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Preface to ”Advances in Chemical Analysis

Procedures (Part II)”

Analytical chemistry deals with both qualitative and quantitative measurements, although

modern approaches are more inclined towards quantitative science. In analytical laboratories, the

measurements are usually made on a small group of representative samples to determine the presence

and concentration of target analytes. Following data collection, the results are tabulated to evaluate

the quality of the data. An important area in evaluating analytical data is represented by statistical

approaches, which should not be considered only for evaluating the results of experiments, but also

in the planning and design of experiments. The design and optimization process should include the

identification of those experimental factors and then combine them in an optimal way to obtain the

best sensitivity and selectivity among other factors. The major quantitative chemical problems can

also be performed with chemometric measurements. The starting point of multivariate measurements

is usually represented by principal component analysis (PCA), which can reduce the dimensionality

of the data, eliminate false information, search for outliers, and more. The modern tools for various

measurements are completely devoid of manual controls and are controlled by personal computers

that record and manage the obtained data. In recent years, appreciable progress has been made, and

in the most modern analytical chemistry laboratories, instruments not only allow quick and precise

data calculations but also include instrument performance control and reporting of any malfunctions.

Marcello Locatelli, Angela Tartaglia, Dora Melucci,

Abuzar Kabir, Halil Ibrahim Ulusoy, Victoria Samanidou

Editors

xiii
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Abstract: Eupatorin is the major bioactive component of Java tea (Orthosiphon stamineus),
exhibiting strong anticancer and anti-inflammatory activities. However, no research on the
metabolism of eupatorin has been reported to date. In the present study, ultra-high-performance
liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry
(UHPLC-Q-TOF-MS) combined with an efficient online data acquisition and a multiple data processing
method were developed for metabolite identification in vivo (rat plasma, bile, urine and feces) and
in vitro (rat liver microsomes and intestinal flora). A total of 51 metabolites in vivo, 60 metabolites
in vitro were structurally characterized. The loss of CH2, CH2O, O, CO, oxidation, methylation,
glucuronidation, sulfate conjugation, N-acetylation, hydrogenation, ketone formation, glycine
conjugation, glutamine conjugation and glucose conjugation were the main metabolic pathways of
eupatorin. This was the first identification of metabolites of eupatorin in vivo and in vitro and it
will provide reference and valuable evidence for further development of new pharmaceuticals and
pharmacological mechanisms.

Keywords: eupatorin; UHPLC-Q-TOF-MS/MS; metabolism; in vivo and in vitro; rat liver microsomes;
rat intestinal flora

1. Introduction

Eupatorin (5,3′-di-hydroxy-6,7,4′-tri-methoxy-flavone, Figure 1), belonging to the natural
methoxyflavone compound, is widely found in Java tea (Orthosiphon stamineus, OS) which is a
popular medicinal herb used in traditional Chinese medicine as a diuretic agent and for renal system
disorders in Southeast Asia and European countries [1–3]. OS has gained a great interest nowadays
due to its wide range of pharmacological effects such as antibacterial, antioxidant, hepatoprotection,
antidiabetic, anti-hypertension, anti-inflammatory and antiproliferative activities [4–9]. Eupatorin, as a
major bioactive flavonoid constituent in OS possesses numerous strong biological activities, including
anticancer, anti-inflammatory and vasorelaxation activities [10–17]. Its anticancer activities have
attracted more and more attention and it was expected to be developed as a cancer chemopreventive
and as an adjuvant chemotherapeutic agent. Although there is literature on the qualitative and
quantification profile of eupatorin in OS [6], the metabolism study of eupatorin has not been studied to
date, which was necessary for the exploration of the biological activity and the clinical therapeutic
effect of eupatorin. Thus, an investigation is essential to explore the identification of metabolites of
eupatorin for further understanding of its biological activities.

Molecules 2019, 24, 2658; doi:10.3390/molecules24142658 www.mdpi.com/journal/molecules1
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Figure 1. Chemical structure of eupatorin.

To the best of our knowledge, a series of biotransformations will occur when drugs are orally
taken into the body, there are four aspects of pharmacological consequences in these biotransformation
processes: (1) Transforming into inactive substances; (2) transforming the drug with no pharmacological
activity into active metabolites; (3) changing the types of pharmacological actions of drugs; (4) and
producing toxic substances [18]. Therefore, it is extremely crucial to study the metabolism of drugs
in vivo to make sure of safety of use. In addition, as the main metabolic organ of the human body,
the liver is rich in enzymes, especially cytochrome P450 enzymes, which are closely related to the
biological transformation of drugs [19]. Furthermore, the gastrointestinal tract is also a vital place for
drug metabolism, and its intestinal flora have a significant impact on drug absorption, metabolism
and toxicology [20,21]. Hence, in this paper, mass spectrometry was employed to investigate the
metabolism of eupatorin in rats, liver microsomes and intestinal flora, in order to characterize the
metabolites and structural information of the products, which will lay a foundation for further studies
on the safety and efficacy of metabolites and will provide greater possibilities for the development of
new drugs.

With the development of technology, a quadrupole time-of-flight mass spectrometry has been
widely used as a reliable analytical technique to detect metabolites due to its advantages of high
resolution, high sensitivity, high-efficiency separation and accurate quality measurement [22,23].
In this study, high-sensitivity ultra-high-performance liquid chromatography coupled with hybrid
triple quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) full scan mode, electrospray
ionization (ESI) source negative ion mode monitoring combined with multiple mass loss (MMDF)
and dynamic background subtraction (DBS) were employed to collect data online. Correspondingly,
multiple data processing methods were applied by using PeakView 2.0 and MetabolitePilot 2.0.4
software developed by AB SCIEX company, including a variety of data handing functions such as the
extraction of ion chromatograms (XIC), mass defect filter (MDF), product ion filter (PIF) and neutral
loss filtering (NLF), which provided accurate secondary mass spectral information [24]. Based on the
above methods, the metabolic pathways of eupatorin were explored and summarized for the first
time and 51 metabolites in vivo and 60 metabolites in vitro were finally identified. These metabolic
studies are important parts of drug discovery and development and can also provide a basis for further
pharmacological research.

2. Results and Discussion

2.1. Analytical Strategy

In this study, UHPLC-Q-TOF-MS/MS combined with an online data acquisition and multifarious
processing methods was adopted to systematically identify the metabolites of eupatorin in vivo and
in vitro.

The workflow of the analytic procedure was segmented into three steps. First, an online full-scan
data acquisition was performed based on the MMDF and DBS to collect data online and to capture all
potential metabolites. Next, a multiple data processing method was employed by using PeakView 2.0
and MetabolitePilot 2.0.4 software, which contained many data-processing tools such as XIC, MDF, PIF
and NIF, these provided accurate MS/MS information to determine the metabolites of eupatorin. Finally,
plenty of metabolites were identified according to accurate mass datasets, specific secondary mass
spectrometry information and so on. With regard to the isomers of metabolites, Clog P values calculated
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by ChemDraw 14.0 were used to further distinguish them. Generally speaking, the larger the Clog P
value, the longer the retention time will be in the reversed-phase chromatography system [25–27].

2.2. Mass Fragmentation Behavior of Eupatorin

In order to identify the metabolites of eupatorin, it is of significance to understand the pyrolysis of
parent drug (M0). The chromatographic and mass spectrometric behaviors of eupatorin were explored
in the negative ESI scan mode by UHPLC-Q-TOF-MS. Eupatorin (C18H16O7) was eluted at 12.22 min
and yielded at 343.0821 [M-H]−. The characteristic fragment ions of M0 at m/z 328.0585, 313.0348,
298.0111, 285.0398, 270.0160, 267.0285, 254.0217, 241.0503, 221.0434, 147.0461, 132.0214 were detected
according to the MS/MS spectrum. Fragment ions at m/z 328.0585, 313.0348, 298.0111, 270.0160 and
254.0217 were generated by M0 through losing CH3, CH3, CH3, CO and O continuously. The ion at m/z
343.0821 yielded other representative fragment ions at m/z 267.0285, 241.0503 and 221.0434 by loss of
CO2 and 2O, C4H6O3, C7H6O2, respectively. The product ion at m/z 285.0398 was created by dropping
CO from the ion at m/z 313.0348. Last but not the least, the conspicuous product ion at m/z 147.0461
was formed because of the Retro-Diels-Alder (RDA) reaction in ring C of the flavonoid, which gained
the ion at m/z 132.0214 by loss of CH3 [28]. The MS/MS spectrum and the fragmentation pathways of
eupatorin are shown in Figure 2.

Figure 2. MS/MS spectrum of eupatorin and its predominant fragmentation pathways.
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2.3. Identification of Metabolites in Vivo and in Vitro

Metabolites M1, M2 and M3 (C17H14O7) were isomers with the deprotonated molecular ions
[M-H]− at m/z 329.0660, 329.0668 and 329.0662, which were 14 Da (CH2) lower than that of M0. They
were eluted at 9.93 min, 10.27 min and 10.79 min, respectively. In the MS/MS spectrum, product ions
at m/z 314.0427, 313.0384, 299.0188 and 285.0371 were formed after losing CH3, O, 2CH3 and CO2,
respectively. The prominent fragment ion at m/z 133.0287 created after the RDA reaction was 14 Da
lower than the ion m/z 147.0461 of the parent drug, suggested that CH2 was lost at the methoxy group
at 4′position. At the same time, the fragment ions at m/z 207.7129 and 207.7166 were 14 Da lower than
that of M0, which showed that the loss of CH2 occurred at the methoxy group at 6 or 7 position of A
ring. Additionally, the Clog P values of M1, M2 and M3 were 2.26422, 2.26434, 2.51422, respectively.
Therefore, M1–M3 were illustrated according to the above information.

Metabolites M4 and M5 (C16H12O7) were eluted at 7.26 and 8.50 min, with the deprotonated
molecular ions [M-H]− at m/z 315.0500 and 315.0504, 28 Da (C2H4) lower than that of the parent drug,
which indicated that it lost 2CH2. Fragment ions at m/z 300.0279 and 297.1740 were generated by loss
of CH3 and H2O, respectively. The product ion at m/z 269.1760 was obtained through dropping CO
from the ion at m/z 297.1740. According to the dominant fragment ion at m/z 133.0270 gained by the
RDA reaction, loss of CH2 and CH2 occurred at the position of 4′, 6 or 4′, 7. In addition, the distinctive
ion at m/z 147.0821 was similar with that of the parent drug, which implied that the reaction occurred
at the position of 6 and 7.

Metabolite M6 (C17H14O6) was obtained with a peak at m/z 313.0713 in the UPLC system, which
was eluted at 13.86 min, 30 Da (CH2O) lower than that of eupatorin. Prominent fragment ions
at m/z 298.0483 and 283.0250 were created by dropping CH3 and CH3 successively. In addition,
the characteristic fragment ions at m/z 117.0364 was produced by RDA reaction, which was 30 Da
lower than that of M0, showing that loss of CH2O occurred at the position of 4′. Similarly, the product
ion at m/z 147.0078 was consistent with M0, indicating that loss of CH2O occurred at the position of 6
or 7. Thus, it was speculated that it may have three missing CH2O sites.

Metabolite M7 (C16H12O6) was detected at 10.10 min and exhibited the molecular ion [M-H]− at
m/z 299.0562, which was 44 Da lower than that of M0. Based on the information of chemical elements
and software provided, it indicated that M7 lost CH2O and CH2. Crucial fragment ions at m/z 284.0326
and 251.1281 were obtained by loss of CH3 and 3O from M7, respectively. Furthermore, M7 had
common fragment ion at m/z 146.9687 with that of the parent drug, it is equally important that the
noteworthy fragment ion at m/z 281.1787 was generated by loss of H2O from M7, which implied that
loss of CH2O and CH2 occurred at the position of 7 or 6, respectively. Hence, it was identified.

Metabolite M8 (C16H12O5) was eluted at 13.60 min, which displayed deprotonated molecular
ion [M-H]− at m/z 283.0614, 60 Da (C2H4O2) lower than that of the parent drug. Fragment ions at
m/z 268.0379 and 240.0428 were produced by dropping CH3 and CO continuously from m/z 283.0614.
In addition, the dominant fragment ion at m/z 146.9655 was consistent with that of the parent drug,
while the diagnostic fragment ion at m/z 161.0025 was 60 Da lower than 221.0434 of M0, these suggested
that loss of CH2O and CH2O reaction happened at C-6 and C-7 of A ring. So, the structure of M8 could
be inferred.

Metabolites M9 and M10 (C18H16O6) appeared as deprotonated molecular ions [M-H]− at m/z
327.0882 and 327.0872, together with the retention time of 4.98 min and 7.47 min, respectively, which
were 16 Da lower than M0, suggesting they lacked one oxygen atom compared with the parent.
The MS/MS spectra showed the fragment ions at m/z 309.0800, 299.0957 and 281.2489, which were
created by loss of O, CO and C2H6O, respectively. In addition, M9 had common fragment ion at
m/z 146.9380 with that of the parent drug, and meanwhile the characteristic fragment ion at m/z
205.0025 was 16 Da lower than 221.0434 of M0, which implied that loss of O occurred at C-5 of A ring.
Nevertheless, the ion at m/z 130.9716 gained after the RDA cleavage was 16 Da lower than that of the
parent drug, showing that loss of O occurred at C-4′ of B ring. Therefore, the structures of metabolites
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M9 and M10 were determined. Moreover, they were also validated with the Clog P values of M9 and
M10 which were 2.45814 and 3.44497, respectively.

Metabolite M11 (C18H16O5) was turned up in the chromatogram at 9.55 min with the deprotonated
molecular ion at m/z 311.0930 [M-H]− and was 32 Da less than that of M0, suggesting that the loss of
two oxygen atoms reaction took place. A series of diagnostic product ions at m/z 250.9816, 204.9868
and 130.9658 were yielded by loss of C2H4O2, C7H6O and RDA reaction. In addition, the product ion
at m/z 174.9556 was obtained through dropping CH2O from the ion at m/z 204.9868. According to the
above characteristic fragment ions and analysis, loss of O and O occurred at C-5 and C-3′.

Metabolite M12 (C17H14O5), the deprotonated molecular ion of m/z 297.0768 was observed at the
retention time of 7.33 min and was 46 Da lower than that of eupatorin. According to its secondary
mass spectrum and the information software provided, implying that M12 lost O and CH2O. Fragment
ions at m/z 267.1016, 253.0865, 175.0394 and 147.0452 were produced by loss of CH2O, CO2, C7H6O2

and RDA reaction. It was important that the typical ion at m/z 147.0452 was similar with the fragment
ion at m/z 147.0461 of the parent drug, together with the dominant fragment ion at m/z 175.0394, 46 Da
lower than that of M0, all of which indicated that the reaction was likely to occur in the A ring. Above
all, loss of O happened at the hydroxyl group at the 5 position, while loss of CH2O occurred at the
methoxy group at 6 or 7 position.

Metabolite M13 (C17H16O6) exhibited a sharp peak at an elution time of 12.74 min in the XIC with
a deprotonated ion at m/z 315.0862 and it was 28 Da (CO) less than eupatorin. Product ions at m/z
300.0633, 285.0401 and 270.0144 were formed after dropping CH3 continuously. In addition, the MS2

spectrum of M13 presented other vital fragment ions at m/z 193.0503 and 147.0445 by losing C7H6O2

and undergoing RDA reaction.
Metabolites M14, M15, M16 and M17 (C18H16O8): Four chromatographic peaks were eluted at

10.01 min, 10.50 min, 11.47 min and 12.23 min with deprotonated molecular ions [M-H]− at m/z 359.0772,
359.0768, 359.0767 and 359.0767, which were 16 Da (O) higher than that of eupatorin. Characteristic
ions at m/z 344.0542, 329.0304, and 314.0064 were obtained by loss of CH3 successively. Furthermore,
noteworthy fragment ions at m/z 221.0098 and 163.0368 were produced by loss of C7H6O3 and RDA
reaction. The ion at m/z 163.0368 was 16 Da (O) larger than m/z 147.0461, showing that oxidation
occurred at C-2′, C-5′ or C-6′ of B ring. However, the prominent ion at m/z 147.0130 was similar
with the fragment ion at m/z 147.0461 of the parent drug, indicating that the reaction happened at the
position of 8 in the A ring. The Clog P values of M14-M17 were 1.79518, 1.84518, 1.86518 and 1.87123,
respectively. Thus, M14-M17 were characterized by comparing the different values of Clog P.

Metabolite M18 (C18H16O9), the deprotonated molecular ion of m/z 375.0709 was observed at the
retention time of 9.90 min, which was 32 Da (2O) higher than that of eupatorin. A series of product
ions at m/z 329.0669, 221.1216 and 178.9947 were detected by loss of CH2O2, C7H6O4 and RDA reaction
in its secondary mass spectrum. Product ions at m/z 314.0434 and 299.0191 were produced by losing
CH3 and CH3 continuously from the ion at m/z 329.0669. What’s more, the key fragment ions at m/z
178.9947 was 32 Da higher than 147.0461 of eupatorin, implying that di-oxidation reaction occurred in
the B ring, then M18 was identified.

Metabolite M19 (C18H16O10) was detected at 12.26 min and showed the deprotonated molecular
ion [M-H]− at m/z 391.0673, 48 Da (3O) higher than that of the parent drug, which contained the
fragment ions at m/z 345.0869, 330.0636 and 315.0393 by loss of CH2O2, CH3 and CH3 continuously.
More importantly, distinctive fragment ions at m/z 221.0399 and 195.0289 were created by loss of
C7H6O5 and RDA reaction. The pivotal fragment ions at m/z 195.0289 was 48 Da higher than 147.0461
of the parent drug, suggesting that tri-oxidation happened at C-2′, C-5′ and C-6′ of B ring. Hence, M19
was recognized.

Metabolites M20 and M21 (C17H14O8) were eluted at 9.43 min and 10.29 min, with the deprotonated
molecular ions [M-H]− at m/z 345.0605 and 345.0606 and were increased by 2 Da compared with M0,
indicating that it carried out demethylation and oxidation reaction. The representative secondary
fragment ions at m/z 330.0384, 301.0719, 221.0028, 125.0311 and 149.0234 generated by the loss of CH3,
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CO2, C6H4O3, C11H8O5 and RDA reaction implied that demethylation and oxidation occurred in ring
B. Furthermore, the Clog P values of M20 and M21 were 1.5017 and 1.59734, respectively, so their
structures were identified.

Metabolites M22 and M23 (C19H18O7) were obtained in the extracted chromatogram at m/z
357.0972 and 357.0969 with the retention time of 10.02 min and 12.86 min, which were 14 Da (CH2)
higher than that of eupatorin. The diagnostic fragment ions at m/z 342.0740, 327.0503, 312.0266 and
297.0033 were attributed to the loss of CH3 successively. In addition, because of the prominent fragment
ions at m/z 235.0434 and 147.0433 obtained after RDA reaction, it was proposed that methylation
happened at hydroxyl group at 5 position. Nevertheless, the fragment ion at m/z 161.0269 was 14 Da
higher than 147.0461 of eupatorin, indicating that it occurred at C-3′ of B ring. Furthermore, the Clog P
values of M22 and M23 were 2.06632 and 3.18323, respectively, so they were verified.

Metabolites M24 and M25 (C19H18O6) were eluted at 7.15 min and 8.79 min, respectively. They
had the deprotonated molecular ions [M-H]− at m/z 341.1025 and 341.1027, which were 2 Da lower than
that of eupatorin, presumably they occurred a loss of O and a methylation reaction. The distinctive
fragment ion at m/z 130.9906 was 16 Da (O) lower than 147.0461 of M0, along with fragment ions at m/z
235.0607 and 107.0440 produced by loss of C7H6O and C12H10O5, implying that the loss of O occurred
at the hydroxyl group at C-3′, while methylation happened at the hydroxyl group at C-5. Similarly,
according to the representative fragment ion at m/z 161.0595, 14 Da (CH2) lower than 147.0461 of
M0 and the diagnostic fragment ions at m/z 204.9196 and 137.0553 obtained by loss of C8H8O2 and
C11H8O4, the loss of O occurred at the hydroxyl group at 5 position, while methylation took place at
the hydroxyl group at 3′ position. In addition, they were also validated with the Clog P values of M24
and M25 which were 2.80306 and 2.9313, respectively.

Metabolite M26 (C15H10O5), displayed a peak at 9.89 min, as well as a deprotonated molecular ion
[M-H]− at m/z 269.0459, 14 Da (CH2) lower than that of M8, suggesting that demethylation occurred on
the basis of M8. The fragment ions at m/z 253.0124, 241.0500, 225.0555 and 133.0298 were attributed
to the loss of O, CO, CO2 and RDA reaction, which was 14 Da (CH2) lower than that of M0 and M8,
implying that demethylation occurred at the methoxy group at 4′ position. Like the M8, the loss of
CH2O and CH2O took place at C-6 and C-7 of A ring.

Metabolite M27 (C15H10O6) was detected at a retention time of 8.45 min with the deprotonated
molecular ion [M-H]− at m/z 285.0402, 14 Da (CH2) lower than that of M7, indicating that M27 was
demethylated on the basis of M7. Product ions at m/z 267.0130, 241.0462, 221.0063, 177.0189 and
133.0307 were produced by loss of H2O, CO2, 4O, C6H4O2 and RDA reaction which was 14 Da (CH2)
lower than that of M0 and M7, it means demethylation happened at the methoxy group at 4′ position.
Similar to M7, loss of CH2O and CH2 occurred at C-7 and C-6 of A ring, respectively.

Metabolites M28 and M29 (C24H24O13) arose as deprotonated molecular ions [M-H]− at m/z
519.1140 and 519.1151, together with the retention time of 7.10 min and 8.14 min, respectively, which
were 176 Da higher than that of eupatorin, suggesting that glucuronidation was carried out. The key
product ion at m/z 343.0822 was yielded by dropping a glucuronic acid. Moreover, the crucial ion at m/z
146.9662 was similar to the fragment ion at m/z 147.0461 and while the fragment ion at m/z 397.0442 was
176 Da higher than that of the parent drug, indicating that glucuronidation happened at the hydroxyl
group at 5 position. Nevertheless, the prominent fragment ions at m/z 323.0173 was 176 Da larger than
147.0461 of M0, inferring that the reaction occurred at the hydroxyl group at 3′ position. Furthermore,
M28 and M29 were also proved by the different Clog P values of −0.494983 and 0.621934, respectively.

Metabolite M30 (C23H22O13) was detected at 7.88 min with the deprotonated molecular ion [M-H]−
at m/z 505.0979, 14 Da lower than that of M28 and M29, which suggested that it occurred glucuronide
conjugation and demethylation. The characteristic product ion at m/z 329.0669 was obtained by losing
a glucuronic acid. The distinctive fragment ions at m/z 285.0735 and 309.0687 which was 162 Da larger
than 147.0461 of M0 were attributed to the loss of C11H8O5 and RDA reaction, implying glucuronide
conjugation and demethylation occurred at the position of 3′ and 4′, respectively.
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Metabolites M31 and M32 (C18H16O10S) appeared as deprotonated molecular ions [M-H]− at
m/z 423.0391 and 423.0387 with the retention time of 8.93 min and 9.20 min. S elemental was found,
suggesting that it had been a sulfate bound. The characteristic product ion at m/z 343.0830 was created
by the loss of SO3. Remaining ions at m/z 328.0593, 313.0355, 285.0413 and 147.0037 were similar to the
fragment ions of the parent drug, inferring that sulfate conjugation occurred at the hydroxyl group
at 5 position. However, the pivotal fragment ion at m/z 227.0084 was 80 Da higher than 147.0461
of eupatorin, implying sulfate conjugation took place at the hydroxyl group at 3′ position of B ring.
In addition, the Clog P values of M31 and M32 were 0.270316 and 1.38723, respectively. So, they were
also validated.

Metabolite M33 (C17H14O10S) was eluted at the retention time of 9.01 min on the UPLC system.
Its deprotonated molecular ion [M-H]− at m/z 409.0233 lacked CH2 compared with M31 and M32.
The representative product ion at m/z 329.0670 was acquired by dropping SO3. In addition, M33
created the dominant fragment ion at m/z 212.0456 through the RDA reaction, and the product ion at
m/z 132.0208 was formed by the loss of SO3 from it. Therefore, it might occur at the methoxy group at
4′ position.

Metabolite M34 (C18H16O9S) was eluted at a retention time of 12.65 min. The MS/MS spectrum
of M34 showed the deprotonated molecular ion [M-H]− at m/z 407.0434, lacked one oxygen atom
compared with M31 and M32. The crucial fragment ions at m/z 327.0826, 301.0034 and 131.0573 were
attributed to the loss of SO3, C7H6O and RDA reaction. In addition, the product ion at m/z 220.9818 was
acquired by the loss of SO3 from the fragment ions at m/z 301.0034. Based on the information above,
the loss of O and sulfate conjugation might occur at the hydroxyl group at 3′ and 5 position, respectively.

Metabolites M35 and M36 (C20H18O8): Two isomers were simultaneously extracted in the XIC at
13.36 and 13.90 min and were detected at m/z 385.0917 and 385.0925, respectively. The noteworthy
ion at m/z 343.0846 was yielded by the loss of acetyl. In M36, the diagnostic fragment ion at m/z
189.0551 generated by RDA reaction, which was 42 Da higher than 147.0461 of eupatorin and the
distinctive fragment ion at m/z 221.0781 indicated that acetylation reaction happened at the hydroxyl
group at 3′ position. Likewise, according to the prominent fragment ions at m/z 263.0551 and 147.0513,
the acetylation reaction happened at the hydroxyl group at position 5 of M35. In addition, Clog P values
of M35 and M36 were 1.49632 and 2.61323, respectively, which could also support the confirmation of
the structures.

Metabolites M37 and M38 (C20H18O7) were observed at 13.02 and 13.90 min in the XIC and were
detected at m/z 369.0987 and 369.0975 in the mass spectra, respectively, which were decreased by 16 Da
(O) compared with M35 and M36. The typical fragment ion at m/z 130.9934, 16 Da lower than 147.0461
of eupatorin, together with the representative fragment ion at m/z 263.1681, 42 Da higher than that of
eupatorin, inferring that loss of O and acetylation reaction occurred at the hydroxyl group at 3′and 5
position, respectively. Similarly, based on the crucial product ions at m/z 174.9586 and 164.9289, loss of
O and acetylation reaction occurred at the hydroxyl group at 5 and 3′ position, respectively. In addition,
M37 and M38 were also verified based on their Clog P values of 2.23306 and 2.3613, respectively.

Metabolite M39 (C19H16O8) detected at m/z 371.0761 and eluted at 11.45 min. In addition, it was
14 Da (CH2) smaller than the size of M35 and M36. The characteristic ion at m/z 329.0680 was yielded
by dropping of acetyl. The prominent fragment ion at m/z 175.0389, 28 Da larger than 147.0461 of
eupatorin, implying that the loss of CH2 and acetylation reaction took place at the methoxy group at 4′
position of B ring.

Metabolites M40 and M41 (C19H16O7) were detected as deprotonated [M-H]− ion at m/z 355.0813
and 355.0814, which were eluted at 11.86 min and 13.15 min, 30 Da (CH2O) lower than that of M35
and M36. In M40, the diagnostic fragment ion at m/z 117.0329 produced by RDA reaction was 30 less
than 147.0461 of the parent drug, while the fragment ion at m/z 263.0361 was 42 higher than 221.0434
of eupatorin, indicating that loss of CH2O and acetylation reaction occurred at the position of 4′ and
5, respectively. However, in M41, the distinctive fragment ion at m/z 159.10931 was 12 higher than
147.0461 of eupatorin, the crucial fragment ion at m/z 221.0027 was similar to fragment ion at m/z
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221.0434, suggesting that the loss of CH2O still occurred at the methoxy group at 4′ position while
acetylation reaction took place at the hydroxyl group at 3′ position. The respective Clog P values were
1.64857 and 2.87497, so M40 and M41 were ensured.

Metabolite M42 (C21H18O8) with the [M-H]− ion of m/z 397.0918, which was eluted at 15.21 min,
42 Da higher than that of M40 and M41, speculating that the loss of CH2O and di-acetylation of amines
took place. The characteristic fragment ion at m/z 159.0462 created by RDA reaction was 12 larger than
147.0461 of the parent drug, while the product ion at m/z 263.0559 increased by 42 Da compared with
221.0434 of eupatorin, inferring that loss of CH2O occurred at the position of 4′ like M40 and M41,
while di-acetylation reaction happened at the hydroxyl group at 5 and 3′ position.

Metabolite M43 (C20H16O9), eluted at 14.14 min, which was detected with the deprotonated
molecular ion [M-H]− at m/z 399.0704, 84 Da higher than that of M4 and M5, implying that di-acetylation
reaction happened on the basis of the loss of CH2 and CH2. The diagnostic fragment ions at m/z 357.0641
and 315.0523 were attributed to the loss of C2H2O consecutively. Moreover, according to the product
ions at m/z 175.0034 and 147.0316 acquired by RDA reaction, it may have three possible metabolites.

Metabolite M44 (C20H16O7) exhibited a sharp peak at an elution time of 15.24 min in the XIC with
a deprotonated ion at m/z 367.0806 and it was 32 Da (2O) lower than M43, suggesting that the loss of
CH2O and CH2O and di-acetylation reaction occurred. The noteworthy fragment ion at m/z 283.0237
was yielded by dropping of 2C2H2O. M44 generated the fragment ions at m/z 189.0633 and 159.0348
after RDA reaction, so the possible structures were inferred according to above MS/MS information.

Metabolites M45, M46, M47 and M48, eluted at 4.57 min, 5.14 min, 5.43 min, 9.69 min, respectively,
all exhibited the deprotonated ion at m/z 329.1028, 329.1029, 329.1029, 329.1029, implying that they
were isomers with the molecular formula C18H18O6 and were 2 Da higher than that of M9 and M10,
so hydrogenation happened on the basis of the loss of O. In M45, the representative product ion at m/z
130.9874 obtained by RDA reaction was 16 (O) less than 147.0461 of eupatorin, while the fragment
ion at m/z 223.0900 was twice higher than 221.0434 of eupatorin, indicating that the loss of O and
hydrogenation happened at the position of 3′ and 4, respectively. Like M45, according to the crucial
product ions at m/z 147.0535 and 207.0777, 149.0538 and 207.0618, 133.0731 and 223.0742, the structures
of M46, M47 and M48 were distinguished by the analysis above. Furthermore, M45, M46, M47 and M48
were also proved by the different Clog P values of 1.71027, 1.7953, 2.28982 and 2.89116, respectively.

Metabolites M49 and M50 (C18H18O5) were observed in the extracted chromatogram at m/z
313.1080 and 313.1086 with the retention time of 7.61 min and 7.88 min, 2 Da higher than that of
M11, while lacked one oxygen atom compared with M45, M46, M47 and M48. In M49, the distinctive
product ion at m/z 130.9677 obtained by the RDA reaction was 16 (O) less than 147.0461 of eupatorin,
inferring that hydrogenation happened at the position of 4′. Nevertheless, the characteristic fragment
ion at m/z 133.0654 yielded in M49 by the RDA reaction was 14 less than 147.0461, so hydrogenation
happened at the position of 2 and 3. Besides, M49 and M50 were also checked by the different Clog P
values of 2.5321 and 3.02662, respectively.

Metabolite M51 (C17H16O7) was obtained with a peak at m/z 331.0824 in the UPLC system, which
was eluted at 10.05 min, 2 Da larger than that of M1, M2 and M3. According to MS/MS spectrum,
diagnostic product ions at m/z 316.0595, 313.1396, 223.1657, 109.0288 and 135.0450 were formed by
losing CH3, H2O, C6H4O2, C11H10O5 and RDA reaction. It’s worth mentioning that the fragment ion
at m/z 135.0450 was 12 less than 147.0461 of eupatorin, so demethylation happened at the methoxy
group at 4′ position and hydrogenation occurred at the position of 2 and 3.

Metabolite M52 (C18H20O7) was eluted at the retention time of 12.78 min. Its deprotonated
molecular ion [M-H]− at m/z 347.1140 was increased 4 Da compared with eupatorin, so di-hydrogenation
occurred. According to the dominant product ion at m/z 149.0591 obtained by RDA reaction, 2 Da
higher than 147.0461 of eupatorin, and the fragment ion at m/z 225.0074, 4 Da higher than 221.0434,
indicating that di-hydrogenation happened at the position of 2, 3 and 4.

Metabolites M53 and M54 (C18H20O6) were observed in the chromatogram at m/z 331.1186 and
331.1185 with the retention time of 3.60 min and 4.07 min, respectively, 16 Da (O) lower than that
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of M52, inferring that the loss of O happened on the basis of di-hydrogenation. The crucial ion at
m/z 133.0325 was generated after the RDA cleavage, which was less than m/z 147.0461 one oxygen,
so the loss of O occurred at the hydroxyl group at 3′ position in M53. However, according to the
characteristic product ions at m/z 149.0680 and 209.0813, the loss of O happened at the hydroxyl group
at 5 position while the di-hydrogenation was at the same position as M52. The respective Clog P values
were 1.55427 and 1.6393, so M53 and M54 were verified.

Metabolite M55 (C18H20O5) was eluted at 6.36 min possessing the deprotonated molecular ion
[M-H]− at m/z 315.1214, which was 16 Da (O) lower than that of M53, M54 and 4 Da higher than that of
M11. Based on the previous analysis of M11, M53 and M54, the structure of M55 can be inferred.

Metabolites M56, M57 and M58 (C17H18O7): Three chromatographic peaks were eluted at 10.18
min, 10.24 min and 10.80 min with deprotonated molecular ions [M-H]− at m/z 333.0972, 333.0982 and
333.0979, which were 4 Da larger than the size of M1-M3 and 14 Da (CH2) higher than that of M52.
According to the prominent product ions at m/z 149.0642 and 135.1164, together with the information
of M1–M3 and M52, the structures of M56-M58 could be identified. In addition, M56, M57 and M58
were also ensured by the different Clog P values of 0.324751, 0.371274 and 0.644751, respectively.

Metabolite M59 (C16H16O7) was observed with a peak at m/z 319.0815 in the chromatogram, which
was eluted at 8.47 min, 4 Da larger than that of M3 and M4. According to the MS/MS information,
the typical fragment ions at m/z 301.0701, 211.0353, 197.0452, 149.0269 and 135.0443 were created by
loss of H2O, C6H4O2, C7H6O2 and RDA reaction, so there were three possible metabolites of M59.

Metabolites M60 and M61 (C16H16O5) appeared as deprotonated molecular ions [M-H]− at m/z
287.0923 and 287.0927, together with the retention time of 9.97 min and 11.07 min, respectively, which
were 4 Da higher than M8, indicating that M60 and M61 might undergo the loss of CH2O and CH2O
reaction followed by di-hydrogenation. In the secondary mass spectrum of M61, it obtained the
fragment ions at m/z 272.0695, 241.2138, 165.0166, 123.0117 and 149.0683 yielded by dropping of CH3,
CH2O2, C7H6O2, C9H8O3 and RDA cleavage, so the loss of CH2O and CH2O reaction happened at
the positions of 6 and 7 while di-hydrogenation happened at the positions of 2, 3 and 4. However,
the characteristic fragment ions at m/z 195.0653, 93.0325 and 119.0500 produced by the loss of C6H4O,
C10H10O4 and RDA cleavage. So, there were two positions (4′, 7 or 4′, 6) to have lost CH2O. Finally,
the sizes of different Clog P values were combined to determine the structure of M60.

Metabolite M62 (C17H18O5) was eluted at 7.37 min, which displayed deprotonated molecular ion
[M-H]− at m/z 301.1078, 4 Da larger the size of M12. In M62, the characteristic fragment ion at m/z
149.0605 was twice higher than 147.0461 of eupatorin, while, the prominent fragment ion at m/z 179.0711
was 42 times lower than fragment ion at m/z 221.0434, so the loss of O, CH2O and di-hydrogenation
occurred at the same positions as M12 and M52, respectively.

Metabolite M63 (C15H10O4), the deprotonated molecular ion of m/z 253.0512 was observed at the
retention time of 7.81 min, which was 30 Da (CH2O) lower than that of M8. M63 comprised the typical
fragment ions at m/z 225.0558, 209.0606, 161.0249 and 117.0351 by dropping of CO, CO2, C6H4O and
RDA cleavage. And the fragment ion at m/z 101.0246 arose by loss of O from the ion at m/z 117.0351,
so the structure was inferred.

Metabolites M64, M65 and M66 (C18H14O8) were the isomeric metabolites with the deprotonated
[M-H]− ions at m/z 357.0607, 357.0609 and 357.0610, 14 Da higher than that of eupatorin, which were
eluted at 10.79 min, 10.81 min and 12.99 min, respectively, suggesting that ketone formation reaction
occurred. Several conspicuous ions at m/z 342.0374, 327.0132, 313.0304, 221.0224, 235.0267, 161.0174
and 147.0012 all appeared in the secondary mass spectra after the loss of CH3, CH3, CO2, C7H4O3,
C7H6O2 and RDA reaction. Moreover, the Clog P values of M64, M65 and M66 were 2.17223, 2.27223
and 2.52223, respectively. In consequence, the structures of M64, M65 and M66 were distinguished
according to the above information.

Metabolite M67 (C18H18O9) was eluted at 12.29 min and showed the deprotonated molecular ion
[M-H]− at m/z 377.0875, 18 Da higher than that of M14-M17, implying that M67 might undergo oxidation
followed by internal hydrolysis. In the MS/MS spectrum of M67, the representative product ion at m/z
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181.0136 tested after RDA reaction was 34 larger than 147.0461 of eupatorin, while the fragment ion at
m/z 239.0435 was 18 times higher than that of eupatorin, so internal hydrolysis happened at C-2 and
C-3 and oxidation is most likely to occur at C-5′ [29].

Metabolite M68 (C19H17NO8) was observed with a peak at m/z 386.0865 in the UPLC system,
which was eluted at 10.00 min, 57 Da higher than that of M1-M3. The fragment ion at m/z 329.0662
was acquired, corresponding to the loss of glycine. Additionally, the conspicuous fragment ions at
m/z 264.1192 and 147.0973 were yielded through the loss of C7H6O2 and RDA reaction, implying that
the loss of CH2 and glycine conjugation were connected to A ring. Hence, there were two possible
metabolites of M68.

Metabolite M69 (C19H17NO6) was detected at 6.09 min, which presented an accurate deprotonated
ion [M-H]− at m/z 354.0992, 57 Da higher than that of M12, indicating that M69 might experience the
loss of O and CH2O reaction followed by glycine conjugation. A sequence of crucial fragment ions at
m/z 324.2008, 250.9077, 174.9553 and 204.0387 were produced by the loss of 2CH3, C3H5NO3, C9H9NO3

and RDA reaction, while the characteristic fragment ion at m/z 204.0387 was 57 higher than 147.0461 of
eupatorin, inferring that glycine conjugation was connected to B ring and the loss of O and CH2O
reaction was at the same position as M12.

Metabolite M70 (C22H22N2O8) exhibited a sharp peak at an elution time of 5.07 min in the XIC
with a deprotonated ion at m/z 441.1302. The characteristic fragment ion at m/z 312.8496 was observed,
corresponding to the loss of glutamine [24]. Furthermore, A strong ion at m/z 245.1021 appeared in the
secondary mass spectrum of M70 after the RDA reaction, and was 98 higher than 147.0461 of eupatorin,
which created the prominent fragment ion at m/z 117.2304 by dropping of glutamine, suggesting that
the loss of CH2O occurred at the methoxy group at 4′ position while glutamine conjugation took place
at the hydroxyl group at 3′ position.

Metabolite M71 (C22H22O12), displayed a peak at 5.49 min, as well as a deprotonated molecular
ion [M-H]− at m/z 477.1036. The predominated fragment ion at m/z 315.6277 was attributed to the loss
of glucose. In addition, the distinctive fragment ion at m/z 146.9654 resulted from RDA reaction was
consistent with m/z 147.0461 of eupatorin, further noteworthy MS/MS fragment ions at m/z 355.0661
and 192.9548 were yielded corresponding to the consecutive loss of C7H6O2 and glucose. Thus, the loss
of CH2 and CH2 took place at the methoxy group at 6 and 7 position, while glucose conjugation
happened at the hydroxyl group at 5 position.

The detected metabolites are listed in Table 1. Moreover, their XICs are exhibited in Figure 3.
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Figure 3. Extracted ion chromatograms of all metabolites of eupatorin in vivo and in vitro (A—in rat
plasma sample, B—in rat bile sample, C1,C2 in rat urine sample, D1,D2 in rat feces sample, E—in rat
liver microsomes, F1,F2 in rat intestinal flora).

2.4. Metabolic Pathways of Eupatorin

The metabolites of eupatorin in rats after oral administration, in liver microsomes and intestinal
flora through incubation was identified in this study. As a result, a total of 51 metabolites in vivo
were detected, including 8 metabolites in plasma, 5 metabolites in bile, 36 metabolites in urine and
32 metabolites in feces. Meanwhile, 60 metabolites in vitro were observed, including 22 metabolites in
liver microsomes and 53 metabolites in intestinal flora. The proposed metabolic pathways of eupatorin
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in vivo, in rat liver microsomes and in rat intestinal flora were shown in Figure 4. It is worth mentioning
that the loss of CH2, CH2O, O, oxidation, glucuronidation and ketone formation was the primary
metabolic step that produced further reactions such as sulfate conjugation, hydrogenation, N-acetylation,
methylation, demethylation, internal hydrolysis, glycine conjugation, glutamine conjugation and
glucose conjugation. Moreover, all metabolic changes above had taken place in vivo and in vitro.
However, glycine conjugation was just present in vivo, while glutamine conjugation and glucose
conjugation merely existed in vitro.

2.5. Comparison of Metabolites in Vivo and in Vitro

Drug metabolism plays a significant impact on various fields of pharmaceutical mechanisms as
well as drug development and clinical use. In this work, the metabolism of eupatorin in vivo (plasma,
bile, urine and feces) and in vitro (rat liver microsomes and intestinal flora) was investigated. In vivo;
rat urine and feces possessed high activity for eupatorin metabolism, which were identified as having
36 and 32 metabolites, respectively. Nevertheless, only 8 metabolites were observed in rat plasma
and 5 metabolites were detected in rat bile, suggesting that the rat plasma and bile might hold low
biotransformation activity [30]. In vitro, 53 metabolites were obtained in rat intestinal flora while 22
metabolites were identified in rat liver microsomes, which implied that most metabolites could be
excreted in intestinal flora samples and intestinal tract was more suitable for rapid identification of
metabolites of eupatorin in vitro, with enormous catalytic and metabolic capacity which exceeds that
of the liver microsomes [24]. Thus, the intestinal tract is considered as an extremely vital organ in the
biotransformation of eupatorin.
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Figure 4. Metabolic profile and proposed metabolic pathways of eupatorin in vivo and in vitro (G1,G2

in vivo, H in rat liver microsomes, I1,I2 in rat intestinal flora).
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2.6. Metabolite Activity of Eupatorin

It has been reported in the literature that OS was taken as a beverage to improve health and for
treatment of kidney disease, bladder inflammation and urethritis [1,2]. As its major active ingredient,
eupatorin has also been reported to have meaningful anti-inflammatory activity [15,16]. In this study,
the metabolites of eupatorin in urine samples were the largest, which may be related to the therapeutic
effects of cystitis, nephritis and urethritis. In addition, many of the metabolites of eupatorin have been
studied. For example, M4a namely nepetin, is a natural flavonoid present in different plants. In recent
years, accumulating evidence has shown that nepetin exhibits various pharmacological activities,
especially potent anti-inflammatory properties, which might be related to the strong anti-inflammatory
activity of eupatorin [30–32]. Overall, the identification of metabolites of eupatorin provides a basis for
new pharmacological studies and these metabolites will be further explored in the future.

3. Material and Methods

3.1. Chemicals and Materials

Eupatorin (855-96-9, purity > 98.94%) was purchased from Chengdu Desite Co., Ltd. (Chengdu,
China). Beta-nicotinamide adenine dinucleotide phosphate (β-NADPH) was purchased from Sigma
Chemical (St. Louis, MO, USA). Alamethicin and uridine 5′-diphosphoglucuronic acid trisodium salt
(UDPGA) were purchased from BD Biosciences (Woburn, MA, USA). Phosphate buffer saline (PBS)
was purchased from Sangon Biotech Co., Ltd. (Shanghai, China). Acetonitrile and methanol were
all HPLC grade and were purchased from J.T.-Baker Company (Phillipsburg, NJ, USA). Formic acid
(HPLC grade) was provided by Diamond Technology (Dikma Technologies Inc., Lake Forest, CA,
USA). Purified water was purchased from Wahaha (Hangzhou Wahaha Group Co., Ltd., Hangzhou,
China). L-ascorbic acid, L-cysteine, eurythrol, tryptone and nutrient agar were purchased from Beijing
AoBoXing Bio-tech Co., Ltd. (Beijing, China). Sodium carboxymethyl cellulose (CMC-Na), sodium
carbonate (Na2CO3), magnesium chloride (MgCl2), potassium dihydrogen phosphate (KH2PO4),
dipotassium phosphate (K2HPO4), calcium chloride (CaCl2), ammonium sulfate ((NH4)2SO4), sodium
chloride (NaCl) and magnesium sulfate (MgSO4) were obtained from Tianjin Guangfu Technology
Development Co., Ltd. (Tianjin, China).

3.2. Instruments and Conditions

UHPLC-Q-TOF-MS/MS analysis was performed on a Nexera-X2 UHPLC system (Shimadzu Corp.,
Kyoto, Japan), which was combined with a triple TOFTM 5600+ MS/MS system (AB SCIEX, Concord,
Ontario, Canada). The chromatographic separation was achieved on Poroshell 120 EC-C18 column
(2.1 × 100 mm, 2.7 μm) with a SecurityGuard® UHPLC C18 pre-column (Poroshell).

The mobile phase was composed of 0.1% aqueous formic acid (eluent A) and acetonitrile (eluent B).
The gradient elution program was as follows: 10–55% B from 0 to 15 min, 55–95% B from 15 to 20 min,
95–95% B from 20 to 25 min. The column temperature remained at 40 ◦C. In addition, the injection
flow rate and the volume were set at 0.3 mL/min and 3 μL, respectively. Before the next injection,
equilibration was performed for 3 min.

Mass spectrometric detection was carried out by a Triple TOFTM 5600 system equipped with
Duo-SprayTM ion sources in the negative electrospray ionization (ESI) mode. The following mass
spectrometry parameter settings were applied: ion spray voltage (IS), −4.5 kV; the turbo spray
temperature, 550 ◦C; the optimized delustering potential (DP), −60 V; collision energy (CE), −10 eV;
and the collision energy spread (CES), 15 eV. Moreover, the nebulizer gas (gas 1), the heater gas (gas 2)
and the curtain gas were set to 55, 55 and 35 L/min, respectively.
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3.3. Metabolism in Vivo

3.3.1. Animals and Drug Administration

Eighteen male Sprague-Dawley (SD) rats (220–220 g, 12–14 weeks old) were purchased from
the Experimental Animal Research Center of Hebei Medical University (Certificate No.1811164).
The conditions of temperature (22–25 ◦C), humidity (55–60%) and light (12 h light/dark cycle) were
standard for 7 days before being used. All rats were fasted for 12 h but allowed water before the
experiments. These rats were divided into six groups randomly with three rats per group. Groups 1, 3
and 5 were the control groups for blank blood, blank bile, blank urine and feces, respectively. Groups
2, 4 and 6 were the drug groups for blood, bile, urine and feces, respectively. Rats in groups 2, 4, 6
were given eupatorin by gavage, which dissolved in a 0.5% CMC-Na solution at a dose of 50 mg/kg.
Nevertheless, an equal 0.5% CMC-Na solution without eupatorin was orally given to groups 1, 3, 5.
All rat experiments were conducted in accordance with the committee’s guidelines on the Care and
Use of Laboratory Animals.

3.3.2. Bio-Sample Collection

The plasma samples collection: About 300 μL–500 μL for each blood sample was gathered from
the eye canthus of rat into 1.5 mL heparinized tubes at 0.083, 0.167, 0.25, 0.5, 1, 2, 3, 6, 9, 12 and 24 h
after gavage. Every blood sample were centrifuged immediately at 1920 g for 10 min at 4 ◦C to collect
the supernatant. After that all collected plasma samples were combined and stored at −80 ◦C.

The bile collection: Each rat was injected 20% urethane solution intraperitoneally with 1–2 mL to
anesthetize the rats after gavage. Then the rats were performed with bile duct cannulation operation
and the bile samples were gathered during 0–1 h, 1–3 h, 3–5 h, 5–8 h, 8–12 h, 12–20 h and 20–24 h with
PE-10 tubes (ID = 0.07 cm) [33,34]. Lastly, all bile samples were consolidated and frozen at −80 ◦C.

The urine and feces collection: The rats were separately housed in metabolic cages with free access
to deionized water to collect the urine and feces samples over a 0–72 h period after gavage [35,36].
Finally, all the urine and feces samples were separately mixed, and they were placed at −80 ◦C before
pretreatment was conducted.

3.3.3. Bio-Sample Pretreatment

All biological samples were disposed with two methods: Protein precipitation and liquid-liquid
extraction were performed on the combined plasma, bile and urine with three times of methanol and
ethyl acetate, respectively. Next, the mixture was vortexed for 5 min and centrifuged at 21,380× g for
10 min at 4 ◦C to obtain the supernatant, which was then collected and dried under nitrogen flow.

Dried and powdered feces samples were severally added to 3-fold methanol and ethyl acetate
and then were ultrasonically extracted for 45 min. After centrifugation for 10 min at 21,380× g, they
were dried under nitrogen gas like the supernatant in plasma, bile and urine samples.

150 μL methanol was added to the residua above with an ultrasonic operation for 15 min,
centrifugation at 21,380× g for 10 min to gain the supernatant which were ultimately passed through
the 0.22 μm millipore filters before injecting into the chromatographic system for further analysis.
The control group was handled the same as the drug group.

3.4. Metabolism in Vitro by Rat Liver Microsomes

3.4.1. Phase I Metabolism

The typical incubation mixture was carried out in a PBS buffer (pH 7.4) with a final volume of
200 μL, which consisted of liver microsomal protein (1.0 mg/mL), eupatorin (100 μmol/L), MgCl2
(3.3 mmol/L), and β-NADPH (1.3 mmol/L) [37]. Preincubation was conducted at 37 ◦C for 5 min,
subsequently NADPH was added to start the reaction. After incubation at 37 ◦C for 90 min, the reaction
was terminated by adding 1 mL of ethyl acetate. Next, vortex and centrifugation for 5 and 10 min,

22



Molecules 2019, 24, 2658

respectively, and then the organic phase was gathered and evaporated under nitrogen gas. 100 μL of
acetonitrile was put in the residua and they were eventually passed through the 0.22 μm millipore
filters and placed at −20 ◦C before analysis. Groups contained blank groups incubated without the
addition of eupatorin, the control groups incubated without the addition of NADPH and the sample
groups, which were implemented in triplicate with the same treatment [38,39].

3.4.2. Phase II Metabolism

The representative incubation mixture was performed in a PBS buffer (pH 7.4) with a final
volume of 200 μL, which including liver microsomal protein (1.0 mg/mL), eupatorin (100 μmol/L),
MgCl2 (3.3 mmol/L), and UDPGA (2 mmol/L). Preincubation was implemented at 37 ◦C for 20 min,
subsequently UDPGA was added to begin the reaction. After incubation at 37 ◦C for 1 h, the reaction
was ceased by adding 200 μL of ice-acetonitrile. Next, vortex and centrifugation for 5 and 10 min,
respectively. In addition, the supernatant was passed through the 0.22 μm millipore filter before
injecting into the UHPLC-Q-TOF-MS/MS system for analysis. Groups contained blank groups incubated
without the addition of eupatorin, the control groups incubated without the addition of UDPGA and
the sample groups, which were carried out in triplicate with the same treatment.

3.5. Metabolism in Vitro by Rat Intestinal Flora

3.5.1. Preparation of Anaerobic Culture Medium

Solution A: K2HPO4 (0.78%) 37.5 mL; Solution B: KH2PO4 (0.47%), NaCl (1.18%), (NH4)2SO4

(1.2%), CaCl2 (0.12%) and MgSO4 (0.25%) 37.5 mL; Solution C: Na2CO3 (8%) 50 mL; Solution D:
L-ascorbic acid (25%) 2 mL together with L-cysteine 0.5 g, eurythrol 1 g, tryptone 1 g and nutrient agar
1 g, which were all mixed up. Ultrapure water was added to 1 L and then HCl (1 mol/L) was put to
adjust the pH of the solution to 7.5–8.0.

3.5.2. Preparation of Intestinal Flora Culture Solution

Fresh intestinal contents (3 g) taken from SD rats were combined with anaerobic culture medium
(30 mL) instantly. After stirring with a glass rod, filtered with gauze to obtain the intestinal
bacterial liquid.

3.5.3. Sample Preparation

Eupatorin (1 mg/mL,100 μL) was added to intestinal flora culture medium (1 mL), which was
then filled with nitrogen without oxygen. The reactions were terminated by adding 3 volumes of
methanol after incubation for 12 h. Next, the mixtures were vortexed for 5 min and centrifuged for
10 min at 21,380 g. Subsequently, the organic phases were collected and evaporated under nitrogen
gas, and 100 μL of methanol was added to the residua, vortexed and centrifuged again for 5 and
10 min, respectively. Before analysis, the supernatant was passed through the 0.22 μm millipore filter.
Blank groups were incubated without eupatorin, meanwhile the control groups were incubated not in
intestinal flora culture solution but in anaerobic culture medium, but others were the same.

4. Conclusions

In conclusion, the identification of metabolites of eupatorin in vivo and in vitro had achieved
great success firstly by means of UHPLC-Q-TOF-MS/MS combined with a powerful and efficient
data acquisition and processing method. The results displayed that a total of 71 metabolites were
characterized: 51 metabolites were identified in vivo (8 metabolites in the plasma, 5 metabolites in the
bile, 36 metabolites in the urine and 32 metabolites in the feces), while 60 metabolites were detected
in vitro (22 metabolites in the rat liver microsomes and 53 metabolites in rat intestinal flora). This study
was expected to benefit future efficacy and safety studies on eupatorin and provide guidelines for intake
of OS. There is no doubt that further studies are needed to confirm the impact of these metabolites on
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human health and safety, thus providing reasonable recommendations for the consumption of foods
and drugs containing eupatorin.
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Abstract: A multi-layer artificial neural network (ANN) was used to model the retention behavior
of 16 o-phthalaldehyde derivatives of amino acids in reversed-phase liquid chromatography under
application of various gradient elution modes. The retention data, taken from literature, were collected
in acetonitrile–water eluents under application of linear organic modifier gradients (ϕ gradients),
pH gradients, or double pH/ϕ gradients. At first, retention data collected in ϕ gradients and pH
gradients were modeled separately, while these were successively combined in one dataset and
fitted simultaneously. Specific ANN-based models were generated by combining the descriptors of
the gradient profiles with 16 inputs representing the amino acids and providing the retention time
of these solutes as the response. Categorical “bit-string” descriptors were adopted to identify the
solutes, which allowed simultaneously modeling the retention times of all 16 target amino acids.
The ANN-based models tested on external gradients provided mean errors for the predicted retention
times of 1.1% (ϕ gradients), 1.4% (pH gradients), 2.5% (combined ϕ and pH gradients), and 2.5%
(double pH/ϕ gradients). The accuracy of ANN prediction was better than that previously obtained
by fitting of the same data with retention models based on the solution of the fundamental equation
of gradient elution.

Keywords: amino acids; reversed-phase liquid chromatography; gradient elution; retention prediction;
artificial neural network

1. Introduction

Reversed-phase high-performance liquid chromatography (RP-HPLC) is an extensively applied
technique in the separation and determination of a wide range of multi-class compounds, including
biomolecules, pharmaceuticals, and industrial chemicals, in human, environmental, and food
samples [1–4]. Separation of complex mixtures by RP-HPLC generally requires the application of
mobile-phase gradients to overcome the typical disadvantages of isocratic elution, such as poor
resolution of early peaks, broadening of late peaks, band tailing, and long separation times [5,6].
In organic modifier mobile-phase gradients (ϕ gradients), the concentration of organic solvent in
the mobile phase is increased, determining a progressive increase of the elution power of the eluent
during the gradient run and a consequent decrease in solute retention. A similar effect occurs in the
pH gradient of the mobile phase [7], where an increase or decrease in pH in the case of weak bases or
acids, respectively, produces a progressive increase of the ionized form of the analyte and a consequent
decrease in its retention time.

In the last few decades, various predictive models [8–11] were proposed with the aim of
supporting the empirical strategies commonly utilized in the development of the chromatographic
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methods, which can be particularly slow and inefficient when a large number of parameters have to be
fixed, such as in the case of programmed elution analysis.

Many attempts to describe the retention of solutes in RP-HPLC under the application of mobile-phase
gradients are based on the solution of the fundamental equation of gradient elution [12–16],

∫ tR−t0

0

dt
t0k

= 1 (1)

where tR is the retention time, t0 is the column hold-up time, and k is the retention factor. Analytical or
numerical solutions of Equation (1) require the dependence of k upon the mobile-phase composition.
To this end, popular relationships relating k and ϕ, or empirical models arising from the experimental
properties of the system are often used, where the adjustable eluent- and sometimes solute-dependent
parameters associated with these relationships are determined by appropriate fitting algorithms
applied to the retention data.

Artificial neural networks (ANNs), since their introduction in 1990s, are used as regression tools to
address various complex issues in chromatography. The main advantage of ANN regression is that both
multilinear and non-linear phenomena can be handled without the need of prior definition of a fitting
function. The ANN-based applications in retention prediction include the development of quantitative
structure–retention relationships (QSSRs) [17,18], modeling of the combined effects of solute structure
and separation conditions (column, eluent, or both) [19,20], and transfer of retention data between
different columns or eluent types [21–23]. ANN models based simultaneously on molecular descriptors
and instrumental conditions associated with the elution mode were used to predict the retention times
of diverse sets of organic compounds in gradient RP-HPLC [24–27]. We previously used ANN
regression to model the retention times of 16 selected purines, pyrimidines, and nucleosides under
the application of multilinear ϕ gradients [28]. With this aim, a network was trained to associate the
retention times with both gradient profiles and solutes, the latter being represented by “bit-string”
categorical descriptors, which, unlike the aforementioned QSSR-inspired approaches, did not require
any assumption of the chemical structure of the analytes. The generalization ability of the so-obtained
model was tested on external multilinear gradients, providing an accurate prediction of the solute
retention times (within 2–3% on average). This approach was here extended to the RP-HPLC retention
of ionizable solutes of biological relevance, such as amino acids, analyzed under the application of
linear ϕ gradients, pH gradients, or combined ϕ/pH gradients, whereby the target compounds were
previously derivatized with o-phthalaldehyde (OPA) to allow their fluorescence detection. The data
investigated in the present study were taken from three works of Pappa-Louisi and co-workers [14–16],
who collected the experimental data and developed retention models based on the solution of the
fundamental equation of gradient elution to verify the accuracy of the predicted retention by different
equations or fitting algorithms.

The present study is aimed at exploring the capability of ANN regression calibrated with the
retention data collected in representative gradients to predict the chromatographic behavior of ionizable
solutes in external separation conditions. Retention in gradient RP-HPLC is governed by several
factors, such as the chemical structure of solutes, their acid–base properties, the polarity/acidity of the
mobile phase, and how these properties change during the chromatographic run. While, on the one
hand, ANN is potentially able to treat such complexity, on the other, the network does not provide
a fitting equation that could be useful for getting information about the relative role of the different
factors in the retention process. Nevertheless, finding the optimal condition for the chromatographic
separation of a complex mixture, which is anyway a multivariate problem, can be handled by statistical
retention models, but their predictive performance is more important than the knowledge of their
physical meaning. In this view, a network was trained to associate the experimental parameters
describing the gradient elution profile with the retention times of a mixture of target analytes to
be separated. The ANN-based model, once calibrated on a sufficiently large set of representative
separation conditions, was later applied to simultaneously predict the retention times of all the solutes
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in external elution conditions. In the end, the ANN response can be useful for optimization purposes,
because it allows deducing the retention of the target solutes at any point of the experimental domain
explored in calibration, and it may replace or support inefficient trial-and-error empirical approaches
usually adopted to search the optimal separation conditions. At first, two separate ANN-based
retention models were generated to predict the data collected under application of linear ϕ gradients
or pH gradients. In addition, the retention behavior of the amino acids under the independent
or simultaneous application of linear ϕ and pH gradients was modeled by ANN. The predictive
performance of the various ANN-based models developed in this work was compared with the
prediction ability of the retention models based on the solution of the fundamental equation of
gradient elution.

2. Results

2.1. Identification of Model Variables and Data Subsets

In this paper, ANN regression was used to model the RP-HPLC retention of o-phthaladehyde
(OPA) derivatives of 16 amino acids collected under the application of ϕ gradients, pH gradients,
or combined pH/ϕ gradients. The retention datasets (A, B, and C, respectively), taken from the
literature [14–16], are described in Section 3.1. The following variables were considered to describe
the linear ϕ gradients of dataset A: the starting pH (pHi), the starting organic solvent content (ϕi),
and the ϕ-gradient slope (Δϕ/tg = (ϕf − ϕi)/tg), where ϕf is the ϕ value at the end of gradient run
and tg is the gradient time. The pH gradients of dataset B were described by ϕi, pHi and the gradient
slope (ΔpH/tg = (pHf − pHi)/tg, where pHf is the final pH value). The respective values of the
above quantities, determined from the experimental conditions reported in the original papers [14,16],
are collected in Table 1. Among these parameters, the constant ones (ΔpH/tg and ϕi in dataset A, and
Δϕ/tg in dataset B) were not considered as network inputs in ANN modeling of ϕ gradients or pH
gradients. Datasets A and B were successively fused in one comprehensive dataset, hereafter indicated
as A+B, to attempt ANN modeling of retention data collected under independent applications of
ϕ gradients and pH gradients. In this case, all four gradient descriptors reported in Table 1 are
informative and were considered as ANN inputs. To describe the 27 double pH/ϕ gradients of dataset
C (referring to double pH/ϕ gradients), the three non-constant experimental quantities (pHf, ϕf, and
tg) varying according to a three-level experimental design in Reference [15] were assumed as ANN
inputs. The level values selected for these variables are given in Section 3.1.

As described in Section 3.2, ANN regression requires a training set, which is processed to update
the network weights and biases; however, the network performance must also be monitored during
learning using unknown data (validation set) to avoid overfitting. Moreover, the real generalization
ability of the learned network must be finally evaluated on external data (test set) neither used in
training nor in validation. To design these three datasets, the various ϕ gradients of dataset A, the pH
gradients of dataset B, and the ϕ/pH gradients of dataset C were graphically represented in the
space of the variables previously selected to describe the changes in the eluent composition (Figure 1).
These plots helped us generate three well-balanced subsets in terms of representativeness; the data
samples assigned to each subset were selected to cover the investigated experimental domain as
much as homogeneously possible. Regardless of the dataset, six gradients were selected for the final
test; three gradients (dataset A) or four gradients (datasets B and C) were selected for the internal
validation and the remaining elution conditions were used to train the networks (Table 1 and Figure 1).
The training, validation, and test sets for dataset A+B were designed by fusing the respective subsets
of the A and B matrices. Considering that the retention data of 16 amino acids are associated with
each experimental elution mode, the training, validation, and test data points were 160, 48, and 96,
respectively, for dataset A; 192, 64, and 96, respectively, for dataset B; 352, 112, and 196, respectively,
for dataset A+B; and 272, 64, and 96 for dataset C. Rather than representing the solutes by molecular
descriptors, according to conventional QSRR approach, each of the 16 amino acids was identified by a
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16-bit string, consisting of all “0” values except the n-th bit, which was set to “1”, where n corresponds
to the position of that solute in an arbitrary and predefined sequence of the investigated analytes.
In this condition, the network was trained to properly associate the retention times to both solutes and
gradient modes, without any explicit reference to the solute molecular structure.

2.2. ANN Modeling of Retention

The distinct networks handling the retention datasets A, B, A + B, and C were optimized following
a usual procedure aimed at founding the combination of the ANN adjustable parameters providing the
lowest validation error. A range-scaling between 0 and 1 was always applied to both input and output
variables. Retention time (tR(min)) values and their logarithmic values were alternatively considered as
the ANN responses. Both options provided good ANN models and a random distribution of absolute
residuals; however, logarithmic transformation of retention times was preferred to the unscaled values
because it gave lower relative errors for the less retained amino acids.

Table 1. Descriptors of the linear ϕ gradients (dataset A) and pH gradients (dataset B).

Dataset Gradient Code Subset a pHi ΔpH/tg ϕi Δϕ/tg

A

1A train 2.8 0 0.20 0.06
2A val 2.8 0 0.20 0.03
3A train 2.8 0 0.20 0.015
4A test 3.3 0 0.20 0.03
5A test 3.3 0 0.20 0.02
6A train 3.3 0 0.20 0.015
7A test 3.3 0 0.20 0.01
8A train 3.82 0 0.20 0.06
9A test 3.82 0 0.20 0.018
10A train 3.82 0 0.20 0.012
11A train 4.2 0 0.20 0.03
12A train 4.2 0 0.20 0.015
13A val 4.2 0 0.20 0.01
14A val 5.85 0 0.20 0.015
15A train 5.85 0 0.20 0.01
16A test 5.85 0 0.20 0.0075
17A train 7.8 0 0.20 0.015
18A test 7.8 0 0.20 0.01
19A train 7.8 0 0.20 0.0075

B

1B train 2.8 0.79 0.35 0
2B val 2.8 0.527 0.35 0
3B test 2.8 0.395 0.35 0
4B train 2.8 0.263 0.35 0
5B val 2.8 0.527 0.25 0
6B train 2.8 0.527 0.27 0
7B test 2.8 0.527 0.30 0
8B train 2.8 0.263 0.25 0
9B test 2.8 0.263 0.27 0

10B train 2.8 0.263 0.30 0
11B train 3.2 0.580 0.25 0
12B train 3.2 0.387 0.25 0
13B val 3.2 0.290 0.25 0
14B train 3.2 0.193 0.25 0
15B train 3.2 0.387 0.27 0
16B test 3.2 0.387 0.30 0
17B test 3.2 0.387 0.35 0
18B train 3.2 0.290 0.30 0
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Table 1. Cont.

Dataset Gradient Code Subset a pHi ΔpH/tg ϕi Δϕ/tg

B

19B val 3.2 0.290 0.35 0
20B test 3.2 0.193 0.27 0
21B train 3.2 0.193 0.30 0
22B train 3.2 0.193 0.35 0

a Training set (train), validation set (val), test set (test).

Based on the results of preliminary ANN runs, in which a sigmoid or a tangent hyperbolic
activation function was applied to the hidden neurons, the latter was preferred, while application of
a non-linear transformation in the output neuron was not required because it did not produce any
improvement in the model performance. The number of hidden neurons was varied in the range
between N − 6 and N + 6, where N is the number of inputs, and each tested network was trained until
the validation error reached a minimum value.

 

(a) (b) (c) 

Figure 1. Gradients used in artificial neural network (ANN) training, validation, and test data projected
in the space of the variables adopted as network inputs for datasets A (a), B (b), and C (c). Test samples
of dataset C are labeled according to Reference [15].

The best ANN architectures and learning durations are presented in Table 2. Because of a
randomization of the starting weights, here generated between −0.1 and 0.1, the optimal network
produced slightly different responses upon being re-trained several times. To minimize the influence
of the initial weights on the ANN-based model performance, the network was re-trained 100 times and
the outputs were averaged. The agreement between computed or predicted ANN responses and the
experimental tR values for each retention dataset are graphically shown in Figure 2. Table 2 displays
the determination coefficients in calibration and prediction (R2 and Q2) and the related standard
errors (SEC and SEP, respectively) associated with the ANN-based models, where Q2 was determined
according to Todeschini et al. [29]. The average and maximum absolute percentage errors (mean(%)
and max(%), respectively) in each subset are also reported. All the above statistical parameters refer to
the unscaled tR values.
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(a) (b) 

(c) (d) 

Figure 2. Agreement between the experimental retention times (tR(min)/exp) of solutes and calculated
or predicted ANN responses (tR(min)/calc,pred) of datasets A (a), B (b), A+B (c), and D (d).

2.3. Predictive Performance of the ANN-Based Models

Inspection of the agreement plots for the various retention datasets modeled by ANN (Figure 2)
reveals that both computed and predicted responses were very close to the ideal line, ensuring an
accurate prediction of the retention times of the amino acids within the respective experimental
domains. As expected, the training data samples were better modeled than the validation and test data;
nonetheless, worsening of the predictive performance as compared to the fitting ability was slight,
as confirmed by the small differences among the statistical parameters of training, validation, and test
sets, reported in Table 2. The data samples were also randomly distributed around the ideal line of the
agreement plots, suggesting the absence of systematic errors, except for dataset C, for which a small
group of validation cases in the tR range between 30 and 40 min were all underestimated (Figure 2d).
Most of these data samples were associated with the most retained amino acids analyzed under the
application of a same gradient (ϕf = 0.5, pHf = 5.86, tg = 30 min), but the errors were anyway acceptable
(within 4–7%). The retention data collected under the application of ϕ gradients and pH gradients
were very well modeled according to the mean errors, which were smaller than 1% and 1.5% for the
training and test data, respectively (Table 2). Only a slight worsening of the descriptive/predictive
ANN performance was observed when the network was called to model the retention times of the
amino acids under the independent application of ϕ gradients and pH gradients (dataset A+B) or
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double pH/ϕ gradients; the mean error in both cases was just above 1% for the training set and 2.5%
for the test set (Table 2).

Figure 3 displays the trend of the relative (%) errors (err (%)) for the retention times of the 16
amino acids in the ϕ gradients and/or pH gradients of the test set. Therefore, these data quantify
the ability of the ANN-based models to predict the retention of the amino acids in elution conditions
external to those used in calibration, and give a measure of the applicability of this approach in
optimization problems.

(a) (b) 

(c) (d) 

Figure 3. Percentage errors (err (%)) for the retention times of the amino acids provided by the
ANN-based models in the external gradients (test set) of datasets A (a), B (b), A+B (c), and C (d).
Abbreviations used for the amino acids are reported in Section 3.1. Gradient codes are specified in
Table 1 (datasets A, B, and A+B) and Figure 1 (dataset C).

For most gradients of dataset A (ϕ gradients) and B (pH gradients), err (%) almost regularly
decreased, passing from the less retained (Arg) to the most retained amino acid (Leu), seen from the
left to the right of the plots displayed in Figure 3a,b. This arose from the fact that the absolute errors
were homogeneously distributed over the target amino acids and, therefore, the relative errors were
inversely related to the tR value. Most of the predicted errors associated with the 16 amino acids in
the external gradients of datasets A and B were smaller than 3%, while ANN modeling of datasets
A+B (Figure 3c) and C (Figure 3d) provided slightly greater residuals, although generally below 5%.
It can be noted that the retention times of most amino acids were less accurately predicted in the pH
gradient 17B, when the data referring to pH gradients were modeled separately (dataset B) and when
pH gradients and ϕ gradients were combined (dataset A+B). The moderately worse performance of
the ANN model in this experimental condition can be due to the fact that the values of the two eluent
descriptors (ϕi and pHi) of pH gradient 17B were the greatest within the respective variability ranges
(Table 1) and, therefore, the network was called to extrapolate the response.
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2.4. Comparison of the ANN-Based Models with Retention Models Based on the Solution of the Fundamental
Equation of Gradient Elution

The error trends provided by the retention models based on the solution of the fundamental
equation of gradient elution that Pappa-Louisi and co-workers applied to datasets A [16] and B [14] are
displayed in Figure 4 for comparison purposes. With regards to dataset A, the ANN-based model gave
a lower number of errors above 3% as compared with the retention model developed in Reference [16].
Concerning dataset B, it must be noted that the pH gradient retention data collected in the pH ranges
of 2.8–10.7 and 3.2–9 (in Table 1, gradients 1B–10B and 11B–22B, respectively) were fitted by two
separate models in Reference [14], while, in this work, all 22 elution conditions were modeled by the
same network. Nevertheless, the comprehensive ANN-based model built here seems to give a better
prediction of the retention times, whereby the number of errors above 2% was lower as compared
with the results provided by the two separate retention models generated from the solution of the
fundamental equation of gradient elution. Although tR values of the most retained amino acids (Val,
Trp, Ile, Phe, and Leu) were predicted by the two alternative approaches with a comparable accuracy
(errors were close to 1% or lower), the behavior of the less retained solutes was better described by the
ANN model.

 
(a) (b) 

Figure 4. Percentage errors (err (%)) for the retention times of the amino acids provided by the retention
models developed in References [14,16] for the external gradients (test set) of datasets A (a) and B (b).
Abbreviations used for the amino acids are reported in Section 3.1. Gradient codes are specified in
Table 1.

The comparison of Figures 3c and 4a,b reveals that the accuracy of prediction in the external
ϕ gradients and pH gradients of dataset A+B was substantially equivalent to that provided by the
solution of the fundamental equation of gradient elution. However, it should be remarked that a single
ANN-based model was required to fit these data, while the data collected in pH gradients and ϕ

gradients covering two different pH ranges were interpolated with three different retention models in
References [14,16].

The ANN model describing retention under the application of double pH/ϕ gradients (dataset
C) exhibited individual tR errors in the external gradients that surpassed 5% only in a limited number
of cases (Figure 3d). For this dataset, instead of the detailed trend of errors, not given in Reference [15],
the mean errors provided by the retention model obtained from the solution of the fundamental
equation of gradient elution could be considered for comparison. The mean and maximum errors
reported for the model calibrated with all 27 gradients of dataset C were 2.9% and 18.9%, respectively.
Moreover, the mean error associated with individual amino acids over the 27 gradients monotonically
grew with the increase in retention time, from 1.5% (Arg) up to 6.5% (Leu) (Figure 5 of Reference [15]),
revealing a poor modeling of the retention behavior of the most retained solutes. In the present work,
the mean and maximum errors for the 17 gradients used to train the network were noticeably lower (1.0
and 4.2%, Table 2), and we observed a substantial independence of the training errors from the kind of
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amino acid. In Reference [15], the model initially developed using all the 27 gradients was recalibrated
with 18 gradients and applied to the remaining nine gradients providing mean and maximum errors
of 3.5 and 11.8%, respectively. In the present work, the network trained with 17 gradients gave lower
mean and maximum errors both in internal validation (2.6 and 6.9%) and external prediction (2.5 and
6.8%). In summary, the ANN-based model, as compared with the retention models generated from
the solution of the fundamental equation of gradient elution, provided a more accurate prediction
of the retention times of the amino acids in double pH/ϕ gradients, as well as a more homogenous
error distribution.

3. Methods

3.1. Retention Data

The data here analyzed were taken from three papers of Pappa-Louisi and co-workers [14–16]
regarding the RP-HPLC retention of OPA derivatives of amino acids collected under the application of
ϕ gradients, pH gradients, or combined pH/ϕ gradients. The mobile phases consisted of mixtures of
aqueous phosphate buffer with a total ionic strength of 0.02 M and acetonitrile. In the first paper [16],
19 chromatographic runs were performed in different fixed eluent pHs (between 2.80 and 7.80), while
the organic solvent volume fraction ϕ was linearly varied between 0.2 and 0.5 in different gradient
durations (tg, ranging between 5 and 40 min). In the second paper [14], ϕ was kept fixed (at 0.25, 0.27,
0.3, or 0.35), and 22 different linear pH gradients were applied in the pH ranges of 2.8–10.7 or 3.2–9,
where tg was varied between 10 and 30 min. A third retention dataset (dataset C) was collected by Zisi
et al. [15] under the application of a double organic solvent and pH gradient, in which both ϕ and
pH were linearly changed from initial values (ϕi and pHi) to final values (ϕf and pHf). This consisted
of 27 different runs performed at fixed values of ϕi (0.25) and pHi (3.21), while pHf, ϕf, and tg were
varied according to a three-level experimental design. The selected levels were 4.68, 5.86, and 7.86 for
pHf; 0.35, 0.40, and 0.50 for ϕf; and 10, 20, and 30 min for tg.

The amino acids analyzed in the above conditions were as follows: L-arginine (Arg),
L-asparagine (Asn), L-glutamine (Gln), L-serine (Ser), L-aspartic acid (Asp), L-threonine (Thr),
beta-(3,4-dihydroxyphenyl)-L-alanine (Dopa), L-alanine (Ala), L-tyrosine (Tyr), 4-aminobutyric acid
(GABA), L-methionine (Met), L-valine (Val), L-tryptophan (Trp), L-isoleucine (Ile), L-phenylanine (Phe),
and L-leucine (Leu). The amino acid L-glutamic acid (Glu), which was analyzed only in some experimental
conditions, was not considered here. Apart from the different gradient profiles, all the retention data were
collected with the same column, detector, and eluent flow rate. A 250 mm × 4.6 mm MZ-PerfectSil Target
ODS-3HD analytical column with a 5-μm particle size kept at 25 ◦C was used, and the spectrofluorometric
detector worked at 455 nm after excitation at 340 nm. Further experimental details can be found in the
original papers [14–16].

3.2. Artificial Neural Network Modelling

A three-layer feed-forward ANN [30,31] was used in this work. The network consisted of one
layer of input neurons, one output neuron, and an adjustable number of neurons in the hidden layer,
fully connected to both the input and output neurons. Weights were associated to the connections,
which modulated the information flowing from the input layer collecting the independent variables
to the output neuron providing the network response. The weighted input variables entering each
neuron of the hidden layer were summed and added to a bias value, and the result was transformed
by a non-linear activation function, providing an output signal. The output neuron operated in a
similar way on the weighted outputs of the hidden neurons producing the final response. A starting
set of weights and biases, randomly generated, was sequentially updated in a learning (or training)
procedure in which the network evaluated several input/output pairs (training set) to produce the
best agreement between the target and computed responses. The optimized set of weights and biases,
which represented a sort of memory of the learned network, could later be recalled, making predictions
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of the unknown response when the predictors were known. In this work, the network was trained by
a quasi-Newton method [31], which incorporates second-order information about the error surface
shape, ensuring faster convergence and a greater probability of avoiding local minima as compared to
the classical error backpropagation learning algorithm. To avoid overfitting, the ANN performance
during the learning step was monitored on unknown data samples (validation set), and the weight
update was interrupted when the validation error started increasing. Minimization of the validation
error was the criterion also adopted to select among alternative ANN models, differing in their
network architecture, kind of activation function, kind of data scaling, and so on, the one with the best
expected generalization ability. The real predictive performance of the final ANN-based model was
finally evaluated on data samples (test set) external to both the training and validation sets. Software
OpenNN [32] was used to perform ANN modeling.

4. Conclusions

In this paper, a three-layer artificial neural network was used to model the retention times of
16 amino acids under the separate or simultaneous application of linear organic modifier and pH
gradients. We focused on the ANN’s capability to predict the retention data of the target solutes
in external gradients, which is a useful response for optimization purposes. Using a “bit-string”
representation of solutes allowed simultaneously modeling the retention behavior of all 16 amino
acids with no explicit reference to their chemical structure or properties. It follows that the approach
presented in this work can be transferred to chemical classes or heterogeneous groups of solutes
different from those investigated. Moreover, the model generation did not require any assumption
concerning the dependence of the retention factors on the eluent pH and composition, which is,
by contrast, a prerequisite to attempt the solution of the fundamental equation of gradient elution.
The predictive ability of the ANN-based models tested on external gradients was very good, whereby
the mean errors for the retention times were 1.1% for ϕ gradients, 1.4% for pH gradients, and 2.5%
for pH/ϕ gradients, and better than that provided by retention models based on the solution of the
fundamental equation of gradient elution. In summary, ANN modeling seems a powerful and flexible
regression tool to describe the effect of the experimental conditions in linear gradient elution on the
retention of ionizable solutes and, in combination with experimental design, can be applied to optimize
HPLC methods.
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25. Golubović, J.; Protić, A.; Otašević, B.; Zečević, M. Quantitative structure-retention relationships applied to
development of liquid chromatography gradient-elution method for the separation of sartans. Talanta 2016,
150, 190–197. [CrossRef] [PubMed]

38



Molecules 2019, 24, 632

26. Barron, L.P.; McEneff, G.L. Gradient liquid chromatographic retention time prediction for suspect screening
applications: A critical assessment of a generalised artificial neural network-based approach across 10
multi-residue reversed-phase analytical methods. Talanta 2016, 147, 261–270. [CrossRef] [PubMed]

27. D’Archivio, A.A.; Maggi, M.A.; Ruggieri, F. Prediction of the retention of s-triazines in reversed-phase
high-performance liquid chromatography under linear gradient-elution conditions. J. Sep. Sci. 2014, 37,
1930–1936. [CrossRef] [PubMed]

28. D’Archivio, A.A.; Maggi, M.A.; Ruggieri, F. Artificial neural network prediction of multilinear gradient
retention in reversed-phase HPLC: Comprehensive QSRR-based models combining categorical or structural
solute descriptors and gradient profile parameters. Anal. Bioanal. Chem. 2015, 407, 1181–1190. [CrossRef]

29. Todeschini, R.; Ballabio, D.; Grisoni, F. Beware of Unreliable Q2! A Comparative Study of Regression Metrics
for Predictivity Assessment of QSAR Models. J. Chem. Inf. Model. 2016, 56, 1905–1913. [CrossRef]

30. Marini, F.; Bucci, R.; Magrì, A.L.; Magrì, A.D. Artificial neural networks in chemometrics: History, examples
and perspectives. Microchem. J. 2008, 88, 178–185. [CrossRef]
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Abstract: Gastrodia elata (G. elata) tuber is a valuable herbal medicine used to treat many diseases.
The procedure of establishing a reasonable and feasible quality assessment method for G. elata tuber
is important to ensure its clinical safety and efficacy. In this research, an effective and comprehensive
evaluation method for assessing the quality of G. elata has been developed, based on the analysis of
high performance liquid chromatography (HPLC) fingerprint, combined with the quantitative analysis
of multi-components by single marker (QAMS) method. The contents of the seven components,
including gastrodin, p-hydroxybenzyl alcohol, p-hydroxy benzaldehyde, parishin A, parishin B,
parishin C, and parishin E were determined, simultaneously, using gastrodin as the reference standard.
The results demonstrated that there was no significant difference between the QAMS method and the
traditional external standard method (ESM) (p > 0.05, RSD < 4.79%), suggesting that QAMS was a
reliable and convenient method for the content determination of multiple components, especially
when there is a shortage of reference substances. In conclusion, this strategy could be beneficial for
simplifying the processes in the quality control of G. elata tuber and giving references to promote the
quality standards of herbal medicines.

Keywords: Gastrodia elata tuber; quality evaluation; HPLC; QAMS

1. Introduction

Gastrodia elata (G. elata) Blume is a traditional medicinal herb that has been used in oriental
countries, for centuries, to treat general paralysis, headaches, dizziness, rheumatism, convulsion, and
epilepsy [1,2]. Modern pharmacological studies have demonstrated that the extracts of G. elata tuber
and some compounds that originate from it, possesses wide-reaching biological activities, including
anti-tumor, anti-virus, memory-improving, anti-oxidation, and anti-aging actions [3–5]. Nowadays,
it is also widely used as a sub-material in food and Chinese Patent Medicines (CPM) [6], and this
herbal medicine is also listed as one of the functional foods approved by the Ministry of Health in
China [7,8]. As the wild G. elata is not sufficient enough for commercial large-scale exploitation, its
artificial cultivation in medicine has become essential, to meet the increasing requirement of markers [6].
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Due to their high medicinal value, G. elata tubers have been cultivated and produced in many areas of
Asia, like China and Korea, which could lead to great differences in quality and, possibly, could lead to
differences in the following clinical efficacies. Many studies have indicated that the efficacy and quality
of herbal medicines are somewhat different depending on the cultivation soil and climate, based on the
geographic origin, even when coming from the same species [9,10]. Therefore, a reasonable and effective
method for the quality evaluation of G. elata tuber, plays an important role in its medication safety.

Gastrodin and its aglycone (p-hydroxybenzyl alcohol) are major components of the G. elata
tuber, which are also markers for the quality control of this herbal medicine [11]. However, over 81
compounds from G. elata tuber have been currently isolated and identified. Along with the above
two marker components, others like p-hydroxy benzaldehyde, parishin A, parishin B, parishin C,
parishin E, and so on have also been reported to be correlated with the bioeffects of the G. elata
tuber [12,13]. Accordingly, a qualitative analysis and quantification of one or two compounds, could
be insufficient for a complete profile of the chemical characterization of the G. elata tuber, due to its
complex compositions. In recent years, the chromatographic fingerprint analysis has been accepted
as a strategy for the quality assessment of herbal medicines and preparations by the US Food and
Drug Administration [14], State Food and Drug Administration of China [15], and the European
Medicines Agency [16]. Since the fingerprint is characterized by more chemical information, the
method is often used for the origin identification, species authentication, and quality control for herbal
medicines, by observing the presence or absence of a limited number of peaks in the chromatographic
fingerprints [17,18]. Therefore, the fingerprint analysis of high performance liquid chromatography
(HPLC) was developed for the qualitative analysis of G. elata tuber.

A single standard to determine multiple components, also known as the quantitative analysis
of multi-components by single marker (QAMS) [19], is a novel method designed for the quality
evaluation of herbal medicines and related products [20]. Researchers have used QAMS to determine
three components in Fructus Evodiae, simultaneously, by using rutaecarpine as the internal reference
compound to calculate the relative correction factor of evodin and evodiamine [21]. To make up for the
limitations of the fingerprint which cannot be quantified accurately, a QAMS method using berberine
as the standard, was developed and validated for a simultaneous quantitative analysis of fourteen
components [22]. This strategy could not only reduce the cost of the experiment and time of detection
but could also be independent of the availability of all target ingredients [19]. Thus, the QAMS method
was applied for a quantitative analysis of G. elata tuber.

This study aimed to establish a reliable and practical method, realizing both qualitative and
quantitative analyses for G. elata tuber, via HPLC fingerprinting, combined with QAMS. The differences
and similarities of the HPLC fingerprints were visually compared, using a hierarchical cluster analysis
(HCA) and similarity analysis. The contents of seven major active constituents were accurately
determined by both the QAMS method and external standard method (ESM), through which we hoped
to offer a suitable and efficient approach for assessing the quality of G. elata tuber.

2. Results and Discussion

2.1. Optimization of the Chromatographic Conditions

As the components of G. elata tuber are very intricate, it is critical to optimize the chromatographic
conditions, including favorable mobile phase systems, gradient elution systems, and the detection
wavelength, to obtain an efficient separation of the target components. Lei [23] indicated that the
HPLC fingerprints of G. elata tubers were the most informative, while the UV wavelength was 220 nm
from HPLC-DAD-3D spectrum of G. elata tuber. So in this case, we chose the UV wavelength of 220 nm,
to determinate the selected components. We chose acetonitrile-water containing 0.1% phosphoric acid
system. The samples were dissolved in 60% methanol and ultrasound, for 60 min. We optimized the
gradient elution system as Section 3.5, and 35 ◦C was selected as the proper temperature for analysis,
while the flow rate was set at 1.0 mL/min. The S1 sample of G. elata tuber and the mixed standards
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containing seven reference substances were analyzed to obtain the HPLC fingerprints (Figure 1) under
the conditions of Section 3.5, producing sharp and symmetrical chromatographic peak shapes, good
separation, and preventing the peak tailing.

Figure 1. The HPLC fingerprints of the Gastrodia elata tuber sample and the mixed standards. R: The
mixed standards; S: The G. elata tuber sample. 1—Gastrodin; 2—p-Hydroxy benzyl alcohol; 3—Parishin
E; 4—p-Hydroxy benzaldehyde; 5—Parishin B; 6—Parishin C; 7—Parishin A.

According to the retention time of each peak in the chromatogram [24], the peaks of 1, 2, 3, 4, 5, 6,
and 7 were identified to be gastrodin, p-hydroxybenzyl alcohol, parishin E, p-hydroxy benzaldehyde,
parishin B, parishin C, and parishin A. The separation degree of each peak was greater than 1.5, in the
present HPLC system, indicating the peaks were well-separated, under the chromatographic conditions.

2.2. Method Validation

2.2.1. Linearity

The mixed reference solution containing all the reference substances was diluted in series, with
60% methanol, to obtain six different concentrations for the seven reference curves. The linearity
of each analyte was assessed by plotting its calibration curve with different concentrations and the
corresponding peak areas. The results were shown in Table 1. The high correlation coefficient values
indicated that there was a good correlation between the concentration and peak area of the seven
compounds, at a relatively wide range of concentrations. The correlation coefficient of more than
0.9990, indicated a satisfactory linearity. The calibration curve could be utilized for the quantitative
analysis in the given concentration range. The standard solution of the individual analyte was diluted
gradually, to determine its Limit of Detection (LOD) and Limit of Quantity (LOQ) with signal-to-noise
ratio of 3:1 and 10:1, respectively. LOD and LOQ values for the analytes are also listed in Table 1.
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Table 1. The regression equations, Limit of Detection (LODs) and Limit of Quantity (LOQs) of
seven components.

Analytes Regression Equations
Linear Ranges

(mg/mL)
R2 LOD

(mg/mL)
LOQ

(mg/mL)

Gastrodin Y = 18634X − 264.07 1.906~6.483 0.9997 0.042 0.139
p-Hydroxybenzyl alcohol Y = 39300X + 42.955 0.075~1.773 0.9995 0.001 0.003

Parishin E Y = 14141X + 142.93 2.273~7.052 0.9997 0.037 0.122
p-Hydroxy benzaldehyde Y = 52536X + 7.9174 0.079~2.588 1.0000 0.001 0.005

Parishin B Y = 20791X + 6.7746 1.450~5.190 1.0000 0.004 0.015
Parishin C Y = 31240X − 335.24 0.286~0.356 0.9997 0.005 0.015
Parishin A Y = 11769X − 100.83 0.181~19.301 0.9995 0.020 0.070

2.2.2. Precision, Stability, Repeatability, and Accuracy

The precision was evaluated according to the assay of S1, in which the solution was analyzed for
six times in a day, to evaluate the intra-day precision, and was analyzed on three consecutive days,
to evaluate the inter-day precision. Calculating the RSDs of each chromatographic peak, the results
showed that the RSDs of gastrodin, p-hydroxybenzyl alcohol, parishin E, p-hydroxy benzaldehyde,
parishin B, parishin C, and parishin A were 1.93%, 1.10%, 1.29%, 2.30%, 2.03%, 2.63%, and 0.89%
(n = 6), respectively, indicating that the precision of the method was good.

The stability was tested with the S1 solution that was stored at room temperature (25 ± 5 ◦C)
and analyzed at 0, 2, 4, 6, 8, 12, and 24 h, to calculate the RSDs. The results showed that the RSDs of
gastrodin, p-hydroxybenzyl alcohol, parishin E, p-hydroxy benzaldehyde, parishin B, parishin C, and
parishin A were 1.15%, 2.04%, 1.51%, 2.37%, 2.10%, 1.12%, and 2.25%, respectively, suggesting that the
method was stable within 24 h.

In the repeatability test, six duplicates of S1 were extracted and analyzed, according to the sample
preparation procedure, and the HPLC method. The RSDs of the peak areas were calculated. The results
showed that the RSDs of gastrodin, p-hydroxybenzyl alcohol, parishin E, p-hydroxy benzaldehyde,
parishin B, parishin C, and parishin A were 1.25%, 2.15%, 1.60%, 1.81%, 1.72%, 1.84%, and 1.60%
(n = 6), respectively, indicating that the repeatability of the method was good.

In the accuracy test, certain amounts of the seven analytes’ standards were added to the G. elata
tuber samples (S1), with the six replicates. Then, these seven mixed samples were treated, as in the
method described above. Recovery rate was used as the evaluation index and calculated as Recovery
rate (%) = (Found amount − Known amount) × 100%/Added amount. The RSD of the accuracy values
of the seven components are shown in Table 2, respectively.

Table 2. RSD of precision, stability, repeatability and accuracy for determination of seven components.

Analyte Precision Stability Repeatability Accuracy

RSD (%) RSD (%) RSD (%) RSD (%) Mean (%) RSD (%)

Gastrodin 1.93 1.15 1.25 92.05% 2.02%
p-Hydroxybenzyl alcohol 1.10 2.04 2.15 95.78% 1.09%

Parishin E 1.29 1.51 1.60 98.05% 2.90%
p-Hydroxy benzaldehyde 2.30 2.37 1.81 92.44% 0.25%

Parishin B 2.03 2.10 1.72 93.33% 1.32%
Parishin C 2.63 1.12 1.84 92.91% 2.10%
Parishin A 0.89 2.25 1.60 91.80% 1.36%

The HPLC method was validated in terms of precision, repeatability, stability, and accuracy, as
shown in Table 2. The RSD of the precision values of the seven components were less than 2.63%. RSD
values for the stability and the repeatability were less than 2.37% and 2.15%, respectively. The recovery
rates of the analytes ranged from 91.80% to 98.05%, with the RSD values being lower than 2.90%. All
results indicated that the developed method was stable, accurate, and repeatable. This established
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HPLC method could be applied for a simultaneous determination of gastrodin, p-hydroxybenzyl
alcohol, parishin E, p-hydroxy benzaldehyde, parishin B, parishin C, and parishin A, in the G. elata
tuber samples.

2.3. HPLC Fingerprints Analysis

The 21 batches of G. elata tuber samples from the different producing areas were prepared
according to Section 3.3, and 10 μL of S1 sample solution was injected into the HPLC system according
to the chromatographic conditions in Section 3.5, to obtain the fingerprints. The retention time was the
horizontal axis and the peak area was the vertical axis; the 3D fingerprints of the 21 batches of G. elata
tuber samples were established by the software Origin 9.0, as shown in Figure 2.

Figure 2. HPLC fingerprints of the 21 batches of G. elata tuber samples. 1—Gastrodin; 2—p-Hydroxy
benzyl alcohol; 3—Parishin E; 4—p-Hydroxy benzaldehyde; 5—Parishin B; 6—Parishin C; 7—Parishin A.

According to Figure 2, the seven peaks with stable and better shape were determined to be the
major ones for the HPLC fingerprints of G. elata tubers. The peak areas of the seven peaks are shown in
Table 3. The variance coefficients of the peak area were greater than 32.2 percent, indicating that the
content of each marker component varied greatly from place to place.
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Table 3. The information and peak areas of the seven characteristic peaks in HPLC fingerprints of G.
elata tubers.

No.

Peak Area of Seven Characteristic Peaks

Gastrodin
p-Hydroxy

Benzyl Alcohol
Parishin E

p-Hydroxy
Benzaldehyde

Parishin B Parishin C Parishin A

S1 1797.1 2249.5 2337.8 217.4 2263.6 420.7 4340.3
S2 1470.2 2144.3 2523.4 227.6 2526.6 462.2 4561.9
S3 623.8 4536.4 1528.4 301.7 1017 280.3 1487.8
S4 1325.1 1516.1 1412.1 116.7 1906.9 402.8 3150
S5 1659.3 2123.3 1991.3 111.9 2141.7 383.4 4006.4
S6 1161 1463.7 3734.3 108.1 1867.1 390.2 3167.6
S7 1492.8 663.8 2991.6 85.8 1818.7 392.5 3473.5
S8 1470.9 823.8 1573.2 127.1 2231.8 546.3 5104.3
S9 1898 1876.6 2572.7 82 2629.1 595.9 4430.8
S10 3816.6 136.2 1316.2 110.1 2663.3 441.9 3383.6
S11 2353.9 970.8 1563.7 131.9 3073.4 789.5 9224.6
S12 1794 830 2577.2 45.7 2141.8 101.1 3845.8
S13 2344.5 572.4 2363.1 57.6 2039.1 499.2 5019.1
S14 1369.4 427.8 1961.6 41.9 2408.9 622.1 5512.4
S15 2177.5 1270.2 2076.6 56.6 3133.4 791.2 8184.9
S16 3322.1 108.1 1240.9 73.1 1935.1 357.8 2127.8
S17 1081.8 322.8 2365 104.7 2363.6 500.7 5062.6
S18 1893.7 270.9 1719.4 78.3 2475.6 823 6072.7
S19 380.4 4012.7 1414.3 617.3 781.5 136.4 1789.1
S20 300.9 3287.7 878.9 564 479.5 102.3 687.1
S21 2175.1 1076.8 2057.2 143.7 2826.4 94.7 6278.5

C.V. (%) 1 49.7 85.2 33.3 96.5 32.2 50.1 47.9
1 C.V. (%) = δ/μ × 100, δ—The standard deviation of peak area and μ—The average value of each peak area.

2.4. Similarity Analysis

According to the data of HPLC fingerprints in Figure 2, the similarity of HPLC fingerprints from the
different producing regions were evaluated using the Similarity Evaluation System for chromatographic
fingerprint of traditional Chinese medicines (TCM) (Version 2012), with correlation coefficient (median)
on behalf of the similarity of HPLC fingerprints. We utilized the average correlation coefficient method
of 21 batches of the samples for the multipoint correction, and the time window width was set to
0.5 [25], while the establishment of a common model was to generate a control fingerprints of the
G. elata tuber. Compared with the reference fingerprint chromatogram (R), the similarities of the 21
batches of samples were higher than 0.96, indicating that the batch-to-batch consistency was good.
The results suggested that those samples of G. elata tuber had a similar chemical composition, and the
samples were collected from the same genus, even though they were from different producing countries
or were produced under different processing conditions (Table 4). Therefore, the developed fingerprint
by HPLC could be used as a practical tool for the qualitative identification of the G. elata tuber.

Table 4. Similarity of the G. elata tuber samples.

No. Similarity No. Similarity No. Similarity No. Similarity

S1 0.983 S7 0.970 S13 0.988 S19 0.990
S2 0.987 S8 0.988 S14 0.982 S20 0.988
S3 0.983 S9 0.989 S15 0.979 S21 0.988
S4 0.975 S10 0.982 S16 0.989 R 1.000
S5 0.983 S11 0.987 S17 0.980
S6 0.975 S12 0.990 S18 0.964
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2.5. Hierarchical Cluster Analysis (HCA)

Using the peak areas of the seven compounds from the 21 G. elata tuber samples as the clustering
variable, the HCA of the standardized data was performed with the heat map software of Heml 1.0.
The graph in Figure 3 illustrated that the samples could be categorized into three groups. Group 1
contained S1 and S2 from Zhaotong, Yunnan in China; Group 2 contained S19 and S20 tubers from
South Korea; and Group 3 contained the rest of samples. From the result, the samples from the same
producing area were not always classified into the same group. For example, Zhaotong has been
considered as the Daodi production area (area which produces authentic and superior medicinal
materials) of the G. elata tuber in China. However, samples 1 to 6 from Zhaotong, showed different
levels and ratios of chemical components, which could be due to the variations in harvesting time,
planting patterns, dying methods, and other factors. Additionally, the preliminary processing method
also contributes to the differences in the chemical composition. For instance, G. elata tubers and slices
from South Korea were classified into different categories. Therefore, it is insufficient to determine the
quality of the G. elata tubers by only their producing areas or any other single factor. Although the
HCA could be used to classify the G. elata tubers on the basis of the peak areas of the seven components,
it was hard to tell which group had a better quality. Therefore, other methods for the quantitative
analysis of G. elata tubers should be developed, to reflect the quality difference.

Figure 3. Clustering analysis graph of the 21 G. elata tuber samples.

2.6. Quantitative Analysis of Multiple Components by Single Marker

Theoretically, the quantity (mass or concentration) of an analyte is in direct proportion of the
detector response. Then, in multi-component quantitation, a typical botanical compound (readily
available) might be selected as an internal standard and the relative correction factor (RCF) of this
marker, and the other components can be calculated.

2.6.1. Calculation of RCFs

It is of vital importance to select a proper internal referring standard for the accurate assay of
multiple components in TCM. The component chosen as the internal referring substance should be
stable, easily obtainable, and have relatively clear pharmacologic effects related to the clinical efficacy
of the herbal medicine [26]. In this work, the gastrodin was used as an internal referring substance for
its easy availability, lower cost, moderate retention value, and good stability.

In order to simultaneously determine the contents of the seven components in the G. elata tuber,
by using the QAMS method, the relative correction factors (RCFs, fx) were first determined, according
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to the ratio of the peak areas and the ratio of the concentration between the gastrodin and other
compounds, as described in Section 3.6. We calculated the RCFs of six components (shown in Table 5).

Table 5. Relative correction factor (RCF) values of six components of the G. elata tuber.

Instrument Chromatogram Column RCF Values

Agilent 1260 YMC-Tyiart C18 (250 × 4.6 mm, 5 μm)

fP-hydroxy benzyl alcohol/gastrodin 2.1090
f parishin E/gastrodin 0.7589

fP-hydroxy benzaldehyde/gastrodin 2.8194
f parishin B/gastrodin 1.1156
f parishin C/gastrodin 1.6771
f parishin A/gastrodin 0.6316

2.6.2. Results from the QAMS Method

After preparing the sample solutions of G. elata tubers, they were injected into the HPLC system to
obtain the peak areas. The contents of seven compounds were calculated, according to the calibration
curves. Those scattered in the vicinity of the lowest concentration point on the standard curve were
determined with a one point ESM. Meanwhile, the contents of the seven components of the G. elata
tuber calculated according to QAMS method, are shown in Table 6.

The validated traditional ESM and QAMS method were employed to test the 21 batches of
G. elata tuber samples from the different producing areas, which were based on the principle of
the linear relationship between a detector response and the levels of components within certain
concentration ranges. The validation of the QAMS method might be implemented, based on t-test,
correlation coefficient [27], RSD [28], and relative error [29], through a comparison with an external
standard. Correlation coefficient, as a statistical parameter, ranging from 0 (no correlation) to 1
(complete correlation), reflecting the closeness of two variables, is often used in similarity assessments
of traditional Chinese medicine fingerprints [30]. As shown in Table 7, Correlation coefficients of the
assay results obtained from the two methods were calculated here; all coefficients were found to be
>0.998. The data showed that the results of the two methods were highly correlated. Then, a t-test
was performed for the calculated results, by the QAMS method, and the on detected results, by an
external standard method. p-values of gastrodin, p-hydroxy benzyl alcohol, parishin E, p-hydroxy
benzaldehyde, parishin B, parishin C and parishin A, were all >0.05. The relative error and RSD values
were all lower than 5%. Above all, the results indicated that there was no significant difference between
the data from the QAMS and the ESM method, indicating that the present QAMS method was reliable
for the simultaneous quantification of the seven components of the G. elata tuber.

48



Molecules 2019, 24, 1521

T
a

b
le

6
.

C
on

te
nt

s
of

th
e

se
ve

n
co

m
po

ne
nt

s
in

G
.e

la
ta

tu
be

s
de

te
rm

in
ed

by
th

e
ex

te
rn

al
st

an
da

rd
m

et
ho

d
(E

SM
)a

nd
th

e
qu

an
tit

at
iv

e
an

al
ys

is
of

m
ul

ti-
co

m
po

ne
nt

s
by

si
ng

le
m

ar
ke

r
(Q

A
M

S)
m

et
ho

ds
(m

g·g
-1

)1 .

N
o

.
G

a
st

ro
d

in

p-
H

y
d

ro
x
y

B
e
n

z
y

l
A

lc
o

h
o

l
P

a
ri

sh
in

E
p-

H
y

d
ro

x
y

B
e
n

z
a
ld

e
h

y
d

e
P

a
ri

sh
in

B
P

a
ri

sh
in

C
P

a
ri

sh
in

A
T

o
ta

l

E
S

M
Q

A
M

S
E

S
M

Q
A

M
S

E
S

M
Q

A
M

S
E

S
M

Q
A

M
S

E
S

M
Q

A
M

S
E

S
M

Q
A

M
S

S
1

5.
23
±0

.1
6

1.
77
±0

.0
5

1.
82
±0

.0
5

5.
14
±0

.0
1

5.
35
±0

.0
3

0.
24
±0

.0
1

0.
25
±0

.0
6

3.
54
±0

.1
4

3.
60
±0

.0
5

0.
18
±0

.0
0

0.
19
±0

.0
1

11
.5

8
±0

.4
5

11
.7

1
±0

.4
9

27
.6

8
S

2
4.

51
±0

.3
8

1.
61
±0

.0
8

1.
64
±0

.0
6

2.
27
±0

.1
4

2.
38
±0

.0
8

0.
24
±0

.0
1

0.
25
±0

.0
1

3.
43
±0

.2
1

3.
47
±0

.0
1

0.
13
±0

.0
0

0.
14
±0

.0
0

0.
18
±0

.0
0

0.
00
±0

.0
0

12
.3

8
S

3
2.

44
±0

.2
8

1.
07
±0

.0
8

1.
09
±0

.1
0

4.
82
±0

.2
5

5.
00
±0

.0
4

0.
26
±0

.0
1

0.
26
±0

.0
2

2.
84
±0

.1
0

2.
88
±0

.0
4

0.
16
±0

.0
2

0.
16
±0

.0
2

8.
33
±0

.3
1

8.
32
±0

.1
1

19
.9

1
S

4
1.

35
±0

.0
2

3.
36
±0

.1
2

3.
39
±0

.0
8

2.
62
±0

.0
6

2.
62
±0

.2
3

0.
23
±0

.0
1

0.
24
±0

.0
4

1.
45
±0

.0
4

1.
46
±0

.0
9

0.
16
±0

.0
0

0.
16
±0

.1
0

4.
23
±0

.1
2

4.
10
±0

.3
1

13
.4

1
S

5
3.

41
±0

.3
8

1.
55
±0

.1
0

1.
58
±0

.0
7

2.
31
±0

.2
2

2.
36
±0

.1
0

0.
12
±0

.0
2

0.
13
±0

.0
1

2.
49
±0

.1
2

2.
51
±0

.1
1

0.
20
±0

.0
0

0.
20
±0

.0
1

8.
94
±0

.6
3

8.
92
±0

.2
9

19
.0

3
S

6
1.

91
±0

.1
2

1.
03
±0

.0
7

1.
06
±0

.1
0

7.
05
±0

.1
3

7.
26
±0

.2
3

0.
23
±0

.0
2

0.
24
±0

.0
5

2.
69
±0

.0
3

2.
73
±0

.1
7

0.
17
±0

.0
0

0.
17
±0

.0
2

7.
64
±0

.3
1

7.
63
±0

.6
1

20
.7

2
S

7
3.

12
±0

.0
1

0.
51
±0

.0
0

0.
53

1
±0

.0
0

6.
02
±0

.1
4

6.
20
±0

.0
9

0.
21
±0

.0
1

0.
21
±0

.0
0

2.
71
±0

.0
2

2.
73
±0

.0
1

0.
15
±0

.0
0

0.
16
±0

.0
0

8.
87
±0

.0
2

8.
86
±0

.0
8

21
.5

8
S

8
3.

06
±0

.1
0

0.
62
±0

.0
1

0.
64
±0

.0
1

3.
00
±0

.1
8

3.
13
±0

.1
7

2.
59
±0

.0
2

2.
60
±0

.0
5

3.
25
±0

.1
5

3.
27
±0

.0
1

0.
15
±0

.0
1

0.
14
±0

.0
4

12
.7

7
±0

.5
8

12
.7

5
±0

.5
4

25
.4

4
S

9
2.

85
±0

.3
7

1.
22
±0

.1
8

1.
24
±0

.2
0

4.
54
±0

.0
3

4.
69
±0

.0
6

0.
28
±0

.0
1

0.
28
±0

.0
1

3.
61
±0

.0
6

3.
63
±0

.1
5

0.
17
±0

.0
1

0.
16
±0

.0
5

10
.7

8
±0

.1
5

10
.7

7
±0

.0
8

23
.4

4
S

1
0

5.
89
±0

.2
2

0.
10
±0

.0
1

0.
10
±0

.0
1

3.
37
±0

.2
4

3.
52
±0

.2
3

0.
11
±0

.0
1

0.
11
±0

.0
6

3.
84
±0

.1
3

3.
91
±0

.0
5

0.
15
±0

.0
2

0.
16
±0

.0
0

7.
90
±0

.6
7

7.
91
±0

.6
3

21
.3

6
S

1
1

4.
74
±0

.3
7

0.
69
±0

.0
8

0.
71
±0

.0
8

3.
40
±0

.2
2

3.
55
±0

.2
2

0.
26
±0

.0
2

0.
26
±0

.0
4

5.
19

1
±0

.0
9

5.
23
±0

.0
2

0.
18
±0

.0
1

0.
19
±0

.0
0

26
.7

0
±0

.4
6

26
.9

3
±0

.5
4

41
.1

5
S

1
2

7.
10
±0

.2
7

0.
65
±0

.0
4

0.
66
±0

.0
1

4.
88
±0

.2
3

5.
04
±0

.1
1

0.
08
±0

.1
2

0.
08
±0

.0
2

3.
03
±0

.1
6

3.
18
±0

.0
1

0.
15
±0

.0
2

0.
15
±0

.0
0

9.
43
±0

.5
4

9.
80
±0

.1
0

25
.3

2
S

1
3

4.
03
±0

.0
3

0.
37
±0

.0
1

0.
39
±0

.0
1

3.
69
±0

.1
1

3.
86
±0

.1
1

0.
16
±0

.0
1

0.
17
±0

.0
2

2.
37
±0

.0
6

2.
41
±0

.0
6

0.
15
±0

.0
0

0.
15
±0

.0
0

10
.2

7
±0

.2
4

10
.3

3
±0

.2
4

21
.0

4
S

1
4

2.
59
±0

.0
3

0.
19
±0

.1
6

0.
20
±0

.0
0

2.
97
±0

.0
8

3.
10
±0

.0
7

0.
20
±0

.0
0

0.
21
±0

.0
2

2.
88
±0

.0
6

2.
90
±0

.0
5

0.
15
±0

.0
1

0.
15
±0

.0
0

11
.6

1
±0

.3
7

11
.5

8
±0

.3
3

20
.5

9
S

1
5

4.
29
±0

.1
5

0.
92
±0

.0
4

0.
94
±0

.0
4

3.
76
±0

.1
6

3.
90
±0

.1
6

0.
31
±0

.0
2

0.
31
±0

.0
7

4.
27
±0

.1
7

4.
30
±0

.1
0

0.
13
±0

.0
0

0.
14
±0

.0
0

19
.3

0
±0

.8
3

19
.4

2
±0

.8
4

32
.9

8
S

1
6

6.
48
±0

.2
1

0.
08
±0

.0
0

0.
08
±0

.0
0

2.
35
±0

.1
1

2.
41
±0

.1
3

0.
11
±0

.0
0

0.
11
±0

.0
5

2.
75
±0

.1
1

2.
78
±0

.0
4

0.
15
±0

.0
1

0.
15
±0

.0
1

5.
24
±0

.1
5

5.
16
±0

.2
0

17
.1

5
S

1
7

5.
09
±0

.3
9

0.
13
±0

.2
2

0.
13
±0

.2
6

4.
20
±0

.0
5

4.
39
±0

.0
5

0.
24
±0

.0
0

0.
25
±0

.0
7

1.
54
±0

.1
7

1.
56
±0

.0
8

0.
15
±0

.0
1

0.
14
±0

.0
1

11
.6

5
±0

.2
2

11
.7

7
±0

.2
3

23
.0

1
S

1
8

3.
71
±0

.0
5

0.
20
±0

.0
1

0.
20
±0

.0
1

4.
22
±0

.0
9

4.
41
±0

.1
3

0.
20
±0

.0
0

0.
20
±0

.0
4

3.
47
±0

.0
8

3.
52
±0

.0
3

0.
15
±0

.0
0

0.
16
±0

.0
1

14
.6

0
±0

.2
1

14
.7

6
±0

.2
4

26
.5

4
S

1
9

0.
42
±0

.0
1

1.
23
±0

.0
2

1.
26
±0

.0
2

1.
10
±0

.0
1

1.
14
±0

.0
1

0.
18
±0

.0
1

0.
18
±0

.0
0

0.
46
±0

.0
1

0.
47
±0

.0
1

0.
38
±0

.0
1

0.
39
±0

.0
4

1.
99
±0

.0
6

1.
98
±0

.0
5

5.
76

S
2
0

0.
36
±0

.0
2

1.
01
±0

.0
1

1.
04
±0

.0
1

0.
64
±0

.0
0

0.
65
±0

.0
0

0.
12
±0

.0
0

0.
11
±0

.0
0

0.
28
±0

.0
0

0.
29
±0

.0
0

0.
30
±0

.0
1

0.
30
±0

.0
3

0.
83
±0

.0
9

0.
82
±0

.0
0

3.
52

S
2
1

1.
50
±0

.1
4

0.
33
±0

.0
0

0.
34
±0

.0
0

1.
70
±0

.4
0

1.
71
±0

.0
4

0.
68
±0

.0
2

0.
69
±0

.0
1

1.
75
±0

.0
2

1.
78
±0

.0
1

0.
17
±0

.0
0

0.
16
±0

.0
1

6.
62
±0

.0
3

6.
61
±0

.0
3

12
.7

5
M

e
a
n

3.
53

0.
91

3.
65

0.
34

2.
79

0.
18

9.
53

20
.7

0
1

E
SM

—
ex

te
rn

al
st

an
d

ar
d

m
et

ho
d

,a
nd

it
s

co
nt

en
tw

as
d

et
er

m
in

ed
by

th
e

ca
lib

ra
ti

on
eq

u
at

io
n

m
et

ho
d

;Q
A

M
S—

qu
an

ti
ta

ti
ve

an
al

ys
is

m
u

lt
i-

co
m

p
on

en
ts

by
si

ng
le

m
ar

ke
r,

an
d

it
s

co
nt

en
tw

as
de

te
rm

in
ed

by
R

C
Fs

;R
SD

—
re

la
ti

ve
st

an
da

rd
de

vi
at

io
n;

To
ta

l—
th

e
su

m
of

th
e

si
x

al
ka

lo
id

co
nt

en
ts

in
ea

ch
ba

tc
h.

49



Molecules 2019, 24, 1521

T
a

b
le

7
.

Th
e

re
la

ti
ve

er
ro

r,
R

SD
,c

or
re

la
ti

on
co

effi
ci

en
t,

an
d

p
va

lu
es

of
th

e
co

nt
en

ts
fr

om
th

e
ES

M
an

d
th

e
Q

A
M

S
1 .

N
o

.

p-
H

y
d

ro
x

y
B

e
n

z
y

l
A

lc
o

h
o

l
P

a
ri

sh
in

E
p-

H
y

d
ro

x
y

B
e

n
z

a
ld

e
h

y
d

e
P

a
ri

sh
in

B
P

a
ri

sh
in

C
P

a
ri

sh
in

A

R
e

la
ti

v
e

E
rr

o
r

R
S

D
R

e
la

ti
v

e
E

rr
o

r
R

S
D

R
e

la
ti

v
e

E
rr

o
r

R
S

D
R

e
la

ti
v

e
E

rr
o

r
R

S
D

R
e

la
ti

v
e

E
rr

o
r

R
S

D
R

e
la

ti
v

e
E

rr
o

r
R

S
D

S
1

2.
38

%
1.

70
%

4.
04

%
2.

92
%

2.
39

%
1.

71
%

1.
76

%
1.

25
%

1.
47

%
1.

05
%

1.
15

%
0.

82
%

S
2

1.
78

%
1.

27
%

4.
56

%
3.

30
%

1.
72

%
1.

23
%

1.
10

%
0.

78
%

1.
55

%
1.

11
%

0.
00

%
0.

00
%

S
3

2.
38

%
1.

70
%

3.
72

%
2.

68
%

1.
94

%
1.

39
%

1.
37

%
0.

97
%

1.
56

%
1.

11
%

0.
02

%
0.

10
%

S
4

0.
72

%
0.

51
%

0.
10

%
0.

07
%

1.
11

%
0.

79
%

0.
60

%
0.

43
%

0.
94

%
0.

67
%

0.
18

%
2.

13
%

S
5

1.
52

%
1.

08
%

2.
13

%
1.

52
%

2.
14

%
1.

53
%

0.
90

%
0.

64
%

1.
11

%
0.

79
%

0.
03

%
0.

18
%

S
6

2.
50

%
1.

79
%

2.
95

%
2.

12
%

2.
01

%
1.

44
%

1.
38

%
0.

98
%

0.
66

%
0.

47
%

0.
01

%
0.

07
%

S
7

3.
39

%
2.

43
%

2.
84

%
2.

03
%

1.
70

%
1.

21
%

0.
97

%
0.

69
%

3.
09

%
2.

22
%

0.
02

%
0.

12
%

S
8

2.
38

%
1.

70
%

4.
27

%
3.

08
%

0.
32

%
0.

23
%

0.
37

%
0.

26
%

3.
81

%
2.

74
%

0.
02

%
0.

09
%

S
9

1.
65

%
1.

17
%

3.
18

%
2.

29
%

1.
17

%
0.

83
%

0.
60

%
0.

43
%

0.
74

%
0.

52
%

0.
02

%
0.

10
%

S
1

0
1.

29
%

0.
92

%
4.

24
%

3.
06

%
2.

81
%

2.
01

%
1.

59
%

1.
13

%
3.

05
%

2.
19

%
0.

21
%

0.
15

%
S

1
1

2.
57

%
1.

84
%

4.
20

%
3.

03
%

1.
38

%
0.

98
%

0.
74

%
0.

53
%

4.
84

%
3.

51
%

0.
88

%
0.

62
%

S
1

2
0.

77
%

0.
54

%
3.

22
%

2.
32

%
3.

59
%

2.
59

%
4.

72
%

3.
42

%
0.

31
%

0.
22

%
3.

81
%

2.
75

%
S

1
3

4.
77

%
3.

45
%

4.
54

%
3.

29
%

2.
41

%
1.

73
%

1.
48

%
1.

05
%

0.
90

%
0.

64
%

0.
61

%
0.

43
%

S
1

4
4.

79
%

3.
47

%
4.

31
%

3.
12

%
1.

15
%

0.
82

%
0.

39
%

0.
27

%
0.

66
%

0.
47

%
0.

27
%

0.
19

%
S

1
5

1.
95

%
1.

39
%

3.
72

%
2.

68
%

1.
10

%
0.

78
%

0.
59

%
0.

42
%

4.
61

%
3.

34
%

0.
61

%
0.

44
%

S
1

6
4.

71
%

3.
41

%
2.

10
%

1.
50

%
2.

69
%

1.
93

%
1.

15
%

0.
82

%
0.

39
%

0.
28

%
1.

44
%

1.
02

%
S

1
7

0.
76

%
0.

54
%

4.
31

%
3.

12
%

2.
23

%
1.

60
%

1.
61

%
1.

15
%

3.
77

%
2.

72
%

0.
99

%
0.

70
%

S
1

8
0.

35
%

0.
25

%
4.

31
%

3.
11

%
2.

23
%

1.
59

%
1.

43
%

1.
02

%
4.

95
%

3.
59

%
1.

14
%

0.
81

%
S

1
9

2.
54

%
1.

82
%

3.
76

%
2.

71
%

2.
50

%
1.

79
%

2.
33

%
1.

67
%

0.
94

%
0.

67
%

0.
38

%
0.

27
%

S
2

0
3.

25
%

2.
33

%
1.

43
%

1.
02

%
3.

59
%

2.
59

%
3.

34
%

2.
40

%
0.

07
%

0.
05

%
1.

13
%

0.
80

%
S

2
1

2.
53

%
1.

81
%

0.
70

%
0.

50
%

1.
75

%
1.

24
%

1.
70

%
1.

21
%

2.
10

%
1.

50
%

0.
20

%
0.

14
%

C
o

rr
e

la
ti

o
n

co
e
ffi

ci
e

n
t

0.
99

9
**

0.
99

9
**

0.
99

9
**

1.
00

0
**

0.
99

8
**

0.
99

9
**

p
v

a
lu

e
s

0.
94

0
0.

80
2

0.
97

8
0.

92
3

0.
96

0
0.

98
6

1
R

SD
—

re
la

ti
ve

st
an

d
ar

d
d

ev
ia

ti
on

;
p

va
lu

es
—

th
e

p
ai

re
d

t-
te

st
re

su
lt

s;
E

SM
—

ex
te

rn
al

st
an

d
ar

d
m

et
ho

d
,

an
d

it
s

co
nt

en
t

w
as

d
et

er
m

in
ed

by
th

e
ca

lib
ra

ti
on

eq
u

at
io

n
m

et
ho

d
;

Q
A

M
S—

qu
an

ti
ta

ti
ve

an
al

ys
is

m
ul

ti
-c

om
po

ne
nt

s
by

si
ng

le
m

ar
ke

r,
an

d
it

s
co

nt
en

tw
as

de
te

rm
in

ed
by

R
C

Fs
;*

*
p
<

0.
01

.

50



Molecules 2019, 24, 1521

The results from the QAMS determination of the 21 batches of G. elata tuber samples showed the
mean contents of 3.5275 mg·g-1, 0.9060 mg·g−1, and 0.3398 mg·g−1 for gastrodin, p-hydroxy benzyl
alcohol, and p-hydroxy benzaldehyde; and 3.6511 mg·g−1, 9.5303 mg·g−1, 2.7901 mg·g−1, and 0.1766
mg·g−1 for the parishin E, parishin A, parishin B, and parishin C, respectively (Table 4). It was obvious
that parishin A is one of the most abundant components in G. elata tuber, thus, is well-deserved as
a reference substance and index for quality assessment and control of the G. elata tuber. Obvious
inter-batch content variations could be found for all these components with the mean ranging from
0.1766 mg·g−1 to 9.5303 mg·g−1; these seven components in total averaged 20.7031 mg·g−1 in the G.
elata tuber, for the 21 batches of samples. The data in Table 4 shows differences among various samples.
To show the clear classification of the G. elata tuber samples, the QAMS method with chemometrics
analysis was performed in the subsequent analyses.

Meanwhile, the results (Table 6) illustrated that there were remarkable differences in the contents
of the seven components, in G. elata tubers from different regions, which could be attributed to the
variations of genetics, plant origins, environmental factors, drying process, storage conditions, and so
on. It was obvious that gastrodin is one of the most abundant components in G. elata tuber. Combined
with its activities related to the efficacies of G. elata tuber [31], gastrodin is well-deserved as a reference
substance and index for quality assessment and control of G. elata tuber.

In the Chinese Pharmacopoeia of 2015 edition, gastrodin and p-hydroxy benzyl alcohol are
determined as the marker components for the quality control and evaluation of G. elata tuber. Despite
their close correlation with the efficacies of G. elata tuber, gastrodin can transform to p-hydroxybenzyl
alcohol, which is the aglycone and metabolite of gastrodin [32]. Fresh G. elata tubers have to be
processed before being traded as materia medica in the market. During the steaming process, the
change trend of the gastrodin content was often contrary to the one of p-hydroxybenzyl alcohol.
When the content of gastrodin was increased, the content of p-hydroxybenzyl alcohol was generally
decreased, and vice versa. Additionally, different processing methods will result in different variation
of the contents of the two components. Choi et al. [33] applied drying methods of freeze drying, hot
air, infrared ray, and steaming, to process G. elata tuber. The results showed that after steaming, the
content of gastrodin in G. elata tuber processed by freeze drying was decreased, whereas, the content
of p-hydroxybenzyl alcohol was increased. However, tubers processed by hot-air and infrared ray
drying showed the opposite results. Such transformations between gastrodin and p-hydroxybenzyl
alcohol might be due to the deglycosylation or glycosylation, during the processing. Since the herbal
medicine in the global market is often processed or dried by different methods, which results in the
fluctuation in the content of single component, it is relatively stable and more comprehensive to reflect
on the quality of G. elata tuber by monitoring multiple components, instead of a single one.

3. Materials and Methods

3.1. Plant Material

Samples of G. elata tuber from different producing areas were collected, as shown in Table 8.
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Table 8. The information of G. elata tubers from different producing areas.

No. Sample Producing Areas No. Sample Producing Areas

S1 G. elata tubers Zhaotong, Yunnan, China S12 G. elata tubers Enshi, Hubei, China
S2 G. elata tubers Zhaotong, Yunnan, China S13 G. elata tubers Yichang, Hubei, China
S3 G. elata tubers Zhaotong, Yunnan, China S14 G. elata tubers Hanzhong, Shanxi, China
S4 G. elata tubers Zhaotong, Yunnan, China S15 G. elata tubers Qinling, Shanxi, China
S5 G. elata tubers Zhaotong, Yunnan, China S16 G. elata tubers Qinchuan, Sichuang, China
S6 G. elata tubers Zhaotong, Yunnan, China S17 G. elata tubers Longnan, Gansu, China
S7 G. elata tubers Lijiang, Yunnan, China S18 G. elata tubers Anhui, China
S8 G. elata tubers Bijie, Guizhou, China S19 G. elata tubers Moju, South Korea
S9 G. elata tubers Zhengyuan, Guizhou, China S20 G. elata tubers Chun chuan, South Korea

S10 G. elata tubers Qiandongnan, Guizhou, China S21 G. elata tuber slices Yingyang, South Korea
S11 G. elata tubers Bijie, Guizhou, China

3.2. Chemicals

The reference standards of gastrodin (no. B21243, purity HPLC ≥ 98%), p-hydroxybenzyl alcohol
(no. B20326, purity HPLC ≥ 98%), p-hydroxy benzaldehyde (no. B20327, purity HPLC ≥ 99%), parishin
A (no. BP1063, purity HPLC ≥ 98%), parishin B (no. BP1064, purity HPLC ≥ 98%), parishin C
(no. B20913, purity HPLC ≥ 98%), parishin E (no. BP1648, purity HPLC ≥ 98%) were purchased from
Sichuan Victory Biological Technology Co., Ltd. (Sichuan, China), and their structures are shown
in Figures 4 and 5. Methyl alcohol was purchased from the Tianjin Fengchuan Chemical Reagent
Technology Co. Ltd. Acetonitrile (HPLC grade) was purchased from Sigma-Aldrich, Inc. (St. Louis,
MO, USA). Phosphoric acid was purchased from the Tianjin JinDongTianZheng Precision Chemical
Reagent Factory. Ultrapure water was generated with an UPT-I-20T ultrapure water system (Yunnan
Ultrapure Technology, Inc., Yunnan, China). All other chemicals used were of analytical grade.

a b c 
Figure 4. The structures of some compounds in the G. elata tuber. (a) Gastrodin [34], (b) p-hydroxy
benzaldehyde [35], and (c) p-hydroxybenzyl alcohol [36].

 

Figure 5. The structures of parishins in the G. elata tuber. The structure of parishins [13]: RA. parishin A,
RB. parishin B, RC. parishin C, RE. parishin E.

3.3. Preparation of the Sample Solution

The 21 batches of dried G. elata tubers from different producing areas were crushed by a Wiggling
high-speed Chinese medicine shredder, then powdered and sieved through a 40-mesh sieve. The
sample solution of G. elata tuber was precisely absorbed (2.0 mg) and immersed in 25 mL volumetric
flask, with 60% methanol. Additional 60% methanol was added to compensate for the weight loss
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after ultrasonic extraction for 60 min, and shaking it well. All solutions were filtered through 0.22 μm
filter membranes, before being precisely injected into the HPLC system.

3.4. Reference Solution Preparation

The reference solution of G. elata tuber was prepared by accurately dissolving weighed samples of
each compound in 60% methanol, making a mixture of 0.8 mg/mL of parishin A, 0.9 mg/mL of parishin
B, 0.5 mg/mL of parishin E, 1.5 mg/mL of p-hydroxy benzaldehyde, 3.4 mg/mL of p-hydroxybenzyl
alcohol, 0.9 mg/mL of gastrodin, 1.3 mg/mL of parishin C, mixed evenly. All the standard solutions
were stored in a refrigerator at 4 ◦C, before use.

3.5. Chromatographic Procedures

The HPLC analysis of the G. elata tuber were done on an Agilent 1260 series system (Agilent
Technologies, Santa Clara, CA, USA) consisting of a G1311B pump, a G4212B DAD detector, and a
G1329B auto-sampler. The YMC-Tyiart C18 column (250 × 4.6 mm, 5 μm) was adopted for the analysis.
The mobile phase consisted of A (0.1% phosphate solution) and B (acetonitrile). The gradient mode
was as follows: 3–5% B for 0–11 min; 5% B for 11–18 min; 5–14% B for 18–31 min; 14% B for 31–38 min;
14–20% B for 38–48min; 20–24% B for 48–55 min; 24–80% B for 55–75 min; 80–100% B for 75–80 min;
100% B for 80–95 min; 100–70% B for 95–100 min; 70–50% B for 100–105 min; 50–30% B for 105–110 min;
30–3% B for 110–115 min; 3% B for 115–130 min. The flow rate was set at 1.0 mL/min. The detection
wavelength was 220 nm. The column temperature was set at 35 ◦C and sample volume was 10 μL.

3.6. Theory of the QAMS Method

Methods for calculating the RCFs have been previously reported [24,37]. First, gastrodin was
selected as the internal standard, and a multipoint method (Equation (1)) was used to calculate the
relative correction factors (RCF) for p-hydroxy benzaldehyde, p-hydroxybenzyl alcohol, parishin A,
parishin B, parishin E, and parishin C. Then the content of the measured component was calculated
according to Equation (2) [38].

The RCFs were calculated using the calibration curves as follows:

fk/s =
ak

as
(1)

The content of the measured component was calculated as follows:

Ck =
Ak(

As× f k/s

) (2)

where, as is the ratio of the slope of internal standard reference calibration equations; ak is the ratio of
the slope of measured component calibration equations; Ak is the peak area of the measured component;
and As is the peak area of the internal standard reference [37].

The content of the multi-marker components measured by QAMS was compared with results
from ESM, to validate the methods of QAMS.

3.7. Data Analysis

We used the ESM and QAMS to calculate the seven components in 21 batches of G. elata tuber, to
verify the feasibility of QAMS. At the same time, HCA was performed using the heat map software
of Heml 1.0, to further investigate the difference among the G. elata tuber samples. The data were
analyzed and evaluated by the Similarity Evaluation System for the chromatographic fingerprint of
TCM (Version 2012), to evaluate similarities of the chromatographic profiles of the G. elata tuber.

53



Molecules 2019, 24, 1521

4. Conclusions

In this study, the quality assessment method of G. elata tubers were established using QAMS
methods, in combination with HPLC fingerprints analyses. The G. elata tubers from different areas were
analyzed by HPLC fingerprints and the contents of the seven components in G. elata tuber samples
was determined by the QAMS method. On the basis of these results, the quality of G. elata tubers
could be quantified and better identified comprehensively by HCA of synthesis and similarity analysis.
HPLC fingerprint analyses, combined with the QAMS methods, could be a powerful and reliable way
to provide both qualitative insight and quantitative data for comprehensive quality assessment of
the complex multi-component systems. QAMS combined with the HPLC fingerprint might offer a
holistic phytochemical profile of botanicals, along with similarity analysis and HCA of synthesis, and
the quality of G. elata tubers would be evaluated and better and more comprehensively identified.
Moreover, in subsequent analyses, it is also necessary to combine the chemical analysis, biological
evaluation, pharmacological activity, and other methods to evaluate the quality of G. elata tubers for
better studying the clinical effect.
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Abstract: This work demonstrated a method combining reversed-phase high-performance liquid
chromatography (RP-HPLC) with chemometrics analysis to identify the authenticity of Ranae
Oviductus. The fingerprint chromatograms of the Ranae Oviductus protein were established through
an Agilent Zorbax 300SB-C8 column and diode array detection at 215 nm, using 0.085% TFA (v/v) in
acetonitrile (A) and 0.1% TFA in ultrapure water (B) as mobile phase. The similarity was in the range
of 0.779–0.980. The fingerprint chromatogram of Ranae Oviductus showed a significant difference
with counterfeit products. Hierarchical clustering analysis (HCA) and principal component analysis
(PCA) successfully identified Ranae Oviductus from the samples. These results indicated that the
method established in this work was reliable.

Keywords: Ranae Oviductus; identification; protein; RP-HPLC; fingerprint

1. Introduction

Rana chensinensis is mainly distributed in the Changbai Mountain area, China. Ranae Oviductus
is the dried oviduct of female Rana temporaria chensinensis David. The Ranae Oviductus is a potent
traditional Chinese medicine that has been used in clinical studies for thousands of years. Today it
is widely used as a nutrient food. It has been reported that Ranae Oviductus has significant effects in
enhancing immunity, anti-fatigue, anti-aging, and lowering blood fat [1–4]. As a precious traditional
Chinese medicine, Ranae Oviductus has been in short supply because of its limited production [5].
Its high price and lucrative profits have tempted many counterfeit products, such as bullfrog oviduct,
toad oviduct, or frog oviduct, to inundate the market, resulting in the uneven quality of Ranae Oviductus
in the market [6,7]. Those counterfeits have a similar appearance but have less efficacy. To guarantee
the quality of Ranae Oviductus, its authenticity identification has attracted more and more attention
from the pharmacists, doctors, and medicinal scientists. The identification method of Ranae Oviductus
is still under development. In the 2005 China Pharmacopoeia, the appearance and expansion degree
were employed as discriminating items of Ranae Oviductus [8]. Our group has reported using UV
spectra to identify Ranae Oviductus [9]. According to a previous study, it is difficult to identify the
Ranae Oviductus and counterfeit products using traditional methods [10]. Therefore, it is essential to
establish a highly reliable method for the identification of Ranae Oviductus.

More than 40% of the components in Ranae Oviductus are proteins and the proteins are the major
bioactive components of Ranae Oviductus [11,12]. However, the identification of Ranae Oviductus and
counterfeit products using HPLC based on protein has not been studied yet. In addition, reversed-phase
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high-performance liquid chromatography (RP-HPLC) is a simple, fast, and effective technique for
protein separation and characterization, as used for protein in milk, wheat gliadin, and transgenic
zein [13–15]. On the other hand, the fingerprint chromatogram is considered as a comprehensive
qualitative and quantitative method for the identification of different species, especially in the quality
assessment of traditional Chinese medicines [16]. The World Health Organization (WHO) has admitted
the use of chromatographic fingerprints as an identification strategy for traditional Chinese medicinal
preparations [17]. Many reports have employed HPLC fingerprint chromatograms to study the quality
control of traditional Chinese medicines. For example, Lu et al. used the HPLC fingerprint to identify
Chinese Angelica from related umbellifer herbs. Sun et al. analyzed polysaccharides from different
Ganoderma. Li et al. established the fingerprint analysis of polyphenols, which were extracted from
pomegranate peel, with reliable results [18–20].

In this work, the main proteins components of Ranae Oviductus were used as the study objects.
We used RP-HPLC to establish a fingerprint method for the identification of Ranae Oviductus. Ten batches
of Ranae Oviductus were collected from different main producing areas of the Changbai Mountains.
A protein reference chromatogram was established using those Ranae Oviductus, based on protein
composition similarity analysis. Furthermore, the difference between the authentic Ranae Oviductus
and counterfeit products were investigated. The results were verified via a chemometric approach,
utilizing principal component analysis and hierarchical clustering analysis. Both showed that the
newly established Ranae Oviductus identification method was reliable.

2. Materials and Methods

2.1. Chemicals and Samples

The petroleum ether, guanidine hydrochloride, and ammonium sulfate analytical grade were
purchased from Beijing Chemical Factory (Beijing, China). The dithiothreitol (DTT) and trifluoroacetic
acid (TFA) were purchased from Sigma-Aldrich (St. Louis, MO, USA). The HPLC-grade acetonitrile
(MeCN) and HPLC-grade methanol were purchased from Fisher (Fisher Scientific, USA). The ultrapure
water was obtained from a gradient water purification system (Water Purifier, Sichuan, China).

Ranae Oviductus, bullfrog oviduct, toad oviduct and frog oviduct were provided by Jilin Province
Rana Industry Association which were collected from the Changbai Mountain area in the Jilin province
of China. The specific location is shown on the map in Figure 1. Ten batches of Ranae Oviductus samples
were collected from different regions from the main producing area of the Changbai Mountain range.
The specific collection information is shown in Table 1.
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Figure 1. Distribution map of origins for Ranae Oviductus and its counterfeits in the Changbai
mountain area.

Table 1. Origin and collecting date of the Ranae Oviductus samples and their counterfeits.

No. Name of Medicine Origin Collection Date

S1 Ranae Oviductus Yanbian, Jilin 2016.3
S2 Ranae Oviductus Tonghua, Jilin 2016.1
S3 Ranae Oviductus Yanbian, Jilin 2016.3
S4 Ranae Oviductus Baishan, Jilin 2015.11
S5 Ranae Oviductus Yanbian, Jilin 2016.3
S6 Ranae Oviductus Baishan, Jilin 2015.11
S7 Ranae Oviductus Jilin, Jilin 2016.12
S8 Ranae Oviductus Jilin, Jilin 2016.12
S9 Ranae Oviductus Jilin, Jilin 2015.11

S10 Ranae Oviductus Jilin, Jilin 2015.11
B1 Bullfrog Oviduct Baishan, Jilin 2016.12
B2 Bullfrog Oviduct Baishan, Jilin 2016.12
T1 Toad Oviduct Yanbian, Jilin 2016.10
T2 Toad Oviduct Tonghua, Jilin 2016.11
F1 Frog Oviduct Yanbian, Jilin 2016.10
F2 Frog Oviduct Tonghua, Jilin 2016.11

2.2. Protein Extraction

The dried Ranae Oviductus was pulverized into a powder (passing through a 20-mesh sieve)
and degreased with petroleum ether at room temperature. After filtration, the powder was placed
in an oven at 55 ◦C for 1 h. Afterward, 0.50 g of the sample was added to PBS buffer (50 mL,
0.1 M pH 7.4). After continuously stirring for 8 h, the mixture was centrifuged at 5000 r/min for
15 min. The supernatant was collected and the precipitate was extracted again. The two centrifugal
supernatants were combined. To the supernatant, an ammonium sulfate solid was slowly added
until to 60% saturation [21,22]. The mixture was centrifuged at 8000 r/min for 20 min after standing
at 4 ◦C for 1 h. The precipitate was dissolved in 6 M guanidine hydrochloride (containing 10 mM
DTT) [23,24], and dialyzed in distilled water in a dialysis bag (molecular weight cutoff: 8000 Da)
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for 12 h [25]. The sample solution was finally scaled to 5 mL with 6 M guanidine hydrochloride
(containing 10 mM DTT) in a volumetric flask and filtrated with a 0.45 μm filter membrane prior HPLC
injection [26]. The preparations of bullfrog oviduct, toad oviduct and frog oviduct were the same as
that for Ranae Oviductus.

2.3. RP-HPLC Chromatography Analysis

The samples were separated using an Agilent Technologies 1200 Series liquid chromatograph
(Agilent Technologies, Pittsburgh, PA, USA) equipped with a quaternary pump, autosampler,
thermostatted column compartment, diode array detector (DAD), and UV detector. The columns
used were the Agilent Zorbax 300SB-C8 column (250 × 4.6 mm, 5 μm) and Agilent Zorbax SB-C18
column (250 × 4.6 mm, 5 μm) with mobile phase A (0.085% TFA in v/v with acetonitrile) and mobile
phase B (0.1% TFA in v/v with ultrapure water) [27,28]. Gradient elution was adopted as follows, from
12–30% A in the first 52 min, and from 30–44% A in the next 28 min. The injection volume was 20 μL.
The optimized separation conditions were tested under the different detection wavelengths, flow rates
and temperatures [29]. The data were recorded and processed using the Agilent Chemstation software.

2.4. Validation of the RP-HPLC Method

Ranae Oviductus sample (S1) was used to verify the RP-HPLC method. A precision analysis was
carried out by repeatedly injecting the same solution 5 times on the same day. The repeatability was
assessed by injecting 5 separate solutions obtained from the same Ranae Oviductus sample. The stability
was evaluated by analyzing the same sample solution at different time periods of 0, 2, 4, 8, 16 and 24 h
at room temperature.

2.5. Establishment of the HPLC Fingerprint

The common characteristic peaks and similarities of fingerprint data of 10 batches of Ranae
Oviductus were investigated using the professional software Similarity Evaluation System for the
Chromatographic Fingerprint, according to the recommendations of the State Food and Drug
Administration (SFDA). The HPLC fingerprint data of the samples were imported to the evaluation
system (the solvent peaks in the first 4 min were removed and the time window was set at 0.2 s).
The calibration method was multi-point calibration. The significant common peaks were labeled as
mark peaks and the reference chromatogram fingerprint was generated with a mean value method.
The similarity of the fingerprint data was represented by a correlation coefficient (similarity) and
the higher similarity between the two samples resulted in a correlation coefficient value close to
1. The correlation coefficients of all chromatograms of 10 batches of Ranae Oviductus samples were
calculated throughout the study and a correlation analysis was performed.

2.6. Data Analysis

Hierarchical clustering analysis (HCA) is a cluster analysis technique that reflects the similarities
and differences between samples in the form of a hierarchical tree diagram [30,31]. This method is
easier to observe than the complex raw data. Based on the clustering method between different groups
and the Pearson correlation intervals, SPSS (version 25.0; SPSS Inc., Chicago, IL, USA) was used to
group the different samples in this study.

Principal component analysis (PCA) is a classification method that uses dimensionality reduction
techniques to simplify numerous original variables into several representative composite indicators [32,33].
According to the contribution rate of each comprehensive indicator, the information of the original
data could be reflected when using appropriate numbers of principal components (PCs) [34]. In this
study, PCA was performed using SPSS (version 25.0; SPSS Inc., Chicago, IL, USA) and the fractional
scatter plot was interpreted by the relationship between PC1, PC2, and PC3 for visual analysis of the
data matrix.
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3. Results and Discussion

3.1. Optimization of the RP-HPLC Conditions

In order to improve the separation rate of the proteins in Ranae Oviductus, the Ranae Oviductus (S1)
collected from the China Changbai mountain area were systematically investigated. The RP-HPLC
chromatography method was optimized through the detection wavelength, separation column, flow
rate and temperature. Three classical UV detection conditions were previously reported: 215 nm
corresponding to the maximum absorption of peptide bonds; 254 nm corresponding to the maximum
absorption of phenylalanine residues; and 280 nm corresponding to tyrosine and maximum absorption
of tyrosine residues and tryptophan residues [35]. Figure 2a shows the UV absorption diagram of
Ranae Oviductus using a diode array detector (DAD) with a wavelength range of 195–300 nm. The red
region in the diagram indicated a larger absorption value. Although obvious solvent peaks around
215 nm were observed, the analysis of the core substance was not affected. The UV absorption diagram
suggested that the separation effect at 215 nm was better than 254 nm and 280 nm.

Two types of columns (Agilent Zorbax SB-C18 column 250 × 4.6 mm, 5 μm, 80 Å and Agilent
Zorbax 300SB-C8 column 250 × 4.6 mm, 5 μm, 300 Å) were used to examine the column effect on the
protein separation of Ranae Oviductus. The results showed that the C8 column had a higher separation
rate than the C18 column, which could be attributed to the large molecular weight of the proteins
(Figure 2b). Therefore, the C8 column with a 300 Å pore diameter was selected for this study.

Figure 2. Optimization of reversed-phase high-performance liquid chromatography (RP-HPLC)
separation method of the proteins from Ranae Oviductus. (a) The detection wavelength effect on the
RP-HPLC chromatography of the Ranae Oviductus proteins. Diode array detector (DAD), 195–300 nm.
(b) Column type effect on RP-HPLC chromatography of the Ranae Oviductus proteins (Agilent Zorbax
300SB-C8 column 250 × 4.6 mm, 5 μm, 300 Å and Agilent Zorbax SB-C18 column 250 × 4.6 mm, 5 μm,
80 Å). (c) Flow rate effect RP-HPLC chromatography of Ranae Oviductus (1.0 mL/min, 1.5 mL/min,
2.0 mL/min). (d) Temperature effect of RP-HPLC chromatography on the Ranae Oviductus proteins
(40 ◦C, 45 ◦C, and 50 ◦C).
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Since the flow rate of the mobile phase can affect the isolation efficiency, three flow rates (1.0, 1.5,
2.0 mL/min) were tested in this study. High flow rates showed that peaks overlapped (Figure 2c).
The flow rate of 1.0 mL/min showed the highest separation effect and this, therefore, was chosen for
the study.

On the other hand, the temperature played an important role in the RP-HPLC separation.
Theoretically, high temperatures can increase the motion rate of proteins. In this study, three different
temperatures (40, 45, and 50 ◦C) were investigated (Figure 2d). From the results, we could see that only
one peak (t = 74.8 min) at 40 ◦C was observed, but two shoulder by shoulder peaks appeared at 45
and 50 ◦C. More proteins separated at 45 and 50 ◦C. Excessive temperature may damage the column’s
sorbent, therefore, 45 ◦C was selected as the optimum temperature.

3.2. RP-HPLC Methodology Validation

The accuracy of the RP-HPLC method was investigated through consecutive tests five times,
using the same sample solution (Ranae Oviductus sample S1) within one day. The relative standard
deviations (RSD) of the retention times and peak areas of the 12 common peaks were smaller than
2.02% and 4.23%, respectively. The repeatability was determined by injecting five separate sample
solutions of the Ranae Oviductus sample. The results showed that the RSD of the retention time and
peak area of the 12 common peaks were smaller than 2.96% and 5.62%, which suggested that the
RP-HPLC method had good repeatability. The stability test was carried out at room temperature for 0,
2, 4, 8, 16 and 24 h. The RSD of the retention times and peak area were smaller than 2.62% and 5.22%.
All tests indicated that the RP-HPLC method established in this work satisfied the requirements of
protein fingerprinting analysis of Ranae Oviductus.

3.3. HPLC Fingerprint of Ranae Oviductus Protein

The protein chromatographic spectra of Ranae Oviductus collected from 10 sampling sites in
Changbai Mountain area showed a similar profile using the optimized RP-HPLC method (Figure 3a).
Based on the retention time, the 12 significant common-peaks were labeled with number 1 to 12.
The 12 significant common-peaks in the Ranae Oviductus protein spectra were labeled as mark peaks
according to the Chromatographic Fingerprint Similarity Evaluation System (2012 Edition) (Beijing,
China). A reference fingerprint chromatographic spectrum of 10 batches of Ranae Oviductus was created
(Figure 3b). The similarity was in the range of 0.779–0.980 (Table 2). The RSD value of the retention
time of each common-peak was smaller than 4.70% and the RSD value of the relative peak area was
smaller than 5.47%. This result pointed out that the common-peaks appearing in the chromatographic
spectra were reliable in the analysis of Ranae Oviductus.

Table 2. Similarity values of 10 batches of Ranae Oviductus protein and reference chromatographic
fingerprint spectra.

No. Similarity No. Similarity

S1 0.779 S6 0.976
S2 0.906 S7 0.884
S3 0.967 S8 0.877
S4 0.970 S9 0.980
S5 0.970 S10 0.861
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Figure 3. (a) HPLC fingerprint chromatographic spectra of 10 batches of Ranae Oviductus proteins.
(b) The reference protein chromatographic spectra of Ranae Oviductus.

3.4. Fingerprint Spectra Analysis

The fingerprint spectra analysis of Ranae Oviductus and counterfeit products (bullfrog oviduct,
toad oviduct and frog oviduct) were performed depending on the aforementioned optimized RP-HPLC
method. The results showed a significant difference. By comparing Figure 4a,b, we could see that the
significant common-peaks appeared at around 30 min in the reference fingerprint of Ranae Oviductus.
In contrary, the counterfeit products, including the bullfrog oviduct, showed four common-peaks
(peak A, peak B, peak C and peak D) in 0–30 min and the toad oviduct, showed three common-peaks
(peak J, peak K, peak L) in the same time period. Ranae Oviductus showed 12 common-peaks
(peak1-peak12) in 30–80 min, whereas, the bullfrog oviduct and toad oviduct only showed five
common-peaks. The frog oviduct only showed four tiny common-peaks (Figure 4c), which was a
finding consistent with a previous report. Huang, et al. [36] reported that the protein types in frog
oviduct were less than that of other species by using the SDS-PAGE method. Both the protein extraction
method and the RP-HPLC conditions were optimized according to the Ranae Oviductus sample, which
may have not been adequate for frog oviduct. Through the comparison, we noticed that even the three
counterfeit products had a significant difference (Figure 4d). The bullfrog oviduct (nine peaks) and
toad oviduct (eight peaks) had more peaks than the frog oviduct (four peaks), but the retention time
was different. Therefore, although Rana chensinensis, bullfrog, toad, and frog are similar amphibians,
they are not the same species. Their genetic differences cause the expression of different types of
proteins in the fallopian tubes, so that in RP-HPLC chromatographic spectra, they showed significant
differences. Those differences can be used to identify Ranae Oviductus and counterfeit products.
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Figure 4. The comparison of Ranae Oviductus and counterfeit products. (a) Comparison of the protein
HPLC fingerprint chromatogram of Ranae Oviductus (Std) and protein HPLC fingerprint chromatograms
of the bullfrog oviduct (B1, B2). (b) Comparison of the protein HPLC fingerprint chromatogram of
Ranae Oviductus (Std) and the protein HPLC fingerprint chromatograms of the toad oviduct (T1, T2).
(c) Comparison of the protein HPLC fingerprint chromatogram of Ranae Oviductus (Std) and the protein
HPLC fingerprint chromatograms of the frog oviduct (F1, F2). (d) Comparison of the protein HPLC
fingerprint chromatograms of three counterfeits (bullfrog oviduct, toad oviduct, frog oviduct) of
Ranae Oviductus.

3.5. Hierarchical Cluster Analysis (HCA)

Hierarchical cluster analysis was carried out using the relative peak areas of the characteristic
peaks of Ranae Oviductus and counterfeit products. The 16 samples were analyzed using SPSS 25.0
software and the results are shown in Figure 5a. Obviously, there were four clusters when the interval
of abscissa was 10. Cluster I, Cluster II and Cluster III were composed of the bullfrog oviduct sample,
frog oviduct sample and toad oviduct sample, respectively. Cluster IV referred to the 10 samples of
Ranae Oviductus used in the establishment of the fingerprint. The sample S1 with low similarity to
Ranae Oviductus also showed a low correlation in Cluster IV. When the interval of abscissa was 25,
the sample was divided into two clusters, one authentic and another one counterfeit.
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Figure 5. (a) The results of hierarchical cluster analysis of 10 batches of Ranae Oveductus and six
counterfeit samples, (b) principal component analysis (PCA) score chart of 10 batches of Ranae
Oveductus and six counterfeit samples in the first three principal components (PCs).

3.6. Principal Component Analysis(PCA)

As an effective data analysis technique, PCA has been used to study the classification of samples [37].
To directly reflect the difference between authentic and counterfeit products, 16 samples were used to
perform the PCA analysis, based on the relative peak areas of the characteristic peaks of the samples.
The variance contribution rates of the three main components (PC1, PC2, and PC3) were 31.34%,
27.61%, and 26.73%, respectively. The cumulative variance contribution rate of the three PCs was
85.68% and those variables reflected the majority of total information. To visualize the analysis results,
the score charts were drawn using the three main components of PC1, PC2 and PC3 (Figure 5b).
Four aggregation states are showed in Figure 5b. Ranae Oviductus, bullfrog oviduct, toad oviduct, and
frog oviduct samples were classified in the a, b, c, and d regions, respectively. The Ranae Oviductus
samples S1–10 could be classified in the same area (the a region), the bullfrog oviduct was classified
in the b region, the toad oviduct was classified in the c region, and the frog oviduct was classified
in the d region. The results were consistent with the HCA analysis, that both Ranae Oviductus and
the counterfeit products were correctly classified. Comparing the similarity analysis with the HCA,
PCA can provide a more visual comparison of the chromatograms.

4. Conclusions

This study used the RP-HPLC method and fingerprint technique to establish a chromatographic
fingerprint of the proteins from Ranae Oviductus. Ten batches of Ranae Oviductus collected from
the Changbai mountain area were used to analyze the protein components. The results showed
12 common-peaks in the reference fingerprint chromatographic spectrum. In combination with
stoichiometry HCA and PCA, the results suggested that the method established in this work can satisfy
the identification of Ranae Oviductus and counterfeit products. The method established in this work
provides a promising approach for the identification of Ranae Oviductus and counterfeit products.
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Abstract: Saffron is one of the most adulterated food products all over the world because of its high
market prize. Therefore, a non-targeted approach based on the combination of headspace flash
gas-chromatography with flame ionization detection (HS-GC-FID) and chemometrics was tested and
evaluated to check adulteration of this spice with two of the principal plant-derived adulterants:
turmeric (Curcuma longa L.) and marigold (Calendula officinalis L.). Chemometric models were carried
out through both linear discriminant analysis (LDA) and partial least squares discriminant analysis
(PLS-DA) from the gas-chromatographic data. These models were also validated by cross validation
(CV) and external validation, which were performed by testing both models on pure spices and
artificial mixtures capable of simulating adulterations of saffron with the two adulterants examined.
These models gave back satisfactory results. Indeed, both models showed functional internal and
external prediction ability. The achieved results point out that the method based on a combination of
chemometrics with gas-chromatography may provide a rapid and low-cost screening method for the
authentication of saffron.

Keywords: saffron; adulteration; food authenticity; gas-chromatography; chemometrics

1. Introduction

The commercial product named “Saffron Powder” is a powdered spice obtained by crushing the
filaments of the Crocus sativus L. flower [1]. Unfortunately, because of its high market price, this spice
is one of the most often adulterated food products worldwide [2]. There are different kinds of possible
frauds, the most frequent being the addition of foreign matter, such as derivatives from flowers of
other plants, to increase the mass of the final product without adding costly pure saffron. In some
cases, even total substitution of saffron powder with adulterants may be found [3].

The high market price of saffron is due to the laborious process required to obtain the spice and the
limited areas of production [4]. The flower of Crocus sativus L. is indeed cultivated only in some regions
of Asia (Kashmir, northern Iran) and Europe (Castilla la Mancha, Spain; Kozani, Greece; Abruzzo and
Sardinia, Italy) [5]. Several Protected Designations of Origin (PDOs) have been created to protect the
authenticity of saffron (as it has, for example, in the Italian “Zafferano dell’Aquila”, one of the major
areas in terms of production and global exports) [5]. Galvin-King et al. [6] report that the business
volume concerning all herbs and spices is around four billion US dollars; economists soon expect
growth up to 50%. As a consequence, the business volume of frauds is estimated to cause economic
damage to the global food industry in the order of several tens of billions of US dollars [7].
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In order to ensure the authenticity and the quality of saffron, a standard method is proposed by
the International Organization for Standardization (ISO). In particular, the last international standard
regulation regarding saffron quality (ISO 3632-1:2011) [1] mainly provides a UV-Vis spectrophotometric
analysis to conventionally quantify the flavor strength (expressed as concentration of picrocrocin),
the aroma strength (concentration of safranal), and the coloring strength (concentration of crocin)
of saffron samples. However, this method has sometimes proved incapable of evaluating saffron
adulteration [8] related to spectral interferences and to the impossibility to resolve chemicals present in
the adulterants that show a similar UV-Vis absorbance.

Consequently, many different analytical methods have been developed to overcome this limitation;
a complete and exhaustive description of all the relevant analytical techniques is given by Kiani et al. [9].
In particular, many other spectroscopic techniques [10–13], chromatographic techniques [14–16],
and molecular-biological techniques [17–19] have been exploited. Among the molecular-biological
techniques, the genome-based approach, usually based on DNA extraction [20], amplification, and
sequencing, represents the principal strategy to ensure the food authenticity.

However, many of these procedures are time consuming and expensive, as they require highly
specialized personnel and are based on destructive methodologies.

With the aim of by-passing the above-listed drawbacks, a preliminary study for a rapid, simple,
and cheap screening test for the assessment of adulterated saffron is herein developed. In particular,
a non-targeted approach is used.

The non-targeted approaches are increasingly used in the field of food authenticity because they
allow the examining of food fingerprints, which were previously acquired by the use of spectroscopic,
spectrometric, or chromatographic techniques. This check is performed holistically and without
long, complicated, and problematic identification and quantification of specific and characteristic
metabolites [21].

In this work, gas-chromatographic profiles are used as chemical fingerprints, because the patterns
of the most volatile compounds are characteristic for odorous spices (such as saffron and their plant
adulterants) and, consequently, they may represent important variables for the assessment of saffron
authenticity [22–24].

In particular, this study presents a combined application of Heracles II (AlphaMos, Toulouse,
France) instrumentation, a headspace flash gas-chromatography with flame ionization detection
(HS-GC-FID), and chemometric techniques [25]. Heracles II provides gas-chromatographic profiles
of the analyzed samples rapidly and without any chemical sample pre-treatment [25–28]. Thus, the
gas-chromatographic fingerprints are subsequently submitted to chemometric modeling through a
multivariate approach [29,30], allowing detection of the eventual adulteration of saffron.

The focus of this work is the evaluation of saffron adulteration by two of the most frequently used
plant-derived adulterants: turmeric (Curcuma longa L.) and marigold (Calendula officinalis L.).

2. Results and Discussion

In this work, 61 samples of commercial spices were analyzed by Heracles II flash HS-GC-FID,
which meant there were 244 objects or rows of the dataset matrices. Although several peaks were present
in the obtained chromatograms, for the non-targeted approach used in this work it was not necessary
to associate the identified chromatographic peaks with the corresponding volatile compounds.

Examples of the chromatograms of some analyzed samples are reported in Figure 1. It was
evident that the discrimination of pure spices could be directly achieved by simply superimposing
the GC chromatograms in Figure 1 without any need of chemometrics. Of course, pure samples are
even distinguishable with eyes without any chemical analysis. What is interesting, however, is to
discriminate mixture samples, which simulate adulterated saffron powders. This can be done only
by chemometrics.
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Figure 1. Representative gas-chromatographic (GC) fingerprints of saffron (a), turmeric (b), and
marigold (c) obtained by Heracles II instrument. The chromatograms from column MXT5 are reported
in the left part of the figure, while the chromatograms from column MXT1701 are reported on the right.
These chromatograms were recorded simultaneously by the headspace flash gas-chromatography with
flame ionization detection (HS-GC-FID).

Even if distinguishing pure samples is trivial, it is useful to create classification models based on
pure standards. In fact, the models allow quantification of the dissimilarity of mixtures with respect to
pure classes through parameters that are specific for each multivariate classification method.

From the obtained experimental data, two matrices were constructed: the area dataset
(AD, 244 rows × 56 columns) and the intensity dataset (ID, 244 rows × 20,002 columns). More details
will be given in the section Materials and Methods, paragraph 3.4 (“Working dataset”).

Both matrices, as described previously, were subjected to the following chemometric elaborations
(LDA and PLS-DA).
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2.1. LDA Model and Results for AD

A preliminary PCA computed on the area dataset led us to find 42 outliers—20 outliers for
the “Saffron” class, eight for the “Marigold” class, and 14 for the “Turmeric” class. This brought us
to a dataset with dimensions 202 (objects) × 56 (variables). On this dataset, LDA was carried
out. Leave-one-out cross validation (LOO-CV) was performed to internally validate the LDA
model. The results of LOO-CV, in this case, could be expressed as the percentage of well-classified
samples (NER), which for this LDA model was 100%. This result was obvious, since pure samples
were considered.

The application of LDA produced the discriminant plot in Figure 2. Three clusters were evidenced,
corresponding, as expected (100% NER), to the three a-priori classes (pure spices). In particular,
the “Saffron” class was mostly discriminated from “Turmeric” along LD1 and from “Marigold” along
LD2. Besides the three clusters, test samples were projected (asterisks). Table 1 summarizes all the
test samples.

All the pure samples of the test set (pure_MR, pure_TR, and pure_SF) were assigned to the
correct classes. They were correctly put inside the class spaces to which they were referred. What
was particularly interesting was the behavior of the mixture samples; their distance from the pure
spices clusters was significant. The mixture samples in Figure 2, although close to the “Saffron” class,
moved away from it with an increasing percentage of adulterant. Moreover, the turmeric-adulterated
samples (SFTR) got closer to the “Turmeric” class, moving along LD1, while the marigold-adulterated
samples (SFMR) got closer to the “Marigold” class, moving along LD2. To quantify such behavior, the
Euclidean distances between each point and each class centroid were computed, and the results are
reported in Table 2. The class centroids were the points whose coordinates were the mean values of the
coordinates of all the class objects. Thus, these could be considered as the “most representative” points
for each class (although fictitious).

Figure 2. Linear discriminant analysis (LDA) discriminant plot, LD1 vs. LD2. The projected test
samples (external validation results) are symbolized by asterisks (*). The graph portion inside the
smaller dashed square is magnified into the greater dashed square.
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Table 1. The test samples used for external validation: pure spices and artificial mixtures.

Test Samples %W/W of Saffron Adulteration Code

Pure Saffron - pure_SF

Pure Turmeric - pure_TR

Pure Marigold - pure_MR

saffron + turmeric

5 SFTR_5

10 SFTR_10

15 SFTR_15

20 SFTR_20

saffron +marigold

5 SFMR _5

10 SFMR _10

15 SFMR _15

20 SFMR _20

From Table 2, it can be seen that the distances of the turmeric-adulterated samples (SFTR) from
the “Saffron” class increased, and the distance from the “Turmeric” class decreased with an increasing
percentage of adulteration. The situation was a bit more complicated for the SFMR samples, because
their distances did not have a “linear” behavior with the adulterant percentage (in particular, SFMR_10
was farther from “Marigold” class than SFMR_5, and SFMR_20 was closer than SFMR_15), as can be
seen from Figure 2. However, it is interesting to highlight that the distance of the farthest calibration
saffron sample from the “Saffron” class centroid was 2.6. This distance could be considered as a sort of
radius of the “Saffron” class, and all the mixture sample distances reported in Table 2 were higher than
this value. This meant that, by computing the Euclidean distances of the projected samples from the
class centroids, the LDA model could detect (at least qualitatively) a saffron sample adulterated by
turmeric or marigold even down to the percentage of adulteration of 5%w/w.

Table 2. Euclidean distances of the test samples reported in Table 1 from the three class centroids.

Sample Code Saffron Turmeric Marigold

pure_SF 1.1 34.6 21.1
pure_TR 36.3 2.5 42.8
pure_MR 18.6 42.5 2.2
SFTR_5 3.8 33.4 16.7
SFTR_10 6.2 31.0 16.4
SFTR_15 7.6 27.2 20.7
SFTR_20 9.9 24.7 24.2
SFMR_5 4.8 36.3 15.3
SFMR_10 4.8 37.1 15.6
SFMR_15 6.4 37.1 13.8
SFMR_20 6.4 38.0 14.3

2.2. PLS-DA Model and Results for ID

A preliminary PCA computed on the intensity dataset led to finding four outliers (one sample) for
the “Saffron” class and five outliers for the “Turmeric” class. Moreover, to reduce the computational
cost while maintaining good data representation, one variable every ten was retained [25]. In this way,
the ID dataset on which PLS-DA was carried out had dimensions of 235 × 2001. PLS-DA was chosen
instead of LDA for this dataset due to the high number of variables and the high co-linearity between
them. LDA requires the computation of the covariance matrix of the dataset, but it is not possible when
the variables are co-linear [31]. Figure 3 shows the PLS-DA scores plot. As it can be seen in Figure 3a,

73



Molecules 2019, 24, 2602

Factor-1 and Factor-2 of PLS-DA together explained 82% of the X-explained variance and 50% of the
Y-explained variance, which could be considered satisfactory to describe the dataset. From this scores
plot, good discrimination of “Saffron” and “Turmeric” classes could be observed. The “Marigold” class,
on the contrary, seemed to be overlapped to the “Saffron” class in the lower left part of the scores plot
(third quadrant of the plot). However, when zooming in on this overlap zone, as it can be observed in
the scores plot reported in Figure 3b, these two classes were found to be resolved.

Figure 3. (a) Scores of partial least squares discriminant analysis (PLS-DA) model, Factor-1 vs. Factor-2.
(b) Zoomed scores plot of the PLS-DA model, Factor-1 vs. Factor-2.

The CV was also performed to internally validate the PLS-DA model. Sensitivity and specificity
for each class were computed according to Ballabio and Consonni (2013) [32] using 200 possible
threshold values ranging from 0.1 to 1.1. The results are shown in Figure 4. Nine PLS-factors were used
for “Saffron” and “Marigold” classes and three factors for “Turmeric” class (from Figure 3, it is easy
to see that the discrimination of the “Turmeric” class was easier and required fewer factors than the
discrimination of the other two). The vertical dashed lines in Figure 4 represent the chosen thresholds,
which were 0.62 for “Saffron”, 0.56 for “Turmeric”, and 0.58 for “Marigold”. Thresholds were chosen
as the highest value that maximized both sensitivity and specificity (1.0 or 100%) in order to have a
restrictive rule for the class assignment.
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Figure 4. Sensitivity (blue lines) and specificity (red lines) for (a) “Saffron”; (b) “Marigold”; (c)
“Turmeric” classes computed for each threshold value. Vertical dashed lines are the chosen thresholds
for the corresponding class.

At this point, the test samples reported in Table 1 were projected onto the PLS-DA model to
validate it. Table 3 shows the values of the dummy variables (y_marigold, y_turmeric, and y_saffron)
and their corresponding standard deviation calculated by the PLS-DA model for the test samples.
The pure samples (pure_MR, pure_TR, and pure_SF) could be considered well classified. Indeed, the
calculated values of the dummy variables overcame the threshold values (i.e., belonging to the class
considered) related to the pertaining class of each sample, while they did not overcome the thresholds
(i.e., not belonging to class considered) related to the other classes. In particular, the pure_TR sample
was assigned to the “Turmeric” class with a degree of 1.0, while there was still some overlap between
“Saffron” and “Marigold” classes, which made the assignment of pure_MR and pure_SF samples
to the corresponding class a bit more uncertain, although still satisfactory. The classification results
for the adulteration mixtures (SFMR_5, SFMR_10, SFMR_15, SFMR_20, SFTR_5, SFTR_10, SFTR_15,
and SFTR_20) instead showed an interesting behavior. The threshold value of 0.62 for the “Saffron”
class caused the assignment of almost all the adulterated samples to the “Saffron”, except for SFTR_15,
SFTR_20, and SFMR_20, and none of the other predicted dummy values overcame the thresholds for
the other classes. However, it is interesting to note from Table 3 that the degree of belonging to the
“Saffron” class tended to decrease as the percentage of the adulterant increased. At the same time,
the degree of belonging to the adulterant class tended to increase. Moreover, the calculated degrees of
belonging to the “Saffron” class for all the mixtures were lower than the calculated degree obtained for
pure_SF sample (although not significantly different for SFTR_5).

Table 3. External validation results (calculated Ys: degrees of belonging) of the test samples projected
on the PLS-DA model. The numbers in brackets are the corresponding standard deviations.

Sample Code y_saffron y_turmeric y_marigold

pure_SF 0.78 (0.03) 0.01 (0.02) 0.21 (0.04)
pure_TR −0.1 (0.2) 1.0 (0.1) 0.1 (0.2)
pure_MR 0.34 (0.04) 0.03 (0.02) 0.63 (0.04)
SFTR_5 0.71 (0.04) 0.06 (0.02) 0.23 (0.04)

SFTR_10 0.66 (0.07) 0.12 (0.04) 0.22 (0.08)
SFTR_15 0.56 (0.06) 0.26 (0.03) 0.19 (0.06)
SFTR_20 0.51 (0.11) 0.32 (0.06) 0.17 (0.11)
SFMR_5 0.69 (0.04) 0.01 (0.02) 0.30 (0.04)

SFMR_10 0.65 (0.03) 0.02 (0.02) 0.33 (0.04)
SFMR_15 0.63 (0.04) 0.02 (0.02) 0.35 (0.04)
SFMR_20 0.59 (0.04) 0.02 (0.02) 0.39 (0.04)
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This meant that the PLS-DA model, except for some uncertainties between “Saffron” and
“Marigold”, was able to discriminate the three studied spices and to detect both an adulteration with
at least 15%w/w of turmeric and at least of 20%w/w of marigold in saffron and, at least qualitatively,
some contamination in saffron with the other two spices.

2.3. Comparison between PLS-DA and LDA Models

PLS-DA and LDA models returned good results. Indeed, both models had good performances in
LOO-CV, and both were able to determine the adulterations of saffron simulated with the test samples
listed in Table 1.

In particular, PLS-DA showed some overlap and some uncertainties of classification between
“Saffron” and “Marigold” classes. On the other side, the LDA model did not show any class overlap,
and it was better than the PLS-DA model in the identification of the pure test samples. Both methods
had good ability in the discrimination of the “Turmeric” class from the other two. However, it is
important to underline that, even for pure_MR and pure_SF samples, the PLS-DA model was able to
correctly classify them.

Regarding the artificial adulteration mixtures, PLS-DA and LDA had similar performances. In fact,
for the mixture samples classified by the PLS-DA model, the calculated values of the dummy variables
increased with the percentage of adulteration, although they never reached the thresholds, and some
doubts persisted about the assignment to the “Saffron” class of such samples. However, the LDA
model, by the calculation of the Euclidean distances between the test samples and the class centroids,
showed some uncertainties between “Saffron” and “Marigold” classes, but it showed an excellent
visual classification in the discriminant plot.

3. Materials and Methods

3.1. Samples

After an accurate commercial search, it was found that certified standards were not available
(with the only exception of saffron pistils). Hence, the training-set samples were purchased in
food retails; the reliability of these standards was subsequently verified through chemometric tools
(see Paragraph 3.5, principal component analysis (PCA), and Hotelling). The spice samples were taken
in the same period (April 2017) from several supermarkets, herbalist’s shops, and medicinal herb
gardens in Emilia Romagna (Italy). It was verified that these samples arrived at the sales centers within
a month before the purchase. Twenty-eight samples of saffron, 19 samples of turmeric, and 14 samples
of marigold (61 total samples, “calibration samples”) were purchased by the laboratory facilities at
Coop Italia. Coop Italia is one of the most important supermarket retail chains in Italy. It also has an
internal food quality control laboratory in Casalecchio di Reno (Bologna, Italy), where this work was
carried out.

Moreover, three samples of pure saffron, turmeric, and marigold (“test samples”) were purchased
for validation purposes. The pure saffron sample was taken from a supermarket and was a product
certified by the SGS certification authority with the certification “Process Control IT MI. 13.P04
STP 013/24”. Additionally, no further analyses by means of the ISO 3632-1:2011 [1] were necessary,
because the commercially available samples had been controlled before their packaging and sales.
The pure turmeric sample was purchased directly from a producer in the Agricultural fair of Santerno
(Imola, Bologna, Italy). The pure marigold sample was taken from the Herb Garden of Casola Valsenio
(Ravenna, Italy).

3.2. Sample Preparation

All the spice samples were stored in a dark place at low temperature until instrumental analysis.
Analyses were carried out within two weeks after sample acquisition.
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Regarding the calibration samples, saffron and turmeric powders did not undergo any
pre-treatment, while the petals of marigold samples were powdered with Ultra Turrax Tube Drive
control (IKA, Staufen im Breisgau, Germany). An aliquot of the sample was placed inside a 20-mL
plastic tube with ten stainless steel spheres (5-mm diameter). The tube was subsequently sealed with
the appropriate cap and was subjected to stirring at 6000 rpm for 5 min until a medium-grained powder
was obtained.

Moreover, the three test samples of saffron, turmeric, and marigold (pure_SF, pure_TR,
and pure_MR) were used to prepare eight artificial mixtures (SFTR_5, SFTR_10, SFTR_15, SFTR_20,
SFMR_5, SFMR_10, SFMR_15, and SFMR_20) in order to simulate partial adulterations of saffron with
the other spices. These samples were obtained by mixing the pure spices in different proportions
to cover a wide range of adulteration degrees. In particular, four different percentages (w/w) of
adulteration were examined: 5%, 10%, 15%, and 20%. These pure samples and mixtures did not
undergo the chemometric procedure described later but were used to validate the final partial least
squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) models.

3.3. Flash Gas-Chromatography (Flash-GC)

All samples from both the calibration set (training set) and the test set were analyzed according to
the following procedure.

For GC analysis, an aliquot of (30 ± 3) mg of each powdered sample was placed in a 20-mL glass
vial sealed with a magnetic cap. Each sample was prepared in quadruplicate to assess the repeatability
and the reproducibility of the method as well as to increase the degrees of freedom of statistical
problems. The replicate measurements generated four objects (rows of the dataset-matrix) for each
sample. Flash HS-GC-FID analysis was performed by Heracles II instrument at Coop Italia Laboratories.

In particular, this instrument was equipped with two capillary chromatographic columns
working in parallel, namely a non-polar column (MXT5: 5% diphenyl, 95% methylpolysiloxane,
10 m length, and 180 μm diameter) and a slightly polar column (MXT1701: 14% cyanopropylphenyl,
86% methylpolysiloxane, 10 m length, and 180 μm diameter) and two flame ionization detectors (FIDs)
at the end of each column. GC operation, auto sampling, and chromatographic output were managed
by Alphasoft V12.4 software (AlphaMos, Toulouse, France).

The parameters of the chromatographic analysis were chosen after an optimization step to avoid
significant problems such as low sensitivity, overcoming of full-scale, and low peaks resolution.

The instrument was also equipped with an auto-sampler HS100 (CTC Analytics AG, Zwingen,
Switzerland), which managed up to 96 samples in the same program. The sample vials were placed in
a shaker oven at 50 ◦C and 500 rpm for 20 min. Then, the auto-sampler syringe took 5000 μL of the
head-space (by piercing the silicone septum of the vial plug). The sample was injected at 100 μL s−1

(the injector temperature was 200 ◦C). The carrier gas was molecular hydrogen (H2) produced by an
Alliance High Purity Hydrogen generator (F-dgsi, Évry, France). A solid adsorbing trap Tenax TA
60/80 (Tenax SPA, Verona, Italy) was placed before the chromatographic columns and was maintained
at 40 ◦C and 60 kPa for 65 s while carrier gas was flowing and then heated at 240 ◦C. This allowed for
absorption of the volatile molecules onto the trap and removal of excess air and moisture to concentrate
the analytes. Analytes were then introduced into the GC columns by a rotatory valve. The column’s
initial temperature was 40 ◦C, which was maintained at such a value for 2 s and then increased by
3 ◦C s−1 until reaching 270 ◦C, then it was kept at this value for 21 s. The total acquisition time was 100 s,
and the signal was digitalized every 0.01 s. While a sample was injected, other samples were shaken;
the entire process was automated and managed by the instrument in the absence of personnel. As a
result, if 96 samples were analyzed in the same program, the overall time needed was not 20 × 96 min
but about 180 min.
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3.4. Working Datasets

After flash GC analysis, the gas-chromatographic data obtained were tabled into a source matrix
(dataset). The dataset rows represented the replicates of the 61 samples (244 rows or objects, 4 replicates
for each sample). The labels of the dataset columns corresponded to GC variables, which were the
acquisition times derived from the digitalization of the GC signal. Each dataset cell reported the FID
signal registered at the corresponding GC time for the relevant object. A further column was the class
variable reporting the a priori class to which the relevant object belonged. Objects were grouped into
classes based on their labeled identity (saffron, turmeric, and marigold).

In particular, two different datasets were created: the “area dataset” and the “intensity
dataset”. The “area dataset” (AD) variables corresponded to peak areas (56 columns); these
variables corresponded to the chromatographic peaks identified by the automatic integration tool of
AlphaSoft. The “intensity dataset” (ID) variables were the full chromatograms recorded by Heracles II
(20002 columns); cell values were the electric current intensities of FIDs. The signal was digitalized
every 0.01s for 100 s (10,001 signals), and the chromatogram of the second column was appended to
the one of the first column.

Both datasets were obtained from the chromatograms elaborated by Alphasoft V12.4 software.

3.5. Chemometrics

Before applying any of the chemometric techniques used in this work, all the data were
standardized [33]. In particular, two different scaling methods were applied to the datasets: autoscaling
for the “area dataset” and centering for the “intensity dataset”.

Two models for the determination of partial or total adulteration of saffron with turmeric and
marigold were created and evaluated, LDA [30] and PLS-DA [29,32]. In particular, the LDA model
was computed for AD, while the PLS-DA model was computed for ID.

For each dataset, the following chemometric procedure was carried out in parallel. First, for each
class, the elimination of the outliers was performed by PCA and Hotelling analysis [34] at a confidence
level of 95%, as already described in a previous work [25].

Then, the refined datasets including only statistically significant samples were subsequently
subjected to LDA and PLS-DA. Both chemometric models were then validated by internal
cross-validation (CV) [29,30] and by projecting the eleven test samples (not used for model creation) [29].
CV is a statistical technique that allowed evaluating the prediction ability of a model (i.e., the ability to
determine the values of the response variables from the predictors for the test samples). CV performed
the following steps iteratively: exclude some samples (randomly selected) from the training set,
build the model without the excluded samples, and classify the excluded samples with this model.
During this procedure, each sample of the training set was used as a test sample at least one time.
However, the results of CV were different for LDA and PLS-DA.

LDA computed a model characterized by the definition of new variables starting from the original
variables (in the case of AD, chromatographic peak areas) as well as in PCA. However, LDA, unlike PCA,
defined linear discriminant functions (LDs) rather than principal components (PCs) that were more
effective in separating the examined classes [29]. Such a model could classify unknown samples by
projecting them in the LDs space. An unknown sample was always assigned to the class for which
the calculated posterior probability [35] was higher; however, the distance of objects from the classes
needed to be taken into account in order to finely evaluate the degree of membership to a class.

For LDA, the CV output was represented by the confusion matrix. In this matrix, the lines
represented the “a priori” classes, and the columns represented the calculated “a posteriori” classes,
to which CV reassigned the samples. The ideal situation was a diagonal matrix (i.e., the matrix in which
the entries outside the main diagonal were all zero) because it was the situation in which all of the
samples were correctly assigned to the corresponding “a priori” classes. Subsequently, starting from
the confusion matrix, it was possible to compute the “non-error-rate” (NER) as the ratio between the
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objects correctly classified and the total number of objects, which represented the ability of the model
to correctly recognize its objects.

PLS-DA [32] is instead a regression method in which the predictor variables (X-matrix) were the
experimental ones (in the ID case, the full chromatograms), while the responses (Y-matrix) were the
so-called “dummy variables”. These dummy variables were the degrees of belonging to the examined
classes (in this work, saffron, turmeric, and marigold) and assumed the values for calibration objects to
be 0 and 1 (where 1 represented the certainty of belonging to the considered class, while 0 represented
the certainty of not belonging to the considered class). The projection of an external sample onto a
PLS-DA model returned a set of values for the dummy variables that could be considered as “degrees
of belonging” to each class.

CV results for a PLS-DA model were represented by the calculated values of dummy variables for
each sample, which meant the predicted degree of belonging of each sample to each class. These values
could be used to calculate a threshold value for each class that optimized both sensitivity and specificity
for the classification. The procedure for computing such threshold values is described by Ballabio and
Consonni (2013) [32]. The projected samples of the test set could then be assigned to a class if their
corresponding calculated value of the dummy variable overcame the threshold.

Outliers elimination was carried out by the software The Unscrambler V10.4 (Camo, Oslo,
Norway), while LDA and PLS-DA were carried out (with relative CV and projections) by the software
R V3.4.3 (R Core Team, Vienna, Austria) with the packages “MASS” [31] and “pls” [35].

4. Conclusions

The achieved results illustrate that the herein proposed, non-targeted strategy based on the
combined application of chemometrics with Heracles II flash HS-GC-FID may provide a rapid and
low-cost screening method for the authentication of saffron.

The samples were analyzed without any preparation or after a rapid grinding operation, allowing
us to avoid expensive pre-treatments and any contamination before analysis by gas-chromatography.
Furthermore, once the sample is put into the auto-sampler of the instrument, this instrumental analysis
is entirely automated and requires a short analysis time (overall, less than 20 min for a single sample
and a couple of minutes per sample for 96 samples simultaneously put in the auto-sampler).

Finally, with chemometrics, it was possible to use the GC data both as they are produced by the
instrument (chromatograms) and by integrating the chromatographic peaks to build classification
models (PLS-DA and LDA). These models had good calibration ability, evaluated by cross-validation
(CV) and, most of all, good prediction ability, evaluated by projecting external test samples that
simulated adulterations of saffron with turmeric and marigold. Moreover, for adulterant additions
below 33%w/w, the official UV-VIS spectrophotometry method was not able to detect adulteration [8].
On the contrary, Heracles II combined with chemometrics allowed us to go far below this limit;
a PLS-DA model able to detect down to 15 ÷ 20%w/w of adulteration was validated. Moreover,
a discriminant plot obtained through LDA showed significant differences between pure samples and
adulterated samples down to 5 ÷ 10%w/w.

Another important characteristic of the chemometric approach is that it does not require the
identification of the volatile compounds to create a model able to find an adulterated saffron sample.
The use of the entire chromatograms ensures that all the possible markers for turmeric or marigold
adulteration are taken into account in the model construction.

Author Contributions: Conceptualization, F.G. and D.M.; Methodology, F.G. and P.M.; Software, A.Z. and
P.M.; Validation, P.M. and A.Z.; Formal Analysis, P.M. and F.G.; Investigation, P.M.; Resources, F.G. and M.L.;
Data Curation, A.Z., P.M. and D.M.; Writing—Original Draft Preparation, P.M.; Writing—Review & Editing, A.Z.,
M.L. and D.M.; Visualization, F.G.; Supervision, D.M.; Project Administration, F.G.

Funding: This research received no external funding.

Acknowledgments: The authors thank Coop Italia for providing the Heracles II flash HS-GC-FID instrument and
Paolo De Giorgi for the assistance in the experimental activity.

79



Molecules 2019, 24, 2602

Conflicts of Interest: The authors declare no conflict of interest.

References

1. International Organization for Standardization. ISO 3632-1. Spices—Saffron (Crocus sativus L.); ISO:
Geneva, Switzerland, 2011.

2. Moore, J.C.; Spink, J.; Lipp, M. Development and Application of a Database of Food Ingredient Fraud
and Economically Motivated Adulteration from 1980 to 2010. J. Food Sci. 2012, 77, R118–R126. [CrossRef]
[PubMed]

3. Nazari, S.H.; Keifi, N. Saffron and various fraud manners in its production and trades. Acta Hortic. 2007,
739, 411–416. [CrossRef]

4. Johnson, R. Food Fraud and “Economically Motivated Adulteration” of Food and Food Ingredients; Congressional
Research Service Report; University of North Texas Libraries: Denton, TX, USA, 2014; pp. 1–40.

5. Bosmali, I.; Ordoudi, S.A.; Tsimidou, M.Z.; Madesis, P. Greek PDO saffron authentication studies using
species specific molecular markers. Food Res. Int. 2017, 100, 899–907. [CrossRef] [PubMed]

6. Galvin-King, P.; Haughey, S.A.; Elliott, C.T. Herb and spice fraud; the drivers, challenges and detection.
Food Control 2018, 88, 85–97. [CrossRef]

7. PwC & SSAFE. Food Fraud Vulnerability Assessment. 2016. Available online: http:
//www.pwc.com/gx/en/services/food-supply-integrity-services/assets/pwc-food-fraud-vulnerability-
assessment-and-mitigation-november.pdf (accessed on 1 July 2019).

8. Sabatino, L.; Scordino, M.; Gargano, M.; Belligno, A.; Traulo, P.; Gagliano, G. HPLC/PDA/ESI-MS evaluation
of saffron (Crocus sativus L.) adulteration. Nat. Prod. Commun. 2011, 6, 1873–1876. [CrossRef] [PubMed]

9. Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Instrumental approaches and innovative systems for saffron
quality assessment. J. Food Eng. 2018, 216, 1–10. [CrossRef]

10. Petrakis, E.A.; Cagliani, L.R.; Polissiou, M.G.; Consonni, R. Evaluation of saffron (Crocus sativus L.) adulteration
with plant adulterants by1H NMR metabolite fingerprinting. Food Chem. 2015, 173, 890–896. [CrossRef]

11. Petrakis, E.A.; Polissiou, M.G. Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants
by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics. Talanta 2017,
162, 558–566. [CrossRef]

12. Zalacain, A.; Ordoudi, S.A.; Díaz-Plaza, E.M.; Carmona, M.; Blázquez, I.; Tsimidou, M.Z.; Alonso, G.L.
Near-infrared spectroscopy in saffron quality control: Determination of chemical composition and
geographical origin. J. Agric. Food Chem. 2005, 53, 9337–9341. [CrossRef]

13. Ordoudi, S.A.; De Los Mozos Pascual, M.; Tsimidou, M.Z. On the quality control of traded saffron by means
of transmission Fourier-transform mid-infrared (FT-MIR) spectroscopy and chemometrics. Food Chem. 2014,
150, 414–421. [CrossRef]

14. Rubert, J.; Lacina, O.; Zachariasova, M.; Hajslova, J. Saffron authentication based on liquid chromatography
high resolution tandem mass spectrometry and multivariate data analysis. Food Chem. 2016, 204, 201–209.
[CrossRef] [PubMed]

15. Nenadis, N.; Heenan, S.; Tsimidou, M.Z.; Van Ruth, S. Applicability of PTR-MS in the quality control of
saffron. Food Chem. 2016, 196, 961–967. [CrossRef] [PubMed]

16. Aliakbarzadeh, G.; Parastar, H.; Sereshti, H. Classification of gas chromatographic fingerprints of saffron using
partial least squares discriminant analysis together with different variable selection methods. Chemom. Intell.
Lab. Syst. 2016, 158, 165–173. [CrossRef]

17. Torelli, A.; Marieschi, M.; Bruni, R. Authentication of saffron (Crocus sativus L.) in different processed, retail
products by means of SCAR markers. Food Control 2014, 36, 126–131. [CrossRef]

18. Gismondi, A.; Fanali, F.; Martínez Labarga, J.M.; Caiola, M.G.; Canini, A. Crocus sativus L. Genomics and
different DNA barcode applications. Plant Syst. Evol. 2013, 299, 1859–1863. [CrossRef]

19. Babaei, S.; Talebi, M.; Bahar, M. Developing an SCAR and ITS reliable multiplex PCR-based assay forsafflower
adulterant detection in saffron samples. Food Control 2014, 35, 323–328. [CrossRef]

20. Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends
& emerging approaches. TrAC Trends Anal. Chem. 2016, 85, 123–132.

21. Esslinger, S.; Riedl, J.; Fauhl-Hassek, C. Potential and limitations of non-targeted fingerprinting for
authentication of food in official control. Food Res. Int. 2014, 60, 189–204. [CrossRef]

80



Molecules 2019, 24, 2602

22. Matsushita, T.; Zhao, J.J.; Igura, N.; Shimoda, M. Authentication of commercial spices based on the similarities
between gas chromatographic fingerprints. J. Sci. Food Agric. 2018, 98, 2989–3000. [CrossRef]

23. Heidarbeigi, K.; Mohtasebi, S.S.; Foroughirad, A.; Ghasemi-Varnamkhasti, M.; Rafiee, S.; Rezaei, K. Detection
of adulteration in saffron samples using electronic nose. Int. J. Food Prop. 2015, 18, 1391–1401. [CrossRef]

24. Carmona, M.; Zalacain, A.; Salinas, M.R.; Alonso, G.L. A new approach to saffron aroma. Crit. Rev. Food
Sci. Nutr. 2007, 47, 145–159. [CrossRef] [PubMed]

25. Melucci, D.; Bendini, A.; Tesini, F.; Barbieri, S.; Zappi, A.; Vichi, S.; Conte, L.; Gallina Toschi, T. Rapid direct
analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic
nose and chemometrics. Food Chem. 2016, 204, 263–273. [CrossRef] [PubMed]
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Abstract: Prostate-specific antigen (PSA) is the main biomarker for the screening of prostate cancer
(PCa), which has a high sensibility (higher than 80%) that is negatively offset by its poor specificity
(only 30%, with the European cut-off of 4 ng/mL). This generates a large number of useless biopsies,
involving both risks for the patients and costs for the national healthcare systems. Consequently,
efforts were recently made to discover new biomarkers useful for PCa screening, including our
proposal of interpreting a multi-parametric urinary steroidal profile with multivariate statistics.
This approach has been expanded to investigate new alleged biomarkers by the application of
untargeted urinary metabolomics. Urine samples from 91 patients (43 affected by PCa; 48 by benign
hyperplasia) were deconjugated, extracted in both basic and acidic conditions, derivatized with
different reagents, and analyzed with different gas chromatographic columns. Three-dimensional
data were obtained from full-scan electron impact mass spectra. The PARADISe software, coupled
with NIST libraries, was employed for the computation of PARAFAC2 models, the extraction of
the significative components (alleged biomarkers), and the generation of a semiquantitative dataset.
After variables selection, a partial least squares–discriminant analysis classification model was
built, yielding promising performances. The selected biomarkers need further validation, possibly
involving, yet again, a targeted approach.

Keywords: untargeted metabolomics; PARAFAC2; alignment; gas chromatography–mass spectrometry
(GC–MS); prostate carcinoma

1. Introduction

Prostate cancer (PCa) is the most common non-skin cancer in men [1,2] and the second most
frequently diagnosed malignancy in males worldwide [3]. The first biomarker for PCa detection was
prostatic acid phosphatase (PAP), which was introduced in the 1930s [1]. In the 1980s, PAP was replaced
by prostate-specific antigen (PSA) [1,4], a secreted protein encoded by a prostate-specific gene and
member of the tissue kallikrein family [1], which is produced almost exclusively in the prostate [5,6].
After the introduction of PSA, more men were diagnosed with PCa, with the majority having the
early-stage, clinically indolent form of the disease. However, a large number of patients affected by
a benign pathology, such as inflammation or hyperplasia, exhibited abnormal PSA values, which
lead to the execution of useless biopsies and demonstrate the low specificity of this biomarker [1,6].
This phenomenon was generally designated as “overdiagnosis” or “overtreatment” [1,4,7,8].
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Considerable effort has been devoted to improving the PSA-test performance, including the
introduction of PSA density, PSA velocity (and doubling time), the dosage of free or complexed PSA,
and the quantitation of its isoforms [1,2]. A combination of these parameters yields the Prostate Health
Index (PHI) [3].

Meanwhile, intensive research has been devoted to the search for different biomarkers, mainly
by applying omics methods (e.g., genomics, proteomics, transcriptomics, and metabolomics) [1], and
several authors have reviewed the emerging biomarkers, among which the most prominent are the
urinary prostate cancer antigen 3 (PCA3) [1,3,5] and transmembrane protease, serine 2 (TMPRSS2-ERG)
(sometimes combined together) [1,3,5]. Alpha-methylacyl-CoA Racemase (AMACR) demonstrated
high sensitivities and specificities on prostate biopsy, but it is not suitable for non-invasive detection
in urine [1,5]. Increased diagnostic performances were obtained by the serum dosage of human
kallikrein-related peptidase 2 (KLK2) in combination with total and free PSA [5]. An evolution of
the application of kallikreins consists in a blood measurement of the four existing isoforms which,
combined with clinical information, allows the probability calculation of PCa incidence [3]. Significantly
increased levels of prostasomes were found in blood samples from patients with PCa [9], while elevated
levels of urinary sarcosine were found to be associated with aggressive forms of prostate cancer [1].

Studies conducted in the 1970s and 1980s highlighted the correlation between increased
urinary excretion of polyamines (i.e., spermine, spermidine, and putrescine) and several types
of cancer [10,11]. However, anomalous oxidative degradation reactions of these polyamines resulted in
low concentrations of these biomarkers in approximately 20% of the patients, leading to false-negative
prediction and consequently limiting their application as diagnostic biomarkers [10].

The correlation between altered steroidal biosynthesis and PCa is well known [12–14]. For this
reason, in a previous study, we carried out a targeted analysis of urine samples, addressed to a large
panel of androgens, including testosterone and its principal phase I metabolites. The multivariate
statistical interpretation of these steroid profiles produced satisfactory results in terms of sensitivity,
specificity, and area under the curve (AUC) [15].

In this study, the search for new urinary biomarkers was undertaken by using untargeted methods.
In perspective, emerging biomarkers could possibly be combined with the most discriminating steroid
biomarkers to improve their screening performances further, without altering the inherent simplicity
of the instrumental procedure. In fact, the ideal biomarker should be cheap to determine, non-invasive,
easily accessible, and quickly quantifiable [1,2]. Taking into account the abovementioned considerations,
gas chromatography–electron impact mass spectrometry (GC–EIMS) would give a more suitable
solution than the other commonly used analytical techniques to provide a three-dimensional pattern
for untargeted analysis. Urine was chosen as the election matrix, as it is easily available in large
volumes and involves non-invasive sampling.

2. Materials and Methods

2.1. Chemicals and Reagents

Tert-butyl methyl ether (TBME), ethyl acetate, dithioerythritol, ammonium iodide (NH4I),
N-Methyl-N-(trimethylsilyl)trifluoroacetamide (TMSTFA), and trifluoroacetic anhydride (TFAA) were
provided by Sigma-Aldrich (Milan, Italy). β-glucuronidase from Escherichia coli was purchased from
Roche Life Science (Indianapolis, IN, USA). Ultra-pure water was obtained using a Milli-Q® UF-Plus
apparatus (Millipore, Bedford, MA, USA).

2.2. Samples Collection

The subjects involved in this study were recruited in the ambulatory of the Department of Urology
at the San Luigi Hospital of Orbassano (TO, Italy), after approval of the protocol by the reference Ethical
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Committee (protocol number 0019267). A total of 91 subjects were enrolled, including 43 affected by
prostate carcinoma (PCa, confirmed by a positive biopsy) and 48 diagnosed with benign prostatic
hyperplasia (BPH, with a PSA lower than the European cut-off of 4 ng/mL or with a PSA above the
threshold but a negative biopsy result). In a previous study, the progressive modification of the urinary
steroidal profile with age was investigated [16]. From this study, we decided to enroll only individuals
older than 60 years, when the bias effect due to aging became negligible [16]. Moreover, since ethnicity
represents another important bias factor, only Caucasian individuals were recruited. Finally, diabetes,
other carcinoma, metabolic diseases, and therapies suspected to alter the urinary steroid profile (such as
steroid therapy) were considered as exclusion criteria.

Body mass index (BMI), alcohol consumption, medical therapy, digital rectal examination,
PSA value, and biopsy Gleason Score (GS) were recorded. In detail, the group’s mean age and standard
deviation was 70 ± 10 years for BPH and 70 ± 8 years for PCa. BMI was within the range of normality
for all individuals (between 18.5 and 25), and PSA was 3.8 ± 2.3 ng/mL for BPH and 11.0 ± 9.5 ng/mL
for PCa. The PCa class was distributed as low risk (GS = 3 + 3, 15 patients), middle risk (GS = 3 + 4
and 4 + 3, 21 patients), and high risk (GS = 4 + 4 and 4 + 5, seven patients).

2.3. Sample Treatment and GC–MS Analysis

Firstly, the protein components of the urinary samples were precipitated by centrifugation at
4000 rpm for 5 min. Two aliquots (A and B) of 5 mL each were taken from each sample. The urine pH
was adjusted between 6.8 and 7.4 by adding 2 mL of phosphate buffer and a few drops of NaOH 1M or
HCl 1M whenever necessary. Enzymatic hydrolysis of the glucuronide metabolites was conducted
with 100 μL of β-glucuronidase from Escherichia coli (equivalent to 83 enzymatic units) by heating it
in the oven for 1 h. After cooling to room temperature, the two aliquots were subjected to different
liquid–liquid extraction (LLE) with 5 mL of TBME each, at basic (pH ≥ 10) and acid (pH ≤ 1) conditions,
respectively, obtained by the introduction of some drops of NaOH 1M and HCl 1M. Both aliquots were
dried under a gentle nitrogen stream at room temperature. The dried aliquot A was derivatized using
50 μL TFAA at 65 ◦C for 1 h. Then, the solvent was dried and the residue was dissolved in 50 μL TBME
and injected into the GC–MS. The chromatographic separation was achieved with a J&W Scientific
HP-5, 17 m × 0.2 mm (i.d.) × 0.33 μm (f.t.) capillary column. The oven temperature was programmed
as follows: The starting temperature of 90 ◦C was held for 1 min. Then, the temperature of 180 ◦C was
reached with a rate of 30 ◦C/min and held for 7 min. A final heating rate of 15 ◦C/min was applied until
the temperature of 325 ◦C was reached (held for 3 min). The chromatographic run lasted 22.20 min.

Aliquot B was derivatized using 50 μL of TMSTFA/NH4I/dithioerythritol (1.000:2:4 v/w/w), at 70 ◦C
for 30 min and then injected into a GC–MS equipped with a J&W Scientific HP-1, 17 m × 0.2 mm (i.d.) ×
0.11 μm (f.t.) capillary column. The oven temperature was programmed to heat up from 120 to 177 ◦C
at a rate of 70 ◦C/min, and from 177 to 236 ◦C at a rate of 5 ◦C/min. A final heating rate of 30 ◦C/min
was applied until the temperature of 315 ◦C was reached. The chromatographic run lasted 18.25 min.
Both the runs were performed in full-scan mode, in the interval 40–650 m/z at a scan rate of 2.28 scans/s.

Because the samples were analyzed in five analytical sections performed on different days,
it was important to monitor the occurrence of a data structure due to the different analytical sections.
The exploratory unsupervised data analysis can serve to this scope, and principal component analysis
(PCA) was employed. No clustering or trend related to the day of the analysis was detected.

2.4. Statistical Analysis

The main steps of the statistical analysis are reported in Figure 1.
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Figure 1. Statistical analysis workflow.

2.5. Pre-Treatment of the Raw Data

The .AIA files of the chromatographic runs were downloaded using the software ChemStation®.
The PARADISe version 3 software was employed to convert the files in a form suitable for

MATLAB (extension .mat). The alignment procedure, both propaedeutic and mandatory for the
following steps of data analysis, was executed over the three-way (samples × retention time × m/z)
array of size 91 × 3099 × 612 (over 172 million data) and 91 × 1640 × 652 (over 97 million data) for the
trifluoroacetyl (TFA) and trimethylsilyl (TMS) derivatives, respectively. The correlation optimized
warping (COW) was performed along the retention time and the m/z dimensions [17]. The two
matrices were segmented along the retention time dimension to improve the performances of the
COW algorithm, and for each slice the computation was iterated until a visually satisfying result was
obtained. Lastly, to improve the visualization of the data, the baseline was subtracted. It is important
to highlight that the latter computational step only served to improve the data visualization by the
operator, because PARAFAC2 is able to recognize the baseline and the noise components, allowing
their automatic exclusion [18–21].

2.6. PARAFAC2 Models Computation and Molecular Identification

The aligned dataset was analyzed in the PARADISe software, to proceed with the computation of
PARAFAC2 models; the operating procedure consists in the manual identification of intervals along
the chromatogram (with each interval ideally containing approximately one peak). The PARAFAC2
models were built introducing the non-negativity constraint and performing 10,000 iterations for
interval [18–21].

Within the software, the operator can label the components as (i) baseline, (ii) noise, or (iii)
compounds. All the mass spectra of the components belonging to the third category are automatically
compared with the NIST database. A report is produced, including the relative concentrations of the
detected compounds (assuming a uniform response factor of 1), and the n (number subjectively chosen
by the user) most likely identifications for each compound. Finally, the relative concentrations were
normalized using the urinary creatinine values.

2.7. Classification Models

The dataset composed by the relative concentrations of the detected metabolites for each sample
was used to perform partial least squares–discriminant analysis (PLS–DA) [22], classifying the samples
into having prostate carcinoma or not. Firstly, the dataset was log10 transformed (with the aim
of achieving a more even distribution of each of the variables) and autoscaled. Then, the variable
importance in projection (VIP) method (using a threshold of 1) [23] and genetic algorithms (GAs) [24]
were run to select the most relevant variables. The reduced dataset was finally used to build the
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PLS–DA classification model. The model was then validated using the repeated double cross-validation
(dCV) approach [25]. The PLS_Toolbox version 8.5 (Eigenvector Research, Inc., Manson, WA, USA)
was used to perform this part of the analysis [26].

3. Results and Discussion

The preliminary PARAFAC2 model extracted a total of 329 relevant compounds (184 from the
chromatographic run after TMS derivatization and 145 after TFA derivatization). Of these, 89 were
selected using the VIP algorithm, and a further 58 substances were discarded by one cycle of GAs.
The final dataset, consisting in a 91 × 32 (subjects × variables) matrix, was employed to build a PLS–DA
classification model. Due to the heterogeneity of the patients enrolled (in terms of pathology staging,
prostatic volume, and PSA values), the model was validated using repeated double cross-validation
(30 repetitions were performed) [25] instead of the standard external validation, in which the use of a
limited and heterogeneous population may result in significant bias. The plot reporting the Y-value
predicted in cross-validation (CV) in one of the several classification models produced during the
repeated double cross-validation process is shown in Figure 2A. The corresponding receiver operating
characteristic (ROC) curve is depicted in Figure 2B. The high values of the area under the curve (AUC)
for both the estimated and cross-validated ROCs are an indicator of high performances and robustness
of the model. In detail, using a discriminating Y-value of 0.5, the model provides 92.5 ± 2.2% sensitivity
and 88.7 ± 3.9% specificity for the cancer-affected population. On average, misclassification occurred
on about 3 ± 2 patients affected by carcinoma out of 43 and 5 ± 2 patients with hyperplasia out of 48.

Figure 2. Y-value predicted in cross-validation (CV) (A) and receiver operating characteristic (ROC) curves
(B) of one of the several classification models built during the repeated double cross-validation procedure.

Of the 32 compounds selected by the dedicated algorithms to build the model, 17 were not found in
the available NIST libraries, while for seven other compounds, the identification provided by automatic
spectral matching was deemed incorrect. On the other hand, manual mass spectra interpretation
was made difficult by the structural similarity of many candidate biomarkers, as well as the effect of
the derivatizations, that introduced functional groups (e.g., −Si(CH3)3) yielding prevalent fragment
ions in the spectrum. The mass spectra of the 32 metabolites are provided as Supplementary Materials
(Supplementary Figure S1). Table 1 reports the eight identified compounds, accompanied by their Human
Metabolome Database (HMDB) and Kyoto Encyclopedia of Genes and Genomes (KEGG) identification
numbers, when available. Since the PARADISe output provides only a rough semiquantitative report
based on the total ion current (TIC) without any external calibration, the real physiological concentration
of each metabolite could not be evaluated. However, these absolute TIC values can be evaluated in
relative terms to provide an averaged qualitative comparison between the two populations for all the
analytes. The overexpression and underexpression of these metabolites allegedly linked to the occurrence
of PCa are reported in Table 1.
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It is interesting to note that among the eight identified compounds, five (63%) are involved in steroidal
biosynthesis, confirming their potential in the detection and diagnosis of PCa. Similarly, Choi et al.
found elevated levels of 16-hydroxy-dehydroepiandrosterone, epiandrosterone, etiocholanolone, and
pregnanetriol in patients diagnosed with papillary thyroid carcinoma [27]. The first steroid appears to
also be overexpressed in the present case for patients with PCa, but pregnanetriol was underexpressed in
the same patients and epiandrosterone was found in comparable concentrations in the two populations.
Dehydroepiandrosterone is involved in the expression of insulin-like growth factor 1, whose dysregulation
is implicated in certain colon, liver, prostate, and breast cancers [28]. This observation may justify the
inclusion of 16-hydroxy-dehydroepiandrosterone among the potential biomarkers for PCa. Pregnanetriol,
together with 5 β-pregnanediol, is also known to be dysregulated in adrenal syndromes, such as
adrenal tumors or Cushing’s syndrome [29,30]. Increased androsterone levels were found in a cohort
of PCa-affected individuals within a multivariate investigation of the urinary steroidal profile, and the
present findings are in accordance with our previous study [16]. Other steroids that proved useful to
discriminate PCa from BPH [27] were possibly overlooked in the present untargeted selection because of
their low concentration in urine.

The overexpression of serotonin and its biomarkers (among which, 5-hydroxyindoleacetic acid)
represents a potential urinary biomarker for neuroblastic and carcinoid tumors [31]. While there is no
evidence in the literature of an association between 5-hydroxyindoleacetic acid and PCa, the present data
suggest such a hypothesis, as its overexpression is clearly evident in the PCa-affected population considered.

Phytoestrogens are a class of substances accredited to prevent the onset of cancer [32,33].
In accordance with this hypothesis, enterodiol is underexpressed in the present PCa population.

Among the 32 selected biomarkers, different contributions to the overall discrimination achieved
by the PLS–DA model (Figure 1) were expected. A rough estimation of the relative importance of
these biomarkers is expressed by their selectivity ratios [34], reported in Figure 3. Nine biomarkers
exhibit selectivity ratios higher that 0.1, while, for five others, values between 0.07 and 0.1 were found.
Interestingly, out of the nine biomarkers with the highest selectivity ratio, eight are underexpressed
in the PCa patients, apparently suggesting them as protective substances. The expression of the
14 metabolites is represented in the form of boxplots in Figure 4. Tentative PLS–DA models were
built with only these 9 and 14 biomarkers, but their overall efficiency significantly dropped with
respect to the model of 32 biomarkers, demonstrating that the relative contribution of the remaining
biomarkers is not negligible. In particular, the specificity index was considerably reduced in the models
of 9 biomarkers and 14 biomarkers, while the sensitivity score remained relatively high.

Figure 3. Selectivity ratio of the 32 selected features. The variables above the threshold of 0.1 are
reported in green, and the ones between the thresholds 0.07–0.1 are reported in red.
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Figure 4. Boxplot, in logarithmic (base-10) scale, of the 14 compounds above the selectivity ratio
threshold of 0.07 (see Figure 3).

Further testing was also conducted on the six biomarkers showing comparable mean intensity for
the two populations. One variable at a time was removed, and a new classification model was computed
using a simple cross-validation with each reduced dataset. Five of the seven new models yielded
decreased sensitivity and specificity, while the other two models provided comparable performance,
substantially confirming the choice of the 32 biomarker model.

4. Conclusions

The preliminary results reported in the present study support the premise that GC–MS
tridimensional data can be profitably exploited in untargeted metabolomics studies devoted to
prostatic carcinoma diagnosis. Compared to the more resource-demanding ultra-high-performance
liquid chromatography–tandem mass spectrometer (UHPLC–MS/MS) and ultra-high-performance
liquid chromatography–high-resolution mass spectrometry (UHPLC–HRMS) approaches frequently
presented in the literature, GC–MS offers comparable chromatographic resolution and structured
spectroscopic information, as is generated by the fragment ion pattern typical of electron impact
ionization. On these complex data arrays, the ultimate performance in the extraction of crucial
information relies on the software purposely adopted and PARAFAC2 combined with VIP and GA
methods of variables selection proved to produce highly efficient models of class discrimination,
allowing us to distinguish prostatic carcinoma from benign hyperplasia with good sensitivity and
specificity scores.

A common limitation of untargeted metabolomics methods, including the present one, is that the
most abundant components of the screened samples are preferentially isolated as potential biomarkers
with respect to minor constituents, possibly present at trace levels. This explains the differences in
the selected biomarkers with respect to the targeted approach that we previously tested [27]. On the
other hand, complementary sets of biomarkers are extracted and then evaluated from targeted and
untargeted approaches, to be subsequently combined to achieve optimal performance. More work has
to be done on large populations of PCa-affected patients and controls to confirm the present findings,
and further effort is necessary to reveal the identity of the most valuable biomarkers and possibly
confirm their real value as interesting biomarkers by univariate statistics. Despite these limitations
to be overcome in the subsequent investigations, the strategy adopted in the present study, based on
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non-invasive urine sampling, cheap instrumentation, and advanced data treatment by PARADISe
software, appears to be extremely promising in PCa screening.
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Abstract: Paris polyphylla, as a traditional herb with long history, has been widely used to treat
diseases in multiple nationalities of China. Nevertheless, the quality of P. yunnanensis fluctuates
among from different geographical origins, so that a fast and accurate classification method was
necessary for establishment. In our study, the geographical origin identification of 462 P. yunnanensis
rhizome and leaf samples from Kunming, Yuxi, Chuxiong, Dali, Lijiang, and Honghe were analyzed
by Fourier transform mid infrared (FT-MIR) spectra, combined with partial least squares discriminant
analysis (PLS-DA), random forest (RF), and hierarchical cluster analysis (HCA) methods. The obvious
cluster tendency of rhizomes and leaves FT-MIR spectra was displayed by principal component
analysis (PCA). The distribution of the variable importance for the projection (VIP) was more uniform
than the important variables obtained by RF, while PLS-DA models obtained higher classification
abilities. Hence, a PLS-DA model was more suitably used to classify the different geographical origins
of P. yunnanensis than the RF model. Additionally, the clustering results of different geographical
origins obtained by HCA dendrograms also proved the chemical information difference between
rhizomes and leaves. The identification performances of PLS-DA and the RF models of leaves FT-MIR
matrixes were better than those of rhizomes datasets. In addition, the model classification abilities
of combination datasets were higher than the individual matrixes of rhizomes and leaves spectra.
Our study provides a reference to the rational utilization of resources, as well as a fast and accurate
identification research for P. yunnanensis samples.

Keywords: Paris polyphylla Smith var. yunnanensis; multivariate analysis; chemometrics; Fourier
transform infrared

1. Introduction

The perennial herb plant Paris is a genus in the Liliaceae family. Paris is one of more than
2000 medicinal plants described in the Chinese Pharmacopoeia (2015 edition), and it has utmost
important medicinal effects on treating diseases, including snake bite and insect sting, innominate toxin
swelling, and various inflammatory and traumatic injuries with ancient history in China. In addition,
Paris is also used as an ethnobotanical medicinal herb in Nepal and India, which export Paris raw
materials every year to China to meet the Chinese traditional medicine (TCM) market demand [1].
Paris medicinal plants sold in today’s TCM markets were both of wild and cultivated types, with the
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number of wild Paris gradually decreasing, with a long-term growth cycle, immoderate harvesting,
and huge commercial activities [2]. Additionally, amongst almost 28 species and varieties of Paris,
only Paris polyphylla Smith var. chinensis (Franch.) Hara (P. chinensis) and P. polyphylla var. yunnanensis
(Franch.) Hand. -Mazz (P. yunnanensis) are officially described by the Chinese Pharmacopoeia (2015
edition), which further restricted the number of Paris medicinal plants [3–5]. Hence, substitutes with
similar medicinal effects and chemical compounds are considered for selection from the closely related
species of P. yunnanensis and P. chinensis, and other parts of the plants, such as stems and leaves.

A serious problem is that many number of leaves of Paris medicinal plants were abandoned every
year, with the rhizomes being unable to meet the market demand. Thus, the use of P. yunnanensis and
P. chinensis leaves as substitutes for the primary choice was to be considered. Currently, Qin et al. have
reviewed the feasibility for whether renewable above-ground parts (leaves and stems) of P. yunnanensis
could be used as an alternative source to rhizomes [6]. They concluded that the above-ground parts can
be the substitute source for the rhizomes of P. yunnanensis, in that similar pharmacological properties,
including antimicrobial, hemostatic, cytotoxic, and other effects. A variety of quality of Paridis
Rhizomes in TCM markets may affect the quality of Chinese patent medicines based on P. yunnanensis
rhizomes. On these basis, it is necessary and meaningful to quickly assess the quality of P. yunnanensis
rhizomes and leaves.

Yunnan possesses complex climatic conditions, which means that the quality of TCM plants varies
with different climatic conditions of different geographical origins in Yunnan. A variety of analytic
techniques have been applied to determine the active chemical components and fingerprints to assess
the quality of P. yunnanensis samples, including ultra-high performance liquid chromatography-mass
spectrometry (UHPLC-MS) [7,8], ultraviolet-visible (UV-Vis) [9], high performance liquid chromatography
(HPLC) [10], and Fourier transform mid infrared (FT-MIR) [8,11,12], and so on. Up to now, chemometrics
has been widely applied to herbal medicines and plant spectral analyses [13,14]. For example,
principal component analysis (PCA) often was used to research Chinese herbal medicines of multiple
tissues and geographical origins [15,16]. Partial least squares discriminant analysis (PLS-DA) and
random forest (RF) have been gradually applied to the field of traditional Chinese herbs in recent
years, such as Panax notoginseng, Dendrubium officinale, etc. [17,18]. Our previous studies have
demonstrated that all of these techniques have obtained better identification abilities for P. yunnanensis
from different geographical origins. Compared with chromatography, the better classification abilities,
more convenience, and time-saving techniques were displayed using spectroscopy techniques. To date,
combined with various analytical techniques, chemometrics methods have been successfully applied
to assess P. yunnanensis samples with better classification and identification abilities, including support
vector machine [19], RF [11,12], hierarchical cluster analysis (HCA) [10,12,20,21], PLS-DA [9,12,22],
and PCA [9,12,22]. However, they failed to analyze other parts of P. yunnanensis to fast assess their
quality, as well as comparing and combining rhizomes and leaves to identify P. yunnanensis from a variety
of geographical origins. Hence, the purpose of our study is to assess the quality of P. yunnanensis medicinal
materials by determining their rhizomes and leaves in FT-MIR spectra, combined with chemometrics.

In this study, to further obtain better, faster, and reliable identification methods for P. yunnanensis
raw materials from different geographical origins, we investigated P. yunnanensis samples from six
regions from Yunnan Province by FT-MIR spectroscopy, combined with four chemometrics methods,
including PCA, PLS-DA, RF, and HCA. The influence on the fast-quality assessment effects of different
parts, including leaves and rhizomes of P. yunnanensis were compared. The results may demonstrate the
importance of the leaves of P. yunnanensis, and they can provide direction for the future development
of P. yunnanensis medicinal plants.
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2. Results and Discussion

2.1. Comparison Analysis between Rhizomes and Leaves

The raw and SD FT-MIR spectra of rhizomes and leaves of P. yunnanensis samples from six
geographical regions are showed in Figure 1. The peaks height, character, and position among different
geographical origins samples are similarly shown in Figure 1a. Characteristic peaks appeared at
~3328 cm−1, and were assigned to O–H absorption, at ~2726, 1414, and 1370 cm−1 to methylene
and methyl stretching, and bending vibration. Absorption at ~1742 cm−1 was endorsed to C=O
stretching vibration, at ~1650 cm−1 it was attributed to C=C and C=O stretching vibration, which may
be attributed to oils, saccharides, steroid saponins, and flavonoids. Besides, absorption at ~1244 cm−1

was assigned to C–O stretching vibration, while ~1151, 1078, and 1020 cm−1 were endorsed to C–C,
C–O stretching vibration and C–OH bending vibration, as well as the main attribute to saccharides
and glycosides. Absorption at ~929 cm−1 was assigned to the sugar skeleton. These attributes for
characteristic peaks were in accordance with studies by Sun et al. and Yang et al. [23,24]. Absorption
at ~2855, 1547, 1340, 862, 765, 708, 611, and 580 cm−1 were also showed in these FT-MIR spectra.
Absorption at ~1650 cm−1 and ~1020 cm−1 were the key peaks among all absorption peaks of the
raw FT-MIR spectra of rhizomes. Additionally, many details of spectral information were shown by
standard normal variate–second derivative (SNV-SD) FT-MIR rhizomes spectra in Figure 1c. In detail,
among the peaks regions of 1200–900 cm−1, the peaks absorptions were at 1173, 1135, 1093, 1065, 1050,
1035, 996, 976, and 950 cm−1, which are not shown in the raw FT-MIR spectra of rhizomes.

Figure 1. The FT-MIR spectra of Kunming, Yuxi, Chuxiong, Dali, Lijiang, and Honghe, Yunnan:
(a) the raw spectra of rhizomes, (b) the raw spectra of leaves, (c) the best preprocessing spectra of
rhizomes, (d) the best preprocessing spectra of leaves.

The raw FT-MIR spectra of leaves showed different peak heights, characters and positions and
numbers of the characteristic peaks for those of rhizomes, which are shown in Figure 1b. Compared
with the raw rhizomes FT-MIR spectra, absorption for the raw leaves spectra exhibited a red-shift at
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1750–1290 cm−1, and a blue-shift at 1290–950 cm−1. In other words, various differences of chemical
information was reflected by the raw rhizomes and leaf FT-MIR spectra. Similar to the raw rhizome
FT-MIR spectra, the absorption was mainly attributed to oils, saccharides, steroid saponins, flavonoids
saccharides, and glycosides. Namely, absorption at 1602 cm−1 and 1053 cm−1 are the two key peaks
of the raw leaf FT-MIR spectra. Similarly, certain details from the spectral information are shown in
SNV-SD leaf FT-MIR spectra in Figure 1d. In detail, among peaks regions of 1200–900 cm−1, the peak
absorptions at 1187, 1124, 1088, 974, and 938 cm−1 are proven, which are not shown in the FT-MIR
spectra of raw leaves.

The PCA score plot and loading plot based on the total FT-MIR spectra are shown in Figure 2.
Besides, 72.9% and 17% FT-MIR spectra information were exhibited by PC 1 and PC 2, respectively.
Two parts (rhizomes and leaves) were well separated by the first two principal components (PCs) in
the PCA score plot. Absorption at 1300–550 cm−1 by PC 1 contributed to a higher importance than
that of PC 2. In other words, the bands of this region are more important to PC 2.

Figure 2. Principal component analysis (PCA) result based on Fourier transform mid infrared (FT-MIR)
spectra: (a) Score plot, (b) Loading plot.

2.2. Origin Traceability Based on Chemometrics

2.2.1. Using Rhizome FT-MIR Spectra Datasets

Raw FT-MIR rhizomes spectra were pretreated by SNV, standard normal variate-first-derivative
(SNV-FD), SNV-SD, and SD preprocessing methods, and to select the best pretreatment method.
All parameters for these pretreatment methods are shown in Table S1. Comparing parameters to
the raw FT-MIR spectra, all parameters are better after preprocessing. Among them, SNV-SD was
defined as the optimal preprocessing method for the fundamental for the larger values of cumulative
interpretation ability (R2), cumulative prediction ability (Q2), and accuracy of the calibration set, as
well as the lower values of the root mean square error of estimation (RMSEE) and the root mean square
error of cross-validation (RMSECV). Despite SD obtaining a better accuracy, SNV-SD obtained a lower
RMSEE, RMSECV, and latent variables (LVs). In our following study for rhizomes, models established
by raw and the best preprocessing (SNV-SD) FT-MIR spectra data will be compared.

The variable importance for the projection (VIP) scores for values greater than 1 of the raw
rhizome FT-MIR data are shown in Figure 3a. The regions of 1750–1500 cm−1 and 1200–750 cm−1 are
important variables regions for differentiating six geographical origins of P. yunnanensis by FT-MIR
spectra. The bonds at 1750–1500 cm−1 are mainly attributed to oils, saccharides, steroid saponins,
and flavonoids compounds. Besides, the bands at 1200–750 cm−1 are mainly endorsed to saccharides
and glycosides compounds. The two key peaks of raw rhizome FT-MIR spectra were contained in
these two bands. What’s more, there were also some peaks that were not clearly identified, and these
peaks are equally important for the identification of P. yunnanensis samples from different origins.
On the basis of the SNV-SD rhizome FT-MIR data, the VIP scores for values greater than 1 are shown
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in Figure 3b. The degrees of important variables regions from 1750–750 cm−1 seem to be similar in
importance for the differentiation of six geographical origins of P. yunnanensis by FT-MIR spectra.
It was further demonstrated that each peak was important for distinguishing P. yunnanensis samples
from different geographical origins.

Figure 3. Variable importance for the projection (VIP) scores of the FT-MIR data of rhizomes for
regional differences: (a) raw dataset, (b) standard normal variate–second derivative (SNV-SD) dataset.

RF models were established on raw and SNV-SD rhizome FT-MIR spectra data matrixes. The 1207
and 1202 variables were contained in raw and SNV-SD rhizome FT-MIR spectra datasets, respectively.
For the two RF models of raw and SNV-SD rhizomes FT-MIR spectra, the initial number of trees (ntree)
were set as 2000 trees. The suitable value of ntree was selected, based on the lowest total value, and the
need to be assured of the lower values of the most classes. The 1328–1392 trees and 650–740 trees
are the lowest ranges for ntree of raw and SNV-SD rhizomes datasets, respectively, which are shown
in Figure 4a,b. Besides, the optimal values 1383 and 951 trees were obtained for further selection of
the suitable number of variable (mtry) values of the RF models, based on raw and SNV-SD rhizomes
FT-MIR datasets, respectively. As shown in Figure 4c,d, the optimal mtry were calculated to be 33 and
36, according to the lowest out-of-bag (OOB) values for the raw and SNV-SD datasets, respectively.
The suitable ntree, combined with the optimal mtry, were used to select the most important variables.

To start with, all variables of the raw and SNV-SD datasets were sorted from the least important
variables, to the most important variables, respectively. The 10-fold cross validation error rates of the
RF model, based on raw and SNV-SD FT-MIR datasets of rhizomes P. yunnanensis samples are shown
in Figure 5a,b. It was reduced sequentially by five variables for each step for the initial variables of
1207 and 1202, for raw and SNV-SD datasets, respectively. In both the range of 1–1207 and 1–1202
variables numbers, all important variables were divided into three regions. Among these regions, the
10-fold cross validation error rate values showed a reduced or incremental trend. When the 10-fold
cross validation error rate shows a drop trend and then an upward trend, that number of variables at
the turning point is likely to be the optimal number for the most importance variables. Hence, variable
numbers of 207 and 292 with a lower than 10-fold cross validation error rate for 0.34202 and 0.08143
were selected, to establish the RF models of raw and SNV-SD rhizome FT-MIR spectra, respectively.
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Figure 4. The ntree and mtry screening of random forest (RF) models of P. yunnanensis samples
before variables ranked by permutation accuracy importance: (a) ntree of the raw rhizomes dataset,
(b) ntree of the SNV-SD rhizomes dataset, (c) mtry of the raw rhizomes dataset, (d) mtry of the SNV-SD
rhizomes dataset.

Figure 5. The 10-fold cross validation error rates of the RF model (sequentially reduce each five
variables) based on P. yunnanensis samples: (a) raw rhizomes dataset, (b) SNV-SD rhizomes dataset.

When the most important variables were re-selected, forming the new data matrix, it was
necessary for the reconstruction of optimal ntree and mtry values for raw and SNV-SD FT-MIR
spectra. The selecting process was the same as above. As shown in Figure 6, the 1011–1201 trees
and 788–880 trees are the lowest ranges for ntree of raw and SNV-SD rhizomes dataset, respectively.
Finally, 1110 and 820 trees are selected for the optimal ntree, as well as 19 and 26, are selected for
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the best mtry of raw and SNV-SD FT-MIR rhizome spectra of P. yunnanensis samples, respectively.
These optimal ntree and mtry were used to establish the RF model, and they obtained the accuracy of the
calibration set and the validation set, respectively. It is undeniable that the variable selection process is
important. The error rate for calibration set of raw datasets was reducing from 36.16% to 33.88%, and it
was decreasing from 10.42% to 8.79% for the SNV-SD dataset. In addition, the geographical origin
classification ability of the RF model, based on SNV-SD FT-MIR spectra of rhizome P. yunnanensis
samples, was significantly better than that of the raw spectra.

Figure 6. The ntree and mtry screening of RF models of the P. yunnanensis samples after variables are
ranked by permutation accuracy importance: (a) ntree of the raw rhizomes dataset, (b) ntree of the
SNV-SD rhizomes dataset, (c) mtry of the raw rhizomes dataset, (d) mtry of the SNV-SD rhizomes dataset.

The parameters for each class of calibration set and validation set of the PLS-DA and RF models,
based on raw and SNV-SD rhizomes FT-MIR spectra data matrixes, are shown in Table S2. The values
for all parameters of each class of calibration set and the validation set for the PLS-DA model, based on
raw FT-MIR data matrixes, were higher than that of the RF model, and they differ greatly. Additionally,
all parameters for the RF model based on SNV-SD FT-MIR data matrixes were greatly enhanced
and close to that of the PLS-DA model. Obviously, the parameters of two models for the SNV-SD
data matrixes based on FT-MIR spectra were higher than those of raw data matrixes. However, the
identification abilities and accuracy for two models based on rhizome FT-MIR spectra were needed
for improvement.
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2.2.2. Using Leaf FT-MIR Spectra Datasets

Raw leaf FT-MIR spectra dataset was preprocessed by SNV, SNV-FD, SNV-SD, and SD
preprocessing methods to select the best pretreatment method. All parameters for these four kinds
of preprocessing methods are displayed in Table S3. Similarity to rhizomes, all parameters for the
preprocessed model of FT-MIR spectra for leaves are better than those of the raw data matrix. Besides,
the SNV-SD pretreatment among all preprocessing methods was the best one for classifying the
different origins of P. yunnanensis leaf samples, which possessed values of R2, Q2, RMSEE, RMSECV,
accuracy and LVs that were more satisfactory than other pretreatment methods. For the following
study of leaves, models established by raw data, and the best pretreatment (SNV-SD) FT-MIR spectra
data were selected to study.

The VIP scores for values greater than 1 of the raw leaf FT-MIR data are shown in Figure S1a.
The region of 1800–1700 cm−1 is the most important variable region for differentiating six geographical
origins of P. yunnanensis by leaf FT-MIR spectra. The regions of 1700–1300 cm−1, 1250–1100 cm−1,
and 1200–750 cm−1 almost possessed equally important degrees for differentiating various geographical
origins of P. yunnanensis by leaf FT-MIR spectra. The bonds at these regions are also mainly assigned
to oils, saccharides, steroid saponins, and flavonoids, saccharides, and glycoside compounds. What’s
more, the number of important variables of leaf VIP scores were more than those of rhizome VIP scores,
which reflected the difference in chemical information in classifying P. yunnanensis samples from different
regions. Based on the SNV-SD leaf FT-MIR data, the VIP scores for values greater than 1 are displayed in
Figure S1b. Compared with the other three regions, variables important for the region of 1800–1700 cm−1

show greater importance. Similar, it was also demonstrated that each peak of leaf FT-MIR spectra was
important to distinguish P. yunnanensis samples from a variety of geographical origins. However, a
number of peaks were non-identified chemical compounds in the leaf FT-MIR spectra.

RF models were established on raw and SNV-SD leaf FT-MIR spectra datasets. To start with,
the 1207 and 1201 variables were contained in the raw and SNV-SD leaf FT-MIR spectra matrixes,
respectively. Similar to the rhizomes, the initial ntree were set as 2000 trees for the RF models of raw
and SNV-SD leaf FT-MIR spectra. As shown in Figure S2a,b, 947–961 trees and 980–1008 trees were
selected to be the lowest ranges for ntree of raw and SNV-SD leaf datasets, respectively. Additionally,
the optimal values of 951 and 982 trees were selected for further selection of the suitable mtry values of
RF models, based on raw and SNV-SD leaf FT-MIR datasets, respectively. As shown in Figure S2c,d,
the optimal mtry were calculated to be 42 and 31, respectively.

Like rhizomes, all variables of the raw and SNV-SD matrixes of leaves were ranked from to the
least important variables to the most important variables, respectively. The 10-fold cross-validation
error rates of the RF model, based on the raw and SNV-SD FT-MIR datasets of leaf P. yunnanensis
samples are shown in Figure S3a,b. In addition, in both the range of 1–1207 and 1–1201 variables
numbers, all important variables, were also divided into three regions. Moreover, variable numbers of
157 and 441 with lower than 10-fold cross validation error rates for 0.36808 and 0.02280 were selected
to establish the RF models of the raw and SNV-SD FT-MIR spectra, respectively. The 10-fold cross
validation error rate of the SNV-SD matrix was far below that of the raw dataset.

Similar to rhizomes, the most important variables were as the new data matrixes, and meanwhile,
the optimal ntree and mtry values for raw and SNV-SD datasets were re-selected, respectively.
The selection process was the same as above. As shown in Figure S4, the 1527–1607 trees and
898–966 trees were the lowest ranges for ntree of raw and SNV-SD leaf datasets, respectively. Then,
1570 and 900 trees were selected for the optimal ntree, as well as 18, and 18 were selected for the best
mtry of the raw and SNV-SD datasets, respectively. Furthermore, these optimal ntree and mtry were
used to establish high-performance RF models. The error rate for the calibration set of raw datasets
was reduced from 40.07% to 38.11%, and it decreased from 3.26% to 2.93% for the SNV-SD dataset.
In addition, not only was the geographical origin classification ability of the RF model based on SNV-SD
FT-MIR leaves spectra significantly better than that of the raw spectra, but higher performances were
also obtained by the RF models of leaves than those of rhizomes.

100



Molecules 2018, 23, 3343

Parameters of sensitivity (SENS), specificity (SPEC), accuracy (ACC), and the Matthews correlation
coefficient (MCC) for each class of calibration set and validation set of PLS-DA and RF model, based
on raw and SNV-SD leaf FT-MIR spectra data matrices are displayed in Table S4. Similar to the
performance of parameters for the models of rhizomes, the values for all parameters of each class
of calibration set and validation set for the PLS-DA model, based on raw leaf FT-MIR data matrices,
were higher than that of the RF model. The identification ability of the SNV-SD PLS-DA model of the
leaf data matrix almost reached the best ratings, and only samples collected from Yuxi and Dali were
misclassified. Additionally, all parameters of validation set for the RF model based on the SNV-SD
FT-MIR data matrixes were close, to the best, and only samples collected from Dali and Lijiang were
misclassified. Additionally, parameters of two models for the SNV-SD data matrices based on FT-MIR
spectra were higher than those of raw data matrixes. However, the classification performance for the
PLS-DA and RF models on the basis of the leaf FT-MIR spectra were required for enhancement.

2.3. Regional Differences between VIP and Important Variables

The VIP and important variables of the RF and PLS-DA models of P. yunnanensis samples are
displayed in Figure 7. In detail, Figure 7a,b are based on the raw FT-MIR spectra of rhizomes and
leaves, respectively. Figure 7c,d are based on the SNV-SD FT-MIR spectra of rhizomes and leaves,
respectively. The important variable numbers of the RF model of raw datasets for rhizomes and
leaves were far more than those of the SNV-SD RF models. The variables with VIP values greater
than 1 showed greater concentrations for several regions in the VIP scores based on raw rhizome
and leaf matrixes, than those of the VIP scores of the SNV-SD datasets. From a comparison of the
scatter of the most important variables between rhizomes and leaves, the number and distribution of
important variables are different. It was demonstrated that various and different chemical profiles
were contained between the rhizomes and leaves of P. yunnanensis. From the higher accuracy rate and
the more uniform distribution of important variables of rhizomes or leaves in the PLS-DA model than
those of rhizomes or leaves in the RF model, it was found that the PLS-DA was more suitable for the
identification of geographical origins for P. yunnanensis.

Figure 7. The importance variables (1) of RF models and the VIP values (2) of partial least squares
discriminant analysis (PLS-DA) models of the P. yunnanensis samples: (a) the raw rhizomes dataset,
(b) the raw leaves dataset, (c) the SNV-SD rhizomes dataset, (d) the SNV-SD leaves dataset.
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2.4. Data Fusion Strategy

Despite the high performance obtained by PLS-DA, and the RF classification models of leaves of
the FT-MIR spectra of P. yunnanensis samples, the 100% identification accuracy of the calibration set
and the validation set were not acquired, and models’ abilities needed further enhancement. Hence,
the data fusion strategy was used to further improve the prediction abilities of PLS-DA and RF models.
Data fusion were concatenated variables of FT-MIR spectra from different parts, forming a single
matrix where row numbers were the analyzed sample quantities, and columns consisted of variables.
In other words, the rhizome and leaf datasets were combined to establish the classification models.

The process for establishing the data fusion RF model was similar to the individual dataset.
RF models were established based on raw and SNV-SD data fusion FT-MIR spectra datasets. A total of
2414 and 2403 variables were contained in the two matrices, respectively. As shown in Figure S5a,b,
356–399 trees and 375–404 trees were the lowest ranges for ntree of raw and SNV-SD matrices,
respectively. Additionally, the optimal values of 377 and 393 trees were selected for further selection
of the suitable mtry values for raw and SNV-SD datasets, respectively. As shown in Figure S5c,d, the
optimal mtry were 51 and 18, respectively. Similar to the individual dataset, all variables were in
ascending order with importance. The 10-fold cross-validation error rates of the RF model for raw and
SNV-SD data fusion datasets are shown in Figure S6a,b, respectively. Additionally, variable numbers
of 69 and 288 with the lower 10-fold cross-validation error rates of 0.34853 and 0.02606 were selected
to establish the data fusion RF models. Besides, the most important variables were the new data
matrices, while re-selecting the optimal ntree and mtry values for raw and SNV-SD data fusion datasets,
respectively. As shown in Figure S7, the 1609–1660 trees and 98–125 trees were the lowest ranges for
ntree of the two datasets, respectively. Besides, 1652 and 104 trees, as well as 10 and 18, are selected
for the best ntree and mtry, respectively. Compared to the accuracy of the RF models between the raw
and SNV-SD data fusion matrixes, the error rate for the calibration set of the raw dataset decreased
from 37.46% to 37.13%, and decreased from 2.61% to 1.63% for the SNV-SD dataset. The classification
abilities in the rhizome and lead data fusion RF model were better than in the individual dataset
RF model.

From a comparison of parameters for SENS, SPEC, ACC, and MCC between the PLS-DA and RF
models, based on data fusion strategy, the PLS-DA model had a better classification ability than that of
the RF model. As shown in Table 1, the geographical origins identification abilities reached the best
of each class calibration set and validation set for the PLS-DA model of the SNV-SD FT-MIR spectra.
However, the parameter values were close to 100% for most classes of RF model. Hence, it could be
demonstrated that the PLS-DA model was more suitable for tracing the different geographical origins
of cultivated P. yunnanensis.

Table 1. The major parameters of PLS-DA and RF models of each class, based on the data fusion
SNV-SD FT-MIR spectra datasets of P. yunnanensis samples.

Preprocessing Set Classes a
PLS-DA RF

SENS SPEC ACC MCC SENS SPEC ACC MCC

SNV-SD

Calibration
set

1 1 1 1 1 1 0.996 0.997 0.987
2 1 1 1 1 0.984 0.996 0.993 0.98
3 1 1 1 1 0.975 1 0.997 0.986
4 1 1 1 1 0.951 0.992 0.987 0.944
5 1 1 1 1 0.9831 1 0.997 0.989
6 1 1 1 1 1 0.996 0.997 0.99

Validation
set

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 1 1 0.95 1 0.994 0.971
5 1 1 1 1 1 0.992 0.994 0.979
6 1 1 1 1 1 1 1 1

a 1: Kunming, 2: Yuxi, 3: Chuxiong, 4: Dali, 5: Lijiang, 6: Honghe. Sensitivity (SENS), specificity (SPEC), accuracy
(ACC) and the Matthews correlation coefficient (MCC).
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2.5. Hierarchical Clustering Analysis

HCA dendrograms based on average SNV-SD FT-MIR spectra datasets of rhizomes and leaves
of P. yunnanensis from different geographical origins are presented in Figure 8a,b, respectively. It is
obviously that all the six classes are grouping into two main clusters, both in the two HCA dendrograms.
However, the clustering results among Kunming, Yuxi, Chuxiong, Dali, Lijiang and Honghe were
obtained based on rhizomes and leaves FT-MIR spectral matrixes were different. As shown in Figure 9,
the altitude is decreasing gradually from Northwest Yunnan to Southeast Yunnan. In addition, the
two main clusters are influenced to some extent by the topography including altitude. Nevertheless,
Kunming was cluster with Honghe and Yuxi in HCA dendrograms based on rhizomes dataset but
cluster with Lijiang, Dali and Chuxiong of HCA plot based on leaves. It is demonstrated that the
different chemical information between rhizomes and leaves of P. yunnanensis were influenced on the
results of clustering.

Figure 8. Dendrograms resulting of hierarchical cluster analysis (HCA) based on six geographical
origins of P. yunnanensis samples: (a) the rhizomes dataset, (b) the leaves dataset.

Figure 9. Location distribution of cultivated P. yunnanensis samples in Kunming, Yuxi, Chuxiong, Dali,
Lijiang and Honghe, Yunnan Province.
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3. Materials and Methods

3.1. Plant Material Preparation

In our experiment, rhizomes and leaves of 462 cultivated P. yunnanensis samples were collected
from Kunming, Yuxi, Chuxiong, Dali, Lijiang, and Honghe cities in Yunnan Province; the collection
locations and detailed information are shown in Figure 9 and Table S5. All samples were identified
as P. polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz. by Professor Hang Jin (Institute of
Medicinal Plants, Yunnan Academy of Agricultural Sciences, China). To start with, the different
parts for each P. yunnanensis samples were separated and washed, then dried at 50 degrees Celsius.
In addition, both rhizome and leaf samples were sifted through 100 mesh sieves, and stored in a
relatively dry environment.

3.2. FT-MIR Spectral Acquisition

FT-MIR analysis uses a FTIR spectrometer with a DTGS detector equipped, combined with a
ZnSe attenuated total reflectance accessory (Perkin Elmer, Norwalk, CT, USA). The FT-MIR spectra
collection parameters and methods are referenced in our previous experiment [14]. The FT-MIR spectra
recorded ranges of 4000–550 cm−1 with 4 cm−1 resolution and 16 scans, both for rhizomes and leaves
of each of the P. yunnanensis samples. Three scans were repeated for all rhizomes and leaves samples.
Moreover, it was required that a relatively constant temperature and humidity was provided during
the assessment of the FT-MIR spectra.

3.3. Chemometrics Methods

3.3.1. Principal Component Analysis

PCA is an exploratory data analysis method and an unsupervised pattern recognition technique,
which seeks for the optimum data distribution in a multivariate space [25–27]. The fundamental of PCA
is that all the raw data are projected onto a two-dimensional sub-space, to ensure that information loss
is minimized. The higher the front PCs, the higher the proportion of important variables represented.
Generally, the first few PCs represent the most information. The first two or three PCs of all samples
can be shown in two- or three-dimensional scores plots, and they further show the regularities of
distribution for all the samples. Moreover, the relationship between the first two PCs and wave
numbers can be shown by the loading plot.

3.3.2. Partial Least Squares Discriminant Analysis

PLS-DA, a binary classification algorithm from 0 to 1, is based on the PLS algorithm, to add
category labels to achieve the effect of classification prediction, and it shows the relationship by
multivariate projection between independent and dependent variables, which are expressed by X and
Y, respectively [28,29]. Besides, LVs were one feature variable that were produced by an intermediate
process in the PLS-DA method [30]. LVs are useful for us to analyze the important variables and
information. The X matrix and target and important values in Y are more closely correlated than
the noise or unimportant values in Y. Additionally, the VIP plot summarizes the importance of the
variables, both to explain X, and to correlate to Y, meaning that variables with a VIP value greater
of than 1 are important; as well, those that are greater than 0.5 and less than 1 may be important,
depending on the circumstances. Hence, classifying samples by PLS-DA requires that variables possess
numbers that are greater than the classification sample numbers, and there should be some correlation
among the identified samples.

3.3.3. Random Forest

RF model, developed by Breiman in 2001, has been widely used to resolve classification problems
in the field of food, and so on [31,32]. The RF model is based on the assembly classification or

104



Molecules 2018, 23, 3343

regression trees algorithm, and it shows a higher ability to resolve binary classification or regression
issues [31]. The operational steps of the RF model can be roughly divided into the following five
steps. Firstly, a spectra dataset was separated into two parts according to the ratio of 2 to 1, by the
Kennard-stone (KS) algorithm by MATLAB 2017a (MathWorks, Natick, MA, USA) [33,34]. Two-thirds
of the dataset was assigned as the calibration set (bootstrap samples), and one-third as the validation
set (out-of-bag samples). The calibration set was used to obtain the optimal classification trees, and the
validation set was applied to evaluate the ability of the FR model. Besides, the initial values of ntree and
mtry were defined as 2000, and the square root of the number of all variables, respectively. The optimal
ntree and mtry were both selected according to the lowest OOB classification error values. Thirdly, the
most important variables were selected by a lower 10-fold cross-validation error rate, and as a new
data matrix reimport. Fourth, the optimal ntree and mtry were reselected according to the fundamental
of step 2. Finally, the establishment of the final RF discrimination model was performed by using the
optimized ntree and mtry parameters. Step two to five were completed by R package (version 4.6–14).

3.3.4. Hierarchical Cluster Analysis

HCA clusters different categories at a certain distance, according to the degree of similarity of
each class, which means that it could preliminarily identify a classification trend for each category [35].
Besides, the Person correlation coefficient was applied to measure the linear relationship between
the distance variables. These analyses were completed by SPSS 20.0 software (IBM Corp., Armonk,
NY, USA).

3.4. Data Analysis

The purpose of data analysis involves the reduction of the influence by noise and other factors from
experiments and instruments on the raw FT-MIR spectra data. Firstly, the raw FT-MIR spectra were
pretreated by advancing ATR (attenuated total reflection) correction, and absorbance was transformed
from transmittance by OMNIC 9.7.7 (Thermo Fisher Scientific, Madison, WI, USA). Secondly, the best
preprocessing method was selected among a combination of various pretreatment methods, including
SNV, FD and SD, which can enhance the accuracy and feasibility for identification study [36,37].
SNV and its derivatives could decrease a part of the irrelevant interferences, such as high frequency
random noise, the interference of light scattering, baseline drift, and unequal concentration, and so on,
to improve the classification ability of the models. All these preprocessing methods were completed
by SIMCA-P+ 13.0 (Umetrics, Umea, Sweden). The datasets were separated into a calibration set and
a validation set, with a rate of 2 to 1 by the KS algorithm, using MATLAB 2017a (The MathWorks),
which was also used to establish the PLS-DA and RF models. In other words, the FTIR spectra of
samples were divided into a calibration set (307 samples) and validation set (155 samples), as shown
in Table S6.

Generally, parameters including RMSEE, RMSECV, and the accuracy of calibration sets Q2 and
R2 were used to estimate the identification ability of the calibration model [38,39]. The optimal
preprocessing model required lower values of RMSEE and RMSECV, as well as higher values of
accuracy for the calibration sets R2 and Q2. Besides, the model may have poor robustness and
over-fitting when the values of the root mean square error of prediction (RMSEP) are greater than
that of RMSECV [12]. In addition, due to both the PLS-DA and RF models being able to obtain the
vote matrices, the two models could calculate the values of true negative (TN), true positive (TP),
false negative (FN), and false positive (FP), respectively. SENS (Equation (1)), SPEC (Equation (2)),
ACC (Equation (3)), and MCC (Equation (4)) were the four parameters for each class, resulting in
identification effects for different geographical origins of P. yunnanensis samples of PLS-DA and RF
models. Obviously, this led to the higher values of these four parameters and a better identification
ability for each class.

SENS =
TP

(TP + FN)
(1)
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SPEC =
TN

(TN + FP)
(2)

ACC =
(TN + TP)

(TP + TN + FP + FN)
(3)

MCC =
(TP × TN − FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

4. Conclusions

In our article, the geographical origin identification of 462 P. yunnanensis samples from Kunming,
Yuxi, Chuxiong, Lijiang, Dali, and Honghe were analyzed by rhizome and leaf FT-MIR spectra,
combined with PLS-DA, RF, and HCA methods. The chemical information differences between
rhizomes and leaves were directly displayed on the FT-MIR spectra and the results of models. PLS-DA
was more suitable for use in classifying the different geographical origins of P. yunnanensis than the RF
model, in that it had the best identification ability and more uniformly distributed important variables.
Besides, the order of classification ability from strong to weak is the data fusion dataset > leaves
dataset > rhizomes dataset, which means that leaves can be used quickly and accurately to identify
the geographical origin of P. yunnanensis, and more comprehensive information can be showed by
multiple sources of chemical information.

Supplementary Materials: The following are available online. Figure S1: VIP scores of FT-MIR data of leaves
for regional differences, Figure S2: The ntree and mtry screening of RF models of P. yunnanensis samples before
variables are ranked by permutation accuracy importance, Figure S3: The 10-fold cross validation error rates of
the RF model (sequentially reduced each five variables), based on P. yunnanensis samples, Figure S4: The ntree
and mtry screening of RF models of P. yunnanensis samples after variables are ranked by permutation accuracy
importance, Figure S5: The ntree and mtry screening of RF models of P. yunnanensis samples before variables are
ranked by permutation accuracy importance, Figure S6: The 10-fold cross validation error rates of the RF model
(sequentially reduced each five variables) based on P. yunnanensis samples, Figure S7: The ntree and mtry screening
of RF models of P. yunnanensis samples after variables are ranked by permutation accuracy importance.
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Abstract: Biogenic silica is the major component of the external skeleton of marine micro-organisms,
such as diatoms, which, after the organisms death, settle down onto the seabed. These micro-organisms
are involved in the CO2 cycle because they remove it from the atmosphere through photosynthesis.
The biogenic silica content in marine sediments, therefore, is an indicator of primary productivity in
present and past epochs, which is useful to study the CO2 trends. Quantification of biosilica
in sediments is traditionally carried out by wet chemistry followed by spectrophotometry, a
time-consuming analytical method that, besides being destructive, is affected by a strong risk
of analytical biases owing to the dissolution of other silicatic components in the mineral matrix. In the
present work, the biosilica content was directly evaluated in sediment samples, without chemically
altering them, by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy.
Quantification was performed by combining the multivariate standard addition method (MSAM)
with the net analyte signal (NAS) procedure to solve the strong matrix effect of sediment samples.
Twenty-one sediment samples from a sediment core and one reference standard sample were analyzed,
and the results (extrapolated concentrations) were found to be comparable to those obtained by the
traditional wet method, thus demonstrating the feasibility of the ATR-FTIR-MSAM-NAS approach as
an alternative method for the quantification of biosilica. Future developments will cover in depth
investigation on biosilica from other biogenic sources, the extension of the method to sediments of
other provenance, and the use higher resolution IR spectrometers.

Keywords: diatoms; biogenic silica; ATR-FTIR; chemometrics; NAS

1. Introduction

In the present work, we introduce an innovative and non-destructive method for the quantification
of biogenic silica in marine sediments through the use of infrared spectroscopy combined with
chemometrics. The proposed method was applied to sediment samples coming from Terra Nova
Bay, Antarctica.

Antarctica is a unique natural laboratory because it is the coldest, driest, highest, windiest, and
most isolated continent. Therefore, it is almost unaffected by anthropogenic influence [1]. The Southern
Ocean allows the diffusion of atmospheric carbon dioxide into the deep sea, which is partially used by
sea plants for growth and for the production of organic matter [2]. Therefore, this region is one of the
most important for the study of climate changes and conditions of the ocean [3].
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In particular, an important tool to control the chemical composition of seawater and to reconstruct
paleo-ocean conditions is represented by marine sediments, which are a reservoir and a sink of
chemical species involved and cycled in the marine food chain [1]. Among nutrients, silicon is an
essential element in the ocean ecosystems, because it is responsible for the growth of Radiolaria,
Sponges, Phaeodaria, and particularly Diatoms, which represent a major portion of planktonic primary
producers [4]. Diatoms are planktonic unicellular microalgae, known to form an external skeleton
called frustule, constituted by amorphous silica and organic components (usually including long-chain
polyamines and silaffins) [5,6]. After their death, the diatom siliceous skeleton settles down through
the water column. The extent of diatom deposition in the sediments will be a function of the sea bottom
depth and of the degree of solubilization of opal silica in the water column [7]. Siliceous microfossils,
therefore, can represent a large part of the mass of biogenic sediments accumulating on the deep-sea
floor [8].

In the whole Southern Ocean, the Ross Sea is the region of the most widely extensive algal
blooms, usually initiating in the Ross Sea polynya [9], an ice-free area of enhanced bio-productivity
that can be considered as a biological “hot spot” compared with the surrounding waters. This area
extends to the open sea surface as soon as the austral summer develops and the sea ice melts [10,11].
It plays a key climatic role on a global scale. Indeed, the Ross Sea is one of the main sink areas for
the tropospheric CO2, widely contributing to counterbalancing its budget and the associated role in
climate change [12,13]. In the western Ross Sea, the polynya of Terra Nova Bay (TNB) is an area of
high accumulation of biogenic silica in the sediments [14,15].

Biogenic silica (BSi) content in marine sediment can be considered as a good proxy to characterize
the bio-productivity of the Southern Ocean [16,17]. However, the quantification of BSi is complicated
by the presence of lithogenic silica, which is chemically equivalent to BSi (SiO2), with the only
difference being crystalline, while BSi is amorphous. Several methods have been proposed to estimate
BSi in marine sediments: (1) X-ray diffraction after the conversion of opal to cristobalite at a high
temperature [18]; (2) direct X-ray diffraction of amorphous silica [19]; (3) direct infrared spectroscopy
of amorphous opal [20]; (4) elemental partitioning of sediment chemistry [21,22]; (5) microfossil
counts [23,24]; and (6) several wet-alkaline extraction methods [7,25,26].

Among the above-mentioned techniques, the wet alkaline methods are the most popular because
they are the most sensitive techniques for BSi assessment. According to these methods, BSi is extracted
and distinguished from lithogenic silica based on hot alkaline solutions [7]. Wet methods exploit a
different rate of dissolution of lithogenic and biogenic silica in alkaline solution, with BSi dissolving
more quickly than the mineral component. Solubilized BSi can, therefore, be collected in the supernatant
of the solution, and subsequently determined by spectrophotometry. Such separations are extremely
demanding and time-consuming, and above all, they do not ensure the quantitative recovery of BSi,
owing to inherent systematic problems; that is, dependence on matrix effects, incomplete opal recovery,
and contamination by non-biogenic silica [17,23].

The increasing success of chemometric tools applied to basic spectrophotometric techniques
such as Fourier transform infrared (FTIR), together with the compelling need for understanding
key biogeochemical processes of global importance, have recently inspired the introduction of an
alternative approach to solve the problem of BSi assessment. In particular, FTIR spectroscopy has been
applied to lacustrine sediments for the analysis of silica and other minerals by Rosén et al. [27,28].
Vogel et al. and Rosén et al. [29,30] showed that FTIR spectroscopy in the mid-infrared region is highly
sensitive to chemical components present in minerogenic and organic material, such as sediments; this
fact provides an efficient tool for quali- and quantitative characterization of these fundamental, but
complex environmental matrices.

Moreover, a method based on attenuated total reflectance (ATR)-FTIR measurements has also been
proposed in the literature to quantify inorganic components in marine sediments [31,32]. ATR-FTIR
spectroscopy is particularly appealing for the analysis of sediments because no chemical sample
pre-treatment is required: it may in principle by-pass all the drawbacks of the wet-chemical method;
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moreover, it works with small amounts of sample material (0.05–0.1 g, dry weight) and it is rapid,
inexpensive, and efficient. Besides, ATR-FTIR is a non-destructive method, allowing to recover the
sample for further analyses, and it can be carried out even off the lab.

In the present work, we developed and present an analytical method based on ATR-FTIR for the
quantitative determination of biosilica content in marine sediments. The feasibility of the method was
evaluated by quantifying BSi in a series of sediment samples collected in the Ross Sea. Optimization
of the experimental procedures such as the drying process, homogenization, and deposition of the
sample on the ATR crystal are discussed in detail, in order to provide a reliable background useful
to solve reproducibility problems, which may constitute a drawback of such a simple instrumental
approach. Furthermore, the strong matrix effect intrinsic to environmental samples is faced and solved
by applying a multivariate standard addition method (MSAM) [33], improved by net analyte signal
(NAS) computation [34,35].

2. Results and Discussion

2.1. ATR Spectra

For each of the 22 analyzed sediment samples (21 coming from Mooring D and one 53%w/w
reference standard), four standard-added (add.x) samples were prepared: the zero-added sample
(add.0) is the pure sample, add.1 has an added concentration of diatomite at 5%w/w, add.2 at 10%w/w,
and add.3 at 15%w/w. All added samples (and a pure diatomite sample) were analyzed by ATR-FTIR.

In the ATR spectra of marine sediments, the contribution of silica, both biogenic and lithogenic, is
dominant. Such spectra exhibit four characteristic vibrational bands. The two main bands at 1100 and
471 cm−1 are attributed to triply degenerated stretching and bending vibration modes, respectively, of
the [SiO4] tetrahedron [36]. The band at 800 cm−1 corresponds to an inter-tetrahedral Si–O–Si bending
vibration mode, and the band near 945 cm−1 to an Si–OH vibration mode [37]. Previous studies
have shown that the absorbance centered around 1640 cm−1 and between 3000 and 3750 cm−1 can
be attributed to hydroxyl vibrations because hydroxyl ions are major constituents of clay minerals,
opal, and organic compounds present in marine sediments [38]. However, these bands are not specific
for silica, their intensity is generally low (about one-tenth of the main band); moreover, they are
overlapped with the residual absorption bands of H2O. Therefore, to reduce the noise in the spectral
data acquired, we decided to discard the IR region between 4000 and 1300 cm−1 and to apply the
chemometric procedure only in the region between 1300 and 400 cm−1.

Figure 1 shows the raw spectra of sample D10 (as an example of the spectra obtained for all
sediment samples) and the replicates of a pure-diatomite sample. In Figure 1a, spectra obtained by
instrumental analysis are shown, while Figure 1b highlights the effect of the spectral pre-treatments:
uninformative-band removal and MSC.

On the spectra reported in Figure 1b, the two chemometric procedures described in Section 3.4
were carried out for all sediment samples, and the results are reported in Table 1. The expected values
reported in Table 1 are the BSi concentrations obtained by wet analyses that were carried out only on
five sediment samples (and on 53%w/w-standard): D4, D6, D9, D18, and D21.
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Figure 1. (a) ATR raw spectra of sample D10, as obtained from the spectrophotometer; (b) the same
spectra after band removal (discarding the IR range 4000–1300 cm−1) and after multiplicative scatter
correction (MSC) pre-treatment. “add.” in the legends indicates standard added samples.

Table 1. Net analyte signal (NAS) results for the two pre-processing methods. All the numbers are
formatted with three significant digits to allow for a detailed comparison. LoD, limit of detection.

Procedure 1 Procedure 2

SAMPLE
CODE

Expected Value ±
Standard Deviation

(%w/w)

NAS Extr. C
(%w/w)

Standard
Deviation

R2 LoD
NAS Extr. C

(%w/w)
Standard
Deviation

R2 LoD

Std 53% 53 ± 3 53.6 6.02 0.992 1.01 50.2 2.74 0.988 7.76
D0 - 3.23 0.903 0.996 0.0265 8.64 3.01 0.956 2.39
D1 - 3.24 1.92 0.993 0.190 - - - -
D2 - 9.88 1.70 0.994 0.416 9.28 1.23 0.990 6.24
D3 - 7.55 0.315 0.993 0.743 8.40 0.436 0.999 4.08
D4 13 ± 2 12.0 1.16 0.988 0.469 12.8 2.01 0.988 3.58
D5 - 5.41 1.10 0.993 0.0214 5.38 1.75 0.995 2.88
D6 14 ± 2 14.2 1.54 0.989 0.00946 14.2 2.71 0.997 1.41
D7 - 5.87 1.27 0.999 0.646 - - - -
D8 - 9.45 0.671 0.993 0.380 - - - -
D9 8 ± 1 8.26 3.16 0.986 0.654 8.91 0.514 0.982 4.68
D10 - 12.0 1.18 0.997 0.515 12.1 2.12 0.995 0.267
D11 - 2.94 0.646 0.994 0.0666 3.84 0.803 0.993 1.76
D12 - - - - - 10.6 2.32 0.995 2.32
D13 - - - - - 3.72 1.81 0.987 3.82
D14 - 9.00 0.146 0.998 0.133 10.9 0.433 0.998 7.62
D15 - 3.25 0.184 0.993 0.0784 5.19 0.122 0.996 2.22
D16 - - - - - 5.63 1.38 0.989 3.60
D17 - 2.71 0.535 0.994 0.0647 13.7 1.41 0.984 1.93
D18 4.2 ± 0.6 4.80 1.67 0.996 0.0900 5.16 1.70 0.992 4.34
D19 - 4.04 0.332 0.998 0.0459 3.22 0.345 0.997 1.23
D20 - 2.36 0.535 0.999 0.610 4.26 1.19 0.991 8.46
D21 3.4 ± 0.5 3.12 1.86 0.998 0.653 4.12 0.296 0.993 3.93

2.2. Results: Procedure 1

To assess the reliability of the new methodology proposed here, the BSi results obtained here can
be compared to those achieved through the traditional wet method, taken as a reference. Table 1 shows
that the results obtained with Procedure 1 (band removal and MSC) are in good agreement with the
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expected values obtained when samples were analyzed with the wet method. Indeed, the confidence
intervals obtained for these five sediment samples by NAS are not significantly different from the ones
obtained by the wet method (at 0.05 significance). Also, the result obtained for the standard sample
(Std 53%w/w) is in agreement with the expected concentration. The coefficients R2 of the NAS standard
addition lines are all higher than 0.98, indicating a good correlation between added concentrations
(dependent variable) and the pseudo-univariate NAS values calculated by the chemometric procedure.
The LoD values are also very good, being, in general, in the order of magnitude of one-tenth (or even
lower) with respect to the corresponding extrapolated BSi concentration.

Moreover, Frignani et al. [15] reported that BSi concentration in surface sediments in this area is
usually relatively low, <10%w/w; the results obtained by NAS are in agreement with this consideration,
as D0, D1, D2, and D3 extrapolated concentrations are lower than the indicated value.

All these considerations confirm that NAS applied to ATR spectra of the standard added samples
can be a valuable and reliable alternative to the time-consuming wet method for the quantification of
BSi in marine sediments.

The main drawbacks concern the three samples for which no results were obtained: D12, D13,
and D16. In these cases, the NAS standard addition lines had, for all PLS-factors, either a negative
slope or intercept, giving negative extrapolated values, or not acceptable R2 (lower than 0.7), that
make any possible result unreliable. The reason for such behavior is still under study, but we can
hypothesize that there is still some source of noise in ATR analysis that was not taken into account,
although several precautions were taken during instrumental analyses, as described in Section 3.3. We,
therefore, decided to proceed with further chemometric assessments, also to test the hypothesis of a
possible defect in the NAS procedure.

2.3. Results: Procedure 2

As described in Section 3.4, a variable selection was carried out on baseline-corrected spectra.
Correlation loadings on PLS-factor 1 were used to select the most important variables to describe the
regression model. Although a different variable selection was carried out for each sediment sample,
not always giving the same variables, a general description of the selected IR bands can be drawn and
is resumed in Figure 2. High correlation loading values in the PLS-factor 1 are computed in the regions
of 1260–1060 cm−1, 830–800 cm−1, and 467–436 cm−1. These regions of the IR spectra correspond to the
characteristic SiO2 absorbance maxima as reported by Vogel et al. [29]. On these selected variables,
NAS computation was carried out and the results are reported in the last vertical section of Table 1.

Figure 2. Baseline-corrected ATR spectra of sample D10. Black lines indicate the variables considered
most important by partial least square (PLS) correlation loadings.
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Again, concentrations extrapolated by NAS are not significantly different from the “wet
method-based” values, with high R2 (>0.95). After the application of this second procedure (baseline
correction and variable selection before NAS), significant differences were detected only for D0 and
D17, which, in this case, also have a lower R2 compared with the other samples. In this case, some
problems arise from LoDs, which, in most cases, are comparable to the extrapolated value (and also
higher than that for D20). Such a drawback might, therefore, be because of the spectral pre-treatment;
in order to calculate LoD, a blank spectrum is necessary. However, such a blank spectrum has to be
pre-treated as all the other spectra, and in this case, it has to be baseline corrected. In this way, the
pre-treatment can likely produce some spikes in the blank spectrum (that is, a noisy signal oscillating
around the zero), thus affecting the computation of LoD.

The three samples that did not give results with the computation by Procedure 1 (D12, D13, and
D16) in this case have an acceptable extrapolated concentration. However, there are again three
samples (D1, D7, and D8) with no result. This strengthens the hypothesis of the presence of a noise
source that was not taken into account. Indeed, variable selection may reduce the noise present in the
whole spectrum, but, at the same time, if noise is present in the selected variables, its effect may be
enhanced. Therefore, the two chemometric methods presented in this work may be considered to be
complementary for this study.

3. Materials and Methods

3.1. Study Area

Sediment samples for the present study were collected in “mooring D” (or “site D”), which is
located in Antarctica, in the western sector of the Ross Sea continental shelf within the polynya of
Terra Nova Bay at 75◦06′ S and 164◦28′5′′ E (Figure 3). The box-core, from which the sediments were
collected, was sampled at a depth of 972 m during the 2003–2004 Italian PNRA (Programma Nazionale
di Ricerca in Antartide) Campaign [39], whose basis was situated in the “Mario Zucchelli” station.

Figure 3. Sampling site (Mooring D) in Terra Nova Bay, Antarctica.

In the Ross Sea, surface sediments are generally composed of unsorted ice-rafted debris, terrigenous
silts and clays, and siliceous and calcareous biogenic debris [40]. In site D, in particular, coarse
terrigenous deposits are predominant, owing to the proximity of Priestley, David, and Campbell
glaciers [15].
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3.2. Samples

The sediment collected in site D was sampled using a 1T Oceanic box corer. A sub core 22 cm
long was collected by means of a polyvinyl chloride (PVC) liner. The short core was subsampled
with a resolution of 1 cm [39]. Twenty-two sediment sections were thus obtained and named with a
two-digit code: a letter, “D”, indicating the sampling place; and a number, from 0 to 21, indicating
the core height, with D0 being the top, corresponding to the sediment surface. Sediments were then
stored at −21 ◦C in a polycarbonate Petri capsule and oven-dried at 50 ◦C just prior to the analyses.
The BSi content of five of these samples was also quantified by a wet method analysis, according to the
DeMaster method [7,15], thus providing some comparison values for the ATR analyses. In the absence
of a commercial certified reference material for BSi, the “internal reference standard” used in the Polar
Science Institute-National Research Council (CNR-ISP) laboratory was adopted for the purpose of this
paper. This sample consists of an Antarctic marine sediment analyzed repeatedly both in CNR and
other biogeochemical laboratories, resulting in a BSi content of (53 ± 3)%w/w and a remaining 47%w/w
of alkaline halide.

For the sake of readability, a flowchart concerning the sample preparation is reported in Figure 4.
Before sample preparation, all samples were manually ground in an agate mortar for approximately 15
min and heated in a ventilated oven at 105 ◦C for 1 h to remove atmospheric moisture. Afterward, each
sample was split into four aliquots, three of which were added with known amounts (5%w/w, 10%w/w,
15%w/w) of Diatomite (Celite® 545 AW, Sigma-Aldrich, Darmstadt, Germany), in order to apply the
multivariate standard addition method. The total weight of each standard-added sample was 200 mg.
Diatomite was chosen as a proxy of standard biogenic silica, because it is composed of frustulae of
biogenic silica, similar to what we wanted to quantify in marine sediments. Such a similarity was
visually evaluated by analyzing some samples with a scanning electron microscope (SEM) Philips 515B
(Philips, Amsterdam, Netherlands), equipped with an EDAX DX4 microanalytical device (EDAX Inc.,
Mahwah, NJ, USA). Figure 5 shows the pictures obtained by SEM. From Figure 5c,d, it can be seen that
samples D1 and D4 contain the same radiolaria present in the Diatomite (Figure 5a) used as a proxy
of BSi.

 

Figure 4. Sample preparation flowchart. ATR-FTIR, attenuated total reflection Fourier transform infrared.

To ensure better homogenization of the powders, a Mixer Mill “MM20” (Retsch Inc., Düsseldorf,
Germany) was used. Each added sample was placed in stainless steel cylinders of 1.5 mL volume
and left in the ball mill for 60 min at 20 Hz. Before the instrumental analysis, samples were kept in a
desiccator filled with silica gel to prevent the absorption of atmospheric moisture. Standard added
samples were then analyzed by ATR-FTIR spectroscopy.
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Figure 5. Scanning electron microscope (SEM) images of samples (a) pure diatomite; (b) 53% standard;
(c) D1 sample, which is characterized by the presence of both radiolaria and bulks of sedimentary
material; and (d) D4 sample.

3.3. ATR-FTIR Analysis

Attenuated total reflection spectra were collected using a Bruker ALPHA FT-IR spectrometer
(Brucker Optics GmbH, Billerica, MA, USA) equipped with a single-reflection diamond ATR accessory
(Bruker Platinum ATR, Billerica, MA, USA) with an approximately 0.6 mm × 0.6 mm active area and
a mercury–cadmium–telluride detector. Spectra were collected in the mid-IR range, 400–4000 cm−1,
with an optical resolution of 4 cm−1; the registered spectrum is the mean of 64 scans, executed in
3 min. For each sample aliquot, five replicate spectra were recorded to assess precision and ensure
the reproducibility of each sample. All measurements were performed at ambient conditions. Before
spectra acquisition, a background spectrum (air) was collected with the same operational parameters.
Such a background was automatically subtracted to each sample spectrum.

To optimize the analytical reproducibility, some precautions were taken for ATR analysis. Indeed,
it is widely reported in the literature how an imprecise sample preparation (especially drying process),
sample deposition, and instrumental calibration may cause poor instrumental repeatability and
accuracy, fundamental characteristics for quantification purposes [31,41]. For these reasons, a suitable
experimental protocol was developed and evaluated (Figure 4).

Before the instrumental analysis, samples were manually ground again for 5 min in an agate
mortar, in order to homogenize powder granulometry. Moreover, for each added sample, an aliquot
(53 mg) was carefully weighted and lodged in a steel ring of 1 cm in diameter, which was then placed
over the spectrophotometer probe. The same amount of material was taken for all the analyzed samples,
to maximize reproducibility and reduce scattering and other problems resulting from not optimal (or
not constant) contact between the sample and crystal. These problems become relevant in ATR analysis
when used for quantification purposes owing to the geometry of ATR irradiation and reflectance,
which need an accurate evaluation and the adoption of a suitable experimental protocol [42].
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3.4. Chemometrics

Prior to chemometric analysis, the five replicated spectra of each added sample were pre-treated
by multiplicative scatter correction (MSC) [43]. MSC allows the reduction of the effects of scattering
noise on IR spectra, increasing the reproducibility of sample replicates.

Subsequently, in order to calculate the BSi content in each sediment sample by MSAM, the NAS
procedure was applied [35,44]. NAS is a mathematical procedure that allows extracting, from a
multivariate signal (in this case, an ATR spectrum), that part of the signal that is only due to the
analyte, removing the other signals due to the other interfering species present in the matrix [35].
In this way, the multivariate problem can be reduced to a pseudo-univariate problem, whose results
can be obtained by a univariate treatment. NAS computations were performed as follows.

The NAS procedure starts from a partial least square (PLS) regression [45], using the ATR spectra
as independent variables (X) and the added concentrations vector as dependent one (y). The best
PLS-factor (A) has to be selected and the corresponding PLS-regression coefficient vector (bA) is used
to compute a projection matrix (H) as follows:

H = bA
(
bAbt

A

)−1
bt

A, (1)

where t indicates transpose and superscript “−1” indicates matrix inversion. H matrix is then used to
compute NAS vectors (x∗i ):

x∗i = Hxi, (2)

where xi are the rows of matrix X, which means samples of ATR spectra. Each calculated xi* corresponds
to the net signal (devoid of interfering signals) of each replicate of the added samples. The Euclidean
norms of such net signals can be then used as pseudo-univariate signals to compute a univariate
standard addition linear regression line, from which BSi concentration can be obtained by extrapolation.

The selection of the optimal PLS-factor (A) is a crucial point of the procedure, because, in most of
the cases, the final extrapolated concentration varies (also dramatically) while varying A. Therefore, A
was chosen (sample by sample) as the PLS-factor that optimizes both the PLS root mean squared error
(RMSE), by minimizing it, and the determination coefficient (R2) of the final pseudo-univariate line, by
maximizing it. When these two conditions were not simultaneously achievable for one PLS-factor,
A was chosen as the factor giving the best compromise between these two parameters, based on the
highest R2.

The standard deviations of the extrapolated concentration values were computed by the jackknife
method [46]. Once the optimal PLS-factor is selected, the jackknife procedure replicates the NAS
computation as many times as the number of objects (xi), each time keeping out one object. In this
way, i different extrapolated values are obtained for each NAS computation and the overall standard
deviation is estimated as the standard deviation of the jackknife-extrapolated values.

Limits of detection (LoDs) were computed collecting five replicates (the same number of the other
samples) of a blank spectrum (empty sample holder) and projecting them onto the NAS space by
Equation (2) as if they were real samples [47]. The so obtained NAS-blank signals were mediated to
obtain the vector ε, and the LoD was computed as follows [47]:

LoD = 3
‖ε‖
‖bA‖ , (3)

where ‖·‖ indicates the Euclidean norm.
The so far described procedure (Procedure 1) was applied to raw spectra, as they were obtained

from the spectrophotometer. This procedure gave reasonable results for the majority of the samples,
while it failed for three of them; in those cases, for all PLS-factors, the final NAS standard addition
line had either a negative slope or intercept, producing a negative extrapolated concentration. The
reason behind such behavior is still under evaluation. In order to obtain a result for each sediment
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sample, another chemometric procedure (Procedure 2) has thus been developed. Instead of using raw
spectra, a baseline correction was applied directly by the software controlling the instrument, OPUS
v.7.2 (Bruker). MSC was applied to baseline-corrected spectra and, before NAS computation, a variable
selection was applied. For variable selection, another PLS regression was computed (previously to
the one used for NAS). Only factor 1, always retaining more than 95% of the explained variance, was
considered, and the variables giving correlation loadings [48] higher than 0.7 (in absolute value) were
retained as important. NAS computation was then applied only with these selected variables. The
standard deviations on the extrapolated values and LoDs were calculated as before.

MSC and variable selection pre-processing were performed by the software The Unscrambler
v.10.3 (CAMO, Olso, Norway), while NAS and jackknife procedures were computed by a homemade
code in R environment (R Core Team, Vienna, Austria).

4. Conclusions

In this study, we demonstrated the feasibility of a new approach for the quantification of biogenic
silica based on IR spectroscopy coupled with chemometrics. Biogenic silica content in marine sediments
from Terra Nova Bay in West Antarctica was evaluated with Fourier-transform infrared spectroscopy
in attenuated total reflection mode (ATR-FTIR). For quantification, the multivariate standard addition
method (MSAM) was applied, and the net analyte signal (NAS) procedure was used to solve the
problems deriving from the strong matrix effect affecting such analyses.

Twenty-one subsequent core samples and one reference standard were analyzed. Reliable
results were obtained, as observed from the comparison with homologous data from the traditional
wet method.

Some drawbacks remain. The chemometric procedure did not give acceptable results for some
samples, even if a variable selection was carried out. Moreover, the limits of detection, and perhaps
also standard deviations, are in some cases still too high.

However, it has to be taken into account that the quantification of biosilica, in this work, has been
carried out with an analytical technique (ATR) that has several intrinsic drawbacks when performing
quantitative analysis. In particular, owing to the optical behavior of photons at such low angles as in
ATR, extremely careful handling of samples and highly reproducible sample geometry are required
when analyzing powdered samples. Moreover, the analyzed samples are powders, which, despite
all the precautions taken before and during the analysis, can still have some problems concerning
homogeneity and granulometry. The BSi content was also evaluated in natural samples without any
chemical pre-treatment, thus its analytical signal may be strongly affected by the presence of lithogenic
silica, besides all the other species composing the sediments.

Considering all these aspects, the analytical and chemometric procedure presented in this
work, although requiring some more refinements, can be considered a promising alternative to the
traditional time-consuming wet method for the quantification of biosilica in marine sediments. In
paleolimnological research, the ATR-FTIR technique is seldom used. The results presented here, as well
as the fact that this method is fast and cost-effective, requiring only small quantities of sediment sample,
should encourage more researchers to use it. Moreover, marine sediments are precious samples, which
are difficult to collect; thus, a not-destructive method would be preferable to analyze them, although
ATR-FTIR cannot yet entirely replace conventional analytical tools in paleolimnology.
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Abstract: In this work, 10 chemometric models based on Raman spectroscopy were constructed
to predict the physicochemical properties of honey produced in the state of Campeche, Mexico.
The properties of honey studied were pH, moisture, total soluble solids (TSS), free acidity, lactonic
acidity, total acidity, electrical conductivity, Redox potential, hydroxymethylfurfural (HMF), and ash
content. These proprieties were obtained according to the methods described by the Association of
Official Analytical Chemists, Codex Alimentarius, and the International Honey Commission. For the
construction of the chemometric models, 189 honey samples were collected and analyzed in triplicate
using Raman spectroscopy to generate the matrix data [X], which were correlated with each of the
physicochemical properties [Y]. The predictive capacity of each model was determined by cross
validation and external validation, using the statistical parameters: standard error of calibration
(SEC), standard error of prediction (SEP), coefficient of determination of cross-validation (R2

cal),
coefficient of determination for external validation (R2

val), and Student’s t-test. The statistical results
indicated that the chemometric models satisfactorily predict the humidity, TSS, free acidity, lactonic
acidity, total acidity, and Redox potential. However, the models for electric conductivity and pH
presented an acceptable prediction capacity but not adequate to supply the conventional processes,
while the models for predicting ash content and HMF were not satisfactory. The developed models
represent a low-cost tool to analyze the quality of honey, and contribute significantly to increasing the
honey distribution and subsequently the economy of the region.

Keywords: quality control; Raman spectroscopy; honey; PLS regression models; physicochemical
parameters

1. Introduction

Honey is a natural product, and a complex solution elaborated by honey bees. It is mainly
composed of sugars (70–80%) and water (10–20%), and in minor quantities contains flavonoids,
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phenolic acids, vitamins, proteins, organic acids, lipids, carotenoids, minerals, and enzymes [1]. Honey
has been used since ancient times as a food supplement for humans. Additionally, due to its content
of phenolic compounds and flavones, it also has several beneficial health effects, which include
prebiotic, antimicrobial, anticarcinogenic, antioxidant, antihypertensive, antibacterial, antifungal,
anti-inflammatory, and analgesic effects [2–4]. The physical, chemical, and biological properties of
honey depend on the type of flowers visited by the honey bees, and the soil where the nectar and
pollen are collected. Other influences on its quality are the environmental and storage conditions, as
well as the processing for its commercialization [5]. Therefore, quality control of honey represents
an important concern for the beekeeping industry, since, on the one hand, it allows tracing of the
geographical and botanical origin of the pollen (designation of origin), and, on the other hand, it allows
identification of its possible adulteration during processing [6,7].

To classify and determine the honey’s quality, standards and methods have been established in the
Codex Alimentarious [8], International Honey Commission (IHC) [9], and the Association of Official
Analytical Chemists (AOAC) [10]. These standards specify the physical and chemical properties
that must be evaluated to determine the honey’s quality. The traditional method to perform quality
tests on honey involves the analysis of pollen grains contained in its sediments by light microscopy
(melissopalynology) [6]. Other methods reported in the literature include chromatography techniques,
stable carbon isotope radio analysis, and nuclear magnetic resonance [7,11]. The main drawbacks of all
of them are their high cost, time consuming nature, requirement for specialists, and furthermore the
fact that many of them are destructive. This has led to the development of analytical methods for the
authentication of honey. In this sense, spectroscopy technology combined with chemometric tools
represents a good alternative for the fast, reliable, and environmentally friendly quality control of
honey samples. The above is due to the development of calibration models that can determine the
concentration of a specific chemical species in a mixture of several components [12]. Among the most
common chemometric techniques used in honey analysis are Principal Component Analysis (PCA),
Hierarchical Clustering Analysis (HCA), Linear Discriminant Analysis (LDA), Partial Least Square
(PLS), and Principal Component Regression (PCR) [13].

From the spectrometric techniques available, Raman spectrometry has suitable characteristics for
food analysis, such as non-interference from water present in the sample with the Raman measurement,
ease of sampling and measurement, and minimal fluorescence interference of the sample matrix
variation. In recent years, analytic methods based on Raman spectrometry have been explored as an
economic and rapid option to determine honey’s destination of origin [14–17]. Corvucci et al. [14]
contrasted the ability to identify honey’s botanic origin using the melissopalynology technique
compared to Raman spectroscopy coupled with multivariable analysis (PCA). The study considered
honey samples from Italy, Eastern Europe, and Spain. According to the results, the discrimination
of honey origin given by the two first principal components was improved from 85% to 99% using
the analytical method. Frausto-Reyes et al. [15] determined the floral origin of honey produced by
Apis Mellifera, applying Raman spectroscopy together with PCA. The study used 66 samples of both
monofloral and polifloral honey collected from several regions of Mexico with different climate types.
The use of the chemometric approach was adequate to classify the origin of the sample and the purity
of the pollen with 90% accuracy. Jandrić et al. [16] presented a method for the authentication of
floral origin honey produced in New Zealand. They combined Raman spectrometry, near infrared
spectrometry, and Fourier-transform infrared spectroscopy for the analytical study of honey samples
in the range between 200 to 12,000 cm−1. This approach was completed with the use of PLS for
the development of chemometric models. The results showed a model fit (R2), a standard error of
calibration (SEC), and standard error of prediction (SEP) of 85.0%, 0.219 and 0.315, respectively. Oroian
and Ropciuc [17] applied Raman spectra analysis for the botanical authentication of 76 samples of
honey from Romania. The use of this analytic method combined with LDA proved to be an excellent
authentication tool, achieving 83.33% cross validation accuracy.
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Similarly, the literature reports the use of Raman spectra analysis coupled with multi-variable
modeling for the detection of external agents that affect the quality of honey [18–22]. Raman
spectroscopy and chemometric models have been used to predict the concentration of glucose, fructose,
sucrose, and maltose present in honey samples from Turkey and Greece [18]. The correlation between
quantified sugar levels and Raman spectra was performed using both PLS and artificial neural networks
(ANN). The statistical R2 for glucose, fructose, sucrose, and maltose were high, with 0.929, 0.930, 0.937,
and 0.893 for PLS and 0.930, 0.931, 0.956, and 0.913 for ANN, indicating that both chemometric tools
are efficient for the rapid analysis of sugar content. Oroian et al. [19] used Raman spectroscopy to
detect honey adulterated with sugars (glucose, fructose, inverter sugar, hydrolyzed inulin syrup, and
malt must). The study considered 900 samples with adulteration levels of 5, 10, 20, 30, 40, and 50%.
Authentication of honey purity concentration was performed using PLS and PCR. The chemometric
models developed showed good fit for both the calibration (R2

cal = 0.983) and validation (R2
val =

0.981) dataset, with low statistical errors (SEC = 0.009 and SEP = 0.103). Anjos et al. [20] evaluated the
potential of Raman spectroscopy in the prediction of the physicochemical composition of Lavandula
spp. monofloral honey. PLS models were used for the quantitative estimation, and the results were
correlated with the values obtained using reference methods. Chemometric models were used for pH,
sugar reduction, electrical conductivity, apparent sucrose, total phenol content, total flavonoid content,
proline, and total acids, achieving R2

cal in the range of 0.973–0.99, R2
val in the range of 0.833–0.99, SEC

in the range of 2.03–0.01, and SEP in the range of 1.71–0.01. In the study by Tahir et al. [21], Raman
spectroscopy combined with PLS were applied to predict phenolic compounds and antioxidant activity
in honey. It was found that the developed models based on Raman were superior to those established
using NIR spectra, with R2

cal and R2
val > 90%, SEC < 1.2, and SEP < 1.7. Raman spectroscopy, and

PLS-LDA modeling have also been used to determine the adulteration of Chinese honey with corn
syrup [22]. The analysis considered adulteration samples in the range of 10, 20, and 40%. An accuracy
prediction of 84.4% was obtained, indicating that combining PLS-LDA with Raman spectra is a potential
technique for the detection of impure agents in honey.

In this paper, a study is presented to determine the physical-chemical properties of honey from
the Mexican region of the Yucatan Peninsula. In this zone, beekeeping is an ancient activity, carried
out since the pre-Columbian era by Mesoamerican cultures like the Maya, who already produced
honey from apiaries with honey bees (Melipona beecheii) long before the arrival of the Spaniards [23].
After their conquest, the species Apis mellifera was introduced in Mexico, which proliferated and
dispersed throughout the country due to its higher yields of honey. Currently, the Yucatan Peninsula
(located in the south of the country and composed of the states of Yucatan, Campeche, and Quintana
Roo) is one of the most fruitful regions for the development of beekeeping activity. This region
is characterized by ecosystems with great flora diversity, producing nectars and pollen—many of
them endemic—that produce honey with unique organoleptic, physical, and chemical properties;
these characteristics make honey from this region very appreciated in national and international
markets [24]. In this sense, Mayan beekeepers from the Yucatan Peninsula contribute approximately
35% of the national production. In the state of Campeche, there are 4030 honey producers that
generate on average 5571 metric tons of honey per year; Campeche is the second honey producer
region nationwide, only surpassed by Yucatan. Of the total produced in this region, 95% is exported,
producing profits of up to 12 million US dollars and contributing to generating economic welfare for
Mayan beekeepers [25–27]. Thus, the introduction of fast and low-cost tools to analyze the quality
of the honey produced would contribute significantly to increasing distribution of this natural food,
benefiting local beekeepers and the local economy.

Therefore, due to the economic importance of honey production in the state of Campeche, Mexico,
the objective of this work was to develop chemometric models based on Raman spectroscopy for
the quantification of the following physical and chemical properties: pH, moisture, total soluble
solids (TSS), free acidity, lactonic acidity, total acidity, electrical conductivity (EC), Redox potential,
hydroxymethylfurfural (HMF), and ash content. These chemometric models represent useful tools

125



Molecules 2019, 24, 4091

for the quality control of honey produced in the state of Campeche, by quickly and economically
predicting the main physicochemical indicators.

2. Analysis of Results

2.1. Raman Analysis

Figure 1 shows that the Raman spectra obtained from the honey samples have spectral bands
which cover the ranges of 330–404, 404–440, 440–510, 510–595, 595–691, 691–752, 770– 820, 820–1024,
1024–1094, 1094–1191, 1191–1262, 1262–1300, and 1300–1460 cm−1:

• Spectral region between 230–510 cm−1 are related to stretching and bending vibrations of the C-O,
C-C-O and C-C-C that form the molecular structure of sugars [21].

• The region between 595–691 cm−1 is attributed to stretching vibrations of unsaturated rings
present in HMF, carotenes, flavones, flavonoids, and polyphenols [22].

• The peak found between 691–752 cm−1 is assigned to stretching vibrations of C-O and C-C-O, and
bending vibrations of O-C-O. On the other hand, the band between 770–917 cm−1 is a product of
the stretching vibrations of the C-C and C-H present in glucose [28].

• Regarding the bands between 820–1024 cm−1, these correspond to deformation vibrations of C-H
and methylene bonds –CH2–, as well as the bending vibrations of C-O-H [29].

• The peak present between 1024–1094 cm−1 is attributed to bending vibrations of the C-H and
C-O-H bonds of sugars, and bending vibrations of the C-N bonds of amino acids and proteins [30].

• The band between 1094–1191 cm−1 is assigned to stretching vibrations of the C-O, C-O-C bonds of
sugars, and the C-N bonds of proteins and amino acids [18].

• Finally, the spectral region between 1262–1300 cm−1 corresponds to vibrations of C-H and O-C-H,
while the spectral bands of 1300–1460 cm−1 are due to bending and wobble vibrations of the
functional groups CH and –OH [30].

Figure 1. Raman spectral footprints of the honey collected in the various locations of Campeche.

2.2. Chemometric Models

2.2.1. Chemometric Models to Predict pH, Free Acidity, Lactonic Acidity, and Total Acidity

The presence of organic acids, such as gluconic, phenolic, ascorbic, lactic, and metallic ions,
causes honey to be slightly acidic by nature. The acidity may be increased due to chemical and
biochemical changes that take place in the honey. For example, the glucose oxidase enzyme is capable
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of transforming glucose into gluconic acid; on the other hand, the ions of the alkaline earth elements
can react to form phosphates, sulfates, and chlorides, as well as transform lactone into lactic acid [31].
To measure these chemical changes in honey, in the Codex Alimentarius [8], the pH, free acidity,
lactonic acidity, and total acidity were established as quality control criteria. In this sense, free acidity
is related to the concentration of organic acids in honey, where a maximum value of 50 meq kg−1 is
established by the Codex Alimentarius.

Table 1 lists the values of the 10 physicochemical parameters determined for honey samples from
the municipalities of the state of Campeche. As reported in the table, the pH of honey samples were in
the range of 3.49 to 5.2, within the limit established by the Codex Alimentarius (minimum 3.40 and
maximum 6.10). The minimum and maximum values of free acidity were detected between 22.5 and
35.1 meq kg−1, 4.15 y 9.45 meq kg−1 for lactonic acidity, and 28.67 a 38.28 meq kg−1 for total acidity.
According to this, the values of the total acidity present in honey samples agree with the provisions of
the Codex Alimentarius, indicating that the honey collected did not show significant degradation.

Table 1. Results obtained for the different physical and chemical parameters of honey from the
municipalities of the state of Campeche.

Property Mean ± σ Minimum Maximum Mean ± σ Minimum Maximum

Calakmul Calkini

pH 4.01 ± 0.23 3.66 5.11 4.08 ± 0.17 3.80 4.77
Free acidity 21.16 ± 5.03 8.12 32.53 19.79 ± 3.03 15.52 25.51

Lactonic acidity 2.96 ± 1.001 1.23 5.78 2.77 ± 0.84 1.47 4.27
Total acidity 24.17 ± 5.44 11.55 36.78 22.51 ± 3.31 18.25 28.67

Electric conductivity 0.58 ± 0.08 0.35 0.69 0.61 ± 0.05 0.49 0.68
Redox potential 181.94 ± 13.91 133.1 207.2 173.54 ± 8.87 161.6 198.1

Moisture 14.98 ± 1.42 11.81 17.66 12.21 ± 2.27 12.29 16.66
TSS 85.02 ± 1.41 82.37 88.19 85.79 ± 1.09 83.34 87.71

Ash content 0.14 ± 0.06 0.018 0.42 0.143 ± 0.14 0.09 0.21
HMF 2.87 ± 1.33 1.27 5.89 2.31 ± 0.75 1.46 4.35

Campeche Carmen

pH 3.95 ± 0.16 3.49 4.18 3.97 ± 0.14 3.64 4.25
Free acidity 17.03 ± 3.52 12.39 26.1 21.22 ± 4.19 8.01 28.53

Lactonic acidity 2.51 ± 0.68 1.47 4.15 3.09 ± 1.08 1.23 5.78
Total acidity 19.53 ± 3.81 14.17 29.65 24.32 ± 4.41 11.45 31.34

Electric conductivity 0.48 ± 0.08 0.28 0.69 0.57 ± 0.08 0.35 0.69
Redox potential 177.49 ± 9.89 151.3 204.2 186.23 ± 8.41 170.1 207.4

Moisture 15.25 ± 3.11 12.76 24.6 15.02 ± 1.53 11.81 17.66
TSS 84.74 ± 3.11 75.42 87.24 84.98 ± 1.53 82.34 88.19

Ash content 0.13 ± 0.018 0.08 0.16 0.14 ± 0.09 0.02 0.88
HMF 2.12 ± 0.46 1.52 3.53 2.98 ± 1.43 1.27 5.89

Champotón Escarcega

pH 3.78 ± 0.18 3.55 4.23 3.85 ± 0.17 3.62 4.31
Free acidity 22.81 ± 4.26 11.9 32.5 22.72 ± 5.11 13.5 31.5

Lactonic acidity 3.59 ± 0.78 2.37 5.98 3.51 ± 0.62 1.78 4.37
Total acidity 26.41 ± 4.47 17.01 38.28 26.23 ± 5.13 17.07 35.59

Electric conductivity 0.54 ± 0.11 0.36 0.69 0.58 ± 0.12 0.35 0.755
Redox potential 189.03 ± 11.39 165.4 202.6 172.52 ± 9.38 146.1 185.8

Moisture 16.9 ± 3.11 13.32 25.81 15.16 ± 0.88 13.65 16.89
TSS 83.01 ± 3.11 74.2 86.36 84.83 ± 0.88 83.11 86.35

Ash content 0.14 ± 0.03 0.11 0.17 0.13 ± 0.02 0.068 0.18
HMF 3.34 ± 1.32 1.57 6.39 2.34 ± 1.44 1.57 4.89

Hecelchacan Hopelchén

pH 4.09 ± 0.09 3.91 4.21 4.34 ± 0.42 3.51 5.2
Free acidity 17.78 ± 3.06 16.85 22.5 16.64 ± 6.95 6.5 35.1

Lactonic acidity 5.14 ± 2.48 3.19 9.45 3.44 ± 0.91 1.67 5.92
Total acidity 22.93 ± 5.41 21.07 31.95 20.08 ± 6.82 10.41 37.77

Electric conductivity 0.61 ± 0.056 0.51 0.659 0.59 ± 0.08 0.44 0.71

Redox potential 177.49 ± 14.34 167.5 202.1 153.93 ±
22.21 105.6 198.2

Moisture 17.09 ± 3.19 15.17 22.67 14.72 ± 1.23 12.43 17.4
TSS 82.85 ± 3.16 77.33 85.45 85.27 ± 1.23 82.6 87.57

Ash content 0.13 ± 0.015 0.11 0.14 0.14 ± 0.03 0.05 0.21
HMF 2.89 ± 0.265 2.39 3.27 3.18 ± 0.95 1.56 5.78
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The variability in the pH, free acidity, lactonic acidity, and total acidity is represented in Table 1 by
the standard deviation (σ). In this sense, the honey samples with the highest pH standard deviation
were those from the municipalities of Calakmul and Holpechen, with ±0.23 and ±0.42, respectively.
This variability is attributed to the diversity of melliferous flora present in the region (Figure 1),
which belongs to the Calakmul biosphere reserve and houses more than 150 melliferous flowers,
with important differences in their chemical composition [24,25]. On the other hand, honey samples
that presented higher pH values (4.18–5.2) correspond to productions from the Tajonal and Mangle
Negro plants, characterized by a higher concentration of sodium chloride. The Tajonal is a plant widely
distributed in the state of Campeche, which is adapted to alkaline soils and is capable of growing
near coastal areas, where a sea breeze is deposited on the flowers. Likewise, Mangle Negro grow
in the coastal zone, on the banks of lagoons and estuaries that contain waters with high salinity;
this contributes to the fresh honey from these flowers having low acidity due to the presence of
sodium chloride.

Regarding total acidity, this presents standard deviations of ±5.44 meq kg−1 for honey samples
from Calakmul and ±6.82 meq kg−1 in honey from Hopelchen. The free acidity for honey from the
municipalities of Carmen has standard deviations ±4.41 meq kg−1 and ±4.47 meq kg−1 for those of
Champotón, and ±5.13 meq kg−1 for Escarcega. The municipalities of Carmen, Champotón, and
Escarcega are geographically are located in the west of the state of Campeche, a region characterized
by lagoons, wetlands, rivers and estuaries that are conducive to the growth of melliferous plants
such as Arbol de tinto, Pucté, Mangle, Cascarillo, and Ja’abin, among others. The honey of these
floral species has a higher moisture content, which favors honey fermentation. On the other hand,
the Hecelchacan honey samples showed a standard deviation of ±5.41 meq·kg−1. This variability is
attributed to the predominance in this region of melipona honey, which by its nature usually contains
water concentrations above 20%, favoring the formation of organic acids by biochemical reactions.

Based on the measurements obtained, chemometric models were created to predict pH, free acidity,
lactonic acidity, and total acidity. Figure 2 shows the predictive behavior of the models, while Table 2
contains their statistical performances. The calibration model to predict the pH in honey of the state of
Campeche exhibits a standard error of calibration SEC = 0.86 and standard error of prediction SEP =
0.18; likewise, it presents acceptable values for the coefficient correlation of calibration (R2

cal = 0.92)
and the coefficient correlation of validation (R2

val = 0.74). These statistical values show that the
chemometric model has an acceptable ability to predict the pH in honey. On the other hand, Student’s
t-test with paired data at 95% confidence obtained tc = 0.95, within the established confidence interval
(tv = ±1.65). Therefore, the chemometric model based on Near Infrared Spectroscopy (NIRS) has a
good reliability but not enough to substitute the standardized method. The statistical values obtained
in this work are similar to those reported by Cozzolino et al. [32], who obtained a chemometric model
using Vis-NIRS spectroscopy to predict the pH of honey in Uruguay. They also reported values of
SEC = 0.13, SEP = 0.21, R2

cal = 0.88, and R2
val = 0.70. On the other hand, Anjos et al. [20] reported

statistical values of SEC = 0.12, SEP = 0.09, R2
val = 0.83, and R2

cal = 0.98 for a calibration model based
on the FT-Raman spectroscopy used to predict the humidity percentage in Portuguese honey.

The chemometric model for predicting free acidity presented a standard error of calibration
(SEC = 1.02), a standard error of prediction (SEP = 1.47), coefficient correlation of calibration
(R2

cal = 0.98, and coefficient correlation of validation (R2
val = 0.94). These results indicate that

the chemometric model successfully predicts the concentration of honey’s free acidity. The Student’s
t-test of paired data (tc = 0.64) for free acidity is within the confidence interval (tv = ±1.65), indicating
that there are no differences in the prediction capacity of the developed chemometric model with
respect to the standard method established in the Codex Alimentarius [8]. In previous studies,
such as the one carried out by Ruoff et al. [33], the following statistical values were reported for a
chemometric model based on NIRS spectroscopy to predict free acidity in Swiss honey: a standard
error of calibration (SEC = 2.01), standard error of prediction (SEP = 2.0), and coefficient correlation of
validation (R2

val = 0.737).
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Table 2. Values of the statistical parameters obtained in cross-validation and external validation to
determine the capacity predictability of each chemometric model.

Properties Units Calibration LVs SEC R2
cal Validation LVs SEP R2

val

pH - 5 0.86 0.92 4 0.18 0.743
Free acidity meq kg−1 6 1.02 0.98 6 1.47 0.935

Lactonic acidity meq kg−1 6 0.37 0.94 7 0.41 0.911
Total acidity Meq kg−1 6 1.08 0.98 4 1.23 0.897

Electrical conductivity mS cm−1 6 0.46 0.87 4 0.85 0.79
Redox potential mV 7 1.06 0.99 8 1.48 0.95

Moisture % 6 0.42 0.98 9 0.52 0.95
TSS % 6 0.58 0.92 6 1.32 0.87

Ash content % 6 1.21 0.78 6 2.54 0.21
HMF mg kg−1 7 0.76 0.82 8 1.73 0.63

With regards to the chemometric model for predicting lactonic acidity in Campechean honey,
it showed good predictive capacity, since the values of cross-validation and external validation, along
with the standard error of calibration and standard error of prediction, were small (SEC = 0.37;
SEP = 0.41), with the following coefficient correlation of calibration and coefficient correlation of
validation (R2

cal = 0.94; R2
val = 0.91). For the Student’s t-test of paired data (tc = 0.69) at 95% confidence,

the value obtained is in the confidence interval (tv = ±1.65), so there are no differences in the prediction
capacity of lactonic acidity between the obtained chemometric model and the standard method [8].

Finally, the chemometric model to predict total acidity in Campeche honey showed a high
coefficient correlation in the cross-validation (R2

cal = 0.98) and coefficient correlation in the external
validation (R2

val = 0.89), as well as low values of standard error of calibration (SEC = 1.18) and standard
error of external validation (SEP = 1.23). Moreover, the Student’s t-test of paired data (tc = 0.75) is in
the confidence interval (tv = ± 1.65), which demonstrates that the chemometric model is as reliable as
the standardized method. Comparing the obtained results with those reported by Anjos et al. [20] for
an FT-Raman spectroscopy calibration model to predict the acidity total in Portuguese honey, similar
values were observed (SEC = 0.22; SEP = 0.28; R2

cal = 0.99; R2
val = 0.99).

In Figure 2, it can be seen that the experimental data of the pH, free acidity, lactonic acidity, and
total acidity of the honey samples show a certain degree of dispersion compared to the chemometric
model predictions. This can be attributed to the following factors: first, in the state of Campeche,
several tropical forests are located that give rise to a great diversity of honey blooms; previous works
have identified more than 150 blooms in the area of study [24–26]. Thus, the honeys produced in
the region are multifloral, giving rise to a wide variety of physical and chemical properties. Second,
the geographical origins where the honey samples were collected—specifically in the east of the state of
Campeche, in the municipalities of Carmen, Palizada, Escarcega, and Champotón—are characterized
by the presence of rivers, lagoons, wetlands, and swamps. These soils are rich in organic matter and
have an acidic pH, which contribute to the development of a great diversity of melliferous flora, such
as: Tahonal, Ja’abin, Pukte, huano, Xtabentum, Palo Tinto, hulub, Suuk chak lol, Box káatsim, Bohom,
Susuk, cascarillo and mangle negro. Flowers from these botanical origins produce nectar with high
concentrations of moisture, which is transferred to the honey [26]. The presence of a high percentage of
moisture in honey favors biochemical and chemical reactions—for example, the formation of gluconic
acid from glucose and the formation of inorganic acids due to the reaction of water with anions and
cations present in honey. This means that honey samples collected in these locations show greater
variability in pH, free acidity, lactonic acidity, and total acidity [34,35].
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Figure 2. Chemometric models to predict: (a) pH; (b) free acidity; (c) lactonic acidity; (d) total acidity.

2.2.2. Chemometric Model to Predict Electrical Conductivity, Redox Potential, Moisture, and TSS

Electrical conductivity is a parameter used to determine the geographical origin of honey. This is
related to the content of ashes, organic acids, and dissolved mineral salts; the higher the concentration
of these compounds in honey, the greater the value of the electrical conductivity [36]. In this sense,
the diverse honey samples from the state of Campeche presented values between 0.28–0.75 mS cm−1,
which is below the maximum allowed limit (0.80 mS cm−1 [8]). The chemometric model for this
physicochemical property had a standard cross-validation error and an external validation error of 0.46
and 0.85, respectively. Moreover, the regression coefficients obtained were R2

cal = 0.87 and R2
val = 0.79.

Nevertheless, the R2
val value indicates an acceptable model fit, but are not significant for our propose.

In Figure 3a, a noticeable dispersion between the experimental data of the electrical conductivity with
respect to the chemometric model is observed. This is attributed to the significant differences in organic
matter, salinity content, and carbonates in the soils of the locations where the honey samples were
collected. Another cause is the diversity of the honey flora, which contributed to the variation in the
content of organic acids in the honeys [24,31].

Comparing the results obtained with previous works, these present slightly lower values than
those reported by Anjos et al. [20], who built a chemometric model based on FT-Raman for Portuguese
honey. They reported values of calibration errors and external validation of (SEC = 0.01; SEP = 0.01),
and coefficients of determination (R2

cal = 0.92.8; R2
rval = 0.938). Nonetheless, the results obtained in

our study are similar to those reported by Ruoff et al. [33] for a chemometric model based on NIRS
spectroscopy to predict electrical conductivity in Swiss honeys (R2

cal = 0.794 and R2
rval = 0.87); and

with the data reported by Cozzolino et al. [32] for a calibration model of Uruguayan honey (R2
cal = 0.83

and R2
rval = 0.80).
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On the other hand, honey contains chemical substances dissolved in low concentrations of organic
acids, mineral salts, and polyphenols; polyphenols are molecules that contain unsaturated bonds in their
chemical structure, and develop a very important function since they are antioxidants; these substances
have the property of trapping free radicals generated in biochemical reactions. When honey undergoes
cooking processes or remains stored for a long period, the aforementioned substances may undergo
oxide–reduction reactions, causing changes in their molecular structure and modifications in the
properties of honey. These chemical changes can be monitored using the Redox potential to determine
the degree of oxidation. Because the Redox potential can be used as a quality control parameter,
it was analyzed in Campeche honeys. The results indicate Redox potential values with a minimum of
133.1 mV and a maximum of 207.2 mV; the difference in these results is attributed to the composition
of each bloom. The chemometric model had calibration and validation errors (SEC = 1.06; SEP = 1.48),
and high values in the calibration and external validation coefficients (R2

cal = 0.99; R2
rval = 0.95).

The reliability of the model was also confirmed by a Student’s t-test of paired data, with a value of
tc = 0.545 between tv = ±1.65 at 95% confidence, so the model has a good predictive capacity.

With regards to moisture, a maximum content of 20% was defined in the Codex Alimentarious [8].
This is because an excess of moisture favors the fermentation of sugars, causing the formation of
undesirable organic acids that affect the organoleptic properties [37]. The moisture content in honey
depends on several factors, such as floral origin, harvest time, climate change, maturity degree of
the honey, and improper handling of the honey by beekeepers [38]. The analyzed honey samples
presented humidity values between 11.81–25.81%; some samples showed humidity concentrations
above 20% because the honey came from tree blooms located in wetlands, near rivers, and near estuaries.
In addition, some samples were from melipona honey, that, by nature, contains high concentrations of
moisture [39]. The chemometric model to predict moisture in honey presented SEC = 0.42, SEP = 0.52,
R2

cal = 0.98, and R2
val = 0.97. Additionally, tc = 0.41 was obtained in the Student’s t-test, which

indicates that the chemometric model correctly predicts moisture in the honey. The presented results
are similar to those reported by Lichtenberg et al. [40] for a predictive model of moisture in German
honeys (R2

cal = 0.73 and σ = ±1.22). Likewise, it is consistent with what was reported by García et al.
(2000) regarding a chemometric model to predict moisture in honey from the region of Galicia, Spain
(SEC = 0.12, SEP = 0.15, and R2

cal = 0.98); and with Cozzolino et al. [32], who reported values of
(SEC = 2.7, SEP = 3.1, R2

cal = 0.96, and R2
val = 0.94) for a calibration model focused on predicting

moisture content in Uruguayan honey.
The principal component of honey is sugar; honey contains a mixture of sugars, mainly fructose,

glucose, sucrose, maltose, and melezitose. Glucose and fructose are the ones that are found in the
highest proportion and can represent up to 95% of the sugar content [41]. The honey samples collected
in the state of Campeche exhibited total sugar concentrations between 74.19–88.19% w; some samples
presented concentrations below 80 ◦ Brix [8] due to a higher moisture concentration. The chemometric
model developed to predict TSS showed the following statistical results: SEC = 0.58; SEP = 1.32;
R2

cal = 0.92; R2
val = 0.87. A Student’s t-test with a value of tc = 0.28 was in the range tv = ±1.65 at 95%

reliability, which shows that the model for predicting TSS has an acceptable prediction capacity but not
adequate to supply the referenced method. The results obtained in this work were similar to those
reported by Mignani et al. [42], who built chemometric models based on Raman spectroscopy to predict
glucose and fructose concentrations in Italian honeys (SEC = 7.3; SEP = 11; R2

cal = 0.96, R2
val = 0.92)

and (SEC = 5.5; SEP = 7.6; R2
cal = 0.89, R2

val = 0.82). Likewise, Özbalci et al. [18] developed calibration
models based on Raman spectroscopy to predict glucose and fructose concentrations in Turkish honeys,
reporting the following values (SEC = 0.51; SEP = 2.75; R2

cal = 0.98; R2
val = 0.96). Complementing

this, Anjos et al. [20] reported statistical results (SEC = 0.34, SEP = 0.39, R2
cal = 0.99, R2

val = 0.99) for a
predictive calibration model of reducing sugars in Portuguese honey. The comparisons between values
predicted by the chemometric models presented in this section and their respective experimental
values are shown in Figure 3.
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Figure 3. Chemometric models to predict: (a) electrical conductivity; (b) Redox potential; (c) moisture;
(d) TSS.

2.2.3. Chemometric Model to Predict Content of HMF and Ashes

As presented in Table 2, the chemometric models to predict ash percentage and HMF content
presented low coefficients of determination in cross-validation and external validation (R2

cal = 0.78,
R2

val = 0.21; and R2
cal = 0.82, R2

val = 0.56). The above indicates that the models are not suitable for the
prediction of these chemometric properties.

2.3. Analysis of the PLS loadings

The PLS loading for total acidity, electrical conductivity, Redox potential, humidity and TSS
(Figure 4) present six spectral regions (200–600 cm−1, 630–790 cm−1, 870–1000 cm−1, 1080 –1200 cm−1,
1400–1570 cm−1, and 1750–1880 cm−1) that provide useful chemical information for the development
of their respective predictive chemometric models. The first spectral band (between 200–400 cm−1) has
a positive and negative contribution in the PLS loading. The chemical information provided by this
region is related to stretching, bending, and deformation vibrations of C-O, C-C-O, C-C-C and C=O,
which form the skeleton of sugar molecules, organic acids, phenolic compounds, and flavonoids. Here,
breaks of functional groups and of the sugar backbone can occur due to oxide–reduction reactions; for
example, in the transformation of glucose into gluconic acid, fermentation reactions for the production
of alcohols and carboxylic acids and the cyclization of fructose produce HMF. These chemical changes
in the honey collected would reflect variations in total acidity, pH, Redox potential, and electrical
conductivity with respect to time. The band at 630–790 cm−1 provides chemical information of the
cyclic and alicyclic rings that make up the molecules of HMF, carotenes, flavonols, flavanones, and
flavones, among other phenolic compounds. The chemical information related to the band between
870–1000 cm−1 is attributed to stretching, bending and deformation vibrations of the C-C, C-H, C-H,
–CH2–, and C-O-H bonds present in the sugars. The Raman region between 1080–1200 cm−1 provides
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information on protein and carbohydrate content in honey, due to stretching vibrations of C-O,
C-O-C, C-N carbohydrate, and protein bonds. The region between 1400–1570 cm−1 provides chemical
information due to bending and wobble vibrations of CH, O-C-H and –OH functional groups present
in sugar molecules, and –OH in the water molecules. Finally, the concentrations of moisture, fructose,
glucose and moisture in honey are related to stretching vibrations of the unsaturated bonds C=O in
fructose and CH=O in glucose, and deformation vibrations –OH of water, which are present in the
Raman spectrum between 1750–1880 cm−1.

Figure 4. Regression models in the Raman region obtained to predict physical and chemical properties
of honey from the state of Campeche.
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3. Materials and Methods

3.1. Honey Samples

A total of 189 honey samples were supplied directly from Mayan beekeepers of the state of
Campeche, Mexico. The samples were collected between February and June of 2014 and 2015. From the
total samples, 175 corresponded to Apis mellifera and 14 to Melipona beecheii. Figure 5 illustrates
the geographical region where the honey samples were collected, which includes the locations of
Calakmul (40 samples), Calkiní (14 samples), Campeche (26 samples), Champotón (34 samples),
Escárcega (20 samples), Hecelchakán (4 samples), Hopelchén (22 samples), and Sabancuy (29 samples).
The predominant floral origin of the honeys was determined according to information provided by the
Mayan beekeepers, and included the following: Tahonal (Viguiera dentata), Tsíitsilche (Gymnopodium
floribundum), Ja’abin (Piscidia piscipula), Tzalam (Lysiloma latisiliquum), Pukte (Bucida buceras), Xa’an,
huano (Sabal yapa), Xtabentum (Turbina corymbosa), Palo Tinto (Haematoxylum campechianum), Chéechem
(Metopium brownei), Hulub (Bravaisia berlandieriana), Chakàah (Bursera simaruba), Suuk, chak lol (Salvia
coccínea), Box káatsim (Acacia gaumeri), Bohom (Cordia gerascanthus), Kitim che’ (Caesalpinia gaumeri),
Susuk (Dyphisa carthagenensis), Cascarillo (Erythroxylum confusum), Machiche (Lonchocarpus castilloi)
and Mangle negro (Avicennia germinans).

Figure 5. Honey producing communities in the state of Campeche.

3.2. Physicochemical Analysis

The physical-chemical properties of the honey samples were determined according to standards
and methods established by Codex Alimentarious [8], International Honey Commission [9], and the
Association of Official Analytical Chemists [10]. The honey properties studied were pH, moisture, TSS,
free acidity, lactonic acidity, total acidity, EC, Redox potential, HMF, and ash content. The chemical
reagents used were standard hydrochloric acid (HCl) solution at 0.05 N, standard sodium hydroxide
(NaOH) solution at 0.05 N, deionized water, acetone, buffer solutions, sodium bisulfite (Fermont,
Canada), and the reagents Carrez I and Carrez II (Sigma-Aldrich, Saint Louis, MO, USA); all of them of
analytical grade. A detailed description of the procedure for obtaining each physical-chemical property
is given below.
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3.2.1. Moisture and Total Soluble Solid

Moisture and TSS were measured by the refractometric method. One gram of honey was analyzed
in an Atago refractometer model PAL-22S (Atago, Tokio, Japan) at 25 ◦C; TSS was expressed in Brix◦,
whereas moisture percentage (g/100 g honey) was given according to the method established in [43].

3.2.2. pH, Free Acidity, Lactonic Acidity, and Total Acidity

To determine the pH, 10.0 g of honey was dissolved in 75 mL of deionized water (free CO2).
The solution was analyzed by using a Thermo Scientific brand pH meter (Orion Star A211, Waltham, MA,
USA), previously calibrated with standard buffer solutions at pH values of 4–7 and 7–10, respectively.
The honey solution was titrated with 0.05 N NaOH until it reached a pH of 8.5 to obtain the free acidity
value. Lactonic acidity was determined by adding 10 mL of 0.05 N NaOH to the sample, and then
titrating with 0.05 N HCl to return the pH to 8.3. Finally, the total acidity was obtained as the sum of
the free acidity and lactonic acidity values, expressed in meq·kg−1 [44].

3.2.3. Electrical Conductivity and Redox Potential

The electrical conductivity and Redox potential were measured using a conductivity meter
(Thermo Scientific, Waltham, MA, USA), which analyzed a solution composed of 20 g of honey
dissolved in 100 mL of deionized water (free CO2). Measurements were made at 20 ◦C and the results
were expressed in mS·cm−1 for electrical conductivity and mV for Redox potential [45,46].

3.2.4. Ash Content and Hydroxymethylfurfural

The determination of ash content was conducted by incineration [47]. Two grams of honey was
placed in a crucible and heated in a Lindberg/Blue muffle furnace (Thermo Fisher Scientific, USA) at
650 ◦C for 6 h. Carbon content results were expressed in g/100 g honey. On the other hand, HMF
content was measured based on the standard method [10]. Five grams of honey was dissolved with
25 mL of deionized water (free CO2) in an (250 mL) Erlenmeyer flask. The solution was clarified
by adding 0.5 mL of Carrez I and Carrez II reagents, up to 50 mL. The solution was filtered using
Watman paper (No. 42), and subsequently treated with a sodium bisulfite solution. The absorbance was
determined on a UV-visible spectrophotometer (DR6000, HACH, Loveland, CO, USA) at wavelengths
of 284 and 338 nm. HMF concentration was expressed in mg·kg−1.

3.3. Raman Analysis

Honey samples were analyzed in triplicate using a Raman QE65000 spectrometer (Ocean Optics,
Edinburgh, UK) equipped with a symmetric crossed Czerny-Turner optical bench, 101 mm focal length,
an RPB 785 fiber optic prove, and Hamamatsu S7031-1006 detector with a spectral range between
780–940 nm. The spectrometer was operated with the SPECTRA SUIT software (version 2.0.162, Ocean
Optics, Edinburgh, UK) to establish the interface between the computer and the Raman equipment.
To perform the analysis of the samples, 30 mL of honey was deposited in an amber glass bottle
and subsequently a laser beam was applied at 785 nm with a power of 20 mW for 10 s. All Raman
spectra were collected in the range of 0 to 2200 cm−1 at 25 ◦C with a spectral resolution of 1.55 cm−1.
The data between 0–200 cm−1 and 2001–2200 cm−1 were omitted because they had higher spectral
noise. Therefore, the spectral data between 201–2000 cm−1 was used.

3.4. Chemometric Model Development

For the development of the chemometric models, an experimental database was created employing
the Raman absorbance (matrix X) and the physical-chemical properties of the analyzed honey samples
(vectors Y). Raman analysis results were converted into a data matrix using Microsoft Excel 2013
(Microsoft, Redmond, WA, USA) composed of 900 wavelength values and 567 honey samples
(510,300 absorbance samples). The data matrix was transposed and exported to the Pirouette V. 4.5
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Software (Infometrix, Bogota, Colombia) to be correlated with each of the physicochemical properties.
For the construction of chemometric models, partial least square (PLS) regression was used. In order
to minimize spectral noise and errors in the development of the chemometric models, the following
mathematical and statistical treatments were applied: auto-scaling or centering and subsequently the
treatments baseline correction, smoothing, data normalization, first-order derivation, alignment, Log10
analysis, and Standard Normal Variate (SNV) were performed. To determine the predictability of the
models developed, a cross-validation was performed (five out) using 90% of the data. Subsequently,
an external validation was carried out with the remaining 10% of the data, which were not used in
the construction of the chemometric models. The division of the database for the external calibration
and validation processes was carried out by the software Pirouette, implementing the Kennard–Stone
selection algorithm [33]. The statistical indicators used during the validation phase were: standard
error of calibration (SEC), standard error of prediction (SEP), coefficient correlation of calibration (R2

cal)
and coefficient correlation of validation (R2

val), and Student’s t-test of paired data [33,34]. Figure 6
illustrates the computational procedure for the development of the chemometric models.
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Figure 6. Schematic diagram of the development and evaluation process of the 10 chemometric models
for the estimation of physicochemical properties of honey produced in the region of Campeche, Mexico.
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4. Conclusions

In this work, it has been demonstrated that the Raman technique is an analytical tool that has
advantages over other conventional techniques for the analysis of honey, since it is friendly to the
environment and does not use chemical reagents, obtaining results in less time. Furthermore, it has
been demonstrated that chemometric modeling based on Raman technology allows the development
of numerical models and good capacity of predicting humidity, free acidity, lactonic acidity, total
acidity, and Redox potential for Campechean honeys. The statistical parameters used to evaluate
the predictability of each chemometric model show an accuracy similar to the conventional methods
established in the standards, with the advantage that they are faster and do not use chemical reagents,
so they are more environmentally friendly. Chemometric models to predict the content of HMF and
ashes did not achieve good predictive capacity, which can be attributed to the fact that these chemical
components are at very low concentrations in honey.

According to the study, the chemometric models that presented adequate prediction results
represent an interesting alternative to be used in the development of intelligent portable laboratories that
facilitate beekeepers in the region to analyze said chemometric properties at the site. Thus, the models
presented represent a low-cost option to contribute significantly to the economic development of the
honey industry in the region.
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Abstract: Macrohyporia cocos is a medicinal and edible fungi, which is consumed widely.
The epidermis and inner part of its sclerotium are used separately. M. cocos quality is influenced by
geographical origins, so an effective and accurate geographical authentication method is required.
Liquid chromatograms at 242 nm and 210 nm (LC242 and LC210) and Fourier transform infrared
(FTIR) spectra of two parts were applied to authenticate the geographical origin of cultivated
M. cocos combined with low and mid-level data fusion strategies, and partial least squares
discriminant analysis. Data pretreatment involved correlation optimized warping and second
derivative. The results showed that the potential of the chromatographic fingerprint was greater than
that of five triterpene acids contents. LC242-FTIR low-level fusion took full advantage of information
synergy and showed good performance. Further, the predictive ability of the FTIR low-level fusion
model of two parts was satisfactory. The performance of the low-level fusion strategy preceded
those of the single technique and mid-level fusion strategy. The inner parts were more suitable
for origin identification than the epidermis. This study proved the feasibility of the data fusion of
chromatograms and spectra, and the data fusion of different parts for the accurate authentication of
geographical origin. This method is meaningful for the quality control of food and the protection of
geographical indication products.

Keywords: Macrohyporia cocos; data fusion; liquid chromatography; fourier transform infrared
spectroscopy; partial least squares discriminant analysis; authentication

1. Introduction

The dried sclerotium of Macrohyporia cocos, belonging to Polyporaceae, is an herbal medicine
(called Poria) that can be used as food, and has been approved by the National Health Commission of
the People’s Republic of China. It plays an indispensable role in numerous drugs, such as the liquid
oral formulation of Poriacocos polysaccharides, Sijunzi Tang, Liuwei Dihuang Wan and Chuanbei Pipa
Gao. Various kinds of Poria-based foods and skin cosmetics such as sleep-friendly tea, Tuckahoe pie,
Guiling jelly (drinks made from turtle shell and medicinal herbs), Guiling jelly soft candy and the Poria
facial mask, are pretty popular. Present phytochemical investigation suggests that this fungus contains
terpenes and polysaccharides, which present beneficial biological properties, such as a prebiotic effect,
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through the modulation of gut microbiota composition [1], anti-hyperlipidemic [2], anti-cancer [3]
hepatoprotective [4] and affecting adipocyte and osteoblast differentiation effects [5].

Generally, the sclerotium of M. cocos is peeled and processed into two products, the epidermis and
the inner part. The epidermis is called Poriae Cutis in Chinese, and the inner part is still called Poria.
The epidermis and inner part have similar types of compounds and different secondary metabolites
contents [6], which are often used and studied separately. Both Poria and Poriae Cutis are officially
recorded in the Chinese Pharmacopoeia.

The provenance of M. cocos is mainly distributed in the Dabie mountains area and Yunnan
Province of China. Yunnan is suggested as the most satisfactory habitat because the quality of
Yunnan M. cocos is being highly recommended all the time. Due to the large demand for it, and
the knowledge of cultivation mastered easily by common people, this fungus is cultivated in large
quantities. Although M. cocos is cultivated in Yunnan, the chemical profiles influencing biological
activities may be uneven owing to various cultivation sites and different management techniques.
It was reported in a previous study that the contents of pachymic acid of M. cocos in different regions
of Yunnan varied significantly [7]. Consequently, customers are increasingly demanding some sort of
proof of the geographical origin. For the sake of response to the demand, it is necessary to conduct
research with respect to the authentication of geographical origin, which can also provide basic
technology for the protection of specific geographical indication products [8].

To date, various analytical technologies that respond to the different chemical information of
samples have been implemented for the origin identification of M. cocos [9–11]. Although these methods
proved promising for the discrimination of provenance, they were separately applied. Nowadays,
data fusion has been applied in the fields of food and medicine [12,13]. For example, Ni et al. [14]
discovered that, based on high-performance liquid chromatography (HPLC) and Fourier transform
infrared spectroscopy (FTIR) data fusion, the type and geographical origin of Radix Paeoniae samples
could be successfully discriminated, and the fused data matrix showed a prominent result compared
with the independent technique.

Data fusion strategies, which fuse the outputs of multiple complementary information to provide
rich knowledge about a sample, are hoped to achieve a more accurate characterization than single
pieces of information [15]. In addition to the fusion of several datum regarding one sample, the fusion
of information regarding different parts was reported. For instance, Casale et al. [16] combined
the near-infrared information obtained by the three parts (pileipellis, flesh and hymenium) of
each individual to check the authenticity of dried porcini mushrooms. Studies mentioned above
demonstrated that although time and effort would be taken to collect multiple complementary data,
data fusion was suggested as an alternative strategy to show accurate characterization.

Infrared spectroscopy can provide the molecular functional group structure of metabolites.
Liquid chromatography can characterize the exist of compounds and determinate the special
compounds. Both techniques present different and complementary information, which were used
for data fusion in this study. To the best of our knowledge, infrared spectroscopy was widely
used for geographical classification because of the features of simplicity and rapidity [17,18].
Liquid chromatography was almost used for determining the contents of compounds [19,20].
Multiple chromatographic data fusion has been merely reported in the authentication of the
geographical origin of palm oil [21], predicting antioxidant activity of Turnera diffusa [22], authentication
of Valeriana species [23] as well as a comparison of Salvia miltiorrhiza and its variety [24]. Actually,
a wealth of information was contained in the chromatographic data, and due to extensive automation,
a stable and reliable result could be obtained.

In this study, two data fusion strategies including low and mid-level fusion as well as two data
combinations including the fusion of complementary information regarding a single part, and the
fusion of information regarding two medicinal parts from one sclerotium were performed for the
geographical authentication of M. cocos. Liquid chromatograms at two wavelengths (242 nm and
210 nm) and FTIR spectra of two medicinal parts (Poria and Poriae Cutis) of M. cocos were analyzed.

142



Molecules 2019, 24, 1320

Contents of five triterpene acids were measured. Chromatographic data fusion, spectral data fusion as
well as chromatography and spectroscopy data fusion were implemented, combined with partial least
squares discriminant analysis (PLS-DA).

2. Results and Discussion

2.1. Spectral Analysis

FTIR is an auxiliary method in the structural elucidation of organic compounds, which is also
employed to assess the quality attributes of a product and authenticate geographic location [17].
With the characteristics of easy operation and rapid acquisition, it was applied to the identification of
cultivation location of M. cocos. The second derivative spectra of samples from each geographic origin
were given in Figure 1, and absorption peaks were observed in the form of negative peaks. Because a
2600–1750 cm−1 signal was caused by ATR crystal material [25], it was discarded and did not present
in the Figure.

Figure 1. Second derivative spectra of Poria (A) and Poriae Cutis (B) samples from eight geographic origins.

Absorption bands at 2964 and 1704 cm−1 were just observed in Poriae Cutis samples.
A disparity of absorption intensity exhibited in samples from different cultivation locations.
Relatively high absorbance values were at around 1200–950 cm−1, which were mainly caused by C-O
stretching vibration, C-C stretching vibration and C-OH bending vibration of polysaccharides [26,27].
Peaks located at 2964 and 2873 cm−1 correspond to C-H antisymmetric and symmetrical stretching
vibration of methyl group respectively, while the peak at 2927 cm−1 is assigned to C-H antisymmetric
stretching vibration of methylene. The absorption at 1452 cm−1 and 1373 cm−1 belonged to C-H
antisymmetric and symmetrical bending vibration of methyl [11]. The peak at 1643 cm−1 was assigned
to C=O antisymmetric stretching vibration, which was related to triterpenes [28]. The band at 1704 cm−1

was associated with C=O group of esters [29,30]. The band at 891 cm−1 was assigned to the bending
vibration of the C=CH2 functional group [28]. The peak at 1259 cm−1 may be related to the amide III
band [31]. In total, FTIR spectrum reflected comprehensive structural information of components in
M. cocos samples, like triterpenes, polysaccharides, and so on.
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2.2. Quantitative Analysis of Five Triterpene Acids

The content of each triterpene acid was calculated by their calibration curves and result of the
validation of quantitative method was presented in Tables S1 and S2. The calibration curves of five
compounds showed good linearity (R2 ≥ 0.99). Recovery rates calculated by the standard addition
method varied from 96.32% to 106.4%. Values of relative standard deviation (RSD) of intra-day and
inter-day precision were less than 1.24% and 5.68%, respectively. RSDs of repeatability did not exceed
5.95% after analyzing six solutions from the same sample in parallel. RSDs of stability were less than
0.71% after detecting a sample solution at 0, 6, 12, 17, 21 and 24 h, respectively. The method validation
above indicated that the quantitative analysis was feasible. In particular, due to the obvious difference
in the contents of poricoic acid A in Poria and Poriae Cutis samples, the calibration curves in two
concentration ranges were prepared separately.

Contents of five triterpene acids were displayed as box-plot given in Figure 2. One-way analysis
of variance was computed by SPSS 21.0 software (IBM Corporation, Armonk, NY, USA) to display
the difference among eight cultivated locations. A value of p < 0.05 was considered significant.
Poricoic acid A contents of Mengmeng were significantly different from those of Beicheng, Tuodian
and Zhanhe in inner parts, and Yongping in cutis samples. Contents of dehydropachymic acid and
pachymic acid in inner parts from Caodian were higher than those of other geographical origins
except for Baliu. Inner parts from Baliu showed higher contents of dehydropachymic acid than
those from Beicheng, Dawen and Mengmeng, and higher contents of pachymic acid than those
from Tuodian, Yongping, Beicheng and Mengmeng. Inner parts from Dawen contained fairly low
contents of dehydrotrametenolic acid compared with those from others with the exception of Baliu.
Compared with epidermis samples from Dawen, Beicheng and Yongping showed higher contents of
dehydrotumulosic acid, and Caodian and Baliu presented higher amount of pachymic acid. From the
results, it was found that it was difficult to distinguish M. cocos samples from eight cultivation origins
just in terms of contents of several target compounds. Therefore, it was necessary to take full advantage
of the chromatographic fingerprint, namely, the intensity data for each retention time, to extract more
information related to cultivation location.
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Figure 2. Box-plots of contents of five triterpene acids of Poria (A–E) and Poriae Cutis (F–J) samples
from eight geographical origins. Note: Different letters show significant difference (p < 0.05).
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2.3. Chromatographic Data Preprocessing

The chromatograms recorded at 242 nm in Figure S1 were obtained by analyzing the solution
from the same sample five times successively within a day and on two consecutive days. Obviously,
the retention time of each peak shifted in two days, which was inconvenient for the qualitative
results of chemometric analyses. Hence, all of the chromatographic data should be aligned prior to
further analysis.

The correlation optimized warping algorithm proposed by Skov et al. [32] was used to correct the
retention time shifts among samples. The chromatogram that was most similar to all others was selected
to be the reference chromatogram for alignment. The global search space was set to a combination of
segment length from 10 to 200 and a slack size from 1 to 20 according to the observed peak widths
and shifts on the chromatograms. Then the optimal combination of segment length slack size was
automatically selected according to the criterion of well alignment while at the same time considering
the preservation in peak shape and area. The theory for the algorithms with respect to the automated
alignment of chromatographic data can be consulted in [32].

As a result, suitable combinations of segment length and slack size were achieved for
chromatographic data at 242 nm of Poria (197 and 11), 210 nm of Poria (105 and 16), 242 nm of
Poriae Cutis (105 and 11) and 210 nm of Poriae Cutis (198 and 16), respectively. Figure 3 presented the
aligned M. cocos chromatographic fingerprints using these warping parameters, which displayed that
the retention time shifts were properly corrected. What’s more, it was observed that chromatograms
of the same medicinal part recorded at 242 nm and 210 nm showed complementary information, i.e.,
some peaks obviously presented in liquid chromatograms at 242 nm (LC242) and some compounds
just displayed in liquid chromatograms at 210 nm (LC210). Further, chromatograms of two parts were
appreciably different. In other words, multiple chromatographic profiles presented abundant chemical
information of M. cocos that probably facilitated to confirm cultivation areas.

The chromatographic data of one Poria sample and one Poriae Cutis sample could be represented
as 7201 and 7801 data points, respectively. In order to save the time for calculation, the number of
data points in the retention time dimension of the matrix was reduced by taking one in every three
points without affecting the chromatographic features. Therefore, 2401 and 2601 data points were
obtained after reducing data, respectively. It was proved that this method was feasible by comparing
the PLS-DA results since reducing data had little influence on identifying different groups (Table S3).
Additionally, the first 11 min data in the chromatogram that mainly comprised unseparated peaks
and baseline shift (Figure 3), which were discarded to obtain representative fingerprints and accurate
results. In this way, the final data points were 1960 and 2160, respectively.
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Figure 3. Chromatograms of Poria (A,B) and Poriae Cutis (C,D) recorded at 242 (A,C) and 210 nm
(B,D) after the transformation of correlation optimized warping.

2.4. PLS-DA Using Chromatograms and FTIR Spectra

Partial least squares discriminant analysis is a widely-used linear classification method [33–36].
The selection of the optimal number of latent variables was an essential question for PLS-DA model,
which was implemented on the basis of 7-fold cross validation procedure in present study. Unit variance
scaling, which could give all variables of the same or different measurements equal importance, was
performed by default when developing each PLS-DA model. The parameters of classification models
were shown in Table 1 and Tables S4–S6 in detail.

Based on the preprocessing of chromatograms and FTIR spectra, a model of PLS-DA was
established using the single dataset (Table 1 and Table S4). The LC210 dataset of Poriae Cutis samples
did not build model successfully, so results of classification were not listed. FTIR and LC242 datasets
showed better performance with higher accuracy not only in calibration set but in validation set
than LC210 dataset. The sensitivity values of class 2 and class 8 in the validation set were 1 for Poria
LC242 model and were smaller values for the Poria FTIR model, which indicated that LC242 model
had stronger ability to correctly recognizing samples of class 2 and class 8. While the sensitivity of
class 1 and 7 in calibration set was 0.8571 for Poria LC242 model smaller than that of Poria FTIR model,
indicating that FTIR model had stronger ability to correctly recognizing samples of class 1 and class 7.
Moreover, LC models of Poriae Cutis samples presented poorer results than those of Poria samples,
which reflected the difference of two medicinal parts of M. cocos.
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Table 1. The major parameters of PLS-DA model.

Fusion Approach Data Matrix
Calibration Set Validation Set

R2(cum) Q2(cum) Accuracy Accuracy

single technique
Poria

FTIR 0.8883 0.7268 100% 92.31%
LC242 0.6634 0.5277 96.15% 100%
LC210 0.5174 0.4012 90.38% 76.92%

Poria Cutis
FTIR 0.9292 0.6981 100% 96.15%
LC242 0.2874 0.2204 65.38% 34.62%

low-level data fusion

Poria

FTIR-LC242 0.9599 0.7917 100% 100%
FTIR-LC210 0.9468 0.7663 100% 100%

LC242-210 0.8097 0.6547 98.08% 92.31%
FTIR-LC242-210 0.8823 0.7566 100% 100%

Poria Cutis
FTIR-LC242 0.9016 0.7032 100% 100%

FTIR-LC242-210 0.905 0.698 100% 100%

combination data of
two medicinal parts

FTIR 0.9548 0.8064 100% 100%
LC242 0.8147 0.6495 100% 100%
LC210 0.6489 0.4806 94.23% 88.46%

mid-level data fusion

Poria
FTIR-LC242 0.8266 0.5745 100% 100%
FTIR-LC210 0.7453 0.5053 96.15% 96.15%

FTIR-LC242-210 0.8286 0.5882 100% 100%

Poria Cutis

FTIR-LC242 0.7386 0.5493 100% 92.31%
FTIR-LC210 0.7518 0.4991 100% 96.15%

LC242-210 0.4617 0.228 76.92% 73.08%
FTIR-LC242-210 0.7607 0.5558 100% 96.15%

combination data of
two medicinal parts

FTIR 0.7564 0.5982 98.08% 88.46%
LC242 0.7761 0.4973 98.08% 100%
LC210 0.676 0.3756 96.15% 88.46%

Variable importance for the projection (VIP) plot [37] was used for assessing the significance of
variable, and that the VIP score of retention time was greater than one means the compound separated
at the time was important on distinguishing different cultivation origins. As an example of the Poria
LC242 model, there were lots of variables whose VIP were higher than one including the corresponding
retention time of poricoic acid A and dehydrotrametenolic acid (Figure 4). It indicated that the potential
of the chromatographic fingerprint from the aspect of origin identification was greater than that of
the contents of several compounds. However, all single technique models did not achieve a perfect
performance, so it was necessary to carry out the data fusion strategy that was expected to enhance the
classification and prediction ability of the model.
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Figure 4. VIP scores of PLS-DA using LC242 chromatogram data of Poria samples. Note:
1, dehydrotumulosic acid; 2, poricoic acid A; 3, dehydropachymic acid; 4, pachymic acid; 5,
dehydrotrametenolic acid.

2.5. Low-Level Data Fusion

2.5.1. PLS-DA of Poria

Figure 5 was the workflow of geographical authentication using data fusion, which was helpful
to understand how data was combined. As shown in Table 1, accuracy rates of low-level data fusion
datasets about Poria samples were 100% and higher than those of single technique models except for
the model using LC242-210 data, which implied that these models had strong classification performance.
The highest R2(cum) (0.9599) and Q2(cum) (0.7917) were observed in FTIR-LC242 model, indicating
a high goodness of fit for the established model in the data and good predictive ability. Therefore,
the combination of FTIR and LC242 datasets was deemed a suitable strategy, and the fusion of three
datasets was unnecessary and verbose. Furthermore, compared with the LC242-210 model, the accuracy
of FTIR-LC210 model was higher both in calibration and validation sets. It could be interpreted that
FTIR dataset provided more helpful information to identify eight geographical origins than LC242

dataset in data fusion model of Poria samples. By analogy, it was found that FTIR data showed
more contribution for origin discrimination than LC210 data when compared LC242-210 model with
FTIR-LC242 model.
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Figure 5. The workflow of geographical authentication using data fusion.

2.5.2. PLS-DA of Poriae Cutis

The accuracy of FTIR-LC242 and FTIR-LC242-210 models was 100%, which was greater than that of
the models using the independent technique. It indicated the effectiveness of low-level data fusion.
The similar Q2(cum) of FTIR-LC242 and FTIR-LC242-210 models was observed. Accordingly, FTIR-LC242

was considered as a preferred combination, and the fusion of three datasets was superfluous.
Furthermore, the Q2(cum) values of low-level fusion models about Poriae Cutis samples (≤ 0.7032)
were less than those of corresponding models about Poria samples (> 0.75), indicating that Poria
samples were more suitable for origins identification than Poriae Cutis species. In the developing
LC242-210 and FTIR-LC210 low-level models, latent variables could not be calculated so the models
were not successfully built. It was in consistent with the state that epidermis LC210 dataset did not
built PLS-DA model, which was probably attributed by a lot of irrelevant classification information
included in LC210 dataset of epidermis.

2.5.3. PLS-DA of Combination Data of Two Medicinal Parts

Both FTIR and LC242 datasets of two parts samples showed better performance than LC210 dataset,
which was in accordance with the results of single technique mentioned above. Compared with the
single spectrum or chromatogram, data fusion of two medicinal parts proved more advantageous
with greater sensitivity, specificity and efficiency. Therein, the FTIR fusion model of two part samples
presented the best prediction performance from the Q2(cum) point of view. What’s more, compared
with FTIR-LC242 model of Poria samples, the Q2(cum) of LC242 fusion model of two parts was smaller.
It could be interpreted that Poria FTIR dataset provided more helpful information to predict different
geographical origins than Poriae Cutis LC242 dataset in data fusion model. By analogy, it was found
that the contribution of FTIR dataset was always more than that of LC242 and LC210 datasets in
low-level data fusion. The low-level data fusion strategy has achieved a good classification result, but
the mid-level data fusion could spend less computation time compared to the low level. Therefore,
mid-level fusion was performed.

2.6. Mid-Level Data Fusion

2.6.1. The Extraction of Feature Variables

Mid-level fusion needed to first extract relevant features from each dataset independently and then
concatenated them into a new matrix employed for origins identification. Principal component analysis
(PCA) is a dimension reduction technique that creates a small number of new variables called principal
components (PCs) from a large number of original variables, which would be applied to extract
features. These PCs almost retain the same information as the original variables [38]. The optimal
number of PCs was determined by 7-fold cross-validation procedure. The results of feature extraction
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were shown in Table S7. As an example of LC210 dataset of Poria samples, the first thirteen PCs were
extracted, which account for 90.92% of the information concerning the original variables. Then the
scores of the thirteen PCs were used for data fusion.

2.6.2. PLS-DA of Poria

In agreement with the results of low-level data fusion, the accuracy rates of FTIR-LC242 and
FTIR-LC242-210 of Poria samples were 100% not only in calibration set but in validation set. And they
had stronger recognition performance with higher sensitivity, specificity, efficiency than corresponding
single dataset. Nonetheless, all Q2(cum) values of mid-level data fusion models of Poria samples were
less than those of low-level data fusion models, indicating that low-level fusion presented stronger
prediction ability than mid-level fusion according to cross validation.

As always, The LC242-210 fusion model did not build successfully. The fusion of LC242 and
LC210 could not gain satisfactory discrimination and even could not construct the model, and it was
likely caused by the similar chemical information provided by both chromatograms. Although they
presented different peak shapes, there were many common chromatographic peaks that did not
provide complementary and useful information.

2.6.3. PLS-DA of Poriae Cutis

LC242-210 model that was not built successfully in low-level fusion finished construction in
mid-level fusion. The fact indicated the significance of mid-level data fusion and might be due
to the feature extraction. The accuracy rates of FTIR-LC210 and FTIR-LC242-210 models were equal,
but the detail of incorrect identification was different from sensitivity and specificity points of view.
Further analysis showed that one sample belonging to Tuodian was judged as the sample from Baliu
in FTIR-LC210 model and Mengmeng in FTIR-LC242-210 model by mistake, respectively. FTIR-LC242

and FTIR-LC242-210 mid-level fusion models of Poriae Cutis samples presented poorer results than
those of Poria samples as well as low-level data fusion models and FTIR model of epidermis samples.

2.6.4. PLS-DA of Combination Data of Two Medicinal Parts

Both FTIR data fusion and LC242 data fusion of two medicinal parts had stronger recognition
ability when compared to the LC210 combination. Both LC242 and LC210 of two medicinal parts
improved performance of single LC242 and LC210 models. However, the result of FTIR was the
opposite. Compared to low-level data fusion, the identification ability of mid-level data fusion did not
show any obvious advantage. This might be due to the limitation of our method of feature extraction.
In terms of FTIR datasets, only more than 73.29% original information (Table S7) was extracted.

To validate the performance of the PLS-DA model, a 30-iteration permutation test was performed.
As shown in Figure S2 that one of permutations plots for Poria LC242-210 model, all permutated Q2

and R2 values (bottom left) were lower than the corresponding original values (top right). It indicated
that the PLS-DA model was considered as an appropriate model without randomness and overfitting.
The results showed that all the PLS-DA models were not overfitting.

3. Materials and Methods

3.1. Reagents, Solvents and Standard References

Dehydrotumulosic acid (purity ≥ 96%) was supplied by ANPEL Laboratory Technologies Inc.
(Shanghai, China). Dehydropachymic acid, pachymic acid, poricoic acid A and dehydrotrametenolic
acid (purity ≥ 98%) were purchased from Beijing Keliang Technology Co., Ltd. (Beijing, China).
HPLC grade acetonitrile and formic acid were purchased from Thermo Fisher Scientific (Fair Lawn,
NJ, USA) and Dikma Technologies (Lake Forest, CA, USA), respectively. Purified water was purchased
from Guangzhou Watsons Food & Beverage Co., Ltd. (Guangzhou, China). Other chemicals and
reagents were analytical grade.
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3.2. Samples

Seventy-eight intact cultivated M. cocos sclerotia (Figure 6) from eight geographical origins of
Yunnan Province, China were collected and identified by Prof. Yuanzhong Wang (Institute of Medicinal
Plant, Yunnan Academy of Agricultural Sciences, Kunming, China). Voucher specimens (FL20160217)
were deposited in the herbarium of Institute of Medicinal Plant, Yunnan Academy of Agricultural
Sciences. After digging sclerotium up, the soil was brushed away. Fresh M. cocos sclerotium was
air-dried in the shade and then peeled. Both the epidermis and inner part of the dried sclerotium, i.e.,
Poria and Poriae Cutis, were powdered to a homogeneous size using pulverizer and sieved through
No. 60 mesh sieve. The powder was stored in the airproof, dry and dark condition prior to analysis.
Detailed information of samples was summarized in Table 2.

 

Figure 6. Dried sclerotium of M. cocos.

Table 2. The information of M. cocos samples.

Class Location Abbreviation
Elevation

(m)
Latitude

(◦N)
Longitude

(◦E)
Parts Sample Size

1 Beicheng Town, Hongta, Yuxi BC 1720 24.4319 102.5182
inner part 10
epidermis 10

2 Tuodian Town, Shuangbai, Chuxiong TD 2062 24.6912 101.6493
inner part 10
epidermis 10

3 Zhanhe Town, Ninglang, Lijiang ZH 2560 26.8832 100.9275
inner part 10
epidermis 10

4 Dawen Town, Shuangjiang, Lincang DW 1438 23.3487 100.0047
inner part 10
epidermis 10

5 Caodian Town, Yunlong, Dali CD 2066 25.6360 99.1320
inner part 10
epidermis 10

6 Yongping Town, Jinggu, Pu’er YP 1077 23.4204 100.4044
inner part 10
epidermis 10

7 Mengmeng Town, Shuangjiang, Lincang MM 1052 23.4779 99.8378
inner part 10
epidermis 10

8 Baliu Town, Mojiang, Pu’er BL 1979 23.0676 101.9765
inner part 8
epidermis 8
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3.3. FTIR Spectra Acquisition

A Fourier transform infrared spectrometer from Perkin Elmer equipped with an attenuated
total reflectance (ATR) sampling accessory with a diamond focusing element was employed for
FTIR spectroscopy measurement. The sample powder was pressed under a consistent pressure with
a pressure tower when collecting spectral. FTIR spectrum of each sample was scanned 16 times
successively with a resolution of 4 cm−1 in the range of 4000–650 cm−1. After the measurement of one
sample was finished, the surface of ATR crystal and the apex of pressure tower were cleaned for the
next sample detection. All spectra were background corrected utilizing air spectrum. The laboratory
environment was maintained a constant temperature (25 ◦C) and humidity (30%).

3.4. Chromatographic Analysis

Sample powder was weighed accurately to 0.5 g and extracted with 2.0 mL of methanol by an
ultrasound-assisted method for 40 min at ambient temperature. The extract solution was filtered using
a 0.22 μm membrane filter. The filtrate was loaded into the auto-sampler vial and stored at 4 ◦C before
injecting into the chromatographic system for analysis.

Analyses of all 156 samples (including Poria and Poriae Cutis) were implemented using a
Shimadzu ultra-fast liquid chromatography system equipped with a UV detector, binary gradient
pumps, a degasser, an auto sampler and a column oven. The chromatographic separation was achieved
using an Inertsil ODS-HL HP column (3.0 × 150 mm, 3 μm particle size) operated at 40 ◦C. The mobile
phase consisted of acetonitrile (A) and 0.05% formic acid (B). Before use, the mobile phase constituents
were degassed and filtered through a 0.2 μm filter. The gradient elution sequence was conducted
as follows: 0–25 min, 40% A; 25–52 min, 40–69% A; 52–56 min, 69–72% A; 56–58 min, 72–78% A;
58–58.01 min, 78–90% A; and 58.01–60 min, remaining at 90% A (eluting to 65 min for Poriae Cutis
samples). Each run was followed by an equilibration period of 3 min with initial conditions (40% A
and 60% B). The flow rate was kept at 0.4 mL·min−1 and the injection volume was 7 μL. Detective
wavelengths were set at 242 nm and 210 nm.

3.5. Method Validation

The developed UFLC method was validated in terms of precision, stability, repeatability, accuracy
and linearity under the above chromatographic condition.

A mixed standard solution was determined six times successively within a day and on three
consecutive days for evaluating intra- and inter-day precision. For the stability test, the extract of a
sample was analyzed at 0, 6, 12, 17, 21 and 24 h, respectively. Six sample solutions prepared individually
from the same sample were analyzed in parallel for evaluating the repeatability. The recovery test was
performed to evaluate the accuracy by adding reference compounds of three different amounts (low,
middle, and high) to the sample with known concentration accurately. The following equation was
used to calculate recovery rate: Recovery rate (%) = [(measured amount − original amount)/spiked
amount] × 100%.

The standard solutions of five compounds for constructing calibration curves were prepared
by diluting the stock solutions with methanol individually. The ranges of concentration in the
linearity study were 5.00–999 μg·mL−1 (dehydrotumulosic acid), 0.22–6730 μg·mL−1 (poricoic acid A),
2.4–480 μg·mL−1 (dehydropachymic acid), 10.3–1240 μg·mL−1 (pachymic acid) and 0.49–2450 μg·mL−1

(dehydrotrametenolic acid). Due to the obvious difference in contents of poricoic acid A of
Poria and Poriae Cutis samples, two concentration ranges of 0.22–1121.95 μg·mL−1 (Poria) and
0.22–6730 μg·mL−1 (Poriae Cutis) were prepared. More than seven levels (in arithmetic progression)
of every concentration range were guaranteed. The limit of detection (LOD) and limit of quantification
(LOQ) were determined by diluting continuously standard solution until the signal-to-noise ratios
(S/N) reached about 3 and 10, respectively.
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3.6. Preprocessing of Chromatograms and Spectra

The correlation optimized warping algorithm was applied to correct the retention time shifts
of chromatogram using MATLAB software (MathWorks, R2017a, Natick, MA, USA). Then the
corrected chromatographic data was reduced by taking one in every three points without affecting
the chromatographic features to save computation time, which was inspired by the ‘data binning’ of
Lucio-Gutiérrez et al. [22,23]. The first 11 minutes of data that mainly comprised unseparated peaks
and baseline shift were discarded.

Raw FTIR spectra were subjected to advanced ATR correction to reduce the impact of skewing of
band intensity using OMNIC 9.7.7 software (Thermo Fisher Scientific). Due to the fact that spectra
contained hidden and overlapped absorption peaks, second derivative was used for highlighting
slight differences employing SIMCA-P+ 13.0 software (Umetrics, Umeå, Sweden). Derivative spectra
were calculated with a Savitzky–Golay filter using a second-order polynomial and a 15-point window.
The band of 2600–1750 cm−1 was associated to diamond crystal in ATR accessory, of which data
were excluded prior to chemometrics analysis. These pre-processed data were used to data fusion
and PLS-DA.

3.7. Multiple Chromatograms and Spectra Data Fusion

According to the source of data, there were two kinds of data fusion techniques, including
the fusion of multiple complementary pieces of information about a single part and the fusion
of information about two parts from one sclerotium. For instance, data matrices of LC-Poria and
FTIR-Poria could be fused into a new dataset, and data matrices of FTIR-Poria and FTIR-epidermis
could be fused into a dataset. It was important to note that information must correspond in the process
of data fusion, namely, the LC and FTIR data of the same Poria sample must correspond, or the FTIR
data of inner parts and epidermis from the same sclerotium should correspond.

The data fusion could be classified into three levels in light of the combination of data: low level,
mid-level and high level. Low and mid-level fusion has been widely used, and was applied to
the identification of geographical origin of M. cocos. The scheme of low and mid-level data fusion
approaches is shown in Figure 7. In the low-level fusion, pre-processed different datasets were
straightforward concatenated into a matrix, and the number of variables was equal to the sum of
number of original variables. For the mid-level fusion, the scores obtained independently from
different data by PCA were concatenated into a dataset applied for provenance traceability, and the
number of variables of the dataset was significantly less than that of original variables. Compared with
low level, mid-level data fusion could save more time on the operation. Specific types of the data
fusion in this study were shown in Table 1.
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Figure 7. The scheme of the data fusion approaches.

3.8. Evaluation of Model Performance

The calibration and validation sets were selected for assessing the quality of model. The calibration
set was used to construct a model that was performed 7-fold cross validation for internal validation,
and the validation set was used to externally estimate the practicability of model. To avoid the influence
of randomness caused by random sampling, and to obtain a representative calibration set from a
pool of samples, the Kennard-Stone algorithm [39] was performed to systematically divide dataset of
78 samples into calibration (52) and validation (26) sets using MATLAB R2017a software (MathWorks).

The performance of discrimination model could be evaluated by sensitivity, specificity and
efficiency [40]. The three parameters are dependent on these values: true positive (TP), false positive
(FP), true negative (TN) and false negative (FN). TP and TN represent the correctly identified samples
in target positive and negative classes, respectively. By analogy, FP and FN represent the incorrectly
identified samples in positive and negative classes, respectively.

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

Efficiency =
√

sensitivity × specificity (3)

Therein, sensitivity shows the ability to correctly recognize samples belonging to the target class
while specificity reflects the model ability to reject samples belonging to all other classes. The measure
combining the sensitivity and specificity value is called efficiency.

In addition, the accuracy rate of calibration set, the accuracy rate of validation set, R2(cum) and
Q2(cum) were also employed for assessing the classification performance. Accuracy was obtained
by calculating the proportion of correctly classified samples in the total amount of calibration set (or
validation set) samples. R2 is calculated by following equation: R2 = 1 − RSS/SSX, where RSS is
the residual sum of squares of calculated and measured values, and SSX is the total sum of squares
after mean centralization [41]. R2(cum) represents the percentage of explained variance for a defined
number of latent variables, indicating how well the model fits the data. Q2(cum) represents the
cross-validated cumulative R2, suggesting how well the model predicts new data. The higher values
of these parameters (close to 1 or 100%), the better performance of model.
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4. Conclusions

In order to establish an effective method for geographical authentication of M. cocos, two data
fusion strategies, including low and mid-level fusion, as well as two data combinations, including
the fusion of complementary information regarding a single part and the fusion of information about
two parts from one sclerotium were compared. FTIR, LC242 and LC210 were used to characterize
the epidermis and inner part of M. cocos sclerotium from different places individually and jointly.
The results showed that, chromatographic fingerprint was more suitable than content data of five
triterpene acids for origin identification. In the fusion of complementary information about single part,
good classification performance was achieved obtained by merging LC242 chromatograms and FTIR
spectra in low-level fusion way. In the fusion of information about two parts from one sclerotium,
the predictive ability of the FTIR low-level fusion model of two parts was the most satisfactory, and all
analyzed samples were classified correctly.

In most cases, FTIR proved to be more efficient than LC242 and LC210, not only in a single
data source but in data fusion. Mid-level data fusion was slightly worse than low-level data fusion.
The performance of low-level data fusion models was superior to single technique models. Moreover,
Poria samples were more suitable for origin identification than Poriae Cutis samples. On the basis
of effective and comprehensive fingerprint information, the low-level data fusion strategy could be
used for the discrimination of M. cocos samples from different origins with the aid of appropriate
mathematical algorithms.
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Abstract: The intrinsically complex nature of fish and seafood, as well as the complicated organisation
of the international fish supply and market, make struggle against counterfeiting and falsification of
fish and seafood products very difficult. The development of fast and reliable omics strategies based
on spectroscopy in conjunction with multivariate data analysis has been attracting great interest from
food scientists, so that the studies linked to fish and seafood authenticity have increased considerably
in recent years. The present work has been designed to review the most promising studies dealing
with the use of qualitative spectroscopy and chemometrics for the resolution of the key authenticity
issues of fish and seafood products, with a focus on species substitution, geographical origin
falsification, production method or farming system misrepresentation, and fresh for frozen/thawed
product substitution. Within this framework, the potential of fluorescence, vibrational, nuclear
magnetic resonance, and hyperspectral imaging spectroscopies, combined with both unsupervised
and supervised chemometric techniques, has been highlighted, each time pointing out the trends in
using one or another analytical approach and the performances achieved.

Keywords: fish and seafood; food authentication; chemometrics; fingerprinting; wild and farmed;
geographical origin; vibrational spectroscopy; absorption/fluorescence spectroscopy; nuclear magnetic
resonance; hyperspectral imaging

1. Introduction

The demand for fish and seafood products has increased notably during the last years, mostly as a
consequence of the new special attention paid by consumers towards healthier food. The technological
development that has invested the whole fisheries sector has additionally contributed to overcome the
well-known obstacles to export fish and seafood worldwide, deriving from the high vulnerability of
the products, to the point that today more than 35% of all caught and cultured fish is traded across
national boundaries [1]. The growing competitiveness of the sector and diversification in fish supply
chain have, in turn, led to the presence of a huge variety of look-alike products on the international
market, whose global quality features are, however, quite different. More than 700 different species of
fish, 100 of molluscan, and 100 of crustacean are, in fact, used as food for humans [2].

In this scenario, what is remarkable is that consumers demand not only for more fish, but for even
safer and higher-quality fish, whilst the deliberate or accidental lack of transparency about the identity
of products and fraudulent or negligent activities continue to grow. Based on what has been recently
reported by the Food and Agriculture Organization, fish and related products have become among the
most vulnerable to fraud category of food. Nevertheless, the effective monitoring of illicit practices in
the fisheries sector is hampered by the increasing spread of highly processed fish products, in which
the presence of different types of fraud can be hidden with ease [3].
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The voluntary substitution of commercially valuable fish species with lower quality ones,
represents the most recurrent form of fish fraud, although substitution can also take place accidentally
when species look so similar that they are mistaken for each other. The geographical provenance and
the production process are other current authenticity topics concerning fish and seafood products,
whose falsification which is hard to bring to light, has a negative economic impact. Despite being
economically motivated, mislabelling concerning these issues may occasionally represent a risk to public
health. The illegal commercialisation of poisonous fish species (Tetraodontidae, Molidae, Diodontidae,
and Canthigasteridae families) or the replacement of certain kinds of raw fish fillets with gastro-intestinal
toxic fish (i.e., those belonging to the Gempylidae family) are just some of many examples. Likewise,
occurrence of some harmful marine biotoxins may be linked to the geographical distribution of the
producing organisms [4], while the presence of higher levels of heavy metals or residues of antibiotic
and pesticides are more likely to be found in farmed products than in wild ones [5–7].

Ensuring a clear discrimination of the authenticity of fish and seafood is of special concern today
not only for consumers, but also for producers, traders, and industries. Traceability throughout
the whole production chain and at all stages of the market, covered by Regulations 178/2002/EC [8],
1005/2008/EC [9], and 1224/2009/EC [10], is considered to be the starting point for the assurance of
a high level of safety and quality of food and ingredients, as it represents the basic instrument not
only for preventing illegal activities, but also for protecting consumers through the opportunity to
access information about the exact nature and characteristics of fish. Specific regulations for the
provision of information to consumers [11], and the requirement to uniquely identify fish and seafood
on the label [12], play also an essential role in providing more transparency regarding the nature
of the products, as they allow consumers to make informed choices and further contribute to the
implementation of seafood traceability. As a matter of fact, labels of all unprocessed and some processed
fishery and aquaculture products must include information on both the commercial and scientific
names of the species, whether the fish has been caught or farmed, the catch or the production area,
the fishing gear used, whether the product has been defrosted, and the date of minimum durability
(where appropriate). Many other voluntary claims can also be reported on the label, including the
date of catch/harvest for wild/aquaculture products, information about the production techniques and
practices, and environmental and ethical information [12].

All the claimed declarations appearing on the label must always be checked to verify whether
they are truthful. Therefore, in spite of the utility of the traceability system, the fisheries sector needs
effective methods to address the problem of fish authenticity and ensure product quality. Innovative
analytical approaches based on the evaluation of total spectral properties, are rapidly gaining ground
at all levels of current food authenticity research, thanks to their ability to simultaneously provide lots
of information related to physical and chemical characteristics of the food matrix. Recent advances in
chemometrics, moreover, have represented a major turning point in the dissemination of ‘fingerprinting
strategies’, as they allow for the study of all the genetic, environmental, and other external factors
influencing food identity, and to bypass many obstacles related to the application of conventional
techniques [13]. This way, chemometrics can be now considered an essential tool for differentiation of
similar samples according to the authentication issues of interest.

Until now, several spectroscopic techniques in conjunction with chemometrics have been used
as rapid, simple, and cheap tools for fish quality and authenticity testing. Among these, vibrational
(near-infrared (NIR), mid-infrared (MIR), Raman), fluorescence or absorption ultraviolet-visible
(UV–Vis), and nuclear magnetic resonance (NMR) spectroscopies, together with hyperspectral imaging
(HSI) spectroscopy, represent the most used techniques, even if they are still being developed.

Based on this background, the present review article has been designed to highlight the uses and
developments of fast and reliable omics strategies based on UV–Vis, NIR, MIR, Raman, NMR, and HSI
spectroscopies, with the attempt to address the key authenticity challenges within the fish and seafood
sector. To this end, a brief discussion concerning basilar concepts underlying these techniques has
been provided, and has been accompanied by a short overview about the implementation of several
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chemometric tools, in order to highlight the potential benefits in extracting relevant information from
spectral data.

The main body of this review focuses specifically on the application, over the years, of spectroscopy
and chemometrics to distinguish products in accordance with the species, production method (wild or
farmed), farming system (conventional or organic; intensive, semi-intensive, or extensive), geographical
provenance (different FAO areas and countries of origin), and the processing technique (fresh or
fresh/thawed) that at present, correspond to the key authenticity concerns for which there must be
ongoing and effective monitoring.

2. A Conceptual Framework of Spectroscopy and Chemometrics

Spectroscopy is the study of electromagnetic radiation interacting with matter, which can be
absorbed, transmitted, or scattered on the basis of both the specific frequency of the radiation and
the physical/chemical nature of the matter. When absorbed, radiation leads to a change in the energy
states of atoms, nuclei, molecules, or crystals that make up matter, inducing an electronic, vibrational,
or rotational transition, depending on the energy of the incident radiation [14]. When the radiation,
at a specific frequency, is scattered by molecules (as in Raman spectroscopy), some changes can occur
in the energy of the incident photon, which transfers parts of its energy to the matter. In any case,
the result of these interactions is a spectrum enclosing many features of the matter analysed, which,
when properly interpreted with the help of chemometrics, can be used in a great number of different
applications. In choosing the most appropriate spectroscopic method to be used, consideration should
be given to some factors, which go beyond the purely analytical purposes: the physical state and
chemical composition of the sample, sensitivity, specificity, and overall accuracy of the technique, scale
of operation, time of analysis, and cost/availability of the instrumentation [15].

For the sake of conciseness, the main features related to spectroscopic techniques used mostly in
the food authentication field are summarised in Table 1.
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2.1. UV–Vis Absorption and Fluorescence Emission Spectroscopy

UV–Vis spectroscopy involves the electronic excitation of molecules containing specific
chromophore groups, which results from the absorption of photons at two wavelength regions
of the electromagnetic spectrum. In the absorption mode, the amount of light retained by the sample is
measured, while in the fluorescence mode the amount of light emitted after absorption is taken into
consideration [15]. Typically, the UV–Vis spectrum is characterised by broad absorption or emission
peaks which reflect the molecular composition of the matrix: by exploiting the unicity absorption or
emission patterns of the entire spectrum, or by measuring the absorbance or fluorescence intensity of
the analyte at one wavelength, this spectrum can be used for many food analytical qualitative and
quantitative applications, respectively [16,17].

2.2. IR Spectroscopy

Infrared spectroscopy involves three different sub-regions of the electromagnetic spectrum,
namely NIR, MIR, and FIR, whose absorption by samples results in vibrations of atoms in molecular
bonds [18]. These vibrations give out a great amount of information related not only to chemical
bonding, but also to the general molecular conformation, structure, and intermolecular interactions
within the sample [19]. This way, IR spectra enclose the total sample composition, whose pattern of
peaks distribution represents a unique signature profile and whose intensity of bands is linked to the
concentration of specific compounds [20,21].

The NIR spectrum of food samples results from absorption by molecular bonds containing
prevalently light atoms and it is characterised by the presence of broad and overlapping overtone and
combination bands [22,23]. By contrast, spectral signature in the MIR region is characterised by the
presence of more intense and delineated bands, whose position and intensity are more informative
of molecule’s concentration in the sample [24,25]. Here too, the spectral profile is complex and data
mining is very difficult without the use of multivariate data analysis. Finally, with reference to FIR
spectroscopy, it is noted that no applications to food authentication are currently available since it
relates to molecules containing halogen atoms, organometallic compounds, and inorganic compounds,
whose interest is more limited within the context of food research [26].

2.3. Raman Spectroscopy

Raman spectroscopy is a molecular vibration technique based on the inelastic Raman scattering,
a physical effect that comes with molecular vibrations and triggers a change in the polarizability of
the molecule [27]. In particular, this kind of spectroscopy focuses on the measurement of those small
fractions of the radiation which is scattered by specific categories of compounds at higher or lower
frequencies than incident photons. The typical Raman spectrum, showing intensities of the scattered
light versus the wavelengths of the Raman shift, is characterised by sharp and well-resolved bands,
which provide information about molecular structure and composition of the matter analysed.

For a long time after its discovery, Raman spectroscopy has been poorly exploited in food
applications, by reason of several analytical disadvantages and interference (see Table 1). These
drawbacks have now been overcome thanks to the overall technological improvement of Raman
equipment: by way of example, surface-enhanced Raman spectroscopy (SERS) has recently made it
possible to surmount hurdles related to faint scattering signals [28].

2.4. Hyperspectral Imaging

HSI is a technique cobbling together spectroscopy and computer vision to give useful information
concerning the physicochemical characteristics of samples in relation to their specific spatial distribution.
Briefly, HSI systems provide several hyperspectral images of the tested sample, corresponding to
three-dimensional data containers, of which each sub-image is a map showing spatial distribution of
the sample constituents in relation to each single wavelength [29,30].
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Over the recent years, the steady usage growth of HIS technology in the field of food research has
been mainly driven by the availability of different instrumental configurations that exploit fluorescence,
absorbance, or light scattering phenomena. On the other side, application of spectral imaging
technologies is not at all widespread in the food industry, due to a variety of factors ranging from high
costs and low availability of instrumentations, to the computation speed and necessity of expertise by
users [31].

2.5. NMR Spectroscopy

NMR spectroscopy is a very versatile technique for food analysis and its untargeted applications
have become very popular. The first reason for NMR popularity is that the composition of the
matter under study can be perfectly mapped out by the overall NMR spectral profiles, thus giving
a comprehensive view for the identification of all major and minor food components [32]. At the
same time, the area of the NMR spectral bands is directly proportional to the number of nuclei that
produce the signal, so the technique is also well-suited for quantitative purposes. Additionally, despite
relatively high NMR equipment costs and spectra interpretation difficulties, NMR spectroscopy is
one of the only techniques available that can provide information about the regio/stereo chemistry of
molecules [33].

On the basis of the physical state of the matter and on the intended aim of NMR application,
different methodologies involving the use of NMR have been optimized. Among these, high-resolution
NMR, low-field NMR, solid-state NMR, liquid-state NMR, and NMR imaging are the most used ones,
any of which requires specific instrumentation and different approaches to sample preparation, data
acquisition, and processing [34].

2.6. Qualitative Chemometric Methods

Raw spectra resulting from spectroscopic analyses are usually characterised by broad and
unresolved bands containing too much information, some of which are certainly useful and need
to be retained, but some of which hamper the correct data interpretation and need to be removed.
Recent advances in chemometrics have marked an important milestone in spectra analysis, since they
have simplified the identification of hidden interrelations between variables providing the key for
discrimination and classification of samples [20,35]. In other words, qualitative chemometrics methods
help to recognise similarities and dissimilarities within spectral data, which can be used to confirm the
authenticity or detect adulteration of food samples [36].

Based on the explorative or predictive nature of the methodology, qualitative chemometric
techniques are usually classified into unsupervised and supervised techniques. While unsupervised
techniques are independent of prior knowledge of class membership of samples to perform classification,
supervised techniques call for such knowledge. Brief descriptions of the principles behind the
chemometric techniques which are being used to a greater extent are provided below.

2.6.1. Spectral Pre-Treatments

Pre-treatment of spectral data is recognized as being fully integrated into the chemometric set-up
itself. Prior to the development of chemometric models, raw spectroscopic data are suggested to be
pre-processed by applying some corrections, aimed to enhance spectral properties and minimize the
fraction of systematic variation which does not contain relevant information to the discrimination of
samples. One such systematic variation is the sum of different physical effects which arise during
instrumental acquisition of spectra (e.g., light scattering or background fluorescence phenomena),
which are responsible for the appearance, especially in solids samples, of multiplicative, additive,
and non-linearity effects (e.g., overlapping bands, baseline shifts/drifts, random noise) [37].

Thus, pre-processing algorithms are usually classified into signal correction methods (e.g.,
multiplicative scatter correction, MSC; standard normal variate, SNV), differentiation methods (first,
second, or third order derivation), and filtering-based methods (e.g., orthogonal signal correction, OSC;
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orthogonal wavelet correction, OWAVEC) [38]. While signal correction and filtering-based methods
are conceived to retain only the spectral information mainly by suppressing the light-scattering effects,
derivative-based methods also help to reduce the spectral complexity through the separation of the
broad overlapping bands.

A more detailed description of spectral pre-processing techniques can be widely found in
the literature [37,39,40]. Either way, it is essential to point out that spectral filters are most often
concatenated to exploit the effects of each one, but this concatenation might increase model complexity
and background noise, resulting in an inaccurate chemometric modelling of data and, thus, wrong
predictions. For this reason, it is recommended to customize the selection of the pre-treatments prior
to performing chemometric analysis according to the spectroscopic technique used and the sample
characteristics, trying to restrict, whenever possible, their number.

2.6.2. Unsupervised Methods

Unsupervised methods look at the study of variability among samples for the purpose of
identifying their natural characteristics and possible similarities among them, without the need to
provide any information about the class to which samples belong.

Between the various available techniques, principal component analysis (PCA) is the most used
one. PCA is a quite basic projection method able to reduce the original correlated variables into a
smaller number of new uncorrelated latent variables (known as principal components), containing
as much systematic variation as possible of the original data [41]. Score plot outputs deriving from
PCA applications show in a simple and intuitive graphical way the hidden structures among samples,
the interrelations among variables and between samples and variables, the probable presence of any
outliers, and possible groupings or dispersion of sample according to specific class membership.

Hierarchical cluster analysis (HCA) is another frequently employed unsupervised method, based
on the splitting of samples into different clusters. This splitting is based on the degree of analogy
among samples and it is generally performed by evaluating the Mahalanobis or Euclidean distance
between the same samples. The hierarchical approach followed is thus aimed at constructing a ladder,
in which the most closely related samples are first classified into small groups, and then progressively
assembled into bigger groups including less similar samples [35]. Results of HCA are graphically
expressed by tree diagrams (dendrograms) showing relationships among clusters; nevertheless, despite
being easily computable, dendrograms are often misunderstood, since the number of clusters to be
considered is arbitrary, making the interpretation of results more subjective than objective.

2.6.3. Supervised Methods

Supervised techniques require the previous knowledge of the class membership of the samples
tested, which can be used to develop predictive models able to discriminate and classify future
unidentified samples. There are several different chemometric techniques belonging to the category
of the supervised methods, most of which require a training set (to find classification rules for the
sample), and a test set (to assess the predictability of the model developed) [42].

Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) are variance-based
methods which use Euclidean distance to find those combinations of the original variables determining
maximum separation among the different groups of samples [20]. Both techniques presume that the
measurements within each class are normally distributed, but while LDA supposes that dispersion
(covariance) is identical for all the classes, QDA, on the contrary, allows the possibility of different
dispersion to be present within different classes [35]. Although QDA is considered an extension of LDA,
there are some common limitations, for instance the risks of overfitting and failing in classification,
especially when the samples size for each class in unbalanced.

K-nearest neighbors (k-NN) clustering is one of the simplest method to discriminate samples on
the basis of the distance among them. After choosing the adequate number of k-neighbor samples,
the algorithm identifies the k-nearest samples of known class membership to select the classification of
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unknown samples. This method, unlike LDA and QDA, does not require any prior assumption and its
success is independent of the homogeneity of sample numbers in each tested class [43].

Among supervised machine learning approaches, support vector machines (SVM) are particularly
advantageous when samples classification is complicated by non-linearity and high dimensional space.
The core of the method is the use of specific functions for pattern analysis (kernel algorithms), through
which the margin of separation between classes is maximised and complex classification problems that
are not linear in the initial dimension (but may be at high dimensional spaces) are resolved [20].

Similarly, artificial neural networks (ANN) is a machine learning method characterised by the
ability to adapt to the data, providing classification also in the presence of non-linearity input–output
relationships. Structured and organized in a less complex way than SVM, ANN usually generate
a more rapid response at a lower computational cost; these efforts, however, are counterbalanced
by a reduction in accuracy [20,44]. Nevertheless, ANN suffers from poor data generalisation and,
by consequence, it is inclined to return model’s overfitting errors. This tendency to overfitting is the
main reason why accurate ANN computation analyses call for a very high number of samples to be
considered, and at the same time, require strict internal and external validations to be performed,
where the training set and the test set should enclose as much similar variability as possible [45].

Soft independent modelling of class analogy (SIMCA) is an alternative pattern recognition
method which first performs individual PCA on the samples for each class they must be assigned to,
in order to compress original variables into a smaller number of new principal components. Principal
components and critical distances computed are then used to delineate a confidence limit for each
class. Unknown samples are then assigned to the class to which they get close by projection into the
resulting multidimensional space [36]. SIMCA is particularly useful when samples belong to several
different classes; since maximum class-separation is not covered by the method, the interpretation of
the outcomes may be difficult, if not impossible [20].

Regression-based supervised discriminant analyses exploit specific classification algorithms
to model the interrelations existing between measured variables (i.e., spectra) and qualitative
parameters (i.e., class membership), such that maximum separation between the different groups of
samples is achieved. Partial least square-discriminant analysis (PLS-DA) and orthogonal partial least
square-discriminant analysis (OPLS-DA) belong to this category of techniques. PLS-DA involves a
standard PLS regression to find interrelations between the X-matrix (containing measured variables)
and Y-matrix (containing categorical variables) by building new variables (latent variables). These
interrelations allow not only to classify new samples into one of the Y-groups based on measured
spectrum, but also to identify variables that mostly contribute to the classification. Although PLS-DA
has the advantage of modelling noisy and highly collinear data efficiently, the technique is often
unsuccessful when the non-related (orthogonal) variability in the X-matrix is substantial, since it
hinders the correct interpretation of the results [20]. This drawback can be overcome by the application
of OPLS-DA, through which the orthogonal variability within the X-matrix is separated from the related
(predicted) variability and then modelled apart. Consequently, if samples cannot be discriminated
along the predictive direction, the orthogonal variability may be handled to increase the effectiveness
of discrimination among classes [46].

3. Authenticating Fish and Seafood through the Application of Qualitative Spectroscopy and
Chemometrics

Spectroscopic and chemometric analyses have been used over the years for many applications in
fishery research, those in the authentication field being among the most promising ones. Some of the
works concerning the flexibility of spectroscopy in fish and seafood analysis have already been reviewed
by different authors [24,25,47–49], but they have mainly centred on illustration of the advances of the
available techniques for quality attributes assessment, as well as on the advantages and limitations of
the single type of technique over traditional methods.
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Therefore, in the following section, more attention has been paid to the resolution, on a case-by-case
basis, of the weightiest authentication issues in the fish and seafood sector, namely species substitution,
geographical origin falsification, production method or farming system misrepresentation, and fresh
for frozen/thawed product substitution, each time pointing out the trends in using one or another
method as well as the discrimination performances achieved, which are considered to be the most
intuitive parameters used for chemometric models diagnostics. An overview of the most frequently
investigated authentication issues in the fishery sector and the trend of using each spectroscopic
technique over the years by the scientific community are plotted in Figures 1 and 2, respectively.

Figure 1. Percentage distribution of the authenticity issues covered by the scientific literature reviewed
in the present work. Data were collected in February 2019 from the web search engine Google
Scholar (search criteria: time period: “any time”, and keywords: “fish and/or seafood”; “authenticity”;
“spectroscopy”; “chemometrics”.

Figure 2. Combined bars and lines graph, where bars (plotted against the left Y-axis) show the
cumulative number of scientific works concerning the use of spectroscopy and chemometrics for fish
authentication purposes, and lines (plotted against the right Y-axis) show the cumulative number of
works using each spectroscopic technique. Data were collected in February 2019 from the web search
engine Google Scholar (search criteria: time period: “any time”, and keywords: “fish and/or seafood”;
“authenticity”; “spectroscopy”; “chemometrics”.
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3.1. Species Substitution

Substitution or counterfeit of high-value fish species with low-value ones has many quality and
safety implications. Therefore, the confirmation of scientific and commercial names declared on the
label through the use of rapid and low-cost methods is increasingly popular in food research.

3.1.1. Application of Vibrational Spectroscopy

An early study explored Vis-NIR spectroscopy as a tool to detect the counterfeit of Atlantic blue
crabmeat (Callinectes sapidus) with blue swimmer crabmeat (Portunus pelagicus) in 10% increments,
taking into consideration their different commercial values [50]. Qualitative chemometric analysis was
performed on 400–2498 nm Vis-NIR spectra (previously subjected to different pretreatments to evaluate
the effects on model performance), by means of a full-spectrum PCA and a sequential-spectrum PCA.
As a result, both the first derivative-pretreated full spectra and second derivative-pretreated sequential
spectra, highlighted a trend of samples towards moving from the left part to the right part of the
PCA score plot with increased adulteration levels, but authors identified the sequential approach,
using 400–1700 nm second derivative spectra, as being the most informative and, thus, the most
suitable approach [50].

Based on the fact that the past several years have seen a sharp rise in the interest towards
the portability of instruments, which may provide greater flexibility especially in on-line, in-line,
and at-line routine quality control, a study performed by O’Brien et al. (2013), explored the ability
of a hand-held NIR spectrometer to give positive results of discrimination between high-value and
low-value whole fish and fish fillet species [51]. In particular, the objective was to discriminate
between two different species of mullet (red mullet from mullet), cod (winter cod from cod), and trout
(samlet from salmon trout). NIR spectra (906–1648 nm) obtained from skin (whole fish) and meat
(fish fillets), were first pre-processed and then elaborated by PCA and SIMCA analysis. Successful
PCA results were achieved only in separating the whole mullet samples, but the discrimination
performances improved significantly also for mullet fillets after the application of the SIMCA analysis.
PCA failed to discriminate both whole cod and cod fillets, but here too, SIMCA predictions provided
a correct assignment of the tested fish samples. Similar outcomes for samlet from salmon trout
were achieved [51]. Thus, although PCA investigation failed, SIMCA supervised analysis clearly
outlined the possibility to authenticate high quality fish species which are potentially substitutable
with lower-quality alternatives. Still in the context of the use of hand-held and compact NIR devices,
a broader attempt to distinguish fillets and patties of Atlantic cod (Gadus morhua) from those of haddock
(Melanogrammus aeglefinus) was recently made [52]. Raw fillets and patties of the two fish species were
scanned at 950–1650 nm (by the portable instrument) or at 800–2222 nm (by a benchtop instrument)
and after being pre-treated with SNV, MSC, or Savitzky–Golay smoothing (SG) coupled with first or
second derivative, they were elaborated by means of supervised LDA and SIMCA analysis. Regardless
of instrumentation used, the best LDA models were computed on the MSC spectra of both fillets and
patties, since the correct classification rate in the external validation step reached 100% [52]. SIMCA
class-modelling strategy obtained 100% correctly classified SNV, SG-first derivative, or SG-second
derivative fillets spectra acquired by benchtop NIR, and 100% correctly classified MSC fillets spectra
acquired with a portable NIR [52]. As for patties, samples acquired by benchtop NIR and portable
NIR were 100% correctly classified when spectra were subjected to SG-first derivative or SG-second
derivative, and SNV or MSC, respectively. The worst SIMCA outcomes in prediction for patties and
fillets were obtained for SG-second derivative spectra acquired with the portable instrument. Despite
these results, no significant differences in the performances of the two instruments tested were found,
thus confirming equivalent discrimination powers also in processed product.

Different species of freshwater fish of the Cyprinidae family, namely black carp (Mylopharyngodon
piceus), grass carp (Ctenopharyngodon idellus), silver carp (Hypophthalmichthys molitrix), bighead carp
(Aristichthys nobilis), common carp (Cyprinus carpio), crucian (Carassius auratus), and bream (Parabramis
pekinensis), were also investigated by NIR spectroscopy [53]. Fish samples were scanned in the
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1000–1799 nm region, MSC pre-treated, and pre-reduced in dimensionality by different methods,
including PCA, PLS, and fast Fourier transform (FFT). In this case, LDA models were built by using
only nine pre-selected spectra wavelengths from the entire spectrum and results obtained showed
a good prediction ability of the adopted strategy: PCA-LDA and FFT-LDA models, in fact, showed
100% accuracy, specificity, sensitivity, and precision, even if most of the information was not taken into
account by calculation [53].

Zhang et al. (2017) attempted to classify marine fish surimi by 1100–2500 nm NIR spectroscopy,
according to the species by which products were composed, namely white croaker (Argyrosomus
argentatus), hairtail (Trichiurus haumela), and red coat (Nemipterus virgatus) [54]. According to results
obtained from PCA of the pre-processed spectra, the presence of a well-defined and separated cluster
associated with red coat surimi species was observed, but the separation of the other two species of
surimi samples was not clear [54]. However, as regards LDA results, 100% correct classification rate
for external validation datasets after MSC pre-treatment was achieved, demonstrating once again the
greater effectiveness of supervised analyses compared to unsupervised ones.

Species authenticity was also studied by comparing FT-NIR and FT-MIR spectra of red mullet
and plaice fillets (higher-value species) to those of Atlantic mullet and flounder fillets (lower-value
species) [55]. LDA and SIMCA analysis applied to differently pre-treated NIR and MIR spectra
(800–2500 nm and 2500–14,300 nm spectral ranges, respectively), clearly discriminated Atlantic mullet
fillets from those of the more valuable red mullet. While LDA gave a 100% correct classification
percentage in prediction (irrespective of the spectroscopic technique considered), sensitivity and
specificity higher than 70% and 100%, respectively, were calculated for FT-NIR spectra subjected to
SIMCA analysis [55]. Poorer, but acceptable, results were obtained for flounder and plaice fillets
discrimination: in this case, FT-IR spectroscopy showed the best discrimination power, with a prediction
ability higher than 83% and a specificity of 100%.

The usefulness of NIR spectroscopy was explored to identify different fish species used to make
fishmeal under industrial conditions. The 1100–2500 nm raw or second derivative NIR spectra of
samples containing salmon, blue whiting, and other (i.e., mackerel or herring) fish species were
elaborated by PCA, LDA, and DPLS (PLS-DA). Models developed correctly classify, on average, more
than 80% of the fish meal samples into the three groups assigned according to the fish species [56].

In contrast to the multiple applications of NIR spectroscopy, only one study explored the
discrimination abilities of MIR spectroscopy [57]. This study coupled SG- and SNV-pre-treated MIR
spectra (2500–20,000 nm) with chemometrics (PCA) to specifically detect adulteration of Atlantic
salmon (Salmo salar) mini-burgers with different percentage (from 0 to 100%, in steps of 10%) of Rainbow
trout (Onconrhynchus mykiss). The resulting 11 formulations of salmon burgers were grouped into 11
distinct clusters, even when the samples were stored for different periods of time before acquisition [57].

Only two applications of Raman spectroscopy concerning fish species authentication are available.
The aim of the first study was to discriminate 12 different fish fillets of different species by using
pre-treated Raman spectra in the range 300–3400 cm−1 (about 3940–33,333 nm) recorded by a Raman
spectrometer equipped with a 532 nm laser exciting source [58]. HCA analysis applied to the Raman
spectra revealed the presence of three major clusters, one corresponding to fish from the Salmonidae
family (rainbow trout and Chum salmon), one corresponding to various freshwater fish (zander,
Nile perch, pangasius, and European seabass), and one corresponding to various saltwater fish (Atlantic
herring, Atlantic pollock, Alaska pollock, Atlantic cod, blue grenadier, and yellowfin tuna). Within
these large clusters, spectra were also grouped according to their species in sub-clusters, with a high
degree of accuracy of the spectral classification on species level (95.8%) [58]. Similarly, PCA analysis
performed on 5000–50,000 nm Raman spectra (acquired by using a 785 nm laser exciting source)
discriminated among horse mackerel (Trachurus trachurus), European anchovy (Engraulis encrasicolus),
Bluefish (Pomatamus saltatrix), Atlantic salmon (Salmo salar), and flying gurnard (Trigla lucerna) samples.
In this case, however, the study was less rapid and more elaborate since the spectral acquisition was
performed on the previously extracted lipid fraction of fish [59].
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3.1.2. Application of NMR Spectroscopy

Muscle lipids of four different species of fish belonging to the Gadoid family, namely cod (Gadus
morhua), haddock (Melanogrammus aeglifinus), saithe (Pollachius virens), and pollack (P. pollachius),
were subjected to 13C-NMR spectroscopic analysis of phospholipid profiles, in order to authenticate
samples according to the species [60]. As a result, supervised LDA and Bayesian belief network (BBN)
performed on the resulting 13C-NMR spectral peaks provided 78% and 100% of the correctly classified
samples, respectively [60]. Other applications of NMR and chemometrics concerning fish species
discrimination were not reported in literature until now. In our opinion, the method should be further
explored in view of the several potentials and benefits provided, despite disadvantages deriving from
the need of sample preparation prior to analysis.

3.2. Production Method and Farming System Misrepresentation

The differentiation of the production method of fish and seafood is another relevant aspect in
certifying authenticity and traceability. During the last few years, the wild fish catches have been
decreasing compared to the aquaculture production, thus supply of the market in farmed products
has been growing very fast. From a compositional and organoleptic point of view, a wild fish is quite
different from an aquaculture one, and this diversity is inevitably reflected on the different economic
value of the two types of products [61–63]. By way of example, wild fish is usually characterised by
higher levels of muscle protein, saturated, and polyunsaturated fatty acids, while farmed fish by a higher
content of total lipid and monounsaturated fatty acids [64,65]. Consequently, the illegal substitution of
higher-value wild fish with lower-value farmed fish is not an uncommon occurrence. Additionally,
aquaculture fish consist of a number of high-variable products (i.e., extensively, semi-intensively, or
intensively farmed fish, as well as organic or conventional farmed fish), whose final characteristics,
since influenced by the husbandry environment and, above all, by the diet, are slight and very difficult
to identify. This the reason is why the authentication of the production method (wild or farmed,
organic or conventional), but also of the farming system of the aquaculture products is of extreme
importance from the standpoint of fraud prevention and transparency towards consumers.

3.2.1. Application of Vibrational Spectroscopy

Among various vibrational spectroscopic methods applied to differentiate production processes
and farming systems of fish, NIR is once again the most widely used. No application of UV or Raman
spectroscopy, to the best of our knowledge, are currently available.

Ottavian et al. (2012) proposed a comparison between the classification performances of wild and
farmed European sea bass obtained by three different NIR spectroscopic/chemometric approaches,
and the classification performances obtained using only chemical and morphometric features [66].
The use of 1100–2500 nm raw spectra, WPTER-pre-treated spectra (wavelet packet transform for efficient
pattern recognition), or of some parameters predicted by building a regression-based model, were found
to be equivalent in terms of predictability assessed by PLS-DA and no differences between classification
obtained by these models and classification obtained by using only chemical and morphometric data
was observed. Moreover, authors identified (by using the variable influence of projection indexes,
VIP) the wavelengths related to the absorbance of fat, fatty acids, and water as most influential in
differentiating the production process of the fish tested.

More recently, the systems behind the production of European sea bass, was also investigated by
applying unsupervised PCA and supervised OPLS-DA to 1100–2500 nm NIR spectra [67]. PCA built
to SNV-SG-second derivative spectral data did not return a clear separation of groups, mainly as a
consequence of the fact that the intraclass variability among samples was higher than the among-class
variability between samples. A correct classification rate of 100% for both wild and farmed sea bass
was instead achieved by OPLS-DA, and, in this case, authors found VIP indexes related to proteins
exerting a greater contribution to the variance between the two types of fish. A deeper insight into the
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different farming systems of aquaculture samples, moreover, showed the ability of NIR and OPLS-DA
to authenticate 67%, 80%, 100% of extensively, semi-intensively, and intensively-reared subjects,
respectively, thanks above all to the spectral bands associated with protein absorption [67]. Concrete
tank-cultured sea bass were also successfully discriminated from sea cage-cultured sea bass during
storage, by means of Vis-NIR spectroscopy coupled with PLS-DA [68]. The best performances (87% of
correct classification), were observed for spectral measurements performed at 48 h post mortem [68].
However, the greater contributions of the wavelengths to the PLS discrimination of samples analysed
at 48 h post mortem were different from those of samples analysed at 96 h post, thus classification
by farming system may have been affected also by other unrelated factors, such as the well-known
compositional changes occurring during shelf life.

Authentication by NIR and SIMCA analysis of European sea bass raised in extensive ponds,
semi-intensive ponds, intensive tanks, and intensive sea-cages, was also performed both on fresh fillets
and freeze-dried fillets [69]. Authors found that freeze-drying the samples gave the best classification
outcomes. The same results were obtained when classifying fresh minced fillets and freeze-dried fillets
of farmed European sea bass according to the semi-intensive conventional or the organic production
system [70]. SIMCA classification based on second-derivative spectra (1100–2500 nm) of samples, in
fact, generated good results when fitted on the freeze-dried fillets (65–75% of correct classification),
and worse results when performed on fresh fillets (20–25% of correct classification) [70]. All these
results are particularly informative about problems posed by water when analysing high-moisture
foods like fish. One of the main drawbacks of NIR spectroscopy is, in fact, the difficulty in separating
relevant from useless information from spectra, in which peaks of water are predominant. These peaks,
when included in chemometric calculations may hinder reliable features related to functional groups
of molecules of interest and, thus, produce misleading results, especially when samples only slightly
differ, such as in the case of fish reared under different conditions.

Following these principles, NIR spectroscopy was also used to directly authenticate freeze-dried
rainbow trout fillets by rearing farm and, at the same time, to check whether NIR discriminating
capability changed between raw and cooked freeze-dried fillets [71]. Rainbow trout samples came
from three different aquaculture systems, varying in average well water temperatures, of which one
consisted in indoor rearing at 11–14 ◦C, one in outdoor rearing at 9–11 ◦C, and one in outdoor rearing
at 3–14 ◦C. Results for classification by farm (using SNV and second derivative 1100–2500 nm spectra
of raw samples) showed approximately 97–100% of accuracy, with k-NN analysis giving the best
overall statistical performances and PLS-DA the worst ones. As for cooked freeze-dried samples
discrimination, the accuracy was approximately the same as those obtained for raw samples (90–100%
for LDA, QDA, k-NN and 80% for PLS-DA), highlighting that the cooking process did not alter the
capabilities of the technique to discriminate the sample by rearing farm [71].

3.2.2. Application of NMR Spectroscopy

Several applications of NMR spectroscopy aimed at authenticating the production process or
the farming system were found in literature. In particular, proton (1H) NMR spectroscopy can be
used to analyse lipid mixtures such as fish oil, requiring simple preparation of samples and short time
of spectra acquisition and providing a great deal of useful information [72]. Thus, considering that
fish flesh lipids are the main compounds changing on the basis of the feeding regime, many attempts
to use 1H-NMR to identify the production process or the farming system were made. One of the
earliest studies used SVM to elaborate 1H-NMR spectra, and it was highly effective in predicting the
wild or the farmed origin of salmon from different European countries [72]. Similarly, encouraging
results were achieved through the combination of 1H-NMR fingerprinting of lipids from gilthead
sea bream with more complex chemometric data analyses [73]. The only unsupervised PCA applied
on raw or processed 1H-NMR spectral profiles returned, in fact, a clear separation between wild
and farmed samples, which was found to be linked to methyl and methylene protons, together with
methylene and methyne protons in unsaturated fatty acids [73]. Moreover, LDA variables selection
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allowed classification of 100% of the tested wild and farmed samples, and results from probabilistic
neural network (PNN) analyses further reinforced the findings that such class discriminations were
readily feasible.

If the previous studies were performed on fresh raw fish, other studies were intended to evaluate
any differences in classification outcomes deriving from various degrees of fish processing. Lipids
extracted from different types of processed Atlantic salmon products (frozen, smoked, and canned)
were subjected to 1H-NMR fingerprinting to develop models for determining labelling authenticity
(wild/farmed) of these products [74]. SIMCA analysis applied to 138 pre-selected spectral peaks
of NMR data, correctly classified as 100% of wild and 100% farmed samples, thanks mostly to the
influence of a higher content of linoleic and oleic acid in farmed salmon compared to wild salmon [74].
A higher content of unsaturated fatty acids (and especially n−3 polyunsaturated fatty acids) was also
found to play a special role in the discrimination between wild and farmed specimens of gilthead
sea breams [75]. The influence exercised by these compounds was studied though the application
of a supervised OPLS-DA to the whole lipid fingerprinting data obtained by 1H-NMR spectroscopy.
Just like SIMCA classification did in the previous study, OPLS-DA also led to a perfect separation
of samples, but with the great advantage of being able to highlight the most effective variables in
discrimination in the simplest of ways.

The 1H-NMR molecular profiles of gilthead sea bream fish specimens produced according to
different farming systems, have also been investigated, to seek out differences among three different
kinds of aquaculture practices (cage, tank, and lagoon), but also any variations in the molecular patterns
after a 16-day storage time under ice [76]. PCA-score plot of the pre-treated spectra showed a clear
separation of fresh samples from ice-stored samples. At the same time, three distinct sub-clusters for
each of the storage times, corresponding to the three farming systems investigated, highlighted the
ability of the proposed methods to detect those molecular changes taking place during fish storage and
exploited them for authentication purposes.

Another different NMR approach retrieved from the published literature concerned the use of
carbon-13 (13C) NMR instead of 1H-NMR. Authors combined 13C-NMR spectra of muscle lipids of
Atlantic salmon with PNN and SVM chemometric elaborations, to discriminate between farmed and
wild samples and obtained excellent discrimination performances (98.5% and 100.0% of correctly
classified samples, respectively) [77]. Despite 13C-NMR signals being generally much weaker than
those provided by 1H-NMR (as well as time of analysis is often longer), useful and complementary
information can be obtained by this technique.

3.3. Geographical Origin Falsification

Proving the geographical origin authenticity of fish and seafood often involves the use of
multi-disciplinary and cross-disciplinary approaches which take account of the environmental and
genetic backgrounds affecting fish final characteristics [78]. Several published scientific researches
concerning the use of spectroscopic methods pointed out the usefulness in classification of fish and
seafood according to country or FAO area of origin.

3.3.1. Application of Vibrational Spectroscopy

Unlike the other authentication issues discussed above, NIR spectroscopy has been less explored
for fish geographical origin identification. The reason, probably, is the great difficulty experienced in
modelling total variability of NIR spectra and uniquely steering it to provenance, since provenance is
the sum of a huge amount of different intrinsic or extrinsic factors (genetic, growth pattern, feeding
regime, muscular activity, water temperature and salinity, etc.).

A traceability model able to predict the geographical origin of Chinese tilapia fillets coming
from four different Chinese provinces, was developed by NIR spectroscopy [79]. SIMCA analysis,
performed on 1000–2500 nm spectra of the minced samples, allowed more than 80% of fillets from
Guangdong, Hainan, and Fujian provinces and 75% of fillets from the Fujian province to be correctly
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and exclusively assigned to the corresponding area of origin. Several locations in the Northern China
Sea and East China Sea, from which sea cucumber (Apostichopus japonicus) come from, were also
identified by using NIR spectroscopy [80]. In this case, authors found pre-treated (SNV or MSC,
and second derivative) 1000–1800 nm spectra to give the best performance in PCA, since 100% correct
classification rate was obtained both in the internal calibration model and in the external validation
model. Similarly, 100% of sea cucumber analysed by means of diffuse reflectance MIR spectroscopy
(fingerprint 5800–16,600 nm region) combined with SIMCA, were discriminated by the Chinese
geographical region of provenance [81].

The last available application of NIR spectroscopy concerned the authentication of European sea
bass according to Western, Central, or Eastern Mediterranean Sea provenances, by using OPLS-DA as a
classification technique [67]. Results showed an overall discrimination performance of 89% according
to these geographical origins, with 100% of Eastern, 88% of Central, and 85% of Western Mediterranean
Sea samples being correctly classified. The VIP index analysis, moreover, identified lipid-associated
bands as the most influential variables on the samples geographic discrimination.

3.3.2. Application of NMR Spectroscopy

Masoum et al. (2007) proposed a method for the origin authentication of Atlantic salmon based
on 1H-NMR and SVM of spectra extracted from samples coming from Canada, Alaska, Faroes, Ireland,
Iceland, Norway, Scotland, and Tasmania. SVM returned a low degree of misclassification (4.6%)
and, thus, an excellent correct classification rate for all the salmon samples [72]. Likewise, Aursand
et al. (2009), used NMR combined with pattern recognition techniques to assess the geographical
origin of Atlantic salmon and to verify the origin of market samples [77]. Here too, muscle lipids
were extracted from tissues of fish coming from the same origins as those previously listed, but on the
contrary, lipid composition was studied by 13C-NMR coupled with PNN or SVM. This time, although
the PNN- and SVM-based approaches used returned different correct classification rates (93.8% and
99.3%, respectively), a comparable classification accuracy between the two methodologies approaches
was observed [77]. The 1H-NMR lipid fingerprint, elaborated by LDA or PNN, allowed also to
differentiate 76.2–100% of wild and farmed gilthead sea bream samples coming from Italy, Greece,
Croatia, Turkey, and the Mediterranean Sea (for wild specimens), with better classification rates when
PNN was applied [73]. Farmed gilthead sea bream specimens coming from five geographically distinct
sites of Sardinia (Italy) and Greece were also discriminated by means of 1H-NMR lipid fingerprint [75].
In this case, the fraction of unwanted variability related to the different production system of samples
(off-shore sea cages and lagoon) was successfully overlooked thanks to the application of the OPLS-DA
and, although authors did not provide statistical outcomes from internal or external classification,
the significance of the clusters observed in the score plot was confirmed by bootstrap statistical
analysis. The highest bootstrap values (indicating a well-defined class separation) were obtained for
discrimination between Greek and Sardinian fish (100%), while lower but meaningful bootstrap values
were obtained for discrimination among samples coming from different Sardinian offshore sea cage
farms (68–57%) [75].

One last interesting application of 1H-NMR dealt with the geographical authentication of bottarga,
a fish-derived product consisting of salted and dried mullet (Mugil Cephalus) roe [82]. Low-molecular
weight metabolites of aqueous extracts of samples, were analysed by PCA in order to identify clusters
corresponding to one of the specific geographical provenances studied, namely FAO 37.1.3, FAO 34,
FAO 41, FAO 31, and one unknown provenance. Results from PCA confirmed the possibility to
characterise bottarga samples having different geographical origins, since samples with the same
known geographical origin were closely clustered in the same region of the PCA scores plot, and those
of different origin were far away from each other.
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3.4. Discrimination between Fresh and Frozen/Thawed Fish and Seafood

Fish is commonly processed by freezing in order to be preserved from deterioration. Frozen fish,
however, is usually characterised by much lower quality and commercial value compared to fresh fish.
Therefore, fraudulent practices consisting in the substitution of fresh with frozen/thawed products
are not uncommon events [83]. Considering that labelling of fish must state if the fish is fresh, frozen,
or previously frozen (or refreshed), discriminating fresh from frozen/thawed products is one of the
most important authenticity issues. The differentiation between fresh and frozen/thawed products is
hampered by difficulties in detecting those tiny physical and chemical variations occurring during
freeze storage, which, moreover, do not cause any perceptible organoleptic change [83,84]. Therefore,
the rapid confirmation of fish freshness by spectroscopy has been widely studied during the last few
years and several published researches are currently available.

3.4.1. Application of Fluorescence and Vibrational Spectroscopy

Front-face fluorescence spectroscopy is one of the earliest spectroscopic techniques historically
applied to differentiate fresh from frozen/thawed fish. It has been demonstrated that typical changes in
fluorescence spectra of aromatic amino acids, nucleic acids, and nicotinamide adenine dinucleotide
(NADH) occur during storage, as a consequence of several reactions involving free amino acids
and carbonyl compounds of reducing sugars, formaldehyde (produced from trimethylamine oxide),
and malondialdehyde (produced from oxidation of fish lipids during storage). Therefore, changes
in fluorescence of fish samples may be considered as fingerprints for fresh and aged fish fillet
identification [85]. The fluorescence emission spectra of tryptophan (305–400 nm) recorded directly
on whiting fillets and elaborated by factorial discriminant analysis (FDA) led to correct classification
rates of 62.5% and 70.8% in the calibration and validation set, respectively. NADH fluorescence
spectra (360–570 nm), indeed, were found to have a higher potential to differentiate fresh from
frozen/thawed products as they allowed to achieve 100% of correct discrimination for both calibration
and validation set [85]. More recently, the same authors confirmed the success of a similar methodology
in authenticating freshness of sea bass samples. Fluorescence emission spectra at 340 and 380 nm,
elaborated by FDA, led to 94.87% of total correct classification rate [86]. Additionally, the elaboration
of NADH fluorescence spectra by Fisher’s linear discriminant analysis, was stated as a reliable method
to rapidly discriminate fresh and frozen/thawed large yellow croaker fillets, since 100% of total correct
classification rate was achieved [87].

More applications of IR spectroscopy are reported in the published literature. Uddin and Okazaki
(2004) used NIR reflectance spectroscopy on dry extract of horse mackerel specimens to evaluate
freshness [88]. Both PCA (using 1100–2500 nm spectra) and SIMCA analysis (using only three selected
wavelengths which were strongly related to protein content) successfully discriminated 100% of fresh
and frozen/thawed samples. Thereafter, the same authors performed further investigations on fresh
and frozen/thawed red sea bream by using Vis-NIR spectroscopy in the 400–1100 nm region [89].
In this case, raw spectra were used to build an LDA model, by which 100% classification accuracy
in prediction was reached. PLS-DA of SG-smoothed spectra (670–1100 nm) of shrimps subjected to
different treatments (including ice, water, and brine at various salt concentrations), also led to 100% of
fresh and frozen/thawed samples to be authenticated [90].

Another study was directed to compare classification ability of Vis-NIR (380–1080 nm) and
NIR (1100–2500) spectroscopy in authenticating fresh and frozen/thawed swordfish and, through
the application of PLS-DA, it was found that in this case, Vis-NIR spectra gave better results in the
external validation (≥96.7% of correctly classified samples) [91]. Although worse outcomes were
obtained by only using the NIR region, the technique, combined with SVMs, also authenticated 93% of
fresh and 83% of frozen/thawed sole (Solea vulgaris) samples [92]. Again, high accuracy (90%) and
sensitivity (80%) in prediction were observed for the discrimination of fresh and frozen/thawed tuna
sample by Vis-NIR spectral analysis (350–2500 nm) combined with PLS-DA [93], while better and more
homogenous SIMCA prediction results were obtained when using MIR (2500–14,300 nm) instead of
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NIR (800–2500 nm) regions for the discrimination between fresh and previously frozen Atlantic mullet
fillets [94].

Ottavian et al. (2013) proposed an interesting three-step approach based only on NIR spectra and
latent variable modelling techniques to develop a species-independent classifier able to simultaneously
discriminate between fresh and frozen/thawed fish and, remarkably, overall classification accuracy of
the method ranged between 80% and 91%, based on the strategy adopted and the instrument used [94].
By contrast, the only MIR region was found to be useful for determining whether whiting fish fillets
have been frozen/thawed: when FDA was applied to the 3300–3570 nm MIR subregion (usually related
to fatty acids absorption), 87.5% of sample spectra in the validation set was correctly identified [95].

Finally, one single application of Raman spectroscopy to the authentication of fresh fish is now
available [59]. Lipid fraction of fish from several species (horse mackerel, European anchovy, bluefish,
Atlantic salmon, red mullet, and flying gurnard) was extracted from three samples batches (fresh
samples, once frozen/towed samples, and twice frozen/thawed samples), and then collected by a
Raman spectrometer along the 5000–50,000 nm spectral range and using a 785 nm laser exciting
source. Chemometric analysis, performed by PCA, identified three different clusters in the score plot,
each corresponding to one of the three batches of fish investigated [59].

3.4.2. Application of Hyperspectral Imaging Spectroscopy

Discrimination between fresh and frozen/thawed cod fillet was studied by Vis-NIR/HSI, using
both a handheld interactance probe and an imaging spectrometer (for automatic online analysis at
typical industrial speeds) [96]. Spectra resulting from the two instruments were pre-treated (SNV
and second derivative) and statistically analysed by applying the Rosenblatt’s perceptron linear
classifier to the first and third principal component of the imaging data. Results showed that fresh
cod fillets can be completely separated from fresh/thawed cod fillets using only a few wavelengths in
the Vis region, mainly related to the oxidation of haemoglobin and myoglobin which occur during
freezing/thawing [97]. Similarly, hyperspectral data from Vis-NIR/HSI (380–1030 nm) combined with
least square-SVMs, returned an average correct classification rate of 91.67% for fresh and frozen/thawed
halibut fillets [97].

3.4.3. Application of NMR Spectroscopy

NMR spectroscopy is considered to be a useful and suitable tool for the discrimination of fresh
from frozen/thawed fish, since NMR signals are sensitive enough to changes in water mobility and
its interaction with other molecules [98]. NMR spectroscopy has been already widely exploited to
identify the various modifications in fish tissues occurring during freezing and thawing of fish [99–102];
however, as far as we know, no application of this technique for fish freshness authentication is
currently available.

4. Critical Aspects and Limitations to Overcome

The food scientists’ interest towards the development of reliable methods for the resolution of
several food authenticity issues is well documented by the increasing number of scientific works
which, albeit through different methodologies, have attempted to address the same problems. It is
clear from the analysis of the latest literature that spectroscopy combined with chemometrics is just
one of the many untargeted strategies adopted: chromatographic, MS-based, as well as bio-molecular
and sensory techniques have been already widely exploited and have demonstrated their exceptional
multipurpose qualities for fish authenticity testing [78,103–108].

These techniques are known to share certain common disadvantages, such as the long time
needed for analysis, high costs of the equipment, the need of sample preparation prior to analysis,
destructiveness, and the demand for qualified personnel. On the other hand, as they become more
consolidated within the research community, these techniques excel by their higher accuracy, specificity,
and sensitivity compared to spectroscopic ones, to the point that many of them are used in food official
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controls. Despite this, the attractiveness of spectroscopy and chemometrics is evidenced by not only
by the large literature provided in the present review, but also by several other applications covering a
wide range of food and foodstuffs: fruits and vegetables, honey, wine, edible oils and fats, cereal and
cereal-based products, milk, and dairy products [109–114] have been successfully investigated and
authenticated by means of spectroscopy.

Having said that, some critical reflections should be made about the problems related to the
use of spectroscopy and chemometrics, which still have not been overcome. In accordance to what
has been already reported and to our opinion, the research papers analysed were found to be highly
variable to each other in terms of analytical set-up (e.g., sample pre-processing, spectral ranges, spectra
pre-treatments, resolutions, number of samples tested, and statistical elaboration). This variability,
as easily understood from Section 3, is further worsened by the fact that only a few of the works
analysed reported in-depth statistical outputs and, where present, they were not comparable to
each other.

A critical and objective evaluation of these works is also severely hampered by a lack, in certain
cases, of comprehensive data with regards to the validation of the results. Alongside the internal
cross-validation, the external validation of the qualitative chemometric model is, in our opinion, a crucial
point in assessing the overall goodness of the classifiers and avoiding misleading interpretations.
The last aspect which should be emphasised is that a detailed description of the characteristics of the
sample dataset was not often reported and the lack of standardisation of external factors (e.g., storage
times and conditions), may have interfered with spectral analysis, possibly affecting the robustness of
the model. In this scenario, a recommendation for future works is to consider the intrinsically natural
variability of the fish products (as well as those of all other foodstuffs), and to organise the sampling in
such a way that as much of the expected variability of samples is collected during the calibration stage.
That way, the robustness of the models can make their way to the spread of applications also in the
industrial sector.

As a final remark, no technique should be universally regarded as the optimal solution. However,
the possibility of using UV, IR, Raman, and NMR spectroscopies with no distinction for food
authentication purposes is still an obstacle to overcome, and therefore, in accordance to our experience,
untargeted NIR spectroscopy represents the most versatile option thanks to its high sensitivity to
organic molecules of food, cost-effectiveness, and ease of use. Additionally, the use of NIR spectroscopy
with supervised chemometric method, able to separate relevant from non-relevant spectral variation
like OPLS-DA, should be encouraged since the interpretability of results is enhanced.

5. Conclusions and Prospects for the Future

Recent increases in the complexity and competitiveness of the fishery and seafood sectors, have
resulted in the presence, on the international market, of a huge variety of fresh and processed products,
but at the same time, have meant that the risk of fraud deriving from substitution among look-alike
products is now exponentially higher than it was even a few years ago. Thus, ensuring the truthfulness
of fish and seafood claims concerning their quality and origin, has become an exceptionally important
topic, firstly with a view to enable consumers to make informed decisions.

The overview presented in this review clearly highlights the effective support provided by
analytical approaches based on spectroscopy and multivariate data analysis for the evaluation and
monitoring of fish and seafood products authenticity. Fluorescence, vibrational, NMR, and HSI
spectroscopic applications have been discussed, with an accent on the trends toward their use for
several authentication purposes. In this connection, IR spectroscopy has been the most exploited
technique, especially in studies concerning species and fresh for frozen/thawed products substitutions.
NMR, instead, has shown many applications in the field on the production method, farming system,
and geographical origin identification. By contrast, Raman and HIS have provided very encouraging
results in some fish authentication fields, but their overall potential has so far been largely ignored.
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Rapidity, non-destructive nature, ease of use, and high-throughput measurements make the
spectroscopic non-targeted approach an ideal tool for quality control operations, especially in the
context of daily routine and screening analysis in the food industry, and as a possible substitute
of traditional analytical techniques. Thanks to the technological development of the spectroscopic
instrumentation, the availability of miniaturized and portable devices on the market is rapidly growing,
and this will contribute to an additional growth of applications in the food sector. On the other hand,
these analytical strategies in the official control of foodstuffs are still far from being effectively applied,
largely due to the need of a strict validation to assure further reliability and robustness of results before
implementation as standalone tools. For these reasons, standardisation of the working conditions,
optimisation of the chemometric software, and creation of large databases for data-sharing and for
encouraging greater cooperation between food scientists, represent important current research fields
and future challenges to be faced.
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Abbreviations

ANN artificial neural networks;
BBN Bayesian belief network;
FIR far-infrared;
FDA factorial discriminant analysis;
FFT fast Fourier transform;
FT Fourier transform;
HCA hierarchical cluster analysis;
HSI hyperspectral imaging;
IR infrared;
k-NN k-nearest neighbors;
LDA linear discriminant analysis;
LW-NIR long-wave near infrared;
MIR mid-infrared;
NMR nuclear magnetic resonance;
MSC multiplicative scatter correction;
NIR near-infrared;
OPLS-DA orthogonal partial least square-discriminant analysis;
PCA principal component analysis;
PLS-DA partial least square-discriminant analysis;
PNN probabilistic neural network;
QDA quadratic factorial analysis;
SERS surface-enhanced Raman spectroscopy;
SG Savitzky–Golay smoothing;
SIMCA soft independent modelling of class analogy;
SNV standard normal variate;
SVM support vector machine;
SW-NIR short-wave near infrared;
UV ultraviolet;
Vis visible.
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Abstract: Chemometrics is the chemistry field responsible for planning and extracting the maximum
of information of experiments from chemical data using mathematical tools (linear algebra, statistics,
and so on). Active pharmaceutical ingredients (APIs) can form impurities when exposed to excipients
or environmental variables such as light, high temperatures, acidic or basic conditions, humidity,
and oxidative environment. By considering that these impurities can affect the safety and efficacy
of the drug product, it is necessary to know how these impurities are yielded and to establish the
pathway of their formation. In this context, forced degradation studies of pharmaceutical drugs
have been used for the characterization of physicochemical stability of APIs. These studies are also
essential in the validation of analytical methodologies, in order to prove the selectivity of methods for
the API and its impurities and to create strategies to avoid the formation of degradation products.
This review aims to demonstrate how forced degradation studies have been actually performed and
the applications of chemometric tools in related studies. Some papers are going to be discussed to
exemplify the chemometric applications in forced degradation studies.

Keywords: forced degradation; degradation products; stress test; chemometrics

1. Chemometrics

The Swedish word “kemometri” appeared for the first time in 1971 by a combination between the
terms chemistry and -metri. In 1972, the English homologous term chemometrics (chemo +metrics)
was referred by Prof. Svante Wold that named his group as Forskningsgruppen för Kemometri
(Research Group for Chemometrics) or Kemometrigruppen (Chemometrics Group), and in the next
year, it was published the first article with the term kemometri [1,2]. The International Chemometrics
Society explained the term “chemometrics” for the first time in 1974. International journals, in the
1980s, had special issues on chemometrics. In 1986–1987, the publishers Wiley and Elsevier created the
chemometrics journals “The Journal of Chemometrics” and “Chemometrics and Intelligent Laboratory
Systems,” respectively [3].

The definition of chemometrics is intimately linked to what it is expected to gain from using it.
This definition has presented some inconsistencies between authors over the years, once each one
belongs to fields with different aims [4].

According to Pure and Applied Chemistry (IUPAC), the full definition of chemometrics,
considering no preference of area, is the science of relating measurements performed on a chemical
system or process to the state of the system through application of mathematical or statistical methods.
IUPAC also highlights that, in chemometrics, the data are treated commonly in a multivariate approach,
and although there are cases in theoretical chemistry that use the same mathematical and statistical
techniques in some application, it should aim primarily to extract useful chemical information of
measured data [5].
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This definition evidences clearly the utilization of chemometrics in all stages of the chemical
measurement process, from definition of optimal experimental conditions, data collection, and processing
of data. Chemometrics has its roots in analytical chemistry [6], but it is totally interdisciplinary and
has been applied in many different areas [7], such as food sciences [8–12], assessment of adulteration,
geographical origin [13–15], metabolomics [16–18], engineering [19,20], forensics [21–25], pharmaceutical
studies [26–30], cultural studies [31–33], environmental chemistry [34], etc. Chemometric tools are
fundamental to solve real life problems [35].

In fact, when chemometric is applied appropriately with suitable interpretations, it enables to
obtain a better data visualization even from experimental of poor quality (low resolution and high level
of noise), making the relations between analytical signals and experimental parameters clearer [36].
The development of methods for analysis of degradation products is a hard work, time consuming,
and an expensive task. In this context, chemometric tools are an alternative approach to carry out
studies related to impurities in pharmaceutical drugs, contributing for acquiring relevant information
from the system or turning the analytical method greener.

2. Degradation Products

The efficacy and safety of drugs are determined by toxicological and pharmacological profiles and
adverse side effects due to the dosage and impurities [37–39]. According to the International Council
for Harmonization and Technical Requirements for Pharmaceuticals for Humans Use (ICH), a drug
impurity is any component that is not a chemical entity defined as an active pharmaceutical ingredient
or excipient [40]. The impurities can be classified regarding their origin: inorganic impurities (reagents,
ligands and catalysts, heavy metals or other residual metals, and inorganic salts), organic impurities
(starting materials, by-products, intermediates, degradation products, reactants, ligands, and catalysts),
and solvents (organic and inorganic liquids used in preparation of solutions or in the synthesis of
a new drug substance). Therefore, any extra material present in the drug, even if it does not have
pharmacological activity, is considered an impurity [39]. Although the term “impurity” is commonly
assigned as synonymous of degradation products, it is worth highlighting that these compounds
belong to a subgroup inside the impurity definition [41]. The United States Pharmacopoeia adopts the
term “Related Compounds” for the main degradation products and impurities from synthesis.

The yielding of degradation products depends of several variables, chemical stability being the
most important one. The degradation of APIs involves the formation or breaking of covalent bonds
in chemical processes such as oxidation, reduction, thermolysis, and hydrolysis reactions. These
processes can usually be accelerated when the drug is exposed to light, high temperatures, acidic or
basic conditions, humidity, oxidative environment, incompatible excipients, and even due to its contact
with packaging during its shelf-life [41].

2.1. The Generation of Degradation Products

Stability of API is a critical parameter in the development of a drug product, which should be
considered in the formulation, analytical methods, package, storage, shelf life determination, safety,
and toxicological studies [42,43].

The degradation of an API can result in the loss of effectiveness and can also lead to adverse effects
due to degradation products [44]. Therefore, understating the processes that contribute to generation
of degradation products is extremely important to create strategies aimed at the prevention and/or
minimization of the API’s degradation.

The oxidative degradation is one of the leading causes of drugs degradation, once it involves
the removal of an electropositive atom, radical, electron, or the addiction of an electronegative atom
or radical. The major part of API’s oxidation occurs slowly due to the action of molecular oxygen,
and some procedures used during manufacturing and storage are employed to stabilize the API in
the product. For that, it is necessary to know the variables that increase the extension of oxidation.
One form of preventing the oxidation process is to substitute oxygen inside pharmaceutical recipients
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by nitrogen or dioxide carbon. The contact of drug with metal ions, which can catalyze the oxidation,
should be also avoided, as well as high storage temperatures [45].

Temperature is another variable that has significant influence on degradation and is often used in
forced degradation studies. The same product can present different shelf lives depending on how and
where it is stored. For example, countries in which equatorial climate predominates have higher average
temperature than the ones with tropical climate, and this difference promotes different degradation
conditions and, consequently, different shelf lives [46].

Several pharmaceutical drugs have low stability in aqueous medium and must be evaluated
under hydrolysis conditions. First, to evaluate the hydrolysis of an API, it is necessary to perform
tests in a wide range of pH (solution or suspension) once the hydrogen and hydroxyl ions are able to
influence the degradation ratio [47–49]. Then, hydrolytic forced degradation studies are performed by
submitting the API to acid, basic, and neutral conditions, in a fashion that the experimental variables
have to be adapted if it is observed high degradation of API, in order to avoid the formation of
secondary degradation products [48].

Photostability studies should also be performed to demonstrate the extension of reactions
when the APIs are exposed to light. The photolytic reactions are caused when the drug absorbs the
ultraviolet/visible (UV-Vis) light (wavelength 300 to 800 nm), which promote the molecule to an excited
state and can increase its reactivity in some sites of the molecule. The UV-Vis radiation also can lead to
cleavage of chemical bonds, yielding new molecules. The extension of photodegradation is dependent
of the wavelength of the incident radiation and the absorptivity of the molecule. In other words, this
process depends of the presence of specific functional groups [50].

Nonetheless, it is worth mentioning that even when an API is shown to be chemically stable in
stress tests, the stress conditions can degrade this API when excipients are present.

2.2. Forced Degradation Studies

Since the release of the first guidelines, massive changes to the definition of quality in
pharmaceutical drugs have taken place, and several countries are extending the requirements of
regulatory agencies to generic drugs and already commercialized products [51]. Forced degradation
studies, also called “stress tests,” have been used in the pharmaceutical industry for a long time [50],
but the International Conference on Harmonization (ICH) only issued the formal request Q1A with a
guideline “Stability Testing of New Drug Substance and Products” in 1993 [52]. In general terms, forced
degradation studies are processes that involve the degradation of drugs under extreme conditions
to accelerate the yielding of degradation products. The information obtained from these studies are
usually used to determine the chemical stability, pathways of degradation, to identify the degradation
products, conditions of storage, self-life, excipient compatibility, and also allow the development of
selective analytical methods [52–54].

Today, the control of impurities has been established by ICH Q3A and Q3B guidelines, which are
addressed for registration applications about the content and qualification of impurities classified as
degradation products, which are observed during manufacturing or stability studies of the new drug
product. Furthermore, the registration application should present a validated analytical procedure
suitable for the detection and quantification of degradation products, which should include or evidence
the method’s specificity for specified and unspecified degradation products according to ICH Q2A
and Q2B guidelines for analytical validation. When the impurities are available in the validation
method phase, the discriminatory capacity of drug and impurities is validated through spiking
drug substance with levels of impurities. On the other hand, if impurity or degradation product
standards are unavailable, the drug substance should be submitted to stress conditions (light, heat,
humidity, acid/base hydrolysis, and oxidation). Therefore, in general, the forced degradation studies
are performed in the developing stability-indicating method, and the method validation should take
into account the chromatographic separation of the degradation products.
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Several works in the literature deal with studies of forced degradation and stability as synonymous,
but it is worth highlighting that there are some differences between them. Stability studies consist of
submitting the pharmaceutical drug in milder conditions over a long period (months or years) and,
besides determining some degradation products, allow the establishment of the product’s shelf life.
Forced degradation studies are often performed by exposing the API or the product in drastic conditions
for some hours or days. These extreme conditions are able to provide, as a general rule, substantial
degradation of the API, usually from 10 to 30%. The set of whole degradation products found in every
degradation condition composes a “potential” degradation profile. If just few degradation products
are found, the degradation profile is then denominated as “real degradation profile.” The method to
evaluate the degradation products should be selective and developed considering the occurrence of
every degradation product [55].

The forced degradation studies are critical in the development of drug products and aims the
following points:

• To obtain the potential degradation potential of an API or drug product;
• To discover the degradation mechanism, such as hydrolysis, thermolysis, oxidation, photolysis, etc.;
• To elucidate the molecular structure of degradation product;
• To solve problems regarded to the API stability;
• To identify the conditions where the API or the drug product are more susceptible to degradation

in order to ensure the quality of the final product, bringing to pharmaceutical industry enough
knowledge for development, packaging, manufacture, manipulation, and storage;

• To obtain more stable formulations;
• To develop analytical methods that can be used to quantify the API without interference of its

degradation products and to quantify these degradation products [48,56,57].

The degradation products are commonly analyzed by high-performance liquid chromatography
(HPLC) coupled with ultraviolet/visible (UV-Vis) and/or mass spectrometric (MS) detectors. UV-Vis
detectors are able to provide only information related to chromophores groups, but they are excellent
for quantification. MS detectors are not robust as UV-Vis detectors for quantification, but MS presents
high sensitivity (traces level) and gives important data to characterize the degradation products
through fragmentation profile, accurate mass (for detectors of High Resolution such as Q-ToF, Orbitrap,
and Fourier-transform ion cyclotron resonance (FT-ICR)), as well as information about the origin of
fragments using multiple stage (MSn) and neutral loss scan. When more information is necessary to
elucidate a chemical structure, the nuclear magnetic resonance (NMR) technique is required. NMR
presents low sensitivity, but it is able to resolve conformational, structural, and optical isomers. All these
techniques generate a great amount of data, and the manual data mining is very time and money
consuming. In this context, chemometric tools can present a way to organize and pre-process data,
optimize parameters of HPLC, MS, and NMR techniques, obtain the maximum knowledge about them,
and clarify a lot of useful information [51,58,59].

2.3. Strategies to Select the Degradation Conditions

Forced degradation studies are performed in batches with solutions at different pHs, in the presence
of hydrogen peroxide, UV-Vis radiation, metallic cations (Fe3+ and Cu2+), and high temperatures [48].

Usually, the influence of pH is evaluated using 0.1 mol L−1 of HCl or NaOH [48]. The degradation
by radiation is performed under UV-Vis light, which should not be lesser than 1.2 million of lux per hour
and a power of 200 Wh m−2 [60]. For oxidant condition, the literature recommends using hydrogen
peroxide (H2O2) in concentration from 0.1% to 3.0% at room temperature (25 ◦C). The evaluation of
temperature is usually performed between 40 to 80 ◦C, but it could be higher for recalcitrant APIs.
Other additional variables can be taken into consideration in the global stability studies of an API or
the final product, such as humidity and microbiological stability [22,57,61,62].
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According to ICH, in “Expert Committee on Specifications for Pharmaceutical Preparations”
document, the recommended degradation should be between 10 to 30% of the API. This degradation
range commonly allows for the evaluation of the main degradation products, avoiding the yielding
of secondary degradation products [63]. In Brazil, the regulatory agency ANVISA recommends not
less than 10% of degradation of API, and a technical justification is needed in the case where such
degradation is not obtained [64].

It is worth highlighting that the cited conditions for forced degradation studies are just initial
attempts, and the ideal condition could be more extreme or mild, depending of the chemical recalcitrance
of the API. Table 1 summarizes degradation conditions of some papers that performed forced
degradation studies.
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2.4. Acceptable Limits of Impurities

After obtaining the degradation profile, a critical analysis should be performed to verify the purity
of the chromatographic band of the API and to evaluate the variables that can promote degradation
of the API. The degradation products are analyzed according to their amount in relation to the API
in the final product, after the regular stability time (without any stress condition). The evaluation
considers the maximum amount of API administered per day, and the limit of degradation products are
expressed as a percentage (or mass) relative to the API. The amount of degradation products defines
if it is necessary to perform notification, identification, or qualification [40,57,77]. Table 2 shows the
acceptance criterion used by ICH, FDA, and ANVISA for the amount of impurities found in relation of
a daily administrated API. The acceptance criteria have the following meaning:

• Reporting threshold: A limit of impurity that is not necessary to be reported.
• Identification threshold: A limit of impurity does not need to be structurally identified.
• Qualification threshold: The maximum amount of impurity that is not necessary to be qualified.

Being “qualified” is the process of acquisition and evaluation of data that establishes biological
security of an impurity or a degradation profile at the specified levels [40].

Table 2. Thresholds for degradation products.

Maximum Daily Dose Threshold

Reporting Threshold
≤1 g 0.1%
>1 g 0.05%

Identification Threshold

<1 mg 1.0% or 5 μg TDI, whichever is lower
1 mg–10 mg 0.5% or 20 μg TDI, whichever is lower
>10 mg–2 g 0.2% or 2 mg TDI, whichever is lower
>2 g 0.10%

Qualification Threshold

<10 mg 1.0% or 50 μg TDI, whichever is lower
10 mg–100 mg 0.5% or 200 μg TDI, whichever is lower
>100 mg–2 g 0.2% or 3 mg TDI, whichever is lower
>2 g 0.15%

3. Applications of Chemometric Tools in Forced Degradation Studies

3.1. Design of Experiment (DoE)

In every area is important to know how variables act on the system. In general, processes aim
to enhance the quality of the final product, taking into account the minimization of cost and time.
To achieve these goals, it is necessary to perform the optimization of variables of the system to gain
knowledge about the behavior of variables in order to determine the influence of each variable [78,79].
The optimization of variables in a system is more commonly performed using one-variable-at-a-time
approach (OVAT), where one variable, or also called factor, is changed at a time, causing a change in
the monitored response. However, this univariate approach does not consider the interactions between
variables, and therefore, it does not ensure the discovery of the optimum point in an optimization
process [80]. The design of experiments arises as an alternative multivariate approach for studying
the behavior of a system [81]. In this approach, the factors are simultaneously evaluated, and the
experiments are performed in an organized way in order to acquire information about all the system
performing a minimum number of experiments [82,83].

Some terms in DoE must to be clear for better understanding, as variables, levels, and responses.
Variables or factors are independent experimental inputs capable of changing the responses of the
system. Such factors are temperature, pH, irradiation time, reaction time, concentration of reactants,
and so on. It is worth reiterating that variables can be changed independently of each other, but the
response is dependent of synergism between them [84].
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Levels are different values that a variable can assume within experimental domain. The variable
temperature in an optimization process, for example, can be studied at three levels: at 30, 50 and 70 ◦C.

Responses or independent variables are the monitored parameters. Typical responses are cost,
time of analysis, resolution between chromatographic peaks, percentage of API degradation, etc.

The values studied for each variable are coded in levels as high (+1), central (0), low (−1), and other
levels, which depend on the design. This codification normalizes the independent variables, avoiding
any wrong interpretation of data. The processes involved in DoE allow it to fit the empirical data to a
function, creating a linear or quadratic model and considering the interactions between variables of
the system [85]. Figure 1 shows the experimental domain of the most common experimental designs
for screening and optimization steps.

Figure 1. Experimental domain of the most common experimental designs.

In sum, the DoE presents the following advantages:

• Determining how many experiments are necessary to achieve the goal;
• Reducing the number of experiments;
• Observing the synergic and antagonist interactions between variables;
• Allowing for the possibility to create mathematical models and surface response to describe the

behavior of the variables and to predict the system’s response within an experimental domain;
• Decreasing the time, costs, and generation of lesser amounts of chemical waste, which contributes

for the green chemistry principles [79].

In the context of forced degradation studies, the DoE has been mainly used for the development
and optimization of chromatographic methods and for multivariate evaluation of stress conditions.
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The use of DoE in the development and optimization of chromatographic conditions is not
exclusive for forced degradation studies; instead, its application has spread to several fields that
use chromatography as a tool [86–88]. Krishna et al. [89] performed forced degradation studies of
eberconazole nitrate (EBZ) submitting it to hydrolytic (acid, basic, and neutral), thermal, oxidative, and
photolytic degradation. In this work, a full factorial 33 design was used to identify the best conditions of
the mobile phase for drug analysis. As is already well known in chromatography, the organic modifier
in the mobile phase (methanol in this case), pH (10 mM potassium dihydrogen orthophosphate),
and ion pair agent (tetra butyl ammonium hydroxide, TBAH) are important variables and alter the
capacity factor (k) of the mobile phase. These variables were evaluated in three levels (−1, 0, and +1)
following a full factorial design with 27 experiments (33 Full Factorial). Table 3 presents the real value
of variables, and Table 4 shows the 27 different experiments.

Table 3. Real and coded values of variables considered in design of experiment.

Variable Level (−1) Level (0) Level (+1)

TBHAH (mM) 5 7.5 10
pH 2.6 2.9 3.2

Organic phase (v/v) 20 25 30

Table 4. Conditions of experiments performed in full factorial 33 design.

Experiment x1 x2 x3 Experiment x1 x2 x3 Experiment x1 x2 x3

1 −1 −1 −1 10 −1 −1 0 19 −1 −1 1
2 0 −1 −1 11 0 −1 0 20 0 −1 1
3 1 −1 −1 12 1 −1 0 21 1 −1 1
4 −1 0 −1 13 −1 0 0 22 −1 0 1
5 0 0 −1 14 0 0 0 23 0 0 1
6 1 0 −1 15 1 0 0 24 1 0 1
7 −1 1 −1 −1 1 0 25 −1 1 1
8 0 1 −1 17 0 1 0 26 0 1 1
9 1 1 −1 18 1 1 0 27 1 1 1

The ranges studied in design were selected according to previous studies and considered the
physicochemical properties of EZB. Other chromatographic parameters such as column dimensions,
flow rate, injection volume, wavelength for detection, as well as the procedure performed in each
degradation condition, can be found in reference [89].

As a result, a Pareto chart of standardized effects showed the quantification of each variable on
the capacity factor, where organic phase and TBAH presented the higher influence on the response.
Both linear and quadratic regressions showed no significance for pH inside its range of variation. The
results of experimental design also allowed the authors to create contour plots, and they emphasized
the usefulness of studying the interaction effects of variables on capacity factor. It was observed
through contour plots that, by increasing concentration of TBAH, the capacity factor of EBZ was
increased, and the same behavior occurred when the organic modifier decreased. Furthermore, pH
did not affect the capacity factor in the investigated experimental domain. At the end, the optimum
conditions (pH 2.8, 10 mM TBAH, and methanol 25% (v/v)) made it possible to find a capacity factor
equal to 2.06.

Table 5 shows some papers that used the experiment design to optimize the chromatographic
conditions to analyze the degradation products yielded in forced degradation studies.
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Table 5. Design of experiments used in some papers to optimize chromatographic conditions for
analyses of degradation products.

API Design Ref

Teriflunomide Full factorial 33 [90]
Simvastatin Plackett Burman/Box-Behnken [91]
Linagliptin Full factorial [92]

Ticagrelor Fractional Factorial Resolution
V/Central composite [93]

Imatinib mesylate Box Behnken [94]
Fusidic acid Taguchi/Central Composite [95]
Cloxacillin Plackett Burman [96]

Vilazodone hydrochloride Central composite experimental [97]
Darifenacin hydrobromide Central composite [98]

Edaravone Placket Burman/Box Behnken [99]
Sofosbuvir and Ledipasvir Box Behnken [100]

In the papers presented in Table 5, the DoEs were used to evaluate the chromatographic parameters
in order to obtain the best chromatographic method. The meaning of the best chromatographic method
depends of the intention of the analyst—better resolution for the API, higher number of peaks in order
to detect all degradation compounds, cost-and-time saving methods, etc.

Another purpose for forced degradation studies found by Sonawane and Gide [101] was the
application of experimental design for the optimization of forced degradation of luliconazole (LCZ),
4-(2,4-dichlorophenyl)-1,3-dithiolan-2-ylidene-1-imidazolylacetonitrile), which is recommended for
the treatment of fungal infections. The LCZ was submitted to acidic (HCl), alkaline (NaOH), oxidative
(H2O2), thermolytic (under reflux), and photolytic (direct sunlight) stress conditions, and a full factorial
design was chosen to identify the conditions to obtain a degradation of this API between 10 and 20%.
The 23 factorial design for acid and alkaline conditions took into account the variables concentration of
the degradant agent (x1), temperature (x2), and time of exposure (x3) to achieve the desired degradation.
The variable temperature was not included in oxidative degradation, and the design became a 22

factorial design. The same design was performed to dry heat and wet heat degradation, but including
the variable temperature and discarding the variable concentration. For photolytic degradation, LCZ
powder was exposed to direct sunlight for 48 h and compared with control in dark, but DoE was not
applied. The level of the variables for each stress condition is presented at Table 6. The 23 factorial
design was performed in a total of eight experiments, and the 22 factorial in a total of four experiments
for each degradation (oxidative, dry heat, and wet heat) by design. Table 7 shows the experiments and
the obtained results by liquid chromatography.

Table 6. Real values of the variables used in the design of experiments.

Variable

High Level (+1) Low Level (−1)

Acid Basic Oxid.
Dry
Heat

Wet
Heat

Acid Basic Oxid.
Dry
Heat

Wet
Heat

Conc. (x1)/mol×L−1 1 0.1 30% - - 0.1 0.01 3% - -
Time (x2)/min 75 30 24 h 360 120 15 10 2h 30 30

Temperature (x3)/◦C 100 100 - 200 100 60 60 - 50 60
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Table 7. Design of experiments with coded values and % of degradation of active pharmaceutical
ingredient (API) for acid, basic, and oxidative conditions.

23 Full Factorial Design 22 Full Factorial Design

Exp. X1 X2 X3
Acid

Condition
Basic

Condition
Exp. X1 X2

Oxidative
Condition

1 −1 −1 −1 0% 0% 1 −1 −1 0%
2 +1 −1 −1 4% 3% 2 −1 +1 48%
3 −1 +1 −1 10% 8% 3 +1 −1 51%
4 +1 +1 −1 23% 11% 4 +1 +1 100%
5 −1 −1 +1 8% 19%
6 +1 −1 +1 32% 26%
7 −1 +1 +1 21% 38%
8 +1 +1 +1 41% 43%

The dry and wet heat degradation did not present any degradation of luliconazole, but photolytic
degradation obtained 8%. Concerning acid, alkali and oxidative conditions, the degradation ranges
were 0–41%, 0–43%, and 0–100%, respectively. Multivariate regressions were performed on the results
for each degradation (acid, alkali, and oxidative) in order to obtain the regression models (equations)
for the studied experimental domain. These regression models are used to predict suitable conditions
to achieve the desired percentage of degradation. These conditions provided degradation of 11%,
therefore, a relative error equal to 9%. More details about the equations in each degradation condition as
well as surface response created to better visualization of the results can be found in the reference [101].
The DoE in this work allowed the authors to gain knowledge about stability of LCZ, presenting the
degradation condition where LCZ is more susceptible to undergo degradation and indicating the
variables that present higher influence on the degradation of LCZ. Finally, the chemometrics tools aid
to predict the values of variables to obtain the desired degradation.

Another example was presented by Kurmi et al. [102]. that used DoE to develop the stability-
indicating method and also found the stress conditions for forced degradation of furosemide in the
range of 20–30%.

Despite the fact that DoE is a very interesting tool to find the most suitable conditions in the
degradation studies and avoiding the generation of secondary degradation products, there are few
papers presenting such approach.

3.2. About Fusion QbD®

As mentioned previously, forced degradation studies are performed in the development
stability-indicating method phase. DoE is extremely useful to build a set of screening, optimization
and robustness experiments. In this context, some HPLC method development software platforms
are commercially available to automatically perform the experimental design. This software, such as
Fusion QbD, uses concepts of experimental design and creates a sequence of experiments considering
all relevant chromatographic parameters. It is possible to build, for example, a set of screening
experiments considering more than one type of chromatography columns, multi-solvents, and other
chromatographic variables. After the creation of a set of methods, guided by the DoE principles,
and after running the sequence of experiments, the software generates mathematical models and
makes predictions to find the better chromatographic method. As Fusion QbD is integrated with the
chromatography system, all functions of HPLC are explored, and it allows users to reach maximum
efficiency and speed in the method developing process [103]. Others specialized software is also
used to create basic designs, such as Origin [104], Matlab [105], Minitab [106], Design-Expert [107],
and Statistica [108].
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3.3. Principal Component Analysis (PCA)

Principal component analysis (PCA) is one of the most used chemometric tools for data exploration
through the reduction of a system’s dimensionality [23,109,110]. This technique allows the user to
establish the numerical adjustment of a linear model for describing the central relationships among
process variables [111]. The PCA aims mainly to extract the most useful information from data. Besides,
this chemometric tool helps simplify the description of the data for the analysis of variables [112].

The use of PCA enables the user to represent objects with new variables that are linear combinations
of the original variables. These linear combinations, denominated principal components (PCs),
are calculated considering directions of maximum variance, in a fashion that they may also be
perpendicular to each other [23]. The first PC describes the maximum variance of the sample. The
second PC describes the most considerable variability that the first one was not able to describe. The
directions of the most dispersed samples are generally described in the first PC, since it corresponds to
the vector with more information about the linear combinations of the original variables [113]. Figure 2
presents a graphical representation of PCA, where the axes are changed in order to maximize the
explained variance using a smaller number of dimensions.

Figure 2. Representation of principal component analysis (PCA). Original data at left side, PC1 × PC2
in the middle and PC2 × PC3 at right side.

In the literature, three papers were found involving PCA associated with degradation products of
pharmaceutical drugs. Two of them will be discussed in the next paragraphs, and the other one will be
discussed later, in the MCR-ALS context.

Tôrres et al. [114] performed accelerated degradation studies of captopril and applied Multivariate
Statistical Process Control (MSPC) for monitoring and identifying any changes in samples in order to
guarantee the product quality. The details of all procedure data treatment can be found in reference [114].
The captopril stability was evaluated leaving 24 blisters of tablets of the same batch in a climatic
chamber at 40 ± 2 ◦C and 75 ± 5% of relative humidity. One blister per week was analyzed by liquid
chromatography, for six months, totalizing 24 chromatograms. In order to build the process control
chart, a sample set of Captopril was used under normal operation conditions in the calibration (training
stage), and in the validation stage, samples were used under normal operation conditions, as were
samples presenting expired shelf life. Hotelling’s T2 statistic and Square Prediction Error (SPE) were
used for sample monitoring. PCA is a useful tool in the Hotelling’s T2 statistic, since it reduces
the number of variables to be monitored, changing the original variables by the scores in the PCA,
without significant information loss from dataset. The PCA along with the multivariate control charts
contributes to identify possible failures and changes early in the process, making this method useful to
ensure the quality control of product [114]. The same authors also performed a similar work using the
mid (MIR) and near (NIR) infrared techniques [115].

Skibinski et al. [66] performed forced degradation of toloxatone, which is a pharmaceutical
drug used as an antidepressant. These studies were carried out in basic (0.01 M NaOH), acidic
(1 M HCl), neutral (water), photo UV-Vis, photo UVC, and oxidative (0.01% H2O2) degradation
conditions. The samples (including the control solution) were evaluated in a LCMS (ToF) totalizing
21 chromatographic profiles. The stress conditions provided eight unique degradation products of
toloxatone [66].
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After aligning of chromatographic profiles, PCA analysis showed a visible grouping of the stressed
samples. The author noticed that stressed basic samples gave rise to a separated cluster from other
stressed samples in the scores analysis obtained from PCA, while neutral and acidic samples were
close to the control samples. On the other hand, it was possible to separate in groups the samples
carried out under photo UV-VIS, photo UVC, and oxidation conditions. The first three components of
PCA model were able to explain almost 71% of the total variance. This work shows that PCA analysis
can be used as a tool to characterize the chromatographic profiles.

3.4. Partial Least Squares (PLS)

Partial least squares (PLS) regression is a multivariate regression technique, the most important
one in the chemometrics. It is used to stablish quantitative relationships between a vector of information
(UV-Vis, Raman, NIR, MID-IR, NMR spectra or chromatogram, diffractogram, etc.) and properties to
be quantified (concentration of an analyte, crystalline phase of API, etc.) [116–119].

As example, the concentrations of an analyte in calibration samples are organized in a vector
y, and the chemical data (spectra) are organized in a matrix X. In the classic multivariate regression,
the regression coefficient b is found by b = y × X+, where X+ is the pseudoinverse of X. The regression
equation (model) can be written in the matrix form as y = b × X. However, there is some issues
related to the use of classical multivariate regression, such as the need of high number of samples and
the problem of the correlation among the variables in the matrix X. Then, in a similar way as PCA,
PLS calculations simultaneously decomposes X and y in order to maximize the correlation among the
scores of X and y. After defining coefficients b, it can be applied to determine the concentration in
external samples [120].

Some algorithms have been proposed to perform PLS, and the most common are PLS1 and PLS2,
for one response and for multiple responses, respectively. Although PLS2 is used for multiple responses,
it is recommended only in the cases where there is high correlation among the responses [121].

Recently, Sayed et al. [122] developed a stability-indicating method using PLS to determine
mometasone furoate (MF) pure or in pharmaceutical formulation in the presence of its degradation
products. The forced degradation was performed only in basic conditions once other previous works
have demonstrated its susceptibility in undergoing alkaline hydrolysis. The multilevel multifactor
experimental design was applied to prepare mixtures of calibration set constituted by 14 samples,
which were scanned over the range of 220–350 nm. The UV spectra of 11 different mixtures of MF
and its degradation products were used to predict the concentration of MF. The PLS model applied in
the determination of MF presented good results, obtaining in calibration set mean recovery of 100.2%
and RMSEC 0.002% meanwhile validation set presented mean recovery of 97.24% and RMSEP 0.04%.
The recoveries in pharmaceutical samples were also satisfactory (98.47–102.66%), demonstrating no
interference from excipients or alkaline degradation products in the quantification and the power of PLS
method for quantification of MF [122]. Besides, in this same work, a new TLC densitometric method
and the chemometric tools CLS and PCR were found, which were applied to develop quantification
models for the MF in pharmaceutical samples.

Attia et al. [123] also developed spectrometric methods for determination of cefoxitin-sodium in
the presence of its alkaline degradation product using different chemometric tools. PLS was applied to
quantify cefoxitin-sodium in pharmaceutical sample. To obtain degradation product, the basic forced
degradation was performed using NaOH 0.1 M for 10 min, which was neutralized with HCl 0.1 M. More
details about the procedure to prepare the working solution are in reference [123]. The PLS model was
built considering 13 mixtures denominated calibration set and 12 mixtures as a validation set obtained
through experimental design. The number of factors was optimized through cross-validation method,
as performed in reference [122]. The genetic algorithm (GA) was coupled with PLS to improve the
prediction capability of models eliminating variables without information. In fact, the efficiency of the
calibration of GA-PLS was better than only PLS, given lower RMSEC and RMSEP values for GA-PLS.
The analysis of cefoxitin-sodium in presence of degradation products and in the pharmaceutical sample
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presented mean recovery of 100.54% and 99.86 ± 1.347%, respectively, using GA-PLS. The proposed
method presented no significant difference compared to the standard method. Different chemometric
tools were proposed and all of them showed a solvent reduction and sample consumption, making the
methods greener. Table 8 present papers found in the literature that use in some moment the PLS tool
in forced degradation studies of pharmaceutical products.

Table 8. Works involving forced degradation studies and the partial least squares (PLS) tool.

Author API
Forced Degradation

Condition
Chemometric

Tool
Year Ref.

Attia et al. Cefprozil Basic hydrolysis PLS; SRACLS 2016 [124]

Alamein et al. Pimozide Acid and basic
hydrolysis CLS; PCR; PLS 2015 [125]

Hegazy et al. Linezolid Acid and basic
hydrolysis; oxidative

PLS; PCR;
Parafac; N-PLS 2014 [126]

Hegazy et al. Imidapril
hydrochloride

Basic hydrolysis;
oxidative PCR; PLS 2014 [127]

Souza et al. Captopril Thermolysis PLS 2012 [128]

Abou Al Alamein Zafirlukast Basic hydrolysis PLS 2012 [129]

Naguib Bisacodyl Acid hydrolysis PLSR; SRACLS 2011 [130]

Abdelwahab Atenolol;
Chlorthalidone

Acid and basic
hydrolysis PCR; PLS 2010 [131]

Wagieh et al. Oxybutynin
hydrochloride Basic hydrolysis PCR; PLS 2010 [132]

Moneeb Rabeprazole
sodium Acid hydrolysis CLS; PCR; PLS 2008 [133]

S Fayed et al. Cilostazol Acid hydrolysis PLS; CRACLS 2007 [134]

Ragno et al. Lacidipine Photodegradation PLS; PCR;
MLRA 2006 [135]

Shehata et al. Rofecoxib Basic hydrolysis;
photodegradation PLS; CRACLS 2004 [136]

3.5. Multivariate Curve Resolution (MCR)

Multivariate curve resolution (MCR) has been widely used to analyze several types of data in
different application fields [137–139]. MCR constitutes a bilinear model based on the classical least
squares (CLS) that decomposes data matrix into two submatrices, which have chemical information of
the compounds involved in the system [137,139–141].

This approach is also known to be spectral unmixing tool once it allows mathematically solving
analyte signals of a complex mixture where they are overlapped in one or more dimensions of data,
as chromatograms and spectra of analyte in the presence of interferents in analysis without resolution.
MCR aims to differentiate the individual contributions of components of a mixture providing the
pure signals (spectra) and the proportions of analytes through concentration profile [138,139,142].
MCR comes from the Beer’s law, where concentration is proportional to the absorbance. In this
way, a spectral data set can be deconvoluted in the pure spectra from the analytes and their relative
concentration. The general equation for MCR is X = C × St, where the spectral matrix X is deconvoluted
in the concentration matrix and the pure spectra matrix.

Most papers related to forced degradation studies and MCR-ALS aimed for the evaluation of
photodegradation. Except for basic hydrolysis condition, other degradation conditions were not found
in the literature.
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Marín-García et al. [143] investigated photodegradation of tamoxifen in aqueous medium
using Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). The photodegradation
experiments were conducted at 35 ◦C in a cabinet equipped with light at two different irradiation power
conditions (400 and 765 W/m2) according to ICH requirements. To monitor the photodegradation
of tamoxifen, the UV-VIS spectra were collected from 0 to 160 min for irradiation power 400 W/m2,
and from 0 to 120 min for 765 W/m2. The UV spectra allowed to obtain the evolution of the
photodegradation process. MCR-ALS analysis of the UV data allowed to observe the estimation of
the kinect profiles for the possible presence of at least four species, three of them being degradation
products. Besides, it was possible to obtain the relative concentration of each specie along time.

During photodegradation some molecules cannot be detected by UV-Vis due to the loss of
chromophore groups. The authors overcame this situation using a LC-DAD-MS technique to obtain
deeper knowledge about species formed in photodegradation. In this case, MCR-ALS analysis provides
the C and S matrixes that contain, respectively, the elution profile and pure UV-VIS or MS spectra for
each substance. These matrixes showed a new component, which represents a fourth degradation
product. This new specie was not observed in the UV-VIS monitoring, it rises during photodegradation
but disappears at the end of the process. Furthermore, the authors elucidated the degradation product
structures. This work shows MCR-ALS’s ability to monitor and solve mixtures of degradation products
formed during photodegradation process [143].

Another work reported in the literature was conducted by Feng et. al. [144], which investigated
the basic degradation for paracetamol using two-way dimensional UV-Vis associated to MCR-ALS.
Forced degradation was performed using a quartz cell where paracetamol and NaOH solutions were
added, and the UV-VIS spectra were collected from 1 s to 24 h. Initially, a PCA was applied on UV-VIS
data, and it suggested the existence of four components. Later, the concentration profiles were obtained
from evolving factor analysis (EFA), and it confirmed the number of chemical components involved in
degradation reaction. In the MCR-ALS deconvolution, it was applied to the constraints non-negativity
for spectral and concentration profiles and unimodality for the concentration profile. Through the
concentration profile and spectra profile plots, it was possible to perform a critical analysis of the
formation and consumption of the species during alkaline degradation. It was possible to observe
that there were a reactant, a degradation product, and two intermediates. The authors compared the
results with HPLC analysis, which proved the existence of two intermediates, and the concentration
profile were in agreement with the one recovered by MCR-ALS using UV-Vis. Besides, the authors
also proposed a degradation pathway in alkaline media. The use of MCR-ALS in forced degradation
studies allowed to verify the drug stability and kinect of degradation of paracetamol [144]. Other
papers regarding forced degradation studies and MCR-ALS are presented in Table 9.

Table 9. Works involving forced degradation studies and the Multivariate Curve Resolution-Alternating
Least Squares (MCR-ALS) tool.

Author API
Forced Degradation

Condition
Chemometric Tool Year Ref.

Gómez-Canela 5-Fluorouracil Photodegradation MCR-ALS 2017 [145]
Bērzin, š et al. Furazidin Basic hydrolysis HS-MCR-ALS 2016 [146]

Luca et al. Amiloride Photodegradation MCR-ALS 2012 [147]

Sílvia Mas et al. ketoprofen Photodegradation MCR-ALS;
HSMCR 2011 [148]

Luca et al. Nitrofurazone Photodegradation HS-MCR-ALS 2010 [149]

Javidnia et al. Nitrendipine
and felodipine Photodegradation MCR 2008 [150]

Shamsipur et al. Nifedipine Photodegradation MCR 2003 [151]
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3.6. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) are powerful chemometric tools based on artificial intelligence.
They can model nonlinear data through learning processes in a similar way to the human brain [36,152].
ANN models are able to map the input data in a set of appropriate outputs following a “learning by
examples.” In other words, the structure of data is learned through training algorithms [153].

To the best of our knowledge, two works regarding to forced degradation studies and artificial
neural network are reported in the literature, and only one of them uses ANNs as the main tool [123,154].

Golubović et al. [154] used ANNs to develop quantitative structure-retention relationships
(QSRRs) model to optimize isocratic RP-HPLC method of candesartan cilexetil in the presence of
seven degradation products obtained from acid, alkaline, neutral hydrolysis, photolysis, and oxidation
conditions. QSRRs is able to relate chromatographic retention parameters and molecular structure,
and it becomes a valuable tool to the prediction of chromatographic behavior and separation of
complex mixtures.

Initially, to investigate the variables that could influence the chromatographic behavior, a 25–1

fractional factorial design was performed. The following variables were included in the design:
percentage of acetonitrile in the mobile phase, buffer pH and ionic strength, temperature of the column,
and flow rate of the mobile phase. All variables showed to be significant and, therefore, were considered
as inputs in the ANN modeling, except flow rate, which was maintained as a constant.

The molecular structure is an essential variable in QSRR model and is encoded by descriptors.
Roughly, molecular descriptors are obtained by logic and mathematical procedures that transform
chemical information in a useful number of some standardized experiments. The selection of molecular
descriptors was based on intermolecular interactions suggested by theory of liquid chromatography.
In the ANN modeling it were included the descriptors which present low correlation between them,
such as polarizability, H-donor sites, H-acceptor sites, and octanol/water distribution coefficient.

It was used a multi-layer feedforward, the most common ANNs, constituted by one input layer
(descriptors and significant chromatographic variables), number of hidden neurons connected to both
input and output neurons (retention factor). In the network training stage, the overall agreement
between computed and target output for a set training is maximized. In order to avoid overfitting,
the predictive power of network was evaluated using a validation set. Both training and validation
sets were defined through a Box-Behnken design, varying from −1 to +1 level. A total of 344 cases
for ANN optimization were obtained, which were divided into 280 cases for the training set, 32 for
external validation, and 32 to validation set. For training, validation, and external validation data
sets, coefficients of determination (R2) were obtained between experimental and predicted retention
factor (Kexp and KANN respectively) equal to 0.9993, 0.9969 and 0.9956, respectively. Therefore, high
R2 and low RSME values demonstrate an excellent predictive ability of model and non-occurrence of
overfitting during the training process.

This kind of mathematical model is an important tool in forced degradation studies since
degradation products derive from the API and, therefore, are chemically similar. The creation of
models able to predict the behavior of active substance and all degradation products contribute to
defining the optimal chromatographic conditions during the optimization process [154].

4. Conclusions

Chemometric tools can bring considerable gains in forced degradation studies. DoE is the most
used chemometric tool in such studies, especially in the development of suitable chromatographic
methods to monitor the API. However, the application of DoE directly in stress experiments is also
promising, as it is possible to quantify the individual effect of stress variables as well as the synergy
between them, simulating what may occur in real life. The other widely used tool is PLS, since its use
allows the quantification of the API directly in UV-Vis spectrophotometry analyzes, since it performs
multivariate quantification, which makes possible quantification of species without resolution.
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The PCA technique is not applied in these studies since it is an exploratory method, and its
application is more related to process monitoring and classification methods for raw material
identification.

The other tools, despite being very useful in such studies, are more complex, and their application
is limited for non-chemometricians.
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44. Skibiński, R.; Trawiński, J.; Komsta, Ł.; Bajda, K. Characterization of forced degradation products of clozapine
by LC-DAD/ESI-Q-TOF. J. Pharm. Biomed. Anal. 2016, 131, 272–280. [CrossRef] [PubMed]

45. Attwood, D.; Florence, A.T.; Rothschild, Z. Princípios Físico-Químicos em Farmácia Volume 4; Edusp: São Paulo,
Brazil, 2003.

46. Gallardo, C.; Rojas, J.J.; Flórez, O.A. La temperatura cinética media en los estudios de estabilidad a largo
plazo y almacenamiento de los medicamentos. Vitae 2004, 11, 67–72.

47. Allen Jr, L.V.; Popovich, N.G.; Ansel, H.C. Formas Farmacêuticas e Sistemas de Liberação de Fármacos-9; Artmed
Editora: Porto Alegre, Brazil, 2013.

48. Blessy, M.; Patel, R.D.; Prajapati, P.N.; Agrawal, Y.K. Development of forced degradation and stability
indicating studies of drugs—A review. J. Pharm. Anal. 2014, 4, 159–165. [CrossRef]

49. Qiu, F.; Norwood, D.L. Identification of pharmaceutical impurities. J. Liq. Chromatogr. Relat. Technol. 2007,
30, 877–935. [CrossRef]

50. Ahmad, I.; Ahmed, S.; Anwar, Z.; Sheraz, M.A.; Sikorski, M. Photostability and photostabilization of drugs
and drug products. Int. J. Photoenergy 2016, 2016. [CrossRef]

51. Singh, S.; Handa, T.; Narayanam, M.; Sahu, A.; Junwal, M.; Shah, R.P. A critical review on the use of modern
sophisticated hyphenated tools in the characterization of impurities and degradation products. J. Pharm.
Biomed. Anal. 2012, 69, 148–173. [CrossRef]

52. ICH. Stability Testing of New Drug Substances and Products Q1A (R2); Published by Food and Drug
Administration: Silver Spring, MD, USA, 2003. Available online: https://www.fda.gov/media/71707/
download (accessed on 11 August 2019).

53. Singh, S.; Junwal, M.; Modhe, G.; Tiwari, H.; Kurmi, M.; Parashar, N.; Sidduri, P. Forced degradation studies
to assess the stability of drugs and products. Trac Trends Anal. Chem. 2013, 49, 71–88. [CrossRef]

54. Chen, W.-H.; Lin, Y.-Y.; Chang, Y.; Chang, K.-W.; Hsia, Y.-C. Forced degradation behavior of epidepride and
development of a stability-indicating method based on liquid chromatography–mass spectrometry. J. Food
Drug Anal. 2014, 22, 248–256. [CrossRef]

55. ANVISA Perguntas & Respostas. Assunto: RDC 53/2015 e Guia 4/2015. Available
online: http://portal.anvisa.gov.br/documents/33836/418522/Perguntas+e+Respostas+-+RDC+53+2015+
e+Guia+04+2015/6b3dec42-546c-4953-943f-4047b8b50f87 (accessed on 10 August 2019).

56. Canavesi, R.; Aprile, S.; Varese, E.; Grosa, G. Development and validation of a stability-indicating LC-UV
method for the determination of pantethine and its degradation product based on a forced degradation
study. J. Pharm. Biomed. Anal. 2014, 97, 141–150. [CrossRef]

57. Bhardwaj, S.P.; Singh, S. Study of forced degradation behavior of enalapril maleate by LC and LC-MS and
development of a validated stability-indicating assay method. J. Pharm. Biomed. Anal. 2008, 46, 113–120.
[CrossRef]

58. Palaric, C.; Molinié, R.; Cailleu, D.; Fontaine, J.-X.; Mathiron, D.; Mesnard, F.; Gut, Y.; Renaud, T.; Petit, A.;
Pilard, S. A Deeper Investigation of Drug Degradation Mixtures Using a Combination of MS and NMR Data:
Application to Indapamide. Molecules 2019, 24, 1764. [CrossRef] [PubMed]

59. Fatima, S.; Beg, S.; Samim, M.; Ahmad, F.J. Application of Chemometric Approach for Development and Validation
of High Performance Liquid Chromatography Method for Estimation of Ropinirole Hydrochloride; John Wiley & Sons,
Inc.: Hoboken, NJ, USA, 2019.

60. ICH. Photostability Testing of New Drug Substances and Products Q1B; Published by Food and Drug
Administration: Silver Spring, MD, USA, 1996. Available online: https://www.fda.gov/media/71713/
download (accessed on 15 August 2019).

61. Bakshi, M.; Singh, S. Development of validated stability-indicating assay methods—Critical review. J. Pharm.
Biomed. Anal. 2002, 28, 1011–1040. [CrossRef]

62. Bansal, G.; Singh, M.; Jindal, K.C.; Singh, S. Ultraviolet-photodiode array and high-performance liquid
chromatographic/mass spectrometric studies on forced degradation behavior of glibenclamide and
development of a validated stability-indicating method. J. Aoac Int. 2008, 91, 709–719. [PubMed]

203



Molecules 2019, 24, 3804

63. World Health Organization. WHO Expert Committee on Specifications for Pharmaceutical Preparations:
Thirty-Ninth Report; World Health Organization: Geneva, Switzerland, 2005; Volume 39.

64. Sanitária, A.N.d.V. Resolução De Diretoria Colegiada—RDC Nº 53; Diário Oficial da União: Brasília, Brazil,
2015.

65. Devrukhakar, P.S.; Shankar, M.S.; Shankar, G.; Srinivas, R. A stability-indicating LC–MS/MS method for
zidovudine: Identification, characterization and toxicity prediction of two major acid degradation products.
J. Pharm. Anal. 2017, 7, 231–236. [CrossRef] [PubMed]
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