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This special issue explores most of the scientific issues related to spatially supported disaster
management and its integration with geographical information system technologies in different
disaster examples and scales. The need for a detailed use of geoinformation in disaster management
is a fact [1,2]. Dealing with disasters over space and time represents a long-lasting theme,
now approached by means of innovative techniques and modelling approaches (Gi4DM Conference
Series, http://www.gi4dm.net/). Several priorities for actions to reduce existing disaster risks and
prevent new ones include understanding disaster risk, strengthening disaster risk governance for the
management of disaster risk, investing in disaster reduction for resilience, and enhancing disaster
preparedness for effective responses [3,4] are outlined.

This special issue explores some of them, with challenging ideas facing different components of
spatial patterns related to ecological processes and the published articles are selected and extended
versions from the Gi4DM Conference in 2019 in Prague, Czech Republic. Articles [5–7] deal with
sea-level rise. In the last decades, forest fires became a major disaster phenomenon and Luis Paduva [8]
developed some innovative techniques such as UAV-borne observations and compared them with
sentinel data. During crisis response, it is critical to share and understand complex spatial, thematic,
and temporal information in a timely, visual and compelling way. Cartography plays an important
role in delivering reliable, understandable, appealing and user-friendly visual information through
maps. In order to provide seamless communication between heterogeneous audiences at the time
of a disaster, Kuveždić Divjak [9] deals with a unique environment for cartographic symbolization.
A very interesting study dealing with suitable site selection and planning of urban areas affected by
multiple hazards, and their integration into hazard susceptibility maps, can be seen in Yanar [10].
Norman Kerle and his colleagues deal with one of the oldest remote sensing challenges, i.e., structural
disaster damage detection and characterization [11].

ISPRS are working closely with many GeoUnions, such as URSI (Union Radio Science International),
an organization bringing together experts from remote sensing and geoinformation technology and
related sciences and technology. Papers from various events—congresses, Gi4DM conferences, several
symposia workshop—are available at https://www.isprs.org/publications/Default.aspx.

This special issue gathers papers from the best researchers in the field who properly faced
different aspects of spatial ecology, including problems and uncertainties which in most cases remain
unaddressed in disaster management, at large.

ISPRS Int. J. Geo-Inf. 2020, 9, 314; doi:10.3390/ijgi9050314 www.mdpi.com/journal/ijgi1
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We hope that the readership of the ISPRS International Journal of Geo-Information will
enjoy the scientific effort put into properly facing and finding solutions to very different issues
of disaster management.
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Abstract: Coastal vulnerability assessment due to climate change impacts, particularly for sea level
rise, has become an essential part of coastal management all over the world. For the planning and
implementation of adaptation measures at the household level, large-scale analysis is necessary.
The main aim of this research is to investigate and propose a simple and viable assessment method that
includes three key geospatial parameters: elevation, distance to coastline, and building footprint area.
Two methods are proposed—one based on the Index method and another on fuzzy logic. While the
former method standardizes the quantitative parameters to unit-less vulnerability sub-indices using
functions (avoiding crisp classification) and summarizes them, the latter method turns quantitative
parameters into linguistic variables and further implements fuzzy logic. For comparison purposes,
a third method is considered: the existing Index method using crisp values for vulnerability
sub-indices. All three methods were implemented, and the results show significant differences in their
vulnerability assessments. A discussion on the advantages and disadvantages led to the following
conclusion: although the fuzzy logic method satisfies almost all the requirements, a less complex
method based on functions can be applied and still yields significant improvement.

Keywords: climate change; fuzzy logic; GIS, household; Index method; sea level rise; vulnerability

1. Introduction

At present, the assessment of coastal vulnerability due to climate change impacts is an essential
input for coastal management processes all over the world [1]. The impact of sea level rise is the
main climate impact taken into account when managing coastal areas, from determining future use to
planning adaptation measures [1–3]. The term “vulnerability” is a function of hazard characteristics,
the sensitivity of the assets exposed, and adaptive capacity, which all vary by time and depend on
contexts such as socio–economic factors [2]. Hazard characteristics define the exposure of the system
to phenomena, sensitivity describes how the system is affected, and adaptive capacity defines the
system’s ability to maintain its functions. For example, in the case of a flood, the hazard characteristics
are water depth and velocity; sensitivity is represented by the number of people and assets flooded;
and adaptive capacity is the capacity of emergency infrastructure and flood defence structures. In this
paper, “vulnerability” refers to physical vulnerability, as described above, from the perspectives of
disaster management, climate change, and other related aspects [4]. Sociology and economics refer
to “social vulnerability”, which focuses on identifying the most vulnerable groups of people and
examines social factors and economic assets, such as poverty, access to food and housing, and human
and social capital [4,5]. A vulnerability assessment could follow a quantitative approach based on
related indicators and indices, or a qualitative approach based on the perspectives of stakeholders [6].
In this paper, a quantitative approach based on indices is used.

Vulnerability requires assessment methods that apply to different scales: spatial (large, medium,
and small), temporal (short, mid, and long term), and management (local, regional, and national) [1].

ISPRS Int. J. Geo-Inf. 2020, 9, 263; doi:10.3390/ijgi9040263 www.mdpi.com/journal/ijgi3
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While assessments used at the national or regional level identify the most vulnerable areas and help in
prioritizing measures (scales in the range of 1:100.000 to 1:25.000), large-scale assessments are necessary
for the planning and implementation of adaptation measures at the household level [3,7]. An overview
of the methods for assessing coastal vulnerability is given in [1]. These methods are classified into four
categories: Index-based methods, Indicator-based approaches, GIS-based decision support systems,
and methods based on dynamic computer models.

Index-based and Indicator-based methods differ in the methodological approaches they use
for the definition of indices/indicators, but are similar in their quantification and combination of
indices/indicators in a single parameter describing vulnerability.

Index-based methods calculate the vulnerability index (unit-less value) by summarizing
sub-indices (values of selected parameters) [8,9]. This method is widely recognised and has several
variants, such as the coastal vulnerability index for sea level rise [10], the composite vulnerability
index [11], and the multi-scale coastal vulnerability index [12]. Index-based methods start with a
selection of key parameters that represent the processes or assets of importance for coastal vulnerability.
The physical parameters include geomorphology, shoreline change rates, coastal slope, rate of sea
level rise, wave heights, tidal range, and proximity to coast. The human influence parameters are
river regulation, engineered frontage, land use, coastal protection structures, etc. The socio–economic
parameters are the affected population, the affected cultural heritage, the affected infrastructure, etc.
The second step quantifies the contribution of the selected key parameters to coastal vulnerability
using indices from 1 to 5, where 1 indicates a low contribution to coastal vulnerability, and 5 indicates
a high contribution to coastal vulnerability. Experts have developed classification schemas, where the
key parameter values are classified by the values of the sub-indices. For example, a sea level rise with
a rate of less the 1 mm/year is classified as value 1 for the sub-index, that with a rate of 1–2 mm/year is
given value 2, that with a rate of 2–5 mm/year is value 3, that with a rate of 5–7 mm/year is value 4,
and that with a rate of 7 mm/year and over is value 5 [1]. The final step integrates the sub-indices into
a single index via the use of selected formulas, such as the product mean or average sum. Additional
refinements could be done by using weights for the sub-indices. Index-based methods are used for
various scales, from the small scales used at the national level to the large-scales used at the local level.

Indicator-based approaches use indicators representing coastal vulnerability factors, such as
sea level rises; extreme weather conditions; coastal erosion and accretion; and the natural, human,
and economic assets at risk. Indicators are defined and quantified primarily to measure the progress
towards sustainable development, and to guide decision makers in managing coastal areas. Thus, these
indicators differ from the indices used by Index-based methods that focus on vulnerability. Similar to
Index-based methods, the indicators can be further classified according to their contribution to coastal
vulnerability and integrated into a single indicator of vulnerability. For example, the Deduce Interreg
project developed a set of 27 core indicators for sustainable coastal zone development [13]. Three
indicators addressed climate change vulnerability—(i) sea level rise and extreme weather conditions
(quantified by the number of stormy days, the sea level rise, and the length of the protected coastline);
(ii) coastal erosion and accretion (quantified by the length of the dynamic coastline, the area and
volume of sand nourishment, and the number of people living in the coastal flooding areas); and
(iii) the natural, human, and economic assets at risk (quantified by the areas of the protected sites and
by the economic values of the assets in the coastal flooding areas). Indicator-based approaches are
used for national, regional, and local level assessments.

More complex methods, such as GIS-based decision support systems or dynamic computer
models, fit a particular study area and use comprehensive data sets (3D models) and engineering
applications. An example of a GIS-based decision support system is DESYCO [14]. This system
evaluates various climate change impacts and implements a Regional Risk Assessment methodology
based on Multi-Criteria Decision Analysis. Methods based on dynamic computer models either focus
on a particular coastal process (e.g., the RACE approach, focusing on coastal erosion [15]) or provide
integrated assessments of the regional and national levels (such as DIVA [16]). Coastal engineering
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applications, such as the Delft3D modelling suite [17], use 3D models that can be applied to coastal
vulnerability assessment.

To facilitate the selection of the most appropriate method, Ramieri et al. [1] summarized the
advantages and disadvantages of the above described methods as follows. Index and Indicator-based
methods are simple to implement and appropriate for vulnerability scoping, while GIS-based decision
support systems and dynamic computer models provide detailed quantitative assessments and
the identification of adaptation measures. The disadvantages of the GIS-based decision support
systems and dynamic computer models are their high requirements for data and expert knowledge.
Furthermore, complex methods are not easily understood by the public, thus making it difficult to raise
awareness and motivate owners to start such adaptation measures [1]. Even for Index methods, the final
index is not transparent, because it encapsulates various assumptions, generalisations, calculations,
etc. Miller et al. [18] elaborated the challenges that always remain as the following: the selection of
representative variables for the study area, the definition of weights for the indicators, the availability
of data, and the validation of the results.

The current state of the research into vulnerability assessment can be grouped according to the
following main objectives:

• Answering the needs of particular applications: the modification of methods and models to fit
particular geographic areas and study needs (e.g., by introducing new parameters and models for
their evaluation) [1,10–13,18–21];

• Improving existing methods: the development of more complex and sophisticated methods using
Fuzzy Logic, Analytical Hierarchy Processes, and similar models [14–17,22–34];

• Supporting coastal management: including more socio–economic issues, decision making
processes, or public awareness [33,35,36].

Vulnerability assessments at the regional level are not detailed enough to be included in coastal
area land use planning or in planning adaptation measures, particularly in urban areas [3,7,19]. In order
to enable local authorities to include climate change impacts in coastal area management activities, there
is the need for a method at a large-scale level to assess each building, hereafter called the household
level method. This assessment should include economic aspects, such as building damage, social
aspects, such as population vulnerability, and adaption measures at the household level [4,5,37–41].

The author’s previous work on several coastal and flood vulnerability assessment projects has
led to this research and is summarized as follows. For the regional level analysis, the Index method
was used and applied to coastline segments at a scale of 1:25.000 [42] or to areas at a scale of 1:100.000,
with raster tessellation of a 100 x 100 m pixel size [43]. The latest work featured a large-scale analysis
for the coastal area of the City of Kaštela [44,45]. The most valuable assets in this study, such as
residential and historical buildings, were located along 23 km of the coastline and were already
prone to coastal flooding. A vulnerability assessment was undertaken to support the development of
priorities and measures for the coastal action plan of the City of Kaštela. There was a need for an initial
vulnerability assessment for each building in the coastal zone, and thus an index-method was selected.
Indicator-based methods have a much wider focus, and elaborate upon dozens of indicators; thus, they
could be used to measure the progress towards sustainable development. GIS-based decision support
systems and dynamic computer models have high requirements for data and expert knowledge.
Such models could be used in future work to provide detailed engineering solutions for the selected
locations. The vulnerability index was calculated for each building by summarizing the sub-indices.
The four sub-indices were calculated based on the parameters describing exposure to hazards (location
of buildings in hazard zone 1, 2, or 3) and sensitivity variables (building usage, building temporal
usage, and the building’s construction status). By using an Index-based method for the large-scale
assessment, the following questions emerged:

1. What spatial units or tessellation types should be used for large-scale vulnerability assessment?
2. How can we deal with the uncertainties in vulnerability assessment?
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3. How can we use Index and Indicator-based methods with crisp classifications when key variables
represent continuous phenomena?

4. How could vulnerability be more easily accepted by local planners and society?

Thus, the relevant work describing methods for vulnerability assessment at a large-scale level
was analysed according to the above questions [7,25,27,32,36–41,46,47]. A short discussion follows.

Hazard characteristics, sensitivity of the assets exposed, and the adaptive capacity are all
represented by various spatial features. These factors are combined into the final spatial features
with homogenous vulnerability values. An approach used in medium- and small-scale assessments
is the following. Spatial units that represent vulnerability assessments are often administrative
units, such as provinces, municipalities, settlements, city blocks, or statistical units. The aggregate
values of key parameters are calculated and assigned to selected spatial units, such as the number of
inhabitants in each city block. For continuous phenomena, such as water depth, these aggregation
values (e.g., the average water depth for each city block) introduce certain uncertainties into the
assessment, because the key parameter values are not homogeneous over all the area covered by the
spatial unit. Regular spatial tessellation is used as well, where the cells of adequate sizes are assigned
key parameter values, and the final vulnerability assessment is calculated, but the same cause of
uncertainty remains.

For large-scale assessments, the final vulnerability assessment can be assigned to the regular
spatial tessellation units of a small size, e.g., 1 × 1 m. Large-scale assessments are fine enough to
distinguish particular assets and thus another approach could also be used: assigning vulnerability to
each object representing affected assets, such as infrastructure objects (roads, utilities) or buildings.
Several studies focused on the identification of affected buildings and the calculation of economic
losses because buildings are key assets for people [7,37–39]. Adaption measures, the calculation of
damage to physical objects, and socio–economic vulnerability parameters, such as household income
and unemployment, are all spatially assigned to the buildings.

Regarding the uncertainties in vulnerability assessment, the data can be vague, as can the models
and problem definitions, but there is also subjectivity in making decisions [36,46,47]. For example,
the spatial representation of vague phenomena, such as floods, using polygons with well-defined
boundaries introduces errors in the assessments [25,37]. Experts, together with decision makers
and other involved participants, must also quantify the contributions of key parameters and thus
introduce a certain level of subjectivity [36]. For the thematic aspects, Index- and Indicator-based
methods for vulnerability assessment include the crisp classification of parameters, although there are
uncertainties. Finally, vulnerability, when represented by polygons with assigned vulnerability indices,
encapsulates the uncertainty of the spatial extent and vulnerability indices. Jadidi et al. [25] developed
a diagram of spatial uncertainty and the methods to handle it. The nature of uncertainty lies in its
epistemic descriptions given by measured or sampled data, or in its ontological descriptions given by
feature definitions that can be well or ill defined. Each spatial feature has its own position, geometry,
and description that can be uncertain. One of the methods for modeling this uncertainty is fuzzy set
theory, which can model continuous and heterogeneous phenomena [25]. Fuzzy set theory offers a
model for “fuzziness”, and was introduced in 1965 as an extension of Boolean set theory [48]. Regarding
the spatial aspects, there is a need to include vagueness in the definition of boundaries, which is not
feasible when using standard vector representations, such as polylines. Therefore, the concept of Fuzzy
Spatial Data Types with accompanying Fuzzy Spatial Set Operations and Fuzzy Topological Predicates
is introduced [27].

Key parameters describing the vulnerability aspects could be continuous or discrete spatial
phenomena. Index- and Indicator-based methods use crisp classifications to quantify the contributions
of key parameters. Physical parameters are often continuous phenomena, such as elevation, slope,
wave heights, or proximity to coast. Thus, the crisp classification of the vulnerability indices from 1
to 5 introduces crisp boundaries, and there is no transition from one vulnerability level to another.
In the case of a flood, exposure to the flood could be represented by polygons and classified with a
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vulnerability level from 1 to 5 based on its elevation from 1 to 5 m. Thus, two buildings with elevations
of 0.1 and 0.9 are ranked with 1, and the building with an elevation of 1.1 is ranked with 2, which is not
a realistic representation, since exposure to flood changes gradually. One of the proposed approaches
is to use fuzzy rule-based classification. The statistical study of whether there is a significant statistical
difference in performance between crisp and fuzzy rule-based classification has confirmed that these
two classification methods offer the same statistical meaning [32]. In this work, conversely, testing the
methods using (among other steps) crisp and fuzzy classifications resulted in significant differences.

In order to support coastal management, particularly the implementation of adaptive measures at
the household level, the proposed method for large-scale assessment should be easily accepted by local
planners and society. From the author’s experience, such a method should emphasize the following:

• The use of existing data (locally/nationally available or open data sets);
• The use of available tools (common tools, such as a spreadsheet programs and open source GIS tools);
• Simplicity, ease of understanding, and the ability to be implemented by coastal planners and

managers of various levels of expertise; and
• Effectively communicate vulnerability to coastal management stakeholders (e.g. local authorities,

utility companies, public).

To conclude, there is a need for a method that can provide answers for the above questions.
The relevant work proposes using buildings as spatial units for vulnerability assessment and fuzzy
set theory for resolving the uncertainty and pitfalls of crisp classification. This research investigates
the adaption of Index-based methods by using continuous ranking and fuzzy logic. This research
was narrowed to the main climate change impact of sea level rise [1], and to the three key geospatial
parameters of elevation, distance to the sea, and building footprint area, which are universal for all
geographic areas and essential for vulnerability assessments [3–7,13,18,37,40,41,49]. Thus, two new
methods are proposed:

1. The Index method: continuous ranking by functions; the modified Index method uses functions
and assigns continuous values to sub-indices;

2. The fuzzy logic method: ranking by membership functions; the modified Index method uses
fuzzy logic membership functions, rules, and calculates conclusions.

A third method is implemented for the purpose of the analysis:

1. The Index method: crisp ranking by scores, as described in the literature, using crisp values for
the sub-indices.

The newly proposed methods overcome the pitfalls of crisp classification. While the first method
standardizes the quantitative parameters to unit-less vulnerability sub-indices via functions and
summarizes them, the second method transforms quantitative parameters into linguistic variables,
and further implements fuzzy logic in a way that is easily repeated by nonexperts, while still improving
the common understanding of the assessment. Both methods use building footprints as crisp features,
defined with crisp borders (polygons) as entities to which the vulnerability indices are assigned.
To overcome the continuous nature of geospatial parameters, elevation, and distance to the sea, these
parameters are not classified in crisp zones, but their values are assigned to the building footprints
and then classified by functions or fuzzy logic membership functions. Thus, these methods avoid
the complex implementation of Fuzzy Spatial Data Types or similar concepts. The proposed fuzzy
logic method includes a definition of the linguistic variables for evaluation of the input parameters
(key geospatial parameters) and for the final result. Therefore, this method accommodates technical
concepts and their definitions using semantics that are comprehensible by coastal managers and
the public.

The results of all three methods are compared, and conclusions are drawn. The final aim of this
research is to propose a simple method for coastal vulnerability assessment at the household level that
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could be widely and easily used and, as a final aim, to provide support to coastal management in the
context of climate change impacts.

2. Materials and Methods

Two newly proposed methods and an existing method are implemented in this study. The starting
point is a selection of key geospatial parameters. Based on this selection, geospatial data sets are
created, and the parameters are calculated for each building. For each implemented method, there are
three common steps. The first step performs a ranking, the second step performs calculations of the
sub-indices or, for the fuzzy logic method, defines the rules and offers a final conclusion. The third step
calculates a single vulnerability index for each building. Finally, the results are compared. Figure 1
depicts these steps and the following paragraphs briefly describe them.

 

Figure 1. Research steps.

2.1. Selection of the Key Geospatial Parameters

A literature study was carried out to identify the geospatial variables used for coastal vulnerability
assessment, and to further select the variables of key importance for sea level rise and household
level analyses. For a household level assessment, Miller et al. [18] attempted to reduce the number
of indicators to only the most relevant one. Their conclusion was that physical exposure is more
important than social characteristics. In the case of coastal flooding, elevation and distance to the
coastline describe the exposure to hazards, while the building’s footprint areas describe buildings,
which are the key assets for people [7,37–39]. Thus, the selected parameters are the following:

• The building’s footprint area;
• Elevation above sea level;
• Distance to coastline.
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Buildings were proposed as spatial units for vulnerability assessment at the household level by
several relevant works [3,6,7,13,18,40]. A building’s footprint area is used to calculate socio–economic
impacts, such as the damage cost and insurance coverage, and to plan adaptation measures in case
of flooding. Additionally, socio–economic vulnerability parameters, such as household income and
unemployment, are all spatially assigned to buildings, and thus their assessment could be easily
extended by any of these parameters.

Two basic parameters describing exposure to coastal floods are elevation and distance to the
coastline. Elevation describes the hazards according to the depth of coastal flooding, and thus describes
physical characteristics. Distance to the coastline represent a psychical factor, but it also has social
importance, because people have the perception of hazards when living in risk-prone areas, which
influences their behaviour [3,6,7,13,18,40]. The selected geospatial parameters are not mutually related.

Slope as a geospatial parameter is used in small and medium-scale analyses. However, in large-scale
analyses where each building is assessed, slope does not contribute to building vulnerability assessments
and is not selected.

2.2. Study Area and Data

The study area covers 110 ha of the coastal area up to 3 m above the mean sea level. It is an
urbanized area of the City of Kaštela that stretches for 23 km along the Kaštela Bay, and is situated on
the eastern coast of the Adriatic Sea. Valuable historical settlements and sea promenades are situated
close to the sea, and the whole study area includes 1657 buildings. In order to evaluate each building,
large-scale data are used for the digital elevation model (DEM), the coastline, and building footprints.
The aim was to use the data, either globally or nationally, that are available to local authorities.

For the household level assessment, free global digital elevation models do not satisfy our needs
because their spatial resolution is too coarse for urban areas [45]. Some European Union (EU) countries
have published open DEM data with spatial resolutions of 10 m, 1 m, and even 0.5 m [50], while other
EU countries have provided the same resolutions to their local authorities under certain agreements
and financing schemas. For the study area, the national DEM data are used. The vertical accuracy of
the triangulated irregular network model (TIN) derived from these data is estimated to be ± 0.35 m for
more than 85% of the data in urban areas [51]. The TIN model is converted to a raster model with a
spatial resolution of 1 m (hereafter, DEM Kaštela).

Coastline and building footprint data from the national map at a scale of 1:5000 are available in
digital format and used by national local authorities for spatial planning purposes; thus, they are also
used in the study (hereafter, Buildings and Coastline). An alternative data-set could be Open Street
Data (OSD), as the study in [52] concluded that the building data from OSD can be considered a valid
and accurate data source corresponding to a 1:5000 scale.

2.3. Calculation of the Geospatial Parameters of the Buildings

The open source software QGIS [53] was used to calculate the key geospatial parameters for the
buildings. A brief description of the calculations and used functions follows.

The building footprint areas were calculated from the polygons on an individual basis. Figure 2a
shows the results. Elevation above the sea level was calculated as the mean value of the elevations
covered by the building’s footprint. Figure 2b shows the results. Distance to coastline was calculated
as the shortest distance from the building’s footprint to the coastline. Firstly, the polylines representing
the buildings and coastline were converted to nodes, and for each building’s node, the distance to the
coastline’s node was calculated. If necessary, the nodes representing the coastline could be densified.
To obtain the shortest distance, the calculated distances from the nodes belonging to one building were
grouped, and the minimal value was selected. Figure 2c shows the results of this process. Each step
resulted in a new value being stored in the attribute tables of the Buildings.
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(a) 

 
(b) 

 
 (c) 

Figure 2. Maps showing the key geospatial parameters for each building in the study area: (a) the building’s
footprint area (m2); (b) the elevation above sea level (m); (c) the distance to coastline (m).

2.4. Methods

Three methods are implemented:

• The Index method: crisp ranking by scores;
• The Index method: continuous ranking by functions;
• The Fuzzy logic method: ranking by membership functions.

To implement these methods, particularly to define the rankings, the contributions of the key
geospatial parameters to vulnerability should be defined based on an expert evaluation of the study area.

For the City of Kaštela, the study presented in [44,45] defined the hazard zones for coastal flooding as
a zone up to 1 m above sea level (already under flooding during storm surges): zone 2 is up to 2 m above sea
level, and zone 3 is up to 3 m above sea level. For distance from the coastline, the contribution is defined
as high for distances up to 35 m (which have daily and close visual contact with the sea), medium
for distances from 35 to 75 m, and low for distances longer than 75 m. For the building’s footprint
area, the contribution is defined based on the costs of building repair and insurance coverage [49].
The insurance coverage offered on the local market completely covers the building basement repair
costs for approximately a 15 m2 footprint area, and the cost to repair an area of 45 m2 corresponds to
the average annual wage per capita. Thus, a footprint area less than 15 m2 has a low contribution to
vulnerability, that from 15–45 m2 has a medium contribution, and that larger than 45 m2 contributes
highly to building vulnerability.

A further elaboration of the above defined contributions to vulnerability is not the focus of this
research. Moreover, the definitions of the contributions are dependent on the specifics of the study area,
and the analytical requirements cannot be generally defined. All three methods were implemented via
the open source software QGIS and a spreadsheet calculator.

2.4.1. Index Method—Crisp Ranking by Scores

Using the contributions of the key geospatial parameters given by an expert’s evaluation,
the vulnerability sub-indices are defined by the use of crisp values for ranking: 5 for high, 3 for medium,
and 1 for low contributions (Table 1). The rankings are visualised in Figure 3. The attribute table of the
Buildings was exported from QGIS [53], and further calculations were performed in a spreadsheet
calculator using the expressions given in Table 1.
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Table 1. Crisp ranking by scores: the vulnerability sub-indices Varea, Velevation, and Vdistance.

Geospatial Parameter
Vulnerability

Sub-Index
5 (High)

Vulnerability
Sub-Index

3 (Medium)

Vulnerability
Sub-Index

1 (Low)
Spreadsheet Expression for Calculation

building’s footprint area >45 m2 15–45 m2 <15 m2 =IF(“area”<=15;1;IF(“area”<45;3;5))
elevation above sea level <1m 1–2 m >2 m =IF(“elevation”<=1;5;IF(“elevation”<2;3;1))
distance to the coastline <30 m 30–75 m >75 m =IF(“distance”<=30;5;IF(“distance”<75;3;1))

 

 
(a) 

 

 

(b) 

 

 

(c) 

Figure 3. Graphs showing the crisp rankings of the key geospatial parameters—vulnerability sub-indices:
(a) for the building’s footprint area; (b) for elevation above the sea level; and (c) for distance to coastline.

The definition of a single vulnerability for each building implies that the sub-indices should be
integrated into one index called the single or final index. Various relevant approaches have been
described and commented upon in the literature, and an overview is given in [1]. As this research
was narrowed down to only the key geospatial parameters, and the intention was not to additionally
quantify the contributions of vulnerability parameters, the simplest equation was used, featuring the
average of the sub-indices (Equation (1)).

V =
Varea + Velevation + Vdistance

3
(1)

The calculated single indices are in the range of 1 to 5 and are further rounded to the nearest
integers, 1, 2, 3, 4, and 5, representing the building vulnerability index and defining vulnerability using
linguistic expressions as follows:

• 1—low vulnerability;
• 2—medium low vulnerability;
• 3—medium vulnerability;
• 4—medium high vulnerability;
• 5—high vulnerability.

2.4.2. Index Method—Continuous Ranking by Functions

Here, the previously implemented Index method was modified such that instead of crisp rankings,
continuous rankings were used. Using the contributions of key geospatial parameters to the building
vulnerability, the vulnerability sub-indices were defined by using functions and assigning then the
following values: 5 for a high contribution and 1 for a low contribution along with continuous values
from 1,1 to 4,9 for a medium contribution (Table 2). The ranking functions are visualised in Figure 4.
The calculations were done in a spreadsheet calculator using the expressions given in Table 2.
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Table 2. Continuous rankings: the vulnerability sub-indices Varea, Velevation, and Vdistance.

Geospatial Parameter
Vulnerability

Sub-Index
5 (High)

Vulnerability
Sub-Index

4,9–1,1 (Medium)

Vulnerability
Sub-Index

1 (Low)
Spreadsheet Expression for Calculation

building’s footprint area >45 m2 15–45 m2 <15 m2 =IF(“area”<=15;1;IF
(“area”<45;(4/30*(“area”-15)+1);5))

elevation above the sea level <1m 1–2 m >2 m =IF(“elevation”<=1;5;IF
((“elevation”<2;(-4*(“elevation”+9);1))

distance to the coastline <30 m 30–75 m >75 m =IF(“distance”<=30;5;IF
(“distance”<75;(-4/45*(“distance”-30)+5);1))

 

 
(a) 

 

 

(b) 

 

 

(c) 

Figure 4. Graphs showing the continuous rankings of the key geospatial parameters—vulnerability
sub-indices: (a) for the building’s footprint area; (b) for the elevation above sea level; (c) for the distance
to coastline.

For a single vulnerability index of each building, the same definitions and calculations used for the
Index method were employed, with the crisp rankings given in the previous paragraph (Section 2.4.1).

2.4.3. Fuzzy Logic Method—Ranking by Membership Functions

The Index method was modified such that instead of crisp rankings, fuzzy logic membership
functions assigned a membership value to a fuzzy set. In fuzzy set theory, an element’s membership to
a set is described by its membership function. The membership function values are between 0 and 1,
indicating the degree of membership [48] and are described in a linguistic form such as “near” and
“far”. Moreover, fuzzy logic offers the new concept of integrating the sub-indices into a single index
via logical reasoning with a generalized modus ponens (rules of inference), as shown in Equation (2).
In this research, a simplified fuzzy logic method is used. Here, the conclusion of a rule is not a fuzzy
set but a number. The single index for each building is represented here with the final conclusion:

If Premise
(“Premise variable a” is “Fuzzy set A” and “Premise variable b” is “Fuzzy set B” . . . )

then Consequence
(“Consequence” is equal to “Number”).

(2)

To compute the final conclusion, the single index, several steps are implemented:

1. Definition of rules based on fuzzy sets with a number for the conclusion (Equation (3));
2. Calculation of the membership functions for the fuzzy sets (Equation (4));
3. Calculation of the minimum membership function values per rule (Equation (5));
4. Calculation of the conclusion value per rule (Equation (6));
5. Computation of the final conclusion (Equation (7)).

Rule 1 with a consequence = C1 (number)
Rule 2 with a consequence = C2 (number)

. . .
(3)
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Membership function μA:X→ [0,1] where μA(x) is the membership value of x in A (4)

Min(Rule 1) =min (μA1(x), μB1(y), . . . )
Min(Rule 2) =min (μA2(x), μB2(y), . . . )

. . .
(5)

Conclusion(Rule 1) =Min(Rule 1) · C1
Conclusion(Rule 2) =Min(Rule 2) · C2

. . .
(6)

Final conclusion =
∑

Conclusion(Rule i) / Σ Min(Rule i). (7)

A brief description of the implemented steps follows. For each geospatial parameter, two fuzzy
logic sets and their corresponding membership functions are defined, based on their contribution to
building vulnerability, as defined in introduction of Section 2.4. Linear functions are used, because they
were also employed in the previous method, so later methods could be compared. Table 3 provides
their names and spreadsheet expressions for their calculations, while Figure 5 illustrates them.

Table 3. Fuzzy sets and membership functions for the key geospatial parameters.

Geospatial Parameter
Linguistic Variable

- Fuzzy Set -
Spreadsheet Expression for the Calculation

of Fuzzy Membership Function Values

building’s footprint area Small building (SB) =IF(“area”<=15;1;IF(“area”<45;(45-“area”)/30;0))
Large building (LB) =IF(“area”<=15;0;IF(“area”<45;(“area”-15)/30;1))

elevation above sea level
Low elevation (LE) =IF(“elevation”<=1;1;IF(“elevation”<2;(2-“elevation”);0))
High elevation (HE) =IF(“elevation”<=1;0;IF(“elevation”<2;(“elevation”-1);1))

distance to coastline
Near to the sea (NS) =IF(“distance”<=30;1;IF(“distance”<75;(75-“distance”)/45;0))
Far from the sea (FS) =IF(“distance”<=30;0;IF(“distance”<75;(“distance”-30)/45;1))

 

 
(a) 

 

 

(b) 

 

 

(c) 

Figure 5. Graphs showing the fuzzy membership functions of key geospatial parameters: (a) small and
large buildings for the building’s footprint area; (b) low and high elevations for elevation above the sea
level; (c) near and far from the sea for distance to coastline.

To define the rules, all combinations of fuzzy sets representing geospatial parameters should be
considered. Therefore, there are 8 rules listed in Table 4. These rules’ consequences (expressed as
numbers and linguistic expressions) represent the vulnerability value that should be evaluated by an
expert. The following steps include a calculation of the minimum membership function values per
rule and a calculation of the conclusion value for the rule (a combination of Equations (5) and (6));
the spreadsheet expression is given in Table 4.

The final conclusion for each building is computed by Equation (7), and further rounded to the
nearest integers of 1, 2, 3 4, and 5. Thus, the final conclusions represent the final building vulnerability
indices expressed by linguistic expressions—the same ones used in the previous two methods.
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Table 4. Rules with their linguistic expressions and spreadsheet expressions for the calculation of the
rule conclusions.

No Rule Premise
Consequence as a
Fuzzy Singleton

(Vulnerability Value)

Linguistic
Expression of the

Vulnerability Value

Rule Conclusion
(Spreadsheet
Expression)

1

If
The building is small (SB),

its elevation is low (LE),
and it is near the sea (NS)

4 Medium high
vulnerability =MIN(SB;LE;NS)*4

2

If
The building is small (SB),

its elevation is low (LE),
and it is far from the sea (FS)

3 Medium
vulnerability =MIN(SB;LE;FS)*3

3

If
The building is small (SB),
its elevation is high (HE),
and it is near the sea (NS)

2 Medium low
vulnerability =MIN(SB;HE;NS)*2

4

If
The building is small (SB),
its elevation is high (HE),

and it is far from the sea (FS)

1 Low vulnerability =MIN(SB;HE;FS)*1

5

If
The building is large (LB),
its elevation is low (LE),

and it is near the sea (NS)

5 High vulnerability =MIN(LB;LE;NS)*5

6

If
The building is large (LB),
its elevation is low (LE),

and it is far from the sea (FS)

4 Medium high
vulnerability =MIN(LB;LE;FS)*4

7

If
The building is large (LB)
its elevation is high (HE),
and it is near the sea (NS)

3 Medium
vulnerability =MIN(LB;HE;NS)*3

8

If
The building is large (LB),
its elevation is high (HE),

and it is far from the sea (FS)

2 Medium low
vulnerability =MIN(LB;HE;FS)*2

3. Results

Using the same values for the contribution of key geospatial parameters but different methods for
their rankings and integration resulted in significant differences in the vulnerability indices assigned
to the buildings. The results are summarised in Table 5 and illustrated in Figures 6–8.

Table 5. Numbers of buildings with vulnerability index 1, 2, 3, 4, and 5, calculated by the three methods.

Single Vulnerability Index
Index Method—Crisp

Ranking
Index Method—Continuous

Ranking
Fuzzy Logic

Method

1 2 30 40
2 405 341 450
3 413 452 426
4 658 486 386
5 179 348 355

Total number of buildings 1657 1657 1657
Sum of single vulnerability indices

for all buildings 5578 5752 5537

The sums of single vulnerability indices for all the buildings calculated by the three methods do
not show significant differences; the greatest difference is 4% of the sum value. When considering
particular buildings, there is a significant difference in their assessment using these three methods.
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Examining the graph given in Figure 6, the greatest differences are found for vulnerability index 4
(among all three methods), while for vulnerability index 5, the Index method with crisp rankings has a
significantly lower number of buildings. By introducing continuous ranking for the Index method,
the results are closer to the Fuzzy logic method results.

 

 

Figure 6. Graph showing the number of buildings with assigned single vulnerability indices of 1, 2, 3,
4, or 5, calculated by the three methods.

 

 
(a) 

 

 
(b) 

 

 

(c) 

Figure 7. Graphs showing how many buildings have differences in their single vulnerability indexes
calculated by the two methods (a blue colour represents a −1 score, red is a 1 score, and grey means no
difference): (a) Index method with crisp ranking—Index method with continuous ranking; (b) Index
method with crisp ranking—Fuzzy logic method; and (c) the Index method with continuous ranking—
Fuzzy logic method.
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(a) Index method—crisp ranking by scores 

 
(b) Index method—continuous ranking by functions 

 
(c) Fuzzy logic method—ranking by membership functions 

Figure 8. Maps showing the single vulnerability index for each building in the study area (an excerpt)
calculated by the methods: (a) the Index method—crisp ranking by scores; (b) the Index method—
continuous ranking by functions; and (c) the Fuzzy logic method—ranking by membership functions.

Examining the graphs given in Figure 7, the findings are as follows. Comparing the Index methods
using crisp ranking with the methods using continuous ranking, there are significant differences in the
building vulnerability assessment: 18% of buildings have a different vulnerability index, but there is
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no difference higher than 1 score. Comparing the Index method using crisp ranking and the Fuzzy
logic method, the differences are even more significant: 28% of buildings have different vulnerability
indexes, but, again, there is no difference higher than 1 score. Finally, comparing the Index method
using continuous ranking and the Fuzzy logic method, there are still significant differences; however,
these differences are a bit smaller: 16% of buildings have a different vulnerability index.

Finally, the spreadsheet table with all the calculated values is joined with the layer Building in
QGIS, and the visualisations are performed. Figure 8 presents maps showing the single vulnerability
indices for buildings calculated by the three methods: (a) the Index method—crisp ranking by scores;
(b) the Index method—continuous ranking by functions; (c) and the Fuzzy logic method—ranking by
membership functions. The highest vulnerability value (5) is coloured with red, and the colours change
gradually to blue, which represents the lowest vulnerability value of 1. Summarising all the previous
comparisons and observing the visualisations in Figure 8, one can conclude that the Index method
with crisp ranking assigns more medium values (2, 3, and 4) and many fewer extreme values (1 and 5).
The other two methods assigned significantly more buildings to the highest value of 5 (approximately
10% more), with more buildings assuming the lowest value because, in the Index method with crisp
ranking, there are almost no values of 1.

4. Discussion

The above results show that there are significant differences in the vulnerability indices assigned
to the buildings calculated by the various methods. Hence, the question arises: which method should
one choose for a vulnerability assessment?

For the appropriate spatial units to be used, the relevant works clearly show that buildings are
adequate units, as they are the key assets exposed. Moreover, socio–economic parameters are assigned
to households, and can thus be easily assigned to building footprints. All three methods can use
buildings or any other exposed assets as spatial units for vulnerability assessment.

Uncertainties in a vulnerability assessment sometimes originate in the data. Vagueness in the
attribute values describing features cannot be avoided and causes uncertainties in the feature descriptions.
The proposed Fuzzy logic method using the membership functions could model these uncertainties,
while the other two methods cannot. Vagueness in the definition of boundaries causes uncertainties
in the position and geometries of features. The solution proposed by the relevant work is based on
Fuzzy Spatial Data Types whose implementation is complex and thus is not included in any of the
proposed methods. Therefore, these types of uncertainties remain. There is also an uncertainty in the
assessment caused by the aggregation of the key parameter values for each building. For example,
the mean elevation and the shortest distance are calculated and assigned to each building, including
their values within the building’s footprint. Another source of uncertainty lies in the expert evaluation
of the key parameters’ contributions to vulnerability. These two uncertainties can be modelled by the
membership functions; thus, the Fuzzy logic method can solve these uncertainties, while other the two
methods cannot.

Crisp classifications, when applied to continuous phenomena, are unsatisfying. Both newly
proposed methods overcome the pitfalls of existing Index-based methods, either by the introduction of
functions or of fuzzy membership functions.

Finally, the methods are evaluated by how easily they can be applied by the local administration
and accepted by all the participants. All three methods use widely available and open tools, as well as
commonly available data for local administration. The Fuzzy logic method requires participant efforts
in understanding the concepts of fuzzy set theory and fuzzy logic, while the other two methods are
much simpler and more straightforward. However, the Fuzzy logic method is superior in supporting
qualitative approaches and provides semantic values common to human perception. This is achieved
by turning the quantitative parameters into linguistic variables such as “low” or “high” and by
expressing the rules with linguistic expressions.

17



ISPRS Int. J. Geo-Inf. 2020, 9, 263

5. Conclusions

At the beginning of this research, we posed four questions that address the requirements of using
an Index-based method for a household level analysis. Table 6 summarises a comparison of the existing
method and the two newly proposed methods based on how they answer these questions.

Table 6. A comparison of the methods satisfying the requirements for the household level analysis.

Question
Requirements of the Method

for the Household Level
Analysis

Index Method—
Crisp Ranking

Index Method—
Continuous Ranking

Fuzzy Logic
Method

1. What spatial units or
tessellation types should be
used for large-scale
vulnerability assessment?

Assets exposed, e.g., buildings yes yes yes

2. How can one deal with
uncertainties in
vulnerability assessment?

Description uncertainties no no yes
Boundary uncertainties no no no

Key parameter value
uncertainties no no yes

Expert evaluation
uncertainties no no yes

3. How can one use Index and
Indicator-based methods with
crisp classification when key
variables represent
continuous phenomena?

Modelling continuous
phenomena no yes yes

4. How could vulnerability be
more easily accepted by local
planners and accepted
by society?

Method easily understood yes yes no
Using available tools and data yes yes yes
Supports qualitative approach no no yes
Semantics common to human

perception no no yes

Table 6 clearly shows that the Fuzzy logic method satisfies almost all the requirements and
significantly improves the existing Index-based method, but it requires more effort from the human
side. The local administration’s staff and urban planners should become familiar with fuzzy set and
fuzzy logic concepts, or they could become an obstacle to the method’s application.

The Index method with continuous ranking introduces only one improvement: the modelling
of continuous phenomena by functions. However, the results are significantly different from those
obtained by the existing Index method with crisp ranking, and are instead closer to those of the Fuzzy
logic method. The advantage of this method over the Fuzzy logic method is that the Index method is
more simply understood by non-experts, and thus has more potential to be accepted and implemented
by local administrations.

To determine which method to choose, there is always a trade-off between the comprehensiveness
of the method and the resources needed for its implementation. This research showed that Index
method with continuous ranking could be used as an alternative to the Fuzzy logic method. Thus,
the Index method with continuous ranking is proposed for use by local administration as a simple and
viable method that still improves vulnerability assessment at the household level.
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Abstract: Unmanned aerial vehicles (UAVs) have become popular in recent years and are now used
in a wide variety of applications. This is the logical result of certain technological developments that
occurred over the last two decades, allowing UAVs to be equipped with different types of sensors
that can provide high-resolution data at relatively low prices. However, despite the success and
extraordinary results achieved by the use of UAVs, traditional remote sensing platforms such as
satellites continue to develop as well. Nowadays, satellites use sophisticated sensors providing
data with increasingly improving spatial, temporal and radiometric resolutions. This is the case for
the Sentinel-2 observation mission from the Copernicus Programme, which systematically acquires
optical imagery at high spatial resolutions, with a revisiting period of five days. It therefore makes
sense to think that, in some applications, satellite data may be used instead of UAV data, with all the
associated benefits (extended coverage without the need to visit the area). In this study, Sentinel-2
time series data performances were evaluated in comparison with high-resolution UAV-based data,
in an area affected by a fire, in 2017. Given the 10-m resolution of Sentinel-2 images, different
spatial resolutions of the UAV-based data (0.25, 5 and 10 m) were used and compared to determine
their similarities. The achieved results demonstrate the effectiveness of satellite data for post-fire
monitoring, even at a local scale, as more cost-effective than UAV data. The Sentinel-2 results present
a similar behavior to the UAV-based data for assessing burned areas.

Keywords: post-fire management; forest regeneration; fire severity mapping; multispectral imagery;
Sentinel-2A; unmanned aerial vehicles; Parrot SEQUOIA

1. Introduction

In recent years, forest fires (i.e., large and destructive fires that spread over a forest or area of
woodland) have received increasing attention due to their effects on climate change and ecosystems.
Forest fires occur regularly, vary in scale and impacts and are inherent to terrestrial ecosystems [1].
Weather, topography and fuel are the three major components that define the fire environment and
are directly related with the evolution of land use [2]. Portugal is one of the southern European
countries most affected by forest fires, but it is also affected by rural fires [3]. In other words, not
only do fires over forests affect the country, but the combination of environmental factors and human
settlement may also cause harm to people or damage property or the environment [4]. Several factors
contribute to the country being so severely affected: the Mediterranean climate, which benefits fuel
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accumulation and dryness along with the existence of flammable vegetation types; high ignition
density; poor fire-suppression capabilities; and institutional instability [5]. Thus, forest fire impacts
are attracting more and more attention not only from the scientific community, but also from public
entities worldwide [5]. In the Portuguese case, this awareness is increasing, especially in the north and
in the center of the country [6].

In this context, remote sensing platforms are being used as a capable tool for mapping burned
areas, evaluating the characteristics of active fires and characterizing post-fire ecological effects and
regeneration [7]. In the past decade, the use of unmanned aerial vehicles (UAVs) has increased
for agroforestry applications [8] and are now being used for forest fire prevention [9], canopy fuel
estimation [10], fire monitoring [11,12] and to support firefighting operations [13]. Likewise, studies
using UAV-based imagery in post-fire monitoring have been concerned with surveying [14], calibrating
satellite-based burn severity indices [15], assessing post-fire vegetation recovery [16], mapping fire
severity [17,18], studying forest recovery dynamics [19] and sapling identification [20]. Despite being
a cost-effective and a very versatile platform for remote sensed data acquisition that is capable of
carrying a wide set of sensors, its usage in surveying big areas can be constrained due to legal [21]
and technological limitations such as its autonomy and payload capacity [8]. On the other hand,
traditional remote sensing platforms such as satellites continue to be widely used to obtain data with
increasingly improved spatial, temporal and radiometric resolutions. Satellites still offer a quick way
to evaluate forest regeneration in post-fire areas. However, lower spatial resolutions (compared with
UAV data) often mean that satellites are used for studies only at regional or national scales [22–26].
The Copernicus Programme, from the European Union’s Earth Observation Programme, was created
with the goal to achieve a global, continuous, autonomous, high-quality, wide-range Earth observation
capacity. The different satellite missions belonging to this program make it possible to obtain accurate,
timely and easily accessible information to improve the management of the environment, as well as to
understand and mitigate the effects of climate change and ensure civil security. Therefore, access to
medium- and high-resolution satellite data with a high temporal resolution are accessible for free [27],
namely, the Sentinel-2 Multispectral Instrument (MSI) [28]. A wide range of spectral bands are available
from visible to shortwave infrared (SWIR) which allows, in a post-fire monitoring context, severity
determination of fire disturbances along with multi-temporal monitoring for burnt areas. This type of
data is ideal for monitoring fire disturbances in Mediterranean regions that affect several crops and
have extents ranging from some hectares to several square kilometers [29]. In this specific context,
Sentinel-2 MSI data were used for exploring spectral indices of burn severity discrimination [30–34], as
well as to assess burn severity in combination with Landsat data [35,36]. They were also used to take
into account the available multi-temporal data in order to evaluate burned areas at a national level [37]
and to assess post-fire vegetation recovery mapping of an island [38].

In this study, we evaluated an area that was severely affected by a fire disturbance in 2017 with an
estimated extent greater than 300 ha. The area is located in north-eastern Portugal, and forested areas
composed of maritime pine (Pinus pinaster) were significantly affected along with houses, wood storage
buildings, agricultural structures and vehicles. This was therefore a fire that could be considered small,
its analysis and monitoring could be possible to carry out using aerial high-resolution data acquired by
a UAV. Every year, thousands of fires similar to this occur in Portugal, covering the north and center of
the country in particular with small patches of burnt areas.

To assess the effectiveness of satellite data in studying this specific type of area, Sentinel-2 MSI
data were used to characterize the area before the fire disturbance, allowing an assessment of the fire’s
severity and multi-temporal analysis to be performed (2017–2019). Moreover, to compare the spatial
information provided by the Sentinel-2 MSI (10-m spatial resolution), a UAV flight campaign was
carried in part of the study area to acquire multispectral data with a very-high resolution. This is
precisely the central question of this study: what is the potential use of new generation free-access
satellite images (Sentinel-2) to monitor small-scale burnt areas. To the best of our knowledge, this is the
first study that uses freely available satellite data to analyze a burnt area of relatively small dimensions
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and conclude that the results were in line with those obtained by high-resolution data acquired by
a UAV. Although more studies are needed that cover different areas with different complexities and
different vegetation covers, this study allowed us to conclude that satellite data have great potential, in
certain cases, to replace high aerial-resolution data acquired by UAVs. This would allow analyzing
post-fire areas (even small ones) at the national level, representing considerable savings in time
and money.

2. Materials and Methods

2.1. Study Area

The study area, highlighted in Figure 1, is located in the north-eastern region of Portugal within
the municipality of Sabrosa (41◦20’40.4′′ N, 7◦36’04.5′′ W), near the villages of Parada do Pinhão and
Vilarinho de Parada. This area was severely affected by a wildfire that began at 12:59 p.m. on 13 August
2017 and was reported as extinguished at 03:16 a.m. on 14 August 2017 [39]. The area is characterized by
a warm and temperate climate, an average annual temperature of 13.1 ◦C and an annual precipitation
averaging 1139 mm. July and August are the months with the highest mean temperatures (21 ◦C) and
lower precipitation (28 mm). This area was selected due to its easy accessibility and representativeness,
since the species in the area are common for the region. It is mostly populated by maritime pine,
deciduous species such as Quercus pyrenaica and Castanea sativa Mill. and some riparian species,
shrubland communities and parcels used for agriculture and silviculture purposes. Moreover, the
burned area was greater than 100 ha, which fit the majority of the fire events (93%) that occurred in
Portugal during 2017 [6].

 
Figure 1. Overview of the study area along with the fire extent and area surveyed by the unmanned
aerial vehicle (UAV).

2.2. Remote Sensing Dataset

The satellite imagery data used in this study were acquired by the Sentinel-2 MSI. Spectral data
products provided by MSI ranged from the visible to the shortwave infrared (SWIR) parts of the
electromagnetic spectrum. In total, there were 13 available spectral bands (B) at different spatial
resolutions: (1) at 10 m—B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm); (2) at 20 m—B5
(705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm) and B12 (2190 nm); and (3) at 60 m—B1
(443 nm), B9 (940 nm) and B10 (1375 nm) [28]. Data were obtained from the Copernicus Open Access
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Hub with an absence of clouds over the study area from June 2017 to October 2019. These epochs were
selected due to being related to the last available period before the fire disturbance (June, July and
August 2017), including the first cloud and smoke-free post-fire data (September 2017). The imagery
was atmospherically corrected using the Sen2Cor [40].

Regarding UAV data, the senseFly eBee (senseFly SA, Lausanne, Switzerland) was used to acquire
both RGB and multispectral imagery. A Canon IXUS 127 HS sensor with 16.1 MP resolution was used
for RGB imagery acquisition, and the Parrot SEQUOIA sensor was used for multispectral imagery
acquisition. The multispectral sensor comprised a four-camera array with 1.2 MP resolution acquiring
green (530–570 nm), red (640–680 nm), red edge (730–740 nm) and near infrared (NIR) (770–810 nm)
imagery. Its radiometric calibration was performed using a target prior to the flight. Two flights with
the same mission plan (one per sensor) were performed on 11 July 2019. The RGB flight was performed
at a 425-m height, covering an area of 230 ha, with a spatial resolution of 0.12 m. The imagery overlap
was 80% front and 60% side, for a total acquisition of 91 georeferenced images (related to a ground
system of geographic coordinates) distributed through eight strips (approximately 11 images per strip).
As for the multispectral flight, it was carried out at a 215-m height, covering approximately 150 ha,
with a spatial resolution of approximately 0.25 m; it had an 80% front overlap and 60% side overlap, for
a total acquisition of 260 images per spectral band (12 strips with approximately 22 images per strip).

A pre-processing of UAV-based imagery is required before it is ready for use. Thus, Pix4Dmapper
Pro version 4.4.12 (Pix4D SA, Lausanne, Switzerland) was used for the photogrammetric processing
of the UAV imagery, and common tie points were identified in the provided imagery according to
their geolocation and internal and external camera parameters. This enabled the computation of dense
3D point clouds that were further interpolated using inverse distance weighting (IDW) to obtain the
following orthorectified outcomes: an orthophoto mosaic from the RGB imagery, digital elevation
models (DEMs) and four radiometric bands from the multispectral imagery that could then be used
for the computation of vegetation indices. DEMs were not used in the scope of this study, and the
orthophoto mosaic was used for visual inspection only.

2.3. Data Processing and Analysis

Both satellite and UAV multispectral datasets were used to compute vegetation indices.
Sentinel-2-based vegetation indices were used to assess the fire severity and to perform the post-fire
multi-temporal analysis of the study area. Similar vegetation indices were computed using UAV data
for a single epoch, allowing a comparison of both sets of results.

2.3.1. Computation of Spectral Indices

The satellite data were used to compute the normalized burn ration (NBR) [41] as in Equation (1).
This index relates to vegetation moisture content by combining the NIR (B8) and SWIR (B12) parts of
the electromagnetic spectrum [42], and is generally accepted as a standard spectral index to assess
burn severity [41,43].

NBR =
NIR− SWIR
NIR + SWIR

(1)

Moreover, the normalized difference vegetation index (NDVI) [44] was calculated using a NIR
band (B8) and a RED band (B4) from Sentinel-2 MSI data. NIR and RED bands from the UAV-based
multispectral data were also used to compute the equivalent index, as in Equation (2). NDVI is widely
used to analyze the vegetation condition in different contexts [8].

NDVI =
NIR−RED
NIR + RED

(2)
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2.3.2. Post-Fire Multi-Temporal Analysis

The multi-temporal analysis performed in this study relied on the time series data provided by
the Sentinel-2 MSI. From the available data, a set of four epochs was selected for each year (2017 to
2019), corresponding each one to the months of June, July, August and September, with the dates of the
selected data presented in Table 1. This period was selected (June, July and August 2017) in order to
include data prior to the fire disturbance, along with the same months in following available years (2018
and 2019). Some data outside these periods were affected by clouds and had to be discarded. Moreover,
it was decided to not consider any data from October to May in order to avoid false assumptions from
the natural seasonal behavior of the species in the study area (e.g., the absence of leaves in deciduous
tree species in the winter time, and potential interference of undergrowth vegetation in winter and
spring time). The selected months assured that the trees were fully developed and that undergrowth
vegetation interference was minimal [45].

Table 1. Days corresponding to the Sentinel-2 data selected for multi-temporal analysis. June, July and
August 2017 correspond to data before the fire disturbance.

Year
Month

June July August September

2017 4 14 13 22
2018 24 29 23 12
2019 29 19 13 12

The difference normalized burn ration (dNBR), calculated by subtracting the post-fire raster data
from the pre-fire raster as in Equation (3), was used to perform the burn severity level classification as
proposed by the United States Geological Survey (USGS) [46,47], enabling an understanding not only
the severity of the burned areas, but also of unburned areas within the study region. Pre- and post-fire
NBRs were the NBR of a date before and after the fire disturbance, respectively. In burned areas, the
NBR showed higher values before the fire and lower values after the fire. The dNBR was the difference
between the NBRs of both epochs: positive values represented areas with a higher fire severity, while
values close to or lower than zero represented unburned areas and/or vegetation regrowth. For each
classified severity level, the mean NDVI value was calculated per analyzed month. The mean NDVI
value was also estimated for the whole burned area.

dNBR = PrefireNBR− PostfireNBR (3)

To evaluate the post-fire recovery, a similar analysis was performed using the difference NDVI
(dNDVI) by subtracting the NDVI of first post-fire (September 2017) from the NDVI values from each
analyzed month from 2018 and 2019. This way, positive values represented an increase in the NDVI
and, consequently, a potential recovery zone, while the inverse was true for values close to or less
than zero.

The data analysis was carried in the opensource geographical information system (GIS) QGIS
(version 3.4.12-Madeira) and functions from the Geographic Resources Analysis Support System
(GRASS GIS) [48] and from the System for Automated Geoscientific Analyses (SAGA GIS) [49] were
also used.

2.3.3. Sentinel-2 MSI and UAV Comparison

The Sentinel-2 MSI data acquired on 9 July 2019 were compared to the UAV-based multispectral
imagery (two days difference). The NDVI maps produced from both datasets were compared. The
UAV-based NDVI at its original spatial resolution (0.25 m), its resampling to half the resolution and
its resampling to same resolution as the Sentinel-2 MSI (5 and 10 m, respectively) were used for this
comparison. A total of 116 ha (~35%) of the burned area (Figure 1) was evaluated. This is precisely the
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most complex area, containing a greater variety of tree species, agricultural fields and infrastructure.
The resampling of the UAV NDVI was performed using the “r.resamp.stats” function from GRASS GIS
in QGIS, by specifying the grid cell sizes (5 × 5 m and 10 × 10 m) and assigning the aggregated mean
values to each cell. The correlation among the different NDVIs (UAV-based and satellite-based) was
performed using the “r.covar” function from GRASS GIS.

Moreover, the geospatial variability of the Sentinel-2 NDVI was compared with the UAV NDVI at
the three different spatial resolutions. The mean values of each evaluated NDVI were quantified in a
50 × 50 m grid. The size of this grid, representing five times the Sentinel-2 resolution, was selected
to smooth the transition zones of vegetation cover. Then, the local bivariate Moran’s index (MI) [50]
and the bivariate local indicators of spatial association (BILISA) [51] were applied as in Anselin [52] to
assess the spatial relationship between the NDVIs computed from both datasets. The local bivariate MI
was used to assess the correlation between a defined variable (satellite NDVI) and a different variable
in the nearby areas (UAV NDVI). BILISA was used to measure the local spatial correlation, forming
maps of clusters with similar behaviors and enabling an assessment of their spatial variabilities and
dispersion. These cluster maps were divided into four classes based on the correlation of a value
with its neighborhood: high–high (HH); low–low (LL); high–low (HL); and low–high (LH). This
analysis was made using GeoDa software (version 1.14.0) [53]. The required weights map was defined
using an eight-connectivity approach (3 × 3 matrix) and 999 random permutations were used in the
BILISA execution.

3. Results

3.1. Sentinel-2 Post-Fire Monitoring

The fire severity map calculated using the dNBI from the pre-fire NBI (August 2017) and the first
post-fire NBI (September 2017) are presented in Figure 2. From the 361 ha representing the study area,
42% (151 ha) presented a high severity, 44% (160 ha) showed a moderate severity and 38 ha (11%)
presented a low severity. Only 3% of the area (12 ha) was estimated not to have been affected by the fire
disturbance. A visual inspection of these areas allowed us to conclude that unburned and low-severity
areas represented infrastructures, or corresponded to bare soil or fields used for agriculture along with
some tree stands. Moderate severity areas included shrubland communities, agriculture terrains and
trees, while high-severity areas mostly included highly density forest stands.

 
Figure 2. Fire severity classification of the study area.

The Sentinel-2 multi-temporal data enabled us to characterize the study area throughout the
analyzed period. Figure 3 presents the pre- and post-fire NDVI (August and September 2017,
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Figure 3a,b) and the NDVI from September of the two subsequent years (2018 and 2019, Figure 3c,d).
The fire disturbance is clearly observable from the NDVI data and some forestry recovery is noticeable
in the north, north-eastern and south-western parts of the study area. This is especially distinguishable
in 2019 (Figure 3g).

 

Figure 3. Normalized difference vegetation index (NDVI) of the study area in: (a) September 2017, (b)
August 2017, (c) September 2018 and (d) September 2019. The difference NDVI (dNDVI) compared to
September 2017 in (e) August 2017, (f) August 2018 and (g) August 2019.

The mean NDVI value was extracted for each severity level and unburned area for the months of
June, July, August and September during 2017–2019, as well as for the whole area affected by the fire.
Figure 4 presents these results. When analyzing the values obtained from the whole area (Figure 4a),
the decline of NDVI values (−56%) after the fire disturbance (August to September 2017) is clearly
noticeable. From September 2017 to June 2018, a growth of 52% in the mean NDVI value was verified,
while in the homologous period in 2019 the growth was 33%. When separately analyzing each year,
the values declined each month, with less noticeable results from August to September.

 
Figure 4. Mean values of the normalized difference vegetation index (NDVI) of the study area (a) and
for each severity level (b) in the months of June, July, August and September of 2017, 2018 and 2019.
The orange dashed line marks the fire disturbance date.

This tendency is reflected when observing the mean NDVI values per severity level (Figure 4b).
The mean NDVI value of the unburned area was relatively constant, with a standard deviation of 0.03.
Similarly, the area classified as low severity presented a standard deviation of 0.06. On the other hand,
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high-severity areas presented higher post-fire increases (with a standard deviation of 0.06 considering
2018 and 2019 values, and 0.17 overall), and the mean NDVI value presented growths of 93% from
September 2017 to June 2018 and 42% from September 2018 to June 2019. For the moderate severity
areas, these increases were 39% for September 2017 to June 2018, and 32% for September 2018 to June
2019, with a standard deviation of 0.04 (0.12 for the whole period). By comparing June 2018 to June
2019, the mean NDVI values for the high-, moderate- and low-severity areas and unburned areas
presented variations of 32%, 16%, 1% and −2%, respectively.

When analyzing the post-fire dNDVIs (Figure 5) relating the differences in the first post-fire data
(September 2017), a similar trend was observed. By analyzing the mean differences per year, an overall
mean difference of 0.12 was verified in 2018, while in 2019 this difference was 0.20. In both years the
same trend was verified, with the higher differences verified in areas with high severity, followed by
moderate-severity areas. Both unburned and low-severity areas presented lower differences, with
a mean difference of 0.06 for the two classes in 2018, an increase to 0.08 in 2019 for the low-severity
areas and the same value maintained for the unburned area. The values declined from June to August
and remained similar in September. When comparing July 2018 to July 2019, an overall increase of
0.09 was verified in the mean dNDVI values, representing increases of 0.14, 0.07, 0 and −0.01 for high,
moderate, low-severity and unburned areas, respectively. A visual representation of the pre- and
post-fire dNDVIs for the two subsequent years is presented in Figure 3e–g.

 
Figure 5. Mean values of the difference normalized difference vegetation index (dNDVI) of the study
area for each severity level in the months of June, July, August and September during 2018 and 2019.

3.2. Comparison of UAV-Based and Sentinel-2 MSI Data

As mentioned in Section 2.3.3., the UAV-based multispectral data covered 116 ha of the study area.
This was used to perform a comparison between the Sentinel-2 NDVI and the UAV-based NDVI at
different spatial resolutions (Figure 6). The statistics of the different spatial resolutions of the UAV
NDVI (Table 2) were similar in their mean values, while the minimum, maximum and standard
deviation values tended to be greater for higher spatial resolutions. In regards to the NDVI computed
from the Sentinel-2 dataset, a small difference was verified for the mean value, while the minimum,
maximum and standard deviation values were similar to the UAV NDVI at a 10-m spatial resolution
(Figure 6c).
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Figure 6. Normalized difference vegetation index (NDVI) computed from the multispectral data
obtained from the unmanned aerial vehicle at 0.25 m (a) and the resamples to 5 m (b) and 10 m (c), as
well as the NDVI computed from the Sentinel-2 MSI data (d).

Table 2. Basic statistics of the normalized difference vegetation index of the different UAV-based spatial
resolutions and the Sentinel-2.

Num. of Pixels Minimum Mean Maximum STD

UAV 0.25 m 1690 × 104 -0.39 0.51 0.99 0.23
UAV 5 m 4.57 × 104 -0.10 0.51 0.93 0.21
UAV 10 m 1.14 × 104 -0.09 0.51 0.91 0.20
Sentinel-2 1.14 × 104 -0.06 0.49 0.92 0.20

The confusion matrix presented in Table 3 shows the correlation between all NDVIs. All resolutions
of the UAV-based NDVIs showed a good correlation and increased as the spatial resolution became
closer to the satellite resolution.

Table 3. Correlation matrix between the normalized difference vegetation index of the different
UAV-based spatial resolutions and the Sentinel-2.

UAV 0.25 m UAV 5 m UAV 10 m Sentinel-2A

UAV 0.25 m 1.00 - - -
UAV 5 m 0.85 1.00 - -
UAV 10 m 0.91 0.93 1.00 -
Sentinel-2 0.84 0.90 0.93 1.00

Geospatial correlation was conducted using a 50 × 50 m grid, resulting in a total of 479 cells.
The mean value of the satellite NDVI was compared with each UAV resolution, and the results are
presented in Figure 7. The MI value for all approaches was 0.634. Generally, all approaches presented
a similar behavior in the BILISA relationships, where 59% of the cells presented a p-value lower than
0.05: 81% of cells presented an HH or LL correlation (39.3% and 41.4%, respectively), 11% presented an
LH correlation and only 8% presented an HL correlation.
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Figure 7. Mean value of the normalized difference vegetation index (NDVI) computed using the
multispectral data obtained from an unmanned aerial vehicle (UAV) at 0.25 m (a) and the resamples to
5 m (b) and 10 m (c), as well as the NDVI computed from the Sentinel-2 Multispectral Instrument (MSI)
data (d) in the 50 × 50 m grid. Bivariate local indicators of spatial association (BILISA) cluster maps
between the NDVI map from Sentinel-2 and the UAV-based NDVIs at different spatial resolutions of
0.25 m (e), 5 m (f), and 10 m (g). Associations with a p-value < 0.05 are highlighted with a black border.

4. Discussion

This study evaluates the usage of free-access multi-temporal Sentinel-2 data to perform post-fire
monitoring over an area of 361 ha in the north-eastern Portugal. The dNBI (Figure 2) was used to
assess fire severity, which enabled estimation and delineation of the area affected per severity level.
Both high and moderate severity classes represented the majority of the burned area (a total of 86%,
corresponding to 311 ha), demonstrating a high incidence of fire disturbance in the forest stands
present in the area. Moreover, both classes also presented the lowest post-fire NDVI values (Figure 4,
September 2017). The same trend has been verified by other studies, noting that values decrease as
fire severity rises [32]. On the other hand, unburned and low-severity areas were mostly located on
the perimeter of the fire disturbance. These areas had easier access, due to the existence of roads
and of priority protection by the authorities due to the proximity to settlements and infrastructures.
These results are corroborated by the mean NDVI value of the multitemporal analysis (Figure 4),
which shows similar values to the pre-fire data in the low-severity and unburned areas along with
lower NDVI differences after the fire event (Figure 5). An example of a riparian stand that resisted
fire disturbance is shown in Figure 8. On the other hand, areas classified with a high or moderate
fire severity presented higher difference in the NDVI values during the analyzed period. This can
be justified by the resprouting of some species and by the regeneration of others, as is the case with
maritime pine, which has physical characteristics that allow its survival (thick bark and reproduction
procedures) [54]. Moreover, the trend of NDVI values declining over the months can be justified by the
presence of some undergrowth cover that dries out due to the absence of precipitation and increase of
air temperature [55].
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Figure 8. Overview of a stand that resisted the fire disturbance. Its location in the study area is (a)
marked with a white cross and (b) visualized in the UAV-based orthophoto mosaic. Data from July 2019.

The UAV-based multispectral imagery acquired in the 116 ha of the study showed similar results
when compared to the Sentinel-2 data. These findings have already been verified for WordView-2
1-m spatial resolution data [14], but never for Sentinel-2. In fact, for this type of application, the
Sentinel-2 proved to be a more cost-effective approach that was able to cover wider areas, providing a
short revisit time (five days) and delivering a wider spectral range. UAV-based multispectral data
acquisition, on the other hand, can provide similar or higher temporal resolutions, but in a more
time-consuming and expensive way, with costs increasing significantly for bigger areas [56]. This
is an issue, since at least two human resources are needed who will make multiple trips and spend
several days of work in order to meet a similar revisit time [57]. Furthermore, multiple batteries are
needed to cover a considerable area. Fernández-Guisuraga et al. [14] used the Parrot SEQUOIA for
UAV-based data acquisition during the post-fire monitoring of a 3000-ha area and faced several issues
in the process. The overall procedure was time-consuming and computationally demanding, with data
acquisition taking two months to conduct (resulting in a total of 100 h), and further data processing
taking approximately 320 h. Some of these data then had to be discarded due to sensor malfunctions
during the flights, in addition to radiometric anomalies found in the acquired images and further
data storage problems. The experiment carried out by Fernández-Guisuraga et al. [14] allowed the
suitability of UAV-based multispectral imagery to be determined when more information in terms
of spatial variability in heterogeneous burned areas is needed. Other authors have explored fire
severity measuring using UAV-based RGB imagery [17], but some limitations that directly impact its
accuracy have been found such as the influence of canopy shadows, photogrammetric errors in canopy
modelling and inconsistent illumination across the imagery. However, all remaining applications
in terms of fire monitoring can be accomplished using satellite imagery, including those provided
by Sentinel-2 MSI. Despite the great effectiveness of the satellite data for post-fire monitoring at a
local/regional scale, some applications may require a significantly higher spatial resolution, making
UAVs necessary, as is the case in individual tree monitoring [58], which cannot be conducted with
satellite data with a decameter resolution or in real-time fire monitoring applications [12]. Thus, the
complementarity of the two types of data are proven.

5. Conclusions

In this article, the potential of the use of satellite optical time series images from the ESA Copernicus
Programme was addressed for monitoring relatively small areas affected by forest fires. In areas with
sizes up to the one presented in this study (~400 ha), the use of small and very flexible UAVs for
the analysis of post-fire vegetation recovery would be perfectly possible. However, the use of UAVs
would result in a more laborious and expensive UAV tasks, requiring several visits to a field. Thus,
in this study, Sentinel-2 MSI data were used to compute NBRs before and after fire disturbances in
order to measure their extents and severity using difference NBR (dNBR). Subsequently, NDVI was
also calculated to assess forestry recovery in the study region from 2017 to 2019. The NDVI from the
Sentinel-2 MSI data was compared with UAV-based high-resolution data at different spatial resolutions
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(0.25, 5 and 10 m) to access their similarities. The results demonstrated the effectiveness of satellite data
for post-fire monitoring, even at a local scale. The Sentinel-2 MSI data presented a similar behavior
to the UAV-based data in assessing burned areas. The confusion matrix, calculated for Sentinel-2
and UAV, showed high correlations between all NDVIs (i.e., 0.83, 0.90 and 0.93 for 0.25, 5 and 10 m
spatial resolutions, respectively). Furthermore, the median and extreme values were very similar,
differing no more than 0.02 for the mean, 0.04 for the minimum and 0.01 for the maximum. Thus, the
availability of multi-temporal Sentinel-2 MSI data with frequent revisit times enables the severity of
fire disturbances to be identified and, in a post-fire context, for the recovery of forests to be monitored
and their evolutions observed when compared to pre-fire vegetation status. In this way, Sentinel-2 data
can be automatically used to monitor burned areas. However, this approach should be evaluated in
other areas with different fire extensions and vegetative covers, as well as in broader post-fire periods.
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Abstract: Global mean sea level has been rising at an increasing rate, especially since the early 19th
century in response to ocean thermal expansion and ice sheet melting. The possible consequences of
sea level rise pose a significant threat to coastal cities, inhabitants, infrastructure, wetlands, ecosystems,
and beaches. Sea level changes are not geographically uniform. This study focuses on present-day
sea level changes in the Black Sea using satellite altimetry and tide gauge data. The multi-mission
gridded satellite altimetry data from January 1993 to May 2017 indicated a mean rate of sea level
rise of 2.5 ± 0.5 mm/year over the entire Black Sea. However, when considering the dominant cycles
of the Black Sea level time series, an apparent (significant) variation was seen until 2014, and the
rise in the mean sea level has been estimated at about 3.2 ± 0.6 mm/year. Coastal sea level, which
was assessed using the available data from 12 tide gauge stations, has generally risen (except for
the Bourgas Station). For instance, from the western coast to the southern coast of the Black Sea,
in Constantza, Sevastopol, Tuapse, Batumi, Trabzon, Amasra, Sile, and Igneada, the relative rise
was 3.02, 1.56, 2.92, 3.52, 2.33, 3.43, 5.03, and 6.94 mm/year, respectively, for varying periods over
1922–2014. The highest and lowest rises in the mean level of the Black Sea were in Poti (7.01 mm/year)
and in Varna (1.53 mm/year), respectively. Measurements from six Global Navigation Satellite System
(GNSS) stations, which are very close to the tide gauges, also suggest that there were significant
vertical land movements at some tide gauge locations. This study confirmed that according to the
obtained average annual phase value of sea level observations, seasonal sea level variations in the
Black Sea reach their maximum annual amplitude in May–June.

Keywords: Black sea; sea level change; tide gauge; satellite altimetry; GNSS

1. Introduction

Sea level changes occur at various time scales. Throughout geologic eras, sea levels have changed
drastically many times, primarily following tectonic processes and glacial cycles [1]. During the Last
Glacial Maximum (LGM), sea levels were about 130 m lower than today, because of the large amount
of water held by glaciers and ice sheets [2]. After the major deglaciation (~21,000 years ago), sea levels
have remained almost stable over the last 2–3 millennia [3,4]. However, with the beginning of the
industrial age (late 18th to early 19th century), global sea level rise has accelerated [5–9], triggered by
abrupt changes in temperature, ice cover, precipitation, etc., rather than being part of a natural cycle.
Furthermore, if considering possible greenhouse gas concentration scenarios, by the end of the 21st
century, global mean sea levels may rise in the range of 43 cm to 84 cm [10].

Regional sea level changes deviate substantially from that of the global mean, and some regions
even reveal a condition opposite that of the global trend [11]. In this case, in addition to the global
sea level change and its causes, it is essential to understand the regional variability in rates of this
change (i.e., its evolution with time and space and its drivers) in order to assess the potential impacts
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of sea level rise in coastal areas [12]. General forcing for regional (or local) sea level patterns can be
basically linked to (1) surface warming and cooling of the ocean, (2) exchange of freshwater with the
atmosphere and land through evaporation, precipitation, and runoff, and (3) changes in the surface
wind stress [11]. The complex response of the ocean to these forcing mechanisms causes changes in
ocean circulation (hence density) and mass transport.

Sea level rise poses a significant threat to areas with low topography such as coasts, islands, and
deltas. From the past to present, coastal regions have always attracted high interest in terms of their
social and economic impacts [13]. Increasing human migration to these regions has made the possible
consequences of sea level rise even more important. Flooding, inundation, storm, erosion, habitat loss,
ecosystem damage, and contamination of underground water are the most damaging/catastrophic
effects of sea level rise in coastal areas. The importance of these effects depends on the character of the
coastal environment. Nevertheless, it is clear that some of them can threaten human life and coastal
installations [10,14–17]. Eventually, in the near-future, rising sea levels and potentially more intense
storms will exacerbate possible consequences, and more frequent extreme sea level events will occur.
Therefore, effective management and sustainable use of coastal areas need multidisciplinary studies
about the reasons and effects of sea level rise.

Tide gauges are one of the oldest instruments for measuring sea level changes [8]. A tide gauge
measures the sea level relative to a fixed point on land, and therefore vertical movement of the point
affects sea level measurements. It is necessary to perform geodetic measurements to determine sea level
changes, independent of land movements at tide gauge stations. Ideally, Global Navigation Satellite
System (GNSS) equipment is attached directly to the tide gauge or located nearby [18]. In addition
to this, a network consisting of tide gauge stations that are referenced to the same datum and have
a good distribution is needed to monitor long-term sea level changes. With the development of
satellite systems, satellite altimetric techniques have been used for sea level measurements. Since 1993,
the modern satellite altimetry record has provided accurate measurements of sea surface height with
near-global coverage within latitudes of about 60◦ N and S. This technique is based on high precision
measurement of the distance between the satellite and sea surface. Sea surface height is achieved by
combining this information with precise satellite positional data [19].

The Black Sea in southeastern Europe (Figure 1), which is semi-enclosed, has different characteristics
from other seas. It is an isolated deep body of water (average depth ~1200 m) with a restricted saltwater
exchange with the Mediterranean Sea through the Turkish Straits System (the Bosporus Strait–the Sea
of Marmara–the Dardanelles Strait). Unlike the Mediterranean Sea (a concentration basin), the Black
Sea is an estuarine basin fed by major European rivers [20]. Additionally, another feature supported
by these conditions is that the Black Sea has a specific density stratification separated by a permanent
halocline [21]. Due to its geographical location, the Black Sea has been of immense strategic importance
over the centuries. Its coasts have favorable natural conditions in terms of ecosystem, warm climate,
fertile soils, etc., so from antiquity to the present, it has been a desirable region for human habitation [22].
Consequently, the Black Sea and its coastal zone are very sensitive to climate change and anthropogenic
forcing, and thus is an area that has attracted the considerable interest of scientists.
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Figure 1. Black Sea with its location. Topographic data were used from the ETOPO1 1 Arc-Minute
Global Relief Model bedrock data [23].

Coastal erosion and saltwater intrusion are major threats for the Black Sea coasts [24–27]. It is
known that an important part of the most critical coastal erosion areas in Europe is the Black Sea
coastline [28], and in particular, some coastal zones such as those in Bulgaria, Romania, and Turkey
have far less protection than in other places.

Both tide gauge and altimetry observations show that sea level trends in the Black Sea vary over
time. However, from the beginning of available tide gauge observations in the Black Sea, that is
from the 1860s to the first decade of the 21st century, on average, an increase in sea level has been
generally observed, with alternating periods of rise and fall. The Black Sea level has increased by
20 cm in the last 100 years [29]. A rise in the mean sea level of 1.83 ± 0.7 mm/year from the mid-1920s
to about 1985 was mentioned in [30,31]. Forty-seven tide gauge observations, which were collected
along the Black Sea coast except for the Anatolian coast before the year 1985, were evaluated by
Boguslavsky et al. [32]. Considering the effects of continental discharge, atmospheric pressure, and
density distribution, they asserted that the Black Sea mean level rate was 1.6 mm per year during
the observational period. A rate of 2.2 mm/year from 1960 to the early 1990s was also determined
by Tsimplis and Baker [33]. A rate of increase in the Black Sea level of 27.3 ± 2.5 mm/year for a
period of six years (1993–1998), determined from satellite altimetry and tide gauge data, was estimated
in [34]. Sea level change in the Black Sea obtained from along-track altimetry data indicated that sea
level rose at a rate of 13.4 ± 0.11 mm/year over 1993–2008; in the western and eastern regions, this
rate became 14.2 ± 0.16 and 12.8 ± 0.12 mm/year, respectively [30]. In the same study, the in situ
and satellite results were compared and correlation coefficients ranging 0.4 to 0.7 were calculated
between the tide gauge and altimeter measurements. Minimum values were obtained for tide gauges
at the western and eastern coasts, whereas maximum ones were at the northern and southern coasts.
The altimeter-derived Black Sea levels and corresponding independent in situ measurements have also
been compared in other studies. Reasonable correlations between the data from tide gauges and the
matching TOPEX/Poseidon along-track passes in the period 1992–1996 were found by Stanev et al. [35],
which were 0.76, 0.68, 0.65, and 0.51 at the Tuapse, Bourgas, Varna, and Nesebar Stations, respectively.
From the comparison of data over 1992–1998, the following correlation coefficients were achieved by
Goryachkin and Ivanov [31], as referred to in Ginzburg et al. [30]: 0.93 for Sevastopol, 0.92 for Yalta,
and 0.77 for Tuapse. High correlation coefficients varying from 0.66 to 0.89 at the tide gauge stations
along the Black Sea coast (except for Batumi) have also been reported for the changing periods during
1993–2014 using gridded altimetry data [36].
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Regarding coastal sea level changes, the highest change was recorded at the Poti tide gauge
station (8.2 mm/year) along the Black Sea coast, whereas the lowest change was recorded at Kerci
tide gauge station (1.3 mm/year) between 1860 and 1990 [37]. While at the Varna, Constantza, Sulina,
Odessa, and Sevastopol Stations, the rates of sea level rise were 3.3, 2.7, 3.7, 7.1, and 3.0 mm/year,
respectively; the mean subsidence rates were about 5.2, 1.1, and 6.5 mm/year at Odessa, Sevastopol
and Poti, respectively. At Samsun Station, the sea level fell at a rate of −6.9 mm/year from 1963 to 1977.
In order for a comparison with tide gauge records, the altimetry time series at the closest grid points to
the tide gauge locations along the Black Sea coast were analyzed over the common data periods by
Avsar et al. [38]. For stations with long-term records such as Poti and Tuapse, the rates of sea level
changes from the satellite altimetry and tide gauges showed good agreement, and by considering the
vertical land motion, the results were greatly improved. Kubryakov and Stanichnyi [39] asserted that
due to the cyclonic rim current intensification for the period of 1992–2005, the sea level was rising
1.5–2 times faster in areas close to the shore than in the offshore (8–9 mm/year versus 4.5–6 mm/year).
The spatial distribution of the Black Sea level trends over 1993–2014 showed that rates of sea level
change during this period varied from 0.2 to 5.0 mm/year [40,41]. The southeastern region indicated a
faster rise than in the other parts. Kubryakov et al. [41] pointed out that the spatial differences observed
in the sea level rise were again related to basin dynamics on account of the intensification of cyclonic
wind curl (3.2–4 mm/year in the coastal areas versus 1.5–2.5 mm/year in the offshore area).

In order to estimate and model regional sea level change accurately, it is important to detect sea
level forcing mechanisms. According to Volkov and Landerer [42], the forcing of sea level in the Black
Sea is dominated by the basin’s freshwater budget (river + precipitation inputs > evaporation output)
and water exchange through the Bosporus Strait as well as depth-integrated changes in seawater
density. This means that changes in the water balance are the main factors for sea level variability
in the Black Sea. First, it requires an investigation of long-term total sea level change in the Black
Sea. This study presents an analysis of sea level changes in the Black Sea using satellite and in situ
data. It aims to provide a reliable estimate of the present-day sea level rise using the data from tide
gauge stations along the Black Sea coast and satellite altimetry. This study including information
on absolute sea level change obtained from satellite data in the Black Sea, contributes to the relative
sea level estimates by Avsar and Kutoglu [43]. Sea level observations from satellite altimetry as
well as tide gauge stations have been used to infer trends in changes in Black Sea levels and their
periodicity. In addition, in order to determine vertical land motion along the Black Sea coast, the data
of six continuous GNSS stations, which are nearly co-located with the available tide gauge locations,
were used in this study. Thus, the contribution of land motion to the coastal sea level change was
also investigated.

2. Methodology and Data

2.1. Method: Harmonic Analysis

In the study, first, outlier detection was performed using the 3σ-rule. Then, monthly averaged
time series of the sea level observations were obtained to provide concurrent analysis. The harmonic
analysis method is preferred for sea level time series analysis, as suggested in Avsar et al. [38] and
Feng et al. [44]. Harmonic analysis describes periodically recurrent phenomena and allows for the
analysis of sinusoidal variation with time. Sea level changes have a periodic character. In this context,
sea level time series exhibit a strong seasonality as well as a linear trend [45]. Accordingly, the seasonal
variation of sea level time series can be determined by harmonic analysis, which is expressed as the
sum of a number of sine and cosine terms. Simple linear regression can be used to determine the
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long-term trend in the sea level time series. So, a model including seasonal components (annual and
semi-annual harmonics) and linear trend was used in this study [44]:

M(t) = M(t0) + v(t− t0) +
2∑

k=1

Ak cos(ωk(t− t0) +ϕk) + ε(t) (1)

where M(t) is the sea level time series; t is the time; t0 is the beginning time (for example for altimetry:
1 January 1993); M(t0) is the mean sea level at t0; v is the rate of sea level change (linear trend); k = 1
is the annual signal; k = 2 is the semi-annual signal; A is the amplitude; ω is the angular frequency;
ϕ is the phase; and ε(t) is the unmodelled residual term. Here, in order to estimate trend, phase, and
amplitude, the least squares method was employed [46]. In order to determine the vertical velocities of
the GNSS stations in this study, the same approaches as for the sea level changes were used.

2.2. Satellite Altimetry Observations in the Black Sea

Satellite altimetry measurements have improved our understanding of how sea levels are changing
regionally [47]. The Data Unification and Altimeter Combination System (DUACS) is one of the
processing systems used to produce altimetry sea level products. Here, along-track (L3) and gridded
(L4) sea level products are processed over different regions and in near real time (NRT) and delayed
time (DT) conditions [48]. These products were previously distributed by the French Archiving,
Validation and Interpretation of Satellite Oceanographic Data (AVISO) [49], and are now produced and
distributed as part of the Copernicus Marine Environment Monitoring Service (CMEMS) [50]. In this
study, multi-mission (gridded) satellite altimetry data were used to investigate mean sea level change
throughout the Black Sea. These grid data provide more acceptable sampling achieved by pooling
measurements in a given range of latitudes and longitudes in comparison to the along-track data [51].
Additionally, the merged datasets enable high resolution sea surface height measurements [49].

The altimetry dataset in this study was daily sea surface heights from 1 January 1993 to 15 May
2017 for the Black Sea, provided by the CMEMS. These data in delayed-time are gridded (1/8◦ by
1/8◦) sea level anomalies (SLA)s computed with respect to a twenty-year 2012 mean. SLAs have been
estimated by optimal interpolation, merging the measurements from different altimeter missions:
Jason-3, Sentinel-3A, HY-2A, Saral/AltiKa, Cryosat-2, Jason-2, Jason-1, TOPEX/Poseidon, ENVISAT,
GFO, and ERS1/2. Necessary geophysical (solid earth, ocean and pole tides, ocean tide loading effect,
sea state bias, and inverse barometer response of the ocean) and atmospheric (ionosphere, and dry/wet
troposphere effects) corrections have been applied to the dataset by the data center [48]. Further
information on the data can be found in Copernicus [50].

The Black Sea area comprises 3249 altimetric grid points in total. For the evaluation, at each grid
point, monthly averages were computed from the daily altimetry data, and then the monthly mean sea
level changes over the entire Black Sea were obtained by averaging spatially. Figure 2 shows the evolution
over time of the Black Sea level based on the monthly averages from January 1993 to May 2017.
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Figure 2. Monthly sea level time series from January 1993 to May 2017.

2.3. Tide Gauge Records along the Black Sea Coast

While satellite altimetry data have been available since early 1993, the availability of long-term
data at many tide gauge stations is still one of the most important reasons for using these stations in
sea level measurements. The Permanent Service for Mean Sea Level (PSMSL) [52] is a global data
center that is responsible for the collection, publication, analysis, and interpretation of sea level data
from global tide gauge station networks like the Global Sea Level Observing System (GLOSS) Core
Network [53]. Sea level monitoring in Turkey is carried out by the General Directorate of Mapping
(GDM) within the Turkish National Sea Level Monitoring System (TUDES) [54] stations that are in
accordance with the GLOSS standards. Nevertheless, note that the amount of obtainable data from the
tide gauge stations is limited. The poor spatial distribution of tide gauge stations along the coasts is
a common problem for some areas including the Black Sea. Tide gauge stations have different data
quality and length of records and inhomogeneous geographical distribution, and most of the data
records suffer from gaps due to reasons such as equipment failure, power failure, etc., at the stations.

In this study, data from 12 tide gauge stations (having different data length) on the Black Sea
coast were used. Seven tide gauge stations (Poti, Batumi, Sevastopol, Tuapse, Varna, Bourgas,
and Constantza) were chosen from the PSMSL and another five (Amasra, Igneada, Trabzon, Sinop,
and Sile) were from the TUDES network. Figure 3 shows the locations of all the stations in this
study, and an overview of the tide gauges is given in Table 1. The Revised Local Reference (RLR)
(a common datum performed by the PSMSL for each tide gauge station is approximately 7000 mm
below mean sea level to avoid negative numbers in a sea level time series) data from the PSMSL are the
monthly averaged time series, spanning from 65 to 140 years in the period of 1874–2013. The TUDES
data are released every 15 min in the Turkish National Vertical Control Network-1999 (TUDKA-99)
datum. The TUDKA-99 datum was defined based on the International Terrestrial Reference Frame-1996
(ITRF96). In the study, the monthly averaged time series of the TUDES data were derived at each
station. The record with the longest time period among these stations extends to mid-2001 at Amasra.
The sea level time series from some tide gauge stations have observation gaps, for example, nearly
13.4% of the records at Batumi and nearly 13.7% of those at Bourgas are void (see Table 1). Figure 4a–c
show the sea level time series at the Poti, Bourgas, and Igneada tide gauges, respectively.
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Vertical Coordinate Time Series of Global Navigation Satellite System (GNSS) Stations near the Tide
Gauge Stations

Along the Black Sea coast, the number of GNSS receivers/stations attached directly to the tide gauge
or located nearby are very sparse. Thus, the GNSS stations (Figure 3) used in this study were chosen
by considering their proximity to the tide gauges (see Table 3). Data were used from six GNSS stations,
which are nearly co-located (located within less than 3 km) at a tide gauge station along the Black Sea
coast. The vertical displacement time series of three (TUAP, VARN, and BUR3) of these GNSS stations
were provided by the Nevada Geodetic Laboratory (NGL) [55]. Another three stations (TRBN, SINP, and
SLEE) are continuous GNSS stations from the Turkish National Permanent Real Time Kinematic Network
(TUSAGA-Active) [56]. Their vertical coordinate time series from 2009 to 2014 were obtained (data of
the related stations were processed using the GAMIT/GLOBK software in Avsar et al. [36]). Note that
the TUSAGA-Active GNSS network is in ITRF96, while the positions provided from the NGL are in the
International GNSS Service (IGS)14 reference frame based on the ITRF2014.

Figure 3. Locations of the tide gauges and Global Navigation Satellite System (GNSS) stations used in
the study.

Table 1. General information on all the tide gauge stations used in this study.

Tide Gauge Station
(Country)

Location
Data Period Data Gaps (%)

Latitude Longitude

Poti (Georgia) 42◦10′ N 41◦41′ E Jan. 1874–Dec. 2013 ~5.7
Batumi (Georgia) 41◦38′ N 41◦42′ E Jan. 1882–Dec. 2013 ~13.4

Sevastopol (Ukraine) 44◦37′ N 33◦32′ E Jan. 1910–Dec. 1994 ~3.1
Tuapse (Russia) 44◦06′ N 39◦04′ E Jan. 1917–Dec. 2011 ~1.0
Varna (Bulgaria) 43◦11′ N 27◦55′ E Jan. 1929–Dec. 1996 ~4.9

Bourgas (Bulgaria) 42◦29′ N 27◦29′ E Jan. 1929–Dec. 1996 ~13.7
Constantza (Romania) 44◦10′ N 28◦40′ E Jan. 1933–Dec. 1997 ~5.0

Amasra (Turkey) 41◦45′ N 32◦24′ E Jun. 2001–Dec. 2014 ~9.4
Igneada (Turkey) 41◦53′ N 28◦01′ E Jun. 2002–Dec. 2014 ~5.3
Trabzon (Turkey) 41◦00′ N 39◦44′ E Jul. 2002–Dec. 2014 ~0.7

Sinop (Turkey) 42◦01′ N 35◦09′ E Jun. 2005–Dec. 2014 0
Sile (Turkey) 41◦11′ N 29◦37′ E Jul. 2008–Dec. 2014 0
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Figure 4. Three examples of the relative mean sea level changes at tide gauge stations along the Black
Sea coast: (a) Poti from the Permanent Service for Mean Sea Level (PSMSL); (b) Bourgas from the
PSMSL; (c) Igneada from the Turkish National Sea Level Monitoring System (TUDES).

3. Sea Level Changes in the Black Sea

In order to minimize the impact of low-frequency variability, records longer than 50 years should
be used for long-term sea level trend estimates [8]. However, as mentioned before, although tide
gauges have a good record length, they have poor spatial distribution, and only measure changes in
sea level relative to the land to which they are attached. Conversely, although satellite altimetry has a
short time period, it enables basin-averaged sea level change to be determined. Sea level data in the
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Black Sea (especially for TUDES tide gauge stations) are mostly short-term, but nevertheless the time
series indicate trends and seasonal fluctuations.

3.1. Long-Term Trend and Seasonal Variation from Satellite Altimetry Observations

The linear trend and seasonal components (annual plus semi-annual) of sea level variability in the
basin average in the Black Sea were obtained through a least-squares fit of Equation (1). Here, in order
to examine the long-term variability of the time series, the seasonal components were removed from
the monthly values by simple subtraction of the estimates obtained by least squared fitting of seasonal
sinusoids with annual and semi-annual periods (Figure 5a). The results show that the sea level in the
Black Sea has risen at a rate of about 2.5 ± 0.5 mm/year between January 1993 and May 2017. In addition,
the other dominant periodic behaviors (after removing seasonal cycles) in the altimetry time series were
determined using Cycles Analysis & Timeseries Software (CATS) v1.0 [57]. Figure 5b demonstrates the
dominant cycles over the Black Sea level time series from January 1993 to May 2017. As seen in the figure,
the period of January 1993–December 2014 indicates a more apparent trend for this sea level time series.
An average trend of 3.2 ± 0.6 mm/year over the Black Sea was determined for the period 1993–2014.

Figure 5. Monthly sea level time series in the Black Sea from 1993 to 2017 from the satellite altimetry
data: (a) Non-seasonal sea level time series with its linear fitting. (b) Dominant cycles (red) over the
detrended and non-seasonal sea level time series (black).
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The satellite altimetry observations from 1993 to 2014 yielded a standard deviation of 7.5 cm for sea
level anomalies in the Black Sea. The mean sea level anomaly in 2010 was about 20 cm above the 1993
average. This was the highest annual average in the satellite record from 1993 to the present, with the
record high sea level anomalies occurring in March 2010, January 2011, and April 2013. Moreover,
satellite altimetry data show there have been some strong fluctuations of sea level in the Black Sea; the
difference between the mean sea level anomalies from December 2009 to January 2010 was about 15 cm.

For the seasonal components of the sea level variations in the Black Sea, the average annual and
semi-annual amplitudes were detected as 38.02 ± 6.01 mm and 23.74 ± 6.01 mm, respectively, from the
satellite altimetry. The average annual and semi-annual phases were 147.38 ± 0.17◦ (~4.9th month) and
338.04 ± 0.26◦ (~11.3rd month), respectively. Accordingly, the annual cycle of the sea level variations
measured by the altimetry attained its maximum value in about May. Many studies have reported
that the mean sea level reaches the highest levels in May–June in the Black Sea [37,58–60]. Our results
confirm this condition.

3.2. Coastal Sea Level Changes from Tide Gauge Records

In the evaluation, the data gaps were excluded, and the data periods of the tide gauges were
rearranged (see Table 2). However, data with less than four consecutive missing months were used
through linear interpolating. Eventually, Equation (1) was used in the analysis of the sea level time
series from the tide gauge stations. As an example, the trend and harmonic model of the Amasra tide
gauge station are shown in Figure 6.

Figure 6. Trend and harmonic model of ~10-year sea level time series at the Amasra tide gauge station.

After removing seasonal variations, the trend of each tide gauge station along the Black Sea
coast was derived from the varying record lengths considering the data gaps. The linear variation
with time and seasonal components of the observed sea level in the tide gauge stations are given
in Table 2. Accordingly, the results show that the rates of the sea level change vary from coast to
coast. Consequently, nearly all the tide gauge stations (except for Bourgas) indicated rising sea levels.
The greatest rise along the Black Sea coast was recorded in Poti (7.01 mm/year), and the lowest ones in
Varna (1.53 mm/year) and Sevastopol (1.56 mm/year). The distribution of the data gaps in the Bourgas
sea level time series (see Figure 4b) did not allow a reliable trend to estimate for this station, despite the
interpolation. In addition, Sinop Station showed no significant sea level change. The non-significant
results may be related to the short records, since trend estimations are sensitive to the length of the
record. It would be unsafe to detect long-term trends from the short datasets [37].

As shown in Table 2, the semi-annual amplitudes of coastal sea changes were about 2–3 times
smaller than the annual amplitudes. Seasonal (annual and semi-annual) sea level change signals
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generally reach their maximum values in May–June. However, the maximum annual amplitude of the
sea level change at Amasra occurs in April, nearly one month earlier than those of the other stations.

Table 2. Trend and seasonal components of coastal (relative) sea level changes at the tide gauge stations
along the Black Sea coast (the longest available data periods of the tide gauges were used for the analysis).

Tide Gauge
Station

Data Period
Trend

(mm/year)

Annual Semi-Annual

Amplitude
(mm)

Phase
(◦)

Amplitude
(mm)

Phase
(◦)

Poti Aug. 1922
Dec. 2002 7.01 ± 0.12 77.42 ± 4.05 157.76 ± 0.05 35.86 ± 4.05 26.52 ± 0.11

Batumi Jan. 1925
Dec. 1996 3.52 ± 0.15 78.93 ± 4.43 158.48 ± 0.06 35.19 ± 4.43 22.01 ± 0.13

Sevastopol Sep.1944
Dec. 1994 1.56 ± 0.22 79.41 ± 4.58 139.65 ± 0.06 30.07 ± 4.59 16.25 ± 0.15

Tuapse Jan. 1943
Dec. 2011 2.92 ± 0.14 70.42 ± 3.85 142.41 ± 0.06 37.00 ± 3.85 29.78 ± 0.10

Varna Jan. 1926
Nov. 1961 1.53 ± 0.48 69.54 ± 6.42 152.73 ± 0.09 27.38 ± 6.41 344.06 ± 0.23

Bourgas Feb. 1981
Jan. 1996 −7.52 ± 1.33 67.23 ± 8.13 141.78 ± 0.12 20.84 ± 8.12 19.83 ± 0.39

Constantza Jan. 1945
Dec. 1979 3.02 ± 0.46 78.14 ± 6.55 127.94 ± 0.08 15.74 ± 6.55 26.34 ± 0.42

Amasra Jun. 2001
Feb. 2011 3.43 ± 1.42 30.69 ± 5.71 104.70 ± 0.18 3.47 ± 5.66 340.66 ± 1.63

Igneada Jun. 2002
Dec. 2014 6.94 ± 2.18 49.16 ± 11.17 130.14 ± 0.23 16.01 ± 11.22 50.66 ± 0.70

Trabzon Jul. 2002
Dec. 2014 2.33 ± 1.75 62.77 ± 8.93 153.45 ± 0.14 27.09 ± 8.93 17.09 ± 0.33

Sinop Jun. 2005
Dec. 2014 0.43 ± 2.88 49.04 ± 11.26 135.82 ± 0.23 29.53 ± 11.28 12.06 ± 0.38

Sile Jul. 2008
Dec. 2014 5.03 ± 4.84 62.92 ± 12.84 128.86 ± 0.20 22.90 ± 12.84 49.11 ± 0.56

In many studies, the results showed that tide gauge records along the Black Sea coast were in
reasonable agreement with the satellite altimeter observations [30,31,35,36]. Nevertheless, in order to
detect absolute sea level changes in the tide gauge locations, the vertical land motions obtained from
GNSS measurements should be separated from sea level records [18,36,38]. In this study, unfortunately,
the data periods of the GNSS time series did not exactly coincide with those of the tide gauges (see Table 3).
However, the GNSS-derived estimates can give information on the recent land motions along the Black
Sea coast. Here, the vertical coordinate time series from the nearby GNSS stations were analyzed using
Equation (1), and thus the vertical velocities of these six GNSS stations were estimated. Accordingly,
for the Tuapse, Varna, Bourgas, Trabzon, Sinop, and Sile tide gauge locations, the GNSS-derived vertical
land motions are presented in Table 3, along with the distances between the tide gauge and related GNSS
stations. The results in Table 3 show land subsidence motions at the Tuapse, Varna, Trabzon, and Sile
locations. On the other hand, land uplift motions were seen at the Bourgas and Sinop locations. Especially
for Sile, the high relative sea level rise may result from the land subsidence.
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Table 3. Vertical land motions at the tide gauge locations along the Black Sea coast.

Tide Gauge
Station

GNSS Station
Data Period Distance

(km)

Vertical Velocity
(mm/year)

Tide Gauge GNSS

Tuapse TUAP 1943–2011 2015–2017 0.05 −1.7 ± 0.5
Varna VARN 1926–1961 2005–2017 2.1 −1.1 ± 0.1

Bourgas BUR3 1981–1996 2009–2014 1.5 4.2 ± 0.2
Trabzon TRBN 2002–2014 2009–2014 2.8 −1.9 ± 0.3

Sinop SINP 2005–2014 2010–2014 0.8 6.2 ± 2.5
Sile SLEE 2008–2014 2009–2014 1.2 −3.0 ± 0.6

4. Discussion

In the Black Sea, having a limited interaction with the Atlantic Ocean, there are strong temporal
mass variations due to its wide drainage area covering a large part of Europe and Asia, and sea level
change is closely related to its hydrological balance. The results of this study confirmed that the
Black Sea level has continued to rise over the near satellite altimetry era (1993–2017). In this context,
monitoring sea level change in the Black Sea is critical for determining its long-term variability and
mitigating its negative impacts.

Figure 7 focuses on the spatial distributions of low-lying areas surrounding the Black Sea. Since
coastal slope is the main indicator, these areas are highly vulnerable to sea level rise. In order to
estimate the vulnerability of these areas, the general characteristic of the regions should be examined
in terms of soil type, land use, population, income, etc.

Figure 7. Areas with low slope along the Black Sea shore.

The level of the Black Sea has been rising at a mean rate of ~2.5 mm/year from January 1993 to
May 2017, although a slowdown of this rate was recorded over the last about three years. Nevertheless,
in order to confirm this supposition, the dominant cycles in the Black Sea level time series should
be examined spectrally. Thus, the recent rate of sea level rise can be estimated more accurately.
Note that, the dominant cycles of sea level change indicate that the Black Sea rose at a rate of about
3.2 ± 0.6 mm/year until December 2014. This rate was nearly identical to the global trend, which was
reported by Legeais et al. [61]; this common tendency may be attributed to global warming [30]. Here,
it is appropriate to summarize the available literature on the Black Sea level changes for a rightful
evaluation (Table 4). When considering the rate values in Table 4 as well as the character of sea level
fluctuations in the Black Sea, the sea level generally tends to rise in the long-term. The estimated rates
for the short periods were higher than the estimates for the long periods (note that a period under
five years is not significant for statistics). The rate of sea level rise estimated in this study for a period
of approximately 22 years was about 1.8 times greater than the rate in the preceding half a century
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(1920–1985), as quoted from Goryachkin and Ivanov [31]. However, the fluctuations in the Black Sea
from 1993 to 2014 were not uniform: the sea level rose in general for the period of January 1993–June
1999, fell during July 1999–April 2006 (even though it slightly increased from the beginning of 2001
to about 2005), and rose again until 2014. Then, it started to fall again; throughout the 1993–2017
period mentioned in this study, the mean sea level displayed a positive trend of 2.5 ± 0.5 mm per year.
According to Ginzburg et al. [30], the sea level increase from 1993 to 1999, and then decrease from 1999
to 2001 are in agreement with data on the Danube River discharge. In addition, it was mentioned in
Cazenave et al. [34], Avsar et al. [62], and Vigo et al. [63] that sea level rise over 1993–1999 showed
good correlation with the increase in sea surface temperature in the Black Sea over this period.

Table 4. Estimates of the rate of the basin-averaged sea level rise in the Black Sea.

Reference Data Type Period Value of Rise or Linear Trend

[29] Tide Gauge 1890–1990 20 cm
[31] Tide Gauge 1920–1985 1.83 mm/year
[32] Tide Gauge 1873–1985 1.6 mm/year
[33] Tide Gauge 1960–1990 2.2 mm/year
[34] Along-Track Altimetry 1993–1998 27.3 mm/year
[64] In-Situ 1 1944–2003 2.5 mm/year
[39] Along-Track Altimetry 1992–2005 7.6 mm/year
[30] Along-Track Altimetry 1993–2008 13.4 mm/year

1 Steric data and precipitation/evaporation data provided from climatology and meteorological stations.

Along the coasts, complex ocean dynamics occur at shorter spatial and temporal scales.
For example, tides are much more complex near the shore than in the open sea. Moreover, the high
frequency variations due to atmospheric pressure and tides must be taken into account in these areas.
Over shorter periods, sea levels rise faster at the coasts than offshore [65]. The main feature of sea
dynamics in the Black Sea is the cyclonic rim current flowing along the continental slope, and it leads
to lower sea level in the interior of the basin and higher sea level along the coast [40]. Table 5 presents
an extensive review of the rates of the sea level changes at common tide gauges from different studies.
Although the data periods are different, the results obtained in this study showed similar characteristics
with Alpar et al. [37] and Avsar et al. [38], especially for Poti and Tuapse. At Poti Station, a high sea
level trend has been generally estimated. This relative sea level rise may have resulted from subsidence
at the Poti coast [30]. At Tuapse, ground subsidence may be a determinant in the sea level rise at
this station [38]. While our results indicate that the rate of sea level rise during 1945–1994 slowed
down at the Sevastopol tide gauge station, the trend estimates in Alpar et al. [37] and Kubryakov and
Stanichnyi [39] were higher. The trend estimates in this study were calculated after removing the
seasonal cycles. Thus, there was a small discrepancy in the trend estimates along the southern coast of
the Black Sea compared to Avsar et al. [38].

Table 5. Estimates of the rates of sea level changes at some tide gauge stations along the Black Sea coast
(the data periods from [37] are approximately known, except for Samsun).

Tide Gauge
Station

Period Reference
Linear Trend of

Sea Level Change
Linear Trend of

Vertical Land Motion

Poti
1890–1950 [37] 8.2 mm/year −6.5 mm/year
1993–2013 [38] 4.1 mm/year

Constantza 1860–1990 [37] 2.7 mm/year

Odessa
1870–1960 [37] 7.1 mm/year −5.2 mm/year
1993–2005 [39] −4.2 mm/year

Sevastopol 1870–1960 [37] 3.0 mm/year −1.1 mm/year
1993–2005 [39] 8.3 mm/year

Tuapse 1993–2011 [38] 4.3 mm/year
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Figure 8 depicts the coastal areas in the Black Sea, which would be under water if the sea level
rises 1 m. As previously outlined, coastal erosion is also a remarkable problem along the Black Sea
coastline. The observed rise rates (see Table 2) along the Black Sea coast and the basin-averaged rate
(from the gridded altimetry data) of the sea level rise may be significant for the threat of coastal erosion.
It has been estimated by Allenbach et al. [24] that a 50 cm rise in sea level might lead to about a 50%
reduction in the Black Sea beach area. According to Goryachkin and Ivanov [31], the shore might
retreat 1–2 m for a rise in the sea level by 1 cm [41].

Figure 8. Coastal areas under water (marked in red), if the sea level rises 1 m.

5. Conclusions

Numerous studies have been carried out to determine the long-term variability of sea level in the
Black Sea. These studies, based on altimetry and tide gauge data, have revealed that the level of the
Black Sea has risen. Our study dealt with recent sea level changes in the Black Sea over a time period
for which data from tide gauges and satellite altimetry are available. The mean rate of the sea level
rise has been estimated as 2.5 ± 0.5 mm/year over the entire Black Sea by using the gridded satellite
altimetry data covering January 1993–May 2017. During this period, it was seen that inter-annual
variability of non-seasonal sea level change was quite strong (with a standard deviation of about
6.7 cm). In addition, coastal sea level changes were analyzed from 12 tide gauge stations along the
Black Sea coast. However, most tide gauge data are not up to date and the spatial distribution of the
stations is sparse. Nevertheless, using the available data, relative sea level changes along the Black Sea
were assessed, and the results generally reflect a rise in the sea level. The highest rate of rise (7.01 ±
0.12 mm/year) was at the Poti tide gauge station. These results, combined with the vertical rates of
GNSS stations, showed that at some tide gauge locations, there were significant vertical movements.
This study suggests that a regional network of tide gauge stations with a suitable spatial distribution,
along with co-located continuous GNSS stations along the Black Sea coastline, should be established.
Continuous geodetic measurements can be used to monitor vertical land movements to estimate
absolute sea level changes independent of vertical motions of the land.

The results of this study demonstrate that accurate modeling of sea level changes depending on
time and location in the Black Sea, which is semi-enclosed, is crucial for risk assessments related to sea
level rise, analysis of coastal change, and planning of coastal area use. Local, regional, and national
patterns of potential consequences of sea level rise should be assessed, and coastal vulnerabilities
should be identified in this region. The implications of sea level rise should be considered for population
location, economic, infrastructure, and construction planning. This issue should be regarded as higher
priority in coastal management. The related governments and local authorities should design long-term
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policy for coastal planning. The necessary precautions for reducing the effects of sea level rise should
be implemented for all coastal areas.
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Abstract: Cartographic symbols on crisis maps serve as means of depicting information about the
position, properties, and/or numerical values of objects, phenomena or actions specific to crisis
mapping. Many crisis cartographic visualisations require simple, clear, categorised and visually
organised symbols that can be easily read and understood by a wide range of crisis map users.
Cartographic symbol sets for crisis mapping depend on effective graphic design, good availability
(sharing and promotion, dissemination and promulgation) and standardisation (ensuring the general
and repeatable use of map symbols). In this research, our aim was to examine the extent of these
challenges in current cartographic symbology for crisis mapping. Through a comparative study of
prominent symbol sets, we analysed efforts invested so far and proposed future directions. The results
of this study may be of assistance in understanding less unified or coherent symbologies currently in
use, or in revising or amplifying existing sets for future publication.

Keywords: cartographic symbols; map symbology; crisis map; comparative analysis; taxonomy;
graphic design; availability; promulgation; sharing; standardisation

1. Introduction

During crisis response it is critical to share and understand complex spatial, thematic, and
temporal information in a timely, visual and compelling way. Cartography plays an important role
in delivering reliable, understandable, attractive, user-friendly, visual information through maps [1].
A crisis map is a thematic map on which objects, phenomena or actions specific to crisis management are
represented according to their importance and highlighted using appropriate cartographic symbols [1,2].
Cartographic symbols on such maps serve as means of depicting information about the position,
properties, and/or numerical values of objects, phenomena or actions specific to the crisis event.
They are essential for communication to heterogeneous audiences in the unique environment of
a crisis characterised by the immediate risk of considerable loss and stress. Consequently, many
crisis cartographic visualisations rely on simple, clear, aesthetically pleasing symbols that can be
read and understood easily by a wide range of crisis map users [2–4]. If they are incomprehensible,
illegible, ambiguous, unclassified, random, or lack hierarchical organisation and other important
design characteristics, they may fail to convey the intended message and complicate cooperative crisis
management strategies at local, regional and international levels.

The problem of ineffective mapping that fails to communicate messages during a crisis was
identified following Hurricane Andrew (in the Bahamas and south-eastern coast of the USA in 1992)
and Hurricane Fran (in the USA in 1996) [3], when retrograde research was conducted on how the
maps produced during or immediately after these events were used. The same problem was identified
after major tragedies such as the 9/11 terrorist attack (in the USA in 2001), the Christmas tsunami (on
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the coasts of Indonesia, Thailand, Sri Lanka, and India in 2004) and Hurricane Katrina (in the USA,
2005).

Immediately after these events, issues were pinpointed such as the lack of cartographic symbols for
communication in crisis situations, and visually overloaded maps which reduced legibility and made
essential crisis information difficult to understand [2]. The need for cartographic symbols specifically
adapted for use on crisis maps was highlighted. As a result, cartographic symbol sets were specially
designed for communication and action in crises and were promoted within the crisis community.

Examples include (Figure 1):

• Emergency Response Symbology (Homeland Security Working Group (HSWG), Federal Geographic Data
Committee (FGDC), USA, 2005) [5]

• Canadian All-Hazards Symbology For Emergency Management [6] (Government Operations Centre
Geomatics (GOC), Canada, 2015) and its predecessors: Canadian Disaster Database Symbology (2007)
and Emergency Mapping Symbology (2010)

• Australian All Hazards Symbology (Emergency Management Spatial Information Australia (EMSINA),
Australia, 2007) and a revised edition issued in 2018 [7]

• OCHA’s Humanitarian Icons (United Nations Office for the Coordination of Humanitarian Affairs
(OCHA), International, 2012) and a completely revamped set of symbols released in 2018 [8]

• MIL-STD-2525C Common Warfighting Symbology, Appendix G (Department of Defense (DOD), USA,
2008) [9]

• Humanitarian Demining Symbols (Geneva International Center for Humanitarian Demining (GICHG),
International, 2005) [10]

• Symbol System for Disaster Management (Laboratory on Cartography, University of Architecture, Civil
Engineering and Geodesy, 2017, Bulgaria) [11]

• European Emergency Symbology reference for 2D/3D maps (INDIGO project, Europe, 2012) [12]
• Civil Protection Common Map Symbology (Ordnance Survey, UK, 2012) [13].

Despite the fact they were designed for the same purpose, these symbol sets differ in various
aspects. At first glance, the most noticeable difference is the graphic appearance of the symbols—from
economically stylized specific pictorial symbols to extremely simple geometric abstract forms (Figure 1).
They also differ in how they are ordered, structured and visually organised within the set, how they are
disseminated, promulgated and shared between organisations, the extent to which they are commonly
recognised and accepted, etc.

Although the latest research in crisis management has mostly covered the technological aspects of
improving efficiency and strengthening crisis response capacity [4], there is still a need for research
examining characteristics important for determining how easy symbols are to use. Four general
challenges related to the development of symbology for crisis mapping have been identified in a recent
study by Kostelnick and Hoeniges [14] through a review of the cartographic literature and results of a
survey conducted among different humanitarian organisations. These are: (1) symbol taxonomies, (2)
symbol design issues, (3) symbol availability, sharing and promulgation, (4) standardisation process in
the wider community.

In this research, our aim was to examine the extent of these challenges within current cartographic
symbology for crisis mapping. Through a comparative study of prominent examples of existing symbol
sets, our objectives were to analyse the efforts undertaken so far and propose future directions. We
paid particular attention to sets that have undergone new, revised or amplified editions and examined
whether the latest changes implemented succeed in meeting the challenges of crisis mapping symbology.
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Figure 1. Examples of cartographic symbology for crisis mapping.

We were guided by the following research questions. (1) Symbol taxonomies: What does the
taxonomy of cartographic symbols in sets and their internal breakdown look like? What graphic
variables are used to support the visual and cognitive organisation of the symbols within the set? (2)
Symbol design: Are all the basic geometric–graphical elements (point, line, and area) for depicting the
position and quality of objects included in the set? Are the graphic and semantic qualities (such as
simplicity, clarity, visibility, aesthetic appeal, traditionalism, familiarity, general acceptability, hierarchy,
concreteness, semantic closeness) respected in their design? (3) Availability: Where can the symbol
set be found and how easily? How and in which format have the symbols been shared? How are
they promoted? Are there any study and training resources available (user manuals, best practice
guidelines, etc.)? (4) Standardisation: Can the set be expanded with additional symbols? Are guidelines
for the graphic design of new symbols provided? Has any assessment of the design, efficiency, and
recognisability of cartographic symbols on crisis maps been carried out?

2. Materials and Methods

We examined six cartographic symbol sets published in different countries. Three were designed
exclusively for crisis management (American Emergency Response Symbology, Canadian All-Hazard
Symbology, Australian All Hazard Symbology), while two were intended for humanitarian activities
(OCHA’s Humanitarian Icons and Humanitarian Demining Map Symbols), and one for military operations
(MIL-STD-2525 Common Warfighting Symbology). The main selection criterion was that all the
cartographic symbol sets should contain symbols representing objects, phenomena and actions
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specific to crisis management, regardless of their primary purpose. Other criteria were their
availability in the public domain and their recognition by the cartographic scientific and crisis
mapping community [11,15–17].

To begin with, we systematised general information about each cartographic symbol set: its
official name and country of origin, the responsible institution, the year it became publicly available,
the chronology of addenda and/or new editions, the internet source, the format in which the symbols
are available for download, and the terms of use.

We then conducted a comparative analysis to examine, compare and contrast specific aspects of
symbol taxonomies, their design, standardisation and availability within the six selected cartographic
symbol sets.

Regarding (1) symbol taxonomies, if the symbols in the set were classified in groups, we analysed
comparatively their division into categories, pattern of arrangement, and order of connection. We
analysed how thematic organisation in categories was transferred to the graphic appearance of the
symbols. Transcription in a cartographic symbol set must be selective to clearly distinguish affiliation
to a particular type, but also, within each type, it must be associative to clearly show its affiliation [18].
The available graphical variables (also known as visual variables outlined by Bertin [19]) are size, shape,
colour hue, colour value, texture, and orientation. This initial set was later extended to include two
variables used in cartographic design (colour saturation and arrangement) and three which are easier
to manipulate through digital production methods (crispness, resolution, and transparency) [18]. Each
visual variable can be used when designing appropriate cartographic symbols to show the position
and quality of a discrete object, or to present information on its properties. However, each visual
variable has specific properties and is more suitable for transcribing one aspect of information than
others [19,20]. The criteria for the respective perceptual characteristics of visual variables and their
semiotic association were based on findings documented in cartographic textbooks [18–21].

Regarding (2) symbol design we made a quantitative analysis of the total number of cartographic
symbols in each set and their representation according to dimensions. Considering dimensions, the
cartographic symbols were divided into point, line, area, volume, and space-time (four-dimensional)
(according to [18]). We then analysed comparatively the implementation of four semantic qualities
(concreteness, semantic closeness, familiarity, acceptability) and four graphic qualities (simplicity,
visibility, consistency and aesthetic appeal) in the design of pictorial symbols. The choice of symbol
qualities for analysis and the criteria for rating them were based on the general qualities of symbols
documented in cartographic and behavioural literature through research into the characteristics
important in determining how easy pictorial symbols are to use [22,23].

In terms of (3) availability, we analysed comparatively methods of sharing and promoting,
disseminating and promulgating the cartographic symbol sets. We identified methods for disseminating
symbols from existing sets, such as advertising, publications, presentations, workshops, brochures,
flyers, posters, websites, exhibitions, conferences, training activities, innovation networks, and so on.
We examined the technical aspects of how the cartographic symbols were shared, such as the format
available for download, and whether they were embedded in existing GIS software (ArcGIS and QGIS)
or symbol sharing platforms. We also researched and listed any available accompanying resources
such as study and training materials, demonstrations of the use of symbols on maps, user manuals,
best practice guidelines, etc.

In terms of (4) standardisation, we analysed comparatively measures taken regarding the general
and repeated use of cartographic symbols from the set. We asked whether it was possible to extend the
set with additional symbols, and whether there were any guidelines, requirements, rules for graphic
design, or rules for implementing the symbols on crisis maps. Had an assessment of the design,
efficiency, and recognition of cartographic symbols on crisis maps been carried out? Were there any
recorded uses of the symbols on maps in real-case scenarios? We analysed whether the symbols were
intended for use on a certain type of map at a certain scale.
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3. Results

The elements of the cartographic symbols sets covered by the analysis are summarized and
presented in Table S1 and given in the Supplementary Materials. The results of the comparative
analysis, with specific examples, are reported in the subsections which follow.

3.1. Taxonomy, Visual and Hierarchical Organisation of Cartographic Symbols

A comparative analysis of the sets revealed different approaches to the hierarchical, thematic
and visual organisation of cartographic symbols. For example, the symbols in Canadian All-Hazards
Symbology and Humanitarian Demining Map Symbols were organised in three categories, while those in
American Emergency Response Symbology, Australian All Hazard Symbology and MIL-STD-2525 Common
Warfighting Symbology were organised in four categories. In the OCHA’s Humanitarian Icons, many
themes of interest to the humanitarian community, from natural disasters (such as tsunamis and
earthquakes) to relief supplies (such as water containers and shelter kits) were covered. Complex
humanitarian topics such as access to people in need and protection of civilians were also covered. However,
no clear thematic division into categories was stated.

Although the total number of categories and their names in the sets differed, general similarities
could be found. Incidents, operations and infrastructure are three commonly used categories for the
thematic organisation of cartographic symbols for communication and action in a crisis. In American
Emergency Response Symbology, Canadian All-Hazards Symbology and Australian All Hazard Symbology,
visual organisation is achieved by connecting particular geometric shapes to particular categories of
symbols (Figure 2a). In a new version of the Australian All Hazard Symbology (2018), a new category of
observations has been added for features which are affected or impacted by the incident (Figure 2a).

In American Emergency Response Symbology a visual hierarchical status on the damage caused,
marked by the particular geometric shape and/or colour hue of the symbol frame, can be additionally
assigned to symbols in the operations and infrastructure categories (Figure 2b).

In the new edition of Australian All Hazard Symbology, graphic variables have been introduced
for expressing ordered (hierarchical) properties (Figure 2c). A visual hierarchical status can also be
assigned for features which are affected or impacted by the incident (Figure 2d).

Following the example of American Emergency Mapping Symbology, a new version of Canadian
All-Hazards Symbology incorporates the use of different frames—a diamond for an incident, a rectangle
for infrastructure, and a circle for operations. A frame with dashes represents a disruption to an
incident or infrastructure. When the symbology set is distributed, these frames will be provided so
users can combine them with any symbol [6].

In MIL-STD-2525 Common Warfighting Symbology, affiliation is shown by framing the symbols
using different shapes and colour fills (for example, the relationship between an operator and an
operative object). The basic categories of affiliation are unknown, friendly, neutral and hostile (Figure 2e).

Although the symbols in OCHA’s Humanitarian Icons and Humanitarian Demining Map Symbols
are thematically organised in categories, this has not been transferred to the graphic appearance of
the symbols (Figure 2f). Since all the symbols in OCHA’s Humanitarian Icons set are the same colour
hue, associative and selective properties are not achieved. Although the pictograms in Humanitarian
Demining Map Symbols use frames of different geometric shapes and colour fills, these variables are not
applied to achieve visual organisation of the symbols, but arbitrarily.

3.2. Design of Cartographic Symbols

3.2.1. Representation of Cartographic Symbols according to Their Dimensions

A quantitative analysis of the cartographic symbols according to their dimensions showed that in
the cartographic symbol sets, there were generally no line and area symbols envisaged for representing
objects, phenomena, and actions specific to crisis management (see Table S1). The exceptions were the
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Australian All Hazard Symbology (with 13 line and 10 area symbols), and the Humanitarian Demining
Map Symbols (with 31 area symbols) (Figure 3).

Figure 2. Taxonomy, visual and hierarchical organisation of cartographic symbols in the analysed
symbol sets.

Figure 3. Examples of line (top) and area (middle) symbols from Australian All Hazard Symbology, and
area symbols from Humanitarian Demining Map Symbols (bottom).
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3.2.2. Concreteness of Cartographic Symbols

Concreteness refers to the extent to which the symbol depicts real objects, materials, or people [23].
Pictorial symbols tend to be more concrete and visually obvious in comparison to associative, geometric
or alphanumeric versions [22].

For the comparative analysis of symbol concreteness in the sets, a quantitative analysis of
representation of cartographic symbols according to appearance was made. Point cartographic symbols
were divided into pictorial, associative, geometric and alphanumeric [18]. The symbols were considered
pictorial if they were simplified drawings of important external (formal) or symbolic features of objects.
The symbols were considered associative if a combination of geometric and pictorial characteristics
was used to form a shape associated with the intended theme. If the symbols were derived from basic
geometric shapes or from regular linear and area alignments of lines or points, they were regarded as
geometric. Alphanumeric symbols were those formed using letters or numbers.

The quantitative analysis showed that associative, geometric and alphanumerical symbols were
also represented in the sets in addition to pictorial ones. The exception was OCHA’s Humanitarian Icons
set where no geometric symbols were found. Examples of associative, geometric and alphanumeric
symbols selected from each set are shown in Figure 4.

Figure 4. Selected examples of associative (top), geometric (middle) and alphanumeric (bottom)
symbols in the analysed symbol sets.

3.2.3. Semantic Closeness of Cartographic Symbols

Pictorial symbols were further analysed on the basis of how the symbol (i.e. the visual
representation) was linked to its meaning (i.e. the referent). Semantic closeness is the measure
of the distance between the map symbol and what it is intended to represent [22,23].

At the general level, representation strategies in terms of visual similarity, semantic association
and arbitrary convention were observed within the sets. Through visual similarity, the referent
was represented by depicting its visual characteristics, as shown in selected pictograms from
OCHA’s Humanitarian Icons (Figure 5, top row). This kind of representation was regarded as the
closest semantically.
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Figure 5. Examples of different representation strategies in the analysed symbol sets: visual similarity
(top), semantic association (middle) and arbitrary convention (bottom). The representation is
semantically closest on the top symbols, and semantically farthest on the bottom symbols.

Through semantic association, the connection between the referent and the symbol was mediated
by depicting concepts that were semantically close to the referent. Semantic association in the selected
pictograms from Canadian All-Hazards Symbology was achieved by depicting the visual characteristics
of typical representatives (e.g. a knife and fork for a food distribution centre, a mortarboard for a
university) (Figure 5, second row), or by depicting the visual characteristics of a pictogram with a
higher level of meaning abstraction (e.g. binoculars for a rescue action, a helmet for safety, a maple leaf
as the national symbol for a Canadian significant site) (Figure 5, third row).

The representation was semantically farthest when the referent was represented through an
arbitrary convention that had to be learned in order to interpret it correctly (e.g. a rod of Asclepius for
a health facility, or the international trefoil for radiological material) (Figure 5, bottom row).

3.2.4. Familiarity and Acceptability of Cartographic Symbols

Familiarity of symbols is the frequency with which they are encountered [22,23]. For example,
most people find the symbols used to indicate public toilets very familiar, despite variations.

Cartographic symbols that have been used in almost unchanged or very similar forms over a long
period of time were present in all the analysed sets (e.g. a knife and fork are usually used for a place
where food is served, an envelope for a post office, an anchor for a ship port, along with commonly
used cartographic symbols for a school, public recreation area, transport and bridge) (Figure 6).

Additionally, in OCHA’s Humanitarian Icon, pictograms were identified that are regularly used in
traffic communication, such as violent wind, snowfall, landslide and gas station, and to communicate
public information, such as toilets and disabled persons. Generally accepted hazard pictograms
were also present, e.g. for poison (which indicates danger in general, not just danger of poisoning),
hazardous material, radioactive material and biohazardous infectious materials.
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Figure 6. Selected examples of cartographic symbols that have been used in almost unchanged or very
similar forms over a long period of time.

3.2.5. Visual Complexity (Simplicity) of Cartographic Symbols

The visual complexity of a symbol refers to the intricacy of its edges, the number of its elements,
and level of detail [24]. A comparative analysis of cartographic symbols in the sets showed that the
level of detail used to depict objects, phenomena and actions specific to crisis mapping differed, from
economically stylized concrete pictorial symbols (e.g. American Emergency Response Symbology and
OCHA’s Humanitarian Icons) to extremely simple geometric abstract forms (e.g. MIL-STD-2525 Common
Warfighting Symbology).

Cartographic symbols to depict civilians were selected and arranged from the simplest to the most
detailed (Figure 7). In the first symbol, the person is represented by two lines and a circle. Not everyone
will automatically associate this extreme simplification with a body and head. Some additional details
such as lines indicating arms and legs may be necessary. On the other hand, too much detail can have
the opposite effect. The examples in Figure 7 show that although an individual civilian symbol (from
the old version of Canadian All-Hazards Symbology) works well on its own, a simpler pictogram like
one from American Emergency Response Symbology works better for concepts like civil demonstrations,
civilian displaced population, civil rioting and civilian evacuation.

Figure 7. Different levels of visual complexity of cartographic symbols within the analysed sets.

3.2.6. Visibility of Cartographic Symbols

The visibility of a symbol refers to the ease with which it can be seen against the background [22].
In this research, we only analysed comparatively the contrast and prominence of pictograms against the
colour inside the symbol (fill). Contrast of cartographic symbols against background maps should
also be examined in the future research, to indicate how much the readability of each symbol locally
decreases when it is presented on a specific colour background. A quantitative measure for colour
contrast to be calculated between any map object and its background can be found in Reference [25].
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Instructions for contrast ratings were obtained from previously calculated contrast differences
between two colours, based on the light reflectancy readings in percentages for each of the two colours
involved [26]. Good contrast can be achieved by using black and white [26]. Contrast in the form of
a black pictogram on a white background was used for all symbols in American Emergency Response
Symbology, Canadian All-Hazards Symbology, and some symbols in Australian All-Hazard Symbology and
Humanitarian Demining Map Symbols (Figure 8).

Figure 8. Examples of the contrast and prominence of pictograms set against the colour hue inside the
symbol (fill) in the analysed sets.

In addition to light-dark contrast combinations [26], the following combinations of pictograms
and backgrounds were deemed successful:

• black on yellow (symbols in MIL-STD-2525 Common Warfighting Symbology denoting the unknown
affiliation category),

• red on white (certain symbols in Australian All-Hazard Symbology).
• blue on white and white on blue (all symbols in OCHA’s Humanitarian Icons, and certain symbols

in Australian All-Hazard Symbology and Humanitarian Demining Map Symbols).

Slightly lower contrast and prominence was noted for cartographic symbols in MIL-STD-2525
Common Warfighting Symbology denoting friend, neutral, and hostile affiliation categories. In these cases,
black pictograms were used on blue, green and red backgrounds (Figure 8).

3.2.7. Consistency of Cartographic Symbols

Consistency means the extent to which symbols form a visually uniform set [22]. Consistency
was analysed as a quality of the symbol set rather than as a quality of the individual symbols.

In all the analysed sets, pictograms were framed by particular geometric shapes and filled with
predefined colour hues. Thus, a certain degree of consistency in the depiction of point symbols was
achieved. The exception was the set of point symbols in Humanitarian Demining Map Symbols, where
frames and colour fills were arbitrarily applied.
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Consistency in a cartographic symbol set can also be achieved by using similar stroke weights, arcs,
circle sizes, and perspectives [22]. The highest consistency was achieved in the new version of OCHA’s
Humanitarian Icons, where the new pictograms were drawn from scratch following predetermined
standardized design rules. Thus, all the new icons looked similar in terms of visual complexity and
appeared to belong to the same family.

More about the rules and guidelines for consistent and unified style and the visual appearance of
cartographic symbols in the sets is discussed in Sections 3.4.2 and 3.4.3.

3.3. Availability (Sharing, Dissemination, and Promulgation) of the Cartographic Symbols

All the cartographic symbol sets examined are publically available online on the websites of
the institutions responsible for their development. American Emergency Response Symbology has been
publicly available on the web pages of the Homeland Security Working Group of the Federal Geographic
Data Committee [27] since 2004. The current (third) version of Canadian All-Hazards Symbology was
publicly released by Government Operations Centre Geomatics (GOC) in the document [6] in 2015. It is
currently available at [28], but a permanent host is required. In 2018, the second edition of Australian
All Hazards Symbology was released. The symbol set, related documents and entire project history
are available on the website of Emergency Management Spatial Information Australia [29]. The OCHA’s
Humanitarian Icons set has been publicly available on the United Nations Office for the Coordination of
Humanitarian Affairs (OCHA) website since 2012 [8]. The second edition was released in 2018. There
has been a publicly available report [10] with a corresponding set of Humanitarian Demining Symbols on
the website of the Geneva International Center [30] since 2015.

Detailed information for each cartographic symbol set (the responsible institution, the year it
became publicly available, the last update, a chronology of addenda and/or new editions, the internet
source, formats in which the symbols are available for download, and terms of use) is systematized in
Table S1.

A comparative analysis showed that the most common formats in which symbols in the sets
are shared are the raster PNG, and vector SVG format. Technical resources also include predefined
style files for ESRI’s ArcGIS for all the analysed symbol sets and for QGIS (in the case of OCHA’s
Humanitarian Icons and Australian All Hazards Symbology) that can be loaded into standard mapping
software to promote easy sharing within and between organisations.

The OCHA’s Humanitarian Icons set is the only representative of cartographic symbols for crisis and
humanitarian mapping within the Noun Project [31], a platform that offers a crowd-sourced collection
of universally recognisable icons for visual communication.

Symbols from the Emergency Response Symbology set are built-in in Symbol Store, a visual-enabled,
web-based interactive tool designed to help mapmakers share point symbols [32]. The initial idea
behind Symbol Store was to allow users to browse symbols by keywords, category tags, and contributors
and to facilitate the discovery, retrieval and sharing of map symbol sets between users. Symbol sets
can be downloaded as ESRI Style Files so that they can easily be imported into new or current ArcGIS
map projects.

Joint Military Symbology XML (JointMilSyML or JMSML) is an XML schema and associated
instance data, designed to document the contents of MIL-STD 2525D and NATO STANAG APP-6(C).
The Military Overlay is supplied as a project template for ArcGIS Pro and allows military standard
symbols to be created quickly using and adapting existing feature templates, creating a military overlay
with military standard symbols and sharing the overlay as either a static image or a web map [9]. It
is hoped that future defence and intelligence systems will be engineered to take advantage of this
technology, thus accelerating the delivery of new military symbology to war combatants, reflected in
updates to these standards.
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3.4. Standardisation (General and Repeated Use) of Cartographic Symbols

3.4.1. Standardisation of Map Symbology

At the moment, only one set of truly standardised emergency symbology exists. This is Emergency
Response Symbology used in the United States and standardised by the American National Standards
Institute [5].

After its public release, the cartographic symbols in Emergency Response Symbology triggered
great interest among crisis management experts and emergency service workers. Various software
producers wanted to include the cartographic symbols in their software, which would have increased
their availability and consistent use on crisis management maps. However, since the symbols were
adopted as a standard of the American National Standards Institute, their use involves the payment of a
fee, which has put offmany users who are still using the free version. The standardised set is used
officially by emergency management and first responder communities at all levels of need (national,
state, local and incident) in the United States [27].

MIL-STD-2525 Common Warfighting Symbology is the standard setting out rules and requirements
for defining and displaying military operations, and all units of the US Department of Defense (DOD)
have been obliged to implement it since 2008. It is also available to non-DOD entities (e.g. first
responders, the United Nations, and multinational partners).

The equivalents of this standard are two NATO publications: Allied Procedural Publication
APP-6A—Military Symbols for Land Based Systems and Allied Procedural Publication APP-6B—Joint
Symbology (1998), in which graphic symbols for marking units, positions and control measures in
tactical operations are defined. The content of NATO’s publications and U.S. Department of Defense’s
MIL-STD-2525 standards are basically the same, but the latter has been developing faster, and therefore
the analysis in this paper refers to that standard.

3.4.2. Standardisation of Usage

In Emergency Response Symbology it is stated that the symbols are intended for use on digital and
paper maps at large and medium scales. It is not recommended to use the symbols on small-scale
maps, but rather simplified versions or geometric shapes that indicate the symbol category [27]. In
Australian All Hazard Symbology it is stated that the symbols are intended for use on paper and digital
topographic maps and aerial images at small, medium and large scales. There was no more detailed
standardisation of their use in the resources studied. However, a new element in the version released
in 2018 is the inclusion of five scale-dependent symbols for facilities (Fire-Fighting Facility, Ambulance
Facility, State Emergency Service Facility, Life-Saving Facility and Police Facility) for use at smaller scales.
Also, for the new category Observations in which frame fills in different colour hues of the same intensity
selectively outline information on damage caused, alternatives to the black and white variants of the
symbols are also envisaged [29]. In Canadian All-Hazards Symbology it is stated that the symbols are
primarily intended for desktop mapping, while still enabling effective web use [6]. The symbols in the
OCHA’s Humanitarian Icons set are intended for use in a wide range of OCHA humanitarian community
information products, including maps, written reports, infographics and websites, while the symbols
in MIL-STD-2525 Common Warfighting Symbology are intended for use in paper military topographic
maps, digital military information systems, “graphics” and “working maps” [9]. The symbols in the
Humanitarian Demining Map Symbology set are intended for use in topographic maps and aerial images
in digital and paper form, at large, medium and small scales, and are specially adapted for use in the
mine action information set (Information Management System for Mine Action IMSMA) distributed
by the Geneva International Humanitarian Demining Centre [30].

3.4.3. Extending Sets with New Symbols

The Homeland Security Working Group responsible for the development of American Emergency
Response Symbology points out that the set does not include all the symbols required to represent objects,
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phenomena, and crisis-specific actions. If a need for new symbols arises, they will try to incorporate
them in an existing set, depending on the resources and capabilities available [27]. However, guidelines
for extending an existing set with new symbols are not publicly available.

The current version of the Australian All Hazard Symbology set does not include all the cartographic
symbols needed to manage different crises. The existing symbols are limited to actions in certain types
of crisis and provide a base that will be extended in the future to meet the wider needs of national
security and crisis management [29]. The 2010 version contained a total of 83 symbols. Between 2011
and 2017, EMSINA continued to collect information for a new and/or improved Australian All Hazard
Symbology. A dedicated symbology officer was elected in 2015. This person, in collaboration with
a small EMSINA working group, revised the method for collecting and approving symbols in 2016.
The latest version of the 2018 set contains a total of 127 symbols. However, there are no guidelines
for extending the existing set with new symbols, that is, none have been published in the available
resources. However, a workflow for new symbology proposals [29] has been clearly stated.

The OCHA’s Humanitarian Icons set is periodically extended with new symbols as necessary [8],
and as other versions of the set have been released, major advances have been made to standardise
guidelines for extension with new symbols. In 2018, OCHA released a completely revamped set
of 295 symbols (and the number continues to increase) as the result of a long, meticulous redesign
process. The first version in 2012 contained a total of 241 symbols. It grew organically as illustrations
were developed to meet internal design needs, and the new series has been drawn from scratch
following standardised design rules. The OCHA Graphics Stylebook [8] was also released, containing
guidelines for establishing some rules for all designers, so that there is consistency across the icon
family. Moreover, the original set has been extended to include new themes (for instance cash transfer)
and individual icons have evolved to reflect changes that have occurred since 2012 (in technology, for
example).

3.4.4. Assessment

Assessing the symbol design and recognisability in the American Emergency Response Symbology set
was conducted in two ways, and the test methods and detailed results were published [2,27]. In the first
case, the assessment of the appearance of each symbol was conducted by the Homeland Security Working
Group during December 2003 and January 2004, in an on-line open-type survey in which various crisis
management and emergency services volunteers participated. The survey results were published in
a report on the website of the Homeland Security Working Group [27]. For each symbol in the set, the
participants of the survey indicated whether they accepted or rejected its graphic design and short
definition. Symbols that did not reach the 75% acceptance threshold were reviewed and redesigned
(e.g. 11 symbols were not accepted in the category ‘incidents’, 7 in the category ‘natural events’, 4 in
the category ‘activity’, and none in the category ‘infrastructure’). The symbols that met the threshold
were accepted as standards of the American National Standardization Institute ANSI INCITS 415-2006
Homeland Security Mapping Standard—Point Symbology for Emergency Management. In the same
period a recognition test was conducted of 15 randomly selected symbols from the category Incidents
and 13 from the category Operations [2]. Since there are no clear guidelines or norms to test the
recognition of cartographic symbols for a crisis, the standard recommendations ANSI Z535.3 National
Standard for Criteria for Safety Symbols which prescribes general criteria for the assessment and use of
safety symbols indicating specific hazards were adopted [2]. Fifty Californian fire-fighters participated
in the testing, and it was found that only 6 of the 28 symbols rated achieved the 85% recognition level
prescribed by the standard.

An assessment of the symbol design of Humanitarian Demining Map Symbols was conducted on
the initial version. Professional pyro-technicians participated in the testing, and their comments and
feedback were taken into account when adjusting the symbols in newer versions of the system [17].
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There is no evidence that the design, effectiveness, or recognisability of the proposed
cartographic symbols was assessed for other symbol sets covered by the existing literature and
other available resources.

4. Discussion

Several recommendations may be made following the comparative analysis of cartographic
symbol sets for crisis mapping presented in this paper.

4.1. Recommendations and Best Practices for the Taxonomy, Visual and Hierarchical Organisation of
Cartographic Symbols

For a thorough understanding of a cartographic symbol set, that is, to achieve the optimal
map function for communicating information in a crisis, symbols should be formed following the
appropriate organisational structure or taxonomy. Although the data to be displayed on a map is
sometimes already provided for the cartographer in a proper organisational structure, no such structure
exists in the case of data for communication and acting in a crisis. However, the analysis of the sets
showed that some similarities were found in the organisation of cartographic symbols in groups in
Emergency Response Symbology, Canadian All-Hazards Symbology, Australian All Hazards Symbology and
MIL-STD-2525 Common Warfighting Symbology.

The visual organisation of the symbols in the set should be such that crisis management participants
(both cartographers and map users) notice it immediately [15]. This can be achieved by using the
appropriate colour hues and different shapes for framing cartographic symbols, as in the sets in
Emergency Response Symbology, Canadian All Hazard Symbology and MIL-STD-2525 Common Warfighting
Symbology.

In Figure 9 we describe a possible cognitive scheme for interpretation of cartographic symbols in
Emergency Response Symbology, Canadian All-Hazards Symbology, Australian All Hazards Symbology and
MIL-STD-2525 Common Warfighting Symbology according to pattern we observed in the comparative
analysis of their visual and hierarchical organisation. It was based on the similar example schema for
interpretation of symbols on a National Park Service map and schema for interpreting U.S. Interstate
Highway numbers presented in Reference [18].

The same model could be applied to the sets in OCHA’s Humanitarian Icons and Humanitarian
Demining Map Symbols to customise them for crisis mapping. Following such a cognitive scheme, users
apply logic in the interpretation of cartographic symbols on a crisis map, and this tells them that the
graphic appearance of the symbol is divided into two parts: the frame, which is to a certain extent
a constant part of the cognitive scheme (that is, it can take a finite number of geometric shapes and
colour hues), and the pictogram (a variable part of the scheme that takes on a new form each time).
Users visually and/or logically interpret various kinds of pictograms, where each shape is associated
with a particular object, phenomenon or action. The frame around a pictogram may be a red square
or a blue rectangle, and users subconsciously organise them into groups by applying the similarity
principle—similar objects form a group. The frame location on the map indicates the position of the
displayed object in relation to other objects on the map. Apart from quality, the objects identified
can also be distinguished by their ordered properties. By analysing the existing cartographic symbol
set, it was noted that ordered properties were not present in the first versions but were included in
later editions of Australian All Hazards Symbology and Canadian All Hazards Symbology. As a result,
for example, infrastructure objects were labelled as destroyed or undamaged, and roads as passable
or obstructed.
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Figure 9. Cognitive scheme describing possible pattern of thinking and behaviour of users in the
interpretation of cartographic symbols for crisis mapping.

4.2. Recommendations and Best Practices for the Design of Cartographic Symbols

Firstly, a quantitative assessment of existing symbols according to their dimensions indicated
a lack of line and area symbols in Emergency Response Symbology, Canadian All Hazard Symbology,
OCHA’s Humanitarian Icons, MIL-STD-2525 Common Warfighting Symbology and lack of line symbols in
Humanitarian Demining Map Symbols. It was apparent from the analysis of existing crisis maps [33] that
line and area symbols were crucial in representing objects, phenomena, and actions specific to acting in
a crisis, even though they appeared in much smaller numbers than point symbols. For example, line
symbols were used to show fire front progression or oil spills at sea, and to mark evacuation routes
or priority roads and routes used during a crisis. Area symbols usually indicated areas affected by
crises (for example, flooded areas, wildfire-burned areas, or areas affected by hazardous gas leaks),
and danger zones.

We are aware that line and area symbols in the cartographic symbol sets for crisis mapping are
mapped directly on the base map, and that the length of a line symbol or shape and size of an area
symbol cannot be defined in advance, as with point symbols. However, we recommend that these
symbols are included in existing sets, with graphic variables applied instead of dimensions. These
variables are size, direction, and colour hue (Figure 10). Size variation of the line (thicknesses or
width) should be applied when designing the (hierarchical) and quantitative properties of objects.
Direction variation (changing a line into an arrow) should be used to represent motion, and variation
of colour value to express the ordered properties of line objects. When designing area symbols, two
graphic variables should be applied: colour hue and transparency of fill and/or texture (Figure 10).
The corresponding point symbol is located within the polygon and indicates which phenomenon is
represented by the area symbol.
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Figure 10. Integral geometric and graphic variables for depicting line and area symbols on crisis maps.

Line colour hues and shape fills should be applied consistently, according to the principle of
similarity with the actual situation in nature, or by adopting symbolism. To achieve selective properties
in the depiction of the line symbols, the thickness or width of lines must be at least 0.5 mm or 2
pixels apart [34]. The transparency of the area symbol fill can vary from 15 to 30 %, depending on
the type of base map. The visual variable texture is well suited to associate map symbolisation with
natural phenomena (e.g. snowflakes for snow avalanches). When used, it can denote categorical or
numerical differences (the higher the value, the denser the texture). Sequential colour schemes are
suited for ordered data that progress from low to high [19,21] and are should be used to depict classes
of increasing values (e.g. blue value scale for intensities of the flooded areas). Diverging schemes put
equal emphasis on mid-range critical values and extremes at both ends of the data range [19,21] and
should be used for data whose values are above or below a critical value (e.g. a scale of red and green
values for selective highlighting of danger zones).

Secondly, understanding the different semantic and graphic qualities of symbols is important
when a new set of symbols is designed or an existing set extended with new symbols.

The quantitative assessment of existing symbols by frequency of appearance showed that although
pictorial symbols were present to a greater extent, there were many examples of abstract and geometric
symbols. In military systems such as MIL-STD-2525 Common Warfighting Symbology this is acceptable,
since the users who need to interpret them have undergone special training. However, users who
encounter these unfamiliar symbols for the first time may face difficulties. Thoughtfully designed
pictorial symbols will not only be understood more easily and intuitively by a wide range of crisis
participants such as crisis management experts and emergency services workers, but also by civilians
or the general public. Therefore, appropriate pictorial symbols should be preferred over alphanumeric,
geometric and abstract symbols. This requirement was considered in the new version of Canadian
All-Hazards Symbology, where only one alphanumeric symbol was found (the letter H for hospital),
whereas the previous version contained nine.

In terms of graphic qualities, when designing the visual appearance of the symbol, preference
should be given to economically stylized, concrete pictorial symbols, such as those in Emergency
Response Symbology and OCHA’s Humanitarian Icons, compared to the more detailed ones in the old
version of Canadian All-Hazards Symbology. However, extremely simple geometric abstract symbols,
such as those in MIL-STD-2525 Common Warfighting Symbology, should be avoided.

The new version of OCHA’s Humanitarian Icons is a successful example of the application of
graphic and semantic qualities. In this symbol set, the pictogram is not treated as a single solution, but
as a series of pictograms, taking into account concreteness, semantic closeness, familiarity, acceptability,
simplicity, visibility, consistency and homogeneity.
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4.3. Recommendations and Best Practices for the Availability of Cartographic Symbols

It is obvious that tradition, homogeneity, uniformity, and standardisation, both in the graphic
design of symbols and their application on crisis maps, are crucial when creating map symbols for crisis
mapping. The standardisation of cartographic symbols for crisis mapping (in the sense of ensuring
unambiguous, consistent application) would allow users to become familiar with their meanings and
increase their usefulness on crisis maps.

Emergency Response Symbology is arguably the most globally recognised standardised approach to
emergency management mapping symbology and is also formally recognised as an American National
Standards Institute (ANSI) standard. Emergency Response Symbology was the pioneer symbology
standard for emergency management, and later attempts, including the Canadian and Australian
All-Hazards Symbology sets, were inspired by and build as much as possible on it.

In addition to the graphic design of cartographic symbols, crisis management participants
(cartographers and users) must be provided with rules and guidelines for use on the map. In order to
expand the system with new symbols, guidelines for the graphic design of cartographic symbols must
be standardised. Such guidelines must specify the minimum size for legibility and predict the use
of symbols on maps at different scales, since scale dictates the size of a cartographic symbol and the
amount of detail that can be represented by a pictogram in a particular symbol. We are aware that
guidelines for determining the visual appearance of a particular symbol can only be general in nature,
like guidelines for obtaining good legibility. So, those who design new symbols should have some
(basic) knowledge of how to apply the guidelines.

Apart from the ease of understanding and memorising them, the success of cartographic symbols
lies in their availability and maximum ease of use on future crisis maps. Incorporating symbols in
software (e.g. the symbols in American Emergency Response Symbology are available in ESRI’s ArcGIS
software), and uploading them on platforms (e.g. the symbols in OCHA’s Humanitarian Icons are
available on the Noun Project platform) may help the set to be recognised as the de facto standard in the
crisis and humanitarian community.

4.4. Recommendations and Best Practices for the Standardisation (General ad Repeated Use) of
Cartographic Symbols

Since the current methods for public online sharing mostly include sharing via the organisation’s
website, future research in the field of crisis mapping should seek to develop additional resources
(such as crowdsourced, open-source web-based repositories and platforms for accepting, storing and
disseminating symbols) that would further encourage the sharing of symbol sets among organisations
and promote standardisation with regard to ensuring unambiguousness and the general and repeated
use of these symbols on crisis maps.

It is necessary to invest efforts in different forms of promotion, such as publishing, presentations,
workshops, brochures, flyers, posters, conferences, and training activities. Sharing, promotion,
dissemination and promulgation of cartographic symbols undoubtedly imply the costs of training,
raising awareness, and changing standard practices and procedures. The establishment of funding
mechanisms and a clear structure for the management of implementation activities should help mitigate
these costs.

5. Conclusions

In this paper, a comparative analysis was conducted of six publicly available cartographic symbol
sets that have been promoted since 2005 in the scientific cartographic and crisis management community.
While future research could be extended to identify other existing symbol sets currently in use in
professional and civilian crisis management, we believe that the limited number of six comparatively
analysed cartographic symbol sets is justified in terms of making representative conclusions, mostly
because of their wholeness, prominence and continuous history. A comprehensive analysis and parallel
comparison of taxonomy, graphic design, availability (sharing, dissemination and promulgation)
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and standardisation (general and repeated use) of cartographic symbols resulted in an assessment
of the current state of affairs, unresolved problems, and possible avenues of improvement regarding
cartographic symbology for crisis mapping.

We recommend the inclusion of line and area symbols in existing sets, since they are often needed
to depict evacuation routes during a crisis, or areas affected by the crisis. We propose a cognitive
scheme with a recognised pattern of user thinking and behaviour in the interpretation of cartographic
symbols for crisis mapping and advise the application of such a scheme to OCHA’s Humanitarian
Icons and Humanitarian Demining Map Symbols in terms of customisation for crisis mapping. Since
appropriate pictorial symbols should always be preferred over alphanumeric, geometric and abstract
symbols, we recommend the replacement of symbols in existing cartographic symbol sets with
pictograph alternatives whenever possible. OCHA’s Humanitarian Icons is a successful example of the
application of consistency and homogeneity in symbol design. Following that example, we recommend
that graphic and semantic qualities are considered in the design of cartographic symbols for crisis
mapping. Regarding standardisation and efforts made in respect of the general and repeated use of
cartographic symbols, we draw particular attention to American Emergency Response Symbology and
OCHA’s Humanitarian Icons. The availability of the symbols in OCHA’s Humanitarian Icons within the
Noun Project platform has undoubtedly helped this set to be recognised as the de facto standard in the
crisis and humanitarian community.

Additionally, the comparative analysis showed that certain changes have been implemented in
new, reviewed or extended editions of existing sets. Better visual organisation has been achieved in
Canadian All Hazards Symbology, special symbols for expressing associative and selective properties
have been added to Canadian and Australian All Hazards Symbology. Study and training materials such
as demonstrations of using symbols on maps have been provided with Emergency Response Symbology
and Canadian All-Hazards Symbology, and graphic guidelines have been produced for extending the
OCHA’s Humanitarian Icons set.

We hope that the results of this comparative study of prominent cartographic symbols for crisis
mapping will be of assistance in understanding less unified and coherent symbologies currently in
use and in the production of future revisions or amplifications of existing systems. Good practices
implemented in existing cartographic symbol sets for crisis mapping can also reduce duplicated efforts
and encourage the adoption of existing symbol sets.

Although compliance with the guidelines, rules, and graphic requirements outlined in this
comparative analysis can be used as criteria for assessing the appearance, effectiveness and visibility of
the existing cartographic symbology for crisis mapping, such process will provide partly subjective
and partly objective assessment of the symbol qualities. While some conditions, such as the assessment
of the applied basic geometric and graphic variables, visibility, concreteness and symbol dimensions
can be accurately measured, other conditions, such as the assessment of simplicity, familiarity and
semantic closeness of cartographic symbols, will depend on the subjective impression, background,
and abilities of the observer.

More research is needed with a focus on the empirical evaluation of the comprehension and
usability of the existing symbology for crisis mapping. User-testing should include a heterogeneous
audience of crisis map users. Perceptual aspects of map symbology on the various background maps
(e.g. satellite and aerial imagery, topographic map, relief map, city map) should also be considered
to better understand all user aspects of cartographic symbology for crisis mapping and the factors
that influence them. Furthermore, eye-tracking methods can provide assistance for objective and
quantitative evidence in cognitive research on cartography [35,36]. By recording real-time fixation,
saccade, and duration data, and analyzing eye movement behavior they can provide more direct
suggestions to users’ visual cognition of crisis maps and help in developing improved methods for
crisis mapping.
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Supplementary Materials: Table S1: Results of a comparative study of six publicly available cartographic symbol
sets for crisis mapping, Repository R1: Digital repository of cartographic symbols covered by the analysis.
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Abstract: Urban areas may be affected by multiple hazards, and integrated hazard susceptibility
maps are needed for suitable site selection and planning. Furthermore, geological–geotechnical
parameters, construction costs, and the spatial distribution of existing infrastructure should be taken
into account for this purpose. Up-to-date land-use and land-cover (LULC) maps, as well as natural
hazard susceptibility maps, can be frequently obtained from high-resolution satellite sensors. In
this study, an integrated hazard susceptibility assessment was performed for a developing urban
settlement (Mamak District of Ankara City, Turkey) considering landslide and flood potential. The
flood susceptibility map of Ankara City was produced in a previous study using modified analytical
hierarchical process (M-AHP) approach. The landslide susceptibility map was produced using
the logistic regression technique in this study. Sentinel-2 images were employed for generating
LULC data with the random forest classification method. Topographical derivatives obtained from a
high-resolution digital elevation model and lithological parameters were employed for the production
of landslide susceptibility maps. For the integrated hazard susceptibility assessment, the Mamdani
fuzzy algorithm was considered, and the results are discussed in the present study. The results
demonstrate that multi-hazard susceptibility assessment maps for urban planning can be obtained by
combining a set of expert-based and ensemble learning methods.

Keywords: multi-hazard; susceptibility mapping; developing urban settlements; landslide; flood;
logistic regression; Mamdani fuzzy algorithm; M-AHP

1. Introduction

Improved disaster management is an important focus locally and globally to reduce the losses
caused by natural disasters [1]. The harmful effects of natural hazards on human lives and economies
increase with the inadequate land-use planning in developing countries. Actual infrastructure and land
use should be taken into account in urban planning, which are often neglected [2]. Urban planning is a
complex procedure that needs to consider existing infrastructure, human use, and natural hazards.
The recent developments in geoinformation technologies for data collection and analysis, such as
photogrammetry, remote sensing, three-dimensional (3D) geographical information systems (GIS),
Web-GIS, volunteered geographical information (VGI), and advanced spatial analysis methods, can
support this procedure and provide the essential tools to develop a combined approach.

Among the geology- and climate-related natural hazards (i.e., landslides, floods, earthquakes,
droughts, wildfires, tornados, volcanic eruptions, and avalanches) [3], urban areas are mostly affected
by landslides and floods. Landslide is one of the most common natural hazards with global spread,
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and it may damage buildings, infrastructure, and other facilities in urban areas [4]. Between 1950 and
2018, 23,041 landslides were observed in Turkey [5]. Although there is a vast amount of research on
landslide susceptibility assessment in the literature (e.g., References [6–10]), most studies were on
open lands and forests. Landslide susceptibility assessment in urban areas is difficult due to dense
construction and buildings that modify and largely cover the topography. In addition, further research
is needed due to the complexity of the problem, as well as incomplete and temporally inaccurate
landslide inventories [11]. Production of regional landslide susceptibility maps can be difficult due to
the requirement of actual data. Such maps are essential for urban planning and disaster mitigation
efforts carried out by governments.

Although landslide conditioning parameters can be manifold, the main limitation for the number
of factors employed to produce landslide susceptibility maps is the data availability. In general,
geomorphological (e.g., topographical, hydrological, etc.), geological (e.g., lithology), and land-use
and land-cover (LULC) parameters must be considered for this purpose [4]. A dense digital terrain
model (DTM) can be used to characterize the geomorphology in detail in an urban area. In comparison
to LULC, the geological and geomorphological characteristics change slowly. Since the LULC data are
very important for landslide susceptibility assessment [12], actual data to demonstrate the LULC are
required for obtaining high accuracy. In addition to the conditioning parameters, existing landslide
inventories are employed in the susceptibility assessment models. On the other hand, landslide
inventory extraction in settlement areas and heavy construction sites is also difficult due to covered or
modified topography that considerably obstructs the visibility of landslides.

Floods also constitute one of the most commonly occurring and destructive natural hazards in
the world, which also cause the highest number of fatalities [13,14]. According to the statistics [15],
increasing numbers of flood events are being observed in Turkey. Depending on climate change and
rapid urbanization, the number will continue to rise in the next decade in Turkey. Flood susceptibility
maps also contain essential information for mitigation efforts, and they must be taken into account
by decision-makers [16–18]. Flood susceptibility assessments for Ankara city were produced by
Sozer et al. [19,20] using an expert-based decision support system called the modified analytical
hierarchy process (M-AHP) [21]. A small part of the flood susceptibility map that covers the study
area was employed here for multi-hazard susceptibility assessment. It should be noted that the
flood susceptibility must be evaluated at a regional level, which includes the extent of the basin,
since using the data of only a small area with limited altitude extent would lead to incomplete data
and misinterpretation.

On the other hand, landslides and floods are often effective over the same regions since they occur
in areas with similar geomorphological and climate conditions. Heavy precipitation triggers both
floods and landslides, which occur one after the other. Therefore, areas that are prone to floods and
landslides need to be assessed together to understand the combined effects of both.

The main aim of this study was to develop a spatial analysis methodology to predict the combined
flood and landslide susceptibility level in a developing urban settlement, which can then be used as a
basis for land-use planning. A part of Mamak District in Ankara, Turkey was selected as the study
area for this purpose, because Mamak District is an unplanned settlement area of Ankara.

In the initial phase of the study, the landslide susceptibility map was produced by extracting and
using the up-to-date LULC data from Sentinel-2 satellite images, high-resolution DTM, and lithology
data obtained from existing geodatabases [4]. Since the flood susceptibility maps must be produced at
regional level, i.e., basins, a part of the map produced by Sozer at al. [19,20] was reclassified and used
for the purposes of this study. To assess the multi-hazard susceptibility level (MHSL), a Mamdani
fuzzy algorithm was developed, and the results are presented and discussed in the later sections. This
is the first application of the Mamdani fuzzy algorithm to combine two susceptibility maps in the
international literature.
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2. Background on Multi-Hazard Assessment

Many natural hazards types affect urban settlements. To mitigate the effects of future natural
hazards, all possible risks in an area should be assessed. Multi-hazard assessment models can be
generated by integrating multiple susceptibility assessment maps belonging to different types of
natural hazards for a specific area. Moreover, using multi-layer information is a more reliable and
effective approach to disaster prevention [22]. Different types of susceptibility maps created by using
various parameters and factors can be combined with different methods, such as AHP, which is based
on expert opinion. Using AHP, a suitability map can be determined by the weight coefficients and
uncertainties for each hazard [23–25]. Furlan et al. [26] provided a gradual analysis of all components
contributing to the risk at a particular site. This method involved the assessments of hazard, exposure,
vulnerability, and risk. In this analysis, since the input dataset was large and heterogeneous, the
multi-criteria decision analysis (MCDA) method was used to evaluate the parameters [27]. In all these
studies, scores and weights provided by the experts had great importance, and it was stated by the
researchers that they affected the accuracy of the results. Chen et al. [28] considered debris flows
and river and flash flooding to be common in one area. These hazard types were examined in four
scenarios (major, moderate, minor, and frequent events). In this approach, the losses caused by each
hazard were firstly calculated individually. Afterward, the spatial probability of the element at risk,
the physical vulnerability, and the quantification of the exposed elements at risk were multiplied. The
effects of hazard types were compared based on the results.

It is also important to include social and economic dimensions in multi-hazard assessment
methods [29]. China’s disaster risk index was calculated for 31 provinces by using four types of
factors: exposure (population exposed to earthquakes, floods, droughts, low temperatures/snow, and
gale/hail), susceptibility (based on public infrastructure, income health, and economic status), coping
capacity (based on governance, medical care, and material security), and adaptive capacity (related
to future natural events) [30]. In addition to these factors, the exposure parameter was analyzed as
hazard exposure and hazard loss. Hazard exposure referred to the presence of assets and values that
may be adversely affected in hazardous areas. The hazard loss was defined by the extent of physical
damage, monetary loss, human loss, and economic deterioration. At the same time, the scope of the
other parameters was extended [31]. Using a multiple linear regression method, influencing factors
of community resilience were calculated. It was also stated that this model can be developed for
employing a different weighting scheme by using expert knowledge and the entropy. Moreover, for
holistic multi-hazard assessment methodologies, it was proposed that anthropogenic processes should
be used in relation to natural disasters, and it was mentioned that the environment in which natural
hazards are experienced is shaped by human activities. The main idea was to include this relationship
in the multi-hazard assessment process [32,33]. Additionally, Gallina et al. [33] and Basheer Ahammed
and Pandey [22] pointed out that the climate change perspective is a forgotten piece that should be
evaluated in a multi-risk assessment of natural and anthropogenic systems.

Barrantes [34] proposed a natural multi-hazard assessment model that can be used when working
with limited data. This model proposed an algorithm that takes the spatial overlap of the values of
each risk and the potential interaction between different natural risks and the temporal frequencies
into account. In this algorithm, all risk combinations were evaluated and potential interactions
between natural hazards matrix were formed. Potential multi-hazard risks arose with the set of
intersections of all combinations. Liu et al. [35] used the MmhRisk-HI (Model for multi-hazard Risk
assessment with a consideration of Hazard Interaction) method for multi-hazard risk assessment.
The method had two main components. The first component analyzed the relationship between the
hazardous environment and the hazards, showing the probability of multiple hazard occurrence.
In this component, the probabilities were calculated with functions used according to the relationship
levels (independent, mutex, parallel, series) between the natural hazards. The second component
calculated the possible damages and loss rate by employing a Bayesian network. In Bernal et al. [36],
a fully probabilistic multi-hazard risk model was assessed for hazard, exposure, vulnerability, and
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loss using specific stochastic event sets. The average and maximum yearly losses were calculated
with this model. Quantitative approaches were also used in some regional risk assessments [37].
The study of quantitative multi-hazard risk evaluation using elements at risk, their exposure, and
their vulnerability can be examples for regional multi-hazard assessment. In another quantification
approach, the interrelation between hazards was examined in two ways: by cascading hazards and
by compound hazards. These relationships were evaluated with three hazard interrelation modeling
approaches (stochastic, empirical, mechanistic) [38]. When the results were evaluated using different
model parameters in each approach, it was seen that the extreme copulas method in the stochastic
approach, the linear regression method in the empirical approach, and hydrodynamic models in the
mechanistic approach were most prevalent. As mentioned, the use of mechanistic and stochastic
methods in multi-parameter (more than two) hazards imposes certain restrictions, such as uncertainties
caused by statistical assumptions (e.g., distribution, dependence model selection) or the effect of the
data quality used for validating the mechanistic models [38].

Assessing multiple hazards in urban areas and predicting future risks can help decision-makers
to prioritize actions and manage the risks [32,39–41]. Although the effects of natural risks on the urban
area were examined individually and the results were compared visually, a quantitative approach of
the co-evaluation process of hazards was lacking in Chang et al. [39] and Jacobs et al. [42]. A combined
and quantitative assessment of hazards provides more accurate results than individual assessments
and visual comparison. However, the choice of parameters and their weights, as well as the quality of
data, are also important. The choice of using a qualitative, semi-quantitative, or quantitative approach
may vary depending on the target [43]. In Omidvar and Karimi [44], a method developed using
the theory of probability and Boolean logic was used. This study was conducted for multi-hazard
reliability measurements according to available urban data. Multi-hazard reliability emerged with
operations on different combinations of hazard risks.

Machine learning methods are also available for multi-hazard risk assessment. In Reference [45],
risk analysis for each natural hazard type was carried out by modifying the weights of each parameter
according to the hazard type using the random forest (RF) method. Afterward, a multi-hazard map
was produced by combining the results. The model accuracy of 96.70% supported the usefulness of
machine learning in multi-hazard risk assessments. Mirzaei et al. [46] used Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) as a multi-criteria decision-making model. It worked
with similarity indexes of hazard maps and showed multi-hazard assessment. In Sheikh et al. [47],
TOPSIS–Mahalanobis distance, TOPSIS, and simple additive weight (SAW) methods were combined.
Although the TOPSIS method was criticized for using only a geometric distance, it was mentioned that
it gives more clear results for natural hazards.

There are also other studies in the literature in which different multi-criteria decision-making
methods were used in risk assessment. In Pourghasemi et al. [48], risk maps were created by using
the stepwise weight assessment ratio analysis (SWARA) method which is an expert-oriented method,
as well as the adaptive neuro-fuzzy inference system (ANFIS) method which involved an FIS (fuzzy
inference system) and gray wolf optimization (GWO) to find the optimal solution. In multi-hazard
analysis, the occurrence rate of hazard risk combinations was determined using weighted overlay
analysis of risk maps by Mukhopadhyay et al. [27]. Moreover, with the use of fuzzy modeling, direct
standardization of multiple indicators, aggregation, and deriving the impact are possible. By using
the gamma fuzzy overlay model, the relationship between multiple input criteria was explored [49].
Kappes et al. [50] emphasized the importance of multi-hazard assessment and compiled difficulties
when analyzing multi-hazards. Consequently, the present study introduces the production of a
multi-hazard map for a settlement area by employing the Mamdani fuzzy inference algorithm.

3. Materials and Methods

Mamak District is a rapidly developing area located in the eastern part of Ankara, Turkey. Similar
to many other large cities in Turkey, Ankara is affected by urban sprawl, and Mamak is one of the
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development centers for this sprawl. Approximately 640 thousand people live in the area. Since
Mamak is on the route to Eastern Turkey, there is substantial transportation infrastructure. Furthermore,
Bayindir Dam, which is currently used as a recreational area, is also located here. A part of Mamak
District which is prone to both landslides and flooding was selected as the study area since it features
continuous urban expansion and infrastructure (Figure 1). The area is ca. 30 km2 and the minimum
and maximum altitudes are 924 m and 1284 m, respectively.

Figure 1. The location of the study area and an overview of the Sentinel-2 red–green–blue (RGB) image
used in the study (upper left coordinates: 32◦56′51.372” E, 39◦56′27.108” N; lower right coordinates:
33◦0′57.578” E, 39◦53′41.689” N).

The landslide susceptibility map of the study area was produced by applying logistic regression
(LR) to LULC data (sourced from Sentinel-2 imagery), the geomorphological features (sourced from
DTM), and the lithology data [4]. Sentinel-2 images are distributed freely by the European Space
Agency (ESA). It was found that actual land-use data can be produced from Sentinel-2 images, which
are geometrically corrected (i.e., orthorectified, L2A) and obtained regularly over a large geographical
extent by ESA [51]; they also provide multi-band (13 bands in total) data at spatial resolutions of
10 m, 20 m, and 60 m. The satellite constellation also has high transmission frequency [52] and, thus,
is widely used in natural hazard assessments [53]. Sentinel-2 imagery can be easily employed by
non-experts via the Sentinel Application Platform (SNAP) Tool from ESA. The LR is a rather simple
method and can take non-numerical parameters such as different LULC types into account. The output
probabilities were classified as low, moderate, and high. The flood susceptibility map of Ankara was
produced in a previous study by Sozer et al. [19] for Ankara city and reclassified here into the same
three classes (i.e., low, moderate, and high) to be used in the multi-hazard susceptibility assessment
model. The study workflow is depicted in Figure 2. More details on the input data and methodology
are provided in the sub-sections below.
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Figure 2. Overall workflow of the study.

3.1. Input Datasets for Landslide Susceptibility Map Production

A DTM with 5-m resolution was obtained from the General Directorate of Mapping (GDM),
Turkey. The geomorphological parameters such as altitude, slope, general curvature, plan and profile
curvatures, topographic wetness index (TWI), stream power index (SPI), distance to channel networks,
and ridgelines were derived from the DTM. The Sentinel-2 satellite imagery from 23 March 2019 were
employed for classifying the LULC using the RF method. The lithology data were digitized into vector
form using the WebGIS portal data of the General Directorate of Mineral Research and Exploration
(GDMRE/MTA), Turkey [54], and converted into raster data with 5-m grid spacing. The LULC map
was also resampled to 5-m grid data to perform the LR technique. The data sources and the spatial
resolutions are summarized in Table 1.

Table 1. Properties of input parameters. LULC—land use and land cover; DTM—digital terrain model;
GDMRE/MTA—General Directorate of Mineral Research and Exploration.

Parameters Source Resolution

Geomorphological parameters DTM 5 m
LULC Sentinel-2 satellite imagery 10 m (resampled to 5 m)

Lithology GDMRE/MTA 5 m
Landslide susceptibility map Produced in the study 5 m
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For training the LR method, boundary polygons of eight landslides covering ca. 2000 grid points
were manually delineated by the expert using the DTM and the satellite images. The altitude range
map and the landslide inventory represented by the red polygons are depicted in Figure 3. In order to
utilize in the LR model estimation process, the vector landslide inventory map was rasterized with 5-m
grid spacing. The landslides detected in the study area occurred in schists and volcanic units. These
units are highly susceptible to weathering and landslides. The main characteristics of the landslides
were circular, and the depth of failure surfaces was controlled by the thickness of weathered zones.
In addition, the damage on the buildings in the study area was observed, and it is well known that the
main cause of damage is the landslides in the area. However, it is impossible to draw the borders of
the landslides due to urbanization on the slopes.

Figure 3. The elevation map and the manually delineated landslides (red polygons).

3.2. Geomorphological Characteristics of the Study Area

In order to understand the topography, some scalars such as primary and secondary derivatives
of a DTM can be used. Primary features (e.g., slope, aspect, curvature) are computed from elevations,
whereas secondary features (e.g. SPI, TWI) are obtained from the second derivatives of elevations [55].
These derivatives can be computed by using spatial analysis tools and software. Here, SAGA GIS from
the SAGA User Group Association, Germany [56] and ArcGIS from ESRI Inc., Redlands, CA, USA [57]
were used for this purpose. A statistical summary of the elevation data and the derivatives are given
in Table 2. Similar statistics were derived for the landslide positive samples (~2000 grid points) and are
provided in Table 3.

Table 2. Statistics of topographic attributes. SPI—stream power index; TWI—topographic
wetness index.

Attribute Name Minimum Maximum Mean SD

Altitude (m) 924.1 1284.7 1032.2 62.8
Slope (◦) 0.004 73.127 13.075 8.719

Aspect (◦) 0 360 192.23 101.46
General curvature −1.25957 1.09325 −9.73 × 10−5 0.05887

Plan curvature −0.09291 0.14917 4.56 × 10−4 9.69 × 10−3

Profile curvature −0.16431 0.16666 −5.05 × 10−4 0.01107
SPI 0 3,315,271.5 688.02 14,974.51
TWI 1.2776 22.1526 5.8651 2.1451

Distance to channel (m) 0.4 561.9 84.2 73.8
Distance to ridgeline (m) 0.0 229.9 33.0 26.5

83



ISPRS Int. J. Geo-Inf. 2020, 9, 114

Table 3. Statistics of topographic attributes in the landslides.

Attribute Name Minimum Maximum Mean SD

Altitude (m) 934.4 1050.4 986.5 30.7
Slope (◦) 0.560 39.793 20.171 7.949

Aspect (◦) 0.64 359.59 233.03 80.38
General curvature −0.369 0.388 −0.0094 0.0943

Plan curvature −0.0717 0.0493 −0.00418 0.0187
Profile curvature −0.05139 0.04435 −0.00454 0.0139

SPI 0.362 9091.607 319.292 814.8529
TWI 2.2736 15.33 5.197 1.719

Distance to channel (m) 0.4 142.3 44.1 40.7
Distance to ridgeline (m) 0.0 50.4 15.7 10.9

Altitude shows the elevation measures of an area [58]. The slope gradient represents the variation
in elevations [58] (Figure 4). Here, the slopes were employed to relate the topographical changes to
landslide formation. The aspect was computed as the angle from the north to depict the direction of
the slope. The aspect parameter was used to understand which slopes (north, south, etc.) would affect
the landslides more [58]. The aspect values are also depicted in Figure 4.

Figure 4. The slope gradient (left) and aspect (right) maps of the study area.

The curvature calculated from the DTM shows the changes in slope and aspect (Figure 5). The
curvature parameter can be classified as plan and profile, and it needs to be analyzed separately. The
planimetric component is based on the rate of slope variation along the contour lines, and the profile
component is computed along the slope to determine the rate of slope gradient change [58]. Negative,
positive, and zero curvatures reflect concave, convex, and flat surfaces, respectively [59]. The plan and
profile curvatures of the study area are given in Figure 6.
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Figure 5. General curvature map of the study area.

Figure 6. Plan (left) and profile (right) curvature maps of the study area.

The SPI is an indicator for erosive power of flowing water [60]. SPI is effective on landslides and
denotes potential erosion energy [61]. The TWI shows the positions and size of the water-saturated
regions [55] (Figure 7). The distances to channels were used for understanding the effect of the drainage
network on landslides. The vertical distances to the channels were computed from the elevation data
and, thus, the network was formed [62]. The landslide probability and the distances to the ridges were
negatively correlated [59]. The ridges were computed using the DTM, and the distance values to both
the ridges and the channel networks are provided in Figure 8.

Figure 7. SPI (stream power index, on the left) and TWI (topographic wetness index, on the right)
maps of the study area.
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Figure 8. Distances to channels (left) and to ridgelines (right).

3.3. Land-Use and Land-Cover Extraction from Sentinel-2 Imagery

The use of up-to-date LULC data is essential for natural hazard assessments and disaster mitigation
efforts. In this study, the LULC data were extracted from Sentinel-2 optical satellite imagery with 10-m
spatial resolution. Seven LULC classes as shown in Figure 9 were extracted from red–green–blue (RGB)
bands using SNAP software. The RF method was applied for the classification by collecting training
data on the images. Using the RF method, classification is made with an ensemble of decision trees
created by using training samples and variables [63]. In decision trees, the most rated pixels from all
trees in the forest are classified. Because of the higher accuracy compared to other machine learning
methods, it is widely used for image classification [64–67]. As seen in the study of Lim et al. [68] on
Sentinel-2 images, the RF method can work with high accuracy in image classification. The RF classifier
has two main parameters: the number of trees (T) and the number of variables (M) [69].

Figure 9. Land-use and land-cover map of the study area.

In this study, the classification process was completed by creating 10 trees using four bands,
i.e., red, green, blue, and the gray-level co-occurrence matrix angular second moment (GLCM-ASM)
parameter using 2077 training samples. Since it was difficult to separate the industrial units from
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the roads only with RGB information, the GLCM of the images was also computed and added to the
classification as proposed by Stumpf and Kerle [70], and the GLCM-ASM parameter was found to
be particularly useful in the present study. The distribution of the training samples to the classes is
shown in Table 4. When the accuracy of classification was calculated by the cross-validation method,
the correct prediction percentage was 93.73%, the classification precision was 92.01%, and the kappa
value was 97.13% (Table 4). As can be seen in Table 4, the classification accuracies of all bands were
improved by including the GLCM-ASM parameter, except for the industrial units, which remained
high for both versions. In addition, it was visually verified that this parameter was especially useful to
separate the road and industrial unit classes.

Table 4. Classification accuracy of the random forest method. ASM—angular second moment.

Land Use
Number of Training

Samples

Classification Accuracy
(Cross-Validation)
(with ASM Band)

Classification Accuracy
(Cross-Validation)

(without ASM Band)

Discontinuous urban
fabric 401 98.75% 94.01%

Industrial units 36 98.84% 98.94%

Road and rail networks
and associated land 811 97.10% 94.4%

Green urban areas 146 99.71% 97.88%

Arable land 325 98.75% 96.72%

Pasture and herbaceous
vegetation 125 98.65% 96.14%

Water bodies 233 99.81% 99.71%

Overall 2077 93.7259% 83.1081%

Kappa coefficient 97.13% 93.68%

3.4. Lithological Characteristics of the Study Area

In addition to the LULC and elevation data, the lithology type is extremely important for natural
hazard assessments [71]. Lithology type and the structural differences generally affect the robustness
and permeability of rocks and soils [72]. The lithology map was obtained from the geosciences
portal (Yer Bilimleri Portali) of GDMRE/MTA. The lithology map is shown in Figure 10, and detailed
descriptions are provided in Table 5. This vector map was preprocessed for conversion to raster data
with 5-m grid spacing.

Table 5. Age and general descriptions of the lithologies in the study area [54].

Age Description

Pliocene Terrigenous clastics
Quaternary Undifferentiated quaternary

Permian–Triassic Clastics and carbonates
Upper Paleozoic Triassic Schist, phyllite, marble, metabazite etc.
Lower–Middle Miocene Non-graded volcanites
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Figure 10. Lithology map of the study area [54].

3.5. Landslide Susceptibility Map Production with Logistic Regression Method

For the generation of landslide susceptibility maps, various mathematical and machine learning
methodologies can be applied. Many studies on the assessment of landslide susceptibility using
logistic regression were published in the literature (e.g., References [73–78]). In this study, multivariate
LR was employed to derive the landslide susceptibility distribution of the area. LR is a statistical
model, and it was used here to predict the potential landslide areas since it is fast and accurate for
landslide susceptibility assessment purposes [9,59,79]. The LR is a supervised method and uses
dependent (i.e., landslide conditioning factors) and independent (i.e., actual landslide inventory)
variables. The dependent variable is a binary value which depicts the occurrence/non-occurrence of
the event [62]. Independent variables were the 11 conditioning factors used as input data layers here
(e.g., elevation data, slope, aspect, LULC, etc.). In the model estimation stage, the relationship between
the variables was analyzed using the landslide positive samples (i.e., inventory data) and a number of
randomly chosen non-landslide samples. Equations (1) and (2) were used for computing the logistic
regression method.

Yi = β0 + β1Xi (1)

Pi = (Y = 1|Xi) = 1/(1 + eˆ(−Yi)) (2)

where Yi represents the dependent variables, xi represents the independent variables, β0 is a constant,
βi represents the i-th regression coefficient, and P is the probability of the existence of landslides [59].
In Vorpahl et al.’s [80] and Park et al.’s [81] studies, one of the most accurate results among the
landslide susceptibility maps created with similar parameters used in this study was achieved using
the LR method compared to other methods. After calculating the LR model parameters, the landslide
susceptibility map was produced for the whole area. The ratio of the landslide positive and negative
(non-landslide) samples was 1:2.

3.6. Flood Susceptibility Map of the Study Area

The flood susceptibility map of Ankara City was obtained from a previous study [19,20] (Figure 11)
with the M-AHP method [21] using flow accumulation, slope, topographic altitude, distance to
permanent river, distance to dry drainage, land cover, topographic wetness index, and lithology
parameters. Each parameter was weighted with the M-AHP method according to expert opinion, and
the highest score of each parameter was defined a priori. The output flood susceptibility map was
reclassified by dividing the resulting probability values into three classes with equal intervals, and
they were clipped for the study area (Figure 12). The original flood susceptibility map was divided
into five equal classes by Sozer et al. [19]. However, in accordance with the purpose of the study, three
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classes of the flood susceptibility map were used in the present study. The histograms prepared for the
five classes and three classes are given in Figure 13. The output susceptibility classes were categorized
as low, moderate, and high, and they were used for the multi-hazard susceptibility assessment with
the Mamdani fuzzy method.

Figure 11. Flood susceptibility map produced by Sozer et al. [19] (the rectangular area to the east is the
selected study area).

Figure 12. Flood susceptibility map of the study area (modified after Reference [19]).
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Figure 13. Histograms of flood susceptibility classes for five classes (left) and three classes (right).

3.7. Multi-Hazard Susceptibility Assesment with Mamdani Fuzzy Method

The multi-hazard susceptibility assessment map was derived with a combined assessment of flood
and landslide susceptibility results using the Mamdani Fuzzy Method, which was first developed by
Mamdani and Assilian [82]. This method is able to reduce uncertainties while solving complex problems
using “if–then” rules. The stages of a Mamdani FIS are fuzzification, rule evaluation, aggregation, and
defuzzification [82]. Fuzzy inference systems (FIS) produce a crisp output for supplied crisp inputs by
using fuzzy set theory [83]. The general structure of a Mamdani FIS can be found in several books and
publications (i.e., References [84–87]). Osna et al. [87] developed an integrated tool for construction
of a Mamdani FIS for Netcad Software, Netcad, Ankara, Turkey. With the Mamdani fuzzy logic [88]
operator in Netcad, landslide and flood susceptibilities could be evaluated together in the study area.
The Mamdani fuzzy algorithm was previously used for landslide susceptibility mapping [86,87,89],
but the present study is the first attempt at the combination of two susceptibility maps to obtain a
multi-hazard susceptibility map.

The inputs of the Mamdani fuzzy model constructed in the study were landslide susceptibility
and flood susceptibility maps, while the output was the multi-hazard susceptibility level (MHSL).
Traditionally, a fuzzy model is built using expert knowledge in the form of linguistic rules. Three
membership functions, i.e., low, moderate, and high, were defined for each input and output in the
Mamdani FIS implemented here. The membership functions are shown in Figure 14, which also
constitute the fuzzification stage of the system. In Figure 14, the vertical axes of the graphs denote the
membership degree, and the horizontal axes represent the susceptibility levels, which range from 0–1
for landslide and 8–66 for flood. In the literature, many methods, such as intuition, rank ordering,
angular fuzzy sets, genetic algorithms, inductive reasoning, soft partitioning, etc., exist for membership
value assignment (e.g., References [90–92]). Although it is possible to select membership functions in a
site-specific or target-oriented manner, or non-linearly, a generic approach was preferred here to prove
the usability of the approach. In this study, the constructed fuzzy model employed two inputs and
one output using three membership functions, and the fuzzification of crisp numbers and degree of
membership of each crisp input were calculated at this stage. One of the fundamental features of a
Mamdani FIS constitutes the linguistic if–then rules, namely, rule evaluation. In the present study, the
if–then rules were generated by the expert (last author), which prevented an exhaustive data analysis
process. The total number of linguistic rules generated by the expert was nine (Table 6). The final fuzzy
output of the model was produced by aggregation of all local results from fuzzy rules triggered in the
rule evaluation phase [87]. In the Mamdani FIS constructed here (Figure 15), the maximum operator
was considered for aggregation, as suggested by Reference [87]. Finally, the center of gravity was used
for defuzzification. Employing the Mamdani FIS constructed, the landslide and flood susceptibility
maps were used as inputs, and the MHSL map was produced as presented in the section below.
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Figure 14. The membership functions of each input. The vertical axes in both graphs represent the
degree of membership, while the horizontal axes reflect the susceptibility level range for landslide (left)
and flood (right).

Table 6. If–then fuzzy rules used for the multi-hazard susceptibility level (MHSL) assessment in the
study area.

Rule No. Rule

1 If (landslide susceptibility is high) and (flood susceptibility is high), then (MHSL level is high),

2 If (landslide susceptibility is high) and (flood susceptibility is moderate), then (MHSL is high),

3 If (landslide susceptibility is high) and (flood susceptibility is low), then (MHSL is high)

4 If (landslide susceptibility is moderate) and (flood susceptibility is high), then (MHSL is high)

5 If (landslide susceptibility is moderate) and (flood susceptibility is moderate), then (MHSL is high)

6 If (landslide susceptibility is moderate) and (flood susceptibility is low), then (MHSL is moderate)

7 If (landslide susceptibility is low) and (flood susceptibility is high), then (MHSL is high)

8 If (landslide susceptibility is low) and (flood susceptibility is moderate), then (MHSL is moderate)

9 If (landslide susceptibility is low) and (flood susceptibility is low), then (MHSL is low)

Figure 15. The general structure of the Mamdani fuzzy inference system (FIS) constructed.

91



ISPRS Int. J. Geo-Inf. 2020, 9, 114

4. Results and Discussion

4.1. The Landslide Susceptibility and MHSL Maps

The output landslide susceptibility map is shown in Figure 16. Although the landslide occurrence
probability values ranged from 1%–99% (i.e., from 0–1, as shown in the landslide susceptibility
membership graph in Figure 14), these values were reclassified into three categories (low, moderate,
and high) by using equal interval classification for easy interpretation. These values were also used in
the fuzzy assessment model in the next step. The map demonstrates the existing landslide hazard
potential, especially in the western parts of the area. The field observations of the expert support the
findings of the results obtained from the study.

Figure 16. Landslide susceptibility map of the study area.

The accuracy of the output map was evaluated to understand the quality of the results. The factors
that affect the accuracy are the data quality, the applied methods, the number of input parameters used
in the process, and the approach for map production [72]. The ROC (receiver operating characteristic)
curve, which is a measure of the capability of the current model in classification [93], was used
to evaluate the accuracy (Figure 17). The figure shows that the areas with and without landslide
susceptibility were classified with 96% accuracy.

In the present study, a plausible and practical methodology to combine different susceptibility
maps was proposed. The Mamdani fuzzy algorithm was used and the MHSL map was obtained
(Figure 18). The results show that some of the slopes and valleys have high multi-hazard potential.
To minimize the losses caused by landslide and flood, the high multi-hazard susceptibility zones shown
in Figure 18 must be investigated carefully, and necessary engineering measures must be provided at
the construction stage.
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Figure 17. Receiver operating characteristic (ROC) curves of landslide susceptibility map.

Figure 18. Multi-hazard susceptibility level map of the study area.

4.2. Discussion

The study area is subject to urban transformation projects due to unplanned settlements. The
Mamak Urban Transformation Project was implemented in a part of the study area, which covers
ca. 7.4 km2. The project location is shown in Figure 19. It was divided into 11 stages and carried
out by TOKI (Toplu Konut Idaresi Baskanligi), which is a state organization carrying out large-scale
construction works for new houses, in the Ankara Metropolitan Municipality and Mamak Municipality.
The main aim of the project was to transform the slums, i.e., unplanned settlement areas with insufficient
facilities and infrastructure, and modernize these areas [94]. While the initial number of slums was
13,662, the number of slums destroyed as of 2019 was 8389 throughout the project. In total, 30,000
dwellings are planned to be constructed in the next phase of the project. Considering the natural
hazard potential and related risks within the study area, the MHSL map could be used to analyze the
vulnerability of future urban development and transformation plans.
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Figure 19. A part of urban transformation project within the study area [91].

The DTM textured with the Sentinel-2 RGB image (Figure 20), the landslide susceptibility map
(Figure 21), the flood susceptibility map (Figure 22), and the MHSL map (Figure 23) of the study
area were visualized in 3D with the QT Modeler software from Applied Imagery, Chevy Chase, MD,
USA [95] for interpretation of the results.

Figure 20. The DTM (digital terrain model) of the study area textured with the Sentinel-2 image.

Figure 21. The DTM of the study area textured with the landslide susceptibility map (output of logistic
regression).
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Figure 22. The DTM of the study area textured with the flood susceptibility map (modified into three
classes after Sozer et al. [19]).

Figure 23. The DTM of the study area textured with the MHSL (multi-hazard susceptibility level)
map. The circles denote important focal areas for city planning in northwest and south Mamak as
mentioned above.

Figure 23 demonstrates the locations of the existing and the planned urban transformation sites.
The existing project area (purple circle in Figure 23) includes areas with multi-hazard risk. When the
risks are evaluated individually, there is low landslide risk in this area, but the excess of flood risk
is also remarkable. In this respect, it can be considered to review the resilience of the project against
natural hazard risks.

There are slum areas (blue circles in Figure 23) which represent potential urban transformation
sites. Land-use decisions in these areas should be prepared elaborately. It is more appropriate to
evaluate these areas at high susceptibility and utilize them as urban green areas by establishing
agreements with the property owners. There are also newly constructed buildings (dark-green circle in
Figure 23) in the west of the Mamak region. As can be seen, there are multiple areas with multi-hazard
risk. The status of new buildings in these areas should be examined. The construction quality and the
landslide resistance of these structures can be used as criteria to measure the accuracy of the previous
partial urban transformation in this area.

With regard to the methodological approach employed here, the accuracy of the LR method
was found sufficient for the purposes of the study. Although the number of the training samples in
manually delineated landslide areas was low, using the 1:2 ratio for landslide/non-landslide samples
worked efficiently. The produced MHSL map was representative for the purposes of the study, and
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it can be used as base map for urban planning and transformation purposes. The ensemble (i.e.,
LR) and expert-based (i.e., M-AHP) methods employed for the production of the individual hazard
susceptibility maps were useful, and the Mamdani Fuzzy algorithm was able to handle the complexity
of the problem.

5. Conclusions

In this study, a fuzzy model for integrated multi-hazard susceptibility assessment was developed.
In addition, the usability of Sentinel-2 images in obtaining up-to-date LULC data in urban development
areas for the production of landslide susceptibility maps was evaluated. The RF classification method
was employed for producing LULC classes from Sentinel-2 RGB images, and the GLCM-ASM parameter
was added to the classification to distinguish the industrial areas from roads. A high-resolution DTM
and the lithology data were integrated into the landslide susceptibility map, and the LR method was
applied for this purpose. An MHSL map was produced using the Mamdani fuzzy algorithm. The
produced MHSL map can be used as essential data for urban development and transformation plans.
Further analysis and planning can be carried out for this purpose.

The main difficulty encountered during the study was the preparation of a fully completed
landslide inventory map due to urbanization. However, a combined methodology to obtain the MHSL
map was described and applied successfully. The high multi-hazard susceptibility zones must be
investigated carefully before construction; alternatively, if possible, these zones should be avoided
with regard to construction purposes to minimize losses sourced from natural hazards. These maps
are highly useful for planning stages, and, if these maps are considered during the planning stage,
serious benefits can be obtained.

The methodology introduced in the present study for producing multi-hazard susceptibility
represents a first in international literature. The use of an expert-based fuzzy inference system for the
combination of two susceptibility maps portraying different natural hazards yielded very promising
results. The study showed that the Mamdani type fuzzy inference system is a suitable approach
for producing multi-hazard susceptibility mapping. the use of this approach for the combination
of several multi-hazard susceptibility maps may provide new possibilities for suitable site selection
efforts. However, there is no methodology available for the accurate assessment of a multi-hazard
susceptibility map. For this reason, the study area selected was relatively small and from a well-known
area. Consequently, the final output map was assessed with field observations.

As a final concluding remark, the fuzzy algorithm proposed for combining different natural hazards
is a flexible and transparent modeling approach; hence, the model can be tuned or re-constructed
easily when new information is obtained. As a future recommendation, some attempts at performance
assessments of the multi-hazard susceptibility maps should be carried out, and some numerical indices
for accuracy and performance assessments should be developed.
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5. AFAD. Afet ve Acil Durum Yönetimi Başkanlığı. Available online: https://www.afad.gov.tr/ (accessed on 1
December 2019).

6. Nefeslioglu, H.A.; San, B.T.; Gokceoglu, C.; Duman, T.Y. An assessment on the use of Terra ASTER L3A data
in landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 40–60. [CrossRef]

7. Pham, B.T.; Shirzadi, A.; Tien Bui, D.; Prakash, I.; Dholakia, M. A hybrid machine learning ensemble approach
based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: A
case study in the Himalayan area, India. Int. J. Sediment Res. 2018, 33, 157–170. [CrossRef]

8. Gorum, T.; Gonencgil, B.; Gokceoglu, C.; Nefeslioglu, H.A. Implementation of reconstructed geomorphologic
units in landslide susceptibility mapping: The Melen Gorge (NW Turkey). Nat. Hazards 2008, 46, 323–351.
[CrossRef]

9. Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide
susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [CrossRef]

10. Sevgen, E.; Kocaman, S.; Nefeslioglu, H.A.; Gokceoglu, C. A novel performance assessment approach using
photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and random
forest. Sensors 2019, 19, 3940. [CrossRef] [PubMed]

11. Kocaman, S.; Gokceoglu, C. A CitSci app for landslide data collection. Landslides 2019, 16, 611–615. [CrossRef]
12. Chen, L.; Guo, Z.; Yin, K.; Shrestha, D.P.; Jin, S. The influence of land use and land cover change on landslide

susceptibility: A case study in Zhushan Town, Xuanen County (Hubei, China). Nat. Hazards Earth Syst. Sci.
Discussions 2019. [CrossRef]

13. Adhikari, P.; Hong, Y.; Douglas, K.R.; Kirschbaum, D.B.; Gourley, J.; Adler, R.; Brakenridge, G.R. A digitized
global flood inventory (1998–2008): Compilation and preliminary results. Nat. Hazards 2010, 55, 405–422.
[CrossRef]

14. CRED. Natural Disasters 2017. Available online: https://cred.be/sites/default/files/adsr_2017.pdf (accessed
on 1 December 2019).
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Abstract: The number of tidal flood events has been increasing in Indonesia in the last decade,
especially along the north coast of Java. Hydrodynamic models in combination with Geographic
Information System applications are used to assess the impact of high tide events upon the salt
production in Cirebon, West Java. Two major flood events in June 2016 and May 2018 were selected
for the simulation within inputs of tidal height records, national seamless digital elevation dataset
of Indonesia (DEMNAS), Indonesian gridded national bathymetry (BATNAS), and wind data from
OGIMET. We used a finite method on MIKE 21 to determine peak water levels, and validation for the
velocity component using TPXO9 and Tidal Model Driver (TMD). The benchmark of the inundation
is taken from the maximum water level of the simulation. This study utilized ArcGIS for the spatial
analysis of tidal flood distribution upon solar salt production area, particularly where the tides are
dominated by local factors. The results indicated that during the peak events in June 2016 and May
2018, about 83% to 84% of salt ponds were being inundated, respectively. The accurate identification
of flooded areas also provided valuable information for tidal flood assessment of marginal agriculture
in data-scarce region.

Keywords: mapping impact; tidal flood; hydrodynamic model; solar salt farming

1. Introduction

Globally, coastal flooding have been devastating events causing cost for human environment,
increase property damage, and around 20 million people are exposed to present high tide levels and
200 million to storm tide levels [1,2]. Currently, the Intergovernmental Panel for Climate Change
(IPCC) report suggests that the global mean sea levels will increase 36–71 cm by 2100 based on
Representative Concentration Pathway (RCP) 4.5 mid emissions scenario [3]. This situation may
increase the vulnerability of coastal regions, especially of cities, due to demographic trends and
economic expansion [4,5]. Meanwhile, in developing countries where various types of agricultural
activities dominated the local economies, the impact is either ignored or simplified using rough
estimates because of low expected losses [6–8]. Moreover, local types of agriculture such as solar salt
production in tropical countries are also facing the impact of tidal flooding in particular location, which
is overlooked in the global discussion. This type of agriculture, however, has the potential to generate
revenue from salt in various aspects, not only in terms of salt product quality, but also for tourism, or
even partly for coastal research centers [9].

Currently, solar salt production is acknowledged to be a marginal economic sector, especially in
Indonesia [10]. It manually operates through traditional technology by using solar evaporation [11],
locally referred to as ‘maduranese’ method. The process starts in the saltpan. Seawater is let into the
first and largest concentrating pond, or concentrator, through an inlet [12]. Most of the salt farmers
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are producing sea salt only during the dry season (April–October). The timing of the process highly
depends on weather conditions, as rain reduces salinity and clouds decelerate evaporation [13]. Tidal
flooding upon solar salt farming areas frequently occurs during high tide in the production period and
thus threatens the production and distribution processes (see Figure 1). Between the 5th and 8th of June
2016, high tide flooding inundated hundreds of hectares of salt ponds in Cirebon, West Java, which
is one of the major producer sites for salt in Indonesia [14,15]. Concurrently, the similar astronomic
phases during the inundation events, showed the increase of high water level and low water level [16].
Temporarily, there was another nuisance flood between 23rd and 25th May 2018 along the north coast
of Java (locally referred to ‘Pantura’) during high tide [17]. Both events were narrated widely in both
electronic and printed media.

 
Figure 1. Setting of traditional solar salt production area including: (a) salt evaporation pan and
channel; (b) nearest pond to the sea; and (c) inundated pond due to high tide during fieldwork on 7
January 2018, 11:00 UTC (17:00 local time).

Tidal hydrodynamics in the Java Sea are complicated, due to their rough shallow bottom
topography, diverse types of coastlines, and the interference of tidal waves propagating from the Pacific
Ocean, Indian Ocean, and South China Sea [18]. Koropitan and Ikeda [19] previously investigated the
implication of the barotropic tides into four tidal harmonic constituents using a three-dimensional
(3D) hydrodynamic model combined with observation data and have suggested that the semi-diurnal
M2 component dominates over Java Sea. Several studies show that wind factor has a minimum
contribution to tidal propagation in Java Sea [18–20]. Tidal flooding in the northern part of Java
periodically rises in July and August during the East Monsoon period [21]. In recent years, the tidal
inundation comes not only at high tide but even at the regular tide in some areas along Pantura [22].
Furthermore, the local economy, such as salt production which is dependent on coastal conditions, is
eventually disrupted during these events.

Tides caused by the gravitational effects of sun and moon are periodic and very predictable [23–25].
Tidal floods (also defined as “nuisance” flooding) are occurring more often during seasonal high tides
or minor wind events, and the frequency is likely to escalate intensely in the forthcoming decades [26].
Currently, the impact of tidal flood is usually modeled using planar approach in geographic information
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analysis. This approach assumes areas lower than a particular elevation to be inundated utilizing digital
elevation model (DEM) and geographic information system (GIS) [27,28]. Geophysical processes
including bottom friction or motion transfer are not considered in these particular models [29].
Ultimately, the uncertain behavior of the coastal system during a coastal flooding event is still a
challenge in this model [30]. Previous work on GIS modeling presents various resolutions of DEM,
which suggest using high resolution of elevation data to increase accuracy [24,31,32]. However, it is
the hydrodynamics of the tide that is responsible for the size of the tide range, high and low waters
momentum, and tidal characteristic, as well as the speed and timing of the tidal current [33]. An
integrated approach considering both aspects is recommended, particularly for smaller areas and in
cases where details are essential [29,34,35].

In this study, a simulation of the tidal flooding on salt production area is presented. Furthermore,
investigations of high tide flooding in the salt production area of Cirebon are not available. The method,
implemented in past events using hydrodynamic model with additional inputs on behavior of the
coastal system during a tidal flooding event. This approach retrieves the values of the flood impact
on the parcel of salt pond from two-dimensional (2D) (floodplain flow) tidal inundation simulation.
Against the above background, the objectives of this study are to: (i) validate the tidal flooding that
happened in June 2016 and May 2018 using a hydrodynamic model; (ii) analyze the highest tidal
elevation and factors associated with flooding using tidal constituent and wind; (iii) plots tidally
inundated area upon solar salt production area by considering the spatial distribution and the depths.
Finally, this research offers better accuracy of analysis on the distribution of tidal flooding in salt
production areas within limitation of tidal flood data.

2. Location of the Study Area

Cirebon is located 6◦30′—7◦00′ S and 108◦40′—108◦48′ E. It covers an area of 990.36 km2.
Administratively, Cirebon is a part of the West Java Province and is bordered by the Java Sea, and by
Indramayu in the north, Kuningan in the south, Central Java Province in the east, and Majalengka
in the west (Figure 2). It is a typical lowland with an average elevation of 0–25 m and covers 64,500
hectares. Cirebon connects the capital city of Jakarta with major cities in central and east Java. Cirebon
has 40 districts, 424 villages, and 12 sub-districts. Based on BPS [36], the port city has an approximate
population of 2.1 million, with 2205 inhabitants per km2 and a population growth averaging of 1.28%
per year.

 
Figure 2. Geographical situation in Cirebon within typical coastal lowland adjacent to Java Sea and
simulation coverage area.
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Along with agriculture, salt production is shaping the local economy in the coastal region of
Cirebon. The salt ponds cover 7819.32 hectares and provide jobs for 3707 people, such as pond owners,
salt workers, and intermediaries [37,38]. Salt production predominantly takes place in low-lying areas
dominated by alluvial deposits alongside with mangrove ecosystems. The salt production period
in Cirebon begins during southeast monsoon. Most of the farmers start to store seawater in April,
May, or June depending on the weather. They start to collect the brine daily and generate yields 0.5-1
ton/hectare/day. The dry season begins in March and ends in September, with a mean temperature
of 32.8 ◦C, while the rainy season usually lasts from October to February, with an average rainfall of
1300-1500 mm/year and an average temperature of 24.2 ◦C [36]. The tidal regime is dominated by a
mixed semidiurnal type and experiences two high and two low tides of different scales each lunar day.
This tidal characteristic dominates the tidal cycle along Java sea [39].

The Java Sea is mainly identified as shallow water within roughly rectangular morphology, a
mean depth of 50 m, a length of 950 km, and a width of 440 km [19,40]. The tidal range in the Java Sea
is approximately 1.2–2 m, with peak values around Surabaya, Madura, and Bali [41,42]. The Java Sea is
strongly governed by the monsoon climate. The northwest monsoon (NWM) reaches its peak between
December and February (DJF) and it is usually characterized by frequent rainfalls and windy periods,
while the Southeast monsoon (SEM) extends from June to August (JJA) and is usually characterized by
much lower rainfalls [43].

3. Materials and Model Description

3.1. Data Acquisition

This study has used several data to simulate post-events of tidal floods. Firstly, the bathymetry
and land topography information for the domain areas were handled as two main inputs for the
model. Bathymetry of the Java Sea has been generated using gridded national bathymetry of Indonesia
(BATNAS) provided from the Geospatial Information Agency (we referred to BIG: ‘Badan Informasi
Geospasial’ in Indonesian) (http://tides.big.go.id/DEMNAS/) within a 6 arc-second resolution. This
data has been produced through the inversion of gravity anomaly of altimetry by adding sounding
data carried with single and multi-beam surveys, which has better resolution in coastal areas than
GEBCO (30 arc-second) [44,45]. Land topography data was resolved using the DEMNAS (0.27
arc-second resolution) also from BIG. DEMNAS is national seamless digital elevation data which
already constructed within assimilated data of IFSAR (5-m resolution), TerraSAR-X (5-m resolution)
and ALOS PALSAR (resolution 11.25 m), by adding stereo-plotting mass-point data [45]. This research
draws on a previous approach by Tehrany [46] and Zalite [47] to utilize detailed topographic data for
flood models. Here, five subsets (1309-12, 1309-14, 1309-21, 1309-23, and 1309-24) of DEM within the
0.27 arc-second spatial resolution were employed, and merged into a single raster data using GIS.

Secondly, tidal level data for Cirebon waters were captured from local tidal station in Cirebon
port operated by BIG. In this case, we used hourly data of both selected period of simulations. As
additional input, the simulation included wind data in the form of wind velocity, and wind direction
of the Jatiwangi station. This data was extracted from OGIMET online meteorological database
(https://www.ogimet.com/). Lastly, this model involved the latest (updated 2015) of the salt parcel
dataset taken from the ministry of marine and fisheries affair during the salt inventory mapping project
together with the national geospatial agency and PT. Garam [38]. At this point, salt parcel can clearly
separate each pond by scale of 1: 15,000 in polygon format and was referenced into the World Geodetic
System 1984. Details of data needed on this research are mentioned in Table 1.
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Table 1. Data requirement for salt farming impact due to tidal flood.

Data Type Resolution Location Period Source

Bathymetry 6-arc” Modeled expanse 2018 BIG

Topography 0.27 arc” Cirebon area 2018 BIG

Water level (ζ) 1 h Cirebon port June 2016, May
2018 BIG

Wind velocity (u, v)
and direction 1 h Jatiwangi June 2016, May

2018 OGIMET

Tidal calibration (ζ,
u, and v) 1 h T. Sari, Pangenan,

Bungko
June 2016, May

2018 TPXO, TMD

Salt parcel 1:15,000 Cirebon area 2015 BIG

3.2. Model Setup

This research applied a numerical hydrodynamic model (HDM) to forecast run-up and tidal
inundation in the salt production area in Cirebon. HDMs originated through resolving Laplace Tidal
Equations and using bathymetry data as boundary conditions [48]. The module of MIKE 21 package
was used, as one of the most widely used hydrodynamic model in computation by Danish Hydraulic
Institute (DHI), including the assessment of hydrographical sequences in non-stratified waters, coastal
flooding and storm surge, inland flooding, and overflow [49–51]. The MIKE package also represents
user-friendly GIS interfaces and provides better possibilities to simulate the flooding using elevation
data and bathymetry [52].

The model employed MIKE 21 Flexible Mesh (FM) to simulate water levels and tidal floodings
in selected events. These tools were utilized using the input of tidal gauge records to indicate the
spatial variability of tidal flood characteristics of two events. The model was applied for two separated
months, June 2016 (event A) and May 2018 (event B), which covered the occurrence of the selected
tide flood events. The unstructured triangular mesh with 87,103 nodes and 170,501 elements was
generated in the simulation and covered 11,515.20 km2 (see Figure 3). The mesh file in ASCII format
included information of the coordinates and bathymetry for each node point in the mesh [50]. The grid
dimension differs by 2800 m in the northeast ocean boundary, the smaller grid size around 450 m in the
outland, and 120 m in the inland area.

 

Figure 3. Mesh generation of Cirebon waters and part of Java Sea, bathymetry (in meters), comprising
of 87,103 nodes and 170,501 triangular elements.
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The tidal flood events, which were triggered by high tides, were simulated through forcing tidal
elevations at open borders, winds, and temperatures. The tidal height was calculated by hourly local
station measurement using a harmonic approach. This classical harmonic analysis represents the
tidal forcing as a set of spectral lines, demonstrating the predetermined set of sinusoids at specified
frequencies [53,54]. This stage resulted in nine tidal components (M2, S2, N2, K2, K1, O1, P1, M4, and
MS4) that correspond to specific physical phenomena such as the period of the moon around the earth
or friction against the seabed in shallow seas.

Following step of this model was to include the wind energy and set tilt facility to declare water
level correction along the boundary of the waters using Navier-Stokes equations. These equations
deliver an appropriate model for wave overtopping and overcome sophisticated hydrodynamics,
including wave breaking and its theoretical limitation [55,56]. Furthermore, the flood and drying (FAD)
ability of this model assisted the water run-up simulation and executed the inundation process of high
tides. This scheme has been alternated to describe the coastal situation, where it can be flooded at
one time but dry at other times. This study use recommended value in Thambas [50], hdry = 0.005 m,
flooding depth hflood = 0.05 m and wetting depth hwet = 0.1 m.

It should be noted that the elevation data is used in this simulation without considering water
surface evaporation. Due to the high complexity of the site study and the limitations of the model, the
following steps were considered for the tidal flood simulation: bottom friction is based on Manning’s
approach, with the ranges of friction coefficients from 40 for water to 32 for land [57]. A Manning
number in the range 20-40 m 1/3/s is typically applied with an advised value of 32 m 1/3/s if other data
is unavailable [58]. The Manning number relates to the flow path and peak time of flooding and does
not have a significant effect on flood distribution and depth [59]. Furthermore, the simulation included
horizontal eddy viscosity using the Smagorinsky type within a value of 0.28 [49].

After the work with MIKE had been completed, the result was exported using “MIKE2Grid” for
further spatial processes. This produced an ASCII file that is readable in ArcGIS. Importing this file
and reorganizing the classes produced the inundation map of MIKE 21. Finally, we superimposed
the grid data to the salt parcel dataset and used the tidal simulation as a basis in inundation analysis
process. This plot dataset has a shapefile format, which is suitable for further handling in ArcGIS. The
inundation map was created by using grid data of both simulations in ArcGIS. The two-top water
levels of the selected simulations, which were identified with the maximum value in the data series
that was used as a benchmark for inundation analysis. In this research, certain assumptions were
made, such as that no precipitation data inputs were used during the period of the incident as it may
raise the inundation level, no sea-level rise and land subsidence were considered in the simulation, as
there is still no strong local evidence of both factors in the research location. The overall steps of this
research are summarized in Figure 4.

 

Figure 4. Diagram of simulation of tidal flood and impact mapping procedure including
validation process.
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4. Results

4.1. Validation of Tidal Simulation

To get a sound validation of our model for tidal simulation, this study used tidal data of the
open boundary model that were obtained from the global tidal model. Following the step from
Ningsih et al. [60], the model compared the results of simulated sea level from MIKE 21 with tidal
station in Cirebon from BIG and also the global tidal model TPXO9 (this model can be accessed on
http://volkov.oce.orst.edu/tides/global.html). TPXO9 is the latest version of TPXO-series [61,62], which
includes global tidal solutions with 1/6◦ resolution that fit, in least-square, both the Laplace’s equation and
also the long track averaged data from TOPEX/Poseidon and Jason (on T/P tracks since 2002) [61,63]. Tidal
constituents of the tide record from BIG tidal station perform comparable values with tidal constituents
from the global tide modeling TPXO in Indonesian waters [64]. At this point, the wind factor was excluded
and focused on gravitational force only. Moreover, the tidal current velocity was verified with Tidal
Model Driver (TMD). This free MATLAB package offers harmonic constituents for tide models, making
predictions of tide height and also currents [65]. Verification points of the selected simulations (event
A and B) are located in Tawangsari, Pangenan, and Bungko (as pointed P1-P3 in Figure 5). The model
exposed the statistical correlation using the Pearson value (r) of the three locations with general tidal
model of TPXO9, and presented the value of the Root Mean Square (RMS) error. The RMS error was
calculated with:

xRMS =

√√
(

n∑
i=1

x2
i )/n (1)

where xi is the ith point of the chosen area, were calculated in the region 6◦S–7◦S, 108◦E–109◦E (the
Java Sea). The overall locations verified excellent correlations between simulated outcomes and those
of TPXO9 and TMD.

 

Figure 5. Salt production area for tidal simulation and validation points (P1-P3).
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The Pearson correlation of the tidal height simulation is in the range of 0.903–0.908 for event
A and of 0.848–0.903 for event B with the RMS Error within approximately 0.069–0.100 m. For the
u-velocity component, the correlation shows a coefficient around 0.833–0.965 with RMS Error of about
0.023–0.0196 m/s for event A. For event B, the correlation coefficients range between 0.570 and 0.877
with a RMS Error around 0.019–0.190 m/s. Furthermore, the υ-velocity component shows a good
agreement of the correlation coefficient, whereas the number of the correlation is about 0.683–0.824
with RMS Error about 0.040–0.061 m/s. Although there were some inconsistencies between u-velocity
components in MIKE 21 simulation on event B, overall, the simulation results managed well with the
TMD data. Lower values of RMS Error suggested the appropriate model to the data points; likewise,
values of Pearson close to the maximum point of one (value of 1) indicated that the model has a
strong correlation to the water level data [66,67]. Detailed values of Pearson Correlation and RMS
Error between simulation and global tide model of TPXO9 for water elevation and those TMD for
tidal velocity elements are shown in Table 2. The illustration for tidal height (ζ), u and υ-velocity at
verification points can be seen in Figures 6–8.

Table 2. Pearson Coefficient (r) and Root Mean Square (RMS) Error between simulation rates in MIKE
and TPXO9 for water elevation and velocity components from TMD.

Stations
Tidal Height (ζ) u-Velocity Component υ-Velocity Component

r RMSE (m) r RMSE (m/s) r RMSE (m/s)

Tawangsari
• Event A 0.903 0.071 0.894 0.0196 0.715 0.061
• Event B 0.891 0.075 0.877 0.0190 0.683 0.059

Pangenan
• Event A 0.904 0.100 0.833 0.029 0.724 0.050
• Event B 0.903 0.075 0.814 0.019 0.755 0.059

Bungko
• Event A 0.908 0.069 0.965 0.023 0.824 0.048
• Event B 0.848 0.088 0.570 0.073 0.705 0.040

 

 
Figure 6. Comparison of water level between simulation and TPXO on June 2016 (left) and May 2018
(right) at (a) P1—Tawangsari; (b) P2—Pangenan; and (c) P3—Bungko.
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Figure 7. Comparison of u-velocity component between MIKE and TMD on June 2016 (left) and May
2018 (right) at (a) P1—Tawangsari; (b) P2—Pangenan; and (c) P3—Bungko.

 
Figure 8. Comparison of υ-velocity at verification points and TMD on June 2016 (left) and May 2018
(right) at (a) P1—Tawangsari; (b) P2—Pangenan; and (c) P3—Bungko.
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Spring tides (at the new moon phase) appeared in between the flooding events of event A, which
was recorded from June 1st–5th, 2016. In event B, the high tides were tracked from the 23rd to the
28th of May during the end of the moon phase. In both of these conditions, the rise of waves is a
natural phenomenon due to moon force (M2) [20]. However, on the three tide validation points, the
increase of high water levels (HWL) and low water levels (LWL) during the inundation events can
clearly be compared to the same astronomic phases tides data before and after the events (see black
boxes in Figure 6 above). Moreover, the horizontal (u) velocity on three sample locations show typical
performances within range of 0-10 m/s and vertical (v) velocity in range of 0-28 m/s (see Figures 7
and 8). Here, it can be seen that there are differences velocity level between the simulation and the
TPXO model in three sample locations, which are explained in the previous section.

In the next step, the wind air pressure data were engaged in the model as an additional factor in
tidal propagation. Wind data from OGIMET has been entered into the simulation for both selected
periods. Adding hourly wind data into the model shows minor differences of amplitudes and phases
of tidal constituents. The simulations show that there is an insignificant difference in the tidal pattern
due to the relatively small effect of wind, as the velocity of wind dominantly emerged from the north
with a maximum speed of 6.8 m/s during event A and an average velocity around 0.81 m/s. For event
B, an extreme increasing velocity of 60.48 m/s is recorded in the simulation. Ultimately, the average
wind speed is approximately 0–1.49 m/s. Here, the assumption has been made that typically calm
wind in both selected periods has a minor impact on tidal floods along the coast.

Wind velocity confirmed a minimum correlation to the water level (Pearson correlation
0.1902-0.1905 for event A and –0.021 to –0.031 for event B). The negative correlation probably
relates to the minimum velocity of the wind, as OGIMET provides hourly datasets in both periods of
simulation. The typically calm wind during these periods provides a better situation for evaporation in
the salt production process. Nevertheless, high tide continually increases the potential of inundation in
coastal areas where salt production takes place. At the same time, the water elevation of the simulation
also shows significant correlation to the observation data from tide gauges (Figure 9a,b). Figure 9c,d
present the peak tide levels for both events. Here, the series of surface water (z) data from MIKE 21
simulation are also used to determine the nine tidal components. Here, Table 3 presents the variability
of tidal constituents in both periods of the model.

Table 3. Tidal amplitudes constituents in Cirebon resulted from simulation.

Simulation
Tidal Constituent

Z0 M2 S2 N2 K2 K1 O1 P1 M4 MS4

Event A 0.939 0.143 0.062 0.044 0.051 0.107 0.040 0.042 0.001 0.002

Event B 0.902 0.143 0.059 0.048 0.004 0.088 0.049 0.014 0.004 0.001

Based on the calculation, the wind involved in the simulation showed correlation values to
tidal gauge observation 0.761 with RMSE of 0.134 m for event A and 0.79 with RMSE 0.120 m for
event B. As a result, surface elevation at the peaks of both tidal events in Cirebon reached 0.38 m
(event A) on the 2nd of June 2016 12:00 UTC and 0.40 m (event B) on the 25th of May 2018 11:00 UTC.
Gurumoorthi and Venkatachalapathy [68] and Pugh [69] mentioned that the relative importance of
diurnal and semi-diurnal components differ with geographical position and can be calculated by the
formulation factor:

F = (O1 + K1)/(M2 + S2) (2)

In Equation (2), the average constituents confirm the typical mixed, predominantly semi-diurnal
tide within 0.73 and 0.68 for both events A and B. Considerably, the amplitudes of semidiurnal tidal
constituents were higher than the diurnal tides.
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Figure 9. Scatterplot and RMS error of simulated surface water elevation with tide gauge observation
on: (a) event A; (b) event B within peak level of water during simulation on; (c) 2 June 2016 12:00 UTC
(steps 36); and (d) 25 May 2018 11:00 UTC (steps 587).

4.2. Maximum Tidal Height and Exposed Salt Production Area

Understanding the impact of tidal flood dispersal on the coastal area demands a model of
inundated area caused by tide water level [24]. Equilibrium flood mapping or the “bathtub” approach
compare the maximum total water level and ground height. At those places, where the land is lower
than the expected maximum water level, it will be flooded [70]. The expected water depth for each salt
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pond can have major implications for tidal management, especially for vulnerability measurements as
damage is often associated with the depth of inundation and its duration. The simulation showed that
both tidal floods were forecasted to be generated by meteorological factors. Here, M2 tidal response
provides the dominant influence (which both events record 0.143) in amplitudes of Cirebon waters.
As a result, the surface elevation during the maximums of both tidal events have been exported in
ArcGIS using Mike2Grid tools and visualized water level and the spatial distribution of the inundation
upon salt production area (see Figure 10).

 

 
(a) 

Figure 10. Cont.
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(b) 

Figure 10. Simulation of water level during peak period of: (a) event A and (b) event B.

The simulation map shows that tidal inundation occurs along the coastline of Cirebon during
peak water levels. The grid data was superimposed with detailed DEMNAS to investigate the impact
of tidal flooding upon solar salt production land. A reclassification process in GIS elaborates the tidal
dynamics and flood depth upon salt pond in the study area. Here, each salt parcel has a single value
of depth level through spatial joint between both vector types of water level and parcel of salt pond
datasets (Figure 11). Thus, this results in the appropriate value for inundation for each pond that has
been impacted by the tidal occurrence for both events.
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(a) 

Figure 11. Cont.
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(b) 

Figure 11. Estimated inundation level for each pond of during the highest tide of (a) event A and (b)
event B (each parcel contains single value of inundation depth).
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As mentioned in the previous section, the results regarding the submerged area of around 0–0.38
m for (event A) and 0–0.40 m for (event B), have significantly affected the salt production areas in
Cirebon. Based on previous maps (Figure 11), it can be seen that around 1990.55 ha of salt production
pond in Losari were inundated during event A and 1992.07 ha during event B. This district is also
recorded as the most impacted area due to both tidal flood events (99.92% and 99.99% of total cultivated
area in Losari). The salt production area of Gebang, which is located in the west part of the study area,
has also been flooded up to 816.32 ha (100%) during the events A and B. At the same time, a slight
increase of flood coverage has occurred in Kapetakan due to both tidal events. During the peak level
of event A, almost 56.15% or 1,538.96 ha were exposed to tidal floodings, and 57.22% or 1,568.34 ha
suffered inundation according to our simulations. In the middle part, tidal heights of both selected
simulations in events A and B have submerged Suranenggala, Gunungjati, Mundu, and Astanajapura
to a lesser degree in terms of total area, but with more significant percentages of inundated salt pond
(approximately 49–99% in both events). The model presents the areas of inundation on A and B events
as it is drawn in Figure 12.

 

Figure 12. Tidal flood accumulative distribution area of inundation in Cirebon due to high tide at event
A and event B.

This model shows relatively small differences in terms of the affected area during both simulation
periods, as the wind factor has less impact and relatively similar water level. The simulated inundated
salt production areas for A and B peak events are estimated to be 6489 ha and 6570 ha, respectively,
which equals to 83 % and 84.2 % of the total salt production area in Cirebon. Overall, the peak depth
of > 0.35 m dominates the tidal flood sequence, with 41.9% and 45.5% of the area being inundated
to such a degree. This depth level has a significantly larger effect in destructing dikes compared to a
lower flood level. Meanwhile, around 16–17 % of ponds are relatively safe from these events, as they
are located further inland on higher elevations. The less impacted area is estimated within >0-5 cm
depth, which covers 1.7% (event A) and 4.1% (event B) of the total inundated area. During the flood,
salt production was postponed and stopped until the water receded. It has to be noticed that higher
flood levels also take a longer time to recede, which prolongs the preparation and the pre-production
process, thus worsening the impact of the floods upon the salt production. Estimations of the salt
production area that have been inundated based on simulation is presented in Table 4.
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Table 4. Estimated areas and percentage of salt production in Cirebon affected by tidal flood in selected
events (area in hectare).

Water depth Inundated Event A Event B

> 0–5 cm
Area 132.4 317.2

% 1.7 4.1

5–15 cm
Area 894.3 847.4

% 11.4 10.8

15–25 cm
Area 722.6 687.9

% 9.2 8.8

25–35 cm
Area 1463.1 1156.1

% 18.7 14.8

> 35 cm
Area 3277.1 3561.4

% 41.9 45.5

Total Inundated 6489.4 6570.0

5. Discussion

This paper presents simulation of the inundated areas upon salt farming due to tidal flood events.
Tidal floods that occurred upon salt production area were triggered by the high tide events in Java
Sea. That two events were similarly situated to tidal incidents located along the southern part of Java
adjacent with Indian Ocean [71,72]. Both periods studied present similar tidal elevations. Inundation
dominantly occurred in the western and eastern parts of the region. The total impacted salt production
area in both events were about 6489.4 ha (event A) (83%) and 6570 ha (84%) (event B). As illustrated
by Châu [73], the inundated area may be overrated based on data characteristics and the methods
employed. Different resolutions of DEM may result in different total area of inundation. Furthermore,
bathymetry, wind velocity, and Manning coefficient also correlate with the hydrodynamic process of
tidal forcing.

This method, which relies on tidal characteristics and hydrodynamic parameters, leads to a
usefulness tidal flood mapping for salt production areas. This idea improves the marine environment
evaluation through cost-effective technique and limited data collection in particular coastal regions [74],
and improved flood forecasting [56]. Based on performance, the hydrodynamic simulation’s high
degree of confidence with the global tide model can be placed as input to identify inundated area
during tide events. The results express the significance of gaining reliable datasets into calibration
and validation processes [75]. The availability of spatial data for the study area, including DEM,
bathymetry, meteorological data, and salt parcel area, also give beneficial support for the models.
Although wind data do not confirm significantly in the simulation performance, there were secure
connections between our models with tidal records from local station (see Figure 9).

In this study, DEMNAS (0.27 arc-second) was the highest resolution elevation data available in
Cirebon and representative for the simulation and tidal inundation mapping; however, more accurate
results would be achievable through higher resolutions [34,76,77] such as LiDAR-derived DTMs [56,78],
and more extended tidal gauges data. Previous work by Seenath et al. [34] acquired 10-m DEM
in the flood modeling component and delivered relatively higher RMS error. Additionally, smaller
frequencies of simulation, i.e., 5-sec [79,80] and 6-min [81] will improve the model‘s stability. While
there are advantages to use a hydrodynamic model for tidal flood mapping, the required computation
time and the resolution of input data may limit its application in practice, especially for larger areas
(compare Seenath et al. [34]). In this case, DEMNAS performs better resolution on water depth visually,
but within a more extended handling time. This data was also previously exported into polyline
format along with bathymetry in the preparation step. Processing simulations take a much longer time
than calculating a general bathtub model. The hourly data during the 30-day period of simulation took
almost 48 hours (using a standard PC with Intel I5 and 8GB of RAM).
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As Cirebon salt production operates in a very traditional manner, the local salt farmers rely on
daily harvests and the tidal cycle. Meanwhile, the ability to recover from disasters is far from sufficient.
A comprehensive risk analysis of the salt production area is urgently needed to be better prepared to
deal with the more prominent impacts of tidal floods on coastal areas. Tidal flood simulations have
the potential ability to lead for better evaluations, including the potential damage loss on case-based
analysis. This data will enable farmers and stakeholders to better respond to future hazards and to
build capacity to improve the quality of livelihoods in the tidally flooded areas.

6. Conclusions and Future Works

This study has developed a method to identify the tidal flood impact in different types of
agriculture areas in the coastline where the tide is generally forced by local factors, using hydrodynamic
models. The model simulates typical aspects of tidal flood in Cirebon coastal regions, where lunar
force dominates the domestic tidal properties during salt production periods. The method allows for
critical identification points of flooding in the simulation, rather than using sets of scenarios. This
study also underlines the main interest in the possible analysis of marginal agriculture along the
coast, where the tidal hazard may continue in the future and would make a more significant impact.
Meanwhile, there is still a limited number of studies that emphasizes the exposure of tidal hazard in
local traditions economic activities. Tidal flood impact mapping can be beneficial to increase awareness
of salt farmers to the flood occurrences. Additionally, the uncertainty and volatility level of this type of
flooding is driving the local government to put more attention, especially for countermeasure planning
and efficient mitigation strategies. Using higher-resolution DEM, such as LiDAR, and echo-sounder
survey data for detailed bathymetry can lead to an improvement for tidal flood assessments accuracy.
Although this particular model is initiated for local-case study, it is believed that this technique can be
developed at a regional scale with data limitation. Finally, this research will be more substantial to
include the benefit-cost (B/C) analysis of the post tidal flood events.
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Abstract: Structural disaster damage detection and characterization is one of the oldest remote sensing
challenges, and the utility of virtually every type of active and passive sensor deployed on various
air- and spaceborne platforms has been assessed. The proliferation and growing sophistication
of unmanned aerial vehicles (UAVs) in recent years has opened up many new opportunities for
damage mapping, due to the high spatial resolution, the resulting stereo images and derivatives,
and the flexibility of the platform. This study provides a comprehensive review of how UAV-based
damage mapping has evolved from providing simple descriptive overviews of a disaster science,
to more sophisticated texture and segmentation-based approaches, and finally to studies using
advanced deep learning approaches, as well as multi-temporal and multi-perspective imagery to
provide comprehensive damage descriptions. The paper further reviews studies on the utility of the
developed mapping strategies and image processing pipelines for first responders, focusing especially
on outcomes of two recent European research projects, RECONASS (Reconstruction and Recovery
Planning: Rapid and Continuously Updated Construction Damage, and Related Needs Assessment)
and INACHUS (Technological and Methodological Solutions for Integrated Wide Area Situation
Awareness and Survivor Localization to Support Search and Rescue Teams). Finally, recent and
emerging developments are reviewed, such as recent improvements in machine learning, increasing
mapping autonomy, damage mapping in interior, GPS-denied environments, the utility of UAVs for
infrastructure mapping and maintenance, as well as the emergence of UAVs with robotic abilities.

Keywords: drone; computer vision; point clouds; machine learning; CNN; GAN; first responder;
RECONASS; INACHUS

1. Introduction

1.1. Structural Damage Mapping with Remote Sensing

The first documented systematic post-disaster damage assessment attempt with remote sensing
technology dates back to 1906, when parts of earthquake-affected San Francisco were mapped with a
20 kg camera that was raised on a series of kites some 800 m above the disaster scene [1]. This makes
damage mapping one of the oldest applications in the remote sensing domain, but also one of the few
that continues to elude robust operational solutions, and which remains a subject of active research.
Since the early pioneering days, nearly every type of active and passive sensor has been mounted on
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airborne platforms that range from tethered to autonomous or piloted, as well as satellites operating in
different orbital or network configurations, to attempt increasingly automated damage detection [2,3].
However, despite more than a century of research and tremendous technological developments both
on the hardware and the computing side, operational image-based damage mapping, such as through
the International Charter “Space and Major Disasters” or the Copernicus Emergency Management
Service (EMS), continues to be a largely manual exercise (e.g., [4,5]).

Charter and EMS activations center on a particularly challenging type of damage mapping.
Both need to respond to a wide range of natural and anthropogenic disaster types, and the first maps
are expected to be available within hours of image acquisition, while the particular damage patterns
and their recognition are subject to a number of variables. Building typologies, spatial configurations,
and construction materials differ, and recognizable damage indicators are strongly dependent on the
type of hazard and its magnitude. Image type, in terms of spatial and spectral characteristics, as well
as incident angle, but also environmental conditions such as haze or cloud cover, differ enormously,
further challenging the development of generic and widely applicable damage detection algorithms.
Satellite-based damage mapping has the additional disadvantage that damage that may be quite
variably expressed on each of the building’s facades, its roof, as well as its interior, is largely reduced
to a single dimension, the quasi-vertical perspective that centers on the roof. Damage detection
in reality is then supported by the use of proxies, such as evidence of nearby debris or damage
clues associated with particular shadow signatures [6,7]. There have been some notable successes
in satellite-based damage mapping, especially related to cases where radar data have an advantage,
in particular interferometric [8] and polarimetric synthetic aperture radar [9]. Where damage patterns
are structurally characteristic, such as foundation walls remaining after the 2011 Tohoku (Japan)
tsunami, simple backscatter intensity has also been used to detect damage [10]. Increasingly advanced
machine learning algorithms, including convolutional neural networks (CNN), are used to detect
different forms of building damage with radar data [11].

Efforts to process optical satellite data for rapid damage mapping are also moving in the machine
learning direction. This includes methods based on artificial neural networks [12], and increasingly
also CNN [13–16]. Studies vary in terms of mapping ambition, with many only aiming at a binary
classification (damage/no damage; [12]), and there is no evidence yet of emerging methodologies
being used operationally. However, the recently released xBD satellite dataset containing more than
700,000 building damage labels and corresponding to 8 different disaster types [17] will help in
developing and benchmarking novel methodologies.

1.2. Scope of the Review

Automated satellite-based damage mapping has thus shown limited progress, at least in terms of
versatile methodologies that can readily map structural damage caused by different event types in
diverse environments. At the same time, the proliferation and rapidly growing maturity of unmanned
aerial vehicles (UAVs/drones) in recent years has created vast new prospects for rapid and detailed
structural damage assessment, which are the focus of this review. We do not consider historical, mainly
military systems, such as unpiloted reconnaissance aircraft that date back to World War II. Rather,
we focus on the suite of platforms that evolved from remote-controlled (mainly hobbyist) planes and
helicopters, with the first documented scientific studies on UAV-based disaster response dating back
to about 2005 [18]. The review also does not include non-structural damage assessment, such as
studies on crop or forest damage. It also does not cover issues of UAV communication (e.g., use of
UAVs to create ad hoc communication networks over disaster areas), nor studies on drone network or
scheduling optimization. For both good reviews already exist (e.g., [19,20]).

The review includes peer-reviewed publications indexed in Scopus and Web of Science, focusing on
research on automated damage detection rather than provision of data for visual assessment, and is not
meant to be exhaustive. While the topic is a niche within the remote sensing domain and the amount
of studies remains relatively small, a number of application papers without significant novelty exist,
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which are excluded here. The article is built on a recent conference contribution [21], though the focus
of that paper on the results of two European research projects is expanded here to a comprehensive
review study. In addition to tracing relevant technical and methodological developments in damage
detection, we synthesize the current state of the art and evaluate current and emerging research
directions. In addition, we assess the actual usability and practical value of emerging methods for
operational damage mapping, including for local mapping by first responders. In the following section
relevant publications on the use of UAVs for structural damage mapping are reviewed, sorted by
increasing technical sophistication, and a summary is provided in Table 1.

2. UAV-Based Damage Mapping

2.1. Scene Reconnaissance and Simple Imaging

The principal advantage of a UAV in a disaster situation is its vantage point, a flexible position that
can provide both synoptic and detailed views of a potentially complex scene, as well as overcome access
limitations. Early studies thus focused on scene imaging, aiding disaster responders by supplying a
relatively low-cost aerial perspective [22]. Taking advantage of increasingly efficient structure from
motion (SfM) and 3D reconstruction concepts emerging at the time (e.g., [23]), in some early studies
data were already processed to derive georeferenced images [24], terrain information/digital elevation
models (DEM) [18], or orthophotos [25]/orthomosaics [26]. In cases without a full processing pipeline
and where no suitable DEM data existed, pseudo-orthorectified images (assuming constant terrain
height) were created. Instead of still images also video data were transmitted in real time to allow
visual damage inspection [27].

In the years following the initial studies, little methodological progress in damage mapping
was made, despite advances in off-the-shelf UAV systems, or the emergence of ArduPilot in 2007 for
improved UAV flight stability, or Pix4D(Pix4D, Switzerland) in 2011 for easier photogrammetric image
processing. A range of studies appeared that essentially still focused on image provision or simple
photogrammetric processing, using remote-controlled helicopter systems [28], multi-copters [29–32],
or fixed-wing UAVs [33–35].

2.2. Texture- and Segmentation-Based Methods

Initial attempts to extract damage information automatically from UAV data were
based on segmentation- and texture-based approaches, using mono-temporal imagery.
Fernandez Galarreta et al. [36] processed UAV imagery of an 2012 Emilia Romagna (Italy) earthquake
site into detailed 3D models. The work adapted and expanded earlier approaches developed for the
airborne (piloted) Pictometry system that yields similar oblique, overlapping, and multi-perspective
imagery. Also, those images had been photogrammetrically processed [37], and used for structural
damage assessment [38,39]. The analysis of [36] focused on geometric damage indicators such as
slanted walls or deformed roofs, as well as presence of debris piles (Figure 1). In addition, object-based
image analysis (OBIA) was carried out on the images to extract damage features such as cracks or holes,
but also identification of those damage features intersecting with apparent load-carrying structural
elements. A similar OBIA strategy was used by [40] to identify damage in Mianzhu city, affected by
the 2008 Wenchuan earthquake.
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Figure 1. Damages identified from unmanned aerial vehicle (UAV)-derived point clouds and from
object-based image analysis (OBIA) processing. (a) Inclination in walls, (b) openings (turquois),
cracks (magenta), and damage crossing beams, (c,d) detailed point cloud and segment orientation
angles [adapted from 36].

2.3. Conventional Classifiers

The work of Fernandez Galarreta et al. demonstrated the significance of geometric information
in damage detection, in particular of openings in roofs and façades. Vetrivel et al. [41] advanced the
work by developing a method to isolate individual buildings from a detailed image-derived point
cloud covering a neighborhood of Mirabello (Italy) comprising nearly 100 buildings. Each of those was
then subjected to a search for openings attributable to seismic damage, such as partial roof collapses
or holes in the façades, a focus similar to [42]. The gaps were identified based on Gabor wavelets as
well as histogram of gradient (HoG) orientation features. Two basic machine learning algorithms,
Support Vector Machine (SVM) and Random Forest (RF), were used to identify damaged regions
based on the radiometric descriptors, with a success rate of approximately 95%. However, the work
also illustrated how the segmentation of point clouds is frequently hindered by artefacts and data
gaps. In [43], an approach was developed to overcome this problem: after projecting the initial point
cloud-derived 3D segments into image space, a subsequent segmentation using both geometric and
radiometric features yielded more accurate and complete building segments.
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The work in [41] work also showed the limitations of HoG and Gabor filters in the classification
of complex scenes, and of global feature representations on general. The latter cause problems
when scene and image characteristics vary, which is typically the case between different disaster
areas or in multi-temporal assessments. The work described in [68] moved towards descriptors that
are more generalizable and invariant to image characteristics. The method was built on the Visual
Bag of Words approach and focused on the detection of rubble, debris piles, and severe spalling.
The method performed well on individual UAVs and also Pictometry data sets of Mirabello (Italy)
and Port-au-Prince (Haiti), respectively, but also on a dataset that combined the two airborne datasets
with transverse street-level images. The limitation of the method is that it is grid-based and can only
identify general damage patches, i.e., grid cells affected by one or more of the damage types considered,
a limitation also evident in the study of [50], who used RF on superpixels. A detailed localization and
characterization (size, shape, etc.) of damages of a specific type would be preferable, though this will
come at the cost of increased processing time.

2.4. Advanced Machine Learning and the Emergence of CNN

Image classification used for damage mapping increasingly made use of machine learning,
in particular SVM and RF [41,54,69] or different boosting algorithms, such as AdaBoost [38] or
XGBoost [58], and moving towards more advanced scene understanding and semantic processing.
However, the features used were typically hand-crafted (such as HoG or Gabor, or other point feature
descriptors related to spectral, textural, and geometrical properties [54]), and emerging work had
shown that in deep learning approaches CNN could actually learn features and their representation
directly from the image pixel values [70]. Thus, the damage detection work proceeded in this direction,
hypothesizing that image classification would benefit from the micropropagation of 3D point cloud
features. The work described in [55] applied a multiple-kernel-learning framework on several sets of
diverse aerial images, and showed that combining the radiometric and geometric information yields
higher classification accuracies. The processing was based on Simple Linear Iterative Clustering (SLIC)
superpixels, meaning that damage was again only identified in patches, though those were labelled
with specific prediction scores. Song et al. [66] also worked with SLIC superpixels, though unlike
in [55] where they had formed the basis for the ML analysis, here first a CNN-based damage detection
was carried out directly on the image, and the SLIC segments were then used in combination with
mathematical morphology to refine the results. In [67] a similar approach was taken, except that
instead of SLIC a multi-resolution segmentation was carried out, to allow features naturally occurring
at different spatial scales to be used effectively. The CNN approach developed in [55] was also used by
Cusicanqui et al. [71], who reasoned that video data are often available before suitable still photographs
(e.g., acquired by police or the media). In the study it was thus tested whether 3D reconstructions based
on video data could offer similar support, and it was indeed shown that a binary damage classification
based on deep learning applied to SLIC superpixels and the 3D models led to results comparable to
those based on still photographs.

The particular significance of the work in [55] for disaster response and search and rescue was
that the method demonstrated significant transferability, which has become a frequent focus in recent
literature. A model trained with a sufficient number of samples (e.g., trained before an actual event)
performed well when then applied to a new disaster scene, supporting a rapid analysis without
the need for extensive retraining. This approach can help to overcome the traditional limitation of
CNN, i.e., their need for a large amount of labelled training data. A different approach was taken
by Li et al. [62], who used a convolutional autoencoder (CAE) that was trained using unlabelled
post-disaster imagery based on SLIC superpixels, with results being finetuned by a CNN classifier. In
follow-up work [63] the authors in addition employed a range of data augmentation methods, such as
data blurring or rotating, to enlarge the number of samples. The resulting pre-training improved the
overall damage detection accuracy by 10%.
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Disaster scenarios are frequently characterized by imperfect image data availability, and a
rapid response effort has to make do with what exists. In this respect it is valuable to be able to
incorporate images of different types and scales into the training model. Duarte et al. [56] trained a
CNN with different types of aerial imagery to classify post-disaster satellite data of Port-au-Prince.
Although information coming from the different image resolutions evidently improved the model
and classification accuracy, the approach still failed to capture smaller damage features. The work
also focused on determining the effect of multi-scale information on the CNN activation layers as
a proxy for improved damage recognition, while not allowing a detailed assessment of where the
classification improvement originated in terms of false positives and negatives, or specific damage
types. Later work focused on multi-resolution feature fusion and its effect on building damage
classification [57]. It showed that such a fusion is useful and can improve the overall accuracy, though
it still failed to show which specific damage types are identified, and how well they are captured.

Earlier work had shown how highly variable the expression of structural damage is in vertical
and oblique data [6]. The former essentially only considers the damage expressed in the roof,
and in addition makes use of proxies such as debris piles for specific shadow configurations [7].
Significant additional information is also encoded in the façade information, as already explained in
Section 2.1. However, the OBIA-based approach used for example in [36] tends towards overfitting
and lacks the efficiency and transferability of deep learning. While a focus on façades is appealing,
their actual delineation in imagery poses its own challenges, especially when considering aspects
such as occlusion or environmental effects such as shadows (Figure 2). The work described in [51]
thus focused on developing an efficient method to extract façades that were subsequently assessed
for damage using CNN. The approach made use of a point cloud calculated from vertical imagery
acquired in an initial UAV survey. From the sparse point cloud, the building roofs were segmented and
the building façades hypothesized, which in turn was used to extract the actual façades from oblique
UAV images. The patch-based damage classification had an overall accuracy of approximately 80%,
though the work also demonstrated the significant challenge of damage identification on façades, due
to architectural complexities and associated diverse shadow patterns, but also occlusion (by external
features such as vegetation, or internal ones such as balconies).

Figure 2. Typical problems for image processing posed by shadow and occlusion [51].
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It stands to reason that some ambiguities can be resolved by analysing multi-perspective data
(views of a given façade from different angles that go beyond regular stereoscopic overlap), but also by
incorporating multi-temporal data where available. The majority of the studies described above only
used post-disaster imagery. However, in the last few years the availability of high spatial resolution
pre-event reference imagery has been growing rapidly. This has led to additional methodological
developments that built on the segmentation- and texture-based damage detection described above,
extending them into a multi-temporal framework. Vetrivel et al. [47] used pre- and post-earthquake
data of L’Aquila (Italy) and focused on the identification of 3D segments missing in the post-disaster
data as an indicator of damage. Both voxel- and segment-based approaches were tested, and finally
a composite segmentation method that subjects an integrated pre- and post-event point cloud to
plane-based segmentation was chosen. Although working with conventional airborne data, in [61]
those assumptions were also tested in a CNN framework, where 6 different multi-temporal approaches
were compared against 3 mono-temporal ones. It was concluded that a multi-temporal approach with
3 views at each the pre- and post-event epoch performed best. Also, here smaller damage features
eluded detection. However, the authors expect better results with UAV data, given that the problem of
occlusion can be reduced through more flexible image acquisition.

2.5. Levels of Disaster Damage Mapping

Early efforts in disaster response with satellite imagery identified damaged areas more generally,
while airborne data were used to detect specific damage proxies, usually debris piles (e.g., [72]).
Especially in more recent years, overall classification accuracy and f-scores have been the most
commonly used metrics to assess the efficacy of a given damage mapping method, and to judge
progress within the discipline. However, this focus neglects an inherent incomparability of many of the
studies produced to date, and the absence of a generally agreed upon damage scale. The introduction
of the European Macroseismic Scale 1998 (EMS-98) led to a broad homogenization and alignment of
efforts, by grouping structural building damage in 5 categories, D1 (negligible/slight damage)–D5
(destruction) [73]. Building on its common use in satellite-based damage detection (e.g., [74–76]),
later its utility for UAV-based damage mapping was explored. For example, [38] classified building
damage according to EMS-98, though recognizing the diversity and ambiguity of the observed damage
patterns the study did not aim at automatic damage classification, except in cases where the 3D model
clearly showed complete collapse (D5). Also, studies [36,48,77] used this scale as a basis, with [31]
even adding a 6th damage level.

One consequence of the continuing challenge of image-based damage mapping is that, while D1
and D5 are comparatively easy to determine but intermediate damage stages are not, many studies have
departed from the 5-level classification scheme. The work in [50] opted instead for a 4-class approach
(intact, light, medium, and heavy damage), while several studies grouped damage into 3 classes.
However, even within one such category damage levels/class names vary, limiting comparability. For
example, Zeng et al. [40] mapped intact, damaged, and destroyed buildings, while Vetrivel et al. [47]
termed the classes undamaged, lower levels of damage, and highly damaged/collapsed, and Song et
al. [66] distinguished intact, semi-collapsed, and collapsed buildings, with differences in class definition
going beyond semantics. However, the majority of recent studies opted for a simple binary classification,
either explicitly mapping both damaged and undamaged structures (e.g., [12,49,55,65,67]), or only
mapping damage in general in a single class [51,61]. In addition, there are studies that focused on the
identification of specific damage types, such as holes in the roof [41,42], or dislocated roof tiles and
cracks along walls [36]. Others mixed damage and proxy classes, such as [62], who mapped damaged
and undamaged structures, but also debris as a separate class. Creative choice of class names is further
hindering a comparison between different studies. Li et al. [63] used the classes mildly damaged
and ruins, while Xu et al. [54] mapped categories including roof, ground, debris, and small objects.
The difficulty of image-based damage mapping has led to a focus on severe damage classes (D4-5),
making studies such as [42] that expressly focus on lesser damage (D2-3) an exception. Approaches
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based on deep learning are particularly suited for binary classification, which is another reason why in
the interest of automation only a single damage class is now frequently considered.

2.6. The Special Case of Infrastructure Damage Mapping

The focus of this review is on structural building damage. However, one of the fastest growing
UAV application areas in recent years is infrastructure monitoring and detection of damage indicators
related to wear and degradation, such as of roads, bridges, or tunnels. The lines between disciplines
have blurred, with studies such as by Dominici et al. [32] addressing both regular structures and
infrastructure. Furthermore, from a methodological perspective studies focusing on crack or spalling
assessment along bridges or tunnels are also relevant for the disaster damage mapping community,
and damage to infrastructure caused by disaster events naturally also falls under the scope of this
review. For this reason, papers marking key developments in infrastructure monitoring and damage
mapping are briefly reviewed here.

A recent review by Dorafshan and Maguire [52] provides an overview of the specific challenges of
bridge inspection and maintenance, and how UAVs, both with active and passive sensors, are starting
to become a commonly used tool. In an early study by Whang et al. [22], a UAV with two coaxial
rotors was developed to perform somewhat autonomous bridge inspection, within limits even in
GPS-denied areas beneath the bridge. In addition, the system was able to place a small autonomous
rover on the bridge using ultrasonic localization, and which provided images for damage inspection.
However, few details about the actual methods and system performance are provided in the paper.
The authors of [44] focused on the detection of small fatigue cracks on bridges, assessing the value of
active illumination, and carrying out controlled laboratory experiments to determine detection limits
and optimal mapping approaches.

Increasingly, the focus has been on image- or laser-based 3D reconstruction of the bridge or tunnel
in question, as a basis for visual or automated damage identification. In [78] the accuracy and thus
utility of such 3D models was assessed, and [45] also assessed how well complex bridge structures can
be reconstructed with SfM methods, in addition attempting 3D volume calculations or major spalling
instances. The work of [79] expressly focused on seismic damage detection on bridges, also using
UAV-based 3D reconstructions, though here starting with pre-event Building Information Modelling
(BIM) data that were updated with the detected damage. Akbar et al. [46] addressed structural health
monitoring (SHM) of tall structures, focusing on comprehensive 3D model creation through speeded
up robust features (SURF), and on the detection of simulated damage features on large concrete slabs,
though providing little detail on the actual damage detection algorithm.

Deep learning with CNN is also being used in SHM. In [53] an AlexNet network was trained to
detect small cracks in concrete walls, reporting accuracies of nearly 95%, and also testing network
transferability. Comparable accuracies were reported by Liang [64], who in addition also tested
GoogleNet and VGG-16 networks to detect earthquake damage on a bridge.

3. Damage Product and System Usability

Post-disaster damage mapping serves a specific purpose, i.e., providing timely, accurate,
and actionable information to a range of stakeholders. Those include civil protection agencies
planning emergency response actions, but also incident commanders and first responders operating
at the actual disaster site. One of the consequences of the growing availability of UAV technology
is a declining need to rely on formal protocols such as the Charter or EMS, and instead allowing
actual site-based damage mapping. It is thus surprising that the usability of data acquisition pipelines
(including planning tools, hardware components, and data processing routines), but also of resulting
damage mapping products, has scarcely been considered in the literature reviewed in this paper. This
section briefly introduces two recent research projects with a strong focus on UAV-based structural
damage assessment, and from which a number of publications reviewed in this paper emerged. In
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these projects also a range of different end users participated, and their evaluation of the developed
damage mapping procedures is also summarized.

3.1. Damage Detection in Two European Research Projects

RECONASS (Reconstruction and Recovery Planning: Rapid and Continuously Updated
Construction Damage, and Related Needs Assessment; www.reconass.eu) and INACHUS
(Technological and Methodological Solutions for Integrated Wide Area Situation Awareness and
Survivor Localization to Support Search and Rescue Teams; www.inachus.eu) were research projects
funded through the 7th Framework of the European Union, and which ran with some overlap from
2013 until the end of 2018. The focus of RECONASS was to create a system for monitoring and damage
assessment for individual high-value buildings, based on a range of internally installed sensors that
included accelerometers, inclinometers, and position tags, with data getting processed in a finite
element structural stability model to determine damages caused by seismic activity or by either interior
or exterior explosions. UAV-based 3D reconstruction of the building exterior and detailed damage
mapping were carried out to patch data gaps caused by failed sensor nodes, as well as to validate model
outputs. The progressively developed methods were tested in a series of experiments, culminating
in a pilot where a 3-story reinforced concrete building was first subjected to an explosion of 400 kg
TNT placed 13 m away, and later by a 15 kg charge detonated within the structure itself. End users,
including the German Federal Agency for Technical Relief (THW), were present to assess the utility of
the system.

The purpose of INACHUS was to assist disaster response and urban search and rescue forces by
providing early and increasingly detailed information on damage hotspots and the likely location of
survivors. Different UAV platforms, but also ground-based and portable laser scanning instruments,
were used to map a damaged structure. One research focus was on scene reconstruction and damage
mapping based on optical imagery from a low-cost UAV. The French remote sensing lab ONERA
also deployed various larger UAVs that carried different laser scanners, in part with proprietary data
processing solutions. The major pilots were also assessed by a group of end users.

3.2. Tests with End Users in Two European Research Projects

Both RECONASS and INACHUS included a number of pilot experiments, where first individual
components or sets thereof, and later the entire systems were tested under relatively realistic conditions.
For the explosion experiments in Sweden data were acquired using an Aibot X6 Hexacopter carrying a
Canon D600 camera with a Voigtländer 20 mm lens. In addition to reference data, images were acquired
after both the exterior and the interior blasts, with a ground sampling distance (GSD) of approximately
1.5 cm. From those images, detailed 3D point clouds were calculated and analyzed. The data proved
suitable to identify damage-related openings, such as infill walls damaged or blown-out by the blasts,
as well as cracks and debris. Additionally, subtle façade deformations could be detected and quantified
(Figure 3), both using only the post-detonation point cloud, as well as in a comparison with pre-event
reference data. It was also shown how a BIM model of the structure could be automatically updated,
both to visualize and catalogue detailed damage information. THW deployed a LEICA TM30 total
station to survey the structure from 4 reference points, using 16 prisms mounted on the structure.
While the total station has the advantage that a structure can be continuously monitored for minute
deformations—critical when rescue personnel operates near or within weakened structured—the
UAV-derived data provided damage data of comparable quality, with greater flexibility and lower
cost, including the roof that ground-based surveys cannot see, and potentially operated from a safer
distance. The building was further surveyed by a Riegl VZ400 terrestrial laser scanner (TLS), which also
confirmed the high quality of the UAV-derived 3D models.
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Figure 3. UAV-derived point clouds of reinforced concrete structure with brick in-fill walls subjected to
exterior and interior detonations. Openings, cracks, and debris piles, as well as subtle deformation in
the façades were automatically detected.

Four INACHUS pilot experiments were conducted at 4 different sites in France and Germany, and
included buildings in the process of being demolished, as well as an urban search and rescue training
site (Training Base Weeze in Germany). In response to criticism by end users in RECONASS as to the
high cost of the Aibot UAV (ca. 40,000 Euro), in INACHUS low-cost DJI drones (Phantom 4 and Mavic
Pro) were used. Following the research directions described in Sections 2.3 and 2.4, the work focused
less on simple scene reconstruction, but on integration with other spatial data, as well as advanced
data analysis, including with CNN. For each of the pilots, the building in question was also surveyed
by ONERA using different UAV-borne laser instruments, as well as with a TLS, to detect the respective
strengths of the individual systems. The initial experiments with UAV-based laser scanners failed.
First a Riegl VZ-1000 instrument (weight of about 10 kg) was deployed on a Yamaha RMAX helicopter
(weight > 60 kg), though the acquired data suffered from artefacts and were not useful. Also, data
acquired with a Velodyne HDL32 (weight of only 1.3 kg) deployed on a VARIO BENZIN helicopter
(weight just under 10 kg) proved unusable for damage detection, owing to the very unstable platform.
For the final pilot, a high quality Riegl VUX-1 was mounted on a stable DJI Matrice 600 hexacopter
platform. The data were excellent, though the combined system is also very costly (>80,000 EUR) and
requires expert knowledge for flight planning and execution, as well as data processing. The mapping
with optical data focused on using data acquired with the built-in cameras of the Phantom 4 and Mavic
Pro (costs of < 2000 Euro), and advanced along the computer vision and machine learning trajectory
described earlier. The 3D data obtained from the optical imagery were of comparable quality to the
VUX-1 data while also providing native color information, better spatial detail, and full coverage
also of façades (Figure 4). The expectation that the airborne laser data would patch the one principal
weakness of photogrammetry, the inability to map dark interior spaces through openings (as a means
of possibly locating trapped survivors), was also not met. The data on openings and connected interior
spaces were primarily delivered from the tripod-mounted ground-based laser scanner, though here
the limited flexibility and occlusion by the building’s structural elements also prevented a complete
mapping of openings.

While commercial UAVs by DJI and other makers have clearly reached high levels of cost-benefit,
stability, and reliability, most are also not designed to be survey-grade instruments working in real
time. For rapid search and rescue support it is vital to provide usable information quickly. For that
reason, in INACHUS a procedure was developed to process the data with minimal delay. Working with
the ability of the Mavic Pro to stream images during flight, a procedure was built that (i) downloads
images right after acquisition, (ii) builds a progressively extended sparse 3D model of the scene using
established SfM methods, (iii) applies CNN to detect damage, and (iv) orthorectifies the images using
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the 3D model. By the time the UAV lands after a maximum flight duration of about 25 min, all
processing is done and the damage map available. A smart phone app was also built that allows this
procedure to be executed together with a standard laptop (Figure 5). Details about the app and data
processing workflow can be found in [59], while more information about the optimized CNN that was
made available on GitHub can be found in.

Figure 4. Point cloud representation of an INACHUS pilot structure in Lyon, France, calculated from
optical imagery acquired with a low-cost commercial drone (Phantom 4, DJI), showing damage detected
through machine learning (red).

Figure 5. Workflow of the app developed for near real-time damage mapping. Images are streamed
to a laptop computer and processed immediately after acquisition. A convolutional neural network
(CNN)-based damage detection algorithm is applied, and a progressively built sparse 3D model is used
to orthorectify them. By the time the UAV lands, an orthomosaic displaying the damage is finished
(adapted from [59]).

3.3. Validation

At every pilot, different end users were present and undertook a detailed assessment of every
tool produced and tested. The RECONASS system was evaluated by THW at the pilot site, and more
extensively in a dedicated workshop at ISCRAM 2017 by a total of 11 specialist end users, representing
both governmental and non-governmental emergency response organizations, as well as organizations
involved in the creation of damage maps. It was concluded that the UAV-based element met all
previously established user requirements, principally the detection of all externally expressed damage
types and their annotation both on imagery but also a 3D model and a BIM, as well as the provision of
3D volume calculations, all in GIS-ready format. The final system received a maximum score of 10/10.

At the final INACHUS pilot that took place in Roquebillière, France, in November 2018 a total
of 25 end users from 8 countries participated, representing USAR teams and other civil protection
organizations. They followed individual demonstrations of all technical tools developed and graded
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them. Of all hard- and software or procedure solutions developed in INACHUS, the 3D mapping and
damage detection with a light-weight commercial UAV scored highest (overall 4.5 out of 5). The high
score does not so much represent a high level of technical sophistication, but rather the simplicity,
both in terms of off-the-shelf hardware and an automated flight planning and damage mapping routine.
The end users especially appreciated the simple, low-cost approach that provided accurate and useful
information in near-real time, without the need for a highly specialized operator.

3.4. Limitations

Despite the positive evaluations, the end user assessment also revealed limitations of the
developed damage mapping solution. Legal restrictions of drone deployment continue to pose
challenges, though problems are less severe for lighter platforms, and in addition first responder and
civil protection organizations tend to operate under different legal frameworks. A clear disadvantage
of small multi-copter UAV platforms is their comparatively small operating range and flight duration.
The limited spatial scope of RECONASS and INACHUS matched their abilities well, but damage
assessment over larger affected areas requires different solutions. Off-the-shelf UAVs come equipped
with high quality optical cameras, though the computer vision processing to generate 3D point clouds
fails for dark image patches such as shadow or smaller building openings. For this reason, openings
and possible survival spaces in the pilot structures could not be mapped, and here active sensors have
a clear advantage. Commercial UAVs also tend to be closed and largely proprietary systems, meaning
that it is not easily possible, if at all, to exchange or add sensors, or to install processing units such
as a DJI Manifold (China) or NVIDIA Jetson TX2 (USA) to push more autonomy in onboard image
processing or dynamic flight path adjustment onto the drone. Several of these limitations are the focus
of ongoing research, as explained in the following section.

4. Outlook and New Developments

The literature reviewed in this paper mirrors a rapidly developing discipline that in only a few
years moved from largely descriptive imaging of disaster scenes to fully automated analysis procedures
that build on state-of-the-art methods originating, in particular, in the computer science domain. At the
same time, limits persist in hard- and software, in operational damage mapping procedures, but also
in the conceptual basis of how images can be related to the actual meaning and significance of damage,
which are addressed in this section.

4.1. Improvements in Machine Learning

For all the sophistication of machine leaning approaches to recognize patterns and features, some
open questions persist. The black box nature of deep learning approaches means that the specific effect
of certain training labels remains unclear, challenging efforts to optimize the training efficiency for
specific damage features. Training to map only specific indicators such as cracks or object dislocations
is thus challenging, compounded by the scarcity of large training samples for individual damage
features. Also, solutions developed to date still tend to be patch/grid-based, highlighting damage in
general, but not specific features. This, however, is highly scale dependent, with high resolution image
data, for example, also yielding small superpixels that allow precise damage identification [50].

Work such as in [56,57] tends to focus on activation layers that indicate the presence and
approximate position of damage (Figure 6), rather than the creation of actual damage maps. From
a user perspective, more clarity on the specific damage type, but also more precise location, shape,
and size, would be preferable. In addition, the nature of CNN-based studies prevents insights into
how specifically a network with superior overall accuracy performs in terms of reducing false positives
or negatives.
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Figure 6. Examples of building damage detection via CNN activation layers, using aerial pre- and
post-earthquake façade images. Bright activation colors show damage hotspots (adapted from [61]).

To overcome the problem of the large number of training samples needed in CNN analysis,
recent work has shown how Generative Adversarial Networks (GAN) can effectively enlarge sample
databases, which has already been shown to benefit the identification of damage of road furniture [60].
GAN seem to be particularly useful in anomaly detection [80], where training does not focus on a
potentially large number of specific damage features or indicators, but rather where a comprehensive
understanding of normal, undamaged scenes is created, based on which anomalies such as damage
are identified. GAN have been mainly used in applications with smaller variabilities than are typical
for urban scenes (i.e., indoor environments with fixed cameras). Their use in urban scenes is, therefore,
an additional challenge that could be compensated by only using very large and comprehensive
datasets of undamaged scenes, to prevent the generation of many false positives.

4.2. Mapping Autonomy

Traditional UAV surveys were based on pre-defined flight plans or manual piloting supported by
video streams from the instrument, with data getting processed after landing of the aircraft, or through
pipelines such as described in [59]. A more ideal scenario would be for the UAV to carry out an initial,
for example vertical, survey over a pre-defined area, identify hotspot and damage candidate areas based
on limited real-time processing, followed by a more detailed and multi-perspective survey of those
marked areas. The work in [51] showed how data from an initial coarse vertical survey can be used to
guide a more local assessment. Such a procedure can be implemented based on streamed data that are
processed in near-real time, and adjusted flight path instructions uploaded. Alternatively, data can be
processed on the UAV itself. Work described in [81,82] showed how even microdrones can perform
analysis based on deep neural networks to facilitate autonomous navigation. UAVs with greater
payloads have been fitted with more powerful computing units, such as NVIDIA Jetson TX2, which are
capable of facilitating advanced real-time object tracking [83] or image segmentation [84].

In follow-up work to INACHUS, H2020 project PANOPTIS (Development of a Decision Support
System for increasing the Resilience of Transportation Infrastructure; www.panoptis.eu) focuses on
road surface and road corridor damage assessment to detect signs of gradual wear and decay, as well
as the ability to respond rapidly to a disaster situation. This is done with a hybrid UAV platform
(DeltaQuad from Vertical Solutions) that allows both corridor mapping of a fixed-wing platform and
hovering for detailed mapping. Also, here a Jetson TX2 will be used to advance data processing on the
drone itself, for both navigation and damage detection.
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4.3. Indoor Mapping

UAVs have brought structural damage mapping within touching distance of buildings.
Nevertheless, critical damage evidence is frequently hidden from sight, e.g., where internal
load-carrying structures are compromised. In addition, damage assessment, such as defined in
INACHUS, also includes support for first responders in the search for victims or survivors trapped
internally, though different cavity mapping strategies only had limited success. Even with a TLS,
interior cavities with connections to the outside could only be detected to a limited extent (Figure 7).

Figure 7. Voids within the photogrammetric model shown in Figure 4, obtained with a terrestrial laser
scanning system. (a) Estimated size of open spaces observed through openings, (b) distance of voids to
the edge of the building.

Recent work has demonstrated UAVs operating increasingly autonomously and effectively in
interior, largely-GPS-denied spaces [85]. There has been a surge in research on UAV-based indoor
mapping, both with single platforms and swarms. Most make use of visual SLAM to map their
GPS-denied environment (e.g., [86,87]), or focusing on continuity mapping when transiting between
outdoor and indoor places [88]. Others have experimented with localizing via sensors such as
ultrasound [89], and the works cited in 4.2 on autonomous navigation and mapping are also relevant
here. One element of improved indoor 3D reconstruction and damage mapping will be a more effective
use of artificial lighting that, for example, improved the detection of small cracks in [44]. Another line
of research has focused on the engineering of UAV platforms that can change shape to facilitate their
entering and operating in tight spaces [90].
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The damage detection work of INACHUS will also be advanced in indoor environments with
H2020 project INGENIOUS (The First Responder of the Future: A Next Generation Integrated
Toolkit for Collaborative Response, increasing protection and augmenting operational capacity;
www.ingenious-firstresponders.eu). The focus will be on the use of drone swarms for indoor mapping
to support first responders in unknown and potentially dark, smoke-filled, and hazardous indoor
settings, using UAV platforms of different sizes and with different sensor load and ability, with focus
on collaboration and optimization.

4.4. The Age of Drones with Robotic Abilities

UAVs tend to be fragile, susceptible to wind, and, thanks to inexpensive GPS and IMU components
subject to positional inaccuracies, best operated away from structures. However, better platform control,
use of collision avoidance through use of sensors or depth sensing, as well as progress in robotics and
mechatronics have resulted in novel research directions. For example, in the age of aging infrastructure
efforts have been spreading towards UAV-supported maintenance. This implies a number of challenges.
Infrastructure is diverse and includes complicated indoor spaces such as chimneys [91], but also roads,
tunnels, and bridges. Solutions are emerging to carry out day-to-day monitoring to detect defects or
signs of decay, but also damage after a disaster event or accident (e.g., [92]). Such works increasingly
extend into another emerging line of development, blending UAV-based abilities with robotics and
mechatronics solutions. Here, UAVs are not only used to map and model infrastructure spaces, but also
to carry actuator arms to place sensors for in-situ measurements [93,94], interact with objects [95,96],
perform physical tests [97], or to carry out limited repairs.

5. Conclusions

Structural damage mapping with remote sensing has been a continuous research problem for
decades, and for rapid operational disaster response, such as through the Charter or Copernicus
EMS, reliable automated methods continue to be lacking. However, substantial progress has been
made in the last decade that resulted primarily in rapid developments in UAV technology, computer
vision, and in advanced image data processing with machine learning, in particular deep learning
with CNN, all of which was assessed in this review. This includes a detailed analysis of the progress in
image-based damage mapping that has moved from providing largely descriptive overview imagery
to automated scene mapping with advanced machine learning.

The paper has shown how image-derived 3D point clouds allow a highly detailed and
accurate scene reconstruction, and how the coupling of the geometric information with the original
image information allows very advanced feature recognition. Classifier training is also starting to
overcome the challenge of, in particular, CNN-based methods, requiring millions of training samples.
The development of unsupervised CNN approaches (such as Auto-encoders) or Generative Adversarial
Networks (GAN) could represent a step forward in this direction. Newer approaches are improving
the efficiency, but also the transferability of classifiers, critical to be able to respond quickly to a disaster
event. Comprehensive tests with first responders and urban search and rescue personnel showed that,
in particular, solutions with light-weight off-the-shelf drones strike a very good compromise of high
information quality and ready usability.

Developments continue at a rapid pace, with significant research efforts now being focused on
UAV-based mapping in indoor settings, on UAVs also being equipped with mechatronic abilities
to allow the deployment of additional sensors or to carry out repairs, though newer networks also
allow more sophisticated and robust deep learning solutions. Nevertheless, more effort is needed
to understand better the actual meaning and significance of specific damage evidence. In addition,
UAVs need to become more autonomous to increase the efficiency of damage mapping operations.
Finally, progress in the processing of UAV-based imagery, in particular through advanced machine
learning, must eventually lead to fully automated and accurate damage mapping with optical
satellite imagery.
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