asymptotic semicircular laws induced
by {Qp}p∈P in [1]. The constructions of [1] are highly motivated by those of [6,23,24], but they are
totally different not only conceptually, but also theoretically. Thus, even though the main results of [1]
seem similar to those of [6,24], they indicate-and-emphasize “asymptotic” semicircularity induced by
{Qp}p∈P , as p → ∞. For example, they show that our analyses on {Qp}p∈P not only provide natural
semicircularity but also asymptotic semicircularity under free probability theory.

Symmetry 2019, 11, 819; doi:10.3390/sym11060819 www.mdpi.com/journal/symmetry161
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In this paper, we study asymptotic-semicircular laws over “both” primes and unital C∗-probability
spaces. Since we generalize the asymptotic semicircularity of [25] up to C∗-algebra-tensor, the patterns
and results of this paper would be similar to those of [25], but generalize-or-universalize them.

1.2. Overview

In Section 2, fundamental concepts and backgrounds are introduced. In Sections 3–6, suitable
free-probabilistic models are considered, where they contain p-adic number-theoretic information,
for our purposes.

In Section 7, we establish-and-study C∗-probability spaces containing both analytic data from Qp,
and free-probabilistic information of fixed unital C∗-probability spaces. Then, our free-probabilistic
structure LSA, a free product Banach ∗-probability space, is constructed, and the free probability on
LSA is investigated in Section 8.

In Section 9, asymptotic behaviors on LSA are considered overP , and they analyze the asymptotic
semicircular laws on LSA over P in Section 10.

2. Preliminaries

In this section, we briefly mention backgrounds of our proceeding works.

2.1. Free Probability

See [15,22] (and the cited papers therein) for basic free probability theory. Roughly speaking,
free probability is the noncommutative operator-algebraic extension of measure theory (containing
probability theory) and statistical analysis. As an independent branch of operator algebra theory, it is
applied not only to mathematical analysis (e.g., [5,12–14,26]), but also to related fields (e.g., [18,27–31]).

Here, combinatorial free probability is used (e.g., [15–17]). In the text, free moments, free cumulants,
and the free product of ∗-probability spaces are considered without detailed introduction.

2.2. Analysis on Qp

For p-adic analysis and Adelic analysis, see [21,22]. We use definitions, concepts, and notations from
there. Let p ∈ P be a prime, and let Q be the set of all rational numbers. Define a non-Archimedean norm
|.|p , called the p-norm on Q by

|x|p =
∣∣∣pk a

b

∣∣∣
p
= 1

pk ,

for all x = pk a
b ∈ Q, where k, a ∈ Z, and b ∈ Z \ {0}.

The normed space Qp is the maximal p-norm closures in Q, i.e., the set Qp forms a Banach space,
for p ∈ P (e.g., [22]). Each element x of Qp is uniquely expressed by

x = ∑∞
k=−N xk pk, xk ∈ {0, 1, ..., p− 1},

for N ∈ N, decomposed by

x = ∑−1
l=−N xl pl + ∑∞

k=0 xk pk.

If x = ∑∞
k=0 xk pk in Qp, then x is said to be a p-adic integer, and it satisfies |x|p ≤ 1. Thus, one can

define the unit disk Zp of Qp,

Zp = {x ∈ Qp : |x|p ≤ 1}.

For the p-adic addition and the p-adic multiplication in the sense of [22], the algebraic structure Qp

forms a field, and hence, Qp is a Banach field.
Note that Qp is also a measure space,

Qp =
(
Qp, σ(Qp), μp

)
,
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equipped with the σ-algebra σ(Qp) of Qp, and a left-and-right additive invariant Haar measure on
μp, satisfying

μp(Zp) = 1.

If we take
Uk = pkZp = {pkx ∈ Qp : x ∈ Zp}, (1)

in σ
(
Qp
)

, for all k ∈ Z, then these subsets Uk’s of (1) satisfy

Qp = ∪
k∈Z

Uk,

and

μp (Uk) =
1
pk = μp (x + Uk) , (2)

for all x ∈ Qp, and

· · · ⊂ U2 ⊂ U1 ⊂ U0 = Zp ⊂ U−1 ⊂ U−2 ⊂ · · ·,

i.e., the family {Uk}k∈Z of (1) is a topological basis element of Qp (e.g., [22]).
Define subsets ∂k ∈ σ(Qp) by

∂k = Uk \ Uk+1, (3)

for all k ∈ Z.
Such μp-measurable subsets ∂k of (3) are called the k-th boundaries (of Uk) in Qp, for all k ∈ Z. By (2)

and (3),

Qp = �
k∈Z

∂k,

(4)

μp (∂k) = μp (Uk) − μp (Uk+1) =
1
pk − 1

pk+1 ,

where � is the disjoint union, for all k ∈ Z,
LetMp be an algebraic algebra,

Mp = C
[{

χS : S ∈ σ(Qp)
}]

, (5a)

where χS are the usual characteristic functions of μp-measurable subsets S of Qp. Thus, f ∈Mp, if and
only if

f = ∑
S∈σ(Qp)

tSχS; tS ∈ C, ( 5b)

where ∑ is the finite sum. Note that the algebra Mp of (5a) is a ∗-algebra over C, with its
well-defined adjoint, (

∑
S∈σ(Gp)

tSχS

)∗
de f
= ∑

S∈σ(Gp)
tS χS,

for tS ∈ C with their conjugates tS in C.
If f ∈Mp is given as in (5b), then one defines the integral of f by∫

Qp
f dμp = ∑

S∈σ(Qp)
tS μp(S). (6a)

Remark that, by (5a), the integral (6a) is unbounded onMp, i.e.,∫
Qp

χQp dμp = μp
(
Qp
)
= ∞, (6b)
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by (2).
Note that, by (4), for each S ∈ σ(Qp), there exists a corresponding subset ΛS of Z,

ΛS = {j ∈ Z : S ∩ ∂j �= ∅}, (7)

satisfying ∫
Qp

χS dμp =
∫
Qp

∑
j∈ΛS

χS∩∂j
dμp

= ∑
j∈ΛS

μp
(
S ∩ ∂j

)
by (6a)

≤ ∑
j∈ΛS

μp
(
∂j
)
= ∑

j∈ΛS

(
1
pj − 1

pj+1

)
, (8)

by (4), for the set ΛS of (7).
Remark again that the right-hand side of (8) can be ∞; for instance, ΛQp = Z, e.g., see (4), (6a) and

(6b). By (8), one obtains the following proposition.

Proposition 1. Let S ∈ σ(Qp), and let χS ∈Mp. Then, there exists rj ∈ R, such that

0 ≤ rj =
μp(S∩∂j)

μp(∂j)
≤ 1, ∀j ∈ ΛS;

(9)∫
Qp

χS dμp = ∑
j∈ΛS

rj

(
1
pj − 1

pj+1

)
.

3. Statistical Models on Mp

In this section, fix p ∈ P , and let Qp be the p-adic number field, and letMp be the ∗-algebra (5a).
We here establish a suitable statistical model onMp with free-probabilistic language.

Let Uk be the basis elements (1), and ∂k, their boundaries (3) of Qp, i.e.,

Uk = pkZp,

for all k ∈ Z, and

∂k = Uk \ Uk+1; k ∈ Z. (10)

Define a linear functional ϕp : Mp → C by the integration (6a), i.e.,

ϕp ( f ) =
∫
Qp

f dμp, (11)

for all f ∈Mp.

Then, by (9), one obtains that ϕp

(
χUj

)
= 1

pj , and ϕp

(
χ∂j

)
= 1

pj − 1
pj+1 , since ΛUj = {k ∈ Z :

k ≥ j}, and Λ∂j
= {j}, for all j ∈ Z, where ΛS are in the sense of (7) for all S ∈ σ(Qp).

Definition 1. The pair
(
Mp, ϕp

)
is called the p-adic (unbounded-)measure space for p ∈ P , where ϕp is the

linear functional (11) onMp.

Let ∂k be the k-th boundaries (10) of Qp, for all k ∈ Z. Then, for k1, k2 ∈ Z, one obtains that

χ∂k1
χ∂k2

= χ∂k1
∩∂k2

= δk1,k2 χ∂k1
,

and hence,
ϕp

(
χ∂k1

χ∂k2

)
= δk1,k2 ϕp

(
χ∂k1

)
= δk1,k2

(
1

pk1
− 1

pk1+1

)
.

(12)
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Proposition 2. Let (j1, ..., jN) ∈ ZN , for N ∈ N. Then,

N
Π

l=1
χ∂jl

= δ(j1,...,jN)χ∂j1
inMp,

and hence,

ϕp

(
N
Π

l=1
χ∂jl

)
= δ(j1,...,jN)

(
1

pj1
− 1

pj1+1

)
, (13)

where

δ(j1,...,jN) =

(
N−1
Π

l=1
δjl ,jl+1

) (
δjN ,j1

)
.

Proof. The computation (13) is shown by the induction on (12).

Recall that, for any S ∈ σ
(
Qp
)

,

ϕp (χS) = ∑
j∈ΛS

rj

(
1
pj − 1

pj+1

)
, (14)

for some 0 ≤ rj ≤ 1, for j ∈ ΛS, by (9). Thus, by (14), if S1, S2 ∈ σ
(
Qp
)

, then

χS1 χS2 =

(
∑

k∈ΛS1

χS1∩∂k

)(
∑

j∈ΛS2

χS2∩∂j

)
= ∑

(k,j)∈ΛS1
×ΛS2

(
χS1∩∂k

χS2∩∂j

)
= ∑

(k,j)∈ΛS1
×ΛS2

δk,j χ(S1∩S2)∩∂j

= ∑
j∈ΛS1,S2

χ(S1∩S2)∩∂j
, (15)

where

ΛS1,S2 = ΛS1 ∩ΛS2 ,

by (4).

Proposition 3. Let Sl ∈ σ(Qp), and let χSl ∈
(
Mp, ϕp

)
, for l = 1, ..., N, for N ∈ N. Let

ΛS1,...,SN =
N∩

l=1
ΛSl in Z,

where ΛSl are in the sense of (7), for l = 1, ..., N. Then, there exists rj ∈ R, such that

0 ≤ rj ≤ 1 in R,

for all j ∈ ΛS1,...,SN , and

ϕp

(
N
Π

l=1
χSl

)
= ∑

j∈ΛS1,...,SN

rj

(
1
pj − 1

pj+1

)
. (16)

Proof. The proof of (16) is done by the induction on (15), and by (13).
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4. Representation of
(Mp, ϕp

)
Fix a prime p ∈ P . Let

(
Mp, ϕp

)
be the p-adic measure space. By understanding Qp as a measure

space, construct the L2-space,

Hp
de f
= L2 (Qp, σ(Qp), μp

)
= L2 (Qp

)
, (17)

over C. Then, this Hilbert space Hp of (17) consists of all square-integrable elements ofMp, equipped
with its inner product <,>2,

〈 f1, f2〉2
de f
=
∫
Qp

f1 f ∗2 dμp, (18a)

for all f1, f2 ∈ Hp. Naturally, Hp is has its L2-norm ‖.‖2 onMp,

‖ f ‖2
de f
=
√
〈 f , f 〉2, (18b)

for all f ∈ Hp, where <,>2 is the inner product (18a) on Hp.

Definition 2. The Hilbert space Hp of (17) is called the p-adic Hilbert space.

Our ∗-algebraMp acts on the p-adic Hilbert space Hp, via an action αp,

αp( f ) (h) = f h, for all h ∈ Hp, (19a)

for all f ∈Mp. i.e., the morphism αp of (19a) is a ∗-homomorphism from Mp to the operator algebra
B(Hp), consisting of all Hilbert-space operators on Hp. For instance,

αp
(

χQp

)⎛⎝ ∑
S∈σ(Qp)

tSχS

⎞⎠ = ∑
S∈σ(Qp)

tSχQp∩S

= ∑
S∈σ(Qp)

tSχS,

(19b)

for all h = ∑
S∈σ(Qp)

tSχS ∈ Hp, with ‖h‖2 < ∞, for χQp ∈Mp, even though χQp /∈ Hp.

Indeed, It is not difficult to check that

αp( f1 f2) = αp( f1)α
p( f2) on Hp, ∀ f1, f2 ∈Mp,

(20a)

(αp( f ))∗ = α( f ∗) on Hp, ∀ f ∈Mp.

Notation 1. Denote αp( f ) by α
p
f , for all f ∈Mp. In addition, for convenience, denote α

p
χS simply by α

p
S,

for all S ∈ σ
(
Qp
)

.

Note that, by (19b), one can have a well-defined operator α
p
Qp

= α
p
χQp

in B(Hp), and it satisfies that

α
p
Qp

(h) = h = 1Hp (h) , ∀h ∈ Hp, (20b)

where 1Hp ∈ B(Hp) is the identity operator on Hp.

Proposition 4. The pair (Hp, αp) is a Hilbert-space representation ofMp.

Proof. It suffices to show that αp is an algebra-action ofMp on Hp. However, this morphism αp is a
∗-homomorphism fromMp into B(Hp), by (20a).

Definition 3. The Hilbert-space representation
(

Hp, αp) is called the p-adic representation ofMp.
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Depending on the p-adic representation (Hp, αp) ofMp, one can define the C∗-subalgebra Mp of
B(Hp) as follows.

Definition 4. Let Mp be the operator-norm closure ofMp,

Mp
de f
= αp

(
Mp

)
= C

[
α

p
f : f ∈ Mp

]
(21)

in B(Hp), where X are the operator-norm closures of subsets X of B(Hp). This C∗-algebra Mp is said to be the
p-adic C∗-algebra of

(
Mp, ϕp

)
.

By (21), the p-adic C∗-algebra Mp is a unital C∗-algebra contains its unity (or the unit, or the
multiplication-identity) 1Hp = α

p
Qp

, by (20b).

5. Statistics on Mp

In this section, fix p ∈ P , and let Mp be the corresponding p-adic C∗-algebra of (21). Define a
linear functional ϕ

p
j : Mp → C by

ϕ
p
j (a)

de f
=
〈

a(χ∂j
), χ∂j

〉
2

, ∀a ∈ Mp, (22a)

for χ∂j
∈ Hp, where <,>2 is the inner product (4.2) on the p-adic Hilbert space Hp of (4.1), and ∂j are

the boundaries (3.1) of Qp, for all j ∈ Z. It is not hard to check such a linear functional ϕ
p
j on Mp is

bounded, since

ϕ
p
j

(
α

p
S

)
=
〈

α
p
S

(
χ∂j

)
, χ∂j

〉
2
=
〈

χSχ∂j
, χ∂j

〉
2

=
〈

χS∩∂j
, χ∂j

〉
2
=
∫
Qp

χS∩∂j
dμp

≤
∫
Qp

χ∂j
dμp = μp

(
∂j
)
= 1

pj − 1
pj+1 , (22b)

for all S ∈ σ(Qp), for any fixed j ∈ Z.

Definition 5. Let ϕ
p
j be bounded linear functionals (22a) on the p-adic C∗-algebra Mp, for all j ∈ Z. Then, the

pairs
(

Mp, ϕ
p
j

)
are said to be the j-th p-adic C∗-measure spaces, for all j ∈ Z.

Thus, one can get the system

{(Mp, ϕ
p
j ) : j ∈ Z}

of the j-th p-adic C∗-measure spaces (Mp, ϕ
p
j )’s.

Note that, for any fixed j ∈ Z, and (Mp, ϕ
p
j ), the unity

1Mp
denote
= 1Hp = α

p
Qp

of Mp

satisfies that

ϕ
p
j

(
1Mp

)
=
〈

χQp∩∂j
, χ∂j

〉
2

=
∥∥∥χ∂j

∥∥∥2
= 1

pj − 1
pj+1 .

(23)

Thus, the j-th p-adic C∗-measure space (Mp, ϕ
p
j ) is a bounded-measure space, but not a probability

space, in general.

Proposition 5. Let S ∈ σ
(
Qp
)

, and α
p
S ∈
(

Mp, ϕ
p
j

)
, for a fixed j ∈ Z. Then, there exists rS ∈ R, such that
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0 ≤ rS ≤ 1 in R,

and

ϕ
p
j

((
α

p
S

)n)
= rS

(
1
pj − 1

pj+1

)
; n ∈ N. (24)

Proof. Remark that the element α
p
S is a projection in Mp, in the sense that:(

α
p
S

)∗
= α

p
(χ∗S)

= α
p
S = α

p
(χS∩χS)

=
(

α
p
S

)2
, in Mp,

and hence, (
α

p
S

)n
= α

p
S,

for all n ∈ N. Thus, we obtain the formula (24) by (22b).

As a corollary of (24), one obtains that, if ∂k is a k-th boundaries of Qp, then

ϕ
p
j

((
α

p
∂k

)n)
= δj,k

(
1
pj − 1

pj+1

)
, (25)

for all n ∈ N, for k ∈ Z.

6. The C∗-Subalgebra Sp of Mp

Let Mp be the p-adic C∗-algebra for p ∈ P . Let

Pp,j = α
p
∂j
∈ Mp, (26)

for all j ∈ Z. By (24) and (25), these operators Pp,j of (26) are projections on the p-adic Hilbert space Hp,
in Mp, for all p ∈ P , j ∈ Z.

Definition 6. Let p ∈ P , and let Sp be the C∗-subalgebra

Sp = C∗
(
{Pp,j}j∈Z

)
= C

[
{Pp,j}j∈Z

]
of Mp, (27)

where Pp,j are in the sense of ((26)), for all j ∈ Z. We call Sp, the p-adic boundary (C∗-)subalgebra of Mp.

Proposition 6. If Sp is the p-adic boundary subalgebra (27), then

Sp
∗-iso
= ⊕

j∈Z

(
C · Pp,j

) ∗-iso
= C⊕|Z|, (28)

in the p-adic C∗-algebra Mp.

Proof. It is enough to show that the generating operators {Pp,j}j∈Z of Sp are mutually orthogonal
from each other. It is not hard to check that

Pp,j1 Pp,j2 = αp
(

χ∂
p
j1
∩∂

p
j2

)
= δj1,j2 α

p
∂

p
j1

= δj1,j2 Pp,j1 ,

in Sp, for all j1, j2 ∈ Z. Therefore, the structure theorem (28) is shown.

By (27), one can define the measure spaces,

Sp(j) denote
=
(
Sp, ϕ

p
j

)
, ∀j ∈ Z, (29)

for p ∈ P , where the linear functionals ϕ
p
j of (29) are the restrictions ϕ

p
j |Sp of (22a), for all p ∈ P ,

j ∈ Z.
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7. On the Tensor Product C∗-Probability Spaces
(

A ⊗C Sp, ψ ⊗ϕ
p
j

)
In this section, we define and study our main objects of this paper. Let (A, ψ) be an arbitrary

unital C∗-probability space (e.g., [22]), satisfying

ψ(1A) = 1,

where 1A is the unity of a C∗-algebra A. In addition, let

Sp(j) =
(
Sp, ϕ

p
j

)
(30)

be the p-adic C∗-measure spaces (29), for all p ∈ P , j ∈ Z.
Fix now a unital C∗-probability space (A, ψ), and p ∈ P , j ∈ Z. Define a tensor product C∗-algebra

SA
p

de f
= A⊗C Sp, (31)

and a linear functional ψ
p
j on SA

p by a linear morphism satisfying

ψ
p
j

(
a⊗ Pp,k

)
= ϕ

p
j

(
ψ(a)Pp,k

)
, (32)

for all a ∈ (A, ψ), and k ∈ Z.
Note that, by the structure theorem (28) of the p-adic boundary subalgebra Sp,

SA
p
∗-iso
= A ⊗C

(
C⊕|Z|

) ∗-iso
= A⊕|Z|, (33)

by (31).
By (33), one can verify that a morphism ψ

p
j of (32) is indeed a well-defined bounded linear

functional on SA
p .

Definition 7. For any arbitrarily fixed p ∈ P , j ∈ Z, let SA
p be the tensor product C∗-algebra (31), and ψ

p
j ,

the linear functional (32) on SA
p . Then, we call SA

p , the A-tensor p-adic boundary algebra. The corresponding
structure,

SA
p (j) denote

=
(
SA

p , ψ
p
j

)
(34)

is said to be the j-th p-adic A-(tensor C∗-probability-)space.

Note that, by (22a), (22b) and (32), the j-th p-adic A-space SA
p (j) of (34) is not a “unital”

C∗-probability space, even though (A, ψ) is. Indeed, the C∗-algebra SA
p of (31) has its unity 1A ⊗ 1Mp ,

satisfying

ψ
p
j

(
1A ⊗ 1Mp

)
= ϕ

p
j

(
ψ(1A)1Mp

)
= 1 · ϕ

p
j (1Mp) =

1
pj − 1

pj+1 ,

for j ∈ Z.
Remark that, by (32),

ψ
p
j

(
a⊗ Pp,k

)
= ψ(a) ϕ

p
j

(
Pp,k

)
, (35a)

for all a ∈ (A, ψ), and k ∈ Z. Thus, by abusing notation, one may write the definition (32) by

ψ
p
j = ψ⊗ ϕ

p
j on A⊗C Sp = SA

p , (35b)

in the sense of (35a), for all p ∈ P , j ∈ Z.
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Proposition 7. Let a ∈ (A, ψ), and Pp,k, the k-th generating projection of Sp, for all k ∈ Z, and let a⊗ Pp,k
be the corresponding free random variable of the j-th p-adic A-space SA

p (j), for j ∈ Z. Then,

ψ
p
j

((
a⊗ Pp,k

)n)
= δj,k ψ(an)

(
1
pj − 1

pj+1

)
, (36)

for all n ∈ N.

Proof. Let Ta
p,k = a⊗ Pp,k be a given free random variable of SA

p (j). Then,(
Ta

p,k

)n
=
(

a⊗ Pp,k

)n
= an ⊗ Pp,k = Tan

p,k,

and hence

ψ
p
j

((
Ta

p,k

)n)
= ψ

p
j

(
Tan

p,k

)
= ψ(an) ϕ

p
j

(
Pp,k

)
= ψ(an)

(
δj,k

(
1
pj − 1

pj+1

))
by (35a)

= δj,kψ(an)
(

1
pj − 1

pj+1

)
,

for all n ∈ N. Therefore, the free-distributional data (36) holds.

Suppose a is a “self-adjoint” free random variable in (A, ψ) in the above proposition. Then,
formula (36) completely characterizes the free distribution of a⊗ Pp,k in the j-th p-adic A-space SA

p (j)
of (34), i.e., the free distribution of a⊗ Pp,k is characterized by the sequence,(

δj,kψ(an)
(

1
pj − 1

pj+1

))∞

n=1

for all p ∈ P , and j, k ∈ Z because a⊗ Pp,k is self-adjoint in SA
p too.

It illustrates that the free probability on SA
p (j) is determined both by the free probability on (A,

ψ), and by the statistical data on Sp(j) of (30) (implying p-adic analytic information), for p ∈ P , j ∈ Z.

Notation. From below, for convenience, let’s denote the free random variables a⊗ Pp,k of SA
p (j), with

a ∈ (A, ψ) and k ∈ Z, by Ta
p,k, i.e.,

Ta
p,k

denote
= a⊗ Pp,k,

for all p ∈ P , j ∈ Z.

In the proof of (36), it is observed that(
Ta

p,k

)n
= Tan

p,k ∈ SA
p (j) (37)

for all n ∈ N. More generally, the following free-distributional data is obtained.

Theorem 1. Fix p ∈ P , and j ∈ Z, and let SA
p (j) be the j-th p-adic A-space (34). Let Tal

p,kl
∈ SA

p (j), for l =
1, ..., N, for N ∈ N. Then,

ψ
p
j

(
N
Π

l=1

(
Tal

p,kl

)nl
)
=

(
N
Π

l=1
δj,kl

)(
1
pj − 1

pj+1

)
ψ

(
N
Π

l=1
anl

l

)
, (38)

for all n1, ..., nN ∈ N.

Proof. Let Tal
p,kl

= al ⊗ Pp,kl
be free random variables of SA

p (j), for l = 1, ..., N. Then, by (37),(
Tal

p,kl

)nl
= T

a
nl
l

p,kl
∈ SA

p (j), for nl ∈ N,

for all l = 1, ..., N. Thus,
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T =
N
Π

l=1

(
Tal

p,kl

)nl
=

(
N
Π

l=1
anl

l

)
⊗
(

δj:k1,...,kN Pp,j

)
in SA

p (j), with

δj:k1,...,kN =
N
Π

l=1
δj,kl

∈ {0, 1}.

Therefore,

ψ
p
j (T) = δj:k1,...,kN ψ

(
N
Π

l=1
anl

l

)
ϕ

p
j
(

Pp,j
)

= δj:k1,...,kN

(
1
pj − 1

pj+1

)
ψ

(
N
Π

l=1
anl

l

)
,

by (35a). Thus, the joint free-distributional data (38) holds.

Definitely, if N = 1 in (38), one obtains the formula (36).

8. On the Banach ∗-Probability Spaces LSA
p,j

Let (A, ψ) be an arbitrarily fixed unital C∗-probability space, and let Sp(j) be in the sense of (30),
for all p ∈ P , j ∈ Z. Then, one can construct the tensor product C∗-probability spaces, the j-th p-adic
A-space,

SA
p (j) =

(
SA

p , ψ
p
j

)
=
(

A⊗C Sp, ψ⊗ ϕ
p
j

)
of (34), for p ∈ P , j ∈ Z.

Throughout this section, we fix p ∈ P , j ∈ Z, and the corresponding j-th p-adic A-space SA
p (j). In

addition, we keep using our notation Ta
p,k for the free random variables a⊗ Pp,k of SA(j), for all a ∈

(A, ψ) and k ∈ Z, where Pp,k are the generating projections (26) of the p-adic boundary subalgebra Sp.
Recall that, by (36) and (38),

ψ
p
j

(
Ta

p,k

)
= δj,kψ(a)

(
1
pj − 1

pj+1

)
, ∀k ∈ Z. (39)

Now, let φ be the Euler totient function,

φ : N→ C,

defined by

φ(n) = |{k ∈ N : k ≤ n, gcd(n, k) = 1}| , (40)

for all n ∈ N, where |X| are the cardinalities of sets X, and gcd is the greatest common divisor.
By the definition (40),

φ(n) = n
(

Π
q∈P , q|n

(
1− 1

q

))
, (41)

for all n ∈ N, where “q | n” means “q divides n.” Thus,

φ(q) = q− 1 = q
(

1− 1
q

)
, ∀q ∈ P , (42)

by (40) and (41).
By (42), we have

ϕ
p
j

(
Pp,k

)
=

δj,k

pj

(
1− 1

p

)
=

δj,kφ(p)
pj+1 ,
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for Pp,k ∈ Sp, and hence,

ψ
p
j

(
Ta

p,k

)
= δj,k

(
φ(p)
pj+1

)
ψ(a), (43)

for all Ta
p,k ∈ SA

p (j), by (39).
Let’s consider the following estimates.

Lemma 1. Let φ be the Euler totient function (40). Then,

lim
p→∞

φ(p)
pj+1 =

⎧⎪⎨⎪⎩
0, if j > 0,
1, if j = 0,
∞, Undefined, if j < 0,

(44)

for all j ∈ Z, where “p → ∞” means “p is getting bigger and bigger in P .”

Proof. Observe that

lim
p→∞

φ(p)
p = lim

p→∞

(
1− 1

p

)
= 1,

by (42). Thus, one can get that

lim
p→∞

φ(p)
pj+1 = lim

p→∞

(
φ(p)

p

) (
1
pj

)
= lim

p→∞
1
pj ,

for j ∈ Z. Thus,

lim
p→∞

φ(p)
pj+1 = lim

p→∞
1
pj =

⎧⎪⎨⎪⎩
0, if j > 0,
1, if j = 0,
lim
p→∞

p|j| = ∞, if j < 0,

where |j| are the absolute values of j ∈Z. Thus, the estimation (44) holds.

8.1. Semicircular Elements

Let (B, ϕ) be an arbitrary topological ∗-probability space (C∗-probability space, or W∗-probability
space, or Banach ∗-probability space, etc.) equipped with a topological ∗-algebra B (C∗-algebra, resp.,
W∗-algebra, resp., Banach ∗-algebra), and a linear functional ϕ on B.

Definition 8. A self-adjoint operator a ∈ B is said to be semicircular in (B, ϕ), if

ϕ (an) = ωnc n
2
; n ∈ N, ωn =

{
1, if n is even,
0, if n is odd,

(45)

and ck are the k-th Catalan numbers,

ck =
1

k+1

(
2k
k

)
= (2k)!

k!(k+1)! ,

for all k ∈ N0 = N ∪ {0}.

By [15–17], if kn(...) is the free cumulant on B in terms of ϕ, then a self-adjoint operator a is
semicircular in (B, ϕ), if and only if

kn

⎛⎝a, a, ......, a︸ ︷︷ ︸
n-times

⎞⎠ =

{
1, if n = 2,
0, otherwise,

(46)
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for all n ∈ N. The above characterization (46) of the semicircularity (45) holds by the Möbius inversion
of [15]. For example, definition (45) and the characterization (46) give equivalent free distributions,
the semicircular law.

If al are semicircular elements in topological ∗-probability spaces (Bl , ϕl), for l = 1, 2, then the
free distributions of al are completely characterized by the free-moment sequences,(

ϕl(an
l )
)∞

n=1 , for l = 1, 2,

by the self-adjointness of a1 and a2; and by (45), one obtains that(
ϕ1(an

1 )
)∞

n=1 =
(

ωnc n
2

)∞

n=1
= (0, c1, 0, c2, 0, c3, ...)
= (ϕ2(an

2 ))
∞
n=1 .

Equivalently, the free distributions of the semicircular elements a1 and a2 are characterized by the
free-cumulant sequences,(

k1
n(a1, ..., a1)

)∞
n=1 = (0, 1, 0, 0, 0, ...) =

(
k2

n(a2, ..., a2)
)∞

n=1 ,

by (46), where kl
n(...) are the free cumulants on Bl in terms of ϕl , for all l = 1, 2.

It shows the universality of free distributions of semicircular elements. For example,
the free distributions of any semicircular elements are universally characterized by either the
free-moment sequence (

ωnc n
2

)∞

n=1
, (47)

or the free-cumulant sequence

(0, 1, 0, 0, ...).

Definition 9. Let a be a semicircular element of a topological ∗-probability space (B, ϕ). The free distribution
of a is called “the” semicircular law.

8.2. Tensor Product Banach ∗-Algebra LSA
p

Let SA
p (k) =

(
SA

p , ψ
p
k

)
be the k-th p-adic A-space (34), for all p ∈ P , k ∈ Z. Throughout this

section, we fix p ∈ P , k ∈ Z, and SA
p (k). In addition, denote a⊗ Pp,j by Ta

p,j in SA
p (k), for all a ∈ (A, ψ)

and j ∈ Z.
Define now bounded linear transformations cA

p and aA
p “acting on the tensor product C∗-algebra

SA
p ,” by linear morphisms satisfying,

cA
p

(
Ta

p,j

)
= Ta

p,j+1,

(48)

aA
p

(
Ta

p,j

)
= Ta

p,j−1,

on Sp, for all j ∈ Z.
By the definitions (27) and (31), and by the structure theorem (33), the above linear morphisms cA

p
and aA

p of (48) are well-defined on SA
p .

By (48), one can understand cA
p and aA

p as bounded linear transformations contained in the operator
space B(SA

p ) consisting of all bounded linear operators acting on SA
p , by regarding the C∗-algebra SA

p
as a Banach space equipped with its C∗-norm (e.g., [32]). Under this sense, the operators cA

p and aA
p of

(48) are well-defined Banach-space operators on SA
p .
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Definition 10. The Banach-space operators cA
p and aA

p on SA
p , in the sense of (48), are called the A-tensor

p-creation, respectively, the A-tensor p-annihilation on SA
p . Define a new Banach-space operator lA

p by

lA
p = cA

p + aA
p on SA

p . (49)

We call this operator lA
p , the A-tensor p-radial operator on SA

p .

Let lA
p be the A-tensor p-radial operator cA

p + aA
p of (49) in B(SA

p ). Construct a closed subspace LA
p

of B(SA
p ) by

LA
p = C[{lA

p }] ⊂ B(SA
p ), (50)

equipped with the inherited operator-norm ‖.‖ from the operator space B(SA
p ), defined by

‖T‖ = sup{‖Tx‖SA
p

: x ∈ SA
p s.t., ‖x‖SA

p
= 1},

where ‖.‖SA
p

is the C∗-norm on the A-tensor p-adic algebra SA
p (e.g., [32]).

By the definition (50), the set LA
p is not only a closed subspace of B(SA

p ), but also an algebra over
C. Thus, the subspace LA

p is a Banach algebra embedded in B(SA
p ).

On the Banach algebra LA
p of (50), define a unary operation (∗) by(

∑∞
k=0 sk

(
lA

p

)k
)∗

= ∑∞
k=0 sk

(
lA

p

)k
in LA

p , (51)

where sk ∈ C, with their conjugates sk ∈ C.
Then, the operation (51) is a well-defined adjoint on LA

p . Thus, equipped with the adjoint (51),
this Banach algebra LA

p of (50) forms a Banach ∗-algebra in B(SA
p ). For example, all elements of LA

p are
adjointable (in the sense of [32]) in B(SA

p ).
Let LA

p be in the sense of (50). Construct now the tensor product Banach ∗-algebra LSA
p by

LSA
p

de f
= LA

p ⊗CS
A
p = LA

p ⊗C

(
A⊗C Sp

)
, (52)

where ⊗C is the tensor product of Banach ∗-algebras. Since SA
p is a C∗-algebra, it is a Banach

∗-algebra too.

Take now a generating element
(

lA
p

)n
⊗ Ta

p,j, for some n ∈ N0, and j ∈ Z, where Ta
p,j = a⊗ Pp,j

are in the sense of (37) in SA
p , with axiomatization:(

lA
p

)0
= 1SA

p
,

the identity operator on SA
p in B

(
SA

p

)
, satisfying

1SA
p
(T) = T,

for all T ∈ SA
p . Define now a bounded linear morphism EA

p : LSA
p → SA

p by a linear transformation
satisfying that:

EA
p

((
lA

p

)k
⊗ Ta

p,j

)
= 1

[ k
2 ]+1

(
lA

p

)k
(Ta

p,j), (53)

for all k ∈ N0, j ∈ Z, where
[

k
2

]
is the minimal integer greater than or equal to k

2 , for all k ∈ N0, for example,

[ 3
2
]
= 2 =

[
4
2

]
.
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By the cyclicity (50) of the tensor factor LA
p of LSA

p , and by the structure theorem (33) of the
other tensor factor SA

p of LSA
p , the above morphism EA

p of (53) is a well-defined bounded linear
transformation from LSA

p onto SA
p .

Now, consider how our A-tensor p-radial operator lA
p = cA

p + aA
p acts on SA

p . First, observe that:
if cA

p and aA
p are the A-tensor p-creation, respectively, the A-tensor p-annihilation on SA

p , then

cA
p aA

p

(
Ta

p,j

)
= Ta

p,j = aA
p cA

p

(
Ta

p,j

)
,

for all a ∈ (A, ψ), and for all j ∈ Z, p ∈ P , and, hence,

cA
p aA

p = 1SA
p
= aA

p cA
p on SA

p . (54)

Lemma 2. Let cA
p , aA

p be the A-tensor p-creation, respectively, the A-tensor p-annihilation on SA
p . Then,(

cA
p

)n (
aA

p

)n
= 1SA

p
=
(

aA
p

)n (
cA

p

)n
,

(55)(
cA

p

)n1
(

aA
p

)n2
=
(

aA
p

)n2
(

cA
p

)n1
,

on SA
p , for all n, n1, n2 ∈ N.

Proof. The formulas in (55) hold by induction on (54).

By (55), one can get that(
lA

p

)n
=
(

cA
p + aA

p

)n
= ∑n

k=0

(
n
k

) (
cA

p

)k (
aA

p

)n−k
, (56)

with identity: (
cA

p

)0
= 1SA

p
=
(

aA
p

)0
,

for all n ∈ N, where (
n
k

)
= n!

k!(n−k)! ,

for all k ≤ n ∈ N0. By (56), one obtains the following proposition.

Proposition 8. Let lA
p ∈ LA

p be the A-tensor p-radial operator on SA
p . Then,(

lA
p

)2m−1
does not contain 1SA

p
-term, and (57)(

lA
p

)2m
contains its 1SA

p
-term,

(
2m
m

)
· 1SA

p
, (58)

for all m ∈ N.

Proof. The proofs of (57) and (58) are done by straightforward computations of (56) with the help
of (55).
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8.3. Free-Probabilistic Information of Qa
p,j in LSA

p

Fix p ∈ P , and a unital C∗-probability space (A, ψ), and let LSA
p be the Banach ∗-algebra (52).

Let EA
p : LSA

p → SA
p be the linear transformation (53). Throughout this section, let

Qa
p,j

denote
= lA

p ⊗ Ta
p,j ∈ LSA

p , (59)

for all j ∈ Z, where Ta
p,j = a⊗ Pp,j ∈ SA

p are in the sense of (37) generating SA
p , for a ∈ (A, ψ), and j ∈

Z. Observe that (
Qa

p,j

)n
=
(

lA
p ⊗ Ta

p,j

)n

=
(

lA
p

)n
⊗
(

Ta
p,j

)n
=
(

lA
p

)n
⊗ Tan

p,j,
(60)

by (37), for all n ∈ N, for all j ∈ Z.
If Qa

p,j ∈ LSA
p is in the sense of (59) for j ∈ Z, then

EA
p

((
Qa

p,j

)n)
= 1

[ n
2 ]+1

(
lA

p

)n (
Tan

p,j

)
, (61)

by (53) and (60), for all n ∈ N.
For any fixed j ∈ Z, define a linear functional τ

p
j on LSA

p by

τ
p
j = ψ

p
j ◦ EA

p on LSA
p , (62)

where ψ
p
j = ψ⊗ ϕ

p
j is a linear functional (35a), or (35b) on SA

p .

By the linearity of both ψ
p
j and EA

p , the morphism τ
p
j of (62) is a well-defined linear functional on

LSA
p for j ∈ Z. Thus, the pair

(
LSA

p , τ
p
j

)
forms a Banach ∗-probability space (e.g., [22]).

Definition 11. The Banach ∗-probability spaces

LSA
p,j

denote
=
(
LSA

p , τ
p
j

)
(63)

are called the A-tensor j-th p-adic (free-)filters, for all p ∈ P , j ∈ Z, where τ
p
j are in the sense of (62).

By (61) and (62), if Qa
p,j is in the sense of (59) in LSA

p,j, then

τ
p
j

((
Qa

p,j

)n)
= 1

[ n
2 ]+1

ψ
p
j

(
(lA

p )
n
(

Tan

p,j

))
, (64)

for all n ∈ N.

Theorem 2. Let Qa
p,k = lA

p ⊗ Ta
p,k = lA

p ⊗
(

a⊗ Pp,k

)
be a free random variable (59) of the A-tensor j-th

p-adic filter LSA
p,j of (63), for p ∈ P , j ∈ Z, for all k ∈ Z. Then,

τ
p
j

((
Qa

p,k

)n)
= δj,kωnψ(an)c n

2

(
φ(p)
pj+1

)
, (65)

where ωn are in the sense of (45), for all n ∈ N.

Proof. Let Qa
p,j be in the sense of (59) in LSA

p,j, for the fixed p ∈ P and j ∈ Z. Then,

τ
p
j

((
Qa

p,j

)2n−1
)
= ψ

p
j

(
EA

p

((
Qa

p,j

)2n−1
))

by (62)

=

(
1

[ 2n−1
2 ]+1

)
ψ

p
j

(
(lA

p )
2n−1

(
Ta2n−1

p,j

))
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by (64)

=

(
1

[ 2n−1
2 ]+1

)
ψ

p
j

((
∑n

k=0

(
2n− 1

k

)
(cA

p )
k(aA

p )
2n−1−k

)(
Ta2n−1

p,j

))
by (56)

= 0,

by (57), for all n ∈ N.
Observe now that, for any n ∈ N,

τ
p
j

((
Qa

p,j

)2n
)
=

(
1

[ 2n
2 ]+1

)
ψ

p
j

(
(lA

p )
2n
(

Ta2n

p,j

))
by (64)

=
(

1
n+1

)
ψ

p
j

((
∑2n

k=0

(
2n
k

)
(cA

p )
k(aA

p )
2n−k

)(
Ta2n

p,j

))
by (56)

=
(

1
n+1

)
ψ

p
j

((
2n
n

)
Ta2n

p,j + [Rest terms]

)
by (58)

= 1
n+1

(
2n
n

)
ψ

p
j

(
Ta2n

p,j

)
= 1

n+1

(
2n
n

)
ψ(a2n)

(
φ(p)
pj+1

)
by (39) and (43)

= cnψ(a2n)
(

φ(p)
pj+1

)
,

where cn are the n-th Catalan numbers.
If k �= j in Z, and if Qa

p,k are in the sense of (59) in LSA
p,j, then

τ
p
j

((
Qa

p,k

)n)
= 0,

for all n ∈ N, by the definition (22a) of the linear functional ϕ
p
j on Sp, inducing the linear functional

ψ
p
j = ψ⊗ ϕ

p
j on the tensor factor SA

p of LSA
p,j.

Therefore, the free-distributional data (65) holds true.

Note that, if a is self-adjoint in (A, ψ), then the generating operators Qa
p,k of the A-tensor j-th

p-adic filter LSA
p,j are self-adjoint in LSA

p , since(
Qa

p,k

)∗
=
(

lA
p ⊗ Ta

p,k

)∗
= (lA

p )
∗ ⊗
(

Ta
p,k

)∗
= lA

p ⊗ Ta∗
p,k = Qa

p,k,

for all k ∈ Z, for p ∈ P , j ∈ Z, by (51).
Thus, if a is a self-adjoint free random variable of (A, ψ), then the above formula (65) fully

characterizes the free distributions (up to τ
p
j ) of the generating operators Qa

p,k of LSA
p , for all k, j ∈ Z,

for p ∈ P .
The free-distributional data (65) can be refined as follows: if p ∈ P , j ∈ Z , and if LSA

p,j is the
corresponding A-tensor j-th p-adic filter (63), then

τ
p
j

((
Qa

p,j

)n)
= ωnc n

2
ψ(an)

(
φ(p)
pj+1

)
, (66)

for all n ∈ N, and
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τ
p
j

((
Qa

p,k

)n)
= 0, (67)

for all n ∈ N, whenever k �= j in Z, for all n ∈ N.
Before we focus on non-zero free-distributional data (66) of Qa

p,j, let’s conclude the following
result for {Qa

p,k}k �=j∈Z.

Corollary 1. Let p ∈ P , j ∈ Z, and let LSA
p,j be the A-tensor j-th p-adic filter (63). Then, the

generating operators

Qa
p,k = lA

p ⊗ Ta
p,j = lA

p ⊗
(
a⊗ Pp,j

)
∈ LSA

p,j

have the zero free distribution, whenever k �= j in Z.

Proof. It is proven by (65) and (67).

By the above corollary, we now restrict our interests to the “j-th” generating operators Qa
p,j of

(59) in the A-tensor “j-th” p-adic filter LSA
p,j, for all p ∈ P , j ∈ Z, having non-zero free distributions

determined by (66).

9. On the Free Product Banach ∗-Probability Space LSA

Throughout this section, let (A, ψ) be a fixed unital C∗-probability space, and let

LSA
p,j =

(
LSA

p , τ
p
j

)
(68)

be A-tensor j-th p-adic filters, where

LSA
p = LA

p ⊗C SA
p = LA

p ⊗C

(
A⊗C Sp

)
,

are in the sense of (52), and τ
p
j are the linear functionals (62) on LSA

p , for all p ∈ P , j ∈ Z.

Let Qa
p,k = lA

p ⊗ Ta
p,k = lA

p ⊗
(

a⊗ Pp,k

)
be the generating elements (59) of LSA

p,j of (68), for a ∈ (A,

ψ), p ∈ P , and k, j ∈ Z. Then, these operators Qa
p,k of LSA

p,j have their free-distributional data,

τ
p
j

((
Qa

p,k

)n)
= δj,kωnψ(an)c n

2

(
φ(p)
pj+1

)
, (69)

for all n ∈ N, by (65).
By (66) and (67), we here concentrate on the “j-th” generating operators of LSA

p,j having non-zero
free distributions (69) for all j ∈ Z, for all p ∈ P .

9.1. Free Product Banach ∗-Probability Space (LSA, τ)

By (68), we have the family {
LSA

p,j : p ∈ P , j ∈ Z
}

of Banach ∗-probability spaces, consisting of the A-tensor j-th p-adic filters LSA
p,j.

Define the free product Banach ∗-probability space,

(LSA, τ)
de f
= �

p∈P , j∈Z
LSA

p,j,

=

(
�

p∈P , j∈Z
LSA

p , �
p∈P , j∈Z

τ
p
j

) (70)
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in the sense of [15,22].
By (70), the A-tensor j-th p-adic filters LSp,j of (68) are the free blocks of the Banach ∗-probability

space (LSA, τ) of (70).
All operators of the Banach ∗-algebra LSA in (70) are the Banach-topology limits of linear

combinations of noncommutative free reduced words (under operator-multiplication) in

�
p∈P , j∈Z

LSA
p,j.

More precisely, since each free block LSA
p,j is generated by {Qa

p,k}a∈A,k∈Z, for all p ∈ P , j ∈ Z,
all elements of LSA are the Banach-topology limits of linear combinations of free words in

�
p∈P ,j∈Z

{Qa
p,k ∈ LSp,j : a ∈ A, k ∈ Z}.

In particular, all noncommutative free words have their unique free “reduced” words (as operators
of LSA under operator-multiplication) formed by

N
Π

l=1

(
Qal

pl ,kl

)nl
, where Qal

pl ,kl
∈ LSA

pl ,jl

in LSA, for all a1, ..., aN ∈ (A, ψ), and n1, ..., nN ∈ N, where either the N-tuple

(p1, ..., pN) , or (j1, ..., jN)

is alternating in P , respectively, in Z, in the sense that:

p1 �= p2, p2 �= p3, ..., pN−1 �= pN in P ,

respectively,

j1 �= j2, j2 �= j3, ..., jN−1 �= jN in Z

(e.g., see [22]).
For example, a 5-tuple

(2, 2, 3, 7, 2)

is not alternating in P , while a 5-tuple

(2, 3, 2, 7, 2)

is alternating in P , etc.
By (70), if Qa

p,j are the j-th a-tensor generating operators of a free block LSA
p,j of the Banach

∗-probability space (LSA, τ), for all j ∈ Z, for p ∈ P , j ∈ Z, then
(

Qa
p,j

)n
are contained in the same

free block LSA
p,j of (LSA, τ) , and, hence, they are free reduced words with their lengths-1, for all n ∈

N. Therefore, we have

τ
((

Qa
p,j

)n)
= τ

p
j

((
Qa

p,j

)n)
= ωnc n

2
ψ(an)

(
φ(p)
pj+1

)
,

(71)

for all n ∈ N, by (69).

Definition 12. The Banach ∗-probability space LSA
denote
= (LSA, τ) of (70) is called the A-tensor (free-)Adelic

filterization of {LSA
p,j}p∈P ,j∈Z.
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As we discussed at the beginning of Section 9, we now focus on studying free random variables
of the A-tensor Adelic filterization LSA of (70) having “non-zero” free distributions.

Define a subset U of LSA by

U =
{

Q1A
p,j ∈ LSA

p,j |∀p ∈ P , j ∈ Z
}

(72)

in LSA, where 1A is the unity of A, and Q1A
p,j are the “j-th” 1A-tensor generating operators of LSA, in

the free blocks LSA
p,j, for all p ∈ P , j ∈ Z.

Then, the elements Q1A
p,j of U have their non-zero free distributions,(

ωnc n
2

ψ(1n
A)
(

φ(p)
pj+1

))∞

n=1
=
(

ωnc n
2

(
φ(p)
pj+1

))∞

n=1
,

by (71), since

ψ(1n
A) = ψ(1A) = 1,

for all n ∈ N. Now, define a Cartesian product set

UA
de f
= A× U , (73a)

set-theoretically, where U is in the sense of (72).
Define a function Ω : UA → LSA by

Ω
(
(a, Q1A

p,j)
) de f
= Qa

p,j in LSA, (73b)

for all (a, Q1A
p,j) ∈ UA, where UA is in the sense of (73a).

It is not difficult to check that this function Ω of (73b) is a well-defined injective map. Moreover, it
induces all j-th a-tensor generating elements Qa

p,j of LSa
p,j in LSA, for all p ∈ P , and j ∈ Z.

Define a Banach ∗-subalgebra LSA of the A-tensor Adelic filterization LSA of (70) by

LSA
de f
= C [Ω (UA)] in LSA, (74a)

where Ω(UA) is the subset of LSA, induced by (73a) and (73b), and Y mean the Banach-topology
closures of subsets Y of LSA.

Then, this Banach ∗-subalgebra LSA of (74a) has a sub-structure,

LSA
denote
=
(
LSA, τ = τ |LSA

)
(74b)

in the A-tensor Adelic filterization LSA.

Theorem 3. Let LSA be the Banach ∗-algebra (74a) in the A-tensor Adelic filterization LSA. Then,

LSA
∗-iso
= �

p∈P , j∈Z
C
[
{Qa

p,j : a ∈ (A, ψ}
]

∗-iso
= C

[
�

p∈P , j∈Z
{Qa

p,j : a ∈ (A, ψ}
]

,

(75)

where Qa
p,j ∈ Ω(UA) of (73b). Here, (�) in the first ∗-isomorphic relation in (75) is the free-probability-theoretic

free product determined by the linear functional τ of (70), or of (74b) (e.g., [15,22]), and (�) in the second
∗-isomorphic relation in (75) is the pure-algebraic free product generating noncommutative free words in Ω(UA).

Proof. Let LSA be the Banach ∗-subalgebra (74a) in LSA. Then,

LSA = C
[
{Qa

p,j ∈ LSA
p,j : a ∈ (A, ψ)}p∈P , j∈Z

]
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by (73a), (73b) and (74a)

∗-iso
= �

p∈P , j∈Z
C
[
{Qa

p,j : a ∈ (A, ψ)}
]

in LSA, since all elements Qa
p,j ∈ Ω (UA) are chosen from mutually distinct free blocks LSA

p,j of the

A-tensor Adelic filterization LSA, and, hence, the operators {Qa
p,j, Qa∗

p,j}p∈P , j∈Z are free from each
other in LSA, for any a ∈ (A, ψ), for all p ∈ P , j ∈ Z, moreover,

∗-iso
= C

[
�

p∈P , j∈Z
{Qa

p,j : a ∈ (A, ψ)}
]

,

because all elements of LSA are the (Banach-topology limits of) linear combinations of free words in
Ω(UA), by the very above ∗-isomorphic relation. Indeed, for any noncommutative (pure-algebraic)
free words in

∪
p∈P , j∈Z

{Qa
p,j : a ∈ (A, ψ)}

have their unique free “reduced” words under operator-multiplication on LSA, as operators of LSA.
Therefore, the structure theorem (75) holds.

The above theorem characterizes the free-probabilistic structure of the Banach ∗-algebra LSA
of (74a) in the A-tensor Adelic filterization LSA. This structure theorem (75) demonstrates that the
Banach ∗-probability space (LSA, τ) of (74b) is well-determined, having its natural inherited free
probability from that on LSA.

Definition 13. Let (LSA, τ) be the Banach ∗-probability space (74b). Then, we call

LSA
denote
= (LSA, τ),

the A-tensor (Adelic) sub-filterization of the A-tensor Adelic filterization LSA.

By (69), (71), (72) and (75), one can verify that the free probability on the A-tensor sub-filterization
LSA provide “possible” non-zero free distributions on the A-tensor Adelic filterization LSA, up to
free probability on (A, ψ). i.e., if a ∈ (A, ψ) have their non-zero free distributions, then Qa

p,j ∈ LSA
have non-zero free distributions, and, hence, they have their non-zero free distributions on LSA.

Theorem 4. Let Qa
p,j ∈ Ω(UA) be free random variables of the A-tensor sub-filterization LSA, for a ∈ (A, ψ),

and p ∈ P , and j ∈ Z. Then,

τ
((

Qa
p,j

)n)
= ωnc n

2
ψ(an)

(
φ(p)
pj+1

)
,

(76)

τ

(((
Qa

p,j

)∗)n
)
= ωnc n

2
ψ(an)

(
φ(p)
pj+1

)
,

for all n ∈ N.

Proof. The first formula of (76) is shown by (71). Thus, it suffices to prove the second formula of (76)
holds. Note that (

Qa
p,j

)∗
=
(

lA
p ⊗ Ta

p,j

)∗
=
(

lA
p ⊗

(
a⊗ Pp,j

))∗
=
(

lA
p

)∗
⊗
(
a⊗ Pp,j

)∗
= lA

p ⊗
(
a∗ ⊗ Pp,j

)
,

and, hence, (
Qa

p,j

)∗
= Qa∗

p,j in LSA, (77)
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for all Qa
p,j ∈ Ω (UA) . Thus, one has((

Qa
p,j

)∗)n
=
(

Qa∗
p,j

)n
= Q(a∗)n

p,j = Q(an)∗
p,j in LSA,

by (77).
Thus, one has

τ

(((
Qa

p,j

)∗)n
)

= ωnc n
2

ψ ((an)∗)
(

φ(p)
pj+1

)
= ωnc n

2
ψ(an)

(
φ(p)
pj+1

)
,

by (71), for all n ∈ N. Therefore, the second formula of (76) holds too.

9.2. Prime-Shifts on LSA

Let LSA be the A-tensor sub-filterization (70) of the A-tensor Adelic filterization LSA. In this
section, we define a certain ∗-homomorphism on LSA, and study asymptotic free-distributional data
on LSA (and hence those on LSA) over primes.

Let P be the set of all primes in N, regarded as a totally ordered set (in short, a TOset) for the usual
ordering (≤), i.e.,

P = {q1 < q2 < q3 < q4 < · · ·}, (78)

with

q1 = 2, q2 = 3, q3 = 5, q4 = 7, q5 = 11, ..., etc.

Define an injective function h : P → P by

h (qk) = qk+1; k ∈ N, (79)

where qk are primes of (78), for all k ∈ N.

Definition 14. Let h be an injective function (79) on the TOset P of (78). We call h the shift on P .

Let h be the shift (79) on the TOset P , and let

h(n)
de f
= h ◦ h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸

n-times

, on P , (80)

for all n ∈ N, where (◦) is the usual functional composition.
By the definitions (79) and (80),

h(n) (qk) = qk+n, (81)

for all n ∈ N, in P . For instance, h(3)(2) = 7, and h(4)(5) = 17, etc.
These injective functions h(n) of (80) are called the n-shifts on P , for all n ∈ N.
For the shift h on P , one can define a ∗-homomorphism πh on the A-tensor sub-filterization LSA by

a bounded “multiplicative” linear transformation, satisfying that

πh

(
Qa

qk ,j

)
= Qa

h(qk),j
= Qa

qk+1,j, (82)

for all Qqk ,j ∈ Ω(UA), for all qk ∈ P , for all j ∈ Z, where h is the shift (79) on P .
By (82), we have

πh

(
N
Π

l=1

(
Qal

qkl
,jl

)nl
)
=

N
Π

l=1

(
Qal

h(qkl
), jl

)nl

=
N
Π

l=1

(
Qal

qkl+1,jl

)nl

, (83)
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in LSA, for all Qa
qkl

,jl
∈ Ω(UA), for qkl

∈ P , jl ∈ Z, for l = 1, ..., N, for N ∈ N, where n1, ..., nN ∈ N.

Remark 1. Note that the multiplicative linear transformation πh of (82) is indeed a ∗-homomorphism satisfying

πh (T∗) = (πh(T))
∗ ,

for all T ∈ LSA, because

πh

((
Qa

p,j

)∗)
= πh

(
Qa∗

p,j

)
= Qa∗

h(p),j

=
(

Qa
h(p),j

)∗
=
(

πh

(
Qa

p,j

))∗
,

for all Qa
p,j ∈ Ω (UA) .

In addition, by (82), we obtain the ∗-homomorphisms,

πn
h = πhπhπh · · · πh︸ ︷︷ ︸

n-times

, on LSA, (84)

the products (or compositions) of the n-copies of the ∗-homomorphism πh of (82), acting on LSA. It is
not difficult to check that

πn
h

(
Qa

p,j

)
= πn−1

h

(
Qa

h(p),j

)
= πn−2

h

(
Qa

h(2)(p),j

)
= · · · = πh

(
Qa

h(n−1)(p), j

)
= Qa

h(n)(p), j
,

(85)

for all Qa
p,j ∈ Ω(UA) in LSA, where h(k) are the k-shifts (80) on P , for all k ∈ N.

Definition 15. Let πh be the ∗-homomorphism (82) on the A-tensor sub-filterization LSA, and let πn
h be the

products (84) acting on LSA, for all n ∈N, with π1
h = πh. Then, we call πn

h , the n-prime-shift (∗-homomorphism)
on LSA, for all n ∈ N. In particular, the 1-prime-shift πh is simply said to be the prime-shift (∗-homomorphism)
on LSA.

Thus, for any Qa
qk ,j ∈ Ω(UA) in LSA, for qk ∈ P (in the sense of (78) with k ∈ N), the n-prime-shift

πn
h satisfies

πn
h

(
Qa

qk ,j

)
= Qa

h(n)(qk),j
= Qa

qk+n ,j, (86)

by (81) and (85), and, hence,

πn
h

(
N
Π

l=1

(
Qal

qkl
,jl

)nl
)
=

N
Π

l=1

(
Qal

qkl+n ,jl

)nl

, (87)

by (83) and (86), for all n ∈ N.
By (86) and (87), one may write as follows;

πn
h = πh(n) on LSA, for all n ∈ N,

where h(n) are the n-shifts (81) on the TOset P .
Consider now the sequence

Π =
(
πn

h
)∞

n=1 (88)

of the n-prime-shifts on LSA.
For any fixed T ∈ LSA, the sequence Π of (88) induces the sequence of operators,

Π(T) =
(
πn

h (T)
)∞

n=1 =
(
πh(T), π2

h(T), π3
h(T), · ··

)
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in LSA, and this sequence Π(T) has its corresponding free-distributional data, represented by the
following C-sequence:

τ(Π(T)) =
(
τ
(
πn

h (T)
))∞

n=1 . (89)

We are interested in the convergence of the C-sequence τ(Π(T)) of (89), as n → ∞.
Either convergent or divergent, the C-sequence τ(Π(T)) of (89), induced by any fixed operator T

∈ LSA, shows the asymptotic free distributional data of the family {πn
h (T)}∞

n=1 ⊂ LSA, as n → ∞ in N,
equivalently, as qn → ∞ in P .

9.3. Asymptotic Behaviors in LSA over P
Recall that, by (44), we have

lim
p→∞

φ(p)
pj+1 =

⎧⎪⎨⎪⎩
0, if j > 0,
1, if j = 0,
∞, Undefined, if j < 0,

(90)

for j ∈ Z.
Recall also that there are bounded ∗-homomorphisms

Π =
(
πn

h
)∞

n=1 , acting on LSA,

of (88), where πn
h are the n-prime shifts of (84), where h is the shift (79) on the TOset P of (78). Then,

these ∗-homomorphisms of Π satisfies

lim
n→∞

(
πn

h

(
Qa

p,j

))
= lim

n→∞

(
Qa

h(n)(p), j

)
, (91)

for all Qa
p,j ∈ Ω(UA) in LSA, where h(n) are the n-shifts (80) on P , for all n ∈ N.

Thus, one can get that: if
N
Π

l=1

(
Qal

pl ,jl

)nl
is a free reduced words of LSA in Ω (UA) , then

lim
n→∞

πn
h

(
N
Π

l=1

(
Qal

pl ,jl

)nl
)
= lim

n→∞

(
N
Π

l=1
πn

h

((
Qal

pl ,jl

)nl
))

= lim
n→∞

(
N
Π

l=1

(
πn

h

(
Qal

pl ,jl

))nl
)

since πn
h are ∗-homomorphisms on LSA

= lim
n→∞

(
N
Π

l=1

(
Qal

h(n)(pl),jl

)nl
)

by (91)

=
N
Π

l=1

(
lim

n→∞

(
Qal

h(n)(pl), jl

)nl
)

, (92)

under the Banach-topology for LSA, for all Qal
pl ,jl

∈ Ω(UA), for al ∈ (A, ψ), pl ∈ P , jl ∈ Z, for l = 1, ...,
N, for all N ∈ N.

Notation 2. (in short, N 2 from below) For convenience, we denote lim
n→∞

πn
h symbolically by π, for the

sequence Π =
(
πn

h
)∞

n=1 of (88).

Lemma 3. Let Qal
pl ,jl

∈ Ω(UA) be generators of the A-tensor sub-filterization LSA, for l = 1, ..., N, for N ∈
N. In addition, let Π be the sequence (88) acting on LSA. If π is in the sense of N 2, then

π
(

Qa1
p1,j1

)
= lim

n→∞

(
Qa1

(h(n)(p1)), j1

)
,

(93)
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π

(
N
Π

l=1

(
Qal

pl ,jl

)nl
)
= lim

n→∞

(
N
Π

l=1

(
Qal

h(n)(pl), jl

)nl
)

,

for all n1, ..., nN ∈ N, where h(n) are the n-shifts (80) on P .

Proof. The proof of (93) is done by (91) and (92).

By abusing notation, one may/can understand the above formula (93) as follows

π
(

Qa1
p1,j1

)
= lim

p1→∞
Qa1

p1, j1
,

(94a)

π

(
N
Π

l=1
Qnl

pl ,jl

)
=

N
Π

l=1

(
lim

pl→∞

(
Qnl

pl ,jl

))
,

respectively, where “ lim
q→∞

” for q ∈ P is in the sense of (44).

Such an understanding (94a) of the formula (93) is meaningful by the constructions (80) of n-shifts
h(n) on P . For example,

lim
n→∞

h(n)(q) = lim
p→∞

p, for q ∈ P , (94b)

where the right-hand side of (94b) means that: starting with q, take bigger primes again and again in
the TOset P of (78).

Assumption and Notation: From below, for convenience, the notations in (94a) are used for (93),
if there is no confusion.

We now define a new (unbounded) linear functional τ0 on LSA with respect to the linear functional
τ of (74a), by

τ0
de f
= τ ◦ π on LSA, (95)

where π is in the sense of N 2.

Theorem 5. Let LSA = (LSA, τ) be the A-tensor sub-filterization (74b), and let τ0 = τ ◦ π be the new linear
functional (95) on the Banach ∗-algebra LSA of (74a). Then, for the generators

{Qa
p,j}p∈P ⊂ Ω(UA) of LSA,

for an arbitrarily fixed a ∈ (A, ψ) and j ∈ Z, we have that

τ0

((
Qa

p,j

)n)
=

⎧⎪⎨⎪⎩
0, if j > 0,
ωnc n

2
ψ(an), if j = 0,

∞, Undefined, if j < 0,
(96)

for all n ∈ N.

Proof. Let {Qa
p,j}p∈P ⊂ Ω(UA) in LSA, for fixed a ∈ (A, ψ) and j ∈ Z. Then,

τ0

((
Qa

p,j

)n)
= (τ ◦ π)

((
Qa

p,j

)n)
= τ

(
lim
p→∞

(
Qa

p, j

)n
)

by (93) and (94a)

= lim
p→∞

τ
((

Qa
p,j

)n)
by the boundedness of τ for the (norm, or strong) topology for LSA
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= lim
p→∞

τ
p
j

((
Qa

p,j

)n)
= lim

p→∞

(
ωnc n

2
ψ(an)

(
φ(p)
pj+1

))
by (70), (75) and (77)

=
(

ωnc n
2

ψ(an)
)(

lim
p→∞

φ(p)
pj+1

)

=

⎧⎪⎨⎪⎩
0, if j > 0,
ωnc n

2
ψ(an), if j = 0,

∞, Undefined, if j < 0,

by (90), for each n ∈ N. Therefore, the free-distributional data (96) holds for τ0.

By (96), we obtain the following corollary.

Corollary 2. Let Q1A
p,0 ∈ Ω(UA) be free random variables of the A-tensor sub-filterization LSA, for all p ∈ P ,

where 1A is the unity of (A, ψ). Then, the asymptotic free distribution of the family

Q1A
0 = {Q1A

p,0 ∈ Ω(UA)}p∈P

follows the semicircular law asymptotically as p → ∞ in P .

Proof. Let Q1A
0 = {Q1A

p,0}p∈P ⊂ Ω(UA) in LSA. Then, for the linear functional τ0 of (95) on LSA,

τ0

((
Q1A

p,0

)n)
= ωnc n

2
,

for all n ∈ N, by (96), since

ψ(1n
A) = ψ(1A) = 1; n ∈ N.

If p → ∞ in P , then the asymptotic free distribution of the family Q1A
0 is the semicircular law by

the self-adjointness of all Q1A
p,0’s, and by the semicircularity (45) and (47).

Independent from (96), we obtain the following asymptotic free-distributional data on LSA.

Theorem 6. Let j1, ..., jN be “mutually distinct” in Z, for N > 1 in N, and hence the N-tuple

[j] = (j1, ..., jN) ∈ ZN

is alternating in Z. In addition, let

[a] = (a1, ..., aN)

be an arbitrarily fixed N-tuple of free random variables a1, ..., aN of the unital C∗-probability space (A, ψ),
and let’s fix

[n] = (n1, ..., nN) ∈ NN.

Now, define a family T [a],[n]
[j] of free reduced words with their lengths-N,

T [a],[n]
[j] =

{
T =

N
Π

l=1

(
Qal

pl ,jl

)nl
: p1, ..., pN ∈ P

}
, (97)

in LSA, for Qal
pl ,jl

∈ Ω (UA) , for all pl ∈ P , where al ∈ [a], jl ∈ [j], for l = 1, ..., N.

For any free reduced words T ∈ T [a],[n]
[j] , if τ0 is the linear functional (95) on LSA, then

τ0 (T) =

⎧⎪⎪⎨⎪⎪⎩
0, if ∑N

l=1 jl > 1− N,
N
Π

l=1

(
ωnl c nl

2
ψ(anl )

)
, if ∑N

l=1 jl = 1− N,

∞, Undefined, if ∑N
l=1 jl < 1− N,

(98)
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for all n ∈ N.

Proof. Let T ∈ T [a],[n]
[j] be in the sense of (97) in the A-tensor sub-filterization LSA. Then, these operators

T form free reduced words with their lengths-N in LSA, since [j] is an alternating N-tuple of “mutually
distinct” integers. Observe that

τ0 (T) = τ (π(T)) = τ

(
N
Π

l=1

(
lim

pl→∞

(
Qal

pl , jl

)nl
))

by (93) and (94a)

= τ

(
N
Π

l=1

(
lim
p→∞

(
Qal

p, jl

)nl
))

because

lim
p→∞

p = lim
n→∞

h(n) (pl) = lim
pl→∞

pl , in P ,

in the sense of (44), for all l = 1, ..., N, and, hence, it goes to

= lim
p→∞

(
τ

((
N
Π

l=1
Qal

p,jl

)nl
))

by the boundedness of τ for the (norm, or strong) topology for LSA

= lim
p→∞

(
N
Π

l=1

(
ωnl c nl

2
ψ(anl

l )

(
φ(p)
pjl+1

)))
since [j] consists of “mutually-distinct” integers, by the Möbius inversion

=

(
N
Π

l=1
ωnl c nl

2
ψ(anl

l )

)(
lim
p→∞

(
N
Π

l=1

(
φ(p)
pjl+1

)))
=

(
N
Π

l=1
ωnl c nl

2
ψ(anl

l )

)(
lim
p→∞

(
φ(p)

pN+ΣN
l=1 jl

))
=

(
N
Π

l=1
ωnl c nl

2
ψ(anl

l )

)(
lim
p→∞

(
φ(p)

p(N−1+ΣN
l=1 jl)+1

))

=

(
N
Π

l=1
ωnl c nl

2
ψ(anl

l )

)(
lim
p→∞

(
φ(p)

p(N−1+ΣN
l=1 jl)+1

))

=

⎧⎪⎪⎨⎪⎪⎩
0 if N − 1 + ∑N

l=1 jl > 0
N
Π

l=1

(
ωnl c nl

2
ψ(anl

l )
)

if N − 1 + ∑N
l=1 jl = 0

∞ if N − 1 + ∑N
l=1 jl < 0,

by (90), for all n ∈ N. Therefore, the family T [a],[n]
[j] of (97) satisfies the asymptotic free-distributional

data (98) in the A-tensor sub-filterization LSA over P .

The above two theorems illustrate the asymptotic free-probabilistic behaviors on the A-tensor
sub-filterization LSA over P , by (96) and (98).

As a corollary of (96), we showed that the family

Q1A
0 = {Q1A

p,0}p∈P ⊂ LSA

has its asymptotic free distribution, the semicircular law in LSA, as p → ∞. More generally,
the following theorem is obtained.

Theorem 7. Let a be a self-adjoint free random variable of our unital C∗-probability space (A, ψ). Assume that
it satisfies
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(i) ψ(a) ∈ R× = R \ {0} in C,
(ii) ψ(a2n) = ψ(a)2n, for all n ∈ N.

Then, the family

X a
0 =

{
Xa

p,0 = 1
ψ(a)Qa

p,0 : p ∈ P
}

(99)

follows the asymptotic semicircular law, in LSA over P .

Proof. Let a ∈ (A, ψ) be a self-adjoint free random variable satisfying two conditions (i) and (ii),
and let X a

0 be the family (99) of the A-tensor sub-filterization LSA. Then, all elements

Xa
p,0 =

1
ψ(a)Qa

p,0 = lA
p ⊗

((
1

ψ(a) a
)
⊗ Pp,0

)
of X a

0

are self-adjoint in LSA, by the self-adjointness of Qa
p,0, and by the condition (i).

For any Xa
p,0 ∈ X a

0 , observe that

τ0

((
Xa

p,0

)n)
= 1

ψ(a)n τ0

((
Qa

p,0

)n)
= 1

ψ(a)n

(
ωnc n

2
ψ(an)

)
by (96)

=
(

ωnc n
2

(
ψ(an)
ψ(an)

))
by the condition (ii)

= ωnc n
2
,

for all n ∈ N. Therefore, the family X a
0 has its asymptotic semicircular law over P , by (45).

Similar to the construction of X a
0 of (99), if we construct the families X a

j ,

X a
j =

{
1

ψ(a)Qa
p,j : Qa

p,j ∈ Ω (UA)
}

p∈P
, (100)

for a fixed a ∈ (A, ψ) satisfying the conditions (i) and (ii) of the above theorem, and, for a fixed j ∈ Z,
then one obtains the following corollary.

Corollary 3. Fix a ∈ (A, ψ) satisfying the conditions (i) and (ii) of the above theorem. Let’s fix j ∈ Z, and let
X a

j be the corresponding family (100) in the A-tensor sub-filterization LSA = (LSA, τ) .
I f j = 0, then X a

0 has the asymptotic semicircular law in LSA. (101)
I f j > 0, then X a

j has its asymptotic free distribution, the zero free distribution, in LSA. (102)
I f j < 0, then the asymptotic free distribution of X a

j is undefined in LSA. (103)

Proof. The proof of (101) is done by (99).
By (96), if j > 0, then, for any T = 1

ψ(a)Qa
p,j ∈ X a

j , one has that

τ0 (Tn) = 1
ψ(an)

τ0

((
Qa

p,j

)n)
= 0,

for all n ∈ N. Thus, the asymptotic free distribution of X a
j is the zero free distribution in LSA, as p →

∞ in P . Thus, the statement (102) holds.
Similarly, by (96), if j < 0, then the asymptotic free distribution X a

j is undefined in LSA over P ,
equivalently, the statement (103) is shown.

Motivated by (101), (102) and (103), we study the asymptotic semicircular law (over P) on LSA
more in detail in Section 10 below.
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10. Asymptotic Semicircular Laws on LSA over P
We here consider asymptotic semicircular laws on the A-tensor sub-filterization LSA = (LSA, τ).

In Section 9.3, we showed that the asymptotic free distribution of a family

X a
0 = { 1

ψ(a)Qa
p,0 : p ∈ P} (104)

is the semicircular law in LSA as p → ∞ in P , for a fixed self-adjoint free random variable a ∈ (A,
ψ) satisfying

(i) ψ(a) ∈ R×, and
(ii) ψ(a2n) = ψ(a)2n, for all n ∈ N.

As an example, the family

X 1A
0 = {Q1A

p,0 : p ∈ P} (105)

follows the asymptotic semicircular law in LSA over P .
We now enlarge such asymptotic behaviors on LSA up to certain ∗-isomorphisms.
Define bijective functions g+ and g− on Z by

g+(j) = j + 1, and g−(j) = j− 1, (106)

for all j ∈ Z.
By (106), one can define bijective functions g(n)± on Z by

g(n)±
de f
= g± ◦ g± ◦ g± ◦ · · · ◦ g±︸ ︷︷ ︸

n-times

, (107)

satisfying g(1)± = g± on Z, with axiomatization:

g(0)± = idZ, the identity function on Z,

for all n ∈ N0 = N ∪ {0}. For example,

g(n)± (j) = j± n, (108)

for all j ∈ Z, for all n ∈ N0.
From the bijective functions g(n)± of (107), define the bijective functions

(
go
±
)(n) on the generator

set Ω(UA) of (72) of the A-tensor sub-filterization LSA by(
go
+

)(n) (Qa
p,j

)
= Qa

p,g(n)+ (j)
= Qa

p,j+n,

(109)(
go
−
)(n) (Qa

p,j

)
= Qa

p,g(n)− (j)
= Qa

p,j−n,

with (
go
±
)(1)

= go
±, and

(
go
±
)(0)

= id,

by (108), for all p ∈ P and j ∈ Z, for all n ∈ N0, where id is the identity function on Ω(UA).
By the construction (73a) of the generator set Ω(UA) of LSA under (73b),

Ω(UA) = �
p∈P

{Qa
p,j : a ∈ A, j ∈ Z},
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the functions
(

go
±
)(n) of (109) are indeed well-defined bijections on Ω(UA), by the bijectivity of g(n)±

of (107).
Now, define bounded ∗-homomorphisms G± on LSA by the bounded multiplicative linear

transformations on LSA satisfying that:

G+

(
Qa

p,j

)
= go

+

(
Qa

p,j

)
= Qa

p,j+1,

(110)

G−
(

Qa
p,j

)
= go

−
(

Qa
p,j

)
= Qa

p,j−1,

in LSA, by using the bijections go
± of (109), for all Qa

p,j ∈ Ω(UA).
More precisely, the morphisms G± of (110) satisfy that

G±

(
N
Π

l=1

(
Qal

pl ,jl

)nl
)

=
N
Π

l=1
go
±
((

Qal
pl ,jl

)nl
)

=
N
Π

l=1

(
Qal

pl ,jl±1

)nl
.

(111a)

By (111a), one can get that

G±

((
N
Π

l=1

(
Qal

pl ,jl

)nl
)∗)

= G±

(
N
Π

l=1

(
Q

a∗N−l+1
pN−l+1,jN−l+1

)nN−l+1
)

=
N
Π

l=1

((
QaN−l+1

pN−l+1,(jN−l+1)±1

)nN−l+1
)∗

=

(
N
Π

l=1

(
Qal

pl ,jl±1

)nl
)∗

=

(
G±

(
N
Π

l=1
Qnl

pl ,jl

))∗
(111b)

for all Qal
pl ,jl

∈ Ω(UA), for l = 1, ..., N, for N ∈ N.
The formula (111a) are obtained by (110) and the multiplicativity of G±. The formulas in (111b),

obtained from (111a), show that indeed G± are ∗-homomorphisms on LSA, since

G± (T∗) = (G±(T))
∗ , ∀T ∈ LSA.

By (110) and (111a),

Gn
±

(
N
Π

l=1

(
Qal

pl ,jl

)nl
)
=

N
Π

l=1

(
Qal

pl ,jl±n

)nl
,

(112)

Gn
±

((
N
Π

l=1

(
Qal

pl ,jl

)nl
)∗)

=

(
Gn
±

(
N
Π

l=1

(
Qal

pl ,jl

)nl
))∗

,

for all Qal
pl ,jl

∈ Ω(UA), for l = 1, ..., N, for N ∈ N, for all n ∈ N0.

Definition 16. We call the bounded ∗-homomorphisms Gn
± of (110), the n-(±)-integer-shifts on LSA,

for all n ∈ N0.

Based on the integer-shifting processes on LSA, one can get the following asymptotic behavior on
LSA over P .

Theorem 8. Let X a
j be a family (100) of the A-tensor sub-filterization LSA, for any j ∈ Z, where a is a fixed

self-adjoint free random variable of (A, ψ) satisfying the additional conditions (i) and (ii) above. Then, there
exists a (−j)-integer-shift G−j on LSA, such that
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G−j =

{
G|j|− = Gj

− if j ≥ 0 in Z,

G|j|+ = G−j
+ if j < 0 in Z,

(113)

and

τ0
(
Gj(T)

)
= ωnc n

2
, ∀n ∈ N, (114)

for all T ∈ X a
j , where G±j

∓ on the right-hand sides of (113) are the |j|-(∓)-integer shifts (110) on LSA, and
where τ0 = τ ◦ π is the linear functional (95) on LSA.

Proof. Let X a
j =

{
1

ψ(a)Qa
p,j : p ∈ P

}
be a family (100) of LSA, for a fixed j ∈ Z, where a fixed

self-adjoint free random variable a ∈ (A, ψ) satisfies the above additional conditions (i) and (ii).
Assume first that j ≥ 0 in Z. Then, one can take the (−j)-(−)-integer-shift Gj

− of (110) on LSA,
satisfying

Gj
−
(

Qa
p,j

)
= Qa

p,j−j = Qa
p,0 in LSA,

for all Qa
p,j ∈ Ω (UA) .

Second, if j < 0 in Z, then one can have the |j|-(+)-integer shift G−j
+ of (110) on LSA, satisfying that

G−j
+

(
Qa

p,j

)
= Qa

p,j+(−j) = Qa
p,0 in LSA,

for all Qa
p,j ∈ Ω (UA) .

For example, for any Qa
p,j ∈ Ω(UA), we have the corresponding (−j)-integer-shift G−j,

G−j =

{
Gj
− if j ≥ 0,

G−j
+ if j < 0,

on LSA in the sense of (113), such that

G−j

(
Qa

p,j

)
= Qa

p,0 in LSA,

for all p ∈ P .
Then, for any Xa

p,j =
1

ψ(a)Qa
p,j ∈ X a

j , we have that

τ0

(
G−j

((
Xa

p,j

)n))
= τ0

(
1

ψ(a)n

(
G−j(Qa

p,j)
)n)

,

since G−j is a ∗-homomorphism (113) on LSA

= τ0

(
1

ψ(an)

(
Qa

p,0

)n)
= ωnc n

2
,

by (96) and (98), for all n ∈ N. Therefore, formula (114) holds true.

By the above theorem, we obtain the following result.

Corollary 4. Let X a
j be a family (100) of the A-tensor sub-filterization LSA, for j ∈ Z, where a self-adjoint free

random variable a ∈ (A, ψ) satisfies the conditions (i) and (ii). Then, the corresponding family

Ga
j =

{
G−j (X) : X ∈ X a

j

}
(115)

has its asymptotic free distribution, the semicircular law, in LSA over P , where G−j is the (−j)-integer shift
(113) on LSA, for all j ∈ Z.

Proof. The asymptotic semicircular law induced by the family Ga
j of (115) in LSA is guaranteed by

(114) and (45), for all j ∈ Z.

By the above corollary, the following result is immediately obtained.
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Corollary 5. Let X 1A
j be in the sense of (100) in LSA, where 1A is the unity of (A, ψ), and let

G1A
j =

{
G−j(X) : X ∈ X 1A

j

}
be in the sense of (115), for all j ∈ Z. Then, the asymptotic free distributions of G1A

j are the semicircular law in
LSA over P , for all j ∈ Z.

Proof. The proof is done by Corollary 4. Indeed, the unity 1A automatically satisfies the conditions (i)
and (ii) in (A, ψ).

More general to Theorem 8, we obtain the following result too.

Theorem 9. Let a ∈ (A, ψ) be a self-adjoint free random variable satisfying the conditions (i) and (ii), and let
p0 ∈ P be an arbitrarily fixed prime. Let

Ga
j [≥ p0]

de f
=

{
G−j

(
Xp,j
) ∣∣∣∣∣ Xa

p,j ∈ X a
j and

p ≥ p0 in P

}
,

where X a
j is the family (100), and Ga

j is the family (115), for j ∈ Z. Then, the asymptotic free distribution of the
family Ga

j [≥ p0] is the semicircular law in LSA.

Proof. The proof of this theorem is similar to that of Theorem 8. One can simply replace

“p → ∞” ≡ “ lim
n→∞

hn(2); 2 ∈ P ,”

in the proof of Theorem 8 to

“p → ∞” ≡ “ lim
n→∞

hn(p0); p0 ∈ P ,”

where (≡) means “being symbolically same”.
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